
Data Management for Social Scientists

The “data revolution”offers many new opportunities for research in the
social sciences. Increasingly, traces of social and political interactions
can be recorded digitally, leading to vast amounts of new data that
become available for research.This poses new challenges for the waywe
organize and process research data. This book covers the entire range
of data management techniques, from flat files to database management
systems. It demonstrates how established techniques and technologies
from computer science can be applied in social science projects, drawing
on a wide range of different applied examples. The book covers simple
tools such as spreadsheets as well as file-based data storage and process-
ing, and then moves on to more powerful data management software
such as relational databases. In the final part of the book, it deals with
advanced topics such as spatial data, text as data, and network data.

Nils B. Weidmann is Professor of Political Science at the University of
Konstanz. Trained both as a computer scientist and a political scientist,
he completed his PhD at ETH Zurich in 2009. His work has been rec-
ognized with several awards, including the 2020 Karl Deutsch Award
of the International Studies Association.

Published online by Cambridge University Press

Methodological Tools in the Social Sciences

Series Editors
Paul M. Kellstedt, Associate Professor of Political Science, Texas
A&M University
Guy D. Whitten, Professor of Political Science and Director of the
European Union Center at Texas A&M University

The Methodological Tools in the Social Sciences series is comprised of
accessible, stand-alone treatments of methodological topics encountered by
social science researchers. The focus is on practical instruction for applying
methods, for getting the methods right. The authors are leading researchers
able to provide extensive examples of applications of the methods covered
in each book. The books in the series strike a balance between the theory
underlying and the implementation of the methods. They are accessible and
discursive, and make technical code and data available to aid in replication
and extension of the results, as well as enabling scholars to apply these
methods to their own substantive problems. They also provide accessible
advice on how to present results obtained from using the relevant methods.

Other books in the series

Eric Neumayer and Thomas Plümper,
Robustness Tests for Quantitative Research

Published online by Cambridge University Press

Data Management for Social Scientists

From Files to Databases

NILS B. WEIDMANN
University of Konstanz, Germany

Published online by Cambridge University Press

Shaftesbury Road, Cambridge cb2 8ea, United Kingdom

One Liberty Plaza, 20th Floor, New York, ny 10006, USA

477 Williamstown Road, Port Melbourne, vic 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108845670

doi: 10.1017/9781108990424

© Nils B. Weidmann 2023

This work is in copyright. It is subject to statutory exceptions and to the provisions of
relevant licensing agreements; with the exception of the Creative Commons version the

link for which is provided below, no reproduction of any part of this work may take place
without the written permission of Cambridge University Press & Assessment.

An online version of this work is published at doi.org/10.1017/9781108990424 under
a Creative Commons Open Access license CC-BY-NC 4.0.

All versions of this work may contain content reproduced under license from third parties.
Permission to reproduce this third-party content must be obtained from these third

parties directly. When citing this work, please include a reference to the
DOI 10.1017/9781108990424.

First published 2023

A catalogue record for this publication is available from the British Library.

isbn 978-1-108-84567-0 Hardback
isbn 978-1-108-96478-4 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this

publication and does not guarantee that any content on such websites is, or will
remain, accurate or appropriate.

Published online by Cambridge University Press

www.cambridge.org
http://dx.doi.org/10.1017/9781108990424

To my family.

To Michael D. Ward (1948–2021).

Published online by Cambridge University Press

Published online by Cambridge University Press

Contents

Preface page xi

part i introduction

1 Motivation 3
1.1 Data Processing and the Research Cycle 4
1.2 What We Do (and Don’t Do) in this Book 5
1.3 Why Focus on Data Processing? 7
1.4 Data in Files vs. Data in Databases 9
1.5 Target Audience, Requirements and Software 11
1.6 Plan of the Book 12

2 Gearing Up 14
2.1 R and RStudio 14
2.2 Setting Up the Project Environment for Your Work 16
2.3 The PostgreSQL Database System 20
2.4 Summary and Outlook 22

3 Data = Content + Structure 23
3.1 What Is Data? 23
3.2 Data Content and Structure 24
3.3 Tables, Tables, Tables 26
3.4 The Structure of Tables Matters 30
3.5 Summary and Outlook 35

part ii data in files

4 Storing Data in Files 39
4.1 Text and Binary Files 40
4.2 File Formats for Tabular Data 43

vii

Published online by Cambridge University Press

viii Contents

4.3 Transparent and Efficient Use of Files 54
4.4 Summary and Outlook 57

5 Managing Data in Spreadsheets 59
5.1 Application: Spatial Inequality 60
5.2 Spreadsheet Tables and (the Lack of) Structure 63
5.3 Retrieving Data from a Table 64
5.4 Changing Table Structure and Content 66
5.5 Aggregating Data from a Table 67
5.6 Exporting Spreadsheet Data 70
5.7 Results: Spatial Inequality 70
5.8 Summary and Outlook 71

6 Basic Data Management in R 74
6.1 Application: Inequality and Economic Performance in the US 75
6.2 Loading the Data 76
6.3 Merging Tables 79
6.4 Aggregating Data from a Table 82
6.5 Results: Inequality and Economic Performance in the US 84
6.6 Summary and Outlook 85

7 R and the tidyverse 87
7.1 Application: Global Patterns of Inequality across Regime

Types 88
7.2 A New Operator: The Pipe 89
7.3 Loading the Data 90
7.4 Merging the WID and Polity IV Datasets 92
7.5 Grouping and Aggregation 93
7.6 Results: Global Patterns of Inequality across Regime Types 96
7.7 Other Useful Functions in the tidyverse 97
7.8 Summary and Outlook 99

part iii data in databases

8 Introduction to Relational Databases 103
8.1 Database Servers and Clients 105
8.2 SQL Basics 108
8.3 Application: Electoral Disproportionality by Country 109
8.4 Creating a Table with National Elections 110
8.5 Computing Electoral Disproportionality 115
8.6 Results: Electoral Disproportionality by Country 117
8.7 Summary and Outlook 118

9 Relational Databases and Multiple Tables 121
9.1 Application: The Rise of Populism in Europe 122
9.2 Adding the Tables 123
9.3 Joining the Tables 125

Published online by Cambridge University Press

Contents ix

9.4 Merging Data from the PopuList 127
9.5 Maintaining Referential Integrity 129
9.6 Results: The Rise of Populism in Europe 131
9.7 Summary and Outlook 132

10 Database Fine-Tuning 135
10.1 Speeding Up Data Access with Indexes 136
10.2 Collaborative Data Management with Multiple Users 140
10.3 Summary and Outlook 143

part iv special types of data

11 Spatial Data 147
11.1 What Is Spatial Data? 147
11.2 Application: Patterns of Violence in the Bosnian Civil War 150
11.3 Reading and Visualizing Spatial Data in R 151
11.4 Spatial Data in a Relational Database 158
11.5 Results: Patterns of Violence in the Bosnian Civil War 163
11.6 Summary and Outlook 164

12 Text Data 166
12.1 What Is Textual Data? 167
12.2 Application: References to (In)equality in UN Speeches 169
12.3 Working with Strings in (Base) R 170
12.4 Natural Language Processing with quanteda 175
12.5 Using PostgreSQL to Manage Documents 179
12.6 Results: References to (In)equality in UN Speeches 183
12.7 Summary and Outlook 184

13 Network Data 187
13.1 What Is Network Data? 187
13.2 Application: Trade and Democracy 190
13.3 Exploring Network Data in R with igraph 191
13.4 Network Data in a Relational Database 197
13.5 Results: Trade and Democracy 204
13.6 Summary and Outlook 205

part v conclusion

14 Best Practices in Data Management 209
14.1 Two General Recommendations 209
14.2 Collaborative Data Management 212
14.3 Disseminating Research Data and Code 214
14.4 Summary and Outlook 216

Bibliography 219

Index 223

Published online by Cambridge University Press

Published online by Cambridge University Press

Preface

More than a decade ago, while I was still a PhD student, Mike Ward
encouraged me to develop a book project about relational databases for
social science applications. The book proposal was not successful, but I
never completely abandoned the idea. Later in my career, when working
with many excellent students, I realized that there is still a huge need
to establish data management as part of our quantitative social science
curricula. Most of the training we offer in political science focuses on
(oftentimes advanced) methods for statistical analysis and causal infer-
ence, but does not really help students get to the datasets required for
this. As a result, “many social scientists will find themselves ‘hacking
together’ datasets in a fundamentally ad hoc way,” as one reviewer for
this book commented on the status quo in our field. I hope that this book
contributes to improving this.
In comparison to the original idea, the focus of this book has been

expanded considerably, beyond relational databases. The first half of the
book describes different tools to manage data in a file-based workflow,
without interfacing with a dedicated database system. Yet, more techni-
cally advanced readers will wonder why I focus so much on databases in
the second half of the book, given that this is – at least by computer science
standards – a fairly old technology. Still, relational databases continue to
be around, and they allow me to cover a number of key learnings that
easily generalize beyond this technology. First, with the need to explicitly
define data structures (tables) before we can use them, databases force us
to think about data structure much more than we commonly do in social
science data analysis. What information should the individual tables con-
tain, how many do we need, and how are they linked? There are different

xi

https://doi.org/10.1017/9781108990424.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.001

xii Preface

ways to do this, and some are better than others. Even if readers later
move on to less-structured data – which is becoming more and more
common also in the social sciences –, they will do so being fully aware
of the strengths and weaknesses of the different approaches. Relational
databases also allow me to cover some basic techniques for managing
large amounts of data, which are essential as our datasets become big-
ger. Indexing a table is a standard operation in a database, and we can
nicely illustrate what we gain from it. Last, databases are a great way to
demonstrate how a client-server setup works. As our data management
becomes more complex, for example due to the amount of data we need to
process, there is an increasing need to perform certain tasks on specialized
servers rather than one’s own personal computer. This makes it necessary
to interact with these servers, which is something we do in this book using
a relational database management system.
This book benefited from the help and support by several people

and institutions. The initial development of the material was funded
by the German Federal Ministry of Education and Research under the
“b3 – beraten, begleiten, beteiligen” project, and Lukas Kawerau, with
his extensive skills as a computational social scientist, was essential in
getting a first draft off the ground. I am grateful to Lars-Erik Cederman
and the International Conflict Research group at ETH Zurich for hosting
me during the Winter term 2019–2020, which gave me the opportunity
to work intensively on this project. During this time, Luc Giradin with
his joint computer science and social science background provided many
useful comments and suggestions. At Konstanz, the members of my group
(Frederik Gremler, Anna-Lena Hönig, Eda Keremoǧlu, Sebastian Nagel,
Stefan Scholz and Patrick Zwerschke) and the students in my courses
on data management (summer term 2020 and 2021) were critical and
constructive readers, and contributed greatly to the improvement of this
book. Also, an early presentation of this project at our department’s
Center for Data and Methods (CDM) proved to be extremely helpful
in setting the general scope, clarifying the main goals of the project.
I am very grateful to Guy Whitten and Paul Kellstedt for including
this book in the Methodological Tools in the Social Sciences series at
Cambridge University Press, and for supporting me with their expertise
and advice. The open access publication of this book was made possible
through financial support from the University of Konstanz’s Open Access
Fund and the the Cluster of Excellence “The Politics of Inequality”

https://doi.org/10.1017/9781108990424.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.001

Preface xiii

(EXC-2035/1–390681379). Lastly, I want to thank all the developers of
the datasets and the free software used in this book. We often fail to
realize that behind every database we use and every package we install,
there is a person or a team investing so much time and effort for the
benefit of the entire research community.

https://doi.org/10.1017/9781108990424.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.001

https://doi.org/10.1017/9781108990424.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.001

part i

INTRODUCTION

https://doi.org/10.1017/9781108990424.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.002

https://doi.org/10.1017/9781108990424.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.002

1

Motivation

The way in which we conduct empirical social science has changed
tremendously in the last decades. Lewis Fry Richardson, for example,
was one of the first researchers to study wars with scientific methods
in the first half of the twentieth century. Among many other projects,
he put together a dataset on violent conflicts between 1815 and 1945,
which he used in his Statistics of Deadly Quarrels (Richardson, 1960).
Richardson collected this information on paper, calculating all of the
statistics used for his book manually. Today, fortunately, empirical social
science leverages the power of modern digital technology for research,
and data collection and analysis are typically done using computers.
Most of us are perfectly familiar with the benefits of digital technology

for empirical social science research. Many social science curricula – for
example, in political science, economics, or sociology – include courses on
quantitative methods. Most of the readers of this book are trained to use
software packages such as SPSS, Stata, or R for statistical analysis, which
relieve us of most of the cumbersome mathematical operations required
for this. However, according to my experience, there is little emphasis
on how to prepare data for analysis. Many analyses require that data
from different sources and in potentially different formats be imported,
checked, and combined. In the age of “Big Data,” this has become even
more difficult due to the larger, and more complex, datasets we typically
work with in the social sciences.
I wrote this book to close this gap in social science training, and to

prepare my readers better for new challenges arising in empirical work
in the social sciences. It is a course in data processing and data man-
agement, going through a series of tools and software packages that can

3

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

4 1 Motivation

assist researchers getting their empirical data ready for analysis. Before
we discuss what this book does and who should read it, let us start with
a short description of the research cycle and where this book fits in.

1.1 data processing and the research cycle

Most scientific fields aim to better understand the phenomena they study
through the documentation, analysis, and explanation of empirical pat-
terns. This is no different for the social sciences, which are the focus of
this book. I fully acknowledge that there is considerable variation in the
extent to which social scientists rely on empirical evidence – I certainly
do not argue that they necessarily should. However, this book is written
for those that routinely use empirical data in their work, and are looking
for ways to improve the processing of these data.
How does the typical research workflow operate, and where does the

processing of data fit in? We can distinguish three stages of an empirical
research project in the social sciences:

1. Data collection
2. Data processing
3. Data analysis

The first stage, data collection, is the collection or acquisition of the
data necessary to conduct an empirical analysis. In its simplest form,
researchers can rely on data collected and published by someone else.
For example, if you conduct a cross-national analysis of economic out-
comes, you can obtain data from the comprehensive World Development
Indicators database maintained by the World Bank (2021). Here, acqui-
sition for the end users of this data is easy and just takes a few mouse
clicks. Similarly, excellent survey data can be obtained from large survey
projects such as the Demographic and Health Surveys (US Agency for
International Development, 2021) or the Afrobarometer (2021). In other
cases, data gathering for a research project is more difficult. Researchers
oftentimes collect data themselves, for example by coding information
from news reports or other sources, or by conducting surveys. In these
cases, data collection is a fundamental part of the contribution a research
project aims to make, and requires considerable resources.
The output of the first stage is typically a (set of) raw dataset(s). Before

the raw data can be used in the analysis, it needs to be processed in
different ways. This data processing can include different operations. For
example, we may have to adjust text-based codings in our data, since our

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

1.2 What We Do (and Don’t Do) in this Book 5

statistical package can only deal with numbers. In many cases, we need
to aggregate information in our dataset; for example, if our original raw
data contains survey results at the level of households, but we conduct
our analysis at the level of villages, we have to compute the sum or the
average over all households in a village. In other cases,we have to combine
our original dataset with others. For instance, if we study the relationship
between the level of economic development and the level of democracy,
we may have to combine information from the World Development Indi-
cators database with data on regime type, for example from the Varieties
of Democracy project (Coppedge et al., 2019).
The third stage in our simple research workflow is data analysis. “Anal-

ysis” refers to any kind of pattern we derive from the data prepared in
the previous stage, such as a correlation table, a graphical visualization
of the distribution of a particular variable, or the coefficients from a
regression model estimated on the data. Data analysis – whether it is
descriptive, graphical, or statistical – requires that our data be provided in
a particular format, a format that is not necessarily the most convenient
one for data collection or data storage. For example, if we analyze the
relationship between development and regime type as mentioned earlier,
it is necessary to combine data from different sources into a single dataset
that is ultimately used for the analysis. Hence, separating data processing
from data analysis – as we do in this book – is not simply a convenient
choice in the research workflow, but rather a necessity.

1.2 what we do (and don’t do) in this book

The focus on the three stages of an empirical analysis suggests the fol-
lowing workflow, depicted in Figure 1.1. The first stage, data collection,
produces one or more raw datasets that are input to the second stage,
data management. At this stage, the data are processed in various ways:
they are cleaned, recoded, and combined in order to yield one or more
datasets for analysis, which are used during the data analysis stage. The
gray box shows what is covered in this book: how to get from the raw
dataset(s) to those used for analysis.
This depiction of the research workflow does not mean that these

three stages are always carried out in strict sequence. Rather, in reality
researchers will likely go back and forth between them. This is necessary
when adding an additional variable to the analysis, for example, as a new
control variable: In this case, we have to adjust the data processing step,
such that the variable is part of the analysis dataset. In some instances,

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

6 1 Motivation

figure 1.1. Research workflow in an empirical social science project. The gray
area is what we cover in this book.

this may even require us to go back to the first stage (data collection),
since we may not yet have the necessary information in our raw data.
Similarly, we may have to go back to the data processing stage for
much simpler operations, for example, when the format of a variable
in our analysis cannot be processed by our statistical software or our
visualization toolkit.
While useful for the purpose of illustration, the three stages are clearly

a simplification of the typical research workflow and omit a number of
additional steps. To name just one example, the “Data Lifecycle” by the
US Geological Survey (Faundeen et al., 2014) is a more complete illus-
tration of the different phases involved in an empirical research project.
It includes six phases: (1) Plan, (2) Acquire, (3) Process, (4) Analyze,
(5) Preserve, and (6) Publish/Share. The planning of a project in Stage
1 is obviously of key importance, and a social science research proposal
normally includes all the necessary details for how the empirical analysis
should be carried out.At this stage, one would also pre-register a study, for
example, within the Center for Open Science’s Open Science Framework.
Stage 2 in their model corresponds to what we call “data collection,”
and Stages 3 and 4 correspond to our second and third stages. Stage
5 covers the documentation and physical storage of the data, such that
it can later be accessed and used again. This stage is closely related to
Stage 6, since documentation, anonymization, and technical description
are required for both.
This book focuses on the practical aspects of data processing, and

thus covers primarily the second step in our three-stage model. Research
design and, in particular, data analysis are part of most social science
programs that focus on empirical work, while basic questions of data
management and processing are typically left out. This means that most
researchers will be perfectly able to design their study and carry out an
empirical analysis, while struggling with the processing of data. In this
book, we will see that some of the standard practices that have evolved in
the community can lead to inefficient workflows that make life difficult

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

1.3 Why Focus on Data Processing? 7

for researchers, or even introduce errors in the data. For example, in
contrast to conventional wisdom, spreadsheets are in most cases not a
good choice for managing your data, even if they appear to be simple and
intuitive. Also, managing and analyzing data in the same software can be
challenging or even impossible, since data processing oftentimes requires
specialized functionality that data analysis software simply lacks. Hence,
I recommend to treat data processing as a step that is different from – but
of course closely connected to – data collection (which comes before) and
data analysis (which is what we do after the processing of our data).
The focus on hands-on data processing also distinguishes this book

from what is typically referred to as “data management” without the
focus on practical questions. This alternative definition of “data manage-
ment” includes strategic questions of organizations about how to acquire,
store, document, and disseminate research data (Henderson, 2017). These
are typically issues that are addressed by dedicated organizational units,
for example, university libraries. Of course, data management also needs
to solve practical questions about processing and storage such as the ones
we discuss here, and therefore overlaps partly with the content of this
book. In other words, data management for large organizations requires
much of the knowledge and skills I try to convey in this book, but also
entails a number of other challenges we do not cover. Rather, the book
caters to the needs of individual researchers or small research groups,
who are oftentimes responsible for designingmost of their data processing
procedures themselves – something that, according to my own experience,
is probably what most researchers in the social sciences do.

1.3 why focus on data processing?

Readers may wonder why we need an entire book on data processing.
There are several reasons why researchers should devote more attention
to working with data. In particular, I believe that there are several major
advantages to treating data processing as a separate step in the research
workflow, which requires particular skills and (potentially) specialized
software.
documentation. One of the most important goals of this book is to

show you how to properly document the processing of your data. That is,
every operation you apply to the raw data you start from until you end
up with a dataset for analysis must be written down, such that you –
or someone else – can later return to it. For many of us, this type of
documentation is standard practice for data analysis – that is, we produce

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

8 1 Motivation

code in R, Stata, or another statistical package that executes the different
steps required to produce a plot or to run a statistical model. Manually
merging or aggregating data in a spreadsheet, for example, is very differ-
ent; here, you essentially point-and-click to achieve the desired result, and
these operations are difficult, if not impossible, to understand and repeat
later. In contrast, (almost) all the different methods I present in this book
are automated; they allow you to prepare and process your data using
a set of instructions to a data management software. As a result, your
research workflow improves in several ways.
convenience. One of the advantages of fully documented data pro-

cessing is simply the added convenience for you as the researcher. Auto-
mated data processing is more powerful and much faster, since you can
let the computer process many entries in your dataset at once, rather
than manually fixing them. Also, you can later modify your processing
instructions in case you change your mind, or if you discover mistakes.
By adjusting the data processing code, it is possible to change the coding
of individual variables, introduce different types of aggregation, or derive
datasets for different types of analysis from your raw data. All of this
is extremely cumbersome if you resort to manual data management, for
example, by using spreadsheet software.

replicability and transparency. Another major advantage of
a fully documented data workflow from the raw data to the dataset used
for analysis is the transparency resulting from this process. This documen-
tation is not just an advantage to you as a researcher, but it allows you to
share your data processing code in the research community, thus making
your work perfectly replicable by others. The replication of empirical
research has been at the forefront of current attempts towards increased
research transparency (see, e.g. the DA-RT Initiative, 2015). Almost all
major journals in the social sciences now require that the data and code
used for the analysis be published along with an article. While this is
a move in the right direction, increased transparency should also apply
to the data processing stage. Thus, with the techniques presented in this
book, it is possible to create fully documented data workflow, which can
make data preparation transparent and replicable.
scalability. One of the benefits of the digital transformation is the

increasing amount of data that becomes available to social scientists.
Rather than analyzing a few dozen observations, as Richardson (1960)
did in his empirical analysis of wars, researchers now possess datasets
that are several orders of magnitude larger. For example, recent work

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

1.4 Data in Files vs. Data in Databases 9

with data collected from social media can easily include millions of
observations. This requires data processing techniques that can deal
with large datasets, in other words, that scale with increasing amounts
of data. This is where conventional tools quickly come to their limits.
Spreadsheets are not suitable for these amounts of data, not just because
manual editing of data is no longer possible, but also because they have
an upper limit on the number of entries in a dataset they can process
(for MS Excel, for example, this limit is about 1 million). Also, many
statistical tools are not suitable, since they too have difficulties processing
large datasets (although there are extensions that make this possible).
In contrast, some of the more advanced tools I present in this book are
perfectly scalable; they are designed to store and process large datasets
while hiding most of the complexity of these operations from the user.
Again, it is sometimes useful to use specialized, but different, software
tools for data processing and data analysis, since each of them have
different strengths and weaknesses.

versatility. Along with the increase in the amount of data that
social scientists use for their work, we also witness an increase in the
complexity of the data formats used. Rather than relying exclusively on
single tables of data where observations are nicely arranged in rows and
columns, there is now a variety of different types of data, each stored in a
specific data format. For example, many different social science projects
now use observations with geographic coordinates, where each observa-
tion in a dataset is tagged with a reference to a particular location on
the globe: The Demographic and Health Surveys, for example, distribute
geographic coordinates for their more recent survey waves, which makes
it possible to locate each group of households that participated in the
survey on a map.One potential use of these geo-coordinates is to combine
the survey results with other information based on their location, for
example, with night light emissions. Spatial data is just one example for
new types of information requiring adjustments to the standard tabular
data model; in this book, we present others, such that researchers can
make an informed choice about their specific requirements and the soft-
ware tools they should use for their work.

1.4 data in files vs. data in databases

Most of the data we use in the social science comes in electronic files. That
is, in a quantitative research project we rely on files to store the data we

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

10 1 Motivation

have collected, and we use files to archive the data and to pass them on
to other users. There are many different types of files for data: You are
probably familiar with Microsoft’s Excel files for storing spreadsheets, or
Stata and SPSS files for tabular datasets.However,while files will continue
to be the primary way by which we distribute data, they can be tricky to
work with. For example, if the data is spread out across different files,
you need to merge them before you can run your analysis. Also, you
need to manually check for errors in your data, for example, whether
a numeric variable mistakenly contains text. File-based data storage also
means that multiple users can cause issues when accessing the same file,
for example, if one user overwrites changes made by another user. Finally,
file-based data storage can quickly get to its limits when we deal with large
datasets. In most cases, the entire data contained in these files needs to be
imported into your statistics package, where it stays as long as you work
with it. This is not a problem if your dataset is not particularly large,
but can be a real issue once you need to process a large amount of data.
Even simple operations such as ordering or filtering your data can become
extremely slow.
This is why for many applications, it is beneficial to store your data not

in files, but in specialized data management software. We refer to these
systems as “database management systems” (DBMS). DBMS have existed
for a long time, and there are many different flavors. What they have in
common is the ability to manage a set of databases for you. A database
is a repository for all data required for a specific project. For example,
if you intend to use a DBMS for a research paper, you would create a
database for your project, which then contains a set of tables with all the
data for this project. DBMS optimize the processing of the data contained
in their databases. For example, some types of databases are designed for
tabular data. They make sure that a table does not contain basic errors
(e.g., non-numeric text in a numeric column), and they support the quick
merging of tables that depend on each other. DBMS also facilitate efficient
filtering and ordering of your data, and they can be accessed by different
users concurrently. All this happens behind the scenes – users do not have
to worry about where the data is physically stored, or how to enable fast
and efficient access to them. Connecting to a database is possible from
almost any type of statistical software or programming language – in this
book, we use R to do this. Using R’s database interface, you can send
requests to the database server, for example, for changing or updating
the data on the server, and for fetching data directly into R for further
analysis.

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

1.5 Target Audience, Requirements and Software 11

1.5 target audience, requirements and software

This book will be useful for any social scientist working with empirical
data. Here, I define “social sciences” broadly, and include fields such as
economics, sociology, psychology, anthropology, linguistics, communica-
tion studies and of course political science, my home discipline. I fully
realize that there are significant differences across these fields when it
comes to the predominant statistical methods they use; however, I also
believe that these differences typically manifest themselves at the data
analysis level. For example, while regression analysis is one of the main
types of statistical approach used in my field (political science), psychol-
ogists may be more used to factor analysis. Importantly, however, there
are few differences in the way the data needs to be prepared for these
different types of analysis. In other words, the analysis dataset will likely
be the same, regardless of whether it is later used in a regression model or
a factor analysis. For that reason, the concepts and tools we cover in this
book can likely be used across many different fields in the social sciences.
This is an applied book, and I try to illustrate our discussion with

real examples wherever possible. Owing to my own background, these
examples are largely drawn from my own discipline. At the same time,
however, the book requires no substantive background in political sci-
ence, and each example will be briefly introduced so that all readers,
regardless of their background, can understand what research question
we deal with, and what data we use in the example. Similarly, the book is
designed to address social scientists of different generations. I believe that
a deeper engagement with practical questions of data management will
be useful for social science students as part of their training in empirical
methods, or while working on their first research project. Still, the book
also speaks to more advanced researchers at universities, governmental
and non-governmental organizations, and private companies that have
an interest in improving their quantitative research workflow.
I fully realize that the book’s readership will differ strongly in their

technical experience, partly due to the variation in quantitative training
that people have gone through. As regards the latter, it would be very
difficult to custom-tailor this book to different statistical packages that
readers have experience with. For this reason, I mainly use the R statistical
toolkit in this book. R is free and open source, which means that there are
no expensive licences to be purchased to work with the book. Also, R is
one of the most flexible and powerful programming packages for statis-
tical analysis out there, and can be used not just for estimating statistical

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

12 1 Motivation

models, but also for advanced data management. Still, despite our focus
on R in the code examples, many of the basic concepts and procedures
for data management we cover are not tied to R, and therefore apply
irrespective of which statistical software you use. While I provide many
step-by-step examples in R, the book does not include a basic introduction
to this software. It is therefore required that readers have some experience
in R, either as part of their training in quantitative methods, or from one
of the numerous R introductory books and courses that are available.

1.6 plan of the book

The book consists of five parts. This and the following two chapters
together constitute the introduction. So far, we discussed the role of data
preparation and management within the research cycle, and defined the
scope of the book. In Chapter 2, we go through the setup of the software
used in this book. We rely mostly on R, but the advanced chapters on
database systems require us to install a DBMS locally. Chapter 3 pro-
vides a conceptual introduction to data as a combination of informational
content with a particular structure. We discuss the most important data
structure in the social sciences (tables), but also talk about their design.
In this first part of the book, we do not use any real examples for readers
to practice – this starts only in the second part.
The second part of the book covers the processing of data stored in

files. This is by far the most frequently used type of workflow in the social
sciences,which is why we start with an overview of file-based data storage
and different file formats in Chapter 4. In Chapter 5, we focus on data
management with spreadsheet software such as MS Excel. This software
is easy to use and most readers will be familiar with it. Still, it encourages
certain bad practices for data management that we discuss (and cau-
tion against) in this chapter. We then turn to data management using R.
The first chapter on this topic (Chapter 6) introduces R’s basic features
for reading data tables, as well updating and merging them. Chapter 7
presents a powerful extension of R’s basic functionality: the tidyverse
environment.
The third part of the book deals with data stored and processed in

specialized systems, so-called databases. Here, data no longer reside in
files, but are contained in database systems that users interact with via the
network. This has a lot of advantages when it comes to avoiding errors
and inconsistencies in the data, but also for handling large and complex

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

1.6 Plan of the Book 13

datasets accessed by several users. Relational databases for tabular data
constitute probably the most frequent type of database, and we cover
them in two chapters. We start with a single table in Chapter 8, and later
extend this to several tables in Chapter 9. In Chapter 10, we address
important technical features of relational databases, such as the ability
to efficiently work with large datasets, or to allow collaborative access by
different users.
The fourth part of the book addresses more specialized types of data

that do not neatly fit into the standard tabular model. For each of these
data types, we discuss (i) file-based data processing using R and the cor-
responding extension libraries and (ii) data processing using a database
system. We start with a discussion of spatial data, that is, observations
that have geographic coordinates attached to them (Chapter 11). The
subsequent chapters cover text as data (Chapter 12) and network data
(Chapter 13).
In the fifth part of the book, we conclude our introduction to data

management with some recommendations for collaborative data projects,
as well as for the publication and dissemination of research data.
The aim of this book is not to give readers detailed, in-depth introduc-

tions to the different tools and techniques we discuss. Rather, my goal is
to convey a good intuition of the key features, but also the strengths and
weaknesses, of the different tools and approaches for data management.
This way, readers get a good overview of the available techniques, and
can later choose a software and workflow that best matches their research
needs.

https://doi.org/10.1017/9781108990424.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.003

2

Gearing Up

For this book, we rely on a number of different software tools, and with
the exception of Microsoft Excel, all of them are available free of charge
and for all major operating systems (Windows, macOS, or Linux). The
most important one is R, a free, open-source statistical toolkit that comes
with its own programming language. As stated in the previous chapter,
it is required that readers have some experience in R, as the book does
not include a basic introduction. The best way to work with R is to use
RStudio, a powerful interface to the R engine.Youwill be able to complete
Parts I and II of the book with R and RStudio only; if you also cover
the more advanced chapters in Parts III and IV, you will also need the
PostgreSQL database management system.
In this chapter, we go through the software required for the book.

Detailed installation steps, as well as the sample datasets discussed in the
book, are provided as part of the book’s companion website at

https://dmbook.org

where you will always find up-to-date instructions and data. You do not
have to install all the software tools below at once. It is perfectly possible
to start with R and RStudio, and later return to this setup as you begin
exploring the more advanced chapters on database systems, starting with
Chapter 8.

2.1 r and rstudio

Please follow the installation instructions on the book’s website to install
the R statistical toolkit on your system. The R software includes the main

14

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://dmbook.org
https://doi.org/10.1017/9781108990424.004

2.1 R and RStudio 15

figure 2.1. The RStudio interface.

engine that does most of the work: It executes the commands you enter,
reads datasets, runs statistical models, and generates plots. The commands
for doing this must be specified in the R programming language. While
it is possible to work with R out of the box, I recommend that you
also install a much more powerful development interface for R: RStudio.
Instructions for this are also provided on the book’s companion website.
After the installation, start RStudio, and click on File New File R Script .
Your RStudio window should now look like Figure 2.1.
Let us go through some of the main elements of RStudio. At the bottom

left, you see the R console. This is where you see the output produced by
R (unless this output is graphical). You can also use the console to send
short commands to R. For example, if you type

Sys.Date()

on the console and hit Return , R will show you the current date.While you
could do all the work for this book via the console by entering commands
one by one, this is generally not a good idea since all this work would be
lost when you close RStudio. This is why we typically work with files of R
code, such as the one you created (which, at the moment, is still empty).

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

16 2 Gearing Up

The files are displayed in the editor window of RStudio, at the top left
just above the console. You can enter the aforementioned command in
this window and save the file with File Save under a specific name. This
will preserve your R code such that you can later open and modify it. The
green arrow at the top of the code editor allows you to run the currently
selected part of code. It is absolutely essential for reasons of transparency
and replicability that you properly store your code in files, so always use
the code editor unless you are testing short commands!
On the right of the RStudio interface you can see two sets of panels,

one with different panels called “Environment,” “History,” etc, the other
with “Files,” “Plots,” etc. These panels become active once you continue
to work with your R project. For example, if you load a dataset into R
(which we will do in later chapters), you will see a new entry in the “Envi-
ronment” panel that allows you to view the new dataset. Also, you can
view graphics created by R in the “Plots” panel at the bottom. RStudio is
an extremely powerful and versatile development environment for R, and
we cannot go into more details here. There are a number of introductions
available online, which you should consult if you want to learn more
about RStudio’s features.
Nevertheless, I want to make one recommendation: Resist the temp-

tation to use the different menu-based features in RStudio. For exam-
ple, it is possible to read data using RStudio’s import feature under
File Import Dataset . This will internally execute one of R’s import func-
tions for you. However, unless you save the corresponding R code
displayed on the console explicitly as part of your R file, it will be
lost when you close RStudio, making replication and error correction
impossible. This is why I recommend that, wherever possible, you rely
entirely on R code written by yourself, which you can properly save in
your R file. This way, you later have a complete record of the individuals
steps you carried out, which makes it possible to correct/extend your
analysis when necessary, or share it with others so that they can replicate
exactly what you did.

2.2 setting up the project environment for your work

The examples in the book cover many files and datasets, and they require
a number of R packages. This setup has been prepared as a pre-configured
RStudio project, to make it as easy as possible for you to get started. Go
to the companion website for this book, which includes a link to this
material. The download comes as a single zip file. Unpack the archive by

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

2.2 Setting Up the Project Environment for Your Work 17

double-clicking, and move the entire content of the archive to a newly
created folder that you would like to use as your main directory for the
exercises, for example, dmbook.
R uses a given folder as a working directory, which is where it looks

first when you open a file, or where it saves a file unless you specify
a different path. For example, if the dmbook folder is placed in your
Documents folder, then Documents/dmbook should be your main working
directory (or “project” directory) for the book. Note that the directory
paths provided here use the notation on macOS and Linux systems (with
a forward slash / separating the different folder levels). On Windows
systems, directory paths are specified using backslashes, for example
C:\Documents\dmbook, so the paths will look slightly different.
Inside your main project directory, you will find a number of files and

directories, which were originally contained in the archive you down-
loaded. This is roughly what your project directory looks like:

/Users/nils/Documents/dmbook/

ch04/

ch05/

...

ch13/

dmbook.Rproj

ex04/

...

ex13/

renv/

renv.lock

Let us quickly go through the most important folders and files. The
data used in the code examples of the book is contained in the sub-
folders (ch04, ch05, etc) for each chapter. If you follow the code examples
in the book, you will need the files in these folders. Similarly, additional
data for the exercises is contained in the sub-folders ex04, ex05, etc, again
ordered by chapter. The file dmbook.Rproj is a project configuration file for
RStudio. It is good practice to use these project files when working with
RStudio. When you double-click this file (don’t do this yet!), RStudio will
open a new session and switch to the directory containing the file as the
working directory. The renv folder and lockfile contain the project setup
for the book, which we introduce below.
R will treat all file names as relative to the working directory, that is,

the location of this project file. There is one issue, however, that arises due

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

18 2 Gearing Up

to the differences in how operating systems denote file paths. I mentioned
earlier that macOS and Linux use forward slashes, and Windows uses
backslashes. In our code examples, we often access files, for example,
when importing data into R for further processing. To avoid including
separate code examples for macOS/Linux and Windows, I rely on the
built-in file.path() function that adjusts file paths depending on the
underlying operating system. For example, if we want to access the file
csv-example.csv in the ch04 subfolder, we can simply refer to this file with

file.path("ch04", "csv-example.csv")

in our code, and Rwill automatically convert this to ch04/csv- example.csv
for macOS or Linux, and to ch04\csv-example.csv if you use Win-
dows. This file path is relative to the working directory, so we can
omit the path to this directory (e.g., /Users/nils/Documents/ dmbook or
C:\Documents\dmbook).

2.2.1 R’s Extension Libraries

One of the core strengths of the R system is its extensibility. There are
thousands of packages for R that extend R’s functionality in different
ways. In this book, we rely on a number of these packages. Before you
can load a package in an R session to use it, you must install it on your
system. The standard way of doing this is via R’s command line with

install.packages("tidyverse", dependencies = T)

This will make sure that apart from the new package itself, R will also
install other packages that the new package depends on. Alternatively,
you can use RStudio for installing packages, using Tools Install Packages

in the menu bar.
Along with the code of the installed packages, you get the documenta-

tion of the functions it contains. It is absolutely essential that you learn
to use this documentation, as it contains all the necessary information
for you to use the package correctly and efficiently. In many cases, these
documentations are not written as accessible introductions and may be
difficult to read. This is why I give many pointers to useful functions
and parameters, which you can then look up yourself if you need more
details about how they work. The simplest way to display the reference
for a function is the ? operator, followed by the name of a package or a
function. For example,

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

2.2 Setting Up the Project Environment for Your Work 19

?install.packages

shows you the documentation for the install.packages() function in
RStudio’s help window on the bottom right.
Many users do not worry too much about package management and

simply install packages in their main local library when they need them.
This is R’s default behavior, and it works just fine for most applications.
However, I prefer a more sophisticated approach to package manage-
ment: the use of different R environments. An environment is simply the
set of all packages used for a particular project, such that each project
keeps a separate list of packages (and their versions) it requires, without
interfering with others. This also has the advantage of us being able to
distribute a project along with a list of required packages, such that R
can automatically install all of them.
We use the renv package to enable package management within an

environment specifically for this book. The R project environment you
downloaded above has renv enabled by default. If you double-click
the dmbook.Rproj file that was distributed with the online material for
the book, RStudio opens a new session and initializes the environment.
It first downloads renv and does a check if all required packages (as
specified in the renv.lock file) are installed. If packages are missing or
are not available in the specified version, a warning appears. You can
now type

renv::restore()

on the R console, and renv shows you a list of all required packages.
After you confirm with y , it downloads and installs them. Note that
the packages are installed in the respective version that was tested for the
book,which is probably not the latest one.However, this is not a problem;
in line with renv’s approach to compartmentalize installed packages into
different environments, these package will be available only in the project
environment we use for the book. This means that they are not available
for your other projects unless you install them there as well. Under Win-
dows, some package installations can fail, in particular for those where
renv cannot find the pre-compiled version and instead relies on a source
package. If you encounter this problem, I recommend that you do a

renv::equip()

and then try renv::restore() again.

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

20 2 Gearing Up

2.3 the postgresql database system

We discussed in the introductory chapter that for certain applications, it
is useful to keep your data in a specific system optimized for data storage
and processing, a database management system (DBMS). There are dif-
ferent DBMS for different kinds of data, and in this book we will examine
one of them in particular: The PostgreSQL database management system,
which we use in Chapter 8 and the following ones. PostgreSQL is a rela-
tional DBMS designed for databases that contain tables, but it can also
deal with more complex types of data. The installation process differs
slightly between operating systems, which is why you should once again
refer to the online repository to obtain more information required for
the precise steps required (see the link at the beginning of this chap-
ter). Before proceeding, it is necessary that you complete the individ-
ual steps for your operating system described on the book’s companion
website.
PostgreSQL is a multi-user system, and each user must identify with

a username and a password. PostgreSQL installations under different
operating systems use different approaches here. The default usernames
differ, and some allow you to set your own password while others do
not require a password (just a username). This is why after installing
PostgreSQL, make sure to memorize the username and the password to
access PostgreSQL on your system. The online installation instructions
for this book contain more information about this.
With PostgreSQL set up on your computer, it is a good idea to

test whether the connection works. In R, make sure that you have
the RPostgres package installed along with all the other packages it
depends on (if you use the pre-configured R environment described earlier,
this is done automatically). The following code should then output the
PostgreSQL version you are running. Make sure to adjust the username
and password to match your setup (see the online instructions). postgres
and pgpasswd are just placeholders, which we use here and later in the
book – they may not work on your system.

library(RPostgres)
db <- dbConnect(Postgres(),
user = "postgres",
password = "pgpasswd")

dbGetQuery(db, "SELECT version()")
dbDisconnect(db)

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

2.3 The PostgreSQL Database System 21

2.3.1 Setting Up a New PostgreSQL Database

A database server can work with multiple databases, each of which is a
collection of data that belong to one project. In this book, I follow the
convention to use a new database for each chapter of the book, such that
the examples and exercises for each of the chapters do not interfere with
each other. The code below shows how to create a new database dbintro,
which we use in Chapter 8 of the book. Again, make sure to adjust your
username and password! You can use this code to create more databases
for the subsequent chapters – just replace dbintro with the name of the
database you would like to create. The code is presented here without
much further explanation; in Chapter 8, we go through the process of
connecting to the server step by step.

library(RPostgres)
db <- dbConnect(Postgres(),
user = "postgres",
password = "pgpasswd")

dbExecute(db, "CREATE DATABASE dbintro")
dbDisconnect(db)

2.3.2 Code Examples and Style

R allows you to be quite flexible in how you write your code, within
the limits of the R syntax. To be consistent in the code I present in this
book, I followHadleyWickham’s tidyverse Style Guide (Wickham, 2021).
Although it is designed for R code within the tidyverse framework (see
Chapter 7), much of the recommendations also apply to code outside this
framework. Here are some conventions used throughout this book:

• All file and directory names are lowercase. Different parts of the file
name will be separated with a hyphen. Example: csv-example.csv

• R objects have lowercase names, and different parts of the object name
are separated with an underscore. Example: dataset_new

• We use the .R ending for R code files.

For readers with an electronic copy of this book, it may be tempting
to simply copy and paste the code examples into RStudio. Try not to do
this. Rather, I strongly recommend that you type the code yourself and
make modifications to it. This allows you to become more independent
and experienced as an R user, but also to find out what does not work
and why.

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

22 2 Gearing Up

2.4 summary and outlook

Data management requires a number of different tools, and in this chapter
we covered those required for this book. Most importantly, we rely on
the R statistical toolkit and the RStudio environment for most of the
exercises. When you work in R, you mostly rely on data stored in files.
This works for many applications, but sometimes our datasets become
bigger and more complex. In these cases, it is useful to store data in
specialized DBMS. These systems allow you to quickly search and filter
large datasets, to check your data for consistency, or to manage access
to the data by multiple users. We use the DBMS later to perform various
operations, such as creating a database or loading data into it. With the
technical preparations out of the way, we can now proceed to lay some
theoretical groundwork.Chapter 3 discusses some general concepts about
data, and introduces the most important data structure for the social
sciences: tables.

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

3

Data = Content + Structure

Before we delve into the practical challenges of data processing, let us
take a closer look at some core concepts we need throughout the book.
The concept of scientific “data” is obviously of key importance. We need
to clarify what we mean by it, and how information can be represented
digitally as data. We will also learn to separate the data content – which
refers to the actual information – from the logical structure in which this
information is contained. Tables are by far the most frequently used data
structure in the social sciences, which is why we spend a great deal of this
chapter discussing the tabular data representation and its limits. We also
review some basic functions of R: What are data frames, and how do we
use them to store information? As discussed at the beginning, the book
does not give a comprehensive introduction to R, but the examples below
will help you refresh your memory.

3.1 what is data?

In our research, we use scientific data, which is systematically coded infor-
mation about the real world.1 Thus, we represent particular aspects of the
real world by using codes so that this information can be stored as part
of our dataset and later be processed by the researchers themselves, or by
computers. In most cases, we will use numbers as codes, which represent,
for example, the population of countries, or the vote counts of parties in

1 Note that data is the plural of the Latin word datum. However, it is increasingly being
used also as a singular word. Throughout this book, we follow the same convention. See
also the blog post by Izzo (2012) about this.

23

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

24 3 Data = Content + Structure

an election. In other cases, we can use words as codes. For example, a list
of political parties will likely include the party name, encoded as text in a
particular language. Also, much simpler codes are possible, for example
if we represent the presence or absence (0/1) of a particular feature (for
instance, if a country is considered to be democratic or not).
Most scientific datasets are created to help us conduct comparisons

between different entities – countries, precincts, experimental subjects,
etc. This is why a dataset typically contains data about many different, yet
comparable, entities. A social science dataset can be generated in different
ways. In a survey, for example, we simply record the answers that subjects
give to the specific survey questions. Here, the coding is predetermined
by the way we design our survey and the questions we include. Other
datasets are created by human coders, for example most of the cross-
national datasets on political regimes or violent conflict. Yet another type
of dataset requires little to no additional coding; for example, if we are
interested in communication on social media, we can obtain a dataset of
tweets directly from the Twitter platform.Here, again, information about
each tweet will be encoded in a particular way, for example the date and
time it was sent, or the name of the Twitter handle it was sent from.
The process of assigning codes to represent particular characteristics

of real-world entities is sometimes simple (e.g., Twitter data comes with
a precise time stamp readily assigned to each tweet), while it is much
more difficult in other cases: For example, coding whether a country has
a democratic system is difficult and subject to a major debate in political
science. The challenges to coding and measurement in the social sciences
are typically characterized by the requirements of validity and reliability
that most readers will be familiar with; the former means that the coding
or the measurement in a dataset should correspond to the theoretical
concept we aim to capture, while the latter demands that the assignment
of codes in our data be transparent, replicable, and uniformly applied
across all the different entities we cover. These challenges arise at the data
collection stage, which is why they are not discussed in this book. What
matters for us is how data of particular types is represented and processed,
but not where this information comes from.

3.2 data content and structure

In the previous section, we defined data as systematically coded informa-
tion about the real world. For this data to be useful for scientific analysis,

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.2 Data Content and Structure 25

we need to make sure that it is kept in a format that can be stored, shared,
and analyzed. In other words, we need to find a good representation for
it. Consider the following example:2

sdb <-
"Switzerland is a country with 8.3 million inhabitants,
and its capital is Bern. Another country is Austria;
its capital is Vienna and the population is 8.7 million."

The simple object sdb is essentially a database; it contains information
about two countries, their capitals, and their population. This informa-
tion is what we call the content of the data. However, the information
contained in this text may be obvious and easy to extract for humans,
but it is much more difficult to process computationally. In other words,
this data comes without a clear structure; unless we understand human
language (which computers usually do not), we do not knowwhat entities
are referred to in the text, nor is it straightforward to locate the informa-
tion about these entities. Now compare this example with the following
method to set up a database, where we use the same content but with a
given structure:

tdb <- data.frame(
country = c("Switzerland", "Austria"),
population = c(8.3, 8.7),
capital = c("Bern", "Vienna"))

In this example, we use R’s default data structure for tables, a data
frame, to create our database in a structured way. For each country con-
tained in our tabular database tdb, we have different types of informa-
tion, clearly labeled as such. In a table, each line typically refers to an
observation, while the columns contain the different variables we have
for the observations. This structure makes the second dataset much easier
to understand and process as compared to the simple database sdb above.
In short, while the two examples are the same in terms of content, they
differ significantly when it comes to their structure. Almost all data we
use in our work comes in tabular formats, and all statistical toolkits are
designed to process data in tables. Despite the omnipresence of tables, it
is, however, important to understand that a table is just one type of data
structure; it is one that is very convenient for social science applications,
but also has its limits, as we will see later.

2 Population estimates for the following examples were obtained from the United Nations
Department of Economic and Social Affairs (2019) and rounded.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

26 3 Data = Content + Structure

3.3 tables, tables, tables

Tables (or so-called rectangular datasets) are the main type of data struc-
ture in the social sciences. They have rows and columns. In social science
terminology, each row represents a case or an observation, and each col-
umn a variable in our dataset. Let us take a look at how R deals with
tables, using again the data frame we created above. There are several
standard operations we can perform on a table.

3.3.1 Accessing Data

R gives us several easy ways to access the information in our table. For
example, we can access a single value by using the row and the column
index. For example, Switzerland’s (row 1) population (column 2) can be
retrieved with

tdb[1,2]

[1] 8.3

Alternatively, we can filter out the entire record for Switzerland by
omitting the column identifier, as in

tdb[1,]

country population capital
1 Switzerland 8.3 Bern

In general, the square brackets notation is used in R for subsetting.
Here, we apply it to data frames, but it can also be used for simple vec-
tors, matrices of numbers, etc. Note the comma in the expression, which
indicates that the given number is a row and not a column index. Selecting
particular columns can also be done by providing their indices (here, the
range from 1 to 2) as follows:

tdb[1:2]

country population
1 Switzerland 8.3
2 Austria 8.7

or simply by providing the name of the column:

tdb$population

[1] 8.3 8.7

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.3 Tables, Tables, Tables 27

The $ operator extracts a column from the table as a vector. It is
important to mention that R automatically keeps track of the kind of
information that is contained in the columns of a data frame. In other
words, it maintains types for the columns. In our above example, some
information in our dataset is coded as text, for example the capitals
of the two countries. These short pieces of text are also referred to as
strings in computer science. Other variables contain numbers, such as the
country populations. Let us check the types that R has assigned to our
dataset:

typeof(tdb$capital)

[1] "character"

typeof(tdb$population)

[1] "double"

As you can see, the names of the capitals are stored in a column of
type “character,”while the population estimates are of the type “double,”
which is the default type for numeric information. There are several other
data types for vectors in R (such as “logical”values that can be either TRUE
or FALSE, or the “integer” type used for storing integer numbers).
Oftentimes, we want to extract only a subset of the table that satisfies

a particular filtering criterion. For example, we can extract the records
for Switzerland (which, in our case, is only one) using:

tdb[tdb$country == "Switzerland",]

country population capital
1 Switzerland 8.3 Bern

Here, the tdb$country == "Switzerland" expression internally calcu-
lates a set of indices for those rows where the country column contains
Switzerland. As above, we need to use the comma operator to tell R that
the filtering condition we apply (the specification of a particular country
name) applies to the rows of the table. If you think this expression is too
complicated, there is also a simpler way to subset tables using the subset()
function:

subset(tdb, country == "Switzerland")

country population capital
1 Switzerland 8.3 Bern

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

28 3 Data = Content + Structure

3.3.2 Updating Data

Updating the information in a table is also straightforward. We can use
the indexing notation again to update particular values in the table, for
example, Switzerland’s population:

tdb[1,2] <- 8.4
tdb

country population capital
1 Switzerland 8.4 Bern
2 Austria 8.7 Vienna

This, however, is not convenient, since we have to refer to a column
using the index and not the name. Instead, we can do the following:

tdb[1, "population"] <- 8.3
tdb

country population capital
1 Switzerland 8.3 Bern
2 Austria 8.7 Vienna

This is still not optimal, since we need to know Switzerland’s row
index. To identify the rows for Switzerland, we can again use the state-
ment we introduced above:

tdb[tdb$country == "Switzerland", "population"] <- 8.2
tdb

country population capital
1 Switzerland 8.2 Bern
2 Austria 8.7 Vienna

3.3.3 Adding Data

Adding new data to a table can be done by either (i) inserting new rows
or (ii) adding new columns. The latter can be done by simply assigning
values to the new column:

tdb$area <- c(41, 83)
tdb

country population capital area
1 Switzerland 8.2 Bern 41
2 Austria 8.7 Vienna 83

Inserting rows to our table is done using the rbind() function, which
“binds” rows together. You can use it to combine two tables into one

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.3 Tables, Tables, Tables 29

(provided they have the same structure), but here we use it to add a
single line:

tdb <- rbind(tdb, c("Liechtenstein", 0.038 , "Vaduz", 0.16))
tdb

country population capital area
1 Switzerland 8.2 Bern 41
2 Austria 8.7 Vienna 83
3 Liechtenstein 0.038 Vaduz 0.16

Note that rbind() creates a new data frame from the inputs it gets.
Therefore, we need to store the newly created table again in the original
variable, which essentially deletes the old tdb.

3.3.4 Deleting Data

Finally, we also need to demonstrate how to remove data from our
table. Again, there are two possible operation for deletions, namely, those
affecting the columns and those affecting the rows of the table. Deleting
columns is simple:

tdb$area <- NULL
tdb

country population capital
1 Switzerland 8.2 Bern
2 Austria 8.7 Vienna
3 Liechtenstein 0.038 Vaduz

The deletion of rows from an R data frame may not be completely
intuitive, as you need to create a subset of the rows you would like to
keep, and overwrite the old data frame. This can be done, for example,
using the subset() function we have described above:

tdb <- subset(tdb, country != "Liechtenstein")
tdb

country population capital
1 Switzerland 8.2 Bern
2 Austria 8.7 Vienna

In this statement, we subset our data frame to those rows where the
country column does not equal Liechtenstein, and store the result in the
tdb variable.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

30 3 Data = Content + Structure

3.4 the structure of tables matters

Before we start digging into actual data using different tools, let us spend
some more time thinking about tables and their structure.While for many
applications, it is entirely obvious what columns you need in your table,
in some cases finding a good structure for your table is not as straight-
forward as it seems. This is why we will take a closer look at a few more
toy examples, so as to better understand why and how the structure of
tables matters. The recommendations here constitute the traditional way
to organize data, which applies to most applications and projects we deal
with in the social sciences.

3.4.1 Tables Should Grow Down, Not Sideways

A general rule of thumb you should observe when defining a tabular
structure is that the columns – that is, the variables in the table – should
be independent from the observations it eventually contains. That is, you
need to select columns that capture all the important aspects of your
data, regardless of how many cases/rows you later add to the table. A
common mistake we oftentimes see is the use of case-specific information
in the column names rather than in the individual cells of the table. This
happens frequently in cross-sectional time series data, which is data about
different entities (e.g., countries) that are observed at multiple time points
(e.g., years). Consider our example from above, now revised to record the
country population in different years:

bad_table <- data.frame(
country = c("Switzerland", "Austria"),
pop1950 = c(4.7, 6.9),
pop1960 = c(5.3, 7.1),
pop1970 = c(6.2, 7.5))

bad_table

country pop1950 pop1960 pop1970
1 Switzerland 4.7 5.3 6.2
2 Austria 6.9 7.1 7.5

This format is called a “wide” table. The setup of the table may be
convenient for human readers, but it causes many issues when processing
the data computationally. It obviously violates our requirement that the
variables we record in the dataset (which constitute the columns in the
table) should be independent from the set of entities we record these char-
acteristics for. In the above example, when adding population estimates

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.4 The Structure of Tables Matters 31

for more recent years, we would have to add more columns, rather than
rows, to the table. This is not an issue in itself, but this structure is difficult
to work with if we want to perform simple calculations on our table.
For example, suppose we want to compute the average population across
different observations in our table. This is easy to do by year:

mean(bad_table$pop1950)

[1] 5.8

mean(bad_table$pop1960)

[1] 6.2

mean(bad_table$pop1970)

[1] 6.85

However, what if we are interested in the average across all countries
and years? With the table above, this is more difficult:

mean(c(
mean(bad_table$pop1950),
mean(bad_table$pop1960),
mean(bad_table$pop1970)))

[1] 6.283333

This still looks acceptable, but now imagine that we are adding obser-
vations for more years to our dataset. This will make the table grow
sideways, not down. If we compute the average population from the table,
the statement becomes longer and longer.And, even more problematic,we
need to update the calculation of the average population every time we
add a new year to our table, which is not very convenient. How, then, is it
possible to fix this? Can we design a better table structure for time series
data? Consider this example:

good_table <- data.frame(
country = c(rep("Switzerland", 3), rep("Austria", 3)),
year = c(rep(c(1950, 1960, 1970), 2)),
population = c(4.7, 5.3, 6.2, 6.9, 7.1, 7.5))

good_table

country year population
1 Switzerland 1950 4.7
2 Switzerland 1960 5.3
3 Switzerland 1970 6.2
4 Austria 1950 6.9
5 Austria 1960 7.1
6 Austria 1970 7.5

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

32 3 Data = Content + Structure

This format is called a long table. The main difference between the
bad_table and the good_table is obvious: Rather than using table columns
for different years, we now introduce a new column year to link pop-
ulation values not just to the respective country, but also to the year
they refer to. This makes working with our table much easier: Adding
observations for more years is simple in this table structure; we can just
append more rows to the table. Also, computing the average population
over all observations is now a simple operation:

mean(good_table$population)

[1] 6.283333

You will never have to change this statement, regardless of how many
observations and years you are adding to the data frame. Readers may
now wonder how we get the annual average out of this table, which was
easy in the bad_table above. For the good_table, we do this by letting R
compute averages over groups of data, rather than the entire set of obser-
vations. This is called aggregation. One way to perform an aggregation
in R is by using the summaryBy() function in the doBy package:

library(doBy)
summaryBy(population ˜ year, data = good_table, FUN = mean)

year population.mean
1 1950 5.80
2 1960 6.20
3 1970 6.85

In the statement above, we need to specify which variable we would
like to aggregate over (population), and which variable(s) we would like
to use for grouping (year). Also, we need to tell the function what the data
frame is for the aggregation (good_table), as well as the summary function
we would like to use (mean). The function then combines all observations
with the same values in the grouping variable, and applies the summary
function to each of these groups. This is exactly what we need, and it
returns the annual averages from our dataset. So overall, the structure
in our good_table seems to be much easier to handle, at least when we
process our data computationally. You still see many examples similar to
the bad_table, which may be due to the fact that they can be easier to
understand for human readers. As we will see later, spreadsheets such as
Excel are useful when humans interact manually with data, but not when
we try to push the automation of data processing for maximum efficiency
and transparency, which is our aim in this book.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.4 The Structure of Tables Matters 33

3.4.2 One or Multiple Tables?

The above example showed us that there are good and bad ways to struc-
ture individual tables. We now turn to the question of how many tables
we need for a good representation of our data. Again, let us consider
the good_table. Let us assume that, in addition to the yearly population
estimates, we would like to store information about national capitals, like
we did in the examples above. The simplest way to do this is to add the
names of the capitals in a new column:

good_table2 <- good_table # create a copy to keep the original one
good_table2$capital <- c(rep("Bern", 3), rep("Vienna", 3))
good_table2

country year population capital
1 Switzerland 1950 4.7 Bern
2 Switzerland 1960 5.3 Bern
3 Switzerland 1970 6.2 Bern
4 Austria 1950 6.9 Vienna
5 Austria 1960 7.1 Vienna
6 Austria 1970 7.5 Vienna

Since national capitals rarely change, the information in the capitals
column is essentially constant over the years in our dataset, and we need
to repeat it for every single year in the dataset. From a data representation
point of view, this is clearly not optimal, as we have redundant informa-
tion in our dataset. This makes data maintenance more difficult and error-
prone. First, inserting the information in the first place is cumbersome,
since we have to copy and paste the name of the capital of a given country
for each year this country is listed in the dataset. This may be easy in our
toy example, but quickly becomes infeasible when we deal with a much
longer time series. Also, updating the data is equally difficult, for example,
if we decide to refer to the capitals not in English, but in the respective
national language (which would require us to replace Vienna with Wien).
Redundant information also means that we can have inconsistencies in
our data; for instance, if we forget to update all instances of Vienna, we
may end up with a dataset that sometimes refers to the capital of Austria
as Wien, while in other cases it uses the English name.
The problem of data redundancy always comes up if we store informa-

tion about different entities that refer to each other in a single table. In our
example, we have two types of entities: the countries (each of which has a
capital), and the country-years (each of which has a population estimate).
This data structure should better be stored in two tables that link to each
other. For example, rather than adding a new column to good_table, we

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

34 3 Data = Content + Structure

could add a new table that contains only the information on the national
capitals:

populations <- data.frame(
country=c(rep("Switzerland", 3), rep("Austria", 3)),
year=c(rep(c(1950, 1960, 1970), 2)),
population=c(4.7, 5.3, 6.2, 6.9, 7.1, 7.5))

populations

country year population
1 Switzerland 1950 4.7
2 Switzerland 1960 5.3
3 Switzerland 1970 6.2
4 Austria 1950 6.9
5 Austria 1960 7.1
6 Austria 1970 7.5

capitals <- data.frame(
country=c("Switzerland", "Austria"),
capital=c("Bern", "Vienna"))

capitals

country capital
1 Switzerland Bern
2 Austria Vienna

As a result, our database now consists of two tables: a capitals table
with country-level information (in our case, only the capitals) and a
populations table with information at the country-year level (in our case,
population estimates). In this setup, each piece of information is contained
only once in the dataset; in other words, we have eliminated redundant
data. This makes data maintenance extremely easy. For example, if we
want to adjust the name of the Swiss capital, we do this in exactly one
place:

capitals[capitals$country == "Switzerland", "capital"] <- "Berne"
capitals

country capital
1 Switzerland Berne
2 Austria Vienna

The split of data into several tables is clearly something that may
be desirable from a data management point of view, as it reduces (and,
ideally, eliminates) redundancies in our data. At the same time, it is likely
not a good way to interface with software for statistical analysis, most of
which requires the data to be nicely arranged in a single rectangular table.
What can we do about it? The solution to this is what we alluded to in

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.5 Summary and Outlook 35

Chapter 1: the need to separate (i) data processing and management and
(ii) data analysis into different stages of our workflow, potentially using
different software tools supporting these stages. Recall that in Chapter
1, I recommended that you create “analysis datasets,” which are tailored
to the respective analysis and the software you use at the analysis stage.
For our example, if we need information from the populations and the
capitals tables in a single, rectangular format, we can simply merge the
two tables:

merge(populations, capitals, by = "country")

country year population capital
1 Austria 1950 6.9 Vienna
2 Austria 1960 7.1 Vienna
3 Austria 1970 7.5 Vienna
4 Switzerland 1950 4.7 Berne
5 Switzerland 1960 5.3 Berne
6 Switzerland 1970 6.2 Berne

Of course, we would only do this once we have finished the processing
of our data, since we introduce redundancy in the merged dataset. Later
in this book, we will deal with relational databases, which are designed
to work with many tables at the same time, thus providing a suitable way
to manage even complex datasets.

3.5 summary and outlook

In this chapter, our main focus was the distinction between the content
and the structure of data. Data without structure (such as human speech,
for example) can be difficult to process computationally, since it is difficult
for computers to locate the important bits of information. In the social
sciences, research data is usually collected and stored in tabular data struc-
tures. Tables are omnipresent, and they constitute the main way in which
most statistical packages import and process data. In its simplest form, a
tabular data structure is very easy to handle. It only requires us to specify

• A set of columns and their names (which correspond to the variables
in our dataset)

• The types of each of these columns (a number, or a string of text)

We can then insert rows into the table, which represent the different
observations in our dataset. Of course, these rows need to conform with
the table definition, such that the columns contain the correct type of
information. Note that while most software toolkits (such as R) keep

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

36 3 Data = Content + Structure

track of the type of information stored in the columns of a table, they
cannot check for other sorts of errors. For example, if you record the age
of respondents in a numeric column and mistakenly enter the value 200,
R will not complain. Therefore, it is up to you to identify semantic errors
in your data and correct them.
Because of the importance of data structure, working with research

data usually requires us to think about data content and structure. Before
we can populate a dataset with information about survey responses,
country-level indicators, or conflict events, we need to define what our
dataset should look like, or, in other words, what its structure should be.
This is usually referred to as data definition. Once we have a structure for
our data, we can fill it with new information, update existing information,
or delete parts of it. Together, these operations are referred to as data
manipulation. Last, we use our dataset for scientific analyses, which is
why eventually we need to output it in some way that is suitable for
processing with other tools. This is called data extraction.
In this chapter, we also took a closer look at the structure of tables. In

particular, I showed that it is beneficial to choose a table structure that
lets your table grow down, not sideways, as you add more data. Also, I
demonstrated that you may be better off splitting your data into separate
tables, in particular if you deal with different types of entities. You may
wonder why we spend so much time thinking about table structure, as
this question is entirely straightforward to solve for many applications.
This is true, but table structure matters a lot as soon as we deal with
more complex scenarios. In particular, as soon as our observations vary
alongmore than one dimension (e.g., countries and years), choosing a sub-
optimal table structure can make your life difficult. By introducing some
important considerations about tables and their design, we pave the way
for later topics we cover in this book, in particular relational databases.
In short, it pays off to think about the table structure before you start
collecting your data. If you rely on existing data, you may benefit from
transforming a given table to a more suitable design, such that you can
optimize your research workflow down the road.
Now that we have completed a basic introduction using some toy

examples, it is time to do some real work. In the next chapter, we will
start with several tools that rely on file-based data storage. This means
that your data is contained in files; you temporarily open these to process
your data, and later the save the result again to a file. In later parts of the
book, we discuss an alternative approach, where your data is stored in a
database.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

part ii

DATA IN FILES

https://doi.org/10.1017/9781108990424.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.006

https://doi.org/10.1017/9781108990424.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.006

4

Storing Data in Files

In this and the next chapters of this book, we will focus on tools for
data contained in files: Your data resides in physical files on your hard
disk, from where it is opened with a software of your choice, processed
in various ways, and then stored again in a file. This is by far the most
common workflow used in social science projects. Why do we need files
at all? The answer is very simple: We use files for permanent data storage.
When you work with a dataset in R (or in some other software, such as
Excel or Stata), the table(s) – for example, the data frames in R – are tem-
porarily stored in your computer’s main memory. This is the part of your
computer where data and programs are kept for fast access during the
actual operation of your system. The problem is that this volatile memory
does not function anymore when you turn off your system, and the entire
content (and, thus, your data) disappears. Therefore, every computer has
another type of data storage that remains persistent even when the system
is shut down. This is usually your hard disk drive, but it can also be a
network drive or a cloud storage folder.
When we save tabular data contained in the computer’s main memory

to files,we need tomake sure that the tabular structure is preserved.Recall
our discussion of the importance of data structure in the initial chapters
of this book – a persistent storage of data in files would be useless if the
actual structure of the data were lost. Therefore, there are different ways
in which tabular data can be stored as files, such that the tabular structure
is preserved. For a given file, the file type typically indicates if it contains a
data table and how this table is stored in the file.You are probably familiar
with file types for text documents (e.g., the Word format indicated by the
.docx extension) or for graphics (e.g., the JPEG format using the .jpg

39

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

40 4 Storing Data in Files

or .jpeg extension). Similarly, there are different file types to store data
tables. These file types are designed to keep the logical structure of our
data table as a set of columns of particular types, and a set of rows. These
file types constitute the main focus of this chapter.

4.1 text and binary files

Before we go through the list of the most commonly used file formats for
data in the social sciences, we need to make a basic distinction between
text and binary files. As the name suggests, text files contain information
stored as plain text, such as program code for R and other programming
languages. This is why you can open them with any text editor (such
as the one built into RStudio) and view the contents. In contrast, binary
files can be used and processed only by particular software tools – they
essentially contain only 0s and 1s that make little sense to humans (but
can be understood by the software tools designed for them). The term
“binary”applies to all files that are not text and is used for many different
file types, not just those that contain tabular data. For example, images,
video, and sound are typically stored in binary files. To illustrate the
difference, Figure 4.1 shows the contents of a binary file, viewed with
the Unix hexdump command.
As you can see, the information in a binary file is not human-readable –

the contents are completely cryptic and can only be processed by software
designed for this file type. In contrast, the content of a text file can be
understood by humans. You can create and open text files even with
RStudio: Just choose File New File Text File , and you get a new editor
pane, where you can start adding content to your text file and save it (see
Figure 4.2).
The screenshot shows that text files contain text and numbers, but

also various other invisible characters that are usually hidden in the text
editor. Under Tools Global Options , you can turn on/off the display of
these characters in the “Code” section in RStudio’s preferences menu, in
the “Display” pane. Just tick the box for “Show whitespace characters,”
and your text file will look similar to the one in Figure 4.2. There are

figure 4.1. Contents of a binary file.

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.1 Text and Binary Files 41

figure 4.2. Example of a text file viewed in RStudio.

different invisible characters in the text file above; for example, white
spaces (denoted as gray dots in the editor) are used to separate words,
and there is a linebreak character at the end of each line. The end of the
entire file is again marked with a specific character.
The set of characters you can use in a text file is defined by the file

encoding. A file encoding is a mapping of numbers (which the computer
stores internally, so nothing you need toworry about) to actual characters.
There are lots of different file encodings for computers, partly because
there was a need to encode different human languages and their special
characters. Luckily, however, most conversion issues can now be avoided
due to the Unicode standard, which accommodates most languages and
special characters worldwide. Still, you may encounter other encoding
standards, so watch out if you use (or if your data contains) special
characters. To demonstrate what can go wrong if you choose the wrong
file encoding, open the un-secretaries.txt file in the RStudio editor.
You should see a list of UN Secretaries General, ordered by the year
they served. Note that there are two special characters in this list: Dag
Hammarskjöld’s name contains an “ö” (an o-umlaut), and António
Guterres’s first name is spelled with an “ó” (an o-acute). This file is
encoded in Unicode, which is the default for macOS and other current
systems.
Before we start the conversion to a different encoding scheme, save

the file under a different name with File Save As... , so that we do not
overwrite the original version. Now, let’s save the file in a different encod-
ing. Go to File Save with Encoding , which brings up the dialogue box in
Figure 4.3.
The current coding of the file is UTF-8, which refers to the Unicode

standard.This is also the default for my current operating system (macOS)
and therefore labeled as such in the list. Now, select ASCII and click
OK. This will transform the file to the American Standard Code for
Information Interchange (ASCII) standard, which is an old encoding
standard developed in the USA to encode text in English (this is the file

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

42 4 Storing Data in Files

figure 4.3. Choosing the file encoding in RStudio.

figure 4.4. Viewing a file encoding in ASCII.

un-secretaries-ascii.txt included in the supplementary material for
this chapter). If you now close the file and open it again, Figure 4.4 shows
what you get.
This looks almost the same as the old file, but there are differences

in two places: The special characters are missing. It is not difficult to
understand why: Since the ASCII encoding does not include characters
such as “ö” and “ó”, they are simply replaced in the converted file (in our
case, with two question marks). This example illustrates that if you leave
the Unicode world and deal with text files in other encodings, you need
to be careful, since special characters and symbols can be transformed in
unexpected ways or simply disappear.
What if you encounter a file and are not sure about its encoding?

Unfortunately, it is not straightforward to recognize the encoding.
The readr package offers a function that guesses the encoding of a
given file together with a confidence estimate. The following example
demonstrates this:

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.2 File Formats for Tabular Data 43

library(readr)
guess_encoding(file.path("ch04", "un-secretaries.txt"))$encoding

[1] "UTF-8"

guess_encoding(file.path("ch04", "un-secretaries-ascii.txt"))$encoding

[1] "ASCII"

The function detects the encoding of the original UN secretaries file
correctly, and also for the ASCII version we created. This may be helpful
if you encounter conversion errors during the import that could be due
to encoding (such as garbled characters) – in this case, you can try to set
the encoding manually (e.g., by using the fileEncoding parameter in R’s
read.csv() function) to fix these problems.

4.2 file formats for tabular data

There is a variety of file types designed for storing tabular data. The
discussion below takes you through the most important ones, many of
which you will already be familiar with. In the remainder of the book, we
will encounter several other file formats that can be used for tables, but
also for other types of data.
The format of a file is typically indicated by the file extension, which is

the dot and the letters at the end of a file name. For example,MS Excel files
use the extension .xlsx (or .xls for the legacy Excel format), while simple
text files are usually marked with .txt. It is important to note, however,
that the file extension is no guarantee that the file actually conforms to a
particular format. For example, you can easily rename an Excel document
such that it ends in .docx (the file extension for Word documents). If you
then double-click your file, your operating system calls Word to open
it, since it believes that this is a Word file because of the file extension.
Word, however, cannot open the file, since internally it uses the Excel
format.
On some operating systems such as macOS and Windows, file exten-

sions are hidden by default and you might be wondering what we are
talking about. To show the file extensions on all files on your computer,
follow these steps. On Windows:

• Open Windows Explorer

• Expand the Ribbon menu (Shortcut: Ctrl + F1)

• Click on the “View” tab

• Check the box that says “File name extensions”

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

44 4 Storing Data in Files

figure 4.5. Check the first box to display all filename extensions on macOS.

On a Mac:

• Open the Finder app

• Click on Finder Preferences

• Click on Advanced

• Check “Show all filename extensions” as shown in Figure 4.5

Linux usually does not use file extensions to determine how to open
a file and just considers them part of the filename. You will not need to
change any settings if your computer runs Linux.
In the following sections of this chapter, I will briefly introduce the

most common file formats you are likely to encounter when working with
social science data. For each of these formats, we cover some general
features, as well as how to open and save it in R. The discussion starts
with several text file formats typically used for storing tables. As we have
seen above, the advantage of using text files is that you can manually
check the content of a file. Also, almost any software tool for data analysis
can read and write text-based files with tabular data. At the same time,
however, there is no real standardization: This means that the file import
can go wrong, and you need to check that the imported table actually
corresponds to what is in the file and what you expect.

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.2 File Formats for Tabular Data 45

4.2.1 CSV Files

The format most often used for storing tabular data in files is theComma-
Separated Values (CSV) format. In a CSV file, each line in the text repre-
sents a row from the table, and the cells in that line are separated by a
special character such as a comma (hence the name). As in any proper
tabular structure, each line must have the same number of cells for the
table to be perfectly rectangular.When I use the term “CSV” in this book,
I mean any kind of text file that stores tables in the same way (possibly
using characters other than the comma as field separator). These files
sometimes use the .dat file extension, but also others. Let us take a look at
an example of a CSV dataset. Open the file csv-example.csv that is part
of the data repository for this chapter in RStudio’s text editor. The file
contains distances between all national capitals worldwide, compiled by
Gleditsch (2020). For simplicity, we use only a subset of it – the distances
between Washington, DC and other countries’ capitals. This is what you
should see in the first three lines:

numa,ida,numb,idb,kmdist,midist

2,USA,20,CAN,738.31,460.56

2,USA,31,BHM,1639.23,1022.12

2,USA,40,CUB,1831.13,1141.3

The first line is the header of the table and contains the names of the six
columns. Each distance is measured between the capital of one country,
which has an identifier and a name (numa and ida), and a second country,
also referenced with an identifier and a name (numb and idb). Finally,
the distances are provided in kilometers (kmdist) and miles (midist). The
data start in the second row. The cells are separated with a comma (the
field separator character), and each line ends with an (invisible) newline
character. Let us now import this file as an R data frame and take a look
at the first three lines:

csv <- read.csv(file.path("ch04", "csv-example.csv"))
csv[1:3,]

numa ida numb idb kmdist midist
1 2 USA 20 CAN 738.31 460.56
2 2 USA 31 BHM 1639.23 1022.12
3 2 USA 40 CUB 1831.13 1141.30

There is no single standard for CSV files, which is why they come in
many different forms. One issue you may encounter is that a .csv file

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

46 4 Storing Data in Files

uses a separator other than a comma as the separator. Open csv-example-
semicolon.csv in RStudio’s text editor, which contains a slightly modified
version of the original data. This is what you should see:

numa;ida;numb;idb;kmdist;midist

2;USA; 20;CAN; 738,31; 460,56

2;USA; 31;BHM; 1639,23; 1022,12

2;USA; 40;CUB; 1831,13; 1141,30

In this file, the cells are separated by a semicolon instead of a comma,
and the comma is used as a decimal indicator (which is the standard in
many countries in Europe and elsewhere). This clearly illustrates the prob-
lems that can arise when using CSV and related file types in the absence
of a fixed definition of a file format: is the comma or the semicolon used
as field separator? We can clearly see this when eyeballing the file, but it
is not straightforward for the software we use. So when you try to import
csv-example-semicolon.csv in the way we showed you above, this does
not work:

csv_semicolon <- read.csv(file.path("ch04", "csv-example-semicolon.csv"))

Error in read.table(file = file, header = header, sep = sep, quote = quote, : more
columns than column names

The problem is that R’s read.csv() function by default assumes a
comma as the separator. This results in a mismatch between the header
of the file – which is treated as only one column name, since it does not
contain a comma – and the actual data, which, when split at the comma
characters, has three fields per row. To correctly import this dataset, you
have to specify the separator explicitly:

csv_semicolon <- read.csv(file.path("ch04", "csv-example-semicolon.csv"),
sep = ";")

csv_semicolon[1:3,]

numa ida numb idb kmdist midist

1 2 USA 20 CAN 738,31 460,56

2 2 USA 31 BHM 1639,23 1022,12

3 2 USA 40 CUB 1831,13 1141,30

A similar issue arises when dealing with strings that contain the field
separator. For example, we may want to add the name of the first
country’s capital, Washington, DC, to our capital distances data. This
can lead to confusion when importing the dataset, since R (or other
tools for that matter) will interpret the comma in the capital name as

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.2 File Formats for Tabular Data 47

a field separator. For that reason, CSV files often enclose the affected
strings with double-quotation marks ("), which basically means: “Treat
the entire content between the quotes as a single string, regardless of what
it contains.” To see how this works, open the file csv-example-quotes.csv
in RStudio’s text editor, and take a look at the first line below the header:

2,USA,20,CAN,738.31,460.56,"Washington, DC"

The dataset now has a seventh column with the name of the capital
of the first state. Since this name contains a comma, the entire string is
enclosed in double quotes. But as you may have guessed, this again does
not fully solve the issue.What if your string variable contains " characters
that are not used for quotation? The standard way of dealing with this is
to replace them with "" (two double-quotation marks next to each other).
When you export files as CSV, the software usually takes care of string
quotation. However, when you import CSV files, it might still be the case
that quotes are not handled properly and errors occur, so you need to be
careful and double-check that the import works correctly. If it does not,
in many cases your only option is to open the file in a text editor, identify
the source of the error, and fix it manually.
Saving CSV files from R is simple. R provides the write.csv() function

for doing this, which is part of R’s basic set of functions. By default,
write.csv() uses comma as the field separator, and string quotation is
enabled by default. This is all fine, but by default, the function produces
a file that looks like this:

write.csv(csv, file.path("ch04", "output.csv"))

"","numa","ida","numb","idb","kmdist","midist"

"1",2,"USA",20,"CAN",738.31,460.56

"2",2,"USA",31,"BHM",1639.23,1022.12

"3",2,"USA",40,"CUB",1831.13,1141.3

First, note that the function by default quotes all strings, regardless
of whether this is necessary. In our case, none of the field names or the
data contain a comma, so we could actually omit the quotes in the header
and in the string variables in the data. Second, R adds a new (unnamed)
column to the data. This column contains the row numbers,which is what
R uses to preserve the order of the data in the file. In practice, however,
the ordering of rows in a data frame oftentimes does not (and should not)
matter, which is why we recommend that you disable this feature:

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

48 4 Storing Data in Files

write.csv(csv, file.path("ch04", "output.csv"), row.names = F)

There are a number of other useful parameters for the write.csv()
function, most importantly the sep parameter that lets you define a field
separator to be used for the file. The col.names parameter allows you
to disable the inclusion of a header should you wish to do so (although
this is generally not recommended). In addition, there is one important
feature of R read/write functions that is very useful when dealing with
large files: You can use it to compress files. File compression (“zipping”)
is a technique where text files are saved such that they reduce the space
they need on disk. For example, our (uncompressed) dataset of capital
distances needs about 6 kilobytes of disk space. However, if we use R file
compression, we can reduce the size considerably. This is done by using
R’s functionality to create “gzipped”files, a frequently used algorithm for
compressing files:

write.csv(csv, gzfile("csv-example.csv.gz"), row.names = F)

The compressed file now only uses around 3 kilobytes, which is
about 50% of the size of the original file. For larger files, the size
reduction is usually much higher. Compression works particularly well
if your data contain long sequences of repeated characters, which is
typically the case for tables with a lot of text. Of course, R can also
read the zipped CSV files again – there is no need for using additional
functions, and you can simply provide the name when importing it, as in
read.csv("csv-example.csv.gz").
In this section, we only covered the basic features of CSV files, and the

standard way to process them in R. There are various other packages and
functions for this, some of which we will introduce in the next chapters.
As regards the CSV format in general, it is important to emphasize again
that it is only a convention for using text files to store tabular data rather
than a fixed standard. While there actually exists a standard for CSV files
(Shafranovich, 2005), it is not widely known and most tools (including
Excel) do not conform to it, so you can safely ignore it. This means that
you need to be aware of the potential pitfalls when using CSV files. We
discussed the most common ones, which include the file encoding, the
definition of the field separator (a comma, a semicolon or the invisible
tab character \t are the typical choices), and the quotation of strings.
Also, unlike in our examples above, CSV files sometimes do not contain
the headers of the table in the first line, in which case you would have to
set them manually in your code.

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.2 File Formats for Tabular Data 49

Still, the CSV format has a number of advantages that explain why
it is so widely used: It is an open format that is completely transparent,
since you can open a CSV file on just about any computer system and
inspect its contents. For that reason, the CSV format is compatible with
most data processing and data analysis tools, and belongs to the most
commonly used file types for data storage. One important downside is
the lack of meta-information (such as column types or documentation
information), so this must be provided in associated data such as code-
books or Readme files.

4.2.2 Excel

In the previous section, I described how to use text files to store tabular
data. Now, we are turning to a number of binary data formats for the
same purpose.However, as we discussed above, binary files are oftentimes
designed to be used with a particular software and cannot be inspected
manually with a simple text editor. A well-known example of this kind is
the MS Excel file format, which, due to the popularity of the MS Excel
spreadsheet software, is still a widely used format also for social science
data. Excel files come in one of two formats: the legacy .xls format (which
is a truly binary format), and the current .xlsx format that is actually a
zipped collection of different text files, which together contain the data.
Different packages allow you to read and write Excel files in R. I rec-

ommend the readxl library for this, since it installs and runs without
any additional configuration and is nicely integrated into the tidyverse
environment that we cover in Chapter 7. As an example, let us use the
data in the file unsc-membership.xls, which contains information on UN
Security Council membership fromDreher et al. (2009). If you try to open
this file with a regular text editor, you will see that it is a binary file, the
contents of which are not human-readable. In R, we can open the file as
follows:

library(readxl)
xls <- read_excel(file.path("ch04", "unsc-membership.xls"),
sheet = 2,
na = ".")

The R function that does all the work is read_excel(), and you need
to specify the name of the input file (with a complete path if necessary),
as well as the number or the name of the sheet you are importing. In our
case, this is the second sheet, since the first one only contains metadata

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

50 4 Storing Data in Files

about the dataset. We also set the na option to ".", so that during the
import process, fields that contain this character are interpreted as missing
values. Writing data to an Excel file is equally simple with the openxslx
package:

library(openxlsx)
write.xlsx(xls, file.path("ch04", "output.xlsx"))

According to my experience, however, importing data directly from a
spreadsheet can be tricky. As we discuss in more detail in the next chapter,
the problem is that spreadsheets do not impose a strict tabular structure,
while almost all statistical software tools do. This means that, for exam-
ple, numeric columns can contain text, or data can even be placed in the
spreadsheet outside the area where the regular dataset is kept. This is why
you often encounter problems and errors during the import process. As
the next chapter will make clear, I generally recommend against using
MS Excel (or any other spreadsheet software) for data management, if
you can avoid it. However, since many datasets are still distributed in
spreadsheet formats such Excel or LibreOffice/OpenOffice, it is hard to
avoid them completely. This is why we spend an entire chapter on MS
Excel (see Chapter 5), where we cover the various issues that can arise
when managing research data with spreadsheet software.

4.2.3 Stata

Stata is one of the major tools for statistical analysis in economics and
political science. It uses its own binary .dta format for data storage.
Unlike Excel files, Stata’s data files only contain a single table. This
mirrors Stata’s workflow well. It allows users to keep only a single table
at a time in their working environment, which serves as input to all the
analyses and visualizations the user carries out – this is very different
from R, where you can have several data frames in your workspace. .dta
files contain variable names and data, but optionally also short labels for
the variables in the dataset.
Due to the fact that each Stata data file only contains a single, rect-

angular table, its import and use in R is typically much less problematic
compared to spreadsheet files. As an example, we use the data on the
targets of terrorism compiled by Polo (2020). The import function is
provided by the haven package, and is straightforward to use:

library(haven)
dta <- read_dta(file.path("ch04", "terrorism-targets.dta"))

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.2 File Formats for Tabular Data 51

When importing Stata files, the short variable labels are preserved and
shown when you click on the data frame in the Environment tab of RStu-
dio. Alternatively, you can display, set, or change the variable labels with
the labelled package, which can be very helpful when inspecting a data
frame for the first time:

library(labelled)
var_label(dta$attacksum)

[1] "Number of attacks"

Similar to reading Stata files, haven can also write R data frames in the
.dta file format:

write_dta(dta, file.path("ch04", "terrorism.dta"))

Stata has introduced several versions of its file format over time. haven
can read and write all versions that Stata has used so far, although you
may have to set the version parameter manually (the version refers to
the Stata version used to create the file). One important fact to keep in
mind, however, is that before version 14, Stata did not use a fixed string
encoding, which means that you can run into the encoding problems we
discussed above. Since Stata 14, text is saved in UTF-8 format and can
therefore contain characters in any language and a wide variety of other
symbols. Stata as well as SPSS (below) also differ from R in how they
handle labeled data and missing values. It is beyond the scope of this
book to discuss these differences in detail, especially because the haven
documentation is very detailed in explaining these issues.

4.2.4 SPSS

SPSS (now called IBM SPSS Statistics) is another commercial software
package that is frequently used in the social sciences. Similar to Stata, SPSS
also comes with its own file format for data files, identified by the .sav
file extension. These files are also binary, which means that they cannot be
opened with a text editor and inspected manually. .sav files also contain
only one table or list, with variable names, the data and (optionally) labels
and documentation for the data. As an example for a dataset in SPSS
format,we use the 2012 – 2016 version of theWorlds of Journalism Study
(WJS, 2019), which assesses the state of journalism around the world.We
again import the data with the haven package and summarize the first
three columns:

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

52 4 Storing Data in Files

library(haven)
sav <- read_sav(file.path("ch04", "journalism.sav"))

The original WJS data are based on interviews with journalists in dif-
ferent countries and cover topics such as editorial independence or how
journalists see their role. The data we have here are national-level aggre-
gates over all respondents. The WJS SPSS file also allows variables to be
labeled,which we can use to find out what the variable names really mean:

library(labelled)
var_label(sav$C9)

[1] "Editorial autonomy: selecting stories (means)"

var_label(sav$C10)

[1] "Editorial autonomy: aspects emphasized (means)"

Similar to Stata files, the haven package can also write R data frames
to SPSS files:

write_sav(sav, file.path("ch04", "wjs.sav"))

There are various other conventions and potential pitfalls when work-
ing with Stata and SPSS files. If you need more information on this, the
documentation of the haven package is a good place to start.

4.2.5 R Data

R cannot only read and write files in other formats, but has its own file
formats for preserving data. There is an important difference between the
file formats I described above and R data files. While the above formats
were all designed to store tabular data, R’s data files can be used to store
any kind of R object. So, for example, if you have a single vector, a list, or
a data frame, they could all be permanently stored on disk using R’s own
file formats.
There are two types of R data formats: R data files, which have the

extension .RData or .rda, and “serialized” R data files with the extension
.rds. Both file types store the data in binary format (the default behavior).
The difference is that .rds files save only a single object, and without the
name the object was previously given. This means that when you load
the object again from the file, you need to assign a new name. This is
different for .rda files: A single file can contain several R objects, and will
save each of them with its name. So when you load your data again, each

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.2 File Formats for Tabular Data 53

object (data frame, list, vector, etc.) will be available in your workspace
under the name it was given previously.
To demonstrate this, let us use the replication data for Barberá (2015),

which analyzes Twitter behavior of world leaders. In the replication data
you will find a file called leaders-twitter.RData. This file contains data
derived from Twitter accounts of political actors in six countries (US,
Spain, Netherlands, UK, Italy, and Germany). The data set also indicates
the party to which each actor belongs (if applicable). In our example, we
first clear all objects in our workspace with rm(), import the data with
load() and then show the objects in the workspace with ls():

rm(list = ls())
load(file.path("ch04", "leaders-twitter.Rdata"))
ls()

[1] "elites.data"

As you can see, you now have an object called elites.data in your
environment, even though we did not specify a name. Rather, elites.data
was created by the author of the dataset, and then saved to the file. What
type of object is this? A data frame? Let us check:

class(elites.data)

[1] "list"

summary(elites.data)

Length Class Mode
US 23 data.frame list
UK 4 data.frame list
spain 4 data.frame list
NL 4 data.frame list
germany 4 data.frame list
italy 4 data.frame list

elites.data is a list with six entries, each of which is a data frame. This
means that we have one table for each country, which can be accessed
using the country name (e.g., elites.data$germany). For a simple demon-
stration of how to save .RData files, let’s extract the data for Germany and
Italy as two separate objects, and save() them:

elites_germany <- elites.data$germany

elites_italy <- elites.data$italy

save(elites_germany, elites_italy, file = "elites-germany-italy.rda")

Loading this file (after wiping our environment with rm()) makes the
two objects available again:

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

54 4 Storing Data in Files

rm(list = ls())
load("elites-germany-italy.rda")
ls()

[1] "elites_germany" "elites_italy"

Finally, let us do a quick comparison with the .rds format. Remem-
ber that we can only save one object at a time; in our case, we use
elites_italy. We save this object using saveRDS(), and load it again with
readRDS() under a different name:

saveRDS(elites_italy, "elites-italy.rds")
italy <- readRDS("elites-italy.rds")

This example shows that the original (elites_italy) and the newly
loaded (italy) datasets can exist in the sameworkspace, but with different
names (since we can adjust this during the loading).A simple check reveals
that they contain identical data:

identical(elites_italy, italy)

[1] TRUE

Due to their ability to store any kind of R objects, R data files are
extremely flexible, as long as you do not want to exchange data with
other software tools. Both data formats can only be processed with R, and
users of other statistical packages will not be able to use your data. Using
our above example, you are now able to import .RData and .rds files from
other sources; however, you should think about whether distributing your
own data in one of these formats is a good idea. In particular when dealing
with tabular data, I rather recommend a text-based CSV format, which
most statistical packages and programming languages are able to read.

4.3 transparent and efficient use of files

Over the course of your research projects you are likely to accumulate
a large number of data files: data from different sources and data you
create yourself, using different naming schemes and file types. While you
are working on a project, it is often possible to keep track of what these
files contain, where they come from, and what you need them for. But
experience shows that once you take a break from a project, it can be
difficult to make sense of the different files in your project. I therefore
provide you with some simple guidance on how to effectively organize

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.3 Transparent and Efficient Use of Files 55

your research projects to minimize headaches and make your life easier.
Many of these suggestions come from Jennifer Bryan’s (2015) excellent
talk on the matter, combined with my own experience.

4.3.1 Directory Structure

Good file organization starts at the directory structure of your project,
that is, the folders in which your files are stored. In particular if your
project involves many data files, I recommend that you create three sub-
folders in your project folder:

1. /raw contains all the raw data you collected yourself or that comes
from other sources. You should consider this folder read only! This
is uncleaned data that your R scripts should never change, only
read.

2. /analysis This folder contains the output of all your data cleaning
and processing, ready for analysis and structured however is best
for your project. If you remember our recommended workflow
from Chapter 1, this folder contains the analysis datasets. Impor-
tantly, you should consider the contents of this folder as transitory,
and there should never be any data in this folder that cannot be
recreated by running your scripts again. You should be able to
delete everything in this folder and still arrive at the same data
(and analysis results) after re-running your scripts that process the
raw data.

3. /replication This folder should be populated at the end of your
project with all the data necessary to replicate your results. It should
contain only properly anonymized, cleaned data that is ready to be
shared with others.

Usually, your R scripts will be located in the main working directory.
To easily see what each R script does, consider using informative and
consistent file names.

4.3.2 File Names

Once your directory structure is set up, you should also consider sticking
to some conventions regarding the names of the files you use. While files
in the raw folder should not be changed after you download them, it is
up to you to give useful names to all the ones you create. Jennifer Bryan
(2015) gives three principles for naming files that you should stick to, a

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

56 4 Storing Data in Files

recommendation I fully support: file names should be machine readable,
human readable and play well with the default ordering of files on com-
puters. What does this mean in practice?

1. Machine-readable file names: The great benefit of machine readable
file names is that they make your life much easier when you process
files automatically. Also, you can computationally extract infor-
mation from the names that would be cumbersome to store and
retrieve otherwise. To make files machine readable, avoid spaces,
punctuation, and non-ASCII characters in your filenames andmake
sure you avoid case sensitivity (you should not have two differ-
ent files called myData.csv and mydata.csv). Sticking to these rules
makes using the default search function of your computer much
more powerful, but also to retrieve and process the files using your
script.

2. Human readable file names means that you should be able to tell
from the name of a file what is in it. Giving your files names such
as 01_clean-data.R is vastly superior to just calling the file 01.R or
data1.R. By using delimiters such as the underscore and the hyphen
consistently, you can also encode metadata about your file in the
filename. For example, you can encode the order in which to run
the files by starting with a numeral, and what the files do. Use
underscores to separate these elements of metadata in your files
and hyphens to separate words within the meta data.

3. File names that sort well: Starting your file names with a numeral
allows for proper ordering when shown on your computer. You
should always left-pad your numbers with a leading zero (oth-
erwise on many systems, 10_analysis.R will be sorted before
1_analysis.R). When you use dates in your filenames, they should
follow the ISO 8601 format YYYY-MM-DD and preferably be
put at the beginning. This results in proper chronological ordering
and prevents confusion from the different ordering of days and
months in Europe and North America. While it is tempting
to insert dates into filenames to denote different versions of a
file over time (such as 20190312_data.R and 20190313_data.R),
this oftentimes results in large, confusing numbers of files. If
you want to preserve earlier versions of your code, consider
using a version control system, which is particularly useful when
collaborating with others. In Chapter 14, we cover these systems
briefly.

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

4.4 Summary and Outlook 57

4.4 summary and outlook

Most social science research data is contained and distributed in files, and
there are many file formats that can be used for tabular data. In this chap-
ter, I provided a general introduction to the most common file formats you
are likely to encounter in your work. The most convenient and flexible
way is to use simple text files for tabular data, as for example the CSV for-
mat. Reading and writing is possible with almost any software package,
and we can check contents manually with a simple text editor. However,
there is no established standardization for these files; important features
such as the choice of the field separator or the inclusion of a header can
vary, all of which requires some caution when working with CSV files.
There also exist a number of binary file formats for tabular data,

most of which can be processed with R. Among the most frequently used
ones are spreadsheet files, most importantly Excel. Stata and SPSS also
have their proprietary data formats, designed to store individual research
datasets along with some documentation (e.g., labels of variables and
values). The haven package in R offers a lot of functionality to work with
these files. R objects (which includes data frames) can also be stored as
files in R’s own formats. However, exchanging data with other software
tools using these formats is impossible, which is why you should use these
file formats only when you really need them (e.g., if your data does not
follow a tabular format and therefore cannot be easily stored in a CSV).
There are lots of other file formats, many of which are also used for

social science data. As a general overview of file formats, the compre-
hensive file format guide by the US Library of Congress (2019) may be
helpful. In case you cannot open a file with the R libraries we used in this
chapter, I recommend you take a look at the rio package, which is able to
read a large number of file formats in the fastest and most efficient way
possible. In sum, here is a list of recommendations based on the discussion
in this chapter:

• Understand the basics of file-based storage: When working with data
stored in files, it is important to understand how files work, irrespec-
tive of whether they contain research data or not. We discussed the
important difference between text and binary files. For the former, you
need to be aware of the fact that there are different encoding schemes
for text, and choosing the wrong one can lead to strange characters
and errors in your data. Luckily, Unicode has emerged as the standard
on many operating systems, which means that conversion issues can
largely be avoided, at least when working with more recent files.

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

58 4 Storing Data in Files

• Familiarize yourself with different file formats: There are few estab-
lished conventions when it comes to storing tabular data in files. This
means that for quantitative social scientists, there is a need to be famil-
iar with different file formats as well as their strengths and weaknesses.
Datasets for social science projects are distributed in many different
formats, and it is likely that you will encounter a rarely used, legacy
format in your work. Using the concepts and tools introduced in this
chapter, you should be able to work even with the more difficult ones.

• Organize your directories and files consistently: To make the organiza-
tion of your data and code as transparent as possible, try to stick to a
consistent naming of files and folders. This is not only useful for others
as they replicate your work, but it also helps you when you return to
your project after some time. File and directory names should clearly
indicate their content, and they should be constructed in a consistent
way, such that they can be processed both by humans and computers.

• For your data, choose a simple, well-known file format: When you
think about how to store your own data, it is advisable to prefer
generic, software-independent file formats. For example, (correctly
formatted) CSV files can be imported by almost any type of statistical
software. Since they are text files, they also permit inspection by
humans. It is generally recommended to avoid proprietary file formats
such as Excel or SPSS. This also applies to R’s custom file formats
(.RData and .rds), which other software cannot process.

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007

5

Managing Data in Spreadsheets

The previous chapter started our discussion of file-based data storage
with a presentation of several file formats used for tabular data. In this
and the following chapters of the book, I present different software tools
that are commonly used for file-based data management and processing.
While our focus in this book is on the R statistical toolkit, we start with
one of the most widely used type of data management software: spread-
sheets. A spreadsheet is a big table where users enter data into cells and
perform calculations with them. The most common spreadsheet software
that probably all readers are familiar with isMicrosoft’s Excel (part of the
Microsoft Office suite). Apple’s Numbers is a similar package, available
only for the macOS platform. There are also different free spreadsheet
systems such as the Calc software that is available as part of OpenOffice
or LibreOffice.
Spreadsheets are not especially designed for managing research data,

but they can be used for this purpose. This, however, comes with signifi-
cant limitations. Most of these limitations are due to the fact that spread-
sheets were developed to facilitate data management and processing by
humans, and not by computers. In other words, they support a workflow
where humans enter information primarily for other humans to look at.
This is why there are almost no constraints to ensure the consistency of
a table, but also why spreadsheets have so many features to format data
for visual consumption.
Therefore, as we will see below, spreadsheets do not help much to

ensure that a table is correctly formatted, and that the content of the
cells in a table conforms with the type of a variable. Also, working with
spreadsheets means that you manage data through pointing and clicking

59

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

60 5 Managing Data in Spreadsheets

with your mouse and through manual editing, which makes it difficult,
if not impossible, to replicate your revisions later. It is therefore not a
surprise that things can go wrong when you rely on spreadsheet soft-
ware for data management; the Economist even covered some of the
most popular cases in a report on Excel errors in science (The Economist,
2016). I nevertheless include spreadsheets in this book, because they –
perhaps unfortunately – still constitute one of the main ways in which
scholars manage their data. It is my hope that this chapter can prevent you
from committing some of the fundamental mistakes that can occur when
using Excel or similar tools; we discuss some of them at the end of the
chapter.
For the illustration below,we rely onMicrosoft Excel Version 2019, the

most frequently used spreadsheet software. This is the most recent version
of the software for Mac users. While the basic functions we cover here
are also available in earlier versions of Excel and in Excel for Windows,
they are sometimes accessed under different names and with different
menu entries. For the most important functions, I mention these differ-
ences in the text. Still, the screenshots presented below are based on Excel
for Mac.

5.1 application: spatial inequality

Inequality is traditionally defined as an unequal distribution of income,
wealth, or some other quantity across the individuals in a society. How-
ever, there are other types of inequality, for example, between different
regions in a country. This “spatial” inequality is what we cover in the
example for this chapter, by computing a national-level estimate of eco-
nomic inequality across a country’s different locations. More precisely,
we are interested in the extent to which regions in a country differ with
respect to their economic performance.
Most economic indicators are provided at the level of individual

countries – think of the gross domestic product (GDP) or national growth
estimates. While important for comparisons between countries, these
national indicators cannot capture variation within countries. This is
why economists have started to systematically collect data on economic
variables at the subnational level for large samples of countries. These
data allows us to examine regional variation in economic outcomes, but
at the same time compare these patterns across countries.
One of the first global datasets of this type is the G-Econ dataset

(Nordhaus, 2006; Chen and Nordhaus, 2011). G-Econ divides up the

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.1 Application: Spatial Inequality 61

figure 5.1. G-Econ data for Europe in 2005. Visualization created with the
PRIO-Grid mapping tool at https://grid.prio.org/, see Tollefsen et al. (2012).

different countries into equal-sized, quadratic cells and reports economic
indicators for each of them. The most important cell-based indicator
is the Gross Cell Product (GCP), which is the equivalent of the GDP,
but measured at the level of cells. It contains data for four different
years (1990, 1995, 2000, and 2005). The map in Figure 5.1 shows
a visualization of the data for Western Europe. We can clearly see the
different cells, each colored according to its GCP value with economically
wealthy areas displayed in darker shading. The plot shows the strong
economic differences within Europe, with London and Paris being among
the major economic hubs. Also, we see considerable variation within
countries, for example, in Italy (the north vs. the south).
In this chapter, we use G-Econ to show how to perform simple data

operations with spreadsheet software, in order to produce an estimate of
spatial inequality for the countries contained in G-Econ. We use Version
4.0 of the data, released in May 2011. The online repository for this book
contains a copy of the data, see the file g-econ.xls. The data comes in a
single Excel file with two sheets (tables), shown as different tabs in Excel
(see Figure 5.2).
One tab is called “definitions”, and it contains a list with the variables

in the dataset and their descriptions. The other is called “GEcon40” and
contains the actual data, in a large table with 27,445 rows.The first row in
the table contains the column names, each corresponding to one entry in
the documentation. Take some time to familiarize yourself with the data.

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://grid.prio.org/
https://doi.org/10.1017/9781108990424.008

62 5 Managing Data in Spreadsheets

figure 5.2. The different sheets in G-Econ’s Excel file.

In particular, see if you can make sense of the variables and the values
contained in the dataset. There are a few things to note:

• Some cells do not seem to belong to actual countries. One of the enti-
ties in the data is “Antarctica,” which consists of many cells without
economic activity (hence the missing values, coded as #N/A). Other
small entities are also listed in the dataset (e.g., Svalbard or other small
islands). This is not a problem in itself, but we need to keep this in mind
when we assign cells to countries.

• For some variables in the data, the measurement units do not seem to
be correct. For example, the column DIS_OCEAN is supposed to contain
distances to the nearest (ice-free) ocean in kilometers and has many
values in excess of 100,000. This is not really plausible, so this is likely
a scaling issue and the values are probably given in meters rather than
kilometers.

• Variables D1 and D2 are supposed to contain the same information
(distance to the coast) according to the codebook, but in the actual
data there are some rows where the values for these variables actually
differ. Thus, there must be different ways in which the distance to the
coast was computed.

• Did you spot how the most important variables in the data, the gross
cell products, are encoded in the data? They are stored in the MER* and
PPP* columns. Recall that this table design is not optimal, as we dis-
cussed in Chapter 3. Data structure and content are not independent,
since we need to add additional columns to the table if we want to add
more years to our database.

How do we work with spreadsheets in practice? In the following, we
go through some basic steps to familiarize ourselves with spreadsheets,
and to compute national-level estimates of spatial inequality. Since most
readers will be familiar with spreadsheet software, much of this should
be easy and straightforward.

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.2 Spreadsheet Tables and (the Lack of) Structure 63

5.2 spreadsheet tables and (the lack of) structure

Spreadsheets do not care about data structure: Columns do not have
clearly defined types (such as text or numeric columns). Rather, you can
insert any value into any cell of a spreadsheet. This is why there is no real
data definition you have to do before you can work with a table; if you
need a new table, all you have to do is open a new Excel workbook (a
collection of tables), or add a new empty sheet to an existing workbook
(using the + sign next to the different tabs, see Figure 5.2).
In a spreadsheet, each table always has the same rectangular structure,

where columns are labeled with capital letters and rows with numbers.
This is problematic, since for a social science data table we usually want
to name variables (i.e., columns) ourselves. Therefore, in a spreadsheet,
we usually define columns by inserting their names in the first row, as is
done in the G-Econ dataset. However, this is a convention rather than a
requirement of the software – for example, nothing prevents you from
adding new data above the row with the column names, which would
break the structure. You may have noticed that in the G-Econ table, the
first row appears to be fixed – it does not move when you scroll up and
down in the table. While this does not mean that Excel treats the column
names in any other way, it is a simple display adjustment to always keep
the header names visible. This is called “freezing” the display of a part of
the dataset. You can enable this by selecting the entire line below the row
you want to freeze, and then clicking on Window (Un)freeze Panes .
Also, Excel does not really care about the type of data that goes into

particular columns. All you can do is change the formatting of the cells.
Simply select the entire column by clicking on the column header (e.g.,
column G for the DIS_LAKE variable in G-Econ) and click on Format Cells .
This brings up the dialogue box in Figure 5.3.
In the list, you can choose different formats for the cells – since you

selected an entire column, any settings you change here apply to the entire
column. Now select “Number” and tick the box to use the 1000 sep-
arator (a comma). This will change the display of the different values
in the column, but it does not define a fixed type for the column such
that it stores, for example, only text or only numbers. Rather, we can
still mix numbers and text in that column, as we do, for example, for
the variable name in row 1 (text) and the data values in the remaining
columns (numbers). Defining a format for a set of cells does not change
their internal values, it only affects how they are displayed on the screen.
In the above example, Excel still keeps simple numbers in the cells, but

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

64 5 Managing Data in Spreadsheets

figure 5.3. Excel’s cell formatting dialogue box.

adjusts their display such that, for instance, the value 156602 is shown
as 156,602.00. This may sometimes be confusing, since what we see is
not exactly what Excel stores internally. When you select a cell, you can
always view its true, unformatted content in the formula bar at the top,
below the toolbars.
In Excel, each workbook consists of one or more sheets (tables) and it

is stored in a single file. These files use the extension .xlsx, or .xls for the
older legacy Excel file format (which is what the G-Econ database does).
Any modifications you make to the data or the appearance of the table
must be saved to the file. This is the same for all the common spreadsheet
tools, where the data content and the presentation of the table are kept
in the same file. None of these tools allow us to define strict types for the
columns in a table, which would avoid coding mistakes and erroneous
input.

5.3 retrieving data from a table

In many cases, you need to retrieve subsets of your table: For example,
you may be interested only in selected variables from the G-Econ dataset,
which are required for an analysis you want to conduct. As many data
operations in spreadsheets, this is a manual operation, where you select
the columns you need by clicking on their header (the capital letters), and
then copy-paste them to a new sheet. You can select multiple columns at

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.3 Retrieving Data from a Table 65

figure 5.4. Excel’s sort/filter dialogue box.

the same time – if they are not adjacent, you can hold down command

(Windows: Ctrl) while clicking to select them. The retrieval of particu-
lar rows works in a similar way, by clicking (while pressing the Com-
mand/Ctrl keys if necessary) on the row numbers on the left. If you want
to extract a set of rows with a particular value, this can be done by using
one of Excel’s filtering features. For example, let us extract all the cell
values for Cameroon from G-Econ: Select the COUNTRY column, go to the
Data tab in the menu, and select Filter . This displays a small arrow symbol
next to the column name. Click on it, and you will see the dialogue box
shown in Figure 5.4.
This allows you to sort and filter your data. For example, to extract

the entries for Cameroon in G-Econ, choose the operator Equals in the
drop-down menu in the Filter section, and make sure that only Cameroon
is selected in the input field. This will display all rows for Cameroon from
the data – the original row numbers remain the same, but are shown in
blue to indicate that some rows are not displayed. As you can see, you
can specify other filtering conditions, such as values that Begin with a
particular sequence of characters. If you apply this filtering mechanism to
a column with numbers, you will be given different selection operators,
such as Greater than or Less than. You can also link different conditions
to each other using logical operators such as AND or OR. Once you have

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

66 5 Managing Data in Spreadsheets

filtered the rows that you are interested in, you can select and copy-paste
them to a different sheet for further processing.
Excel also allows you to sort the data in your spreadsheet, using again

the dialogue box in Figure 5.4. If you select the COUNTRY column, bring up
the Sort/Filter dialogue (Data Filter), and click on Ascending (Windows:
A to Z), Excel will first ask you about the extent of the data that should
be sorted. Here, you need to select Expand the selection, or Excel will
only sort values in the COUNTRY column, which breaks the entire logic of
a table because the values in the sorted column are assigned to different
rows. While filtering is temporary in the sense that it displays a subset of
the table but leaves the underlying data unchanged, sorting permanently
changes the order of the rows in the table. Also, it is useful to note that
Excel implicitly assumes that the first line of the table (the one containing
the variable names) is static and therefore does not include it in the sort-
ing. Importantly, again, this is an assumption the software makes, since
there is no mechanism in Excel that lets you assign fixed column names
that the software then works with.

5.4 changing table structure and content

Due to the absence of a fixed data structure that is maintained by the
software, changes to the logical design of the table and its content are
easy: You can access new columns simply by using some of the empty
ones in your spreadsheet, or insert them by right-clicking on the header
of a column. While there is an upper limit to the number of columns in
any sheet (16,384), this is unlikely to matter in practice since tables of
this size are impossible to navigate by a user. For each new column you
insert, you can follow the convention to specify the variable name at the
top, although, again, this is something that the software does not require.
As for all the others, there is no preset type for the new column, but you
can change the display of the values by formatting cells as we have shown
above.
Changing the actual data in a spreadsheet is also done in a similar

way, simply by manually editing the content of the cells in your table.
Alternatively, similar to a word processor, you can use the standard search
and replace feature to do this for multiple values. For example, take a
look at the PRECAVNEW80_08 column in the G-Econ table. There are many
erroneous entries in this column with the value #DIV/0!. If you want to
work with the dataset for your analysis, these values can cause problems

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.5 Aggregating Data from a Table 67

down the road: Obviously, we do not really know what to do with these
values, and the occurrence of text in a column that is supposed to be
numeric can interfere with mathematical operations you perform with
it. Select the PRECAVNEW80_08 column by clicking on its header, and go
Edit Find Replace (Windows: Home Find & Select Replace). In the dia-
logue box that shows up, enter the value we are looking for (#DIV/0!)
and the value we want to replace it with. In this case, it is probably safest
to simply remove the strange values, which we can do by leaving the
“Replace with” field blank. If you then click “Replace all,” the erroneous
values in the column will disappear.
The above operations for changing your data structure and updating

the data values in your table show the data workflow that is common
to all spreadsheet tools. Most of the data work consists of manual oper-
ations: navigating to a particular cell of a table and typing in a certain
value. This workflow may sometimes be convenient, for example, when
we create a new dataset that requires human coding and manual input.
But even for these tasks, the lenient approach of spreadsheets when it
comes to data types and structure can cause problems, since the software
does not automatically recognize mistakes (e.g., when entering text for a
variable with only numeric values). Thus, the software lets you do almost
anything with your data – this freedom is likely something you pay for
with inaccuracies in your data and inefficiencies in your workflow. How-
ever, before we turn to the question of how you get your data out of a
spreadsheet, let us first complete our description of the two remaining
data operations and how they can be done in Excel.

5.5 aggregating data from a table

Excel has different features that allow you to aggregate your data. For our
purpose of computing an indicator of spatial inequality, we present only
one here: The Pivot table. A Pivot table is a tool to summarize data in a
flexible way, for example, by allowing users to introduce different group-
ing dimensions over which the values in the data can be aggregated. This
is what we need for our application. Let us start with a simple example
that counts the number of cells per country in G-Econ. Before we proceed,
you need to select the entire G-Econ table to make sure that all the data is
included in the Pivot table. You can do this via the menu (Edit Select All)
or by clicking the square box at the top left of the table. Now, you can
access the Summarize with PivotTable feature via the Data menu (Windows:

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

68 5 Managing Data in Spreadsheets

figure 5.5. Setting up a Pivot table.

Insert Tables PivotTable). It starts with a simple dialogue box where you
need to specify the subset of the data you want use as the basis for your
Pivot table. In our case, this defaults to the part of the sheet that is filled
with data, so there is nothing to change here. Also, we choose to have the
new Pivot table placed in a new sheet as part of your Excel workbook.
This creates a new sheet with an empty roster for a Pivot table. The

structure of such a table is simple: it consists of column and row fields,
which are the main levels for grouping. The value field at the center of the
table is the one that displays the summarized data. Figure 5.5 shows the
basic configuration of a Pivot table.
The part on the right is where you set up the field(s) you want to use as

grouping level(s) for your table. You can simply drag and drop field names
from the box at the top into the empty boxes below. First, drag and drop
the COUNTRY field into the “Rows” box. This adds all the different values
for this field (the individual countries) as rows in your Pivot table. So
far, however, we do not have any summary values we are computing for
each of these countries. To set this up, drag the PPP2005_40 field (the gross
cell product computed using Purchasing Power Parity for the year 2005)
from the list at the top and drop it into the “Values” box at the bottom
right. This way, Excel computes aggregate (summary) statistics over the
gross cell product for each of the grouping levels (currently, the countries
on the left). The default summary statistics Excel computes is to count
the number of observations for each country, which is why the entry in
the “Values” box reads “Count of PPP2005_40.” For Afghanistan, for

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.5 Aggregating Data from a Table 69

figure 5.6. Changing the aggregation function for a Pivot table.

example, there are 92 cells in the dataset, while Albania is much smaller
with only 9 cells.
Now, let us compute the standard deviation of all gross cell products

for each country, as a measure of the spread of the gross cell product
values and hence the spatial inequality. For this, we need to change the
aggregation function; rather than counting the number of observations,
we want to compute the standard deviation of all gross cell product values
for 2005 for each country. You can change the aggregation function by
clicking on the small “i” symbol next to the entry in the “Values” box
(in Excel for Windows, this is a little arrow that brings up a drop-down
list, where you can select “Field Settings”). This brings up a dialogue box,
shown in Figure 5.6.
The count function (highlighted) is what we currently use for the Pivot

table. If you change this to StdDev, the values in the Pivot table will reflect
the standard deviation of the gross cell product values for each country.
This turns out to give us many invalid values, such as the familiar #DIV/0!
values (which indicate a division by zero), but also #N/A values, which are
present in the original data sheet. Here, we see some of the problems
resulting from Excel’s (and other spreadsheets’) sloppy use of data types.
In the main data, we have many values in the (numeric) gross cell product
variable that are not numbers but strings (text). Since we cannot compute
a mathematical sum over text values, Excel simply outputs these values
directly. We will later work with tools that require us to specify a fixed
type for each column of a table and that allow for a consistent coding of
missing values to properly exclude them from computations.

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

70 5 Managing Data in Spreadsheets

5.6 exporting spreadsheet data

We now have the values of spatial inequality and could continue to ana-
lyze them in Excel. However, in order to show you a complete workflow
and a nice R plot at the end of this chapter, we export the data to a
text file (CSV) for further analysis in R. To create a CSV file from our
Pivot table, we simply save the worksheet with the table in this format:
File Save As . There are different CSV file formats available; I recommend
that you choose the one with UTF-8 support. During the export process,
Excel warns you that only the active sheet will be saved to CSV, since this
file format cannot deal with multiple tables in one file – each CSV file is
supposed to contain exactly one table. You can acknowledge this warning
and proceed with “OK.”The second warning refers to the fact that many
Excel features such as colored cells or formatted text are lost when saving
the file as a CSV. This is why you should not keep the entire workbook in
this format (the CSV file will be saved anyway).

5.7 results: spatial inequality

If you take a look at the values we have computed in our Pivot table above,
there are some that reflect our basic intuition of spatial inequality. You
see that some of the inequality estimates are very large, for example, for
South Korea (86.04) or the United Kingdom (67.63). These are countries
that are very strong economically, but where economic activity is dis-
proportionately concentrated in single economic centers such as Seoul or
London.Although comparable in terms of overall economic performance,
other countries such as Germany (41.93) have lower values of spatial
inequality, because there are several economic hubs in the country.
A plot of the overall distribution of spatial inequality using the

exported CSV file (see Figure 5.7) shows that a large number of countries
have very low values of spatial inequality, or in other words, a relatively
even geographic distribution of economic activity. This could be due to a
number of reasons. For example, the size of the country could affect its
spatial inequality; if a small country only consists of three cells, the spread
of economic activity within that country will likely be limited. Another
reason could be the level of economic development. Many countries have
very low levels of economic activity throughout, which will also affect
the scores we have computed. All this suggests that the way in which
we compute spatial inequality may not be entirely satisfactory, and that
other measures may be preferable.

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.8 Summary and Outlook 71

Spatial inequality

F
re

q
u

e
n

c
y

0 50 100 150

0
4

0
8

0

figure 5.7. Histogram of spatial inequality scores.

5.8 summary and outlook

Although we have only scratched the surface in terms of Excel’s func-
tionality, you should now have a good idea of how data processing with
spreadsheets works. Spreadsheets leave you considerable freedom when
it comes to the structure of your table(s), and the data you store in them.
They also let you adjust the visual display of your data. For example, you
can increase the font size for a particular cell, or change its background
color. This is because spreadsheets are designed for a mix of different
tasks: for data storage in a (loosely defined) tabular structure, but also
for the visual presentation of your data in different fonts or colors. The
interaction with spreadsheets works mostly by means of manual editing;
for example, you navigate the spreadsheet using your mouse, and edit
content, delete rows or columns, or execute other tasks such as sorting
your data.
The features that spreadsheets offer may be suitable for certain tasks

in the data collection process. For example, if you manually put together
a human-coded dataset, spreadsheets can serve as useful and intuitive
tools for coders to enter the coded information. However, for many (if
not most) other tasks in social science data management and processing,
spreadsheets are not a good choice: The lack of a pre-defined structure
of your table makes it difficult to spot and fix errors in your data, such
as wrong labels, inconsistently coded missing values, or text in numeric
columns. Also, the fact that you work with spreadsheets through manual
interactions makes it difficult to replicate the data processing steps you
completed. There is no record of what you did; if something went wrong,
you likely have to repeat most steps yourself. If others want to replicate
your work, it would be hardly possible.

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

72 5 Managing Data in Spreadsheets

While in general I explicitly recommend against the use of spreadsheet
software in data management, there are certain applications for which
it can be useful, for example, for the manual creation of a new dataset.
Also, several datasets in the social sciences are still distributed in Excel
format,which is why it is difficult to avoid this software completely. If you
need to manage and process your data with Excel, here is some advice for
avoiding major problems down the road. The suggestions below apply
in particular to a data processing workflow where the data is eventually
exported from Excel to be analyzed in a statistical toolkit, such as R or
Stata. If you use Excel solely to prepare your data for humans to look at,
most of them do not apply. Much of what I mention here overlaps with
recommendations from other scholars, see, for example, Data Carpentry
(2017).

• Use one table per sheet: In our example above, we worked with dif-
ferent sheets that are all part of the same Excel file (recall that you
can switch between them using the tabs at the bottom). I strongly
recommend that you store at most one table per sheet, not multiple
ones. This makes it easier to maintain a consistent type for a given
column. Also, exporting the data becomes much easier, since you can
select the entire sheet – and not just a subset of it – and save it to a
separate file.

• Stick to the rectangular table format: Within any given sheet, strictly
keep the rectangular table structure intact. That is, do not let sub-
headers or any other layout elements interrupt the table structure.Also,
do not use the “merge cells” feature, which allows you to combine
adjacent cells into bigger ones, as this also breaks the structure of the
table and creates major problems when exporting your data. The same
applies to comments you place somewhere outside the main table. If
you want to record and preserve comments in a spreadsheet, create a
separate column and place your annotations there. It also makes your
life easier if you do not leave a margin of empty cells around your
main table, as is often done for visual purposes. The top-left cell (A1)
is where your main data should start.

• Use proper variable names: A correctly formatted table requires that
columns be named. In Excel, you do this by placing the variable names
in the first row. You can use any text as variable names, but most other
software packages are more restrictive here. This is why you should
not use white spaces, special characters, or mathematical symbols in
variable names. Also, numeric characters at the beginning of variable

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

5.8 Summary and Outlook 73

names are usually not a good idea (and not permitted in some tools, for
example in R). If you require variable names with multiple words, you
can separate them with an underscore (as in new_variable). Since you
may later be using these variable names in statistical code, it is useful
to keep them relatively short.

• Make sure that data values are valid: Since spreadsheet software such as
Excel lets you enter almost anything into the cells of a table, it is up to
you to make sure that the data in a particular column complies with the
type of that column. For example, a column recording the time of an
observation (the year) should only have values such as 1816 or 1946, but
not 1990s or 2001 (and 2002). The former are purely numeric values,
the latter are not. Non-numeric values can be recognized in Excel due
to the fact that they are left-aligned in the cell, while true numbers
are right-aligned. Alternatively, you can use one of Excel’s functions
such as ISNUMBER() to test whether a content of a cell is a number, and
similar functions also exist for other types. It is also important to use
consistent coding for missing values; I recommend to leave these cells
empty.

• Do not use formatting elements to store information: A frequent mis-
take when using Excel is to use formatting elements such as cell col-
oring, font styles, or others for storing information. For example, if
you create a country-level dataset with information about whether
a country is democratic or autocratic, it is not a good idea to color
democracies in green and autocracies in red. This information can be
used by humans only, and it is lost when you export the data in any for-
mat other than Excel. Therefore, it is best not to care about font styles,
cell backgrounds, etc., but stick to the defaults set by the spreadsheet
software.

https://doi.org/10.1017/9781108990424.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.008

6

Basic Data Management in R

As we saw in the previous chapter, using spreadsheets to prepare data
for analysis may be convenient at first, but entails a number of major
drawbacks. In this chapter, we introduce the basics of data management
using the R statistical toolkit. R is one of the most popular software tools
for data analysis – it has numerous features and extension packages for
statistics, visualization, machine learning, etc. Therefore, it is convenient
to also use it to prepare your data before you actually analyze it. This way,
you can stick to a single software package and one language to implement
your entire research workflow from beginning to end.
As you know, you interact with R not by pointing and clicking

with your mouse, but by entering commands in the R programming
language. This way, you can have R run statistical analyses for you,
visualize your data, but also perform data management operations.While
cumbersome at first, this mode of interaction is extremely powerful and
has a number of advantages. Most importantly, the set of commands
you send to R (which is typically called a “script”) can be saved, such
that you can later return to it, fix potential problems, or simply replicate
the steps you carried out to arrive at a particular result. This resolves
one of the main drawbacks in the spreadsheet-based data management
approach we discussed in the previous chapter, where it is difficult – if
not impossible – to keep track of the different modifications you made to
your data.
In this chapter, we focus on “base R,” which is the set of commands

and functions that are part of R’s core functionality. We do this with a
particular emphasis on R’s features for data storage and processing, and
how we can get data into R and back out. In the next chapter, I describe

74

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.1 Application: Inequality and Economic Performance in the US 75

the tidyverse, an R extension that follows a different approach for data
processing. While many consider the tidyverse as superior, I believe that
it is still necessary to be familiar with R’s basic functions and syntax for
data management.

6.1 application: inequality and economic
performance in the us

Inequality remains a global issue of major concern (Piketty, 2014). In the
practical example for this chapter, we focus on the historic development
of inequality in the US,which former president Barack Obama considered
to be a “defining challenge of our time” (The White House, 2013). How
does inequality during Obama’s presidency compare to other presidents?
To what extent does inequality depend on the size of the US economy
overall?
To find out, we use data from different sources. Data on inequality

comes from the World Inequality Database (WID, 2020). The dataset
contains time series for several measures related to inequality for many
countries, and therefore allows for systematic, historical research into
the determinants and consequences of inequality. In our example, we use
one of the many indicators for income inequality: the share of the pre-
tax income received by the top 10% of all individuals with the highest
income in a country. Higher values of this measure indicate higher levels
of inequality. TheWID has a powerful web interface at https://wid.world/
data/, where users can select the indicators, the countries and the years of
observation they are interested in. The data file in the repository, however,
was created using the bulk download function for the entire database,
selecting the US and only the variable we are interested in. The resulting
table was saved as a CSV file, which you can find in the data repository
for this chapter in the file us-inequality.csv.
Data on US economic performance can be obtained from the FRED

data portal of the US Federal Reserve Bank St. Louis (2020). The real
gross domestic product per capita series was selected and downloaded
in CSV format. The dataset is available in the data repository for this
book in the file us-gdp-pc.csv. In addition, we combine the inequality
estimates from the WID and the GDP data with data on US presidents,
available online from the US Library of Congress (2020). For your con-
venience, the latter data is available in a shortened version in the file
us-presidents.csv in the data repository.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://wid.world/data/
https://wid.world/data/
https://doi.org/10.1017/9781108990424.009

76 6 Basic Data Management in R

6.2 loading the data

We start by importing the three data files into R. Let us take a closer look
at the inequality data from the WID first. If you open this file in RStudio’s
editor, you will see the following first three lines:

country,variable,percentile,year,value,age,pop

US,sptincj992,p90p100,1913,0.4231,992,j

US,sptincj992,p90p100,1914,0.4295,992,j

The structure of this file is straightforward; the first line contains the
variable names, and the data start in the second row. A comma is used to
separate the different fields in a row.1 In our data, variable refers to the
particular variable we are using from the WID, in our case the share (thus
“s”) of the pre-tax income (“ptinc”). percentile specifies the percentile
range of the distribution we are looking at: p90p100 is the range between
the 90th and the 100th percentile, and thus corresponds to the top 10%
of earners. We can use R’s standard functions to read the data from the
CSV file:

wid <- read.csv(file.path("ch06", "us-inequality.csv"))

A quick summary of the data shows that the import worked correctly:

summary(wid)

country variable percentile year
Length:100 Length:100 Length:100 Min. :1913
Class :character Class :character Class :character 1st Qu.:1938
Mode :character Mode :character Mode :character Median :1963

Mean :1963
3rd Qu.:1989
Max. :2014

value age pop
Min. :0.3384 Min. :992 Length:100
1st Qu.:0.3604 1st Qu.:992 Class :character
Median :0.4026 Median :992 Mode :character
Mean :0.4071 Mean :992
3rd Qu.:0.4536 3rd Qu.:992
Max. :0.4803 Max. :992

One issue we should fix is the presence of unnecessary data in our data
frame. Many of the variables such as country or variable are constant,
and are only included because our data is a subset of the entire WID

1 If you choose to download a custom-defined data file from theWID yourself, the import is
not straightforward, since these files contain a header that does not conform to a regular
CSV format.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.2 Loading the Data 77

(which contains many more countries and variables). We therefore retain
only the data in columns 4 and 5 (year and value), and give them more
meaningful names:

wid <- wid[4:5]
colnames(wid) <- c("year", "p90p100")
summary(wid)

year p90p100
Min. :1913 Min. :0.3384
1st Qu.:1938 1st Qu.:0.3604
Median :1963 Median :0.4026
Mean :1963 Mean :0.4071
3rd Qu.:1989 3rd Qu.:0.4536
Max. :2014 Max. :0.4803

Next, we need to import the GDP per capita estimates. The CSV data
file is formatted according to standard conventions, using a comma as
field separator and a header with the column names, which is why the
import is straightforward. However, we again adjust the column names
to something meaningful and change the type of the first column such
that it properly reflects the dates:

gdp <- read.csv(file.path("ch06", "us-gdp-pc.csv"))
colnames(gdp) <- c("date", "gdppc")
gdp$date <- as.Date(gdp$date)
summary(gdp)

date gdppc
Min. :1947-01-01 Min. :13999
1st Qu.:1965-03-09 1st Qu.:21153
Median :1983-05-16 Median :30482
Mean :1983-05-17 Mean :33533
3rd Qu.:2001-07-24 3rd Qu.:46691
Max. :2019-10-01 Max. :58392

As you can see, the gdp data frame contains quarterly estimates of GDP
per capita. We only need one estimate per year, which is why we retain
only the observations for July:

gdp <- subset(gdp, as.numeric(format(date, "%m")) == 7)

Finally, let us import the dataset with the US presidents. This dataset
was exported from a spreadsheet, which is why a semicolon is used as a
field separator. This requires us to set the sep parameter of the read.csv()
function accordingly. R again obtains the column names from the first line
in the file. It replaces the whitespaces in the names with dots, since R does

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

78 6 Basic Data Management in R

not accept column names with spaces. We again set the column names to
lower case and retain only those columns we need later.

presidents <- read.csv(file.path("ch06", "us-presidents.csv"), sep = ";")
colnames(presidents) <- tolower(colnames(presidents))
presidents <- subset(presidents, select = c(inoffice, president))
summary(presidents)

inoffice president
Length:15 Length:15
Class :character Class :character
Mode :character Mode :character

All three datasets – wid, gdp, and presidents – are data frames, which,
as you know, is the main data structure for tables in R. In RStudio, you
can view data frames just like spreadsheet tables using the View() com-
mand or by clicking on the data frame in the “Environment” tab in the
top right panel. Note that, unlike in a spreadsheet program, you cannot
manually edit the data – this would have to be done using R commands.
As we have discussed above, there is no fixed standard for storing data in
text files (CSV and similar formats). This is why you need to be careful
when importing these data and make sure that the import was successful.
Above, we checked some of our imported datasets simply by printing a
summary. Another way to achieve this is the str() function:

str(wid)

'data.frame': 100 obs. of 2 variables:
$ year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
$ p90p100: num 0.423 0.429 0.422 0.444 0.449 ...

In particular, this allows you to check:

• Whether all rows have been imported. If you load the CSV file in a
text editor, you can easily count the rows in the original file. This file
typically has one more row than the data frame in R (the header in
the first line). Some CSV files have empty lines at the end; these can
be excluded from the import using the nrows parameter in read.csv(),
which restricts the number of rows to import.

• Whether all columns have been imported. Usually, inconsistencies in
the number of cells between different lines will trigger errors and the
file will not be read, but even if there are no error messages, it is still
useful to check whether all columns were imported successfully and
have the right names.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.3 Merging Tables 79

• Whether the columns have the right data type. The str() function
shows us the type of data contained in the columns (e.g., int and num
for the WID data frame). Since standard CSV files explicitly specify
only the names – but not the types – of the table columns, the default
behavior in R is to infer the variable types from the data it encounters
in the respective columns. That is, if a column contains only numeric
values and properly codedmissing values – as is the case for the p90p100
column in the wid data frame – R will correctly use a numeric type for
it. If, however, we were to denote missing values with the string n.a.
in the original CSV dataset, R would convert the entire column to a
character variable, and you could not use it for any type of analysis
that requires numeric input.

In general, if you encounter text files that deviate from common stan-
dards and cause issues during the import, I recommend that you try to
address these problems using R code rather than fixing the data file man-
ually. For example, you can skip a given number of lines at the beginning
of a CSV file with read.csv()’s skip parameter, which is useful for some
CSV files that have a header ofmore than a single line. Fixing import issues
using R’s functions rather than manually editing the files has a number of
advantages. You could easily replace the old version of the data file with
a newly downloaded one, for example, if a new version of the data has
been released. Also, you avoid making undocumented modifications to a
raw data file, which is something I recommended against at the beginning
of the book.

6.3 merging tables

For comparing inequality and economic performance in the US over time,
it is convenient to merge the two tables with each other. Both contain
annual observations, so this is straightforward. However, before we can
do this, we need to make sure that both tables have columns we can use to
join them. The wid data frame already has a column containing the year
of the observation; for the gdp data frame, we still need to create such a
column by extracting the year from the date column:

gdp$year <- as.numeric(format(gdp$date, "%Y"))

We use again the format() function for this and convert the result to a
number. Now, we are ready to merge the WID and GDP tables and store
the result in a new data frame:

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

80 6 Basic Data Management in R

data_annual <- merge(wid, gdp, by = "year")
summary(data_annual)

year p90p100 date gdppc
Min. :1947 Min. :0.3384 Min. :1947-07-01 Min. :14008
1st Qu.:1964 1st Qu.:0.3549 1st Qu.:1964-12-30 1st Qu.:21088
Median :1982 Median :0.3703 Median :1981-12-30 Median :30232
Mean :1981 Mean :0.3872 Mean :1981-06-30 Mean :32314
3rd Qu.:1998 3rd Qu.:0.4254 3rd Qu.:1998-03-31 3rd Qu.:43412
Max. :2014 Max. :0.4714 Max. :2014-07-01 Max. :53452

What does the merge() function do? It takes two data frames and joins
them line by line, for all lines that have the same values in the year column.
This is why our resulting data frame will have all the columns from the
first and the second data frame combined, as well as the column(s) used
for merging. In our case, the merge column has the same name in both
datasets, but merge() can also deal with merge columns of different names
(you would use the by.x and by.y parameters instead of by). The function
can also deal with applications where you merge not just on a single
column, but on multiple ones (e.g., if you merge annual observations for
different countries).
Now, take a closer look at the number of observations in the original

and the merged datasets:

nrow(gdp)

[1] 73

nrow(data_annual)

[1] 66

The merged data frame contains fewer observations. The reasons is
that our WID data do not start until 1962, while the GDP data are avail-
able from 1947 onwards. merge() retains only lines with at least one
match in the other dataset, so we lose those observations from gdp that
do not have a match in the WID. If we wanted to keep all observations
from gdp, we could use the all.y = T parameter setting. However, in the
merged table, the corresponding fields for the WID values would remain
empty (NA).
As a final step, we need to merge the information about the US pres-

idents to our data_annual dataset. However, the presidents data frame
contains time periods, each with a start and an end year. This is why
we cannot use it directly in the merge() function, because it requires a
common attribute. Therefore, we need to make the time periods in the

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.3 Merging Tables 81

presidents data frame (which is currently a character variable) compati-
ble with the year variable (which is a number) in the WID. A first step for
doing this is to extract the start year and the end year of each president
and to add them to the data frame. You probably noticed that the periods
given in the data are overlapping; for every presidency, the first year is
the same as the last year of the previous one. To avoid confusion in our
dataset with annual observations, we therefore reduce the end year given
in the data by one, such that we have exactly one president per year:

presidents$startyear <- as.numeric(substr(presidents$inoffice, 1, 4))
presidents$endyear <- as.numeric(substr(presidents$inoffice, 6, 9)) - 1

Since the information in startyear and endyear is now redundant in
the table, we can remove the old variable:

presidents$inoffice <- NULL

We now need to merge the two data frames based on the corresponding
years; so for each entry in the data_annual data frame, we need to look
up the corresponding president based on the start and the end year of his
tenure. This would be simple if we had a dataset with annual observations
of US presidents. We do not have this, so we need to use a simple trick.
We first create all possible combinations of rows from data_annual and
from presidents. The merge() function does this if we set the all = T
parameter:

data_annual <- merge(data_annual, presidents, all = T)
data_annual[1:5,]

year p90p100 date gdppc president startyear endyear
1 1947 0.3708 1947-07-01 14008 Harry S. Truman 1945 1948
2 1948 0.3891 1948-07-01 14515 Harry S. Truman 1945 1948
3 1949 0.3836 1949-07-01 14182 Harry S. Truman 1945 1948
4 1950 0.3899 1950-07-01 15388 Harry S. Truman 1945 1948
5 1951 0.3771 1951-07-01 16223 Harry S. Truman 1945 1948

The result of this operation is called the Cartesian product of the two
tables. Obviously, it yields many useless combinations. For example, the
first line contains the inequality and GDP values for 1962, combined
with the information on President Truman, who was in office during
1945–1949 and 1949–1953, which makes little sense. This result is not
surprising, since we specify no condition whatsoever about which rows
are supposed to match. However, in an additional step, we can now use
simple filtering to get rid of the lines with non-matching information.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

82 6 Basic Data Management in R

Specifically, we retain those lines where the current year (indicated by
the year variable) is larger than the first year of the respective president’s
term (as specified in the startyear column), and smaller or equal to the
last year (as contained in the endyear column):

data_annual <- subset(data_annual, year >= startyear & year <= endyear)
data_annual[15:20,]

year p90p100 date gdppc president startyear endyear
213 1961 0.3583 1961-07-01 18319 John F. Kennedy 1961 1962
214 1962 0.3609 1962-07-01 19126 John F. Kennedy 1961 1962
281 1964 0.3698 1964-07-01 20567 Lyndon B. Johnson 1963 1964
348 1966 0.3629 1966-07-01 22650 Lyndon B. Johnson 1965 1968
349 1967 0.3529 1967-07-01 23020 Lyndon B. Johnson 1965 1968
350 1968 0.3551 1968-07-01 24009 Lyndon B. Johnson 1965 1968

This gives us exactly what we want: a table with GDP and WID infor-
mation, combined with information about the US president in office dur-
ing the respective year. The above approach for merging tables by creating
the Cartesian product and then retaining only the matching lines is a
recipe you should remember for later parts of this book.

6.4 aggregating data from a table

We now have a complete data frame with all the data we need for our
simple analysis. Before we present the final result of our analysis, let us
take a look at how we aggregate the data in different ways to show
descriptive statistics for the different presidencies. As we have already
discussed in Chapter 3, “aggregate” statistics are computed over groups
of rows. In our example, we may be interested in the average level of
inequality and GDP for each president’s term(s). This can be done using
the doBy package, where we specify the variables to be aggregated as well
as the grouping variable(s), as follows:

library(doBy)
summaryBy(p90p100 + gdppc ˜ president, data = data_annual)

president p90p100.mean gdppc.mean
1 Barack Obama 0.4608167 51305.17
2 Bill Clinton 0.4172000 42081.50
3 Dwight D. Eisenhower 0.3586750 17377.50
4 George Bush 0.3893000 37397.00
5 George W. Bush 0.4431250 49458.38
6 Gerald R. Ford 0.3424667 26642.67
7 Harry S. Truman 0.3792667 15103.67
8 Jimmy Carter 0.3463500 29470.75

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.4 Aggregating Data from a Table 83

9 John F. Kennedy 0.3596000 18722.50
10 Lyndon B. Johnson 0.3601750 22561.50
11 Richard M. Nixon 0.3439000 25195.60
12 Ronald Reagan 0.3642375 32733.25

This simple aggregation groups the rows in our data frame by presi-
dents. For each group, it applies the mean() function to each of the spec-
ified variables, p90p100 and gdppc. Note the naming of the aggregated
columns: The default behavior of the summaryBy() function is that it uses
the name of the original variable and appends the name of the function
applied to it. For example, the p90p100.mean variable contains the averages
of the p90p100 values for each president.
Computing averages is the default, but we can also specify other aggre-

gation functions. For example, we can count the number of years that the
respective president was in office. To do this, we simply add the length()
function as an additional one to be applied to each group of rows:

summaryBy(p90p100 + gdppc ˜ president,
data = data_annual,
FUN = c(length, mean)

)

president p90p100.length gdppc.length p90p100.mean gdppc.mean
1 Barack Obama 6 6 0.4608167 51305.17
2 Bill Clinton 8 8 0.4172000 42081.50
3 Dwight D. Eisenhower 8 8 0.3586750 17377.50
4 George Bush 4 4 0.3893000 37397.00
5 George W. Bush 8 8 0.4431250 49458.38
6 Gerald R. Ford 3 3 0.3424667 26642.67
7 Harry S. Truman 6 6 0.3792667 15103.67
8 Jimmy Carter 4 4 0.3463500 29470.75
9 John F. Kennedy 2 2 0.3596000 18722.50
10 Lyndon B. Johnson 4 4 0.3601750 22561.50
11 Richard M. Nixon 5 5 0.3439000 25195.60
12 Ronald Reagan 8 8 0.3642375 32733.25

The summaryBy() function returns the result of the aggregation as a
new data frame. This is useful if we want to continue working with this
result; for example, we may want to order the entries in the aggregation
table temporally by the time of each president’s term. We can do this
by adding the year as an aggregation variable, and the minimum as an
aggregation function. This way, for each president, we obtain the first
year this president shows up in our dataset, and can use this for ordering
our aggregated data frame. You will see that by adding more variables
and aggregation functions, the result of the aggregation becomes rather

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

84 6 Basic Data Management in R

difficult to work with. This is because the summaryBy() function applies
each of the aggregation functions to each of the aggregation variables,
even though this is not what we want. This is why we simply drop the
aggregated columns we do not need, to avoid confusion. In later chapters,
I will present better ways for doing this.

data_term <- summaryBy(gdppc + p90p100 + year ˜ president,
data = data_annual,
FUN = c(length, mean, min)

)
data_term <- subset(data_term,
select = c(
president,
gdppc.mean,
p90p100.mean,
year.length,
year.min

)
)
data_term <- data_term[order(data_term$year.min),]
print(data_term[1:3,])

president gdppc.mean p90p100.mean year.length year.min
7 Harry S. Truman 15103.67 0.3792667 6 1947
3 Dwight D. Eisenhower 17377.50 0.3586750 8 1953
9 John F. Kennedy 18722.50 0.3596000 2 1961

6.5 results: inequality and economic
performance in the us

In the plot in Figure 6.1, we see the development of economic perfor-
mance and inequality by presidency. Overall, economic performance has
been steadily increasing over time in the US, and there are no partic-
ular differences observable by presidency. At the same time, inequality
does not seem to be tracking this trend closely, until we get to Jimmy
Carter’s presidency in the late 1970s. This time is seen as the beginning
of the American deindustrialization, where inequality and poverty rose
due to the increased off-shoring of jobs primarily in the manufacturing
sector (Strong, 2021). Since then, inequality in the US has been increasing
steadily, until it reached a level that is about 50% higher as compared to
the first time periods in our sample. During Barack Obama’s presidency,
according to our statistics, almost half of the pre-tax national income
went to the top 10% of earners.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.6 Summary and Outlook 85

20

30

40

50

0.34

0.36

0.38

0.40

0.42

0.44

0.46

H
ar

ry
 S

. T
ru

m
an

D
w
ig
ht

 D
. E

is
en

ho
w
er

Jo
hn

 F
. K

en
ne

dy

Ly
nd

on
 B

. J
oh

ns
on

R
ic
ha

rd
 M

. N
ix
on

G
er

al
d

R
. F

or
d

Ji
m

m
y
C
ar

te
r

R
on

al
d

R
ea

ga
n

G
eo

rg
e

Bus
h

Bill
C
lin

to
n

G
eo

rg
e

W
. B

us
h

Bar
ac

k
O
ba

m
a

G
D

P
 p

.c
.

In
e
q
u
a
lit

y

figure 6.1. US GDP per capita (in 1,000 USD) and inequality by presidency.

6.6 summary and outlook

In this chapter, we processed data from three sources to analyze trends
in inequality and economic performance in the US across different
presidencies.We did this using R’s core functionality (with one exception:
the doBy package). In particular, we imported data from text files such that
they are available as data frames in R. This requires some caution, since
data in text files may not be formatted according to standard conventions,
and import errors can occur. Also, many standard text file formats do
not explicitly specify the type of variables contained in a table, which is
why R can only infer them (and this can go wrong). We merged our three
datasets using R’s merge() function, but also encountered the limitations
of this process when dealing with more complex merges. The process of
first creating the Cartesian product of the two tables, and then retaining
the desired combinations is one way to bypass these limitations. Finally,
we aggregated the data in R, applying a set of aggregation functions over
groups of data.
Data processing using CSV files, data frames, and the functions I have

presented so far is the standard workflow in R, and something you need
to be familiar with. What we covered in this chapter is already a great
improvement beyond a spreadsheet-based workflow: In R, you specify
all your data operations in code. This way, you can correct, amend, and

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

86 6 Basic Data Management in R

re-run this code, but also share it with others. Still, R’s basic data process-
ing features do not necessarily constitute the optimal and most intuitive
way to handle data in R. We therefore discuss an easier and, in several
ways, better way to process your data in the next chapter: the tidyverse.
Still, there are several lessons you should remember from this chapter:

• Knowing base R is important: Even though there are now several
extensions of R’s core data wrangling features (the tidyverse being
the most prominent one), you still need to know your way around base
R. Many important packages are not compatible with the tidyverse,
and you often will have to work with R’s core data structures.

• Data frames as R’s main tabular data structure: For us as social scien-
tists who mainly work with tables, it is essential to know the features
and pitfalls of data frames. The syntax to extract rows or columns
may often seem strange, but it corresponds to R’s vector-based pro-
gramming approach. As we saw in the chapter, R does maintain types
for the columns in a data frame, but they can change dynamically as
you add new data. This is something to watch out for, and it can make
explicit type conversions (casts) necessary.

• Make sure that imports work correctly: Due to the implicit type con-
versions that can occur in data frames, it is necessary to check imported
data carefully. Most text-based data files such as CSV do not preserve
the column types of your data, which is why they must be inferred (or
explicitly specified) during the import.

• A few simple packages add standard data manipulation features: Base
R can do most basic operations on tabular data, but for some tasks, it
is necessary to rely on external packages. In this chapter, we used the
doBy package, which is one way to run basic aggregation operations on
tabular data.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

7

R and the tidyverse

In the previous chapter, we did some basic data processing with base
R. Is this not enough to solve most of our tasks? Sure, but we can do
better. Working with data in base R is oftentimes limited. Handling data
frames can be difficult, and additional functions for data management
must sometimes be added by importing external packages (e.g., the aggre-
gation functions in the doBy package). Here, a set of packages, together
referred to as the tidyverse, provides a much better and fully integrated
way to work with data. It reflects our basic understanding of data han-
dling very closely and also relies primarily on tables as the main data
structure (variables as columns, rows as observations). The syntax, how-
ever, is much easier to remember, since the tidyverse uses natural names
wherever possible and relies on verbs for actual operations to be carried
out. Overall, this means that your code becomes more readable, not just
for yourself but also for others trying to replicate it.
This chapter walks you through a simple application that demonstrates

the use of the tidyverse’s data management features. Rather than a single
R library, the tidyverse is actually a collection of several R packages
for different purposes, which, however, use a common underlying logic
and syntax. You may be familiar with the ggplot2 package for produc-
ing graphics, but there are also several other extremely powerful pack-
ages that are part of the tidyverse. You can learn more about the entire
tidyverse suite of packages at https://www.tidyverse.org.
All tidyverse packages are carefully designed, provide a wealth

of useful features and are therefore highly recommended. In keeping
with our focus on data management, however, we will only focus

87

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://www.tidyverse.org
https://doi.org/10.1017/9781108990424.010

88 7 R and the tidyverse

on two of them. tidyr provides basic functionality to store data in
rectangular (tabular) data structures, and dplyr offers powerful functions
to manipulate data. To make these (and other) packages available in R,
you need to install the entire tidyverse as described in Chapter 2 (unless
you are using the pre-configured project environment) and then load
it with:

library(tidyverse)

7.1 application: global patterns of inequality
across regime types

In the example for this chapter, we continue to explore the political deter-
minants of inequality, but expand the scope of the analysis. While the
previous chapter focused exclusively on the US, we now adopt a com-
parative perspective and study a global sample of countries over several
decades. In particular, existing scholarship has suggested that inequality
and regime type may be closely related (Acemoglu and Robinson, 2005;
Houle, 2009). Our aim here is to create a dataset for analysis that allows
us to track how patterns of inequality have developed over time in differ-
ent political regimes.
Our main data source on inequality is again the World Inequality

Database (WID, 2020), from which we obtain a cross-sectional time
series dataset of income inequality estimates for many countries. We
again rely on the full dataset, downloaded as a set of CSV files and
merged into a single file for the exercises in this chapter. Again, we use
the share of pre-tax income that goes to the richest 10% as our indicator
for inequality (p90p100), which is available for many years and countries.
The resulting data is available in the file inequality.csv in the data
repository for this chapter.
In addition to the inequality data from the WID, we require data on

the type of political regime that exists in a given country. Scholarship
in political science has made different attempts to measure regime type
along the dimension of autocracy vs. democracy. Our example in this
chapter relies on the well-known Polity IV project (Marshall et al., 2015),
which codes political regimes along a continuous dimension from −10
(full autocracy) to 10 (full democracy). Since political regimes change
over time (e.g., by becoming more democratic or more autocratic),
the Polity scores are provided as annual observations at the country
level.

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.2 A New Operator: The Pipe 89

7.2 a new operator: the pipe

In data management, we often have to apply a series of operations to our
data.We add and recode variables and filter selected cases, and merge our
data set with others. The standard way of doing this in R is to apply a
series of functions, creating intermediate datasets that are used as input
at later stages of the process. Consider the following example of two
artificial datasets with 20 annual observations, each of which contains
a single additional variable (randomly assigned for simplicity):

dataset1 <- data.frame(year = 2000:2019, var1 = runif(20))
dataset2 <- data.frame(year = 2000:2019, var2 = runif(20))

Let us assume we want to subset dataset1 to observations that
occurred after the year 2007 and merge it with dataset2. This is how
to do this in base R:

dataset1_subset <- subset(dataset1, year > 2007)
final_dataset <- merge(dataset1_subset, dataset2)

When we add more operations on our data, each of them generates a
new intermediate result such as dataset1_subset and adds a new line of
code. The tidyverse introduces a new operator that facilitates this pro-
cess: The pipe %>% allows you to write your code in amore natural fashion,
from left-to-right. What does this mean? In the following example, we
again subset and merge the two datasets, but in a single line of code, and
without intermediate results. Here, I demonstrate the use of the pipe with
the same base R functions we used above – later, we will replace them
with the appropriate ones from the tidyverse:

final_dataset <- dataset1 %>% subset(year > 2007) %>% merge(dataset2)

The idea of the pipe is straightforward: It takes a given dataset and
sticks it into a new operation. As you can see in the example, we can chain
several pipe operations and specify a complete “pipeline” in a single line
of code. This code essentially says: “take dataset1, filter it such that it only
contains the years after 2007, and merge the result with dataset2.” This
code is easier to read, expresses the aim behind it more clearly, and the
flow of the data is much more apparent. We also have to type less boiler-
plate code such as subset(dataset1,...) or merge(dataset1_subset,...),
because we are passing data directly from one operation to the next.
You may have noticed that when using the pipe operator, the input it

sends to the next function becomes the first argument of that function;

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

90 7 R and the tidyverse

for example, rather than writing subset(dataset1, year > 2007), we can
simply say subset(year > 2007) and the first input to the subset() func-
tion – the data that should be filtered – will be provided by the pipe. In the
tidyverse, all functions are designed for this intuitive use of pipes, while
many functions from outside the tidyverse are incompatible. So, the pipe
is not a generic new operator in R; rather, it works only with the functions
designed for it. If you would like to learn more, I recommend the chapter
on pipes in Wickham and Grolemund (2016) and the documentation of
the magrittr package.

7.3 loading the data

As always, we need to load our data into R before we can start process-
ing it. When working with the tidyverse, we use the read_csv() func-
tion for this. This is a new implementation of R’s basic import function
read.csv(), and you can use it in a similar way:

wid <- read_csv(file.path("ch07", "inequality.csv"), na = "")

The read_csv() function assumes that the fields in a row are separated
with a comma – similar to the base R functions, you can use read_delim()
for files with a different separator, which allows you to manually specify
the field separator. For the WID dataset, it is important to specify the
empty string ("") to indicate NA values, otherwise the function would
interpret Namibia’s two-letter code “NA” as NA. Let us now drop again
the unnecessary columns in our data, such that we retain only the ones
we need – the country identifier (a two-letter ISO country code), the year,
and the value of the inequality indicator for the respective country and
year:

wid <- wid %>% select(country, year, value)

Here you can see the pipe %>% in action:We take the original wid dataset
and pass it to the select() function,which we ask to retain three columns.
We store the result in wid, overwriting its original content. What is the
result of this import? Let us take a closer look at the wid object by simply
printing the first three entries.We do so again using the pipe operator, but
stick the wid into a different function: slice(),which is used for subsetting
datasets according to a row range provided:

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.3 Loading the Data 91

wid %>% slice(1:3)

A tibble: 3 x 3
country year value
<chr> <dbl> <dbl>

1 AE 1990 0.593
2 AE 1991 0.595
3 AE 1992 0.597

When we print the dataset, we see that we are not dealing with a con-
ventional data frame. Rather, the read_csv() creates something similar,
called a “tibble.” A tibble is a modern version of a data frame. Tibbles
serve the same purpose (which is to store tabular data), but with several
tweaks that streamline and improve their use in practical applications.
They have a much nicer default print() method (which is invoked when
simply typing the name of the tibble): It reports the overall dimensions of
the table, the names of the columns, and their types. More about tibbles
can be found in the documentation of the tibble package.
Before we proceed, let us explore a bit more on how to work with

tibbles in practice. Tibbles support all the basic operations you can do
with data frames. For example, you can rename columns (which in fact is
done much more elegantly as compared to data frames in base R):

wid <- wid %>% rename(p90p100 = value)

Apart from a nicer way to print, tibbles come with very useful features
that make working with data much easier. In certain cases, however, you
may have to explicitly convert a tibble to a proper data frame; this can be
done using as.data.frame(). While you can use the [] and $ syntax for
extracting data from tibbles in a similar way as for standard data frames,
I strongly recommend that you use the corresponding functions provided
by the tidyverse for this if possible. They are designed to work with the
pipe operator and improve readability of the code. We have already used
the select() and the slice() functions, as well as the filter() function
to extract rows based on a search condition. It is important to emphasize
that these functions always return tibbles; this reduces confusion in com-
parison to the corresponding functions for data frames, which sometimes
return a vector rather than a data frame (e.g., the $ operator).
In addition to the data from the WID, we also require data on political

regimes from the Polity IV project. This data is distributed both in Excel
and SPSS format, and we choose the former. Since the Excel file contains
a properly formatted data table, the import does not cause any issues. We

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

92 7 R and the tidyverse

use the readxl package, which is also part of the tidyverse and hence
creates a tibble:

library(readxl)
polity <- read_excel(file.path("ch07", "polity.xls"))

Since the Polity IV database contains many variables we do not need
for our analysis, we only keep the main Polity indicator (polity2) in
addition to the country (ccode) and year (year) identifiers:

polity <- polity %>% select(ccode, year, polity2)

We now have all the necessary data in two tibbles, wid and polity,
which we use to generate a single dataset for our analysis.

7.4 merging the wid and polity iv datasets

Our next task is to merge the wid and polity datasets. Both contain
annual observations at the country level, but merging them is compli-
cated by the fact that there is no common country identifier yet. The
WID refers to countries with a two-letter code, while the Polity database
includes Correlates of War (COW) country codes, a system widely used
in international relations and conflict research. Hence, we need to match
the two-letter country codes in the WID to the COW codes. This task is
greatly facilitated by the excellent countrycode library for R, which can
translate between different codes and names for states. We can use the
main translation function countrycode() from this package, which needs
to know in which column the country identifier is stored that we want to
translate (in our case, this is the country column). Also, it requires us to
specify the coding system from which we want to translate (the ISO two-
letter country code used in the WID, “iso2c”), and what coding system
we want as output (“cown” is used to denote the numeric COW coding
system). To store the result of the translation in a new column named
ccode, we use the mutate() function:

library(countrycode)
wid <- wid %>% mutate(ccode = countrycode(country, "iso2c", "cown"))

Note that we get a warning from the countrycode function that two
countries could not be merged. One of them is Palestine (two-letter code
PS), which is not contained in the COW list of independent states. The
second one is Serbia, where countrycode uses the old two-letter code for

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.5 Grouping and Aggregation 93

Yugoslavia and therefore does not produce the correct COW code (345).
We can fix the second issue by manually inserting the correct COW code
for Serbia, using again the mutate() function to change the ccode variable:

wid <- wid %>% mutate(ccode = if_else(country == "RS", 345, ccode))

The if_else() function in the statement has three parts. It basically
says: If the two-letter code is RS, use code 345 as the new value for ccode,
otherwise use the existing ccode value as the new one. With a common
country identifier, it is now straightforward to merge the two datasets
based on ccode and year. Functions for merging in the tidyverse are
called join functions, which is the technical term for combining tables in
relational databases (we will learn more about joins in the next chapters).
You may recall from the previous chapter that the default mechanism for
joining datasets is to keep only those observations that have at least one
match in the other dataset. This is called an inner join. Let us first try to
use this function for merging Polity and the WID based on the ccode and
year variables:

dataset <- polity %>% inner_join(wid, by = c("ccode", "year"))

The entire polity table has 17,562 observations, while the merged
dataset has only 3,142. This is due to the fact that the WID only covers a
subset of countries – if we now retain only observations from Polity with
a match in the WID, all the countries that are contained in Polity but not
in the WID are removed from the merged dataset. This is the standard
behavior of all inner joins. If you need to retain all records from the first
(the left) or the second (the right) dataset – similar to the all.x and all.y
parameters of the merge() function in Chapter 6 – you could use a “left”
or a “right” join, which can be executed with the left_join() and the
right_join() function.

7.5 grouping and aggregation

The WID only covers a subset of all countries worldwide, and even for
these, the inequality measure (p90p100) contains many missing values. We
should first get a better overview of our dataset as regards the countries
and time periods it covers, but also the countries/years for which we have
valid observations from the WID. To generate some useful statistics to
answer these questions, we use grouping and aggregation. Recall from
Chapter 3 that data aggregation is the definition of different groups

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

94 7 R and the tidyverse

or subsets of data, with an aggregation function applied to each of
these groups separately. As we have seen in the previous chapter, in a
conventional data frame these groups can be dynamically defined in the
summaryBy() function.
In a tibble, however, this mechanism is slightly different. Tibbles allow

you to define the grouping as a feature of the tibble, which is then used
whenever grouping functions are applied to it. Grouping is enabled with
the group_by() function:

dataset <- dataset %>% group_by(country)
dataset

A tibble: 3,142 x 5
Groups: country [107]
ccode year polity2 country p90p100
<dbl> <dbl> <dbl> <chr> <dbl>

1 2 1913 10 US 0.423
2 2 1914 10 US 0.430
3 2 1915 10 US 0.422
... with 3,139 more rows

You can see in the output that the tibble now has the grouping by
country enabled, and that there are 107 different groups (countries). We
can now summarize the tibble, which will automatically be done sepa-
rately for each of the groups. To see how many observations we have per
country, we use the aggregation function n() that counts the number of
cases in each group:

dataset %>% summarize(count_obs = n())

A tibble: 107 x 2
country count_obs
<chr> <int>

1 AE 27
2 AL 17
3 AO 28
... with 104 more rows

The output of this function creates a new tibble containing the sum-
mary statistics we computed. While we have 100 or more years’ worth of
data for countries such as France and the US, for many others the coverage
is much more limited. For our analyses below, it would be useful to know
since what year particular countries are covered in the WID, such that we
can adjust our period of analysis accordingly. Therefore, we expand our
summary such that it outputs the first year with an inequality estimate

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.5 Grouping and Aggregation 95

during the observation period. To do that, we use the minimum as an
aggregation function:

dataset %>% summarize(firstyear = min(year))

A tibble: 107 x 2
country firstyear
<chr> <dbl>

1 AE 1990
2 AL 1996
3 AO 1990
... with 104 more rows

The example shows that data aggregation in the tidyverse is very
elegant, and is a considerable improvement over the mechanism we used
in the previous chapter. One of the main advantages is that we can define
aggregation functions only for particular columns they should be applied
to, and have full control over the naming of the columns holding the
aggregated values. As you can see in the output, for many countries, there
are few inequality estimates for years earlier than 1990, which is why we
restrict our analysis below to the years 1990 and later. Before we do that,
however, we disable grouping of our main dataset with ungroup(), since
the next operations on the dataset do not need grouping:

dataset <- dataset %>% ungroup() %>% filter(year >= 1990)

To track patterns of inequality by regime type, we need a dataset with
average annual values of inequality, computed separately for democra-
cies and autocracies. As a first step, let us introduce a new binary vari-
able democracy, which identifies those countries that are democracies in
a given year. Following the standard convention, we code country-years
with polity2 >= 6 as democracies. Since we have missing values in the
polity2 variable, we drop these observations before computing the aggre-
gation:

dataset <- dataset %>%
filter(!is.na(polity2)) %>%
mutate(democracy = if_else(polity2 >= 6, T, F))

Since we need average inequality values for each year and separately
for democracies and autocracies, we need two levels of grouping. We
therefore enable grouping again with:

dataset <- dataset %>% group_by(year, democracy)

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

96 7 R and the tidyverse

Now, we can summarize our data as introduced above and compute
the average level of inequality, separately for the democracies/autocracies
and each year in our sample:

data_agg <- dataset %>%
summarize(mean_ineq = mean(p90p100))

The result of the aggregation is stored in a new dataset, data_agg,which
we use in the next section.

7.6 results: global patterns of inequality
across regime types

Figure 7.1 plots the aggregated values for democracies and autocracies
over time. Keep in mind that the WID does not cover all countries world-
wide, so this result must be treated with some caution. The plot shows
there are notable differences in the level of inequality between democratic
and autocratic countries. In democracies, around 40%of the income go to
the richest 10% of the population, which is a large share. In autocracies,
however, this share is even higher, with values of more than 50%. So
clearly, democracies seem to be doing better than autocracies in creating
a more equal society. However, the figure also shows that in democracies,
the level of inequality is increasing over time, while it is slightly decreas-
ing in democratic countries. We should mention though that by simply
averaging over all countries, our simple comparison hides much variation
within each of the two categories. In particular, there are considerable
differences among democratic countries when it comes to inequality in
the population.

0.3

0.4

0.5

0.6

1990 2000 2010

Year

In
e

q
u

a
lit

y
 (

m
e

a
n

)

Regime type

Autocratic

Democratic

figure 7.1. Trends in inequality over time, for democracies and autocracies.

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.7 Other Useful Functions in the tidyverse 97

7.7 other useful functions in the tidyverse

Before we conclude this chapter, let us briefly review some other functions
that can be really helpful to quantitative work in the social sciences.

7.7.1 Lags of Variables

The first of the functions help us create a lag of a variable (e.g., the value of
that variable in the previous time period). Continuing with our example
above, we may want to do a simple regression analysis of how democracy
affects inequality. For analyses of this type, it is common to lag the main
independent variable – in other words, this means that we predict the level
of inequality with the previous year’s democracy score for the respective
country. For this, we need to extend our dataset such that in addition to
the contemporary democracy scores in the polity2 variable, we also have
a new variable with the democracy scores from the previous year.
To create this variable, we use the mutate() function that you already

know from above. In this function, we use the lag() function applied to
the polity2 variable, which is the variable we want to lag. This function
also needs to know which variable specifies the temporal order of the
data, in our case the year. Since we want to compute the lags separately
for each country, we group() our dataset first, and ungroup() it after the
operation is complete:

dataset <- dataset %>%
group_by(ccode) %>%
mutate(polity2_lag = lag(polity2, order_by = year)) %>%
ungroup()

With the lagged predictor polity2_lag now being a new variable in our
dataset, we can, for example, run a simple linear regression to test again
our above result that democracies tend to have lower values of inequality.

7.7.2 Converting between Wide and Long Tables

The tidyverse also contains functions to convert between “long” and
“wide” tables. What was this again? Recall our discussion in Chapter 3,
where we talked about the features of a well-designed table. Good tables
are those where you can add data by adding more rows to the table. Our
dataset above is such a table: If additional data about more countries
and/or years became available, we could just add a new row for each
country-year we want to insert. This type of table is also called a “long”

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

98 7 R and the tidyverse

table.However, some of the data we use in social science projects comes in
poorly designed tables. For example, for country-level data with annual
observations, you sometimes encounter tables with one row per country,
and a column for each year covered in the dataset. This format is called
a “wide” table.
Let us use the data from the WID to illustrate how we can convert

tables between long and wide formats. The original data is contained in
wid, which is a “long” table. For illustration purposes, we simplify the
table a bit and retain only three countries with observations from three
years, and we also drop the COW code:

wid_simple<- wid %>%
select(-ccode) %>%
filter(year >= 2000 & year <= 2002) %>%
filter(country %in% c("FR", "US", "DE"))

We can convert the table to a “wide” format with the pivot_wider()
function from tidyverse. You need to specify the variable in the table that
contains the values for the new header names (in our case, this is the year
column), as well as the variable that contains the values you want in the
converted table (in our case, the inequality levels in the p90p100 column).
It is useful to sort the table with arrange() beforehand, such that the new
columns are properly ordered:

wid_wide <- wid_simple %>%
arrange(year) %>%
pivot_wider(names_from = year, values_from = p90p100)

This is what our new table looks like:

wid_wide

A tibble: 3 x 4
country �2000� �2001� �2002�
<chr> <dbl> <dbl> <dbl>

1 DE 0.316 0.316 0.317
2 FR 0.331 0.334 0.328
3 US 0.439 0.428 0.427

Since “wide” tables are usually difficult to deal with, we usually need
to convert them to a “long” format rather than vice versa. This works
with the pivot_longer() function:

wid_long <- wid_wide %>%
pivot_longer(-country, names_to = "year", values_to = "p90p100")

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.8 Summary and Outlook 99

This returns the data again in a long table, the format that should be
preferred for most of the work we do in the social sciences:

wid_long

A tibble: 9 x 3
country year p90p100
<chr> <chr> <dbl>

1 DE 2000 0.316
2 DE 2001 0.316
3 DE 2002 0.317
... with 6 more rows

7.8 summary and outlook

This chapter introduced the tidyverse framework for R, a collection of
different R packages that integrate well with each other and use a consis-
tent grammar. Although we have used the tidyverse only for simple data
management operations here, its functionality goes well beyond this (e.g.,
with the ggplot2 package for graphics). Much work in the tidyverse is
done using a new operator, the pipe, which allows you to write code that
is simple and intuitive to understand. I demonstrated how to work with
tibbles, an extended version of the usual R data frame. The tidyverse
offers a number of functions to perform standard data operations, such as
selection, aggregation andmerging of tables. It also has new and improved
functions to import and export data from various different file types (see
also the examples in Chapter 4).
In general, it is highly recommended to perform your data work with

the tidyverse and its associated packages. It is elegant, powerful, and
efficient, and allows your code to be easily understood and replicated by
others. Although for some specialized types of data (e.g., spatial data), the
integration with the tidyverse is not without pitfalls, all common tables
with numbers and/or text can easily and conveniently be processed with
it. It even interfaces well with relational databases, which we cover in the
next chapters. Nevertheless, as an apt user of R, you should know both
“worlds” well – base R, and how it differs from the tidyverse. You can
then decide which one is the best choice for a given project. From this
chapter, there are a number of recommendations for your work:

• Use the pipe wherever possible: The pipe operator allows for an
improved, much more logical workflow for most data management
operations. For example, in base R, users tend to create new R objects
for every intermediate step of a data processing sequence. This can

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

100 7 R and the tidyverse

be confusing and error-prone. Arranged as a pipeline with the pipe
operator connecting the different steps, there are no intermediate
results we need to deal with – all that matters is how we get from the
input to the final result.

• Try not to mix: Being fluent both in base R and the tidyverse, it is
possible to switch back and forth between the different approaches
in a single script. You should try to avoid this. If you opt for the
tidyverse in your script, try to stick with it and implement the entire
workflow using its functions. This makes your code consistent and
easier to follow for others.

• Watch out for potential issues with the tidyverse: Despite the consid-
erable advantages that the tidyverse has for most data management
tasks, there are some potential drawbacks you should keep in mind.
The tidyverse includes a wealth of functions, which means that con-
flicts can occur if other packages include functions with the same name.
You see a message alerting you to (usually uncritical) conflicts with
base R functions when you load the tidyverse. Once other packages
are loaded, these conflicts can be problematic. Also, due to its size, the
tidyverse depends on a large number of other packages, so your R
installation will grow considerably and installation issues can arise.

• Remember the conversions between long and wide tables: As we have
seen in the chapter, the tidyverse offers a convenient way to convert
between wide and long tables. This is a task you may encounter from
time to time, since existing tables are often formatted for humans to
look at (andmay therefore be distributed in a wide format).You should
resist the temptation to manually convert them, and instead rely on R
to do this.

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

part iii

DATA IN DATABASES

https://doi.org/10.1017/9781108990424.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.011

https://doi.org/10.1017/9781108990424.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.011

8

Introduction to Relational Databases

All data processing we did so far in this book was file based. That is, our
data was stored in files, and these files were read by our data management
software (e.g., R). Using this software, we processed the data in various
ways, and output the resulting datasets again to files. In this workflow,
files are the basic containers of our data, which we use to store it persis-
tently and to share and disseminate it. Due to its simplicity, flexibility, and
versatility, file-based data storage is used for the vast majority of social
science research projects. In this chapter, we go one step further. Rather
than keeping our data in simple files, we use a kind of software specifically
designed for storing and processing data: a database management system
(DBMS).
There exist many different types of DBMS. Our focus here will be

on what is probably the most common one: a relational DBMS. These
systems are built on the idea that all data should be contained in tables
that are linked to each other. This is an idea that should be straightfor-
ward to us, since we have dealt with tables from the beginning of this
book. The concept of a relational database goes back several decades. In
computing, this is a long time. Still, these databases continue to be around,
in different forms and flavors, which attests to the power and flexibility
of the concept. So, how can these database systems improve upon the
standard file-based data management workflow?

• Organizing your data in a single file is simple, but quickly becomes
difficult if your data is spread out across different files. If you follow
the advice on a “good” table design in Chapter 3, you will probably
require several tables to store data without redundancies; for example,

103

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

104 8 Introduction to Relational Databases

if you use data with annual estimates of the GDP for different coun-
tries, you will use one table for the variables at the country level that
remain constant over time (such as the year of independence), and one
table for those variables that change annually (the GDP estimates).
Using a single table is not a good idea, since you would have to repeat
the constant country-level variables for every annual observation. This
would mean that part of your data is redundant, and it is something
we should avoid. With file-based data processing, however, each table
requires a new file, so your entire “database” consists of many files and
becomes difficult to maintain. Relational database systems, in contrast,
are designed to manage many different tables simultaneously. Each
database contains all tables for a project, keeping them together in
one place.

• Not only are data spread out across many files difficult to handle, but
they can also become internally inconsistent. Imagine in your table
with GDP estimates, you have an entry that refers to a particular coun-
try in the country table, for example, Switzerland. You would like to
join the two tables to create a dataset for analysis. However, what if
Switzerland is somehow missing from the countries table? With file-
based data storage, there is no mechanism to ensure that tables that
refer to each other are consistent – that is, that links from one table to
another are indeed valid and point to actual data. Relational databases
have different mechanisms to maintain this relational integrity, that is,
the consistency of data across different tables as you add, delete, or
update data.

• When your tables become large, the performance of data operations
becomes an issue when relying on file-based data storage. Loading a
small file and filtering particular observations from it is easy and fast,
but takes more andmore time the larger your table becomes.Relational
databases are designed for fast and efficient processing of your data.
Operations such as searching and updating your data are tuned for
optimal performance, even if your data is so big that it cannot all be
kept in the computer’s memory at the same time. All this complexity
is safely hidden from you as the user of a DBMS – you tell the system
what you want to do with your data, and the system internally uses
whatever machinery is necessary to carry out these tasks.

• Finally, collaboration between different researchers is difficult in
a file-based workflow. Different people would have to exchange
different versions of files, while making sure that the content of these
files remains consistent (see the second point above). Imagine two

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.1 Database Servers and Clients 105

researchers trying to update data in different columns of the same
table: This is almost impossible in a file-based workflow, since both
would have to work on a single copy of the same file (and possibly
destroy the other’s changes when saving it). Database management
systems are centralized in a way so that many users can access the data
at the same time. The different tables in a database can be modified
by different users, according to the permissions they have. Each table
exists only once in a database, rather than in different copies of a file.

While these advantages of relational DBMS will become clearer in this
and the next chapters, using such a system in lieu of simple data files
entails a technical overhead. Ultimately, it is up to you to decide what
system or workflow you use for your project. If your project is small and
narrow in scope, it will be perfectly fine to keep your data in files only.
However, if your project involves several interlinked tables, some of which
are large, or if more than one researcher works on the data, then you
should consider using a database management system. In the following
section, we introduce the general setup of such a system.

8.1 database servers and clients

Many database management systems are set up in client-server architec-
ture. That is, the DBMS runs on a computer somewhere on the Internet
(which is called the “server”), and so-called “clients” connect via the
network to this server, send data processing instructions, and fetch data.
Figure 8.1 illustrates this graphically.
The big circle represents the database management system. In the

figure, this DBMS manages just one database, but in reality, there can

figure 8.1. Interacting with a database management system.

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

106 8 Introduction to Relational Databases

be many of them. The clients, depicted as rectangles, interact with the
DBMS: They connect to a particular database, can upload and retrieve
data from it, or send instructions for data processing. When you connect
to a database server from R (as we will do in this and the following
chapters), your R instance is one of those clients. R, however, is not the
only client software that can communicate with a database – there are
many others. For example, most DBMS come with simple text-based
clients, which you can run on your local machine to send commands
to the server. Also, all the major programming languages and most
statistical software packages have extensions that allow you to connect
to a database server.
In many cases, these clients are based on computers other than the

database server, and the communication between clients and the server is
done over the network.While it may seem unnecessarily complicated, this
separation is actually very useful. For once, it allows the database server
to be operating on powerful hardware, which is necessary in particular if
you deal with large datasets and/or complex calculations. Running these
operations on your local workstation or laptop would be much slower
and, in many cases, even impossible. Also, the shared client-server setup
is well designed for multiple users accessing a single database, which is
very useful for collaborative projects.
The communication with a (relational) database server is done with

a language designed for this purpose, the Structured Query Language
(SQL). Some pronounce it as “Sequel,” others prefer “Ess-Queue-Ell.”
SQL, as the idea of a “relational” database in general, has a long history,
and there are many different dialects of the language. In this book,
we rely on the PostgreSQL database system as well as the SQL dialect
it uses. PostgreSQL is free and open source, well-known, and many
other programming languages and tools can interface to it. While other
relational databases such as MySQL, Oracle or Microsoft SQL Server
differ in the features they offer (and therefore also the SQL dialect
they understand), this book introduces some general concepts of the
relational approach and SQL that apply regardless of what system you
work with.
To set up a client-server structure for the purpose of this book, we

have installed the PostgreSQL server on your system in Chapter 2. This
server should now be running. If not, you need to go back to Chapter 2
and the online installation instructions on the book’s companion website.
Now is also a good time to follow the instructions in Chapter 2 to create a
new database specifically for this chapter, if you have not done so already.

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.1 Database Servers and Clients 107

We use the name dbintro for this database, but you are of course free to
choose any name you prefer.
R has a generic interface to communicate with relational databases

called DBI, the “R Database Interface.” The RPostgres package we use is
built on this interface. There are many different types of database servers,
and using this standardized interface means that you connect to any of
them in the same way. For these connections, you typically need to specify
at least the type of server (PostgreSQL, MySQL, etc), the name of the
database, and your username and password (remember again to change
the username and password to match your setup). Here is how to do this
for our server and the dbintro database:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "dbintro",
user = "postgres",
password = "pgpasswd")

If you get an error that says something like “could not connect to
server,” the PostgreSQL server may not have been installed properly, or
that you forgot to start it. In this case, I recommend that you go back to
Chapter 2 and complete again the steps described there and in the online
instructions.
Let us take a closer look at the database connection. The function to

connect to the database server is dbConnect(). It returns a connection
object, which we call db. We will use this object later to send all sorts
of commands to the server. When we are done, we should close the con-
nection properly (see the end of this chapter). To connect, we need to
provide a few connection parameters to the function. First, this is the
name of database we want to connect to, the dbname. Since a given server
can host many different databases with different users and for different
purposes, we need to specify which one we want to work with. In this
chapter, this is the dbintro database, but we will use other databases
in the following chapters. Second, you need to provide your username
and password, so that the server knows who it is communicating with.
This user-based authentication also allows you to later define different
permissions for different users, for example, by giving some users read-
only access to the database, while allowing others to modify the data.
This is something we return to in Chapter 10. Note that in the above
example, we omit several other connection parameters, for example, the
name of the computer running the server. This is because you are running

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

108 8 Introduction to Relational Databases

PostgreSQL on your local machine, using default settings. It is easy to
extend the above code to connect to servers on other computers, if the
need arises.

8.2 sql basics

Before we use the connection to our database to send commands and
work with actual data, let us cover some basics of the SQL language. As
wewill see below,much of it is actually close to human (English) language,
so it is not too difficult to understand. Unlike many other programming
languages, SQL is case-insensitive, so it does not matter if youwrite SELECT
* from myTable, or select * FrOM MYTABLE. However, I strongly recom-
mend that you follow the convention to spell SQL keywords in upper
case, and names of tables, columns, and functions in lower case. The
above statement then becomes SELECT * FROM mytable. I will follow this
convention throughout the book.
In a relational database, all data is contained in tables, and the SQL

language is designed around these tables. As social scientists, we refer to
the data in our tables as observations or cases, each of which consists of
different variables. In the database world, we prefer the terms rows (or
records) and columns (or fields) of a table. Tables in relational databases
have typed columns. This means that we need to define whether we want
to stick text or numbers (or something else) into a given column, and the
database system then ensures that only allowed data of the given type
is stored in that column. This is similar to R’s data frames (although
R adjusts types dynamically, while a database does not), but very dif-
ferent from the non-standardized tables you can find, for example, in
spreadsheets.Different database systems (and therefore, the different SQL
dialects they use) vary in the column types they offer. In our discussion,
we will not go into the details regarding these differences, but rather try
to introduce SQL that also works beyond the PostgreSQL system we use
for our exercises.
Relational databases employ a strict separation of data structure and

the data itself. This is why in SQL, there are several dedicated commands
to define and modify the structure of your tables: You can introduce new
tables, define which columns they should consist of and what the types
of these columns should be, and you can also delete columns or entire
tables. This category of statements is called data definition. The second
category of commands is for the updating of the data contained in the
tables of a database: You can insert new rows or delete existing ones, or

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.3 Application: Electoral Disproportionality by Country 109

update the information contained in particular fields of a table. These are
examples of data manipulation statements. Finally, we ultimately want to
extract data from the tables in our database, which is why we need data
extraction commands.
In our example below, we use R as a client to connect to the database

and to send SQL statements to it. While the R code and the functions we
use for this are of course specific to R, the SQL code is not – you could
send the same statements via a different client, and the database would
do exactly the same. However, we will also be using some convenience
functions for R that facilitate, for example, the loading of data into the
database. These are features offered by R (or rather, its database interface
DBI) and not by SQL.

8.3 application: electoral disproportionality
by country

In democracies, the main way by which institutions aggregate the pref-
erences of citizens is through elections. In an election, citizens cast their
votes, and the result of election – for example, the composition of the
national parliament – is supposed to reflect the distribution of voters.
However, electoral systems vary tremendously in the way they translate
the votes cast in an election into a particular distribution of seats, which
has long been the focus of much research in comparative politics (see e.g.
Grofman and Lijphart, 1986). One outcome that is associated with the
voting system is the “disproportionality”of an electoral result.Dispropor-
tionality refers to the difference between the share of votes that a party
achieves in an election, and the share of seats it ultimately gets in par-
liament. In a majoritarian system with its winner-takes-all logic (as in the
UK, for example), disproportionality between vote and seat shares will be
highest, since the votes cast for candidates that do not win a precinct ulti-
mately do not count. Disproportionality is typically measured using Gal-
lagher’s least squares index, which is defined as the square root of half the
sum of squared differences between seat shares (Si) and vote shares (Vi):

LSq =
√√√√1

2

n∑
i=1

(Vi − Si)
2

What is the disproportionality in actual elections? To find out, we
use data from the ParlGov database, a comprehensive resource with

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

110 8 Introduction to Relational Databases

information on election results, political parties, and the composition of
governments in EU and OECD countries (Döring and Manow, 2018).
Importantly for our purpose, ParlGov consists of a set of different tables,
since it is already structured internally as a relational database. In this
chapter, we are going to use only one of these tables, which is the one
with data on elections; in the next chapter, we will extend our work
with ParlGov and add another table from the database. These tables
we use are not the original ones. They have been revised slightly for the
purpose of our exercises: I dropped variables we do not need and elections
with missing data, kept only parliamentary elections, and retained only
European countries.

8.4 creating a table with national elections

We have a PostgreSQL database and can connect to it, but so far we do
not have any tables. As we have seen above, relational databases require
us to specify the structure of the data (i.e., the tables) first, before we can
add data. This sounds more difficult than it actually is – all we need to
do is tell PostgreSQL what the name of the new table should be, what
columns it should contain, and what the types of these columns are. First,
let us take a look at the election data we have from ParlGov. If you open
the file elections.csv in a text editor, this is what you should see:

election_id,country_name,election_date,party_id,vote_share,seats,seats_total
402,Austria,1945-11-25,1013,49.8,85,165
402,Austria,1945-11-25,973,44.6,76,165
402,Austria,1945-11-25,769,5.4,4,165

The structure of the table is not difficult to understand. Each line
contains an election result for a political party. Each election has its
election_id and is linked to a country. The data also contain the
election_date. The next three columns store the party-specific infor-
mation about the election result: the party (identified by the party_id),
the vote_share it achieved, and the number of seats it obtained. Finally,
the last column contains the total number of seats that were filled in the
respective election.
Let us now create a table structure in SQL, so that we can import the

ParlGov election data. There are a few things we need for this. First, recall
that we created our database connection above, and can access it via the
db connection object. We tell R to use this connection whenever we send
an SQL command to the database. The dbExecute() function is what we
need for this. It has two parameters: First, the connection (this is our db

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.4 Creating a Table with National Elections 111

object); second, a string with the SQL command we want to send to the
database. Creating a new table in SQL is done using the CREATE TABLE
statement:

dbExecute(db,
"CREATE TABLE elections (
election_id integer,
country_name varchar,
election_date date,
party_id integer,
vote_share real,
seats integer,
seats_total integer)")

As mentioned above, we write the SQL keywords in upper case. What
exactly happens in this statement? We provide the name of the new table
(elections), followed by the list of columns and their types. The set of
columns and types needs to be enclosed in parentheses and separated by
commas. In the example, we use four different types of columns:

1. Integer numbers, given as integer.
2. Text, given as varchar (a set of characters with variable length).
3. Date values, given as date, which will later help us order elections

by calendar date as well as conduct other date-based calculations.
4. Decimal values. Here, we use real numbers, which is one of Post-

greSQL’s decimal number types.

If you need more information about the column types PostgreSQL can
handle, take a quick look at the documentation at https://www.postgresql
.org/docs/current/datatype.html. To reiterate our point from above: The
code we present here mixes SQL code (the long text starting with CREATE
TABLE) with R code (dbExecute()) to send it to the database. If you were to
use a client other than R to connect to the database, you would need the
SQL part, but not the R function calls. To check whether the table was
successfully created, R’s DBI interface has a useful function that prints
out a list of all tables in a database:

dbListTables(db)

[1] "elections"

As the output shows, we currently have one table in the database,
which is the elections table we created. Now, we have completed the
definition of our table structure and can fill it with data. This is done

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://www.postgresql.org/docs/current/datatype.html
https://doi.org/10.1017/9781108990424.012

112 8 Introduction to Relational Databases

using the SQL INSERT INTO command. To insert some data for the 1919
elections in Austria, you use the following statement:

dbExecute(db,
"INSERT INTO elections
VALUES (1030, 'Austria', '1919-02-16', 97, 40.75, 72, 170)")

Here we specify which table we want to add our data to, and provide
in parentheses the values the respective columns should have. Note that
we have to surround string values such as Austria with single quotation
marks ('). The same holds for date values, which will automatically be
recognized as a date if they are formatted in a standard way. The above
example inserts data for all columns in the table, and the new values have
to be provided in the exact same order in which the columns appear in
the table (which is what we defined above). If we want to insert data for
only specific columns, and possibly in a different order, we have to specify
the columns we want to insert into – let us take an election from Belgium
as an example:

dbExecute(db,
"INSERT INTO elections
(election_id, country_name, election_date, vote_share, party_id)

VALUES (872, 'Belgium', '1908-05-24', 22.6, 2422)")

This omits the two fields with the party’s seats and the total number
of seats, and uses the party id as the last value. To check whether this
worked, let us move from data manipulation to data extraction. We use
another very important SQL command: SELECT. In the simplest form,
SELECT can be used to retrieve all data from a table, without any filtering
or transformations. Let us do this for all data we have in elections, which
at this point are only two elections from Austria and Belgium:

dbGetQuery(db, "SELECT * FROM elections")

election_id country_name election_date party_id vote_share seats seats_total

1 1030 Austria 1919-02-16 97 40.75 72 170

2 872 Belgium 1908-05-24 2422 22.60 NA NA

Since this is an SQL statement, which, unlike dbExecute() above,
returns data rather than just manipulating it, we need to use a different R
function that fetches data from the database: dbGetQuery(). For simplicity,
we simply output the result of this function – a data frame – to the console,
but in a regular script, you would store it in a new R object for later use.
The asterisk * in the SQL code stands for “all columns,” and we need

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.4 Creating a Table with National Elections 113

to provide the name of the table we want to extract from. You can see
that the seats and seats_total values for Belgium are correctly stored
as NA, since we chose not to provide them when we inserted the data
for Belgium. Here, NA is R’s convention to represent missing data. In
relational databases, missing values are usually encoded as NULL (this is
not a string, therefore no quotes), and the DBI functions take care of
mapping R’s NAs to NULL values in the database.
SELECT is probably the most powerful command in SQL, and we can

cover only some variations of the above statement. Let us assume we want
to see only a subset of the columns in a table. This is possible by specifying
the columns names explicitly, rather than using the wildcard character *:

dbGetQuery(db, "SELECT country_name, election_date FROM elections")

country_name election_date
1 Austria 1919-02-16
2 Belgium 1908-05-24

We can also extract just a subset of all data with the WHERE keyword:

dbGetQuery(db,
"SELECT country_name, vote_share
FROM elections
WHERE vote_share > 40")

country_name vote_share
1 Austria 40.75

It is also possible to dynamically compute new columns in a SELECT
statement, for example, to output the vote share as a proportion rather
than a percentage:

dbGetQuery(db,
"SELECT country_name, vote_share / 100 AS vote_share_prop
FROM elections")

country_name vote_share_prop
1 Austria 0.4075
2 Belgium 0.2260

In this statement, we transform the vote share by dividing it by 100,
and output the result in a new column called vote_share_prop. This new
column appears only in the result – it does not change the original table
in any way. There is much more we can do with SELECT statements, some
of which is shown below after importing the entire ParlGov table into our
database. But before we do so, we first need to remove the data we have
added to our table with a DELETE statement:

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

114 8 Introduction to Relational Databases

dbExecute(db, "DELETE FROM elections")

As with any operation that removes data, you need to be very careful:
This statement deletes all your data in the table but keeps the table struc-
ture. Now that we have an empty table, we can insert all of the data from
our election data frame into the table.Writing separate INSERT statements
for each row would be very cumbersome. Luckily, there are several ways
in which you can easily load data into a PostgreSQL table. In the example
below, we use a function from R’s DBI interface, which takes an R data
frame and sends it to a database. The file elections.csv in the data
repository contains the elections data. We load the data into R and then
use dbAppendTable() to append it to the empty elections table that we
created above:

elections <- read.csv(file.path("ch08", "elections.csv"))
dbAppendTable(db, "elections", elections)

As all database functions, dbAppendTable() first takes the database con-
nection to be used. Second is the name of the database table that the
records should be appended to. Last,we specify the data frame that should
be appended to the given table. If the import is successful, you can again
use the SELECT command to browse some of the data (the LIMIT key-
word restricts the output to a certain number of rows). Note that in
a database table, the data has no fixed ordering; the following SELECT
statement returns two rows, but on your system, these may be different
from the ones you see in the example:

dbGetQuery(db, "SELECT * FROM elections LIMIT 2")

election_id country_name election_date party_id vote_share seats seats_total

1 402 Austria 1945-11-25 1013 49.8 85 165

2 402 Austria 1945-11-25 973 44.6 76 165

The second, and slightly more convenient way to load data is through
the DBI’s dbWriteTable() function. This function takes a data frame and
a table name, and sticks the data into a given database table. If the table
does not exist, it can even generate a new table structure before inserting
the data. To try this, we first delete the entire table:

dbExecute(db, "DROP TABLE elections")

Now, we want to add the entire elections table to the database in a
single step. Before we can do this, we need to make sure that all the
columns in the data frame have the correct type. This is not the case for

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.5 Computing Electoral Disproportionality 115

the election date,which is still a string variable. Therefore,we first convert
it to a date, and then upload the entire table in one step:

elections$election_date <- as.Date(elections$election_date)
dbWriteTable(db, "elections", elections)

Again, the dbWriteTable() function is convenient, since it creates the
new table in the database according to the structure of the data frame, and
then uploads the data contained in the data frame to it. You can check
again with a SELECT statement that the import was done successfully.
After the successful import of the election table, we create a new field

for the year of an election with ALTER TABLE, to make future operations
with yearly aggregations easier. In PostgreSQL, you can extract some part
of a date (e.g., the year, the day, or the month) with the extract() function:

dbExecute(db, "ALTER TABLE elections ADD year integer")
dbExecute(db,
"UPDATE elections
SET year = extract(year from election_date)")

8.5 computing electoral disproportionality

With our table successfully imported into our relational database, we
can now proceed to compute the Gallagher index of disproportionality
in SQL. We do so for each election, using data on vote shares and seat
shares. Our elections table from ParlGov already contains information
about each party’s vote share (in the vote_share variable, in percent). We
need a separate field for the seat share, which we can simply compute as
the fraction of the actual seats for the respective party (seats) and the total
number of seats in parliament (seats_total). Following the convention of
separating data definition from data manipulation, we first need to create
an (empty) new field for the seat share:

dbExecute(db, "ALTER TABLE elections ADD seat_share real")

We again use a real type for this variable, since it will contain decimal
numbers. The ALTER TABLE command can not only be used for adding
new columns, it can also delete (DROP COLUMN) them or change their type
(SET DATA TYPE). Now, we can fill the new column by computing the per-
centage of the total seats that the party received. If we were to do so by
simply dividing seats by seats_total and multiply it by 100 (to obtain
a percentage), we would get the wrong result: The result of dividing two

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

116 8 Introduction to Relational Databases

integer numbers in PostgreSQL is again an integer, which is why the result
would have the decimal places removed. To fix this, we multiply it with
a decimal number (100.0) and not an integer number (100) – as a result,
PostgreSQL will carry out the computation with decimal numbers, which
is what we want:

dbExecute(db,
"UPDATE elections SET seat_share = 100.0 * seats / seats_total")

The next step is to calculate the difference between the vote share and
seat share for each party in each election, square it, and then compute the
sum over all these squared differences for a given election. Let us start
with the first part, the squared differences between vote shares and the
seat shares. We can simply include it as an additional field in a SELECT
statement, something we have already introduced above. When perform-
ing this operation, we need to make sure to convert the ParlGov vote
share from a percentage to a proportion, to make it comparable to the
seat share. The power() function in SQL performs the exponentiation;
alternatively, you could use the ∧ operator for this:

dbGetQuery(db,
"SELECT power(vote_share - seat_share, 2) AS squared_diffs
FROM elections LIMIT 2")

squared_diffs
1 2.941746
2 2.133375

Note that we are computing these squared differences only for illus-
tration purposes; they are simply displayed, but not stored for later use.
Next, we amend our SQL statement to compute the sum of these squared
differences across all parties in an election. You recognize that what we
need is simply an aggregation operation with grouping, similar to what
we have done in previous chapters: We combine all squared differences
with the same election_id and aggregate them by summing them up. In
SQL, aggregation is yet another thing you can do with a SELECT statement:
All you need to do is specify (one or more) aggregation functions, as well
as the grouping levels with the GROUP BY keyword.We also divide the sum
of squared differences by two, and take the square root:

dbGetQuery(db,
"SELECT
election_id,
sqrt(0.5 * sum(power(vote_share - seat_share, 2))) AS lsq_index

FROM elections

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.6 Results: Electoral Disproportionality by Country 117

GROUP BY election_id LIMIT 2")

election_id lsq_index
1 828 2.621663
2 938 2.389561

In the first part of the SELECT statement, we define what we would
like to get out: First, this is the grouping variable election_id itself, so
that we know which election a result refers to. Second, this is our above
computation of the squared differences, but wrapped in the sum() func-
tion. This is the aggregation function that the database applies to each
group as defined by the grouping variable. This sum is then multiplied
with 0.5, and the square root function is applied to it. As above, we
use the FROM keyword to tell the database which table to use for this
calculation. Finally, we need to define the grouping variable using the
GROUP BY keyword (the LIMIT keyword again limits the output to two
rows, which is simply for presentation purposes).

8.6 results: electoral disproportionality by country

We are almost ready to create a graph with the index values by country. To
do this, we make two adjustments to our previous SQL statement. First,
we include the country name in the grouping, so that we know which
country an election occurred in. This does not change our result, since
a particular election is always linked to exactly one country. Second, we
use only those elections from our table that were held after World War II.
This is done by specifying a filter condition with the WHERE keyword we
have used above:

dbGetQuery(db,
"SELECT

election_id, country_name,
sqrt(0.5 * sum(power(vote_share - seat_share, 2))) AS lsq_index

FROM elections
WHERE year >= 1946
GROUP BY election_id, country_name LIMIT 2")

election_id country_name lsq_index
1 429 Norway 4.062591
2 466 Greece 6.958688

This is the data that we need to generate our plot. For each country
and each election, Figure 8.2 shows the disproportionality scores that
were computed above. You can clearly see considerable differences

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

118 8 Introduction to Relational Databases

0

10

20

Aus
tri

a

Bel
gi
um

Bul
ga

ria

C
ro

at
ia

C
yp

ru
s

C
ze

ch
 R

ep
ub

lic

D
en

m
ar

k

Est
on

ia

Fin
la
nd

Fra
nc

e

G
er

m
an

y

G
re

ec
e

H
un

ga
ry

Ic
el
an

d

Ire
la
nd

Ita
ly

La
tv
ia

Li
th

ua
ni
a

Lu
xe

m
bo

ur
g

N
et

he
rla

nd
s

N
or

w
ay

Pol
an

d

Por
tu

ga
l

R
om

an
ia

Slo
va

ki
a

Slo
ve

ni
a

Spa
in

Sw
ed

en

Sw
itz

er
la
nd

Tu
rk

ey

U
ni
te

d
Kin

gd
om

Country

G
a

lla
g

h
e

r
in

d
e
x

figure 8.2. Gallagher index values for elections in different countries.

between countries when it comes to the disproportionality in the different
elections. For example, some countries such as Sweden consistently have
highly proportional outcomes, which means that the composition of the
national parliament matches the distribution of votes across the different
parties very well. This is not the case for other countries, however. The
United Kingdom, for example, has several elections with high values of
the Gallagher index. This is not surprising, given the electoral system in
the UK: The country has a majority voting system, where in each district,
only the candidate who gets most of the votes in that district wins. As a
result, the votes for other parties are not reflected in the composition of
the UK parliament.
Finally, once we are done working with our database, we need to close

our database connection with:

dbDisconnect(db)

8.7 summary and outlook

Database systems offer an alternative to standard, file-based data storage
that is predominant in the social sciences. Databases are systems designed
not just for data storage, but also for easy and efficient data manipulation
and retrieval, possibly by several users in collaboration. They are often
set up in a client-server fashion, where a central server keeps the data that

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.7 Summary and Outlook 119

can be accessed from different clients over the network. In this chapter, we
introduced a relational database system,which is the most frequently used
type of database. At the core of a relational database is the table as the
main structure to store data. The interaction with a relational database
happens via the Structured Query Language, SQL.
We covered three different types of SQL commands. Data definition

statements such as CREATE TABLE help us set up the structure of our
database by defining the tables and their columns. Data manipulation
statements allow us to populate our tables with data, and to change and
delete it, and data extraction commands retrieve data from our database
for further use (e.g., in R). In this chapter, we started our exploration
into the world of database using a single table only. This is obviously too
limited, which is why we will add more tables in the next chapter.
Besides the focus on SQL, there are several lessons you can take away

from this chapter.

• Client-server setups are useful for many applications: As explained in
the chapter, the client-server setup we use with PostgreSQL allows you
to outsource particular tasks to other machines, and R simply interacts
with these servers as a client. This is useful for many other applications
beyond PostgreSQL, for example, other types of database servers, or
servers executing large computing tasks. It is now possible to obtain
access to these servers, for example, through universities, which means
that you do not have to manage such a system yourself.

• Recognize the difference between SQL and R: Obviously, R and SQL
are designed for different tasks, but there is an important difference in
the philosophy underlying these languages. In R, you give the R engine
a precise set of instructions on what it should do. This is called proce-
dural programming. In SQL, you say what you want as a result, but not
how to get there. This is called declarative programming. Declarative
programming is convenient for us, since we do not have to worry about
handling large amounts of data on a disk – the database system does
this for us.

• Distinguish between R’s built-in database functions and SQL:We have
seen that R offers a number of convenient database functions that make
your work easier, such as dbWriteTable(). These functions internally
generate SQL code, which is then executed by the server. Of course,
while this may be convenient for you, it also gives you less control
over these operations. For example, you can bypass the explicit step
of creating a table, and let dbWriteTable() do all the work. For this, it

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

120 8 Introduction to Relational Databases

is important to check the result in the database, for example, whether
your automatically created table has the correct structure.

• Different functions for sending commands and getting data: It is impor-
tant to remember the difference between data extraction (with SELECT)
and the other operations that can be performed on the server. A SELECT
statement returns data, the other statements do not. This is why there
are two different functions in R for these different types of statements.
dbGetQuery() is used only for data extraction, and requires an SQL
statement that returns data (typically, SELECT). All other kinds of oper-
ation are done with dbExecute().

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

9

Relational Databases and Multiple Tables

In the previous chapter of this book, I gave an introduction to a rela-
tional database system and the SQL language that we use to interact with
it. We defined a new table, populated it with data, and extracted and
aggregated the information contained in it. For illustration purposes, this
introduction used a single table only; however, as I emphasized repeatedly,
the power of relational databases lies in their ability to manage many
different, interlinked tables simultaneously. This is why in this chapter,
we are adding more tables to our database.
At this point, let us quickly go through the motivation again for dis-

tributing data across multiple tables. In Chapter 3, we discussed good and
bad designs: Ideally, you should set up your tables such that they avoid
data redundancy – each piece of information should be stored only once in
the database. In our example about elections and the parties participating
in these elections, how could redundancy possibly occur? Imagine for a
moment that we were to store elections and parties in one table:

country_name election_date vote_share party_name_short family_name

Austria 1919-02-16 40.75 SPÖ Social dem.
Austria 1920-10-17 35.99 SPÖ Social dem.
Austria 1923-10-21 39.60 SPÖ Social dem.

The first three columns in this table contain information about election
results: The country they are held in, the date, and the vote share of the
given party. The remaining two columns contain the party information:
The short name, as well as the party family. This short example shows
that we have redundant data: The short name and the party family are

121

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

122 9 Relational Databases and Multiple Tables

repeated every time a party – in our case, the Austrian Social Democrats
(SPÖ) – participates in an election. This is why the ParlGov project splits
up their entire database into multiple tables. By separating data on elec-
tion results from the data on political parties, we can reduce redundancy
in the database. This is what our above example looks like in the actual
ParlGov database: We have one table on election results (which is the one
we used in the previous chapter):

country_name election_date vote_share party_id

Austria 1919-02-16 40.75 973
Austria 1920-10-17 35.99 973
Austria 1923-10-21 39.60 973

and a second one on political parties (all shortened for presentational
purposes):

party_id party_name_short family_name

973 SPÖ Social dem.

By storing the party information in a separate table, we end up with
one record for each party, rather than repeating this information for every
election the party participates in. If we want to add new variables for
parties (e.g., whether they have been coded as populist), we can do this by
updating one row for each party. This facilitates the management of your
data significantly and reduces errors. The above example also shows how
we can link entries across tables: The parties results table has a party_id
column, which we use in the elections table to identify the party that the
given result belongs to. The use of these references is crucial, since we deal
with different tables whose entries are linked to each other. In the world
of relational databases, we often use integer numbers for this purpose.
A unique identifier for a record in a table – such as party_id in the parties
table – is called a primary key. A reference in a table that points to a record
in a different table – such as party_id in the elections table – is called a
foreign key. Much of the work we do below deals with these keys.

9.1 application: the rise of populism in europe

In this chapter, we continue our work with election results, but extend
it in a new direction. Over the recent decade, the Western world – and
Europe in particular – has seen a strong rise in populism. Cas Mudde

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.2 Adding the Tables 123

defines populism as a political discourse or even an ideology based on
the “relationship between the people (good) and the elite (bad)” (Mudde,
2004). In this chapter, we want to track the rise of populism over time.
Specifically, we do this by measuring the electoral success of political
parties that have been defined as “populist.” In this example, we do not
differentiate between different types of populism, as for example, right-
and left-wing populism – readers that are interested in only one or the
other can easily modify the example.
For this exercise, we need two tables in addition to the election results

we used in the previous chapter. So far, we only used data on elections
from ParlGov to compute a Gallagher index of disproportionality. In
the elections table, however, parties are only referenced with an internal
identifier (the party_id), which is why we need to bring in a separate
table on political parties to obtain the names of the parties as well as
other information about them. Since our goal is to measure the success of
populism by the vote share of populist parties, we need to know whether
a party is considered a populist party or not. For this, we rely on the
PopuList database, a list of populist parties in Europe (Rooduijn et al.,
2019). As of Version 2.0, the PopuList dataset can easily be linked to
parties from ParlGov: Each party in the PopuList has a parlgov_id, which
corresponds to the party_id in ParlGov. Combining data from ParlGov
and the PopuList ultimately allows us to track the success of populist
parties over time in parliamentary elections.

9.2 adding the tables

Let us now do some practical work to see tables and the references
between them in action. Do not forget to create a new database, following
the instructions in Chapter 2. We use the dbadvanced database for this
chapter and connect to it:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "dbadvanced",
user = "postgres",
password = "pgpasswd")

We first add the elections table from the previous chapter, using the cor-
responding function fromR’s DBI interface: dbWriteTable(). This function
simplifies the import, since it automatically creates the table structure for
us. This is convenient, but you have to make sure that the column types
in the initial R data frame have the correct types, as they will be used to

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

124 9 Relational Databases and Multiple Tables

specify the columns in the database table (see the previous chapter). We
also add the year again as a separate column:

elections <- read.csv(file.path("ch09", "elections.csv"))
elections$election_date <- as.Date(elections$election_date)
dbWriteTable(db, "elections", elections)
dbExecute(db,
"ALTER TABLE elections ADD COLUMN year integer")

dbExecute(db,
"UPDATE elections SET year = extract(year from election_date)")

Our next step is to add the ParlGov table with political parties to our
database, using again the functionality provided by R’s DBI extension:

parties <- read.csv(file.path("ch09", "parties.csv"))
dbWriteTable(db, "parties", parties)

Since ParlGov does not provide information about whether a party is
considered populist or not, we rely on the PopuList data described above.
Before we can later merge this data to our parties table, we need to also
import it as a table, using the file populist.csv in the repository for this
chapter:

populist <- read.csv(file.path("ch09", "populist.csv"))
dbWriteTable(db, "populist", populist)

You should now have three tables in your database: the elections table
from the previous chapter, and the parties and populist tables that we
just created. Let us check if this is the case:

dbListTables(db)

[1] "elections" "parties" "populist"

The structure of the parties table should be obvious. Most impor-
tantly, as already mentioned above, each party has a party_id, which
corresponds to the party_id in the elections table and helps us link each
election result to the party it belongs to. This is similar for the PopuList
table (or rather, the reduced version I have prepared for this chapter),
where each party has a parlgov_id, along with information on whether
it qualifies as a “populist” party according to the PopuList dataset, and
whether it is considered to be a party on the far left or the far right:

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.3 Joining the Tables 125

dbGetQuery(db, "SELECT * FROM populist LIMIT 3")

parlgov_id populist farleft farright
1 1536 1 0 1
2 50 1 0 1
3 669 1 0 0

9.3 joining the tables

Before we work with all three tables, let me demonstrate the linking of
tables using the two tables from ParlGov only. To briefly repeat, we have
a table with data on election results (elections), and a parties table with
data on parties. Each entry in elections refers to a party from parties by
means of a party identifier, called party_id in both tables. In the database
world, this is called a “one-to-many” relationship between the two tables,
since each party belongs to several election results – it usually partici-
pated in several elections. The combination of two tables that contain
corresponding data is called a “join.” Joining two tables is a temporary
operation – in contrast to a merge operation,we do not end up with a new,
persistent table that contains the linked records. Rather, a join creates
a temporary dataset with the corresponding records, which we can use
for further data operations, or export for later analysis. The storage of
our data, however, is still done in separate tables, which helps us avoid
redundant data in our database.
So, how do we join tables in SQL? Again, we use a SELECT statement

for this. All we need to change is the FROM part of the statement, such that
it does not select from a single table, but from a set of two joined tables.
This is indicated by the JOIN keyword:

dbGetQuery(db,
"SELECT
elections.country_name, election_date, party_name_short, family_name

FROM elections JOIN parties ON elections.party_id = parties.party_id
LIMIT 3")

country_name election_date party_name_short family_name
1 Denmark 1915-05-07 RV Liberal
2 Denmark 1953-09-22 GrFa no family
3 Greece 1977-11-20 EDA Communist/Socialist

It is not difficult to understand what this statement does: elections
should be joined to parties, by linking entries where the party_id in

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

126 9 Relational Databases and Multiple Tables

elections (which is a foreign key) corresponds to the party_id in parties
(which is a primary key). It is not a requirement that the join attributes in
the two tables have the same name, but we often follow this convention
to make the relationship more obvious. The variables we select – the
country name, the election date, etc. – are specified in the first part of the
SELECT statement. Since country_name appears both in the elections and the
parties table, we need to tell SQL which one we want, by specifying the
name of the table before the name of the field (elections.country_name).
The type of join that is carried out with the simple JOIN keyword is

called an inner join – in fact, you could write INNER JOIN instead and get
the exact same result. An inner join links all pairs of entries from the two
tables that have the same value in the join attribute. That is exactly what
we want in the vast majority of cases. Although much less frequently used,
there are other types of joins that retain all records from one of the tables,
but only the matching records from the other (the LEFT JOIN and the RIGHT
JOIN). Even though the join of the two tables is only temporary, we can
use it in the SELECT statement as if it were a new, big table. For example,
we can count the number of records:

dbGetQuery(db,
"SELECT count(*)
FROM elections JOIN parties ON elections.party_id = parties.party_id")

count
1 5247

Alternatively, we can run aggregations on it. Here is an example that
makes use of the party_family variable contained in ParlGov: We com-
pute the average vote share of social democratic parties per year, to see
the ups and downs in their electoral success:

dbGetQuery(db,
"SELECT year, avg(vote_share)
FROM elections JOIN parties ON elections.party_id = parties.party_id
WHERE family_name = 'Social democracy'
GROUP BY year
ORDER BY year
LIMIT 3")

year avg
1 1900 12.7500
2 1901 17.0600
3 1902 9.4025

In this statement, you recognize all the different parts of a data aggre-
gation, as introduced in the previous chapter: the grouping variable year

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.4 Merging Data from the PopuList 127

(computed by extracting the year from the election date), and the aggre-
gation function (the average over the vote_share values for a given year).
Importantly, we filter out the social democratic parties with the WHERE
keyword, since these are the parties we are interested in. Finally, we order
the result by year, and truncate it for display purposes using the LIMIT
keyword – if you would like to see the entire time series, just remove this
last part of the statement.

9.4 merging data from the populist

In the previous section,we joined the elections and the parties tables. Join-
ing means that the two tables are dynamically combined within a query,
while the original data remains in separate tables. Is this what we should
also do when linking parties from ParlGov with data on populist parties
from the PopuList? We could do a simple join on the party identifier:

test <- dbGetQuery(db,
"SELECT *
FROM parties JOIN populist ON parties.party_id = populist.parlgov_id")

nrow(test)

[1] 199

As per the logic of an inner join, we only get the matching records from
both tables – this is why the result of the join contains only 199 entries,
which is a small subset of the almost 1,300 parties from ParlGov. It is
easy to see why: Unlike ParlGov, which goes back more than a century,
the PopuList covers only recent years. Also, it identifies only populist
and eurosceptic parties, which is why it contains only a subset of recent
parties.
Our parties table and the data from the PopuList are coded at exactly

the same level – both contain information about political parties as unit
of observation. In other words, the relationship between the two is a one-
to-one relationship rather than the one-to-many relationship we have for
parties and elections. While it is technically possible to use SQL joins
whenever we want to combine information from two tables, in this case
it may be more useful to merge the variables from the PopuList to our
parties table. Again, merging means that we amend the parties table,
such that it persistently stores the additional variables from the PopuList.
We can then simply access the information about whether a party is con-
sidered as populist in the parties table, rather than having to join it with
populist every time.

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

128 9 Relational Databases and Multiple Tables

To merge the PopuList coding to the existing parties table, we first
add a new column:

dbExecute(db, "ALTER TABLE parties ADD COLUMN populist integer")

The default value of this new column is NULL (the SQL value for missing
data).We then use an amended version of an UPDATE statement,which uses
a second table to update the values in the given table. More precisely, it
links the two tables similar to a join, and copies the values of the populist
variable from the populist_parties table to the parties table:

dbExecute(db,
"UPDATE parties
SET populist = populist.populist
FROM populist
WHERE parties.party_id = populist.parlgov_id")

Again, the logic of this statement is not difficult to understand. We
update the parties table and want to set the values of the populist field
to the corresponding ones from the populist_parties table. In the WHERE
clause, we need to specify – similar to the join above – what attributes
the two tables should be linked on. Importantly, this updates the values
only for the parties contained in the PopuList data, because these are the
only ones that can be matched. For all other parties, the default values
(missing, or in the database terminology: NULL) remain.
With the new variable populist now being part of our table with politi-

cal parties,we canmodify the above aggregation query such that it counts,
for example, the number of populist parties per year that participated in
elections:

dbGetQuery(db,
"SELECT year, count(*) AS num_parties
FROM elections JOIN parties ON elections.party_id = parties.party_id
WHERE populist = 1 AND year >= 1998
GROUP BY year
ORDER BY year DESC
LIMIT 5")

year num_parties
1 2017 19
2 2016 18
3 2015 23
4 2014 13
5 2013 18

This statement is very similar to the one above, where we computed
the average vote share of social democratic parties by year.We change the

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.5 Maintaining Referential Integrity 129

aggregation function to output the count of elections, join the two tables
as above, and restrict the combined result to parties that are populist
(populist = 1) and elections in 1998 and later, since this is the first year
for which there is data from the PopuList.

9.5 maintaining referential integrity

When introducing relational databases, we discussed some of their
advantages for data management and processing. One of them was
that databases can help us avoid data redundancy, but at the same time
ensure that our data remains consistent. For example, by splitting up the
data on election results and the parties participating in these elections,
we can avoid that information on parties is repeatedly stored every time
a party participates in an election. Splitting data into several tables may
be useful for eliminating data redundancy, but at the same time creates
other problems. As we have seen above, every row in the elections
table has a pointer to the corresponding row in the parties table. This
is implemented by means of an integer number – party_id in elections
points to the corresponding party_id in parties. The latter is a primary
key in the parties table – a field that uniquely identifies an entry. The
former is a foreign key in the elections table – a field that references an
entry in another table.
Problems can now arise if the pointer to the entry in the other table

is invalid – in our example, this would mean that we have a row with
party_id = 1556 in elections, but no corresponding entry with party_id
= 1556 in the parties table. In other words, we would have an election
result for a party that does not exist in our database, and our data would
therefore be inconsistent. In database terminology, this is called a viola-
tion of referential integrity. Referential integrity applies if every reference
between tables is valid, that is, if it points to an existing entry in the
respective table. Of course, we want referential integrity at all times, since
otherwise we would have major gaps in our data – in this case, an election
result we cannot link to a party. How can we ensure that errors of this
kind do not arise?
At the moment, the database does nothing to help us address this

challenge.We could, for example, delete any party from the parties table,
leaving a number of invalid foreign keys in the elections table.Why? The
reason is that our database does not “know”yet that one field in one table
references entries in another table. Let us proceed step by step to define
this relationship in SQL. First, we need to introduce party_id as a primary

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

130 9 Relational Databases and Multiple Tables

key in the parties table. Again, a primary key is a field (or in some case,
a combination of two or more fields) that uniquely identifies each line in
the table. It is common practice to use positive integer values for this –
luckily, we already have such a field in our table and only need to define
it as primary key. We do this using the ALTER TABLE statement again, but
this time without adding a new field:

dbExecute(db, "ALTER TABLE parties ADD PRIMARY KEY (party_id)")

Whenwe define a primary key, the database does different things.Most
importantly, it introduces logical checks, for example, by ensuring that no
single value of the primary key occurs more than once. For example, try
adding a new record with 1739 as the value for the primary key:

dbExecute(db,
"INSERT INTO parties (party_id, party_name_short)
VALUES (1739, 'New Party')")

This value already exists in the table, which is why PostgreSQL refuses
to add the new entry. We get an error message telling us that the value
1739 already exists as a primary key.
Rather than using an existing field as primary key, you can also have

the database create and maintain one for you. Simply add a new field of
the type serial, and you will get an integer variable that automatically
increments when new records are added to the table (you do not need to
provide values for it). If you define this field as primary key, you never
have to worry about duplicate key values anymore.
We now have a primary key for the parties table, and PostgreSQL

ensures that the key does what it is supposed to do: uniquely identify
parties in our database. The second step to have the database check and
maintain referential integrity of our data is to define the party_id field in
elections as foreign key. We again use an ALTER TABLE statement to do
this:

dbExecute(db,
"ALTER TABLE elections
ADD FOREIGN KEY (party_id) REFERENCES parties (party_id)")

Using this statement, we tell the database that party_id in elections
points to party_id in parties. This means that all party IDs used in

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.6 Results: The Rise of Populism in Europe 131

the elections table must be present somewhere in the parties table.
Since PostgreSQL created the foreign key without any error messages,
we know that this is the case. However, once we attempt to delete a
party from parties, the database blocks this operation if this party is
referenced from elections. Try this statement:

dbExecute(db, "DELETE FROM parties WHERE party_id = 1739")

Now, the database refuses to delete party 1739, since this would leave
some election results without a corresponding party. So in essence,
by specifying in our database which attributes are primary keys and
foreign keys, the database helps us maintain the consistency of our
data and ensures that referential integrity is not violated. Using these
mechanisms, distributing data over multiple tables becomes much more
manageable.

9.6 results: the rise of populism in europe

We can finally put our data together and create a dataset for our analysis
of the rise of populism in Europe over time. In the following code example,
we again join the parties and elections tables, the latter now amended
with the PopuList coding. We aggregate the joined tables by country and
election date, which allows us to plot the success of populist parties per
country, as measured by the vote share in the respective election:

populism_ds <- dbGetQuery(db,
"SELECT
elections.country_name,
election_date,
sum(vote_share) AS total_vote_share

FROM elections JOIN parties USING (party_id)
WHERE populist = 1 AND year >= 1998
GROUP BY elections.country_name, election_date
ORDER BY country_name, election_date")

The plot in Figure 9.1 shows that in particular in Eastern Europe,
populist parties have been gaining ground in the recent decade. In several
countries, they now achieve vote shares of up to 50% and more.
As a last step, we need to close the connection to our database:

dbDisconnect(db)

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

132 9 Relational Databases and Multiple Tables

Slovenia Sweden Switzerland UK

Luxembourg Netherlands Norway Poland Slovakia

Greece Hungary Ireland Italy Lithuania

Denmark Estonia Finland France Germany

Austria Belgium Bulgaria Croatia Czech Rep.

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

T
o
ta

l
vo

te
 s

h
a

re

figure 9.1. Vote shares of populist parties in different countries.

9.7 summary and outlook

The art of working with relational databases necessarily involves multiple
tables. In this chapter, we extended the single-table example from the
previous chapter such that it uses two tables. More precisely, we added
a second table with data about political parties to the existing elections
table, such that we have more information about the parties themselves.
We supplemented the latter table with data from the PopuList project,
which identifies populist parties in Europe. Using our data, we were able
to plot the electoral gains of populist parties in Europe over the recent
years.
Spreading information out over several tables in a relational database

involves different challenges. First, we need to think about the structure of
our data: What tables do we need, and what variables are they supposed

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.7 Summary and Outlook 133

to contain? These are conceptual questions about our database, and they
relate directly to what we discussed in earlier chapters of this book (e.g.,
designing a database such that it avoids storing redundant data). When
we use existing datasets, we often do not have a choice and have to use the
data in the way it is provided to us. However, when designing databases
for our own projects, taking some time to think about the data structure
is important. Database designers have even developed an entire modeling
approach for this purpose, which is based on the definition of real-world
entities and the relationships between them. These “Entity-Relationship”
models can then be used to define the actual tables in a relational database.
For most applications in the social sciences, however, this conceptual step
is not required, as the complexity of the data is limited.
Also, there are technical challenges we need to overcomewhenworking

with multiple tables. The first we discussed is the dynamic combination of
data from different tables. While stored across multiple tables, matching
entries from them can be joined in SQL to perform various tasks such
as aggregation, or can be exported for analysis. Importantly, joins are
dynamic, and the original data are still kept in their original tables. The
second challenge the database can solve for us is to keep our data consis-
tent across different tables. For example, if a table has a foreign key that
refers to a primary key in another table, the database can make sure that
corresponding entries for the latter exist in the second table. This way, we
can automatically ensure referential integrity of the database and prevent
operations that would violate it.
While we now know a lot about databases already, we still need to

explore two more features that can be really useful for our work: the abil-
ity for multiple contributors to jointly work on datasets, and to quickly
search large amounts of data. The next chapter addresses these two
questions, and wraps up the basic introduction of relational databases in
this book. Before we proceed, here are some recommendations from this
chapter:

• Think about the structure of your data: This came up repeatedly in the
book, and here it is again. Choosing a good structure for your database
first requires a good understanding of what is in your data: What real-
world entities are described, and what are their features? How do these
entities relate to each other? Once you have answered these questions,
it becomes easier to design a structure for your data.

• All tables need a primary key: For a smooth operation of a relational
database, it is absolutely necessary to have sensible primary keys for

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

134 9 Relational Databases and Multiple Tables

all your tables. A good choice is a single integer number. Some datasets
already have a primary key, for others you can easily create one in your
database with a serial field.

• Make use of the integrity checks in a DB: In the chapter, we saw
how PostgreSQL can help you maintain referential integrity and make
sure that the data is consistent across tables. I recommend using these
features, in particular when your database becomes more complex.
Without these checks, errors and missing data can occur without you
noticing.

• Merge only when you have to: While joins are the standard operation
to combine data from different tables in a relational database, it is also
possible to merge tables by copying data from one to the other. This is
something you should only do when it is really necessary, since it can
violate the principle of avoiding redundant data.

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

10

Database Fine-Tuning

In Chapters 8 and 9, we covered the basics of relational databases –
tables as the main containers of data, and how they can be created,
populated, and joined with SQL. In these chapters, we dealt exclusively
with conceptual questions about data and how it is stored in a relational
database. In this final chapter on databases, we move on to two more
operational questions. Recall that data structure (facilitating the use of
multiple tables, avoiding redundancy) was only one of the reasons for
storing data in a database. There are at least two more reasons that can
make databases such as PostgreSQL a useful choice for social science
projects. First, databases can handle large datasets much more efficiently
than a file-based workflow, and second, databases permit data processing
shared by multiple users, such that it is possible to give some users write
access to certain parts of the data, while others can only read it.
Most database systems do not solve these issues automatically. Rather,

they require some fine-tuning by the user, but fortunately, none of this is
very complicated. To show how database systems such as PostgreSQL
deal with these challenges, we cover two topics in this chapter. First,
we discuss the use of so-called search indexes that allow the database
to quickly look up particular entries in a table based on one or more
of the fields. Indexes are not only used in relational databases; rather,
they are data structures that you can find in many systems dealing with
large amounts of data (although they are often hidden from the user).
Second, we introduce PostgreSQL’s multi-user capabilities, where you can
add several users to a database and equip them with particular privileges
for data access and data manipulation.

135

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

136 10 Database Fine-Tuning

figure 10.1. A table without an index.

In this chapter, we are not going to work with another real-world
example to demonstrate indexes and multi-user features. Rather, we will
use an artificial dataset, which makes it possible for us to create large
tables without the need to import them from a file.

10.1 speeding up data access with indexes

An index is an additional data structure added to your database that
allows the database system to quickly locate records in a given table, based
on one or more of the fields in the table. You can think of database index
very much like the index of a book: A book’s index is essentially a list
of important keywords and topics covered in the book, and it provides
you with the page number(s) that contain relevant information about
the respective topic. Here is an example that briefly illustrates how an
index works. In Figure 10.1, you can see a table with data on persons
located in three cities (3, 8, and 9). Now imagine that you want to select
all persons in a particular city, for example, those in city 8. Without a
search index, the database system needs to go through all records in the
table sequentially, test whether the city attribute is equal to 8, and retain
those where this condition is satisfied.
This would of course be a very fast operation for our small table, due

to the fact that it only has five rows. However, as the size of the table
grows, so does the retrieval time: In computer science, this time is typically
measured in relation to the number of rows in the table. Our simple, non-
indexed table requires retrieval times that scale linearly with the number
of records: If we double the number of records, the retrieval time doubles,
too. This becomes a real issue when we deal with large tables and require
many repeated lookups. Luckily, we can solve this issue with the help of
indexes. A search index is created to speed up the retrieval of records
based on a particular search attribute. Figure 10.2 shows our example
again, but with a search index on the city field added.

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.1 Speeding Up Data Access with Indexes 137

figure 10.2. A table with an index.

The index stores pointers to the different values in the search attribute.
So if we want to look up the persons living in city 8, all the database
system needs to do is locate the value 8 in the index, and follow the
pointers to the three records available for city 8. This is much faster com-
pared to the simple traversal of the entire table as in our above example:
The retrieval time using an index is usually logarithmic in the number of
records in the table. This is a tremendous speedup: A table with 5 million
entries would require 5 million steps for a naïve, sequential search, com-
pared to less than 25 steps for a search using an index (binary logarithm).
This speedup, however, has certain costs. An index is an additional data

structure that needs to be stored somewhere, so the size of your database
on disk will become larger (which is something that, in most cases, you
can simply ignore since the gains for retrieval are significant). An issue
that may be more relevant arises when we insert new records into the
table (or when we update the indexed column for some of the records):
With an index in place, simply adding the new record to the table is not
enough; the database system also needs to update the index such that it
contains a pointer to the new record. If you insert many records, or update
the existing ones frequently, this will become slower in comparison to a
non-indexed table. In a typical workflow in the social sciences, however,
this is less likely to happen. Therefore, you can usually create an index
after all the data has been inserted, which avoids this problem.
Thankfully, indexing functionality for different kinds of data is readily

built into PostgreSQL (andmany other database systems), so as a user you
do not have to worry about any of the inner workings. To demonstrate
the speedup we can gain from an index, let us perform a little experiment.
We create a large table both in R and in a relational database, and mea-
sure how long it takes for a certain subset of the table to be retrieved.
For this experiment, we slightly expand the above example. We create a
table with persons that are located in cities, and are observed annually

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

138 10 Database Fine-Tuning

(e.g., in a longitudinal survey). The expand.grid() function is useful here,
which creates a data.frame out of all possible combinations of the values
in the given vectors. We add a randomly generated result variable to the
data frame, which holds the value measured for the respective person in
the respective year. Finally, we randomly shuffle the order of the entries
in our table, to exclude any effects from our data having been inserted in
a particular ordered sequence.

survey <- expand.grid(person = 1:100, city = 1:1000, year = 1970:2020)
survey$result <- runif(nrow(survey))
survey <- survey[sample(nrow(survey)),]

We can now simulate a simple data retrieval operation from our table,
where we extract all records for city 80 and the years 2000 and later.
When we do this, we measure the time the system takes to carry out this
task, by computing the difference between the system time immediately
before the data retrieval and immediately after. In the following code
chunk, we enclose the three lines of code in curly brackets, such that they
are executed immediately after one another:

{start_time <- Sys.time()
nrow(subset(survey, city == 80 & year >= 2000))
extime_R <- Sys.time() - start_time}

The time used for extracting the relevant records is 52.09 milliseconds.
On your system, this value will be different, since execution times depend
on amultitude of factors; however, the precise value is not important since
we are interested in relative differences between R and PostgreSQL. Now,
let us do the same experiment in a relational database. As always, we cre-
ate a new, blank database for this chapter (see Chapter 2 for instructions),
and connect to it:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "dbtuning",
user = "postgres",
password = "pgpasswd")

We again create our artificial dataset, this time using an SQL statement.
The generate_series() function in PostgreSQL makes the generation of
the numeric sequences easy. All possible combinations of these values are
generated by referencing them in the FROM part of the statement. Again,
we add a result value randomly:

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.1 Speeding Up Data Access with Indexes 139

dbExecute(db,
"CREATE TABLE survey AS
(SELECT *, random() AS result FROM
generate_series(1,100) AS person,
generate_series(1,1000) AS city,
generate_series(1970, 2020) AS year)")

This table has exactly the same content and size as the data frame we
used above. At present, it is just a simple table in the database, without
any indexes to facilitate data retrieval. This is how we perform the same
query as above in SQL, again measuring the execution time (note again
the curly brackets):

{start_time <- Sys.time()
dbGetQuery(db,
"SELECT count(*) FROM survey
WHERE city = 80 AND year >= 2000")

extime_pg1 <- Sys.time() - start_time}

Without an index, the search in our survey table takes longer than the
one in the R data frame: 196.99 milliseconds. Clearly, without an index,
R’s basic data structures perform even better than a relational database.
Does an index solve this problem? Adding an index to a table is easy. All
you need is a CREATE INDEX statement, where you specify the table and
the column that should be indexed. As a rule of thumb, it is advisable to
index those columns that are typically used to retrieve records from the
table, and to create a separate index for each of them. In our case, these
are the city and year columns in the survey table. If you have a primary
key in the table and it has been explicitly defined as such, there is no need
to create an index, since PostgreSQL does this automatically:

dbExecute(db, "CREATE INDEX ON survey (city)")
dbExecute(db, "CREATE INDEX ON survey (year)")

If we now run our query again with the same statement as above:

{start_time <- Sys.time()
dbGetQuery(db,
"SELECT count(*) FROM survey
WHERE city = 80 AND year >= 2000")

extime_pg2 <- Sys.time() - start_time}

we see a considerable performance improvement. Now, the query only
takes 1.79 milliseconds, which is much faster than the previous SQL
query on the non-indexed table (by a factor of about 110), but also about

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

140 10 Database Fine-Tuning

29 times faster than R’s data frame. So if your data processing includes
large datasets with many repeated data retrievals, it is absolutely essential
that you properly index your data. If you do not need the additional
features of a database system and use a purely file-based data workflow,
you can consider using alternatives to R’s basic data frames. For example,
the data.table package provides a tabular data structure that can be
indexed, and has a much better retrieval performance, in particular for
large tables.

10.2 collaborative data management
with multiple users

One of the main benefits of managing data in a centralized, server-based
setting is the possibility for many users to access the database. Imagine a
situation in which a team of researchers collaboratively works on a new
dataset (thereby actively modifying it), and another group of researchers
prepare initial analyses on this dataset (with read-only access to the data).
In a file-based workflow, the second team of researchers could be provided
with regular snapshots of the data, shared as files. However, it is difficult
to collaboratively edit and update data in a team of contributors if the
data is stored solely in files. The reason is that changes by one person
can easily be overwritten by another person, similar to what happens if
several people edit a single text document at the same time.
Relational database systems have fine-grained mechanisms of access

control, which makes it possible to fine-tune read and write privileges
for many users of a database. These features can be useful to resolve
issues arising in collaborative scenarios such as the one above, but also
many others. In this section, I present a brief introduction to user privilege
management in SQL. We continue to use our survey table created above,
but will simulate access to this table by two users. The first one of them
uses the connection we have initiated above, with the standard username
and password.This user is a “super-user,”owns the database dbtuning and
can make any modification in it. The connection object we have created is
db, which we will continue to use. For our exercise, however, we also need
a second user. Therefore, our super-user first needs to create this second
user in the database system:

dbExecute(db, "CREATE USER other WITH ENCRYPTED PASSWORD 'pgpasswd1'")

Note that we create the user through the db connection, which is the
super-user connection with the privilege to add andmodify users. The new

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.2 Collaborative Data Management with Multiple Users 141

user is called other, and we create this user with an encrypted password
and not a plain text one (WITH ENCRYPTED PASSWORD). In PostgreSQL, users
are defined at the level of the entire database server, not at the level of
individual databases. Therefore, the new user is in principle available for
all databases hosted on our server. At this point, however, there is not
much this user can do, because no access privileges to databases and tables
have been defined. Still, we can already connect to the server as the new
user. We do so with a new connection object db1 that we will use for all
operations that user other will perform later.

db1 <- dbConnect(Postgres(),
dbname = "dbtuning",
user = "other",
password = "pgpasswd1")

We are connected to the dbtuning database, so everything we send over
the db1 connection will be executed within this database. Let us try to
select a few rows from the table:

dbGetQuery(db1,
"SELECT avg(result) FROM survey
WHERE city = 80 AND year = 2000")

As expected, this fails with an error message. The reason is simply that
user other does not have any privileges for the database,which means that
the user can neither read nor modify any data in it. Our super-user can
enable this. The following statement (executed as user postgres through
the db connection) allows user other to perform SELECT queries on the
survey table:

dbExecute(db, "GRANT SELECT ON survey TO other")

Now, the user can successfully execute the above query:

dbGetQuery(db1,
"SELECT avg(result) FROM survey
WHERE city = 80 AND year = 2000")

avg
1 0.5139814

In some cases, it may be necessary to let users update the data in a table.
We can do this by granting update privileges for the entire table, but it is
even possible to do this for individual columns only. Let us assume that
the new user is supposed to update the survey results. We allow this by

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

142 10 Database Fine-Tuning

providing the user with the right to update the table, but only a specific
column. In the case of our survey, we can use this functionality to let other
users change the measured value in the result column, but not the basic
structure of the survey with person IDs, cities, and years:

dbExecute(db, "GRANT UPDATE (result) ON survey TO other")

Now, the user can change the results, for example to correct a wrong
entry

dbExecute(db1,
"UPDATE survey SET result = 0.789
WHERE person = 3 AND city = 80 AND year = 2000")

but the user cannot update data in the other columns of the table, which
is exactly what we want. The following command fails with an error
message:

dbExecute(db1, "UPDATE survey SET year = year + 1 WHERE year = 2000")

We only granted the user the privilege to update some data, but other
manipulations (such as dropping some records) are not possible. If we
want our new user to update the table or delete records from it, we need
to expand the user’s privileges. You can either specify these new privileges
explicitly (e.g., GRANT UPDATE), or simply give the user all privileges on the
survey table.

dbExecute(db, "GRANT ALL PRIVILEGES ON survey TO other")

Finally, we also show how to remove certain privileges after they have
been granted. This is done with a REVOKE statement, which works similar
to the GRANT statement used above. Again, you can specify the privileges
you would like to drop explicitly, or simply revoke them all:

dbExecute(db, "REVOKE ALL PRIVILEGES ON survey FROM other")

As always, at the end of the chapter,we close our database connections:

dbDisconnect(db)
dbDisconnect(db1)

The examples above gave you an idea of how to fine-tune user access
to the tables in your database. Access control works at the level of tables.
By default, users (that do not own the table) have no access to a table.
You can change this by granting read-only access to the table, or allow

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.3 Summary and Outlook 143

users to make changes to the data in the table (or only certain columns).
These features allow for databases to be used in a collaborative setting,
where multiple researchers jointly access a single database remotely.

10.3 summary and outlook

Most of our discussion about databases in the previous chapters centered
around questions of data structure and content. In this chapter, we looked
into operational questions arising in the work with relational database
systems. Databases shield a lot of technical complexity from users; all
you need to do is define your tables and populate them with data, and
the database system takes care of saving this data in a physical storage.
While PostgreSQL and other systems have a lot of internal mechanisms
to process the data as efficiently as possible, some fine-tuning may be nec-
essary, depending on the context in which you use the database. I showed
above how the retrieval of data in large tables can be sped up by several
orders of magnitude through the use of indexes. Since these indexes also
have certain costs (e.g., they make data insertions slower), the database
system does not create them automatically, which is why you need to do
this yourself using the respective SQL statements.
A second topic we covered in this chapter is the multi-user features

of PostgreSQL. Due to the client-server setup of most database systems,
it becomes possible for your data to be accessed by different people and
from different places, something that is difficult and error-prone if your
data is stored in files. However, collaborative access means that you need
to think about who should get access to the data in the first place, and
what the other users can do with the data: Are they supposed to only
have read access, or can they even make modifications to it? The user
privileges in PostgreSQL allow you to define this. You can create new
users, and grant them permission to select data from a particular table, or
modify (change and delete) it. These features make databases a powerful
and convenient tool for storing and processing research data. Overall,
there is a number of lessons learned in this chapter:

• Index your large datasets:When your datasets grow large, it is essential
to work with indexes to speed up search and retrieval. As mentioned
above, indexing features are not just available in relational databases;
instead, this is a general technique to handle large amounts of data
efficiently.You can also equip individual tables in Rwith an index using
the data.table package, but of course without the other advantages
offered by relational databases.

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

144 10 Database Fine-Tuning

• User privileges allow for transparent data access: Larger projects in
the social sciences can easily involve several collaborators accessing a
database. The user privilege system provides a way to regulate access to
your data, with different access levels for different people. In particular
when it comes to sensitive data, it is essential to define who can see,
update, or delete what kinds of data in your project.

• Tracking changes remains difficult: In many projects (e.g., those that
involve human coding), it is often desirable to track changes to the
data made by users. This is difficult, regardless of whether your data is
stored in files or in a database. One way to do this is to keep regular
copies (snapshots) of your data. Alternatively, in PostgreSQL, you can
use the pgaudit extension, which logs all database operations to a
logfile.

• Direct access to the DB: Sometimes, it is useful to quickly browse a
database, for example, to check whether the data was imported cor-
rectly. For this purpose, you can use a graphical database client, such
as the free pgAdmin tool (https://www.pgadmin.org), or the commer-
cial, but highly recommended Postico software (https://eggerapps.at/
postico/). Using these tools, you can browse a database, look at some
records from a table, or even make small updates manually.

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://www.pgadmin.org
https://eggerapps.at/postico/
https://eggerapps.at/postico/
https://doi.org/10.1017/9781108990424.014

part iv

SPECIAL TYPES OF DATA

https://doi.org/10.1017/9781108990424.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.015

https://doi.org/10.1017/9781108990424.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.015

11

Spatial Data

In all the previous chapters, we were dealing with the most common
data format in the social sciences: tables. These tables usually contain
numbers and text. We discussed how you can store these tables in files,
read and process them in R, or use relational databases to manipulate
data distributed over several tables. For some applications, however, we
need to go beyond this simple model. There are special types of data for
which the tabular data model is insufficient. In this part of the book, we
take a look at three of them. This chapter introduces spatial data, which
are observations that come with geographic coordinates. In other words,
with spatial data, each observation has a particular location on the globe
assigned to it. In later chapters, we will cover text as data, followed by
the final applied chapter on network data.

11.1 what is spatial data?

Spatial data are closely linked to the world of Geographic Information
Systems (GIS), which is the software to collect, process, and analyze data
with spatial coordinates. There are two major types of spatial data: vector
data and raster data. In this chapter, we discuss only the former. You can
think of a vector dataset as a table similar to the ones we have used so far,
but where each row has some geographic information attached to it. Take
a look at the example in Figure 11.1: You can see a standard table on the
right, which contains information about cities. This is the same type of
data model we have used so far.
However, in a vector GIS dataset, this tabular information (called the

“attribute table”) is amended with spatial coordinates. As you can see

147

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

148 11 Spatial Data

ID Name Population

1 City A
2 City B
3 City C

Geographic Features Attribute Table

372,000

250,000
130,000

figure 11.1. A table with cities (right), each of which is associated with spatial
coordinates (left).

City A

City B

City C

River

Lake

figure 11.2. Different types of vector data.

in the example, each city in the table corresponds to a point on a map
(left), which denotes the location of the respective city in the geographic
space. Thus, a vector dataset is closely related to a standard table, with the
only difference being that there is a new type of column with geographic
information. This column contains what we typically call the geometry
of a given entry. In our example above, this geometry is simply a two-
dimensional point, in other words, a pair of (x, y) coordinates. However,
GIS systems also allow more complex geometry types. Figure 11.2 shows
a line geometry, which can be used to represent, for example, a river or a
road. Finally, a polygon geometry is used to represent closed areas, such
as a lake, or the borders of a country. A line is a sequence of (x, y) points,
and a polygon is simply a closed line.
A question we cannot cover in depth is how we get from a three-

dimensional surface (the earth) to a two-dimensional map, so I just convey
some basic intuition here. There are two basic approaches to do this.
The first one is to define a coordinate system for the (roughly spherical)
surface of the earth (see Figure 11.3, left). This is what we do when using
longitude and latitude coordinates: The equator has latitude 0, and loca-
tions north (south) of the equator have positive (negative) latitudes, each
measured in radial coordinates. Longitude 0 is defined as going through

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.1 What Is Spatial Data? 149

figure 11.3. Coordinate systems for spatial data: A geographic (unprojected)
coordinate system using radial coordinates on a spherical earth (left), and a
projected coordinate system (right).

Greenwich, and longitudes increase as we move east, again measured in
radial coordinates. Thus, each point on the globe can now be uniquely
identified by its longitude (x) and latitude (y) values, which is called a
geographic coordinate system. Importantly,we need to be careful what we
can and cannot do with this system. Distance calculations, for example,
can be tricky, since the distance on a sphere with radial coordinates cannot
be computed similar to a planar surface.
The second approach to turn a three-dimensional surface of the earth

into a two-dimensional map is to project it (see Figure 11.3, right).
A projection is essentially an instruction for mapping points on the globe
to corresponding ones on a map. There are many different ways for doing
this, some of which are designed for particular purposes (e.g., they allow
you to compute the distances between points correctly, thus avoiding
problems such as the one described for geographic coordinate systems).
While the features of different projections are not important here, you

need to keep in mind that the coordinate system and the projection of a
geographic dataset are a important parameters you need to know when
working with spatial data. Certain operations on spatial data (e.g., mea-
suring the area of a polygon) only produce valid results if they are per-
formed in a suitable projection. If you want to read up on this topic,
I highly recommend the University of Boulder’s Earth Data Analytics
online course, which contains an entire chapter about spatial coordinate
systems (Wasser, 2020).
GIS software is designed to handle spatial data – it allows you to read,

modify, analyze, or visualize it. There are many different GIS systems
available: ArcGIS is one of the most widely used commercial ones. If
you want to try out an open-source GIS, I recommend QGIS, which is
available free of charge at https://www.qgis.org/ for all major operating

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://www.qgis.org/
https://doi.org/10.1017/9781108990424.016

150 11 Spatial Data

systems. In this chapter, we do not rely on specialized GIS software.
Rather, we use extensions to the tools we introduced in the previous
parts of the book: The R statistical software can in fact be turned into a
powerful tool to process and analyze spatial data. Also, PostgreSQL has
a spatial extension called PostGIS, which allows us to carry out spatial
operations in SQL in combination with all the existing benefits of rela-
tional databases. However, before we discuss spatial data management
with R and PostGIS, let me briefly introduce the applied example we use
in this chapter.

11.2 application: patterns of violence
in the bosnian civil war

In the practical exercises for this chapter, we examine a dataset about
violent incidents in the civil war in Bosnia (1992–1995). The break-up of
the Yugoslav Federation went along with an outbreak of violence between
the three major population groups.Much of this violence happened in the
(now independent) republic of Bosnia and Herzegovina, which is what
we focus on in this chapter. Specifically, we will analyze the distribution
of violence in Bosnia over space, to identify where it was most severe.
Although we will not do a full explanatory analysis to study the drivers
of this violence, the approach we present here is usually similar for any
kind of statistical analysis that involves spatial data.
We use data on violent events from the Geo-referenced Event Dataset

(GED), collected and maintained by the Uppsala Conflict Data Program
(Sundberg and Melander, 2013; Högbladh, 2019). The GED is part of a
family of datasets related to political violence, and the current version of
the data as well as much additional documentation and information can
be found on their website. The GED is an event dataset, which means that
it provides information at the level of individual incidents. In the case of
the GED, each of these incidents is a violent, lethal confrontation between
two of the conflict parties. The dataset records the date of the incident,
the actors involved, the number of casualties, as well as several additional
variables. The following is a (shortened) single entry from the dataset:

id side_a side_b source_article date_start longitude latitude

200416 Gvt. of BH Civilians BBC Monit. 1993-10-26 17.28 44.55

Each incident has an id, and it identifies the participants in the
event (side_a and side_b). In the above example, the dataset records

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 151

an incident of violence against civilians, perpetrated by government
forces. This information was obtained from an article published in BBC
Monitoring (source_article). The incident took place on October 26,
1993, at the location with the given geographic coordinates (longitude
and latitude). As we can see from the latter coordinates, each entry in
the GED corresponds to a point on the map, so we can treat the entire
collection as a GIS vector dataset in our application below.
To examine the spatial pattern of violence, we use Bosnia’s pre-war

administrative divisions. The smallest administrative unit was the munic-
ipality (opština), and Bosnia had 109 of them (with the capital Sarajevo
divided into five municipalities). Our goal in this exercise is to compute
the level of violence for each of the municipalities over the course of
the war. Using administrative divisions as spatial units of observation
is only one way to conduct a spatial analysis. Although we do not do
this here, you could use this approach to relate an outcome we want to
explain (in our case, violence) to particular socio-demographic variables
measured at the level of administrative divisions, for example the ethno-
national composition of a municipality (Weidmann, 2011). Alternative
approaches for spatial analysis include the use of artificial grid cells as a
unit of observation (Tollefsen et al., 2012), or no fixed spatial unit at all,
as in point process models (Warren, 2015).
Our task in the analysis below is, therefore, to combine the vector

dataset of violent events (points) with a dataset of Bosnia’s municipali-
ties, which are represented by polygons. We do so by identifying those
violent events that took place within a municipality. In other words, we
use the spatial coordinates of events and municipalities to link them to
each other. In the GIS world, this is called an “overlay” operation, but
we can also refer to it as a “spatial” join – the joining of data based on
a spatial relationship (in our case, a point being located in a polygon).
In the next section, we process spatial data using R and some extension
packages, before introducing the PostGIS spatial database as an alterna-
tive workflow.

11.3 reading and visualizing spatial data in r

While most spatial data are usually processed in specialized GIS systems,
R has grown into a powerful and versatile GIS itself, due to the develop-
ment of new extension libraries. In this section,we use R’s Simple Features
(sf) library, a relatively new generic library for vector data. The term
“feature” is often used in the GIS world to refer to the computational

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

152 11 Spatial Data

representation of real-world objects, such as houses or lakes. The sf is
the latest addition to R’s spatial libraries and will likely supersede older
ones, such as the sp package. As always, to use the functionality of the
package, we have to load it first:

library(sf)

As described above, a vector dataset is essentially a data table with a
new type of column that contains the spatial representation of the respec-
tive entry.This column is referred to as its geometry, and geometries can be
points, lines, or polygons. The sf package follows exactly this approach. It
uses R’s standard data frames, but adds a new column type for geometries.
So in other words, a spatial dataset in sf is just a regular table with a
specific column for spatial information. Let us take a look at how to
create such a table in R. We first load the GED data on violent events.
This dataset comes as a regular CSV file:

events <- read.csv(file.path("ch11", "ged.csv"))

I removed many columns from the dataset to make the exercises below
easier to follow. Compared to the original version, the reduced dataset
contains only events for Bosnia, and only those events for which the exact
location is known. Also, the dataset has a limited set of columns, namely,
those with the unique ID of each event, the date it occurred, the location of
the event (stored in the longitude and latitude columns), and the number
of casualties (the best estimate provided by the GED):

summary(events)

id date_start latitude longitude
Min. :199077 Length:1136 Min. :42.71 Min. :15.78
1st Qu.:199690 Class :character 1st Qu.:43.85 1st Qu.:18.10
Median :200136 Mode :character Median :43.85 Median :18.38
Mean :200106 Mean :44.11 Mean :18.16
3rd Qu.:200503 3rd Qu.:44.54 3rd Qu.:18.38
Max. :200874 Max. :45.19 Max. :19.54

best
Min. : 0.00
1st Qu.: 1.00
Median : 3.00
Mean : 17.29
3rd Qu.: 6.00
Max. :8106.00

For now, R treats the events table as a regular data frame and does
not know that each entry has spatial point coordinates attached to it.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 153

Therefore, we need to “spatially enable” the dataset, which we can simply
do by converting it to a spatial object of type sf. The st_as_sf() function
takes a regular data frame, and requires you to specify the names of
the columns where the spatial coordinates are stored. In addition to the
names of coordinate columns, we need to specify what spatial reference
system is used for the dataset.1 Longitude/latitude coordinates indicate a
geographic coordinate system (see Figure 11.3), which has the ID 4326.
If your data uses a different reference system or if it is projected, it is
important to correctly specify the coordinate system here:

events <- st_as_sf(events, coords = c("longitude", "latitude"), crs = 4326)

Now you will see that events is no longer just a data frame, but much
more:

print(events, n=2)

Simple feature collection with 1136 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 15.78194 ymin: 42.71194 xmax: 19.53556 ymax: 45.18944
Geodetic CRS: WGS 84
First 2 features:

id date_start best geometry
1 199885 1993-02-01 6 POINT (18.80833 44.87278)
2 199767 1994-03-03 1 POINT (15.91861 44.84444)

What do we see in this output? Our dataset contains a total of 1,136
features, each of which is a conflict event. The data uses points as geome-
tries, in a two-dimensional space (hence the dimension XY).We also see the
overall spatial extent of the dataset, referred to as its “bounding box” –
this is the rectangle defined by the minimum and maximum coordinates
along the x and y axes.
sf provides plotting functions specifically designed for spatial data.

The easiest approach is to plot only the events as points. This is done by
extracting the geometry from the dataset using the st_geometry() func-
tion, and by sticking it into the plot function as follows:

plot(st_geometry(events))

You can see the result in Figure 11.4. However, often we may want
to color/style the plotted features according to some quantity associated

1 Spatial reference systems were defined by the European Petroleum Survey Group (EPSG);
online catalogues can be accessed, for example, at https://spatialreference.org or https://
epsg.io.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://spatialreference.org
https://epsg.io
https://epsg.io
https://doi.org/10.1017/9781108990424.016

154 11 Spatial Data

figure 11.4. A simple plot of the conflict events from the GED.

with them. For example, we could color the dots according to the sever-
ity of the event, or according to the year in which they took place. In
sf, this can be done by subsetting the data to the variable you want to
use for coloring, and using again the plot() function, as for example
in plot(events["best"]). There are many other options for tuning the
plotting of spatial features, and you should consult the sf manual if you
are interested in learning more.
We have now imported the events data from a CSV file, and converted

it to a spatial dataset with point geometries. The second dataset we need
contains the municipalities for our spatial analysis. The borders of each
municipality are stored as a polygon, which is why we cannot simply
store their coordinates in two columns of a CSV table. Instead, the dataset
of municipal borders is provided in the shapefile format, an old legacy
format for GIS vector datasets. As you can see in the data repository, a
shapefile actually consists of at least three files with the same name, but
different endings (.shp, .shx, and .dbf). Due to the fact that this format
is still widely used, all GIS tools including sf are able to import it. When
we do this, we have to manually set the coordinate reference system to
the standard longitude/latitude system using the crs parameter, as above:

municipalities <- st_read(file.path("ch11", "bosnia.shp"), crs = 4326)

Reading layer �bosnia' from data source
�/Users/nilsw/Books/DataManagement/dmbook/ch11/bosnia.shp'
using driver �ESRI Shapefile'

Simple feature collection with 109 features and 2 fields

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 155

figure 11.5. Municipality boundaries and conflict events.

Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 15.74059 ymin: 42.56583 xmax: 19.61979 ymax: 45.26595
Geodetic CRS: WGS 84

With both the events and the administrative borders imported in R, let
us take a quick look at a combined plot. For the map in Figure 11.5, we
first plot the underlying municipalities, and then place the events on top
of them with the add=T parameter:

plot(st_geometry(municipalities), col = "lightgrey")
plot(st_geometry(events), pch = 16, add = T)

We see that there are some areas with lots of events, while others expe-
rienced no violence. Still, this is difficult to tell exactly: Events occurring
at the same location have the same coordinates and are therefore plotted
on top of each other, which makes it impossible for us to keep them apart.
Therefore, we proceed with our exercise and count the number of events
per municipality, which helps us gauge the spatial distribution of violence
over the entire country.

11.3.1 Overlaying Different Spatial Datasets in sf

Rather than just plotting our two datasets – the municipalities and the
events – on top of each other,we now need to link events to their respective

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

156 11 Spatial Data

municipalities, such that we can count them. Before we do so, a short
comment on terminology is in order. In the GIS world, a spatial dataset
used in a project is typically called a layer. In our example, therefore,
we have two layers – a layer of municipality boundaries, and a layer of
events. Linking the events to the municipalities based on their location
is an example of what is called an overlay operation in GIS terminol-
ogy. However, from a relational database perspective, we can also think
of these layers as tables with spatial coordinates. This way, an overlay
operation is equivalent to joining tables based on location: Rather than
linking records based on a common attribute (which is what a regular join
does), we link them by location. In our example, we want to combine each
event with the municipality it occurred in. In other words, an overlay
of this kind is simply a spatial join, and I now demonstrate how this
is done in R and sf.
The st_join() function is used to carry out a spatial join, so let us take

a look at what it does:

joined <- st_join(events, municipalities)
print(joined, n = 2)

Simple feature collection with 1136 features and 5 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 15.78194 ymin: 42.71194 xmax: 19.53556 ymax: 45.18944
Geodetic CRS: WGS 84
First 2 features:

id.x date_start best id.y name geometry
1 199885 1993-02-01 6 115 Breko POINT (18.80833 44.87278)
2 199767 1994-03-03 1 26 Bihac POINT (15.91861 44.84444)

A spatial join is very similar to a regular, non-spatial join: It links the
records of one table to the corresponding records from another table. So
for each conflict event, the function appends the attributes of the corre-
sponding municipality the event is located in. In the above example, the
event with ID 199767 occurred on March 3, 1994 in municipality 26,
which is Bihać. The joined dataset is again a spatial one, as you can see
from the geometry column, since it retains the spatial coordinates of the
first dataset (the events).
Using the st_join() function in this way hides much of the power and

complexity of spatial joins.Without an additional specification, layers are
joined based on intersecting geometries; that is, an event is linked with

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 157

a municipality if its geometry intersects with the municipalities geome-
try (the polygon). This does exactly what we want. However, things can
become more complicated with different types of geometries or different
relationships between them. For example, we can spatially join tables
if geometries touch (but not intersect) each other, or if they are located
within a certain distance to each other. To illustrate the basic idea of a
spatial join, however, we do not go into more detail here.
We have now joined the two layers, such that each event is linked to the

corresponding municipality. To create a map of the intensity of violence
across Bosnia, there are two steps left to do: First,we need to aggregate the
joined datasets by municipality and count the number of events for each
of them, and, second, we need to append this information to our original
dataset of municipalities, so that we can plot it as a map. Let us start
with the first step. For convenience, we use the tidyverse approach for
aggregation and merging (see Chapter 7), but it is of course also possible
to do this in base R:

library(tidyverse)
eventcounts <- joined %>%
as.data.frame() %>%
group_by(id.y) %>%
count(name = "num_events")

print(eventcounts, n = 3)

A tibble: 79 x 2
Groups: id.y [79]
id.y num_events
<int> <int>

1 1 1
2 2 7
3 4 1
... with 76 more rows

The above code first converts the joined spatial dataset to a regular,
non-spatial data frame with as.data.frame(), since we no longer need the
geometries of the municipalities. Using the standard tidyverse approach,
it then groups the data using the id.y variable (which is the municipality
identifier), and counts the records for each of them. This way, we get a
list of municipality IDs (id.y) with the number of events that occurred
in these municipalities. It is important to notice that the municipalities
that do not contain any events do not show up in this list. eventcounts
only contains event counts for 79 municipalities, which means that

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

158 11 Spatial Data

30 out of 109 municipalities did not experience any conflict events
according to the GED.
What is left for us to do is to merge this information with the existing

municipalities dataset. Here, we need to be careful, since the data frame
with the event counts is much shorter than the complete list of munic-
ipalities. Therefore, we use a left join, which preserves the entire list of
municipalities:

municipalities_sf <- municipalities %>%
left_join(eventcounts, by=c("id" = "id.y"))

At the end of the chapter, we will use this new dataset to plot the
distribution of violence across the different municipalities in Bosnia.

11.4 spatial data in a relational database

In the first part of this chapter, we relied on spatial data stored in files,
which we then imported in R for processing. This file-based approach is
only one way to work with spatial data. Similar to relational databases for
non-spatial data,we can also use these databases to store and process data
with spatial coordinates. There are several advantages of the latter, for
example, a more efficient processing of large datasets, but also concurrent
access to the data by multiple users.
In this chapter, we rely again on the PostgreSQL relational database

system. As you know, PostgreSQL is a great tool to work with tabular
data – this is something we discussed at length in the previous chap-
ters. As it turns out, however, PostgreSQL can also process spatial data,
once we enable the PostGIS spatial extension. The combination of Post-
greSQL/PostGIS (which from now on, we simply refer to as PostGIS)
then becomes a powerful spatial database that is an ideal tool for more
complex spatial data operations. You interact with PostGIS in the same
way as we did with PostgreSQL alone. This means that you need to have
the database server running and set up a new database (which we call
spatialdata) for this chapter, as described in Chapter 2. We then connect
to our database exactly as we did in the previous chapters:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "spatialdata",
user = "postgres",
password = "pgpasswd")

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.4 Spatial Data in a Relational Database 159

We now have a blank PostgreSQL relational database that keeps data
in tables. For us to be able toworkwith spatially referenced data, however,
we need to spatially enable our database by switching on the PostGIS
extension:

dbExecute(db, "CREATE EXTENSION postgis")

Let us check if PostGIS is working correctly. The following code should
output a single line similar to what you see below, which indicates the
PostGIS version installed on your system:

dbGetQuery(db,
"SELECT name, installed_version
FROM pg_available_extensions
WHERE name = 'postgis'")

name installed_version
1 postgis 3.1.5

We are now ready to import the spatial datasets into PostGIS. Again,
we use the conflict events and the municipalities data for Bosnia that you
are familiar with from the exercises above. Let us start with the events.
We first read the CSV file and write it as a simple table in the database:

events <- read.csv(file.path("ch11", "ged.csv"))
dbWriteTable(db, "events", events)

This step is exactly the same as for a non-spatial table. So far, our
table is not yet “spatially enabled,” which means that PostGIS does not
know yet that each event is actually associated with a point with x and y
(or rather, longitude and latitude) coordinates. This is why, similar to
the R-based workflow above, we need to explicitly create a column in
the events table for the spatial location associated with each row. As
with the sf package for R, this column is called a geometry column, and
we create it using an ALTER TABLE statement. Recall that we have used
different column types in PostgreSQL before, such as integer for numbers
or varchar for text (see Chapter 8). With PostGIS enabled, we can now
define columns of type geometry. For a geometry column, you need to
specify the type of the geometry (a point, a line or a polygon), as well as
the coordinate reference system (the EPSG ID we used above):

dbExecute(db,
"ALTER TABLE events ADD COLUMN geom geometry(point, 4326)")

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

160 11 Spatial Data

We can now use the data in the longitude and latitude fields of our
table to update the geometry columnwith newly created point geometries.
Here, the st_point() function creates the point, and the st_setSRID()
function defines the spatial coordinate system (which you already know
from the previous section):

dbExecute(db,
"UPDATE events
SET geom = st_setSRID(st_point(longitude, latitude), 4326)")

Done! Our events table now has the spatial coordinates of all events
stored in a new column, which we can later use for spatial computations.
Next, we need to import the municipalities to our database. Here, we
follow a slightly different approach. We first import the shapefile using
the st_read() function from the sf package (see above), rename the geom-
etry column to geom for consistency, and then send the (spatial) table
to PostGIS. The latter is done using the st_write() function from sf,
which is essentially the spatial equivalent to the dbWriteTable() we used
in previous chapters. The function requires you to specify the database
connection (this is the db object), as well as a name for the layer you
would like to create in the database.

municipalities <- st_read(file.path("ch11", "bosnia.shp"), crs = 4326) %>%
rename(geom = geometry)

st_write(municipalities, dsn = db, layer = "municipalities")

Let us count the records in our two spatial tables to make sure that the
import was successful:

dbGetQuery(db, "SELECT count(*) FROM municipalities")

count
1 109

dbGetQuery(db, "SELECT count(*) FROM events")

count
1 1136

11.4.1 A Spatial Join with PostGIS

The two tables were correctly imported: We have 109 municipalities and
1,136 events in our database. We can now proceed to spatially join them,
using the geometry columns from the two tables. Let us recall first what a
join of two tables does: It links the records of one table to those of another,
based on a defined relationship between attributes of the two tables. In
a conventional join, we usually require that an attribute from one table

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.4 Spatial Data in a Relational Database 161

be equal to the attribute from another table. For example, in the previous
chapter, we joined parties to elections based on the party ID attribute.
In a spatial join, we no longer match records based on common

attributes, but based on their spatial coordinates. Specifically, we want
to join an event with a municipality if the former is contained in a given
unit. Hence, we simply replace the join condition in a conventional join
(which usually requires two given attributes to be equal) with a spatial
condition (namely, that one geometry is contained in another). Let us
take a look at how this is done in the context of a SELECT statement:

dbGetQuery(db,
"SELECT municipalities.id, events.id
FROM municipalities JOIN events
ON st_contains(municipalities.geom, events.geom)

LIMIT 3")

id id..2
1 115 199885
2 26 199767
3 70 200575

This query demonstrates how we join the two tables based on their
geometries. The basic structure of this query should be familiar: We spec-
ify what fields we want to see (in our case, the IDs of the municipalities
and the corresponding events), and which tables we want to select from.
Here, the JOIN keyword is used to link municipalities and events. The
part that is new is the join condition. Here, we use the PostGIS func-
tion st_contains(), to require that we only want to retain those pairs of
records where the municipality geometry (which is a polygon) contains
the event geometry (which is a point).
So each entry we see in the output above is a pair of municipality ID

and event ID that satisfies the join condition, that is, where the munici-
pality contains the event. Since the municipalities are non-overlapping,
each point can be linked with at most one municipality, so the max-
imum number of records this table can have is 1,136 (the number of
events). Joining municipalities and events is only the first step. Again, as
in the R-based example above, we need to aggregate this table such that it
counts the number of events per municipality. You should be familiar with
SQL’s aggregation – all we need to do is specify the aggregation function
(count(*)) as well as the grouping level (GROUP BY):

dbGetQuery(db,
"SELECT municipalities.id, count(*) as num_events
FROM municipalities JOIN events
ON st_contains(municipalities.geom, events.geom)

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

162 11 Spatial Data

GROUP BY municipalities.id
LIMIT 3")

id num_events
1 1 1
2 2 7
3 4 1

We now have the information that we want – for each municipality,
we have the number of conflict events that occurred there. The final step
is to add this information to our municipalities table, such that we can
access it along with the existing data we have on municipalities. For this,
we first add a new column to this table, which we later use to store the
event counts:

dbExecute(db, "ALTER TABLE municipalities ADD COLUMN num_events integer")

Recall that in our above example, we first stored the event counts in
a separate table, which we later merged with the main municipalities
data frame. In SQL, we can do something similar. However, rather than
creating a new table for the event counts that we later have to delete again,
we use a “temporary” table within our statement. This table is created
on the fly as we run the query, but exists solely for the purpose of this
query and is later deleted. You can define such a temporary table using
the WITH keyword. In the statement below, we define a temporary table
called eventcounts using exactly the same SQL code as in the previous
example. We then use this table in an UPDATE statement, where we link it
to the main municipalities table using the municipality ID:

dbExecute(db,
"WITH eventcounts AS (
SELECT municipalities.id, count(*) as num_events
FROM municipalities JOIN events
ON st_contains(municipalities.geom, events.geom)

GROUP BY municipalities.id)
UPDATE municipalities
SET num_events = eventcounts.num_events FROM eventcounts
WHERE municipalities.id = eventcounts.id")

Only 78municipalities are updated, since the others do not contain any
events. Finally, we export the municipalities table as a spatial dataset to R,
such that we later draw a map of the violence in Bosnia. The st_read()
function can not just read data from files (as above), but also from a
database connection. Once we have done that, we can close the database
connection.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.5 Results: Patterns of Violence in the Bosnian Civil War 163

municipalities_pg <- st_read(dsn = db, layer = "municipalities")
dbDisconnect(db)

11.5 results: patterns of violence
in the bosnian civil war

We computed event counts per municipality in two ways: First, using the
sf package for R and, second, using the PostGIS spatial database. This
gives us two spatial datasets: municipalities_sf is the result of the former
approach, while municipalities_pg is the result of the latter. Both have
the same structure: Each entry corresponds to a municipality, and the
num_events column contains the event count for the respective municipal-
ity, with NA values for those municipalities without events. We can now
use either of these datasets to draw a map of the distribution of violence
in the Bosnian war as in Figure 11.6.
This maps shows us the municipalities that were hit hardest by violence

in the civil war, as measured by the number of events. Part of the city of
Sarajevo (displayed in black) experienced most of the attacks, but there
are other areas in the north and the northwest of the country for which
the GED recorded many conflict events.Of course,we can debate whether

Number of events

None recorded

Up to 10 events

Up to 100 events

More than 100 events

figure 11.6. Civil war violence in Bosnia, as measured by the number of conflict
events in the GED.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

164 11 Spatial Data

counting the number of events is a valid approach to approximate the
patterns of violence. Alternative ones are possible, for example, by using
the GED’s casualty statistics.

11.6 summary and outlook

Spatial data are empirical observations tagged with geographic coordi-
nates, such that they can be assigned to particular places on Earth. In
this chapter, we have focused on vector data, which can be of different
types: points to represent single locations, lines for rivers or roads, and
polygons for political units. A GIS vector dataset usually consists of a
set of geographic features, each of which is linked to additional data
contained in an attribute table. When working with vector data in R or
GIS, we use an amended version of the standard tabular data structure
with special column types, namely, those that store the corresponding
spatial features.
We discussed how to create these spatially enabled tables both in R

(using the sf package), but also in PostgreSQL’s PostGIS extension. For
the exercises, we used two spatial datasets: a point dataset of violent
events in the civil war in Bosnia, and a polygon dataset of municipal-
ity boundaries. With these two datasets, we performed a spatial overlay
operation, where the points are superimposed on the boundaries to find
out which events occurred in each municipality. In database terminology,
this is a spatial join, where we link entries from two tables based on a
spatial relationship they have (in our case, whether a point is located
within a polygon).
In this and the following chapters, we use both file-based and database-

driven workflows to process our data. You are now experienced enough
to decide whether one or the other is more suitable for your project:
Using R and its extension packages to process data stored in files is easier
as regards the technical infrastructure you need, but may not be ideal
for projects involving several collaborators and/or large datasets. Spatial
operations can be time-consuming, which is why it is often useful to per-
form them in a spatial database such as PostGIS. In particular, while not
necessary in our above example, you can use indexing as described in the
previous chapter also for spatial columns, which, in many cases, will give
you significant performance improvements. Beyond the topics we covered
in the chapter, here are some suggestions that can be helpful to you:

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.6 Summary and Outlook 165

• Explore the world of spatial data further: If this chapter sparked your
interest in spatial data, there is much more to explore. In our exam-
ples, we only used a limited set of operations with one type of spatial
data – vector data. In particular in combination with raster data, there
are many other useful applications for spatial analysis in the social
sciences, and other, more focused introductions can help you make
progress (see, for example, Lovelace et al., 2019).

• Visualize your spatial data whenever possible: When working with
spatial data, it is often useful to plot your data. Looking at a map helps
you understand your data better and lets you identify errors or artifacts
that would otherwise be difficult to spot. This is why I recommend
that you visually explore your data, using R’s plotting features or an
interactive GIS program such as QGIS (see next point).

• Use QGIS to easily browse GIS datasets: Oftentimes, it is useful to
take a look at a spatial dataset to explore its structure or browse its
contents. For this purpose, a graphical GIS can be useful. QGIS is a
powerful, open-source GIS tool, which is available free of charge for
all major operating systems from https://www.qgis.org/. With QGIS,
you can even connect to a PostGIS spatial database and explore the
different spatial tables visually.

• Do not despair, GIS data formats can be confusing: For GIS, there is
a wealth of different file formats. Many of them are legacy formats
(such as shapefiles), which continue to be used in the field. Also, the
mix of two very different approaches (vector and raster data) adds
to the complexity. As you make progress in spatial analysis, you will
encounter manymore file formats, and it is useful to consult the various
online references for more information about their specifications.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://www.qgis.org/
https://doi.org/10.1017/9781108990424.016

12

Text Data

So far in this book, we worked almost exclusively with data structured
in tabular form. In the previous chapter, we saw how simple tables can
be amended with spatial coordinates, such that each entry in the table is
linked to a location on the globe. In this chapter, we cover a type of data
with considerably less structure: texts. A text can be any written state-
ment or report, but also spoken words that were transcribed. Text data is
important to understand a wide variety of phenomena that are of interest
to social scientists: What issues are discussed in parliamentary debates?
How do certain hash tags travel on social media? How do journalists
frame particular social issues in news reporting? All these applications
require us to deal with text data.
In recent years, text analysis has become extremely popular in the social

sciences. While traditionally the domain of (computational) linguistics,
several types of text analysis have now become part of the social science
toolkit. Linguists focus more on in-depth analysis of text where they try
to identify, for example, the structure of sentences, and the subject or
the object of an action. In the social sciences, and in political science
in particular, text analysis has been done with simpler approaches, for
example, analyzing word frequencies, or searching for the occurrence of
particular keywords in texts.
Whatever type of analysis we plan to apply to textual data, we will

have to obtain, manage and store these texts first. This is what we focus
on in this chapter. The variety of methods for text analysis is so large that
this chapter cannot even provide a sufficient overview. Rather, we discuss
what text data look like, how they are typically stored as files, and howwe
can process and manage these data both in R and in a relational database.

166

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.1 What Is Textual Data? 167

figure 12.1. Two documents with associated metadata.

In doing so, and in line with the general approach of this book, the focus
is on the handling of text data before it is used for some kind of text
analysis; therefore, we deal with the representation and storage of textual
data, and how we can search and query them. Once we know how to do
this, the data can later be used for all the different methods and tools that
exist for text analysis, such as topic modeling, sentiment analysis or more
advanced natural language processing approaches (Grimmer et al., 2022).

12.1 what is textual data?

Textual data (or “text as data,” as it is often called) usually comes in the
form of documents as the basic units. In its simplest form, a text dataset
is a collection of documents, where each document corresponds to what
we would call a “case” or an “observation” in a standard social science
dataset. A collection of text documents is often called a “corpus.” Not
surprisingly, each document in a corpus is much longer than the short
strings we have seen in standard tables (e.g., country names). In many text
datasets, individual documents are tagged with additional information.
For example, in a corpus of political speeches, each speech can be labeled
with the name of the speaker or the date it was held. Figure 12.1 illustrates
what this looks like for speeches held during the United Nations General
Debates, which will be introduced in more detail below.
The figure shows two speeches, one held by the US in the 34th General

Debate in 1978, one by Hungary in the 52nd debate in 1997. The main
data is the text of the speeches, and each of them is tagged with metadata.
This means that the entire corpus of textual data can actually be repre-
sented in a tabular structure, where each of the metadata fields and the
text itself correspond to a column. Figure 12.2 shows what this looks like

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

168 12 Text Data

figure 12.2. The two documents stored in a table.

for the two speeches above. Therefore, as in the chapters before, we can
transform yet another type of data to a tabular format, and use many of
the data operations we are already familiar with.
While we can use a structured data format such as a table to store an

entire corpus, text data is typically considered to be unstructured. Here,
“unstructured” refers to the main part of the data, which is the text.
Unstructured means that the text does not follow a particular pattern or
model, such that it is difficult to locate particular pieces of information in
it. For example, it is likely that each of the texts in our example above con-
tains information about the country holding the speech. You can see this
in the speech fromHungary,which pledges the support of the “Hungarian
delegation.” Still, it is not straightforward to extract this information, as
the country information is not explicitly flagged as such in the text, and
is likely to be phrased differently in speeches of other countries. Com-
pare this to the structured part of the dataset (the metadata). Here, we
can simply look up the respective column to find out about the country
holding the speech. Hence, not surprisingly, unstructured data require
different and more complex methods to extract information compared
to structured data such as tables.
How do we store text data digitally? As for spatial data, there exist

numerous options and file formats. A first distinction we have to make is
whether we store an entire corpus with different documents in a single file
or as a collection of files. For the latter, we can simply use one text file for
each document (see Chapter 4 for some basics about text files).When fol-
lowing this approach, each text file contains only text, not a CSV-encoded
tabular structure. This means that there are some potential issues. For
example, recall what we discussed about text encoding in Chapter 4. If
text contains special characters that exist for many languages worldwide,
we have to make sure that we choose an appropriate encoding. Also,
we have to decide where to store document metadata if the text files
themselves contain only plain text. As we will see below, this is often
done by encoding metadata in file names or folder names.
A different approach for storing a document collection is to keep all

documents in a single file. Again, there are many different ways for doing

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.2 Application: References to (In)equality in UN Speeches 169

this. One that you are already familiar with is the CSV format, where each
document and its associated metadata corresponds to a single line. When
using CSV for collections of long texts, we have to be particularly careful
about how to deal with commas and line breaks in the texts. Since these
characters have a particular function in CSV files (they separate fields and
lines), we have to make sure that the texts containing them are properly
encoded in the CSV file, for example, by enclosing them in double quotes
(see Chapter 4).

12.2 application: references to (in)equality
in un speeches

In 2015, the United Nations adopted the 2030 Agenda for Sustainable
Development, a plan for improving economic, social, and environmental
conditions worldwide. At the core of this agenda is a set of 17 Sustainable
Development Goals (SDGs) that should be achieved by the year 2030.
Goal No. 10 is reduction of inequality, both at a global scale between
countries and also between different groups within countries. More
details about SDGNo. 10 are provided on the UNwebsite at https://www
.un.org/sustainabledevelopment/inequality/. Inequality and its reduction
have not always been a high priority for the UN. For example, during the
Cold War era, much of UN politics was about international security and
the avoidance of violent conflict.
How can we trace the salience of different topics in the UN over time?

How can we find out whether and when (in)equality became an issue of
concern for deliberations at the UN? This is the kind of question that
can be analyzed using statements from political actors. In our application
for this chapter, we focus on speeches by UN member states at the UN
General Debate, held once a year at the beginning of each session of the
General Assembly at the UN Headquarters in New York. At the General
Debate, each state is usually represented by its head of government. The
first General Debate took place in 1946, the 2020 General Debate was
held in September 2020 and commenced the 75th session of the General
Assembly.
General debates last for several days and consist of a series of speeches

by the representatives of the member states. In this chapter, we rely on
the UN General Debate Speech Corpus (UNGDC, Baturo et al., 2017),
a collection of the General Debate speeches between 1970 and 2018. As
Baturo et al. (2017) note, the speeches are used by the different govern-
ments to comment on particular events and developments in the past year,

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://www.un.org/sustainabledevelopment/inequality/
https://doi.org/10.1017/9781108990424.017

170 12 Text Data

but also to emphasize pressing issues in world politics. Therefore, the
collection provides us with an interesting opportunity to find out when
and how inequality was mentioned in these speeches over time.
Rather than placing all the speeches into a single file, the UNGDC is

distributed as a compressed archive,where each speech is stored in a single
plain text file. Speeches are stored in separate directories, one for each
year. The names of the text files contain information about the country
holding the speech, the session (starting with 25, which corresponds to
the 1970 General Debate) and the year. This is what the data structure
looks like for the 25th debate in 1970:

Session 25 - 1970

ALB_25_1970.txt

ARG_25_1970.txt

AUS_25_1970.txt

...

The dataset uses ISO three-letter codes to denote countries. In each file
name, the different metadata fields are separated with an underscore. For
the purpose of illustration, and to limit the computational complexity of
the code examples in this chapter, we focus only on speeches by the US as
one of the dominant countries in the UN. Our simple task in this chapter
is to locate mentions of terms related to (in)equality in the US speeches
over time. In line with the previous chapters, we do this first in R only,
and later also in PostgreSQL.

12.3 working with strings in (base) r

As you know, R data frames have columns with different types, one of
which is character vectors for text. The character sequences (strings) we
have used so far are short, such as country or party names. The texts
below are much longer, but in principle can be treated exactly as the short
strings we encountered so far. As mentioned above, a collection of texts
can stored in a tabular file format such as CSV, in which case you can
import them to R as any other CSV file. If, however, the texts are stored
as separate files, this becomes a bit more difficult. This is the case for the
UNGDC that we use in this chapter, where each file contains only the
text of a speech, and the metadata is encoded in the file name. Luckily,
there is a useful package called readtext that makes the import of these
file collections easy. readtext is a companion package to the powerful

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.3 Working with Strings in (Base) R 171

quanteda text analysis framework, which we take a closer look at below.
With readtext installed, we load the package:

library(readtext)

The data repository for this chapter contains the UN General Debate
speeches for the US, with one speech per file. The readtext() function is
designed to import collections of files. Rather than just specifying a single
file to be read, you can use the wildcard character * to specify a pattern of
directories and files that the function should use. In our case, this patterns
consists of the folder in which the text files are located (ch12), and the
file name pattern *.txt. The function will then process all files ending in
*.txt in the given directory. In addition, the function needs information
about where the document metadata are stored. In quanteda terminology,
these metadata are “document variables” or “docvars.” In our case, the
country, the session, and the year of the respective speech are part of the
file name, which is why we set the docvarsfrom parameter accordingly.
Finally, we need to specify what metadata fields are encoded in the file
name. If you omit this parameter, readtext() will assign standard names
for these variables. Our speech files are named such that the different
document variables are separated with an underscore, which the function
recognizes by default. A different separator can be set with the dvsep
parameter.

docs <- readtext("ch12/*.txt",
docvarsfrom = "filenames",
docvarnames = c("country", "session", "year"))

The readtext() function can process many more types of text files,
including PDF or MS Word. Also, it can handle different ways of storing
metadata, for example, in CSV format. Let us take a closer look at what
the function does. If the import is successful, the function returns an
(amended) data frame, where each speech corresponds to one row (49
in total).We can use standard R syntax to output a single document, such
as this one:

docs[1,]

readtext object consisting of 1 document and 3 docvars.
Description: df [1 x 5]
doc_id text country session year

* <chr> <chr> <chr> <int> <int>
1 USA_25_1970.txt "\"1.\t It is \"..." USA 25 1970

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

172 12 Text Data

This document is the speech given by the US in 1970, at the beginning
of the UN’s 25th session. Each document has a unique doc_id, generated
from the file name. The metadata (country, session, and year) are con-
tained in the respective columns, exactly as we specified above. The most
important column is text, which contains the text of each speech. This is
a standard character variable, and we can use R’s basic functions to work
with it. Before we turn to our research question and study how inequality
is referenced in the speeches over time, let us examine the texts in more
detail. Take a closer look at the first speech by outputting the beginning of
the first two paragraphs with the substr() function that returns a subset
of a string between the given positions:

substr(docs[1,]$text, 1, 22)

[1] "1.\t It is my privilege"

substr(docs[1,]$text, 957, 970)

[1] "2.\tDuring this"

It seems that each paragraph in this speech is numbered, followed
by a tab character (\t). Recall that the tab is one of the invisible
characters we discussed in Chapter 4. If you open the corresponding
file USA_25_1970.txt in RStudio’s text editor, you can verify that
the numbering of paragraphs continues in the same fashion (digits,
followed by a dot, followed by a tab character). These numbers may be
problematic, since they are not part of the actual speech, but also are not
used consistently throughout the dataset. For example, the speech from
1996 no longer has numbered paragraphs. Therefore, it is best to clean
up the texts by removing the paragraph numbers. How can we do this?
Manually searching for (and replacing) individual numbers such as

“1.”, “2.”, etc. is not an option, as there are dozens of numbered para-
graphs in some speeches. Also, it would violate one of our core rules for
data processing, which is that data manipulations should be transparent
and replicable, and therefore be defined in code. For these reasons, we
need a better searchmethod,where we can flexibly define a search pattern.
This is what so-called regular expressions (in short, regex) allow us to do.
Regular expressions are extremely powerful and not just limited to R;
in fact, they constitute a standard feature of many other programming
languages as well. Relational databases can handle regular expressions
too, as we will see below.
We start by first developing a pattern to locate the paragraph numbers,

and later use this pattern to eliminate them from the speeches. Before we

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.3 Working with Strings in (Base) R 173

use the real speeches, I demonstrate the use of regular expressions using
some toy examples. In R, the most important functions to be used together
with regular expressions are grep() and the closely related grepl(). They
require two parameters: A regex pattern and a vector of strings in which to
locate the pattern. grep() then returns the index for each string in which
it was able to locate the pattern. For simplicity, we use grepl(), which
returns a vector of the same size as the input vector, where each entry
indicates whether the search pattern occurs in the respective input string.
Let us try this with a simple example. A regex pattern can be a single
character, for example, the character a:

grepl("a", c("data", "management", "book", "2022."))

[1] TRUE TRUE FALSE FALSE

The character a occurs somewhere in the first two input strings, but not
in the last two. If we refine our pattern such that it looks for the sequence
ag, we get only one match, since this pattern only occurs in the string
management:

grepl("ag", c("data", "management", "book", "2022."))

[1] FALSE TRUE FALSE FALSE

Rather than particular characters, you can also search for classes of
characters, such as all lowercase letters, or all digits. Let us try the latter.
Before we do this, we need to briefly look at how R deals with strings and
special characters within them, since this can interfere with how some
regexp patterns are defined. Some characters in R have a special meaning.
For example, as you recall from Chapter 4, a line break is denoted by
\n, which uses the special character \. Another example is single (') or
double quotes ("), which are used to denote the beginning and the end
of a string, and therefore cannot occur within the string itself unless we
remove their special meaning. To do this, you need to “escape” them with
a backslash \. For example, to generate an actual backslash in a string,
you write \\. To try this, you can use the writeLines() function in R to
output the real content of a string, not how it is represented in R. For
example, writeLines("\\\"") generates the output \".
Similar problems arise if we use a notation with a backslash (or other

special characters) to define search patterns in regular expressions. In a
regex pattern, the shortcut \d denotes a single digit (between 0 and 9).
Since we need to escape the backslash, \d now becomes \\d. The added

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

174 12 Text Data

backslash tells R to treat the next character as is, and not as one with a
special meaning. Let us use this to locate digits in our toy example:

grepl("\\d", c("data", "management", "book", "2022."))

[1] FALSE FALSE FALSE TRUE

Oftentimes, we want to detect repetitions of particular patterns, for
example, a sequence of exactly four digits to search for years. This can
be done with a regex quantifier, which indicates that a particular pattern
must occur at least (or at most) a certain number of times. In its most
generic form, this is denoted with curly brackets around the exact number
of occurrences we want. The following example demonstrates this and we
correctly locate the four-digit number in the last string:

grepl("\\d{4}", c("data", "management", "book", "2022."))

[1] FALSE FALSE FALSE TRUE

There are different variations of the notation. For example, {n,m}
matches the preceding patterns at least n, but at most m, times. If you
would like a pattern to be present at least once (but possibly more than
that), you can also use the + operator. Searching for at least one digit
then simply becomes d+. Let us use this to search for a sequence of digits
followed by a dot. The latter is again a special character and needs to be
escaped to be interpreted as a full stop (dot).

grepl("\\d+\\.", c("data", "management", "book", "2022."))

[1] FALSE FALSE FALSE TRUE

We are now already very close to a regex pattern that allows us to
clean up the UN speeches. Recall that we need to search for a sequence of
digits (at least one), followed by a dot, followed by a tab character. The
latter is a literal character in a regular expression and does not need to be
escaped, so we simply amend our above pattern with a \t before we can
apply it to the speeches. To verify whether this works, we use the grep()
function that returns the indexes of those texts where it was able to locate
the pattern.

grep("\\d+\\.\t", docs$text)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.4 Natural Language Processing with quanteda 175

As we already suspected above, the numbering of paragraphs is not
consistently applied in all speeches. Rather, the output of the grep() func-
tion shows that this pattern is only found in the first 15 speeches, which
means that it stops after 1984. The gsub() function helps us remove these
paragraph numbers. It takes as input a regex pattern (which we already
have), a replacement text (which in our case is an empty string "", because
we simply delete the paragraph numbers), and a vector of strings that
should be modified. The latter is our collection of speeches, and we write
the result back to our existing data frame:

docs$text <- gsub("\\d+\\.\t", "", docs$text)

This example gave you an idea of how to work with regular expres-
sions for searching and manipulating texts. Regular expressions are a
widespread and extremely powerful technique to process strings, and we
have only scratched the surface of the functionality and flexibility they
offer. If you want to learn more about them, you will find many useful
tutorials online or in more comprehensive R introductions. As mentioned
above, regex are not a feature specific to R.While the general ideas apply
also to other programming languages and regex implementations, there
are different dialects with slight differences in the syntax. Even though
we covered regular expressions for our work with political texts, their
use is by no means limited to human text and language. In fact, regular
expressions can be very useful to fix issues in data files, for example, in
malformed CSV files.

12.4 natural language processing with quanteda

Base R and regular expressions can help you get a lot of tasks done when
it comes to the management and processing of text data, as we have seen
above. These tools are not specifically designed for the processing of natu-
ral language – you can use them for any types of strings. However, social
science applications of text analysis mostly deal with text produced by
humans, which is why we need extension libraries with features designed
specifically for the processing of natural language.With the growing pop-
ularity of these approaches, a variety of software tools are now available
for text analysis, including several ones for R.
Natural language processing (NLP) can be done at very different lev-

els of sophistication. Simple approaches such as the one we use in this
chapter are based on frequencies of words. More complex ones explore
relationships between words, for example, by grouping them together

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

176 12 Text Data

such that documents can be assigned to the topic(s) discussed in them.
Even more sophisticated techniques for the processing of texts aim to get
at the semantics of texts and their constituent parts. This usually involves
the parsing of sentences to detect different classes of words such as nouns
or verbs, or the extraction of subject and object in a sentence. All these
more advanced methods are beyond the scope of this book, but they
require the same type of input that we are dealing with in this chapter.
Almost all text analysis methods require some basic processing steps.

In this section, we perform these steps with the quanteda library, one of
the most advanced text analysis packages for R. In line with the scope
of the book, however, we do not explore quanteda’s analysis features in
depth. If you would like to learn more about the package, the online
guide at https://quanteda.io/articles/pkgdown/quickstart.html is a good
place to start.
Basic processing of text data involves a number of clean-up steps. One

of the first is the splitting of texts into tokens, which usually correspond
to words or word stems. This may seem straightforward: In English, and
many other languages, words are separated by white spaces, so we can
use these to separate words. However, in addition we need to deal with
punctuation, which means that full stops, commas, or quotes also need
to be taken into account. To do this, the computer needs instructions for
what sequences of characters to assign to the same word, and when to
start a new word. quanteda can deal with all this, so let us take a look.
Once you have installed the package, you can load it with:

library(quanteda)

Since quanteda and readtext come from the same developers and are
designed to work together, we can easily create a corpus from the doc-
uments imported above, from which we already removed the paragraph
numbers:

speech_corpus <- corpus(docs)

Once the text is converted to a corpus, quanteda can easily split the texts
into words and sentences. Take a look at the output of summary(speech_
corpus) to find out how the length of the speeches (measured as the
number of words or the number of sentences) varies in the speeches over
time. For our application, however, we can get a first view by looking at
the words we are interested in, and the context in which they occur with
the kwic() function (“keywords in context”). We first use the tokens()

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://quanteda.io/articles/pkgdown/quickstart.html
https://doi.org/10.1017/9781108990424.017

12.4 Natural Language Processing with quanteda 177

function to split the text into its constituent parts, and pass these tokens
on to the kwic() function (the output is restricted to the first three
occurrences for presentational purposes). With the pattern parameter,
we define the term(s) we are interested in. Here, it is possible to specify
a single term that will be matched exactly. In our example, we use the
wildcard character *, which matches zero or more characters. This means
that we can search for “equality” but also “inequality” with this simple
pattern. Note that the pattern is matched against the individual tokens
in the text which were generated when creating the corpus. The window
parameter specifies the context that should be displayed with each match
of the pattern – in our example, we show the two tokens left and right:

kwic(tokens(speech_corpus), pattern = "*equality", window = 2)[1:3,]

Keyword-in-context with 3 matches.
[USA_25_1970.txt, 1287] and human | equality | ; fifth
[USA_25_1970.txt, 3336] of racial | equality | . The
[USA_25_1970.txt, 3484] justice, | equality | and self

The example shows you what context our keywords occur in, and
what the tokens in the text look like. Try removing the restriction to
the first three lines to display the entire output, and you will see that we
are capturing the right words that we are interested in. “Equality” and
“inequality” occur together with references to justice or race. Oftentimes,
these references are made with political goals (“combating inequality”).
You can try to increase the window size in the above example to see more
words before or after the target terms. The output also shows that the tok-
enization in quanteda does not remove anything from the text by default –
punctuation characters such as ; or . are included as individual tokens.
In the next steps, we create a data structure that is very common in text

analysis: a document-feature matrix (DFM). This matrix has a column for
each token (feature) in our corpus. Each row corresponds to a document
in our corpus, and it contains the number of times that a token occurs
in that text. Recall that we have a number of rather useless tokens in
our corpus. This is why we first remove punctuation and numbers from
our tokens before passing them on to the dfm() function. Later, we also
remove so-called stopwords (words such as “a,” “the,” etc) from our
DFM. For these stopwords, it is necessary to select the language ("en"),
since stopwords are obviously specific to each language:

speech_dfm <- dfm(
tokens(speech_corpus, remove_punct = T, remove_numbers = T))

speech_dfm <- dfm_remove(speech_dfm, pattern = stopwords("en"))

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

178 12 Text Data

As you can find out with featnames(speech_dfm), by default the DFM
converts all tokens to lowercase, otherwise the different spellings of the
same word (as in “Products” and “products”) would be counted as two
different words. A DFM has usually lots of columns (10059, in our case),
and many entries are zero because the corresponding terms do not occur
in the respective document. If you print the DFM for our corpus, you can
see this in the output (not shown here):

print(speech_dfm)

quanteda has a number of useful functions for exploring DFMs.One of
them displays the most frequent words in the corpus, the “top features.”
Not surprisingly, for our corpus of UN speeches, the top two words are
“united” and “nations” (output again restricted to the first three for pre-
sentational purposes):

topfeatures(speech_dfm)[1:3]

united nations world
1604 1577 979

The DFM already contains the information we need for our applied
example in this chapter. Recall that we want to count the mentions of
(in)equality in the different speeches given by the US at the UN General
Debate over the years. Our DFM gives us the number of times that any
term in the corpus appears in the respective speech. Therefore, all we need
to do is select the relevant terms from our DFMand extract the counts.We
achieve this by creating a new, restricted DFM that only contains terms
related to inequality. The dfm_select() function does this for us, and it
accepts the same type of filter pattern as the kwic() function above.

dfm_ineq <- dfm_select(speech_dfm, pattern = "*equality")

By default, the function keeps the specified terms,which is exactly what
we want. All that is left for us to do is to compute the row sums of the
reduced DFM dfm_ineq, which gives us the number of times that either
“inequality” or “equality” is mentioned in the speech. We add this count
as an additional variable to our corpus:

speech_corpus$ineq_count <- rowSums(dfm_ineq)

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.5 Using PostgreSQL to Manage Documents 179

At the end of the chapter, we create a simple plot using the year field
and the newly created ineq_count field from the corpus.

12.5 using postgresql to manage documents

In the final part of this chapter, we will show how to use a relational
database to store and manage text documents. As we saw in previous
chapters, the main focus of databases is the storage and efficient retrieval
of data, not the analysis. This is why PostgreSQL is very limited when it
comes to the processing of natural language; if your workflow involves
text data stored in a database, you will typically export it for further
processing in a specialized package such as quanteda. Nevertheless, it is
useful to take a brief look at how PostgreSQL deals with text data, and
how you can query the data with natural language searches. As in the
previous chapters,we assume that you use a new database for this chapter,
called textdata. We connect to our database with

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "textdata",
user = "postgres",
password = "pgpasswd")

and import the UN speeches into a new table speeches. As you know from
above, readtext() returns an extended data frame. We cannot directly
send it to the database, which is why we convert it to a real data frame
beforehand:

docs <- readtext("ch12/*.txt",
docvarsfrom = "filenames",
docvarnames = c("country", "session", "year"))

dbWriteTable(db, "speeches", as.data.frame(docs))

The table we created has five fields: the doc_id (the file name of the
corresponding text file); the three docvars country, session, and year; and
the text column that contains the text of the speech. As a next step, we
again remove the line numbering from the speeches. Above, we have seen
how to do this with regular expressions. Regex are not a feature specific
to R; they also exist for PostgreSQL with a notation similar to the one
described above. This is why we can use the search pattern \d+\.\t –
which matches one or more digits followed by a dot, followed by a tab

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

180 12 Text Data

character – also in our database. Let us first use the regexp search operator,
the tilde �. This operator performs pattern matching. In the following
query, we count the number of documents from our collection where the
text field matches our search pattern (i.e., contains it at least once). Note
that we again have to escape the backslashes properly, so that R passes
them correctly to the database:

dbGetQuery(db, "SELECT count(*) FROM speeches WHERE text ˜ '\\d+\\.\t'")

count
1 15

The result is the same as above: 15 documents match our search pat-
tern, which are the first 15 speeches in the dataset. How can we clean up
the texts of these speeches? For this, we use the regexp_replace() function
in PostgreSQL. It takes a string, a search pattern, and a replacement string,
and returns a new string in which all occurrences of the search pattern
have been replaced with the replacement string. The pattern we need is
the same as above, and our replacement string is the empty string '', since
we only want to delete the line number. In addition, the function takes
optional control flags. Here, we must set the g (global) flag to extend the
search/replace to all instances of the pattern, and not just the first one.
There is no danger in applying this function to all texts in our sample;
since the pattern is only found in the first 15 speeches, the others will
remain unaffected:

dbExecute(db,
"UPDATE speeches
SET text=regexp_replace(text, '\\d+\\.\t', '', 'g')")

Having done some basic clean-up, we can now proceed to explore how
to select documents from our database according to particular words in
the text. One way to do this is the � operator, which allows us to specify a
regex search pattern. Oftentimes, however, we do not really need regular
expressions, which is why there is a simpler way to search text fields:
the LIKE operator. Here, the syntax for the search pattern is much simpler.
LIKE expects normal strings, which can contain two types of placeholders:
the underscore (which matches any single character) and the percentage
sign (which matches an arbitrary sequence of characters). How does this
work in practice? First, we try to use LIKE with a search string that does
not have any placeholders:

dbGetQuery(db, "SELECT count(*) FROM speeches WHERE text LIKE 'equality'")

count
1 0

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.5 Using PostgreSQL to Manage Documents 181

This query does not find any matching documents – why? The reason
is that the search pattern equality is matched against the entire text
column, so a match would only occur for any document where the entire
text of the speech is “equality.” Of course, there is no single speech with
this content in our collection.This is whywe need the % placeholder,which
matches an arbitrary sequence of characters. In this query

dbGetQuery(db,
"SELECT count(*) FROM speeches
WHERE text LIKE '%equality%'")

count
1 11

we allow an arbitrary number of characters to occur before and after
“equality.”This matches any speech where “equality”occurs at least once
in the text, which is the case for eleven of them. Similar to grep() and its
related functions in R, stringmatching operators such as LIKE are designed
to work with strings in general. If you use them with natural language,
they have no knowledge of what a word is, or that particular characters
such as the dot can have a special meaning in language. This is why we
need special extensions. PostgreSQL has a built-in set of functions for
“full text search,” which help us process natural language. However, as
the name suggests, it is designed primarily for searching natural language
documents, so its applicability is much more limited compared to pack-
ages such as quanteda.
Recall that the first step in dealing with natural language is usually the

clean-up of the text: We identify the tokens in the text and remove stop-
words and punctuation. PostgreSQL does this by converting a document
to a text search vector (tsvector), that contains a reduced form of the
text. Similar to our document-feature matrix above, this vector contains
the list of tokens in the text as well as the positions where they occur in
the text. Therefore, once processed in this way, it is much easier to search
for natural language terms in the text, since the DBMS only needs to go
through this vector rather than the entire text. The creation of this vector
is done with the to_tsvector() function, which converts a given string
to a text search vector. Let us try this first with a simple example before
applying it to the UN speeches:

dbGetQuery(db,
"SELECT to_tsvector('english', 'The problems the world faces today')")

to_tsvector
1 'face':5 'problem':2 'today':6 'world':4

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

182 12 Text Data

The output shows you what a vector looks like. It contains four tokens,
along with the positions of these tokens in the text. For example, world
is the fourth token in the text. There are a few things to note here.
Most importantly, tokenization is language specific, so we need to specify
english as the language. Now, take a look at the second token in the text,
problems. This token is included as problem in the vector, with the “s”
removed. The reason is that text search vectors trim the words to their
word stems, so problems and problem are reduced to the same stem. Also,
stopwords such as the have been removed from the index, and all the
tokens are lower case.
The creation of text search vectors is computationally costly, so it is

good practice to compute them once and save them in a separate column,
such that you can use them later when searching the documents. The
following code creates a new column of type tsvector, computes the
vectors, and indexes the column using a special type of index (gin) to
speed up data retrieval (see Chapter 10):

dbExecute(db, "ALTER TABLE speeches ADD COLUMN tokens tsvector")
dbExecute(db, "UPDATE speeches SET tokens = to_tsvector('english', text)")
dbExecute(db, "CREATE INDEX ON speeches USING gin(tokens)")

How do we use the text search vectors in practice? In PostgreSQL, we
can now run a text search query against the vectors we created. A text
search query uses a very simple syntax, similar to web search engines. In
its simplest form, such a query is just a single word, but you can also
connect different words with logical AND (&) and OR operators (|). We
create a query with the to_tsquery() function. Importantly, PostgreSQL
internally reduces the query in the same way as a text search vector. The
advantage is that we do not have to worry about the different forms of a
word – for example, inequality and inequalities are internally reduced
to the same form:

dbGetQuery(db,
"SELECT
to_tsquery('english', 'inequality'),
to_tsquery('english', 'inequalities')")

to_tsquery to_tsquery..2
1 'inequ' 'inequ'

Now let us apply a simple query to our documents. For text searches,
there is a special operator, @@, which determines whether a given text
search vector matches a text search query. Here, we count the number
of documents that match the query inequality:

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.6 Results: References to (In)equality in UN Speeches 183

dbGetQuery(db,
"SELECT doc_id FROM speeches
WHERE tokens @@ to_tsquery('english', 'inequality')")

doc_id
1 USA_33_1978.txt
2 USA_53_1998.txt
3 USA_70_2015.txt
4 USA_71_2016.txt

If you go through the four speeches that match our query (the speeches
for 1978, 1998, 2015, and 2016), you will see that not all of them contain
the word inequality or some other form of it. The 1978 speech only
talks about “international inequities and poverty” – however, since the
text search applies stemming to the tokens, inequality and inequities
are reduced to the same stem inequ, which is why we get a match also
for the 1978 speech. This is exactly what we want in this case, since the
1978 speech talks about inequality between countries, which is what we
are interested in. However, in other cases, the results of text searches can
be too inclusive. Consider the following example, where we amend our
pattern such that it searches of inequality or equality. Now, we get 34
matching documents:

dbGetQuery(db,
"SELECT count(*) AS num_ineq FROM speeches
WHERE tokens @@ to_tsquery('english', 'inequality | equality')")

num_ineq
1 34

The reason is that equality is reduced to equal, which occurs fre-
quently without any connection to inequality, for example, in sentences
such as “Equally important, we hope that [..].” Hence, while text search
can be a powerful and flexible tool to explore natural language, you have
to be aware of the uncertainties when doing so. Before we proceed to
show the result of our applied example, we close the database connection
properly:

dbDisconnect(db)

12.6 results: references to (in)equality in un speeches

The reduction of inequality has been one of the UN’s Sustainable Devel-
opment Goals, and the purpose of our exercise is to track the use of this

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

184 12 Text Data

1970 1980 1990 2000 2010

Year

M
e

n
ti
o

n
s
 o

f
(i
n

)e
q

u
a

lit
y

0
1

2
3

figure 12.3. Number of mentions of (in)equality in UNGeneral Debate speeches
by the US over time.

and related terms over the years. We now use the statistics we computed
with the help of the quanteda package. Above, we extracted the number of
times that inequality or equality appear in the speeches from the DFM.
In the simple plot in Figure 12.3,we use the two fields speech_corpus$year
and speech_corpus$ineq_count for plotting.
We can see that in the early years of the sample, the US made several

references to (in)equality in the UNGeneral Debate speeches. This may be
partly due to the civil rights movement in the US and political attention it
had triggered to issues of inequality. The 1970s, however, were followed
by a period without any mention in the 1990s, before the term came
up more often again during the 2000s and later. The peak at the end
of the study period (2016) coincides roughly with the adoption of the
SDGs in 2015. Thus, as we can see based on this simple example, there is
considerable variation in the salience of inequality in international politics
over time, although it is not very prominent throughout.

12.7 summary and outlook

Much research in the social sciences now relies on natural language data.
In this chapter, we covered text as data, and how it can be processed
in R and in PostgreSQL. Even though documents and their metadata
can be stored in a tabular (structured) format, the texts themselves are
examples of “unstructured” data. That is, within a text, we usually have
no explicit structure, and the format and content of texts varies between
documents. In this chapter, we used two different approaches to process
text data. First, you can treat text simply as long strings, and use standard

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

12.7 Summary and Outlook 185

string functions. Among these, we have introduced regular expressions, a
very powerful method to search strings for particular patterns and replace
them. Regular expressions are available in R and in PostgreSQL, but also
in almost any other programming language. While useful when process-
ing text data, they can be of great help for other tasks with strings, for
example, when fixing malformed data files.
The second, more sophisticated approach we have illustrated in this

chapter is to treat texts as natural language, and apply specialized meth-
ods for this. For R, the quanteda package is a good choice, but there
are also other options such as tidytext, which integrates nicely into the
tidyverse universe. These packages can perform a variety of NLP tasks,
such as the splitting of a text into tokens, the elimination of stopwords and
punctuation, or the reduction of words to their stems. For all of this, spe-
cialized knowledge of the particular features of a language are required,
for example, how different sentences are separated, or how words can
be trimmed to their stem. The relational database PostgreSQL has some
basic functionality for doing this, which can come in handy if you keep a
collection of documents on a centralized server and need to do fast and
flexible lookups. For more advanced analysis of text, however, it is usually
required to export the documents to R and use a text analysis package
such as quanteda, whose functionality is much more advanced. For your
future work with text data, here are some useful pointers:

• Practice the use of regular expressions: We began this chapter with
an introduction to some standard string operations, which are avail-
able both in R and PostgreSQL. Among these, regular expressions are
particularly powerful, but at the same time remain challenging even
for experienced programmers. If you plan to work more with text
data in the future, I recommend that you practice the use of regular
expressions, since there are many operators and shortcuts we did not
discuss in this chapter.

• Compression is highly effective for text data: Remember that we dis-
cussed the use of file compression in Chapter 4? This is particularly
important if you store text datasets in files, since they can became very
large. File compression works well with text files, and you can reduce
the required disk space considerably for text data projects with tools
such as zip or gzip. It is up to you to implement compression in a file-
based workflow; PostgreSQL enables it automatically for text data.

• Large files can be loaded directly into PostgreSQL: So far,we have used
R’s DBI functions (such as dbWriteTable()) to import data into our

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017

186 12 Text Data

database. For very large CSV files, there is another way to this, which
bypasses R completely. The PostgreSQL server can read files on your
disk directly,which is much faster – for details, see the PostgreSQL doc-
umentation at https://www.postgresql.org/docs/current/sql-copy.html.
There are some restrictions, however: This feature can only process
tabular data in CSV (or similar) formats, and it becomes more difficult
to use if you connect to PostgreSQL running on a remote server.

• What if you need more flexible fuzzy string matching? In the chapter,
we discussed a number of ways in which you can specify search
patterns to be located in strings. These approaches allow you to use
different wildcard characters. Another way to implement non-precise,
fuzzy string matching is by means of the “Levenshtein distance,”
which is the number of characters that need to be changed when
transforming one string into another. This is a common measure of
similarity between strings, and you can use it in R with the adist()
and the agrep()/agrepl() functions. In PostgreSQL, you can use the
levenshtein() function, which is part of the fuzzystrmatch extension.

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://www.postgresql.org/docs/current/sql-copy.html
https://doi.org/10.1017/9781108990424.017

13

Network Data

In this final chapter on advanced data types, we discuss another kind of
data that is frequently used in the social sciences: networks. Until now,we
focused on data collections that cover separate entities: people, countries,
elections, or conflict events. Now, we extend this perspective to examine
relationships between them, in addition to the entities themselves. We
represent these relationships as network structures.

13.1 what is network data?

A network is a structure consisting of entities (or nodes) and the relations
between them. In more formal language, networks are often referred to as
“graphs,” and the nodes as “vertices”with “edges” connecting them. For
example, to represent an airline network, airports constitute the entities of
the network, and the direct flight connections between these airports are
the relations linking these entities. Graphs can also be used to represent
social networks, where individuals are the nodes of the network, and
edges exist between those individuals that know each other personally.
Figure 13.1 (left panel) shows a simple network consisting of four nodes
(A–D), and a total of four edges.
In the simple network above, any pair of nodes can either be connected

with an edge or not. This is what we call an “undirected” graph, since
the edges do not point one way or the other – they only connect a pair
of nodes as in Figure 13.1 (left panel) above. Undirected graphs have
many applications; for social network analysis, they can be used to con-
nect individuals that have a symmetric relationship, for example, those
that have coauthored a scientific publication (Newman, 2004) or have

187

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

188 13 Network Data

figure 13.1. An undirected (left) and a directed graph (right).

figure 13.2. A graph with vertex and edge attributes.

co-starred together in a movie (Albert and Barabási, 2002). For many
other applications, however, the links between the nodes in our network
must be directional, and call this a “directed” graph. This simply means
that we give each of our edges a direction. In Figure 13.1 (right panel), for
example, you can see that there is an edge running from A to D, but not
vice versa. Between A and B, however, we have edges in both directions
(visualized as a two-directional arrow). Directed networks can be used to
represent flows of some kind, for example, trade flows between countries
(Barbieri and Keshk, 2017), or foreign direct investment of one country
in another (Lee and Mitchell, 2012).
In many cases, simply having a network with vertices and edges is not

enough, and we need to store more information about both. For this, we
can amend the simple graph model, such that additional information is
attached to the vertices and edges in our graph. Figure 13.2 illustrates
this. We have a simple network with two nodes, A and D, each of which
corresponds to a city. A directed edge from A to D represents the com-
muters from A who go to work in D every day. This network contains
additional data, so-called “attributes,” about cities and commuting links
(shown as boxes in the figure). We have information about the name and
the population of each city in the vertex attributes, and the number of
commuters in the edge attributes.
So far, a graph with edges and attributes was a conceptual data model –

an idea of what our data looks like. How do we work with this data
model in practice? In other words, how do we physically store network

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.1 What Is Network Data? 189

data in files? There are two ways for doing this: as an adjacency matrix
or an adjacency list. In both cases, we map our network to something
that looks like a table. Once we have done that, we can use these tables
exactly as we did in the previous chapters of this book: store them in files,
or put them into a database for tabular data. But let us first look at how
adjacency matrices and lists work.
The idea of an adjacency matrix is very simple: We create a quadratic

table such that there is one row and one column for each vertex that exists
in the graph. The entries in this table are then used to store information
about the edges in the network, such that the rows correspond to the
nodes where edges start, and the columns to those where they end. Let
us illustrate this for the directed network from Figure 13.1 (right). Our
adjacency matrix has four rows and four columns. To indicate that
there is an edge running from A to D, we put a value of 1 in the first
row, fourth column (and correspondingly for the other edges in our
graph):

A B C D

A 0 1 0 1
B 1 0 1 0
C 1 0 0 0
D 0 0 0 0

While the adjacency matrix format is easy to understand, there are two
major downsides to it. First, remember the advice I gave in Chapter 3:
Tables should grow down, not sideways. The adjacency matrix violates
this rule, since adding vertices to a graph means adding columns to the
matrix. Second, adding attributes is very difficult when working with
adjacency matrices. As soon as we want to store different edge attributes,
this becomes impossible with a single matrix, since it holds exactly one
value for each connection. Therefore, adjacency lists are preferable for
most applications.
The adjacency list format follows a different approach. Rather than

mapping out the entire set of possible pairs of edges and then indicating
which ones are connected, an adjacency list simply contains only those
pairs of edges that are connected in the graph. For the directed network
in Figure 13.1, the adjacency list looks as follows:

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

190 13 Network Data

From To

A B
A D
B A
B C
C A

The graph has five directed edges, each of which corresponds to a single
line in our table. This format is very flexible: If we want to add more
vertices or edges, we can do so by inserting more rows into the table.
Also, if we want to add edge attributes to our graph, we can do so by
storing them in separate columns, in addition to the from and to columns
we have in our table. While edge attributes can easily be accommodated
in this way, vertex attributes are typically stored in a separate vertex list,
which is what we will do below.
We are now equipped with sufficient knowledge about the concept of

networks and how we can store them in tables. Let us now take a quick
look at the applied example we work on in this chapter.

13.2 application: trade and democracy

International trade patterns constitute a central question in international
political economy. When studying if and how much countries trade with
each other, our main interest is not in single countries and their char-
acteristics, but rather in the interactions between them. Therefore, the
data that we need to study this is best represented as a network, where
states constitute the nodes and the trade links between them are the edges.
In our example, we study an important question: How does the level of
democracy of states determine the volume of trade between them (Bliss
and Russett, 1998)? The data for our analysis comes from two different
sources. The first one is a dataset on bilateral trade, initially presented
by Barbieri et al. (2009) and later updated until 2014 by Barbieri and
Keshk (2017). The dataset draws on different sources and records (among
other variables) the annual trade volume between pairs of states for the
period 1870–2014. Therefore, rather than a single, static trade network,
the dataset captures the temporal evolution of international trade, with
annual observations.
The file trade.csv in the data repository contains a simplified version of

the trade data. The format corresponds to the adjacency list we discussed
above, so each trade link between two states constitutes an observation.
States are coded according to the Correlates ofWar (COW) coding system
(Correlates of War Project, 2008), which assigns independent states a

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.3 Exploring Network Data in R with igraph 191

unique identifier, the COW code. For each link in our trade network, the
states it connects are stored in the ccode1 and ccode2 variables. Due to
the fact that we have annual observations, each line in the data also has
a year variable. The last three variables provide information about the
trade volume between the two states in the given year: smoothflow1 is the
total volume of the first country’s imports from the second country (in
millions of US dollars), and smoothflow2 is the trade flow in the opposite
direction. Both values are smoothed over time (see Barbieri and Keshk,
2017). Finally, smoothtotrade is the smoothed total volume of trade in
the given year between the two states, independent of the direction.
Our second dataset for this chapter provides us with information about

the states themselves, which we later use to explain the volume of trade
between them. We rely on a subset of the large Varieties of Democracy
(V-Dem) database, a project at the University of Gothenburg (Coppedge
et al., 2019). Most importantly for our purpose, V-Dem provides aggre-
gated expert assessments of many aspects of a country’s political system,
which we can use to examine how the level of democracy affects trade
between two states. You can find a simplified version of the V-Dem data
in the repository. It contains annual observations of states, each of which
is coded with a cowcode and a year. Note that there are many missing
values for the COW code, since V-Dem also tracks political units that are
not considered to be independent states by COW and therefore have no
COW identifier. The variable that we will be using to measure a state’s
level of democracy is v2x_polyarchy, which codes “electoral democracy”
on a range from 0 to 1 (for more details about this and the other variables
in the dataset, see the V-Dem codebook). In the file,we also have the world
region the country belongs to (e_regiongeo) as well as the GDP per capita
(e_migdppc).
Together, the trade and V-Dem datasets constitute the (longitudinal)

network we will be analyzing in this chapter. The trade dataset is an
adjacency list with additional edge attributes, while the V-Dem data is
a vertex list with vertex attributes. Vertices are identified by COW codes,
so that we can link both datasets easily.

13.3 exploring network data in r with igraph

When dealing with networks, we need a toolkit that is able to handle
graph structures and allows us to conduct network analysis with them.
R’s base functions do not allow us to do that, as they are designed to
mainly work with tabular data.However, several of R’s extension libraries
provide functionality to process network data. One of the most powerful

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

192 13 Network Data

ones is the igraph package that we use in this chapter. igraph can read
and export different data formats for network data, and allows us to
manipulate and analyze networks in R. As always, we first need to load
the package:

library(igraph)

There are different ways in which you can load a network into igraph.
We use a function where we provide an edge list (the trade data) and a
vertex list, both as simple R data frames. Before we can do this, we first
need to import both datasets into R. Let us start with the trade network.
Here, we need to keep in mind that the trade dataset stores missing values
as −9, which is why we need to explicitly define this during the import.
Also, we remove missing values and entries with a bilateral trade volume
of 0, since they indicate that no trade is taking place and the states are
therefore not connected:

trade <- read.csv(file.path("ch13", "trade.csv.gz"), na.strings = "-9")
trade <- subset(trade, !is.na(smoothtotrade) & smoothtotrade > 0)

If we take a look at the summary of the trade dataset, you will notice
several things. Not surprisingly, even with the missing links removed, the
dataset is large and contains around half a million observations. This is
due to the fact that we observe pairs of states with annual estimates. To
get started, we only use a subset of the trade data to simplify our exercise.
We restrict coverage to 2014, and only keep those links with a total trade
volume of 100 million dollars or more:

trade <- subset(trade, year == 2014 & smoothtotrade >= 100)

Next, we turn to the vertex list, the V-Dem data. We load it as a data
frame, restrict it to 2014, and remove observations with missing COW
codes since we do not need them in this exercise:

vdem <- read.csv(file.path("ch13", "vdem.csv"))
vdem <- subset(vdem, year == 2014 & !is.na(cowcode))

Before we can use the V-Dem data in igraph, we need to arrange the
columns in the data frame. For the edge list, igraph expects the first two
columns to contain the node identifiers – this is what we already have in
the trade data frame. For the vertex data, igraph requires the first column
to be the node identifier, which is why we need to make the COW code
the first column in vdem:

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.3 Exploring Network Data in R with igraph 193

vdem <- subset(vdem,
select = c("cowcode", "country_name", "year",

"v2x_polyarchy", "e_regiongeo"))

Now, both data frames should be in the right format so that we can
create a network from them in igraph. Let us see how this works. We
use the graph_from_data_frame() function, which is one among many
different functions in igraph to construct a network. It takes an edge list
as its main argument, and (optionally) a vertex data frame with additional
data on the vertices.We also define the network to be undirected by setting
directed to FALSE:

tradenetwork <- graph_from_data_frame(trade, directed = F, vertices = vdem)

This does not seem to work: igraph is complaining about some some
vertices in the trade data not being listed in vdem. The reason is that we do
not have V-Dem codings for some states in the trade data – many of them
are micro-states and are not covered by V-Dem. Therefore, we restrict our
trade network to those pairs of states where V-Dem data is available for
both of them:

trade <- subset(trade, ccode1 %in% vdem$cowcode & ccode2 %in% vdem$cowcode)

Now, let us try to construct the network again:

n <- graph_from_data_frame(trade, directed = F, vertices = vdem)

We now have an igraph network n, and can apply network-specific
functions to it. First, we take a look at the summary:

summary(n)

IGRAPH 5ad0bc2 UN-- 174 3456 --
+ attr: name (v/c), country_name (v/c), year (v/n), v2x_polyarchy
| (v/n), e_regiongeo (v/n), year (e/n), smoothflow1 (e/n), smoothflow2
| (e/n), smoothtotrade (e/n)

Our network is undirected (UN) and has 174 vertices and 3,456 edges –
if you want to check, you can compute these numbers with vcount(n)
and ecount(n). The summary also displays the attributes we have defined
for our network. For example, country_name is a vertex attribute (v) of
type character (c), while smoothflow1 is an edge attribute (e) of type
numeric (n).
While igraph defines its own methods for accessing and modifying a

network, many of them work in ways that are similar to R. For example,

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

194 13 Network Data

V(n) gives you access to the entire list of nodes in the graph, and you can
retrieve any one of them simply by indexing. The following statement
returns the first vertex in the graph:

V(n)[1]

+ 1/174 vertex, named, from 5ad0bc2:
[1] 700

Similar to a data frame, we can use the $ operator to access a single
attribute:

V(n)[1]$country_name

[1] "Afghanistan"

We can also use the bracket operator to filter a subset of nodes, for
example, those with democracy scores higher than 0.9:

V(n)[v2x_polyarchy > 0.9]

+ 7/174 vertices, named, from 5ad0bc2:
[1] 225 94 390 220 385 380 2

For the edges, the E(n) function works in the same way. For example, it
allows us to find out which edge has the maximum total amount of trade
in 2014 with:

E(n)[which.max(E(n)$smoothtotrade)]

+ 1/3456 edge from 5ad0bc2 (vertex names):
[1] 710--2

Not surprisingly, this is the edge between China (COW code 700) and
the US (COW code 2). So far, we have only used igraph to retrieve infor-
mation that we could have also extracted from the original tables. The
real added value of the library, however, is its ability to perform network-
specific calculations. One of these is the “centrality” of nodes in the net-
work, which is a key concept in network analysis. More central nodes are
those that are better connected to others in the network. Centrality can
be computed in different ways. “Degree centrality” is one of the simplest
centrality measures, and it is defined as the number of links (the “degree”)
a node has to others. In igraph, we can calculate degree centrality with
the degree() function, as in:

degree(n)[1:3]

700 540 339
13 29 13

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.3 Exploring Network Data in R with igraph 195

0.0 0.2 0.4 0.6 0.8

0
.0

0
.4

0
.8

Democracy

T
ra

d
e

 c
e

n
tr

a
lit

y

figure 13.3. Level of democracy and centrality in the trade network.

Degree centrality, however, only considers the number of links that a
country has, but not the other country it is connected to. Another central-
ity measure is eigenvector centrality, which gives higher centrality scores
to those countries that are connected to other highly central countries.
In other words, it measures centrality by identifying those countries that
are connected to several other influential players in the trade network.
Using the vector field, we can extract the centrality scores after running
the corresponding function from igraph:

ec <- eigen_centrality(n)$vector

We can use these centrality scores to carry out a first analysis of
whether democracy is related to a country’s position in the trade network.
To do so,we create a bivariate plot of the democracy scores for the vertices
in our network, and the centrality measures we have just computed (see
Figure 13.3).
While the plot does not show a clear pattern, the linear fit is positive.

Still, this relationship could be confounded, so we will conduct further
analyses below. To conclude the discussion of igraph, let us examine
the trade network graphically. The entire network is large and densely
connected, which is why a plot of the entire network would not be useful.
Therefore, we extract a subset of the network (a “subgraph”) containing
only those countries located in South America according to V-Dem’s
region coding (region 18):

sa <- induced_subgraph(n, V(n)[!is.na(e_regiongeo) & e_regiongeo == 18])

This results in a much smaller graph with only 12 nodes and 43 edges.
Before we plot it, we define two properties of the network that are later

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

196 13 Network Data

Argentina
Bolivia

Brazil

Chile

Colombia

Ecuador

Guyana

Peru

Paraguay

Suriname

Uruguay

Venezuela

figure 13.4. Trade network for South America.

used in the plot. First, we set a label for the nodes, which is simply the
country name. Second, we define a weight for the edges, such that it is
possible to distinguish trade relations with high volume from those with
a low volume:

vertex_attr(sa, "label") <- V(sa)$country_name
edge_attr(sa, "weight") <- E(sa)$smoothtotrade

You can apply the generic plot() function to an igraph network and
define a few network-specific parameters. In particular, we use a pre-
defined layout function for the graph, which causes those nodes con-
nected with edges of high weight (that is, with a high volume of trade
between them) to be located close to each other. We also define the size
of the nodes to be proportional to their democracy score, so that we
can examine visually whether more democratic nodes are more central
in the network:

plot(sa,
layout = layout_with_gem,
vertex.size = 40*V(sa)$v2x_polyarchy,
vertex.color = "white")

The plot in Figure 13.4 shows that some countries such as Chile are
more central actors when it comes to trade in South America. At first

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.4 Network Data in a Relational Database 197

glance, there seems to be a weak relationship with the level of democracy,
such that less democratic countries (Venezuela, Ecuador, Bolivia) are
located more at the periphery of the network. Still, this relationship
remains to be explored more systematically, which is what we do in the
next section.

13.4 network data in a relational database

In the above example, we used a file-based workflow for processing and
analyzing network data in R and the igraph package. For larger and
more complex networks, it is often useful to store them in a database
that can handle large amounts of data and make them available to dif-
ferent users and in different formats. The trade network that we study
in this chapter is an example for a more complex network dataset, due
to its longitudinal structure with annual observations. In our example
above, we simply avoided this difficulty by using a snapshot of the net-
work for the year 2014. Now that we are moving towards a database-
backed setup, we want to be able to deal with the entire dataset, without
taking shortcuts.
In the previous section, we have seen that network data can be stored

as tabular data, and more precisely, as a combination of two tables: an
adjacency (edge) list, and a vertex list. This makes it easy to transfer this
setup to a relational database, similar to what we did in the previous
chapters. Assuming that your PostgresSQL server is running and that
you created the networkdata database for this chapter, we connect to the
PostgreSQL server as before:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "networkdata",
user = "postgres",
password = "pgpasswd")

First,we import the trade network data, using the dbWriteTable() func-
tion in R.Note that we need to be careful with the coding ofmissing values
(−9) in the data, to make sure they are correctly recognized as NA values
during the import.

trade <- read.csv(file.path("ch13", "trade.csv.gz"), na.strings = "-9")
dbWriteTable(db, "trade", trade)

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

198 13 Network Data

We repeat the same procedure for the V-Dem dataset, which contains
additional attributes for the nodes in our dataset (the countries), again
with annual values:

vdem <- read.csv(file.path("ch13", "vdem.csv"))
dbWriteTable(db, "vdem", vdem)

Is the trade network an undirected or a directed graph? In our exercises
with igraph above,we treated it as an undirected network with symmetric
links between countries, each link representing a trade relation with a
given total volume. In reality, however, the dataset contains directed infor-
mation: The smoothflow1 and smoothflow2 variables for two countries
A and B tell us the amount of imports into A from B, and vice versa.
The trade dataset lists each of these connections only once; for example,
the edge between the US (COW code 2) and Canada (COW code 20) is
present only once for each year, as an edge 2 → 20, while 20 → 2 is not
listed as a separate entry in the data.
This data structure may be useful if we want to minimize the size of a

data file, but it is not convenient when working with the data. For that
reason, it is useful to turn the trade dataset into a proper directed network,
where each edge has a start and an end point and only one attribute, trade
volume. How can we do this? If we assume that smoothflow1 is our main
edge attribute, we could keep the existing entries, but would have to add
all of them again, but with reversed direction and smoothflow2 as the edge
attribute. This is exactly what the following line does:

dbExecute(db,
"INSERT INTO trade (ccode1, ccode2, year, smoothflow1)
SELECT ccode2, ccode1, year, smoothflow2 FROM trade")

Let us go through the different parts of this statement. Overall, it is
an INSERT statement, so it takes some data and adds it to the trade table.
Importantly, it specifies four columns of the table that the new data should
be inserted in: ccode, ccode2, year and smoothflow1. These are the variables
we would like to retain for our directed network with annual observa-
tions. But what is the data we want to insert? It is simply the entire
trade table, but with reversed column order: ccode2 should be inserted
as ccode1, ccode1 as ccode2, and smoothflow2 as smoothflow1, while year
remains the same. This is what we do in the second part of the INSERT
statement, where we define the data to be inserted with a simple SELECT
statement on the same table the data should be inserted in, but with the
columns reordered such that they match the ones in the existing table.

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.4 Network Data in a Relational Database 199

Before we can proceed, however, let us clean up the table by removing the
unnecessary columns smoothflow2 and smoothtotrade:

dbExecute(db,
"ALTER TABLE trade
DROP COLUMN smoothflow2, DROP COLUMN smoothtotrade")

Also, the trade data contains entries with missing values in the trade
volume column, or where the trade volume is zero. The latter is equivalent
to there being no trade link between the two countries, so we remove these
entries:

dbExecute(db,
"DELETE FROM trade WHERE smoothflow1 IS NULL OR smoothflow1 = 0")

Finally, we strongly recommend that you create indexes on those
columns that are frequently used to join tables, or to retrieve and
aggregate data:

dbExecute(db, "CREATE INDEX ON vdem (cowcode)")
dbExecute(db, "CREATE INDEX ON vdem (year)")
dbExecute(db, "CREATE INDEX ON trade (ccode1)")
dbExecute(db, "CREATE INDEX ON trade (ccode2)")
dbExecute(db, "CREATE INDEX ON trade (year)")

Now, let us compute some simple network statistics directly in the
database. Keep in mind that a relational database such as PostgreSQL
has no notion of a network, so we cannot simply use existing functions
to derive network statistics such as the length of shortest paths or cen-
trality measures. However, we can use aggregate functions to compute
the degree centrality of the different nodes. Recall that degree centrality
is the number of incoming or outgoing links in a network. The following
statement calculates this measure for the year 2014 and for all trade links
with a volume of at least 100 million dollars, in decreasing order:

deg <- dbGetQuery(db,
"SELECT ccode1, count(*) AS indegree
FROM trade
WHERE year = 2014 AND smoothflow1 >= 100
GROUP BY ccode1
ORDER BY indegree DESC")

deg[1:3,]

ccode1 indegree
1 710 128
2 2 115
3 750 102

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

200 13 Network Data

The statement selects trade links for 2014, and for each country
(ccode1) counts the number of links that exist. Recall that the links in
our trade network denote imports, which means that the three countries
above are those that have the largest number of trade partners they
import from. China, for example, imported from 128 other countries,
with a volume of at least 100 million dollars from each. In a similar way,
we can compute the centrality in terms of total import volume, simply by
replacing the count() function with sum():

deg <- dbGetQuery(db,
"SELECT ccode1, sum(smoothflow1) AS totalimports
FROM trade
WHERE year = 2014
GROUP BY ccode1
ORDER BY totalimports DESC")

deg[1:3,]

ccode1 totalimports
1 2 2344005
2 710 2075854
3 255 1201135

Note that unlike working with igraph, we do not hard-wire the net-
work such that it consists, for example, only of trade links with a volume
of 100 million dollars. Rather, we can dynamically extract different parts
of the network, depending on what we need. This is a convenient way to
deal with more complex network data,where the complete dataset resides
in a relational database, and snapshots are dynamically extracted to be
analyzed in igraph or another network analysis software. Our database
also allows us to deal with the time series nature of our data. For example,
the code below computes the degree centrality of the US over time (again
restricted to those links with at least 100 million dollars):

deg <- dbGetQuery(db,
"SELECT year, count(*) AS indegree
FROM trade
WHERE ccode1 = 2 AND smoothflow1 >= 100
GROUP BY year
ORDER BY year DESC")

deg[1:7,]

year indegree
1 2014 115
2 2013 116
3 2012 117
4 2011 117
5 2010 118
6 2009 116
7 2008 122

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.4 Network Data in a Relational Database 201

As a final step in our analysis, we test the link between democracy and
trade more systematically. To this end, we extract our network data in
a way that makes it possible for regression analysis to be applied. Here,
we use a simple dyadic setup, where we treat each trade link as a single
observation. In this analysis, we model the trade volume from one state
to another as a function of the economic performance of the two states
as well as their level of democracy. This is one simple way to analyze
network data; one problem is that it ignores all of the network structure
beyond the individual dyads. For example, in this dyadic analysis we
treat the imports from State A to State B as independent of other trade
flows (e.g., from State C to State B). More complex network models can
accommodate these higher-order dependencies, although this makes the
estimation much more difficult (Ward et al., 2013).
For the purpose of our simple dyadic model, we have to export the

data as a single data frame such that R can fit a regression model. This
data frame contains data about edges as well as vertices – essentially,
it is a combination of the vertex and edge lists we used in this chapter.
In the following statement, we merge the trade and vdem tables in our
database into a single data frame by means of a SELECT statement. The
join operation we use here is based on the entries in the trade table, and
appends V-Dem variables both for the first and the second country in each
dyad.Note that we are joining the V-Dem table twice to the trade links: for
the first country ccode1 in the dyad, and then again for the second country
ccode2. This is why we have to use the two alias names for the V-Dem
table: vdem1 and vdem2. Also note that in order to make the estimation of
the regression model faster, we restrict the data again to one year with
trade.year = 2014. However, you can remove this part of the statement
to obtain the data for the entire time period:

tradedyads <- dbGetQuery(db,
"SELECT
ccode1, ccode2, trade.year, smoothflow1,
vdem1.v2x_polyarchy AS polyarchy1,
vdem1.e_migdppc AS gdppc1,
vdem2.v2x_polyarchy AS polyarchy2,
vdem2.e_migdppc AS gdppc2

FROM
trade,
vdem vdem1,
vdem vdem2

WHERE
ccode1 = vdem1.cowcode AND
trade.year = vdem1.year AND
ccode2 = vdem2.cowcode AND
trade.year = vdem2.year AND
trade.year = 2014")

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

202 13 Network Data

This design omits those pairs of countries that do not trade with each
other.Does democracy affect not just the volume of trade between pairs of
trading countries, but also whether a trade link exists between them? To
test this, we need to construct our dataset such that it contains all possible
dyads, in other words, all pairs of countries regardless of whether they
trade or not. For all these possible dyads, we add data from V-Dem about
economic performance and level of democracy, and then use these data in
a regression model to explain whether they had a trade link or not.
Before you take a closer look at the following statement, let us first

think about how we generate such a data structure. Our strategy consists
of two steps: First, we create a list of all possible dyads, irrespective of
whether trade occurs between them. Second, we add the data on trade
links, such that we can identify those cases in our complete list of dyads
that actually have a trade link. Process for the first step: Our vdem table
(the node list) contains all the countries in our sample, observed once
per year. To create a list with all possible dyads, we simply join the
table with itself. As you can see in the next statement, the vdem table is
used twice, once as vdem1, and once as vdem2. Since we have time series
data with annual observations, we need to make sure, however, that we
only join observations from the same year (vdem1.year = vdem2.year)
and also exclude links from one country to itself (vdem1.cowcode !=
vdem2.cowcode), since we cannot have dyads linking a country to itself.
This is what the complete statement looks like:

alldyads <- dbGetQuery(db,
"SELECT
vdem1.cowcode AS ccode1,
vdem2.cowcode AS ccode2,
vdem1.year,
vdem1.v2x_polyarchy AS polyarchy1,
vdem1.e_migdppc AS gdppc1,
vdem2.v2x_polyarchy AS polyarchy2,
vdem2.e_migdppc AS gdppc2

FROM
vdem vdem1,
vdem vdem2

WHERE
vdem1.year = vdem2.year AND
vdem1.cowcode != vdem2.cowcode AND
vdem1.year = 2014")

For performance reasons, we again restrict this example to observa-
tions from the year 2014. As you can see, this gives us a large dataset with
30,102 observations, much more than those in our original trade dataset.

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.4 Network Data in a Relational Database 203

This is not surprising, since the latter contains only pairs of countries
where some trade has been registered,whereas our dataset lists all possible
pairs of countries.
We can now continue to the second step: Join the information in the

trade table to the complete list of dyads. The following statement takes
our code above to generate a temporary, virtual table as part of a SELECT
statement. This is done using the WITH keyword in SQL. Our virtual table
is called dyads and can be used in the main statement as if it were a real
table:

alldyads <- dbGetQuery(db,
"WITH dyads AS
(SELECT
vdem1.cowcode AS ccode1,
vdem2.cowcode AS ccode2,
vdem1.year,
vdem1.v2x_polyarchy AS polyarchy1,
vdem1.e_migdppc AS gdppc1,
vdem2.v2x_polyarchy AS polyarchy2,
vdem2.e_migdppc AS gdppc2

FROM vdem vdem1, vdem vdem2
WHERE
vdem1.year = vdem2.year AND
vdem1.cowcode != vdem2.cowcode)

SELECT
dyads.ccode1,
dyads.ccode2,
dyads.year,
polyarchy1,
gdppc1,
polyarchy2,
gdppc2,
smoothflow1

FROM dyads LEFT JOIN trade ON
dyads.ccode1 = trade.ccode1 AND
dyads.ccode2 = trade.ccode2 AND
dyads.year = trade.year

WHERE dyads.year = 2014")
dbDisconnect(db)

The most important part of the statement is the LEFT JOIN of dyads to
trade – as you may recall, a left join preserves all data from the first table,
and joins those entries from the second table where the join condition
(on ccode1, ccode2, and year) is met. Fields from the second table (such as
smoothflow1) will be filled with NULL values for those rows from the first
table without a match in the second table. This example again restricts
the data to the year 2014 – you can get the entire dataset by removing the
LIMIT clause of the statement.

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

204 13 Network Data

Democracy level (exporting country)

Democracy level (importing country)

GDP (exporting country, log)

GDP (importing country, log)

0.0 0.5 1.0 1.5

Model

OLS

Logit

figure 13.5. Coefficient plots for the regression models on trade and democracy.

The dataset we generate here can be used in an analysis where the
dependent variable is the existence (0/1) of a trade link between a pair
of countries. We can dynamically generate this binary dependent variable
by testing whether the volume of imports between two countries is NA
(which corresponds to the NULL values generated by the SQL left join, and
indicates that the trade dataset does not contain a link between them).

13.5 results: trade and democracy

We have now extracted two datasets from our relational database. The
first one (tradedyads) contains only those pairs of countries that trade
with each other, and it allows us to study how the level of democracy
affects the volume of trade between them. The alldyads dataset is a list of
all possible dyads, and we will use it to analyze the impact of democracy
on whether two countries trade at all. For the first analysis with volume
of trade as the dependent variable, we simply fit a linear regression model,
using the log10-transformed smoothflow1 variable as the dependent vari-
able. For the second analysis, we use a logit model with a binary depen-
dent variable, which takes the value 1 if smoothflow1 is not NA, and 0
otherwise. Each model includes the democracy levels of the importing
country (polyarchy1) and the exporting country (polyarchy2), as well as
their GDP per capita values (log-transformed).
Rather than showing the regression tables, I present the coefficients

from the models graphically in Figure 13.5. Not surprisingly, richer coun-
tries import and export more, as the positive coefficients for GDP vari-
ables show. Beyond that, democracy affects trade: The more democratic
both countries are in a given dyad, the more likely it is that they trade with
each other (see the coefficients for the logit model). The effect of democ-
racy on the volume of trade is not as clear-cut, as the results from the OLS
model show: While more democratic countries export more, there is no
evidence that democracy affects the amount of imports into a country.

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

13.6 Summary and Outlook 205

13.6 summary and outlook

Much research in the social sciences is about relationships between dif-
ferent kinds of entities, and network data are designed to capture this.
Networks consist of nodes and the links between them, and are usually
stored in adjacency matrices or adjacency lists. We saw that the latter
format is much more versatile, and corresponds to well-designed tabular
data. More complex network data, where nodes and edges have addi-
tional attributes attached to them, can be stored with separate tables for
the nodes and edges, which are linked by unique node identifiers.
In this chapter, we used the igraph package for R, which is designed

to process and analyze network data, as well as create flexible visual-
izations. Due to its special focus, it is able to generate network-specific
measures, such as different types of centrality for the network nodes.
We also discussed how network data can be processed in a relational
database.A strength of this approach is its ability to process large network
datasets using the built-in performance improvements such as indexes.
Our examples above demonstrate how you can generate different types of
network datasets for your analysis, while keeping the data in a relational
database. PostgreSQL does not have graph-specific functions for network
data, but it can be extremely helpful in managing your network data and
shaping it in different ways. For your work with network data, here is a
set of recommendations:

• Always prefer the adjacency list format: As the above examples
showed, it is much easier to work with network data that come in the
form of adjacency lists rather than matrices. Adjacency lists conform
to the “long” table format, which has a number of advantages. Most
importantly, simple networks queries such as the number of neighbors
per node become simple data aggregation operations, which can easily
be done in R or PostgreSQL.

• Use tabular data formats for network data: Unlike for spatial data,
there are few established data formats specifically for network data.
In most cases, other, more generic ones are used to store information
about graphs, for example, XML, JSON, or the CSV format. These
formats are usually a good choice, even though they do not incorporate
network-specific features. For example, as in our example above, with
a tabular data format we need to distribute the dataset in different files.

• Keep the different datasets (nodes and edges) consistent: Since network
data is often spread out across different files (nodes and edges), there
can be potential inconsistencies between them. For example, a node

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

206 13 Network Data

referenced in the edge list can be missing in the node list. Tools such
as igraph can detect these issues, and in PostgreSQL you can use the
referential integrity checks with primary and foreign keys for this.

• For large networks, graph databases can be useful: It is possible to
leverage a relational database such as PostgreSQL for large network
datasets, allowing us to use referential integrity checks and indexing.
However, PostgreSQL is restricted to tabular data, and does not have
any functionality to deal with graph operations – for example, it is
difficult to find the neighbors of the neighbors of a given node. For this
purpose, it is possible to use a specialized type of database designed for
graphs, such as Neo4j.

https://doi.org/10.1017/9781108990424.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.018

part v

CONCLUSION

https://doi.org/10.1017/9781108990424.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.019

https://doi.org/10.1017/9781108990424.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.019

14

Best Practices in Data Management

At the end of our journey through different tools and techniques for data
management, what have we learned? How can we use these skills to make
our research better? As I emphasized throughout the book, good data
management means thinking about two different aspects: the structure of
your data, and the manipulation of the data content.

14.1 two general recommendations

Thinking about data structure is usually straightforward in the social
sciences, since the vast majority of our data is stored in tables or can be fit
into a tabular format. A tabular data format is one where we have infor-
mation on separate cases (rows), each of which consists of the same set of
variables (columns). Since this tabular data structure is so common in the
social sciences, we hardly reflect on it. Still, there is considerable variation
in how different tools deal with tables. In spreadsheets, for example, a
table is simply a two-dimensional container of information, without nec-
essarily imposing a standardized structure of variables and cases. Rows
can have different lengths, cells can be merged, and the type of data stored
in a column can vary between cases. This means that spreadsheet software
offers little support to ensure the correct format of our data and to reduce
errors, which (among many other problems) can lead to trouble when
processing spreadsheet data further in statistical software. Hence, it is up
to the user to check for errors and inconsistencies in the data.

209

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

210 14 Best Practices in Data Management

Other tools take data structure much more seriously. R, for example,
explicitly uses a rectangular tables as its standard data structures, such
as data frames or tibbles. While the columns in a data frame always
have types, these types can change silently when you re-assign values to
them. This is called “dynamic typing,” and it is a standard feature of the
R programming language. Therefore, while R at least maintains typed
columns, it also does not prevent you from certain errors, such as setting
a string value in what is supposed to be a numeric variable. Relational
databases follow a stricter approach here. As you recall, in a relational
database, data definition is a separate step in your workflow, where you
set up the structure of tables before adding content. This involves spec-
ifying the columns and their types, and the database system later makes
sure that only valid data is entered into the respective columns. Changing
column types is an explicit step and needs to be done using the appropriate
commands in SQL.
Data structure, however, also relates to the question of long vs. wide

tables, or the splitting of data across several tables. Recall that “wide”
tables are those where we have a dataset with two dimensions (e.g., coun-
tries and years), and where the columns are used to represent one of these
dimensions. In a “long” table, the two dimensions are simply stored in
different columns. We discussed that wide tables are usually not a good
choice, as the addition of more data requires changes to the table structure
(the addition of more columns). Also, as a general rule of thumb, tables
should contain data on exactly one type of entity only. In order to avoid
redundant data, we distributed our data across several tables, and linked
them to each other by means of unique identifiers.
In sum, when working on an empirical research project, it is a good

idea to reflect on the structure of your data. In some cases, this will be
easy, in particular if your research project involves a single table only. For
other projects, it may be worth spending some time to figure out a suitable
structure underlying the data, as this will make your work easier. In the
following, I list a number of questions that can help you do this.

recommendation 1: think about the structure of your
data.

• What variables does your dataset contain, and what are their types?

• Can you avoid redundant data? For example, can one variable simply
be generated by transforming one or more other variable(s)? If so, there
is no need to keep the former in the main dataset.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

14.1 Two General Recommendations 211

• Does your table grow down when adding data? Do you keep your
data in a “long” format, such that the addition of new data and new
variables remains easy?

• Do you only have data on one type of entity in the dataset? If not, you
may consider dividing your data into several tables, making sure that
unique identifiers exist to link the records.

The second main aspect to consider for an empirical research project is
the workflow in which you process your data. As discussed in Chapter 1,
data management involves the creation of datasets for analysis, start-
ing from one or more raw input datasets. One of the most important
requirements for us is the transparency and replicability of the data pro-
cessing workflow. In other words, we need to make sure to document
every step we take in getting from the raw input datasets to the anal-
ysis dataset. The way to do this is to save this workflow as a script,
for example, using the R programming language. Manual “point-and-
click” operations such as editing and reformatting data in a spreadsheet
should be avoided if at all possible (but can of course be useful when
creating a new, manually coded dataset from scratch). If you follow the
approach taken throughout the book, all your data management work
will be done in R and possibly SQL,which is why it is transparent and can
be replicated.
Another important question is whether you need a file-based workflow,

or whether you can benefit from using a dedicated database for your
data. A purely file-based approach is technically easier to implement,
since you do not need an additional database server and the separate
steps to import/export the data. However, databases can be useful if
your datasets are large and/or involve many interlinked tables. In theses
cases, specialized functionality in a relational DBMS can help you keep
these tables consistent, while being able to speed up operations involving
large numbers of records. Also, databases are designed for a multi-user
environment with different levels of access. For example, this makes it
possible to keep a database available such that some users can update it,
while others have read-only access.
Of course, your workflow and the tools you choose for it are also

strongly determined by the type of data you deal with. Simple tables
with text and numbers can be processed in almost any type of statistical
toolkit or database system. If you need to process more specialized types
such as spatially referenced or textual data, this will affect your choice

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

212 14 Best Practices in Data Management

of software. I presented various extension libraries for R, but we also
discussed how PostgreSQL can be extended to manage data beyond the
traditional tabular model.
Overall, the choice of a particular processing pipeline is closely related

to the above questions around data structure. Once you know what type
of data you deal with and what its structure should be, you can select the
suitable software tools for processing it. Again, here is a list of possible
questions you should consider when doing so.

recommendation 2: think about the workflow
to process your data.

• What is the amount of data you have? R can deal with small to
medium-sized datasets well, but it may find large ones difficult to
process. In these cases, databases provide the necessary features such
as indexing, which allow you to deal with large amounts of data
efficiently.

• Do you require the software to ensure the correctness and consistency
of your data? If so, it may be useful to opt for a relational database with
explicitly defined table structures and support for interlinked tables.

• Do you need to deal with specialized types of data? R has many exten-
sion libraries that can handle spatial data, text data, or networks. Some
of this functionality is also available through PostgreSQL’s extensions,
but this is much more limited.

• Does the complexity of the technical setup matter? Purely file-based
data storage with data processing in R is easier to set up, and requires
less technical overhead for others replicating this work.

• Do several collaborators work on the data at the same time? If there
is concurrent access to data by several users, file-based data storage is
often not ideal. For these cases, a distributed setup with data stored on
a separate database server should be preferred.

To conclude the book, I give some recommendations on how to han-
dle two challenges that often arise in data management and coding: the
collaborative work on research projects, and the public dissemination of
research data.

14.2 collaborative data management

More and more work in the social sciences is conducted collaboratively,
which means that several scholars work together to produce an article or
a book. Oftentimes, this also means that empirical work on a project is

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

14.2 Collaborative Data Management 213

carried out by different researchers, and data and code must be shared
between them. What is the best way to organize this process?
A simple and very common solution is to use a shared drive (such as

Dropbox) for the exchange of data and code. In practice, however, this
can lead to several problems. First, with multiple users accessing the same
shared files, there is a huge risk of someone overwriting somebody else’s
changes. Imagine User A and User B editing an R script on the shared
folder at the same time. If User A saves their changes first, User B will
overwrite these changes when saving their edits. The same can happen
to data stored on a shared drive. The second (and related) problem is
that most cloud storage services do not keep histories of files, unless you
explicitly enable (and pay for) this functionality. That is, once you save
a file, only the latest version remains available, and you no longer have
access to earlier ones. For these reasons, I recommend not to use simple
shared drives for collaboration; they only work if there is a clear division
of labor such that at any given point in time, there is only one user writing
to the shared drive. This may be difficult to implement in practice and
can still result in data loss, which is why it is preferable to use a version
control system (VCS).
VCS have been developed for computer programming, so they can also

be used for data management as long as all your operations are docu-
mented in code (which after reading this book, they should be). A VCS
can be helpful for your work in two ways. First, you can save different
versions of your source code as you continue to work on it. These versions
represent different stages of your project, and you typically add a short
summary to each version to describe what it does. Overall, this transpar-
ent approach to code development is also very useful when working on
a project alone (without collaborators), since it allows you to go back
to particular versions and track the changes you made since then – for
example, to check for errors in your code. Second, for collaborative work,
the VCS allows you to combine and merge changes made by different
users into a single code base. Figure 14.1 illustrates this.

figure 14.1. A version control system for collaborative coding.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

214 14 Best Practices in Data Management

If two researchers (User A and User B) each work on the same script,
each of them can push their changes into a main repository maintained
by the VCS. This repository serves as the storage facility for the different
revisions that the users make to the code. It allows each user to pull
changes made by the others and merge them into their local copy of the
script, without overwriting their own edits. There exist different types
of VCS. By now, distributed VCS such as Git are the most popular, and
there exist numerous introductions and quick-start guides online (see, e.g.,
Blischak et al., 2016).
What type of content should be managed by a VCS? Systems of this

kind are tailored to the management of source code. That is, they are
designed to track changes in text files, but not in binary files (such as
Stata’s .dta files). For the purpose of data management, this usually means
that only your data management scripts should be placed under version
control, but not the data files themselves, if you can avoid it. For collabo-
rative projects, I recommend that your code include download commands
to fetch the input datasets from their original location, rather than storing
these datasets in your repository. This way, each collaborator can generate
the output datasets simply by running the project code, without the need
to manually obtain copies of the input datasets. This, however, is only
possible if the original input datasets do not change and can always be
obtained from a given location. If this is not the case, adding a copy
to your repository is usually the best option. Of course, if your data
resides in a relational database and needs to be accessed by the different
collaborators in the project, this is even easier, since you simply connect
to the same database and perform much of your data processing there.
The code to do this should of course be located in a file under version
control.
A detailed introduction to version control is beyond the scope of this

book. My goal in this section was to make you aware of these systems
and provide some intuition on what they do. If you frequently work on
projects with several collaborators, it is definitely worth learning more
about these systems, even if the initial learning curve may be steep. How-
ever, as mentioned above, VCS are designed to manage code, not data. If
you need to distribute data files,we take a brief look at data dissemination
in the following section.

14.3 disseminating research data and code

The data management and processing that we described in this book is
done by you as a researcher, and by the other members of your team.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

14.3 Disseminating Research Data and Code 215

However, at some point during the project, you usually need to make your
procedures public, to ensure transparency of your scientific approach and
to give others the possibility to replicate your work. At the latest, this
should happen when a research article is published, and many journals
by now require the publication of replication data and code along with
the article. Typically, this includes material for the analysis only; in the
terminology introduced in Chapter 1, this is the analysis dataset(s) and
the analysis code.
However, at a time when empirical datasets in the social sciences are

becoming increasingly complex and large, there are good reasons to also
share data and code that were used to generate the analysis data in the
first place. In particular, if several input datasets are involved, mistakes
can happen when merging them. While sharing code is straightforward
since the files are small and there is usually no sensitive content involved,
this may be different for research data. Datasets can contain sensitive
information and attributes that identify individuals, which is why they
often cannot be shared in public. Other data are prevented from public
dissemination by legal constraints, for example, if they were purchased
from a commercial provider.While sharing data is preferred from a scien-
tific point of view, it is essential that this happens within the given ethical
and legal limits. To learn about new approaches for preserving privacy
in research data while still making analysis possible, see, for example,
Evans and King (2022). Also, all your data and code should be properly
documented.
When all legal and ethical requirements for data sharing are met, you

can use one of several ways to disseminate your research data and code.
The easiest one is again to post these materials on a publicly available
website, as many researchers and journals do for their replication mate-
rials. However, I recommend using one of the freely available, special-
ized portals for this purpose. Many institutions use the Dataverse soft-
ware to create their own research dissemination infrastructure, but you
can use Harvard’s Dataverse at https://dataverse.harvard.edu to set up a
free account and post your code and data. An even more comprehensive
research infrastructure is provided by the Open Science Foundation at
https://osf.io. While it contains numerous other useful tools to facilitate
collaboration among researchers, it also allows you to share your data
and code publicly.
These two portals have several features that make them particularly

suitable for data dissemination. First, they maintain different versions of
files. We already saw that this is useful for code files, but is also necessary
when distributing research data publicly. Using the file history offered

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://dataverse.harvard.edu
https://osf.io
https://doi.org/10.1017/9781108990424.020

216 14 Best Practices in Data Management

by Dataverse or OSF, you can release new versions of your data that fix
mistakes or extend coverage of your data. Since these versions can be
tagged with a short description, you can document the evolution of a file
or a dataset for users outside your project. Second, the data portals allow
you to make your data files accessible under a fixed link, regardless of
the current version of the file. That is, when you distribute a link to your
file, this link remains the same even if you update the file. Older versions
remain accessible in the data repository, but you need to explicitly request
the respective version. This makes the development of datasets, but also
the access to them, flexible and transparent, without the need to use your
own website or a simple cloud storage facility.

14.4 summary and outlook

At the beginning of this book, I asked whether it is useful to spend an
entire book on data management. I gave a number of reasons for why this
would be helpful to quantitative researchers working with increasingly
complex and large amounts of data. A key learning I emphasized in the
book is the need to document every data processing step in getting from
the raw input data to the dataset(s) used for analysis. This makes data
management as convenient as possible for you as a researcher, but also
ensures that your research is replicable and transparent for others. All
this is possible when you perform data management in code, such that
each operation is included in your script. It becomes much more difficult
when using manual operations, for example, in a spreadsheet software.
The tools and techniques we covered in this book also allow you to make
your data management process scalable and versatile, such that the same
approaches can be used regardless of the size of your dataset or the types
of data that you intend to use for your research project.Here, in particular,
I introduced relational databases as a dedicated data management tool,
which can handle large amounts of data, but can also be extended to cover
more specialized types such as spatial or textual data.
The tabular data model has been of central importance throughout this

book. Tables come naturally to social scientists – all the applied exam-
ples we teach in introductory methods classes involve data formatted as
tables. In the book, I showed how tables are useful for many applica-
tions, including those that go beyond the conventional format of a single,
rectangular table. Data can be distributed across several tables, but the
traditional structure can also be extended to include more specialized
columns such as those with spatial coordinates. Despite the continued

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

14.4 Summary and Outlook 217

importance of structured, tabular data, unstructured data will become
increasingly relevant also in the social sciences. In this book, we only
scratched the surface of this topic when dealing with text data. Therefore,
if you want to continue to expand your data analysis skills beyond the
topics covered in this book, learning more about text analysis and related
topics would be a promising way to go. I hope that this book can serve
as a useful and comprehensive preparation as you continue this journey.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

Bibliography

Acemoglu, Daron, and Robinson, James A. 2005. Economic Origins of Dictator-
ship and Democracy. Cambridge University Press.

Afrobarometer. 2021. Afrobarometer Surveys. Available at https://afrobarometer
.org.

Albert, Réka, and Barabási, Albert-László. 2002. Statistical Mechanics of Com-
plex Networks. Reviews of Modern Physics, 74(1), 47.

Barberá, Pablo. 2015. Birds of the Same Feather Tweet Together: Bayesian Ideal
Point Estimation Using Twitter Data. Political Analysis, 23(1), 76–91.

Barbieri, Katherine, and Keshk, Omar M.G. 2017. Correlates of War Project
Trade Data Set Codebook, Version 4.0. Available at http://correlatesofwar
.org.

Barbieri, Katherine, Keshk, Omar M. G., and Pollins, Brian M. 2009. Trading
Data: Evaluating Our Assumptions and Coding Rules.Conflict Management
and Peace Science, 26(5), 471–491.

Baturo, Alexander, Dasandi,Niheer, andMikhaylov, Slava J. 2017. Understanding
State Preferences with Text as Data: Introducing the UN General Debate
Corpus. Research & Politics, 4(2).

Blischak, John D., Davenport, Emily R., and Wilson, Greg. 2016. A Quick
Introduction to Version Control with Git and GitHub. PLoS Computational
Biology, 12(1), e1004668.

Bliss, Harry, and Russett, Bruce. 1998. Democratic Trading Partners: The Liberal
Connection, 1962-1989. Journal of Politics, 60(4), 1126–1147.

Bryan, Jennifer. 2015.How to Name Files. Speaker Deck Online Video. Available
at https://speakerdeck.com/jennybc/how-to-name-files.

Chen, Xi, and Nordhaus, William D. 2011. Using Luminosity Data as a Proxy
for Economic Statistics. Proceedings of the National Academy of Sciences,
108(21), 8589–8594.

Coppedge, Michael, Gerring, John, Knutsen, Carl Henrik, Lindberg, Staffan I.,
Teorell, Jan, Altman, David, Bernhard, Michael, Fish, M. Steven, Glynn,
Adam, Hicken, Allen, Lührmann, Anna, Marquardt, Kyle L., McMann,

219

https://doi.org/10.1017/9781108990424.021 Published online by Cambridge University Press

https://afrobarometer.org
http://correlatesofwar.org
https://speakerdeck.com/jennybc/how-to-name-files
https://doi.org/10.1017/9781108990424.021

220 Bibliography

Kelly, Paxton, Pamela, Pemstein, Daniel, Seim, Brigitte, Sigman, Rachel,
Skaaning, Svend-Erik, Staton, Jeffrey, Wilson, Steven, Cornell, Agnes,
Gastaldi, Lisa, Gjerløw, Haakon, Ilchenko, Nina, Krusell, Joshua, Maxwell,
Laura,Mechkova, Valeriya,Medzihorsky, Juraj, Pernes, Josefine, von Römer,
Johannes, Stepanova, Natalia, Sundström, Aksel, Tzelgov, Eitan, Wang, Yi-
ting, Wig, Tore, and Ziblatt, Daniel. 2019. V-Dem Country-Year Dataset
v9. Varieties of Democracy (V-Dem) Project. Available at https://www.v-dem
.net.

Correlates of War Project. 2008. State System Membership List, v2008.1. Avail-
able online at http://correlatesofwar.org.

DA-RT Initiative. 2015. Data Access & Research Transparency. Available at
https://www.dartstatement.org/.

Data Carpentry. 2017. Data Organization in Spreadsheets for Social Scien-
tists. Online Course. Available at https://datacarpentry.org/spreadsheets-
socialsci/.

Döring, Holger, and Manow, Philip. 2018. Parliaments and Governments
Database (ParlGov): Information on Parties, Elections and Cabinets in Mod-
ern Democracies.Development version.Available at http://www.parlgov.org.

Dreher, Axel, Sturm, Jan-Egbert, and Vreeland, James Raymond. 2009. Develop-
ment Aid and International Politics: Does Membership on the UN Security
Council Influence World Bank Decisions? Journal of Development Eco-
nomics, 88(1), 1–18.

Evans, Georgina, and King, Gary. 2022. Statistically Valid Inferences from Dif-
ferentially Private Data Releases, with Application to the Facebook URLs
Dataset. Political Analysis, FirstView. DOI: 10.1017/pan.2022.1.

Faundeen, John, Burley, Thomas E., Carlino, Jennifer A., Govoni, David L.,
Henkel, Heather S., Holl, Sally L., Hutchison, Vivian B., Martín, Elizabeth,
Montgomery, Ellyn T., Ladino, Cassandra, Tessler, Steven, and Zolly, Lisa S.
2014. The United States Geological Survey Science Data Lifecycle Model.
Technical report, available at https://doi.org/10.3133/ofr20131265.

Gleditsch, Kristian Skrede. 2020. Distance between Capital Cities. Available at
http://ksgleditsch.com/data-5.html.

Grimmer, Justin, Roberts, Margaret E., and Stewart, Brandon M. 2022. Text as
Data: A New Framework for Machine Learning and the Social Sciences.
Princeton University Press.

Grofman, Bernard, and Lijphart, Arend. 1986. Electoral Laws and Their Political
Consequences. Vol. 1. Algora Publishing.

Henderson, Margaret E. 2017. Data Management: A Practical Guide for Librar-
ians. Practical guides for librarians, no. no. 28. Lanham, MD: Rowman &
Littlefield.

Högbladh, Stina. 2019. UCDP GED Codebook Version 19.1. Department of
Peace and Conflict Research, Uppsala University.

Houle, Christian. 2009. Inequality and Democracy: Why Inequality Harms
Consolidation but Does Not Affect Democratization. World Politics, 61(4),
589–622.

Izzo, Phil. 2012. Is Data Is, or Is Data Ain’t, a Plural? The Wall Street Journal
Real Time Economics Blog. Available at https://blogs.wsj.com/economics/
2012/07/05/is-data-is-or-is-data-aint-a-plural/.

https://doi.org/10.1017/9781108990424.021 Published online by Cambridge University Press

https://www.v-dem.net
http://correlatesofwar.org
https://www.dartstatement.org/
https://datacarpentry.org/spreadsheets-socialsci/
https://datacarpentry.org/spreadsheets-socialsci/
http://www.parlgov.org
https://doi.org/10.3133/ofr20131265
http://ksgleditsch.com/data-5.html
https://blogs.wsj.com/economics/2012/07/05/is-data-is-or-is-data-aint-a-plural/
https://blogs.wsj.com/economics/2012/07/05/is-data-is-or-is-data-aint-a-plural/
https://doi.org/10.1017/9781108990424.021

Bibliography 221

Lee, Hoon, and Mitchell, Sara McLaughlin. 2012. Foreign Direct Investment and
Territorial Disputes. Journal of Conflict Resolution, 56(4), 675–703.

Lovelace, Robin, Nowosad, Jakub, and Muenchow, Jannes. 2019. Geocomputa-
tion with R. CRC Press. Available at https://geocompr.robinlovelace.net.

Marshall,Monty G.,Gurr, Ted Robert, and Jaggers,Keith. 2015.Polity IV Project:
Political Regime Characteristics and Transitions, 1800–2015. Available at
http://www.systemicpeace.org/polity/polity4.htm.

Mudde, Cas. 2004. The Populist Zeitgeist. Government and Opposition, 39(4),
541–563.

Newman, Mark E. J. 2004. Coauthorship Networks and Patterns of Scientific
Collaboration. Proceedings of the National Academy of Sciences, 101(1),
5200–5205.

Nordhaus, William D. 2006. Geography and Macroeconomics: New Data and
New Findings. Proceedings of the National Academy of Sciences, 103(10),
3510–3517.

Piketty, Thomas. 2014. Capital in the 21st Century. Cambridge, MA: Harvard
University Press.

Polo, Sara M. T. 2020. The Quality of Terrorist Violence: Explaining the Logic of
Terrorist Target Choice. Journal of Peace Research, 57(2), 235–250.

Richardson, Lewis Fry. 1960. Statistics of Deadly Quarrels. Pittsburgh, PA:
Boxwood.

Rooduijn, Matthijs, Van Kessel, Stijn, Froio, Caterina, Pirro, Andrea, De Lange,
Sarah, Halikiopoulou, Daphne, Lewis, Paul, Mudde, Cas, and Taggart, Paul.
2019. The PopuList: An Overview of Populist, Far Right, Far Left and
Eurosceptic Parties in Europe. Available at http://www.popu-list.org.

Shafranovich, Yakov. 2005. Common Format and MIME Type for CSV Files.
IETF Request for Comments. Available at https://www.ietf.org/rfc/rfc4180
.txt.

Strong, Robert A. 2021. Jimmy Carter: The American Franchise. Miller Center
of Public Affairs, University of Virginia. Available at https://millercenter.org/
president/carter/the-american-franchise.

Sundberg,Ralph, andMelander, Erik. 2013. Introducing the UCDPGeoreferenced
Event Dataset. Journal of Peace Research, 50(4), 523–532.

The Economist. 2016. Excel Errors and Science Papers: Spreadsheets Are
Playing Havoc with Scientists. Graphic Detail Blog. Available at www
.economist.com/graphic-detail/2016/09/07/excel-errors-and-science-papers.

The White House. 2013. Remarks by the President on Economic Mobility.
Press Release. Available at https://obamawhitehouse.archives.gov/the-press-
office/2013/12/04/remarks-president-economic-mobility.

The WID Team. 2020.World Inequality Database. Online Database. Available at
https://wid.world.

Tollefsen, Andreas Forø, Strand, Håvard, and Buhaug, Halvard. 2012. PRIO-
GRID: A Unified Spatial Data Structure. Journal of Peace Research, 49(2),
363–374.

United Nations Department of Economic and Social Affairs. 2019. World Pop-
ulation Dynamics. Available at https://population.un.org/wpp/Download/
Standard/Population/.

https://doi.org/10.1017/9781108990424.021 Published online by Cambridge University Press

https://geocompr.robinlovelace.net
http://www.systemicpeace.org/polity/polity4.htm
http://www.popu-list.org
https://www.ietf.org/rfc/rfc4180.txt
https://millercenter.org/president/carter/the-american-franchise
https://millercenter.org/president/carter/the-american-franchise
https://www.economist.com/graphic-detail/2016/09/07/excel-errors-and-science-papers
https://obamawhitehouse.archives.gov/the-press-office/2013/12/04/remarks-president-economic-mobility
https://obamawhitehouse.archives.gov/the-press-office/2013/12/04/remarks-president-economic-mobility
https://wid.world
https://population.un.org/wpp/Download/Standard/Population/
https://population.un.org/wpp/Download/Standard/Population/
https://doi.org/10.1017/9781108990424.021

222 Bibliography

US Agency for International Development. 2021. Demographic and Health
Surveys. Available at https://dhsprogram.com.

US Federal Reserve Bank St. Louis. 2020. FRED Data Portal. Online Database.
Available at https://fred.stlouisfed.org.

US Library of Congress. 2019. Sustainability of Digital Formats: Planning for
Library of Congress Collections. Online Resource. Available at https://www
.loc.gov/preservation/digital/formats/fdd/descriptions.shtml.

2020.Chronological List of Presidents, First Ladies, and Vice Presidents of the
United States. Online Resource. Available at https://www.loc.gov/rr/print/
list/057_chron.html.

Ward, Michael D., Ahlquist, John S., and Rozenas, Arturas. 2013. Gravity’s
Rainbow: A Dynamic Latent Space Model for the World Trade Network.
Network Science, 1(1), 95–118.

Warren, T. Camber. 2015. Explosive Connections? Mass Media, Social Media,
and the Geography of Collective Violence in African States. Journal of Peace
Research, 52(3), 297–311.

Wasser, Leah. 2020. Coordinate Reference System and Spatial Projection. Earth
Data Analytics Online Certificate, Lesson 3. Available at https://www.earth
datascience.org/courses/earth-analytics/spatial-data-r/intro-to-coordinate-
reference-systems/.

Weidmann, Nils B. 2011. Violence ‘from above’ or ‘from below’? The Role of
Ethnicity in Bosnia’s Civil War. Journal of Politics, 73(4), 1178–1190.

Wickham, Hadley. 2021. The tidyverse Style Guide. Available at https://style
.tidyverse.org.

Wickham,Hadley, andGrolemund,Garrett. 2016.R for Data Science. Sebastopol,
CA: O’Reilly.

World Bank. 2021.World Development Indicators. Available at https://databank
.worldbank.org/source/world-development-indicators.

Worlds of Journalism Study. 2019. Data and Key Tables: WJS2 (2012–
2016). Online Resource. Available at https://worldsofjournalism.org/data-
d79/data-and-key-tables-2012-2016/.

https://doi.org/10.1017/9781108990424.021 Published online by Cambridge University Press

https://dhsprogram.com
https://fred.stlouisfed.org
https://www.loc.gov/preservation/digital/formats/fdd/descriptions.shtml
https://www.loc.gov/rr/print/list/057_chron.html
https://www.loc.gov/rr/print/list/057_chron.html
https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/intro-to-coordinate-reference-systems/
https://style.tidyverse.org
https://databank.worldbank.org/source/world-development-indicators
https://worldsofjournalism.org/data-d79/data-and-key-tables-2012-2016/
https://doi.org/10.1017/9781108990424.021

Index

@@ SQL operator, 182
[] operator, 26, 91, 194
$ operator, 27, 91
%>% operator, 89

Acemoglu, Daron, 88
adist() function, 186
adjacency list, 189, 205
adjacency matrix, 189
Afrobarometer, 4
aggregation function, 32, 69, 83, 94, 95,

116
agrep() function, 186
agrpl() function, 186
Ahlquist, John, 201
Albert, Réka, 188
ALTER TABLE SQL statement, 115, 130,

159, 162, 199
Altman, David, 191
American Standard Code for Information

Interchange, 41
Apple Numbers, 59
ArcGIS, 149
arrange() function, 98
as.data.frame() function, 91, 157, 179
as.Date() function, 77
as.numeric() function, 79
attribute table, 147
attributes (graph), 188
avg() SQL function, 141

Barabási, Albert-László, 188
Barberá, Pablo, 53
Barbieri, Katherine, 188, 190

Baturo, Alexander, 169
Bernhard, Michael, 191
Bliss, Harry, 190
bounding box, 153
Bryan, Jennifer, 55, 56

Cartesian product, 81
centrality, 194
character variable, 27
Chen, Xi, 60
class() function, 53
cloud storage, 213
coding (measurement), 24
colnames() function, 77
coordinate system, 149, 153
geographic (unprojected), 149
projected, 149

Coppedge, Michael, 191
Cornell, Agnes, 191
corpus (text data), 167
Correlates of War, 92, 190
countrycode package, 92
countrycode() function, 92
CREATE INDEX SQL statement, 139, 182,

199
CREATE TABLE SQL statement, 111, 138
CREATE USER SQL statement, 140

DA-RT initiative, 8
Dasandi, Niheer, 169
data
redundancy, 33, 104, 121
representation, 25
sensitive, 215

223

https://doi.org/10.1017/9781108990424.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.022

224 Index

data (Cont.)
sharing, 215
structure, 210
structured, 168
type, 27, 79
unstructured, 168, 184
versioning, 216

Data Carpentry, 72
data definition, 36, 108
data extraction, 36, 109
data frame, 25
data manipulation, 36, 109
data storage
persistent, 39
volatile, 39

data, scientific, 23
data.frame() function, 25, 30, 89
database client, 105
database management system, 10, 20, 103
access control, 140

database server, 105
dataset, scientific, 24
Dataverse, 215
dbAppendTable() function, 114
dbConnect() function, 20, 107
dbExecute() function, 110
dbGetQuery() function, 112
DBI interface, 107
dbListTables() function, 111
dbWriteTable() function, 114, 159, 179
De Lange, Sarah, 123
declarative programming, 119
degree centrality, 194, 199
degree() function, 194
DELETE SQL statement, 113, 131, 199
Demographic and Health Surveys, 4, 9
dfm() function, 177
dfm_remove() function, 177
dfm_select() function, 178
doBy package, 32, 82
document (text data), 167
document variable, 171
document-feature matrix, 177
Döring, Holger, 110
double variable, 27
dplyr package, 88
Dreher, Axel, 49
DROP TABLE SQL statement, 114
Dropbox, 213
dynamic typing, 210

E() function, 194
edge (graph), 187
edge_attr() function, 196
eigen_centrality() function, 195
eigenvector centrality, 195
electoral disproportionality, 109, 118
entity-relationship-model, 133
EPSG list of spatial reference systems, 153
escaping (characters), 173
Evans, Georgina, 215
event dataset, 150
expand.grid() function, 138
extract() SQL function, 115

featnames() function, 178
feature, spatial, 151
field separator, 46
file
binary, 40
compression, 48, 185
encoding, 41, 168
extension, 43
name, 55
text, 40
type, 39

file format
CSV, 45, 70
Excel, 49, 64, 92
guide, 57
MS Word, 171
PDF, 171
R data, 52
serialized R data, 52
shapefile, 154
SPSS, 51
Stata, 50
file.path() function, 18
filter() function, 98
Fish, Steven , 191
foreign key, 122, 129
format() function, 77, 79
FRED data portal, 75
Froio, Caterina, 123
fuzzy string matching, 186

G-Econ, 60
Gallagher index, 109, 118
Gastaldi, Lisa, 191
generate_series() SQL function, 138
Geo-referenced Event Dataset, 150
Geographic Information Systems, 147

https://doi.org/10.1017/9781108990424.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.022

Index 225

geometry column, 159
geometry, spatial, 148, 159
Gerring, John, 191
Git, 214
Gjerløw, Haakon, 191
Gleditsch, Kristian Skrede, 45
Glynn, Adam, 191
GRANT SQL statement, 141
graph, 187
directed, 188
undirected, 187

graph database, 206
graph_from_data_frame() function, 193
grep() function, 173
grepl() function, 173
Grimmer, Justin, 167
Grofman, Bernard, 109
group() function, 97
group_by() function, 94, 157
grouping (tibble), 94
guess_encoding() function, 42
gzfile() function, 48

Halikiopoulou, Daphne, 123
haven package, 50, 51
Hicken, Allen, 191
Houle, Christian, 88
Högbladh, Stina, 150

identical() function, 54
if_else() function, 93
igraph package, 192
Ilchenko, Nina, 191
index (search), 136
induced_subgraph() function, 195
inner_join() function, 93
INSERT SQL statement, 112, 130, 198
install.packages() function, 18
integer variable, 27
invisible characters, 40, 172
is.na() function, 195

join, 93, 125
inner, 93, 126
left, 203
spatial, 151, 156, 161

Keshk, Omar, 188, 190
King, Gary, 215
Knutsen, Carl Henrik, 191
Krusell, Joshua, 191

kwic() function, 176

labelled package, 51
lag() function, 97
lagged variable, 97
layer, spatial, 156
Lee, Hoon, 188
left_join() function, 93, 158
length() function, 83
Levenshtein distance, 186
levenshtein() SQL function, 186
Lewis, Paul, 123
LibreOffice, 59
Lijphart, Arend, 109
LIKE SQL operator, 180
Lindberg, Staffan, 191
load() function, 53
logical variable, 27
long table, 32, 97, 210
Lovelace, Robin, 165
ls() function, 53
Lührmann, Anna, 191

Manow, Philip, 110
map projection, 149
Marquardt, Kyle, 191
Maxwell, Laura, 191
McMann, Kelly, 191
mean() function, 83
Mechkova, Valeriya, 191
Medzihorsky, Juraj, 191
Melander, Erik, 150
merge() function, 35, 79, 81, 89
metadata (text data), 167
Microsoft Excel, 49, 59
cell formatting, 63
filtering, 65
freeze panes, 63
Pivot table, 68
sheets, 61

Mikhaylov, Slava, 169
Mitchell, Sara McLaughlin, 188
Mudde, Cas, 122, 123
Muenchow, Jannes, 165
mutate() function, 92, 97
MySQL, 106

n() function, 94
natural language processing, 175
Neo4j, 206
Newman, Mark, 187
node (graph), 187

https://doi.org/10.1017/9781108990424.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.022

226 Index

Nordhaus, William, 60
Nowosad, Jakub, 165
nrow() function, 80

Obama, Barack, 75
one-to-many relationship, 125
one-to-one relationship, 127
Open Office, 59
Open Science Foundation, 215
openxslx package, 50
Oracle, 106
overlay (spatial), 151, 156

ParlGov, 109, 122
Paxton, Pamela, 191
Pemstein, Daniel, 191
Pernes, Josefine, 191
pgAdmin, 144
Piketty, Thomas, 75
pipe operator, 89
Pirro, Andrea, 123
pivot_longer() function, 98
pivot_wider() function, 98
plot.igraph() function, 196
plot.sf() function, 153
Polity IV, 88, 92
Pollins, Brian, 190
Polo, Sara, 50
populism, 122
PopuList, 123
PostGIS, 150, 158, 159
Postico, 144
pre-registration, 6
primary key, 122, 129, 134
procedural programming, 119

QGIS, 149, 165
quanteda package, 171, 176

R
code style, 21
console, 15
environment, 19
help, 18
packages, 18
script, 74
working directory, 17

random() SQL function, 138
raster data, 147
rbind() function, 28
read.csv() function, 43, 46, 48, 76, 78,

79, 192

read_csv() function, 90
read_delim() function, 90
read_dta() function, 50
read_excel() function, 49, 92
read_sav() function, 51
readr package, 42
readRDS() function, 54
readtext package, 170
readtext() function, 171, 179
readxl package, 49, 92
referential integrity, 129
regexp_replace() SQL function, 180
regular expressions, 172, 179
relational integrity, 104, 206
reliability, 24
rename() function, 91
renv package, 19
replication, 8
research workflow, 4, 5
REVOKE SQL statement, 142
Richardson, Lewis Fry, 3
right_join() function, 93
rm() function, 53
Robert, Margaret, 167
Robinson, James, 88
Rooduijn, Matthijs, 123
rowSums() function, 178
Rozenas, Arturas, 201
RPostgres package, 20, 107
RStudio, 15, 16, 78
RStudio project file, 17
runif() function, 89, 138
Russett, Bruce, 190

sample() function, 138
save() function, 53
saveRDS() function, 54
Seim, Brigitte, 191
SELECT SQL statement, 112, 201, 202
select() function, 90, 92
sf package, 151
Shafranovich, Yakov, 48
Sigman, Rachel, 191
Skaaning, Svend-Erik, 191
slice() function, 90
SPSS, 51
SQL, 106
aggregation, 116, 161
data definition, 108
data extraction, 109
data manipulation, 109
data types, 108, 111, 130

https://doi.org/10.1017/9781108990424.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.022

Index 227

SQL (Cont.)
full text search, 181
grouping, 116
join, 125, 161, 201, 203
NULL values, 113, 128, 203
syntax, 108
text search query, 182
wildcard, 112

SQL Server, 106
sqrt() SQL function, 116
st_as_sf() function, 153
st_contains() SQL function, 161
st_geometry() function, 153
st_join() function, 156
st_point() SQL function, 160
st_read() function, 160, 162
st_setSRID() SQL function, 160
st_write() function, 160
Stata, 50
Staton, Jeffrey, 191
stemming, 182
Stepanova, Natalia, 191
Stewart, Brandon, 167
stopwords, 177, 182
str() function, 78
string quotation, 47
string variable, 27
Strong, Robert, 84
structure (data), 25
Sturm, Jan, 49
subgraph, 195
subset() function, 27, 29, 77, 78, 89, 192
substr() function, 81, 172
sum() SQL function, 117
summarize() function, 94
summaryBy() function, 32, 82, 83
Sundberg, Ralph, 150
Sundström, Aksel, 191
Sys.time() function, 138

Taggart, Paul, 123
Teorell, Jan, 191
tibble, 91
tibble package, 91
tidyr package, 88
tidytext package, 185
to_tsquery() SQL function, 182
to_tsvector() SQL function, 181, 182

token (text data), 176, 182
tokens() function, 177
tolower() function, 78
topfeatures() function, 178
data.frametypeof() function, 27
Tzelgov, Eitan, 191

UN General Debate, 169
UN General Debate Speech Corpus,

169
UN Sustainable Development Goals, 169,

183
ungroup() function, 95, 97
Unicode, 41, 70
Unicode standard, 41
UPDATE SQL statement, 160, 162
USGS Data Lifecycle, 6

V() function, 194
validity, 24
Van Kessel, Stijn, 123
var_label() function, 51
Varieties of Democracy, 5, 191
vector data, 147
version control system, 213
vertex (graph), 187
vertex_attr() function, 196
von Römer, Johannes, 191
Vreeland, James, 49

Wang, Yi-ting, 191
Ward, Michael, 201
Wasser, Leah, 149
which.max() function, 194
Wickham, Hadley, 90
wide table, 30, 97, 210
Wig, Tore, 191
Wilson, Steven, 191
WITH SQL statement, 162, 203
World Development Indicators, 4
World Inequality Database, 75, 88
Worlds of Journalism Study, 51
write.csv() function, 47
write_dta() function, 51
write_sav() function, 52
writeLines() function, 173

Ziblatt, Daniel, 191

https://doi.org/10.1017/9781108990424.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.022

https://doi.org/10.1017/9781108990424.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.022

	01.0_pp_i_iv_Frontmatter
	02.0_pp_v_vi_Dedication
	03.0_pp_vii_x_Contents
	04.0_pp_xi_xiv_Preface
	05.0_pp_1_2_Introduction
	05.1_pp_3_13_Motivation
	05.2_pp_14_22_Gearing_Up
	05.3_pp_23_36_Data_Content_Structure
	06.0_pp_37_38_Data_in_Files
	06.1_pp_39_58_Storing_Data_in_Files
	06.2_pp_59_73_Managing_Data_in_Spreadsheets
	06.3_pp_74_86_Basic_Data_Management_in_R
	06.4_pp_87_100_R_and_the_tidyverse
	07.0_pp_101_102_Data_in_Databases
	07.1_pp_103_120_Introduction_to_Relational_Databases
	07.2_pp_121_134_Relational_Databases_and_Multiple_Tables
	07.3_pp_135_144_Database_Fine-Tuning
	08.0_pp_145_146_Special_Types_of_Data
	08.1_pp_147_165_Spatial_Data
	08.2_pp_166_186_Text_Data
	08.3_pp_187_206_Network_Data
	09.0_pp_207_208_Conclusion
	09.1_pp_209_218_Best_Practices_in_Data_Management
	10.0_pp_219_222_Bibliography
	11.0_pp_223_228_Index

