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1 Introduction

Multicore processors are nowadays ubiquitous in desktop computing and are becom-
ing more and more popular in many other application domains, ranging from mobile
phones to hard real-time embedded systems. Yet, how to use them effectively with
the help of an embedded real-time operating system is still little known to many
practitioners. In the open-source arena, the matter is made even more complex due
to the lack of comprehensive learning material in the scientific and technical litera-
ture. Thus, potential users easily run into the risk of misusing multicore processors,
or not considering their merits and pitfalls in the right perspective.

The goal of the book is to provide readers with hands-on knowledge about the
design and development cycle of a typical real-time application using the Real-Time
Executive for Multiprocessor Systems (RTEMS) operating system, which is a rep-
resentative and widely used Real-Time Operating System (RTOS) for embedded
systems. The narrative starts from basic ideas (for instance, how to use an open-
source toolchain) and then proceeds to discuss state-of-the-art concepts (like multi-
core scheduling and synchronization), which are in part still open to research.

Building on the extensive knowledge of leading RTEMS designers and devel-
opers, as well as academic researchers, the book aims at providing not only sound
theoretical information but also valuable practical advice with a thorough descrip-
tion of the RTEMS Application Programming Interfaces. The topics covered in the
book enable average readers to understand all aspects of the embedded software de-
velopment process and readily apply the acquired knowledge in their next project.
Moreover, fundamental theoretical concepts are introduced along the way, focusing
on their consequences on the above-mentioned practical topics, which makes this
book also good for graduate-level classroom use.

Part I of the book introduces the reader to embedded software development. First
of all, it describes the fundamental tools used to compile and link application soft-
ware and how the RTEMS operating system is configured for use. Then, the discus-
sion continues with the basics of concurrent programming, real-time scheduling, and
scheduling analysis. The chapters in this part are:

e Chapter 2, Cross-Compilation Toolchain. This chapter first describes the
main components of a GNU-based! cross-compilation toolchain, focusing
in particular on the linker command language and on GNU make, a tool
commonly used to coordinate and automate the software build process. The
second part of the chapter discusses the compile-time configuration of the
RTEMS operating system.

IGNU stands for GNU’s Not Unix!
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e Chapter 3, Concurrent Programming and Scheduling Algorithms. The first
main goal of this chapter is to lay out the theoretical foundations of con-
current programming. The discussion covers the all-important concept of
process, or task, and how task state is represented within an operating sys-
tem as it evolves over time. The second part of the chapter introduces the
reader to real-time scheduling methods and techniques on single-processor
systems, while the discussion of scheduling algorithms suitable for multi-
core systems is left to Part V.

e Chapter 4, Scheduling Analysis and Interrupt Handling. The main topic of
this chapter is scheduling analysis, a set of mathematical tools to predict
the worst-case timing behavior of a real-time system. The discussion starts
from a high-level view of the system, abstracted as a set of tasks, and then
shows how interrupt handling fits in the scheduling analysis framework. A
set of practical considerations on interrupt handling, using a popular mi-
croprocessor architecture as a reference, concludes the chapter and helps
illustrate how RTEMS implements some key activities, like context switch.

Part IT discusses the concepts and mechanisms of task management and timekeep-
ing, along with the two Application Programming Interfaces (APIs) that give users
access to them. In particular:

e Chapter 5, Tusk Management and Timekeeping, Classic API. This chapter is
devoted to the RTEMS scheduling algorithms for single-core systems and
the facilities that RTEMS provides to manipulate tasks and account for the
passage of time through its Classic APL. It also contains a comparison with
the POSIX standard API and a description of some lower-level aspects of
interrupt handling on single-core systems made accessible by the RTEMS
Interrupt Manager and often essential in embedded systems.

o Chapter 6, Task Management and Timekeeping, POSIX API. The chapter
contains an extensive description of the POSIX API for task management
and timekeeping. Special attention is given to the cancellation and sig-
nalling mechanisms, which do not have a direct counterpart in the Classic
APL

Part III discusses the all-important topic of lock-based task synchronization and
communication, as well as its interaction with scheduling and scheduling analysis.
The three chapters in this part also introduce the reader to the main synchronization
devices and message passing directives available in RTEMS through its Classic and
POSIX APIs.

e Chapter 7, Inter-Task Synchronization and Communication (IPC) Based
on Shared Memory. This chapter describes the fundamental concepts of
race condition, critical region, and lock-based mutual exclusion. It intro-
duces the reader to the classic inter-task synchronization and communica-
tion methods based on shared memory, namely, semaphores and monitors.
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Two more specialized synchronization devices, barriers and events, are also
included in the discussion due to their considerable practical interest.

e Chapter 8, IPC, Task Execution, and Scheduling. This chapter is devoted to
priority inversion and deadlock, two very important issues related to lock-
based synchronization and communication, which may impair the timings
of any real-time system if not appropriately solved. To this aim, the chapter
discusses several suitable design-time and runtime methods and techniques.

e Chapter 9, IPC Based on Message Passing. This chapter introduces readers
to message passing, an IPC mechanism that does not rely on shared mem-
ory for data transfer, thus paving the way to a unified IPC technique that is
also suitable for distributed systems in which multiple independent nodes
are connected by a communication network. As in the rest of the book,
theoretical concepts are presented together with their RTEMS implementa-
tion.

Part IV describes how RTEMS provides full-fledged TCP/IP network communi-
cation, which is becoming an ubiquitous requirement in modern embedded systems.
It is composed of two chapters:

e Chapter 10, Network Communication in RTEMS. This chapter describes the
internal structure of the RTEMS networking code and highlights the most
important aspects of operating system / protocol stack integration, such as
synchronization and the device driver interface.

e Chapter 11, POSIX Sockets API. This chapter complements the previous
one and discusses in detail how users can access the RTEMS networking
code in an operating system and protocol-independent way, by means of
the standard POSIX Sockets API.

Part V concludes the book. Its two chapters describe the issues brought by multi-
core embedded processors and how RTEMS supports them:

o Chapter 12, Multicores in Embedded Systems. The chapter outlines the mo-
tivation behind the widespread diffusion of multicore processors for em-
bedded systems and provides an overview of their architecture. Then, it
summarizes the challenges introduced by multicores in software devel-
opment for embedded systems, focusing on the areas of task scheduling,
schedulability algorithms and analysis, and proper inter-task communica-
tion and synchronization.

o Chapter 13, Multicore Concurrency: Issues and Solutions. The chapter
summarizes the most common scheduling algorithms and synchronization
devices for real-time multicore systems and illustrates how they are sup-
ported in RTEMS. The second part of the chapter provides information
about lock-free and wait-free synchronization, which is often a valid alter-
native to lock-based synchronization described in Part III, as well as the
use of spinlocks for task/interrupt handler synchronization.
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This chapter explains the general compilation approach adopted in embedded sys-
tems and then introduces the main components of a GNU-based toolchain. Among
them, special attention is given to the linker command language used to write linker
scripts and to GNU make, which is one of the most widespread tools for coordinat-
ing and automating the software build process. A short discussion of the RTEMS
configuration system concludes the chapter.

2.1 FROM SOURCE CODE TO THE EXECUTABLE IMAGE

Unlike general-purpose systems, where code is compiled, built, and executed on the
same machine, development for embedded systems usually requires the availabil-
ity of a cross-compilation toolchain. It compiles and builds the source code on a host
machine where the cross-compilation toolchain runs. Instead, the compiled code will
execute on a target machine, in this case an embedded device. This is due to the
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FIGURE 2.1 Simplified view of the C-language toolchain workflow.

resource limits on embedded devices, for instance, memory capacity and processor
speed. Even when embedded boards are shipped with a pre-installed general-purpose
operating system such as Linux, which consequently enables support for native com-
pilation, these setups are generally not meant for real-time execution purpose.

Figure 2.1 demonstrates the compilation process, which translates source code
into an executable image, using the GCC-based cross-compilation toolchain. As
shown in the figure, a cross-compilation toolchain usually consists of the following
components:

o The GCC Compiler. It translates a C/C++ source file, which in turn may
include other headers or source files, and produces an object module in bi-
nary format. This generally involves a multi-step code generation process,
which is better detailed in Section 2.1.1. Although it is generally called “the
compiler”, the gcc program is actually a compiler driver, able to perform
different actions by invoking other toolchain components appropriately, de-
pending on the input file type usually derived from its filename extension.
The compiler driver behavior can be customized by means of command-
line options. Depending on the target architecture, different options may
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be provided, to drive the compilation for that specific architecture. For in-
stance, the -march option can be used to indicate the specific architecture
belonging to the ARM family, such as armv8-a for the ARMvS-A archite-
cure [14], or armv7-a for the ARMv7-A. The actions to be performed by
gcc are further configured by means of a specs string or file. Both the
compiler driver itself and its specs string are discussed in more detail in

Section 2.1.1.

o The librarian—whose command name is ar because it was called
archivier in the past—collects multiple object modules into a library. The
same tool can also performs several other maintenance operations on a li-
brary. For instance, it is able to extract or delete a module from it.

Other tools, like nm and ob jdump, perform more specialized operations re-

lated to object module and executable image contents and symbols. These

tools will not be discussed further in the following due to space limitations.

Interested readers may refer to their documentation [96] for more informa-

tion.

e The linker 1d, presented in Section 2.1.3, links object modules together and
against libraries guided by command-line options or, more commonly, by
one or more linker scripts. It resolves cross references to eventually build
an executable image. Especially in embedded systems, the linking phase
usually brings the application plus a variety of system code together into
the executable image.

e There are several categories of system code used at link time:

. The startup object files—usually called crt » . o—contain code that is
executed first, when the executable image starts up. In standalone ex-
ecutable images, they also include system and hardware initialization
code, often called bootstrap code.

. The compiler support library libgcc.a contains utility functions
needed by the code generator, but too big/complex to be instantiated
inline. For instance, integer multiply/divide or floating-point operations
on processors without hardware support for them.

. The standard C libraries, 1ibc.a and 1ibm. a.

. Possibly, the operating system itself. This is the case of most real-time
operating systems and also RTEMS belongs to this category.

Another important component typically present in a toolchain belongs to a cate-
gory by itself because it does not directly operate on source or object files, or exe-
cutable images, but is responsible for coordinating and automating the software build
process as a whole. One of the most widespread tools of this kind is the open-source
GNU make program. In Figure 2.1, it is shown as a gray background that encom-
passes the other toolchain components and will be the subject of Section 2.3.

Building a toolchain is a complex affair, first of all due to its sheer size and com-
plexity, but also because the toolchain components are themselves written in a high-
level language and distributed as source code. For instance, the GNU compiler driver
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for the C/C++ programming languages is itself written in C/C++, and hence, a work-
ing C/C++ compiler is required in order to build it. There are several different ways
to solve this “chicken and egg” problem, often called bootstrap problem, depending
on the kind of compiler to be built.

As said previously, the kind of toolchain most frequently used in embedded soft-
ware development is the cross-compilation toolchain. This kind of toolchain gener-
ates code for a certain architecture (the rarget), but runs on a different architecture
(the development system, or host). This is because, due to limitations concerning
their memory capacity and processor speed, embedded systems often cannot com-
pile their own code.

The bootstrap problem becomes somewhat simpler in this case, because it is possi-
ble to use a native toolchain on the host to build the cross-compilation toolchain. The
availability of a native toolchain is usually not an issue because most open-source op-
erating system distributions already provide one ready-to-use. When using RTEMS,
the process is further streamlined by the availability of a comprehensive tool, called
RTEMS Source Builder (RSB) [106], able to build a complete open-source cross-
compilation toolchain from source code in a fully automatic way.

To distinguish cross-compilation toolchain components from their native
toolchain counterparts, their names are prefixed with a string that summarizes their
target architecture. For instance, the C compiler driver for the ARM architecture and
RTEMS operating system version 4.11 could be called arm-rtems4.11-gcc in-
stead of simply gcc. In the following, we will keep using the short names for brevity.

2.1.1 THE COMPILER DRIVER

Figure 2.2 depicts the general outline of the compiler driver workflow. According to
the high-level view given in the previous section, when the compiler driver is used to
compile a C source file, in theory it should perform the following steps, by invoking
a toolchain component for each of them:

1. Preprocess the source code with the C preprocessor cpp.
2. Compile the source code into assembly code, by means of the C compiler cc1.
3. Assemble it with the assembler as to produce the output object file.

The internal structure of the gcc compiler deserves a whole book by itself due to
its complexity. Interested reader may refer to [121] for a comprehensive guide and to
the official documentation for an authoritative description of the user-visible features
of the compiler [118], as well as its internals [117]. In the following, we will focus
only on some peculiarities of the gcc-based toolchain that deviate from the abstract
view just presented, as well as on how the compiler driver itself works.

First of all, as shown in the figure, the preprocessor is integrated in the C com-
piler implemented by ccl. The C++ compiler cclplus also uses the same ap-
proach. A standalone preprocessor cpp does exist, but it is not used during nor-
mal compilation. In any case, the behavior of the standalone preprocessor and the
one implemented in the compiler is consistent because both make use of the same
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preprocessing library, cpplib, which can also be used directly by application pro-
grams as a general-purpose macro expansion tool.

On the contrary, the assembler is implemented as a separate program, as, which
is not part of the gcc distribution. Instead, it is distributed as part of the binary util-
ities package [96], which also includes the linker. The assembler will not be further
discussed in this book due to space constraints.

One peculiar aspect of the gcc-based toolchain is that the compiler driver is pro-
grammable. Namely, it is driven by a set of rules contained in a “specs” string or
file. The specs string can be used to customize the behavior of the compiler driver. It
ensures that the compiler driver is as flexible as possible within its design envelope.

In the following, we will only provide an overview of the expressive power that
specs strings have, and illustrate what can be accomplished with their help, by means
of a couple of examples. A thorough documentation of specs string syntax and usage
can be found in [117]. Basically, the rules contained in a specs string specify which
sequence of programs the compiler driver should run, and their arguments, depending
on the kind of file provided as input. A default specs string is built in the compiler
driver itself and is used when no custom specs string is provided elsewhere.

The sequence of steps to be taken in order to compile a file can be specified de-
pending on the suffix of the file itself. Other rules associated with some command-line
options may change the arguments passed by the driver to the programs it invokes.

*1link: ${mbig-endian:-EB}

For example, the specs string fragment listed above specifies that if the command-
line option -mbig-endian is given to the compiler driver, then the linker must
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be invoked with the ~EB option. The intended effect of the rule is that, when the
compiler driver is given the option to target a processor configured for big-endian
operations, it must pass this information to all the programs it invokes, the linker in
this example, to make sure they all work consistently. As also shown by this example,
since different programs were designed and written by different groups of people at
different times, it is possible (and common) that conceptually analogous options are
spelled out in different ways.
Let us now consider another specs string fragment:

xstartfile: crti%0%s crtbegin%0%s new_crt0%0%s

In this case, the specs string specifies which object files should be uncondition-
ally included at the start of the link. The list of object files is held in the startfile
variable, mentioned in the left-hand part of the string, while the list itself is in the
right-hand part, after the colon (:). It is sometimes useful to modify the default set
of objects in order to add language-dependent or operating system-dependent files
without forcing programmers to mention them explicitly whenever they link an exe-
cutable image. More specifically, in this simple example:

e The xstartfile: specification overrides the internal specs variable
startfile and gives it a new value.

e crti%0%s and crtbegin%0%s are the standard initialization object files
typical of C language programs. Within these strings %0 represents the de-
fault object file suffix (by default, it is expanded to .o on Linux-based
hosts) and %s specifies that the object file is a system file and shall be
searched for in the system search path rather than in user-defined directo-
ries. The use of $0, %s, and other similar directives makes a specs string
portable across host operating systems with different file naming conven-
tions and allows the compiler to be installed in different places of the
filesystem without affecting the user in any way.

e new_crt0%0%s replaces crt0%0%s (one of the standard initialization
files of the C compiler) to provide, for instance, operating-system, lan-
guage, or machine-specific initialization functions.

2.1.2 THE PREPROCESSOR

The preprocessor, called cpp in a GNU-based toolchain, performs three main ac-
tivities that, at least conceptually, take place before the source code is passed to the
compiler proper. They are:

1. File inclusion, invoked by the #include directive.

2. Macro definition, by means of the #define directive, and expansion.

3. Conditional inclusion/exclusion of part of the input file from the compilation pro-
cess, depending on whether some macros are defined or not (for instance, when
the #ifdef or #ifndef directives are used) and their value (#1if directive).
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According to the C language specification [71], the preprocessor works by plain-
text substitution. However, since the preprocessor and the compiler grammar are the
same at the lexical (token) level, in a GCC-based toolchain the preprocessor also per-
forms tokenization of input files as an optimization. Hence, it provides a stream of
tokens instead of plaintext to the compiler.

A token [3] is a data structure that, besides the token fext (a sequence of char-
acters), also contains information about its nature (for instance, whether the token
represents a number, a keyword, or an identifier) and debugging information (the
file and line number it was read from). Therefore, a token conveys additional infor-
mation with respect to the portion of plaintext it corresponds to. This information
is needed by the compiler anyway to further process its input, and hence, passing
tokens instead of plaintext avoids duplicated processing.

Figure 2.3 contains a simplified view of the preprocessor workflow. Informally
speaking, as it divides the input file into tokens, the preprocessor checks all of them
and carries out one of three possible actions.

1. When the input token is a preprocessor keyword, like #define or #include,
the preprocessor analyzes the tokens that follow it to build a complete statement
and then obeys it.

For example, after #define, it looks for a macro name followed by the (optional)
macro body. When the macro definition statement is complete, the preprocessor
records the association name — body in a table for future use.

In this case, neither the preprocessor keyword nor the following tokens (the macro
name and body in this example) are forwarded to the compiler. The macro body
will become visible to the compiler only if the macro will be expanded later.

The name — body table is initialized when preprocessing starts and discarded
when it ends. As a consequence, macro definitions are not kept across multiple
compilation units. However, the table is not empty at the very beginning of a
compilation because the preprocessor itself pre-defines a number of macros.
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2. When a macro is invoked, the preprocessor performs macro expansion. In the

simplest case—that is, for object-like macros—macro expansion is triggered by
encountering a macro name in the source code.
The macro is expanded by replacing its name with its body. Then, the result of the
expansion is examined again to check whether or not further macro expansions
can be done. When no further macro expansions can be done, the sequence of
tokens obtained by the preprocessor is forwarded to the compiler instead of the
tokens that triggered macro expansion.

3. Tokens unknown to the preprocessor are simply passed to the compiler without
modification. Since the preprocessor and compiler grammars are very different at
the syntactical level, many kinds of token known to the compiler have no meaning
to the preprocessor, even though the latter is perfectly able to build the token itself
at the lexical level.

For instance, it is obvious that type definitions are extremely important to the
compiler, but they are completely transparent to the preprocessor.

The syntax of preprocessor statements is fairly simple. They always start with a
sharp character (#) in column one. Spaces are allowed between # and the rest of the
statement. The main categories of statement are:

Macro definition: #define.
File inclusion: #include.
Conditional compilation: #1ifdef, #ifndef, #if, #else, #elif, and
fendif.
e Other, for instance: #warning and #error.

In the following, we will mainly focus on the macro definition and expansion pro-
cess. Interested readers can refer to the full preprocessor documentation that comes
with the gcc compiler [118] for further information about the other categories.

There are two kinds of macros: object-like and function-like macros. Object-like
macros are the simplest and their handling by the preprocessor can be summarized
in two main points:

e The name of the macro is replaced by its body when it is encountered in the
source file. The result is reexamined after expansion to check whether or
not other macros are involved. If this is the case, they are expanded as well.
The process ends when no further macro expansions can be performed.

e Macro expansion does not take place when a macro is defined, but only
when the macro is used. Hence, it is possible to have forward references to
other macros within macro definitions.

For example, it is possible to define two macros, A and B, as follows:

#define B A+3
#define A 12
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The definition of macro B does not produce any error although A has not been
defined yet, because B’s body is not expanded at the time of its definition. When B is
encountered in the source file, after the previously listed definitions, it is expanded
as: B — A+3 — 12+3. Since no other macro names are present, macro expansion
ends at this point and the three tokens 12, +, and 3 are forwarded to the compiler.

Due to the way of communication between the preprocessor and the compiler,
explained previously and outlined in Figure 2.3, the compiler does not know how to-
kens are obtained. Namely, it cannot distinguish between tokens coming from macro
expansion and tokens taken directly from the source file. As a consequence, if B is
used within a more complex expression, the compiler might get confused and inter-
pret the expression in a counter-intuitive way.

Continuing the previous example, the expression Bx5 is expanded by the pre-
processor as Bx5 — A+3x5 — 12+3x5. When the compiler parses the result, the
evaluation of 3«5 is performed before +, due to the precedence rules of arithmetic
operators, although this is probably not the behavior the programmer expects.

To solve this problem, it is often useful to put additional parentheses around macro
bodies, as is shown in the following fragment of code:

#define B (A+3)
#idefine A 12

In this way, when B is invoked, it is expanded as B — (A+3) — (12+3) and the
expression Bx 5 is seen by the compiler as (12+3) x5. In other words, the additional
pair of parentheses coming from the expansion of macro B explicitly establishes
the boundaries of macro expansion and overrides the arithmetic operator precedence
rules.

The second kind of macro is represented by function-like macros. The main dif-
ferences with respect to object-like macros can be summarized as follows:

e Function-like macros have a list of parameters, enclosed between paren-
theses (), after the macro name in their definition.

e Accordingly, they must be invoked by using the macro name followed by a
list of arguments, also enclosed between ().

To illustrate how function-like macro expansion takes place, let us consider the
following fragment of code as an example:

#define F (x, y) x*y*K
#define K 7
#define 7 3

When a function-like macro is invoked, its arguments are completely macro-
expanded first. Therefore, for instance, the first step in the expansion of F (z, 6) is:
F(z, 6) =-F(3, 6).

Then, the parameters in the macro body are replaced by the corresponding, ex-
panded arguments. Continuing our example:

e parameter x is replaced by argument 3, and
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e yisreplaced by 6.

After the replacement, the body of the macro becomes 3« 6xK. At this point, the
modified body replaces the function-like macro invocation. Therefore, F (3, 6) —
3x6*K.

The final step in function-like macro expansion consists of re-examining the re-
sult and check whether or not other macros (either object-like or function-like) can
be expanded. In our example, the result of macro expansion obtained so far still con-
tains the object-like macro name XK and the preprocessor expands it according to its
definition: 3x6+K — 3% 6% 7.

To summarize, the complete process of macro expansion when the function-like
macro F (Z, 6) isinvoked is

F(z, 6) —F (3, 6) (argument expansion)
— 3%6%K (parameter substitution in the macro body)
— 3%6%7 (expansion of the result)

As already remarked previously about object-like macros, parentheses may be
useful around parameters in function-like macro bodies, too, for the same reason.
For instance, the expansion of F (Z, 6+9) proceeds as shown below and clearly
produces a counter-intuitive result, if we would like to consider F to be akin to a
mathematical function.

F(Z, 6+9) —F (3, 6+9) (argument expansion)
— 3%6+9xK (parameter substitution in the macro body)
— 3%6+9%7 (expansion of the result)

It is possible to work around this problem by defining F(x, y) as
(x) * (v) * (K) . In this way, the final result of the expansion is:

F(Z, 64+9) —---— (3)*(6+9)x(7)

as intended.

2.1.3 THE LINKER

The main purpose of the linker, fully described in [34], is to combine a number
of object files and libraries to build an executable image. In order to do this, the
linker resolves inter-module symbol references, also by pulling object modules from
libraries as required, and relocates code and data.

As explained previously, in a GNU toolchain the linker may be invoked directly as
1d when performing a native compilation or <cross>-1d, where <cross> is the
prefix denoting the target architecture, when cross-compiling. However, as described
in Section 2.1.1, it is more often the compiler driver <cross>-gcc that automat-
ically calls the linker as required. In both cases, the linking process is driven by a
linker script written in the Link Editor Command Language.
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Before describing in a more detailed way how the linker works, let us briefly re-
view a couple of general linker options that are often useful, especially for embedded
software development.

The option —-Map=<£file> writes a link map to <£ile>. When the ad-
ditional -—cref option is given, the map also includes a cross reference
table. Even though no further information about it will be given here, due
to lack of space, the link map contains a significant amount of information
about the outcome of the linking process. Interested readers may refer to
the linker documentation [34] for more details about it.

The option ——oformat=<format> sets the format of the output file,
among those recognized by 1d. Being able to precisely control the out-
put format helps to upload the executable image into the target platform
successfully because upload tools often work only with a limited set of file
formats. Reference [34] contains the full list of supported output formats,
depending on the target architecture and linker configuration.

The options ——strip and ——strip-debug remove symbolic informa-
tion from the output file, leaving only the executable code and data. This
step is sometimes required for executable image upload tools to work cor-
rectly because they might not properly handle any extra information present
in the image. Symbolic information is mainly used to store debugging data
in the executable image, for instance, the mapping between source code
line numbers and machine code. For this reason, uploading this informa-
tion into the target memory is useless in most cases, unless a debugger runs
on the target itself.

When 14 is invoked through the compiler driver, linker options must be pre-
ceded by the escape sequence —W1 to distinguish them from options directed to the
compiler driver itself. A comma is used to separate the escape sequence from the
string to be forwarded to the linker and no intervening spaces are allowed. For in-
stance, gcc -Wl, -Map=f.map —-o f f.c compilesand links f.c, and gives the
—Map=f .map option to the linker.

As a last introductory step, it is also important to informally recall the main differ-
ences between object modules, libraries, and executable images as far as the linker
is concerned. These differences, outlined below, will be further explained and high-
lighted in the following sections.

Object files are unconditionally included in the final executable image. In-
stead, the object modules found in libraries, often called library modules,
are used only on demand. More specifically, library modules are included
by the linker only if they are needed to resolve pending symbol references.
A library is simply a collection of unmodified object modules put together
into a single file by the archiver or librarian ar.

An executable image is formed by binding together object modules, either
standalone or from libraries. However, it is not simply a collection, like a
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library is, because the linker performs a significant amount of work in the
process.

Most linker activities revolve around symbol manipulation. Informally speaking,
a symbol is a convenient way to refer to the address of an object in memory in an
abstract way (by means of a human-readable name instead of a number) and even
before its exact location in memory is known.

The use of symbols is especially useful to the compiler during code generation.
For example, when the compiler generates code for a backward jump at the end of a
loop, two cases are possible:

1. If the processor supports relative jumps—that is, a jump in which the target ad-
dress is calculated as the sum of the current program counter plus an offset stored
in the jump instruction—the compiler may be able to generate the code com-
pletely and automatically by itself because it knows the “distance” between the
jump instruction and its target. The linker is not involved in this case.

2. If the processor only supports absolute jumps—that is, a jump in which the target
address is directly specified in the jump instruction—the compiler must leave a
“blank” in the generated code. At most, the compiler may know the relative target
address with respect to the beginning of the object code it is generating, but it
does not know the final, absolute address where the code will eventually end up
in memory. As will be better explained in the following, this blank will be filled
by the linker when it performs symbol resolution and relocation.

Another intuitive example, regarding data instead of code addresses, is repre-
sented by global variables accessed by means of an extern declaration. Also in
this case, the compiler needs to refer to the variable by name—that is, through a
symbol—when it generates code, because it does not know its memory address at
all. Like before, the code that the compiler generates will be incomplete because
it will include “blanks,” in which symbols are present in place of actual memory
addresses.

On the one hand, when the linker collects object files in order to produce the
executable image, it becomes possible to associate symbol definitions with the cor-
responding references, by means of a name-matching process known as symbol reso-
lution or (according to an older nomenclature) snapping. On the other hand, symbol
values (to continue our examples, addresses of variables, and the exact address of
machine instructions) become known when the linker relocates object contents in
order to lay them out into memory. Only at this point can the linker “fill the blanks”
left by the compiler.

As an example of how symbol resolution takes place for data, let us consider the
two extremely simple source files listed in Figure 2.4. In this case, symbol resolution
proceeds as follows:

e  When the compiler generates code for £ () it does not know where (and if)
variable i is defined. Therefore, in £ . o the address of i is left blank, to be
filled by the linker.
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File f.c File g.c

extern int i; int i;

void f (void) {
i=7;

FIGURE 2.4 A simple example of symbol resolution.

e This is because the compiler works on exactly one compilation unit at a
time, defined as the set of source and header files directly or indirectly
included by means of #include statements by each individual top-level
source file passed to the compiler.

e Therefore, when the compiler is working on £ . c it does not consider g. c
in any way, even though both files appear together on the command line.

e During symbol resolution, the linker observes that i is defined in g. o and
associates the definition with the reference made in £ . o.

e After the linker relocates the contents of g. o, the address of i becomes
known and can eventually be used to complete the code in £ . o.

It is also useful to remark that initialized data need a special treatment when the
initial values must be in non-volatile memory. In this case, the linker must cooperate
with the startup code (by providing memory layout information) so that those data
can be initialized correctly when the application starts up. Further information on
this point will be given in Section 2.2.2.

2.2 LINKER SCRIPTS

As mentioned previously, the linking process is driven by a set of commands, spec-
ified in a linker script. A linker script can be divided into three main parts, to be
described in the following sections. Together, these three parts fully determine the
overall behavior of the linker, because:

1. The input and output part picks the input files (object files and libraries) that the
linker must consider and directs the linker output where desired.

2. The memory layout part describes the position and size of all memory areas avail-
able on the target system (also called banks), that is, the space the linker can use
to lay out the executable image.

3. The section and memory mapping part specifies how input files contents, divided
and organized into sections, must be mapped and relocated into memory banks.

If necessary, the linker script can be split into multiple files that are then bound
together by means of the INCLUDE <filename> directive. The directive takes a
file name as argument and directs the linker to include that file “as if” its contents
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appeared in place of the directive itself. The linker supports nested inclusion, and
hence, INCLUDE directives can appear both in the main linker script and in an in-
cluded script.

This is especially useful when the linker script becomes complex or it is conve-
nient to divide it into parts for other reasons, for instance, to distinguish between
architecture or language-dependent parts and general parts.

2.2.1 INPUT AND OUTPUT SEQUENCES
Input and output linker script commands specify:

e  Which input files the linker will operate on, either object files or libraries.
This is done by means of one or more INPUT () commands, which take
input file names as arguments.

e The sequence in which they will be scanned by the linker, to perform sym-
bol resolution and relocation. The sequence is implicitly established by the
order in which input commands appear in the script and by the left-to-right
order of their arguments.

e The special ways in which a specific file or group of files will be handled.
For instance, the STARTUP () command labels a file as being a startup file
rather than a normal object file.

e Where to look for libraries, when just the library name is given. This is
accomplished by specifying one or more search paths by means of the
SEARCH_DIR () command.

e Where the output—namely, the file that contains the executable image—
will go, through the OUTPUT () command.

Most of these commands have a command-line counterpart that, sometimes, is
more commonly used. For instance, the —o command-line option acts the same as
OUTPUT () and mentioning an object file name on the linker command line has the
same effect as putting it in an INPUT () linker script command. In general, the order
between files given on the command line and the ones specified in a linker script de-
pends on where the linker script is mentioned on the command line, although special
linker script commands exist to override the default.

The entry point of the executable image—that is, the instruction that shall be
executed first—can be set by means of the ENTRY (<symbol>) command in the
linker script, where <symbol> is a symbol. However, it is important to remark that
the only direct effect of ENTRY is to keep a record of the desired entry point in the
executable image itself. Then, it is the program that loads the executable image into
memory, often called the loader in linker’s terminology, which is responsible to obey
the request.

When no loader is used—that is, the executable image is uploaded by means of
an upload tool residing on the development host, and then runs on the target’s “bare
metal”’—the entry point is usually defined by hardware. For example, most proces-
sors start execution from a location indicated by their reset vector upon powerup.
Any entry point set in the executable image is ignored in this case.
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All together, the input linker script commands eventually determine the linker
input sequence. Let us now focus on a short fragment of a linker script that contains
several input commands and describe how the input sequence is built from them.

INPUT (a.0, b.o, c.o)
INPUT (d.o, e.0)
INPUT (1libf.a)

Normally, the linker scans input files once and in the order established by the
input sequence, which is defined by:

e The left-to-right order in which files appear within the INPUT () command.
In this case, b . o follows a. o in the input sequence and e . o follows d. o.

o [f there are multiple INPUT () commands in the linker script, they are con-
sidered in the same sequence as they appear in the script.

Therefore, in our example the linker scans the files in the order: a.o,b.o, c. o,
d.o,e.o,and 1ibf.a. As mentioned previously, object files and libraries can also
be specified on the linker command line. In this case:

e The command line may also include an option (-T) to refer to the linker
script.

e The input files specified on the command line are combined with those
mentioned in the linker script depending on where the linker script has
been referenced.

For instance, if the command line is gcc ... a.o —-Tscript b.o and the
linker script script contains the command INPUT (c.o, d.o), then the input
sequence is: a.0, c.o,d.o,and b. o.

As mentioned previously the startup file is a special object file because it often
contains low-level hardware initialization code and sets up the execution environ-
ment for application code. As a consequence, its position in memory with respect to
other object modules may be constrained by the hardware startup procedure.

The STARTUP (<file>) command forces <file> to be the very first object file
in the input sequence, regardless of where the command appears. For example, the
linker script fragment:

INPUT (a.0, Db.o)
STARTUP (s.0)

leads to the input sequence s .o, a.o, and b. o, although s . o is mentioned last.
Let us now describe how the linker transforms the input sequence into the out-
put sequence of object modules that will eventually be used to build the executable
image. We will do this by means of an example, with the help of Figure 2.5. In our
example, the input sequence is composed of an object file g. o followed by two li-
braries, 1iba.a and 1ibb. a, in this order. They are listed at the top of the figure,
from left to right. For clarity, libraries are depicted as lighter gray rectangles, while
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liba.a

Input sequence

Output

Lo

FIGURE 2.5 Linker’s handling of object files and libraries.

object files correspond to darker gray rectangles. In turn, object files contain function
definitions and references, as is also shown in the figure.
The construction of the output sequence proceeds as follows:

e Object module g.o is unconditionally placed in the output sequence. In
the figure, this action is represented as a downward-pointing arrow. As a
consequence the symbol a, which is referenced in the body of function
g (), becomes undefined at point @.

e When the linker scans 1iba. a, it finds a definition of a in module a.o
and resolves it by placing a. o into the output. This makes b undefined at
point @), because the body of a contains a reference to b.

e Since only a is undefined at the moment, only module a . o is put in the out-
put. More specifically, module £ . o is not, because the linker is not aware
of any undefined symbols related to it.

e When the linker scans 1ibb. a, it finds a definition of b and places module
b. o in the output. In turn, c becomes undefined. Since c is defined in c . o,
that is, another module within the same library, the linker places this object
module in the output, too.

e Module c.o contains a reference to £, and hence, £ becomes undefined.
Since the linker scans the input sequence only once, it is unable to refer
back to 1iba.a at this point. Even though 1iba.a defines f, the linker
cannot consider this definition. At point @ f is still undefined.

In other words, the linker implicitly handles libraries as sets. Namely, the linker
picks up object modules from a library on demand, and places them into the output. If
this action introduces additional undefined symbols, the linker looks into the library
again, until no more references can be resolved. At this time, the linker moves to the
next object file or library.

As also shown in the example, this default way of scanning the input sequence is
problematic when libraries contain circular cross references. More specifically, we
say that a certain library A contains a circular cross-reference to library B when one of
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Input sequence
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FIGURE 2.6 Object files versus libraries at link time.

A’s object modules contains a reference to one of B’s modules and, symmetrically,
one of B’s modules contains a reference back to one module of library A. More
complex circular references are possible, too, involving more than two libraries.

When this occurs, regardless of the order in which libraries A and B appear in the
input sequence, it is always possible that the linker is unable to resolve a reference
to a symbol, even though one of the libraries indeed contains a definition for it. This
is what happens in the example for symbol £.

In order to solve the problem, it is possible to group libraries together. This is done
by means of the command GROUP (), which takes a list of libraries as argument.
For example, the command GROUP (1iba.a, libb.a) groups together libraries
liba.a and 1ibb.a and instructs the linker to handle both of them as a single set.

Going back to the example, the effect of GROUP (1iba.a, libb.a) is thatit
directs the linker to look back into the set, find the definition of £, and place module
£ .o in the output.

It is possible to mix GROUP () and INPUT () within the input sequence to trans-
form just part of it into a set. For example, given the following input sequence:

INPUT (a.0, b.o)
GROUP (liba.a, libb.a)
INPUT (libc.a)

the linker will first examine a . o, and then b . o. Afterwards, it will handle 1iba.a
and 1ibb. a as a single set. Last, it will handle 1ibc. a on its own.

As will become clearer in the following, the use of GROUP () makes sense only
for libraries, because object files are handled in a different way in the first place.
Figure 2.6 further illustrates the differences. In particular, the input sequence shown
in Figure 2.6 is identical to the one previously considered in Figure 2.5, with the only
exception that libraries have been replaced by object modules. The input sequence
of Figure 2.6 is processed as follows:

e Object module g. o is placed in the output and symbol a becomes unde-
fined at point .
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e When the linker scans s. o, it finds a definition for a and places the whole
object module in the output.

e This provides a definition of £ even though it was not called for at the
moment and makes b undefined at point @.

e When the linker scans t . o, it finds a definition of b and it places the whole
module in the output. This also provides a definition of c.

e The reference to £ made by c can be resolved successfully because the
output sequence already contains a definition of f.

As a result, there are no unresolved symbols at point Q. In other words, circular
references between object files are resolved automatically because the linker places
them into the output as a whole.

2.2.2 MEMORY LAYOUT

The MEMORY command is used to describe the memory layout of the target system as
a set of memory areas, often called blocks or banks. For clarity, command contents
are usually written using one line of text for each block. Its general syntax is:

MEMORY

{
<name> [ (<attr>)] : ORIGIN = <origin>, LENGTH = <len>

}

where:

ORIGIN and LENGTH are keywords of the linker script language.
<name> is the human-readable name assigned to the block so that the other
parts of the linker script can refer to that memory block by name.

e <attr> is optional. It gives information about the type of memory block
and affects which kind of information the linker is allowed to store into it.
For instance, R means read-only, W means read/write, and X means that the
block may contain executable code.
<origin> is the starting address of the memory block.
<len> is the block length, in bytes.

For example, the following MEMORY command describes the Flash memory bank
and the main RAM bank of the LPC1768 microcontroller, as defined in its user man-
ual [90].

MEMORY

{
rom (rx) : ORIGIN = 0x00000000, LENGTH = 512K
ram (rwx) : ORIGIN = 0x10000000, LENGTH = 32K
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From the point of view of the linker, objects in memory may have two distinct
memory addresses that often, but not always, coincide. To better describe them, let
us now consider a definition of an initialized, global variable in the C language, for
example:

int a = 3;

e After the linker has allocated variable a, it resides somewhere in RAM
memory, for instance, at address 0x1000. RAM memory is needed because
it must be possible to modify the value of a during program execution.
However, since RAM memory contents are not preserved when the system
is powered off, the initial value of a (3 in this case) must be stored in some
non-volatile memory.

e On a general-purpose system, executable images are usually stored on a
mass storage device as files within a filesystem. They are brought into
memory when needed by an operating system component known as the
loader. In this case, the initial value of the variable does not have a memory
address of its own.

e Instead, in an embedded system a simpler approach is often taken, and
initial values are stored directly within a Flash memory bank. To continue
our example, the initial value may be stored at address 0x0020.

e In order to initialize a, the value 3 must be copied from Flash to RAM
memory. In a standalone system, the copy must be performed by either
the bootloader or the startup code, but in any case before the main C pro-
gram starts. This is because the code generated by the compiler assumes
that initialized variables contain their initial value. The whole process is
summarized in Figure 2.7.

e To setup the initialized global variable correctly, the linker must there-
fore associate two memory addresses to initialized global data. Address
0x0020 is the Load Memory Address (LMA) of a because this is the mem-
ory address where its initial contents are stored.

e The second address, 0x1000 in our example, is the Virtual Memory Ad-
dress (VMA) of a because this is the address used by the processor to refer
to a at runtime.

Often, the VMA and LMA of an object are the same. For example, the address
where a function is stored in memory is the same address used by the CPU to call it.
When they are not, a copy is necessary, as illustrated previously.

This kind of copy can sometimes be avoided by using the const keyword of the
C language, so that read-only data are allocated only in ROM. However, this is not
strictly guaranteed by the language specification because const only determines
the data property at the language level but does not necessarily affect their allocation
at the memory layout level. In other words, data properties express how they can
be manipulated in the program, which is not directly related to where they are in
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FIGURE 2.7 Load Memory Address (LMA) and Virtual Memory Address (VMA) of an
initialized variable.

memory. As a consequence, the relationship between these two concepts may or
may not be kept by the toolchain during object code generation.

From the practical point of view, it is important to remark that the linker follows
the same order when it allocates memory for initialized variables in RAM and when
it stores their initial value in ROM. Moreover, the linker does not interleave any
additional memory object in either case. As a consequence, the layout of the ROM
area that stores initial values and of the corresponding RAM area is the same. Only
their starting addresses are different.

In turn, this implies that the relative position of variables and their corresponding
initialization values within their areas is the same. Hence, instead of copying variable
by variable, the startup code just copies the whole area in one single sweep. The base
addresses and size of the RAM and ROM areas used for initialized variables are
provided to the startup code, by means of symbols defined in the linker script as
described in Section 2.2.3.

It is also worth remarking that there is an unfortunate clash of terminology be-
tween virtual memory addresses as they are defined in the linker’s nomenclature and
virtual memory addresses in the context of virtual memory systems.

2.2.3 LINKER SYMBOLS

As described previously, the concept of symbol plays a central role in linker’s opera-
tions. Symbols are mainly defined and referenced in object files but they can also be
defined and referenced in a linker script. Symbols all belong to the same category,
regardless of where they are defined. Namely:
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e A symbol defined in an object module can be referenced in the linker script.
By defining symbols appropriately, the object module can modify the inner
workings of the linker script and affect section mapping and memory lay-
out. For example, it is possible to set the stack size of the executable image
from one of the object modules.

e Symmetrically, a symbol defined in the linker script can be referenced by an
object module, and hence, the linker script can determine some aspects of
the object module’s behavior. For example, as mentioned in Section 2.2.2,
the linker script can communicate the base addresses and size of the RAM
and ROM areas used for initialized variables to the startup code.

In a linker script, an assignment, denoted by means of the usual = (equal sign)
operator, gives a value to a symbol. The value is calculated as the result of an expres-
sion written on the right-hand side of the assignment. The expression may contain
most C-language arithmetic and Boolean operators. It may involve both constants
and symbols. As explained in more details in the following, the result of an expres-
sion may be absolute or relative to the beginning of an output section depending on
the contents of the expression itself (mainly, the use of the ABSOLUTE () function)
and also where the expression is in the linker script.

The special (and widely used) symbol . (dot) is the location counter. It represents
the absolute or relative output location (depending on the context) that the linker
is about to fill while it is scanning the linker script and its input sequence to lay
out objects into memory. With some exceptions, the location counter may generally
appear wherever a normal symbol is allowed. For example, it appears on the right-
hand side of an assignment in the following example.

__stack =

This assignment sets the symbol ___stack to the value of the location counter.
Assigning a value to . moves the location counter. For example, the following as-
signment:

+= 0x4000

allocates 0x4000 bytes starting from where the location counter currently points and
moves the location counter after the reserved area.

An assignment may appear in three different positions in a linker script and its
position partly affects how the linker interprets it.

1. By itself. In this case, the assigned value is absolute and, contrary to the general
rule outlined previously, the location counter . cannot be used.

2. As a statement within a SECTIONS command. The assigned value is absolute
but, unlike in the previous case, the use of . is allowed. It represents an absolute
location counter.

3. Within an output section description, nested in a SECTIONS command. The as-
signed value is relative and . represents the relative value of the location counter
with respect to the beginning of the output section.
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As an example, let us consider the following linker script fragment, which sum-
marizes the concepts just introduced. More thorough and formal information about
output sections is given in Section 2.2.4.

SECTIONS
{
= ALIGN (0x4000);
+= 0x4000;
__stack = .;

In this example:

e The first assignment aligns the location counter to a multiple of 16 kbyte
(0x4000).

e The second assignment moves the location counter forward by 16 kbyte.
That is, it allocates 16 kbyte of memory for the stack.

e The third assignment sets the symbol ___stack to the top of the stack. The
startup code will refer to this symbol to set the initial stack pointer.

2.2.4 SECTION AND MEMORY MAPPING

The contents of each input object file are divided by the compiler (or the assembler)
into several categories according to their characteristics, like:

e code (.text),
e initialized data (.data),
e uninitialized data (.bss).

Each category corresponds to its own input section of the object file, whose name
has also been listed above. For example, the object code generated by the C compiler
is placed in the .text section of the input object files. Libraries follow the same
rules because they are just collections of object files.

The part of linker script devoted to section mapping tells the linker how to fill
the memory image with output sections, which are generated by collecting input
sections. It has the following syntax:

SECTIONS
{

<sub-command>

}

where:

e The SECTIONS command encloses a sequence of sub-commands, delim-
ited by braces.
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e A sub-command may be:
. an ENTRY command, used to set the initial entry point of the executable
image as described in Section 2.2.1,
. asymbol assignment,
. an overlay specification (seldom used in modern programs),
. asection mapping command.

A section mapping command has a relatively complex syntax, illustrated in the
following.

<section> [<address>] [ (<type>)]
[<attribute> ...]
[<constraint>]
{

<output-section-command>

}
[> <region>] [AT> <lma_region>]
[: <phdr> ...] [= <fillexp>]

Most components of a section mapping command, namely, the ones shown within
brackets ([]), are optional. Within a section mapping command, an output section
command may be:

a symbol assignment, outlined in Section 2.2.3,
data values to be included directly in the output section, mainly used for
padding,

e aspecial output section keyword, which will not be further discussed in this
book,

e an input section description, which identifies the input sections that will
become part of the output section.

An input section description must be written according to the syntax indicated
below and indicates which input sections must be mapped into the output section.

<filename> ( <section_name> ... )

It consists of:

e A <filename> specification that identifies one or more object files in the
input sequence. Some wildcards are allowed, the most common one is =,
which matches all files in the input sequence. It is also possible to exclude
some input files, by means of EXCLUDE_FILE (.. .),where . .. isthelist
of files to be excluded. This is often useful in combination with wildcards
to refine the result produced by the wildcards themselves.

e One or more <section_name> specifications that identify which input
sections, within the files indicated by <filename>, we want to refer to.
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The order in which input section descriptions appear is important because it de-
fines the order in which input sections are placed in the output sections. For example,
the following input section description:

* ( .text .rodata )

places the .text and .rodata sections of all files in the input sequence in the
output section. The sections appear in the output in the same order as they appear in
the input.

Instead, this slightly different description:

* ( .text )
* ( .rodata )

first places all the . text sections, and then all the . rodata sections.

Let us now examine the other main components of the section mapping command
one by one. The very first part of a section mapping command specifies the output
section name, address, and type. In particular:

<section> is the name of the output section and is mandatory.
<address>, if specified, sets the VMA of the output section. When it is not
specified, the linker sets it automatically, based on the output memory block
<region>, if specified, or the current location counter. Moreover, it takes
into account the strictest alignment constraint required by the input sections
that are placed in the output sections and the output sections alignment
itself, which is be specified with an optional [<attribute>] and will be
explained later.

e The most commonly used special output section <t ype> is NOLOAD. It in-
dicates that the section shall not be loaded into memory when the program
is run. When omitted, the linker creates a normal output section specified
with the section name, for instance, .text.

Immediately thereafter, it is possible to specify a set of output section attributes,
according to the following syntax:

[AT( <lma> )]

[ALIGN ( <section_align> )]
[SUBALIGN ( <subsection_align> )]
[<constraint>]

The AT attribute sets the LMA of the output section to address <1ma>.
The ALIGN attribute specifies the alignment of the output section.
The SUBALIGN attribute specifies the alignment of the input sections
placed in the output section. It overrides the “natural” alignment specified
in the input sections themselves.

e <constraint> isnormally empty. It may specify under which constraints
the output sections must be created. For example, it is possible to specify
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that the output section must be created only if all input sections are read-
only [34].

The memory block mapping specification is the very last part of a section mapping
command and comes after the list of output section commands. It specifies in which
memory block (also called region) the output section must be placed. Its syntax is:

[> <region>] [AT> <lma_region>]
[: <phdr> ...] [= <fillexp>]

where:

e > <region> specifies the memory block for the output section VMA, that
is, where it will be referred to by the processor.

e AT> <lma_region> specifies the memory block for the output section
LMA, that is, where its initial contents reside.

e <phdr>and <fillexp> are used to assign the output section to an out-
put segment and to set the fill pattern to be used in the output section,
respectively.

Segments are a concept introduced by some executable image formats, for exam-
ple, the executable and linkable format (ELF) [33] format. In a nutshell, they can be
seen as groups of sections that are considered as a single unit and handled all together
by the loader.

The fill pattern is used to fill the parts of the output section whose contents are not
explicitly specified by the linker script. This happens, for instance, when the location
counter is moved or the linker introduces a gap in the section to satisfy an alignment
constraint.

2.3 GNU MAKE AND MAKEFILES

The GNU make tool [47], fully described in [116], manages the build process of
a software component, that is, the execution of the correct sequence of commands
to transform its source code modules into a library or an executable program as
efficiently as possible. Since, especially for large components, it rapidly becomes
unfeasible to rebuild the whole component every time, GNU make implements an
extensive inference system that allows it to:

1. decide which parts of a component shall be rebuilt after some source modules
have been updated, based on their dependencies, and then

2. automatically execute the appropriate sequence of commands to carry out the
rebuild.

Both dependencies and command sequences are specified by means of a set of
rules, according to the syntax that will be better described in the following. These
rules can be defined explicitly in a GNU make input file, often called Makefile
by convention. Moreover, make contains a rather extensive set of predefined built-in
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rules, which are implicitly applied unless overridden in a Makefile. GNU make
can also retrieve explicit user-defined rules from other sources. The main ones are:

e One of the files GNUmakefile, makefile, or Makefile if they are
present in the current directory. The first file found takes precedence on
the others, which are then silently ignored.

o The file specified by means of the —f or ——£1i1le options on the command
line.

It is possible to include a Makefile into another by means of the include
directive. In order to locate the file to be included, GNU make looks in the current
directory and any other directories mentioned on the command line, using the —-I
option. As will be better explained in the following, the include directive accepts
any file name as argument and even names computed on the fly by GNU make itself.
Hence, it allows programmers to use any arbitrary file as (part of) a Makefile.

Besides options, the command line may also contain additional arguments, which
specify the targets that GNU make must try to update. If no targets are given on the
command line, GNU make pursues the first target defined in the Makefile.

2.3.1 EXPLICIT RULES
The general format of an explicit rule in a Makefile is:

<target> ... : <prerequisites>
<command line>

In an explicit rule:

e The <target> is usually a file that will be (re)generated when the rule is
applied.

e The <prerequisites> are the files on which <target> depends and
that, when modified, trigger the regeneration of the target.

e The sequence of <command 1line>s are the actions that GNU make must
perform in order to regenerate the target, in shell syntax.

e Every command line must be preceded by a tab character and is executed
in its own shell.

It is extremely important to pay attention to the last aspect of command line ex-
ecution, which is sometimes neglected, because it may have very important conse-
quences on the effects commands have. For instance, the following rule does not list
the contents of directory somewhere.

all:
cd somewhere
1s
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TABLE 2.1
GNU Make Command Line Execution Options

Option  Description

@ Suppress the automatic echo of the command line that GNU make nor-
mally performs immediately before execution.

- When this option is present, GNU make ignores any error that occurs
during the execution of the command line and continues anyway.

This is because, even though the cd command indeed changes the current di-
rectory to somewhere, it does so only within the shell it is executed by. Since the
1s command execution takes place in a new shell, the previous notion of current
directory is lost when the new shell is created.

As mentioned previously, the prerequisites list specifies the target dependencies.
GNU make looks at the prerequisites list to deduce whether or not a target must be
regenerated by applying the rule. More specifically, GNU make applies the rule when
one or more prerequisites are more recent than the target. For example, the rule:

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

specifies that the object file kbd. o (target) must be regenerated when at least one
file among kbd.c, defs.h, and command.h (prerequisites) has been modified.
In order to regenerate kbd .o, GNU make invokes cc —-c kbd.c (command line)
within a shell.

The shell, that is, the command line interpreter used for command line execution is
by default /bin/sh on unix-like systems, unless the Make f£ile specifies otherwise
by setting the SHELL variable. Notably, it does not depend on the user login shell to
make it easier to port the Makefile from one user environment to another.

Unless otherwise specified, by means of one of the command line execution op-
tions listed in Table 2.1, commands are echoed before execution. Moreover, when an
error occurs in a command line, GNU make abandons the execution of the current
rule and (depending on other command-line options) may stop completely. Com-
mand line execution options must appear at the very beginning of the command line,
before the text of the command to be executed, and are not passed to the shell. In
order to do the same things in a systematic way GNU make supports options like
--silent and --ignore, which apply to all command lines or, in other words,
change the default behavior of GNU make.

2.3.2 VARIABLES

A variable is a name defined in a Makefile, which represents a text string.
The string is the value of the variable. The value of a certain variable VAR—Dby
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convention, GNU make variable names are often capitalized—is usually retrieved
and used (that is, expanded) by means of the construct $ (VAR) or ${VAR}. In order
to introduce a dollar character somewhere in a Makefile without calling for vari-
able expansion, it is possible to use the escape sequence $$, which represents one
dollar character, s.

In a Makefile, variables are expanded “on the fly,” while the file is being read,
except when they appear within a command line or in the right-hand part of a variable
assignment made by means of the assignment operator “=". This aspect of variable
expansion is especially important and we will further elaborate on it in the following,
because the behavior of GNU make departs significantly from what is done by most
other language processors, for instance, the C compiler.

Another difference with respect to other programming languages is that the
$ () operators can be nested. For instance, it is legal, and often useful, to state
$ ($ (VAR) ). In this way, the value of a variable (like VAR) can be used as a variable
name. For example, let us consider the following fragment of a Makefile:

MFLAGS = $ (MFLAGS_S (ARCH))
MFLAGS_Linux = -Wall -Wno-attributes -Wno-address
MFLAGS_Darwin = -Wall

e The variable MFLAGS is set to different values depending on the contents
of the ARCH variable. In the example, this variable is assumed to be set
elsewhere to the host operating system name, either Linux or Darwin in
the example.

e This is a compact way to put different operating system-dependent com-
piler flags in the variable MFLAGS without using conditional directives or
writing several separate Makefiles, one for each operating system.

A variable can get a value in several different ways, listed here in order of de-
creasing priority.

1. As specified when GNU make is invoked, by means of an assignment statement
put directly on its command line. For instance, the command make VAR=v in-
vokes GNU make with VAR set to v.

2. By means of an assignment in a Makefile, as will be further explained in the

following.

. Through a shell environment variable definition.

. Some variables are set automatically to useful values during rule application.

5. Finally, some variables have an initial value, too.

B~ W

When there are multiple assignments to the same variable, the highest-priority
one silently prevails over the others.

GNU make supports two kinds, or flavors, of variables. It is important to further
elaborate on this difference because they are defined and expanded in different ways:
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TABLE 2.2
GNU Make Assignment Operators

Operator Description

VAR = ... Define arecursively-expanded variable

VAR := ... Define a simply-expanded variable

VAR ?= ... Define the recursively-expanded variable VAR only if it is still undefined
VAR += ... Append ... to variable VAR (see text)

1.

Recursively expanded variables are defined by means of the operator =, informally
mentioned previously. The evaluation of the right-hand side of the assignment,
as well as the expansion of any references to other variables it may contain, are
delayed until the variable being defined is itself expanded. Evaluation and variable
expansion then proceed recursively.

Simply expanded variables are defined by means of the operator :=. The value
of the variable is determined once and for all when the assignment is executed.
The expression on the right-hand side of the assignment is evaluated immediately,
expanding any references to other variables.

Table 2.2 lists all the main assignment operators that GNU make supports. It is

worth mentioning that the “append” variant of the assignment preserves (when pos-
sible) the kind of variable it operates upon. In particular:

e If VAR is undefined it is the same as =, and hence, it defines a recursively
expanded variable.

e [If VAR is already defined as a simply expanded variable, it immediately
expands the right-hand side of the assignment and appends the result to the
previous definition.

e If VAR is already defined as a recursively expanded variable, it appends
the right-hand side of the assignment to the previous definition without
performing any expansion.

In order to better grasp the effect of delayed variable expansion, let us consider

the following two examples.

=3
= $(X)
=8

In this first example, the final value of Y is 8 because the right-hand side of its

assignment is expanded only when Y is used. Let us now consider a simply expanded
variable.

X

=3
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In this case, the final value of Y is 3 because the right-hand side of its assignment
is expanded immediately, when the assignment is performed. As can be seen from
the previous examples, delayed expansion of recursively expanded variables has un-
usual, but often useful, side effects. Let us just briefly consider the two main benefits
of delayed expansion:

e Forward variable references in assignments, even to variables that are still
undefined, are not an issue.

e When a variable is eventually expanded, it makes use of the “latest” value
of the variables it depends upon.

2.3.3 PATTERN RULES AND AUTOMATIC VARIABLES

Often, all files belonging to the same group or category (for example, object files)
follow the same generation rules. In this case, rather than providing an explicit rule
for each of them and make the Makefile hard to read and maintain, it is more
appropriate and convenient to define a pattern rule.

As shown in the code example that follows, and as its name says, a pattern rule
applies to all files that match a certain pattern, which is specified in the rule in place
of the target.

.0 ¢ %.cC
cc —-c $<

kbd.o : defs.h command.h
In particular:

o

e Informally speaking, in the pattern the character % represents any non-
empty character string.

e The same character can be used in the prerequisites, too, to specify how
they are related to the target.

e The command lines associated with a pattern rule can be customized, based
on the specific target the rule is being applied to, by means of automatic
variables like $< in the example.

e [t is possible to augment the prerequisites of a pattern rule on a target-by-
target basis, by means of explicit rules without command lines, as shown
at the end of the example.

More precisely, a target pattern is composed of three parts: a prefix, a % character,
and a suffix. The prefix and/or suffix may be empty. A target name (which often is
a file name) matches the pattern if it starts with the pattern prefix and ends with
the pattern suffix. The non-empty sequence of characters between the prefix and the
suffix is called the stem.
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TABLE 2.3
Main GNU Make Automatic Variables

Var. Description Example value

s@ Target of the rule kbd.o

$< First prerequisite of the rule kbd.c

$” List of all prerequisites of the rule, delimited by blanks ~ kbd.c defs.h command.h
$? List of prerequisites that are more recent than the target defs.h

S Stem of the rule (only for pattern rules) kbd

Since, as said previously, rule targets are often file names, directory specifications
in a pattern are handled specially, to make it easier to write compact and general rules
that apply to target files residing in different directories. In particular:

e [f a target pattern does not contain any slash—which is the character that
separates directory names in a file path specification—all directory names
are removed from target file names before comparing them with the pattern.

e Upon a successful match, directory names are restored at the beginning of
the stem. This operation is carried out before generating prerequisites.

e Prerequisites are generated by substituting the stem of the rule in the right-
hand part of the rule, that is, the part that follows the colon (:).

e For example, file src/p.o satisfies the pattern rule $.0 : %.c. In
this case, the prefix is empty, the stem is src/p and the prerequisite is
src/p.c because the src/ directory is removed from the file name be-
fore comparing it with the pattern and then restored.

When it applies a rule GNU make automatically defines several automatic vari-
ables, which become available in the corresponding command lines. Table 2.3 con-
tains a short list of these variables and describes their contents. As an example, the
rightmost column of the table also shows the value that automatic variables would
get if the rules above were applied to regenerate kbd. o, mentioned in the previous
example, because de £s.h has been modified.

To continue the example, let us assume that the Makefile we are considering
contains the following additional rule. The rule updates library 1ib.a, by means
of the ar tool, whenever any of the object files it contains (main.o, kbd.o, and
disk. o) is updated.

lib.a : main.o kbd.o disk.o
ar rs $@ $?

After applying the previous rule, kbd. o becomes more recent than 1ib. a, be-
cause it has just been updated. In turn, this triggers the application of the second
rule shown above. While the second rule is being applied, the automatic variable
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corresponding to the target of the rule ($Q) is set to 1ib. a and the list of prerequi-
sites more recent than the target ($7?) is set to kbd. o.

To further illustrate the use of automatic variables, we can also remark that we
could use s~ instead of $? in order to completely rebuild the library rather than
update it. This is because, as mentioned in Table 2.3, $~ contains the list of all
prerequisites of the rule.

It is also worth noting that GNU make comes with a large set of predefined im-
plicit built-in rules. Most of them are pattern rules, and hence, they generally apply
to a wide range of targets and it is important to be aware of their existence. They can
be printed by means of the command-line option ——print-data-base, which can
also be abbreviated as —p.

For instance, there is a built-in pattern rule to generate an object file given the
corresponding C source file:

%$.0: %.cC
S (COMPILE.c) $(OUTPUT_OPTION) $<

The variables cited in the command line have got a built-in definition as well,
that is:

COMPILE.c = $(CC) S$(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
OUTPUT_OPTION = -o SQ@
CC = cc

As a consequence, just by defining some additional variables, for example
CFLAGS, it is often possible to customize the behavior of a built-in rule instead of
defining a new one. When an explicit rule in the Makefile overlaps with a built-in
rule because it has the same target and prerequisites, the former takes precedence.
This priority scheme has been designed to avoid undue interference of implicit built-
in rules the programmer may be unaware of, with any explicit rule written in the
Makefile.

2.3.4 DIRECTIVES AND FUNCTIONS

GNU make provides an extensive set of directives and built-in functions. In general,
directives control how the input information needed by GNU make is built, by tak-
ing it from various input files, and which parts of those input files are considered.
Provided here is a glance at two commonly-used directives, namely:

e Theinclude <file> ... directive instructs GNU make to temporarily
stop reading from the current Makefile at the point where the directive
appears, read the additional f£ile(s) mentioned in the directive, and then
continue.

The file specification may contain a single file name or a list of names,
separated by spaces. In addition, it may also contain variable and function
expansions, as well as any file name wildcards known to the shell.
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o The ifeq (<expl>, <exp2>) directive evaluates the two expressions
expl and exp2. If they are textually identical then GNU make uses the
Makefile section between ifeq and the next else directive; otherwise
it uses the section between else and endif.

In other words, this directive is similar to conditional statements in other
programming languages. Directives i fneq, i fdef, and i fndef also ex-
ist and have the expected intuitive meaning.

Concerning functions, the general syntax of a function call is
$ (<function> <arguments>)
where:

e <function> represents the function name and <arguments> is a list of
one or more arguments. At least one blank space is required to separate
the function name from the first argument. Arguments are separated by
commas.

e By convention, variable names are written in all capitals, whereas function
names are in lowercase, to help readers distinguish between the two.

Arguments may contain references to:

e Variables, for instance: $ (subst a, b, $ (X) ). This statement calls the
function subst with 3 arguments: a, b, and the result of the expansion of
variable X.

e Nested function calls, like: $ (subst a,b, $(subst c,d,$(X))).
Here, the third argument of the outer subst is the result of the inner, nested
subst.

As for directives, in the following we are about to informally discuss only a few
GNU make functions that are commonly found in Makefiles. Interested readers
should refer to the full documentation of GNU make [47], for in-depth information.

e The function $ (subst <from>, <to>, <text>) replaces <from> with
<to>in <text>. Both <from> and <t o> must be simple text strings. For
example:

$ (subst .c,.o0,p.c g.c) — p.o g.o
e The function $ (patsubst <from>,<to>,<text>) is similar to
subst, but it is more powerful because <from> and <to> are patterns
instead of text strings. The meaning of the % character is the same as in

pattern rules.

$ (patsubst %.c,%.0,p.c g.Cc) — pP.O .o
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e The function $ (wildcard <pattern> ...) returns a list of names of
existing files that match one of the given patterns. For example, the expres-
sion $ (wildcard x.c) evaluates to the list of all C source files in the
current directory.
wildcard is commonly used to set a variable to a list of file names with
common characteristics, like C source files. Then, it is possible to further
work on the list with the help of other functions and use the results as
targets, as shown in the following example.

SRC = $(wildcard =*.c)
ELF = $(patsubst %.c,%.elf,$(SRC))

all: S$(ELF)

$.elf: %.c
$(CC) -o $@ s$<

e The function $ (shell <command>) executes a shell <command> and
captures its output as return value. For example, when executed on a Linux
system:

$ (shell uname) — Linux

In this way, it is possible to set a variable to an operating system-dependent
value and have GNU make do different things depending on the operat-
ing system it is running on, as shown in Section 2.3.2, without providing
separate Make f1iles for all of them, which would be harder to maintain.

2.4 BASIC DESCRIPTION OF RTEMS AND ITS CONFIGURATION
SYSTEM

In this section we describe the high-level concepts related to configuring RTEMS
for a specific application. This description is relevant for RTEMS versions 4-5, but
is anticipated to change drastically starting with RTEMS version 6. The complete
details of RTEMS configuration can be found in the RTEMS Classic API Guide’s
chapter called Configuring a System.

A challenging aspect for any OS design and implementation is how to configure
the resources it manages. GPOSs specify the configuration during the OS build pro-
cess, for example, the Linux KConfig files and related utilities are run to generate a
special . config file that is used during the make command to select and configure
kernel subsystems. The configuration is done by expert kernel developers and dis-
tribution packagers that decide on the base images and the set of loadable modules
that users may need over a wide variety of applications. RTOSs defer configuration
to the end-user whom is expected to tailor the resource configuration toward their
application and better customize the OS support.
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RTOS configuration is accomplished by direct or indirect configuration. The di-
rect approach exposes the RTOS resources to the application during the compile or
link phase. Indirect approaches provide an API and data structures for an application
developer to create their configuration, for example, specifying the resources they
need in a structured document such as an XML file. An indirect approach is advan-
tageous because it offers additional structure and support to the configuration phase,
whereas the direct approach is simple to implement.

The configuration of RTEMS is split in two phases. The first phase is done prior
to compilation of RTEMS itself, and accomplishes the goal of configuring the com-
piler with options for building the RTEMS base image. The second phase is done
during compilation of an application prior to linking it with the RTEMS base image
and populates several data structures that are used by RTEMS to manage resources
especially as they relate to allocation of internal objects. We describe each of these
phases in the following.

2.4.1 RTEMS COMPILE-TIME CONFIGURATION

The build system of RTEMS relies on the autotools framework to configure build
files for invoking make. The automake and autoconf programs are both relied upon to
customize the compilation for different options that an end-user may need. Autoconf
input files (with . ac extension) are used to generate a configure script that sets the
compilation options. The most important options for RTEMS include:

——target=
——enable-rtemsbsp=
——enable-smp

—-—enable-tests

Several other options exist for special purposes. The target option sets the cross-
compiler to use, which is primarily important for selecting a compiler toolchain for
correct ISA and version of RTEMS being built. The option to enable-rtemsbsp
allows selection of the BSP that the user needs; most users will have a single BSP of
interest to them, and this option will avoid building all the available BSPs for the ISA
chosen in the target. Use the enable-smp option to compile RTEMS with sup-
port for multicore BSPs. Although optional, the enable-tests is recommended
to build the expansive suite of tests included with RTEMS; this option can be param-
eterized with =samples to build the sample applications, or if the option is not used
then only a base image of RTEMS is compiled against which users can later link
their applications to create loadable binary files. Interested readers and users should
refer to the RTEMS documentation for additional information about these and other
build-time configure options.

2.4.2 APPLICATION COMPILE-TIME CONFIGURATION

The resources that an application may require from RTEMS are configured statically
during compilation through a set of C preprocessor macros that are used in a single
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monolithic header file named confdefs.h. This approach is colloquially called
the confdefs configuration, and examples can be found in many of the RTEMS test
programs. Most of these tests consolidate the configuration macros in a local header
named system.h.

As an example, consider the configuration of the hello sample, found in
testsuites/samples/hello/init.c:

#define CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER

#define CONFIGURE_MAXIMUM_ TASKS 1
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT

#define CONFIGURE_INITIAL_EXTENSIONS RTEMS_TEST_INITIAL
_EXTENSION

#define CONFIGURE_INIT
#include <rtems/confdefs.h>

The hello world test is very simple and does not require a functional clock, which
is disabled by the first line #define CONFIGURE_APPLICATION_DOES_NOT
_NEED_CLOCK_DRIVER. Hello just needs a console driver and a single task,
which are configured in the next two lines. That one task is the initalization task,
and the macro CONFIGURE_RTEMS_INIT_TASKS_TABLE instructs RTEMS to
set up an initialization task structure, which by default only contains a single
init task. The init task needs to be made a floating point task because some ar-
chitectures use floating point registers in their implementation of printf. The
CONFIGURE_INITIAL_EXTENSIONS is used to install a set of extensions that are
specialized for the RTEMS testsuite. As a high-level switch, the CONFIGURE_INIT
macro will cause confdefs to interpret all the macros and generate the configuration
tables. This macro should only be defined once by an application prior to includ-
ing confdefs.h or else the configuration tables will be generated multiple times
and the linker will generate errors for name reuse. All application configurations
must end with #include <rtems/confdefs.h>.Once this file is included (with
CONFIGURE_INIT defined) then RTEMS is configured.

More complicated applications that use other resources managed by RTEMS
will need to make use of other configuration macros. For example, an ap-
plication with three tasks would increase the number 1 to 3 in the defi-
nition of CONFIGURE_MAXIMUM_TASKS, and if that application uses a bar-
rier for synchronization it would need to configure that resource by the
CONFIGURE_MAXIMUM_BARRIERS macro. To ease porting and application de-
velopment there is also a CONFIGURE_UNLIMITED_OBJECTS macro that re-
moves limits on many of the configured resources and relies on dynamic allo-
cation to satisfy requests to create resources. This macro is not recommended
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for use in deployed applications, and should normally be combined with the
CONFIGURE_UNIFIED_WORK_AREAS macro that causes RTEMS to allocate sys-
tem resources from the same dynamic memory pool as the C program heap. The
option for unlimited objects does allow for a very simple and reliable configuration
to use for prototyping:

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_UNIFIED_WORK_AREAS

#define CONFIGURE_UNLIMITED_OBJECTS

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT

#include <rtems/confdefs.h>

2.5 SUMMARY

After outlining how a toolchain generates an executable image starting from the ap-
plication source code in Section 2.1, this chapter focused on two aspects of a GNU-
based toolchain that are very important from the practical point of view, but often ne-
glected: the linker command language in Section 2.2 and GNU make in Section 2.3.

The last part of the chapter, Section 2.4, went from general toolchain behavior to
more specific aspects related to the RTEMS operating system. It provided a summary
of the two main operating system configuration opportunities, which take place when
RTEMS itself is compiled for a certain target platform, and when an application is
compiled and linked against the operating system.
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This chapter lays out the theoretical foundations of concurrent programming, starting
from the all-important concept of process, or task. Then, it introduces the fundamen-
tal tools used to represent the state of a process and express how it evolves over time,
that is, the task control block and the task state diagram.

The second part of the chapter presents the main concepts and techniques of task-
based, real-time scheduling on single processor systems. The discussion of schedul-
ing algorithms suitable for multicore systems is left to Part V of the book.

3.1 FOUNDATIONS OF CONCURRENT PROGRAMMING
3.1.1 FROM INTERRUPT HANDLING TO MULTIPROGRAMMING

Historically, the very first computers were completely sequential machines. Instruc-
tion execution normally advanced along increasing memory addresses, and diver-
sions from a sequential control flow could only be performed synchronously, by
means of branch or call instructions embedded in the instruction stream. On those
machines the only way to become aware of external asynchronous events, for in-
stance, the user pressing a key on the keyboard, was to periodically and repeatedly
poll input—output (I/0) devices, like the keyboard controller in our example.

In essence, each individual polling operation consisted of querying a suit-
able device register containing status information, analyzing the status to under-
stand whether an event of interest occurred, and conditionally branching to the
corresponding event-handling function. In turn, the event-handling function further
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interacted with the device, to retrieve the information associated with the event and
process it.

However, despite the apparent simplicity of such an approach, it soon became
evident that, with the ever-increasing number and complexity of I/O devices attached
to a computer system, it was becoming more and more difficult to properly interlace
polling operations and ordinary application programs, in order to ensure that all I/O
devices were serviced with acceptable timings. The connection of I/O devices with
quite diverse timing requirements to the same computer further exacerbated the issue.

On one hand, querying all devices within a single polling function would require
the application program to invoke the function frequently enough to satisfy the device
with the strictest timing requirements and would likely introduce excessive overhead.
On the other hand, dividing devices into classes depending on their timing require-
ments and introducing multiple polling function, one for each category, would lead
to the proliferation of these “polling points” in the application code.

From the programming point of view, another important shortcoming of this ap-
proach was an inherent lack of modularity because programmers were forced to deal
with tightly intertwined fragments of code serving very different purposes. In turn,
this made application code harder to understand and maintain, especially as its com-
plexity grew.

In order to alleviate the issue, computer designers aimed at giving devices the
ability to draw the attention of the processor when needed, through a mechanism
that has become known as interrupt. While not interrupted, the processor still ex-
ecutes instructions as described previously, without performing any polling. When
an interrupt request arrives, and provided certain conditions are fulfilled, the pro-
cessor temporarily abandons sequential execution, usually at the boundary between
two consecutive instructions, and diverts to a piece of code called interrupt handler.
In turn, the interrupt handler is in charge of inspecting the interrupting device and
properly handling the event it signaled.

When the interrupt handler terminates, often by executing a special “return from
interrupt” instruction, the processor resumes from where it left when the interrupt
request was accepted. Even though technical details may vary from one computer
to another, an important characteristic of interrupt handling is that it is transparent
from the point of view of the interrupted code. In other words, the acceptance of
one or more interrupt requests while a certain piece of code is being executed does
not change its functional semantics in any way and, when looking at the system at a
higher level of abstraction, it gives the illusion that ordinary program execution and
interrupt handling proceed concurrently.

This is accomplished by saving the relevant part of the processor context (like
its program counter and general purpose registers’ content) when the interrupt is ac-
cepted, often on a dedicated portion of memory organized as a stack, and restoring it
when the interrupt handler eventually returns. On the contrary, and this is an aspect
of extreme interest for real-time systems, interrupts do affect the timings of the inter-
rupted code. This is because, quite obviously, the execution of an interrupt handler
necessarily makes the underlying, interrupted code run slower.
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There is some controversy on when, and by whom, this interrupt-based device
handling strategy was introduced for the very first time, but certainly one of the
earliest documented examples can be found in [120]. There, the authors describe
how they modified a Remington Rand Univac 1103 computer to support interrupts,
using an approach that would then become commercially available on model 1103A.
Despite dating back to 1958, their proposal already contained most of the elements
typical of present-day computer architectures, which will be discussed in more detail
in Section 4.2:

1. The ability to selectively enable and disable interrupt requests originating from a
specific device, by means of appropriate instructions.

2. Support of device-specific interrupt handlers, so that the processor can conve-
niently execute different code depending on the interrupt source.

3. A priority hierarchy among devices, which comes into effect when multiple de-
vices submit an interrupt request at the same time.

4. An automatic mechanism to prevent a new interrupt request from being accepted
while an interrupt handler is being executed.

Regarding the last point, more recent architectures often follow a more complex
approach, called interrupt nesting, which allows an incoming interrupt to be accepted
even during the execution of an interrupt handler, subject to some conditions on the
incoming interrupt’s priority. When this happens, interrupt handlers are nested into
each other and executed in a last-in, first-out fashion. In exchange for its higher com-
plexity, this approach reduces the handling latency of high-priority interrupts because
interrupt handlers are no longer constrained to be executed in a strictly sequential,
first-in, first-out way.

At the same time, the work also highlights two possible pitfalls of concurrent code
execution, still very relevant nowadays:

e When the application code and the interrupt handler share data, like I/O
buffers, appropriate interlocks must be put in place to avoid data corruption.
By intuition, data corruption may occur, for instance, if the application code
reads from a buffer before the I/O device has filled it completely with fresh
input data. In this case, the application code may make use of a mix of new
and old data left in the buffer by the previous I/O operation.

e Any issue with interlocks may easily lead to time-dependent errors.
Namely, an incorrect program may run flawlessly multiple times, and fail
only when interrupts are accepted at specific, unfortunate locations within
the application program. For instance, accessing an I/O buffer without
proper interlocks is bound to cause issues only when an interrupt handler
that modifies the same buffer is executed while an access is in progress.

As a side note, it must also be said that polling-based device management is not
without merits, especially in hard real-time systems where overall efficiency is of
secondary importance with respect to meeting the strict and demanding timing re-
quirements sometimes imposed by external devices.
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FIGURE 3.1 Idealized and actual task execution flow in multiprogramming.

With time, the observation that interrupts enable a computer to perform two dis-
tinct and independent activities apparently at the same time—normal instruction exe-
cution and interrupt handling—Iled to the desire of extending this concept to the user
level, by means of techniques known as multiprogramming.

These techniques are very widely used nowadays and their benefits are particu-
larly evident, for instance, with personal computers, in which users ordinarily inter-
act with multiple applications at the same time and they all seemingly proceed in
parallel, or concurrently, as the need arises. For instance, gone are the days in which
users had to wait for the printer to finish printing before they could continue with
their word processing program, as all personal computers are now able to print in
background.

As illustrated in Figure 3.1, in a multiprogrammed execution environment, the
operating system repeatedly switches the processor back and forth from one activity,
or task, to another. As a result, users perceive that the execution of tasks 7j,...,73
is proceeding concurrently, as depicted on the left of the figure, whereas the proces-
sor actually executes instructions as shown on the right. If properly implemented,
this context switch is completely transparent to, and independent from, the activities
themselves, which may even be unaware of it.

Operating systems often use thread as an equivalent term for task. Depending on
the context, the two terms will be used interchangeably in the following. Historically
the term process, to be introduced in Section 3.1.2, was first used to denote an activity
within a concurrent system.
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However, as explained in Section 6.3 regarding the POSIX standard, nowadays
the two words process and thread (or task) are commonly defined and understood in
a hierarchical way. With rare exceptions [2], a process is a container for one or more
threads and different processes not only have their own independent control flows,
one per thread, but also distinct memory address spaces. On the contrary, all threads
(or tasks) living within the same process implicitly share memory.

Even more importantly, designing and organizing software around the concurrent
execution of multiple tasks turned out to be a very useful and general abstraction. In
particular, it is readily applicable also when it corresponds to a true execution paral-
lelism at the hardware level. This is the case of multiprocessor and multicore systems,
which will be the subject of Part V of this book. In those systems, either multiple pro-
cessors or a single processor with multiple cores share a common memory.

Each processor or core is able to carry out its own sequential flow of instructions
independently from the others, as well as handling interrupts and performing context
switches. Especially when contrasting single-core with multicore systems, the term
pseudo-parallelism is sometimes used to remark that, despite multiprogramming, a
single-core computer is still executing exactly one activity at any given instant of
time, in a strictly sequential way.

3.1.2 COOPERATING SEQUENTIAL PROCESSES

The idea that any concurrent system, regardless of its nature and complexity, can
be designed as a set of cooperating sequential activities executed concurrently was
first introduced in a seminal work by Dijkstra [42]. These concurrent activities are
usually called processes, to adhere to Dijkstra’s original nomenclature. As outlined
previously, especially within the context of real-time operating systems, they are also
commonly referred to as tasks. For the sake of consistency, we will also call them
tasks in this book.

Each task is autonomous for what concerns execution and holds all the informa-
tion needed to represent the execution of a sequential program that evolves with time.
By intuition, this information must necessarily include not only the program instruc-
tions but also the state of the processor (program counter, registers) and memory
(variables).

In other words, each task can be regarded as the execution of a sequential program
by “its own” processor although, as shown in Figure 3.1, depending on the number of
physical processors and cores available on the system with respect to the number of
tasks to be executed, cores may actually be switched from one task to another by the
operating system. Even if we restrict our attention to a single-processor, single-core
system, there are in principle many different possible strategies the operating sys-
tem can use to execute tasks, for instance, by deciding where context switch points
should be.

At one end of the spectrum, strategies like the ones used in cyclic executives [18]
confine scheduling decisions to when a task activates or voluntarily ceases execu-
tion. To improve system performance from the timing point of view, tasks may be
split into multiple parts but, also in this case, task splitting points are fixed and
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pre-determined. As a consequence, under appropriate assumptions concerning the
tasks’ structure, like their periodicity, all scheduling decisions can be taken once
and for all in advance, and merely carried out at runtime, giving rise to the offline
scheduling strategies.

Instead, online strategies—Ilike the ones to be discussed in this chapter—Ilie at
the opposite end of the spectrum because scheduling decisions are taken at runtime,
based on suitable task attributes. Sometimes, these attributes may be fixed and as
simple as task priorities that, informally speaking, express the relative importance
of the tasks in the system. In other, more complex strategies, they may instead vary
with time to indicate, for instance, how close a task is to violating one of its timing
constraints. As a consequence, in both cases a scheduling decision may lead to a
context switch anywhere within tasks.

Referring back to Figure 3.1, different strategies lead to different sequences of
operations performed by the system (one of them is depicted on the right of the
figure) to realize the idealized task execution shown on the left. As a consequence,
tasks execution may interleave in different ways. The multiprogramming mechanism
ensures that, in the long run, all tasks make progress even though, as shown in the
timeline of processor activity over time at the bottom of the figure, the processor
indeed executes only one task at a time.

Comparing the left and right sides of the figure also explains why the adoption
of a task-based model simplifies the design and implementation of a concurrent sys-
tem. By means of this model, system design is carried out at the task level, a clean
and easy to understand abstraction, without worrying about the low-level mecha-
nisms behind its implementation, which stay hidden within the underlying operating
systems. In principle, it is not even necessary to know whether the hardware really
supports true execution concurrency, or the degree of such a parallelism. For this rea-
son, properly design task-based systems can easily be ported to multiprocessor and
multicore systems.

As outlined previously, the responsibility of choosing which tasks will be exe-
cuted at any given time by the available processors, and for how long, falls on the
operating system and, in particular, on an operating system component known as
scheduler. In a real-time operating system, the scheduler works according to algo-
rithms to be discussed in Section 3.2. Since tasks are first-class entities in any modern
operating system, RTEMS provides an extensive API for task management, which
will be described in Chapter 5.

Of course, if a set of tasks must cooperate to solve a certain problem, not all
possible scheduling decisions will produce meaningful results. For example, if a cer-
tain task 7, relies upon some data computed by another task 7;, the execution of 7,
must not start before the conclusion of 7;. Therefore, one of the main goals of the
branch of computer science known as concurrent programming is to define a set of
task communication and synchronization primitives. When used appropriately, these
primitives ensure that the results of the concurrent program will be correct by intro-
ducing and enforcing appropriate constraints on scheduling decisions. They will be
discussed in Chapters 7 and 9.
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FIGURE 3.2 Role of interleaving in functional correctness and timings.

3.2 SCHEDULING POLICIES, MECHANISMS, AND ALGORITHMS
3.2.1 TASK INTERLEAVING AND TIMINGS

An aspect of paramount importance in any real-time system is that, even if the
proper application of concurrent programming techniques guarantees that the con-
current program will be functionally correct—that is, its results will be correct—the
scheduling decisions taken by the operating system may still affect the behavior of
the system in other important ways. This is due to the fact that, even when all con-
straints set forth by the interprocess communication and synchronization primitives
are met, there are still many acceptable interleavings. For instance, choosing one in-
terleaving or another does not affect the functional aspects of the computation, but
may significantly change the timings of the tasks involved.

To further illustrate this concept, Figure 3.2 shows three different interleavings of
tasks 71, T», and 73 when they are executed on a single-core processor. We suppose
all tasks are ready for execution at = 0 and their execution requires C; = 10 ms,
C> =30 ms, and C3 = 20 ms of processor time, respectively. To make the example
simpler, we also neglect for the time being that most operating systems are able to
switch from one task to another during their execution, as described in Section 3.1,
and assume that individual tasks are scheduled as indivisible units instead.

Since we further assume that 7; produces some data used by 7, it turns out that
schedule (a), shown at the top of the figure, is unsuitable from the functional point
of view because it does not satisfy the precedence constraint between 7; and 7, we
just stated and would lead 7, to produce incorrect results. On the other hand, sched-
ules (b) and (c) are both satisfactory from this point of view. However, they are very
dissimilar from the timing perspective. Namely, as also shown in the figure, the com-
pletion time of 7, and 73 are very different in the two cases. If we were dealing with
a real-time system in which, for example, 7, and 73 must conclude within a relative
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deadline of D; = 60ms and D3 = 55ms, interleaving (c) would satisfy this require-
ment, whereas interleaving (b) would not.

In order to address this issue, real-time systems use specially devised scheduling
algorithms. Those algorithms, complemented by appropriate analysis techniques to
be summarized in Section 4.1, guarantee that a concurrent program will not only be
functionally correct, but it will also satisfy its timing constraints for all permitted
interleavings.

3.2.2 TASK CONTROL BLOCK AND TASK STATE DIAGRAM

Before delving into more details on how operating systems handle and manage tasks,
it is important to give a more precise definition of what a task really is, and what in-
formation it characterizes. In order to represent a task at runtime, operating systems
store all the relevant information about it in a data structure, known as task control
block (TCB). According to the general definition of task, it must contain all the infor-
mation needed to represent the execution of a sequential program as it evolves over
time.

As shown in Figure 3.3, there are four main components directly or indirectly
linked to a TCB:

1. The TCB contains a full copy of the processor state. The operating system makes
use of this piece of information to implement its context switch method, that is, to
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switch the processor from one task to another. In fact, a context switch consists for
the most part of saving the processor state of the previous task into its TCB, and
then restoring the processor state from the TCB of the next task. A key point for
the portability of an operating system is the clean separation between the context
switch method, whose implementation determines #ow a context switch is carried
out and often includes architecture-dependent aspects, and the scheduling strategy
mentioned earlier, which is architecture-independent and dictates when a context
switch takes place.

Within the processor state, two important entities are the program counter, which
points to the next instruction that the processor is going to execute within the
task’s program code, and the stack pointer, which defines the boundary between
full and empty elements in the task stack. Both are depicted as arrows in the figure.
As can be inferred from the above description, the processor state is an essential
part of the TCB and is always present, regardless of the operating system. Operat-
ing systems may instead differ on the details of where the processor state is stored.
Conceptually, as shown in Figure 3.3, the processor state is part of the TCB and
should be held within it. Some operating systems follow this approach literally,
whereas others store part or all of the processor state elsewhere, and then make it
accessible from the TCB through a pointer.

The second choice is especially convenient and efficient when the underlying
processor provides hardware assistance to save and restore part of the processor
state to/from a pre-defined, architecture-dependent location, which usually can-
not be changed at will in software. For instance, ARM Cortex-M processors [9]
autonomously save part of their state onto the current task stack when they start
handling an interrupt or, more generally, an exception. Operating systems that
base their context switch implementation upon the underlying exception-handling
mechanism—thus performing context switches within exception handlers—may
efficiently save the rest of the processor state in the same place. However, RTEMS
does not follow this approach. Even though hardware exceptions may still result
in a context switch, RTEMS performs all context switches within a task, rather
than exception handling, context, as described in Section 4.2.

2. The task state and attributes are used by the operating system itself to sched-
ule tasks and support inter-task synchronization and communication in an orderly
way. A more detailed description of the task state and the way it is used by the
scheduler will be given in the following, while information on inter-task synchro-
nization can be found in Chapters 7 and 9.

3. The data and program memory allocation information held in the TCB keep a
record of the memory areas currently assigned to the task. The extent and com-
plexity of this information heavily depends on the purpose and sophistication of
the operating system.

On one hand, very simple operating systems may only support a fixed number of
statically created tasks and may not need to keep this information at all. This is
because data and program memory areas are assigned to tasks at link time and
the assignment never changes over time. On the other hand, when the operating
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system supports the dynamic creation of tasks at runtime, even though their code
and data have been pre-loaded into memory, it must typically allocate the TCB,
the task stack, and possibly other data structures from a memory pool and keep
a record of the allocation. Moreover, if the operating system is also capable of
loading executable images from a mass storage device, it should also keep a record
of where the program code and data have been placed in memory.

4. When the operating system is in charge of resource allocation and release, the
task control block also contains the resource allocation state of the corresponding
task. The word resource is used here in a very broad sense. It certainly includes
all hardware devices connected to the system, but it may also refer to software
resources. Having the operating system work as a mediator between tasks and
resources regarding allocation and release is a universal and well-known feature
of virtually all general-purpose operating systems because the goal of this kind
of operating system is to support the coexistence of multiple application tasks,
developed by a multitude of programmers. For this reason, resource sharing and
allocation must be kept under tight control.

In a real-time embedded system, especially small ones, the scenario is very dif-
ferent because the task set to be executed is often well known in advance. The
relationship between tasks and resources may also be different, leading to a re-
duced amount of contention for resource use among tasks. For instance, in a
general-purpose operating system it is very common for application tasks to com-
pete among each other to use a graphics coprocessor, and sharing this resource in
an appropriate way is essential.

On the contrary, in a real-time system devices are often dedicated to a single
purpose and can be used directly only by a single task. For example, an analog to
digital converter is usually managed by a cyclic data acquisition task. Accessing
the device itself is of no interest to any other task in the system although, of
course, those may make use of the acquired data. Therefore, in real-time operating
systems resources are often permanently and implicitly allocated to a single task
or group of tasks, and the operating system itself is only marginally involved in
their management.

A proper definition of the information included in a TCB is important not only to
thoroughly understand what a task is, but also how tasks are managed by the operat-
ing system. In fact, it is easy to notice that TCB contents also represent the informa-
tion that the operating system must save and restore to implement a context switch,
in order to steer the processor from executing one task to another in a transparent
way.

Another essential part of understanding how operating systems manage task ex-
ecution is to have a precise idea of how the fask state evolves over time. By itself,
the TCB holds the task state but, being a data structure, it only gives a static depic-
tion of it. A commonly used way to describe in a formal way all the possible states
a task may be in during its lifespan is to define a directed graph, called task state
diagram (sometimes abbreviated as TSD). The details of how the task state diagram
is organized and laid out vary from one operating system to another, but the most
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important concepts are common to all of them. Figure 3.4 depicts a simplified task
state diagram to be used as an example. First of all, in a task state diagram:

e nodes represent possible task states, and
e arcs represent transitions from one state to another.

The three most important states for what concerns task scheduling and synchro-
nization are the ones shown in gray. More specifically:

1. A task is running when it is actively being executed by a core, and hence, it is
making progress. The number of tasks in the running state is limited by the total
number of cores available in the system.

2. When the number of tasks eligible for execution in the system exceeds the number
of available cores at a given instant, quite a common occurrence, only some of
them can be brought into the running state and actually executed. The others stay
in the ready state without making any progress for the time being.

3. Tasks often have to wait for an external event to occur. For example:

. A periodic task, after completing its activity in the current period, has to wait
until the next period begins by performing a time-related wait.

. A task that issues an I/O request to a device must often perform an /O wait
until the operation is complete. The completion event is usually signaled by
means of an interrupt request.

. More in general, waits are also required to satisfy precedence constraints and
ensure an orderly communication among tasks.

In all these cases, tasks move to the blocked state and stay there, without compet-

ing with other tasks for execution, until the event they are waiting for occurs.
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It is important to highlight that the form of wait realized by the blocked state of
the task state diagram is very different than the polling-based wait described in Sec-
tion 3.1. When performing a polling cycle, a task waits for the occurrence of an event
by repeatedly checking whether the event of interest occurred or not. For instance,
a task may wait for the completion of an I/O operation by repeatedly querying the
associated I/O device. This is usually called active (or busy) wait because the task
actively executes instructions and consumes core cycles while waiting.

On the contrary, tasks in the blocked state perform a passive wait and do not
consume any execution resources during their wait because the scheduler does not
allocate any core to execute them. As it will be better described in the following, they
simply lie in the blocked state until another agent makes them move into the ready
state again. Only at that point they start competing for execution resources again.

Looking back at Figure 3.4, there are two kinds of state transition in a task state
diagram:

e A voluntary transition is taken under the control of the task that undergoes
it, as a result of an explicit action it has performed.

e An involuntary transition is not under the control of the task affected by
it. Instead, it is the consequence of an action taken by another task, the
operating system, or the occurrence of an external event.

If we restrict ourselves for the time being to transitions involving the main task
state diagram states discussed so far:

a. The transition from the running to the blocked state is an example of voluntary
transition because it is always under the control of the affected task. In particular,
it is performed when the task invokes one of the synchronization primitives to be
discussed in Chapters 5, 7, and 9, in order to wait for a certain event e.

b. Instead, the transition from the blocked to the ready state is involuntary because
it takes place when event e eventually occurs. Depending on the nature of e, the
agent responsible for waking up the waiting task may be another task (when the
wait is due to inter-task synchronization), the operating system timing facility
(when the task is waiting for a time-related event), or an interrupt handler (when
the task is waiting for an external event, such as an I/O operation), but it is never
under the control of the task affected by the transition.

Somewhat contrary to intuition, the waiting task is returned to the ready state
and starts competing again for execution against the other tasks, but it does not go
directly to the running state. However, this is in accordance to the general concept
of modularity and separation of duties among operating system components. In
this case, the synchronization mechanism is responsible for deciding whether or
not a task is eligible for execution (by placing it in the ready or blocked state),
whereas the scheduler determines which tasks should actually be executed at any
given time (by moving them back and forth between the ready and running states).

c. As just mentioned, the operating system scheduler is responsible for picking up
tasks in the ready state for execution and moving them into the running state, ac-
cording to the outcome of its scheduling algorithm, whenever a core is available
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for use. This is usually called task scheduling and is another example of involun-
tary transition.

d. The transition from the running to the ready state is more complex because it
may be either voluntary or involuntary. A running task may voluntarily signal its
willingness to relinquish the core it is being executed on by means of an operating
system request known as yield, which brings the task back to the ready state. In
turn, this leads the operating system to run its scheduling algorithm and choose
a task to run among the ones in the ready state. Depending on the scheduling
algorithm and the characteristics of the other tasks in the ready state, the choice
may or may not fall on the task that just yielded. In other words, the effect of a
yield is just to ask the operating system to reconsider the scheduling decision it
previously made.

Another possibility is that the operating system itself decides to run the scheduling
algorithm. Depending on the operating system, this may occur periodically or
whenever a task transitions into the ready state from some other states for any
reason. The second kind of behavior is more common with real-time operating
systems because, by intuition, when a task becomes ready for execution, it may
be “more important” than one of the running tasks from the point of view of the
scheduling algorithm.

When this is the case, the operating system forcibly moves one of the tasks in the
running state back into the ready state, with an action called preemption. Then, it
will choose one of the tasks in the ready state and move it into the running state.
On a multicore system, as better described in Part V of this book, the choice is
also affected by the affinity of a task, that is, the set of cores on which it is allowed
to run.

From the practical standpoint, operating systems strive to make decisions about
moving tasks from one state to another as sparingly as possible to improve efficiency.
Accordingly, RTEMS schedules only when an event that may change the outcome of
a previous decision occurs, and even in that case it performs the minimum amount of
work necessary to implement the desired scheduling algorithm correctly. The most
complex event from this point of view takes place when a task blocks, and is way
more complex than a yield.

Besides the essential states and transitions presented so far, most real-world op-
erating systems implement additional ones. The most common additional states are
summarized in the following.

4. General-purpose operating systems usually move new tasks directly into the ready
state upon creation. This is the case, for instance, if task creation is accomplished
through the POSIX API [68]. A more common choice in real-time operating sys-
tems, also pursued by RTEMS, is to split the creation of a task from the start of
its execution. In this case, newly created tasks are put in a special dormant state.

5. When a task deletes itself or another task deletes it, it immediately ceases exe-
cution but some operating systems may not delete its TCB immediately. In these
cases, the deleted task goes into the ferminated state. It stays in that state until
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the operating system completes the cleanup operations associated with task ter-
mination. For instance, deleted Linux tasks by default go to the special “zombie”
state until their parent explicitly invokes a dedicated system call to wait for their
termination and retrieve their final exit status. More in general, this happens in
virtually all Unix-like operating systems [86].

When there are additional states in the task state diagram, further transitions are
also needed to connect them to the main task state diagram states, namely:

e. The creation transition instantiates a new TCB, which describes the task being
created. As discussed previously, the transition may lead the new task into the
dormant or ready state depending on the operating system at hand.

f. The admission transition starts the execution of a dormant task, usually under the
initiative of a task that is already executing in the system. Since a task cannot
perform any action when it does not exist or it has not been started, both this
transition and the previous one are necessarily involuntary.

g. Tasks cease execution by means of a fermination transition. Since most operating
systems allow a task to terminate itself or another task, the transition can be either
voluntary or involuntary. In the second case, the transition may originate from the
running or from the ready state.

h. Finally, the destruction transition permanently removes a task from the system
and destroys its TCB.

Even though the presence of additional states between the fermination and the
destruction transitions may seem unimportant, it must be taken into due account from
the practical point of view. This is because some or all of the resources allocated
to the task—for instance, the TCB and possibly others—cannot be freed and later
reused unless the task is properly disposed of. Following an incomplete or incorrect
task termination and destruction procedure may easily lead to hard-to-spot memory
leaks or corruption.

3.2.3 REAL-TIME SCHEDULING ALGORITHMS

In the previous sections, we introduced the notion of a scheduling algorithm rather
informally. At the same time, we also hinted at the importance of a task—and its pri-
ority—as one of the main criteria used by real-time scheduling algorithms to select
which tasks should be brought into the running state at any given time.

It is now time to have a deeper and more formal look at how two of the most
widespread algorithms work. The discussion will start from the simplest algorithms,
which define priorities as fixed values assigned to tasks upon creation, because this
is what most real-time operating systems provide and what most applications use.
More complex algorithms undoubtedly have advantages with respect to simple ones,
but they may easily go against the all-important requirement that real-time operating
systems implementers want efficient, practically implementable algorithms.

Due to lack of space, the discussion will be kept at an introductory level, with the
goal of providing interested readers with enough background information to further
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investigate the matter by means of more advanced books, like [29, 31, 36, 85]. Fur-
ther details about the actual implementation of the RTEMS scheduling algorithms
can be found in its documentation [105]. Moreover, Reference [108] is an authorita-
tive survey of the history and evolution of real-time scheduling algorithms.

Last but not least, in the following we are going to present only scheduling algo-
rithms for single-core processors, postponing the discussion of multicore scheduling
to Chapter 13.

First of all, let us observe that, in any application comprising multiple
concurrently-executed tasks, the exact order in which tasks execute is not completely
specified and constrained by the application itself. As described in Section 3.2.1,
some constraints on task execution order are necessary to ensure that the results pro-
duced by the application are correct in all cases. In fact, despite these correctness-
related constraints, the application will still exhibit a significant amount of nondeter-
minism.

Namely, the execution of its tasks may still interleave in different ways without
violating any of those constraints. Going back to the example of Figure 3.2, inter-
leavings (b) and (c) are equivalent from the functional correctness point of view.
However, they are not at all equivalent with respect to timings. Therefore, if some
tasks have a deadline on how much time it takes to complete them, a constraint also
known as response time deadline, only some of the interleavings that are acceptable
from the point of view of correctness will also be adequate to satisfy those additional
constraints.

As a result, in a real-time system it is necessary to further restrict the nonde-
terminism, beyond what is necessary to guarantee functional correctness, to ensure
that the task execution sequence will not only produce correct results in all cases but
will also lead tasks to meet their deadlines. This is exactly what is done by real-time
scheduling algorithms.

When using one of these algorithms, and under appropriate hypotheses, the
scheduling analysis techniques to be briefly presented in Section 4.1 are able to es-
tablish whether or not all tasks in the system will be able to meet their deadlines and,
using more complex techniques, calculate the worst-case response time of each task,
too.

It turns out that assessing the timing behavior of an arbitrarily complex concurrent
application is very difficult. For this reason, it is first of all necessary to introduce a
simplified fask model, which imposes some restrictions on the structure of the appli-
cation to be considered for analysis and its tasks. The simplest model, also known as
basic task model, has the following characteristics:

1. The application consists of a fixed number of tasks, and that number is known in
advance. All tasks are created and started at the same time, when the application
as a whole starts executing.

2. Tasks are periodic, with fixed and known periods, so that each task can be seen
as an infinite sequence of instances or jobs. Each task instance becomes ready for
execution at regular time intervals, that is, at the beginning of each task period.
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3. Tasks are completely independent of each other. They neither synchronize nor
communicate in any way, and they do not wait for external events.

4. As outlined above, timing constraints are expressed by means of deadlines. For
a given task, a deadline represents an upper bound on the response time of its
instances that must always be satisfied. In the basic task model the deadline of
each task is equal to its period. In other words, the previous instance of a task must
always be completed before the next one becomes ready for execution. Deadlines
defined in this way are often called implicit deadlines in literature.

5. The worst-case execution time of each task—that is, the maximum amount of
processor time it may possibly need to complete any of its instances when the
task is executed in isolation—is fixed and can be computed offline.

6. All system’s overheads, for example, context switch times, are negligible.

Although the basic task model is very intuitive and simple, it still leads to very im-
portant results concerning theoretical scheduling analysis. Moreover, it is the foun-
dation and starting point of Rate Monotonic Analysis (RMA), which is probably the
most widespread analysis method for real-time systems [109]. At the same time, it
also has some shortcomings that hinder its application to real-world scenarios and
must be relaxed to make scheduling analysis useful in practice. More specifically:

e The requirement about task independence rules out time-related waits and
inter-task communication as described in Chapters 5, 7, and 9. This is unac-
ceptable in practice because it goes against the way concurrent systems are
usually designed—as a set of tasks that cooperate, and hence, necessarily
interact with one another.

e The deadline of a task is not always the same as its period. For instance, a
deadline shorter than the period—often called constrained deadline—is of
particular interest to model tasks that are executed infrequently but, when
they are, must be completed with tight timing constraints. This is typical,
for instance, of tasks that must react to and handle abnormal conditions in
a system.

e Some tasks are aperiodic. This may happen, for instance, when the execu-
tion of a task is triggered by an event external to the system. Again, this is
typical of alarms and many forms of network communication, in which the
arrival of an incoming frame is all but periodic in nature.

e It may be difficult to determine an upper bound on a task execution time
which is at the same time accurate and tight. For instance, many iterative
algorithms may take a different number of iterations depending on their in-
put data. For complex algorithms, the worst case may be difficult to identify
theoretically, and in any case, there may be a significant difference between
the average and the worst-case number of iterations.

e Modern hardware architectures include hardware components (like caches,
for example), in which the average time needed to complete an operation
may differ from the worst-case time by several orders of magnitude. As a
consequence, they bring even more uncertainty to worst-case task execu-
tion time calculations.
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TABLE 3.1
Notation for Real-Time Scheduling Algorithms and Analysis

Symbol Meaning

N Number of tasks in the system

T The i-th task, 1 <i< N

T; The period of task 7;

D; The relative deadline of task t;

C; The worst-case execution time of task 7;

R; The worst-case response time of task 7;

(o8 Initial phase of task 7;

Tij The j-th instance of the i-th task

Tij The release time of 7; ;
d; The absolute deadline of 7; ;

cij The execution time of 7;

fij The response time of 7; ;

hp(i) Indexes of tasks with priority higher than t;

B; Worst-case blocking time endured by 7;

K Number of semaphores in the system

Sk The k-th semaphore, 1 <k <K

usage(k,i)  Function that is 1 if 7; makes use of S, and 0 otherwise

Qi Number of self-suspension points in task 7;

P The worst-case self-suspension time of task 7;

Before proceeding further, it is also necessary to introduce some notation to be
used throughout the book. Even though it is not completely standardized, the notation
summarized in Table 3.1 and illustrated in Figure 3.5 is the one adopted by most
textbooks and publications on the subject. In particular:

e The symbol 7; has already introduced previously and represents the i-th
task in the system. If N represents the number of tasks in the system, it is
1 <i < N. Unless otherwise specified, tasks are enumerated by decreasing
priority. In other words, if i < j, the priority of 7; is greater than the priority
of T e

e A periodic tasks 7; consist of an infinite number of repetitions, or instances.
When it is necessary to distinguish an instance of 7; from another, we use
the notation 7; ; to indicate the j-th instance of 7;. Instances are enumerated
according to their temporal order, so that 7; ; precedes 7, in time if and
only if j < k. The first instance of 7; is T; .

e By definition, individual instances of a periodic task 7; are released, that
is, they become ready for execution, at regular time intervals. The distance
between two adjacent releases is the period of the task, denoted by T;.

e The symbol D; represents the relative deadline of 7;, that is, the deadline
of an instance expressed with respect to the release time of the instance
itself. According to the model, the relative deadline is therefore the same
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FIGURE 3.5 Notation for real-time scheduling algorithms and analysis.

for all instances of a given task. In the following it will be assumed that
Vi D; <T,.

e The worst-case execution time of 7; is denoted as C;, whereas c; ; represents
the execution time of its j-th instance 7; ;. Taking into account that C; can
sometimes be a conservative estimate, we can write C; > max;(c; ;). As
outlined above, the worst-case execution time of a task is an upper bound
on the amount of processor time needed to complete any of its instances
when the task is executed in isolation, that is, without the presence of any
other tasks in the system. It is worth remarking that the task execution time
shall not be confused with its response time, to be described next.

e The worst-case response time of 7;, denoted as R;, is an upper bound on
the amount of time needed to complete any of its instances when the task
is executed fogether with all the other tasks in the system. It is therefore
Vi R; > C; because the presence of other tasks can only worsen the com-
pletion time of 7;. For instance, the presence of a higher-priority task 7;
may lead the scheduler to preempt 7; in favor of 7; when the latter becomes
ready for execution. This phenomenon is known as interference.

e Since the actual response time f; ; of task instance 7; ; depends on the
amount of interference that particular instance was subject to, it will vary
from one instance to another. It still is Vj f; ; > ¢; ; and, according to the
definition of worst-case response time, we can also write R; > max j( fi, j).

e The symbol r; ; is used to denote the release time of task instance 7; ;, that
is:

rii=@+jT;, j=0,1,... (3.1)

where ¢; represents the initial phase of 7;, namely, the absolute release time
of its first instance 7; .
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e Similarly, d; ; represents the absolute deadline of task instance 7; j, which
is given by:
d,'_’j =Tij +D;. 3.2)

An important difference between D; and d; ; is that the former is a rela-
tive quantity—measured with respect to the release time of each instance
of 7,—and is the same for all instances. On the contrary, the latter is an
absolute quantity that represents the instant in time at which task instance
7; ; must necessarily already be completed in order to satisfy its timing
constraints. As a consequence, d; ; is different for each instance of 7;.

Looking back at Figure 3.5 further highlights the difference between c; ; and f; ;
when another, higher-priority task executes concurrently with 7; ; on the same core,
thus causing interference, which is represented by light gray, vertical bars in the
figure. In this case:

e If a higher-priority task is executing at r; ;, when 7; ; is released, 7; ; does
not immediately transition to the running state. Instead, it stays in the ready
state until the higher-priority task has been completed or leaves the running
state for some other reasons. This corresponds to the leftmost interference
bar in Figure 3.5.

e If a higher-priority task is released while 7; ; is running, the operating sys-
tem may temporarily stop its execution in favor of the higher-priority task,
with an action known as preemption, and resume it at a later time. This
gives rise to further interference, indicated by the rightmost bar in the fig-
ure.

As a result, the response time f; ; of 7; ; may become significantly longer than
its execution time ¢; ;. A very important goal of defining a satisfactory real-time
scheduling algorithm, along with an appropriate way of analyzing its behavior, is to
ensure that f; ; is bounded for any instance 7; ; of ;.

The Rate Monotonic (RM) scheduling algorithm, introduced by Liu and Ley-
land [84] assigns to each task 7; in the system a fixed priority, which is inversely
proportional to its period 7;. Tasks are then selected for execution according to their
priority, that is, at each instant the operating system scheduler chooses for execution
the ready task with the highest priority. Preemption of lower-priority tasks in favor
of higher-priority ones is performed as soon as a higher-priority task becomes ready
for execution.

The Rate Monotonic priority assignment takes into account only task periods 7,
and not their worst-case execution times C;, thus favoring tasks with a shorter period.
Intuitively, this makes sense because in the basic task model we are assuming D; = T;,
and hence, tasks with a shorter period have less time available to complete their work
before they miss their deadline. On the contrary, tasks with a longer period can afford
giving precedence to more urgent tasks and still be able to finish their execution in
time.
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This informal reasoning can be confirmed with a mathematical proof of optimal-
ity. It has been proven that Rate Monotonic is the best scheduling policy among all
the fixed priority scheduling policies on a single-core processor when the basic task
model is considered. In particular, under the following assumptions:

We consider a fixed set of independent tasks.

Each 7; is periodic with period 7; and has a known worst-case execution time C;.
The relative deadline of each task is equal to its period, that is, Vi D; = T;.

All tasks are released together for the first time at t = 0, that is, Vi ¢; = 0.
Tasks are scheduled preemptively according to a fixed priority assignment.
There is only one execution core.

AR e

It has been proven [84] that, if a given set of periodic tasks with fixed priorities can be
scheduled so that all tasks meet their deadlines by means of some other scheduling
algorithm A, then the Rate Monotonic algorithm is also able to do the same.

Although the Rate Monotonic algorithm has been proven to be optimal among
all fixed-priority scheduling algorithms under the hypotheses just discussed, it is
still interesting to investigate whether it is possible to “do better” by relaxing some
constraints on the structure and complexity of their scheduler. In particular, it is in-
teresting to consider the scenario in which task priorities are no longer constrained to
be fixed, but may change over time instead. The answer to this question was given by
Liu and Layland in [84], by defining a dynamic-priority scheduling algorithm called
Earliest Deadline First (EDF) and proving it is optimal among all possible scheduling
algorithms, again under some hypotheses.

The EDF algorithm selects tasks according to their absolute deadlines. That is, at
each instant, tasks with earlier deadlines receive higher priorities. According to (3.1)
and (3.2), the absolute deadline d, ; of 7; ; is:

dij= @;+ jT; +D;. (3.3)

From this equation, it is clear that the priority of a given task 7; changes dynami-
cally from one instance to the next because it depends on the deadline of its currently
active instance. On the other hand, the priority of a given task instance 7; ; is still fixed
because its deadline is computed once and for all by means of (3.3).

This property also gives a significant clue on how to simplify the practical im-
plementation of EDF. In fact, EDF implementation does not require that the sched-
uler continuously monitors the current situation and rearranges task priorities when
needed. This would very likely be too onerous. Instead, task priorities shall be up-
dated only when a new task instance is released. Afterwards, when time passes, the
priority order among active task instances does not change because their absolute
deadlines do not move.

As happened for RM, the EDF algorithm works well according to intuition be-
cause it makes sense to give a higher priority to more “urgent” task instances, that is,
instances that are getting closer to their deadlines without being completed yet. The
reasoning has been confirmed in [84] by a mathematical proof. In particular, it has
been proven that EDF is optimal under the following assumptions:
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We consider a fixed set of independent tasks.

Each 7; is periodic with period 7; and has a known worst-case execution time C;.
The relative deadline of each task is equal to its period, that is, Vi D; = T;.

All tasks are released together for the first time at r = 0, that is, Vi ¢; = 0.
Tasks are scheduled preemptively according to their dynamic priority.

There is only one execution core.

S

The definition of optimality used in the proof is the same one adopted for Rate
Monotonic. Namely, the proof shows that, if any task set is schedulable by any
scheduling algorithm under the hypotheses of the theorem, then it is also schedula-
ble by EDF. In spite of its proven optimality, EDF is rarely implemented in common
real-time operating systems. RTEMS is a notable exception in this respect because it
does have EDF as an option, which is used by default on multicore systems.

Even if we stay with a fixed priority assignment, to take advantage of its low
implementation complexity, there are other ways to relax some constraints on task
characteristics and devise scheduling algorithms more appropriate for use in real-
world scenarios. For instance, it has already been mentioned that the assumption
D; =T, that is, assuming that all tasks have a relative deadline equal to their period,
may be sometimes unrealistic.

If we extend the basic task model to cover the more general case D; < T;, Leung
and Whitehead [82] were able to prove that the Deadline Monotonic Priority Order
(DMPO) priority assignment is optimum under the following hypotheses:

We consider a fixed set of independent tasks.

Each 7; is periodic with period 7; and has a known worst-case execution time C;.
The relative deadline of each task does not exceed its period, that is, Vi D; < T;.
All tasks are released together for the first time at r = 0, that is, Vi ¢; = 0.
Tasks are scheduled preemptively according to their fixed priority.

There is only one execution core.

A

The deadline monotonic priority assignment is very similar in concept to RM.
It assigns to each task a fixed priority inversely proportional to its relative deadline
instead of its period, as RM would do. Once more, the meaning of the term optimum
must be understood in the same way as for RM and EDF.

This extension is especially convenient to deal with tasks that are not periodic
in nature, and hence, called aperiodic tasks. Tasks of this kind still consist of an
infinite sequence of identical instances. However, their release does not take place at
a regular rate. For instance, aperiodic tasks may be triggered by:

e User commands that require a response from the system.
e External events, such as alarms, generated at unpredictable times.

In many settings of practical interest, it is possible to determine the minimum
interarrival time interval of an aperiodic task. In this case, we call it a sporadic task.
For example, a minimum interarrival time can safely be assumed for user-generated
events, due to the inherent speed limits of human beings. Mechanical devices, like
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keys and relays, also give rise to signals with a guaranteed minimum interarrival
time, when de-bounced appropriately.

Then, the occurrence of triggering events can be rate-limited to ensure that, once
a sporadic task has been triggered, it will not be triggered again until at least the
minimum interarrival time has elapsed.

One simple way of expanding the basic process model to include sporadic tasks
is to interpret the period 7; as the minimum interarrival time interval of 7;. This is
an obviously conservative choice, because a sporadic task 7; can actually be released
much less frequently than 7;, but it nevertheless guarantees that any scheduling analy-
sis technique applied to the task set, if successful, ensures that the system can sustain
the maximum release rate of 7;. More sophisticated methods of handling sporadic
tasks do exist, but their description is beyond the scope of this book. A more com-
prehensive treatment of this topic can be found in References [29, 31, 85].

For sporadic tasks, the assumption D; = T; usually becomes unreasonable be-
cause, for instance, they may encapsulate an alarm handler. In many systems, alarms
occur infrequently, leading to a relatively high minimum interarrival time 7;. How-
ever, when they do occur, they must be handled within a deadline that is much shorter
than their period, that is, D; < T;. This is exactly the scenario that the deadline mono-
tonic priority order has been designed to handle.

Similarly, it can also be observed that the hypothesis Vi ¢; = 0, which states that
all tasks are released simultaneously at = 0 and defines a synchronous periodic sys-
tem, is not always satisfied and, practically speaking, can be a challenge. Specialized
synchronization devices, like the barriers to be discussed in Section 7.5, can often
be used to this purpose.

Nevertheless, asynchronous periodic systems, characterized by having ¢; # 0 for
some i, are also of practical interest. In these systems, tasks are never all released si-
multaneously and it has been proven that the deadline monotonic priority assignment
is no longer optimal for them [82]. However, an optimal fixed-priority assignment
does exist, it has been proposed by Audsley [15], and is known as Optimal Priority
Assignment (OPA).

Although OPA is considerably more complex than the deadline monotonic prior-
ity order or RM, all its complexity is confined to the priority assignment algorithm.
Once priorities have been assigned to tasks, they are fixed and can be implemented by
the same lower-level scheduling mechanism used by the deadline monotonic priority
order and RM. In other word—unlike what happens to some extent with EDF—the
complexity of OPA does not impact the efficiency of the performance-critical oper-
ating system component that moves tasks between the ready and running states of
the task state diagram.

3.3 SUMMARY

This chapter contains the basics of concurrent programming. It first defined key con-
cepts like the cooperating sequential processes model, the task control block, and
the task state diagram. Then, it described the most widespread real-time scheduling
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algorithms for single-core systems, known as rate monotonic (RM) and earliest dead-
line first (EDF).

The discussion of how the extension of these algorithms to multicore proces-
sors affects their optimality and performance is left to Part V of the book, along
with a description of several scheduling algorithms specifically tailored to multicore
processors.
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The first part of this chapter contains an introduction to schedulability analysis, a
set of mathematical tools to predict the worst-case timing behavior of a task-based
system. Although only the most basic techniques can be discussed here due to lack
of space, additional references are provided to interested readers.

In the second part of the chapter, we move to more practical considerations on in-
terrupt handling, using a popular microprocessor architecture as a reference. Further
information is also given about how the RTEMS operating system implements some
key activities in this area, most notably task context switch. This information is es-
sential to fully understand how operating systems implement the theoretical concepts
and algorithms presented in Chapter 3.

The chapter ends with a discussion of how interrupt handling fits in the schedu-
lability analysis framework, a topic of significant practical importance since most
real-time systems comprise multiple interrupt sources whose impact cannot be ne-
glected.

4.1 BASICS OF REAL-TIME SCHEDULING ANALYSIS

In the previous section, it has been stated that several scheduling algorithms are op-
timal within the scope of the basic task model, possibly extended in various ways.
Those important theoretical results are valid, subject to certain assumptions about

69
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the general characteristics of the scheduling algorithm, task properties, and the un-
derlying system.

However, they still do not answer a rather important practical question that arises
during the design of a real-time software application. Namely, software designers
want to know whether or not a certain task set they are working with can successfully
be scheduled by means of one of the scheduling algorithms made available by the
operating system of their choice.

A useful consequence of having introduced a formal task model is that it be-
comes possible to define precisely the meaning of “successful scheduling” or, in
more formal terms, schedulability of a task set. More specifically, we say that a task
set is schedulable by a given scheduling algorithm if all tasks in the set meet their
deadline—and hence, they all satisfy the timing constraints set forth in the system
specification. This happens if and only if Vi,j f;; <d; ; or, if we resort to the con-
cept of worst-case response time, Vi R; < D;.

Although, in some simple cases, a straightforward “yes or no” answer to the
schedulability question may be enough, more often than not designers also need
to be confident about how much timing margin their systems have. In other words,
designers may not be content to just know that all tasks in the set will meet their
deadline and may also want to know the actual value of R;. This information enables
them to judge, for instance, how far or how close their tasks are from missing their
deadlines, in case there are some unexpected extra delays in their execution.

In this chapter, the scope of the analysis will be limited to fixed-priority schedul-
ing algorithms for synchronous systems, such as RM and the deadline monotonic
priority order, running on a single-core processor. Similar, but considerably more
complex analysis methods also exist for EDF, OPA, and other scheduling algorithms.
Readers are referred to other publications, for instance [15, 29, 31, 36, 85], for a com-
plete description of those methods.

4.1.1 UTILIZATION-BASED SCHEDULABILITY TESTS

The simplest family of scheduling analysis methods can be applied to single-core
systems and is based on a quantity called utilization factor, usually denoted as U and
defined as:

U—]ZV“9 (.1
=1 L '

where, according to the notation presented in Table 3.1, C; represents the worst-case
execution time of task 7; and 7; is its period.

By intuition, the fraction C;/T; represents the fraction of processor time spent
executing task 7; in the worst case. The utilization factor is therefore a measure of
the computational load imposed by a given task set on the core that executes it.
Accordingly, the computational load associated with a task increases when its worst-
case execution time C; increases and/or its period 7; decreases.

Although U is derived from a very simple calculation and its value may be im-
precise due to uncertainties in the C; described earlier, it still provides useful insights
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about the schedulability of the task set it refers to. Even more importantly, the meth-
ods to be discussed in the following can be readily applied during system design.
Thus, they may raise important early warnings about the soundness of the design
itself and save valuable time, because it makes little sense to try and implement a
system that is broken by design.

First of all, an important theoretical result identifies task sets that are certainly not
schedulable. Namely, if U > 1 for a given task set, then the task set is not schedulable
by a single-core processor, regardless of the scheduling algorithm in use. Unlike the
other results to be discussed here, this one can also be extended to multicore systems
to state that, on an M-core system, a task set is certainly not schedulable if U > M.

Besides the formal proof—which can be found in [84]—this result is quite in-
tuitive. Basically, it states that it is impossible to allocate to the tasks a fraction of
processor time U that exceeds the total processor time available for use, that is, 1 on
a single-core processor. It should also be noted that this result merely represents a
necessary condition and, by itself, it does not provide any useful information about
the schedulability of a task set when U < 1.

For the RM priority assignment, a sufficient test provides more insights, assum-
ing the task set is synchronous and conforms to the basic task model introduced in
Section 3.2.3. More specifically, it is possible to determine a threshold value for U
so that, if U is below the threshold, the task set can certainly be scheduled, indepen-
dently of all its other characteristics, on a single-core processor. Namely, in [40, 84]
it has been proven that if

N
Ci
U= ; 7 < NQRYN —1), (4.2)

then the task set is certainly schedulable when using the RM priority assignment.
The necessary and sufficient schedulability tests are summarized in the lower and
mid part of Figure 4.1. At the same time the figure highlights that when the proces-
sor utilization factor U falls in the range (N(2!/¥ — 1), 1), this utilization-based test
provides no definitive answers.

The hyperbolic bound for RM described in [20] gives rise to a schedulability test
that has the same computational complexity as the one given in (4.2) and makes use
of the same underlying hypotheses, but is less pessimistic. Namely, if:

N
H(C’H> < 2, (4.3)
i1 \Ti
then the task set is certainly schedulable when using the RM priority assignment.
Nevertheless, this is still a sufficient test, that is, a task set might still be schedulable
although it does not pass the test. In this case, more complex analysis techniques, like
the one described in Section 4.1.2, are necessary to exactly assess schedulability.
However, it must also be considered that the extra computational complexity may
render these techniques impractical for large task sets.

A schedulability test similar to (4.2), under the same hypotheses, also exists for
EDF [84]. In this case, the threshold value for U is exactly 1, which makes the test
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FIGURE 4.1 Utilization-based schedulability tests for a single-core processor.

both necessary and sufficient. That is, a task set of N periodic, synchronous tasks
conforming to the basic process model is schedulable with the EDF algorithm if and
only if:
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As also shown in the upper part of Figure 4.1, with respect to the corresponding
tests for RM, the utilization-based schedulability tests for EDF leaves no area of
uncertainty.

4.1.2 RESPONSE TIME ANALYSIS

In the previous section we have observed that, for certain values of U, utilization-
based tests do not provide enough information about the schedulability of a task
set with the RM priority assignment. Hence, researchers developed more complex
tests, able to provide a definitive answers, without any areas of uncertainty. Among
them, we will focus on a method known as response time analysis (RTA) [16, 17],
an exact (both necessary and sufficient) schedulability test that can be applied to any
fixed-priority assignment scheme on single-core processors.

This test not only gives a “yes or no” answer to the schedulability question but
also calculates the worst-case response times R; individually for each task. Therefore,
it becomes possible to compare them with the corresponding deadlines D; not only
to assess whether all tasks meet their deadlines or not, but also to judge how far or
how close they are from missing their deadlines.

According to response time analysis, the worst-case response time R; of task 7;
in a synchronous system can be calculated by considering the following recurrence
relationship:

W =4+ Y WT C;, (4.5)
Jj€hp(i) J
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in which [-] is the ceiling function, which gives the least integer greater than or equal
to its argument, and hp (i) denotes the set of indices of the tasks with a priority higher
than 7;. For RM, the set contains the indices j of all tasks 7; with a period T; < T;. If
we adhere to the convention that tasks are enumerated in order of decreasing priority,
itis also hp(i) = {1,...,i—1}.

Informally speaking, wng) and wgk) are the (k+ 1)-th and the k-th estimate of R;,
respectively, and Equation (4.5) provides a way to calculate the next estimate of R;
starting from the previous one. The first approximation wgo) of R; is set to wl@) =G,
which is the smallest possible value of R;. It has been proven that the succession
W(0)7W§1> .,wgk), ... defined by (4.5) is monotonic and nondecreasing. Two cases

i RN

are then possible:

1. If the succession does not converge, there exists at least one scheduling scenario
in which 7; does not meet its deadline D;, regardless of the specific value of D;.

2. If the succession converges, it converges to R;, and hence, it will be
wng) = wl@ = R; for some k. In this case, 7; meets its deadline in every pos-

sible scheduling scenario if and only if the worst-case response time provided by

response time analysis is R; < D;.

Unlike the U-based scheduling tests discussed in Section 4.1.1, this method no
longer assumes that the relative deadline D; is equal to the task period 7; and is
also able to handle the more general case in which D; < 7;. In addition, the method
works with any fixed-priority ordering, and not just with the Rate Monotonic priority
assignment, as long as hp(i) is defined appropriately, a preemptive scheduler is in
use, we are considering a synchronous task set that conforms to the basic task model
and it is executed on a single-core processor. As a consequence, it is also readily
applicable to the deadline monotonic priority order.

4.1.3 TASK INTERACTIONS AND SELF-SUSPENSION

Another interesting property of response time analysis is that it is more flexible than
U-based tests and is easily amenable to further extensions, for instance, to consider
the effect of task interactions. These extensions aim at removing one important lim-
itation of the basic task model used so far and bring it closer to how real-world tasks
behave.

For simplicity, in this book, the discussion will only address the following two
main kinds of interaction:

1. Task interactions due to mutual exclusion, a ubiquitous necessity when dealing
with shared data, as shown in Chapter 7.

2. Task self suspension, which takes place when a task passively waits for any kind
of external event.

Readers are referred, for instance, to [31, 36, 85] for more detailed and compre-
hensive information about the topic.
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The second kind of interaction is important because it takes place in many input—
output operations. In those cases, a task within the device driver typically starts an
operation, by programming the device control registers appropriately, and then pas-
sively waits for the results. In turn, the device signals that the requested operation has
been completed by raising an interrupt request, whose handler wakes up the waiting
task.

Other examples, involving only tasks rather than devices, include semaphore-
based task synchronization, outlined in Chapter 7, and synchronous message passing
operations, which are discussed in Chapter 9.

Regardless of the nature of the interaction, tasks are bound to experience a certain
amount of blocking from that interaction, whenever such an interaction is based upon
one of the wait- and lock-based synchronization methods to be described in this part
of the book. What a proper design of these synchronization methods and of the way
tasks use them can do is to guarantee that the worst-case blocking time endured by
each individual task 7;, denoted as B;, is bounded. The worst-case blocking time can
then be calculated and used to refine the response time analysis method discussed in
Section 4.1.2, in order to determine worst-case response times.

Wait- and lock-free synchronization methods also exists and are especially use-
ful in the context of multicore concurrency, although they may imply a significant
drawback in design and implementation complexity. They will be discussed in more
detail in Chapter 13.

When staying with more traditional synchronization methods, the value of B;
can then be used to extend response time analysis and consider the blocking time
in worst-case response time calculations. Namely, the basic recurrence relationship
(4.5) can be rewritten as:

(k+1) W(k)
w ) =Ci+Bi+ Y, |- |C;. (4.6)
J

jebp(i) |
It has been proven that the new recurrence relationship still has the same prop-
) (1) (k)

erties as the original one. In particular, if the succession w; ™, w; *,...,w;’,... con-

verges, it still provides the worst-case response time R; for an appropriate choice
¥
schedulable. As before, setting w
succession.

The main difference is that the new formulation may be pessimistic, instead of
necessary and sufficient, because the bound B; on the worst-case blocking time might
not be tight. Therefore it might be practically impossible for a task to ever incur in
a blocking time equal to B;, and hence, actually experience the worst-case response
time calculated by means of (4.6).

of w;”. On the other hand, if the succession does not converge, 7; is surely not

(0)

i

= C; provides a sensible initial value for the

Mutual exclusion blocking

As better illustrated in Chapter 8, using a plain semaphore as a mutual exclu-
sion device is not enough to ensure that the B; are bounded, due to a well-known
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phenomenon called unbounded priority inversion. However, appropriate extensions
to semaphore’s semantics, also called protocols and also presented in Chapter 8, have
been devised to solve this issue.

If we consider the priority inheritance protocol—proposed by Sha, Rajkumar,
and Lehoczky [110]—it has been proven that, if there are a total of K semaphores
S1,...,5k in the system and critical regions are not nested, the worst-case blocking
time experienced by each instance of task 7; due to task interaction is bounded, and
a bound is given by:

K
B' =Y usage(k,i)C(k). (4.7)
k=1

In the equation above,

e usage(k,i) is a function that returns 1 if semaphore Sy, is used by (at least)
one task with a priority less than the priority of 7;, and also by (at least) one
task with a priority higher than or equal to the priority of 7;, including ;
itself. Otherwise, usage(k, i) returns 0.

e (C(k) is the worst-case execution time among all critical regions associated
with, or guarded by, semaphore Sy.

It should be noted that the bound provided by (4.7) is often “pessimistic”” when
applied to real-world scenarios, because

e It assumes that if a certain semaphore can possibly block a task, it will
indeed block it.

e For each semaphore, the blocking time suffered by 7; is always assumed
to be equal to the worst-case execution time of the longest critical region
guarded by that semaphore, even though the blocking tasks actually do not
stay in the region for that long.

However, even being pessimistic, it is an acceptable compromise between the
tightness of the bound it calculates and its computational complexity. Better algo-
rithms exist and are able to provide a tighter bound of the worst-case blocking time,
but the complexity of the analysis also becomes higher, which may make it problem-
atic for large task sets.

Another possibility foreseen in Chapter 8 is to use the priority ceiling protocol,
proposed by the same authors [110]. In this case, it can be proved that the worst-case
blocking time experienced by each activation of task 7; due to task interactions is
bounded by:

BPC = miax {usage(k,)C(0)} 438)

where usage(k,i) and C(k) have the same meaning as in (4.7). This formula is also
valid for a variant of the priority ceiling protocol, called immediate priority ceiling or
priority ceiling emulation protocol. This variant is of great practical interest because,
together with priority inheritance, is one of the protocols specified by the POSIX
standard [68].
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By comparing (4.7) and (4.8), we can easily see that it is BY® < B! for any given
task set. Nevertheless, we must also recall that the priority ceiling protocol is less
flexible than priority inheritance, because it requires a priori knowledge of all tasks
that make use of a certain semaphore and their priority.

Task self-suspension

The analysis of task self-suspension presented here is based on [102], which ad-
dresses schedulability analysis in the broader context of real-time synchronization
for multiprocessor systems. The reference also contains further, more detailed infor-
mation, as well as the formal proof of all the statements to be discussed next.

Somewhat contrary to intuition, the effects of self-suspension are not necessar-
ily local to the worst-case response time of the task that is experiencing it. On the
contrary, the self-suspension of a high-priority task may also increase the worst-case
response time of lower-priority tasks and, possibly, make them no longer schedula-
ble.

This is because, after the self-suspension of a high-priority task ends, the task
becomes ready for execution again and will preempt any lower-priority task. It can
be proven that this new preemption opportunity may imply a greater impact on the
worst-case response time of lower-priority tasks with respect to the case in which the
high-priority task runs until completion without self-suspending.

Nevertheless, an upper bound Bl-SS on the worst-case blocking endured by task 7;
due to its own self-suspension, as well as the self-suspension of higher-priority tasks,
still exists and can be calculated efficiently as

B =P+ Z min(C},P;). (4.9)
Jehp(i)

In the above formula:

e P, is the worst-case self-suspension time of task 7;.
e hp(i) denotes the set of task indexes with a priority higher than ;.
e (; is the execution time of task ;.

According to (4.9), the worst-case blocking time BiSS due to self-suspension en-
dured by task 7; is given by the sum of its own worst-case self-suspension time F;
plus a contribution from each of the higher-priority tasks, that is, the tasks whose in-
dex belongs to hp(i). The individual contribution of task 7}, j € hp(i), to BSS is given
by its worst-case self-suspension time P;, but it can never exceed its worst-case exe-
cution time Cj.

When considering the effects of mutual exclusion and self-suspension together, it
turns out that these two sources of blocking are not independent from each other, be-
cause the self-suspension of a task has an impact on how it interacts with other tasks.
There are several different ways to consider the combined effect of self-suspension
and mutual exclusion on worst-case blocking time calculation. Perhaps the most
intuitive one, presented in References [85, 102], makes use of the notion of task
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segments—that is, portions of task execution delimited by a self-suspension point.
Accordingly, if task 7; performs Q; self-suspensions during its execution, it contains
Qi+ 1 segments.

Task segments are considered to be completely independent from each other for
what concerns blocking due to mutual exclusion. The analysis then proceeds in a
conservative way, by assuming that each task goes back to the worst possible mutual-
exclusion blocking scenario after each self-suspension. Following this approach, the
worst-case blocking time Bl-P T or B,-P C of 7; due to mutual exclusion, calculated as
specified in (4.7) or (4.8), becomes the worst-case blocking time endured by each
individual task segment.

Hence, the worst-case blocking time of task 7; due to mutual exclusion, Bl-TI, is
given by:

Bl — (Qi+1)BiP I (priority inheritance protocol), or (4.10)
B = (0;+1)BFC (priority ceiling protocol). (4.11)

By combining (4.9) and (4.10)—(4.11), the total worst-case blocking time B; of T;,
considering both self-suspension directly and its effect on mutual exclusion blocking,
can be written as:

B; = B3 +BM

K
P+ Y min(C;,P)+(Qi+1) Y usage(k,i)C(k), (4.12)
Jjehp(i) k=1

for the priority inheritance protocol, or:
B = B3 +B"

=P+ Y min(Cj,Pj)+(Qi+l)Illcllglf({usage(kj)C(k)L 4.13)
Jehp(i) -

for the priority ceiling or the immediate priority ceiling protocols. In the formulas
above, C; and C(k) have got two different meanings that should not be confused
despite the likeness in notation, namely:

e (;is the worst-case execution time of a specific task, T; in this case, while
e ((k) is the worst-case execution time of any task within any of the critical
regions guarded by S.

A distinct advantage of the approach just described is that it is fairly simple and re-
quires very limited knowledge about the internal structure of the tasks. For instance,
it is necessary to know how many self-suspension points there are in each task, but it
is not essential to know exactly where they are. This kind of information is simple to
collect and maintain as software evolves with time. However, the disadvantage of us-
ing a very limited amount of information is that it makes the method extremely con-
servative. Thus, the bound B; calculated according to (4.12)—(4.13) is definitely not
tight and may widely overestimate the actual worst-case blocking time in some cases.
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More sophisticated and precise methods do exist, such as the one described in
Reference [77]. However, as we have seen in several other cases, the price to be paid
for a tighter upper bound is that much more information needs to be collected and,
perhaps even more importantly, maintained as the software evolves. For instance, in
the case of [77], we need to know not only how many self suspension points there
are in each task but also their exact location within the task. Namely, we need to
know the worst-case execution time of each individual task segment, instead of the
worst-case execution time of the task as a whole.

4.2 PRACTICAL CONSIDERATIONS ON INTERRUPT HANDLING

While the previous sections have given a more theoretical view of interrupt han-
dling, here we will focus on three aspects of more practical interest, namely, how
contemporary processors handle interrupt requests at the hardware level and how the
RTEMS operating system manages interrupts and context switches. Finally, we will
also provide some hints on how to take into account the interrupt load of a system in
schedulability analysis.

4.2.1 EXCEPTION HANDLING IN THE CORTEX-M PROCESSOR

Similar to many other contemporary processors, the Cortex-M also handles other
kinds of events, such as faults, in the same way as interrupts, that is, in a unified
way. All these events are collectively referred to as exceptions. For this reason, in
this section we will generally talk about exception handling, rather than interrupt
handling.

A property that all exceptions have in common is that their occurrence may disrupt
the normal instruction execution flow and direct the processor to execute a fragment
of code associated with them, called exception handler, as discussed in Section 3.1.
In the statement above we say “may” because the mere occurrence of an exception
is necessary, but not sufficient, to ensure that the processor will start handling it
immediately, if at all.

In fact, as it will become clearer in the following, a rather complex prioritization
mechanism internal to the processor lies in between the occurrence of an exception—
which is often related to a hardware-generated event—and the corresponding soft-
ware action, that is, the execution of its handler. This mechanism, which plays a
central role in Cortex-M exception handling, is mainly driven by an exception prior-
ity value associated with each source of exception.

For the time being, it is enough to say that a higher priority improves the ex-
ception handling latency—that is, the time elapsed between the occurrence of an
exception and the execution of its handler—because the processor handles this ex-
ception in preference of others. The main categories of exceptions are described in
the following.
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Interrupt requests

This kind of exception is raised by a peripheral device, in order to signal to the
processor, and eventually to the software, the occurrence of an event of interest con-
cerning the device itself, often the completion of an I/O operation. For instance, an
Ethernet controller may use an interrupt request to indicate that one or more network
frames have been received, or that a frame previously enqueued for transmission
has been sent onto the network. These interrupts are naturally raised asynchronously
with respect to the code the processor is currently executing.

On Cortex-M processors, interrupt requests can also be triggered by means of a
software action. In this case, they are often referred to as software interrupts, which
are raised synchronously with respect to code execution. Regardless of their origin
(hardware or software) interrupt requests are all handled in the same way without any
further distinction. Like ordinary interrupt requests, also Non-Maskable Interrupt
(NMI) requests can be issued by either hardware or software. The main difference is
that their priority is among the highest in the system, immediately below the priority
of the reset exception.

Many operating systems, including RTEMS, disable regular interrupts internally,
around very short critical sections that must be executed as an indivisible unit. Due
to their high priority, non-maskable interrupts are left enabled, though. As a con-
sequence, the corresponding interrupt handlers may not use any operating system
services because they could violate those critical sections.

Also belonging to this category are two more exceptions that are generated within
the processor itself, rather than coming from external peripheral devices. They are:

o The SysTick exception, generated periodically by the 24-bit count-down
system timer, which is very important because operating systems often de-
rive all their timing information from it. If needed, the same exception can
also be issued by software.

o The PendSV exception, which can only be triggered by software and whose
exception handler is used by some operating systems to perform schedul-
ing.

As described in Section 4.2.3, RTEMS takes a different approach and makes only
limited use of the PendSV exception within its architecture-dependent layer, to trig-
ger a scheduling and context switch operation that is then completely carried out in
software within a task context. This is because RTEMS avoids using architecture-
specific scheduling and context switch methods—another notable example being the
Intel x86 hardware context switching facility—in order to enhance portability and
not tie the operating system to any specific processor architecture.

Faults

Generally speaking, faults are a consequence of an abnormal event detected by the
processor, either internally or while communicating with memory and other devices.
These events are of great interest (and concern) to software because most often they
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indicate serious hardware or software issues that may prevent the system from con-
tinuing with normal activities. More specifically, the following kinds of fault are
foreseen in Cortex-M processors.

e UsageFault. This fault occurs when an instruction cannot be executed for

various reasons. For instance, the instruction may be undefined or may con-
tain a misaligned address that prevents it from accessing memory correctly.
For divide instructions, another reason for raising a UsageFault is an at-
tempt to divide by zero.
Some of the above-mentioned fault sources (like dividing by zero) can be
masked in software, that is, the processor can be instructed to ignore them
without generating any fault, whereas others (such as encountering an un-
defined instruction) cannot.

e BusFault. This fault is generated when an error occurs on the data or in-

struction bus while accessing memory. It can be generated as a consequence
of an explicit memory access performed by an instruction during its exe-
cution, and also by fetching an instruction from memory. This fault does
not report errors generated by the memory protection mechanism, which
instead trigger a MemManage fault.
It should also be noted that the Cortex-M is a memory-mapped input-output
(I/0O) architecture and whenever we refer to a “memory” address, we actu-
ally mean an address within the processor’s address space, which may refer
to either a memory location or an I/O register.

o MemManage. This fault occurs when a memory access is blocked by

the memory protection mechanism. An optional Memory Protection Unit
(MPU) provides a programmable way of protecting memory regions
against data read and write operations, as well as instruction fetches, also
depending on the current privilege mode of the processor.
Even processors not equipped with a MPU may still set forth some pre-
defined, non-programmable constraints on memory accesses and generate
faults when they are violated. For instance, LPC17xx processors [90] forbid
data access and instruction fetch in unimplemented regions of the address
space, as well as instruction fetch from addresses assigned to I/O peripher-
als. They generate a BusFault fault in both cases.

A special kind of fault is HardFault. It can be generated for two different reasons.
First, the processor generates a HardFault when it detects an error during exception
processing, thus making normal exception handling impossible. The second reason
why a HardFault can be generated is a mechanism known as fault escalation. A
full description of this mechanism is beyond the scope of this book but, summarily
speaking, under certain conditions fault escalation may transform, or escalate, some
other exceptions into a HardFault.

This may happen when a new exception occurs while the processor is already
handling another exception. Since the underlying processor architecture supports ex-
ception nesting, as discussed in Section 4.2.2, in this case the processor may either
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accept and handle the incoming exception immediately—thus nesting it into the pre-
vious one by means of a mechanism that resembles a function call—or postpone it,
depending on the relative priority of the two exceptions.

However, there are exceptions that must necessarily be handled synchronously
with respect to code execution, namely, before the processor proceeds to the next
instruction, even though another higher-priority exception is already being handled.
A typical example is the UsageFault exception because, as described previously, it
indicates that the current instruction cannot be executed.

In those cases, if the priority of the incoming exception would be insufficient for
immediately handling it, the processor automatically escalates the priority of the in-
coming exception to the priority of HardFault, one of the highest in the system. If
priority escalation is not yet enough to make the incoming exception active because
the processor is already running at HardFault priority or higher, the general assump-
tion of the architecture is that the occurrence of the new exception is unrecoverable
and fatal.

In the majority of cases, the processor reacts by suspending normal instruction
execution completely and entering a lockup state. Although there are some condi-
tions that may lead the processor to abandon this loop and resume normal instruction
execution, in most cases the only way out of this state is to perform a reset.

Supervisor call (SVC)

This exception is raised by the execution of a SVC (supervisor call) assembly instruc-
tion. It is a typical example of synchronous exception because it is generated at the
exact point when the processor encounters this assembly instruction in the instruc-
tion stream. The SVC exception is in a class by itself because it is often used as a
way to enter the operating system kernel and request it to perform a function.

Howeyver, as discussed in Section 4.2.3, in the case of RTEMS, the kernel is en-
tered by means of an ordinary function call and the SVC exception is only used to
restore the portion of processor context the hardware saved onto a task stack because
an exception had been accepted while that task was executing.

Reset

This exception is raised by the processor power-up sequence or a warm reset. It is
handled like other exceptions but, as it will better explained in the following, several
extra operations are carried out to ensure the processor starts executing code in a
consistent way. For instance, the reset exception initializes the Master Stack Pointer
(MSP), which is one of the two stack pointers in the processor and the one it will
actually use immediately after reset, and sets the initial program counter from which
code execution will start. The processor execution mode is also different. Moreover,
if the reset exception occurs while the processor is already running (warm reset),
instruction execution can stop at an arbitrary point.
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TABLE 4.1
Exception and Execution Priorities in the Cortex-M3 Processor

Exception Priority p
Reset -3
Non-Maskable Interrupt (NMI) -2
HardFault —1

UsageFault, BusFault, MemManage, SVC 0<p<255,0r —1"
Interrupts (including SysTick and PendSV) 0 < p <255

Execution Priority ¢

Base level 256

Active exceptions Minimum value a among active exceptions, if any
BASEPRI Value 1 < b < 255 of the register if b # 0
PRIMASK 0 if the mask bit is set

FAULTMASK —1 if the mask bit is set

* Subject to priority escalation

4.2.2 EXCEPTION PRIORITIES AND ENTRY/EXIT SEQUENCE

As recalled in Section 3.1, in the past accepting and handling an interrupt from a
certain source mainly depended on whether that interrupt source was enabled and
whether the processor was servicing another interrupt already. Interrupt prioritization
was used only to disambiguate multiple interrupt requests issued at the same time.
Although this is still partly true today, in the Cortex-M the decision of whether or
not an incoming exception request should become active, that is, whether or not the
processor should immediately start handling it, also depends on other factors.

e As shown on the top half of Table 4.1, each kind of exception has its own
exception priority, an integer value. In the priority hierarchy, lower values
correspond to higher priorities. Priority values can be either fixed or pro-
grammable.

For instance, the priority of a NMI request is always —2, whereas for inter-
rupt requests the priority can be individually set to any non-negative value
p between 0 and 255 included. Depending on the processor implementa-
tion, only some high-order bits of the priority value may be significant, and
hence, numerically different priority values may correspond to the same
actual priority if they differ only in some of their low-order bits.

When there are multiple, simultaneous incoming exceptions, the one with
the highest priority (lowest priority value) prevails on the others and de-
termines the incoming exception priority i. If there are two or more si-
multaneously incoming exceptions with the same priority, the one with the
numerically lowest exception number, a unique and fixed number defined
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by the processor architecture and associated to each exception, takes prece-

dence.

e At the same time, the processor also keeps track of its current execution
priority e. The execution priority is calculated as the minimum of several
values, listed in the bottom half of Table 4.1:

. The base level of execution priority, which is one more than the highest
priority value supported by the processor, 256 in this case.

. The minimum priority value a among all exceptions that became active
in the past and are still being handled, if any. There may be more than
one such exceptions because, as it will be better described in the follow-
ing, the Cortex-M architecture supports nested exception handlers.

. The value 1 < b < 255 of the unsigned 8-bit register BASEPRI, if it is
not zero. If BASEPRI is zero, its value is not taken into account in the
calculation.

. The values 0 and/or —1, depending on whether or not the 1-bit registers
PRIMASK and/or FAULTMASK are set, respectively.

The values of i and e are then compared to determine if the incoming exception
must become active or it must stay pending. In particular:

e If i < e, the incoming exception becomes active and the processor starts
handling it immediately. As a consequence, if the processor was already
handling another exception, the handling of the new exception is nested
into the old one. In other words, the processor temporarily stops handling
the old exception in favor of the new one, and will go back to it at a later
time, with a mechanism similar to an ordinary function call.

e Otherwise, itis i > e and the incoming exception stays pending. The proces-
sor will re-evaluate the possibility of making it active whenever e changes
and becomes numerically higher than it was. The re-evaluation is still car-
ried out as described above, incorporating into i the priority of any further
exception requests that arrived in the meantime. For instance, re-evaluation
takes place when the handling of an active exception terminates, because
this increases the value of a and, in turn, may increase the value of e.

Therefore, programmers can set BASEPRI, PRIMASK and/or FAULTMASK to
mask off and postpone the handling of some exceptions by lowering the value of
e. For instance, setting BASEPRI to a non-zero, positive value ¢ prevents the pro-
cessor from accepting any incoming exception whose priority value i is i > ¢, unless
priority escalation takes place.

The relative priority between two exceptions determines whether the arrival of
one exception can preempt the handling of the other or not. Concerning this aspect,
it is important to mention that the comparison between i and e is possibly affected
by a processor feature known as priority grouping.

Even though a thorough discussion is beyond the scope of this book, by means of
priority grouping it is possible to instruct the processor to ignore some low-order bits
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of the priority value when comparing i and e, so that priority levels that are distinct in
principle “look the same” in the comparison. As a result, exceptions whose priorities
only differ in these low-order bits, but are equal in the others, will not be nested into
each other.

Before discussing in detail what happens when the processor accepts an exception
request it is necessary to briefly introduce the concept of processor execution mode.
From this point of view the Cortex-M approach is considerably simpler than others
and only has two execution modes, called thread and handler mode.

Thread mode

Thread mode is the normal task execution mode and is also the mode the proces-
sor goes into when it accepts and handles a reset exception. The SPSEL bit of the
CONTROL register determines which stack pointer the processor uses when in thread
mode. The two possible choices are the Main Stack Pointer (MSP) and the Process
Stack Pointer (PSP), which usually refer to distinct stacks in memory. Knowing ex-
actly which stack pointer is in use at any given time is extremely important to fully
understand how the underlying operating system mechanisms for exception handling
and multitasking work.

Handler mode

As its name says, this mode is used by the processor to execute all exception han-
dlers except the reset handler. Code executed in handler mode makes use of the MSP,
regardless of the settings of the SPSEL bit. When the processor is executing in thread
mode, accepts an exception request, and makes it active, it automatically enters han-
dler mode. The opposite transition, from handler mode back to thread mode, occurs
when an exception handler returns, there are no other active exceptions, and the pro-
cessor started handling the current exception while it was executing in thread mode.

A peculiar case of mode transition happens when code running in thread mode
executes a SVC instruction that, as described in Section 4.2.1, unconditionally is-
sues an exception request. The exception is accepted synchronously with respect to
the current instruction flow and grants controlled access to handler mode through a
trusted software routine—the SvVC exception handler—implemented by the operating
system.

The presence of two distinct execution modes for task and exception handler ex-
ecution, respectively, is extremely common across modern processor architectures,
although the names given to these modes may differ from one architecture to an-
other. Indeed, RTEMS assumes these two modes are available on all architectures it
supports. As it will be better explained in Section 4.2.3, it always performs context
switches in thread mode to enhance portability.
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FIGURE 4.2 Exception entry sequence in the ARM Cortex-M processors.

Exception entry sequence

The main phases that make up the exception entry sequence, that is, the sequence of
actions the processor performs when it makes an exception active and starts handling
it, are depicted in Figure 4.2.

1. The first action is to save part of the current execution context on the current
stack, the one that the processor is using when the exception request is accepted.
The minimum amount of information that is saved into a basic exception frame
consists of registers RO through R3, R12, the link register LR (also called R14),
the program counter PC (R15), and the program status register xPSR, for a total
of 32 bytes.

When the processor implements the optional floating-point extension, part of the
floating-point context is saved as well, into an extended exception frame. How-
ever, the part of floating-point context to be saved on the stack is rather large and
requires 68 additional bytes. Hence, RTEMS tries to avoid saving and restoring
the floating point context to the extent possible.

The architecture also supports a lazy context switch strategy [10], that is, a mecha-
nism to automatically push the floating-point context only if and when the context
is about to be modified by the execution of a floating-point instruction. However,
this approach can only be used on single-core systems, as it does not work prop-
erly on multicores. For simplicity, the discussion that follows will not explore the
management of the floating-point context further.
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In both cases, the processor updates either the PSP or the MSP appropriately,
so that it points at the base of the exception frame. Depending on the value of
the STKALIGN bit of the Configuration and Control Register CCR, the processor
may also further adjust the stack pointer to make sure that the exception frame is
aligned to a multiple of 8 bytes.

The reason behind saving the execution context is that accepting and handling an
exception shall not prevent the processor from going back to its current activity
at a later time. On the contrary, for the reasons described in Section 3.1, most
exceptions shall be handled transparently with respect to any code that happens to
be executing when they arrive. This is particularly true for interrupts and, more in
general, any other exception requests that occur asynchronously with respect to
current processor activities, because they are very often totally unrelated to them.
The choice of which part of the context is saved is instead motivated by the crucial
goal of making the resulting stack layout compatible with the ARM Architecture
Procedure Calling Standard (AAPCS) [12]. In particular, upon exception entry
the processor saves the caller-saved portion of the integer context. If the exception
handler makes use of other parts of the context, it becomes its own responsibility
to save them appropriately to prevent context corruption.

In this way, any AAPCS-compliant function can be used as an exception handler,
an especially important feature when exception handlers are written in a high-
level language because compilers generate AAPCS-compliant code by default.
Hence, they can also generate exception handling code without treating it as a
special case.

To sum up, the processor hardware saves the context on the stack exactly like an
AAPCS-complaint software procedure does when it is about to call another. As a
result, an exception handler call performed by hardware is indistinguishable from
aregular software-initiated procedure call, from the point of view of the procedure
being called (often named callee).

This is a generic pattern to be realized on all architectures, regardless of how
much assistance is provided by hardware. In the case of the Cortex-M, all caller-
saved registers are automatically pushed on the stack by the processor itself, but
on other architectures some assembly instructions may be needed to complement
what hardware has initiated. In general, RTEMS saves enough context to call code
written in C and proceeds with exception handling from there.

. Set the link register LR to an appropriate exception return (EXC_RETURN) code.
When an exception return code is loaded into the program counter PC, as part of a
function epilogue, it directs the processor to perform an exception handler return
sequence instead of an ordinary return from a procedure call.

Once again, this aspect of the exception entry sequence has been designed to per-
mit any AAPCS-compliant function to be used directly as an exception handler.
Indeed, the AAPCS stipulates that a procedure call must store the return address
into the link register LR before setting the program counter PC to the procedure
entry point. This is typically accomplished by executing a branch and link in-
struction BL with a PC-relative target address. Symmetrically, the callee returns
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by storing back into PC the value saved into LR at the time of the call. This can be

done, for instance, by means of a branch and exchange instruction BX, using LR

as argument.

The information provided by the EXC_RETURN code allows the processor to lo-

cate the exception frame to be restored, interpret it in the right way, and bring back

the processor to the execution mode in effect when the exception was accepted.

Namely, the 5 low-order bits of the EXC_RETURN code indicate:

. whether the processor was using MSP or PSP as stack pointer when the excep-
tion frame was created,

. the kind of exception frame to be restored, basic or extended,

. the execution mode the processor must go back to.

The 4 higher-order bits of EXC_RETURN are always set to OxF to indicate the

value being loaded into PC is indeed an EXC_RETURN code that the processor

must handle specially, rather than a regular memory address. The remaining bits

are currently unused.

It should be noted that the processor interprets the value being loaded into PC as

a possible EXC_RETURN value only in specific cases, better detailed in [8, 9]. In

other cases, for instance, when the PC is loaded while the processor is in thread

mode (and hence, no exception handler can possibly be active), the value is taken

literally, as a memory address. To avoid improper behavior if an EXC_RETURN

value is mistakenly loaded into PC in these cases, the hardware protects the ad-

dress range 0xF0000000-0xFFFFFFFF against instruction execution.

3. Switch to handler mode if the processor was in thread mode when the exception
was accepted. If the processor was already handling another exception, it stays
in handler mode. As explained previously, as a consequence of the mode switch,
the processor may also start using a new stack. A noteworthy exception to this
rule is the reset exception, which is handled in thread mode with the processor
automatically configured to use the MSP.

Additional operations performed by the processor, not shown in Figure 4.2 for
simplicity, include storing the exception number of the exception just accepted in
the IPSR sub-register—which is part of the xP SR register—and updating several
System Control Space (SCS) registers to reflect exception acceptance.

Another side effect of accepting an exception is that is clears the per-core state
of any pending synchronization instructions, namely, LDREX and STREX. There-
fore, any synchronization procedure using those instruction that was pending upon
exception entry will need to be retried after execution resumes. This topic is ex-
tremely important for inter-core synchronization in multicore systems, to be pre-
sented in Chapter 13.

4. The very last action performed by the processor upon exception entry is to retrieve
the target PC—that is, the entry point of the exception handler—from the excep-
tion vector table and jump to it. The exception vector table is a memory-resident
array of 32-bit integers, holding memory addresses called exception vectors. More
specifically, the i-th entry of the table holds the entry point of the handler for ex-
ception number i. No ambiguity can arise because exception numbers are fixed
and, unlike priorities, are unique to each exception.
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Only the first 16 exception numbers are explicitly defined by the architecture spec-
ification. The total number of vectors is not fixed and depends on the number of
exceptions supported by specific members of the Cortex-M family, as well as con-
figuration and implementation options. The very first entry (at index 0) is used in
a special way because no exception is ever assigned exception number zero. In-
stead, this entry contains the initial value loaded into MSP upon reset.

The starting address of the vector table is held in a register called Vector Table
Offset Register (VTOR). The 7 low-order bits of VTOR are reserved and are al-
ways interpreted as zero, therefore the minimum alignment of the vector table in
memory is 128 bytes. Further alignment constraints may come into effect in some
cases, depending on the total number of entries in the table.

The VTOR register is reset to zero when the processor accepts a reset exception,
before handling it. As a consequence, the initial values of PC and MSP upon re-
set are not retrieved from the exception table in effect when the reset exception
was accepted, but from the one at address zero. In all cases, the VTOR register
determines the address the processor emits to access the exception vector table.
Depending on the specific device, this may or may not be the physical address of
the vector table in memory, which may be further changed by address remapping,
external to the processor. In those cases, it is necessary to refer to the device—
rather than the processor—documentation to ascertain which registers control the
mapping and how.

For instance, in the NXP LPC17xx microcontroller family [90] it is possible to
remap at address 0x00000000 (where the vector table begins by default) an
image of the bootstrap ROM (which is normally accessible at physical address
0x1FFF0000) instead of the on-chip flash memory (which is normally mapped
at address 0x00000000). Remapping is controlled by bit O of the device-specific
MEMMAP register.

The case of nested exceptions follows the same general rules, namely, the pro-
cessor pushes the exception frame that contains the execution context of the current
exception handler on the current stack using the active stack pointer, which will nec-
essarily be the MSP. This course of action enables the last-in, first-out saving and
restoration of exception frames, in the same way as ordinary stack frames are han-
dled in regular function calls. The mechanism guarantees that exception handlers are
nested properly, correctly preserving their execution context in the process.

Return from an exception

As stated previously, the processor starts an exception return sequence when an
EXC_RETURN code is loaded into the PC at the end of an exception handler, with
the ultimate goal of transparently resuming the activity it was performing when the
exception became active. In order to do this, the processor must basically revert all
the steps depicted in Figure 4.2.

1. First of all, the processor examines and interprets the EXC_RETURN code to deter-
mine which stack pointer (MSP or PSP) it shall use to locate the exception frame
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to be restored, assess the structure and contents of the exception frame (basic or
extended), and decide the processor mode (handler or thread) to be entered after
restoration.

2. Then, the processor performs several integrity checks, fully illustrated in [8, 9], to
ensure that returning from an exception is legal considering the current execution
context. For instance, the exception currently being handled and whose number
had been recorded in IP SR upon exception entry, must be active in order to legit-
imately return from it. Furthermore, the processor must currently be executing in
handler mode and, if it is about to return to thread execution mode, the value to
be restored into TP SR must be zero, thus indicating that no exceptions are active
any more. Any failed check raises a UsageFault exception, which is then handled
as usual.

3. Finally, the processor restores the contents of the exception frame located as de-
scribed in the previous steps. Among other things, the context includes the ex-
ception number being handled when the current exception was accepted, in the
TIPSR sub-register of xPSR, and the PC at which the exception being concluded
was accepted.

A direct consequence of context restoration is that, in the case of nested excep-
tions, the processor resumes execution from where it was previously interrupted and
the IPSR contains the exception number of the exception whose handling is being
resumed.

Instead, if the exception handler from which the processor is returning is the last
of a chain of nested exceptions (or the only one, in case exceptions were not nested
at all), the TIPSR that was formerly stored in the exception stack being restored is
zero, and this is also the value that must be loaded into the register upon exception
return to signal that the processor is no longer handling any exceptions.

4.2.3 RTEMS CONTEXT SWITCH AND EXCEPTION HANDLING

In Section 3.2.2 we introduced the general concept of task control block (TCB), say-
ing it plays a key role in multitasking operating systems and, more specifically, in the
context switching mechanism. Accordingly, Figure 3.3 portrays TCB contents in an
abstract way. In this section, we will discuss in more detail how RTEMS implements
the portion of TCB related to context switching on the Cortex-M architecture.

In order to show how context switching and exception handling interact, we will
also illustrate how RTEMS makes use of software-triggered exceptions to reschedule
a core after an interrupt. However, although RTEMS makes use of these exceptions to
facilitate and streamline context switching, it still performs all context switches from
within a task context. This approach makes the design more consistent and uniform
because there is no longer any difference between a context switch triggered by an
explicit, voluntary action performed by a task (for instance, when it blocks), and
an involuntary context switch (caused by an interrupt handler that readied a higher-
priority task).
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FIGURE 4.3 RTEMS Context switch for the ARM Cortex-M processors.

As shown at the top of Figure 4.3, an RTEMS TCB is represented by a
Thread_Control data structure, which embeds an architecture-dependent sub-
structure called Context_Control. The sub-structure contains all the callee-
saved registers specified in the Cortex-M AAPCS [12]. Caller-saved registers are
not stored within it because the RTEMS function in charge of context switching,
_CPU_Context_switch, is an AAPCS-compliant C function. Hence, when any
higher-level function calls it to perform a context switch, it is the compiler’s respon-
sibility to properly save these registers beforehand, typically on the task stack, and
restore them after _CPU_Context_switch returns. In summary, during a context
switch:

e If the calling function needs to preserve the content of some caller-saved
registers of the executing task, it is its responsibility to save them on the
task stack, by means of compiler-generated code, before calling the context
switch function _CPU_Context_switch.

e This function is given two pointers as arguments, executing and heir.
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The first points to the Context_Control of the currently executing task,
the second to the Context_Control of the next task to be executed. This
is called the Aeir in RTEMS documentation, in a reference to who is next
task to sit on the processor “throne”.

e The context switch function preserves all callee-saved registers plus the
PSP, by saving them in the Context_Control of the executing task.

e In order to restore the context of the heir, _CPU_Context_switch
loads all callee-saved registers plus the PSP from the Context_Control
within the heir’s TCB and returns to the caller.

e The compiler-generated function call epilogue code will then restore
caller-saved registers, if they were live at the time of the call. Since
_CPU_Context_switch sets the PSP to point to the heir’s stack, the
restoration will take place from there, as it should.

Figure 4.3 summarizes the main steps performed by _CPU_Context_switch.
One aspect shown in the figure and not yet discussed for simplicity is the fact that
Context_Control includes a field called isr_nest_level. This field is not
part of the processor context and corresponds to a field with the same name that
RTEMS maintains in the per-core data structure Per_CPU_Control. It is saved
from the data structure into the TCB of the executing thread and restored into the
data structure from the TCB of the heir thread alongside the other parts of the context
discussed previously. It is an integer that represents the per-core current interrupt
service routine (ISR) nesting level.

So far we described how a context switch is implemented when it is
triggered by the executing task in a synchronous way by explicitly calling
_CPU_Context_switch, either directly or, more ofter than not, by means of
higher-level functions. This typically happens when the executing task voluntarily
yields the processor or when it executes a blocking synchronization primitive, thus
moving into the blocked state of the task state diagram, as explained in Section 3.2.2.

Another important reason to perform a context switch is to preempt a lower-
priority task when a formerly blocked higher-priority task becomes ready for exe-
cution. This happens as a result of an event, for instance, a device interrupt. Timed
wait operations belong to this category, too, because also in that case the waiting task
is unblocked as a result of a timer interrupt. In RTEMS, like in other operating sys-
tems, this goal is accomplished by making the hardware-assisted exception entry/exit
mechanism depicted in Figure 4.2 and the software-controlled context switch shown
in Figure 4.3 work together.
void _ARMV7M_Interrupt_service_leave( void )

{
Per_CPU_Control xcpu_self = _Per_CPU_Get ();

——cpu_self->thread_dispatch_disable_level;
——-cpu_self->isr_nest_level;

/*

* Optimistically activate a pendable service call if a thread dispatch is
* necessary. The _ARMV7M Pendable_ service call() will check that a thread
* dispatch is allowed.
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*/
if ( cpu_self->dispatch_necessary ) {
_ARMV7M_SCB->icsr = ARMV7M_SCB_ICSR_PENDSVSET;
}
}

Firstly, the function _ARMV7M_Interrupt_service_leave, to be called
while leaving an exception handler, checks whether a task dispatch is necessary, by
checking the per-core flag dispatch_necessary. This flag is set by higher-level
synchronization primitives when they detect that a task with a priority higher than
the currently executing task has been woken up. In RTEMS, task dispatching is the
sequence of two separate activities, organized in a manager versus worker fashion:

e The execution of the scheduling algorithm makes the decision of what the
next task to be executed will be and plays the management role. The im-
plementation of the scheduling algorithm is also portable and architecture-
independent.

e After the manager has designated the heir, the context switch code performs
the context switch from the currently executing task to the heir. This piece
of code is the worker, and also embeds all architecture-dependencies of
task dispatching as a whole.

The same division of duties and sequence of operations also take place when a
task voluntarily blocks and the operating system must necessarily choose its heir. If a
dispatch is needed, the function _ARMV7M_Interrupt_service_leave triggers
a PendSV exception, described in Section 4.2.1. RTEMS configures this exception
to have the lowest exception priority in the whole system. Therefore, it will stay
pending and will be serviced only when no other higher-priority exceptions are being
handled.

As shown on the top left part of Figure 4.4, when the PendSV exception becomes
active the processor saves on the task stack an exception frame according to the
general exception entry mechanism illustrated in Figure 4.2. The PC in this exception
frame points to the task instruction that has been interrupted by PendSV exception
handling. This is also the PC from which the execution of the current task must
eventually resume.

void _ARMV7M_Pendable_service_call( void )
{
[...]

{
ARMVTM_Exception_frame xef;

cpu_self->isr_nest_level = 1;

_ARMV7M_SCB->icsr = ARMV7M_SCB_ICSR_PENDSVCLR;
_ARMVTM_Trigger_lazy_floating_point_context_save();

ef = (ARMV7M_Exception_frame x) _ARMV/M_Get_PSP();
--ef;

_ARMVTM_Set_PSP( (uint32_t) ef );

/*
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* According to "ARMv7-M Architecture Reference Manual" section B1.5.6
+ "Exception entry behavior" the return address is half-word aligned.
*/
ef->register_pc = (void x)
((uintptr_t) _ARMV7M_Thread_dispatch & 7 ((uintptr_t) 1));

ef->register_xpsr = 0x01000000U;
}
}

The processor then executes _ARMV7M_Pendable_service_call, the C
function registered as PendSV exception handler, in handler mode. After ensuring
that task dispatch is allowed (by means of a fragment of code omitted in the previ-
ous listing), this function synthesizes a new exception frame, represented by the data
type ARMV7M_Exception_frame, pushes it on the stack by decrementing the PSP
(on this architecture, stacks grow towards lower addresses), and returns. This corre-
sponds to the darker gray exception frame visible on the bottom left of Figure 4.4.

The exception frame’s PC points to the _ARMV7M_Thread_dispatch func-
tion and contains a default xPSR, set to 0x01000000. The other fields of the ex-
ception frame are not set explicitly to save time, because they are not going to be
used in the following. When the PendSV exception handler returns, the LR register
still contains the EXC_RETURN code stored by hardware. As a result, the processor
restores the software-synthesized exception frame and resumes execution from the
_ARMV7M_Thread_dispatch function in thread mode.
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This is a key point because the net result is that, immediately after one or more in-
terrupts that triggered a reschedule have been serviced, the interrupted task executes
the _ARMV7M_Thread_dispatch function exactly “as if” it called it voluntarily,
by means of an ordinary function call, although it took place with the assistance of
this peculiar form of exception handling. The original exception frame created upon
PendSV exception entry stays on the task stack, so that ordinary task execution can
be resumed at a later time, when it eventually goes back to the running state.

static void __attribute__ ((naked)) _ARMV7M_Thread_dispatch( void )
{
__asm__ volatile (
"bl _Thread_Dispatch\n"
/* FIXME: SVC, binutils bug */
".short 0xdf00\n"
"nop\n"
)i
}
The _ARMV7M_Thread_dispatch function is extremely simple and consists

of two machine instruction, specified by means of an assembly language insert:

e First, it calls _Thread_Dispatch. This RTEMS function executes the
scheduling algorithm in a completely architecture-independent way to cal-
culate the heir of the currently executing task. If necessary, this manage-
ment action is followed by an architecture-dependent context switch re-
alized, as described previously, by calling the _CPU_Context_switch
function.

Since all these operations are performed in thread mode, the processor be-
havior is exactly the same as for the synchronous context switch discussed
previously, and the higher-layer code can be kept unaware of the distinc-
tion.

If a context switch takes place, the current task no longer continues its
execution within _Thread_Dispatch until another context switch brings
it back to the running state.

e Secondly, when _Thread_Dispatch returns, it executes a SVC 0 in-

struction that triggers a synchronous exception. As a result, the hardware
pushes on the stack a new exception frame, depicted at the bottom right of
Figure 4.4. The PC of this frame points to the instruction that follows the
SVC within _ARMV7M_Thread_dispatch.
As a side note, the assembly language insert encodes SVC 0 in hexadeci-
mal because some versions of the assembler (part of the GNU binutils
toolchain package) have a bug that prevents them from recognizing the SVC
mnemonic correctly.

void _ARMVT7M_Supervisor_call( void )

{
Per_CPU_Control xcpu_self = _Per CPU_Get();
ARMVT7M_Exception_frame xef;

_ARMVTM_Trigger_lazy_floating_point_context_save();
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ef = (ARMVTM_Exception_frame ) _ARMVTM_Get_PSP();
+tef;
_ARMVT7M_Set_PSP( (uint32_t) ef );

cpu_self->isr_nest_level = 0;

if ( cpu_self->dispatch_necessary ) {
_ARMV7M_Pendable_service_call();
}
}

Then, the processor executes the SVC handler, _ARMV7M_Supervisor_call,
in handler mode. This function discards the exception frame pushed by hardware,
adjusts the PSP accordingly and, unless another dispatch has become necessary in
the meantime, returns. Since the LR register contains an EXC_RETURN code also in
this case, the one calculated while entering the SVC handler, the hardware determines
it is returning from an exception and restores the exception frame previously saved
during PendSV exception entry.

On the other hand, if a new dispatch has become necessary—because, for in-
stance, other interrupts have been handled in the meantime and other, even higher-
priority tasks have been woken up—the whole process is repeated by calling the
PendSV exception handler again.

In two cases, the EXC_RETURN code calculated by hardware while pushing a cer-
tain exception frame is used to restore a different exception frame. More specifically:

1. The EXC_RETURN code calculated upon entering the PendSV exception handler
is used to restore the software-synthesized exception frame.

2. The EXC_RETURN code calculated upon entering the SVC exception handler is
used to restore the exception frame saved while entering the PendSV exception
handler.

The whole mechanism still works because RTEMS ensures that exception frame
formats are nevertheless the same, and hence, they are indistinguishable from each
other.

As a final remark, we can confirm that RTEMS saves all processor registers (both
caller-saved and callee-saved) upon preemption, thus making it completely transpar-
ent. This is because:

e Caller-saved registers are saved by hardware while entering the PendSV
exception handler, within an exception frame, as shown in Figure 4.2.

o Callee-saved registers are saved by the context switch function, in the
Context_Control structure of the task TCB, as depicted in Figure 4.3.

The Context_Control structure also contains the task PSP. When restored,
it enables the processor to properly retrieve and restore also the exception frame
content from the task stack.
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4.2.4 INTERRUPTS IN SCHEDULABILITY ANALYSIS

If we compare a contemporary, fully prioritized exception handling mechanism, such
as the one described in Section 4.2.1, with the assumptions of schedulability analysis
set out in Section 4.1, we discern some important analogies.

Firstly, an interrupt handler can be seen as a sporadic pseudo-task, whose ac-
tivation is triggered by the corresponding interrupt source. Then, the arrival of an
interrupt request is an external event that moves the corresponding pseudo-task to
the ready state of the task state diagram. The priority of this pseudo-task is dictated
by the priority of the interrupt source and is fixed, but is always implicitly higher
than any other regular task in the system, because the arrival of an interrupt request
immediately preempts any regular task that had been executing.

Secondly, the relative priority of different interrupt sources determines whether
or not the arrival of a fresh interrupt request would preempt a currently executing
interrupt handler, giving rise to interrupt nesting. If no nesting takes place, the in-
terrupt request stays pending until the processor execution priority level allows it to
be accepted and become active. This mechanism is equivalent to an ordinary task
staying in the ready state of the task state diagram while a higher-priority task is ex-
ecuting, until the scheduler moves it to running state, the only difference being that
the scheduling decision is taken by hardware instead of software.

Therefore, in principle, some of the schedulability analysis techniques described
in Section 4.1, most notably response time analysis, can be used to assess the impact
of interrupt handling on tasks response times. This is true provided it is possible
to calculate, measure, or estimate the worst-case execution time of each interrupt
handler (which then becomes the C; of the corresponding pseudo-task) and several
other practical requirements are met.

Interrupt arrival rate

An important hypothesis in the definition of sporadic task is that its minimum inter-
arrival time is known. This hypothesis enabled us to conservatively consider sporadic
tasks as periodic tasks with a period equal to their minimum interarrival time. In some
cases, this hypothesis is implicitly satisfied because devices often generate an inter-
rupt only as a reaction to some software-issued command or inherently guarantee a
minimum interarrival time anyway, like mechanical buttons if we ignore bounces.

As an example of the first category of devices, a hard-disk controller generates an
end-of-transfer interrupt only after receiving and processing a data transfer command
from its device driver. Moreover, it will not generate further interrupts of the same
kind afterwards, unless the device driver issues another command to it.

As a consequence, the interrupt generation rate, which determines the minimum
interarrival time of the interrupt handler, cannot exceed the rate at which the device
driver sends commands to the device. If, for instance, a periodic task with period
T; is in charge of preparing and issuing one of those commands on each activation,
we can safely use the same 7; as the minimum interarrival time of the interrupt han-
dling sporadic pseudo-task. Besides being convenient for schedulability analysis, this
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approach is also useful to contain the maximum utilization a certain device can im-
pose on the system, because we can cap the interrupt arrival rate by choosing a 7; as
a suitable trade-off between data transfer bandwidth and the system load itself.

Unfortunately, this is not viable in all cases, mainly because some devices may
generate interrupt requests independently of any software action. This is typical, for
example, of most network controllers, which generate an interrupt request when-
ever they receive an incoming frame. In turn, unless the network is time-triggered
or works according to a Time Division Multiplexed Access (TDMA) paradigm, the
arrival time of incoming frames is basically unpredictable and uncorrelated with any
local task activities.

Generally speaking, leaving the interrupt rate unchecked is inconvenient and often
dangerous from several different points of view.

e As hinted previously, schedulability analysis becomes hardly possible. This
is worrying not only from a theoretical point of view, but also from a practi-
cal standpoint, because worst-case task response times can then be assessed
only by testing the system, while relying on the assumption that some test
scenarios can indeed reproduce the worst-case interrupt load the system is
going to face in practice.

o Even if some other physical characteristics of the system may also limit the
maximum interrupt arrival rate as a side effect, the resulting load can never-
theless be too high to be sustainable. For instance, even a Controller Area
Network interface running at a relatively modest rate of 1Mb/s can still
receive one frame every 47 us, and potentially generate interrupt requests
at the same rate in the worst case. This is because on that kind of network
the minimum legal frame length, including inter-frame spacing, is 47 bits.

e It is also important to remember that interrupt handlers have a higher pri-
ority than any ordinary tasks in the system. Therefore, the execution time
Cy, of an interrupt handling pseudo-task 7, has a direct, important impact
on the response time of all ordinary tasks in the system. This can be clearly
seen by referring back to the main response time analysis equation (4.5)
and observing that C,, certainly contributes to the R; of all ordinary tasks 7;,
because it surely is & € hp(i) for all i.

e As a consequence, when a system is swamped with interrupts, it may have
little time left to perform “real work.” Moreover, interrupts have a negative
impact on cache performance, which also slows other activities down. A
related issue caused by high-speed devices that are able to perform direct
memory access, as is typical of network interfaces, is memory bandwidth
saturation, which slows down memory accesses issued by the processor.

e Last, but not least, unchecked interrupt handlers may open the door to de-
nial of service attacks. For instance, if an attacker can get access to the
CAN network mentioned previously, it can easily “flood” the system with
minimum-size frames. Whether or not this leads to any service disruption
then depends on how well the system is able to tolerate an interrupt arrival
rate it potentially has not been designed and tested for.
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The range of techniques to limit interrupt arrival rate can be divided into two
broad categories: hardware and software-based.

e Depending on its sophistication, the device itself may offer a way to reduce

and place an upper bound on its own interrupt generation rate. For instance,
some CAN controllers implement rather sophisticated filters on the identi-
fier—the part of a CAN message that uniquely identifies its contents—and
can automatically store incoming frames into different device or memory-
resident mailboxes, also chosen depending on their identifier.
On one hand, this reduces the overall interrupt rate because the controller,
when suitably programmed, can autonomously discard incoming frames
that are of no interest to the software, without generating any interrupt. On
the other hand, this also restricts the worst-case interrupt rate because, for
each mailbox, these controllers put in place automatic message replacement
and interrupt hold-off policies. For instance, they may keep only the most
recent message destined to a certain mailbox when software is unable to
process them all, and refrain from generating a new interrupt request until
a programmable hold-off time has elapsed since the previons one.

e Similar mechanisms are also available on Ethernet controllers, especially
the ones operating at or beyond 100Mb/s. In general, faster network in-
terfaces tend to be more sophisticated and offload the processor more. For
instance, they are usually able to store incoming frames and fetch outgoing
frames directly to and from memory-resident buffers they share with the
device driver. In this case, available memory bus bandwidth becomes a fac-
tor to be taken into account. As an example, on a state-of-the-art embedded
system RTEMS with its new protocol stack (see Chapter 10) can sustain
1 Gb/s at around 30-40% processor utilization.

e Most processors allow software to individually enable or disable each in-
terrupt source. Therefore, the interrupt handler can disable its own inter-
rupt source after setting a timer. In this way, no further interrupts from
that source will be generated and handled until the timer expires. Upon
timer expiration, interrupts are enabled again, thus imitating in software
the hardware-based hold-off mechanism mentioned previously. With re-
spect to the hardware-based approach, there are two shortcomings worth
noting. Firstly, the software-based approach entails additional overhead,
due to the work to be performed upon timer expiration. Depending on the
way timers are implemented, this may also imply extra interrupts from the
timer itself. Secondly, some devices may enter an error condition if their
interrupt requests are not serviced timely. Depending on the device, the er-
ror condition may imply data loss—for instance, due to overflows of the
receive buffers of a network interface—and, in extreme cases, the device
may stop working altogether.

An alternative approach that addresses the second shortcoming is to keep de-
vice interrupts enabled at all times, but handle them differently depending on the
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circumstances. Namely, when the interrupt handler detects that an interrupt came
“too close” to the previous one, it will perform only the minimal amount of house-
keeping needed for the device to work correctly and nothing else, thus saving pro-
cessor time and reducing the interference on other tasks. Actually, it turns out this is
merely a special case of a more general technique, often called two-stage interrupt
handling, to be discussed next.

Two-stage interrupt handling

In Section 3.2.3, we saw that a key part of a real-time scheduling algorithm is an
appropriate priority assignment scheme. According to this scheme, the priority of a
task shall depend on some properties of the task itself, for instance, its period for RM
or its relative deadline for the deadline monotonic priority order.

This requirement is not of concern for ordinary tasks because software can set
their priority at will. Instead, as described in Section 4.2.1, although interrupt han-
dlers do have a software-assigned priority, they have nevertheless a priority higher
than any ordinary task in the system. In other words, tasks are partitioned in two sub-
sets: ordinary tasks and interrupt handlers. Although software can set task priorities
at will within each subset, the second subset always has a higher priority than the
first.

As a consequence, it may be impossible to fully adhere to the RM or deadline
monotonic priority assignment, with two important side effects:

e Some schedulability analysis methods, like response time analysis (see
Section 4.1.2), can still be used because they work with any priority as-
signment. Instead, simpler techniques, like utilization-based schedulability
tests (see Section 4.1.1), are no longer applicable.

e The optimality theorems discussed in Section 4.1 obviously do not apply
to priority assignments that do not satisfy their hypotheses. Moreover, by
intuition, the further a given priority assignment is from an optimal one, the
worse the system performs.

A simple workaround that alleviates these issues is two-stage interrupt handling,
in which interrupt handling activities are split into two parts:

1. Time-critical activities are still performed in the interrupt handler, which can be
modeled as before as a pseudo-task 7, with worst-case execution time Cj. After-
wards, the interrupt handler wakes up an ordinary task 7.

2. Task 7, runs at a lower priority than 7; and takes care of less time-critical activities
in a deferred way, with a worst-case execution time Cy.

Overall, two-stage interrupt handling can be modeled as two sporadic tasks 7
and 7, for each interrupt source. Both tasks have the same period 7} = T, equal to
the minimum interrupt interarrival time, and known worst-case execution times Cj,
and C,. Thus, their impact on the system can easily be calculated, for instance, with
response time analysis.
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The total interrupt handling time Cy 4 C; is still the same as for the one-stage
monolithic interrupt handling approach discussed previously, and probably worse
because of the additional synchronization overhead between the interrupt handler and
the ordinary task. However, this approach is much more flexible because it enables
programmers to choose (within certain limits) the most appropriate trade-off between
code executed at high and low priorities, that is, between Cj, and Cg.

Let us assume, as an example, that programmers would like to use the RM priority
assignment but the minimum possible interrupt handling priority of 7 is too high for
the corresponding Tj. Although they cannot lower the priority of 7; further, they can
still set the priority of 7; depending on 7; as RM requires. Then, they can make Cy
as small as possible by moving most of the processing into Cy.

In this way, task 7, is appropriately positioned in the RM priority hierarchy. Task
Ty is not, but its adverse impact on the system has been reduced by reducing its Cy.
In many cases, it is possible to shrink the interrupt handler until it only invokes the
synchronization primitives needed to wake 7; up, leading to a very small C; and
bringing system behavior very close to the optimality guaranteed by RM.

4.3 SUMMARY

This chapter introduced a couple of popular schedulability analysis techniques,
namely utilization-based tests and response time analysis (RTA). In the case of re-
sponse time analysis, it was also shown how to refine and extend the analysis, starting
from a basic periodic task model and then going towards a more complex model that
incorporates task interactions, self-suspension, and interrupt handling.

Moving from theoretical to more practical considerations, the chapter discussed
how interrupt handling and, more generally, exception handling is carried out in prac-
tice, using RTEMS as an example. Given its close analogy to exception handling, we
also illustrated how RTEMS performs a context switch.
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This chapter illustrates the general concepts of task management and timekeeping,
focusing on the RTEMS scheduling algorithms for single-core systems, along with
the facilities provided by RTEMS to manipulate tasks and account for the passage of
time through its Classic Applications Programming Interface (API).

Chapter 6 will focus on how the same facilities are embodied in the POSIX APIL
A short comparison between these two APIs, also given in the present chapter, shows
their relative advantages and disadvantages, and also highlights which facilities are
available only in one API and not in the other.

The chapter ends with a description of some lower-level aspects of interrupt han-
dling on single-core systems by means of the RTEMS Interrupt Manager. Although
these aspects are generally outside the scope of general-purpose application pro-
grammers, they are often essential in embedded systems. Further information about
multicore systems will be provided in Chapters 13.

5.1 TASK MANAGEMENT BASICS

The concept of task management encompasses all the operating system functions and
interfaces that control a task through its entire lifetime, summarized in the task state
diagram of Figure 3.4. Even more generally, we can say that task management rep-
resents the practical embodiment of the concurrent programming concepts discussed
in Chapter 3 by RTEMS.

In a somewhat hierarchical view, at the top level there are operating system func-
tions to create a new task and make it eligible for execution. These same functions
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TABLE 5.1
Single-Core Scheduling Algorithms of RTEMS

Configuration macro Default  Description

(CONFIGURE_SCHEDULER ...) name

PRIORITY "UPD "  Deterministic Priority Scheduler (default) [84]
SIMPLE "UPS "  Simple Priority Scheduler [84]

EDF "UEDF"  Earliest Deadline First Scheduler [84]

CBS "ucBsS"  Constant Bandwidth Server Scheduler [1]

also enable users to specify task scheduling parameters that, in turn, drive the oper-
ating system’s scheduling algorithms, as described in Section 3.2. As in most other
operating systems, another set of RTEMS functions is available to inspect and change
the scheduling parameters of a task after its creation. Additional top-level functions
exist to temporarily suspend and then resume a task, and to terminate it.

Below the surface, a number of RTEMS modules not directly accessible to end-
users implement a variety of real-time scheduling algorithms [125]. Among them,
the ones designed for single-core systems will be presented in Section 5.2 of this
chapter, along with the Scheduler Manager, the RTEMS component responsible for
managing schedulers and, on multicore systems, maintain the association of sched-
ulers with the cores they manage and operate upon.

The algorithms are conceptually very close to the ones discussed in Chapter 3 and
analyzed in Chapter 4, with additional features provided to enhance their practical
applicability and usefulness. Instead, scheduling algorithms for multicore systems
will be one of the topics of Chapter 13.

At the bottom of the hierarchy, a set of partly architecture-dependent RTEMS
functions are responsible for putting scheduling decisions into practice by means of
task dispatching and context switching. This is done according to the general scheme
outlined, for instance, in Section 4.2 for the ARM Cortex-M architecture.

RTEMS provides access to the top level of the hierarchy just introduced by means
of two primary application programming interfaces (APIs) named the Classic and
POSIX interfaces and located at cpukit/rtems and cpukit/posix within the
RTEMS source code, respectively. Section 5.3 summarizes the commonalities and
differences between the two APIs. The rest of this chapter will focus on the classic
API for task management and timekeeping, while Chapter 6 will be entirely devoted
to the POSIX interface.

5.2 SCHEDULER MANAGER AND SINGLE-CORE SCHEDULING
ALGORITHMS

A standard distribution of RTEMS provides the off-the-shelf single-core priority-
based schedulers listed in Table 5.1. In addition, thanks to the modular, plugin-based
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Max. priority Min. priority
Bitmap with one element
for each queue
(256 elements by default) oj1]1]o0 cee 0
Max. priority
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Insertion of TCB pointers of TCB pointers are removed
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corresponding to their priority are no longer ready
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FIGURE 5.1 Abstract data structures of the Deterministic Priority Scheduler (DPS).

framework for schedulers of RTEMS, users can implement their own scheduling
algorithms if necessary.

As it will be better described in Chapter 13, the same framework also supports
multiple scheduler instances on a multicore system, each using a possibly different
scheduling algorithm and governing a subset of the available cores.

On a single-core system, the specific scheduler to be used is selected by defining
the macro listed in the leftmost column of the table in the RTEMS configuration, ac-
cording to the general procedure described in Section 2.4.2. For instance, defining the
configuration macro CONFIGURE_SCHEDULER_EDF selects the Earliest Deadline
First (EDF) scheduler. No definitions are needed to select the Deterministic Priority
Scheduler (DPS) because it is enabled by default.

The DPS is a preemptive, fixed-priority scheduler suitable to implement, for in-
stance, the Rate Monotonic priority assignment (RM), Deadline Monotonic Priority
Ordering (DMPO), and Optimal Priority Assignment (OPA), all described in Sec-
tion 3.2.3.

For what concerns its practical implementation, it makes use of the abstract data
structures depicted in Figure 5.1:
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FIGURE 5.2 Abstract data structures of the Simple Priority Scheduler (SPS).

e An array of first-in, first-out (FIFO) gueues, one for each priority level, to
keep track of the ready tasks at that level.

e A bitmap, with one bit for each priority level, to tell whether the FIFO
associated with the level has tasks in it or not.

When implemented properly, these data structures support the execution of all
typical scheduler operations in a deterministic (that is, predictable and fixed) time,
regardless of the number of tasks in the system. This useful property comes at the
expense of some space overhead. When configured for 256 priority levels, which is
the RTEMS default, the scheduler data structures occupy slightly more than 3 kbyte
of RAM.

On small systems, which are anyway unable to support a large number of tasks,
a more compact data structure may be preferable. This is provided by the Simple
Priority Scheduler (SPS). It behaves the same as the DPS from the functional point
of view but, as shown in Figure 5.2, it makes use of a single queue of ready tasks,
implemented as a linked list. With respect to the DPS, most of the memory overhead
due to queue headers clearly disappears.

However, since the scheduler must be able to pick the highest-priority ready task
for execution efficiently, the queue must be kept sorted by task priority because, in
this way, the selection of the highest-priority ready task can still be performed in
constant time. On the contrary, the whole queue must be scanned whenever a task
is inserted into it, with an execution time overhead that is proportional to the queue
length, that is, the number of ready tasks.

In summary, the SPS is advantageous with respect to the DPS on small sys-
tems, in which the linear complexity of the SPS in the number of tasks is not
an issue because the number of tasks is relatively small, whereas memory—
especially the on-chip RAM of single-chip microcontrollers—often comes at a
premium.

The EDF scheduler has clear advantages with respect to fixed-priority sched-
ulers like the DPS and the SPS, from the point of view of schedulability analysis,
as pointed out in Chapter 4. The downside comes from the necessity of keeping
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FIGURE 5.3 Abstract data structures of the Earliest Deadline First (EDF) scheduler.

ready tasks ordered by deadline in an efficient manner, so that the scheduler can se-
lect for execution the task with the earliest deadline whenever the processor becomes
available.

Although the problem might look similar to keeping ready tasks ordered by pri-
ority, there is a fundamental difference that makes the data structures used by the
DPS, which are indeed very efficient, unsuitable for use. More specifically, as dis-
cussed previously, priorities have a limited range whereas deadlines in RTEMS are
expressed in clock ticks as a 64-bit integer.

As a consequence, the memory overhead of any sorted data structure whose size is
proportional to the range of the sort key, like the one of the DPS, may be appropriate
for priorities but not for deadlines. For this reason, as shown in Figure 5.3, the EDF
scheduler adopts a red-black tree [53] as its main data structure to keep track of all
ready tasks in the system.

A red-black tree is similar to a binary search tree but insertion and deletion opera-
tions keep the tree balanced, so that the complexity of all main operations on the tree
(search, insert and delete) is a logarithmic function of the number of nodes in the tree,
which is the number of ready tasks in the system. Space overhead is proportional to
the number of nodes.

The RTEMS implementation of the EDF scheduler supports two classes of tasks,
the ones that declared a deadline (foreground tasks) and the ones that did not (back-
ground tasks). For background tasks, the EDF scheduler falls back to a fixed priority
scheduler and executes them according to their priority, exactly like the DPS would
do.

The scheduler enforces a strict hierarchy between the two classes, namely, all
background tasks have a lower importance than any of the foreground tasks. In other
words, background tasks are picked for execution, according to their priority, only if
no foreground tasks are ready at the moment.

The deadlines used by this scheduler are declared by means of the RTEMS Rate
Monotonic Manager, whose API will be described in Section 5.5, and are always
implicit, that is, are assumed to be equal to the task period. A task belongs to
the foreground class when it has a deadline declared using the Rate Monotonic
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Manager. Instead, if a task’s deadline is canceled or never declared, it belongs to
the background class. Tasks can freely move between the two classes during their
lifetime.

By contrasting Figures 5.1 and 5.3, we can see that the additional flexibility and
the advantages in terms of total processor utilization of the EDF with respect to
the DPS (s