

 Real-Time Systems
Development with

RTEMS and Multicore
Processors

Embedded Systems
Series editor: Richard Zurawski

Time-Triggered Communication
Roman Obermaisser

Embedded Software Development
The Open-Source Approach

Ivan Cibrario Bertolotti, Tingting Hu

Real-Time Embedded Systems
 Open-Source Operating Systems Perspective
Ivan Cibrario Bertolotti, Gabriele Manduchi

Communication Architectures for Systems-on-Chip
José L. Ayala

Event-Based Control and Signal Processing
Marek Miskowicz

Real-Time Systems Development with RTEMS
and Multicore Processors

Gedare Bloom, Joel Sherrill, Tingting Hu, Ivan Cibrario Bertolotti

For more information about this series, please visit: https://www.
routledge.com/Embedded-Systems/book-series/CRCEMBSYS

http://www.routledge.com/Embedded-Systems/book-series/CRCEMBSYS
http://www.routledge.com/Embedded-Systems/book-series/CRCEMBSYS

 Real-Time Systems
Development with

RTEMS and Multicore
Processors

Gedare Bloom

Joel Sherrill

Tingting Hu

Ivan Cibrario Bertolotti

First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bloom, Gedare, author. | Sherrill, Joel, author. | Hu, Tingting,
 author. | Bertolotti, Ivan Cibrario, author.

Title: Real-time systems development with RTEMs and multicore processors /
 Gedare Bloom, Joel Sherrill, Tingting Hu, Ivan Cibrario Bertolotti.

Description: First edition. | [Boca Raton : CRC Press, 2020] | Series:
 Embedded systems | Includes bibliographical references and index.

Identifiers: LCCN 2020036898 (print) | LCCN 2020036899 (ebook) | ISBN
 9780815365976 (hardback) | ISBN 9781351255790 (ebook)

Subjects: LCSH: Embedded computer systems. | Real-time data processing. |
 Automatic control.

Classification: LCC TK7895.E42 B66 2020 (print) | LCC TK7895.E42 (ebook)
 | DDC 006.2/2--dc23

LC record available at https://lccn.loc.gov/2020036898
LC ebook record available at https://lccn.loc.gov/2020036899

ISBN: 978-0-8153-6597-6 (hbk)
ISBN: 978-1-351-25579-0 (ebk)

http://www.copyright.com
https://lccn.loc.gov
https://lccn.loc.gov
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk

Contents

Preface...xi

The Authors ..xiii

Chapter 1 Introduction ...1

PART I Operating System Basics

Chapter 2 Cross-Compilation Toolchain..7

2.1 From Source Code to the Executable Image7
2.1.1 The Compiler Driver ..10
2.1.2 The Preprocessor..12
2.1.3 The Linker..16

2.2 Linker Scripts..19
2.2.1 Input and Output Sequences20
2.2.2 Memory Layout ...24
2.2.3 Linker Symbols..26
2.2.4 Section and Memory Mapping.................................28

2.3 GNU Make and Makefles ..31
2.3.1 Explicit Rules...32
2.3.2 Variables...33
2.3.3 Pattern Rules and Automatic Variables....................36
2.3.4 Directives and Functions..38

2.4 Basic Description of RTEMS and its Confguration
System...40
2.4.1 RTEMS Compile-Time Confguration.....................41
2.4.2 Application Compile-Time Confguration41

2.5 Summary...43

Chapter 3 Concurrent Programming and Scheduling Algorithms45

3.1 Foundations of Concurrent Programming45
3.1.1 From Interrupt Handling to Multiprogramming45
3.1.2 Cooperating Sequential Processes49

3.2 Scheduling Policies, Mechanisms, and Algorithms51
3.2.1 Task Interleaving and Timings.................................51
3.2.2 Task Control Block and Task State Diagram52

v

vi Contents

3.2.3 Real-Time Scheduling Algorithms58
3.3 Summary...66

Chapter 4 Scheduling Analysis and Interrupt Handling69

4.1 Basics of Real-Time Scheduling Analysis............................69
4.1.1 Utilization-Based Schedulability Tests70
4.1.2 Response Time Analysis..72
4.1.3 Task Interactions and Self-Suspension73

4.2 Practical Considerations on Interrupt Handling78
4.2.1 Exception Handling in The Cortex-M Processor.....78
4.2.2 Exception Priorities and Entry/Exit Sequence.........82
4.2.3 RTEMS Context Switch and Exception Handling...89
4.2.4 Interrupts in Schedulability Analysis.......................96

4.3 Summary...100

PART II Task Management and Timekeeping

Chapter 5 Task Management and Timekeeping, Classic API103

5.1 Task Management Basics..103
5.2 Scheduler Manager and Single-Core Scheduling

Algorithms ..104
5.3 RTEMS Classic and POSIX API..114
5.4 Task Management ...115
5.5 The Rate Monotonic Manager ..130
5.6 Timekeeping: Clocks and Timers143
5.7 Preemption and Interrupt Management154
5.8 Summary...157

Chapter 6 Task Management and Timekeeping, POSIX API159

6.1 Attribute Objects...160
6.2 Thread Creation and Termination162
6.3 Thread Scheduling ..168
6.4 Forced Thread Termination (Cancellation).........................175
6.5 Signal Handling ..181
6.6 Timekeeping ...195
6.7 Summary...207

Contents vii

PART III Inter-Task Synchronization and
Communication

Chapter 7 Inter-Task Synchronization and Communication (IPC)
Based on Shared Memory ...211

7.1 Race Conditions and Mutual Exclusion212
7.1.1 An Example of Race Condition212
7.1.2 Critical Regions ...216
7.1.3 Lock-Based Mutual Exclusion...............................217
7.1.4 Correctness Conditions ..219

7.2 Semaphores...219
7.2.1 Defnition and Properties219
7.2.2 Mutual Exclusion Semaphores222
7.2.3 Synchronization Semaphores.................................224
7.2.4 Producers and Consumers......................................226

7.3 Monitors..229
7.3.1 Defnition and Properties229
7.3.2 Condition Variables..232

7.4 RTEMS API for Shared-Memory IPC................................240
7.4.1 Classic API...240
7.4.2 POSIX API...251

7.5 Barriers ...268
7.5.1 General Defnition..268
7.5.2 Classic API...269
7.5.3 POSIX API...272

7.6 Events ...275
7.7 Summary...278

Chapter 8 IPC, Task Execution, and Scheduling ...279

8.1 Priority Inversion ..279
8.1.1 Mutual Exclusion and Priority Inversion280
8.1.2 The Priority Inheritance Protocol...........................283
8.1.3 The Priority Ceiling Protocol.................................286

8.2 Deadlock ...290
8.2.1 Defnition and Examples of Deadlock290
8.2.2 Deadlock in the Producers–Consumers Problems .294
8.2.3 Deadlock Prevention ..296
8.2.4 Deadlock Avoidance ..299
8.2.5 Deadlock Detection and Recovery.........................306

8.3 Summary...309

viii Contents

Chapter 9 IPC Based on Message Passing ...311

9.1 Unifed Synchronization and Data Exchange311
9.2 Message Passing Synchronization Models313
9.3 Direct and Indirect Naming ..318
9.4 RTEMS API for Message Passing321

9.4.1 Classic API...321
9.4.2 POSIX API...327

9.5 Summary...336

PART IV Network Communication

Chapter 10 Network Communication in RTEMS ..339

10.1 Internal Structure of the RTEMS Networking Code339
10.2 Protocol Stack Organization ...340
10.3 Main Data Structures ..343
10.4 RTEMS Port and Adaptation Layer....................................347

10.4.1 Mutual Exclusion and Sleep/Wakeup347
10.4.2 Software Interrupts and Network Daemon349
10.4.3 Timeout Emulation ..350
10.4.4 Device Driver Organization351

10.5 Summary...352

Chapter 11 POSIX Sockets API...353

11.1 Main Features ...353
11.2 Communication Endpoint Management354
11.3 Local Socket Address ...359
11.4 Connection Establishment ..361
11.5 Connectionless Sockets ..366
11.6 Data Transfer ..367
11.7 Socket Options..375
11.8 Non-Blocking I/O and Synchronous I/O Multiplexing383
11.9 Summary...391

PART V Multicores in Real-Time Embedded
Systems

Chapter 12 Multicores in Embedded Systems ...395

12.1 Motivation...395
12.2 Multiprocessors and Multicores ...397

12.2.1 Basics of Multicore Architectures397
12.2.2 Memory Consistency Models400

ix Contents

12.2.3 Cache Coherency ...409
12.2.4 Practical Implementation on ARM Processors418
12.2.5 Compiler-Level Instruction Reordering.................428

12.3 Software Challenges Introduced by Multicores431
12.3.1 Loss of the Critical Instant Theorem431
12.3.2 Dhall’s Effect ...434
12.3.3 Implicit Mutual Exclusion438

12.4 Summary...446

Chapter 13 Multicore Concurrency: Issues and Solutions447

13.1 Classes of Multicore Scheduling Algorithms447
13.2 Multicore Scheduling Algorithms in RTEMS449
13.3 Schedulers Confguration..452
13.4 Multicore Synchronization Devices....................................456

13.4.1 Multiprocessor Resource Sharing Protocol456
13.4.2 O(m) Independence-Preserving Protocol...............461

13.5 Lock-Free and Wait-Free Communication467
13.5.1 Basic Principles and Defnitions469
13.5.2 Lock-Free Multi-Word Counter Read....................470
13.5.3 Four-Slot Asynchronous Communication474
13.5.4 Universal Construction of Lock-Free Objects482

13.6 Spinlocks and Interrupt Handling Synchronization............491
13.7 Summary...496

References ...499

Index..507

http://taylorandfrancis.com

Preface
This book is the outcome of several decades of cumulated research, teaching, and
consultancy experience in the feld of real-time operating systems and communica-
tions applied to control systems and other classes of embedded applications, often
carried out in strict cooperation with industrial and academic partners. During this
time, we have been positively infuenced by many other people we came in con-
tact with. They are too numerous to mention individually, but we are nonetheless
indebted to them for their contribution to our knowledge and professional growth.

A special thank you also goes to our university students, who frst made use of the
lecture notes this book is based upon. The suggestions and remarks that we collected
along the years were helpful in making the book clearer and easier to read. We are
also thankful to CRC Press publishing, editorial, and marketing staff, Nora Konopka
and Prachi Mishra in particular. Without their valuable help, the book would have
probably never seen the light of day.

xi

http://taylorandfrancis.com

The Authors
Gedare Bloom earned his PhD in computer science from The George Washington
University, Washington, D.C., in 2013. He joined the Department of Computer Sci-
ence at University of Colorado Colorado Springs as Assistant Professor in 2019.
Previously, he was an Assistant Professor of Computer Science at Howard Univer-
sity from 2015–2019, Research Scientist at The George Washington University from
2014–2015, and Postdoctoral Fellow at The George Washington University from
2013–2014. His research expertise is computer system security with particular focus
on real-time embedded systems used in automotive, avionics, industrial control, and
critical infrastructure domains. The techniques he applies to solve problems along
the hardware-software interface range from computer architecture, computer secu-
rity, cryptography, operating systems, and real-time analysis. Prof. Bloom teaches
undergraduate and graduate courses in computer architecture, operating systems,
and system security. He brings novel content to these courses covering real-time
embedded systems and giving practical exercises for students to gain exposure to
the subtleties of working directly with hardware. He has received departmental and
university recognition for excellence in teaching.

Since 2011, Prof. Bloom has been a maintainer for the RTEMS open-source hard
real-time OS, which is used in robotics frameworks, unmanned vehicles, satellites
and space probes, automotive, defense, building automation, medical devices, indus-
trial controllers, and more. Some of his key contributions to RTEMS include the
frst 64-bit architectural port of RTEMS, design and implementation of a modern
thread scheduling infrastructure, support for running RTEMS as a paravirtualized
guest for avionics hypervisors, and implementation of POSIX services required for
conformance with the FACE avionics technical standard. Additionally, he mentors
and guides students around the world through learning about and developing with
RTEMS.

Dr. Bloom is active in service to the professional community. He is a Senior Mem-
ber of the ACM (M’09, SM’19) and a Senior Member of the IEEE (M’09, SM’19),
with membership in the SIGARCH, SIGOPS, SIGBED, SIGSAC, and SIGCSE spe-
cial interest groups of the ACM, and in the IEEE Computer Society and the IEEE
Computer Society Technical Committee on Real-Time Systems. He has served as a
program committee member, artifact evaluation committee member, and technical
referee for fagship conferences and journals in the area of real-time and embedded
systems.

Joel Sherrill earned his PhD in computer science from The University of
Alabama in Huntsville in 1999. He joined On-Line Applications Research Corpo-
ration in 1989 and is currently the Director of Research and Development. He is one
of the original developers of the free real-time operating system RTEMS and current

xiii

xiv The Authors

project lead. Dr. Sherrill has ported RTEMS to multiple processor architectures and
has been responsible for development of many RTEMS capabilities. He has also sup-
ported student activities through mentoring in programs such as the Google Summer
of Code (GSoC) and ESA Summer of Code in Space (SOCIS) since 2008. One of
his focuses with RTEMS is ensuring that RTEMS meets the stringent requirements
required when deploying software in critical systems while ensuring conformance to
open standards such as POSIX.

Since 2011, Dr. Sherrill has represented what is now the U.S. Army Com-
bat Capabilities Development Command Aviation & Missile Center on The Open
Group’s FACE Consortium. He is a principal author of the FACE Technical Standard
(https://www.opengroup.org/face) and multiple supporting documents. Additionally,
Dr. Sherrill designed and co-authored the Basic Avionics Lightweight Sample Ap-
plication (BALSA) examplar for the FACE Technical Standard. Dr. Sherrill led the
effort to integrate a paravirtualized RTEMS with the ARINC 653 RTOS Deos to cre-
ate the Deos+RTEMS product, which has achieved formal conformance to the FACE
Technical Standard.

Dr. Sherrill is a senior member of the ACM having joined in 1997 as well as a
senior member of the IEEE with membership since 1991. He has been a member
of the IEEE Computer Society since 2003, and a member of the IEEE Computer
Society Technical Committee on Real-Time Systems since 2011. He has served as
a program committee member and technical referee for professional conferences in
the area of real-time and embedded systems.

Tingting Hu earned her master’s degree in computer engineering in 2010 and PhD
with the best dissertation award in computer and control engineering in 2015 from
Politecnico di Torino, Turin, Italy. Between 2010 and 2016, she also worked as a re-
search fellow with the National Research Council of Italy (CNR), Turin, Italy. From
2017–2018, she worked as a post-doc researcher at the University of Luxembourg
with the Faculty of Science, Technology and Medicine. Since 2019, she works as
a research scientist in the University of Luxembourg with the Faculty of Science,
Technology and Medicine.

Her primary research interest concerns embedded systems design and implemen-
tation, spanning through topics such as real-time operating systems, industrial com-
munication protocols, formal verifcation, and fault-tolerance for safety-critical sys-
tems. Currently, she is focusing on the research of model driven engineering for
safety-critical, real-time embedded systems.

Her past research work led to the publication of research papers at the most promi-
nent journals and leading conferences in the area of real-time and embedded sys-
tems. She is the co-author of Embedded Software Development: The Open-Source
Approach published in 2015 with Taylor & Francis. In addition, she is one of the
four main inventors of the European patent, “Limitation of Bit Stuffng in a Commu-
nication Frame of an Electronic Signal” (EP2908475B1, 2019).

https://www.opengroup.org

xv The Authors

Since 2017, she has been actively involved in teaching activities for two bachelor’s
courses: Computer Infrastructure and Network and Communication, as well as one
master’s course: Dependable Systems.

She serves as program committee member and technical referee for several pri-
mary conferences in her research area. She also works as industrial consultant for
leading national industries in the provision of software design solutions for real-time
embedded systems in the domain of industrial ovens, building automation, and mo-
tion control.

Ivan Cibrario Bertolotti received his Laurea degree (summa cum laude) in com-
puter science from the University of Turin, Italy, in 1996. Since then, he has been
a researcher with the National Research Council of Italy (CNR). Currently, he is
with the Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomu-
nicazioni (IEIIT), Turin, Italy. His current research interests include real-time op-
erating system design and implementation, industrial communication systems, and
formal methods for software and protocol verifcation. Along the years, he published
more than 100 peer-reviewed articles on these subjects.

In the last two decades, he has also been active as an industrial consultant for the
software design of real-time embedded systems, as well as the evaluation and adop-
tion of open-source components in these kinds of applications, working with leading
international industries like STMicroelectronics and others. The application domains
range from mobile multimedia terminals to system software for set-top boxes, build-
ing automation, distributed control of industrial ovens and medical refrigerators, and
gravimetric dosing of plastics components.

From 2003–2011 and 2017–2019, Prof. Cibrario Bertolotti taught introductory
and advanced courses on real-time operating systems at Politecnico di Torino, Turin,
Italy. In the spring of 2009, he taught a real-time operating system course at the
Graduate School in Information Engineering’s PhD program, University of Padua,
Italy. He coauthored two books and several book chapters on the same topics, and
holds one Italian and three European/US patents.

Moreover, he has served as a program committee member and technical referee
for the main international conferences and journals related to factory automation,
factory communication systems, and industrial informatics. He has been a member
of the IEEE Computer Society since 1997 and a member of the IEEE since 2006.

http://taylorandfrancis.com

1 Introduction
Multicore processors are nowadays ubiquitous in desktop computing and are becom-
ing more and more popular in many other application domains, ranging from mobile
phones to hard real-time embedded systems. Yet, how to use them effectively with
the help of an embedded real-time operating system is still little known to many
practitioners. In the open-source arena, the matter is made even more complex due
to the lack of comprehensive learning material in the scientifc and technical litera-
ture. Thus, potential users easily run into the risk of misusing multicore processors,
or not considering their merits and pitfalls in the right perspective.

The goal of the book is to provide readers with hands-on knowledge about the
design and development cycle of a typical real-time application using the Real-Time
Executive for Multiprocessor Systems (RTEMS) operating system, which is a rep-
resentative and widely used Real-Time Operating System (RTOS) for embedded
systems. The narrative starts from basic ideas (for instance, how to use an open-
source toolchain) and then proceeds to discuss state-of-the-art concepts (like multi-
core scheduling and synchronization), which are in part still open to research.

Building on the extensive knowledge of leading RTEMS designers and devel-
opers, as well as academic researchers, the book aims at providing not only sound
theoretical information but also valuable practical advice with a thorough descrip-
tion of the RTEMS Application Programming Interfaces. The topics covered in the
book enable average readers to understand all aspects of the embedded software de-
velopment process and readily apply the acquired knowledge in their next project.
Moreover, fundamental theoretical concepts are introduced along the way, focusing
on their consequences on the above-mentioned practical topics, which makes this
book also good for graduate-level classroom use.

—

Part I of the book introduces the reader to embedded software development. First
of all, it describes the fundamental tools used to compile and link application soft-
ware and how the RTEMS operating system is confgured for use. Then, the discus-
sion continues with the basics of concurrent programming, real-time scheduling, and
scheduling analysis. The chapters in this part are:

• Chapter 2, Cross-Compilation Toolchain. This chapter frst describes the
main components of a GNU-based1 cross-compilation toolchain, focusing
in particular on the linker command language and on GNU make, a tool
commonly used to coordinate and automate the software build process. The
second part of the chapter discusses the compile-time confguration of the
RTEMS operating system.

1GNU stands for GNU’s Not Unix!

1

2 Real-Time Systems Development with RTEMS and Multicore Processors

• Chapter 3, Concurrent Programming and Scheduling Algorithms. The frst
main goal of this chapter is to lay out the theoretical foundations of con-
current programming. The discussion covers the all-important concept of
process, or task, and how task state is represented within an operating sys-
tem as it evolves over time. The second part of the chapter introduces the
reader to real-time scheduling methods and techniques on single-processor
systems, while the discussion of scheduling algorithms suitable for multi-
core systems is left to Part V.

• Chapter 4, Scheduling Analysis and Interrupt Handling. The main topic of
this chapter is scheduling analysis, a set of mathematical tools to predict
the worst-case timing behavior of a real-time system. The discussion starts
from a high-level view of the system, abstracted as a set of tasks, and then
shows how interrupt handling fts in the scheduling analysis framework. A
set of practical considerations on interrupt handling, using a popular mi-
croprocessor architecture as a reference, concludes the chapter and helps
illustrate how RTEMS implements some key activities, like context switch.

Part II discusses the concepts and mechanisms of task management and timekeep-
ing, along with the two Application Programming Interfaces (APIs) that give users
access to them. In particular:

• Chapter 5, Task Management and Timekeeping, Classic API. This chapter is
devoted to the RTEMS scheduling algorithms for single-core systems and
the facilities that RTEMS provides to manipulate tasks and account for the
passage of time through its Classic API. It also contains a comparison with
the POSIX standard API and a description of some lower-level aspects of
interrupt handling on single-core systems made accessible by the RTEMS
Interrupt Manager and often essential in embedded systems.

• Chapter 6, Task Management and Timekeeping, POSIX API. The chapter
contains an extensive description of the POSIX API for task management
and timekeeping. Special attention is given to the cancellation and sig-
nalling mechanisms, which do not have a direct counterpart in the Classic
API.

Part III discusses the all-important topic of lock-based task synchronization and
communication, as well as its interaction with scheduling and scheduling analysis.
The three chapters in this part also introduce the reader to the main synchronization
devices and message passing directives available in RTEMS through its Classic and
POSIX APIs.

• Chapter 7, Inter-Task Synchronization and Communication (IPC) Based
on Shared Memory. This chapter describes the fundamental concepts of
race condition, critical region, and lock-based mutual exclusion. It intro-
duces the reader to the classic inter-task synchronization and communica-
tion methods based on shared memory, namely, semaphores and monitors.

3 Introduction

Two more specialized synchronization devices, barriers and events, are also
included in the discussion due to their considerable practical interest.

• Chapter 8, IPC, Task Execution, and Scheduling. This chapter is devoted to
priority inversion and deadlock, two very important issues related to lock-
based synchronization and communication, which may impair the timings
of any real-time system if not appropriately solved. To this aim, the chapter
discusses several suitable design-time and runtime methods and techniques.

• Chapter 9, IPC Based on Message Passing. This chapter introduces readers
to message passing, an IPC mechanism that does not rely on shared mem-
ory for data transfer, thus paving the way to a unifed IPC technique that is
also suitable for distributed systems in which multiple independent nodes
are connected by a communication network. As in the rest of the book,
theoretical concepts are presented together with their RTEMS implementa-
tion.

Part IV describes how RTEMS provides full-fedged TCP/IP network communi-
cation, which is becoming an ubiquitous requirement in modern embedded systems.
It is composed of two chapters:

• Chapter 10, Network Communication in RTEMS. This chapter describes the
internal structure of the RTEMS networking code and highlights the most
important aspects of operating system / protocol stack integration, such as
synchronization and the device driver interface.

• Chapter 11, POSIX Sockets API. This chapter complements the previous
one and discusses in detail how users can access the RTEMS networking
code in an operating system and protocol-independent way, by means of
the standard POSIX Sockets API.

Part V concludes the book. Its two chapters describe the issues brought by multi-
core embedded processors and how RTEMS supports them:

• Chapter 12, Multicores in Embedded Systems. The chapter outlines the mo-
tivation behind the widespread diffusion of multicore processors for em-
bedded systems and provides an overview of their architecture. Then, it
summarizes the challenges introduced by multicores in software devel-
opment for embedded systems, focusing on the areas of task scheduling,
schedulability algorithms and analysis, and proper inter-task communica-
tion and synchronization.

• Chapter 13, Multicore Concurrency: Issues and Solutions. The chapter
summarizes the most common scheduling algorithms and synchronization
devices for real-time multicore systems and illustrates how they are sup-
ported in RTEMS. The second part of the chapter provides information
about lock-free and wait-free synchronization, which is often a valid alter-
native to lock-based synchronization described in Part III, as well as the
use of spinlocks for task/interrupt handler synchronization.

http://taylorandfrancis.com

Part I

Operating System Basics

http://taylorandfrancis.com

2 Cross-Compilation
Toolchain

CONTENTS

2.1 From Source Code to the Executable Image ...7
2.1.1 The Compiler Driver...10
2.1.2 The Preprocessor ..12
2.1.3 The Linker ..16

2.2 Linker Scripts ..19
2.2.1 Input and Output Sequences ...20
2.2.2 Memory Layout ..24
2.2.3 Linker Symbols...26
2.2.4 Section and Memory Mapping ...28

2.3 GNU Make and Makefles...31
2.3.1 Explicit Rules..32
2.3.2 Variables ...33
2.3.3 Pattern Rules and Automatic Variables ..36
2.3.4 Directives and Functions ..38

2.4 Basic Description of RTEMS and its Confguration System...........................40
2.4.1 RTEMS Compile-Time Confguration..41
2.4.2 Application Compile-Time Confguration..41

2.5 Summary..43

This chapter explains the general compilation approach adopted in embedded sys-
tems and then introduces the main components of a GNU-based toolchain. Among
them, special attention is given to the linker command language used to write linker
scripts and to GNU make, which is one of the most widespread tools for coordinat-
ing and automating the software build process. A short discussion of the RTEMS
confguration system concludes the chapter.

2.1 FROM SOURCE CODE TO THE EXECUTABLE IMAGE
Unlike general-purpose systems, where code is compiled, built, and executed on the
same machine, development for embedded systems usually requires the availabil-
ity of a cross-compilation toolchain. It compiles and builds the source code on a host
machine where the cross-compilation toolchain runs. Instead, the compiled code will
execute on a target machine, in this case an embedded device. This is due to the

7

8 Real-Time Systems Development with RTEMS and Multicore Processors

C sources
*.c

C headers
*.h

Linker
ld

Exec. File
a.out

GNU make
make

Compiler
gcc

Librarian
(Archiver)

ar

ASM
sources
*.s

Assembler
as

Object
Files
*.o

Startup
code

crt*.o

Compiler
 support
*.a

C libraries
*.a

Linker
Scripts
.x

Libraries
*.a

FIGURE 2.1 Simplifed view of the C-language toolchain workfow.

resource limits on embedded devices, for instance, memory capacity and processor
speed. Even when embedded boards are shipped with a pre-installed general-purpose
operating system such as Linux, which consequently enables support for native com-
pilation, these setups are generally not meant for real-time execution purpose.

Figure 2.1 demonstrates the compilation process, which translates source code
into an executable image, using the GCC-based cross-compilation toolchain. As
shown in the fgure, a cross-compilation toolchain usually consists of the following
components:

• The GCC Compiler. It translates a C/C++ source fle, which in turn may
include other headers or source fles, and produces an object module in bi-
nary format. This generally involves a multi-step code generation process,
which is better detailed in Section 2.1.1. Although it is generally called “the
compiler”, the gcc program is actually a compiler driver, able to perform
different actions by invoking other toolchain components appropriately, de-
pending on the input fle type usually derived from its flename extension.
The compiler driver behavior can be customized by means of command-
line options. Depending on the target architecture, different options may

9 Cross-Compilation Toolchain

be provided, to drive the compilation for that specifc architecture. For in-
stance, the -march option can be used to indicate the specifc architecture
belonging to the ARM family, such as armv8-a for the ARMv8-A archite-
cure [14], or armv7-a for the ARMv7-A. The actions to be performed by
gcc are further confgured by means of a specs string or fle. Both the
compiler driver itself and its specs string are discussed in more detail in
Section 2.1.1.

• The librarian—whose command name is ar because it was called
archivier in the past—collects multiple object modules into a library. The
same tool can also performs several other maintenance operations on a li-
brary. For instance, it is able to extract or delete a module from it.
Other tools, like nm and objdump, perform more specialized operations re-
lated to object module and executable image contents and symbols. These
tools will not be discussed further in the following due to space limitations.
Interested readers may refer to their documentation [96] for more informa-
tion.

• The linker ld, presented in Section 2.1.3, links object modules together and
against libraries guided by command-line options or, more commonly, by
one or more linker scripts. It resolves cross references to eventually build
an executable image. Especially in embedded systems, the linking phase
usually brings the application plus a variety of system code together into
the executable image.

• There are several categories of system code used at link time:
• The startup object fles—usually called crt*.o—contain code that is

executed frst, when the executable image starts up. In standalone ex-
ecutable images, they also include system and hardware initialization
code, often called bootstrap code.

• The compiler support library libgcc.a contains utility functions
needed by the code generator, but too big/complex to be instantiated
inline. For instance, integer multiply/divide or foating-point operations
on processors without hardware support for them.

• The standard C libraries, libc.a and libm.a.
• Possibly, the operating system itself. This is the case of most real-time

operating systems and also RTEMS belongs to this category.

Another important component typically present in a toolchain belongs to a cate-
gory by itself because it does not directly operate on source or object fles, or exe-
cutable images, but is responsible for coordinating and automating the software build
process as a whole. One of the most widespread tools of this kind is the open-source
GNU make program. In Figure 2.1, it is shown as a gray background that encom-
passes the other toolchain components and will be the subject of Section 2.3.

Building a toolchain is a complex affair, frst of all due to its sheer size and com-
plexity, but also because the toolchain components are themselves written in a high-
level language and distributed as source code. For instance, the GNU compiler driver

10 Real-Time Systems Development with RTEMS and Multicore Processors

for the C/C++ programming languages is itself written in C/C++, and hence, a work-
ing C/C++ compiler is required in order to build it. There are several different ways
to solve this “chicken and egg” problem, often called bootstrap problem, depending
on the kind of compiler to be built.

As said previously, the kind of toolchain most frequently used in embedded soft-
ware development is the cross-compilation toolchain. This kind of toolchain gener-
ates code for a certain architecture (the target), but runs on a different architecture
(the development system, or host). This is because, due to limitations concerning
their memory capacity and processor speed, embedded systems often cannot com-
pile their own code.

The bootstrap problem becomes somewhat simpler in this case, because it is possi-
ble to use a native toolchain on the host to build the cross-compilation toolchain. The
availability of a native toolchain is usually not an issue because most open-source op-
erating system distributions already provide one ready-to-use. When using RTEMS,
the process is further streamlined by the availability of a comprehensive tool, called
RTEMS Source Builder (RSB) [106], able to build a complete open-source cross-
compilation toolchain from source code in a fully automatic way.

To distinguish cross-compilation toolchain components from their native
toolchain counterparts, their names are prefxed with a string that summarizes their
target architecture. For instance, the C compiler driver for the ARM architecture and
RTEMS operating system version 4.11 could be called arm-rtems4.11-gcc in-
stead of simply gcc. In the following, we will keep using the short names for brevity.

2.1.1 THE COMPILER DRIVER

Figure 2.2 depicts the general outline of the compiler driver workfow. According to
the high-level view given in the previous section, when the compiler driver is used to
compile a C source fle, in theory it should perform the following steps, by invoking
a toolchain component for each of them:

1. Preprocess the source code with the C preprocessor cpp.
2. Compile the source code into assembly code, by means of the C compiler cc1.
3. Assemble it with the assembler as to produce the output object fle.

The internal structure of the gcc compiler deserves a whole book by itself due to
its complexity. Interested reader may refer to [121] for a comprehensive guide and to
the offcial documentation for an authoritative description of the user-visible features
of the compiler [118], as well as its internals [117]. In the following, we will focus
only on some peculiarities of the gcc-based toolchain that deviate from the abstract
view just presented, as well as on how the compiler driver itself works.

First of all, as shown in the fgure, the preprocessor is integrated in the C com-
piler implemented by cc1. The C++ compiler cc1plus also uses the same ap-
proach. A standalone preprocessor cpp does exist, but it is not used during nor-
mal compilation. In any case, the behavior of the standalone preprocessor and the
one implemented in the compiler is consistent because both make use of the same

11 Cross-Compilation Toolchain

C sources
*.c

C headers
*.h

Assembler
as

Object
Files
*.o

Specs
string/file

Compiler driver
gcc -c

C preprocessor
cpp

C sources
*.c

C compiler
cc1

cpplib

ASM
sources
*.s

FIGURE 2.2 Simplifed view of the compiler driver workfow.

preprocessing library, cpplib, which can also be used directly by application pro-
grams as a general-purpose macro expansion tool.

On the contrary, the assembler is implemented as a separate program, as, which
is not part of the gcc distribution. Instead, it is distributed as part of the binary util-
ities package [96], which also includes the linker. The assembler will not be further
discussed in this book due to space constraints.

One peculiar aspect of the gcc-based toolchain is that the compiler driver is pro-
grammable. Namely, it is driven by a set of rules contained in a “specs” string or
fle. The specs string can be used to customize the behavior of the compiler driver. It
ensures that the compiler driver is as fexible as possible within its design envelope.

In the following, we will only provide an overview of the expressive power that
specs strings have, and illustrate what can be accomplished with their help, by means
of a couple of examples. A thorough documentation of specs string syntax and usage
can be found in [117]. Basically, the rules contained in a specs string specify which
sequence of programs the compiler driver should run, and their arguments, depending
on the kind of fle provided as input. A default specs string is built in the compiler
driver itself and is used when no custom specs string is provided elsewhere.

The sequence of steps to be taken in order to compile a fle can be specifed de-
pending on the suffx of the fle itself. Other rules associated with some command-line
options may change the arguments passed by the driver to the programs it invokes.

*link: %{mbig-endian:-EB}

For example, the specs string fragment listed above specifes that if the command-
line option -mbig-endian is given to the compiler driver, then the linker must

12 Real-Time Systems Development with RTEMS and Multicore Processors

be invoked with the -EB option. The intended effect of the rule is that, when the
compiler driver is given the option to target a processor confgured for big-endian
operations, it must pass this information to all the programs it invokes, the linker in
this example, to make sure they all work consistently. As also shown by this example,
since different programs were designed and written by different groups of people at
different times, it is possible (and common) that conceptually analogous options are
spelled out in different ways.

Let us now consider another specs string fragment:

*startfile: crti%O%s crtbegin%O%s new_crt0%O%s

In this case, the specs string specifes which object fles should be uncondition-
ally included at the start of the link. The list of object fles is held in the startfile
variable, mentioned in the left-hand part of the string, while the list itself is in the
right-hand part, after the colon (:). It is sometimes useful to modify the default set
of objects in order to add language-dependent or operating system-dependent fles
without forcing programmers to mention them explicitly whenever they link an exe-
cutable image. More specifcally, in this simple example:

• The *startfile: specifcation overrides the internal specs variable
startfile and gives it a new value.

• crti%O%s and crtbegin%O%s are the standard initialization object fles
typical of C language programs. Within these strings %O represents the de-
fault object fle suffx (by default, it is expanded to .o on Linux-based
hosts) and %s specifes that the object fle is a system fle and shall be
searched for in the system search path rather than in user-defned directo-
ries. The use of %O, %s, and other similar directives makes a specs string
portable across host operating systems with different fle naming conven-
tions and allows the compiler to be installed in different places of the
flesystem without affecting the user in any way.

• new_crt0%O%s replaces crt0%O%s (one of the standard initialization
fles of the C compiler) to provide, for instance, operating-system, lan-
guage, or machine-specifc initialization functions.

2.1.2 THE PREPROCESSOR

The preprocessor, called cpp in a GNU-based toolchain, performs three main ac-
tivities that, at least conceptually, take place before the source code is passed to the
compiler proper. They are:

1. File inclusion, invoked by the #include directive.
2. Macro defnition, by means of the #define directive, and expansion.
3. Conditional inclusion/exclusion of part of the input fle from the compilation pro-

cess, depending on whether some macros are defned or not (for instance, when
the #ifdef or #ifndef directives are used) and their value (#if directive).

Check
input
token

Build cpp
statement

and obey it

Macro
expansion

Bypass

TokenizerInput files

cpp keyword

Macro invocation

Unknown token

To the compiler

#include statements switch
cpp to a different input file

FIGURE 2.3 Simplifed C-language preprocessor workfow.

According to the C language specifcation [71], the preprocessor works by plain-
text substitution. However, since the preprocessor and the compiler grammar are the
same at the lexical (token) level, in a GCC-based toolchain the preprocessor also per-
forms tokenization of input fles as an optimization. Hence, it provides a stream of
tokens instead of plaintext to the compiler.

A token [3] is a data structure that, besides the token text (a sequence of char-
acters), also contains information about its nature (for instance, whether the token
represents a number, a keyword, or an identifer) and debugging information (the
fle and line number it was read from). Therefore, a token conveys additional infor-
mation with respect to the portion of plaintext it corresponds to. This information
is needed by the compiler anyway to further process its input, and hence, passing
tokens instead of plaintext avoids duplicated processing.

Figure 2.3 contains a simplifed view of the preprocessor workfow. Informally
speaking, as it divides the input fle into tokens, the preprocessor checks all of them
and carries out one of three possible actions.

1. When the input token is a preprocessor keyword, like #define or #include,
the preprocessor analyzes the tokens that follow it to build a complete statement
and then obeys it.
For example, after #define, it looks for a macro name followed by the (optional)
macro body. When the macro defnition statement is complete, the preprocessor
records the association name → body in a table for future use.
In this case, neither the preprocessor keyword nor the following tokens (the macro
name and body in this example) are forwarded to the compiler. The macro body
will become visible to the compiler only if the macro will be expanded later.
The name → body table is initialized when preprocessing starts and discarded
when it ends. As a consequence, macro defnitions are not kept across multiple
compilation units. However, the table is not empty at the very beginning of a
compilation because the preprocessor itself pre-defnes a number of macros.

Cross-Compilation Toolchain 13

14 Real-Time Systems Development with RTEMS and Multicore Processors

2. When a macro is invoked, the preprocessor performs macro expansion. In the
simplest case—that is, for object-like macros—macro expansion is triggered by
encountering a macro name in the source code.
The macro is expanded by replacing its name with its body. Then, the result of the
expansion is examined again to check whether or not further macro expansions
can be done. When no further macro expansions can be done, the sequence of
tokens obtained by the preprocessor is forwarded to the compiler instead of the
tokens that triggered macro expansion.

3. Tokens unknown to the preprocessor are simply passed to the compiler without
modifcation. Since the preprocessor and compiler grammars are very different at
the syntactical level, many kinds of token known to the compiler have no meaning
to the preprocessor, even though the latter is perfectly able to build the token itself
at the lexical level.
For instance, it is obvious that type defnitions are extremely important to the
compiler, but they are completely transparent to the preprocessor.

The syntax of preprocessor statements is fairly simple. They always start with a
sharp character (#) in column one. Spaces are allowed between # and the rest of the
statement. The main categories of statement are:

• Macro defnition: #define.
• File inclusion: #include.
• Conditional compilation: #ifdef, #ifndef, #if, #else, #elif, and

#endif.
• Other, for instance: #warning and #error.

In the following, we will mainly focus on the macro defnition and expansion pro-
cess. Interested readers can refer to the full preprocessor documentation that comes
with the gcc compiler [118] for further information about the other categories.

There are two kinds of macros: object-like and function-like macros. Object-like
macros are the simplest and their handling by the preprocessor can be summarized
in two main points:

• The name of the macro is replaced by its body when it is encountered in the
source fle. The result is reexamined after expansion to check whether or
not other macros are involved. If this is the case, they are expanded as well.
The process ends when no further macro expansions can be performed.

• Macro expansion does not take place when a macro is defned, but only
when the macro is used. Hence, it is possible to have forward references to
other macros within macro defnitions.

For example, it is possible to defne two macros, A and B, as follows:

#define B A+3
#define A 12

15 Cross-Compilation Toolchain

The defnition of macro B does not produce any error although A has not been
defned yet, because B’s body is not expanded at the time of its defnition. When B is
encountered in the source fle, after the previously listed defnitions, it is expanded
as: B → A+3 → 12+3. Since no other macro names are present, macro expansion
ends at this point and the three tokens 12, +, and 3 are forwarded to the compiler.

Due to the way of communication between the preprocessor and the compiler,
explained previously and outlined in Figure 2.3, the compiler does not know how to-
kens are obtained. Namely, it cannot distinguish between tokens coming from macro
expansion and tokens taken directly from the source fle. As a consequence, if B is
used within a more complex expression, the compiler might get confused and inter-
pret the expression in a counter-intuitive way.

Continuing the previous example, the expression B*5 is expanded by the pre-
processor as B*5 → A+3*5 → 12+3*5. When the compiler parses the result, the
evaluation of 3*5 is performed before +, due to the precedence rules of arithmetic
operators, although this is probably not the behavior the programmer expects.

To solve this problem, it is often useful to put additional parentheses around macro
bodies, as is shown in the following fragment of code:

#define B (A+3)
#define A 12

In this way, when B is invoked, it is expanded as B → (A+3) → (12+3) and the
expression B*5 is seen by the compiler as (12+3)*5. In other words, the additional
pair of parentheses coming from the expansion of macro B explicitly establishes
the boundaries of macro expansion and overrides the arithmetic operator precedence
rules.

The second kind of macro is represented by function-like macros. The main dif-
ferences with respect to object-like macros can be summarized as follows:

• Function-like macros have a list of parameters, enclosed between paren-
theses (), after the macro name in their defnition.

• Accordingly, they must be invoked by using the macro name followed by a
list of arguments, also enclosed between ().

To illustrate how function-like macro expansion takes place, let us consider the
following fragment of code as an example:

#define F(x, y) x*y*K
#define K 7
#define Z 3

When a function-like macro is invoked, its arguments are completely macro-
expanded frst. Therefore, for instance, the frst step in the expansion of F(Z, 6) is:
F(Z, 6) → F(3, 6).

Then, the parameters in the macro body are replaced by the corresponding, ex-
panded arguments. Continuing our example:

• parameter x is replaced by argument 3, and

16 Real-Time Systems Development with RTEMS and Multicore Processors

• y is replaced by 6.

After the replacement, the body of the macro becomes 3*6*K. At this point, the
modifed body replaces the function-like macro invocation. Therefore, F(3, 6) →
3*6*K.

The fnal step in function-like macro expansion consists of re-examining the re-
sult and check whether or not other macros (either object-like or function-like) can
be expanded. In our example, the result of macro expansion obtained so far still con-
tains the object-like macro name K and the preprocessor expands it according to its
defnition: 3*6*K → 3*6*7.

To summarize, the complete process of macro expansion when the function-like
macro F(Z, 6) is invoked is

F(Z, 6) → F(3, 6) (argument expansion)
→ 3*6*K (parameter substitution in the macro body)
→ 3*6*7 (expansion of the result)

As already remarked previously about object-like macros, parentheses may be
useful around parameters in function-like macro bodies, too, for the same reason.
For instance, the expansion of F(Z, 6+9) proceeds as shown below and clearly
produces a counter-intuitive result, if we would like to consider F to be akin to a
mathematical function.

F(Z, 6+9) → F(3, 6+9) (argument expansion)
→ 3*6+9*K (parameter substitution in the macro body)
→ 3*6+9*7 (expansion of the result)

It is possible to work around this problem by defning F(x, y) as
(x)*(y)*(K). In this way, the fnal result of the expansion is:

F(Z, 6+9) → · · · → (3)*(6+9)*(7)

as intended.

2.1.3 THE LINKER

The main purpose of the linker, fully described in [34], is to combine a number
of object fles and libraries to build an executable image. In order to do this, the
linker resolves inter-module symbol references, also by pulling object modules from
libraries as required, and relocates code and data.

As explained previously, in a GNU toolchain the linker may be invoked directly as
ld when performing a native compilation or <cross>-ld, where <cross> is the
prefx denoting the target architecture, when cross-compiling. However, as described
in Section 2.1.1, it is more often the compiler driver <cross>-gcc that automat-
ically calls the linker as required. In both cases, the linking process is driven by a
linker script written in the Link Editor Command Language.

17 Cross-Compilation Toolchain

Before describing in a more detailed way how the linker works, let us briefy re-
view a couple of general linker options that are often useful, especially for embedded
software development.

• The option -Map=<file> writes a link map to <file>. When the ad-
ditional --cref option is given, the map also includes a cross reference
table. Even though no further information about it will be given here, due
to lack of space, the link map contains a signifcant amount of information
about the outcome of the linking process. Interested readers may refer to
the linker documentation [34] for more details about it.

• The option --oformat=<format> sets the format of the output fle,
among those recognized by ld. Being able to precisely control the out-
put format helps to upload the executable image into the target platform
successfully because upload tools often work only with a limited set of fle
formats. Reference [34] contains the full list of supported output formats,
depending on the target architecture and linker confguration.

• The options --strip and --strip-debug remove symbolic informa-
tion from the output fle, leaving only the executable code and data. This
step is sometimes required for executable image upload tools to work cor-
rectly because they might not properly handle any extra information present
in the image. Symbolic information is mainly used to store debugging data
in the executable image, for instance, the mapping between source code
line numbers and machine code. For this reason, uploading this informa-
tion into the target memory is useless in most cases, unless a debugger runs
on the target itself.

When ld is invoked through the compiler driver, linker options must be pre-
ceded by the escape sequence -Wl to distinguish them from options directed to the
compiler driver itself. A comma is used to separate the escape sequence from the
string to be forwarded to the linker and no intervening spaces are allowed. For in-
stance, gcc -Wl,-Map=f.map -o f f.c compiles and links f.c, and gives the
-Map=f.map option to the linker.

As a last introductory step, it is also important to informally recall the main differ-
ences between object modules, libraries, and executable images as far as the linker
is concerned. These differences, outlined below, will be further explained and high-
lighted in the following sections.

• Object fles are unconditionally included in the fnal executable image. In-
stead, the object modules found in libraries, often called library modules,
are used only on demand. More specifcally, library modules are included
by the linker only if they are needed to resolve pending symbol references.

• A library is simply a collection of unmodifed object modules put together
into a single fle by the archiver or librarian ar.

• An executable image is formed by binding together object modules, either
standalone or from libraries. However, it is not simply a collection, like a

18 Real-Time Systems Development with RTEMS and Multicore Processors

library is, because the linker performs a signifcant amount of work in the
process.

Most linker activities revolve around symbol manipulation. Informally speaking,
a symbol is a convenient way to refer to the address of an object in memory in an
abstract way (by means of a human-readable name instead of a number) and even
before its exact location in memory is known.

The use of symbols is especially useful to the compiler during code generation.
For example, when the compiler generates code for a backward jump at the end of a
loop, two cases are possible:

1. If the processor supports relative jumps—that is, a jump in which the target ad-
dress is calculated as the sum of the current program counter plus an offset stored
in the jump instruction—the compiler may be able to generate the code com-
pletely and automatically by itself because it knows the “distance” between the
jump instruction and its target. The linker is not involved in this case.

2. If the processor only supports absolute jumps—that is, a jump in which the target
address is directly specifed in the jump instruction—the compiler must leave a
“blank” in the generated code. At most, the compiler may know the relative target
address with respect to the beginning of the object code it is generating, but it
does not know the fnal, absolute address where the code will eventually end up
in memory. As will be better explained in the following, this blank will be flled
by the linker when it performs symbol resolution and relocation.

Another intuitive example, regarding data instead of code addresses, is repre-
sented by global variables accessed by means of an extern declaration. Also in
this case, the compiler needs to refer to the variable by name—that is, through a
symbol—when it generates code, because it does not know its memory address at
all. Like before, the code that the compiler generates will be incomplete because
it will include “blanks,” in which symbols are present in place of actual memory
addresses.

On the one hand, when the linker collects object fles in order to produce the
executable image, it becomes possible to associate symbol defnitions with the cor-
responding references, by means of a name-matching process known as symbol reso-
lution or (according to an older nomenclature) snapping. On the other hand, symbol
values (to continue our examples, addresses of variables, and the exact address of
machine instructions) become known when the linker relocates object contents in
order to lay them out into memory. Only at this point can the linker “fll the blanks”
left by the compiler.

As an example of how symbol resolution takes place for data, let us consider the
two extremely simple source fles listed in Figure 2.4. In this case, symbol resolution
proceeds as follows:

• When the compiler generates code for f() it does not know where (and if)
variable i is defned. Therefore, in f.o the address of i is left blank, to be
flled by the linker.

19 Cross-Compilation Toolchain

File f.c File g.c

extern int i; int i;

void
i

}

f(void) {
= 7;

FIGURE 2.4 A simple example of symbol resolution.

• This is because the compiler works on exactly one compilation unit at a
time, defned as the set of source and header fles directly or indirectly
included by means of #include statements by each individual top-level
source fle passed to the compiler.

• Therefore, when the compiler is working on f.c it does not consider g.c
in any way, even though both fles appear together on the command line.

• During symbol resolution, the linker observes that i is defned in g.o and
associates the defnition with the reference made in f.o.

• After the linker relocates the contents of g.o, the address of i becomes
known and can eventually be used to complete the code in f.o.

It is also useful to remark that initialized data need a special treatment when the
initial values must be in non-volatile memory. In this case, the linker must cooperate
with the startup code (by providing memory layout information) so that those data
can be initialized correctly when the application starts up. Further information on
this point will be given in Section 2.2.2.

2.2 LINKER SCRIPTS
As mentioned previously, the linking process is driven by a set of commands, spec-
ifed in a linker script. A linker script can be divided into three main parts, to be
described in the following sections. Together, these three parts fully determine the
overall behavior of the linker, because:

1. The input and output part picks the input fles (object fles and libraries) that the
linker must consider and directs the linker output where desired.

2. The memory layout part describes the position and size of all memory areas avail-
able on the target system (also called banks), that is, the space the linker can use
to lay out the executable image.

3. The section and memory mapping part specifes how input fles contents, divided
and organized into sections, must be mapped and relocated into memory banks.

If necessary, the linker script can be split into multiple fles that are then bound
together by means of the INCLUDE <filename> directive. The directive takes a
fle name as argument and directs the linker to include that fle “as if” its contents

20 Real-Time Systems Development with RTEMS and Multicore Processors

appeared in place of the directive itself. The linker supports nested inclusion, and
hence, INCLUDE directives can appear both in the main linker script and in an in-
cluded script.

This is especially useful when the linker script becomes complex or it is conve-
nient to divide it into parts for other reasons, for instance, to distinguish between
architecture or language-dependent parts and general parts.

2.2.1 INPUT AND OUTPUT SEQUENCES

Input and output linker script commands specify:

• Which input fles the linker will operate on, either object fles or libraries.
This is done by means of one or more INPUT() commands, which take
input fle names as arguments.

• The sequence in which they will be scanned by the linker, to perform sym-
bol resolution and relocation. The sequence is implicitly established by the
order in which input commands appear in the script and by the left-to-right
order of their arguments.

• The special ways in which a specifc fle or group of fles will be handled.
For instance, the STARTUP() command labels a fle as being a startup fle
rather than a normal object fle.

• Where to look for libraries, when just the library name is given. This is
accomplished by specifying one or more search paths by means of the
SEARCH_DIR() command.

• Where the output—namely, the fle that contains the executable image—
will go, through the OUTPUT() command.

Most of these commands have a command-line counterpart that, sometimes, is
more commonly used. For instance, the -o command-line option acts the same as
OUTPUT() and mentioning an object fle name on the linker command line has the
same effect as putting it in an INPUT() linker script command. In general, the order
between fles given on the command line and the ones specifed in a linker script de-
pends on where the linker script is mentioned on the command line, although special
linker script commands exist to override the default.

The entry point of the executable image—that is, the instruction that shall be
executed frst—can be set by means of the ENTRY(<symbol>) command in the
linker script, where <symbol> is a symbol. However, it is important to remark that
the only direct effect of ENTRY is to keep a record of the desired entry point in the
executable image itself. Then, it is the program that loads the executable image into
memory, often called the loader in linker’s terminology, which is responsible to obey
the request.

When no loader is used—that is, the executable image is uploaded by means of
an upload tool residing on the development host, and then runs on the target’s “bare
metal”—the entry point is usually defned by hardware. For example, most proces-
sors start execution from a location indicated by their reset vector upon powerup.
Any entry point set in the executable image is ignored in this case.

21 Cross-Compilation Toolchain

All together, the input linker script commands eventually determine the linker
input sequence. Let us now focus on a short fragment of a linker script that contains
several input commands and describe how the input sequence is built from them.

INPUT(a.o, b.o, c.o)
INPUT(d.o, e.o)
INPUT(libf.a)

Normally, the linker scans input fles once and in the order established by the
input sequence, which is defned by:

• The left-to-right order in which fles appear within the INPUT() command.
In this case, b.o follows a.o in the input sequence and e.o follows d.o.

• If there are multiple INPUT() commands in the linker script, they are con-
sidered in the same sequence as they appear in the script.

Therefore, in our example the linker scans the fles in the order: a.o, b.o, c.o,
d.o, e.o, and libf.a. As mentioned previously, object fles and libraries can also
be specifed on the linker command line. In this case:

• The command line may also include an option (-T) to refer to the linker
script.

• The input fles specifed on the command line are combined with those
mentioned in the linker script depending on where the linker script has
been referenced.

For instance, if the command line is gcc ... a.o -Tscript b.o and the
linker script script contains the command INPUT(c.o, d.o), then the input
sequence is: a.o, c.o, d.o, and b.o.

As mentioned previously the startup fle is a special object fle because it often
contains low-level hardware initialization code and sets up the execution environ-
ment for application code. As a consequence, its position in memory with respect to
other object modules may be constrained by the hardware startup procedure.

The STARTUP(<file>) command forces <file> to be the very frst object fle
in the input sequence, regardless of where the command appears. For example, the
linker script fragment:

INPUT(a.o, b.o)
STARTUP(s.o)

leads to the input sequence s.o, a.o, and b.o, although s.o is mentioned last.
Let us now describe how the linker transforms the input sequence into the out-

put sequence of object modules that will eventually be used to build the executable
image. We will do this by means of an example, with the help of Figure 2.5. In our
example, the input sequence is composed of an object fle g.o followed by two li-
braries, liba.a and libb.a, in this order. They are listed at the top of the fgure,
from left to right. For clarity, libraries are depicted as lighter gray rectangles, while

22 Real-Time Systems Development with RTEMS and Multicore Processors

g.o

g() {

 a();

}

liba.a
a.o

a() {

 b();

}

f.o

f() {

 ...

}

libb.a
c.o

c() {

 f();

}

b.o

b() {

 c();

}

Input sequence

Output

1 2 3

FIGURE 2.5 Linker’s handling of object fles and libraries.

object fles correspond to darker gray rectangles. In turn, object fles contain function
defnitions and references, as is also shown in the fgure.

The construction of the output sequence proceeds as follows:

• Object module g.o is unconditionally placed in the output sequence. In
the fgure, this action is represented as a downward-pointing arrow. As a
consequence the symbol a, which is referenced in the body of function
g(), becomes undefned at point ¬.

• When the linker scans liba.a, it fnds a defnition of a in module a.o
and resolves it by placing a.o into the output. This makes b undefned at
point ­, because the body of a contains a reference to b.

• Since only a is undefned at the moment, only module a.o is put in the out-
put. More specifcally, module f.o is not, because the linker is not aware
of any undefned symbols related to it.

• When the linker scans libb.a, it fnds a defnition of b and places module
b.o in the output. In turn, c becomes undefned. Since c is defned in c.o,
that is, another module within the same library, the linker places this object
module in the output, too.

• Module c.o contains a reference to f, and hence, f becomes undefned.
Since the linker scans the input sequence only once, it is unable to refer
back to liba.a at this point. Even though liba.a defnes f, the linker
cannot consider this defnition. At point ® f is still undefned.

In other words, the linker implicitly handles libraries as sets. Namely, the linker
picks up object modules from a library on demand, and places them into the output. If
this action introduces additional undefned symbols, the linker looks into the library
again, until no more references can be resolved. At this time, the linker moves to the
next object fle or library.

As also shown in the example, this default way of scanning the input sequence is
problematic when libraries contain circular cross references. More specifcally, we
say that a certain library A contains a circular cross-reference to library B when one of

23 Cross-Compilation Toolchain

g.o

g() {

 a();

}

s.o
a() {

 b();

}
f() {

 ...

}

t.o
b() {

 c();

}
c() {

 f();

}

Output

Input sequence

1 2 3

FIGURE 2.6 Object fles versus libraries at link time.

A’s object modules contains a reference to one of B’s modules and, symmetrically,
one of B’s modules contains a reference back to one module of library A. More
complex circular references are possible, too, involving more than two libraries.

When this occurs, regardless of the order in which libraries A and B appear in the
input sequence, it is always possible that the linker is unable to resolve a reference
to a symbol, even though one of the libraries indeed contains a defnition for it. This
is what happens in the example for symbol f.

In order to solve the problem, it is possible to group libraries together. This is done
by means of the command GROUP(), which takes a list of libraries as argument.
For example, the command GROUP(liba.a, libb.a) groups together libraries
liba.a and libb.a and instructs the linker to handle both of them as a single set.

Going back to the example, the effect of GROUP(liba.a, libb.a) is that it
directs the linker to look back into the set, fnd the defnition of f, and place module
f.o in the output.

It is possible to mix GROUP() and INPUT() within the input sequence to trans-
form just part of it into a set. For example, given the following input sequence:

INPUT(a.o, b.o)
GROUP(liba.a, libb.a)
INPUT(libc.a)

the linker will frst examine a.o, and then b.o. Afterwards, it will handle liba.a
and libb.a as a single set. Last, it will handle libc.a on its own.

As will become clearer in the following, the use of GROUP() makes sense only
for libraries, because object fles are handled in a different way in the frst place.
Figure 2.6 further illustrates the differences. In particular, the input sequence shown
in Figure 2.6 is identical to the one previously considered in Figure 2.5, with the only
exception that libraries have been replaced by object modules. The input sequence
of Figure 2.6 is processed as follows:

• Object module g.o is placed in the output and symbol a becomes unde-
fned at point ¬.

24 Real-Time Systems Development with RTEMS and Multicore Processors

• When the linker scans s.o, it fnds a defnition for a and places the whole
object module in the output.

• This provides a defnition of f even though it was not called for at the
moment and makes b undefned at point ­.

• When the linker scans t.o, it fnds a defnition of b and it places the whole
module in the output. This also provides a defnition of c.

• The reference to f made by c can be resolved successfully because the
output sequence already contains a defnition of f.

As a result, there are no unresolved symbols at point ®. In other words, circular
references between object fles are resolved automatically because the linker places
them into the output as a whole.

2.2.2 MEMORY LAYOUT

The MEMORY command is used to describe the memory layout of the target system as
a set of memory areas, often called blocks or banks. For clarity, command contents
are usually written using one line of text for each block. Its general syntax is:

MEMORY
{

<name> [(<attr>)] : ORIGIN = <origin>, LENGTH = <len>
...

}

where:

• ORIGIN and LENGTH are keywords of the linker script language.
• <name> is the human-readable name assigned to the block so that the other

parts of the linker script can refer to that memory block by name.
• <attr> is optional. It gives information about the type of memory block

and affects which kind of information the linker is allowed to store into it.
For instance, R means read-only, W means read/write, and X means that the
block may contain executable code.

• <origin> is the starting address of the memory block.
• <len> is the block length, in bytes.

For example, the following MEMORY command describes the Flash memory bank
and the main RAM bank of the LPC1768 microcontroller, as defned in its user man-
ual [90].

MEMORY
{

rom (rx) : ORIGIN = 0x00000000, LENGTH = 512K
ram (rwx) : ORIGIN = 0x10000000, LENGTH = 32K

}

25 Cross-Compilation Toolchain

From the point of view of the linker, objects in memory may have two distinct
memory addresses that often, but not always, coincide. To better describe them, let
us now consider a defnition of an initialized, global variable in the C language, for
example:

int a = 3;

• After the linker has allocated variable a, it resides somewhere in RAM
memory, for instance, at address 0x1000. RAM memory is needed because
it must be possible to modify the value of a during program execution.
However, since RAM memory contents are not preserved when the system
is powered off, the initial value of a (3 in this case) must be stored in some
non-volatile memory.

• On a general-purpose system, executable images are usually stored on a
mass storage device as fles within a flesystem. They are brought into
memory when needed by an operating system component known as the
loader. In this case, the initial value of the variable does not have a memory
address of its own.

• Instead, in an embedded system a simpler approach is often taken, and
initial values are stored directly within a Flash memory bank. To continue
our example, the initial value may be stored at address 0x0020.

• In order to initialize a, the value 3 must be copied from Flash to RAM
memory. In a standalone system, the copy must be performed by either
the bootloader or the startup code, but in any case before the main C pro-
gram starts. This is because the code generated by the compiler assumes
that initialized variables contain their initial value. The whole process is
summarized in Figure 2.7.

• To setup the initialized global variable correctly, the linker must there-
fore associate two memory addresses to initialized global data. Address
0x0020 is the Load Memory Address (LMA) of a because this is the mem-
ory address where its initial contents are stored.

• The second address, 0x1000 in our example, is the Virtual Memory Ad-
dress (VMA) of a because this is the address used by the processor to refer
to a at runtime.

Often, the VMA and LMA of an object are the same. For example, the address
where a function is stored in memory is the same address used by the CPU to call it.
When they are not, a copy is necessary, as illustrated previously.

This kind of copy can sometimes be avoided by using the const keyword of the
C language, so that read-only data are allocated only in ROM. However, this is not
strictly guaranteed by the language specifcation because const only determines
the data property at the language level but does not necessarily affect their allocation
at the memory layout level. In other words, data properties express how they can
be manipulated in the program, which is not directly related to where they are in

26 Real-Time Systems Development with RTEMS and Multicore Processors

Memory

ROM block

3

RAM block

0x1000

0x0020

a

At startup, before
the main program
starts executing

Load Memory
Address
(LMA)

Virtual Memory
Address
(VMA)

FIGURE 2.7 Load Memory Address (LMA) and Virtual Memory Address (VMA) of an
initialized variable.

memory. As a consequence, the relationship between these two concepts may or
may not be kept by the toolchain during object code generation.

From the practical point of view, it is important to remark that the linker follows
the same order when it allocates memory for initialized variables in RAM and when
it stores their initial value in ROM. Moreover, the linker does not interleave any
additional memory object in either case. As a consequence, the layout of the ROM
area that stores initial values and of the corresponding RAM area is the same. Only
their starting addresses are different.

In turn, this implies that the relative position of variables and their corresponding
initialization values within their areas is the same. Hence, instead of copying variable
by variable, the startup code just copies the whole area in one single sweep. The base
addresses and size of the RAM and ROM areas used for initialized variables are
provided to the startup code, by means of symbols defned in the linker script as
described in Section 2.2.3.

It is also worth remarking that there is an unfortunate clash of terminology be-
tween virtual memory addresses as they are defned in the linker’s nomenclature and
virtual memory addresses in the context of virtual memory systems.

2.2.3 LINKER SYMBOLS

As described previously, the concept of symbol plays a central role in linker’s opera-
tions. Symbols are mainly defned and referenced in object fles but they can also be
defned and referenced in a linker script. Symbols all belong to the same category,
regardless of where they are defned. Namely:

27 Cross-Compilation Toolchain

• A symbol defned in an object module can be referenced in the linker script.
By defning symbols appropriately, the object module can modify the inner
workings of the linker script and affect section mapping and memory lay-
out. For example, it is possible to set the stack size of the executable image
from one of the object modules.

• Symmetrically, a symbol defned in the linker script can be referenced by an
object module, and hence, the linker script can determine some aspects of
the object module’s behavior. For example, as mentioned in Section 2.2.2,
the linker script can communicate the base addresses and size of the RAM
and ROM areas used for initialized variables to the startup code.

In a linker script, an assignment, denoted by means of the usual = (equal sign)
operator, gives a value to a symbol. The value is calculated as the result of an expres-
sion written on the right-hand side of the assignment. The expression may contain
most C-language arithmetic and Boolean operators. It may involve both constants
and symbols. As explained in more details in the following, the result of an expres-
sion may be absolute or relative to the beginning of an output section depending on
the contents of the expression itself (mainly, the use of the ABSOLUTE() function)
and also where the expression is in the linker script.

The special (and widely used) symbol . (dot) is the location counter. It represents
the absolute or relative output location (depending on the context) that the linker
is about to fll while it is scanning the linker script and its input sequence to lay
out objects into memory. With some exceptions, the location counter may generally
appear wherever a normal symbol is allowed. For example, it appears on the right-
hand side of an assignment in the following example.

__stack = .

This assignment sets the symbol __stack to the value of the location counter.
Assigning a value to . moves the location counter. For example, the following as-
signment:

. += 0x4000

allocates 0x4000 bytes starting from where the location counter currently points and
moves the location counter after the reserved area.

An assignment may appear in three different positions in a linker script and its
position partly affects how the linker interprets it.

1. By itself. In this case, the assigned value is absolute and, contrary to the general
rule outlined previously, the location counter . cannot be used.

2. As a statement within a SECTIONS command. The assigned value is absolute
but, unlike in the previous case, the use of . is allowed. It represents an absolute
location counter.

3. Within an output section description, nested in a SECTIONS command. The as-
signed value is relative and . represents the relative value of the location counter
with respect to the beginning of the output section.

28 Real-Time Systems Development with RTEMS and Multicore Processors

As an example, let us consider the following linker script fragment, which sum-
marizes the concepts just introduced. More thorough and formal information about
output sections is given in Section 2.2.4.

SECTIONS
{
. = ALIGN(0x4000);
. += 0x4000;
__stack = .;

}

In this example:

• The frst assignment aligns the location counter to a multiple of 16 kbyte
(0x4000).

• The second assignment moves the location counter forward by 16 kbyte.
That is, it allocates 16 kbyte of memory for the stack.

• The third assignment sets the symbol __stack to the top of the stack. The
startup code will refer to this symbol to set the initial stack pointer.

2.2.4 SECTION AND MEMORY MAPPING

The contents of each input object fle are divided by the compiler (or the assembler)
into several categories according to their characteristics, like:

• code (.text),
• initialized data (.data),
• uninitialized data (.bss).

Each category corresponds to its own input section of the object fle, whose name
has also been listed above. For example, the object code generated by the C compiler
is placed in the .text section of the input object fles. Libraries follow the same
rules because they are just collections of object fles.

The part of linker script devoted to section mapping tells the linker how to fll
the memory image with output sections, which are generated by collecting input
sections. It has the following syntax:

SECTIONS
{

<sub-command>
...

}

where:

• The SECTIONS command encloses a sequence of sub-commands, delim-
ited by braces.

29 Cross-Compilation Toolchain

• A sub-command may be:
• an ENTRY command, used to set the initial entry point of the executable

image as described in Section 2.2.1,
• a symbol assignment,
• an overlay specifcation (seldom used in modern programs),
• a section mapping command.

A section mapping command has a relatively complex syntax, illustrated in the
following.

<section> [<address>] [(<type>)] :
[<attribute> ...]
[<constraint>]
{
<output-section-command>
...

}
[> <region>] [AT> <lma_region>]
[: <phdr> ...] [= <fillexp>]

Most components of a section mapping command, namely, the ones shown within
brackets ([]), are optional. Within a section mapping command, an output section
command may be:

• a symbol assignment, outlined in Section 2.2.3,
• data values to be included directly in the output section, mainly used for

padding,
• a special output section keyword, which will not be further discussed in this

book,
• an input section description, which identifes the input sections that will

become part of the output section.

An input section description must be written according to the syntax indicated
below and indicates which input sections must be mapped into the output section.

<filename> (<section_name> ...)

It consists of:

• A <filename> specifcation that identifes one or more object fles in the
input sequence. Some wildcards are allowed, the most common one is *,
which matches all fles in the input sequence. It is also possible to exclude
some input fles, by means of EXCLUDE_FILE(...), where ... is the list
of fles to be excluded. This is often useful in combination with wildcards
to refne the result produced by the wildcards themselves.

• One or more <section_name> specifcations that identify which input
sections, within the fles indicated by <filename>, we want to refer to.

30 Real-Time Systems Development with RTEMS and Multicore Processors

The order in which input section descriptions appear is important because it de-
fnes the order in which input sections are placed in the output sections. For example,
the following input section description:

* (.text .rodata)

places the .text and .rodata sections of all fles in the input sequence in the
output section. The sections appear in the output in the same order as they appear in
the input.

Instead, this slightly different description:

* (.text)
* (.rodata)

frst places all the .text sections, and then all the .rodata sections.
Let us now examine the other main components of the section mapping command

one by one. The very frst part of a section mapping command specifes the output
section name, address, and type. In particular:

• <section> is the name of the output section and is mandatory.
• <address>, if specifed, sets the VMA of the output section. When it is not

specifed, the linker sets it automatically, based on the output memory block
<region>, if specifed, or the current location counter. Moreover, it takes
into account the strictest alignment constraint required by the input sections
that are placed in the output sections and the output sections alignment
itself, which is be specifed with an optional [<attribute>] and will be
explained later.

• The most commonly used special output section <type> is NOLOAD. It in-
dicates that the section shall not be loaded into memory when the program
is run. When omitted, the linker creates a normal output section specifed
with the section name, for instance, .text.

Immediately thereafter, it is possible to specify a set of output section attributes,
according to the following syntax:

[AT(<lma>)]
[ALIGN(<section_align>)]
[SUBALIGN(<subsection_align>)]
[<constraint>]

• The AT attribute sets the LMA of the output section to address <lma>.
• The ALIGN attribute specifes the alignment of the output section.
• The SUBALIGN attribute specifes the alignment of the input sections

placed in the output section. It overrides the “natural” alignment specifed
in the input sections themselves.

• <constraint> is normally empty. It may specify under which constraints
the output sections must be created. For example, it is possible to specify

Cross-Compilation Toolchain 31

that the output section must be created only if all input sections are read-
only [34].

The memory block mapping specifcation is the very last part of a section mapping
command and comes after the list of output section commands. It specifes in which
memory block (also called region) the output section must be placed. Its syntax is:

[> <region>] [AT> <lma_region>]
[: <phdr> ...] [= <fillexp>]

where:

• > <region> specifes the memory block for the output section VMA, that
is, where it will be referred to by the processor.

• AT> <lma_region> specifes the memory block for the output section
LMA, that is, where its initial contents reside.

• <phdr> and <fillexp> are used to assign the output section to an out-
put segment and to set the fll pattern to be used in the output section,
respectively.

Segments are a concept introduced by some executable image formats, for exam-
ple, the executable and linkable format (ELF) [33] format. In a nutshell, they can be
seen as groups of sections that are considered as a single unit and handled all together
by the loader.

The fll pattern is used to fll the parts of the output section whose contents are not
explicitly specifed by the linker script. This happens, for instance, when the location
counter is moved or the linker introduces a gap in the section to satisfy an alignment
constraint.

2.3 GNU MAKE AND MAKEFILES
The GNU make tool [47], fully described in [116], manages the build process of
a software component, that is, the execution of the correct sequence of commands
to transform its source code modules into a library or an executable program as
effciently as possible. Since, especially for large components, it rapidly becomes
unfeasible to rebuild the whole component every time, GNU make implements an
extensive inference system that allows it to:

1. decide which parts of a component shall be rebuilt after some source modules
have been updated, based on their dependencies, and then

2. automatically execute the appropriate sequence of commands to carry out the
rebuild.

Both dependencies and command sequences are specifed by means of a set of
rules, according to the syntax that will be better described in the following. These
rules can be defned explicitly in a GNU make input fle, often called Makefile
by convention. Moreover, make contains a rather extensive set of predefned built-in

32 Real-Time Systems Development with RTEMS and Multicore Processors

rules, which are implicitly applied unless overridden in a Makefile. GNU make
can also retrieve explicit user-defned rules from other sources. The main ones are:

• One of the fles GNUmakefile, makefile, or Makefile if they are
present in the current directory. The frst fle found takes precedence on
the others, which are then silently ignored.

• The fle specifed by means of the -f or --file options on the command
line.

It is possible to include a Makefile into another by means of the include
directive. In order to locate the fle to be included, GNU make looks in the current
directory and any other directories mentioned on the command line, using the -I
option. As will be better explained in the following, the include directive accepts
any fle name as argument and even names computed on the fy by GNU make itself.
Hence, it allows programmers to use any arbitrary fle as (part of) a Makefile.

Besides options, the command line may also contain additional arguments, which
specify the targets that GNU make must try to update. If no targets are given on the
command line, GNU make pursues the frst target defned in the Makefile.

2.3.1 EXPLICIT RULES

The general format of an explicit rule in a Makefile is:

<target> ... : <prerequisites> ...
<command line>
...

In an explicit rule:

• The <target> is usually a fle that will be (re)generated when the rule is
applied.

• The <prerequisites> are the fles on which <target> depends and
that, when modifed, trigger the regeneration of the target.

• The sequence of <command line>s are the actions that GNU make must
perform in order to regenerate the target, in shell syntax.

• Every command line must be preceded by a tab character and is executed
in its own shell.

It is extremely important to pay attention to the last aspect of command line ex-
ecution, which is sometimes neglected, because it may have very important conse-
quences on the effects commands have. For instance, the following rule does not list
the contents of directory somewhere.

all:
cd somewhere
ls

33 Cross-Compilation Toolchain

TABLE 2.1
GNU Make Command Line Execution Options

Option Description

@ Suppress the automatic echo of the command line that GNU make nor-
mally performs immediately before execution.

- When this option is present, GNU make ignores any error that occurs
during the execution of the command line and continues anyway.

This is because, even though the cd command indeed changes the current di-
rectory to somewhere, it does so only within the shell it is executed by. Since the
ls command execution takes place in a new shell, the previous notion of current
directory is lost when the new shell is created.

As mentioned previously, the prerequisites list specifes the target dependencies.
GNU make looks at the prerequisites list to deduce whether or not a target must be
regenerated by applying the rule. More specifcally, GNU make applies the rule when
one or more prerequisites are more recent than the target. For example, the rule:

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

specifes that the object fle kbd.o (target) must be regenerated when at least one
fle among kbd.c, defs.h, and command.h (prerequisites) has been modifed.
In order to regenerate kbd.o, GNU make invokes cc -c kbd.c (command line)
within a shell.

The shell, that is, the command line interpreter used for command line execution is
by default /bin/sh on unix-like systems, unless the Makefile specifes otherwise
by setting the SHELL variable. Notably, it does not depend on the user login shell to
make it easier to port the Makefile from one user environment to another.

Unless otherwise specifed, by means of one of the command line execution op-
tions listed in Table 2.1, commands are echoed before execution. Moreover, when an
error occurs in a command line, GNU make abandons the execution of the current
rule and (depending on other command-line options) may stop completely. Com-
mand line execution options must appear at the very beginning of the command line,
before the text of the command to be executed, and are not passed to the shell. In
order to do the same things in a systematic way GNU make supports options like
--silent and --ignore, which apply to all command lines or, in other words,
change the default behavior of GNU make.

2.3.2 VARIABLES

A variable is a name defned in a Makefile, which represents a text string.
The string is the value of the variable. The value of a certain variable VAR—by

34 Real-Time Systems Development with RTEMS and Multicore Processors

convention, GNU make variable names are often capitalized—is usually retrieved
and used (that is, expanded) by means of the construct $(VAR) or ${VAR}. In order
to introduce a dollar character somewhere in a Makefile without calling for vari-
able expansion, it is possible to use the escape sequence $$, which represents one
dollar character, $.

In a Makefile, variables are expanded “on the fy,” while the fle is being read,
except when they appear within a command line or in the right-hand part of a variable
assignment made by means of the assignment operator “=”. This aspect of variable
expansion is especially important and we will further elaborate on it in the following,
because the behavior of GNU make departs signifcantly from what is done by most
other language processors, for instance, the C compiler.

Another difference with respect to other programming languages is that the
$() operators can be nested. For instance, it is legal, and often useful, to state
$($(VAR)). In this way, the value of a variable (like VAR) can be used as a variable
name. For example, let us consider the following fragment of a Makefile:

MFLAGS = $(MFLAGS_$(ARCH))
MFLAGS_Linux = -Wall -Wno-attributes -Wno-address
MFLAGS_Darwin = -Wall

• The variable MFLAGS is set to different values depending on the contents
of the ARCH variable. In the example, this variable is assumed to be set
elsewhere to the host operating system name, either Linux or Darwin in
the example.

• This is a compact way to put different operating system-dependent com-
piler fags in the variable MFLAGS without using conditional directives or
writing several separate Makefiles, one for each operating system.

A variable can get a value in several different ways, listed here in order of de-
creasing priority.

1. As specifed when GNU make is invoked, by means of an assignment statement
put directly on its command line. For instance, the command make VAR=v in-
vokes GNU make with VAR set to v.

2. By means of an assignment in a Makefile, as will be further explained in the
following.

3. Through a shell environment variable defnition.
4. Some variables are set automatically to useful values during rule application.
5. Finally, some variables have an initial value, too.

When there are multiple assignments to the same variable, the highest-priority
one silently prevails over the others.

GNU make supports two kinds, or favors, of variables. It is important to further
elaborate on this difference because they are defned and expanded in different ways:

35 Cross-Compilation Toolchain

TABLE 2.2
GNU Make Assignment Operators

Operator Description

VAR = ... Defne a recursively-expanded variable
VAR := ... Defne a simply-expanded variable
VAR ?= ... Defne the recursively-expanded variable VAR only if it is still undefned
VAR += ... Append ... to variable VAR (see text)

1. Recursively expanded variables are defned by means of the operator =, informally
mentioned previously. The evaluation of the right-hand side of the assignment,
as well as the expansion of any references to other variables it may contain, are
delayed until the variable being defned is itself expanded. Evaluation and variable
expansion then proceed recursively.

2. Simply expanded variables are defned by means of the operator :=. The value
of the variable is determined once and for all when the assignment is executed.
The expression on the right-hand side of the assignment is evaluated immediately,
expanding any references to other variables.

Table 2.2 lists all the main assignment operators that GNU make supports. It is
worth mentioning that the “append” variant of the assignment preserves (when pos-
sible) the kind of variable it operates upon. In particular:

• If VAR is undefned it is the same as =, and hence, it defnes a recursively
expanded variable.

• If VAR is already defned as a simply expanded variable, it immediately
expands the right-hand side of the assignment and appends the result to the
previous defnition.

• If VAR is already defned as a recursively expanded variable, it appends
the right-hand side of the assignment to the previous defnition without
performing any expansion.

In order to better grasp the effect of delayed variable expansion, let us consider
the following two examples.

X = 3
Y = $(X)
X = 8

In this frst example, the fnal value of Y is 8 because the right-hand side of its
assignment is expanded only when Y is used. Let us now consider a simply expanded
variable.

X = 3

36 Real-Time Systems Development with RTEMS and Multicore Processors

Y := $(X)
X = 8

In this case, the fnal value of Y is 3 because the right-hand side of its assignment
is expanded immediately, when the assignment is performed. As can be seen from
the previous examples, delayed expansion of recursively expanded variables has un-
usual, but often useful, side effects. Let us just briefy consider the two main benefts
of delayed expansion:

• Forward variable references in assignments, even to variables that are still
undefned, are not an issue.

• When a variable is eventually expanded, it makes use of the “latest” value
of the variables it depends upon.

2.3.3 PATTERN RULES AND AUTOMATIC VARIABLES

Often, all fles belonging to the same group or category (for example, object fles)
follow the same generation rules. In this case, rather than providing an explicit rule
for each of them and make the Makefile hard to read and maintain, it is more
appropriate and convenient to defne a pattern rule.

As shown in the code example that follows, and as its name says, a pattern rule
applies to all fles that match a certain pattern, which is specifed in the rule in place
of the target.

%.o : %.c
cc -c $<

kbd.o : defs.h command.h

In particular:

• Informally speaking, in the pattern the character % represents any non-
empty character string.

• The same character can be used in the prerequisites, too, to specify how
they are related to the target.

• The command lines associated with a pattern rule can be customized, based
on the specifc target the rule is being applied to, by means of automatic
variables like $< in the example.

• It is possible to augment the prerequisites of a pattern rule on a target-by-
target basis, by means of explicit rules without command lines, as shown
at the end of the example.

More precisely, a target pattern is composed of three parts: a prefx, a % character,
and a suffx. The prefx and/or suffx may be empty. A target name (which often is
a fle name) matches the pattern if it starts with the pattern prefx and ends with
the pattern suffx. The non-empty sequence of characters between the prefx and the
suffx is called the stem.

37 Cross-Compilation Toolchain

TABLE 2.3
Main GNU Make Automatic Variables

Var. Description Example value

$@ Target of the rule kbd.o
$< First prerequisite of the rule kbd.c
$ˆ List of all prerequisites of the rule, delimited by blanks kbd.c defs.h command.h
$? List of prerequisites that are more recent than the target defs.h
$* Stem of the rule (only for pattern rules) kbd

Since, as said previously, rule targets are often fle names, directory specifcations
in a pattern are handled specially, to make it easier to write compact and general rules
that apply to target fles residing in different directories. In particular:

• If a target pattern does not contain any slash—which is the character that
separates directory names in a fle path specifcation—all directory names
are removed from target fle names before comparing them with the pattern.

• Upon a successful match, directory names are restored at the beginning of
the stem. This operation is carried out before generating prerequisites.

• Prerequisites are generated by substituting the stem of the rule in the right-
hand part of the rule, that is, the part that follows the colon (:).

• For example, fle src/p.o satisfes the pattern rule %.o : %.c. In
this case, the prefx is empty, the stem is src/p and the prerequisite is
src/p.c because the src/ directory is removed from the fle name be-
fore comparing it with the pattern and then restored.

When it applies a rule GNU make automatically defnes several automatic vari-
ables, which become available in the corresponding command lines. Table 2.3 con-
tains a short list of these variables and describes their contents. As an example, the
rightmost column of the table also shows the value that automatic variables would
get if the rules above were applied to regenerate kbd.o, mentioned in the previous
example, because defs.h has been modifed.

To continue the example, let us assume that the Makefile we are considering
contains the following additional rule. The rule updates library lib.a, by means
of the ar tool, whenever any of the object fles it contains (main.o, kbd.o, and
disk.o) is updated.

lib.a : main.o kbd.o disk.o
ar rs $@ $?

After applying the previous rule, kbd.o becomes more recent than lib.a, be-
cause it has just been updated. In turn, this triggers the application of the second
rule shown above. While the second rule is being applied, the automatic variable

38 Real-Time Systems Development with RTEMS and Multicore Processors

corresponding to the target of the rule ($@) is set to lib.a and the list of prerequi-
sites more recent than the target ($?) is set to kbd.o.

To further illustrate the use of automatic variables, we can also remark that we
could use $ˆ instead of $? in order to completely rebuild the library rather than
update it. This is because, as mentioned in Table 2.3, $ˆ contains the list of all
prerequisites of the rule.

It is also worth noting that GNU make comes with a large set of predefned im-
plicit built-in rules. Most of them are pattern rules, and hence, they generally apply
to a wide range of targets and it is important to be aware of their existence. They can
be printed by means of the command-line option --print-data-base, which can
also be abbreviated as -p.

For instance, there is a built-in pattern rule to generate an object fle given the
corresponding C source fle:

%.o: %.c
$(COMPILE.c) $(OUTPUT_OPTION) $<

The variables cited in the command line have got a built-in defnition as well,
that is:

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
OUTPUT_OPTION = -o $@
CC = cc

As a consequence, just by defning some additional variables, for example
CFLAGS, it is often possible to customize the behavior of a built-in rule instead of
defning a new one. When an explicit rule in the Makefile overlaps with a built-in
rule because it has the same target and prerequisites, the former takes precedence.
This priority scheme has been designed to avoid undue interference of implicit built-
in rules the programmer may be unaware of, with any explicit rule written in the
Makefile.

2.3.4 DIRECTIVES AND FUNCTIONS

GNU make provides an extensive set of directives and built-in functions. In general,
directives control how the input information needed by GNU make is built, by tak-
ing it from various input fles, and which parts of those input fles are considered.
Provided here is a glance at two commonly-used directives, namely:

• The include <file> ... directive instructs GNU make to temporarily
stop reading from the current Makefile at the point where the directive
appears, read the additional file(s) mentioned in the directive, and then
continue.
The fle specifcation may contain a single fle name or a list of names,
separated by spaces. In addition, it may also contain variable and function
expansions, as well as any fle name wildcards known to the shell.

39 Cross-Compilation Toolchain

• The ifeq (<exp1>, <exp2>) directive evaluates the two expressions
exp1 and exp2. If they are textually identical then GNU make uses the
Makefile section between ifeq and the next else directive; otherwise
it uses the section between else and endif.
In other words, this directive is similar to conditional statements in other
programming languages. Directives ifneq, ifdef, and ifndef also ex-
ist and have the expected intuitive meaning.

Concerning functions, the general syntax of a function call is

$(<function> <arguments>)

where:

• <function> represents the function name and <arguments> is a list of
one or more arguments. At least one blank space is required to separate
the function name from the frst argument. Arguments are separated by
commas.

• By convention, variable names are written in all capitals, whereas function
names are in lowercase, to help readers distinguish between the two.

Arguments may contain references to:

• Variables, for instance: $(subst a,b,$(X)). This statement calls the
function subst with 3 arguments: a, b, and the result of the expansion of
variable X.

• Nested function calls, like: $(subst a,b,$(subst c,d,$(X))).
Here, the third argument of the outer subst is the result of the inner, nested
subst.

As for directives, in the following we are about to informally discuss only a few
GNU make functions that are commonly found in Makefiles. Interested readers
should refer to the full documentation of GNU make [47], for in-depth information.

• The function $(subst <from>,<to>,<text>) replaces <from> with
<to> in <text>. Both <from> and <to> must be simple text strings. For
example:

$(subst .c,.o,p.c q.c) −→ p.o q.o

• The function $(patsubst <from>,<to>,<text>) is similar to
subst, but it is more powerful because <from> and <to> are patterns
instead of text strings. The meaning of the % character is the same as in
pattern rules.

$(patsubst %.c,%.o,p.c q.c) −→ p.o q.o

40 Real-Time Systems Development with RTEMS and Multicore Processors

• The function $(wildcard <pattern> ...) returns a list of names of
existing fles that match one of the given patterns. For example, the expres-
sion $(wildcard *.c) evaluates to the list of all C source fles in the
current directory.
wildcard is commonly used to set a variable to a list of fle names with
common characteristics, like C source fles. Then, it is possible to further
work on the list with the help of other functions and use the results as
targets, as shown in the following example.

SRC = $(wildcard *.c)
ELF = $(patsubst %.c,%.elf,$(SRC))

all: $(ELF)

%.elf: %.c
$(CC) -o $@ $<

• The function $(shell <command>) executes a shell <command> and
captures its output as return value. For example, when executed on a Linux
system:

$(shell uname) −→ Linux

In this way, it is possible to set a variable to an operating system-dependent
value and have GNU make do different things depending on the operat-
ing system it is running on, as shown in Section 2.3.2, without providing
separate Makefiles for all of them, which would be harder to maintain.

2.4 BASIC DESCRIPTION OF RTEMS AND ITS CONFIGURATION
SYSTEM

In this section we describe the high-level concepts related to confguring RTEMS
for a specifc application. This description is relevant for RTEMS versions 4-5, but
is anticipated to change drastically starting with RTEMS version 6. The complete
details of RTEMS confguration can be found in the RTEMS Classic API Guide’s
chapter called Confguring a System.

A challenging aspect for any OS design and implementation is how to confgure
the resources it manages. GPOSs specify the confguration during the OS build pro-
cess, for example, the Linux KConfg fles and related utilities are run to generate a
special .config fle that is used during the make command to select and confgure
kernel subsystems. The confguration is done by expert kernel developers and dis-
tribution packagers that decide on the base images and the set of loadable modules
that users may need over a wide variety of applications. RTOSs defer confguration
to the end-user whom is expected to tailor the resource confguration toward their
application and better customize the OS support.

Cross-Compilation Toolchain 41

RTOS confguration is accomplished by direct or indirect confguration. The di-
rect approach exposes the RTOS resources to the application during the compile or
link phase. Indirect approaches provide an API and data structures for an application
developer to create their confguration, for example, specifying the resources they
need in a structured document such as an XML fle. An indirect approach is advan-
tageous because it offers additional structure and support to the confguration phase,
whereas the direct approach is simple to implement.

The confguration of RTEMS is split in two phases. The frst phase is done prior
to compilation of RTEMS itself, and accomplishes the goal of confguring the com-
piler with options for building the RTEMS base image. The second phase is done
during compilation of an application prior to linking it with the RTEMS base image
and populates several data structures that are used by RTEMS to manage resources
especially as they relate to allocation of internal objects. We describe each of these
phases in the following.

2.4.1 RTEMS COMPILE-TIME CONFIGURATION

The build system of RTEMS relies on the autotools framework to confgure build
fles for invoking make. The automake and autoconf programs are both relied upon to
customize the compilation for different options that an end-user may need. Autoconf
input fles (with .ac extension) are used to generate a confgure script that sets the
compilation options. The most important options for RTEMS include:

• --target=
• --enable-rtemsbsp=
• --enable-smp
• --enable-tests

Several other options exist for special purposes. The target option sets the cross-
compiler to use, which is primarily important for selecting a compiler toolchain for
correct ISA and version of RTEMS being built. The option to enable-rtemsbsp
allows selection of the BSP that the user needs; most users will have a single BSP of
interest to them, and this option will avoid building all the available BSPs for the ISA
chosen in the target. Use the enable-smp option to compile RTEMS with sup-
port for multicore BSPs. Although optional, the enable-tests is recommended
to build the expansive suite of tests included with RTEMS; this option can be param-
eterized with =samples to build the sample applications, or if the option is not used
then only a base image of RTEMS is compiled against which users can later link
their applications to create loadable binary fles. Interested readers and users should
refer to the RTEMS documentation for additional information about these and other
build-time confgure options.

2.4.2 APPLICATION COMPILE-TIME CONFIGURATION

The resources that an application may require from RTEMS are confgured statically
during compilation through a set of C preprocessor macros that are used in a single

42 Real-Time Systems Development with RTEMS and Multicore Processors

monolithic header fle named confdefs.h. This approach is colloquially called
the confdefs confguration, and examples can be found in many of the RTEMS test
programs. Most of these tests consolidate the confguration macros in a local header
named system.h.

As an example, consider the confguration of the hello sample, found in
testsuites/samples/hello/init.c:

#define CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER

#define CONFIGURE_MAXIMUM_TASKS 1

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT

#define CONFIGURE_INITIAL_EXTENSIONS RTEMS_TEST_INITIAL
_EXTENSION

#define CONFIGURE_INIT
#include <rtems/confdefs.h>

The hello world test is very simple and does not require a functional clock, which
is disabled by the frst line #define CONFIGURE_APPLICATION_DOES_NOT
_NEED_CLOCK_DRIVER. Hello just needs a console driver and a single task,
which are confgured in the next two lines. That one task is the initalization task,
and the macro CONFIGURE_RTEMS_INIT_TASKS_TABLE instructs RTEMS to
set up an initialization task structure, which by default only contains a single
init task. The init task needs to be made a foating point task because some ar-
chitectures use foating point registers in their implementation of printf. The
CONFIGURE_INITIAL_EXTENSIONS is used to install a set of extensions that are
specialized for the RTEMS testsuite. As a high-level switch, the CONFIGURE_INIT
macro will cause confdefs to interpret all the macros and generate the confguration
tables. This macro should only be defned once by an application prior to includ-
ing confdefs.h or else the confguration tables will be generated multiple times
and the linker will generate errors for name reuse. All application confgurations
must end with #include <rtems/confdefs.h>. Once this fle is included (with
CONFIGURE_INIT defned) then RTEMS is confgured.

More complicated applications that use other resources managed by RTEMS
will need to make use of other confguration macros. For example, an ap-
plication with three tasks would increase the number 1 to 3 in the def-
nition of CONFIGURE_MAXIMUM_TASKS, and if that application uses a bar-
rier for synchronization it would need to confgure that resource by the
CONFIGURE_MAXIMUM_BARRIERS macro. To ease porting and application de-
velopment there is also a CONFIGURE_UNLIMITED_OBJECTS macro that re-
moves limits on many of the confgured resources and relies on dynamic allo-
cation to satisfy requests to create resources. This macro is not recommended

Cross-Compilation Toolchain 43

for use in deployed applications, and should normally be combined with the
CONFIGURE_UNIFIED_WORK_AREAS macro that causes RTEMS to allocate sys-
tem resources from the same dynamic memory pool as the C program heap. The
option for unlimited objects does allow for a very simple and reliable confguration
to use for prototyping:

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_UNIFIED_WORK_AREAS
#define CONFIGURE_UNLIMITED_OBJECTS
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT
#include <rtems/confdefs.h>

2.5 SUMMARY
After outlining how a toolchain generates an executable image starting from the ap-
plication source code in Section 2.1, this chapter focused on two aspects of a GNU-
based toolchain that are very important from the practical point of view, but often ne-
glected: the linker command language in Section 2.2 and GNU make in Section 2.3.

The last part of the chapter, Section 2.4, went from general toolchain behavior to
more specifc aspects related to the RTEMS operating system. It provided a summary
of the two main operating system confguration opportunities, which take place when
RTEMS itself is compiled for a certain target platform, and when an application is
compiled and linked against the operating system.

http://taylorandfrancis.com

3 Concurrent Programming
and Scheduling Algorithms

CONTENTS

3.1 Foundations of Concurrent Programming ...45
3.1.1 From Interrupt Handling to Multiprogramming45
3.1.2 Cooperating Sequential Processes ..49

3.2 Scheduling Policies, Mechanisms, and Algorithms ..51
3.2.1 Task Interleaving and Timings..51
3.2.2 Task Control Block and Task State Diagram......................................52
3.2.3 Real-Time Scheduling Algorithms ...58

3.3 Summary..66

This chapter lays out the theoretical foundations of concurrent programming, starting
from the all-important concept of process, or task. Then, it introduces the fundamen-
tal tools used to represent the state of a process and express how it evolves over time,
that is, the task control block and the task state diagram.

The second part of the chapter presents the main concepts and techniques of task-
based, real-time scheduling on single processor systems. The discussion of schedul-
ing algorithms suitable for multicore systems is left to Part V of the book.

3.1 FOUNDATIONS OF CONCURRENT PROGRAMMING
3.1.1 FROM INTERRUPT HANDLING TO MULTIPROGRAMMING

Historically, the very frst computers were completely sequential machines. Instruc-
tion execution normally advanced along increasing memory addresses, and diver-
sions from a sequential control fow could only be performed synchronously, by
means of branch or call instructions embedded in the instruction stream. On those
machines the only way to become aware of external asynchronous events, for in-
stance, the user pressing a key on the keyboard, was to periodically and repeatedly
poll input–output (I/O) devices, like the keyboard controller in our example.

In essence, each individual polling operation consisted of querying a suit-
able device register containing status information, analyzing the status to under-
stand whether an event of interest occurred, and conditionally branching to the
corresponding event-handling function. In turn, the event-handling function further

45

46 Real-Time Systems Development with RTEMS and Multicore Processors

interacted with the device, to retrieve the information associated with the event and
process it.

However, despite the apparent simplicity of such an approach, it soon became
evident that, with the ever-increasing number and complexity of I/O devices attached
to a computer system, it was becoming more and more diffcult to properly interlace
polling operations and ordinary application programs, in order to ensure that all I/O
devices were serviced with acceptable timings. The connection of I/O devices with
quite diverse timing requirements to the same computer further exacerbated the issue.

On one hand, querying all devices within a single polling function would require
the application program to invoke the function frequently enough to satisfy the device
with the strictest timing requirements and would likely introduce excessive overhead.
On the other hand, dividing devices into classes depending on their timing require-
ments and introducing multiple polling function, one for each category, would lead
to the proliferation of these “polling points” in the application code.

From the programming point of view, another important shortcoming of this ap-
proach was an inherent lack of modularity because programmers were forced to deal
with tightly intertwined fragments of code serving very different purposes. In turn,
this made application code harder to understand and maintain, especially as its com-
plexity grew.

In order to alleviate the issue, computer designers aimed at giving devices the
ability to draw the attention of the processor when needed, through a mechanism
that has become known as interrupt. While not interrupted, the processor still ex-
ecutes instructions as described previously, without performing any polling. When
an interrupt request arrives, and provided certain conditions are fulflled, the pro-
cessor temporarily abandons sequential execution, usually at the boundary between
two consecutive instructions, and diverts to a piece of code called interrupt handler.
In turn, the interrupt handler is in charge of inspecting the interrupting device and
properly handling the event it signaled.

When the interrupt handler terminates, often by executing a special “return from
interrupt” instruction, the processor resumes from where it left when the interrupt
request was accepted. Even though technical details may vary from one computer
to another, an important characteristic of interrupt handling is that it is transparent
from the point of view of the interrupted code. In other words, the acceptance of
one or more interrupt requests while a certain piece of code is being executed does
not change its functional semantics in any way and, when looking at the system at a
higher level of abstraction, it gives the illusion that ordinary program execution and
interrupt handling proceed concurrently.

This is accomplished by saving the relevant part of the processor context (like
its program counter and general purpose registers’ content) when the interrupt is ac-
cepted, often on a dedicated portion of memory organized as a stack, and restoring it
when the interrupt handler eventually returns. On the contrary, and this is an aspect
of extreme interest for real-time systems, interrupts do affect the timings of the inter-
rupted code. This is because, quite obviously, the execution of an interrupt handler
necessarily makes the underlying, interrupted code run slower.

47 Concurrent Programming and Scheduling Algorithms

There is some controversy on when, and by whom, this interrupt-based device
handling strategy was introduced for the very frst time, but certainly one of the
earliest documented examples can be found in [120]. There, the authors describe
how they modifed a Remington Rand Univac 1103 computer to support interrupts,
using an approach that would then become commercially available on model 1103A.
Despite dating back to 1958, their proposal already contained most of the elements
typical of present-day computer architectures, which will be discussed in more detail
in Section 4.2:

1. The ability to selectively enable and disable interrupt requests originating from a
specifc device, by means of appropriate instructions.

2. Support of device-specifc interrupt handlers, so that the processor can conve-
niently execute different code depending on the interrupt source.

3. A priority hierarchy among devices, which comes into effect when multiple de-
vices submit an interrupt request at the same time.

4. An automatic mechanism to prevent a new interrupt request from being accepted
while an interrupt handler is being executed.

Regarding the last point, more recent architectures often follow a more complex
approach, called interrupt nesting, which allows an incoming interrupt to be accepted
even during the execution of an interrupt handler, subject to some conditions on the
incoming interrupt’s priority. When this happens, interrupt handlers are nested into
each other and executed in a last-in, frst-out fashion. In exchange for its higher com-
plexity, this approach reduces the handling latency of high-priority interrupts because
interrupt handlers are no longer constrained to be executed in a strictly sequential,
frst-in, frst-out way.

At the same time, the work also highlights two possible pitfalls of concurrent code
execution, still very relevant nowadays:

• When the application code and the interrupt handler share data, like I/O
buffers, appropriate interlocks must be put in place to avoid data corruption.
By intuition, data corruption may occur, for instance, if the application code
reads from a buffer before the I/O device has flled it completely with fresh
input data. In this case, the application code may make use of a mix of new
and old data left in the buffer by the previous I/O operation.

• Any issue with interlocks may easily lead to time-dependent errors.
Namely, an incorrect program may run fawlessly multiple times, and fail
only when interrupts are accepted at specifc, unfortunate locations within
the application program. For instance, accessing an I/O buffer without
proper interlocks is bound to cause issues only when an interrupt handler
that modifes the same buffer is executed while an access is in progress.

As a side note, it must also be said that polling-based device management is not
without merits, especially in hard real-time systems where overall effciency is of
secondary importance with respect to meeting the strict and demanding timing re-
quirements sometimes imposed by external devices.

Idealized task execution Actual execution

Task 𝜏1

Task execution
Context switch

Execution flow

Task 𝜏2 Task 𝜏3 Task 𝜏1 Task 𝜏2 Task 𝜏3

Processor utilization over time

Time 𝜏1 𝜏2 𝜏3 𝜏1 𝜏3 ⋯

48 Real-Time Systems Development with RTEMS and Multicore Processors

FIGURE 3.1 Idealized and actual task execution flow in multiprogramming.

With time, the observation that interrupts enable a computer to perform two dis­

tinct and independent activities apparently at the same time—normal instruction exe­

cution and interrupt handling—led to the desire of extending this concept to the user
level, by means of techniques known as multiprogramming.

These techniques are very widely used nowadays and their benefits are particu­

larly evident, for instance, with personal computers, in which users ordinarily inter­

act with multiple applications at the same time and they all seemingly proceed in
parallel, or concurrently, as the need arises. For instance, gone are the days in which
users had to wait for the printer to finish printing before they could continue with
their word processing program, as all personal computers are now able to print in
background.

As illustrated in Figure 3.1, in a multiprogrammed execution environment, the
operating system repeatedly switches the processor back and forth from one activity,
or task, to another. As a result, users perceive that the execution of tasks τ1, . . . ,τ3
is proceeding concurrently, as depicted on the left of the figure, whereas the proces­

sor actually executes instructions as shown on the right. If properly implemented,
this context switch is completely transparent to, and independent from, the activities
themselves, which may even be unaware of it.

Operating systems often use thread as an equivalent term for task. Depending on
the context, the two terms will be used interchangeably in the following. Historically
the term process, to be introduced in Section 3.1.2, was first used to denote an activity
within a concurrent system.

Concurrent Programming and Scheduling Algorithms 49

However, as explained in Section 6.3 regarding the POSIX standard, nowadays
the two words process and thread (or task) are commonly defned and understood in
a hierarchical way. With rare exceptions [2], a process is a container for one or more
threads and different processes not only have their own independent control fows,
one per thread, but also distinct memory address spaces. On the contrary, all threads
(or tasks) living within the same process implicitly share memory.

Even more importantly, designing and organizing software around the concurrent
execution of multiple tasks turned out to be a very useful and general abstraction. In
particular, it is readily applicable also when it corresponds to a true execution paral-
lelism at the hardware level. This is the case of multiprocessor and multicore systems,
which will be the subject of Part V of this book. In those systems, either multiple pro-
cessors or a single processor with multiple cores share a common memory.

Each processor or core is able to carry out its own sequential fow of instructions
independently from the others, as well as handling interrupts and performing context
switches. Especially when contrasting single-core with multicore systems, the term
pseudo-parallelism is sometimes used to remark that, despite multiprogramming, a
single-core computer is still executing exactly one activity at any given instant of
time, in a strictly sequential way.

3.1.2 COOPERATING SEQUENTIAL PROCESSES

The idea that any concurrent system, regardless of its nature and complexity, can
be designed as a set of cooperating sequential activities executed concurrently was
frst introduced in a seminal work by Dijkstra [42]. These concurrent activities are
usually called processes, to adhere to Dijkstra’s original nomenclature. As outlined
previously, especially within the context of real-time operating systems, they are also
commonly referred to as tasks. For the sake of consistency, we will also call them
tasks in this book.

Each task is autonomous for what concerns execution and holds all the informa-
tion needed to represent the execution of a sequential program that evolves with time.
By intuition, this information must necessarily include not only the program instruc-
tions but also the state of the processor (program counter, registers) and memory
(variables).

In other words, each task can be regarded as the execution of a sequential program
by “its own” processor although, as shown in Figure 3.1, depending on the number of
physical processors and cores available on the system with respect to the number of
tasks to be executed, cores may actually be switched from one task to another by the
operating system. Even if we restrict our attention to a single-processor, single-core
system, there are in principle many different possible strategies the operating sys-
tem can use to execute tasks, for instance, by deciding where context switch points
should be.

At one end of the spectrum, strategies like the ones used in cyclic executives [18]
confne scheduling decisions to when a task activates or voluntarily ceases execu-
tion. To improve system performance from the timing point of view, tasks may be
split into multiple parts but, also in this case, task splitting points are fxed and

50 Real-Time Systems Development with RTEMS and Multicore Processors

pre-determined. As a consequence, under appropriate assumptions concerning the
tasks’ structure, like their periodicity, all scheduling decisions can be taken once
and for all in advance, and merely carried out at runtime, giving rise to the offine
scheduling strategies.

Instead, online strategies—like the ones to be discussed in this chapter—lie at
the opposite end of the spectrum because scheduling decisions are taken at runtime,
based on suitable task attributes. Sometimes, these attributes may be fxed and as
simple as task priorities that, informally speaking, express the relative importance
of the tasks in the system. In other, more complex strategies, they may instead vary
with time to indicate, for instance, how close a task is to violating one of its timing
constraints. As a consequence, in both cases a scheduling decision may lead to a
context switch anywhere within tasks.

Referring back to Figure 3.1, different strategies lead to different sequences of
operations performed by the system (one of them is depicted on the right of the
fgure) to realize the idealized task execution shown on the left. As a consequence,
tasks execution may interleave in different ways. The multiprogramming mechanism
ensures that, in the long run, all tasks make progress even though, as shown in the
timeline of processor activity over time at the bottom of the fgure, the processor
indeed executes only one task at a time.

Comparing the left and right sides of the fgure also explains why the adoption
of a task-based model simplifes the design and implementation of a concurrent sys-
tem. By means of this model, system design is carried out at the task level, a clean
and easy to understand abstraction, without worrying about the low-level mecha-
nisms behind its implementation, which stay hidden within the underlying operating
systems. In principle, it is not even necessary to know whether the hardware really
supports true execution concurrency, or the degree of such a parallelism. For this rea-
son, properly design task-based systems can easily be ported to multiprocessor and
multicore systems.

As outlined previously, the responsibility of choosing which tasks will be exe-
cuted at any given time by the available processors, and for how long, falls on the
operating system and, in particular, on an operating system component known as
scheduler. In a real-time operating system, the scheduler works according to algo-
rithms to be discussed in Section 3.2. Since tasks are frst-class entities in any modern
operating system, RTEMS provides an extensive API for task management, which
will be described in Chapter 5.

Of course, if a set of tasks must cooperate to solve a certain problem, not all
possible scheduling decisions will produce meaningful results. For example, if a cer-
tain task τ2 relies upon some data computed by another task τ1, the execution of τ2
must not start before the conclusion of τ1. Therefore, one of the main goals of the
branch of computer science known as concurrent programming is to defne a set of
task communication and synchronization primitives. When used appropriately, these
primitives ensure that the results of the concurrent program will be correct by intro-
ducing and enforcing appropriate constraints on scheduling decisions. They will be
discussed in Chapters 7 and 9.

51 Concurrent Programming and Scheduling Algorithms

Wrong results (𝜏2 executed before 𝜏1)

Time 𝜏3 𝜏2 𝜏1(a)

Correct results (𝜏2 completes after 40 ms, 𝜏3 after 60 ms)

𝜏3(b) Time 𝜏1 𝜏2

Correct results (𝜏2 completes after 60 ms, 𝜏3 after 50 ms)

10 ms

(c) 𝜏1 𝜏3 𝜏2 Time

FIGURE 3.2 Role of interleaving in functional correctness and timings.

3.2 SCHEDULING POLICIES, MECHANISMS, AND ALGORITHMS
3.2.1 TASK INTERLEAVING AND TIMINGS

An aspect of paramount importance in any real-time system is that, even if the
proper application of concurrent programming techniques guarantees that the con­

current program will be functionally correct—that is, its results will be correct—the
scheduling decisions taken by the operating system may still affect the behavior of
the system in other important ways. This is due to the fact that, even when all con­

straints set forth by the interprocess communication and synchronization primitives
are met, there are still many acceptable interleavings. For instance, choosing one in­

terleaving or another does not affect the functional aspects of the computation, but
may significantly change the timings of the tasks involved.

To further illustrate this concept, Figure 3.2 shows three different interleavings of
tasks τ1, τ2, and τ3 when they are executed on a single-core processor. We suppose
all tasks are ready for execution at t = 0 and their execution requires C1 = 10 ms,
C2 = 30 ms, and C3 = 20 ms of processor time, respectively. To make the example
simpler, we also neglect for the time being that most operating systems are able to
switch from one task to another during their execution, as described in Section 3.1,
and assume that individual tasks are scheduled as indivisible units instead.

Since we further assume that τ1 produces some data used by τ2, it turns out that
schedule (a), shown at the top of the figure, is unsuitable from the functional point
of view because it does not satisfy the precedence constraint between τ1 and τ2 we
just stated and would lead τ2 to produce incorrect results. On the other hand, sched­

ules (b) and (c) are both satisfactory from this point of view. However, they are very
dissimilar from the timing perspective. Namely, as also shown in the figure, the com­

pletion time of τ2 and τ3 are very different in the two cases. If we were dealing with
a real-time system in which, for example, τ2 and τ3 must conclude within a relative

52 Real-Time Systems Development with RTEMS and Multicore Processors

Program memory

Data memory

Task control block

1. Processor state

2. Task state and
attributes (priority, …)

3. Data/Program
memory allocation

information

4. Resource allocation
state

Next
instruction

Stack
pointer

Program
counter

Local variables and
return addresses

Stack

Global variables
(possibly shared with

other tasks)

Data and BSS

Memory
references

Program code

⋮

⋮

FIGURE 3.3 Task state and task control block (TCB).

deadline of D2 = 60ms and D3 = 55ms, interleaving (c) would satisfy this require-
ment, whereas interleaving (b) would not.

In order to address this issue, real-time systems use specially devised scheduling
algorithms. Those algorithms, complemented by appropriate analysis techniques to
be summarized in Section 4.1, guarantee that a concurrent program will not only be
functionally correct, but it will also satisfy its timing constraints for all permitted
interleavings.

3.2.2 TASK CONTROL BLOCK AND TASK STATE DIAGRAM

Before delving into more details on how operating systems handle and manage tasks,
it is important to give a more precise defnition of what a task really is, and what in-
formation it characterizes. In order to represent a task at runtime, operating systems
store all the relevant information about it in a data structure, known as task control
block (TCB). According to the general defnition of task, it must contain all the infor-
mation needed to represent the execution of a sequential program as it evolves over
time.

As shown in Figure 3.3, there are four main components directly or indirectly
linked to a TCB:

1. The TCB contains a full copy of the processor state. The operating system makes
use of this piece of information to implement its context switch method, that is, to

53 Concurrent Programming and Scheduling Algorithms

switch the processor from one task to another. In fact, a context switch consists for
the most part of saving the processor state of the previous task into its TCB, and
then restoring the processor state from the TCB of the next task. A key point for
the portability of an operating system is the clean separation between the context
switch method, whose implementation determines how a context switch is carried
out and often includes architecture-dependent aspects, and the scheduling strategy
mentioned earlier, which is architecture-independent and dictates when a context
switch takes place.
Within the processor state, two important entities are the program counter, which
points to the next instruction that the processor is going to execute within the
task’s program code, and the stack pointer, which defnes the boundary between
full and empty elements in the task stack. Both are depicted as arrows in the fgure.
As can be inferred from the above description, the processor state is an essential
part of the TCB and is always present, regardless of the operating system. Operat-
ing systems may instead differ on the details of where the processor state is stored.
Conceptually, as shown in Figure 3.3, the processor state is part of the TCB and
should be held within it. Some operating systems follow this approach literally,
whereas others store part or all of the processor state elsewhere, and then make it
accessible from the TCB through a pointer.
The second choice is especially convenient and effcient when the underlying
processor provides hardware assistance to save and restore part of the processor
state to/from a pre-defned, architecture-dependent location, which usually can-
not be changed at will in software. For instance, ARM Cortex-M processors [9]
autonomously save part of their state onto the current task stack when they start
handling an interrupt or, more generally, an exception. Operating systems that
base their context switch implementation upon the underlying exception-handling
mechanism—thus performing context switches within exception handlers—may
effciently save the rest of the processor state in the same place. However, RTEMS
does not follow this approach. Even though hardware exceptions may still result
in a context switch, RTEMS performs all context switches within a task, rather
than exception handling, context, as described in Section 4.2.

2. The task state and attributes are used by the operating system itself to sched-
ule tasks and support inter-task synchronization and communication in an orderly
way. A more detailed description of the task state and the way it is used by the
scheduler will be given in the following, while information on inter-task synchro-
nization can be found in Chapters 7 and 9.

3. The data and program memory allocation information held in the TCB keep a
record of the memory areas currently assigned to the task. The extent and com-
plexity of this information heavily depends on the purpose and sophistication of
the operating system.
On one hand, very simple operating systems may only support a fxed number of
statically created tasks and may not need to keep this information at all. This is
because data and program memory areas are assigned to tasks at link time and
the assignment never changes over time. On the other hand, when the operating

54 Real-Time Systems Development with RTEMS and Multicore Processors

system supports the dynamic creation of tasks at runtime, even though their code
and data have been pre-loaded into memory, it must typically allocate the TCB,
the task stack, and possibly other data structures from a memory pool and keep
a record of the allocation. Moreover, if the operating system is also capable of
loading executable images from a mass storage device, it should also keep a record
of where the program code and data have been placed in memory.

4. When the operating system is in charge of resource allocation and release, the
task control block also contains the resource allocation state of the corresponding
task. The word resource is used here in a very broad sense. It certainly includes
all hardware devices connected to the system, but it may also refer to software
resources. Having the operating system work as a mediator between tasks and
resources regarding allocation and release is a universal and well-known feature
of virtually all general-purpose operating systems because the goal of this kind
of operating system is to support the coexistence of multiple application tasks,
developed by a multitude of programmers. For this reason, resource sharing and
allocation must be kept under tight control.
In a real-time embedded system, especially small ones, the scenario is very dif-
ferent because the task set to be executed is often well known in advance. The
relationship between tasks and resources may also be different, leading to a re-
duced amount of contention for resource use among tasks. For instance, in a
general-purpose operating system it is very common for application tasks to com-
pete among each other to use a graphics coprocessor, and sharing this resource in
an appropriate way is essential.
On the contrary, in a real-time system devices are often dedicated to a single
purpose and can be used directly only by a single task. For example, an analog to
digital converter is usually managed by a cyclic data acquisition task. Accessing
the device itself is of no interest to any other task in the system although, of
course, those may make use of the acquired data. Therefore, in real-time operating
systems resources are often permanently and implicitly allocated to a single task
or group of tasks, and the operating system itself is only marginally involved in
their management.

A proper defnition of the information included in a TCB is important not only to
thoroughly understand what a task is, but also how tasks are managed by the operat-
ing system. In fact, it is easy to notice that TCB contents also represent the informa-
tion that the operating system must save and restore to implement a context switch,
in order to steer the processor from executing one task to another in a transparent
way.

Another essential part of understanding how operating systems manage task ex-
ecution is to have a precise idea of how the task state evolves over time. By itself,
the TCB holds the task state but, being a data structure, it only gives a static depic-
tion of it. A commonly used way to describe in a formal way all the possible states
a task may be in during its lifespan is to defne a directed graph, called task state
diagram (sometimes abbreviated as TSD). The details of how the task state diagram
is organized and laid out vary from one operating system to another, but the most

55 Concurrent Programming and Scheduling Algorithms

4.
Dormant

2.
Ready

1.
Running

5.
Terminated

3.
Blocked

e. Creation

f. Admission

c. Scheduling

d. Yield or
preemption

a. Passive wait
for an event e

b. Event e occurs,
end of wait

g. Termination

h. Destruction

g. Termination

FIGURE 3.4 Abstract view of a task state diagram (TSD).

important concepts are common to all of them. Figure 3.4 depicts a simplifed task
state diagram to be used as an example. First of all, in a task state diagram:

• nodes represent possible task states, and
• arcs represent transitions from one state to another.

The three most important states for what concerns task scheduling and synchro-
nization are the ones shown in gray. More specifcally:

1. A task is running when it is actively being executed by a core, and hence, it is
making progress. The number of tasks in the running state is limited by the total
number of cores available in the system.

2. When the number of tasks eligible for execution in the system exceeds the number
of available cores at a given instant, quite a common occurrence, only some of
them can be brought into the running state and actually executed. The others stay
in the ready state without making any progress for the time being.

3. Tasks often have to wait for an external event to occur. For example:
• A periodic task, after completing its activity in the current period, has to wait

until the next period begins by performing a time-related wait.
• A task that issues an I/O request to a device must often perform an I/O wait

until the operation is complete. The completion event is usually signaled by
means of an interrupt request.

• More in general, waits are also required to satisfy precedence constraints and
ensure an orderly communication among tasks.

In all these cases, tasks move to the blocked state and stay there, without compet-
ing with other tasks for execution, until the event they are waiting for occurs.

56 Real-Time Systems Development with RTEMS and Multicore Processors

It is important to highlight that the form of wait realized by the blocked state of
the task state diagram is very different than the polling-based wait described in Sec-
tion 3.1. When performing a polling cycle, a task waits for the occurrence of an event
by repeatedly checking whether the event of interest occurred or not. For instance,
a task may wait for the completion of an I/O operation by repeatedly querying the
associated I/O device. This is usually called active (or busy) wait because the task
actively executes instructions and consumes core cycles while waiting.

On the contrary, tasks in the blocked state perform a passive wait and do not
consume any execution resources during their wait because the scheduler does not
allocate any core to execute them. As it will be better described in the following, they
simply lie in the blocked state until another agent makes them move into the ready
state again. Only at that point they start competing for execution resources again.

Looking back at Figure 3.4, there are two kinds of state transition in a task state
diagram:

• A voluntary transition is taken under the control of the task that undergoes
it, as a result of an explicit action it has performed.

• An involuntary transition is not under the control of the task affected by
it. Instead, it is the consequence of an action taken by another task, the
operating system, or the occurrence of an external event.

If we restrict ourselves for the time being to transitions involving the main task
state diagram states discussed so far:

a. The transition from the running to the blocked state is an example of voluntary
transition because it is always under the control of the affected task. In particular,
it is performed when the task invokes one of the synchronization primitives to be
discussed in Chapters 5, 7, and 9, in order to wait for a certain event e.

b. Instead, the transition from the blocked to the ready state is involuntary because
it takes place when event e eventually occurs. Depending on the nature of e, the
agent responsible for waking up the waiting task may be another task (when the
wait is due to inter-task synchronization), the operating system timing facility
(when the task is waiting for a time-related event), or an interrupt handler (when
the task is waiting for an external event, such as an I/O operation), but it is never
under the control of the task affected by the transition.
Somewhat contrary to intuition, the waiting task is returned to the ready state
and starts competing again for execution against the other tasks, but it does not go
directly to the running state. However, this is in accordance to the general concept
of modularity and separation of duties among operating system components. In
this case, the synchronization mechanism is responsible for deciding whether or
not a task is eligible for execution (by placing it in the ready or blocked state),
whereas the scheduler determines which tasks should actually be executed at any
given time (by moving them back and forth between the ready and running states).

c. As just mentioned, the operating system scheduler is responsible for picking up
tasks in the ready state for execution and moving them into the running state, ac-
cording to the outcome of its scheduling algorithm, whenever a core is available

57 Concurrent Programming and Scheduling Algorithms

for use. This is usually called task scheduling and is another example of involun-
tary transition.

d. The transition from the running to the ready state is more complex because it
may be either voluntary or involuntary. A running task may voluntarily signal its
willingness to relinquish the core it is being executed on by means of an operating
system request known as yield, which brings the task back to the ready state. In
turn, this leads the operating system to run its scheduling algorithm and choose
a task to run among the ones in the ready state. Depending on the scheduling
algorithm and the characteristics of the other tasks in the ready state, the choice
may or may not fall on the task that just yielded. In other words, the effect of a
yield is just to ask the operating system to reconsider the scheduling decision it
previously made.
Another possibility is that the operating system itself decides to run the scheduling
algorithm. Depending on the operating system, this may occur periodically or
whenever a task transitions into the ready state from some other states for any
reason. The second kind of behavior is more common with real-time operating
systems because, by intuition, when a task becomes ready for execution, it may
be “more important” than one of the running tasks from the point of view of the
scheduling algorithm.
When this is the case, the operating system forcibly moves one of the tasks in the
running state back into the ready state, with an action called preemption. Then, it
will choose one of the tasks in the ready state and move it into the running state.
On a multicore system, as better described in Part V of this book, the choice is
also affected by the affnity of a task, that is, the set of cores on which it is allowed
to run.

From the practical standpoint, operating systems strive to make decisions about
moving tasks from one state to another as sparingly as possible to improve effciency.
Accordingly, RTEMS schedules only when an event that may change the outcome of
a previous decision occurs, and even in that case it performs the minimum amount of
work necessary to implement the desired scheduling algorithm correctly. The most
complex event from this point of view takes place when a task blocks, and is way
more complex than a yield.

Besides the essential states and transitions presented so far, most real-world op-
erating systems implement additional ones. The most common additional states are
summarized in the following.

4. General-purpose operating systems usually move new tasks directly into the ready
state upon creation. This is the case, for instance, if task creation is accomplished
through the POSIX API [68]. A more common choice in real-time operating sys-
tems, also pursued by RTEMS, is to split the creation of a task from the start of
its execution. In this case, newly created tasks are put in a special dormant state.

5. When a task deletes itself or another task deletes it, it immediately ceases exe-
cution but some operating systems may not delete its TCB immediately. In these
cases, the deleted task goes into the terminated state. It stays in that state until

58 Real-Time Systems Development with RTEMS and Multicore Processors

the operating system completes the cleanup operations associated with task ter-
mination. For instance, deleted Linux tasks by default go to the special “zombie”
state until their parent explicitly invokes a dedicated system call to wait for their
termination and retrieve their fnal exit status. More in general, this happens in
virtually all Unix-like operating systems [86].

When there are additional states in the task state diagram, further transitions are
also needed to connect them to the main task state diagram states, namely:

e. The creation transition instantiates a new TCB, which describes the task being
created. As discussed previously, the transition may lead the new task into the
dormant or ready state depending on the operating system at hand.

f. The admission transition starts the execution of a dormant task, usually under the
initiative of a task that is already executing in the system. Since a task cannot
perform any action when it does not exist or it has not been started, both this
transition and the previous one are necessarily involuntary.

g. Tasks cease execution by means of a termination transition. Since most operating
systems allow a task to terminate itself or another task, the transition can be either
voluntary or involuntary. In the second case, the transition may originate from the
running or from the ready state.

h. Finally, the destruction transition permanently removes a task from the system
and destroys its TCB.

Even though the presence of additional states between the termination and the
destruction transitions may seem unimportant, it must be taken into due account from
the practical point of view. This is because some or all of the resources allocated
to the task—for instance, the TCB and possibly others—cannot be freed and later
reused unless the task is properly disposed of. Following an incomplete or incorrect
task termination and destruction procedure may easily lead to hard-to-spot memory
leaks or corruption.

3.2.3 REAL-TIME SCHEDULING ALGORITHMS

In the previous sections, we introduced the notion of a scheduling algorithm rather
informally. At the same time, we also hinted at the importance of a task—and its pri-
ority—as one of the main criteria used by real-time scheduling algorithms to select
which tasks should be brought into the running state at any given time.

It is now time to have a deeper and more formal look at how two of the most
widespread algorithms work. The discussion will start from the simplest algorithms,
which defne priorities as fxed values assigned to tasks upon creation, because this
is what most real-time operating systems provide and what most applications use.
More complex algorithms undoubtedly have advantages with respect to simple ones,
but they may easily go against the all-important requirement that real-time operating
systems implementers want effcient, practically implementable algorithms.

Due to lack of space, the discussion will be kept at an introductory level, with the
goal of providing interested readers with enough background information to further

59 Concurrent Programming and Scheduling Algorithms

investigate the matter by means of more advanced books, like [29, 31, 36, 85]. Fur-
ther details about the actual implementation of the RTEMS scheduling algorithms
can be found in its documentation [105]. Moreover, Reference [108] is an authorita-
tive survey of the history and evolution of real-time scheduling algorithms.

Last but not least, in the following we are going to present only scheduling algo-
rithms for single-core processors, postponing the discussion of multicore scheduling
to Chapter 13.

First of all, let us observe that, in any application comprising multiple
concurrently-executed tasks, the exact order in which tasks execute is not completely
specifed and constrained by the application itself. As described in Section 3.2.1,
some constraints on task execution order are necessary to ensure that the results pro-
duced by the application are correct in all cases. In fact, despite these correctness-
related constraints, the application will still exhibit a signifcant amount of nondeter-
minism.

Namely, the execution of its tasks may still interleave in different ways without
violating any of those constraints. Going back to the example of Figure 3.2, inter-
leavings (b) and (c) are equivalent from the functional correctness point of view.
However, they are not at all equivalent with respect to timings. Therefore, if some
tasks have a deadline on how much time it takes to complete them, a constraint also
known as response time deadline, only some of the interleavings that are acceptable
from the point of view of correctness will also be adequate to satisfy those additional
constraints.

As a result, in a real-time system it is necessary to further restrict the nonde-
terminism, beyond what is necessary to guarantee functional correctness, to ensure
that the task execution sequence will not only produce correct results in all cases but
will also lead tasks to meet their deadlines. This is exactly what is done by real-time
scheduling algorithms.

When using one of these algorithms, and under appropriate hypotheses, the
scheduling analysis techniques to be briefy presented in Section 4.1 are able to es-
tablish whether or not all tasks in the system will be able to meet their deadlines and,
using more complex techniques, calculate the worst-case response time of each task,
too.

It turns out that assessing the timing behavior of an arbitrarily complex concurrent
application is very diffcult. For this reason, it is frst of all necessary to introduce a
simplifed task model, which imposes some restrictions on the structure of the appli-
cation to be considered for analysis and its tasks. The simplest model, also known as
basic task model, has the following characteristics:

1. The application consists of a fxed number of tasks, and that number is known in
advance. All tasks are created and started at the same time, when the application
as a whole starts executing.

2. Tasks are periodic, with fxed and known periods, so that each task can be seen
as an infnite sequence of instances or jobs. Each task instance becomes ready for
execution at regular time intervals, that is, at the beginning of each task period.

60 Real-Time Systems Development with RTEMS and Multicore Processors

3. Tasks are completely independent of each other. They neither synchronize nor
communicate in any way, and they do not wait for external events.

4. As outlined above, timing constraints are expressed by means of deadlines. For
a given task, a deadline represents an upper bound on the response time of its
instances that must always be satisfed. In the basic task model the deadline of
each task is equal to its period. In other words, the previous instance of a task must
always be completed before the next one becomes ready for execution. Deadlines
defned in this way are often called implicit deadlines in literature.

5. The worst-case execution time of each task—that is, the maximum amount of
processor time it may possibly need to complete any of its instances when the
task is executed in isolation—is fxed and can be computed offine.

6. All system’s overheads, for example, context switch times, are negligible.

Although the basic task model is very intuitive and simple, it still leads to very im-
portant results concerning theoretical scheduling analysis. Moreover, it is the foun-
dation and starting point of Rate Monotonic Analysis (RMA), which is probably the
most widespread analysis method for real-time systems [109]. At the same time, it
also has some shortcomings that hinder its application to real-world scenarios and
must be relaxed to make scheduling analysis useful in practice. More specifcally:

• The requirement about task independence rules out time-related waits and
inter-task communication as described in Chapters 5, 7, and 9. This is unac-
ceptable in practice because it goes against the way concurrent systems are
usually designed—as a set of tasks that cooperate, and hence, necessarily
interact with one another.

• The deadline of a task is not always the same as its period. For instance, a
deadline shorter than the period—often called constrained deadline—is of
particular interest to model tasks that are executed infrequently but, when
they are, must be completed with tight timing constraints. This is typical,
for instance, of tasks that must react to and handle abnormal conditions in
a system.

• Some tasks are aperiodic. This may happen, for instance, when the execu-
tion of a task is triggered by an event external to the system. Again, this is
typical of alarms and many forms of network communication, in which the
arrival of an incoming frame is all but periodic in nature.

• It may be diffcult to determine an upper bound on a task execution time
which is at the same time accurate and tight. For instance, many iterative
algorithms may take a different number of iterations depending on their in-
put data. For complex algorithms, the worst case may be diffcult to identify
theoretically, and in any case, there may be a signifcant difference between
the average and the worst-case number of iterations.

• Modern hardware architectures include hardware components (like caches,
for example), in which the average time needed to complete an operation
may differ from the worst-case time by several orders of magnitude. As a
consequence, they bring even more uncertainty to worst-case task execu-
tion time calculations.

61 Concurrent Programming and Scheduling Algorithms

TABLE 3.1
Notation for Real-Time Scheduling Algorithms and Analysis

Symbol Meaning
N Number of tasks in the system
τi The i-th task, 1 ≤ i ≤ N
Ti The period of task τi
Di The relative deadline of task τi
Ci The worst-case execution time of task τi
Ri The worst-case response time of task τi
ϕi Initial phase of task τi
τi, j The j-th instance of the i-th task
ri, j The release time of τi, j
di, j The absolute deadline of τi, j
ci, j The execution time of τi, j
fi, j The response time of τi, j

hp(i) Indexes of tasks with priority higher than τi
Bi Worst-case blocking time endured by τi
K Number of semaphores in the system
Sk The k-th semaphore, 1 ≤ k ≤ K

usage(k, i) Function that is 1 if τi makes use of Sk , and 0 otherwise
Qi Number of self-suspension points in task τi
Pi The worst-case self-suspension time of task τi

Before proceeding further, it is also necessary to introduce some notation to be
used throughout the book. Even though it is not completely standardized, the notation
summarized in Table 3.1 and illustrated in Figure 3.5 is the one adopted by most
textbooks and publications on the subject. In particular:

• The symbol τi has already introduced previously and represents the i-th
task in the system. If N represents the number of tasks in the system, it is
1 ≤ i ≤ N. Unless otherwise specifed, tasks are enumerated by decreasing
priority. In other words, if i < j, the priority of τi is greater than the priority
of τ j.

• A periodic tasks τi consist of an infnite number of repetitions, or instances.
When it is necessary to distinguish an instance of τi from another, we use
the notation τi, j to indicate the j-th instance of τi. Instances are enumerated
according to their temporal order, so that τi, j precedes τi,k in time if and
only if j < k. The frst instance of τi is τi,0.

• By defnition, individual instances of a periodic task τi are released, that
is, they become ready for execution, at regular time intervals. The distance
between two adjacent releases is the period of the task, denoted by Ti.

• The symbol Di represents the relative deadline of τi, that is, the deadline
of an instance expressed with respect to the release time of the instance
itself. According to the model, the relative deadline is therefore the same

⋯

Time
0

jTi + φi

ri,j

Ti

ri,j+1

τi,j τi,j

Execution of higher-priority
tasks, i.e., interference

Di

di,j

ci, j

fi,j Ri ≥ maxj (fi,j)

Ci ≥ maxj (ci,j)

fi,j ≥ ci,j

Preemption

FIGURE 3.5 Notation for real-time scheduling algorithms and analysis.

for all instances of a given task. In the following it will be assumed that
∀i Di ≤ Ti.

• The worst-case execution time of τi is denoted as Ci, whereas ci, j represents
the execution time of its j-th instance τi, j. Taking into account that Ci can
sometimes be a conservative estimate, we can write Ci ≥ max j(ci, j). As
outlined above, the worst-case execution time of a task is an upper bound
on the amount of processor time needed to complete any of its instances
when the task is executed in isolation, that is, without the presence of any
other tasks in the system. It is worth remarking that the task execution time
shall not be confused with its response time, to be described next.

• The worst-case response time of τi, denoted as Ri, is an upper bound on
the amount of time needed to complete any of its instances when the task
is executed together with all the other tasks in the system. It is therefore
∀i Ri ≥ Ci because the presence of other tasks can only worsen the com-
pletion time of τi. For instance, the presence of a higher-priority task τ j
may lead the scheduler to preempt τi in favor of τ j when the latter becomes
ready for execution. This phenomenon is known as interference.

• Since the actual response time fi, j of task instance τi, j depends on the
amount of interference that particular instance was subject to, it will vary
from one instance to another. It still is ∀ j fi, j ≥ ci, j and, according to the
defnition of worst-case response time, we can also write Ri ≥ max j(fi, j).

• The symbol ri, j is used to denote the release time of task instance τi, j, that
is:

ri, j = ϕi + jTi, j = 0,1, . . . (3.1)

where ϕi represents the initial phase of τi, namely, the absolute release time
of its frst instance τi,0.

62 Real-Time Systems Development with RTEMS and Multicore Processors

63 Concurrent Programming and Scheduling Algorithms

• Similarly, di, j represents the absolute deadline of task instance τi, j, which
is given by:

di, j = ri, j + Di. (3.2)

An important difference between Di and di, j is that the former is a rela-
tive quantity—measured with respect to the release time of each instance
of τi—and is the same for all instances. On the contrary, the latter is an
absolute quantity that represents the instant in time at which task instance
τi, j must necessarily already be completed in order to satisfy its timing
constraints. As a consequence, di, j is different for each instance of τi.

Looking back at Figure 3.5 further highlights the difference between ci, j and fi, j
when another, higher-priority task executes concurrently with τi, j on the same core,
thus causing interference, which is represented by light gray, vertical bars in the
fgure. In this case:

• If a higher-priority task is executing at ri, j, when τi, j is released, τi, j does
not immediately transition to the running state. Instead, it stays in the ready
state until the higher-priority task has been completed or leaves the running
state for some other reasons. This corresponds to the leftmost interference
bar in Figure 3.5.

• If a higher-priority task is released while τi, j is running, the operating sys-
tem may temporarily stop its execution in favor of the higher-priority task,
with an action known as preemption, and resume it at a later time. This
gives rise to further interference, indicated by the rightmost bar in the fg-
ure.

As a result, the response time fi, j of τi, j may become signifcantly longer than
its execution time ci, j. A very important goal of defning a satisfactory real-time
scheduling algorithm, along with an appropriate way of analyzing its behavior, is to
ensure that fi, j is bounded for any instance τi, j of τi.

The Rate Monotonic (RM) scheduling algorithm, introduced by Liu and Ley-
land [84] assigns to each task τi in the system a fxed priority, which is inversely
proportional to its period Ti. Tasks are then selected for execution according to their
priority, that is, at each instant the operating system scheduler chooses for execution
the ready task with the highest priority. Preemption of lower-priority tasks in favor
of higher-priority ones is performed as soon as a higher-priority task becomes ready
for execution.

The Rate Monotonic priority assignment takes into account only task periods Ti,
and not their worst-case execution times Ci, thus favoring tasks with a shorter period.
Intuitively, this makes sense because in the basic task model we are assuming Di = Ti,
and hence, tasks with a shorter period have less time available to complete their work
before they miss their deadline. On the contrary, tasks with a longer period can afford
giving precedence to more urgent tasks and still be able to fnish their execution in
time.

64 Real-Time Systems Development with RTEMS and Multicore Processors

This informal reasoning can be confrmed with a mathematical proof of optimal-
ity. It has been proven that Rate Monotonic is the best scheduling policy among all
the fxed priority scheduling policies on a single-core processor when the basic task
model is considered. In particular, under the following assumptions:

1. We consider a fxed set of independent tasks.
2. Each τi is periodic with period Ti and has a known worst-case execution time Ci.
3. The relative deadline of each task is equal to its period, that is, ∀i Di = Ti.
4. All tasks are released together for the frst time at t = 0, that is, ∀i ϕi = 0.
5. Tasks are scheduled preemptively according to a fxed priority assignment.
6. There is only one execution core.

It has been proven [84] that, if a given set of periodic tasks with fxed priorities can be
scheduled so that all tasks meet their deadlines by means of some other scheduling
algorithm A, then the Rate Monotonic algorithm is also able to do the same.

Although the Rate Monotonic algorithm has been proven to be optimal among
all fxed-priority scheduling algorithms under the hypotheses just discussed, it is
still interesting to investigate whether it is possible to “do better” by relaxing some
constraints on the structure and complexity of their scheduler. In particular, it is in-
teresting to consider the scenario in which task priorities are no longer constrained to
be fxed, but may change over time instead. The answer to this question was given by
Liu and Layland in [84], by defning a dynamic-priority scheduling algorithm called
Earliest Deadline First (EDF) and proving it is optimal among all possible scheduling
algorithms, again under some hypotheses.

The EDF algorithm selects tasks according to their absolute deadlines. That is, at
each instant, tasks with earlier deadlines receive higher priorities. According to (3.1)
and (3.2), the absolute deadline di, j of τi, j is:

di, j = ϕi + jTi + Di. (3.3)

From this equation, it is clear that the priority of a given task τi changes dynami-
cally from one instance to the next because it depends on the deadline of its currently
active instance. On the other hand, the priority of a given task instance τi, j is still fxed
because its deadline is computed once and for all by means of (3.3).

This property also gives a signifcant clue on how to simplify the practical im-
plementation of EDF. In fact, EDF implementation does not require that the sched-
uler continuously monitors the current situation and rearranges task priorities when
needed. This would very likely be too onerous. Instead, task priorities shall be up-
dated only when a new task instance is released. Afterwards, when time passes, the
priority order among active task instances does not change because their absolute
deadlines do not move.

As happened for RM, the EDF algorithm works well according to intuition be-
cause it makes sense to give a higher priority to more “urgent” task instances, that is,
instances that are getting closer to their deadlines without being completed yet. The
reasoning has been confrmed in [84] by a mathematical proof. In particular, it has
been proven that EDF is optimal under the following assumptions:

65 Concurrent Programming and Scheduling Algorithms

1. We consider a fxed set of independent tasks.
2. Each τi is periodic with period Ti and has a known worst-case execution time Ci.
3. The relative deadline of each task is equal to its period, that is, ∀i Di = Ti.
4. All tasks are released together for the frst time at t = 0, that is, ∀i ϕi = 0.
5. Tasks are scheduled preemptively according to their dynamic priority.
6. There is only one execution core.

The defnition of optimality used in the proof is the same one adopted for Rate
Monotonic. Namely, the proof shows that, if any task set is schedulable by any
scheduling algorithm under the hypotheses of the theorem, then it is also schedula-
ble by EDF. In spite of its proven optimality, EDF is rarely implemented in common
real-time operating systems. RTEMS is a notable exception in this respect because it
does have EDF as an option, which is used by default on multicore systems.

Even if we stay with a fxed priority assignment, to take advantage of its low
implementation complexity, there are other ways to relax some constraints on task
characteristics and devise scheduling algorithms more appropriate for use in real-
world scenarios. For instance, it has already been mentioned that the assumption
Di = Ti, that is, assuming that all tasks have a relative deadline equal to their period,
may be sometimes unrealistic.

If we extend the basic task model to cover the more general case Di ≤ Ti, Leung
and Whitehead [82] were able to prove that the Deadline Monotonic Priority Order
(DMPO) priority assignment is optimum under the following hypotheses:

1. We consider a fxed set of independent tasks.
2. Each τi is periodic with period Ti and has a known worst-case execution time Ci.
3. The relative deadline of each task does not exceed its period, that is, ∀i Di ≤ Ti.
4. All tasks are released together for the frst time at t = 0, that is, ∀i ϕi = 0.
5. Tasks are scheduled preemptively according to their fxed priority.
6. There is only one execution core.

The deadline monotonic priority assignment is very similar in concept to RM.
It assigns to each task a fxed priority inversely proportional to its relative deadline
instead of its period, as RM would do. Once more, the meaning of the term optimum
must be understood in the same way as for RM and EDF.

This extension is especially convenient to deal with tasks that are not periodic
in nature, and hence, called aperiodic tasks. Tasks of this kind still consist of an
infnite sequence of identical instances. However, their release does not take place at
a regular rate. For instance, aperiodic tasks may be triggered by:

• User commands that require a response from the system.
• External events, such as alarms, generated at unpredictable times.

In many settings of practical interest, it is possible to determine the minimum
interarrival time interval of an aperiodic task. In this case, we call it a sporadic task.
For example, a minimum interarrival time can safely be assumed for user-generated
events, due to the inherent speed limits of human beings. Mechanical devices, like

66 Real-Time Systems Development with RTEMS and Multicore Processors

keys and relays, also give rise to signals with a guaranteed minimum interarrival
time, when de-bounced appropriately.

Then, the occurrence of triggering events can be rate-limited to ensure that, once
a sporadic task has been triggered, it will not be triggered again until at least the
minimum interarrival time has elapsed.

One simple way of expanding the basic process model to include sporadic tasks
is to interpret the period Ti as the minimum interarrival time interval of τi. This is
an obviously conservative choice, because a sporadic task τi can actually be released
much less frequently than Ti, but it nevertheless guarantees that any scheduling analy-
sis technique applied to the task set, if successful, ensures that the system can sustain
the maximum release rate of τi. More sophisticated methods of handling sporadic
tasks do exist, but their description is beyond the scope of this book. A more com-
prehensive treatment of this topic can be found in References [29, 31, 85].

For sporadic tasks, the assumption Di = Ti usually becomes unreasonable be-
cause, for instance, they may encapsulate an alarm handler. In many systems, alarms
occur infrequently, leading to a relatively high minimum interarrival time Ti. How-
ever, when they do occur, they must be handled within a deadline that is much shorter
than their period, that is, Di � Ti. This is exactly the scenario that the deadline mono-
tonic priority order has been designed to handle.

Similarly, it can also be observed that the hypothesis ∀i ϕi = 0, which states that
all tasks are released simultaneously at t = 0 and defnes a synchronous periodic sys-
tem, is not always satisfed and, practically speaking, can be a challenge. Specialized
synchronization devices, like the barriers to be discussed in Section 7.5, can often
be used to this purpose.

Nevertheless, asynchronous periodic systems, characterized by having ϕi 6= 0 for
some i, are also of practical interest. In these systems, tasks are never all released si-
multaneously and it has been proven that the deadline monotonic priority assignment
is no longer optimal for them [82]. However, an optimal fxed-priority assignment
does exist, it has been proposed by Audsley [15], and is known as Optimal Priority
Assignment (OPA).

Although OPA is considerably more complex than the deadline monotonic prior-
ity order or RM, all its complexity is confned to the priority assignment algorithm.
Once priorities have been assigned to tasks, they are fxed and can be implemented by
the same lower-level scheduling mechanism used by the deadline monotonic priority
order and RM. In other word—unlike what happens to some extent with EDF—the
complexity of OPA does not impact the effciency of the performance-critical oper-
ating system component that moves tasks between the ready and running states of
the task state diagram.

3.3 SUMMARY
This chapter contains the basics of concurrent programming. It frst defned key con-
cepts like the cooperating sequential processes model, the task control block, and
the task state diagram. Then, it described the most widespread real-time scheduling

67 Concurrent Programming and Scheduling Algorithms

algorithms for single-core systems, known as rate monotonic (RM) and earliest dead-
line frst (EDF).

The discussion of how the extension of these algorithms to multicore proces-
sors affects their optimality and performance is left to Part V of the book, along
with a description of several scheduling algorithms specifcally tailored to multicore
processors.

http://taylorandfrancis.com

4 Scheduling Analysis and
Interrupt Handling

CONTENTS

4.1 Basics of Real-Time Scheduling Analysis ..69
4.1.1 Utilization-Based Schedulability Tests...70
4.1.2 Response Time Analysis...72
4.1.3 Task Interactions and Self-Suspension ...73

4.2 Practical Considerations on Interrupt Handling ..78
4.2.1 Exception Handling in The Cortex-M Processor................................78
4.2.2 Exception Priorities and Entry/Exit Sequence....................................82
4.2.3 RTEMS Context Switch and Exception Handling..............................89
4.2.4 Interrupts in Schedulability Analysis..96

4.3 Summary..100

The frst part of this chapter contains an introduction to schedulability analysis, a
set of mathematical tools to predict the worst-case timing behavior of a task-based
system. Although only the most basic techniques can be discussed here due to lack
of space, additional references are provided to interested readers.

In the second part of the chapter, we move to more practical considerations on in-
terrupt handling, using a popular microprocessor architecture as a reference. Further
information is also given about how the RTEMS operating system implements some
key activities in this area, most notably task context switch. This information is es-
sential to fully understand how operating systems implement the theoretical concepts
and algorithms presented in Chapter 3.

The chapter ends with a discussion of how interrupt handling fts in the schedu-
lability analysis framework, a topic of signifcant practical importance since most
real-time systems comprise multiple interrupt sources whose impact cannot be ne-
glected.

4.1 BASICS OF REAL-TIME SCHEDULING ANALYSIS
In the previous section, it has been stated that several scheduling algorithms are op-
timal within the scope of the basic task model, possibly extended in various ways.
Those important theoretical results are valid, subject to certain assumptions about

69

70 Real-Time Systems Development with RTEMS and Multicore Processors

the general characteristics of the scheduling algorithm, task properties, and the un-
derlying system.

However, they still do not answer a rather important practical question that arises
during the design of a real-time software application. Namely, software designers
want to know whether or not a certain task set they are working with can successfully
be scheduled by means of one of the scheduling algorithms made available by the
operating system of their choice.

A useful consequence of having introduced a formal task model is that it be-
comes possible to defne precisely the meaning of “successful scheduling” or, in
more formal terms, schedulability of a task set. More specifcally, we say that a task
set is schedulable by a given scheduling algorithm if all tasks in the set meet their
deadline—and hence, they all satisfy the timing constraints set forth in the system
specifcation. This happens if and only if ∀i, j fi, j ≤ di, j or, if we resort to the con-
cept of worst-case response time, ∀i Ri ≤ Di.

Although, in some simple cases, a straightforward “yes or no” answer to the
schedulability question may be enough, more often than not designers also need
to be confdent about how much timing margin their systems have. In other words,
designers may not be content to just know that all tasks in the set will meet their
deadline and may also want to know the actual value of Ri. This information enables
them to judge, for instance, how far or how close their tasks are from missing their
deadlines, in case there are some unexpected extra delays in their execution.

In this chapter, the scope of the analysis will be limited to fxed-priority schedul-
ing algorithms for synchronous systems, such as RM and the deadline monotonic
priority order, running on a single-core processor. Similar, but considerably more
complex analysis methods also exist for EDF, OPA, and other scheduling algorithms.
Readers are referred to other publications, for instance [15, 29, 31, 36, 85], for a com-
plete description of those methods.

4.1.1 UTILIZATION-BASED SCHEDULABILITY TESTS

The simplest family of scheduling analysis methods can be applied to single-core
systems and is based on a quantity called utilization factor, usually denoted as U and
defned as:

N CiU = ∑ (4.1)
i=1 Ti

where, according to the notation presented in Table 3.1, Ci represents the worst-case
execution time of task τi and Ti is its period.

By intuition, the fraction Ci/Ti represents the fraction of processor time spent
executing task τi in the worst case. The utilization factor is therefore a measure of
the computational load imposed by a given task set on the core that executes it.
Accordingly, the computational load associated with a task increases when its worst-
case execution time Ci increases and/or its period Ti decreases.

Although U is derived from a very simple calculation and its value may be im-
precise due to uncertainties in the Ci described earlier, it still provides useful insights

71 Scheduling Analysis and Interrupt Handling

about the schedulability of the task set it refers to. Even more importantly, the meth-
ods to be discussed in the following can be readily applied during system design.
Thus, they may raise important early warnings about the soundness of the design
itself and save valuable time, because it makes little sense to try and implement a
system that is broken by design.

First of all, an important theoretical result identifes task sets that are certainly not
schedulable. Namely, if U > 1 for a given task set, then the task set is not schedulable
by a single-core processor, regardless of the scheduling algorithm in use. Unlike the
other results to be discussed here, this one can also be extended to multicore systems
to state that, on an M-core system, a task set is certainly not schedulable if U > M.

Besides the formal proof—which can be found in [84]—this result is quite in-
tuitive. Basically, it states that it is impossible to allocate to the tasks a fraction of
processor time U that exceeds the total processor time available for use, that is, 1 on
a single-core processor. It should also be noted that this result merely represents a
necessary condition and, by itself, it does not provide any useful information about
the schedulability of a task set when U ≤ 1.

For the RM priority assignment, a suffcient test provides more insights, assum-
ing the task set is synchronous and conforms to the basic task model introduced in
Section 3.2.3. More specifcally, it is possible to determine a threshold value for U
so that, if U is below the threshold, the task set can certainly be scheduled, indepen-
dently of all its other characteristics, on a single-core processor. Namely, in [40, 84]
it has been proven that if

N Ci ≤ N(21/N − 1),U = ∑ (4.2)
Tii=1

then the task set is certainly schedulable when using the RM priority assignment.
The necessary and suffcient schedulability tests are summarized in the lower and
mid part of Figure 4.1. At the same time the fgure highlights that when the proces-
sor utilization factor U falls in the range (N(21/N − 1),1), this utilization-based test
provides no defnitive answers.

The hyperbolic bound for RM described in [20] gives rise to a schedulability test
that has the same computational complexity as the one given in (4.2) and makes use
of the same underlying hypotheses, but is less pessimistic. Namely, if: � �N Ci

+ 1 ≤ 2, (4.3)
Ti

∏
i=1

then the task set is certainly schedulable when using the RM priority assignment.
Nevertheless, this is still a suffcient test, that is, a task set might still be schedulable
although it does not pass the test. In this case, more complex analysis techniques, like
the one described in Section 4.1.2, are necessary to exactly assess schedulability.
However, it must also be considered that the extra computational complexity may
render these techniques impractical for large task sets.

A schedulability test similar to (4.2), under the same hypotheses, also exists for
EDF [84]. In this case, the threshold value for U is exactly 1, which makes the test

Not schedulable

Not schedulable

Not schedulable

U

0 1

Any
algorithm

RM

EDF

Schedulable

Schedulable

?

N (21/N - 1)

?

FIGURE 4.1 Utilization-based schedulability tests for a single-core processor.

both necessary and sufficient. That is, a task set of N periodic, synchronous tasks
conforming to the basic process model is schedulable with the EDF algorithm if and
only if:

N CiU = ∑ ≤ 1. (4.4)
i=1 Ti

As also shown in the upper part of Figure 4.1, with respect to the corresponding
tests for RM, the utilization-based schedulability tests for EDF leaves no area of
uncertainty.

4.1.2 RESPONSE TIME ANALYSIS

In the previous section we have observed that, for certain values of U , utilization-
based tests do not provide enough information about the schedulability of a task
set with the RM priority assignment. Hence, researchers developed more complex
tests, able to provide a definitive answers, without any areas of uncertainty. Among
them, we will focus on a method known as response time analysis (RTA) [16, 17],
an exact (both necessary and sufficient) schedulability test that can be applied to any
fixed-priority assignment scheme on single-core processors.

This test not only gives a “yes or no” answer to the schedulability question but
also calculates the worst-case response times Ri individually for each task. Therefore,
it becomes possible to compare them with the corresponding deadlines Di not only
to assess whether all tasks meet their deadlines or not, but also to judge how far or
how close they are from missing their deadlines.

According to response time analysis, the worst-case response time Ri of task τi
in a synchronous system can be calculated by considering the following recurrence
relationship:

(k)
(k+1) wiw = Ci + ∑ Cj, (4.5)i Tjj∈hp(i)

72 Real-Time Systems Development with RTEMS and Multicore Processors

Scheduling Analysis and Interrupt Handling 73

in which d·e is the ceiling function, which gives the least integer greater than or equal
to its argument, and hp(i) denotes the set of indices of the tasks with a priority higher
than τi. For RM, the set contains the indices j of all tasks τ j with a period Tj < Ti. If
we adhere to the convention that tasks are enumerated in order of decreasing priority,
it is also hp(i) = {1, . . . , i− 1}.

(k+1) (k)Informally speaking, w and w are the (k+1)-th and the k-th estimate of Ri,i i
respectively, and Equation (4.5) provides a way to calculate the next estimate of Ri

(0) (0)starting from the previous one. The frst approximation w of Ri is set to w = Ci,i i
which is the smallest possible value of Ri. It has been proven that the succession
(0) (1) (k)w ,w , . . . ,w , . . . defned by (4.5) is monotonic and nondecreasing. Two casesi i i

are then possible:

1. If the succession does not converge, there exists at least one scheduling scenario
in which τi does not meet its deadline Di, regardless of the specifc value of Di.

2. If the succession converges, it converges to Ri, and hence, it will be
(k+1) (k)w = w = Ri for some k. In this case, τi meets its deadline in every pos-i i

sible scheduling scenario if and only if the worst-case response time provided by
response time analysis is Ri ≤ Di.

Unlike the U-based scheduling tests discussed in Section 4.1.1, this method no
longer assumes that the relative deadline Di is equal to the task period Ti and is
also able to handle the more general case in which Di ≤ Ti. In addition, the method
works with any fxed-priority ordering, and not just with the Rate Monotonic priority
assignment, as long as hp(i) is defned appropriately, a preemptive scheduler is in
use, we are considering a synchronous task set that conforms to the basic task model
and it is executed on a single-core processor. As a consequence, it is also readily
applicable to the deadline monotonic priority order.

4.1.3 TASK INTERACTIONS AND SELF-SUSPENSION

Another interesting property of response time analysis is that it is more fexible than
U-based tests and is easily amenable to further extensions, for instance, to consider
the effect of task interactions. These extensions aim at removing one important lim-
itation of the basic task model used so far and bring it closer to how real-world tasks
behave.

For simplicity, in this book, the discussion will only address the following two
main kinds of interaction:

1. Task interactions due to mutual exclusion, a ubiquitous necessity when dealing
with shared data, as shown in Chapter 7.

2. Task self suspension, which takes place when a task passively waits for any kind
of external event.

Readers are referred, for instance, to [31, 36, 85] for more detailed and compre-
hensive information about the topic.

74 Real-Time Systems Development with RTEMS and Multicore Processors

The second kind of interaction is important because it takes place in many input–
output operations. In those cases, a task within the device driver typically starts an
operation, by programming the device control registers appropriately, and then pas­
sively waits for the results. In turn, the device signals that the requested operation has
been completed by raising an interrupt request, whose handler wakes up the waiting
task.

Other examples, involving only tasks rather than devices, include semaphore-
based task synchronization, outlined in Chapter 7, and synchronous message passing
operations, which are discussed in Chapter 9.

Regardless of the nature of the interaction, tasks are bound to experience a certain
amount of blocking from that interaction, whenever such an interaction is based upon
one of the wait- and lock-based synchronization methods to be described in this part
of the book. What a proper design of these synchronization methods and of the way
tasks use them can do is to guarantee that the worst-case blocking time endured by
each individual task τi, denoted as Bi, is bounded. The worst-case blocking time can
then be calculated and used to refine the response time analysis method discussed in
Section 4.1.2, in order to determine worst-case response times.

Wait- and lock-free synchronization methods also exists and are especially use­
ful in the context of multicore concurrency, although they may imply a significant
drawback in design and implementation complexity. They will be discussed in more
detail in Chapter 13.

When staying with more traditional synchronization methods, the value of Bi
can then be used to extend response time analysis and consider the blocking time
in worst-case response time calculations. Namely, the basic recurrence relationship
(4.5) can be rewritten as:

(k)
(k+1) wi
wi = Ci + Bi + ∑ Cj. (4.6)

Tjj∈hp(i)

It has been proven that the new recurrence relationship still has the same prop­
(0) (1) (k)erties as the original one. In particular, if the succession w ,w , . . . ,w , . . . con-i i i

verges, it still provides the worst-case response time Ri for an appropriate choice
(0)of w . On the other hand, if the succession does not converge, τi is surely not i

(0)schedulable. As before, setting w = Ci provides a sensible initial value for the i
succession.

The main difference is that the new formulation may be pessimistic, instead of
necessary and sufficient, because the bound Bi on the worst-case blocking time might
not be tight. Therefore it might be practically impossible for a task to ever incur in
a blocking time equal to Bi, and hence, actually experience the worst-case response
time calculated by means of (4.6).

Mutual exclusion blocking
As better illustrated in Chapter 8, using a plain semaphore as a mutual exclu­
sion device is not enough to ensure that the Bi are bounded, due to a well-known

75 Scheduling Analysis and Interrupt Handling

phenomenon called unbounded priority inversion. However, appropriate extensions
to semaphore’s semantics, also called protocols and also presented in Chapter 8, have
been devised to solve this issue.

If we consider the priority inheritance protocol—proposed by Sha, Rajkumar,
and Lehoczky [110]—it has been proven that, if there are a total of K semaphores
S1, . . . ,SK in the system and critical regions are not nested, the worst-case blocking
time experienced by each instance of task τi due to task interaction is bounded, and
a bound is given by:

K
BPI = ∑ usage(k, i)C(k). (4.7)i

k=1

In the equation above,

• usage(k, i) is a function that returns 1 if semaphore Sk is used by (at least)
one task with a priority less than the priority of τi, and also by (at least) one
task with a priority higher than or equal to the priority of τi, including τi
itself. Otherwise, usage(k, i) returns 0.

• C(k) is the worst-case execution time among all critical regions associated
with, or guarded by, semaphore Sk.

It should be noted that the bound provided by (4.7) is often “pessimistic” when
applied to real-world scenarios, because

• It assumes that if a certain semaphore can possibly block a task, it will
indeed block it.

• For each semaphore, the blocking time suffered by τi is always assumed
to be equal to the worst-case execution time of the longest critical region
guarded by that semaphore, even though the blocking tasks actually do not
stay in the region for that long.

However, even being pessimistic, it is an acceptable compromise between the
tightness of the bound it calculates and its computational complexity. Better algo-
rithms exist and are able to provide a tighter bound of the worst-case blocking time,
but the complexity of the analysis also becomes higher, which may make it problem-
atic for large task sets.

Another possibility foreseen in Chapter 8 is to use the priority ceiling protocol,
proposed by the same authors [110]. In this case, it can be proved that the worst-case
blocking time experienced by each activation of task τi due to task interactions is
bounded by:

K
BPC = max{usage(k, i)C(k)} , (4.8)i k=1

where usage(k, i) and C(k) have the same meaning as in (4.7). This formula is also
valid for a variant of the priority ceiling protocol, called immediate priority ceiling or
priority ceiling emulation protocol. This variant is of great practical interest because,
together with priority inheritance, is one of the protocols specifed by the POSIX
standard [68].

76 Real-Time Systems Development with RTEMS and Multicore Processors

≤ BPIBy comparing (4.7) and (4.8), we can easily see that it is BPC for any given i i
task set. Nevertheless, we must also recall that the priority ceiling protocol is less
fexible than priority inheritance, because it requires a priori knowledge of all tasks
that make use of a certain semaphore and their priority.

Task self-suspension
The analysis of task self-suspension presented here is based on [102], which ad-
dresses schedulability analysis in the broader context of real-time synchronization
for multiprocessor systems. The reference also contains further, more detailed infor-
mation, as well as the formal proof of all the statements to be discussed next.

Somewhat contrary to intuition, the effects of self-suspension are not necessar-
ily local to the worst-case response time of the task that is experiencing it. On the
contrary, the self-suspension of a high-priority task may also increase the worst-case
response time of lower-priority tasks and, possibly, make them no longer schedula-
ble.

This is because, after the self-suspension of a high-priority task ends, the task
becomes ready for execution again and will preempt any lower-priority task. It can
be proven that this new preemption opportunity may imply a greater impact on the
worst-case response time of lower-priority tasks with respect to the case in which the
high-priority task runs until completion without self-suspending.

Nevertheless, an upper bound BSS on the worst-case blocking endured by task τii
due to its own self-suspension, as well as the self-suspension of higher-priority tasks,
still exists and can be calculated effciently as

BSS
i = Pi + ∑ min(Cj, Pj). (4.9)

j∈hp(i)

In the above formula:

• Pi is the worst-case self-suspension time of task τi.
• hp(i) denotes the set of task indexes with a priority higher than τi.
• Cj is the execution time of task τ j.

According to (4.9), the worst-case blocking time BSS due to self-suspension en-i
dured by task τi is given by the sum of its own worst-case self-suspension time Pi
plus a contribution from each of the higher-priority tasks, that is, the tasks whose in-
dex belongs to hp(i). The individual contribution of task τ j, j ∈ hp(i), to BSS is given i
by its worst-case self-suspension time Pj, but it can never exceed its worst-case exe-
cution time Cj.

When considering the effects of mutual exclusion and self-suspension together, it
turns out that these two sources of blocking are not independent from each other, be-
cause the self-suspension of a task has an impact on how it interacts with other tasks.
There are several different ways to consider the combined effect of self-suspension
and mutual exclusion on worst-case blocking time calculation. Perhaps the most
intuitive one, presented in References [85, 102], makes use of the notion of task

Scheduling Analysis and Interrupt Handling 77

segments—that is, portions of task execution delimited by a self-suspension point.
Accordingly, if task τi performs Qi self-suspensions during its execution, it contains
Qi + 1 segments.

Task segments are considered to be completely independent from each other for
what concerns blocking due to mutual exclusion. The analysis then proceeds in a
conservative way, by assuming that each task goes back to the worst possible mutual-
exclusion blocking scenario after each self-suspension. Following this approach, the
worst-case blocking time BPI or Bi

PC of τi due to mutual exclusion, calculated asi
specifed in (4.7) or (4.8), becomes the worst-case blocking time endured by each
individual task segment.

Hence, the worst-case blocking time of task τi due to mutual exclusion, BTI, isi
given by:

BTI (Qi + 1)BPI = (priority inheritance protocol), or (4.10)i i

BTI (Qi + 1)BPC
i = i (priority ceiling protocol). (4.11)

By combining (4.9) and (4.10)–(4.11), the total worst-case blocking time Bi of τi,
considering both self-suspension directly and its effect on mutual exclusion blocking,
can be written as:

BSS + BTIBi = i i
K

= Pi + ∑ min(Cj,Pj)+(Qi + 1) ∑ usage(k, i)C(k), (4.12)
j∈hp(i) k=1

for the priority inheritance protocol, or:

BSS + BTIBi = ii
K

= Pi + ∑ min(Cj, Pj)+(Qi + 1) max{usage(k, i)C(k)} , (4.13)
k=1j∈hp(i)

for the priority ceiling or the immediate priority ceiling protocols. In the formulas
above, Cj and C(k) have got two different meanings that should not be confused
despite the likeness in notation, namely:

• Cj is the worst-case execution time of a specifc task, τ j in this case, while
• C(k) is the worst-case execution time of any task within any of the critical

regions guarded by Sk.

A distinct advantage of the approach just described is that it is fairly simple and re-
quires very limited knowledge about the internal structure of the tasks. For instance,
it is necessary to know how many self-suspension points there are in each task, but it
is not essential to know exactly where they are. This kind of information is simple to
collect and maintain as software evolves with time. However, the disadvantage of us-
ing a very limited amount of information is that it makes the method extremely con-
servative. Thus, the bound Bi calculated according to (4.12)–(4.13) is defnitely not
tight and may widely overestimate the actual worst-case blocking time in some cases.

78 Real-Time Systems Development with RTEMS and Multicore Processors

More sophisticated and precise methods do exist, such as the one described in
Reference [77]. However, as we have seen in several other cases, the price to be paid
for a tighter upper bound is that much more information needs to be collected and,
perhaps even more importantly, maintained as the software evolves. For instance, in
the case of [77], we need to know not only how many self suspension points there
are in each task but also their exact location within the task. Namely, we need to
know the worst-case execution time of each individual task segment, instead of the
worst-case execution time of the task as a whole.

4.2 PRACTICAL CONSIDERATIONS ON INTERRUPT HANDLING
While the previous sections have given a more theoretical view of interrupt han-
dling, here we will focus on three aspects of more practical interest, namely, how
contemporary processors handle interrupt requests at the hardware level and how the
RTEMS operating system manages interrupts and context switches. Finally, we will
also provide some hints on how to take into account the interrupt load of a system in
schedulability analysis.

4.2.1 EXCEPTION HANDLING IN THE CORTEX-M PROCESSOR

Similar to many other contemporary processors, the Cortex-M also handles other
kinds of events, such as faults, in the same way as interrupts, that is, in a unifed
way. All these events are collectively referred to as exceptions. For this reason, in
this section we will generally talk about exception handling, rather than interrupt
handling.

A property that all exceptions have in common is that their occurrence may disrupt
the normal instruction execution fow and direct the processor to execute a fragment
of code associated with them, called exception handler, as discussed in Section 3.1.
In the statement above we say “may” because the mere occurrence of an exception
is necessary, but not suffcient, to ensure that the processor will start handling it
immediately, if at all.

In fact, as it will become clearer in the following, a rather complex prioritization
mechanism internal to the processor lies in between the occurrence of an exception—
which is often related to a hardware-generated event—and the corresponding soft-
ware action, that is, the execution of its handler. This mechanism, which plays a
central role in Cortex-M exception handling, is mainly driven by an exception prior-
ity value associated with each source of exception.

For the time being, it is enough to say that a higher priority improves the ex-
ception handling latency—that is, the time elapsed between the occurrence of an
exception and the execution of its handler—because the processor handles this ex-
ception in preference of others. The main categories of exceptions are described in
the following.

79 Scheduling Analysis and Interrupt Handling

Interrupt requests
This kind of exception is raised by a peripheral device, in order to signal to the
processor, and eventually to the software, the occurrence of an event of interest con-
cerning the device itself, often the completion of an I/O operation. For instance, an
Ethernet controller may use an interrupt request to indicate that one or more network
frames have been received, or that a frame previously enqueued for transmission
has been sent onto the network. These interrupts are naturally raised asynchronously
with respect to the code the processor is currently executing.

On Cortex-M processors, interrupt requests can also be triggered by means of a
software action. In this case, they are often referred to as software interrupts, which
are raised synchronously with respect to code execution. Regardless of their origin
(hardware or software) interrupt requests are all handled in the same way without any
further distinction. Like ordinary interrupt requests, also Non-Maskable Interrupt
(NMI) requests can be issued by either hardware or software. The main difference is
that their priority is among the highest in the system, immediately below the priority
of the reset exception.

Many operating systems, including RTEMS, disable regular interrupts internally,
around very short critical sections that must be executed as an indivisible unit. Due
to their high priority, non-maskable interrupts are left enabled, though. As a con-
sequence, the corresponding interrupt handlers may not use any operating system
services because they could violate those critical sections.

Also belonging to this category are two more exceptions that are generated within
the processor itself, rather than coming from external peripheral devices. They are:

• The SysTick exception, generated periodically by the 24-bit count-down
system timer, which is very important because operating systems often de-
rive all their timing information from it. If needed, the same exception can
also be issued by software.

• The PendSV exception, which can only be triggered by software and whose
exception handler is used by some operating systems to perform schedul-
ing.

As described in Section 4.2.3, RTEMS takes a different approach and makes only
limited use of the PendSV exception within its architecture-dependent layer, to trig-
ger a scheduling and context switch operation that is then completely carried out in
software within a task context. This is because RTEMS avoids using architecture-
specifc scheduling and context switch methods—another notable example being the
Intel x86 hardware context switching facility—in order to enhance portability and
not tie the operating system to any specifc processor architecture.

Faults
Generally speaking, faults are a consequence of an abnormal event detected by the
processor, either internally or while communicating with memory and other devices.
These events are of great interest (and concern) to software because most often they

80 Real-Time Systems Development with RTEMS and Multicore Processors

indicate serious hardware or software issues that may prevent the system from con-
tinuing with normal activities. More specifcally, the following kinds of fault are
foreseen in Cortex-M processors.

• UsageFault. This fault occurs when an instruction cannot be executed for
various reasons. For instance, the instruction may be undefned or may con-
tain a misaligned address that prevents it from accessing memory correctly.
For divide instructions, another reason for raising a UsageFault is an at-
tempt to divide by zero.
Some of the above-mentioned fault sources (like dividing by zero) can be
masked in software, that is, the processor can be instructed to ignore them
without generating any fault, whereas others (such as encountering an un-
defned instruction) cannot.

• BusFault. This fault is generated when an error occurs on the data or in-
struction bus while accessing memory. It can be generated as a consequence
of an explicit memory access performed by an instruction during its exe-
cution, and also by fetching an instruction from memory. This fault does
not report errors generated by the memory protection mechanism, which
instead trigger a MemManage fault.
It should also be noted that the Cortex-M is a memory-mapped input-output
(I/O) architecture and whenever we refer to a “memory” address, we actu-
ally mean an address within the processor’s address space, which may refer
to either a memory location or an I/O register.

• MemManage. This fault occurs when a memory access is blocked by
the memory protection mechanism. An optional Memory Protection Unit
(MPU) provides a programmable way of protecting memory regions
against data read and write operations, as well as instruction fetches, also
depending on the current privilege mode of the processor.
Even processors not equipped with a MPU may still set forth some pre-
defned, non-programmable constraints on memory accesses and generate
faults when they are violated. For instance, LPC17xx processors [90] forbid
data access and instruction fetch in unimplemented regions of the address
space, as well as instruction fetch from addresses assigned to I/O peripher-
als. They generate a BusFault fault in both cases.

A special kind of fault is HardFault. It can be generated for two different reasons.
First, the processor generates a HardFault when it detects an error during exception
processing, thus making normal exception handling impossible. The second reason
why a HardFault can be generated is a mechanism known as fault escalation. A
full description of this mechanism is beyond the scope of this book but, summarily
speaking, under certain conditions fault escalation may transform, or escalate, some
other exceptions into a HardFault.

This may happen when a new exception occurs while the processor is already
handling another exception. Since the underlying processor architecture supports ex-
ception nesting, as discussed in Section 4.2.2, in this case the processor may either

81 Scheduling Analysis and Interrupt Handling

accept and handle the incoming exception immediately—thus nesting it into the pre-
vious one by means of a mechanism that resembles a function call—or postpone it,
depending on the relative priority of the two exceptions.

However, there are exceptions that must necessarily be handled synchronously
with respect to code execution, namely, before the processor proceeds to the next
instruction, even though another higher-priority exception is already being handled.
A typical example is the UsageFault exception because, as described previously, it
indicates that the current instruction cannot be executed.

In those cases, if the priority of the incoming exception would be insuffcient for
immediately handling it, the processor automatically escalates the priority of the in-
coming exception to the priority of HardFault, one of the highest in the system. If
priority escalation is not yet enough to make the incoming exception active because
the processor is already running at HardFault priority or higher, the general assump-
tion of the architecture is that the occurrence of the new exception is unrecoverable
and fatal.

In the majority of cases, the processor reacts by suspending normal instruction
execution completely and entering a lockup state. Although there are some condi-
tions that may lead the processor to abandon this loop and resume normal instruction
execution, in most cases the only way out of this state is to perform a reset.

Supervisor call (SVC)
This exception is raised by the execution of a SVC (supervisor call) assembly instruc-
tion. It is a typical example of synchronous exception because it is generated at the
exact point when the processor encounters this assembly instruction in the instruc-
tion stream. The SVC exception is in a class by itself because it is often used as a
way to enter the operating system kernel and request it to perform a function.

However, as discussed in Section 4.2.3, in the case of RTEMS, the kernel is en-
tered by means of an ordinary function call and the SVC exception is only used to
restore the portion of processor context the hardware saved onto a task stack because
an exception had been accepted while that task was executing.

Reset
This exception is raised by the processor power-up sequence or a warm reset. It is
handled like other exceptions but, as it will better explained in the following, several
extra operations are carried out to ensure the processor starts executing code in a
consistent way. For instance, the reset exception initializes the Master Stack Pointer
(MSP), which is one of the two stack pointers in the processor and the one it will
actually use immediately after reset, and sets the initial program counter from which
code execution will start. The processor execution mode is also different. Moreover,
if the reset exception occurs while the processor is already running (warm reset),
instruction execution can stop at an arbitrary point.

82 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 4.1
Exception and Execution Priorities in the Cortex-M3 Processor

Exception Priority p
Reset −3
Non-Maskable Interrupt (NMI) −2
HardFault −1
UsageFault, BusFault, MemManage, SVC 0 ≤ p ≤ 255, or −1*

Interrupts (including SysTick and PendSV) 0 ≤ p ≤ 255

Execution Priority q
Base level 256
Active exceptions Minimum value a among active exceptions, if any
BASEPRI Value 1 ≤ b ≤ 255 of the register if b =6 0
PRIMASK 0 if the mask bit is set
FAULTMASK −1 if the mask bit is set

* Subject to priority escalation

4.2.2 EXCEPTION PRIORITIES AND ENTRY/EXIT SEQUENCE

As recalled in Section 3.1, in the past accepting and handling an interrupt from a
certain source mainly depended on whether that interrupt source was enabled and
whether the processor was servicing another interrupt already. Interrupt prioritization
was used only to disambiguate multiple interrupt requests issued at the same time.
Although this is still partly true today, in the Cortex-M the decision of whether or
not an incoming exception request should become active, that is, whether or not the
processor should immediately start handling it, also depends on other factors.

• As shown on the top half of Table 4.1, each kind of exception has its own
exception priority, an integer value. In the priority hierarchy, lower values
correspond to higher priorities. Priority values can be either fxed or pro-
grammable.
For instance, the priority of a NMI request is always −2, whereas for inter-
rupt requests the priority can be individually set to any non-negative value
p between 0 and 255 included. Depending on the processor implementa-
tion, only some high-order bits of the priority value may be signifcant, and
hence, numerically different priority values may correspond to the same
actual priority if they differ only in some of their low-order bits.
When there are multiple, simultaneous incoming exceptions, the one with
the highest priority (lowest priority value) prevails on the others and de-
termines the incoming exception priority i. If there are two or more si-
multaneously incoming exceptions with the same priority, the one with the
numerically lowest exception number, a unique and fxed number defned

83 Scheduling Analysis and Interrupt Handling

by the processor architecture and associated to each exception, takes prece-
dence.

• At the same time, the processor also keeps track of its current execution
priority e. The execution priority is calculated as the minimum of several
values, listed in the bottom half of Table 4.1:
• The base level of execution priority, which is one more than the highest

priority value supported by the processor, 256 in this case.
• The minimum priority value a among all exceptions that became active

in the past and are still being handled, if any. There may be more than
one such exceptions because, as it will be better described in the follow-
ing, the Cortex-M architecture supports nested exception handlers.

• The value 1 ≤ b ≤ 255 of the unsigned 8-bit register BASEPRI, if it is
not zero. If BASEPRI is zero, its value is not taken into account in the
calculation.

• The values 0 and/or −1, depending on whether or not the 1-bit registers
PRIMASK and/or FAULTMASK are set, respectively.

The values of i and e are then compared to determine if the incoming exception
must become active or it must stay pending. In particular:

• If i < e, the incoming exception becomes active and the processor starts
handling it immediately. As a consequence, if the processor was already
handling another exception, the handling of the new exception is nested
into the old one. In other words, the processor temporarily stops handling
the old exception in favor of the new one, and will go back to it at a later
time, with a mechanism similar to an ordinary function call.

• Otherwise, it is i ≥ e and the incoming exception stays pending. The proces-
sor will re-evaluate the possibility of making it active whenever e changes
and becomes numerically higher than it was. The re-evaluation is still car-
ried out as described above, incorporating into i the priority of any further
exception requests that arrived in the meantime. For instance, re-evaluation
takes place when the handling of an active exception terminates, because
this increases the value of a and, in turn, may increase the value of e.

Therefore, programmers can set BASEPRI, PRIMASK and/or FAULTMASK to
mask off and postpone the handling of some exceptions by lowering the value of
e. For instance, setting BASEPRI to a non-zero, positive value t prevents the pro-
cessor from accepting any incoming exception whose priority value i is i ≥ t, unless
priority escalation takes place.

The relative priority between two exceptions determines whether the arrival of
one exception can preempt the handling of the other or not. Concerning this aspect,
it is important to mention that the comparison between i and e is possibly affected
by a processor feature known as priority grouping.

Even though a thorough discussion is beyond the scope of this book, by means of
priority grouping it is possible to instruct the processor to ignore some low-order bits

84 Real-Time Systems Development with RTEMS and Multicore Processors

of the priority value when comparing i and e, so that priority levels that are distinct in
principle “look the same” in the comparison. As a result, exceptions whose priorities
only differ in these low-order bits, but are equal in the others, will not be nested into
each other.

Before discussing in detail what happens when the processor accepts an exception
request it is necessary to briefy introduce the concept of processor execution mode.
From this point of view the Cortex-M approach is considerably simpler than others
and only has two execution modes, called thread and handler mode.

Thread mode
Thread mode is the normal task execution mode and is also the mode the proces-
sor goes into when it accepts and handles a reset exception. The SPSEL bit of the
CONTROL register determines which stack pointer the processor uses when in thread
mode. The two possible choices are the Main Stack Pointer (MSP) and the Process
Stack Pointer (PSP), which usually refer to distinct stacks in memory. Knowing ex-
actly which stack pointer is in use at any given time is extremely important to fully
understand how the underlying operating system mechanisms for exception handling
and multitasking work.

Handler mode
As its name says, this mode is used by the processor to execute all exception han-
dlers except the reset handler. Code executed in handler mode makes use of the MSP,
regardless of the settings of the SPSEL bit. When the processor is executing in thread
mode, accepts an exception request, and makes it active, it automatically enters han-
dler mode. The opposite transition, from handler mode back to thread mode, occurs
when an exception handler returns, there are no other active exceptions, and the pro-
cessor started handling the current exception while it was executing in thread mode.

A peculiar case of mode transition happens when code running in thread mode
executes a SVC instruction that, as described in Section 4.2.1, unconditionally is-
sues an exception request. The exception is accepted synchronously with respect to
the current instruction fow and grants controlled access to handler mode through a
trusted software routine—the SVC exception handler—implemented by the operating
system.

The presence of two distinct execution modes for task and exception handler ex-
ecution, respectively, is extremely common across modern processor architectures,
although the names given to these modes may differ from one architecture to an-
other. Indeed, RTEMS assumes these two modes are available on all architectures it
supports. As it will be better explained in Section 4.2.3, it always performs context
switches in thread mode to enhance portability.

Scheduling Analysis and Interrupt Handling 85

xPSR

PC

LR

R0-R3, R12

xPSR

PC

LR

PSP MSP

MSP or PSP
(after save)

CONTROL

CurrentMode

Initial MSP

Current Stack Vector Table

:

Exception
Vectors
:

VTOR

+ Exception
number

1. Save partial processor
context on current stack

2. Set EXC-RETURN
code in LR

3a. Possibly change
execution mode

Processor

4. Retrieve new PC from
vector table

3b. Possibly switch to a
new stack

FIGURE 4.2 Exception entry sequence in the ARM Cortex-M processors.

Exception entry sequence
The main phases that make up the exception entry sequence, that is, the sequence of

actions the processor performs when it makes an exception active and starts handling

it, are depicted in Figure 4.2.

1. The first action is to save part of the current execution context on the current

stack, the one that the processor is using when the exception request is accepted.

The minimum amount of information that is saved into a basic exception frame

consists of registers R0 through R3, R12, the link register LR (also called R14),

the program counter PC (R15), and the program status register xPSR, for a total

of 32 bytes.

When the processor implements the optional floating-point extension, part of the

floating-point context is saved as well, into an extended exception frame. How-

ever, the part of floating-point context to be saved on the stack is rather large and

requires 68 additional bytes. Hence, RTEMS tries to avoid saving and restoring

the floating point context to the extent possible.

The architecture also supports a lazy context switch strategy [10], that is, a mecha-

nism to automatically push the floating-point context only if and when the context

is about to be modified by the execution of a floating-point instruction. However,

this approach can only be used on single-core systems, as it does not work prop-

erly on multicores. For simplicity, the discussion that follows will not explore the

management of the floating-point context further.

86 Real-Time Systems Development with RTEMS and Multicore Processors

In both cases, the processor updates either the PSP or the MSP appropriately,
so that it points at the base of the exception frame. Depending on the value of
the STKALIGN bit of the Confguration and Control Register CCR, the processor
may also further adjust the stack pointer to make sure that the exception frame is
aligned to a multiple of 8 bytes.
The reason behind saving the execution context is that accepting and handling an
exception shall not prevent the processor from going back to its current activity
at a later time. On the contrary, for the reasons described in Section 3.1, most
exceptions shall be handled transparently with respect to any code that happens to
be executing when they arrive. This is particularly true for interrupts and, more in
general, any other exception requests that occur asynchronously with respect to
current processor activities, because they are very often totally unrelated to them.
The choice of which part of the context is saved is instead motivated by the crucial
goal of making the resulting stack layout compatible with the ARM Architecture
Procedure Calling Standard (AAPCS) [12]. In particular, upon exception entry
the processor saves the caller-saved portion of the integer context. If the exception
handler makes use of other parts of the context, it becomes its own responsibility
to save them appropriately to prevent context corruption.
In this way, any AAPCS-compliant function can be used as an exception handler,
an especially important feature when exception handlers are written in a high-
level language because compilers generate AAPCS-compliant code by default.
Hence, they can also generate exception handling code without treating it as a
special case.
To sum up, the processor hardware saves the context on the stack exactly like an
AAPCS-complaint software procedure does when it is about to call another. As a
result, an exception handler call performed by hardware is indistinguishable from
a regular software-initiated procedure call, from the point of view of the procedure
being called (often named callee).
This is a generic pattern to be realized on all architectures, regardless of how
much assistance is provided by hardware. In the case of the Cortex-M, all caller-
saved registers are automatically pushed on the stack by the processor itself, but
on other architectures some assembly instructions may be needed to complement
what hardware has initiated. In general, RTEMS saves enough context to call code
written in C and proceeds with exception handling from there.

2. Set the link register LR to an appropriate exception return (EXC_RETURN) code.
When an exception return code is loaded into the program counter PC, as part of a
function epilogue, it directs the processor to perform an exception handler return
sequence instead of an ordinary return from a procedure call.
Once again, this aspect of the exception entry sequence has been designed to per-
mit any AAPCS-compliant function to be used directly as an exception handler.
Indeed, the AAPCS stipulates that a procedure call must store the return address
into the link register LR before setting the program counter PC to the procedure
entry point. This is typically accomplished by executing a branch and link in-
struction BL with a PC-relative target address. Symmetrically, the callee returns

87 Scheduling Analysis and Interrupt Handling

by storing back into PC the value saved into LR at the time of the call. This can be
done, for instance, by means of a branch and exchange instruction BX, using LR
as argument.
The information provided by the EXC_RETURN code allows the processor to lo-
cate the exception frame to be restored, interpret it in the right way, and bring back
the processor to the execution mode in effect when the exception was accepted.
Namely, the 5 low-order bits of the EXC_RETURN code indicate:
• whether the processor was using MSP or PSP as stack pointer when the excep-

tion frame was created,
• the kind of exception frame to be restored, basic or extended,
• the execution mode the processor must go back to.
The 4 higher-order bits of EXC_RETURN are always set to 0xF to indicate the
value being loaded into PC is indeed an EXC_RETURN code that the processor
must handle specially, rather than a regular memory address. The remaining bits
are currently unused.
It should be noted that the processor interprets the value being loaded into PC as
a possible EXC_RETURN value only in specifc cases, better detailed in [8, 9]. In
other cases, for instance, when the PC is loaded while the processor is in thread
mode (and hence, no exception handler can possibly be active), the value is taken
literally, as a memory address. To avoid improper behavior if an EXC_RETURN
value is mistakenly loaded into PC in these cases, the hardware protects the ad-
dress range 0xF0000000–0xFFFFFFFF against instruction execution.

3. Switch to handler mode if the processor was in thread mode when the exception
was accepted. If the processor was already handling another exception, it stays
in handler mode. As explained previously, as a consequence of the mode switch,
the processor may also start using a new stack. A noteworthy exception to this
rule is the reset exception, which is handled in thread mode with the processor
automatically confgured to use the MSP.
Additional operations performed by the processor, not shown in Figure 4.2 for
simplicity, include storing the exception number of the exception just accepted in
the IPSR sub-register—which is part of the xPSR register—and updating several
System Control Space (SCS) registers to refect exception acceptance.
Another side effect of accepting an exception is that is clears the per-core state
of any pending synchronization instructions, namely, LDREX and STREX. There-
fore, any synchronization procedure using those instruction that was pending upon
exception entry will need to be retried after execution resumes. This topic is ex-
tremely important for inter-core synchronization in multicore systems, to be pre-
sented in Chapter 13.

4. The very last action performed by the processor upon exception entry is to retrieve
the target PC—that is, the entry point of the exception handler—from the excep-
tion vector table and jump to it. The exception vector table is a memory-resident
array of 32-bit integers, holding memory addresses called exception vectors. More
specifcally, the i-th entry of the table holds the entry point of the handler for ex-
ception number i. No ambiguity can arise because exception numbers are fxed
and, unlike priorities, are unique to each exception.

88 Real-Time Systems Development with RTEMS and Multicore Processors

Only the frst 16 exception numbers are explicitly defned by the architecture spec-
ifcation. The total number of vectors is not fxed and depends on the number of
exceptions supported by specifc members of the Cortex-M family, as well as con-
fguration and implementation options. The very frst entry (at index 0) is used in
a special way because no exception is ever assigned exception number zero. In-
stead, this entry contains the initial value loaded into MSP upon reset.
The starting address of the vector table is held in a register called Vector Table
Offset Register (VTOR). The 7 low-order bits of VTOR are reserved and are al-
ways interpreted as zero, therefore the minimum alignment of the vector table in
memory is 128 bytes. Further alignment constraints may come into effect in some
cases, depending on the total number of entries in the table.
The VTOR register is reset to zero when the processor accepts a reset exception,
before handling it. As a consequence, the initial values of PC and MSP upon re-
set are not retrieved from the exception table in effect when the reset exception
was accepted, but from the one at address zero. In all cases, the VTOR register
determines the address the processor emits to access the exception vector table.
Depending on the specifc device, this may or may not be the physical address of
the vector table in memory, which may be further changed by address remapping,
external to the processor. In those cases, it is necessary to refer to the device—
rather than the processor—documentation to ascertain which registers control the
mapping and how.
For instance, in the NXP LPC17xx microcontroller family [90] it is possible to
remap at address 0x00000000 (where the vector table begins by default) an
image of the bootstrap ROM (which is normally accessible at physical address
0x1FFF0000) instead of the on-chip fash memory (which is normally mapped
at address 0x00000000). Remapping is controlled by bit 0 of the device-specifc
MEMMAP register.

The case of nested exceptions follows the same general rules, namely, the pro-
cessor pushes the exception frame that contains the execution context of the current
exception handler on the current stack using the active stack pointer, which will nec-
essarily be the MSP. This course of action enables the last-in, frst-out saving and
restoration of exception frames, in the same way as ordinary stack frames are han-
dled in regular function calls. The mechanism guarantees that exception handlers are
nested properly, correctly preserving their execution context in the process.

Return from an exception
As stated previously, the processor starts an exception return sequence when an
EXC_RETURN code is loaded into the PC at the end of an exception handler, with
the ultimate goal of transparently resuming the activity it was performing when the
exception became active. In order to do this, the processor must basically revert all
the steps depicted in Figure 4.2.

1. First of all, the processor examines and interprets the EXC_RETURN code to deter-
mine which stack pointer (MSP or PSP) it shall use to locate the exception frame

Scheduling Analysis and Interrupt Handling 89

to be restored, assess the structure and contents of the exception frame (basic or
extended), and decide the processor mode (handler or thread) to be entered after
restoration.

2. Then, the processor performs several integrity checks, fully illustrated in [8, 9], to
ensure that returning from an exception is legal considering the current execution
context. For instance, the exception currently being handled and whose number
had been recorded in IPSR upon exception entry, must be active in order to legit-
imately return from it. Furthermore, the processor must currently be executing in
handler mode and, if it is about to return to thread execution mode, the value to
be restored into IPSR must be zero, thus indicating that no exceptions are active
any more. Any failed check raises a UsageFault exception, which is then handled
as usual.

3. Finally, the processor restores the contents of the exception frame located as de-
scribed in the previous steps. Among other things, the context includes the ex-
ception number being handled when the current exception was accepted, in the
IPSR sub-register of xPSR, and the PC at which the exception being concluded
was accepted.

A direct consequence of context restoration is that, in the case of nested excep-
tions, the processor resumes execution from where it was previously interrupted and
the IPSR contains the exception number of the exception whose handling is being
resumed.

Instead, if the exception handler from which the processor is returning is the last
of a chain of nested exceptions (or the only one, in case exceptions were not nested
at all), the IPSR that was formerly stored in the exception stack being restored is
zero, and this is also the value that must be loaded into the register upon exception
return to signal that the processor is no longer handling any exceptions.

4.2.3 RTEMS CONTEXT SWITCH AND EXCEPTION HANDLING

In Section 3.2.2 we introduced the general concept of task control block (TCB), say-
ing it plays a key role in multitasking operating systems and, more specifcally, in the
context switching mechanism. Accordingly, Figure 3.3 portrays TCB contents in an
abstract way. In this section, we will discuss in more detail how RTEMS implements
the portion of TCB related to context switching on the Cortex-M architecture.

In order to show how context switching and exception handling interact, we will
also illustrate how RTEMS makes use of software-triggered exceptions to reschedule
a core after an interrupt. However, although RTEMS makes use of these exceptions to
facilitate and streamline context switching, it still performs all context switches from
within a task context. This approach makes the design more consistent and uniform
because there is no longer any difference between a context switch triggered by an
explicit, voluntary action performed by a task (for instance, when it blocks), and
an involuntary context switch (caused by an interrupt handler that readied a higher-
priority task).

90 Real-Time Systems Development with RTEMS and Multicore Processors

R4-R11

LR

SP (R13)

isr_nest_level

Thread_Control, executing task

Context_Control
executing

R4-R11

LR

SP (R13)

isr_nest_level

heir

R4-R11

PSP MSP

Processor

LR

2a. Restore callee-saved
processor context of the

heir

1a. Save callee-saved
processor context of the

executing task

3. Execute a BX LR to return to the
caller in the heir and continue

1b. Save the PSP of the
executing task

2b. Restore the
PSP of the heir

Thread_Control, heir

FIGURE 4.3 RTEMS Context switch for the ARM Cortex-M processors.

As shown at the top of Figure 4.3, an RTEMS TCB is represented by a
Thread_Control data structure, which embeds an architecture-dependent sub-
structure called Context_Control. The sub-structure contains all the callee-
saved registers specifed in the Cortex-M AAPCS [12]. Caller-saved registers are
not stored within it because the RTEMS function in charge of context switching,
_CPU_Context_switch, is an AAPCS-compliant C function. Hence, when any
higher-level function calls it to perform a context switch, it is the compiler’s respon-
sibility to properly save these registers beforehand, typically on the task stack, and
restore them after _CPU_Context_switch returns. In summary, during a context
switch:

• If the calling function needs to preserve the content of some caller-saved
registers of the executing task, it is its responsibility to save them on the
task stack, by means of compiler-generated code, before calling the context
switch function _CPU_Context_switch.

• This function is given two pointers as arguments, executing and heir.

91 Scheduling Analysis and Interrupt Handling

The frst points to the Context_Control of the currently executing task,
the second to the Context_Control of the next task to be executed. This
is called the heir in RTEMS documentation, in a reference to who is next
task to sit on the processor “throne”.

• The context switch function preserves all callee-saved registers plus the
PSP, by saving them in the Context_Control of the executing task.

• In order to restore the context of the heir, _CPU_Context_switch
loads all callee-saved registers plus the PSP from the Context_Control
within the heir’s TCB and returns to the caller.

• The compiler-generated function call epilogue code will then restore
caller-saved registers, if they were live at the time of the call. Since
_CPU_Context_switch sets the PSP to point to the heir’s stack, the
restoration will take place from there, as it should.

Figure 4.3 summarizes the main steps performed by _CPU_Context_switch.
One aspect shown in the fgure and not yet discussed for simplicity is the fact that
Context_Control includes a feld called isr_nest_level. This feld is not
part of the processor context and corresponds to a feld with the same name that
RTEMS maintains in the per-core data structure Per_CPU_Control. It is saved
from the data structure into the TCB of the executing thread and restored into the
data structure from the TCB of the heir thread alongside the other parts of the context
discussed previously. It is an integer that represents the per-core current interrupt
service routine (ISR) nesting level.

So far we described how a context switch is implemented when it is
triggered by the executing task in a synchronous way by explicitly calling
_CPU_Context_switch, either directly or, more ofter than not, by means of
higher-level functions. This typically happens when the executing task voluntarily
yields the processor or when it executes a blocking synchronization primitive, thus
moving into the blocked state of the task state diagram, as explained in Section 3.2.2.

Another important reason to perform a context switch is to preempt a lower-
priority task when a formerly blocked higher-priority task becomes ready for exe-
cution. This happens as a result of an event, for instance, a device interrupt. Timed
wait operations belong to this category, too, because also in that case the waiting task
is unblocked as a result of a timer interrupt. In RTEMS, like in other operating sys-
tems, this goal is accomplished by making the hardware-assisted exception entry/exit
mechanism depicted in Figure 4.2 and the software-controlled context switch shown
in Figure 4.3 work together.
void _ARMV7M_Interrupt_service_leave(void)
{
Per_CPU_Control *cpu_self = _Per_CPU_Get();

--cpu_self->thread_dispatch_disable_level;
--cpu_self->isr_nest_level;

/*
* Optimistically activate a pendable service call if a thread dispatch is
* necessary. The _ARMV7M_Pendable_service_call() will check that a thread
* dispatch is allowed.

92 Real-Time Systems Development with RTEMS and Multicore Processors

*/
if (cpu_self->dispatch_necessary) {

_ARMV7M_SCB->icsr = ARMV7M_SCB_ICSR_PENDSVSET;
}

}

Firstly, the function _ARMV7M_Interrupt_service_leave, to be called
while leaving an exception handler, checks whether a task dispatch is necessary, by
checking the per-core fag dispatch_necessary. This fag is set by higher-level
synchronization primitives when they detect that a task with a priority higher than
the currently executing task has been woken up. In RTEMS, task dispatching is the
sequence of two separate activities, organized in a manager versus worker fashion:

• The execution of the scheduling algorithm makes the decision of what the
next task to be executed will be and plays the management role. The im-
plementation of the scheduling algorithm is also portable and architecture-
independent.

• After the manager has designated the heir, the context switch code performs
the context switch from the currently executing task to the heir. This piece
of code is the worker, and also embeds all architecture-dependencies of
task dispatching as a whole.

The same division of duties and sequence of operations also take place when a
task voluntarily blocks and the operating system must necessarily choose its heir. If a
dispatch is needed, the function _ARMV7M_Interrupt_service_leave triggers
a PendSV exception, described in Section 4.2.1. RTEMS confgures this exception
to have the lowest exception priority in the whole system. Therefore, it will stay
pending and will be serviced only when no other higher-priority exceptions are being
handled.

As shown on the top left part of Figure 4.4, when the PendSV exception becomes
active the processor saves on the task stack an exception frame according to the
general exception entry mechanism illustrated in Figure 4.2. The PC in this exception
frame points to the task instruction that has been interrupted by PendSV exception
handling. This is also the PC from which the execution of the current task must
eventually resume.
void _ARMV7M_Pendable_service_call(void)
{
[...]

{
ARMV7M_Exception_frame *ef;

cpu_self->isr_nest_level = 1;

_ARMV7M_SCB->icsr = ARMV7M_SCB_ICSR_PENDSVCLR;
_ARMV7M_Trigger_lazy_floating_point_context_save();

ef = (ARMV7M_Exception_frame *) _ARMV7M_Get_PSP();
--ef;
_ARMV7M_Set_PSP((uint32_t) ef);

/*

93 Scheduling Analysis and Interrupt Handling

xPSR

PC

LR

R0-R3, R12

Task Stack

Discarded by SVC handler
before returning

Interrupted
task code

0x01000000

PC

Unused

Unused

_ARMv7M_Thread
_Dispatch

Hardware-saved exception frame

Software-synthesized exception frame

xPSR

PC

LR

R0-R3, R12

xPSR

PC

LR

R0-R3, R12

Interrupted
task code

Within
_ARMv7M_Thread
_Dispatch (unused)

Saved upon PendSV entry

Saved upon SVC entry

Synthesized by PendSV
handler before returning

FIGURE 4.4 RTEMS task stack diagrams while dispatching after an IRQ.

* According to "ARMv7-M Architecture Reference Manual" section B1.5.6
* "Exception entry behavior" the return address is half-word aligned.
*/
ef->register_pc = (void *)
((uintptr_t) _ARMV7M_Thread_dispatch & ˜((uintptr_t) 1));

ef->register_xpsr = 0x01000000U;
}

}

The processor then executes _ARMV7M_Pendable_service_call, the C
function registered as PendSV exception handler, in handler mode. After ensuring
that task dispatch is allowed (by means of a fragment of code omitted in the previ-
ous listing), this function synthesizes a new exception frame, represented by the data
type ARMV7M_Exception_frame, pushes it on the stack by decrementing the PSP
(on this architecture, stacks grow towards lower addresses), and returns. This corre-
sponds to the darker gray exception frame visible on the bottom left of Figure 4.4.

The exception frame’s PC points to the _ARMV7M_Thread_dispatch func-
tion and contains a default xPSR, set to 0x01000000. The other felds of the ex-
ception frame are not set explicitly to save time, because they are not going to be
used in the following. When the PendSV exception handler returns, the LR register
still contains the EXC_RETURN code stored by hardware. As a result, the processor
restores the software-synthesized exception frame and resumes execution from the
_ARMV7M_Thread_dispatch function in thread mode.

94 Real-Time Systems Development with RTEMS and Multicore Processors

This is a key point because the net result is that, immediately after one or more in-
terrupts that triggered a reschedule have been serviced, the interrupted task executes
the _ARMV7M_Thread_dispatch function exactly “as if” it called it voluntarily,
by means of an ordinary function call, although it took place with the assistance of
this peculiar form of exception handling. The original exception frame created upon
PendSV exception entry stays on the task stack, so that ordinary task execution can
be resumed at a later time, when it eventually goes back to the running state.
static void __attribute__((naked)) _ARMV7M_Thread_dispatch(void)
{
__asm__ volatile (
"bl _Thread_Dispatch\n"
/* FIXME: SVC, binutils bug */
".short 0xdf00\n"
"nop\n"

);
}

The _ARMV7M_Thread_dispatch function is extremely simple and consists
of two machine instruction, specifed by means of an assembly language insert:

• First, it calls _Thread_Dispatch. This RTEMS function executes the
scheduling algorithm in a completely architecture-independent way to cal-
culate the heir of the currently executing task. If necessary, this manage-
ment action is followed by an architecture-dependent context switch re-
alized, as described previously, by calling the _CPU_Context_switch
function.
Since all these operations are performed in thread mode, the processor be-
havior is exactly the same as for the synchronous context switch discussed
previously, and the higher-layer code can be kept unaware of the distinc-
tion.
If a context switch takes place, the current task no longer continues its
execution within _Thread_Dispatch until another context switch brings
it back to the running state.

• Secondly, when _Thread_Dispatch returns, it executes a SVC 0 in-
struction that triggers a synchronous exception. As a result, the hardware
pushes on the stack a new exception frame, depicted at the bottom right of
Figure 4.4. The PC of this frame points to the instruction that follows the
SVC within _ARMV7M_Thread_dispatch.
As a side note, the assembly language insert encodes SVC 0 in hexadeci-
mal because some versions of the assembler (part of the GNU binutils
toolchain package) have a bug that prevents them from recognizing the SVC
mnemonic correctly.

void _ARMV7M_Supervisor_call(void)
{
Per_CPU_Control *cpu_self = _Per_CPU_Get();
ARMV7M_Exception_frame *ef;

_ARMV7M_Trigger_lazy_floating_point_context_save();

95 Scheduling Analysis and Interrupt Handling

ef = (ARMV7M_Exception_frame *) _ARMV7M_Get_PSP();
++ef;
_ARMV7M_Set_PSP((uint32_t) ef);

cpu_self->isr_nest_level = 0;

if (cpu_self->dispatch_necessary) {
_ARMV7M_Pendable_service_call();

}
}

Then, the processor executes the SVC handler, _ARMV7M_Supervisor_call,
in handler mode. This function discards the exception frame pushed by hardware,
adjusts the PSP accordingly and, unless another dispatch has become necessary in
the meantime, returns. Since the LR register contains an EXC_RETURN code also in
this case, the one calculated while entering the SVC handler, the hardware determines
it is returning from an exception and restores the exception frame previously saved
during PendSV exception entry.

On the other hand, if a new dispatch has become necessary—because, for in-
stance, other interrupts have been handled in the meantime and other, even higher-
priority tasks have been woken up—the whole process is repeated by calling the
PendSV exception handler again.

In two cases, the EXC_RETURN code calculated by hardware while pushing a cer-
tain exception frame is used to restore a different exception frame. More specifcally:

1. The EXC_RETURN code calculated upon entering the PendSV exception handler
is used to restore the software-synthesized exception frame.

2. The EXC_RETURN code calculated upon entering the SVC exception handler is
used to restore the exception frame saved while entering the PendSV exception
handler.

The whole mechanism still works because RTEMS ensures that exception frame
formats are nevertheless the same, and hence, they are indistinguishable from each
other.

As a fnal remark, we can confrm that RTEMS saves all processor registers (both
caller-saved and callee-saved) upon preemption, thus making it completely transpar-
ent. This is because:

• Caller-saved registers are saved by hardware while entering the PendSV
exception handler, within an exception frame, as shown in Figure 4.2.

• Callee-saved registers are saved by the context switch function, in the
Context_Control structure of the task TCB, as depicted in Figure 4.3.

The Context_Control structure also contains the task PSP. When restored,
it enables the processor to properly retrieve and restore also the exception frame
content from the task stack.

96 Real-Time Systems Development with RTEMS and Multicore Processors

4.2.4 INTERRUPTS IN SCHEDULABILITY ANALYSIS

If we compare a contemporary, fully prioritized exception handling mechanism, such
as the one described in Section 4.2.1, with the assumptions of schedulability analysis
set out in Section 4.1, we discern some important analogies.

Firstly, an interrupt handler can be seen as a sporadic pseudo-task, whose ac-
tivation is triggered by the corresponding interrupt source. Then, the arrival of an
interrupt request is an external event that moves the corresponding pseudo-task to
the ready state of the task state diagram. The priority of this pseudo-task is dictated
by the priority of the interrupt source and is fxed, but is always implicitly higher
than any other regular task in the system, because the arrival of an interrupt request
immediately preempts any regular task that had been executing.

Secondly, the relative priority of different interrupt sources determines whether
or not the arrival of a fresh interrupt request would preempt a currently executing
interrupt handler, giving rise to interrupt nesting. If no nesting takes place, the in-
terrupt request stays pending until the processor execution priority level allows it to
be accepted and become active. This mechanism is equivalent to an ordinary task
staying in the ready state of the task state diagram while a higher-priority task is ex-
ecuting, until the scheduler moves it to running state, the only difference being that
the scheduling decision is taken by hardware instead of software.

Therefore, in principle, some of the schedulability analysis techniques described
in Section 4.1, most notably response time analysis, can be used to assess the impact
of interrupt handling on tasks response times. This is true provided it is possible
to calculate, measure, or estimate the worst-case execution time of each interrupt
handler (which then becomes the Ci of the corresponding pseudo-task) and several
other practical requirements are met.

Interrupt arrival rate
An important hypothesis in the defnition of sporadic task is that its minimum inter-
arrival time is known. This hypothesis enabled us to conservatively consider sporadic
tasks as periodic tasks with a period equal to their minimum interarrival time. In some
cases, this hypothesis is implicitly satisfed because devices often generate an inter-
rupt only as a reaction to some software-issued command or inherently guarantee a
minimum interarrival time anyway, like mechanical buttons if we ignore bounces.

As an example of the frst category of devices, a hard-disk controller generates an
end-of-transfer interrupt only after receiving and processing a data transfer command
from its device driver. Moreover, it will not generate further interrupts of the same
kind afterwards, unless the device driver issues another command to it.

As a consequence, the interrupt generation rate, which determines the minimum
interarrival time of the interrupt handler, cannot exceed the rate at which the device
driver sends commands to the device. If, for instance, a periodic task with period
Ti is in charge of preparing and issuing one of those commands on each activation,
we can safely use the same Ti as the minimum interarrival time of the interrupt han-
dling sporadic pseudo-task. Besides being convenient for schedulability analysis, this

97 Scheduling Analysis and Interrupt Handling

approach is also useful to contain the maximum utilization a certain device can im-
pose on the system, because we can cap the interrupt arrival rate by choosing a Ti as
a suitable trade-off between data transfer bandwidth and the system load itself.

Unfortunately, this is not viable in all cases, mainly because some devices may
generate interrupt requests independently of any software action. This is typical, for
example, of most network controllers, which generate an interrupt request when-
ever they receive an incoming frame. In turn, unless the network is time-triggered
or works according to a Time Division Multiplexed Access (TDMA) paradigm, the
arrival time of incoming frames is basically unpredictable and uncorrelated with any
local task activities.

Generally speaking, leaving the interrupt rate unchecked is inconvenient and often
dangerous from several different points of view.

• As hinted previously, schedulability analysis becomes hardly possible. This
is worrying not only from a theoretical point of view, but also from a practi-
cal standpoint, because worst-case task response times can then be assessed
only by testing the system, while relying on the assumption that some test
scenarios can indeed reproduce the worst-case interrupt load the system is
going to face in practice.

• Even if some other physical characteristics of the system may also limit the
maximum interrupt arrival rate as a side effect, the resulting load can never-
theless be too high to be sustainable. For instance, even a Controller Area
Network interface running at a relatively modest rate of 1Mb/s can still
receive one frame every 47 µs, and potentially generate interrupt requests
at the same rate in the worst case. This is because on that kind of network
the minimum legal frame length, including inter-frame spacing, is 47 bits.

• It is also important to remember that interrupt handlers have a higher pri-
ority than any ordinary tasks in the system. Therefore, the execution time
Ch of an interrupt handling pseudo-task τh has a direct, important impact
on the response time of all ordinary tasks in the system. This can be clearly
seen by referring back to the main response time analysis equation (4.5)
and observing that Ch certainly contributes to the Ri of all ordinary tasks τi,
because it surely is h ∈ hp(i) for all i.

• As a consequence, when a system is swamped with interrupts, it may have
little time left to perform “real work.” Moreover, interrupts have a negative
impact on cache performance, which also slows other activities down. A
related issue caused by high-speed devices that are able to perform direct
memory access, as is typical of network interfaces, is memory bandwidth
saturation, which slows down memory accesses issued by the processor.

• Last, but not least, unchecked interrupt handlers may open the door to de-
nial of service attacks. For instance, if an attacker can get access to the
CAN network mentioned previously, it can easily “food” the system with
minimum-size frames. Whether or not this leads to any service disruption
then depends on how well the system is able to tolerate an interrupt arrival
rate it potentially has not been designed and tested for.

98 Real-Time Systems Development with RTEMS and Multicore Processors

The range of techniques to limit interrupt arrival rate can be divided into two
broad categories: hardware and software-based.

• Depending on its sophistication, the device itself may offer a way to reduce
and place an upper bound on its own interrupt generation rate. For instance,
some CAN controllers implement rather sophisticated flters on the identi-
fer—the part of a CAN message that uniquely identifes its contents—and
can automatically store incoming frames into different device or memory-
resident mailboxes, also chosen depending on their identifer.
On one hand, this reduces the overall interrupt rate because the controller,
when suitably programmed, can autonomously discard incoming frames
that are of no interest to the software, without generating any interrupt. On
the other hand, this also restricts the worst-case interrupt rate because, for
each mailbox, these controllers put in place automatic message replacement
and interrupt hold-off policies. For instance, they may keep only the most
recent message destined to a certain mailbox when software is unable to
process them all, and refrain from generating a new interrupt request until
a programmable hold-off time has elapsed since the previons one.

• Similar mechanisms are also available on Ethernet controllers, especially
the ones operating at or beyond 100Mb/s. In general, faster network in-
terfaces tend to be more sophisticated and offoad the processor more. For
instance, they are usually able to store incoming frames and fetch outgoing
frames directly to and from memory-resident buffers they share with the
device driver. In this case, available memory bus bandwidth becomes a fac-
tor to be taken into account. As an example, on a state-of-the-art embedded
system RTEMS with its new protocol stack (see Chapter 10) can sustain
1 Gb/s at around 30-40% processor utilization.

• Most processors allow software to individually enable or disable each in-
terrupt source. Therefore, the interrupt handler can disable its own inter-
rupt source after setting a timer. In this way, no further interrupts from
that source will be generated and handled until the timer expires. Upon
timer expiration, interrupts are enabled again, thus imitating in software
the hardware-based hold-off mechanism mentioned previously. With re-
spect to the hardware-based approach, there are two shortcomings worth
noting. Firstly, the software-based approach entails additional overhead,
due to the work to be performed upon timer expiration. Depending on the
way timers are implemented, this may also imply extra interrupts from the
timer itself. Secondly, some devices may enter an error condition if their
interrupt requests are not serviced timely. Depending on the device, the er-
ror condition may imply data loss—for instance, due to overfows of the
receive buffers of a network interface—and, in extreme cases, the device
may stop working altogether.

An alternative approach that addresses the second shortcoming is to keep de-
vice interrupts enabled at all times, but handle them differently depending on the

99 Scheduling Analysis and Interrupt Handling

circumstances. Namely, when the interrupt handler detects that an interrupt came
“too close” to the previous one, it will perform only the minimal amount of house-
keeping needed for the device to work correctly and nothing else, thus saving pro-
cessor time and reducing the interference on other tasks. Actually, it turns out this is
merely a special case of a more general technique, often called two-stage interrupt
handling, to be discussed next.

Two-stage interrupt handling
In Section 3.2.3, we saw that a key part of a real-time scheduling algorithm is an
appropriate priority assignment scheme. According to this scheme, the priority of a
task shall depend on some properties of the task itself, for instance, its period for RM
or its relative deadline for the deadline monotonic priority order.

This requirement is not of concern for ordinary tasks because software can set
their priority at will. Instead, as described in Section 4.2.1, although interrupt han-
dlers do have a software-assigned priority, they have nevertheless a priority higher
than any ordinary task in the system. In other words, tasks are partitioned in two sub-
sets: ordinary tasks and interrupt handlers. Although software can set task priorities
at will within each subset, the second subset always has a higher priority than the
frst.

As a consequence, it may be impossible to fully adhere to the RM or deadline
monotonic priority assignment, with two important side effects:

• Some schedulability analysis methods, like response time analysis (see
Section 4.1.2), can still be used because they work with any priority as-
signment. Instead, simpler techniques, like utilization-based schedulability
tests (see Section 4.1.1), are no longer applicable.

• The optimality theorems discussed in Section 4.1 obviously do not apply
to priority assignments that do not satisfy their hypotheses. Moreover, by
intuition, the further a given priority assignment is from an optimal one, the
worse the system performs.

A simple workaround that alleviates these issues is two-stage interrupt handling,
in which interrupt handling activities are split into two parts:

1. Time-critical activities are still performed in the interrupt handler, which can be
modeled as before as a pseudo-task τk with worst-case execution time Ck. After-
wards, the interrupt handler wakes up an ordinary task τd .

2. Task τd runs at a lower priority than τk and takes care of less time-critical activities
in a deferred way, with a worst-case execution time Cd .

Overall, two-stage interrupt handling can be modeled as two sporadic tasks τk
and τd for each interrupt source. Both tasks have the same period Tk = Td , equal to
the minimum interrupt interarrival time, and known worst-case execution times Ck
and Cd . Thus, their impact on the system can easily be calculated, for instance, with
response time analysis.

100 Real-Time Systems Development with RTEMS and Multicore Processors

The total interrupt handling time Ck + Cd is still the same as for the one-stage
monolithic interrupt handling approach discussed previously, and probably worse
because of the additional synchronization overhead between the interrupt handler and
the ordinary task. However, this approach is much more fexible because it enables
programmers to choose (within certain limits) the most appropriate trade-off between
code executed at high and low priorities, that is, between Ck and Cd .

Let us assume, as an example, that programmers would like to use the RM priority
assignment but the minimum possible interrupt handling priority of τk is too high for
the corresponding Tk. Although they cannot lower the priority of τk further, they can
still set the priority of τd depending on Td as RM requires. Then, they can make Ck
as small as possible by moving most of the processing into Cd .

In this way, task τd is appropriately positioned in the RM priority hierarchy. Task
τk is not, but its adverse impact on the system has been reduced by reducing its Ck.
In many cases, it is possible to shrink the interrupt handler until it only invokes the
synchronization primitives needed to wake τd up, leading to a very small Ck and
bringing system behavior very close to the optimality guaranteed by RM.

4.3 SUMMARY
This chapter introduced a couple of popular schedulability analysis techniques,
namely utilization-based tests and response time analysis (RTA). In the case of re-
sponse time analysis, it was also shown how to refne and extend the analysis, starting
from a basic periodic task model and then going towards a more complex model that
incorporates task interactions, self-suspension, and interrupt handling.

Moving from theoretical to more practical considerations, the chapter discussed
how interrupt handling and, more generally, exception handling is carried out in prac-
tice, using RTEMS as an example. Given its close analogy to exception handling, we
also illustrated how RTEMS performs a context switch.

Part II

Task Management and
Timekeeping

http://taylorandfrancis.com

5 Task Management and
Timekeeping, Classic API

CONTENTS

5.1 Task Management Basics ..103
5.2 Scheduler Manager and Single-Core Scheduling Algorithms.......................104
5.3 RTEMS Classic and POSIX API...114
5.4 Task Management..115
5.5 The Rate Monotonic Manager...130
5.6 Timekeeping: Clocks and Timers ..143
5.7 Preemption and Interrupt Management ...154
5.8 Summary..157

This chapter illustrates the general concepts of task management and timekeeping,
focusing on the RTEMS scheduling algorithms for single-core systems, along with
the facilities provided by RTEMS to manipulate tasks and account for the passage of
time through its Classic Applications Programming Interface (API).

Chapter 6 will focus on how the same facilities are embodied in the POSIX API.
A short comparison between these two APIs, also given in the present chapter, shows
their relative advantages and disadvantages, and also highlights which facilities are
available only in one API and not in the other.

The chapter ends with a description of some lower-level aspects of interrupt han-
dling on single-core systems by means of the RTEMS Interrupt Manager. Although
these aspects are generally outside the scope of general-purpose application pro-
grammers, they are often essential in embedded systems. Further information about
multicore systems will be provided in Chapters 13.

5.1 TASK MANAGEMENT BASICS
The concept of task management encompasses all the operating system functions and
interfaces that control a task through its entire lifetime, summarized in the task state
diagram of Figure 3.4. Even more generally, we can say that task management rep-
resents the practical embodiment of the concurrent programming concepts discussed
in Chapter 3 by RTEMS.

In a somewhat hierarchical view, at the top level there are operating system func-
tions to create a new task and make it eligible for execution. These same functions

103

104 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.1
Single-Core Scheduling Algorithms of RTEMS

Confguration macro Default Description
(CONFIGURE_SCHEDULER_. . .) name
PRIORITY "UPD " Deterministic Priority Scheduler (default) [84]
SIMPLE "UPS " Simple Priority Scheduler [84]
EDF "UEDF" Earliest Deadline First Scheduler [84]
CBS "UCBS" Constant Bandwidth Server Scheduler [1]

also enable users to specify task scheduling parameters that, in turn, drive the oper-
ating system’s scheduling algorithms, as described in Section 3.2. As in most other
operating systems, another set of RTEMS functions is available to inspect and change
the scheduling parameters of a task after its creation. Additional top-level functions
exist to temporarily suspend and then resume a task, and to terminate it.

Below the surface, a number of RTEMS modules not directly accessible to end-
users implement a variety of real-time scheduling algorithms [125]. Among them,
the ones designed for single-core systems will be presented in Section 5.2 of this
chapter, along with the Scheduler Manager, the RTEMS component responsible for
managing schedulers and, on multicore systems, maintain the association of sched-
ulers with the cores they manage and operate upon.

The algorithms are conceptually very close to the ones discussed in Chapter 3 and
analyzed in Chapter 4, with additional features provided to enhance their practical
applicability and usefulness. Instead, scheduling algorithms for multicore systems
will be one of the topics of Chapter 13.

At the bottom of the hierarchy, a set of partly architecture-dependent RTEMS
functions are responsible for putting scheduling decisions into practice by means of
task dispatching and context switching. This is done according to the general scheme
outlined, for instance, in Section 4.2 for the ARM Cortex-M architecture.

RTEMS provides access to the top level of the hierarchy just introduced by means
of two primary application programming interfaces (APIs) named the Classic and
POSIX interfaces and located at cpukit/rtems and cpukit/posix within the
RTEMS source code, respectively. Section 5.3 summarizes the commonalities and
differences between the two APIs. The rest of this chapter will focus on the classic
API for task management and timekeeping, while Chapter 6 will be entirely devoted
to the POSIX interface.

5.2 SCHEDULER MANAGER AND SINGLE-CORE SCHEDULING
ALGORITHMS

A standard distribution of RTEMS provides the off-the-shelf single-core priority-
based schedulers listed in Table 5.1. In addition, thanks to the modular, plugin-based

105 Task Management and Timekeeping, Classic API

Bitmap with one element
for each queue

(256 elements by default) 0 1 1 0 0⋯

Max. priority Min. priority

(empty)

Max. priority

(2 tasks)

(1 task)

⋮

(empty)

Pointers to task control
blocks (TCBs) of ready

tasks

Min. priority

Array of FIFO queues, one
for each priority level
(256 levels by default)

Insertion of TCB pointers of
newly ready tasks in the queue
corresponding to their priority

(constant time)

TCB pointers are removed
from the queues when tasks

are no longer ready
(constant time)

FIGURE 5.1 Abstract data structures of the Deterministic Priority Scheduler (DPS).

framework for schedulers of RTEMS, users can implement their own scheduling
algorithms if necessary.

As it will be better described in Chapter 13, the same framework also supports
multiple scheduler instances on a multicore system, each using a possibly different
scheduling algorithm and governing a subset of the available cores.

On a single-core system, the specifc scheduler to be used is selected by defning
the macro listed in the leftmost column of the table in the RTEMS confguration, ac-
cording to the general procedure described in Section 2.4.2. For instance, defning the
confguration macro CONFIGURE_SCHEDULER_EDF selects the Earliest Deadline
First (EDF) scheduler. No defnitions are needed to select the Deterministic Priority
Scheduler (DPS) because it is enabled by default.

The DPS is a preemptive, fxed-priority scheduler suitable to implement, for in-
stance, the Rate Monotonic priority assignment (RM), Deadline Monotonic Priority
Ordering (DMPO), and Optimal Priority Assignment (OPA), all described in Sec-
tion 3.2.3.

For what concerns its practical implementation, it makes use of the abstract data
structures depicted in Figure 5.1:

(all ready tasks in the system)

Pointers to task control
blocks (TCBs) of ready

tasks

Single queue of ready
tasks, sorted by priority

Insertion of newly ready tasks
requires the queue to be

scanned (linear time)

⋯

FIGURE 5.2 Abstract data structures of the Simple Priority Scheduler (SPS).

• An array of frst-in, frst-out (FIFO) queues, one for each priority level, to
keep track of the ready tasks at that level.

• A bitmap, with one bit for each priority level, to tell whether the FIFO
associated with the level has tasks in it or not.

When implemented properly, these data structures support the execution of all
typical scheduler operations in a deterministic (that is, predictable and fxed) time,
regardless of the number of tasks in the system. This useful property comes at the
expense of some space overhead. When confgured for 256 priority levels, which is
the RTEMS default, the scheduler data structures occupy slightly more than 3 kbyte
of RAM.

On small systems, which are anyway unable to support a large number of tasks,
a more compact data structure may be preferable. This is provided by the Simple
Priority Scheduler (SPS). It behaves the same as the DPS from the functional point
of view but, as shown in Figure 5.2, it makes use of a single queue of ready tasks,
implemented as a linked list. With respect to the DPS, most of the memory overhead
due to queue headers clearly disappears.

However, since the scheduler must be able to pick the highest-priority ready task
for execution effciently, the queue must be kept sorted by task priority because, in
this way, the selection of the highest-priority ready task can still be performed in
constant time. On the contrary, the whole queue must be scanned whenever a task
is inserted into it, with an execution time overhead that is proportional to the queue
length, that is, the number of ready tasks.

In summary, the SPS is advantageous with respect to the DPS on small sys-
tems, in which the linear complexity of the SPS in the number of tasks is not
an issue because the number of tasks is relatively small, whereas memory—
especially the on-chip RAM of single-chip microcontrollers—often comes at a
premium.

The EDF scheduler has clear advantages with respect to fxed-priority sched-
ulers like the DPS and the SPS, from the point of view of schedulability analysis,
as pointed out in Chapter 4. The downside comes from the necessity of keeping

106 Real-Time Systems Development with RTEMS and Multicore Processors

107 Task Management and Timekeeping, Classic API

The red-black tree is kept
sorted by deadline

Insertion of TCB pointers of
newly ready tasks in the queue
corresponding to their priority

(logarithmic time)

The tree is searched to
find the ready task with

the earliest deadline
(logarithmic time)

Red-black tree

(all ready tasks
in the system)

FIGURE 5.3 Abstract data structures of the Earliest Deadline First (EDF) scheduler.

ready tasks ordered by deadline in an effcient manner, so that the scheduler can se-
lect for execution the task with the earliest deadline whenever the processor becomes
available.

Although the problem might look similar to keeping ready tasks ordered by pri-
ority, there is a fundamental difference that makes the data structures used by the
DPS, which are indeed very effcient, unsuitable for use. More specifcally, as dis-
cussed previously, priorities have a limited range whereas deadlines in RTEMS are
expressed in clock ticks as a 64-bit integer.

As a consequence, the memory overhead of any sorted data structure whose size is
proportional to the range of the sort key, like the one of the DPS, may be appropriate
for priorities but not for deadlines. For this reason, as shown in Figure 5.3, the EDF
scheduler adopts a red-black tree [53] as its main data structure to keep track of all
ready tasks in the system.

A red-black tree is similar to a binary search tree but insertion and deletion opera-
tions keep the tree balanced, so that the complexity of all main operations on the tree
(search, insert and delete) is a logarithmic function of the number of nodes in the tree,
which is the number of ready tasks in the system. Space overhead is proportional to
the number of nodes.

The RTEMS implementation of the EDF scheduler supports two classes of tasks,
the ones that declared a deadline (foreground tasks) and the ones that did not (back-
ground tasks). For background tasks, the EDF scheduler falls back to a fxed priority
scheduler and executes them according to their priority, exactly like the DPS would
do.

The scheduler enforces a strict hierarchy between the two classes, namely, all
background tasks have a lower importance than any of the foreground tasks. In other
words, background tasks are picked for execution, according to their priority, only if
no foreground tasks are ready at the moment.

The deadlines used by this scheduler are declared by means of the RTEMS Rate
Monotonic Manager, whose API will be described in Section 5.5, and are always
implicit, that is, are assumed to be equal to the task period. A task belongs to
the foreground class when it has a deadline declared using the Rate Monotonic

108 Real-Time Systems Development with RTEMS and Multicore Processors

Manager. Instead, if a task’s deadline is canceled or never declared, it belongs to
the background class. Tasks can freely move between the two classes during their
lifetime.

By contrasting Figures 5.1 and 5.3, we can see that the additional fexibility and
the advantages in terms of total processor utilization of the EDF with respect to
the DPS (see Section 4.1) are paid for by an increased complexity of scheduling
operations.

Finally, the Constant Bandwidth Server (CBS) scheduler [1] is an extension of the
EDF scheduler, which is aware of the execution time budget allocated to each task
and enforces it. Informally speaking, the main goal of the CBS scheduler is to ensure
that a task will not miss a deadline because other tasks consumed more processor
time than they should.

Hence, it avoids the so-called domino effect that characterizes the EDF scheduler
in a transient overload condition. A thorough description of the RTEMS API for this
scheduler is beyond the scope of this book. Readers are referred to the RTEMS API
manual [105] for more information about it.

Fine-grained scheduler control
Besides the coarse-grained choice among several priority-based scheduling algo-
rithms and implementations with different trade-offs between time and space over-
heads, which affects all tasks managed by a certain scheduler, RTEMS also provides
three fner-grained ways to control scheduler behavior, selected on a task-by-task
basis.

The theoretical defnitions given in Chapter 3 specify that all schedulers provided
by RTEMS shall be preemptive, that is, they shall immediately take away a core
from an executing task when a higher-priority task becomes ready for execution and
no other suitable cores are available. Moreover, the scheduling analysis methods pre-
sented in Chapter 4 assume that the underlying algorithms accommodate preemption.

Unless otherwise specifed, RTEMS schedulers indeed preempt tasks as needed.
However, preemption can be disabled on a task-by-task basis by setting the
RTEMS_NO_PREEMPT fag in the task mode when creating the task. Tasks can also
inspect and modify their mode during their lifetime, by means of the RTEMS inter-
faces that will be outlined in Section 5.4.

In both cases, the end result is that, when a scheduler dispatches for execution a
task with the RTEMS_NO_PREEMPT fag set, that task will not be preempted even
if a higher-priority task under the control of the same scheduler is later released. In
terms of the task state diagram depicted in Figure 3.4, this implies that transition d.
cannot take place involuntarily. The task can still voluntarily relinquish its right to
execute by blocking or yielding.

Although preemption control can be very useful from the practical point of view
in specifc cases, there are several downsides worth remarking about it:

1. The no-preemption fag only affects the execution of a task once it has started
executing. It does not affect in any way the decision of whether or not to execute

109 Task Management and Timekeeping, Classic API

the task and when, which is still totally controlled by the scheduler, according to
the scheduling algorithm and the task priority.

2. Similarly, setting the no-preemption fag of a task cannot prevent other tasks from
being executed if the task voluntarily blocks or yields after the scheduler picks
it for execution. Programmers should be aware that this constraint also encom-
passes sources of blocking deeply hidden in libraries—for instance, to avoid race
conditions—which might not be immediately evident.

3. Preemption control is sometimes used as a very effcient way to ensure mutual
exclusion among tasks in single-core systems. In multicore systems, this approach
usually does not work correctly, for the same reasons outlined in Section 12.3
while discussing hand-crafted priority elevation.

Another way to adjust the basic behavior of a scheduler is to enable timeslicing
for some tasks. Timeslicing is ortogonal to preemption and is a way to fairly divide
the available processing resources among ready tasks with the same priority.

By default timeslicing is disabled, and hence, a running task will continue
execution—even if there are other ready tasks with the same priority—until it volun-
tarily blocks or yields, or is preempted by a higher-priority task if preemption is en-
abled. When a running task has timeslicing enabled, that is, the RTEMS_TIMESLICE
fag in the task mode is set, RTEMS will instead enforce a limit on the maximum
amount of time the task can execute before the core is given to another ready task
with its same priority, if any.

The maximum amount of execution time is called timeslice and is measured in
RTEMS ticks. If there are no other ready tasks at the same priority as the running
task at the end of a timeslice, RTEMS grants the running task another timeslice and
keeps executing it. Otherwise, it places the running task at the end of the queue
of ready tasks with its same priority and dispatches another task, in a round-robin
fashion. The timeslice length is globally set by means of the confguration macro
CONFIGURE_TICKS_PER_TIMESLICE and applies to all tasks in the system.

Finally, the running task can explicitly ask the scheduler to reconsider its schedul-
ing decision by yielding, that is, by explicitly giving up the core it is executing on.
In this case, RTEMS places the yielding task at the end of the queue of tasks with its
same priority, executes the scheduling algorithm anew, and acts accordingly to the
result.

Unlike other operating systems that provide a dedicated interface for yield-
ing, in RTEMS this is accomplished by means of the ordinary timed-wait inter-
face rtems_task_wake_after with the special time interval RTEMS_YIELD_
PROCESSOR, as described in Section 5.4.

Programmers must also be aware that, considering the way yielding works, the
yielding task may or may not lose the core it is running on, depending on whether
there are other ready tasks with the same priority or not.

110 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.2
RTEMS Scheduler Manager API

Function Purpose
ident (1) Get a scheduler identifer given its name
ident_by_processor Get a scheduler identifer given a processor index
ident_by_processor_set Get a scheduler identifer given a processor set
get_processor_maximum Get the total number of cores confgured in the system
get_processor_set Get the processor set managed by a scheduler
get_maximum_priority Get the maximum task priority of a scheduler
add_processor Add a processor to the set managed by a scheduler
remove_processor Remove a processor from the set managed by a scheduler

(1) All API function names start with the rtems_scheduler_ prefx.

Retrieving a scheduler identifer
As described previously, schedulers are primarily selected and confgured statically,
by means of the RTEMS confguration. In addition, the Scheduler Manager provides
a set of primitives to alter the initial confguration at runtime. They are summarized
in Table 5.2 and discussed in the rest of this section.

The frst group of functions listed in the table provides users several ways to get
a scheduler identifer. A scheduler identifer is an object of type rtems_id that
uniquely identifes a scheduler in the system and must be used whenever it is neces-
sary to refer to the scheduler. The function:

rtems_status_code rtems_scheduler_ident(
rtems_name name,
rtems_id *id

);

stores in the location pointed by id the scheduler identifer of the scheduler called
name. By default, the name of a scheduler is the 4-character name given in the second
column of Table 5.1 and encoded as a rtems_name data type, but it can be changed
by the user in the RTEMS confguration. This is especially important in multicore
systems, in which there may be multiple instances of the same scheduler, and each
of them should have a unique name.

The function also returns a status code that indicates whether it completed suc-
cessfully or not. In particular:

RTEMS_SUCCESSFUL means that the function was successful and the location ref-
erenced by id contains a valid scheduler identifer.

RTEMS_INVALID_ADDRESS indicates that the function failed because id was a
NULL pointer.

111 Task Management and Timekeeping, Classic API

RTEMS_INVALID_NAME indicates that the scheduler name passed as argument was
invalid.

Another way to retrieve a scheduler identifer is by means of one of the cores it
manages. The function:

rtems_status_code rtems_scheduler_ident_by_processor(
uint32_t cpu_index,
rtems_id *id

);

stores into the location pointed by id the identifer of the scheduler in charge
of the core whose index is cpu_index. The index of a core, called CPU in-
dex in RTEMS terminology, is an integer that uniquely identifes a core in the
system. It ranges from zero to the total number of cores minus one, included.
In a single-core system, the only valid CPU index is therefore zero. The func-
tion rtems_scheduler_get_processor_maximum returns the total number of
cores confgured in the system.

The possible return values of rtems_scheduler_ident_by_processor
are:

RTEMS_SUCCESSFUL means that the function was successful and the location ref-
erenced by id contains a valid scheduler identifer.

RTEMS_INVALID_ADDRESS indicates that the function failed because id was a
NULL pointer.

RTEMS_INVALID_NAME indicates that the CPU index cpu_index passed as ar-
gument was invalid.

RTEMS_INCORRECT_STATE means that the CPU index cpu_index was valid, but
the corresponding core was not currently assigned to any scheduler.

Similarly, the function:

rtems_status_code rtems_scheduler_ident_by_processor_set(
size_t cpusetsize,
const cpu_set_t *cpuset,
rtems_id *id

);

stores into the location pointed by id the identifer of the scheduler in charge of
the CPU set referenced by cpuset. The argument cpusetsize specifes the size
of the CPU set in bytes. The highest-numbered online core in the set is taken as a
reference to identify the scheduler.

A CPU set is represented by the data type cpu_set_t and is always passed by
reference. The set of functions listed in Table 5.3 shall be used to manipulate a CPU
set without delving into implementation details.

112 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.3
RTEMS Functions to Manipulate CPU Sets

Macro Purpose
CPU_ZERO Initialize an empty CPU set
CPU_FILL Initialize a CPU set that contains all cores in the system
CPU_COPY Copy a CPU set into another
CPU_SET Add a core to a set, given its CPU index
CPU_CLR Remove a core from a set, given its CPU index
CPU_ISSET Check whether a core belongs to a set, given its CPU index
CPU_COUNT Return the number of cores that belong to a CPU set
CPU_EMPTY Return true if (and only if) a CPU set is empty
CPU_EQUAL Return true if (and only if) two CPU sets are identical
CPU_CMP Alternative name of CPU_EQUAL
CPU_AND Calculate the intersection of two CPU sets
CPU_OR Calculate the union of two CPU sets
CPU_XOR Calculate the set of cores that belong to one of two CPU sets, but not both (1) (2)

CPU_NAND Calculate the set of cores that do not belong to the intersection of two CPU sets (2)

(1) This operation is called disjunctive union or symmetric difference.
(2) These two operations are not the same because the result of CPU_NAND includes cores
that belong to neither of the two CPU sets, whereas the result of CPU_XOR does not.

Querying scheduler characteristics
The second group of functions enables the user to query certain characteristics of a
scheduler, given its identifer. Namely, the function:

rtems_status_code rtems_scheduler_get_processor_set(
rtems_id scheduler_id,
size_t cpusetsize,
cpu_set_t *cpuset

);

returns the set of cores currently associated with the scheduler identifed by
scheduler_id. The set is stored in an object of type cpu_set_t referenced by
cpuset, whose size in bytes is specifed by cpusetsize. Set contents can be in-
spected by means of the functions listed in Table 5.3.

The function:

rtems_status_code rtems_scheduler_get_maximum_priority(
rtems_id scheduler_id,
rtems_task_priority *priority

);

stores into the object pointed by priority the numerically maximum task pri-
ority of the scheduler scheduler_id. It should be noted that, according to the

113 Task Management and Timekeeping, Classic API

priority numbering scheme used by the RTEMS core, numerically higher priority
values correspond to lower priorities, whereas in POSIX numerically higher priority
values correspond to higher priorities.

Modifying the set of cores managed by a scheduler
The third and last group of functions listed in Table 5.2 provides a way to dynami-
cally change the set of cores managed by a scheduler, thus changing the set originally
specifed in the static RTEMS confguration. The two functions in the group are:

rtems_status_code rtems_scheduler_add_processor(
rtems_id scheduler_id,
uint32_t cpu_index

);

and

rtems_status_code rtems_scheduler_remove_processor(
rtems_id scheduler_id,
uint32_t cpu_index

);

Both functions take as arguments the identifer of the scheduler they must op-
erate upon, scheduler_id, and the CPU index of the core to be added or re-
moved from the set of cores managed by that scheduler, cpu_index. They re-
turn the status code RTEMS_SUCCESSFUL when successful. Moreover, the function
rtems_scheduler_add_processor may fail for the following reasons:

RTEMS_INVALID_ID The scheduler identifer scheduler_id is invalid.
RTEMS_NOT_CONFIGURED The core indicated by cpu_index is not confgured

for use by RTEMS.
RTEMS_INCORRECT_STATE The core is confgured for use, but is not online.
RTEMS_RESOURCE_IN_USE The core is already assigned to a scheduler instance.

Similarly, rtems_scheduler_remove_processor may fail for the follow-
ing reasons:

RTEMS_INVALID_ID The scheduler identifer scheduler_id is invalid.
RTEMS_INVALID_NUMBER The core indicated by cpu_index is not managed by

the scheduler identifed by scheduler_id.
RTEMS_RESOURCE_IN_USE There is at least one task that is using the scheduler

identifed by scheduler_id and it would become impossible to execute it if the
core indicated by cpu_index is removed, for one of the following reasons:
• The scheduler would be left with no cores at all on which to execute and

dispatch the tasks under its control.
• The task has an affnity mask (see Chapter 13) that restricts the cores it

can execute on and it would become impossible to fnd a suitable core
for it.

Hardware

Board Support Packages (BSPs)
bsps/…

CPU Library
bsps/…/shared/…

Chip Library
bsps/shared/…

Device Drivers
bsps/…

SuperCore
cpukit/score/…

POSIX API
cpukit/posix/…

Classic API
cpukit/rtems/…

Support libraries
cpukit/lib*/…

Application

FIGURE 5.4 Layered structure of RTEMS components and their source code location.

5.3 RTEMS CLASSIC AND POSIX API
The RTEMS operating system offers two main Application Programming Interfaces
(APIs) for many of its functions, including task management and timekeeping, called
classic and POSIX API. These two APIs serve different yet overlapping purposes.
The focus of the POSIX interface is compliance with the international standard
ISO/IEC/IEEE 9945 [68] to support portable application development.

The Classic API aims to provide rich, expressive features useful to tailored real-
time applications designed specifcally to work with RTEMS. In addition, it allows
access to operating system features, like the Scheduler Manager described in Sec-
tion 5.2, currently not covered by the standard. Thus, application developers ought
to choose between portability and expressiveness in deciding which API to use. Ap-
plications can use both APIs for the most expressive and powerful range of func-
tionality, but any software that relies on Classic API services is non-portable to other
operating systems.

The primary goal of RTOS interface standardization efforts is to facilitate portable
real-time application development by defning the function-level interfaces and the
behavior of a compliant implementation. An application that uses the interfaces cor-
rectly can be assured of proper execution in an RTOS with a standards compliant
implementation. As shown in Figure 5.4, in RTEMS much of the implementation
of RTOS services to satisfy these APIs is shared in an internal subsystem called the
SuperCore located at cpukit/score in the RTEMS source code tree, which corre-
sponds roughly with the notion of kernel in other operating systems. The SuperCore
interface is not a public-facing API.

114 Real-Time Systems Development with RTEMS and Multicore Processors

Task Management and Timekeeping, Classic API 115

The Classic API is an evolution of the Real Time Executive Interface Defnition
(RTEID) [88] and the Open Real-Time Kernel Interface Defnition (ORKID) [92]
proposed RTOS interfaces that were never standardized, although they did inform
POSIX 1003.1b-1993, the real-time extensions to the POSIX 1003.1 standard [65],
which in turn converged into ISO/IEC/IEEE 9945 [68]. The POSIX API in RTEMS
targets the real-time extensions plus a useful subset of POSIX.

The design and implementation of the Classic API followed and evolved natu-
rally from the goals and constraints of real-time applications. Two distinguishing
features of such applications are the need for accurate timekeeping to avoid deadline
misses and multitasking to support responding to independent events in a timely and
prioritized manner. The Classic API therefore provides a suite of function calls, or
directives, that facilitate time and task management with other services provided to
simplify application development. The full set of directives and in-depth documen-
tation can be found in the RTEMS Classic API Guide [105].

The Classic API aims to maintain consistent behavior across the API to simplify
the creation and management of system resources. Consistency is achieved by adopt-
ing an object-oriented approach to resource management, and dividing the API into
managers that includes directives to create, delete, and use a single type of object.
Each object created by a manager has a user-defned name and an RTEMS-defned
identifer. Names are typically four ASCII characters, while identifers are of an
opaque rtems_id type that is representable by an unsigned integer.

A create directive associates the newly allocated object with an identifer that
is returned to the user application, and an ident directive may be used to obtain the
identifer associated with the object having a given object name. Most other directives
of a manager take as frst argument the identifer. A directive’s return value usually
is an opaque rtems_status_code type that indicates either success or a failure
code. Directives can contain both input and output parameters, with inputs preceding
outputs in the argument list. Parameters tend to be opaque rather than primitive types.

The rest of this chapter will discuss in more details Classic API primitives for
task management and timekeeping. Chapter 6 contains a thorough discussion of the
corresponding POSIX API.

5.4 TASK MANAGEMENT
The RTEMS functions (often called directives) for task management are imple-
mented by the RTEMS Task Manager and summarized in Table 5.4. The main func-
tions allow the caller to dynamically create new tasks and delete them. Additional
functions allow the caller to query and modify the most important runtime properties
of a task, such as its priority. The last two functions in this group is conceptually
closer to the time management functions to be discussed in Section 5.6 and imple-
ments timed waits.

116 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.4
RTEMS Task Manager

Function Purpose
(1)create Create a task, without starting it

start Start a task, that is, make it ready or execution
restart Restart a task and execute it again from its entry point

ident Return the task identifer given its name
self Return the identifer of the calling task

wake_after Block the calling task, wake it up after a specifed amount of time (2)

wake_when Block the calling task until a specifed time (2)

suspend Suspend a task
resume Resume a previously suspended task
is_suspended Check whether a task is suspended or not

delete Delete a task
exit Delete the calling task

mode Change the current task mode
set_priority Set the priority of a task
get_priority Get the current priority of a task
set_scheduler Set the scheduler in charge of a task
get_scheduler Get the scheduler currently in charge of a task
set_affinity Set the affnity mask of a task (3)

get_affinity Get the affnity mask of a task (3)

iterate Invoke a user-specifed function on all tasks in the system

(1) All API function names start with the rtems_task_ prefx.
(2) In other words, rtems_wake_after performs a relative wait, with respect to the time
of the call, whereas rtems_wake_when performs an absolute wait.
(3) Useful only on multicore systems, certain schedulers may impose restrictions on legal
mask settings.

Creating and starting a task
The core calls used for creating a set of tasks in the Classic API are
rtems_task_create and rtems_task_start. These API calls suffce to cre-
ate a multitasking system amenable to real-time analysis. The rtems_task_create
call allocates resources for a new task and initializes its task control block. The op-
tional task create user extension is also called during rtems_task_create that
can allocate additional application-defned resources for the newly created task.

The rtems_task_create directive is defned as:

rtems_status_code rtems_task_create(
rtems_name name,
rtems_task_priority initial_priority,

117 Task Management and Timekeeping, Classic API

TABLE 5.5
RTEMS Task Attribute Constants

Constant Meaning
RTEMS_NO_FLOATING_POINT The task does not use the foating-point coprocessor
RTEMS_FLOATING_POINT The task uses the foating-point coprocessor
RTEMS_LOCAL The task is accessible only within the local node
RTEMS_GLOBAL The task is accessible by other nodes of a multiprocessor system

size_t stack_size,
rtems_mode initial_modes,
rtems_attribute attribute_set,
rtems_id *id

);

The name is a user-defned four-character mnemonic for the task, which is rare
to change after a task is created. The initial_priority is the priority value
the scheduler uses for this task, which may change depending on the scheduling
algorithm implemented by the scheduler in charge of the task.

By default, the newly created task inherits the scheduler from its creator. On mul-
ticore systems, the scheduler can be changed at a later time, preferably before starting
the task, by means of the function rtems_task_set_scheduler, to be described
later. On single-core systems there may be only one scheduler in charge of all tasks
in the systems and there is no way of changing it.

A stack_size can be specifed to increase or constrain the memory allocated
to the task for its call stack, but not less than the minimum specifed for the hardware
processor architecture or the application-confgured minimum. The stack_size
may also assume two special values:

• RTEMS_MINIMUM_STACK_SIZE indicates that the stack size must at least
the minimum, recommended stack size recommented by the RTEMS de-
velopers for the underlying processor architecture. If the system has been
user-confgured for a larger minimum stack size, the user confguration will
prevail.

• RTEMS_CONFIGURED_MINIMUM_STACK_SIZE indicates that the stack
size must be equal to the user-confgured minimum stack size, regardless
of whether it is larger or smaller than RTEMS_MINIMUM_STACK_SIZE.

In all cases, the stack size cannot be changed after task creation. The
initial_modes defne the execution mode the task should start with, explained
further below. An attribute_set defnes the task attributes, which cannot be
changed later. The attribute set is built by means of the bitwise or of the attribute con-
stants listed in Table 5.5 and include whether or not the task uses the foating point

118 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.6
RTEMS Task Mode Masks and Values

Mask Values Aspect
RTEMS_PREEMPT_MASK RTEMS_PREEMPT Enable preemption

RTEMS_NO_PREEMPT Disable preemption (1)

RTEMS_TIMESLICE_MASK RTEMS_TIMESLICE Enable timeslicing
RTEMS_NO_TIMESLICE Disable timeslicing

RTEMS_ASR_MASK RTEMS_ASR Enable asynchronous signals
RTEMS_NO_ASR Disable asynchronous signals

RTEMS_INTERRUPT_MASK RTEMS_INTERRUPT_LEVEL(0) Enable all interrupts
RTEMS_INTERRUPT_LEVEL(k) Set interrupt level k (1) (2)

(1) Unsupported on multicore systems.
(2) Interrupt levels are architecture and platform-dependent, as described in Section 4.2.

co-processor (if one exists), and whether a task is local to the executing RTEMS
kernel or is global, that is, it is accessible from remote nodes running a different
RTEMS kernel in a multiprocessor setup. The default attributes are no foating point
and local task.

The execution mode of a task controls whether or not it: can be preempted,
uses timeslices, receives asynchronous signals, and what level of interrupts are
enabled during its execution. Using the RTEMS_DEFAULT_MODES constant as
initial_modes enables a default set of modes that enable preemption, disable
timeslicing, enable asynchronous signals, and enable all interrupts. Any other setting
of mode needs to be explicit in the call to create the task or can be changed later us-
ing the rtems_task_mode directive, which can also be used to obtain the current
mode of the task.

A task mode is built by means of the bitwise or of several values that individually
control a specifc aspect of the mode. RTEMS defnes a set of constants, listed in
Table 5.6, which help users manipulate a task mode. More specifcally, it provides:

• A mask to isolate a specifc aspect from a task mode, for instance, preemp-
tion control.

• Within each mask, a set of valid values for that aspect. For instance, within
the preemption control mask, two values are defned to enable and disable
preemption during task execution.

When successful, the directive rtems_task_create returns RTEMS_
SUCCESSFUL after storing the identifer of the newly created task into the location
pointed by id. Otherwise, it returns a status code that provides more information
about why it failed:

RTEMS_INVALID_ADDRESS indicates that the function failed because id was a
NULL pointer.

119 Task Management and Timekeeping, Classic API

RTEMS_INVALID_NAME indicates that the task name passed as argument was in-
valid.

RTEMS_INVALID_PRIORITY indicates that the initial_priority given to
the task was invalid.

RTEMS_MP_NOT_CONFIGURED indicates that the task attributes asked for the cre-
ation of a global task on a single-node system.

RTEMS_TOO_MANY the maximum number of tasks in the system has been reached
and no more tasks can currently be created.

RTEMS_TOO_MANY the maximum number of global objects in the system has been
reached and no more global tasks can currently be created.

RTEMS_UNSATISFIED can be returned for two distinct reasons:
• There was not enough memory to allocate the task stack and its foating-

point context, if requested.
• The task mode was illegal for a multicore system, namely, asking for

non-preemption or setting a non-zero interrupt level is unsupported on
such a system.

Although rtems_task_create allocates a new task, the caller does not get
preempted because the new task is not yet added to the schedulable set of ready
tasks, which is the job of the rtems_task_start directive, defned as:

rtems_status_code rtems_task_start(
rtems_id id,
rtems_task_entry entry_point,
rtems_task_argument argument

);

The directive operates on an existing task, specifed by means of the task iden-
tifer id, which is an output from a previous call to rtems_task_create. The
entry_point argument specifes the entry point of the task, that is, the address of
the function from which task execution will begin.

Upon execution, the entry point function will receive a single argument
argument, of type rtems_task_argument. This RTEMS-defned data type is
opaque, but it is guaranteed to have the following useful properties:

• It is a numeric, unsigned integer type of unspecifed width.
• Any valid pointer to void can be cast to this type and then back to a pointer

to void without loss of information, that is, the result will be equal to the
original pointer.

Importantly, the caller of rtems_task_start may be immediately preempted
by the newly started task, depending on the number of cores in the system, the rela-
tive priorities of the two tasks, and whether or not preemption is enabled in the call-
ing task. Besides RTEMS_SUCCESSFUL, which indicates that the task was started
successfully, rtems_task_start may return one of the following status code to
report a failure:

120 Real-Time Systems Development with RTEMS and Multicore Processors

RTEMS_INVALID_ID The task id provided as argument was invalid.
RTEMS_INVALID_ADDRESS The task entry_point was invalid.
RTEMS_INCORRECT_STATE The task was not in the dormant state.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The task id referred to a remote task,

but tasks can only be started locally—that is, from the same node they have been
created on.

The rtems_task_restart directive, defned as:

rtems_status_code rtems_task_restart(
rtems_id id,
rtems_task_argument argument

);

restarts the task identifed by id from any state except the dormant state, using the
same entry_point specifed when the task was originally started, possibly with a
new argument. As for many other task-related primitives, the special task identifer
RTEMS_SELF can be used to indicate that a directive shall operate on the calling
task. For instance, in this case, a task can use RTEMS_SELF as id to restart itself, in
which case rtems_task_restart will not return at all.

The possible non-normal status codes of rtems_task_restart are:

RTEMS_INVALID_ID The task id provided as argument was invalid.
RTEMS_INCORRECT_STATE The task was never started before, hence its entry

point is unknown.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The task id referred to a remote task,

but tasks can only be restarted locally—that is, from the same node they have
been created on.

The fnal question that must be answered to completely address the topic of task
creation is what are the tasks initially present in the system when it is frst boot-
strapped. An RTEMS application begins with two tasks named init and idle. The
idle task has the lowest priority in the system and gets executed as a fallback only
when no other tasks are ready. The init task is created by RTEMS and started at an
application-confgured function entry point, which is called Init by default.

Often a real-time application will initialize itself in Init by using a loop through
a series of calls to create all the application’s tasks, then another loop that starts
them all, and then the init task will delete itself or self-suspend. Applications that are
memory resource-constrained may re-use the init task as one of the application tasks.
Barriers, described in Section 7.5, are very useful to ensure that the newly created
tasks synchronize themselves at the very beginning to start executing in an orderly
way.

Identifying a task
To operate on a task, most task management functions require an RTEMS task iden-
tifer, represented by the data type rtems_id. The task identifer is returned by the

121 Task Management and Timekeeping, Classic API

TABLE 5.7
RTEMS Special Nodes

Node Meaning
RTEMS_SEARCH_LOCAL_NODE Search only the local (caller’s) node
RTEMS_SEARCH_ALL_NODES Search all nodes, starting from the local node
RTEMS_SEARCH_OTHER_NODES Search all nodes except the local node

rtems_task_create directive upon task creation, but there are also other ways
to retrieve it afterwards. The function:

rtems_status_code rtems_task_ident(
rtems_name name,
uint32_t node,
rtems_id *id

);

returns the task identifer of a task, storing it into the location pointed by id, given
its name and the node on which it resides. When searching other nodes besides the
local node (the node on which the caller is executing) this function can fnd only
global tasks, that is, tasks which have the RTEMS_GLOBAL fag set in their attributes.

Besides actual node numbers, the special nodes listed in Table 5.7 can be used to
defne the scope of the search. These special nodes can generally be used with any
RTEMS function that looks up an object identifer given its name and node, and not
only with rtems_task_ident.

If the task name is not unique within the search scope, the function returns the
identifer of one of the tasks with that name. The special name RTEMS_SELF can
be used by the calling task to retrieve its own identifer. When successful, the func-
tion returns RTEMS_SUCCESSFUL. Otherwise, it returns one of the following status
codes:

RTEMS_INVALID_ADDRESS the function failed because id was a NULL pointer.
RTEMS_INVALID_NAME the task name passed as argument was invalid or no task

with the given name was found.
RTEMS_INVALID_NODE the given node number was invalid.

A simpler way for a task to obtain its own identifer is to call:

rtems_id rtems_task_self(void);

This function can also be called from an interrupt handler, but takes a different
meaning. In that case, it returns the identifer of the interrupted task.

122 Real-Time Systems Development with RTEMS and Multicore Processors

Dormant
Ready

Running

Termination

Waiting

create

start

Scheduling

Preemption

wake_after,
wake_when

End of blocking op.

exit,
delete (self)

restart

restart

Blocking op. on a
synchronization obj.

restart

wake_after

(YIELD_PROCESSOR)

Suspended

suspend

(self)

resume
suspend

(by others) resume

suspend

(by others)

delete
(by others)

delete
(by others)

delete
(by others)

delete
(by others)

FIGURE 5.5 Simplifed view of the RTEMS task state diagram (TSD).

Task states, timed delays, and suspension
Figure 5.5 provides a simplifed view of the RTEMS task state diagram (TSD). This
diagram is a specialization of the abstract diagram shown in Figure 3.4 and com-
mented in Section 3.2. Although Figure 5.5 better captures the underlying complex-
ity of a real operating system, it is still highly simplifed and omits, for example, all
the intricacies related to task termination and deletion.

In the fgure, transitions whose label is written in typewriter font are triggered
by the execution of the directive with the same name, described in this section. Tran-
sitions written in normal font are triggered by other operating system events.

After a task is started, it moves from the dormant to the ready state. Then, the
scheduler may dispatch the task to run on a processor, which moves the task from
the ready to the running state. While a task is running, it can voluntarily block itself
in two possible ways:

123 Task Management and Timekeeping, Classic API

TABLE 5.8
Fields of the rtems_time_of_day Data Type (Calendar Time)

Field Contents Range
(1)year Year ≥ 1988

month Month [1,12]
day Day [1,31]
hour Hour [0,23]
minute Minute [0,59]
second Second [0,59]
ticks Fraction of second expressed in ticks [0,99] (2)

(1) All felds are of type uint32_t, that is, unsigned, 32-bit integers.
(2) Assuming the default RTEMS clock tick length 10 ms is in use.

1. By calling the rtems_task_wake_after or rtems_task_wake_when di-
rectives, which specify a relative blocking interval in scheduling ticks or an abso-
lute timeout interval in the rtems_time_of_day format, respectively.

2. By executing a blocking operation on a synchronization object. This form of self-
blocking is needed whenever a task must interact with other tasks in an orderly
way and is extremely articulate. It will be the subject of Chapters 7 and 9.

Passing a relative interval of YIELD_PROCESSOR to the wake after directive
causes a task to yield the processor, thus moving the task into the ready state and
allowing the scheduler to dispatch an equal or higher priority task. More specifcally,
the rtems_task_wake_after directive has the following interface:

rtems_status_code rtems_task_wake_after(
rtems_interval ticks

);

Its only argument represent the number of ticks for which the calling task
will wait. Although the function returns a status code, currently it always returns
RTEMS_SUCCESSFUL because it cannot fail. The length of a tick, which also deter-
mines the resolution of this kind of wait, is determined by the confguration macro
CONFIGURE_MICROSECONDS_PER_TICK.

Instead, the rtems_task_wake_when directive blocks the calling task until a
certain time of day has been reached. The time of day is specifed by reference, by
means of the time_buffer argument:

rtems_status_code rtems_task_wake_when(
rtems_time_of_day *time_buffer

);

The rtems_time_of_day data type is a structure with the felds listed in
Table 5.8, which represents a calendar time. This function ignores the fractional part

124 Real-Time Systems Development with RTEMS and Multicore Processors

of the second held in the ticks feld, and hence, the absolute wait it implements has
a resolution of one second.

The rtems_task_wake_when function blocks the calling task and then returns
RTEMS_SUCCESSFUL when successful. Otherwise, it immediately returns one of
the following status codes:

RTEMS_INVALID_ADDRESS the time_buffer pointer was null.
RTEMS_INVALID_TIME_OF_DAY the contents of the structure pointed by

time_buffer were invalid.
RTEMS_NOT_DEFINED the system data and time have not been set as specifed in

Section 5.6.

The caller of the wake after and wake when directives is placed in the waiting state
until the interval elapses or the timeout is reached, respectively. Changing the sys-
tem’s current date and time does not affect wake after, but it does affect wake when
and may cause the waiting task to unblock if the modifed time exceeds the timeout.
It is also important to remark that these two functions are related and conceptually
close to the other timekeeping functions presented in Section 5.6.

A task can also suspend itself or another task by using the rtems_task_
suspend directive, which is undone by the rtems_task_resume directive. As
shown in Figure 5.5, the suspended state is complementary to other blocking, for
example, a prior self-suspension via rtems_task_wake_after or blocking on a
synchronization object, and a task that is resumed may remain in a waiting state in
case it is blocked. The suspend and resume directives both take a single argument,
the identifer id of the task whose state is changed:

rtems_status_code rtems_task_suspend(
rtems_id id

);

rtems_status_code rtems_task_resume(
rtems_id id

);

Both functions return one of the following status codes:

RTEMS_SUCCESSFUL The target task was successfully suspended or resumed.
RTEMS_INVALID_ID The task identifer id passed as argument was invalid.
RTEMS_ALREADY_SUSPENDED An attempt was made to suspend a task that was

already suspended.
RTEMS_INCORRECT_STATE An attempt was made to resume a task that was not

currently suspended.

Finally, the function:

rtems_status_code rtems_task_is_suspended(
rtems_id id

);

125 Task Management and Timekeeping, Classic API

checks whether the task identifed by id is suspended or not. It returns
RTEMS_SUCCESSFUL if the task is not currently suspended and RTEMS_ALREADY_
SUSPENDED if it is. Moreover, it may fail and return one of the following status
codes:

RTEMS_INVALID_ID The task identifer id passed as argument was invalid.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The function cannot be used on a remote

task.

Deleting a task
A task is deleted by calling the directive:

rtems_status_code rtems_task_delete(
rtems_id id

);

passing its task identifer id as argument. A task can delete itself by using
RTEMS_SELF as task identifer. In this case, rtems_task_delete does not re-
turn and the system selects another task to execute.

If a task is deleting another, rtems_task_delete returns RTEMS_
SUCCESSFUL if it successfully deleted the target task, or one of the following status
codes upon failure:

RTEMS_INVALID_ID The task identifer id passed as argument was invalid.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The function cannot be used on a remote

task. In other words, tasks must be deleted by a task residing on their same node.

When begin deleted, a task goes through a sequence of states in which most, but
not all, of the resources allocated to it are reclaimed. All these states are subsumed
under the termination state depicted in Figure 5.5. Two main aspects of this process
are very important from the programmer’s point of view:

1. RTEMS, like most other operating systems, is unable to reclaim all resources
somewhat associated with or owned by the task. This is especially true for what
concerns synchronization devices to be discussed in Chapters 7 and 9.
From this point of view, unless the task to be deleted is unable to execute or
experienced other kinds of critical failure, it is therefore better to ask the task to
delete itself (after releasing all its resources) rather than deleting it abruptly from
another task.

2. After deleting a task, RTEMS may reuse the same task identifer for a newly cre-
ated task. Similarly, if a new instance of the same task is created after deleting it,
the operating system will likely give it a different identifer. Again, this is consis-
tent with what other operating systems do and is analogous, for instance, to the
way Unix-like operating systems reuse process identifers.
Special care must be taken in the application code to handle this scenario correctly
because, if the code merely keeps using a previously cached task identifer, it may
easily refer to the wrong task.

126 Real-Time Systems Development with RTEMS and Multicore Processors

Moreover, as it will be better discussed in Chapter 5, part of the context of a task
created with the POSIX API may survive its deletion if the task was joinable, until
another task performs a join operation on it.

A more concise way for a task to delete itself is to invoke the directive:

void rtems_task_exit(void);

which never returns to the caller. Since it is an error for a task created with the Classic
API to return from the function specifed as its entry_point, often the last line of
code in such entry points is indeed a call to rtems_task_exit. Also in this case, it
is worth remarking that the rules for tasks created with the POSIX API are different.
In that case, returning from the entry point terminates the task normally.

Changing the task mode and other properties
As described previously, tasks are given an initial set of attributes and an execution
mode upon creation. Attributes cannot be changed during the lifetime of a task. In-
stead, a task can inspect and change its execution mode by means of the directive
rtems_task_mode:

rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set

);

This directive implicitly targets the calling task, and hence, it does not take any
task identifer as argument. It can be used in two different ways:

• When mode_set is the special value RTEMS_CURRENT_MODE, the direc-
tive only stores into the location pointed by previous_mode_set the
current task mode, without changing it.

• Otherwise, the mask argument identifes which aspects of the execution
mode are to be changed, and mode_set specifes their new value. Aspects
not covered by the given mask are left unaltered. The mask argument is
formed as the bitwise or of the masks listed in the leftmost column of
Table 5.6, while mode_set is the bitwise or of the corresponding values
listed in the middle column of the same table. As in the previous case, the
directive also stores into the location pointed by previous_mode_set
the task mode as it was before changing it.

Besides RTEMS_SUCCESSFUL, which indicates a successful completion, the di-
rective may return one of the following status codes:

RTEMS_INVALID_ADDRESS the previous_mode_set pointer was null.
RTEMS_NOT_IMPLEMENTED the new task mode is not supported by the system.

For instance, disabling preemption is not supported on multicore systems.

127 Task Management and Timekeeping, Classic API

Two functions allow the caller to inspect and modify the current priority of a task.
They are:

rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority

);

rtems_status_code rtems_task_get_priority(
rtems_id task_id,
rtems_id scheduler_id,
rtems_task_priority *priority

);

The rtems_task_set_priority function sets the priority of a task, targeted
by the task identifer id, to the value new_priority. It also stores the task’s pre-
vious priority into the location pointed by old_priority.

By default, legal priority values range from 1 (which represents the highest possi-
ble priority) to 255 (the lowest). The number of priorities that RTEMS supports can
be changed by setting the CONFIGURE_MAXIMUM_PRIORITY confguration macro
and, on multicore systems, also on a scheduler-by-scheduler basis.

Due to the way resource locking protocols work—for instance, the priority inher-
itance protocol to be discussed in Section 8.1—lowering the priority of a task may
be postponed until the task does not hold any resources managed by those protocols.

The function returns RTEMS_SUCCESSFUL when successful, or one of the fol-
lowing status code to indicate failure:

RTEMS_INVALID_ID The task identifer id passed as argument was invalid.
RTEMS_INVALID_ADDRESS the old_priority pointer was null.
RTEMS_INVALID_PRIORITY the priority specifed by new_priority was in-

valid.

The rtems_task_get_priority function stores into the location pointed by
priority the current priority of the task id with respect to the scheduler instance
scheduler_id. Unlike rtems_task_set_priority, it can be used only on
local tasks. The function may fail for the following reasons:

RTEMS_INVALID_ID The task identifer id or the scheduler instance identifer
scheduler_id were invalid.

RTEMS_INVALID_ADDRESS The priority pointer was null.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The directive cannot be used on a re-

mote task.
RTEMS_NOT_DEFINED The task has no priority defned with respect to the given

scheduler instance.

128 Real-Time Systems Development with RTEMS and Multicore Processors

In both cases, the priority returned by the directives refects the actual, current
task priority, which at times may be different than the priority specifed by the user,
due to the temporary priority adjustments that RTEMS may perform to implement
the locking protocols mentioned previously.

By default, a newly created task inherits the scheduler from the task that created
it. If necessary, it can be changed at a later time, by means of the function:

rtems_status_code rtems_task_set_scheduler(
rtems_id id,
rtems_id scheduler_id,
rtems_task_priority priority

);

This function sets the scheduler of task id to scheduler_id and gives to the
task a new priority. It is generally legal to change the scheduler of a task before
starting it. Depending on the specifc task state, attempting to change the scheduler in
other scenarios may lead to RTEMS_NOT_SATISFIED errors. On multicore systems,
the scheduler instance inherited by the task upon creation or set by means of this
function is the home scheduler instance of the task, which is normally in charge of
its execution. However, when a task acquires certain kinds of shared synchronization
device, to be described in Chapter 7, the operating system can temporarily place it
under the control of other scheduler instances.

The rtems_task_set_scheduler returns RTEMS_SUCCESSFUL when suc-
cessful. Otherwise, it returns one of the following status codes:

RTEMS_INVALID_ID The task identifer id or the scheduler instance identifer
scheduler_id were invalid.

RTEMS_INVALID_PRIORITY The given priority was invalid.
RTEMS_UNSATISFIED The scheduler indicated in the call has no cores assigned to

it and performing the requested scheduler change would have rendered the task
unable to execute.

RTEMS_RESOURCE_IN_USE The current task state did not allow a change of
scheduler.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT The directive cannot be used on a re-
mote task.

The directive:

rtems_status_code rtems_task_get_scheduler(
rtems_id id,
rtems_id *scheduler_id

);

stores the scheduler currently in charge of task id into the location pointed by
scheduler_id. Besides RTEMS_SUCCESSFUL, the status codes that the function
can possibly return are:

RTEMS_INVALID_ID The task identifer id was invalid.

129 Task Management and Timekeeping, Classic API

RTEMS_INVALID_ADDRESS the scheduler_id pointer was null.

By default, on a multicore system a task is eligible for execution on all online
cores and the scheduler can freely choose among them. As better detailed in Chap-
ter 13, some multicore schedulers give users fner control on this set of cores by
means of an affnity mask. The affnity mask of a task is a CPU set represented by the
data type cpu_set_t. The scheduler is allowed to use a certan core to execute the
task if and only if the core belongs to the set. As in other cases, users can manipulate
CPU masks by means of the functions listed in Table 5.3. The function:

rtems_status_code rtems_task_set_affinity(
rtems_id id,
size_t cpusetsize,
const cpu_set_t *cpuset

);

sets the affnity mask of the task id. The cpuset argument points to an instance
of the cpu_set_t data type that holds the CPU set and cpusetsize indicates its
size in bytes.

The function does not change the scheduler in charge of the task and the affnity
mask may contain cores that are not assigned to that scheduler. In any case, the fnal
set of cores on which the task may be executed is the intersection between the set
of cores indicated in the affnity mask and the set of cores assigned to the scheduler.
For the task to actually be executed, it is therefore crucial that this intersection is not
empty.

Users should also take into account that some multicore locking protocols to be
described in Chapter 13 may temporarily run a task on cores not specifed in its
affnity mask. Finally, if the underlying scheduler does not support task affnity, it
is important that the affnity mask is kept to the widest possible setting, that is, the
mask should include all cores in the system.

The rtems_task_set_affinity primitive returns RTEMS_SUCCESSFUL
when successful. Otherwise, it returns one of the following status codes without
touching the affnity mask:

RTEMS_INVALID_ID The task identifer id was invalid.
RTEMS_INVALID_ADDRESS the cpuset pointer was null.
RTEMS_INVALID_NUMBER the affnity mask was invalid.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The directive cannot be used on a re-

mote task.

Finally, the directive:

rtems_status_code rtems_task_get_affinity(
rtems_id id,
size_t cpusetsize,
cpu_set_t *cpuset

);

130 Real-Time Systems Development with RTEMS and Multicore Processors

enables the caller to retrieve the affnity mask of task id. The cpuset argu-
ment must point to the location in which the directive will store the mask and
cpusetsize must indicate its size, in bytes. Besides RTEMS_SUCCESSFUL the
directive may return one of the following status codes:

RTEMS_INVALID_ID The task identifer id was invalid.
RTEMS_INVALID_ADDRESS the cpuset pointer was null.
RTEMS_INVALID_NUMBER the size specifed in cpusetsize is too small for the

affnity mask of the task.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The directive cannot be used on a re-

mote task.

Operating on all tasks
The last Task Manager directive to be discussed here, rtems_task_iterate, al-
lows the caller to apply a user-defned function to the task control block (TCB) of all
tasks currently present in the system:

void rtems_task_iterate(
rtems_task_visitor visitor,
void *arg

);

The directive takes two arguments:

• visitor is a pointer to the user-defned function, and
• arg is an additional argument to be passed to visitor, besides the task

control block.

The visitor function is invoked once for each task currently in the system and
also receives two arguments:

• a pointer to the task control block (data type rtems_tcb), and
• the user-defned arg initially passed to rtems_task_iterate that can

be used, for instance, to pass contextual information to the visitor func-
tion and propagate it from one invocation to the next.

The visitor function returns a Boolean value (data type bool) that, if true,
aborts the iteration prematurely. This function must be designed with care because
RTEMS task control blocks (TCBs) are not normally user-visible and altering them
can easily cause problems. A full description of the internals of RTEMS task control
blocks is beyond the scope of this book.

5.5 THE RATE MONOTONIC MANAGER
The Task Manager presented in Section 5.4 allows users to dynamically create new
“generic” tasks, whose internal behavior is completely opaque to the operating sys-
tem. In particular, no information is provided to the system about the timing patterns

131 Task Management and Timekeeping, Classic API

and requirements of those tasks. This is similar to the limited level of knowledge that
general-purpose operating systems have about their processes, which are merely seen
as entities that are sometimes ready to execute and consume CPU time, to somehow
fulfll a useful purpose.

However, in Chapters 3 and 4 we saw that a whole wealth of theoretical work has
been devoted to analyze specifc kinds of task—most importantly, periodic tasks—in
order to accurately predict their worst-case behavior in terms of response time as well
as the system’s ability to fulfll their timing constraints, represented by deadlines,
thus guaranteeing their schedulability. This was done because these kinds of task
indeed have a special relevance for many real-time systems.

As described in Chapter 3 and shown in Figure 3.5, a periodic task consists of an
infnite sequence of jobs. Each job is released, that is, it becomes ready for execution,
at regular time intervals and more specifcally at the beginning of each task period.

In the simplest case, a job stays ready for execution and runs, that is, consumes the
CPU time that the operating system scheduler allocates to it, until it attains a certain
total execution time. The job then concludes and the periodic task as a whole is no
longer ready for execution until the next job is released, at the beginning of the next
period. This very specifc timing pattern continues for the whole task’s life. For what
concerns timing constraints, the simplest and often most natural way of proceeding is
to establish an implicit deadline, that is, stipulate that a job must necessarily conclude
before the next job of the same task is released, in order to be considered schedulable.

In more complex scenarios, a job can also block—for instance, to synchronize
and communicate with other tasks, and to perform input–output operations—but the
top-level articulation of a task in an infnite sequence of jobs released at regular
time intervals stays the same. In some circumstances, it may also be convenient to
consider constrained deadlines, which are shorter than the task period, especially for
tasks dealing with abnormal situations that must be handled urgently as they arise.

The consequence of these more complex task behaviors and constraints have been
discussed in Section 4.1.3 for what concerns schedulability analysis. Then, Chap-
ters 7 and 8 will give more information about how the inter-task synchronization and
communication mechanisms work.

For what concerns the practical implementation of periodic tasks, existing real-
time operating systems and APIs may endorse two complementary approaches:

1. Stay at the level of abstraction seen in the RTEMS Task Manager and leave all the
burden to programmers. In return, programmers get absolute freedom to imple-
ment these tasks in the way that most effectively suits their application, but also to
make mistakes along the way. This is the approach taken by the POSIX API [68]
and described in Chapter 6.
Programmers who do not wish to implement their own periodic tasks from scratch
can of course resort to additional libraries, like [30] for Linux, which provide
the higher-level notion of periodic task, with varying degrees of sophistication
and complexity, starting from what the underlying operating system API makes
available.

132 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.9
RTEMS Rate Monotonic Manager API

Function Purpose
(1)create Create a period object

ident Get the identifer of a period object given its name
delete Delete a period object

period Mark the conclusion of a period and wait for the next
cancel Cancel a period
get_status Get the current status of a period object

get_statistics Retrieve the execution statistics of a period object
reset_statistics Reset the execution statistics of a specifc period object
reset_all_statistics Reset the execution statistics of all existing period objects
report_statistics Print the execution statistics of all existing period objects (2)

(1) All API function names start with the rtems_rate_monotonic_ prefx.
(2) Except period objects that have not executed at least one period since they were created
or their statistics were reset.

2. Supply a general framework that helps programmers to implement periodic tasks
with less effort in an easier (and hopefully more correct) way, even though they
may or may not grasp all the subtleties of the framework internals. At the same
time, this approach enables the operating system to automatically gather more
information about periodic tasks and drive its scheduling algorithms with it. This
is the approach taken by RTEMS with its Rate Monotonic Manager, which will
be the subject of this section.
For example, knowing that a certain task is periodic and has an implicit dead-
line rather than being a generic task of unknown characteristics, allows RTEMS
to feed its Earliest Deadline First (EDF) scheduling algorithm described in Sec-
tion 5.2 with accurate data without any further programmers’ assistance.

Table 5.9 summarizes the user-visible functions of the Rate Monotonic Manager.

Creating and deleting period objects
As explained previously, the two main top-level phases of a periodic task are an
active phase, in which one of its job has been released but has not been concluded
yet, and an inactive phase, in which the current job has been concluded and the task is
blocked waiting for the release of another job, which will take place at the beginning
of the next period.

RTEMS drives a task through these two phases repeatedly by means of a period
object, also called Period Control Block (PCB) in the RTEMS documentation [105].
The period control block of RTEMS should not be confused with the term Process

133 Task Management and Timekeeping, Classic API

Control Block, also abbreviated PCB and used by other operating systems (together
with many theoretical textbooks) to indicate the information that an operating system
must manage and maintain to represent a process. A task can create a new period
object by means of the function:

rtems_status_code rtems_rate_monotonic_create(
rtems_name name,
rtems_id *id

);

Like many other kinds of RTEMS object, period objects have a 4-character, pos-
sibly human-readable name. When successful, this function stores the unique iden-
tifer of the period object just created into the location pointed by id and returns
RTEMS_SUCCESSFUL. The period object identifer must be used whenever it is nec-
essary to refer to the period object iself. Upon failure, the function returns one of the
following status codes:

RTEMS_INVALID_NAME the task name passed as argument was invalid.
RTEMS_INVALID_ADDRESS the id pointer was null.
RTEMS_TOO_MANY the maximum number of period objects in the system has been

reached and no more can currently be created.

While creating a period object, the rtems_rate_monotonic_create func-
tion records the identity of the calling task into it. This is because a period object can
be used for timing purposes only by the task that created it. Any attempt to use a pe-
riod object belonging to a different task, except for retrieving its status or statistics,
or deleting it, leads to the error RTEMS_NOT_OWNER_OF_RESOURCE. For similar
reasons, period objects cannot be global.

The function:

rtems_status_code rtems_rate_monotonic_ident(
rtems_name name,
rtems_id *id

);
stores in the location pointed by id the identifer of the period object identifed by
name. Since object names are not guaranteed to be unique, if there are multiple pe-
riod objects with the same name the function returns one of them, but exactly which
one is unspecifed. The function returns RTEMS_SUCCESSFUL when it completed
successfully. Otherwise, it returns one of the following status codes:

RTEMS_INVALID_ADDRESS the id pointer was null.
RTEMS_INVALID_NAME No period object with the given name was found.

When no longer in use, a period object can be deleted by passing its identifer id
to the function:
rtems_status_code rtems_rate_monotonic_delete(

rtems_id id
);

134 Real-Time Systems Development with RTEMS and Multicore Processors

The function returns RTEMS_SUCCESSFUL when successful, or the status code
RTEMS_INVALID_ID to indicate that the period object identifer was invalid, for
instance, because it was not found in the system. After a period object has been
deleted, the storage allocated to it, all its system resources, and also its identifer can
be reused by RTEMS.

As for other RTEMS objects, care must be taken not to use an object identifer
after the corresponding object has been deleted because the identifer may become
invalid or, even worse, refer to the wrong object. A period object can be deleted
by the task that created it, or also by another task. The second option is useful to
forcefully reclaim all the resources allocated to a task that has been aborted and is
therefore unable to execute anymore.

Implementing periodic tasks
In its simplest form, an RTEMS periodic task is built according to the template shown
in Figure 5.6. In the template most checks on the return value of RTEMS directives,
except for the ones related to the timings of the periodic task, and the related error
handling have been omitted. This is obviously contrary to good programming prac-
tice, but in this context has the advantage of keeping the listing short. The code can
be divided into three parts:

1. In the frst part the periodic task initializes itself, allocates all the resources it
needs, and prepares for periodic execution. This is represented in the template by
the pseudo-function init(). Then, it makes use of the Rate Monotonic Manager
to create the period object, which will control its timings during the second part.

2. The second part consists of a while loop in which the task repeatedly waits un-
til the right time arrives for the release of its next job, by means of the directive
rtems_rate_monotonic_period, and then performs it. The job code is rep-
resented by the pseudo-function job().
The task moves into its third part only when the Rate Monotonic Manager
reports a timing failure by means of the RTEMS_TIMEOUT status code of
rtems_rate_monotonic_period. As it will be explained in further details
below, this status code signifes that the job missed its implicit deadline, an event
often called overrun in literature.

3. During the third part, the task deletes the period object, releases all other resources
it owns, and eventually deletes itself. Resource release is represented in the tem-
plate in an abstract way, by means of the pseudo-function fini().

The key directive for the periodic execution part is:

rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length

);

which makes use of the period object id to establish and maintain a periodic job
execution pattern of period length ticks.

135 Task Management and Timekeeping, Classic API

#define PERIOD_IN_TICKS 500
rtems_task Periodic_task(rtems_task_argument arg)
{

rtems_id period;

/* init(); */
rtems_rate_monotonic_create(

rtems_build_name(’P’, ’E’, ’R’, ’ ’), &period);

while(1)
{

if(rtems_rate_monotonic_period(
period, PERIOD_IN_TICKS) == RTEMS_TIMEOUT)
break;

/* job(); */
}

rtems_rate_monotonic_delete(period);
/* fini(); */
rtems_task_delete(RTEMS_SELF);

}

FIGURE 5.6 Typical structure of an RTEMS periodic task (status checks and error handling,
except for period overrun, omitted for brevity).

As shown in Figure 5.7, when this function is invoked on an inactive period ob-
ject, that is, a period object that has not yet been used after having been created, it
immediately returns to the caller a RTEMS_SUCCESSFUL status code, thus allowing
it to proceed and perform its frst job.

At the same time, the function also makes the period object active, records the
instant of the call, and sets a time mark k ticks in the future, where k is the value
of the length argument. The width of this time interval is the nominal period of
the calling task and the interval itself represents the maximum amount of wall time
allotted to the frst job to complete.

In the normal case, that is, when the periodic task is not going to miss its deadline,
the job will conclude its execution before the interval ends, the task will start another
iteration of the while loop, and eventually call rtems_rate_monotonic_period
again. This call will fnd that the period object is active and block the caller until k
ticks have elapsed since the previous call. Then, it will set a new time mark k ticks
further in future and return a RTEMS_SUCCESSFUL status code.

This ensures that, regardless of how much time the previous job took to complete,
the next job will be released exactly k ticks after the release of the previous one.

136 Real-Time Systems Development with RTEMS and Multicore Processors

FIGURE 5.7 Normal timeline of an RTEMS Rate Monotonic task.

Figure 5.7 exemplifes the case in which, although the second job took less time than
the frst to complete, all three jobs shown are released exactly k ticks apart.

It is also worth noting that the timing mechanism is insensitive to the cause of
these variations that, as we saw in the previous chapters, may be due to several rea-
sons, like:

• The inherent variability of the execution time of the job, for instance, be-
cause the job contains data-dependent code paths with different execution
times.

• Interference from other, higher-priority tasks or interrupt handlers. Al-
though interference does not affect the job execution time in itself, it does
increase its response time.

• Different amounts of blocking time, if the job makes access to shared re-
sources, synchronizes with other tasks, or performs synchronous input–
output operations.

Let us now discuss how the period object reacts to a deadline miss sce-
nario, that is, when k ticks since the release of the current job elapse without
rtems_rate_monotonic_period having being called again. If the job has been
properly designed—so that its worst-case execution and blocking time do not lead
it to exceed its period—this is typically caused by a transient system overload, that
is, the amount of interference the job endured exceeded what was foreseen during
schedulability analysis.

As shown in Figure 5.8, the period object performs two distinct actions in this
scenario:

• When reaching the deadline, the state of the period object becomes expired,
to mark the fact that the current job has missed its deadline.

• At the same time, the period object sets a new time mark k ticks in the
future, which indicates where the deadline of the next job (job #2 in the
fgure) would be, assuming it had been released at the expected time.

137 Task Management and Timekeeping, Classic API

FIGURE 5.8 Timeline of an RTEMS Rate Monotonic task upon a deadline miss.

When the task eventually calls rtems_rate_monotonic_period (in the fg-
ure, after job #1 fnished late) the period object is already in the expired state. Hence,
the directive immediately returns to the caller, to let job #2 start as soon as possible,
and the state of the period object goes back to active. The caller is also given the
abnormal status code RTEMS_TIMEOUT to signal that the job just completed (job #1
in the fgure) missed its deadline.

If the deadline miss was due to an occasional overload rather than a systemic
timing issue, it is possible that the periodic task recovers. That is, as shown in
the fgure, job #2 may complete before its deadline although it started late, and
rtems_rate_monotonic_period may be called again before reaching the next
time mark. If this happens, the period object starts behaving again as in the normal
case, namely:

• It blocks the caller until reaching the time mark.
• It sets a new time mark k ticks in the future.
• It returns to the caller to release job #3.
• Its status code is RTEMS_SUCCESSFUL to refect the fact job that #2 did

not miss its deadline.

By comparing Figures 5.7 and 5.8, we can observe that a very useful result of
this approach to deadline misses is that, after recovering from the transient overload,
job #3 is still released at exactly the same instant as it would have been if the overload
did not take place at all and job #1 did not fnish late.

So far, we examined the simplest case of recovery, in which the period tasks is able
to go back to its normal timings immediately after an overload occurs, that is, during
the execution of the job that immediately follows the one affected by the overload.
This is not always possible and, for this reason, the Rate Monotonic Manager adopts
are more complex strategy to keep track of deadline misses than what we described
so far.

As shown in Figure 5.9, each period object has a postponement counter associated
with it. The value of the counter is set to zero when the period object is initialized and
stays at zero if there are no deadline misses. Its value changes in two circumstances:

138 Real-Time Systems Development with RTEMS and Multicore Processors

FIGURE 5.9 Effect of the postponement counter on a Rate Monotonic task timeline.

• When a time mark is reached before the task called the directive
rtems_rate_monotonic_period to wait for the next period, the
value of the postponement counter is incremented by one. In the fg-
ure, this happens k, 2k, and 3k time units after the initial call to
rtems_rate_monotonic_period, which activates the period object.

• When rtems_rate_monotonic_period returns RTEMS_TIMEOUT
immediately in order to release a new job as soon as possible, due to a
deadline miss, the postponement counter is decremented by one. In the fg-
ure, this happens when jobs #2, #3, and #4 are released.

The value of the postponement counter represents the number of jobs that have
currently been postponed due to a deadline miss. As Figure 5.9 shows, the operating
system uses it to determine how many jobs should be released immediately while
recovering from a deadline miss.

In our example, after job #2 is released immediately using the logic de-
picted in Figure 5.8, jobs #3 and #4 are also released immediately after call-
ing rtems_rate_monotonic_period because it is already late for them to
start. The period object reverts to its normal behavior, as in Figure 5.7, when
rtems_rate_monotonic_period is called at the conclusion of job #4, before
its deadline expired.

As we can see, even in the more complex and general case of multiple deadline
misses, periodic tasks managed by period objects still have two very useful proper-
ties:

• After one or more deadline misses occurs, new jobs are released as soon as
possible to “help” the periodic task recover.

• When recovery is complete, jobs are released at exactly the same time as
they would had been if the deadline misses did not occur.

At the same time, the periodic task is informed about deadline misses by means
of the RTEMS_TIMEOUT status code of rtems_rate_monotonic_period. In

139 Task Management and Timekeeping, Classic API

this way, the task may speed up recovery by reducing the execution time demand of
jobs released while recovery is in progress, or even skip them completely if this is not
detrimental to the task purpose. Interested readers may refer to [35] for further details
about the method that RTEMS uses to handle deadline misses and more thorough
information about its properties.

Besides being used to delimit the jobs of a periodic tasks and control their release
as we saw so far, rtems_rate_monotonic_period can also be called at any
time with the special value RTEMS_PERIOD_STATUS as length. In this case, the
directive never blocks the caller, and just returns to the caller a summary of the cur-
rent state of period object id, without altering it in any way. In particular, the direc-
tive uses the following status codes to represent the state:

RTEMS_NOT_DEFINED The period object is inactive.
RTEMS_SUCCESS The period object is active.
RTEMS_TIMEOUT The period object has expired.

More detailed information about the state of a period object can be
gathered by means of the rtems_rate_monotonic_get_status func-
tion, to be discussed in the following. Regardless of the way in which
rtems_rate_monotonic_period is used, it may also fail and return the sta-
tus code RTEMS_NOT_OWNER_OF_RESOURCE when the calling task is not the same
task that created the period object, or RTEMS_INVALID_ID to indicate that the pe-
riod object identifer was invalid.

Last, but not least, it is worth remarking two more important aspects of period
objects:

• Although in the previous examples the length of the task period was kept
constant at k for all calls to rtems_rate_monotonic_period its value
can indeed be changed, for instance, to implement variable-period tasks. In
this case, the new period takes effect from the frst job released after the
call to rtems_rate_monotonic_period.

• A task can also create and use more than one period object when its job is
structured as a sequence of sub-jobs and each sub-job must be released at
a certain fxed temporal offset from the release of the main job, regardless
of how much time the previous sub-jobs took to conclude. The RTEMS
documentation [105] contains more information about this aspect.

A period object can be canceled and brought back to the inactive state, as it was
immediately after creation, by means of the function:

rtems_status_code rtems_rate_monotonic_cancel(
rtems_id id

);

which takes as argument the id of the period object to be canceled. Then, the period
object may be activated again by means of rtems_rate_monotonic_period.

140 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.10
Fields of RTEMS Rate Monotonic Period Status

Field Meaning
owner Identifer of the task that owns the period object
state Current state of the period object (1)

postponed_jobs_count Number of jobs that could not be released timely
since_last_period Wall time elapsed since the beginning of the current period (2)

executed_since_last_period CPU time consumed since the beginning of the current period

(1) Possible values are: RATE_MONOTONIC_INACTIVE, RATE_MONOTONIC_ACTIVE, and
RATE_MONOTONIC_EXPIRED.
(2) The beginning of the current period is marked by the most recent execution of the
rtems_rate_monotonic_period directive.

Deleting a period object with rtems_rate_monotonic_delete implicitly can-
cels it, if it is running. As usual, rtems_rate_monotonic_cancel returns
RTEMS_SUCCESSFUL when successful, or one of the following status codes upon
failure:

RTEMS_INVALID_ID The period identifer id was invalid.
RTEMS_NOT_OWNER_OF_RESOURCE The calling task was not the same task that

created the period object.

Users can acquire more detailed information about the status of a period object
than what rtems_rate_monotonic_period provides by means of the function:

rtems_status_code rtems_rate_monotonic_get_status(
rtems_id id,
rtems_rate_monotonic_period_status *status

);

The directive takes as arguments the identifer of the period object id and
status, a pointer to a data structure that it will fll with status information upon
successful completion. Table 5.10 lists the felds of the data structure. Among them:

• state contains essentially the same information as the directive
rtems_rate_monotonic_period returns when called with a period
length equal to RTEMS_PERIOD_STATUS.

• postponed_jobs_count is the postponement counter discussed pre-
viously, represented as a uint32_t, that is, a 32-bit unsigned integer.
The counter is incremented with saturating arithmetic, so that it stays
at the maximum possible uint32_t value and never wraps around even
in the (fairly unlikely) case in which there are more than about 4 billion
postponed jobs.

141 Task Management and Timekeeping, Classic API

In addition, if the period object is not inactive, the felds since_last_period
and executed_since_last_period provide the amount of wall time elapsed
and the amount of CPU time consumed by the job since the beginning of the current
period. When rtems_rate_monotonic_get_status is used at the conclusion
of each job, this information can be particularly useful to understand how close (or
how far) the actual behavior of a periodic task is to its design parameters. Moreover, it
also gives valuable insights on how much time margin was left before the job missed
its deadline, besides the simpler “yes or no” answer provided by the next invocation
of rtems_rate_monotonic_period.

In the latest version of RTEMS both the wall time and the CPU time are expressed
as an integer number of seconds, plus a fractional part in nanoseconds, and stored in
a struct timespec, a POSIX data type that will also be discussed in Section 6.6.

The function returns RTEMS_SUCCESSFUL when it completed successfully. Oth-
erwise, it returns one of the following status codes:

RTEMS_INVALID_ID The period identifer id was invalid.
RTEMS_INVALID_ADDRESS the status pointer was null.

Gathering execution statistics
Even if the user does not collect status information about a period object explicitly,
it is used anyway to calculate execution statistics. These statistics can be retrieved by
means of the function:

rtems_status_code rtems_rate_monotonic_get_statistics(
rtems_id id,
rtems_rate_monotonic_period_statistics *statistics

);

The function has an interface very similar to rtems_rate_monotonic_get_
status. It takes as arguments the identifer id of the period object on which it
should operate, and a pointer statistics to a data structure that the function will
fll with statistics and whose felds are listed in Table 5.11. Statistics are updated at
the end of each period and consist of:

• The total number of jobs executed so far (count) and the number of jobs
that missed their deadline (missed_count).

• The minimum, maximum, and total CPU time consumed by all jobs exe-
cuted so far (min_cpu_time, max_cpu_time, and total_cpu_time).

• The minimum, maximum, and total wall time consumed by all jobs ex-
ecuted so far (min_wall_time, max_wall_time, and total_wall_
time).

The minimum and maximum wall time estimate the best and worst-case response
time of the periodic task, and the minimum and maximum CPU time estimate its
best and worst-case execution time. Therefore, in the long run, they provide useful

142 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.11
Fields of RTEMS Rate Monotonic Period Statistics

Field Meaning
count Number of jobs executed so far
missed_count Number of jobs that missed their deadline
min_cpu_time Minimum CPU time consumed by a job
max_cpu_time Maximum CPU time consumed by a job
total_cpu_time Total CPU time consumed by all jobs
min_wall_time Minimum wall time consumed by a job
max_wall_time Maximum wall time consumed by a job
total_wall_time Total wall time consumed by all jobs

insights on the accuracy of the task parameters used for scheduling analysis. More-
over, when compared with the deadline, the maximum wall time gives an idea of
how much time margin is left before jobs possibly miss their deadline. Last, but not
the least, the ratio of the maximum CPU time to the period represents the fraction of
CPU time the periodic task consumes, and gives a valuable starting point to deter-
mine which tasks are promising candidates for optimization.

The function rtems_rate_monotonic_get_statistics returns RTEMS_
SUCCESSFUL when successful. Otherwise, it returns one of the following status
codes:

RTEMS_INVALID_ID The period identifer id was invalid.
RTEMS_INVALID_ADDRESS the statistics pointer was null.

Statistics can be reset by invoking either of the following two functions:

rtems_status_code rtems_rate_monotonic_reset_statistics(
rtems_id id

);

void rtems_rate_monotonic_reset_all_statistics(void);

The difference between them is that the frst function resets the statistics of
a single period object, given its identifer id, whereas the second resets all pe-
riod objects that currently exist in the system. The frst function fails and returns
RTEMS_INVALID_ID when the period identifer is invalid, whereas the second al-
ways succeeds. Finally, the function:

void rtems_rate_monotonic_report_statistics(void);

prints out the statistics of all existing period objects on the system console, in human-
readable form. Since this function is meant to be used mainly during testing and
debugging, there is no way to change its output device and format. However, the
same underlying information can be retrieved, on an object-by-object basis, by means

Task Management and Timekeeping, Classic API 143

of rtems_rate_monotonic_get_statistics and used as a starting point to
generate custom printouts.

5.6 TIMEKEEPING: CLOCKS AND TIMERS
Timekeeping in RTEMS revolves around two related concepts, clocks and timers.

• RTEMS supports a single clock that maintains the notion of time across
the whole system. It has a known resolution, which coincides with the tick
interval. The value of the clock—that is, its notion of current time of day
often called calendar time—is updated whenever a tick interval elapses.
In order to do this, RTEMS requires a device able to generate a periodic
interrupt on every tick, which usually consists of a hardware timer.
As shown in the top-left part of Figure 5.10, the RTEMS Board Support
Package (BSP) is responsible for initializing and starting the hardware
timer upon system initialization. The BSP also installs a software handler
for the periodic interrupt that the timer generates. From it, it invokes the
rtems_clock_tick primitive, which is the entry point for RTEMS time-
keeping as a whole.

• As also shown in the fgure, the clock acts as a time base for many crucial
internal time-related operating system activities, of which the main ones
are:
• Scheduler timeslicing, discussed in Section 5.4.
• Service of the internal per-task timers used to implement the di-

rectives rtems_task_wake_after and rtems_task_wake_when
also discussed in Section 5.4.

• Similarly, the clock also services the timers used by the Rate Monotonic
Manager described in Section 5.5, internal to its period objects.

• Most operating system primitives for inter-task synchronization and
communications, to be discussed in Chapters 7 and 8 time out and re-
turn to the caller a failure indication if they cannot complete their work
within a certain amount of time. Also in this case, internal timers are
used to keep track of elapsed time.

Last, but not least, the clock also acts as a time reference for user-level
timers, to be described next.

A timer is an object that fres, that is, triggers a call to a user-defned timer service
routine either when a certain amount of time elapses since its initiation (relative time)
or when a specifed time of day has been reached (absolute time), according to the
notion of time maintained by the aforementioned clock. The timer service routine
can be called in two different ways, at the user’s choice on an initiation-by-initiation
basis:

• Directly from the clock tick handler, that is, with the processor executing
in an interrupt context.

144 Real-Time Systems Development with RTEMS and Multicore Processors

RTEMS

Periodic interrupt request
(IRQ) — Tick frequency

Hardware
timer

Clock tick handler

Update
current time

of day

Service
internal
timers

Invoke user
timer service

routines

Timer
interrupt

handler (BSP)

Function call

User code

Time Server task (optional)

Invoke user
timer service

routines

Wakeup event

Timer service
routine(s) —

interrupt context

Timer service
routine(s) — task

context

Function
call

Function
call

Code executed in an interrupt context

Code executed in a task context

Scheduler
Timeslicing

FIGURE 5.10 General outline of the RTEMS clock and timer chain.

• Through the interposition of a timer server task internal to RTEMS. In this
case, the execution of the timer service routine takes place in a task context.

In Figure 5.10, modules executed in an interrupt context are shown as dark grey
rectangles, while modules executed in a task context are painted light gray. There
are several differences between these two approaches to execute the timer service
routine that are worth remarking:

• There are signifcant limitations on what a timer service routine that runs in
an interrupt context can do in two important areas. Firstly, many operating
system directives cannot be invoked from such a context. Secondly, any

145 Task Management and Timekeeping, Classic API

TABLE 5.12
RTEMS Clock Manager API

Function Purpose
(1)set Set the time of day

get_tod Get the time of day as a rtems_time_of_day object
get_tod_timeval Get the time of day as a struct timeval object
get_seconds_since_epoch Get the number of seconds elapsed since the RTEMS epoch
get_ticks_per_second Retrieve the clock resolution in ticks per second

get_ticks_since_boot Get the number of clock ticks since boot
get_uptime Get the time since boot as a struct timespec object
get_uptime_timeval Get the time since boot as a struct timeval object
get_uptime_seconds Get the time since boot in seconds
get_uptime_nanoseconds Get the time since boot in nanoseconds

tick_later Return a future tick counter (time interval in ticks)
tick_later_usec Return a future tick counter (time interval in µs)
tick_before Return true if the given tick counter is in the future

(1) All API function names start with the rtems_clock_ prefx.

kind of blocking is forbidden and any time delay must be necessarily be
implemented by means of an active waiting loop.

• Interrupt handlers are implicitly given a priority higher than any task in the
system. For the reasons outlined in Section 4.2, the amount of time spent
in an interrupt context must necessarily be kept to a minimum, due to the
signifcant impact it has on the overall schedulability of the system.

• Instead, the priority of the timer server task can freely be chosen by the
user when it is started, in order to protect higher-priority tasks from any
interference from timer service routines.

• The price to be paid for this additional fexibility is that the latency of timer
service routines, with respect to the time they should nominally be invoked,
will generally be higher if they are called indirectly by the timer server task,
rather than directly by the clock tick handler.

• In order to reduce operating system overheads, RTEMS does not start the
timer server task automatically. Therefore, users must explicitly call a ded-
icated operating system primitive to start the timer server task before initi-
ating any timer that will make use of it.

Both the clock and timers are under the control of the RTEMS Clock Manager.
Table 5.12 summarizes its directives.

146 Real-Time Systems Development with RTEMS and Multicore Processors

Setting and getting the time of day
When RTEMS starts, its notion of time of day must be initialized before use. The
initialization may be performed at boot time by the Board Support Package (BSP)
if it manages a hardware device, often called Real Time Clock (RTC), able to keep
track of the time of day even while the operating system is not running and, possibly,
most other hardware components are powered off. Time of day initialization can also
be performed at any time by user code, by means of the function:

rtems_status_code rtems_clock_set(
rtems_time_of_day *time_buffer

);

The argument time_buffer points to a rtems_time_of_day data structure,
whose felds are listed in Table 5.8 and contains the time of day to be set. RTEMS
only supports times of day after its epoch, a well-defned point in the past defned
as January 1st, 1988 at midnight. To avoid confusion, it is worth remarking that the
POSIX API also defnes the concept of epoch, as explained in Section 6.6, but the
reference point is different.

However, in most cases this difference is kept hidden from users as long as they
do not mix times of day held in data structures with differing data types. This is
because, on one hand, RTEMS functions that load or store a time of day from an
RTEMS-specifc data structure, like rtems_time_of_day, use the RTEMS’s own
notion of epoch. On the other hand, functions that use a POSIX data structure, like
struct timeval (Chapter 11) and struct timespec (Chapter 6), adhere to
the POSIX’s defnition of epoch, the only restriction being that times prior to the
RTEMS epoch cannot be represented.

The rtems_clock_set returns RTEMS_SUCCESSFUL when it successfully set
the time of day, or one of the following status code upon failure:

RTEMS_INVALID_ADDRESS the time_buffer pointer was null.
RTEMS_INVALID_CLOCK the contents of the data structure referenced by

time_buffer were invalid, for instance, because they represented a time be-
fore the RTEMS epoch.

The following three functions retrieve the current time of day in different formats:

rtems_status_code rtems_clock_get_tod(
rtems_time_of_day *time_buffer

);

rtems_status_code rtems_clock_get_tod_timeval(
struct timeval *time_buffer

);

rtems_status_code rtems_clock_get_seconds_since_epoch(
rtems_interval *time_buffer

);

147 Task Management and Timekeeping, Classic API

All functions take as argument a pointer time_buffer to a user-allocated
buffer that they will fll with time-of-day information. For the frst function,
rtems_clock_get_tod, the data type of the buffer is the RTEMS-specifc data
structure rtems_time_of_day, whose felds have been described in Table 5.8.

For the second function, rtems_clock_get_tod_timeval, the argument
refers to a POSIX-defned struct timeval. This structure expressed time as two
quantities, namely, an integral number of seconds and a fractional part in microsec-
onds elapsed since the POSIX epoch, defned as January 1st, 1970 Coordinated Uni-
versal Time (UTC) at midnight. Chapter 11 provides more information about the
struct timeval and its usage in the POSIX API.

For the third function, rtems_clock_get_seconds_since_epoch, the ar-
gument is a pointer to an integer of type rtems_interval, which will be set to
the number of seconds elapsed since the RTEMS epoch. We already saw that the
RTEMS data type rtems_interval is used to express a time interval in ticks, for
instance, as an argument of rtems_task_wake_after. In this case and in several
others to be discussed next, the same data type is overloaded to hold other kinds of
information.

All three functions return RTEMS_SUCCESSFUL when they were able to retrieve
the requested information. Otherwise, they return one of the following status codes:

RTEMS_INVALID_ADDRESS the time_buffer pointer was null.
RTEMS_NOT_DEFINED the time of day has not been set yet.

The last function in this group enables users to obtain the resolution of the RTEMS
clock. More specifcally, the function:

rtems_interval rtems_clock_get_ticks_per_second(void);

returns the frequency at which the clock is updated, that is, the number of ticks per
second, as an integer.

Elapsed time since boot
Besides the time of day, another signifcant reference for many embedded systems is
the boot time. The function:

rtems_interval rtems_clock_get_ticks_since_boot(void);

returns the current RTEMS tick counter, which represents the number of ticks
elapsed since the system was booted. When using this information, users must be
aware that rtems_interval is currently defned as a uint32_t (a 32-bit un-
signed integer), and hence, it will wrap around after a relatively short amount of
time. For instance, with the default clock tick period of 10 ms, the tick counter will
wrap around after about 497 days, that is, about 1.38 years. This may be of concern
for long-lived missions, also because it becomes proportionally shorter if the tick
period is shortened to improve clock resolution.

The next set of functions provides the same information, but with reduced risks re-
lated to wrap-arounds and potentially higher resolution. More specifcally, the func-
tion:

148 Real-Time Systems Development with RTEMS and Multicore Processors

rtems_status_code rtems_clock_get_uptime(
struct timespec *uptime

);

stores the time elapsed since the system was booted (also called uptime) in the data
structure pointed by uptime, whose data type is struct timespec. The resolu-
tion of the returned information does not depend on the tick frequency, but only on
the resolution of the hardware timers present on the platform and supported by the
RTEMS Board Support Package (BSP).

The POSIX-defned struct timespec is similar to struct timeval. The
main difference between the two—and also a common source confusion and pro-
gramming errors—is that the fractional part of a second is expressed in nanoseconds
in a struct timespec, whereas it is expressed in microseconds in a struct
timeval. Chapter 6 contains more information on how the struct timespec
data type is used in the POSIX API.

The rtems_clock_get_uptime function returns RTEMS_SUCCESSFUL
when successful, or RTEMS_INVALID_ADDRESS if the uptime pointer was null.
The function:

void rtems_clock_get_uptime_timeval(
struct timeval *uptime

);

is very similar to the previous one. The main differences are:

• It requires a struct timeval instead of a struct timespec buffer.
• It does not check if the uptime pointer is null.

The directives:

time_t rtems_clock_get_uptime_seconds(void);
uint64_t rtems_clock_get_uptime_nanoseconds(void);

also return the time elapsed since boot, but expressed in seconds and nanoseconds, re-
spectively. With these functions, the likelihood of a wrap-around becomes extremely
remote, considering the data types involved. For instance, the number of nanoseconds
since boot is expressed as a uint64_t (a 64-bit unsigned integer). Therefore, the
returned value will wrap around only about 584 years after the system was booted.

Future time markers and busy waiting
The functions rtems_clock_tick_later and rtems_clock_tick_later_
usec calculate and return the tick counter that corresponds to a time instant located
at a specifed distance in the future from current time:

rtems_interval rtems_clock_tick_later(
rtems_interval delta

);

149 Task Management and Timekeeping, Classic API

rtems_interval rtems_clock_tick_later_usec(
rtems_interval delta_in_usec

);

They differ in the unit of measurement of time distance, which is ex-
pressed in ticks for rtems_clock_tick_later and in microseconds for
rtems_clock_tick_later_usec.

Their return value can then be compared with the current time by passing it as
argument to the function:

bool rtems_clock_tick_before(
rtems_interval tick

);

This function compares the tick value provided as argument with the current
tick counter and returns true if tick is still in the future. For instance, the following
fragment of code:

rtems_interval future = rtems_clock_tick_later(10);
while(rtems_clock_tick_before(future));

traps a task in the busy-waiting while loop for 10 ticks.

Creating and deleting timers
A task can create a new timer by invoking the directive:

rtems_status_code rtems_timer_create(
rtems_name name,
rtems_id *id

);

The directive takes as argument the name of the timer to be created and stores
into the location pointed by id its unique identifer, which must be used to operate
on the timer with other Timer Manager functions. Timers are local objects, they
can be used only on the RTEMS node they have been created on. In addition, on
multicore systems, the core on which the calling task is currently running determines
which core the operating system will use to manage the timer internally for its whole
lifetime. Table 5.13 shows the directives available in the Timer Manager.

The returns value is RTEMS_SUCCESSFUL when the function completes success-
fully, or one of the following status codes:

RTEMS_INVALID_ADDRESS the id pointer was null.
RTEMS_INVALID_NAME the timer name passed as argument was invalid.
RTEMS_TOO_MANY the maximum number of timers in the system has been reached

and no more can currently be created.

The identifer of a timer can also be obtained at a later time, given the timer’s
name, by means of the function:

150 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.13
RTEMS Timer Manager API

Function Purpose
(1)create Create a timer

ident Get the identifer of a timer given its name
delete Delete a timer

fire_after Execute a service routine after a time interval
fire_when Execute a service routine at a specifed time
cancel Cancel an active timer
reset Reset a relative interval timer

initiate_server Start the RTEMS Timer Server
server_fire_after Like fire_after, but execute through the Timer Server
server_fire_when Like fire_when, but execute through the Timer Server

(1) All API function names start with the rtems_timer_ prefx.

rtems_status_code rtems_timer_ident(
rtems_name name,
rtems_id *id

);

This function takes as argument the name of an existing timer and stores into the
location pointed by id its identifer. As for other kinds of RTEMS objects, timer
names are not guaranteed to be unique (although timer identifers are). For this rea-
son, if there are multiple timers with the same name, this function will surely provide
the identifer of one of them, but exactly which one is unspecifed. The function re-
turns RTEMS_SUCCESSFUL upon successful completion, or one of the following
status codes, which describe the reason why it failed:

RTEMS_INVALID_ADDRESS the id pointer was null.
RTEMS_INVALID_NAME the timer name passed as argument was invalid or no

timer was found with that name.

When a timer is no longer needed, it can be deleted by means of the function:

rtems_status_code rtems_timer_delete(
rtems_id id

);

The only argument of this function is the identifer id of the timer to be deleted.
If the timer is currently active, the function automatically deactivates it. A timer
created by a task may be deleted by a different task residing on the same node.
Deleting unused timers is recommended because the resources allocated to them are
returned to the system and reused for other, new timers. After a successful call to

151 Task Management and Timekeeping, Classic API

rtems_timer_delete the timer identifer passed as argument becomes invalid
and shall no longer be used, also because the system may also reuse the same iden-
tifer and for a new timer.

The function returns RTEMS_SUCCESSFUL when successful, or RTEMS_
INVALID_ID if id was invalid, for instance, because it did not correspond to any
existing timer.

Starting, cancelling, and resetting a timer
A timer can be activated by means of several different directives, depending on
whether the expiration time is expressed in a relative or absolute way, and whether
the timer service routine must be invoked directly from the clock tick handler or
indirectly through the Timer Server task.

Staying with direct timer service routine invocation for now, the directive:

rtems_status_code rtems_timer_fire_after(
rtems_id id,
rtems_interval ticks,
rtems_timer_service_routine_entry routine,
void *user_data

);

activates timer id so that it will expire, or fre, after ticks clock ticks have elapsed.
In other words, ticks represents a relative time interval with respect to the time of
the call to rtems_timer_fire_after. If the timer is already active, the previous
activation is automatically canceled before activating the timer again. The routine
argument indicates the user-specifed timer service routine, with signature:

void (* routine)(
rtems_id id,
void *user_data

);

that will be invoked upon timer expiration, with the expired timer id and the user-
provided user_data pointer as arguments.

The function returns RTEMS_SUCCESSFUL when successful, or one of the fol-
lowing status codes:

RTEMS_INVALID_ID The timer identifer id was invalid.
RTEMS_INVALID_ADDRESS the routine pointer was null.
RTEMS_INVALID_NUMBER the time interval ticks was invalid.

Another directive enables the caller to activate a time so that it fres at a specifed
time of day, that is, when the time of day reaches a given absolute point in time:

rtems_status_code rtems_timer_fire_when(
rtems_id id,
rtems_time_of_day *wall_time,

152 Real-Time Systems Development with RTEMS and Multicore Processors

rtems_timer_service_routine_entry routine,
void *user_data

);

Besides the arguments id, routine, and user_data, which have the same
meaning as for rtems_timer_fire_after, this directive takes a pointer
wall_time to a rtems_time_of_day data structure. It holds the absolute time
at which the timer will fre. The directive returns RTEMS_SUCCESSFUL when suc-
cessful, or one of the following status codes:

RTEMS_INVALID_ID The timer identifer id was invalid.
RTEMS_INVALID_ADDRESS the routine or wall_time pointer was null.
RTEMS_NOT_DEFINED the time of day has not been set yet.
RTEMS_INVALID_CLOCK the contents of the data structure referenced by

wall_time were invalid, for instance, because they represented a time before
the RTEMS epoch.

An timer can be canceled by means of the function:

rtems_status_code rtems_timer_cancel(
rtems_id id

);

whose only argument is the timer id. A canceled timer will no longer expire, and
hence, its timer service will no longer be called unless it is activated again. It is not an
error to cancel an inactive timer. The function returns RTEMS_SUCCESSFUL when
successful or RTEMS_INVALID_ID when given an invalid timer id.

Finally, the function:

rtems_status_code rtems_timer_reset(
rtems_id id

);

provides a convenient way to reset and reactivate a relative timer multiple times with
the same time interval and timer service routine, without having to specify them
explicitly every time. If the timer indicated by id is active, it is canceled. Then, it
is immediately activated again using the same interval and timer service function
specifed in the last call to rtems_timer_fire_after.

It is not an error to use this function on a timer that is not active, in this case it sim-
ply activates the timer. The function returns RTEMS_SUCCESSFUL when successful,
or one of the following status codes:

RTEMS_INVALID_ID The timer identifer id was invalid.
RTEMS_NOT_DEFINED The timer has never been activated before, or it was ac-

tivated last time with the rtems_timer_fire_when directive instead of
rtems_timer_fire_after. This is an error because there is no valid inter-
val or timer service function to refer to and reuse.

153 Task Management and Timekeeping, Classic API

Both rtems_timer_reset and rtems_timer_cancel can also be used on
a timer whose timer service routine is to be invoked by the Timer Server, to be dis-
cussed next. Therefore, for instance, it is legal to use rtems_timer_reset after
rtems_timer_server_fire_after.

Using the timer server
In order to beneft from the indirect invocation of timer service routines through the
RTEMS Timer Server task, it must be frst of all created and started by means of the
directive:

rtems_status_code rtems_timer_initiate_server(
uint32_t priority,
uint32_t stack_size,
rtems_attribute attribute_set

);

The directive allows the caller to specify several crucial parameters of the Timer
Server task, namely, its priority, stack_size, and attribute_set. These
values are passed directly to the rtems_task_create directive described in Sec-
tion 5.4.

The function returns RTEMS_SUCCESSFUL upon successful completion. Other-
wise, it may return any of the status codes defned for rtems_task_create. Pri-
ority can be the value RTEMS_TIMER_SERVER_DEFAULT_PRIORITY. This is the
default value of the Timer Server priority, which corresponds to the highest possible
task priority in the system.

After starting the Timer Server, users may use the functions:

rtems_status_code rtems_timer_server_fire_after(
rtems_id id,
rtems_interval ticks,
rtems_timer_service_routine_entry routine,
void *user_data

);

rtems_status_code rtems_timer_server_fire_when(
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data

);

They have the same arguments as rtems_timer_fire_after and rtems_
timer_fire_when, respectively, but the timer service routine will be invoked
by the Timer Server instead of the clock tick handler. These functions return the same
status codes as their direct-invocation counterparts, with the same meaning, plus:

154 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 5.14
RTEMS Interrupt Manager API, Basic Functions

Function Purpose
catch (1, 2) Associate an handler to an interrupt source

disable Disable interrupts on a single-core system
enable Restore interrupt level on a single-core system
flash Restore interrupt level

local_disable Disable interrupts locally, on the calling core
local_enable Enable interrupts locally, on the calling core

(1) The spinlock-related Interrupt Manager functions are listed in Table 13.3.
(2) All Interrupt Manager functions start with the rtems_interrupt_ prefx.

RTEMS_INCORRECT_STATE The Timer Server has not been initiated, and hence,
these functions cannot be used.

5.7 PREEMPTION AND INTERRUPT MANAGEMENT
In Section 5.4, we saw that on single-core systems it is possible to disable task pre-
emption by setting the task mode appropriately. This method can be used as a very
effcient way to ensure mutual exclusion among tasks in this kind of system.

The mutual exclusion domain can be extended to interrupt handlers by means of a
set of functions provided by the RTEMS Interrupt Manager and listed in Table 5.14,
together with the other main Interrupt Manager functions. However, before describ-
ing them, it is important to remark once more that this mutual exclusion method only
works on single-core systems, for the reasons outlined in Section 12.3. The Inter-
rupt Manager provides additional synchronization methods to guarantee the mutual
exclusion between tasks and interrupt handlers also on multicore systems. They are
listed in Table 13.3 and will be discussed in Chapter 13.

The directive:

rtems_status_code rtems_interrupt_catch(
rtems_isr_entry new_isr_handler,
rtems_vector_number vector,
rtems_isr_entry *old_isr_handler

);

installs an interrupt handler—called Interrupt Service Routine (ISR) in RTEMS—
for an interrupt source, with the interposition of the RTEMS Interrupt Manager. The
interrupt source is identifed by means of an interrupt vector number vector. The
correspondence between vector numbers and interrupt sources is platform-specifc
and is established through the platform’s Board Support Package (BSP).

155 Task Management and Timekeeping, Classic API

The directive installs the new interrupt handler new_isr_handler for the given
vector and stores the previous interrupt handler for the same vector into the lo-
cation pointed by old_isr_handler. Interrupt handlers are C functions of type
rtems_isr_entry and must adhere to the following prototype:

rtems_isr new_isr_handler(
rtems_vector_number vector

);

They receive as argument the vector number, so that they can identify the inter-
rupt source. In this way, the same handler can handle interrupts coming from dif-
ferent sources appropriately. On some architectures, interrupt handlers may receive
additional architecture-dependent arguments, like a pointer to the exception frame
created to handle the interrupt. The return type rtems_isr is currently defned as
void.

The interposition of the RTEMS Interrupt Manager, both before and after invoking
the user-specifed interrupt handler, plays a crucial role to ensure that the interrupt
itself and processor scheduling are both handled appropriately. In particular:

• Before invoking the interrupt handler, RTEMS takes care of saving all reg-
isters of the interrupted task that are not automatically saved by the hard-
ware or the C calling conventions, as explained in Section 4.2 using the
ARM Cortex-M processor as an example. This ensures that the whole con-
text of the interrupted task can be restored when the task is dispatched
again for execution and, at the same time, allows the interrupt handler to be
written as a normal C function.

• After the interrupt handler returns, RTEMS performs task scheduling and
dispatching, because the interrupt handler may have readied a task whose
priority is higher than the interrupted task. On architectures that support
interrupt nesting, this is done only when the outermost interrupt handler
returns, as an optimization.

The use of the Interrupt Manager is not mandatory for all interrupt sources. It may
be bypassed, for effciency, by installing interrupt handlers directly in the processor’s
interrupt vectoring data structures. However, for the reasons outlined previously, if a
certain interrupt handler invokes any RTEMS primitive, the Interrupt Manager must
be used to install it, as well as all interrupt handlers it may interrupt.

Instead, interrupt handlers that do not invoke any RTEMS primitive and cannot be
interrupted by a handler that does may be installed directly, without passing through
the Interrupt Manager. This rule also extends to Non-Maskable Interrupt (NMI) han-
dlers, which cannot be masked by defnition. They can be installed directly, but can-
not invoke any RTEMS primitive because there would be no way for RTEMS to
protect its critical sections against them.

In any case, there are restrictions on exactly which RTEMS directives an interrupt
handler may legally invoke. The general rule of thumb is that any directive that can
possibly block the caller is forbidden. The RTEMS documentation—for instance,

156 Real-Time Systems Development with RTEMS and Multicore Processors

Reference [105] for the Classic API—provides a complete list of permissible direc-
tives.

On a single-core system, the directive:

void rtems_interrupt_disable(rtems_interrupt_level level);

stores the current interrupt level into level and disables all maskable interrupts.
This directive can actually write into its argument although it is apparently passed by
value because it is implemented as a C preprocessor macro.

Symmetrically, on a single-core system, the directive:

void rtems_interrupt_enable(rtems_interrupt_level level);

restores the processor interrupt level to the value specifed by its argument level.
Together, these two directives can be used to bracket a critical section that must

be protected from preemption by other tasks and interrupt handlers. This kind of
critical section is very strong, and also quite disruptive for system timings, because
it is entirely executed with interrupts disabled.

It is important to remark that, although the directive to be placed at the end of the
critical section is named interrupt enable, it does not necessarily enables interrupts
when called. For instance, when two or more critical sections are properly nested,
this mechanism ensures that interrupts are not actually re-enabled until the execution
fows out of the outermost critical section.

All invocations of rtems_interrupt_enable except the last one do not re-
enable interrupts because the matching rtems_interrupt_disable was in-
voked while interrupts were already disabled and recorded this fact into its level
argument. Only the very last rtems_interrupt_enable may re-enable inter-
rupts because it restores the interrupt level as it was when the matching outermost
rtems_interrupt_disable was invoked.

The directive:

void rtems_interrupt_flash(rtems_interrupt_level level);

is available only on single-core systems for backward compatibility. It is also imple-
mented as a macro and is equivalent to the sequence of calls:

rtems_interrupt_enable(level);
rtems_interrupt_disable(level);

Its argument must come from a previous call to rtems_interrupt_disable
or rtems_interrupt_flash itself. When called from a non-nested critical
section delimited by rtems_interrupt_disable and rtems_interrupt_
enable, its effect is to re-enable interrupts—thus allowing any pending interrupt
request to interrupt the calling task and be serviced—and immediately disable them
again before resuming execution in the critical section itself. It is typically invoked
at regular intervals within a relatively long critical section, when it is safe to do so, to
reduce interrupt servicing latency. Instead, it has no effect when called from a nested
critical section.

Task Management and Timekeeping, Classic API 157

Disabling interrupts globally is often a complex and time-consuming af-
fair on multicore architectures and, in many cases, it cannot be done in an
atomic way across all cores in the system. For this reason, the directives
rtems_interrupt_disable and rtems_interrupt_enable are not avail-
able on multicores and are replaced by the following weaker variants. They are avail-
able on both single-core and multicore systems, and only disable interrupts on the
processor on which the calling task is currently running:

void rtems_interrupt_local_disable(
rtems_interrupt_level level

);

void rtems_interrupt_local_enable(
rtems_interrupt_level level

);

On multicore systems, these directives are not generally suitable for mutual ex-
clusion because:

• They do not protect the critical section against other tasks. Although those
other tasks are prevented from running on the same core, because they
inhibit preemption anyway, nothing prevents them from running on other
cores, unless affnity masks are set very carefully when possible.

• They do not protect the critical section against interrupt handlers either, un-
less it can somehow be guaranteed that interrupt requests will be accepted
and handled only by the same core that is executing within the critical sec-
tion, which can be diffcult.

As remarked previously, both issues can be solved by means of more sophisti-
cated mutual exclusion mechanisms suitable for multicore systems, to be described
in Chapter 13.

5.8 SUMMARY
This chapter introduced readers to the RTEMS scheduling algorithms and its task
management and timekeeping directives made available by the RTEMS Classic API.
Sections 5.1 and 5.2 provided a general description of basic task management con-
cepts and a short description of the RTEMS single-core scheduling algorithms and
the Scheduler Manager functions to control and manage them.

Then, after a short comparison between the Classic and POSIX APIs, given in
Section 5.3, the three main RTEMS components involved in task management and
timekeeping—namely, the Task Manager, the Rate Monotonic Manager, the Clock
Manager, and the Timer Manager—were discussed in Sections 5.4 to 5.6.

Last, but not least, Section 5.7 gave an overview of interrupt management on
single-core systems through the RTEMS Interrupt Manager.

http://taylorandfrancis.com

6 Task Management and
Timekeeping, POSIX API

CONTENTS

6.1 Attribute Objects..160
6.2 Thread Creation and Termination..162
6.3 Thread Scheduling...168
6.4 Forced Thread Termination (Cancellation) ...175
6.5 Signal Handling ...181
6.6 Timekeeping ..195
6.7 Summary..207

The POSIX Application Programming Interface (API) for task management and
timekeeping is more complex than its RTEMS Classic counterpart presented in
Chapter 5. For this reason, its description has been divided into several parts:

• The chapter starts by discussing attribute objects, the main mechanism used
by POSIX to confgure and customize the behavior of threads and other
entities it manages.

• Then, we present the main thread creation and termination functions,
which are used in virtually all POSIX concurrent multithreaded programs
and we look at the POSIX scheduling model and its policies, which de-
fne how threads are executed. The discussion of the functions typical of
multicore scheduling is deferred to Chapter 13.

• Another important topic addressed in this chapter is how POSIX supports
thread cancellation, that is, the forced termination of a thread upon request
from another thread.

• Signals are the way POSIX supports the software equivalent of an interrupt
directed to a thread. This is the main mechanism used to notify threads of
external asynchronous events, like timer expiration and message arrival.

• A discussion of the main POSIX timekeeping functions, realized by means
of clocks and timers, concludes the chapter.

159

160 Real-Time Systems Development with RTEMS and Multicore Processors

0x24000 stackaddr

⋮

⋮

Attribute object
(abstract

representation)

Initialize attribute object
pthread_attr_init

Destroy attribute object
pthread_attr_destroy

Get and set an attribute
pthread_attr_getstackaddr
pthread_attr_setstackaddr

Use the attribute object
pthread_create

FIGURE 6.1 Attribute objects in POSIX.

6.1 ATTRIBUTE OBJECTS
Before describing any other POSIX object in detail, it is important to discuss at-
tribute objects, which are used to determine some aspects of the behavior of threads
and other POSIX objects. By means of attribute objects it becomes possible to sup-
port future extensions of POSIX objects in a portable way and, in most cases, without
changing the API of the functions that operate on them.

In addition, they provide a clean isolation of the confgurable, and sometimes
inherently non-portable, aspects of a POSIX object. For example, the stack address
of a thread (that is, the address of the area of memory to be used as the thread stack) is
an important characteristic of a thread because using a kind of memory or another can
signifcantly affect the thread execution speed. However, it can rarely be expressed
in a portable way, and hence, must be adjusted when the software is ported from
one system to another. Therefore, it makes sense to represent it as an attribute of the
thread and store it in an attribute object to keep it isolated from the portable portions
of the software.

Since the same attribute object can be used to create multiple objects of the same
kind, like threads, setting up such an attribute object also provides a way to defne
some characteristics common to a whole class of threads in a centralized way.

Figure 6.1 shows how attributes and attribute objects are managed, still using the
stack address attribute as an example. The description that follows refers to thread
attribute objects, but the same concepts also apply to other kinds of attribute object,
only data types and function names differ.

Attribute objects must be initialized before use. For thread attribute objects, the
initialization function is:

int pthread_attr_init(pthread_attr_t *attr);

161 Task Management and Timekeeping, POSIX API

The only argument of this function is a pointer to an object of type
pthread_attr_t that represents the attribute object. When successful, the func-
tion initializes the object, setting all attributes it contains to their default value, and
returns zero. Upon failure, it returns a non-zero status code. The only status code
mandated by the standard is:

ENOMEM The attribute object could not be initialized due to lack of memory.

Initializing the same attribute object twice in a row leads to undefned behavior,
although the standard recommends that pthread_attr_init detects this error
and returns the status code:

EBUSY The attribute object pointed by attr is already initialized.

When an attribute object is no longer needed, it should be destroyed by means of
the function:

int pthread_attr_destroy(pthread_attr_t *attr);

to release the dynamic memory possibly allocated for it by pthread_attr_init.
Although it is not mandatory, this function may return the following non-zero status
code when it detects that attr does not point to an initialized attribute object:

EINVAL The attr argument does not point to an initialized attribute object.

Attribute objects shall not be referenced after they have been destroyed but the
same attribute object can be reinitialized with a new call to pthread_attr_init
and then used again.

As shown in Figure 6.1, an attribute object can be seen as a “container”
of attributes. Each individual attribute can be retrieved from and stored into
the attribute object by means of a pair of functions whose name generally is
pthread_attr_get and pthread_attr_set, respectively, followed by the
name of the attribute. For instance, the functions pthread_attr_getstackaddr
and pthread_attr_setstackaddr get and set the stack address attribute.
There are some exceptions, though. For example, the functions to get and set the
contentionscope thread attribute are called pthread_attr_getscope and
pthread_attr_setscope.

These functions invariably take as frst argument a pointer to the attribute object
they must operate upon, followed by additional arguments whose number and type
depend on the specifc attribute. All of them return zero upon success and a non-zero
status code when they fail.

Morever, some convenience functions exist, which are able to get and set multiple,
related attributes at a time. These functions will be discussed in more detail along
with the attributes they operate upon.

162 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.1
RTEMS Thread Creation and Termination Primitives, POSIX API

Function Purpose
pthread_create Create and start a new thread
pthread_exit Voluntary terminate a thread
pthread_join Wait until a thread terminates
pthread_detach Detach a thread

pthread_equal Check whether two thread identifers are equal
pthread_self Return the calling thread identifer

6.2 THREAD CREATION AND TERMINATION
The main functions related to the creation of a thread and its voluntary termination
are summarized in Table 6.1. In POSIX, threads are represented by a thread descrip-
tor, that is, an object of type pthread_t. They are created by means of the function:

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

The frst two arguments of this function indicate where it must store the newly cre-
ated thread descriptor (in the location pointed by thread) and the thread attributes
(held in the thread attribute descriptor pointed by attr).

The argument start_routine is the name of a C function that the new thread
must execute, that is, its entry point, and arg is a pointer to be passed to it as ar-
gument. Unlike Classic tasks, tasks created through the POSIX API are ready for
execution upon creation and might start executing immediately if their priority is
suffciently high, possibly preempting the task that created them.

The function pthread_create returns zero when it succeeded to create the new
thread. It shall return a non-zero error number to indicate failure:

EGAIN The system does not have enough resources to create the new thread or the
maximum number of threads specifed by PTHREAD_THREADS_MAX would be
exceeded.

EPERM The calling thread does not have suffcient privileges to set the thread at-
tributes indicated by attr, most notably the scheduling policy and priority.

The standard also recommends that, if the function detects that attr does not
point to a correctly initialized thread attribute object, it should fail and return the
EINVAL error number.

Table 6.2 summarizes the thread attribute manipulation functions, while Table 6.3
lists the default attribute values in the current version of RTEMS. The functions to
create and destroy an attribute object have already been described in Section 6.1.

163 Task Management and Timekeeping, POSIX API

TABLE 6.2
RTEMS Thread Attributes, POSIX API

Function Purpose
pthread_attr_init Initialize a thread attribute object
pthread_attr_destroy Destroy a thread attribute object

pthread_attr_getdetachstate Get the detachstate attribute
pthread_attr_getschedpolicy Get the schedpolicy attribute
pthread_attr_getschedparam Get the schedparam attribute
pthread_attr_getinheritsched Get the inheritsched attribute
pthread_attr_getscope Get the contentionscope attribute
pthread_attr_getstackaddr Get the stackaddr attribute
pthread_attr_getstacksize Get the stacksize attribute
pthread_attr_getstack Get both stackaddr and stacksize together
pthread_attr_getguardsize Get the guardsize attribute
pthread_attr_getaffinity_np Get the (non-portable) affinity_np attribute

pthread_attr_setdetachstate Set the detachstate attribute
pthread_attr_setschedpolicy Set the schedpolicy attribute
pthread_attr_setschedparam Set the schedparam attribute
pthread_attr_setinheritsched Set the inheritsched attribute
pthread_attr_setscope Set the contentionscope attribute
pthread_attr_setstackaddr Set the stackaddr attribute
pthread_attr_setstacksize Set the stacksize attribute
pthread_attr_setstack Set both stackaddr and stacksize together
pthread_attr_setguardsize Set the guardsize attribute
pthread_attr_setaffinity_np Set the (non-portable) affinity_np attribute

TABLE 6.3
Default Values of Thread Attributes, POSIX API

Attribute Value
detachstate PTHREAD_CREATE_JOINABLE
schedpolicy SCHED_FIFO
schedparam Scheduling priority 2
inheritsched PTHREAD_INHERIT_SCHED
contentionscope PTHREAD_SCOPE_PROCESS
stackaddr Set upon thread creation
stacksize Set upon thread creation to the minimum possible value
guardsize 0
affinity_np All cores enabled

164 Real-Time Systems Development with RTEMS and Multicore Processors

The other functions follow the general naming scheme also discussed in that section,
with some exceptions that will be better pointed out in the following. To keep the
discussion short, individual functions will not be discussed in detail. Interested read-
ers may refer to the POSIX standard [68] for more information. The thread attributes
are:

detachstate This attribute is an int and determines whether or not the newly
created thread can be the target of a join operation, performed by means of the
pthread_join function to be discussed in the following. Its two possible values
are PTHREAD_CREATE_JOINABLE (the thread supports the join operation) and
PTHREAD_CREATE_DETACHED (the thread runs as a detached thread and does
not support the join operation).

schedpolicy This attribute is an int that establishes the scheduling policy for
the new thread, that is, the set of rules that the system applies to govern the tran-
sition of the thread between the ready and running states. The related attribute
schedparam holds the scheduling parameters of the thread, which is a piece of
information attached to the thread and used by the policy to take scheduling deci-
sions about it. The algorithms implemented by the policies defned by the POSIX
standard will be presented in more detail in Section 6.3.

schedparam This is a composite attribute of type struct sched_param. It
contains the scheduling parameters of the thread. For most scheduling policies,
they coincide with an integer scheduling priority, although the underlying attribute
mechanism supports a more complex set of parameters when needed.
Unlike other attributes, both schedpolicy and schedparam can also be modi-
fed after thread creation, by means of the functions to be discussed in Section 6.3.

inheritsched This attribute is an int that controls whether the new thread shall
get its scheduling policy and parameters from the attributes schedpolicy and
schedparam (when its value is PTHREAD_EXPLICIT_SCHED), or shall inherit
them from the calling thread (when it is PTHREAD_INHERIT_SCHED).

contentionscope This attribute is an int that determines against which other
threads the new thread will compete to reach the running state. In summary, if
the contention scope is PTHREAD_SCOPE_SYSTEM, the thread competes, on the
base of its scheduling policy and parameters, directly against all the other threads
with the same scope.
If the scope is PTHREAD_SCOPE_PROCESS, the new thread competes directly
against the other threads within the same process, whereas the way all these
threads compete with threads belonging to other processes in the system depends
on the scheduling policy and parameters set at the process level. Since the distinc-
tion is important only for operating systems that, unlike RTEMS, support multiple
processes, it will not be discussed further.

stackaddr This attribute, of type void *, allows the caller to set up a so-called
application-managed thread stack. More specifcally, the attribute value points to
the lowest address of the memory area to be used as a stack, while stacksize
denotes its size in bytes.

165 Task Management and Timekeeping, POSIX API

With this approach, the memory that the new thread will use as a stack is allocated
and managed manually by the calling thread, rather than automatically by the
operating system. In this way, it becomes possible to accurately determine the
location of the stack within the address space and, for instance, make use of a
specifc kind of memory for it.
This comes at the expense of a higher software complexity and dubious porta-
bility. Those mainly come from the fact that, for architectural reasons, imple-
mentations may impose alignment requirements on stackaddr that are stricter
that what malloc guarantees and are left unspecifed by the standard. As a con-
sequence, a pointer returned by malloc may not be used directly to set the
stackaddr or a thread.

stacksize This attribute is of type size_t and indicates the size of the
new thread stack, in bytes. The value must be higher than or equal to
PTHREAD_STACK_MIN. Besides the ordinary functions that get and set
the stackaddr and stacksize attributes separately, the two functions
pthread_getstack and pthread_setstack conveniently get and set them
together.

guardsize This attribute, also of type size_t, indicates the size of the guard
area of the thread stack. A guard area is a reserved area of memory that is located
at the far end of the stack (that is, beyond the locations that are flled last when
the processor pushes items onto the stack). It is used by the system to detect stack
overfow, usually with the assistance of a memory management unit (MMU), and
signal an error.
The special value zero means that no guard area shall be provided. This attribute
is ignored when an application-managed thread stack is in use. Moreover, the
current version of RTEMS does not implement guard areas although it provides
the functions to get and set the guardsize attribute.

affinity_np The standard gives implementations the freedom of defning non-
portable features and entities, identifed by the _np or _NP suffx in their name
and the functions related to them. This is an example of non-portable attribute
because it is not specifed by the POSIX standard and represents the set of cores
on which the newly created thread will be allowed to run. Its type is cpu_set_t.
This attribute is the POSIX counterpart of the Classic API directives that manip-
ulate the affnity mask of a task, described in Section 5.4.

A thread implicitly terminates when it returns from its entry point, that is, from
the start_routine passed to pthread_create. It can also terminate expicitly,
by calling the following function from anywhere in the code:

void pthread_exit(void *value_ptr);

In both cases, the terminating thread can summarize its fnal status and the rea-
son for its termination in a value of type void *, which is the return value of
start_routine or the argument given to pthread_exit, respectively. These
two ways of termination are equivalent because returning from start_routine
has the same effect as calling pthread_exit with the return value as argument.

166 Real-Time Systems Development with RTEMS and Multicore Processors

The function pthread_exit never returns to the caller by defnition, and hence,
no error handling is necessary for it.

If the attribute detachstate of the terminating thread is set to the value
PTHREAD_CREATE_JOINABLE, another thread can wait for its termination by
means of a join operation, to be discussed in the following, and get access to its
fnal status. Otherwise, all the information associated to the thread, including the
fnal status, is discarded upon termination and is no longer accessible elsewhere.

In all cases, the thread still executes two kinds of cleanup action immediately
before terminating. In particular:

• It executes the cleanup handlers that have been registered by means of the
function pthread_cleanup_push, to be discussed in Section 6.4. The
execution takes place in last-in, frst-out order, that is, the cleanup handler
pushed last is executed frst.

• It invokes the fnalizers of all thread-specifc data items associated with the
thread and whose pointer is not NULL. Thread-specifc data, not discussed
in this book due to lack of space, are per-thread data structures accessed
by means of a global key, whose memory may have to be freed when the
thread terminates.

Both ways of terminating a thread presented so far are voluntary, that is, the
thread itself takes the initiative of terminating. The standard also specifes an invol-
untary termination mechanism, in which a thread requests the termination of another
thread. This mechanism is called cancellation and will be discussed in more detail in
Section 6.4.

The function:

int pthread_join(pthread_t thread, void **value_ptr);

waits for the termination of the thread represented by the argument thread.
The thread must have been created with the attribute detachstate set to
PTHREAD_CREATE_JOINABLE. If the argument value_ptr is not NULL the func-
tion also stores the fnal status code of thread into the location referenced by
value_ptr.

The fnal status code is the one provided by the thread itself upon voluntary termi-
nation, or the special value PTHREAD_CANCELED if the thread was canceled. After
a successful join, the system can freely destroy all the information associated with
the terminated thread. For this reason, multiple joins targeting the same thread are
not allowed.

The function returns zero after the target thread has terminated if it succeeds.
Otherwise, the standard recommends that the function detects the following error
conditions and returns the corresponding non-zero error codes:

EINVAL The thread descriptor thread does not refer to a joinable thread, that is,
to a thread whose detachstate attribute is PTHREAD_CREATE_JOINABLE.

ESRCH The thread descriptor thread refers to a terminated thread that has already
been the target of a join operation.

167 Task Management and Timekeeping, POSIX API

EDEADLK The thread descriptor thread refers to the calling thread. Therefore, ex-
ecuting the join would result in a deadlock.

The defnition of the join mechanism just described implies that the system must
preserve some information about a joinable thread—namely, a data structure reach-
able from its thread descriptor that contains, at least, its fnal status code—after
thread termination and until the thread is targeted by a pthread_join. If a thread
has been created as joinable, but this feature is no longer needed or desired, it is
highly advisable to detach the thread to avoid wasting the system resources just men-
tioned by keeping them allocated for an undetermined amount of time.

Moreover, systematically omitting join operations may also put some systems at
risk of exceeding PTHREAD_THREADS_MAX due to a high number of “terminated
but not yet joined” threads, because the standard leaves unspecifed whether or not
these threads count against that limit. A thread can be detached by calling the func-
tion pthread_detach with the corresponding thread descriptor thread as argu-
ment:

int pthread_detach(pthread_t thread);

As many other POSIX functions, pthread_detach returns zero when success-
ful. Otherwise, the standard recommends that the function detects and reports the
following error conditions:

ESRCH The thread descriptor thread is unknown to the system.

If upon thread creation it is already known for certain that a thread will not need
to be joined, a simpler alternative is to create the thread with the detachstate
attribute set to PTHREAD_CREATE_DETACHED. This action cannot be undone at a
later time, though. In other words, a joinable thread can be detached after being
created, but a detached thread cannot be changed into a joinable thread.

The function:

int pthread_equal(pthread_t t1, pthread_t t2);

checks whether two thread descriptors, t1 and t2, are equal or not. It returns a
non-zero value (interpreted as true in a C-language logical expression) if they are,
and zero otherwise. The behavior of the function is undefned if one or both thread
descriptors are invalid.

This function must exist because the standard leaves the defnition of the
pthread_t data type to the implementation. In some cases, the choice may fall
on a data type (for instance, a struct) for which the C language does not support
direct comparison, thus making logical expressions like t1 == t2 illegal.

The thread descriptor is not automatically made available to the thread itself upon
creation, but can be retrieved if needed, by means of the function:

pthread_t pthread_self(void);

This function simply returns to the calling thread its thread descriptor. No error
conditions are defned for it and no special return values are reserved to report an
error.

168 Real-Time Systems Development with RTEMS and Multicore Processors

6.3 THREAD SCHEDULING
In its most general form, the POSIX standard specifes that a software system is
organized hierarchically as a set of processes, each containing one or more threads
of execution. Each process has its own address space and encompasses most system
resources needed for the execution of the threads it contains, most notably memory.
Instead, threads are the units of scheduling, as described in Section 6.2. Therefore,
they comprise the system resources needed to support an autonomous fow of control,
like the processor context to be saved and restored in a context switch, discussed in
Section 4.2.3.

System resources allocated at the process level are implicitly shared among all its
threads but do not go beyond process boundaries. Therefore, for instance, an area of
memory allocated by a thread with malloc() is automatically shared with, and ac-
cessible to, all other threads belonging to, and executing within, the same process—
provided they get to know its address somehow. On the contrary, threads belonging
to different processes live in disjoint address spaces and, unless special actions are
taken, do not share memory.

However, the effcient implementation of multiple processes each having its own,
protected address space requires hardware assistance in the form of a full-fedged
memory management unit (MMU) or, at the very least, a memory protection unit
(MPU). Since these resources might be unavailable or diffcult to use without wors-
ening execution determinism in many real-time systems, the standard allows imple-
mentations to still support multitasking by means of the single-user, single-process
(SUSP) approach. This concept was frst introduced with the POSIX real-time ori-
ented application environment profles defned in [64].

In the SUSP execution environment that RTEMS supports, a single process is
implicitly created when the system starts up, and one of its threads goes on to execute
the main() C-language entry point. This initial user thread can then dynamically
create other threads as described in Section 6.2, but all these threads always live
within the same initial process boundary. For this reason, in the following we will
mainly focus on thread-level scheduling and keep the description of process-level
aspects to a minimum. These will be further mentioned only when the hierarchical
relationship between processes and threads becomes essential for the discussion.

The abstract POSIX scheduling model defnes a range of global priority levels,
common to the whole system, and an ordered list of threads for each level. The list
contains all the ready threads having that priority at the moment. The global priority
range is represented by the tall rectangle on the right of Figure 6.2.

It is worth remarking that all scheduling-related data structures and algorithms
defned in the POSIX standard are part of a conceptual scheduling model. They are
purposefully kept as simple as possible to make the specifcation clearer and do not
imply any recommendations for the actual implementation of the model. Implemen-
tations are free to replace them with others, as they often do for the sake of effciency,
provided they preserve the model semantics.

The algorithm used to assign an idle core to a ready thread is very straightforward.
The scheduler simply selects the thread at the head of the highest-priority, non-empty

169 Task Management and Timekeeping, POSIX API

Global priority range

Running
state

Selection of the
highest-priority thread

by the scheduler

SCHED_FIFO

SCHED_RR

Local priority range

Local priority range

 The mapping between
local and global ranges is

fixed or defined at
configuration time

 Threads are returned to a
thread list on yield or
preemption, under the

control of their
scheduling policy

One ordered
thread list for
each priority

Priority ranges
may overlap

FIGURE 6.2 Summary of the POSIX scheduling model and policies.

thread list. The selected thread is removed from the list and moved to the running
state of the task state diagram. In the fgure, this action is depicted by the arrow near
the bottom right corner, which goes from the global thread lists to the running state.

Instead, other components called scheduling policies are responsible for deciding
whether a running thread shall be preempted, that is, forcibly removed from the
running state and brought back into one of the thread lists. Moreover, scheduling
policies also determine how a thread that becomes ready again—for instance, after
temporarily transitioning to the blocked state—is inserted into the thread lists, and
whether and how threads are moved among lists, thus dynamically changing their
priority.

In some cases, operations that threads perform on synchronization objects also
trigger priority changes, in order to preserve some useful real-time execution prop-
erties of the system. An example will be given in Chapter 8, while describing the
priority inheritance and ceiling protocols.

170 Real-Time Systems Development with RTEMS and Multicore Processors

More specifcally, a scheduling policy is in charge of determining thread ordering
in the following circumstances:

• When a thread is running, is preempted by a higher-priority thread, goes
back to the ready state of the task state diagram, and hence, must be inserted
into one of the ready thread lists.

• When a thread is unblocked by another thread, it goes from the blocked to
the ready state of the task state diagram, and hence, must be inserted into
one of the ready thread lists.

• When a running thread changes its own scheduling policy or priority, or the
ones of another thread, because this may require the running thread to be
moved back into one of the ready thread lists.

• In other circumstances (for instance, at regular time intervals) defned by
the scheduling policy itself.

In other words, the scheduling policy of a thread affects all transitions of the
thread within the task state diagram shown in Figure 3.4, except the transition from
ready to running (for which the scheduler always selects the thread at the head of the
highest-priority non-empty list) and from running to blocked (which is undertaken
voluntarily by the thread itself).

Each thread in the system is under the control of one single scheduling policy
at any given time. The policy is set upon thread creation, by means of the thread
attribute mechanism outlined in Sections 6.1 and 6.2, and can be changed after-
wards with the help of functions to be discussed in the following. To take their
decisions, scheduling policies make use of a set of scheduling parameters associ-
ated with each thread under their control. These parameters can be set in the same
way as the scheduling policy itself.

Individual scheduling policies work within a local priority range, consisting of
at least 32 distinct priority levels. The mapping of local priority ranges within the
global range is either fxed or established at system confguration time, but cannot
be altered afterwards. Instead, suitable primitives exist to retrieve mapping informa-
tion at runtime. More specifcally, the functions sched_get_priority_min and
sched_get_priority_max take a scheduling policy identifer as argument and
return the minimum and maximum possible priority for that policy, respectively.

As shown in Figure 6.2, priority ranges belonging to different scheduling prior-
ities may overlap. Where ranges overlap, multiple scheduling policies compete for
inserting ready threads into the same lists. The fxed-priority thread selection mech-
anism presented at the beginning of this section is eventually responsible to resolve
the competition and choose which threads will actually run, regardless of the policy
they are controlled by.

The standard explicitly specifes the scheduling policies listed in Table 6.4. It also
leaves implementations free to offer additional policies with the proviso that any
application that makes use of them will not be portable from one POSIX system to
another.

171 Task Management and Timekeeping, POSIX API

TABLE 6.4
RTEMS Thread Scheduling Policies, POSIX API

Policy Description
SCHED_FIFO First-in, frst-out scheduling (without time sharing)
SCHED_RR Round-robin scheduling (FIFO plus time sharing within a priority level)
SCHED_SPORADIC Sporadic server scheduling [115] (optional, not provided by RTEMS)
SCHED_OTHER Implementation-defned scheduling (non necessarily real-time)

Of them, we will not further discuss the SCHED_OTHER policy because it is
a generic policy and the standard leaves the defnition of its behavior completely
up to the implementation. This policy may coincide with either SCHED_FIFO or
SCHED_RR if the implementation so decides, but it must not necessarily provide any
real-time execution guarantee.

The main purpose of it being explicitly defned in the standard is to enable pro-
grammers to specify, in a portable way, that a certain thread does not require any
specifc real-time scheduling policy.

The SCHED_SPORADIC policy is optional and implements a variant of the spo-
radic server algorithm described in [115]. It must be present only on implementa-
tions that support the “Process sporadic server” or “Thread sporadic server” options
of the POSIX standard, which RTEMS currently does not. For this reason, it will no
longer be discussed in the following, either.

Of the two remaining policies listed in Table 6.4, the SCHED_FIFO is the most
basic one. Its only scheduling parameter is an integer-valued, non-negative prior-
ity held in the sched_prio feld of the struct sched_param. Contrary to the
convention of many real-time operating systems, higher values correspond to higher
priorities. The policy operates as follows:

• When a running thread is preempted by a higher-priority thread, it is re-
turned to the head of the thread list it belongs to, according to its priority.

• When a blocked thread becomes ready again, having been unblocked by
another thread, it is inserted at the rear of the thread list it belongs to, ac-
cording to its priority. This may trigger a preemption in favor of the thread
just unblocked if its priority is higher than the priority of a running thread.

• When the priority of a running or ready thread is modifed, either by it-
self or by another thread, it is placed at the rear of the ready thread
list that corresponds to its new priority, except when a specifc function
pthread_setschedprio, has been used to request the change.

• In the last case, the placement depends on the sign of the priority change,
namely:
• If the priority has been increased, it is placed at the rear.
• If the priority is unchanged, the thread does not change place.

172 Real-Time Systems Development with RTEMS and Multicore Processors

• If the priority has been decreased, it is placed at the head.
• When a running thread voluntarily relinquishes the core by means of a yield

operation, it is placed at the rear of the thread list it belongs to.

The rules concerning pthread_setschedprio may seem rather convoluted
at frst sight, but they are indeed necessary to enable the user-level implementation
of strategies to avoid unbounded priority inversion. Examples of these strategies are
the priority inheritance and priority ceiling protocols—to be discussed in Chapter 8.
They may already be available for some built-in POSIX synchronization objects, but
a user-level replacement or extension may be needed to apply them to other, more
sophisticated objects or implement other variants of these algorithms.

The SCHED_RR policy has much in common with the SCHED_FIFO policy, plus
an additional mechanism that prevents a long-running thread at a certain priority
from monopolizing processing resources at the expense of other ready threads with
its same priority. Considering, for simplicity, a single-processor single-core system,
when threads are scheduled in a SCHED_FIFO manner and a certain thread is run-
ning, it may exit the running state only if it voluntarily blocks or yields, or is pre-
empted by a higher-priority thread. If none of those conditions apply, it may keep
running indefnitely although there are other ready threads at its same priority.

The SCHED_RR policy addresses this shortcoming by means of the round-robin
rotation mechanism summarized in the following rules, to be applied in addition to
the rules of the SCHED_FIFO policy:

• If a thread keeps running for the amount of time called time quantum, it
is returned to the rear of the ready thread list corresponding to its priority,
and another thread is chosen for execution.

• If a thread loses the CPU due to a preemption and resumes execution at a
later time, it is allowed to execute for the portion of time quantum it has
not consumed yet.

Informally speaking, the additional rules above force ready threads with the same
priority to “rotate” in and out of the running state at a pace determined by the time
quantum (the shorter the quantum, the faster the pace). In this way, each of them
obtains on average its fair share of execution time when the SCHED_RR policy is
used in isolation. If the policy is used together with others, due to the local–global
priority mapping scheme depicted in Figure 6.2, this may no longer be true. For
instance, nothing prevents same-priority threads scheduled by other policies from
monopolizing the available cores, since they may not be subject to any time quantum
limit.

The length of the time quantum, also called round-robin time interval, is
a per-process item of information and is either fxed or part of the sys-
tem confguration. It cannot be changed at run-time, although the function
sched_rr_get_interval can be used to retrieve it. In the case of RTEMS, it
is given by the ticks_per_timeslice item of the operating system confgura-
tion table. It is expressed in ticks and its default value is 50. Given that the default

173 Task Management and Timekeeping, POSIX API

TABLE 6.5
RTEMS Thread Scheduling Primitives, POSIX API

Function Purpose
sched_get_priority_min Return the minimum priority allowed for a given policy
sched_get_priority_max Return the maximum priority allowed for a given policy
sched_rr_get_interval Return the time quantum of the SCHED_RR policy

pthread_getschedparam Retrieve the scheduling policy and parameters of a thread
pthread_setschedparam Change the scheduling policy and parameters of a thread
pthread_setschedprio Change the priority of a thread

sched_yield Relinquish the CPU in favor of other threads

tick length is 10 ms, the default RTEMS time quantum is therefore 500 ms in the
current operating system version.

After this general overview of the POSIX scheduling model, we can now give a
deeper look at some additional functions related to it, besides the thread creation and
termination functions discussed in Section 6.2. They are listed in Table 6.5. The frst
three functions enable the software to query, at run time, how the scheduling policies
have been confgured. More specifcally, the functions:

int sched_get_priority_min(int policy);
int sched_get_priority_max(int policy);

return the minimum and maximum priority allowed for the scheduling policy in-
dicated by policy. Both functions shall instead return −1, a negative value that
cannot represent a valid priority, upon failure. In this case, they shall also set the
errno variable to an error number that provides more information about the reason
for the failure. The standard specifes the following error number:

EINVAL The value of the policy parameter does not represent a valid scheduling
policy defned in the system.

The function:

int sched_rr_get_interval(pid_t pid,
struct timespec *interval);

stores into the data structure referenced by interval the time quantum assigned to
process pid and all the threads it contains. It returns zero upon successful comple-
tion. Upon failure, it shall return −1 and set errno to the value:

ESRCH The process indicated by pid was not found in the system.

The struct timespec is a POSIX data type specifcally used to represent time
and time intervals. It will be described in more detail in Section 6.6.

174 Real-Time Systems Development with RTEMS and Multicore Processors

As shown in Section 6.2, the scheduling policy and parameters of a thread can be
set when the thread itself is created. They can be retrieved at a later time by means
of the function:

int pthread_getschedparam(pthread_t thread,
int *restrict policy,
struct sched_param *restrict param);

This function, given a thread descriptor thread, stores the scheduling policy of
the thread into the location pointed to by policy and its scheduling parameters
into the location pointed to by param. The function pthread_getschedparam
returns zero when successful. Otherwise, it shall return a non-zero error code. The
standard recommends that the function should detect and report the error:

ESRCH The argument thread refers to a thread that does not exist in the system.

The scheduling policy of a thread and its scheduling parameters can also be
changed at run time by calling the function:

int pthread_setschedparam(pthread_t thread,
int policy, const struct sched_param *param);

Given a thread descriptor thread, this function changes the scheduling pol-
icy of the thread to the value of the argument policy and its scheduling pa-
rameters to the contents of the data structure referenced by param. The function
pthread_setschedparam returns zero when successful. Otherwise, it shall fail
for the following reasons:

EINVAL The scheduling policy indicated by policy or one of its scheduling pa-
rameters in the data structure pointed by param are invalid.

ENOTSUP The scheduling policy indicated by policy or one of its scheduling pa-
rameters in the data structure pointed by param are valid, but the implementation
does not support them.

EPERM The calling thread does not have the permission to change the scheduling
policy and/or the scheduling parameters of the target thread.

As for the pthread_getschedparam function just described, the standard rec-
ommends that the pthread_setschedparam should detect and report the addi-
tional error:

ESRCH The argument thread refers to a thread that does not exist in the system.

The function:

int pthread_setschedprio(pthread_t thread, int prio);

has a more limited scope than pthread_setschedparam because it enables the
caller to modify the priority of the thread whose descriptor is thread to the value

Task Management and Timekeeping, POSIX API 175

prio, but not its scheduling policy. However, it triggers a more sophisticated han-
dling of the priority change at the scheduling policy level, as outlined previously,
while describing individual policies.

The pthread_setschedprio returns zero upon successful completion. Oth-
erwise, it shall return a non-zero error code. The function may fail for the following
reasons:

EINVAL The priority indicated by prio is invalid for the scheduling policy of
thread.

ENOTSUP The priority indicated by prio is valid for the scheduling policy of
thread, but the implementation does not support it.

EPERM The calling thread does not have the permission to change the priority of the
target thread.

The last function listed in Table 6.5 has a very simple signature:

int sched_yield(void);

By invoking this function, the calling thread signals its will to relinquish the core
it is running on in favor of other threads. As a consequence, the calling thread is
returned to one of the ready thread lists, as determined by its scheduling policy, and
the scheduler picks a new ready thread for execution.

Calling sched_yield does not necessarily imply that the calling thread will
stop executing, though. This may happen even in very simple scenarios, for instance,
when the calling thread is the highest-priority ready thread in the system at the mo-
ment and there are no other ready threads with the same priority.

The sched_yield function shall return zero when successful and a non-zero
status code upon failure. However, the standard does not defne any error condition
for it.

6.4 FORCED THREAD TERMINATION (CANCELLATION)
The cancellation mechanism allows a thread to demand the forced involuntary ter-
mination of another thread and complements the two voluntary termination methods
described in Section 6.2.

However, terminating a thread at an arbitrary point of its execution can lead to
unexpected side effects that may easily undermine the stability of the whole system.
For instance, if a thread is forcibly terminated while it is updating a complex, shared
data structure, it will likely leave the data structure in an inconsistent state. The
consequences of the inconsistency will likely become evident only when another
thread tries to access the data structure at a later time, but may be severe.

Similar issues may also occur even if the thread is not necessarily sharing data
with others. If a thread is terminated abruptly while it holds some process-level re-
sources, like an area of memory it dynamically allocated with malloc(), these re-
sources will become permanently unavailable until the process as a whole terminates
unless they can be accessed in other ways, because they will not be reclaimed auto-
matically. In the case of malloc(), the only way to free the memory would be for

176 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.6
RTEMS Thread Cancellation Primitives, POSIX API

Function Purpose
pthread_cancel Forcibly terminate a thread
pthread_setcancelstate Set thread cancellation state
pthread_setcanceltype Set thread cancellation type
pthread_testcancel Test for a pending cancellation request

pthread_cleanup_push Push a thread cancellation handler
pthread_cleanup_pop Pop and possibly execute a thread cancellation handler

another thread to somehow know the address of the memory area and call free()
on it.

For these reasons, threads are given the ability to determine how they will respond
to any cancellation request directed to them. The possible responses to a cancellation
request range from ignoring it completely to terminating immediately. Moreover,
threads are also given the opportunity to execute some fnal cleanup actions before
terminating, by installing appropriate cancellation handlers. The functions used to
send a cancellation request and set up the way a thread is going to respond to it are
summarized in Table 6.6.

A cancellation request is submitted by calling the function pthread_cancel
using as argument the thread descriptor of the target thread:

int pthread_cancel(pthread_t thread);

The function returns zero when executed successfully. Otherwise, it shall return
a non-zero value to report the error back. The standard does not mandate any spe-
cifc error check, but recommends that pthread_cancel should fail if the thread
descriptor given as argument is invalid, and return:

ESRCH The argument thread refers to a thread that does not exist in the system.

The way the target thread reacts to a cancellation request directed to it depends
on its cancelability. This information is set by the thread itself to one of the three
settings listed in Table 6.7 by means of the following cancellation control functions:

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

They set the cancelability state and type of the calling thread to the values given by
the arguments state and type, respectively. At the same time, they store the previ-
ous value of state and type into the locations pointed by oldstate and oldtype,
respectively. The valid values of the cancelability state and type are:

• PTHREAD_CANCEL_DISABLE or PTHREAD_CANCEL_ENABLE for the
cancelability state, and

177 Task Management and Timekeeping, POSIX API

TABLE 6.7
Thread Cancelability States and Types, POSIX API

Thread cancelability state/type
(all macros begin with PTHREAD_CANCEL_) Meaning

State Type
DISABLE ignored Cancellation disabled
ENABLE DEFERRED Enabled upon reaching a cancellation point
ENABLE ASYNCHRONOUS Enabled, immediate (asynchronous)

• PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS
for the cancelability type.

Both functions return zero upon successful completion. They shall return a non-
zero error code upon detecting the following errors:

EINVAL The value of state (for pthread_setcancelstate) or type (for
pthread_setcanceltype) is invalid.

The three possible cancelability settings of a thread naturally affect how it reacts
to a cancellation request directed to it:

1. If the cancelability state is PTHREAD_CANCEL_DISABLE, the cancelability type
setting has no effect. Any cancellation request sent to the thread has no immediate
effect, but is held pending and will be reconsidered once the thread changes its
cancelability state to PTHREAD_CANCEL_ENABLE.
This memory effect should be carefully taken into account while programming
because it may lead to the unexpected cancellation of a thread immediately after
it changes its cancelability state, due to a cancellation request sent to it a long
time before, and also because the standard currently does not specify any way to
retract a cancellation request after issuing it.
Programmers should also take into account that, while a thread cancelability state
is PTHREAD_CANCEL_DISABLE there is no way to terminate it, unless it does so
voluntarily. This makes the thread safe from all the data consistency and resource
loss issues discussed previously, but also makes its execution unmanageable from
the outside, especially if it gets trapped in a processor-intensive loop.

2. If the cancelability state is PTHREAD_CANCEL_ENABLE and the type is
PTHREAD_CANCEL_DEFERRED the thread honors cancellation requests in a de-
ferred fashion, that is, a cancellation request directed to it stays pending and takes
effect as soon as the thread reaches a cancellation point.
In other words, this setting enables a thread to honor cancellation requests, which
is a desirable feature, but in a controlled way to counteract the possibility of data
inconsistency and resource loss, because programmers know in advance where in

178 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.8
Cancellation Points, POSIX API

Task management (Chapter 5)
pthread_join pthread_testcancel

Signal handling (Chapter 5)
sigwait sigwaitinfo
sigsuspend

Inter-task communication based on shared memory (Chapter 7)
sem_wait sem_timedwait
pthread_cond_wait pthread_cond_timedwait

Inter-task communication based on message passing (Chapter 9)
mq_send mq_receive
mq_timedsend mq_timedreceive

the code a certain thread could be canceled, regardless of its exact timing relation-
ship with respect to the thread requesting the cancellation.
Several of the functions described in this book are cancellation point, Table 6.8
summarizes them. In addition, many other POSIX functions not explicitly dis-
cussed here (for instance, input–output functions like open and printf) shall or
may also be cancellation points.
Readers should refer to the standard [68] for a full list with the caveat that, if the
standard says a function may be a cancellation point, portable code shall be written
as if it actually were a cancellation point. This is to prevent thread cancellation
from occurring at unexpected places on some implementations rather than others,
which could easily lead to nasty, platform-dependent issues.
Generally speaking, and with some exceptions, the rationale behind Table 6.8
is that any function that could possibly block the calling thread for a long or
unbounded amount of time shall be a cancellation point. In this way, a thread
in deferred cancelability mode honors any pending cancellation request before
engaging in such a wait.
A cancellation point may also be explicitly introduced in the code where needed
by calling the function:

void pthread_testcancel(void);

3. If the cancelability state is PTHREAD_CANCEL_ENABLE and the type is
PTHREAD_CANCEL_ASYNCHRONOUS the thread honors cancellation requests
immediately as they arrive, that is, asynchronously.
Although the advantage of executing a thread in asynchronous cancellation
mode—a prompt response to cancellation requests—may sound appealing, it
must be carefully weighted against the disadvantages. Besides the risk of data
inconsistency and resource loss already recalled previously, while a thread is

179Task Management and Timekeeping, POSIX API

TABLE 6.9
Functions Safe Against Asynchronous Cancellation, POSIX API

Function
pthread_cancel

pthread_setcancelstate

pthread_setcanceltype

Cancellation point

Time

Cancellation request

Thread’s execution flow

Disabled Asynchronous Deferred

FIGURE 6.3 Possible responses to POSIX cancellation requests.

executing in this mode it must not call any POSIX functions, except the ones
explicitly defined to be async-cancel safe in the standard. These functions are in
rather scarce supply and are summarized in Table 6.9. Calling any other function,
directly or indirectly, leads to undefined behavior.

Newly created threads, including the thread that first executes main() when the
process starts, have their cancelability state set to PTHREAD_CANCEL_ENABLE and
their cancelability type to PTHREAD_CANCEL_DEFERRED, which puts them in de­
ferred cancelability mode. Unlike other thread characteristics, this default cannot be
set by means of thread attributes while creating the thread. The new thread must
explicitly call pthread_setcancelstate and/or pthread_setcanceltype
itself.

Figure 6.3 depicts and summarizes the three possible ways of responding to a
cancellation request that a thread may set up as previously described. Since they
represent a trade-off between reacting quickly, without wasting execution resources,

180 Real-Time Systems Development with RTEMS and Multicore Processors

and not placing additional burdens on programmers, it is unlikely that a moderately
complex thread keeps the same cancelability settings for its whole lifetime.

The defnition of the functions pthread_setcancelstate and pthread_
setcanceltype—in particular, their ability to return the previous cancelability
state and type while setting them to new values—helps to defne well-delimited re-
gions of code, or scopes, in which the thread cancelability state is certainly set to the
desired value.

At the same time, a proper use of these functions ensures that, at the end of a
scope, the thread cancelability state and type are restored to the values they had
upon entering the scope itself. In this way, scopes can be nested at will without side
effects, at least as long as inner scopes set the cancelability state and type to more
conservative values than outer scopes.

For instance, let us imagine that a function f() needs to disable cancellations
while it is executing a fragment of code. It can be coded in the following way, ne-
glecting error handling for simplicity:

void f(void)
{

int ps;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &ps);

... code executed with cancellations disabled ...
pthread_setcancelstate(ps, &ps);

}

The frst call to pthread_setcancelstate sets the thread cancelability state
to completely disable cancellations and, at the same time, stores the previous state
into ps. The second call to pthread_setcancelstate restores the cancelability
state to the value it had upon entry into f(). The second argument in the second
call to pthread_setcancelstate is &ps rather than NULL, although the value
that the function stores into ps is actually unused, because the POSIX standard does
not require pthread_setcancelstate to accept NULL pointers, although many
implementations do.

By delimiting the scope in this way, we can safely call function f() from another
function g(), which needs cancellations to be handled in a deferred way:

void g(void)
{

int pt;
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &pt);

... code executed with deferred cancellations ...
f();
... code executed with deferred cancellations ...

pthread_setcanceltype(pt, &pt);
}

Scope nesting still works if, for instance, g() is called by an outer func-
tion h(), which already runs with cancellations disabled. In this case, neither

Task Management and Timekeeping, POSIX API 181

the calls to pthread_setcanceltype performed by g(), nor the calls to
pthread_setcancelstate performed by f() have any effect and the whole
code is executed with cancellations disabled. This is correct because this is the most
conservative cancelability state and type that h(), g(), and f() call for.

Before terminating voluntarily, a thread has all the means to perform any cleanup
operation it may need in a very straightforward way. However, this is not the case
when the thread terminates involuntarily due to a cancellation. For this reason, the
POSIX standard specifes a way for a thread to register a set of cleanup handlers that
will automatically be executed immediately before the thread terminates. For consis-
tency, cleanup handlers are also executed when the thread terminates voluntarily, by
calling pthread_exit or by returning from its entry point.

A cleanup handler consists of a function that receives a pointer of type void *
as argument and returns void. The function pthread_cleanup_push pushes the
cleanup function routine and its argument arg onto a stack:

void pthread_cleanup_push(void (*routine)(void*),
void *arg);

Upon thread termination, cleanup handlers are popped from the stack and
executed one after another, that is, the handler that was pushed last is exe-
cuted frst. Each handler receives as argument the same arg that was given to
pthread_cleanup_push when the handler was pushed. Cleanup handlers can
also be manually popped, and optionally executed, by calling the function:

void pthread_cleanup_pop(int execute);

Its only argument, execute, is a Boolean fag that, when not zero, indicates
that the cleanup handler shall be executed besides being popped. To ensure that
pthread_cleanup_push and pthread_cleanup_pop have well-defned se-
mantics and enable their implementation as function-like macros, they are subject to
several usage restrictions. The most important ones are:

• Syntactically, they must appear as statements.
• They must appear in pairs, in the same lexical scope, and be used to prop-

erly bracket a block of code that needs a cleanup handler.
• Abandoning the bracketed block of code prematurely, for instance, by

means of return, longjmp, or goto, leads to undefned behavior.

Programmers should refer to the standard [68] as a reference to be aware of all
these restrictions while they write their code, because compilers may be unable to
check whether they have been compiled with or not.

6.5 SIGNAL HANDLING
Signals are a facility that was already specifed by the ISO C standard [69] in 1989
and is widely available on most general-purpose operating systems. Signals provide
a mechanism to convey information to a process or thread when it is not necessarily
waiting for input.

182 Real-Time Systems Development with RTEMS and Multicore Processors

The signal mechanism has a signifcant historical heritage. For instance, it was
frst designed when multithreading was not yet in widespread use. Therefore, its
interface and semantics underwent many adjustments and extensions since their in-
ception. Originally, the main goal of signals was to give processes the ability to react
properly to external and usually fatal events that occurred asynchronously with re-
spect to the notifed process, like:

• Some hardware-detected errors occurring during the execution of the pro-
cess, for example, a memory reference through an invalid pointer.

• Various system and hardware failures, such as an impending power failure.
• The explicit generation of a signal, often with the purpose of forcing the

target process to terminate.

For instance, when a user types the intr control character (Control-C by default)
on a terminal controlled by a POSIX-compliant shell, what the shell does is to send a
signal (called SIGINT) to the process currently running in the foreground. Unless the
foreground process has set up some special way of handling the signal, this causes it
to terminate, so that the user can regain control of the terminal.

Currently, the signal handling mechanism owes most of its complexity to the need
of maintaining compatibility with the historical implementations of the mechanism
made, for example, by the various favors of the infuential Unix operating systems.

In this book, for the sake of clarity and conciseness, the compatibility interfaces
will not be described and the discussion will be limited as much as possible to how
signals work in the single-user, single-process (SUSP) execution environment that
RTEMS supports. Readers should refer to the POSIX standard [68] for a more com-
prehensive description of the mechanism as a whole.

The POSIX standard further extends the signal mechanism to make it suitable for
real-time asynchronous event handling. In particular, in the rest of this book we are
going to discuss how signals are used to convey:

• Time-related events, that is, events that make a process or thread aware of
the passing of time. These events are generated by POSIX timers, to be
discussed in Section 6.6.

• Data availability in one of the inter-process communication mechanisms
foreseen by the POSIX standard, the message queue, to be described in
Chapter 9.

With respect to the ISO C signal behavior, the POSIX standard introduces two
main enhancements of interest to real-time programmers:

1. In the ISO C standard, the various kinds of signals are identifed by an inte-
ger number that, in most cases, should be denoted by a symbolic constant, like
SIGINT, to make the application code portable. When multiple signals of differ-
ent kinds are pending, they are serviced in an unspecifed order.
The POSIX standard continues to use signal numbers for backward compatibil-
ity, but specifes that, in a subset of their allowable range, between the values

183 Task Management and Timekeeping, POSIX API

SIGRTMIN and SIGRTMAX, a priority hierarchy among signals is in effect, so
that the lowest-numbered signal has the highest priority of service.
The range must include RTSIG_MAX distinct signal numbers. This value is a
runtime invariant and must be defned as a symbolic constant in the header
limits.h when it is known at compile time. If the value is indeterminate at
compile time (for instance, because it is part of the operating system confgura-
tion) the defnition is omitted and processes can retrieve the value by means of the
sysconf function. In any case, RTSIG_MAX shall be 8 as as minimum.

2. In the ISO C standard, there is no provision for signal queues. When multiple
signals of the same kind are raised before the target process had a chance of
handling them, all signals but the frst are lost. Instead, POSIX specifes that the
system must be able to keep track of multiple signals with the same number.
Signals are always enqueued and serviced in the same order as they have been
generated. This policy cannot be changed by the user.
Moreover, POSIX also adds the capability of attaching a limited amount of in-
formation to each signal request, so that multiple signals with the same signal
number can be distinguished from each other. The information must ft in an ob-
ject of type union sigval, which is capable of holding either an integer (in its
sival_int feld) or a pointer (in sival_ptr).

As outlined previously, each signal has a signal number associated to it, which
uniquely identifes its kind. For example, the interrupt signal sent by the shell to
a process with the user types the intr character on the terminal has the number
SIGINT associated to it. The object of type union sigval, which is associated to
each signal and whose contents are chosen by the application upon signal generation,
helps to further distinguish among different signals of the same kind.

For some kinds of events, like the time-related events to be described in
Section 6.6, the POSIX standard specifes that the notifcation may also be carried
out by the execution of an event-handling function in a separate thread, if the appli-
cation so chooses. This mechanism is apparently more straightforward than signal-
based notifcation, but requires more operating system resources and entails higher
overheads. Moreover, since it involves the dynamic creation of a new thread at unpre-
dictable times, it may introduce other shortcomings in a real-time execution environ-
ment, which may potentially escalate to a denial of service if the system is fooded
by events. For these reasons, this notifcation method is currently unavailable on
RTEMS.

Figure 6.4 depicts the life of a signal from its generation up to its delivery. De-
pending on their kind and source, signals may be directed to either a specifc thread
in a process, or to the process as a whole. In the latter case, every thread belonging
to the process is a candidate for the delivery of the signal, by the rules described in
the following.

184 Real-Time Systems Development with RTEMS and Multicore Processors

1) Signal generation, targeting
the process (sigqueue) or a

specific thread
(pthread_kill)

Process-level action
(set by sigaction),

may ignore the
signal completely

τ1

τ2

τn

Per-thread signal masks
(pthread_sigmask) or
explicit wait (sigwait)

2) Selection of a target thread (only for
signals targeting the process). The signal

stays pending if there are no threads
suitable for immediate delivery

3) Execution of the action
associated with the signal:

— return of sigwait
— signal handler
— default action

Threads
within the

process
⋯

FIGURE 6.4 Depiction of the POSIX signal handling mechanism.

Generation of a signal
The decision to target a specifc thread or a whole process with a signal must be
taken upon signal generation. For signals generated by the system, rather than by an
explicit action performed by a thread, the POSIX standard specifes that the decision
of whether the signal must be directed to the process as a whole or to a specifc thread
within a process must indicate the source of the signal as closely as possible.

Namely, if a signal is attributable to an action carried out by a specifc thread,
like a memory access violation, the signal shall be directed to that thread and not to
the process. If such an attribution is either impossible or not meaningful, the signal
shall be directed to the process. This is the case, for example, of the SIGINT signal.
In addition, signals related to real-time asynchronous event handling shall always be
directed to the process.

Threads also have the ability of synthesizing signals by means of two main inter-
faces, depending on the target of the signal:

185 Task Management and Timekeeping, POSIX API

• The sigqueue function, given a process identifer and a signal number,
generates a signal directed to that process. An additional argument, of type
union sigval, allows the caller to associate a limited amount of infor-
mation to the signal, provided that the SA_SIGINFO fag is set for that
signal number.

• The pthread_kill function generates a signal directed to a specifc
thread within the process to which the calling thread belongs. It is not pos-
sible to generate a signal directed to a specifc thread of another process.

Additional interfaces exist to generate a signal directed to a group of processes,
for example, the killpg function. However, they will not be further discussed here
because they have not been extended for real time and lack the ability of associating
any additional information to the signal. Moreover, they are of limited usefulness in
a SUSP environment, in which there is only one process in the system.

Process-level action
For each kind of signal defned in the system, that is, for each valid signal number,
processes may set up an action by means of the sigaction function. In general,
the action may be:

• Ignore the signal completely. In this case, the delivery of the signal has
no effect whatsoever on the process. If the signal is already pending when
sigaction is called, it shall be discarded.

• A default action performed by the operating system on behalf of the pro-
cess, and possibly with process-level side effects, such as the termination
of the process itself.

• The execution of a signal handling function specifed by the programmer.

However, some special signals whose intent is to enable the unconditional ter-
mination of a malfunctioning process, like SIGKILL, cannot be caught or ignored.
Moreover, ignoring a signal generated as a consequence of a fatal error (like a mem-
ory access violation) and trying to continue leads the process to an undefned behav-
ior.

In addition, the sigaction function allows the caller to set zero or more fags
associated with the signal number. Of the rather large set of fags specifed by the
POSIX standard, the following ones are of particular interest to real-time program-
mers:

• The SA_SIGINFO fag, when set, enables the association of a limited
amount of information to each signal, which will then be conveyed to the
signaled process or thread. As previously mentioned, the information is
stored in an object of type union sigval.
If the action associated with the signal is the execution of a user-specifed
signal handler, setting this fag also extends the list of arguments passed to
the signal handler to include additional information about the reason why

186 Real-Time Systems Development with RTEMS and Multicore Processors

the signal was generated and about the receiving thread’s context that was
interrupted when the signal was delivered.

• The SA_RESTART fag, when set, enables the automatic, transparent restart
of interruptible system calls when they are interrupted by the signal. If
this fag is clear, system calls that were interrupted by a signal fail with
the error indication EINTR and must be explicitly performed again by the
application, if appropriate.

• The SA_ONSTACK fag, when set, commands the switch to an alternate
stack, set up by means of the sigaltstack function, for the execution of
the signal handler. If this fag is not set, the signal handler executes on the
regular stack.

It should be noted that the setting of the action associated with each kind of signal
takes place at the process level, that is, all threads within a process share the same
set of actions. Hence, for example, it is impossible to arrange for two different signal
handling functions (for two different threads) to be executed in response to the same
kind of signal.

Another important aspect to be taken into account is that there are considerable
limitations on what a signal-handling function can do. More specifcally, a portable
signal-handling function can invoke, directly or indirectly, only functions that are ex-
plicitly marked as async-signal-safe in the POSIX standard [68]. A signal-handling
function can, of course, also invoke other functions if they are known to be safe on
the operating system in use, but this makes it not portable to other POSIX systems.

Very importantly, neither malloc nor free have to be async-signal-safe, thus
ruling out dynamic memory allocation within a signal-handling function. Also, nei-
ther setjmp nor longjmp have to be async-signal-safe either, and hence, non-local
transfer of control from a signal-handling function is not portable across POSIX sys-
tems.

Moreover, even async-signal-safe POSIX functions can still change the value of
the errno variable of the calling thread, and this property holds even when they are
called from a signal-handling function. This may lead to an inconsistent behavior if a
signal interrupts the main code of a thread after it detected that a POSIX function that
it invoked has failed, but before it could check errno to gather more information
about the failure. This is because, when the interrupted thread will eventually check
errno after signal handling has been completed, it will fnd the error code set by the
signal-handling function rather than the one set by the POSIX function that failed in
the frst place.

Going back to the lifetime of a signal depicted in Figure 6.4, the system checks the
process-level action associated with the signal in the target process immediately after
signal generation, and discards the signal if the action is set to ignore it. Otherwise, it
proceeds to check whether the signal can also be acted on immediately, or the signal
should remain pending.

187 Task Management and Timekeeping, POSIX API

Signal delivery and acceptance
Provided that the action associated to the signal at the process level does not specify
to ignore the signal, a signal can be either delivered to or accepted by a thread within
the process.

Unlike the action associated to each kind of signal, which is common to all threads
in a process, each thread has its own signal mask. By means of the signal mask, each
thread can selectively block some kinds of signal from being delivered to it, based on
their signal number. The pthread_sigmask function allows the calling thread to
examine and change its signal mask, represented as a signal set of type sigset_t.
It can be set up and manipulated by means of the functions:

sigemptyset: Initializes a signal mask so that all signals are excluded from the
mask.

sigfillset: Initializes a signal mask so that all signals are included in the mask.
sigaddset: Given a signal mask and a signal number, adds the specifed signal to

the signal mask. It has no effect if the signal was already in the mask.
sigdelset: Given a signal mask and a signal number, removes the specifed signal

from the signal mask. It has no effect if the signal was not in the mask.
sigismember: Given a signal mask and a signal number, checks whether the sig-

nal belongs to the signal mask or not.

A signal can be delivered to a thread if and only if that thread does not block the
signal. When a signal is successfully delivered to a thread, that thread executes the
process-level action associated with the signal. Alternatively, a thread may explicit
wait for one or more kinds of signal, by means of the sigwait function. This func-
tion blocks the calling thread until one of the signals passed to sigwait, by means
of an argument of type sigset_t, is conveyed to the thread. When this occurs, the
thread accepts the signal and continues past the sigwait function.

Since the standard specifes that signals in the range from SIGRTMIN to
SIGRTMAX are subject to a priority hierarchy, when multiple signals in this range
are pending, the sigwait shall consume the lowest-numbered one. It it important
to remark that, for this mechanism to work correctly, the thread must block the sig-
nals it wishes to accept by means of sigwait, through the signal mask passed to
pthread_sigmask. Otherwise, signal delivery takes precedence over acceptance.

Two, more powerful, variants of the sigwait function exist: sigwaitinfo has
an argument used to return additional information about the signal just accepted,
including the union sigval associated to the signal when it was generated. Fur-
thermore, sigtimedwait also allows the caller to specify the maximum amount of
time that shall be spent waiting for a signal to arrive.

Selection of the target thread
The way in which the system selects a thread within a process to convey a signal
depends frst of all on where the signal is directed:

188 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.10
RTEMS Signal-Related Primitives, POSIX API

Function Purpose
sigqueue Generate a signal directed to a process
pthread_kill Generate a signal directed to a specifc thread

sigaction Set the process-level action associated with a signal
sigaltstack Set up an alternate stack to be used for signal handling

pthread_sigmask Set the per-thread signal mask of the calling thread
sigwait Wait to accept a signal belonging to a given signal set
sigwaitinfo Like sigwait, but returns additional information about the signal
sigtimedwait Like sigwaitinfo, but with an upper limit on the waiting time

sigemptyset Initialize a signal set with no signal numbers in it
sigfillset Initialize a signal set with all signal numbers in it
sigaddset Add a signal number to a signal set
sigdelset Delete a signal number from a signal set
sigismember Check whether or not a signal number belongs to a signal set

• If the signal is directed toward a specifc thread, only that thread is a candi-
date for delivery or acceptance.

• If the signal is directed to a process, all threads belonging to that process
are candidates to receive the signal.

In the second case the system looks for one thread within the process, which has
an appropriate signal mask (for delivery), or which is performing a suitable sigwait
(for acceptance). Three cases are possible:

• If there is no thread waiting to accept the signal or available for its delivery,
the signal remains pending until its delivery or acceptance becomes pos-
sible. If the process-level action associated to that kind of signal is set to
ignore it in the meantime, the system forgets everything about the pending
signal, and all the other signals of the same kind.

• If there is exactly one thread waiting to accept the signal, or available for
delivery, the signal goes to that thread.

• If there are multiple threads for which signal acceptance or delivery is pos-
sible, the system picks exactly one of them, using an unspecifed algorithm.

Signal-related POSIX primitives
Table 6.10 lists the main signal-related POSIX primitives, divided into four groups.
The frst three groups contain the functions that can be used to generate a signal, set
up how a process responds to a signal, and determine how individual threads within a
process accept signals or wait for them, respectively. The fourth group at the bottom

189 Task Management and Timekeeping, POSIX API

of the table contains some utility functions used to initialize and manipulate signal
sets.

Going back to the frst group, the function:

int sigqueue(pid_t pid, int signo,
const union sigval value);

sends signal number signo to process pid. Moreover, depending on how the target
process has chosen to react to the signal (by means of the sigaction function to be
discussed later) it may also attach to the signal the information value, sometimes
called the signal value. Even upon successful completion, the function returns to the
caller immediately after queuing the signal. In other words, it does not synchronize
the calling and the target processes in any way.

To avoid consuming a large and possibly unbounded amount of system resources
in queuing signals, the standard specifes that threads belonging to a certain pro-
cess can queue at most SIGQUEUE_MAX signals in total, even if they target different
processes. The value of SIGQUEUE_MAX must be at least 32. As for RTSIG_MAX,
SIGQUEUE_MAX must be defned as a symbolic constant when it is known at compile
time, or made available by means of the sysconf function if it is not.

The sigqueue function returns zero upon successful completion. Upon failure,
it shall return −1 and set errno to one of the following codes:

EINVAL The signal number signo is invalid or corresponds to a signal that the
system does not support.

ESRCH The process pid does not exist.
EAGAIN There are insuffcient resources to queue the signal, either because the pro-

cess tried to exceed SIGQUEUE_MAX, the maximum number of currently queued
signals, or a system-wide limit has been exceeded.

EPERM The operation was not performed due to lack of appropriate permissions.

For what concerns permission checks and the EPERM error code, the rules that
determine whether a process may send a signal to another are fairly complex. How-
ever, they will not be further discussed in the following because they do not apply to
a SUSP execution environment. In fact, in this kind of environment there is only one
process and a process is always allowed to send a signal to itself. The function:

int pthread_kill(pthread_t thread, int signo);

has the same purpose as sigqueue, but is more specifc and allows a thread be-
longing to a certain process to send a signal to another thread belonging to the same
process. The target thread is identifed by means of its thread descriptor thread.
Signals sent in this way skip the target thread selection phase within the destina-
tion process. Unlike sigqueue, this function allows the caller to specify the signal
number signo, but not a signal value.

Another difference with respect to sigqueue is that, upon error, sigqueue
returns −1 and uses errno to provide more information about the error. Instead,
pthread_kill returns the error code directly. The function pthread_kill shall
fail for the following reasons:

190 Real-Time Systems Development with RTEMS and Multicore Processors

EINVAL The signal number signo is invalid or corresponds to a signal that the
system does not support.

Moreover, the function may detect an attempt to use a thread descriptor that cor-
responds to a non-existent thread, for instance, because it terminated, and report this
error with the code:

ESRCH The given thread does not exist.

In order to examine and/or set the process-level action associated with a signal,
any threads in the process may call the function:

int sigaction(int signo,
const struct sigaction *restrict act,
struct sigaction *restrict oact);

This function performs two distinct operations involving the process-level action
associated to signal number signo:

• If the oact pointer is not NULL, it stores the current process-level action
associated to signo into the data structure it references.

• If the act pointer is not NULL, it changes the process-level action associ-
ated to signo as instructed by the data structure it references.

The function returns zero upon successful completion. Otherwise, it shall re-
turn −1 and set errno to an error code without changing the process-level action
associated with the signal signo. The sigaction function shall fail if:

EINVAL The signal signo is invalid or the process-level action indicated by act
cannot be set for that specifc signal. For instance, as previously mentioned, some
signals cannot be caught or ignored.

ENOTSUP The SA_SIGINFO fag is set in the sa_flags feld of the structure refer-
enced by act, but this option is not supported for the given signal number signo.
This may happen if signo is not in the range from SIGRTMIN to SIGRTMAX.

Both act and oact point to a data structure of type struct sigaction,
whose felds are listed in Table 6.11. Besides the flags feld, whose contents have
already been discussed in the general description of the process-level action, the main
felds of this data structure are sa_handler and sa_sigaction, which indicate
the signal-handling function, that is, the function to be executed when a signal is
delivered.

• The sa_handler feld points to the signal-handling function to be used
when the SA_SIGINFO fag is not set. It receives one single integer argu-
ment, the signal number.

• Instead, the sa_sigaction feld points to the function to be used when
the SA_SIGINFO fag is set. Besides the signal number, it also receives a
pointer to an object of type siginfo_t, which provides more information
about why and how the signal was generated, and a void * pointer.

191 Task Management and Timekeeping, POSIX API

TABLE 6.11
Fields of a struct sigaction, POSIX API

Field
(prefxed by sa_) Purpose

handler Pointer to a “simple” signal-handling function with signature
void (*)(int), or one of the reserved values SIG_IGN (ignore
the signal completely) or SIG_DFL (use the default handler).

sigaction Pointer to an “enhanced” signal-handling function with signature
void (*)(int, siginfo_t *, void *), which is used
instead of the simple signal-handling function handler when
SA_SIGINFO is set in the flags feld. With respect to handler,
it receives two additional arguments. The frst one is a pointer to an
object of type siginfo_t and the second one is a pointer to void.
Both arguments are discussed in more detail in the main text.

flags This feld contains the bitwise or of a set of fags, which modify the
behavior of the signal. Among them, SA_SIGINFO, SA_RESTART,
and SA_ONSTACK are discussed in the main text, while
SA_NODEFER is described below.

mask This feld is a signal set (of type sigset_t). It contains the
additional set of signal numbers that must be blocked during the
whole execution of the signal-handling function. The signal number
that triggered the execution of the signal-handling function is
automatically blocked unless flags contains SA_NODEFER.

The sa_handler feld, besides pointing to a signal-handling function, can also
be set to one of the following reserved values:

SIG_IGN Ignore the signal completely, although ignoring some signals related to
fatal error conditions leads to undefned behavior.

SIG_DFL Revert to the default handling action for the signal, which in most cases
terminates the process.

Table 6.12 lists the contents of the main felds of a siginfo_t object. The third
argument of the signal handling function pointed by sa_sigaction is actually a
pointer to an object of type ucontext_t, which contains the saved context of the
thread that was interrupted when the signal was delivered.

When the fag SA_ONSTACK is set, signal handling is performed on an alternate,
dedicated stack instead of the regular stack of the thread to which the signal is deliv-
ered. The function:

int sigaltstack(const stack_t *restrict ss,
stack_t *restrict oss);

can be used to set up the alternate stack and/or retrieve the current settings. The func-
tion sigaltstack uses the same underlying logic as sigaction. It can retrieve

192 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.12
Main Fields of a siginfo_t, POSIX API

Field Purpose (prefxed by si_)
signo Signal number. This information is sometimes redundant because it

coincides with the frst argument passed to a signal-handling
function (for signal delivery) and with the return value of
sigwaitinfo (for signal acceptance).

code Signal code that provides more information about the source of the
signal. Codes of particular interest to real-time applications include:
SI_QUEUE, which indicates that the signal was sent by sigqueue;
SI_TIMER, denoting that the signal was sent by a timer expiration
(see Section 6.6); and SI_MESGQ, which indicates that the signal
was sent by a message queue (see Section 9.4).

value The union sigval that contains the signal value, that is, the
additional information associated with the signal when it was
generated.

the current signal handling stack information (and store it into the data structure ref-
erenced by oss, if it is not a NULL pointer), and/or set up a new signal handling stack
(according to the contents of the data structure referenced by ss, if it is not a NULL
pointer). This function must be present only if the operating system supports the XSI
(Single UNIX Specifcation) POSIX option. It is not implemented by RTEMS and
will not be further discussed here for this reason.

The function:

int pthread_sigmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

enables the calling thread to examine and/or manipulate its own signal mask. Also in
this case, the function uses the same underlying logic as sigaction. More specif-
cally:

• If the pointer oset is not NULL, the function stores the current signal mask
of the thread into the signal set referenced by it.

• If the pointer set is not NULL, the function also modifes the signal mask
after possibly storing it using oset as just described.

The specifc action that the function performs when set is not NULL depends on
the value of the how argument:

• If it is SIG_SETMASK, the new signal mask is set as specifed by the signal
set referenced by set and the current mask is simply discarded.

• If it is SIG_BLOCK, the new signal mask is set to the union of the cur-
rent mask and the signal set referenced by set. In other words, the signal

193 Task Management and Timekeeping, POSIX API

numbers indicated by set are added to the set of signals blocked by the
calling thread.

• If it is SIG_UNBLOCK, the new signal mask is set to the intersection be-
tween the current mask and the complement of the signal set referenced
by set. In other words, the signal numbers indicated by set are removed
from the set of signals blocked by the calling thread.

The function pthread_sigmask returns zero upon successful completion. Oth-
erwise, it shall not modify the signal mask and return an error code stating the reason
for the failure. The standard specifes the following error code:

EINVAL The how argument is invalid, that is, it does not have any of the values
previously mentioned.

A thread can explicitly announce it is willing to accept a certain set of signals,
and possibly wait until one of them is sent to the process it belongs to, by calling the
function:

int sigwait(const sigset_t *restrict set,
int *restrict sig);

The argument set represents the set of signal numbers the thread is willing to
accept. The function shall wait until one of these signals becomes pending, accept it,
store its signal number into the variable referenced by sig, and fnally return zero to
the caller. If one of the signals is already pending at the time of the call, the function
accepts it without waiting.

Upon failure, the sigwait function must return −1 and store an error code into
errno. The function may fail for the following reason:

EINVAL The signal set referenced by set contains an invalid or unsupported signal
number.

It is worth highlighting once more the peculiar relationship between the signal set
passed to the sigwait function and the signal mask of the calling thread. In order
to effectively wait for a set of signals, the corresponding signal numbers must be in
the calling thread’s signal mask, thus blocking these signals from being delivered to
it. Although this may seen counterintuitive at frst, it is indeed necessary because,
otherwise, signal delivery would take precedence over acceptance.

Similarly, if a thread waits for a certain signal number by means of sigwait, it
is essential that all the other threads in the process block that signal number and none
of them also calls sigwait with a signal set that includes the same signal number.
This is because, when the operating system fnds more than one candidate thread for
signal delivery or acceptance, it is undefned which candidate it will actually choose,
thus leading to an unpredictable behavior.

Two, more powerful variants of sigwait are available. The frst one returns to
the caller additional information about the signal it accepted, besides the signal num-
ber:

194 Real-Time Systems Development with RTEMS and Multicore Processors

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

The function stores the additional information into an object of type siginfo_t
provided by the caller and referenced by the info argument. This is the same in-
formation passed to a signal handler when the SA_SIGINFO fag is set for a signal
number. Table 6.12 summarizes the object contents.

The sigwaitinfo function returns the number of the signal it accepted, which
is guaranteed to be non-negative, upon successful completion. Otherwise it returns
−1 and sets errno to an error code. The sigwaitinfo function may fail for the
following reason:

EINTR The function was interrupted by the delivery of an unblocked, caught sig-
nal. The function returns to the caller after the corresponding signal handler has
fnished executing.

The second variant further extends sigwaitinfo to restrict the maximum wait-
ing time:

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

The function sigtimedwait behaves like sigwaitinfo, but returns to the
caller with an error indication when the amount of time indicated by the timeout
argument elapsed before the function could accept any signals. Accordingly, it may
fail for the following reason:

EAGAIN No signals were accepted before the time limit established by the timeout
argument expired.

The timeout argument specifes a relative time interval, with respect to the time
of the call. The interval shall be measured with the CLOCK_MONOTONIC clock—to
be discussed in Section 6.6—if the system implements it. Otherwise, the function
shall make use of CLOCK_REALTIME.

As a special case, if the time interval referenced by timeout is zero, the function
polls pending signals and fails immediately if none of the signals indicated by set
are pending at the moment. The function’s behavior is instead unspecifed when the
timeout pointer is NULL.

In summary, the most important aspects to be taken into account from the pro-
gramming point of view when using sigwait or one of its variants are:

1. All these function must be used to wait for a blocked signal, that is, a signal that
belongs to the calling thread’s signal mask.

2. The return values of the three functions differ in subtle ways. More specif-
cally, sigwait returns either 0 or −1. On the contrary, sigwaitinfo and
sigtimedwait return either the non-negative number of the signal they ac-
cepted or −1.

Task Management and Timekeeping, POSIX API 195

3. The sigtimedwait uses the error code EAGAIN to report a timeout. The POSIX
standard also defnes the more specifc error code ETIMEDOUT to the same pur-
pose and other functions use it instead.

The last group of functions, listed at the bottom of Table 6.10, enable the caller to
initialize and manipulate a signal mask:

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);

They all take a pointer to a signal set as frst argument and some of them also
take a signal number as second argument. All functions return zero upon success-
ful completion, otherwise they shall return −1 after setting errno to an error code.
However, the standard defnes no errors for sigemptyset and sigfillset. In-
stead, sigaddset, sigdelset, and sigismember may fail because:

EINVAL The signal number signo is invalid or unsupported.

Overall, the return value of sigismember is the most complex in the group
because it can assume three different values:

• Zero, if signo is not a member of the signal set referenced by set.
• One, if signo is a member of the signal set referenced by set.
• Minus one, if the function failed because signo was invalid or unsup-

ported.

Either sigemptyset or sigfillset must always be invoked to initialize a
signal set before using it in any other ways. Afterwards, its contents can be manipu-
lated with sigaddset and sigdelset, and queried by means of sigismember.

6.6 TIMEKEEPING
In POSIX, the passage of time is expressed and measured by means of one or more
time bases, or clocks. Each clock has a known resolution and a value, which evolves
with time and can be read upon request. Moreover, the value of some clocks can
be changed, provided the calling thread has suffcient privileges. Even though the
time measured by a clock is often related to the real wall-clock time, this must not
necessarily be the case. Specialized clocks can also measure the apparent passage
of time related to some system events. For instance, as we will see in the following,
they may measure how much processor time a thread has spent executing.

The standard explicitly defnes several clocks, which are guaranteed to behave
consistently across all implementations, and leaves implementations free to introduce
additional, non-portable ones. RTEMS implements all clocks defned by the standard
and listed in Table 6.13:

196 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.13
RTEMS Clocks, POSIX API

Clock name
CLOCK_REALTIME
CLOCK_MONOTONIC
CLOCK_PROCESS_CPUTIME_ID
CLOCK_THREAD_CPUTIME_ID

Description
System-wide clock, measures real time
Like CLOCK_REALTIME but without backward jumps
Per-process clock, measures the CPU time given to a process
Per-thread clock, measures the CPU time given to a thread

• The CLOCK_REALTIME clock is a system-wide clock, that is, it is the
same for all processes and threads in the system. It measures real time
and its value represents the system notion of wall-clock time expressed as
the amount of time elapsed since a well-defned point in the past, called
the Epoch. In turn, the Epoch is defned (somewhat arbitrarily) as the time
00:00:00 on January 1st, 1970 Coordinated Universal Time (UTC).
In order to accurately keep track of real time, the system may automati-
cally adjust this clock to compensate drifts. As a consequence, threads may
observe that its value is jumping—that is, suddenly changing its value—
forwards or backwards.

• The CLOCK_MONOTONIC is similar to CLOCK_REALTIME but it is guaran-
teed to never jump backwards, even when the system adjusts it. Backward
adjustments are often implemented by slowing down the monotonic clock
rate, in this case, so that the clock reaches the desired value gradually.
Backward clock jumps are undesirable because they easily disrupt the logic
of time-based applications. When such a jump occurs, some events that
were already in the past of the application timeline are projected into the
future again. The consequences of a forward jump are usually less severe
because it simply makes the application realize it fell behind its timeline.
As a side effect of being monotonic, the CLOCK_MONOTONIC measures
real time from an unspecifed point in the past, and not necessarily from
the Epoch. Moreover, threads may not set its value.

• Unlike the previous ones, the CLOCK_PROCESS_CPUTIME_ID is a per-
process clock, that is, there is one instance of this clock for each process
in the system, although all threads still use the same identifer to refer to
it. When a thread gets access to this clock, it implicitly gets access to the
clock instance pertaining to the process it belongs to.
The value of the clock is the amount of processor time that the process has
spent executing so far.

• The CLOCK_THREAD_CPUTIME_ID also measures processor time, but at
the thread granularity. The value of the clock instance associated to a thread
is therefore the amount of processor time that the thread has spent executing
so far. As before, when a thread gets access to this clock, it implicitly gets

197 Task Management and Timekeeping, POSIX API

access to its own clock instance.

Of these, only CLOCK_REALTIME must be present on all POSIX implementa-
tions, the presence of the others depends on which POSIX options the implementa-
tion supports. Several timed POSIX services, to be described in Chapters 7 and 9,
implicitly make use of CLOCK_REALTIME as their time base.

The absolute time value of a clock is encoded as a struct timespec. The
structure has the following two felds:

time_t tv_sec represents the number of seconds, and
time_t tv_nsec represents the number of nanoseconds

since the clock reference time point, for instance, the Epoch for the CLOCK_
REALTIME clock. The same data structure is also used to store relative time val-
ues, expressed as a number of seconds and nanoseconds.

For instance, relative time values can be passed as argument to some POSIX func-
tions. They are also encoded in a struct timespec and they still use a clock as
a reference to measure time, but the contents of the structure are interpreted with
respect to the value of the reference clock at the time of the call.

An important characteristic of a clock is its resolution, which is the smallest time
interval it can measure and is also the time distance between two distinct, consecutive
values of the clock. The resolution of a POSIX clock cannot be changed at runtime,
also because it often depends on the characteristics of the underlying hardware that
implements the clock itself.

However, the standard specifes that the resolution of the CLOCK_REALTIME
clock (the only one whose implementation is mandatory in all cases) must be at worst
_POSIX_CLOCKRES_MIN nanoseconds. In the current edition of the standard, the
value of this macro is 20000000, which corresponds to 20 ms.

This value has been chosen to allow clocks driven at the AC power line frequency
(50 Hz in several parts of the world, higher in others) to be compliant with the stan-
dard. The actual resolution of a clock can be queried at runtime by means of the
functions described in the following.

The functions that operate on a clock are very simple and are listed at the top of
Table 6.14. In particular, the function:

int clock_gettime(clockid_t clock_id, struct timespec *tp);

stores into the location pointed by tp the current value of the clock clock_id.
clock_id must be one of the identifers listed in Table 6.13 or a non-portable,
implementation-defned identifer.

The function clock_gettime returns zero to the caller upon successful com-
pletion. Otherwise, it returns -1 and sets errno to one of the following values:

EINVAL The clock identifer clock_id is invalid or the corresponding clock does
not exist in the system.

Similarly, the function:

198 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.14
RTEMS Timekeeping Primitives, POSIX API

Function Purpose
clock_gettime Retrieve the value of a clock
clock_getres Retrieve the resolution of a clock
clock_settime Set the value of a clock (if possible)

timer_create Create a timer (initially inactive)
timer_delete Delete a timer
timer_settime Activate/deactivate a timer, and set its value and period
timer_gettime Get the value and period of a timer
timer_getoverrun Retrieve the overrun counter of a timer

clock_nanosleep Block the caller until a certain time has elapsed

int clock_getres(clockid_t clock_id, struct timespec *res);

stores in the location referenced by res the resolution of clock clock_id. The
return value and the possible error codes are the same as for clock_gettime.

Finally, the function:

int clock_settime(clockid_t clock_id,
const struct timespec *tp);

allows a thread with suffcient privileges to change the value of a clock. More specif-
ically, it sets the value of the clock clock_id to the time indicated in the struct
timespec pointed by tp.

Like the other functions just discussed it returns zero to the caller if the value of
the clock has been changed successfully. Otherwise, it returns -1 and sets errno to
one of the following codes:

EINVAL This code shall be used to report a variety of errors:
• The clock identifer clock_id is invalid.
• The corresponding clock does not exist in the system.
• The clock exists but its value cannot be changed (as is the case of the

CLOCK_MONOTONIC clock).
• The given clock value is invalid by itself (for instance, its tv_nsec feld

is less than zero) or is outside the valid range of values allowed for the
clock clock_id.

Optionally, implementations may also check whether the calling thread has suff-
cient privileges to perform the requested operation and, if this is not the case, report:

EPERM The calling thread does not have the permission to set the clock.

199 Task Management and Timekeeping, POSIX API

Time

Timer value

Initial value

Period

Initial value and period
set by timer_settime

Timer expirations and notifications
to the owning process

FIGURE 6.5 Principle of POSIX timers update.

Besides providing time values upon request, a subset of the clocks available in
the system can also act as a timing reference for timers. This subset must always in-
clude CLOCK_REALTIME and, if the implementation supports CLOCK_MONOTONIC,
it must be included as well.

A timer is a per-process object that is able to send timing signals to the process.
It is characterized by its current value and, optionally, by a period also called reload
value.

Figure 6.5 shows, in abstract terms, how timers are set up and updated. The fg-
ure shows how the value of a timer (on the vertical axis) evolves with time (on the
horizontal axis). The main aspects of interest are:

• The initial value and period of a timer are set by means of the function
timer_settime, depicted as an upward arrow on the left of the fgure.

• The system decrements each timer with a non-zero value using its clock
as a reference. The timer and its reference clock are associated upon timer
creation, which is performed by calling the function timer_create and
not shown in the fgure.

• When the value of a timer reaches zero, it expires and the system notifes the
owning process by means of one of the notifcation mechanisms specifed
by the standard, to be discussed in the following. The ultimate result of a
notifcation is that one of the threads of the process that owns the timer
executes some timer handling code.

• If the timer period is zero, the value of the timer stays at zero after expira-
tion until an explicit action is taken to set it up and start it again with a new

Time

0 2 1

0 Notification handler execution and value of timer_getoverrun

Timer expiration Notification delay Lost notification

Timely execution of the
handler (before the next

timer expiration)

Handler executed after
various amounts of delay,

leading to notification losses

FIGURE 6.6 POSIX timer overrun and value of the overrun counter.

call to timer_settime. A timer with a period of zero is sometimes called
a one-shot or aperiodic timer because it generates exactly one notifcation.

• If the timer period is not zero (the case shown in Figure 6.5), the timer value
is reloaded from its period whenever the timer expires. A timer with a non-
zero period is also called repetitive or periodic timer because, as shown in
the fgure, it generates a continuous stream of notifcations until it is turned
off.

• The notifcations generated by a repetitive timer are all equally spaced and
their distance is equal to the timer period. Instead, the delay between timer
setup and the frst notifcation is given by the initial value of the timer. It
may or may not coincide with the period.

Each timer cannot have more than one pending notifcation, because otherwise the
amount of memory needed to keep track of them would be potentially unbounded in
the case of a repetitive timer. As a consequence, if a timer expires again while the
previous notifcation it generated is still waiting to be delivered, the newly coming
notifcation is simply lost.

However, repetitive timers are often used to give to a process the notion of elaps-
ing time, and this kind of behavior worsens the accuracy of this notion. In other
words, lost notifcations make the affected process “fall behind” the timer and be-
lieve that less time has elapsed with respect to reality.

To counteract the inaccuracy, the POSIX standard specifes that each timer has an
overrun counter, which can be read by means of the timer_getoverrun function.
The value of the overrun counter of a timer while one of its notifcations is being
handled is equal to the number of additional notifcations from the same timer that
have been discarded since the notifcation was generated. Figure 6.6 better illustrates
this point with the help of a couple of examples.

200 Real-Time Systems Development with RTEMS and Multicore Processors

201 Task Management and Timekeeping, POSIX API

In the fgure, upward arrows indicate the stream of notifcations coming from a
repetitive timer as time goes by. Dashed arrows denote the delay that occurs be-
tween a notifcation and its handling. The execution of the timer handling code is
represented by a gray rectangle. The number inside the rectangle shows the value of
the timer overrun counter as it would be returned by a timer_getoverrun call
performed by the handler itself. Crossed notifcations are the ones discarded by the
system.

• The leftmost part of the picture shows the normal case, in which a notif-
cation can be delivered and handled before the timer generates the next. In
this case, the value of the overrun counter is zero because no further noti-
fcations were generated during the delay between the leftmost notifcation
and its delivery.

• In the next example, two additional notifcations were generated and dis-
carded before a notifcation could be delivered and handled. In this case, the
value of the overrun counter is two. The third example illustrates a similar
scenario, in which one additional notifcation was generated.

• Overall, the picture shows that the timer handling code can use the overrun
counter it retrieves at the beginning of its execution to compensate for lost
notifcations. If we imagine, for instance, that the timer handler would like
to keep track of how many notifcations have been generated, it should just
increment a counter by one plus the value of the overrun counter every
time it is executed. Looking back at the fgure, at the end the handler would
obtain a total count of 6 (3 from handler executions, plus 0 + 2 + 1 = 3
from the overrun counter), which exactly corresponds to the total number
of notifcations generated by the timer although some of them have not
actually been delivered.

The APIs that operate on a timer are summarized at the bottom of Table 6.14.
More specifcally, the function:

int timer_create(clockid_t clockid,
struct sigevent *restrict evp,
timer_t *restrict timerid);

creates a new timer that uses clockid as reference clock and notifes the calling
process upon expiration as specifed in the data structure referenced by evp. Upon
successful completion, the function stores into the location pointed by timerid
the descriptor of the new timer and returns zero. Timers cannot be shared among
processes, but can be used by all threads belonging to the process that created them.
Immediately after creation, the new timer is inactive and must be activated by means
of the function timer_settime.

When timer_create fails, it returns -1 and sets errno to an appropriate status
code. The function shall fail for the following reasons:

EINVAL The clock identifer clock_id is invalid or the corresponding clock does
not exist in the system.

202 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 6.15
Fields of a struct sigevent, POSIX API

Field Purpose (prefxed by sigev_)
notify Type of notifcation: SIGEV_NONE, SIGEV_SIGNAL, or

SIGEV_THREAD
signo Number of the signal to be generated (for SIGEV_SIGNAL)
value Argument to the passed to the signal handler (for SIGEV_SIGNAL)
notify_function Function to be executed in a new thread (for SIGEV_THREAD)
notify_attributes Thread attributes to be used to create the new thread (for

SIGEV_THREAD)

ENOTSUP The clock identifed by clock_id cannot be a reference clock for a
timer.

EAGAIN The system lacks the resources needed to create the timer or set up its
notifcation mechanism.

As said previously, the data structure of type struct sigevent pointed by
evp indicates how the timer shall generate notifcations and provides additional in-
formation to carry them out. Its felds are listed in Table 6.15. The standard specifes
three possible notifcation methods. The specifc method to be used is determined by
the sigev_notify feld of the structure.

A value of SIGEV_NONE indicates that no notifcations should be generated, a
feature seldom used with timers. A value of SIGEV_THREAD means that the timer
handling code consists of a function, referenced by the sigev_notify_function
feld of the structure. The function is executed every time a notifcation is delivered to
the process that owns the timer, and execution takes place in its own thread. The feld
sigev_notify_attributes points to a thread attribute data structure the system
shall use to create this thread, as described in Section 6.2. The SIGEV_THREAD
notifcation method will not be further discussed in the following because RTEMS
currently does not support it.

The third notifcation method is SIGEV_SIGNAL, which is supported by RTEMS
if its confguration option RTEMS_SCORE_COREMSG_ENABLE_NOTIFICATION is
set. In this case, a notifcations triggers the delivery of a signal to the process that
owns the timer and any timer handling code must be placed in the corresponding
signal handler. The feld sigev_signo specifes the signal number to be generated
and sigev_value, of type union sigval, is the argument to be passed to the
signal handling function. Upon delivery, the signal is handled in the standard way
discussed in Section 6.5.

An existing timer can be deleted, regardless of whether it is currently active or not,
by calling the function timer_delete. Its only argument is the timer descriptor
timerid:

203 Task Management and Timekeeping, POSIX API

int timer_delete(timer_t timerid);

The return value of the function is zero upon successful completion. The standard
recommends the function returns -1 and sets errno to an appropriate status code
upon detecting the following conditions:

EINVAL The timer descriptor timerid is invalid.

The function:

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

sets the value and the period of the timer identifed by timerid as specifed in the
data structure referenced by value. Atomically, it also stores the previous value and
period into the structure referenced by ovalue, unless ovalue is a NULL pointer.
Both data structures are of type struct itimerspec, which shall not be confused
with struct timespec:

• As described previously, a struct timespec holds an absolute or rela-
tive time value, expressed as an integral number of seconds and a fraction
of a second, in nanoseconds.

• A struct itimerspec has two felds and each of them is a struct
timespec. Namely, the feld it_value holds the value of a timer and
the feld it_interval holds its period.

Setting the value of a timer to zero deactivates it, regardless of the period. Setting
the value of a timer to a non-zero value activates the timer. The value of an active
timer then evolves as depicted in Figure 6.5.

The argument flags determines whether the value of the timer specifed in the
it_value feld of the structure referenced by value is absolute or relative. In
particular:

• If the fag TIMER_ABSTIME is not set in flags, it_value is interpreted
in relative terms with respect to the time of the call to timer_settime.
That is, it represents the amount of time that shall elapse from the time of
the call to the frst expiration of the timer.

• If the fag TIMER_ABSTIME is set in flags, it_value is interpreted in
absolute terms and represents the absolute time at which the frst expira-
tion of the timer shall take place. In other words, the time that shall elapse
between the time of the call to timer_settime and the frst expiration of
the timer shall be equal to the difference between it_value and the value
of the clock associated to the timer at the time of the call.

The function timer_settime returns zero when it completed successfully, oth-
erwise it returns -1 and sets errno to an error code. It shall detect the following
error condition:

204 Real-Time Systems Development with RTEMS and Multicore Processors

EINVAL The contents of the data structure pointed by value are invalid.

Moreover, the standard recommends to check and report the following additional
error condition:

EINVAL The timer descriptor timerid is invalid.

If a thread only wants to retrieve the value and period of a timer without changing
them, it can invoke the function:

int timer_gettime(timer_t timerid,
struct itimerspec *value);

whose arguments are timerid, a timer descriptor, and value, a pointer to a
struct itimerspec where the function will store the timer value and period.
As timer_settime does, this function may detect that timerid is invalid and
fail with the INVAL error code.

Last, the function:

int timer_getoverrun(timer_t timerid);

returns the current value of the overrun counter of the timer described by timerid.
Calling this function with an invalid timerid leads to undefned results.

Sometimes the only reason for using a timer is to implement a periodic task, that
is, a task that performs certain actions at fxed, predefned time intervals. A periodic
timer, which generates a stream of uniformly spaced notifcations, would certainly
be adequate to this purpose. However, a more straightforward alternative not based
on signals is also available. The function:

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp,
struct timespec *rmtp);

blocks the calling thread until, according to the clock clock_id, the time spec-
ifed in the data structure referenced by rqtp has elapsed. The argument flags
is analogous to the argument of timer_settime with the same name, and deter-
mines whether the contents of this data structure are interpreted in relative or absolute
terms, namely:

• If the fag TIMER_ABSTIME is not set in flags, the contents of the
data structure pointed by rqtp are interpreted in relative terms with re-
spect to the time of the call to clock_nanosleep. That is, it repre-
sents the amount of time that shall elapse from the time of the call until
clock_nanosleep returns to the caller.

• If the fag TIMER_ABSTIME is set in flags, the contents of the data struc-
ture pointed by rqtp are interpreted in absolute terms and represents the
absolute time at which clock_nanosleep shall return, as measured by
the clock clock_id.

205 Task Management and Timekeeping, POSIX API

It should be noted that, after a successful clock_nanosleep, the calling thread
may actually resume execution later than what was specifed in rqtp. There are two
distinct reasons for this:

1. The amount of time specifed by rqtp is necessarily rounded up to a multiple of
the reference clock resolution.

2. Moreover, clock_nanosleep only moves the calling thread back to the ready
state when the time specifed by rqtp elapses. Whether or not the calling thread
also moves to the running state and resumes execution immediately depends on
processor scheduling decisions. On a single-processor system, the transition to
the running state may be delayed, for instance, when other higher-priority threads
are also ready for execution.

The function clock_nanosleep may also return to the caller earlier than
planned, when the wait is interrupted by the arrival of a signal and the execution
of the corresponding signal handler. In this case, to enable the calling thread to com-
pensate for the premature return, the function stores into the data structure pointed
by rmtp the amount of time it did not spend waiting, that is, the difference between
the requested time pointed by rqtp and the actual duration of the wait. This is not
done in two circumstances:

1. When the rmtp pointer is NULL, meaning that the calling thread is not interested
in the information.

2. When the flags argument asks for an absolute wait, because in this case the
calling thread certainly does not need the information.

The function clock_nanosleep returns zero when successful. When it fails, it
shall return one of these non-zero error codes:

EINVAL is returned when one of the arguments to clock_nanosleep is invalid,
namely:
• The given clock_id is unknown to the system.
• The contents of the data structure pointed by rqtp are invalid or, for an

absolute wait, are out of range for the clock_id.
• The clock_id specifes the CPU time clock of the calling thread.

ENOTSUP The clock clock_id does not support clock_nanosleep. Among
the clocks explicitly defned by the standard, only CLOCK_REALTIME and
CLOCK_MONOTONIC do, whereas CPU time clocks do not.

EINTR The function returned prematurely because it was interrupted by a signal.
The return takes place after the execution of the corresponding signal handler.

The function nanosleep can be used as an even simpler shortcut to ask for a
relative wait using the CLOCK_REALTIME clock:

int nanosleep(const struct timespec *rqtp,
struct timespec *rmtp);

Time
Ready/

Running
Ready/Running

Ready/
Running

Time
Ready/

Running
Ready/Running

Ready/
Running

t0

Blocked

Blocked Blocked

Calls to clock_nanosleep
with TIMER_ABSTIME

t0 + T t0 + 2T

Blocked

Calls to clock_nanosleep
without TIMER_ABSTIME

Relative delay

Relative delays

Absolute delays

Timing inaccuracy

FIGURE 6.7 Timing accuracy of relative versus absolute delays.

This function is equivalent to clock_nanosleep with the argument clock_id
set to CLOCK_REALTIME and flags set to 0. The arguments rqtp and rmtp have
the same meaning as for clock_nanosleep.

Figure 6.7 depicts the effect of relative and absolute delays on the timing accuracy
of a periodic task implemented as an outer shell and a body. The outer shell consists
of an infnite loop that comprises a passive wait implemented by means of a call
to clock_nanosleep followed by the body. The body is the code to be executed
periodically, with period T .

The upper time diagram shows the timings of a task that makes use of relative
delays. Namely, after executing the body starting at t0, it calls clock_nanosleep
with a relative time value, in order to achieve a constant execution period T and
start executing its body again at t0 + T . After this second execution, the task calls
clock_nanosleep again to block until t0 + 2T , and so on.

However, relative time delays must be known at the time clock_nanosleep is
called. Using a fxed delay of T − R, where R is an a priori estimate of the response
time of the body, makes the task prone to timing inaccuracies, since the actual re-
sponse time may vary from one execution to another. For instance, as shown in the
fgure, if the response time of the second execution of the body is longer than ex-
pected, the third execution will start late, that is, its timings will be inaccurate.

206 Real-Time Systems Development with RTEMS and Multicore Processors

Task Management and Timekeeping, POSIX API 207

As shown in the lower time diagram of Figure 6.7, passing an absolute time to
clock_nanosleep while keeping the same task organization solves this issue.
Namely, passing to clock_nanosleep the absolute times t0 + T, t0 + 2T, . . . guar-
antees that the task is always unblocked at the intended instants regardless of how
the response time of its body changes from one execution to another.

Even this approach falls shorts from ensuring accurate timings if R > T , that is,
if the response time exceeds the period, but this issue cannot be solved at the task
activation and scheduling level. Instead, this is within the domain of the scheduling
analysis techniques presented in Section 4.1.

Similarly, it must be remarked once more that unblocking a task at a certain instant
does not guarantee that it will start executing immediately thereafter. Also in this
case, an appropriate priority assignment and scheduling analysis can assist in limiting
the worst-case amount of interference the task may suffer from higher-priority tasks
in the system and calculate an upper bound on it.

Overall, choosing the best kind of delay to be used with clock_nanosleep
and other timekeeping functions also depends on the purpose of the delay. A relative
delay may be useful, for instance, if an I/O device must be given a certain amount
of time to perform an operation and report back on its status. In this scenario, it is
sensible to measure the delay from when the command has actually been sent to the
device, and a relative delay makes sense.

On the other hand, as we have just seen, an absolute delay works better to imple-
ment a periodic task because it guarantees that the period will stay constant although
the response time of its body varies from one execution to another.

6.7 SUMMARY
This chapter illustrated the main applications programming interfaces for task man-
agement and timekeeping specifed by the POSIX standard and provided by RTEMS.
The functions discussed in this chapter have the primary function of populating a sys-
tem with new tasks. The scheduling priority and other characteristics of a task can
be set at creation time by means of a generic mechanism based on attribute objects.

Another set of functions can be used to terminate a task, in either a voluntary or
a forcible way. In the second case, suitable safeguards can be put in place to ensure
that task termination takes place in a controlled way. The ordinary execution fow of
a task can also be altered upon the occurrence of an asynchronous event by means of
a signal.

Finally, a set of timekeeping functions, based on the underlying concepts of
clocks and timers, allows programmers to tie task execution to time-related events.
In RTEMS, this is primarily accomplished by raising a signal directed to a certain
process whenever a timer expires, or by blocking a thread for a specifed amount of
time.

http://taylorandfrancis.com

Part III

Inter-Task Synchronization
and Communication

http://taylorandfrancis.com

7 Inter-Task Synchronization
and Communication (IPC)
Based on Shared Memory

CONTENTS

7.1 Race Conditions and Mutual Exclusion ..212
7.1.1 An Example of Race Condition..212
7.1.2 Critical Regions ..216
7.1.3 Lock-Based Mutual Exclusion ...217
7.1.4 Correctness Conditions...219

7.2 Semaphores..219
7.2.1 Defnition and Properties ..219
7.2.2 Mutual Exclusion Semaphores ...222
7.2.3 Synchronization Semaphores..224
7.2.4 Producers and Consumers...226

7.3 Monitors ..229
7.3.1 Defnition and Properties ..229
7.3.2 Condition Variables ..232

7.4 RTEMS API for Shared-Memory IPC ..240
7.4.1 Classic API ...240
7.4.2 POSIX API ...251

7.5 Barriers ..268
7.5.1 General Defnition ..268
7.5.2 Classic API ...269
7.5.3 POSIX API ...272

7.6 Events ..275
7.7 Summary..278

The main focus of this chapter is on classic inter-task synchronization and com-
munication methods that rely on shared memory for data exchange among tasks,
semaphores, and monitors in particular. Two more specialized synchronization ob-
jects, barriers and events, are also included in the discussion because, although they
are less interesting from the theoretical point of view, they are still very useful in
practice.

211

212 Real-Time Systems Development with RTEMS and Multicore Processors

Before delving into this, the chapter introduces the fundamental concepts of race
condition, critical region, and lock-based mutual exclusion. Two extremely important
issues, priority inversion and deadlock, which may affect all lock-based inter-task
synchronization and communication mechanisms, are also presented in this chapter.

To help readers get started faster on the topics they are most interested in, in
this and the following chapter, we also steer the general theoretical discussion to-
wards real-time execution concepts and their practical implementation by means of
the RTEMS Classic and POSIX API.

7.1 RACE CONDITIONS AND MUTUAL EXCLUSION
7.1.1 AN EXAMPLE OF RACE CONDITION

If a set of tasks must cooperate to solve a certain problem, they will need to ex-
change some information in virtually all cases. Using a set of shared variables to this
purpose—that is, variables that multiple tasks can concurrently read and write—is a
rather straightforward extension of what is often done in sequential programming.

Sequential programs written in a high-level language are frequently organized
as a set of functions and procedures, each with a well-defned purpose. Together,
they implement the functionality that the program must provide. These functions
may conveniently exchange data by means of a set of global variables defned in the
program. All functions have access to them, within the limits set forth by the scoping
rules of the programming language, and they can get and set their value as required
by the specifc algorithm they implement.

Something similar also takes place during a function call, in which the caller
calculates the function arguments and stores them into an area of memory whose
structure is well-known to both the caller and the callee, often allocated on the stack.
The callee then reads its arguments from there and uses them as needed. The return
value of the function is handled in an equivalent way. Although the compiler may op-
timize the exchange by using some processor registers instead of memory, provided
the arguments and the return value ft into them, the general idea is still the same.

Unfortunately, trying to apply the same idea to a system in which the actors are
concurrently executing tasks immediately gives rise to subtle but deep issues, even in
seemingly trivial scenarios. Let us imagine, for instance, that we want to count how
many events of a certain kind happen within a sequential program.

As illustrated in Figure 7.1, probably the most straightforward and intuitive solu-
tion is to defne a global variable k, initialized to zero, and a function that increments
it by one. When using the C programming language, the function could be called
void inc(void) and would contain a single statement, k = k+1.

Actually, as also shown in the fgure, no real-world processor is actually able to
increment k in a single, indivisible step, at least when the code is compiled into or-
dinary assembly instructions. Instead, a typical computer based on the von Neumann
architecture [52, 122] will perform a sequence of three distinct operations:

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 213

MemoryProcessor #1

k

Memory Bus

Register

1. Load the value of k
from memory

2. Increment the
value by one

(internal operation)

3. Store the new value
back into memory

int k;

void inc(void)

{

 k = k+1;

}

5 6

FIGURE 7.1 Increment of a variable on a single-processor system.

1. Load the value of k from memory into an internal processor register. On a sim-
ple processor, this register would likely be the accumulator. From the processor’s
point of view, this is an external operation because it also involves memory be-
sides the processor itself. These two units communicate through a memory bus to
which other units, like another processor, may possibly be connected. The load
operation does not alter memory contents, that is, k retains its current value after
it has been performed.

2. Increment the register that contains the value of k just loaded from memory by
one. Unlike the previous one, this operation is completely internal to the pro-
cessor. It cannot even be observed by memory because it does not require any
memory bus cycle in order to be performed. On a simple processor, the result is
stored back into the accumulator.

3. Store the register, which now contains the updated value of k, into memory. This
is again an external operation involving a memory bus transaction like the frst
one. Only at this point, the new value of k becomes observable from outside the
processor. In other words, if we look at memory contents, k retains its original
value until this fnal step has been completed.

Even though real-world processor architectures are nowadays much more sophis-
ticated than the one shown in Figure 7.1 and their actual behavior while they are
accessing memory is way more complex for performance-related reasons, the basic
concept is still the same. Most operations that are thought to be indivisible when
looking at them from a high-level programming language perspective—even simple,
short statements like the one we considered previously—actually correspond to a
sequence of low-level elementary steps when examined at the instruction execution
level.

Processor #1

Memory Bus

Register R1

1.2. Proc. #1 increments
the value by one

(internal operation)

Memory

k
5 ?

Processor #2

Register R2

2.1. Proc. #2 loads the
value of k from memory

2.2. Proc. #2 increments
the value by one

(internal operation)

2.3. Proc. #2 stores the
new value back into

memory

1.1. Proc. #1 loads the
value of k from memory

1.3. Proc. #1 stores the
new value back into

memory

FIGURE 7.2 Race condition when two processors (or cores, or tasks) increment a variable.

This aspect is often overlooked, also because it has no practical consequences
as long as the code being considered is executed in a strictly sequential fashion on
a single processor. On the contrary, it becomes extremely important when multiple
tasks, cores, or processors, execute the same code concurrently.

To continue the example, let us imagine a situation in which two tasks want to in-
crement k concurrently because they are both counting the same kind of events. They
both call the function inc() to perform the increment. As shown in Figure 7.2, we
assume that each process is running on its own physical processor and the two pro-
cessors are connected to a single-port memory by means of a common memory bus.
However, the argument would not change even if we were considering two cores, or
even two tasks sharing the same physical processor by way of the multiprogramming
techniques presented in Chapter 3.

If we let the initial value of k be 5, the elementary steps might be executed in the
following sequence:

1.1. Processor #1 starts executing inc() frst and loads the value of k from
memory and stores it into one of its registers, R1. Since the current value of
k is 5, R1 will also contain 5.

1.2. Processor #1 keeps executing and increments register R1 by one, bringing
its value to 6.

2.1. Now processor #2 starts executing inc(), too. It loads the value of k from
memory and stores it into one of its registers, R2. Since processor #1 has

214 Real-Time Systems Development with RTEMS and Multicore Processors

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 215

not stored the updated value of R1 back to memory yet, processor #2 still
loads the value 5 from k and R2 will also contain 5.

2.2. Processor #2 increments its register R2 and the value of R2 becomes 6.
2.3. Processor #2 stores the contents of R2 back to memory, that is, it stores 6

into k.
1.3. Processor #1 does the same, that is, it also stores 6 into k.

From this example, it is easy to conclude that even a very simple and obviously
correct function cannot be directly transferred from a sequential to a concurrent ex-
ecution environment without adverse side effects. More specifcally, two distinct is-
sues became evident:

• The fnal value of k is incorrect because, even though its initial value was
5 and it has been incremented by one twice, its fnal value is 6 instead of 7.

• What is even worse from the debugging point of view is that the result is
incorrect only sometimes. For instance, executing the elementary steps in
the sequence 1.1, 1.2, 1.3, 2.1, 2.2, 2.3 would have led to a correct result.

In other words, the correctness of the result depends on how the elementary steps
performed by one processor interleave with the steps performed by the other. In
turn, this depends on the precise timing relationship between the processors, down
to the instruction execution level. This is not only hard to determine, it may also
easily change from one execution to another, or if the same tasks are executed on a
different machine.

Even if we restrict our attention only to single-processor systems, task preemption
and interleaving are managed by the operating system scheduling algorithm and de-
pend on a complex set of circumstances, most of which are not under the control of
the tasks involved. Also in this case, the scheduling decision taken by the operating
system may vary widely from one execution to another.

Unfortunately, these kinds of errors may be hard to reproduce and correct because
they are time-dependent and only some low-probability interleavings trigger them.
In turn, they may occur only when the computer system is working in the feld and
disappear during bench testing because the small, but hard to avoid, differences be-
tween actual operation and testing slightly disturbed system timings. For the same
reasons, even the addition of software-based instrumentation or debugging code to a
concurrent application may make a time-dependent error disappear.

All these observations lead to the general defnition of a pathological condition,
known as race condition, which may affect a concurrent system. There is a race
condition whenever a set of tasks makes use of some shared objects to carry out a
computation and the result of this computation depends on the exact way the tasks
interleaved.

In the previous statement, the term “shared object” has a rather broad meaning.
In the simplest cases, it may refer to a shared variable, like the variable k mentioned
in the example. In other cases, it may indicate other, more complex kinds of ob-
jects, such as fles and devices. Since race conditions undermine the correctness of a

216 Real-Time Systems Development with RTEMS and Multicore Processors

concurrent system, one of the main goals of any properly formulated IPC system
must be to eliminate them, possibly with programmers’ assistance.

Another related concept is the race condition zone or window. It is defned as the
time frame in which, due to the way tasks are scheduled, a race condition may occur.
In our example, the decision of preempting one of the two tasks while the increment
is in progress on a single-processor system starts a race condition window in which a
race condition may occur if the other task is executed and also increments the same
variable. The window ends when the scheduler goes back to execute the frst task.

When using simple forms of scheduling, like the cyclic executive [18] or any
non-preemptive task-based scheduling algorithm, race conditions can be kept under
control more easily because the scheduler can switch from one task to another, thus
possibly starting a race condition window, only at specifc locations within a task.
For instance, a non-preemptive scheduling algorithm only switches from one task
to another when the running task executes a blocking synchronization primitive or
voluntarily relinquishes the processor in some other ways.

These points are therefore well known to programmers, and they can organize
their code so as to avoid spreading the statements that make access to shared vari-
ables across them. The only exception are interrupt handlers, which can interrupt
ordinary tasks at arbitrary points by defnition. However, this is a more confned is-
sue that can be tackled with special-purpose methods, like the lock-free and wait-free
synchronization and communication methods to be discussed in Chapter 13.

On the contrary, the adoption of a preemptive task-based scheduling algorithm,
like the ones analyzed in Chapter 3, makes the extent and location of race condition
zones virtually impossible to predict, especially when the number of tasks grows.
This is because the task switching points are now chosen autonomously by the oper-
ating system scheduler instead of being hard-coded in the code.

Due to this fact, the switching points will also likely change from one task ac-
tivation to another. Therefore, what is needed is a method to avoid race conditions
in a way that is independent from the particular scheduling algorithm in use. This
is indeed the main goal of the IPC mechanisms to be discussed in this and the next
chapter. In this book, the description of race conditions and how to avoid them is
kept at a practical level as much as possible, mainly focusing on their implications
from the concurrent programming point of view. Readers interested in a more formal
and theoretical discussion can refer, for instance, to Lamport’s works [80, 81].

7.1.2 CRITICAL REGIONS

Even in relatively small software systems, having to examine the tasks code as a
whole when looking for possible race conditions quickly becomes a daunting propo-
sition. Fortunately, the following considerations, originally due to Hoare [59] and
Brinch Hansen [25], allow us to focus the effort only on a much smaller portion of
the task’s code.

• A task spends part of its execution doing internal operations, that is, exe-
cuting instructions that do not require or make access to any shared data.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 217

By defnition, all these operations cannot lead to any race condition, and
the corresponding pieces of code can be safely ignored when we look at
the code from the concurrent programming point of view.

• In other cases, a task executes a region of code that makes access to a
certain shared object, like the inc() function introduced in the previous
example. Those are the regions of code that must be identifed and scruti-
nized because they can indeed lead to a race condition. For this reason, they
are called critical regions or critical sections associated with the object.

Moreover, it is possible to identify two general necessary conditions for a race
condition to occur.

• Two or more tasks must be executed concurrently, in a way that leaves open
the possibility of a context switch occurring among them. In other words,
they must be within a race condition zone, as defned in Section 7.1.

• These tasks must also be actively working on the same shared object when
the context switch occurs, that is, they must be within a critical region.

The conditions outlined above are not yet suffcient to cause a race condition be-
cause a context switch must typically occur at very specifc locations within a critical
region to actually corrupt the shared object. It is the combination of all these con-
ditions that makes object corruption a low-probability event that may be hard to
reproduce, and makes race conditions diffcult to detect, analyze, and fx.

Considering the defnition of critical region given previously, one sensible way to
avoid race conditions when accessing a certain shared object is to allow only one task
at a time to be in a critical region pertaining to that object, within a race condition
zone. Since in preemptive, task-based scheduling it may be hard to determine in
advance where race condition zones could be—especially across a range of operating
systems because this may depend, as explained previously, on specifc details of
the scheduling algorithm—a more general solution consists of enforcing the mutual
exclusion among all critical regions associated with the same shared object at any
time, without considering race condition zones at all.

Going back to the example of race condition shown in Figure 7.2, we can see that
both processes have a critical region associated with shared variable k, the body of
function inc(), because it increments k. Even if the critical region code is correct
when executed by one task at a time, the race condition stemmed from the fact that
two distinct tasks were allowed to be in their critical region simultaneously.

7.1.3 LOCK-BASED MUTUAL EXCLUSION

The most straightforward implementation of mutual exclusion among critical regions
makes use of a lock-based synchronization protocol. With this approach, a task that
wants to access a shared object, by means of a certain critical region associated with
it, must, frst of all, acquire some sort of lock also associated with the shared object
and possibly wait if it is not immediately available.

218 Real-Time Systems Development with RTEMS and Multicore Processors

After acquiring the lock, a task is allowed to use the shared object freely. A context
switch may still be allowed to occur at this time, but it will not cause a race condition
because any other task trying to enter a critical region pertaining to the same shared
object will also try to acquire the lock beforehand, and will be blocked in the attempt.
When the original task has completed its operation on the shared object and it is
leaving its critical region, it must release the lock. In this way, other tasks can acquire
it and be able to access the shared object in the future. The lock release mechanism is
also responsible for unblocking one of the tasks already waiting to acquire the lock,
if any.

In simple cases, mutual exclusion can be ensured by resorting to special machine
instructions that implement the lock-based protocol just discussed. For example, on
the Intel 64 and IA-32 architecture [67], the INC instruction increments a memory-
resident integer variable by one. When executed, the instruction loads the operand
from memory, increments it internally to the processor, and fnally stores back the
result. It is therefore subject to the same race condition depicted in Figure 7.2. How-
ever, when the instruction is preceded by the LOCK prefx, the processor executes
the whole sequence atomically—that is, indivisibly—even in a multiprocessor or
multicore system. More specifcally, the processor does not accept interrupts while
executing the instruction, and the cache coherency and memory bus access protocols
ensure that the operation is carried out atomically also with respect to memory.

These ad-hoc low-level solutions are extremely useful as building blocks of more
complex task synchronization mechanisms. However, they are not general enough
to be directly applied in all circumstances. For instance, the LOCK prefx cannot
force more than one machine instruction to be executed atomically on the Intel ar-
chitecture, whereas a critical region that updates a shared object frequently contains
a longer sequence of instructions.

In the general case, critical regions must be bracketed by two auxiliary pieces
of code, usually called the critical region entry and exit code, which take care of
acquiring and releasing the lock, respectively. For some kinds of task synchronization
techniques, like the ones described in this chapter, the entry and exit code must be
invoked explicitly by the task itself, and hence, the overall structure of the code
strongly resembles the one just described. In other cases, for instance, when using
the message passing primitives to be discussed in Chapter 9, critical regions and
their entry/exit code may be hidden within the inter-task communication primitives,
so that they are invisible to the programmer, but the concept is still the same.

The critical region entry and exit code may be copied directly immediately before
and after the critical region, when it is relatively short. Otherwise, it may be executed
indirectly, by means of appropriate function calls, with the same effect. This also
highlights the fact that critical region contents are defned by the dynamic concept
of code execution, not only by the presence of some code between the critical region
entry and exit code. For example, if there is a function call in a critical region, the
whole body of the called function must also be considered part of the critical region
itself.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 219

Although lock-based mutual exclusion currently is by far the most common ap-
proach to avoid race conditions, other, radically different methods also exist. For in-
stance, it is indeed possible to implement meaningful inter-task communication and
synchronization without using any locks, by means of lock-free or wait-free tech-
niques. These methods will be discussed in more detail in Chapter 13, since they are
especially relevant to multicore systems.

7.1.4 CORRECTNESS CONDITIONS

Going back to lock-based mutual exclusion, theoretical analysis shows that four con-
ditions must be satisfed in order to have an acceptable solution [119]:

1. It must really work as intended, that is, it must allow only one task at a time to
execute code within any of the critical regions associated with the same shared
object. On the other hand, for effciency reasons, it is undesirable to “overdo”
mutual exclusion. For example, the solution should not prevent a task from enter-
ing a critical region while another task is already within a critical region, if these
two regions are associated with unrelated shared objects.

2. Internal operations shall not matter. In other words, any task that is performing
some internal operations—and hence, is not executing within a critical region at
the moment—shall not prevent any other tasks from entering their critical regions,
if they so decide.

3. If a task wants to enter a critical region, it must not have to wait forever to do
so. This condition guarantees that the task will eventually make progress in its
execution.

4. The solution must work regardless of any low-level details of the hardware or
software architecture, which may be unknown to programmers and will likely
change over time. For instance, the correctness of the solution must not depend
on the number of tasks in the system, the number of physical processors or cores,
or their relative speed.

In the following, we will introduce several lock-based inter-task communication
methods, making use of these conditions to assess their correctness.

7.2 SEMAPHORES
7.2.1 DEFINITION AND PROPERTIES

The frst defnition of a semaphore as a general inter-task synchronization mechanism
is due to Dijkstra [42]. Although the original proposal was based on active wait,
nowadays most operating systems replaced it with passive wait without changing
semaphore’s semantics in any way.

Although, strictly speaking, semaphores are not powerful enough to solve every
concurrent programming problem that can be conceived [76], they have successfully
been used to address many problems of practical signifcance in diverse concurrent
programming domains. Another reason for their popularity is that they are easy to

220 Real-Time Systems Development with RTEMS and Multicore Processors

implement in an effcient way, to the point that virtually all operating systems offer
semaphores as an inter-task synchronization method.

According to its abstract defnition, a semaphore s is an object that contains two
items of information:

• a nonnegative integer value s.v,
• a queue of tasks s.q.

For some kinds of semaphore the programmer chooses the initial semaphore value
when creating it. Other kinds of semaphore have a predetermined, fxed value. For
a newly initialized semaphore, the queue is always empty. Its purpose is to hold the
tasks that are waiting on the semaphore, as will be explained in the following. After
initialization, the only way to interact with a semaphore, and possibly modify its
value and queue, is to invoke the primitives defned on it. Some implementations
make the current value of a semaphore available but, in any case, the value and the
queue cannot be directly manipulated after initialization.

An important assumption about semaphore primitives is that they are executed
atomically, that is, as indivisible units. It is up to the implementation to guarantee
that the assumption is true, by means of lower-level mechanisms. For instance, in a
single-core system, atomic execution can be ensured by disabling interrupts as de-
scribed in Chapter 3. In multicore systems, a more sophisticated approach is neces-
sary to achieve atomicity across all cores, as discussed in Chapter 13, possibly using
hardware-assisted locks like the one described previously as building block.

The two semaphore primitives, called P() and V() according to the original
Dijkstra’s nomenclature [42], work as follows.

1. The primitive P(s) has a semaphore s as argument. Its behavior depends on
whether or not the value of s is strictly greater than zero.
• If s.v is strictly greater than zero, P(s) decrements s.v by one and returns

without blocking the calling task.
• Otherwise, it inserts a reference to the calling task into s.q and moves the task

into the Blocked state of the task state diagram discussed in Section 3.2.2.
In the second case, the primitive returns to the caller only when the task is moved
into the Running state again, at a later time.

2. The behavior of the primitive V(s), which also has a semaphore s as argument,
depends instead on whether or not the queue of s is empty.
• If s.q is empty, V(s) increments s.v by one. By construction, s.v will be

strictly positive after the increment.
• Otherwise, s.v is certainly zero. In this case, V(s) picks one of the tasks

referenced by s.q, removes the reference from the queue, and unblocks the
task by moving it back to the Ready state of the task state diagram, so as to
make it eligible for execution again.

By itself, the invocation of V(s) never blocks the calling task. However, the call-
ing task may still stop executing because, for instance, V(s) unblocks another
task, and the operating scheduler opts for a preemption because the newly un-
blocked task has a higher priority.

2.
Ready

1.
Running

3.
Blocked

a. Task τ1 performs

a blocking P(s)

b. Task τ2 performs a

V(s) and the OS picks

τ1 from s.q

FIGURE 7.3 Task state diagram transitions of τ1 triggered by semaphore operations.

It is also worth noting that, while the abstract defnition of semaphore stipulates
that V(s) picks exactly one task in s.q, if s.q is not empty, it does not specify
which one. The choice does not affect the correctness of the synchronization prim-
itives, but does affect their timing behavior, as will be described in Section 8.1.

The same semaphore primitives are also known by other names, depending on
the API and, in some cases, on the specifc kind of semaphore being considered. For
instance, in the RTEMS Classic API the primitive P() is called obtain, while V() is
called release. In the POSIX API, the scenario is more complex because the names
of the primitives depend on the kind of semaphore. The primitives that operate on a
general-purpose semaphore are called wait and post, respectively, while the ones for
mutual exclusion semaphores—a special-purpose kind of semaphore to be discussed
in the following—are called lock and unlock.

The execution of a semaphore primitive is related to the transition of some tasks
from one task state diagram state to another. We can therefore specialize the ab-
stract task state diagram defned in Chapter 3 to be more explicit about the role of
semaphore primitives. Figure 7.3 is a refnement of the abstract task state diagram
shown in Figure 3.4 that specifcally highlights the transitions involved in semaphore
operations, namely, the transition from the Running to the Blocked state, and from
Blocked to Ready.

• The transition of a task τ1 from Running to Blocked takes place when the
task itself voluntarily calls the semaphore primitive P(s) on a semaphore
s whose value s.v is zero.

• The transition of τ1 out of the Blocked state is necessarily involuntary and
must be triggered by another task. This is because a blocked task cannot
execute any instruction by defnition, including synchronization primitives.
Namely, it takes place when another task, for instance, τ2 executes a V(s)

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 221

Task τ1

P(s)

Critical region:
read/write

access to the
shared object

V(s)

Shared object

Task τ2

Critical region:
read/write

access to the
shared object

P(s)

V(s)

Each mutual
exclusion semaphore
protects one shared

object

Semaphore primitives bracket
critical regions

s

222 Real-Time Systems Development with RTEMS and Multicore Processors

FIGURE 7.4 Typical usage of a mutual exclusion semaphore.

on semaphore s, the operating system fnds a reference to τ1 in s.q and
decides to unblock it.

Referring again to Figure 7.3, it is important to note that when task τ1 is un-
blocked, it goes into the Ready state, rather than Running. Being now in the Ready
state, τ1 becomes eligible for execution again, but this does not imply it will resume
execution immediately. This is a useful design choice because it enforces a clear
separation of concerns between two distinct entities in an operating system, namely:

• The synchronization mechanism, in particular the queuing policy of s.q
in this case, determines which task may proceed in its execution as a con-
sequence of a V(s). The primary goal of this choice is to ensure that the
synchronization itself is correct, for instance, by avoiding race conditions
when a semaphore is used to enforce mutual exclusion.

• The scheduling algorithm decides which tasks, among those eligible for
execution, shall actually execute at any given time. As discussed in Sec-
tion 3.2, this decision takes place according to other criteria, for instance,
task priorities.

7.2.2 MUTUAL EXCLUSION SEMAPHORES

Semaphores provide a simple and convenient way of enforcing mutual exclusion
among an arbitrary number of tasks that want to have access to a certain shared
object. As shown in Figure 7.4, in this case the semaphore is used in a standardized
way, according to the following steps:

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 223

• A distinct semaphore (s in the fgure) is associated with each shared object
to be protected. Only one semaphore is needed, regardless of how complex
the object is internally. The initial value of a mutual exclusion semaphore
is invariably 1.

• All critical regions that make access to a certain shared object are sur-
rounded by the primitives P(s) and V(s) on the corresponding semaphore
s. In other words, these primitives are used as brackets around each critical
region and constitute its entry and exit code, respectively.

In the fgure, we assume that s has been properly initialized somehow. In practice,
one or more explicit initialization steps are often required, depending on the API
being used. Section 7.4 provides more information about this aspect.

Although a formal proof is beyond the scope of this book, we can observe that, by
intuition, the approach just described certainly fulflls the frst correctness condition
presented in Section 7.1.4. When one task τ1 wants to enter its critical region, it
must frst pass through the critical region entry code, that is, P(s). Depending on
the value of s, this operation may have two different outcomes:

1. If s.v is 1, the effect of P(s) is to decrement s.v to 0 without blocking τ1, thus
allowing the task to continue into the critical region. This is correct because s.v
being 1 implies that no other tasks are currently within a critical region.

2. If s.v is 0, τ1 is blocked in the critical region entry code, that is, at the critical
region boundary. This is because, if s.v is 0, another task was allowed to enter
its critical region and it did not exit from it yet.

As a consequence, if two tasks τ1 and τ2 try to enter their critical regions, both
controlled by the same semaphore s, only one of them—for example τ1—is allowed
to proceed immediately because it fnds s at 1. Instead, the other task fnds s.v at
0, is enqueued on s.q, and is blocked. At the same time, this does not prevent other
tasks from entering their critical regions, provided they pertain to a different shared
object, and hence, are controlled by another semaphore. This property fulflls the
second part of the frst correctness condition, which disallows “useless” waits.

When a task, τ1 in our example, reaches the critical region exit code and invokes
V(s) two distinct things may happen:

1. If there is at least one task blocked on s, s.v does not change (it stays at 0)
and exactly one of the blocked tasks, τ2 in our example, is unblocked. As a con-
sequence, it is now allowed to enter its critical region as soon as the scheduler
decides to execute it. Mutual exclusion is still guaranteed because no other tasks
can enter any critical region controlled by s until the task just unblocked exits
from its critical region and executes V(s). Moreover, if yet another task tried to
enter a critical region associated with the same semaphore s, it would be blocked
as well, because s.v is still 0.

2. When a task exits from the critical region by executing V(s) and there are no
other tasks waiting on s, like it happens to τ2 in our example, s.v goes back to

224 Real-Time Systems Development with RTEMS and Multicore Processors

1 (its initial value) so that exactly one process will be allowed to enter into the
critical region immediately, without being blocked, in the future.

No race conditions during the execution of P(s) and V(s) are possible because,
as stated in Section 7.2.1, the implementation of these primitives must necessarily
guarantee their atomicity.

For what concerns the second correctness condition, it can easily be observed that
the only case in which the mutual exclusion semaphore prevents a task from entering
a critical region takes place when another task is already within a critical region
controlled by the same semaphore. By construction, tasks doing internal operations
shall not execute any primitive on any mutual exclusion semaphore, and hence, they
cannot prevent other tasks from entering their critical regions.

Whether or not a mutual exclusion semaphore satisfes the third correctness condi-
tion depends on its implementation and, in particular, the queuing policy of its queue.
The condition can easily be fulflled if the policy is frst-in, frst-out (FIFO), so that
the V() primitive always unblocks the task that has been waiting on the semaphore
for the longest time.

However, in Section 8.1 we will see that this is often not adequate in a real-time
system because it makes the system prone to the unbounded priority inversion issue
and hinders schedulability analysis, as hinted in Section 4.1.3. On the other hand
though, when using a different queuing policy, some processes may in principle be
subject to an indefnite wait and this possibility must be ruled out by other means.
For instance, since a successful schedulability analysis implies that all tasks complete
without violating their deadlines, it also implies that none of them can ever be subject
to an indefnite, unbounded wait.

To informally check that the fourth, and last, correctness condition is also sat-
isfed, it is suffcient to observe that the defnition of a semaphore and its primi-
tives completely abstracts away from any architectural details about the system and
does not contain any reference to any task or processor characteristics. Similarly,
semaphore implementations are also required not to introduce such dependencies to
be considered adequate for use.

7.2.3 SYNCHRONIZATION SEMAPHORES

Besides mutual exclusion, a semaphore is also useful to implement synchronization
among tasks, for instance, when we want to enforce a precedence constraint and
block a task τ2 until a certain event, generated by another task τ1, occurs. In this
case, the semaphore is often called synchronization semaphore.

As shown in Figure 7.5, when task τ1 makes use of a shared object to transfer
data to τ2, we must make sure that τ2 reads from the shared object only after τ1
has updated it completely. In its simplest form, this precedence constraint can be
enforced by means of a semaphore s initialized to zero. Then, task τ2 performs a
P(s) before reading from the shared object, while τ1 calls V(s) after updating it.
In this way, assuming that τ2 executes frst:

• Task τ2 blocks in P(s) because s.v is zero when it invokes the primitive.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 225

Task τ1

Update shared
object

(write access)

V(s)

Task τ2

Use shared
object

(read access)

P(s)

Shared object

s

Each synchronization semaphore
enforces a precedence constraint

between τ1 and τ2 when accessing a

shared object

Semaphore primitives mark
the boundaries of the code

regions subject to the
precedence constraint

FIGURE 7.5 Using a synchronization semaphore to enforce a precedence constraint.

• When τ1 is done with the update, it executes V(s), thus unblocking τ2.

In this way, τ2 has a consistent view of the shared object, which contains all the
new data that τ1 wrote into it, when it eventually executes. Moreover, s.v is still
at zero after both P() and V() have been completed, and hence, the semaphore is
ready for the next synchronization round.

The example also emphasizes the important role the value of a semaphore plays
in memorizing and keeping track of past events. This becomes evident if we analyze
what happens if τ1 runs before τ2 has had the opportunity of blocking:

• When τ1 executes V(s), it fnds that s.q is empty. Therefore, it increments
s.v to 1.

• When eventually τ2 invokes P(s) it fnds s at 1, meaning that the syn-
chronization condition it would like to wait for has already been fulflled
in the past. Accordingly, it continues immediately, without blocking, after
bringing s.v back to zero.

It is also worth noting that this is a one-way synchronization. In other words, it
prevents τ2 from consuming data that τ1 has not produced yet, but it does not prevent
τ1 from overrunning and overwriting its own data if it runs more than once before
τ2 had the opportunity to consume them. As will become clearer in the next section,
we need one semaphore for each unidirectional synchronization condition that the
concurrent program must respect.

226 Real-Time Systems Development with RTEMS and Multicore Processors

7.2.4 PRODUCERS AND CONSUMERS

In this section, we explore the use of mutual exclusion and synchronization
semaphores to solve the classic producers–consumers problem outlined, in a pre-
liminary form, by Courtois [38]. In this problem a group of tasks, called producers,
generate data items and make them available to another group of tasks, the con-
sumers, by means of the prod() function. Consumers use the cons() function to
retrieve data items. To simplify the discussion, data items are assumed to be inte-
ger values, held in int-typed variables, but the solution shall not depend on this
assumption and work with data items of any arbitrary type.

An N-element buffer, interposed between producers and consumers, holds data
items that have already been produced, but have not been consumed yet. Data con-
sumption is assumed to be destructive, that is, each consumer removes the data items
it consumes from the buffer, so that they are no longer accessible to others. More-
over, data items must be made available to consumers in the same order they have
been produced, that is, the buffer must operate in frst-in, frst-out (FIFO) order.

In order to solve this problem, we must frst of all defne an appropriate shared
object that implements the buffer. The most natural and straightforward approach,
which also satisfes the FIFO access order requirement, is to use a circular buffer. As
shown in Figure 7.6, such a buffer is composed of three elements:

1. A shared array of N integer elements, int buf[N]. Without loss of generality,
we assume N = 8 in the fgure.

2. A shared index int in, which points to a free element in the buffer, that is, the
element to be flled next.

3. A shared index int out, which points to the oldest full element in the buffer.

Both in and out start at zero and are incremented upon insertion and removal
of an element from the buffer, respectively. To make the buffer circular, they are
incremented modulus N, that is, they go back to zero when they are incremented
beyond N − 1.

As an example, Figure 7.6 shows the state of the data structure when 4 data items
have been inserted and 2 have been removed after initialization. The value of in is 4,
meaning that buf[4] must be flled when inserting the next element into the circular
buffer, and out is 2, which indicates that buf[2] contains the oldest element in the
buffer. Full buffer elements are denoted by black-flled circles and empty elements
by empty circles.

Unless the circular buffer is never flled completely, in order to leave a so-called
guard element always empty, there is an inherent ambiguity regarding its state.
Namely, the condition in == out could indicate that the buffer is completely
empty (as it is initially) or completely full. In the solution we are describing here,
this ambiguity is resolved at the task synchronization instead of the data structure
level, and hence, no guard element is needed.

According to the problem statement and the defnition of circular buffer just given,
in order to insert and remove an element from the circular buffer we need the follow-
ing fragments of code in the prod() and cons() functions, respectively:

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 227

0
1

2

34

5

6
7

buf

void prod(int d) {

 P(empty);

 P(mutex);

 buf[in] = d;

 in = (in+1) % N;

 V(mutex);

 V(full);

}

int cons(void) {

 int c;

 P(full);

 P(mutex);

 c = buf[out];

 out = (out+1) % N;

 V(mutex);

 V(empty);

 return c;

}

τ1 τ2

2out4in

6empty 2full

1mutex

⋮ ⋮

Producers Consumers

Index of the free
element to be filled next

Index of the oldest
full element

Mutual exclusion
semaphore

Synchronization semaphore
that holds the number of

empty elements

Synchronization
semaphore that holds the
number of full elements

FIGURE 7.6 Synchronization and mutual exclusion semaphores to coordinate access to a
circular buffer.

• If d is the data item to be inserted and we assume for the time being that
the buffer is not full, the insertion can be performed by means of:

buf[in] = d;
in = (in+1) % N;

• Symmetrically, in order to remove a data item from the buffer and store it
into c, assuming that the buffer is not full, we need to execute:

c = buf[out];
out = (out+1) % N;

These fragments of code are critical regions because they both make access to a
shared object, the circular buffer. According to Section 7.2.2, they must be associated
to, and protected by, the same mutual exclusion semaphore, called mutex. More
specifcally:

228 Real-Time Systems Development with RTEMS and Multicore Processors

• As shown in the fgure, the mutex semaphore must be initialized to 1.
• Both critical regions must be bracketed by the critical region entry and exit

code, that is, P(mutex) and V(mutex), respectively.

After doing this, the two critical regions become:

• Insertion of an element in the prod() function:

P(mutex);
buf[in] = d;
in = (in+1) % N;

V(mutex);

• Removal of an element in the cons() function:

P(mutex);
c = buf[out];
out = (out+1) % N;

V(mutex);

It is now time to turn our attention to task synchronization. First of all, we need
to block any consumer that wants to get a data item from the shared buffer when
the buffer is completely empty. A blocked consumer must be unblocked as soon as a
producer puts a new data item into the buffer. However, this is not the only synchro-
nization condition of interest. Symmetrically, we also need to block a producer when
it tries to insert a data item into a buffer that is already completely full, so as to avoid
overwriting existing data.

As described in Section 7.2.3, we need one semaphore for each synchronization
condition that the concurrent program must respect. In this case, we have two condi-
tions and hence we need two semaphores:

1. The semaphore full counts how many full elements there are in the buffer. Its
initial value is 0 because at the very beginning the circular buffer is empty. Con-
sumers perform P(full) before removing a data item from the buffer, and pos-
sibly block if there are no data in the buffer. On the other hand producers perform
a V(full) after storing an additional data item into the buffer. In this way, they
either unblock a waiting producer or increment the count of full elements.

2. The semaphore empty counts how many empty elements there are in the buffer.
Its initial value is N because the buffer is completely empty at the beginning, so all
its N elements are indeed empty. Producers perform a P(empty) before putting
more data into the buffer to either update the count of empty elements (if the
buffer is not completely full) or block (otherwise). After removing one data item
from the buffer, consumers perform a V(empty) to either unblock one waiting
producer or increment the count of empty elements.

As illustrated in Figure 7.5, the P() and V() primitives must then be placed at
the boundaries of the code fragments that must satisfy each execution precedence
constraint. More specifcally:

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 229

• Since a consumer must be forced to wait until a producer has produced a
data item if the buffer is empty, P(full) must precede the consumers’
critical region and V(full) must follow the producers’ critical region.

• Symmetrically, a producer must be forced to wait until a consumer has
consumed a data item if the buffer is completely full. Therefore, P(empty)
must precede the producers’ critical region and V(empty) must follow the
consumers’ critical region.

Since the initial value of empty is N the frst N producers are granted access to
their critical region even without intervening consumers. This gives producers the
ability to completely fll the circular buffer without blocking. The full code, written
using a C-like syntax, is shown at the top of Figure 7.6 with semaphore primitives
highlighted.

The placement of the return c statement within the cons() function is crit-
ical and deserves special attention. At frst sight, it may seem that it could be put
anywhere after the statements that extracted the data item from the circular buffer.
However, it must necessarily follow both V(mutex) and V(empty) for the follow-
ing reasons:

• If the function returns to the caller before executing V(mutex), the critical
region guarded by mutex stays open. As a consequence, any other tasks
trying to enter their critical region in the future will block on the critical
region entry code P(mutex).

• If the function returns to the caller after closing the critical region but be-
fore executing V(empty), the state of the semaphore is no longer syn-
chronized with the state of the circular buffer. More specifcally, although
one data item has been extracted from the buffer, the state of the empty
semaphore does not refect this. Therefore, consumers trying to deposit
more data items into the buffer in the future will be blocked on P(empty)
even though the buffer is not really full.

These are two simple examples of a pathological condition that may affect a con-
current system and causes tasks to wait indefnitely. It is known as deadlock and will
be discussed in Section 8.2. Unfortunately, to complicate matters further, neither of
these mistakes can reliably be detected by the C compiler because it sees P() and
V() as ordinary function calls and is unaware of their complex semantics.

7.3 MONITORS
7.3.1 DEFINITION AND PROPERTIES

As seen in the previous section, semaphores can be defned easily and their behavior
can be fully described in a relatively short space. On one hand, it turns out that they
are also easy to implement, so virtually all operating systems support them. On the
other hand, semaphores are also a very low-level task synchronization mechanism
and, for this reason, they are diffcult to use correctly.

230 Real-Time Systems Development with RTEMS and Multicore Processors

We already saw that even a small mistake in the placement of a return state-
ment may disrupt a semaphore-based concurrent program without necessarily being
noticed by the compiler, but the same is true also when semaphore primitives are
misplaced ever so slightly. For instance, we may consider the following, alternative
defnition of the function prod() in the producers–consumers problem:

void prod(int d) {
P(mutex);
P(empty);
buf[in] = d;
in = (in+1) % N;

V(mutex);
V(full);

}

With respect to the correct solution shown in Figure 7.6, the only difference is
that we swapped the two P() primitives shown in boldface. After all, the code still
makes sense by intuition, because we could justify the placement of the primitives in
the following way:

• Before storing a new data item into the circular buffer a producer must
make sure that it has exclusive access to the circular buffer itself. Hence, it
must execute a P(mutex) and possibly block if other tasks are operating
on the buffer at the moment.

• Moreover, the producer must also ensure that there is some free space in
the buffer before writing into it. To do this, it must execute a P(empty) to
update the count of free buffer elements held in empty.v and, if necessary,
block until at least one free element becomes available for use.

• The producer can actually operate on the buffer only after both prerequi-
sites (mutual exclusion and free space availability) have been satisfed.

Unfortunately, this kind of reasoning is incorrect because it can sometimes lead to
a deadlock. More specifcally, when a producer tries to store an element into a buffer
that is completely full, the following sequence of events may occur:

• The producer succeeds in gaining exclusive access to the shared buffer by
executing a non-blocking P(mutex). From this point on, the value of the
semaphore mutex becomes zero.

• Since the buffer is full, empty.v is zero because this semaphore counts the
number of free elements. Therefore, P(empty) blocks the producer within
its critical region because it did not release the mutual exclusion semaphore
mutex before blocking.

After this, the only way of unblocking the producer would be to execute a
V(empty) from another task. The only tasks that could possibly execute this primi-
tive are consumers but, in order to do this, they must frst go through a critical region
controlled by mutex. This is impossible because the current value of mutex is zero.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 231

Therefore, the whole system of producers and consumers soon grinds to a halt be-
cause:

• Any incoming producer blocks on P(mutex) because mutex.v is zero.
• The frst N incoming consumers execute a non-blocking P(full) and

eventually bring full.v to zero but cannot retrieve any data from the
buffer because they block on P(mutex).

• If further consumers arrive, they do not even reach P(mutex) because they
block on P(full).

This example also provides the opportunity to remark once more that a deadlock,
like many other issues in concurrent programming, often occurs with low probability
and may easily go unnoticed. In this case, it is easy to see that a deadlock never occurs
if producers and consumers interleave so as to never fll the shared buffer completely.

To address these shortcomings, Brinch Hansen [26] and Hoare [60] proposed a
more structured and higher-level IPC mechanism, called monitor. A third variant
of the same mechanism was also defned and pioneered by the Mesa programming
language [51], which directly infuenced POSIX monitors. A monitor is a composite
object, which contains a shared object and a set of methods that operate on it. By
defnition, a monitor must exhibit the following two main properties:

• Information hiding. The shared object within a monitor can be accessed
only by means of the methods belonging to that monitor. There is no way
to access the shared object in other ways. At the same time, monitor meth-
ods are not allowed to access any shared object belonging to other moni-
tors. Only the monitor methods are public and can be freely invoked from
outside the monitor.

• Mutual exclusion. The monitor implementation must guarantee that only
one task will be actively executing within any of the monitor methods
at any given instant. This property is similar to what a mutual exclusion
semaphore does with respect to the critical regions it controls, but more
relaxed because it allows multiple tasks to be within monitor methods, as
long as at most one of them is executing at any given time.

Both properties are relatively easy to implement in practice if the monitor is a
built-in construct of the programming language, as originally stipulated by its propo-
nents. In this case, the language compiler knows exactly which methods are associ-
ated to a certain monitor and can automatically add the necessary mutual exclusion
code to them. Similarly, the language compiler also has all the information it needs
to enforce the information-hiding rule just discussed and fag errors appropriately
while parsing the source code.

In other cases, like in the C language, the concept of monitor is unknown to the
compiler. Although the POSIX international standard [68] provides all the monitor’s
building blocks, programming discipline is needed in some key areas to properly
realize them because the compiler cannot be of much help in this respect. More
specifcally:

232 Real-Time Systems Development with RTEMS and Multicore Processors

• The programmer is responsible for defning a mutual exclusion semaphore
for each monitor and invoking P() and V() on it when entering and ex-
iting all monitor methods. On the same lines, when dealing with multiple
monitors, the programmer must also correctly associate each method to
the monitor it belongs to, and hence, invoke these primitives on the right
semaphore.

• Similarly, the programmer must implement information hiding using one
of the underlying mechanisms provided by the language, also accepting all
their limitations and shortcomings. For instance, defning a static shared
object in C makes it accessible only within a compilation unit rather than
globally, and hence, partially hides it.

7.3.2 CONDITION VARIABLES

The two properties discussed in the previous section avoid race conditions in access-
ing the shared object belonging to a monitor from its methods. In particular, the mu-
tual exclusion property bears striking similarities with mutual exclusion semaphores,
and it is no surprise that a mutual exclusion semaphore indeed can be used to enforce
it, like it happens in POSIX.

However, in Section 7.2.3 we also discussed synchronization semaphores and no
counterpart for them has been introduced within the monitor framework so far. This
counterpart does exist and is called condition variable. Condition variables are the
third kind of component that may belong to a monitor, besides the shared object and
methods.

They are also subject to the information hiding rule and, accordingly, they cannot
be referenced in any way, except from methods belonging to the same monitor. As
for the shared object, if the programming language is unaware of monitors, it is the
programmer’s responsibility to appropriately hide condition variables so that they
cannot be misused. The following two primitives are defned on a condition variable
c:

• wait(c) blocks the invoking task and releases the monitor, thus allowing
other tasks to enter it and execute its methods. These two steps are executed
atomically, that is, in a single indivisible action.

• signal(c) wakes up one of the tasks blocked on c, if any. If no tasks are
blocked on c, it has no effect.

Informally speaking, if a task discovers it cannot conclude its work immediately
while executing one of the monitor methods, it invokes wait on a condition variable.
In this way, it blocks and gives to other tasks the opportunity to enter the monitor
and perform their duty. When one of these tasks discovers that the frst task can now
continue, it invokes signal on the condition variable.

Since tasks may have many distinct reasons for blocking within a monitor, we
can introduce a distinct condition variable for each reason. In this way, blocked tasks
can be divided into groups, or categories, depending on which condition variable

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 233

Monitor

Condition variable
belonging to the monitor

c

wait(c) signal(c)

Task τ1 Task τ2

1. Task τ1 enters the

monitor and blocks on c 2. Task τ2 enters the

monitor and signals c

3. Task τ1 continues

Both τ1 and τ2 may now

execute concurrently in the
monitor: race condition

FIGURE 7.7 Potential race condition after wait/signal in a monitor.

they are blocked on, and then unblocked selectively by signaling the appropriate
condition variable.

Although the defnition of wait and signal may already seem satisfactory by
intuition, it is still incomplete. Namely, we must introduce additional constraints on
task execution to guarantee that the synchronization mechanism condition variables
introduce does not hinder mutual exclusion, which monitors must invariably guaran-
tee. Otherwise, we fall into a race condition after the following wait/signal sequence
on condition variable c, depicted in Figure 7.7 and involving two tasks:

1. Assuming the monitor is initially free, task τ1 enters the monitor, starts executing
one of its methods, and then blocks by means of wait(c).

2. The wait primitive releases the monitor, and hence, a second task τ2 is allowed to
enter the monitor and execute one of its methods. There is no race condition up to
this point because τ1 is blocked and no additional tasks can enter the monitor due
to the mutual exclusion constraint at the monitor boundary.

3. While executing in the monitor, task τ2 invokes signal(c), thus unblocking τ1.

After this sequence of actions, both τ1 and τ2 may concurrently execute within
the monitor. As a consequence, they are both allowed to manipulate its shared object
in an uncontrolled way, a scenario that clearly leads to a race condition.

234 Real-Time Systems Development with RTEMS and Multicore Processors

Monitor

Condition variable
belonging to the monitor

c

wait(c)

signal(c)

Task τ1 Task τ2

1. Task τ1 enters the

monitor and blocks on c
2. Task τ2 enters the

monitor and signals c
while exiting from it

3. Task τ1 continues

Task τ1 can now execute in

the monitor because τ2 has

left: no race condition

FIGURE 7.8 Forced placement of signal in a Brinch Hansen’s monitor.

The simplest way to address this issue was proposed by Brinch Hansen and is
depicted in Figure 7.8.

It is based on constraining the placement of signal primitives within the monitor
methods. In particular, if a task ever invokes signal within a monitor method, it
must be its very last action within the monitor and implicitly causes the task to exit
from it. In other words, as shown in the fgure, all invocations of signal must
always be at the boundary between the monitor and the outside world.

In this way, as also shown in Figure 7.8, only task τ1 can execute within the
monitor after a wait/signal sequence. Task τ2 actually keeps running concurrently
with τ1, but this is of no concern because τ2 is now outside of the monitor and the
information hiding rule implicitly prevents any race condition. Although our example
only involves two tasks for simplicity, it can be proved [26] that this approach solves
the problem in general.

An advantage of following this path is that it does not add any additional com-
plexity or runtime overhead to the wait and signal primitives with respect to their
original, intuition-based defnition. Moreover, if monitors are a programming lan-
guage construct, the compiler can easily detect any violation of the constraint while
parsing the source code. However, the burden of designing monitor methods so that
signal only appears in the right places is left to programmers.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 235

Monitor

Condition variable
belonging to the monitor

c

wait(c) signal(c)

Task τ1 Task τ2

1. Task τ1 enters the

monitor and blocks on c 2. Task τ2 enters the

monitor, signals c, and
blocks on c

3. Task τ1 continues

alone: no race condition

τ2 can execute again in the

monitor only after τ1 has

left: no race condition

4. Task τ1 unblocks τ2

while exiting from the
monitor

FIGURE 7.9 Blocking signal in a Hoare’s monitor.

On the contrary, Hoare’s approach [60] is more fexible and gives programmers
more freedom because it imposes no constraints at all on the placement of signal,
which can therefore be invoked anywhere in monitor methods. The price to be paid
is a greater complexity of wait, signal, and of the monitor exit code. In addition,
the semantics of signal become less intuitive and clear because it may now block
the caller.

The general mechanism of condition variables in a Hoare’s monitor is illustrated
in Figure 7.9. It revolves around the following rules:

• A task that invokes signal(c), like τ2 in the fgure, blocks if it success-
fully unblocks another task, like τ1, which has been waiting on condition
variable c. In this way, τ1 continues its execution within the monitor, but
no race condition occurs because τ2 is now blocked and no other tasks are
allowed to enter the monitor due to the mutual exclusion mechanism at the
monitor boundary.

• When task τ1 exits from the monitor or waits again, by means of another
wait, one of the tasks blocked on a signal, like τ2 in the fgure, is al-
lowed to continue past it. Otherwise, one of the tasks waiting to enter the
monitor is allowed in. Finally, if no tasks are waiting to enter the monitor,
the monitor is released. As a consequence, tasks waiting to enter the moni-
tor anew will be let in, one at a time, only when the task actively executing

236 Real-Time Systems Development with RTEMS and Multicore Processors

Monitor

Condition variable
belonging to the monitor

c

wait(c, m) signal(c, m)

Task τ1 Task τ2

1. Task τ1 enters the

monitor and blocks on
c, releasing m

2. Task τ2 enters the

monitor, signals c, and
continues

3. Task τ1 reacquires m

and continues after τ2

has left the monitor

τ1 can execute again in the

monitor only when it is
alone: no race condition

lock(m)

unlock(m)

lock(m)

Note: τ2 itself (or any other tasks that

entered the monitor in the meantime) may
have invalidated the condition τ1 had been

waiting for: a new wait might be necessary

m

Monitor mutex,
explicit in POSIX

FIGURE 7.10 Semantics of wait and signal in a POSIX monitor.

in the monitor leaves or blocks, and no tasks are blocked in a signal.
Again, there are no race conditions because τ2 may continue within the
monitor only after τ1 has left or has blocked again.

As with Brinch Hansen’s proposal, it can be proven that Hoare’s method works
with an arbitrary number of tasks and any number of condition variables, even though
the example we depicted in Figure 7.9 is very simple.

The approach to avoid race conditions in a monitor according to the POSIX stan-
dard [68] differs from the previous two in a number of signifcant aspects. Program-
mers should keep these differences in mind because writing code for a certain favor
of monitor, and then executing it on another, may clearly lead to incorrect results.

1. As already outlined previously, monitors are not part of the C language. Therefore,
programmers are responsible for defning a mutual exclusion semaphore for each
monitor—called m in Figure 7.10—and initialize it appropriately. As shown in
the fgure, they are also in charge of correctly bracketing all monitor methods
with the P(m) and V(m) primitives, called lock(m) and unlock(m) in POSIX.
Moreover, they should make m visible and accessible only from monitor methods.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 237

2. Another important consequence of lacking language support for monitors is that
the wait primitive in POSIX has two arguments instead of one. Since the com-
piler has no way to associate condition variables with the monitor they belong
to, it also may not autonomously infer what is the mutual exclusion semaphore
that wait is supposed to release. Therefore, the programmers must pass the right
semaphore as an additional argument.

3. The underlying reasoning behind the POSIX approach is that a task that has just
been unblocked after invoking a wait, like τ1 in the fgure, must reacquire the
mutual exclusion semaphore before proceeding further. This is done implicitly,
within the wait primitive. Instead, the signaling task, τ2 in the fgure, contin-
ues immediately. In other words, the POSIX approach avoids race conditions in
the opposite way as Hoare’s, given that it postpones the signaled task instead of
the signaling task, thus following the same approach as the Mesa programming
language [51].

4. When the task currently executing within the monitor exits from it or blocks in
a wait, it releases the mutual exclusion semaphore it holds, by either invoking
unlock explicitly (if it is exiting from the monitor), or implicitly (as part of its
wait). As a result, it unblocks one of the tasks waiting to resume or start its
execution in the monitor, if any. More specifcally, the task can be:
• waiting to reacquire the mutual exclusion semaphore after having been un-

blocked, like τ1 in the fgure, or
• waiting to enter the monitor from the outside, being blocked on lock(m),
and the decision depends on the queuing policy of the mutual exclusion
semaphore m. If no tasks are waiting, the value of m goes back to one, to remember
that the monitor has become free and no tasks are currently executing within it.

To summarize, if we assume that no other tasks besides τ1 and τ2 try to operate on
the monitor, we can describe the behavior of the simple POSIX wait/signal sequence
of Figure 7.10 as follows:

• Task τ1 acquires the mutual exclusion semaphore m with lock(m) and
enters the monitor without blocking.

• While executing in the monitor, τ1 waits on condition variable c by means
of wait(c, m). As a result, it also releases the monitor by performing
an implicit unlock(m). Both operations are performed as an atomic unit
according to the defnition of wait.

• Another task, τ2 in the example, who has been blocked in the lock(m) at
the monitor boundary, is allowed to continue.

• Task τ2 performs signal(c) and continues, since this is a non-blocking
primitive. Task τ1 cannot continue immediately because it must frst reac-
quire m.

• When τ2 leaves the monitor, it performs a unlock(m), thus allowing τ1 to
continue after waiting.

• Task τ1 can now continue its execution within the monitor.

238 Real-Time Systems Development with RTEMS and Multicore Processors

The most important side effect of this approach from the practical standpoint is
that, as also highlighted in the example, when task τ1 blocks on a condition variable
because it has to wait until a condition has been fulflled, it cannot be completely
certain that the condition it has been waiting for will still be satisfed when it will
eventually continue its execution in the monitor.

This is because other tasks, like the signaling task τ2 itself or any other tasks
allowed in the monitor in the meantime, may have invalidated the condition. The
frst scenario can be avoided by making sure that tasks do not invalidate the condition
they have been signaling before they exit the monitor.

Instead, there is no general way to avoid the second scenario. As mentioned be-
fore, the choice of which task executes in the monitor after τ2 exits depends on the
queuing policy of the mutual exclusion semaphore m. It may be τ1, but the choice
may also fall on other tasks waiting to enter the monitor. Therefore, when using a
POSIX monitor, the wait primitive should always be enclosed in a loop that checks
whether the condition of interest is indeed satisfed after the primitive returns and
invokes wait again if this is not the case. As a side effect, it may happen that a task
has to invoke wait more than once before it can wait for a condition successfully
and then proceed, thus introducing some unwanted execution time variability.

To conclude this section, Figure 7.11 shows how the producers–consumers prob-
lem can be solved using the simplest kind of monitor considered so far, that is, the
Brinch Hansen’s monitor. Section 7.4 contains instead an example of use of POSIX
monitors. Since the C language does not support monitors, the code shown in the
fgure is written by means of the following, hypothetical C language extensions:

• The monitor keyword introduces a monitor. Like in a struct defnition,
a pair of braces syntactically groups together the shared object, condition
variables, and methods that belong to the monitor.

• In a monitor, the condition keyword defnes a condition variable, with a
syntax equivalent to a C variable defnition in which condition replaces
the data type specifer.

With respect to the semaphore-based solution shown in Figure 7.6 there are sev-
eral important differences. More specifcally:

• The mutual exclusion semaphore mutex is no longer needed because the
Brinch Hansen’s monitor construct enforces the mutual exclusion among
monitor methods by itself.

• In the semaphore-based solution, the value of the synchronization
semaphores was used to keep track of how many empty and full elements
there were in the circular buffer. Condition variables have no value, and
hence, the monitor-based solution has to keep the count in the shared vari-
able count. The variable starts at zero and counts the number of full ele-
ments in the buffer.

• The two synchronization semaphores empty and full have been replaced
by two condition variables called not_full and not_empty, respec-
tively. There is a strong analogy between the role of a synchronization

#define N 8
monitor ProducersConsumers
{

int buf[N];
int in = 0, out = 0;
condition not_full, not_empty;
int count = 0;

void prod(int v)
{

if(count == N) wait(not_full);
buf[in] = v;
in = (in + 1) % N;
count = count + 1;
if(count == 1) signal(not_empty);

}

int cons(void)
{

int v;
if(count == 0) wait(not_empty);
v = buf[out];
out = (out + 1) % N;
count = count - 1;
if(count == N-1) signal(not_full);
return v;

}
};

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 239

FIGURE 7.11 Producers–consumers problem solved by means of a Brinch Hansen’s monitor.

semaphore and that of the corresponding condition variable. For instance,
the empty semaphore gives producers the ability to block until the buffer
has at least one empty element by means of a P(empty). Symmetrically,
producers can block until the buffer is not completely full by invoking
wait(not_full).

• Both wait and signal are executed conditionally in the monitor-
based solution, after checking the condition that tasks would like to
wait upon, or signal, respectively. For instance, a producer executes
wait(not_full) only after detecting that count == N, and a con-
sumer calls signal(not_full) only after removing one element from a
buffer that was completely full, thus making count == N-1. On the con-
trary, semaphore primitives are invoked unconditionally in the semaphore-
based solution.

240 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.1
RTEMS Semaphore Primitives, Classic API

Function Purpose
rtems_semaphore_create Create a semaphore
rtems_semaphore_ident Find the identifer of a semaphore given its name
rtems_semaphore_delete Delete a semaphore

rtems_semaphore_obtain Perform a P() on a semaphore
rtems_semaphore_release Perform a V() on a semaphore
rtems_semaphore_flush Unblock all threads waiting on a semaphore

rtems_semaphore_set_priority Set the per-scheduler ceiling priority of a semaphore

7.4 RTEMS API FOR SHARED-MEMORY IPC
7.4.1 CLASSIC API

Semaphore creation and semaphore attributes
The RTEMS operating system offers semaphores as one of its main synchronization
devices, through its Semaphore Manager. As summarized in Table 7.1, a semaphore
is created by means of the function:

rtems_status_code rtems_semaphore_create(
rtems_name name,
uint32_t count,
rtems_attribute attribute_set,
rtems_task_priority priority_ceiling,
rtems_id *id);

This function creates a semaphore with the given name and, if successful, stores
its unique identifer into the location pointed by id. This identifer must then be
used to refer to the semaphore with all the other semaphore primitives except
rtems_semaphore_ident. Like all the other RTEMS object names, the name
argument is a 32-bit value. Users can synthesize it with the help of the function
rtems_build_name, which takes 4 ASCII characters as arguments, when they
wish to make it more human-readable.

The most important argument of the function rtems_semaphore_create is
attribute_set. It determines the specifc variety of semaphore to be created
among the ones that RTEMS supports. It is the bitwise or of the constants listed in
Table 7.2. Each variety represents a different trade-off point between implementation
effciency and expressive power of the semaphore.

The frst two attributes, RTEMS_LOCAL and RTEMS_GLOBAL, determine the vis-
ibility and accessibility of the semaphore to be created on a multi-node system.
Namely, the semaphore is always created on the local node where the calling thread

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 241

TABLE 7.2
RTEMS Semaphore Attributes, Classic API

Attribute Meaning
RTEMS_LOCAL Local semaphore
RTEMS_GLOBAL Globally accessible semaphore

RTEMS_COUNTING_SEMAPHORE Ordinary, counting semaphore (as in Section 7.2)
RTEMS_BINARY_SEMAPHORE Binary semaphore that supports recursive locks
RTEMS_SIMPLE_BINARY_SEMAPHORE Binary semaphore that does not support recursive locks

RTEMS_FIFO Use a frst-in, frst-out (FIFO) queuing policy
RTEMS_PRIORITY Use a priority-based queuing policy

RTEMS_NO_INHERIT_PRIORITY Do not use the priority inheritance protocol
RTEMS_NO_PRIORITY_CEILING Do not use the immediate priority ceiling protocol
RTEMS_NO_MULTIPROCESSOR

Do not use the multiprocessor resource sharing protocol
_RESOURCE_SHARING

RTEMS_INHERIT_PRIORITY Use the priority inheritance protocol
RTEMS_PRIORITY_CEILING Use the immediate priority ceiling protocol
RTEMS_MULTIPROCESSOR

Use the multiprocessor resource sharing protocol
_RESOURCE_SHARING

resides. Then, semaphores with the RTEMS_LOCAL attribute can be used only by
threads executing on the same node. Instead, information about a RTEMS_GLOBAL
semaphore is broadcast to all other nodes in the system, so that remote threads can
access it.

Considering that the creation of a global semaphore implies more overhead than
the creation of a local semaphore, and remote semaphore operations are less eff-
cient because they are carried out with the help of a proxy agent on the local node,
semaphores should be kept local unless doing otherwise is strictly necessary.

The second group of attributes listed in Table 7.2 has to do with the expressive
power of the semaphore. More specifcally:

• A RTEMS_COUNTING_SEMAPHORE is the most powerful kind of
semaphore that RTEMS supports and conforms to the theoretical defni-
tion of semaphore given in Section 7.2. The argument count is the initial
value of the semaphore and can be any non-negative integer that can be
represented in a uint32_t data type.

• A RTEMS_BINARY_SEMAPHORE is a semaphore whose values can be only
1 (unlocked) and 0 (locked), making it especially useful to implement
mutual exclusion. Moreover, this kind of semaphore supports the recur-
sive lock feature, which enables a thread to perform multiple, nested P()
on the same semaphore without self-deadlocking. The operating system
keeps a count of the nested P() performed by the thread and releases the

242 Real-Time Systems Development with RTEMS and Multicore Processors

semaphore only when the number of V() executed by the thread matches
the number of nested P() performed by the same thread.

• A RTEMS_SIMPLE_BINARY_SEMAPHORE is even simpler and does not
support recursive locks. If a thread performs a P() on a semaphore it al-
ready owns, it self-deadlocks. In return, this kind of semaphore is more
effcient and can be deleted while it is locked.

In addition, RTEMS semaphores support two queuing policies:

• The RTEMS_FIFO policy enqueues threads blocked on a semaphore in
frst-in, frst-out order.

• The RTEMS_PRIORITY policy enqueues threads based on their priorities
instead.

Selecting the RTEMS_PRIORITY policy is a prerequisite for enabling the prior-
ity inheritance or the immediate priority ceiling protocol (both to be discussed in
Section 8.1) on a semaphore. This is done through another set of attributes:

• The RTEMS_INHERIT_PRIORITY attribute specifes that the semaphore
must use the priority inheritance protocol.

• The RTEMS_PRIORITY_CEILING attribute specifes that the semaphore
must use the immediate priority ceiling protocol. The ceiling of the
semaphore is specifed by means of the argument priority_ceiling
of rtems_semaphore_create.

The complementary attributes RTEMS_NO_INHERIT_PRIORITY and
RTEMS_NO_PRIORITY_CEILING, respectively, indicate that these protocols
shall not be used. The priority inheritance and priority ceiling protocols cannot be
enabled together and are supported only for local, binary semaphores whose queuing
policy is priority-based.

In addition, RTEMS implements two protocols specifcally designed for symmet-
ric multiprocessor (SMP) and multicore systems: the multiprocessor resource sharing
protocol (MrsP) [28] and the O(M) independence-preserving protocol (OMIP) [23].
In a nutshell, MrsP is an extension of the priority ceiling protocol that can be enabled
for local, binary semaphores with priority-based queuing. Like priority ceiling, it is
based on assigning to each semaphore ceiling priorities, but instead of a single prior-
ity there is one for each scheduler instance in the system. Ceiling priorities must be
calculated and assigned by the user.

Similarly, OMIP works with the same kind of semaphore and is an extension
of the priority inheritance protocol. Like its ancestor, it does not require any user-
specifed semaphore confguration. Although the peculiarities and limitations of both
protocols will be better discussed in Chapter 13 of the book, some information about
how they are used by means of the Classic and POSIX API will still be given in this
chapter, to give readers one single place where these APIs are fully described.

The MrsP protocol must be selected explicitly during semaphore creation by spec-
ifying the RTEMS_MULTIPROCESSOR_RESOURCE_SHARING attribute. Instead,

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 243

OMIP automatically and implicitly replaces the priority inheritance protocol on
multicore systems, when the RTEMS_INHERIT_PRIORITY attribute is specifed.
In both cases, the RTEMS_BINARY_SEMAPHORE and RTEMS_PRIORITY attributes
must also be set upon semaphore creation.

The function rtems_semaphore_create, like many other RTEMS func-
tions, returns a status code to report the outcome of the operation. The
RTEMS_SUCCESSFUL status code indicates that the semaphore has successfully
been created. Upon failure, the function returns one of the following status codes:

RTEMS_INVALID_NAME The name of the semaphore passed in the name argument
is invalid.

RTEMS_INVALID_ADDRESS The id argument is a NULL pointer, and hence, it
does not point to a valid location where the newly created semaphore identifer
could be stored.

RTEMS_NOT_DEFINED The argument attribute_set contains an undefned, or
otherwise invalid, attribute.

RTEMS_INVALID_NUMBER The initial value of the semaphore given in the count
argument is invalid for the kind of semaphore being created. For instance, binary
semaphores that use the MrsP protocol cannot be created in a locked state. Hence,
for this kind of semaphore count must necessarily be one.

RTEMS_TOO_MANY The new semaphore could not be created because the maximum
number of local or global semaphores in the system (depending on the kind of
semaphore the attribute set asked for) has been reached. These limits are set in
the RTEMS application compile-time confguration outlined in Section 2.4.2 and
fully described in [105].

RTEMS_MP_NOT_CONFIGURED The attribute set given as argument asked for a
global semaphore, but multi-node support has not been enabled in the system
confguration.

After a successful call to rtems_semaphore_create, the semaphore identifer
obtained from it can directly be used to operate on the semaphore. The semaphore
identifer can also be obtained from the semaphore name by calling the function:

rtems_status_code rtems_semaphore_ident(
rtems_name name,
uint32_t node,
rtems_id *id);

This function looks for a semaphore whose name is given by the name argument
on node node and stores its identifer into the location pointed by id. If node is
the special value RTEMS_SEARCH_ALL_NODES, the function searches all nodes in
the system, starting from the local node, that is, the node where the calling thread
resides.

If multiple semaphores have the same name, the function is guaranteed to return
the identifer of a semaphore with the given name, but exactly which one is left
unspecifed. Upon failure, the function returns one of the following status codes:

244 Real-Time Systems Development with RTEMS and Multicore Processors

RTEMS_INVALID_NAME The function did not fnd any semaphore with the re-
quested name within the scope of its search.

RTEMS_INVALID_NODE The node identifer is invalid.

The function:

rtems_status_code rtems_semaphore_delete(
rtems_id id);

deletes the semaphore whose identifer id has been passed as argument. Af-
ter a successful call to this function, the identifer shall no longer be used. The
semaphore may have been created by another thread, but must reside on the same
node as the calling thread. The return value of rtems_semaphore_delete is
RTEMS_SUCCESSFUL upon successful completion or one of the following status
codes:

RTEMS_INVALID_ID The semaphore identifer is invalid.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The semaphore could not be deleted be-

cause it does not reside on the same node as the calling thread.
RTEMS_RESOURCE_IN_USE The semaphore is actually a mutex and it could not

be deleted because it is currently locked.

Semaphore operations
Referring back to Table 7.1, the functions rtems_semaphore_obtain and
rtems_semaphore_release are the RTEMS counterparts of the abstract P()
and V() operations discussed in Section 7.2. More specifcally, the function:

rtems_status_code rtems_semaphore_obtain(
rtems_id id,
rtems_option option_set,
rtems_interval timeout);

performs a P() on the semaphore identifed by id. The additional arguments
option_set and timeout determine whether the calling thread may block—and
for how long—to complete the semaphore operation, thus leading to three possibili-
ties:

• If option_set is set to RTEMS_NO_WAIT, the timeout argument
is ignored and the function returns to the caller the status code
RTEMS_UNSATISFIED if the semaphore operation cannot be completed
immediately, that is, without blocking.

• If option_set is set to RTEMS_WAIT and timeout is set to the special
value RTEMS_NO_TIMEOUT, the function may potentially block the caller
forever, until the semaphore operation can be completed or an error occurs.

• If option_set is set to RTEMS_WAIT and timeout is set to a time-
out value expressed in ticks (see Chapter 5) the function may block
the caller for up to timeout ticks. If the timeout expires before the

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 245

semaphore operation could be completed, the function returns the status
code RTEMS_TIMEOUT.

Additional reasons for failure are refected in the following status codes that
rtems_semaphore_obtain may also return:

RTEMS_INVALID_ID The semaphore identifer is invalid.
RTEMS_OBJECT_WAS_DELETED The semaphore was deleted (by another thread)

while the calling thread was blocked on it.
RTEMS_UNSATISFIED The semaphore is an MrsP semaphore and a deadlock con-

dition was detected. Moreover, this status code is also returned when trying to
obtain an MrsP semaphore more than once from the same task without releasing
it in between, because MrsP semaphores do not support recursive locking.

The counterpart of V() is the function:

rtems_status_code rtems_semaphore_release(
rtems_id id);

It returns either RTEMS_SUCCESSFUL, if the semaphore was released success-
fully, or one of the following status codes upon failures:

RTEMS_INVALID_ID The semaphore identifer is invalid.
RTEMS_NOT_OWNER_OF_RESOURCE The semaphore could not be released be-

cause it is a mutex and the calling thread did not obtain it beforehand.
RTEMS_INCORRECT_STATE The operation failed because the semaphore is an

MrsP semaphore and the calling task did not respect the expected acquisition and
release order. Semaphores using this protocol must be released in the opposite
order with respect to the order in which they were obtained.

The last semaphore operation supported by the RTEMS classic API has not direct
theoretical counterpart. The function:

rtems_status_code rtems_semaphore_flush(
rtems_id id);

unblocks all tasks waiting on the semaphore, thus emptying its waiting queue, with-
out changing the semaphore value. Each task will receive a RTEMS_UNSATISFIED
status code from the rtems_semaphore_obtain it had been engaged in, to high-
light that the semaphore has not been correctly obtained, and hence, some properties
normally guaranteed by the execution of the P() operation (like mutual exclusion in
the case of a mutex) may not be true.

Besides RTEMS_SUCCESSFUL, the rtems_semaphore_flush function may
also return the following status codes:

RTEMS_INVALID_ID The semaphore identifer is invalid.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The semaphore is globally accessible

and resides on a remote node. The fush operation is not supported in this case.
RTEMS_NOT_DEFINED The fush operation is not supported for MrsP semaphores.

246 Real-Time Systems Development with RTEMS and Multicore Processors

Per-scheduler ceiling
The MrsP protocol requires a per-scheduler ceiling priority to be associated to each
mutex. When creating a mutex that uses this protocol, all these priorities are ini-
tially set to the same value, that is, the one specifed in the priority_ceiling
argument of rtems_semaphore_create. This is likely not adequate, hence these
priorities can be individually retrieved and set after semaphore creation by means of
the function:

rtems_status_code rtems_semaphore_set_priority(
rtems_id semaphore_id,
rtems_id scheduler_id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority);

This function sets the priority of semaphore semaphore_id with respect to the
scheduler scheduler_id to the value new_priority, also storing the previous
priority value into the location pointed by old_priority. The caller must pass a
valid pointer even though it is not interested in the old priority value. If the new pri-
ority value is RTEMS_CURRENT_PRIORITY the function only retrieves the current
per-scheduler priority without changing it. In both cases, the function operates only
on semaphores residing on the same node as the calling thread.

The function rtems_semaphore_set_priority returns RTEMS_SUCCESSFUL
when it succeeds or one of the following status codes when it fails:

RTEMS_INVALID_ID Either the semaphore identifer, or the scheduler identifer,
or both, are invalid.

RTEMS_INVALID_ADDRESS The old_priority pointer is NULL.
RTEMS_INVALID_PRIORITY The new_priority value is not valid for the

scheduler scheduler_id.
RTEMS_NOT_DEFINED The semaphore does not make use of the MrsP protocol and

per-scheduler ceiling priorities are defned only for this kind of semaphore. For
an ordinary priority ceiling semaphore, the ceiling priority is specifed directly as
an argument of rtems_semaphore_create.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT The semaphore does not reside on the
same node as the calling thread.

Binary semaphores
RTEMS also provides a specifc, separate implementation of binary semaphores. Un-
like the full-fedged semaphores provided by the Semaphore Manager, which are
allocated by the kernel and referred to by means of an rtems_id, the storage for
this kind of binary semaphore must be provided by the user and references to the
semaphore are made by means of a pointer to the semaphore itself. A copy of a
semaphore is not a valid semaphore itself and shall not be used for synchronization.
Moreover, they cannot be accessed from remote nodes of a multi-node system.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 247

TABLE 7.3
RTEMS Binary Semaphore Primitives, Classic API

Function Purpose
rtems_binary_semaphore_init Initialize a user-allocated binary semaphore
rtems_binary_semaphore_destroy Destroy a binary semaphore

rtems_binary_semaphore_wait Perform a P() on a binary semaphore
rtems_binary_semaphore_try_wait Non-blocking variant of P()
rtems_binary_semaphore

Timed variant of P()
_wait_timed_tick

rtems_binary_semaphore_post Perform a V() on a binary semaphore

rtems_binary_semaphore_set_name Set the human-readable name of a binary semaphore
rtems_binary_semaphore_get_name Retrieve the name of a binary semaphore

Table 7.3 summarizes the primitives available for binary semaphores. With re-
spect to full-fedged semaphores, they offer a streamlined interface that may make
user code simpler and more effcient. The function:

void rtems_binary_semaphore_init(
rtems_binary_semaphore *binary_semaphore,
const char *name);

initializes the semaphore pointed by binary_semaphore and assigns the
given name to it. The name may be NULL but, if it is not, it is the
user’s responsibility to ensure that the string it refers to remains valid through
the whole lifetime of the semaphore, or until the name of the semaphore
is changed. The user is also in charge of allocating the object of type
rtems_binary_semaphore pointed by binary_semaphore before calling this
function. Binary semaphores can also be statically initialized by means of the macro
RTEMS_BINARY_SEMAPHORE_INITIALIZER. More specifcally, the statement:

rtems_binary_semaphore binary_semaphore
= RTEMS_BINARY_SEMAPHORE_INITIALIZER(name);

is equivalent to a call to rtems_binary_semaphore_init. It is worth noting
that, in both cases, the initial value of the semaphore is zero and not one. As a con-
sequence, if the binary semaphore is used for mutual exclusion, it is mandatory to
perform an isolated V() on the semaphore right after initialization.

When no longer in use, a semaphore can (and should) be destroyed by means of
the following function:

void rtems_binary_semaphore_destroy(
rtems_binary_semaphore *binary_semaphore);

248 Real-Time Systems Development with RTEMS and Multicore Processors

After destroying a semaphore, the corresponding rtems_binary_semaphore
object shall no longer be used, unless it is frst re-initialized. Destroying a semaphore
while it is in use leads to unpredictable results.

The following function performs a P() operation on a binary semaphore refer-
enced by binary_semaphore, thus possibly blocking the caller. Threads are in-
serted in the semaphore wait queue in priority order.

void rtems_binary_semaphore_wait(
rtems_binary_semaphore *binary_semaphore);

As for full-fedged semaphores, a non-blocking and a timed variant of this func-
tion are available:

int rtems_binary_semaphore_try_wait(
rtems_binary_semaphore *binary_semaphore);

int rtems_binary_semaphore_wait_timed_ticks(
rtems_binary_semaphore *binary_semaphore,
uint32_t ticks);

Unlike rtems_binary_semaphore_wait, which cannot fail, both these func-
tions return an int whose value indicates whether or not they concluded success-
fully. More specifcally, a return value of zero indicates success, whereas one of the
following non-zero values denote failure:

EAGAIN The function rtems_binary_semaphore_try_wait was unable to
acquire the semaphore immediately.

ETIMEDOUT The function rtems_binary_semaphore_wait_timed_ticks
was unable to acquire acquire the semaphore before the specifed number of
ticks elapsed.

Since it never blocks the caller, rtems_binary_semaphore_try_wait is the
only function in this group that may be called from an interrupt context.

The function:

void rtems_binary_semaphore_post(
rtems_binary_semaphore *binary_semaphore);

performs a V() on the binary semaphore referenced by binary_semaphore. It
can be invoked either from a thread or an interrupt context.

The last two functions in Table 7.3 enable the caller to retrieve and modify the
human-readable name associated to a binary semaphore, used for debugging pur-
poses:

const char *rtems_binary_semaphore_get_name(
const rtems_binary_semaphore *binary_semaphore);

void rtems_binary_semaphore_set_name(
rtems_binary_semaphore *binary_semaphore,
const char *name);

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 249

TABLE 7.4
RTEMS Mutex Primitives, Classic API

Function Purpose

mutex_init Initialize a standalone mutex (1)

mutex_destroy Destroy a standalone mutex
mutex_set_name Set the human-readable name of a mutex
mutex_get_name Retrieve the human-readable name of a mutex
mutex_lock Perform a P() on a mutex
mutex_unlock Perform a V() on a mutex

mutex_recursive_init Initialize a standalone recursive mutex (2)

mutex_recursive_destroy Destroy a standalone mutex
mutex_recursive_set_name Set the human-readable name of a recursive mutex
mutex_recursive_get_name Retrieve the human-readable name of a recursive mutex
mutex_recursive_lock Perform a P() on a recursive mutex
mutex_recursive_unlock Perform a V() on a recursive mutex

(1) Static initializer RTEMS_MUTEX_INITIALIZER also available.
(2) Static initializer RTEMS_RECURSIVE_MUTEX_INITIALIZER also available.

When setting the semaphore name, the caller must ensure that the storage pointed
by name remains valid through the whole lifetime of the semaphore, or until the
semaphore name is changed again. The name argument may also be a NULL pointer.

Mutual exclusion and recursive mutual exclusion devices
Besides general-purpose and binary semaphores, RTEMS also provides even more
specialized and more effcient synchronization devices, specifcally designed for mu-
tual exclusion. They automatically use the priority inheritance (on single-core sys-
tems) or the OMIP protocol (on multicores). Like binary semaphores, they are stan-
dalone object, that is, the storage space they need is completely allocated and man-
aged by the user. There are two distinct favors of mutual exclusion device, or mutex:

• A mutex that does not support recursive locks is an object of type
rtems_mutex and is managed by means of the functions listed in the top
half of Table 7.4. Any attempt to recursively lock a non-recursive mutex,
that is, any attempt by a task to lock a mutex that it already owns, leads to
undefned results.

• A mutex that does support recursive locks is an object of type
rtems_recursive_mutex and is managed by means of the functions
listed in the bottom half of the table. In this case, recursive lock attempts
succeed and lead to the expected result.

The functions:

250 Real-Time Systems Development with RTEMS and Multicore Processors

void rtems_mutex_init(
rtems_mutex *mutex,
const char *name);

void rtems_recursive_mutex_init(
rtems_recursive_mutex *mutex,
const char *name);

initialize a mutex and a recursive mutex, respectively. They take as arguments a
pointer to the object to be initialized and a pointer to a string of characters that will
become the human-readable name of the mutex, used for debugging purposes. If no
name is needed, a NULL pointer can be passed as name. If name is not NULL, the
storage it points to must persist for the whole lifetime of the mutex. A newly created
mutex or recursive mutex is initially unlocked.

Calling the initialization function is mandatory for dynamically allocated mutex
objects. Statically allocated objects can also be initialized statically, by means of the
following initialization macros:

rtems_mutex mutex = RTEMS_MUTEX_INITIALIZER(name);

rtems_recursive_mutex mutex =
RTEMS_RECURSIVE_MUTEX_INITIALIZER(name);

When a mutex or recursive mutex is no longer needed, it must be destroyed by
means of the functions:

void rtems_mutex_destroy(rtems_mutex *mutex);

void rtems_recursive_mutex_destroy(
rtems_recursive_mutex *mutex);

Both functions take as argument a pointer to the object to be destroyed. A mutex
can no longer be used after destruction, unless it is initialized anew. If a mutex is
destroyed while there are tasks waiting on it, the result is undefned.

The human-readable name of a mutex can be changed after creation by means of
the functions:

void rtems_mutex_set_name(
rtems_mutex *mutex, const char *name);

void rtems_recursive_mutex_set_name(
rtems_recursive_mutex *mutex, const char *name);

Symmetrically, the name can also be retrieved, given a pointer to the mutex object,
by means of the functions:

const char *rtems_mutex_get_name(
const rtems_mutex *mutex);

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 251

const char *rtems_recursive_mutex_get_name(
const rtems_recursive_mutex *mutex);

The functions:

void rtems_mutex_lock(rtems_mutex *mutex);

void rtems_recursive_mutex_lock(
rtems_recursive_mutex *mutex);

lock the mutex or recursive mutex pointed by mutex, respectively, blocking the
caller if necessary. For this reason, these functions must be invoked from a task con-
text with interrupts enabled. When blocked on the mutex, tasks wait and are awak-
ened in priority order. The function rtems_recursive_mutex_lock operates
on a recursive mutex and is able to detect if the calling task already owns the mutex,
that is, it locked the mutex one or more times without unlocking it. If this is the case,
the function returns to the caller immediately.

A locked mutex can be unlocked by invoking the functions:

void rtems_mutex_unlock(rtems_mutex *mutex);

void rtems_recursive_mutex_unlock(
rtems_recursive_mutex *mutex);

Like the mutex lock functions, also these functions must be called from
a task context with interrupts enabled. If the calling task does not own the
mutex at the time of the call, the result is unpredictable. Similarly, attempt-
ing to unlock again an unlocked mutex is also illegal and leads to an unpre-
dictable result. The function rtems_recursive_mutex_unlock actually un-
locks a recursive mutex only if the current unlock operation matches the outermost
rtems_recursive_mutex_lock performed by the same task. Otherwise, it re-
turns to the caller immediately.

7.4.2 POSIX API

The POSIX API offers three main inter-task synchronization objects: general-
purpose semaphores, mutual exclusion semaphores (called mutex), and condition
variables. General-purpose semaphores adhere to the abstract defnition given in Sec-
tion 7.2 quite closely. In addition, all blocking synchronization primitives have non-
blocking and timed counterparts. Both are useful to ensure that a real-time task, after
engaging in a synchronization, always has a way to bail out within a well-defned
amount of time, regardless of whether or not other software components are func-
tioning correctly.

Mutual exclusion semaphores are specialized semaphores whose value can only
be 1 or 0, to indicate an unlocked and locked semaphore, respectively. In addition,
P(m) and V(m) on a mutual exclusion semaphore m are restricted to appear in this
order and as pairs within each task that makes use of m, to bracket critical regions

252 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.5
RTEMS Semaphore Primitives, POSIX API

Function Purpose
sem_init Create an unnamed semaphore
sem_destroy Destroy an unnamed semaphore

sem_open Create/open a named semaphore
sem_close Close a named semaphore
sem_unlink Mark a named semaphore for destruction

sem_wait Perform a P() on a semaphore
sem_post Perform a V() on a semaphore
sem_trywait Non-blocking P()
sem_timedwait Variant of P() with timeout

sem_getvalue Get current value of a semaphore

according to the standard mutual exclusion semaphore usage paradigm (see Sec-
tion 7.2.2).

In exchange for these limitations, mutual exclusion semaphores may be imple-
mented more effciently than general-purpose semaphores and provide additional
features. For instance, they incorporate some of the protocols to address unbounded
priority inversion (see Section 8.1). Moreover, the POSIX recursive lock feature en-
ables a task to lock the same mutual exclusion semaphore multiple times without
self-deadlocking. Although not strictly required from the theoretical point of view,
this feature may be very convenient to simplify software implementation. Mutual ex-
clusion semaphores, unlike general-purpose semaphores, can also be used in concert
with condition variables to implement monitors (see Section 7.3).

Last, but not the least, all inter-task synchronization objects can be declared to
be private, that is, accessible only by threads belonging to a single process, or be
shared among multiple processes. Even though this declaration does not affect ob-
ject semantics, it offers the POSIX implementation more optimization opportunities,
which may make private objects more effcient than shared ones. In the following,
we will only describe private objects in detail. Since RTEMS implements a multi-
task execution environment, but not multiple processes, private objects are the direct
counterpart of Classic API objects.

General-purpose semaphores
Table 7.5 summarizes the main POSIX primitives for general-purpose semaphores.
These semaphores are available in two favors: unnamed and named, which differ in
the way they are created and destroyed, but are otherwise used in a uniform way.

As a general remark the use of any POSIX functions, like the ones listed in the
table, requires the inclusion of one or more header fles. Since the goal of this book

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 253

is not to be a reference manual of the POSIX standard, in the following we will only
categorize and summarize POSIX functions without going into these fne details.
Readers should refer to the standard itself [68] for authoritative information.

Unnamed semaphores are created by means of the sem_init function, defned
as:

int sem_init(sem_t *sem, int pshared, unsigned value);

The function initializes the data structure of type sem_t pointed by sem, which
will represent the semaphore and must have been allocated in advance by the caller.
The semaphore has the specifed non-negative initial value. The pshared argu-
ment, if not zero, indicates that the semaphore may be shared among multiple pro-
cesses. Otherwise, the semaphore can be used only by threads belonging to the same
process as the calling thread. Since RTEMS implements the single-user, single-
process (SUSP) execution environment outlined in Chapter 6, it ignores this argu-
ment.

As is commonly done in POSIX, the return value of the sem_init function is
zero if the function succeeded, or -1 if the function failed. In the latter case, the
variable errno variable is set to a status code that provides more information on the
reason for the failure:

EINVAL indicates that value is invalid, that is, it is either negative or greater than
SEM_VALUE_MAX. The value of SEM_VALUE_MAX is guaranteed to be at least
32767 across all POSIX implementations.

ENOSPC means that the system lacks resources to create the new semaphore, of-
ten because the system-wide limit on the maximum number of semaphores,
SEM_NSEMS_MAX has been reached.

EPERM indicates that the caller does not have suffcient privileges to create the
semaphore.

The maximum value of a semaphore, like other runtime invariant values in
POSIX, must be defned as a symbolic constant in the header limits.h when it
is fxed and known at compile time. If the value is indeterminate at compile time (for
instance, because it is confgurable or depends on the amount of system resources
available at runtime) the defnition is omitted and process can retrieve the value by
means of the sysconf function.

After creating a semaphore, a pointer to its sem_t data structure must be used as
an argument of all the other functions that operate on it, including sem_destroy:

int sem_destroy(sem_t *sem);

The effect of sem_destroy is to destroy the semaphore pointed by sem. It is
responsibility of the caller to ensure that no threads are blocked on the semaphore
being destroyed because this would lead to an undefned behavior in general, al-
though implementation may choose to return the EBUSY error indication. Similarly,
the semaphore must no longer be used after destroying it, unless the semaphore is re-
initialized beforehand, by means of another call to sem_init. The possible status
codes are:

254 Real-Time Systems Development with RTEMS and Multicore Processors

EINVAL The sem argument does not represent a valid semaphore.
EBUSY There are threads currently locked on the semaphore.

Named semaphores exist as global objects in the system. A unique name (a char-
acter string) is used to get access to them. As it happens with other POSIX objects,
like fles, the same function sem_open can be used both to create a semaphore and
to connect the calling process to an existing semaphore:

sem_t *sem_open(const char *name, int flags, ...);

Its arguments are the name of the semaphore the function should operate upon
and a set of flags, which affects some aspects of the function’s behavior. Generally
speaking, the name must conform to the rules for a pathname in order to be valid.
Moreover, to guarantee that two processes refer to the same semaphore when they use
the same name, it must start with a slash (/). Depending on the flags, the function
may need two additional arguments, indicated by ... in the prototype above.

After a successful call to this function, the calling process gets a pointer to the
sem_t structure that represents the semaphore and all threads belonging to the call-
ing process can use it. If an error occurs, the function returns the special value
SEM_FAILED and sets errno to a status code.

The flags argument is the bitwise or combination of the following two fags:

O_CREAT When set, this fags allows sem_open to create the semaphore if it does
not exist already. In this case, sem_open takes two additional arguments:
• mode_t mode determines the access permissions of the newly created

semaphore, and
• unsigned value is its initial value.

O_EXCL This fag shall only be set together with O_CREAT. When set, it causes
sem_open to fail when trying to create a semaphore that already exists. The
existence check and the creation are carried out in an atomic step with respect to
other tasks doing the same.

The most common status codes that sem_open may report through errno are:

ENOENT The semaphore does not exist, but flags did not include O_CREAT.
EEXIST The semaphore already exists, but both O_CREAT and O_EXCL were set in

flags.
EINVAL The given name is not a valid name for a semaphore, or the initial

value of the semaphore specifed together with O_CREAT was greater than
SEM_VALUE_MAX.

EACCES The semaphore could not be accessed or created due to permission issues.

Other codes, like EMFILE, ENFILE, ENOMEM, and ENOSPC indicate that the sys-
tem lacks various kinds of resources it needs to create the semaphore.

The counterpart of sem_destroy for named semaphores are sem_close and
sem_unlink. The function sem_close, invoked as:

int sem_close(sem_t *sem);

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 255

indicates that the calling process no longer intends to use semaphore sem. As
for sem_destroy, no further operations on sem are allowed after a successful
sem_close. The only possible status code is:

EINVAL The argument sem does not point to valid semaphore.

A successful execution of sem_close does not destroy the semaphore unless it
has been previously marked by means of sem_unlink:

int sem_unlink(const char *name);

The execution of sem_unlink has two possible outcomes:

1. If no processes have the semaphore open, it destroys the semaphore immediately.
2. Otherwise, it marks the semaphore for later destruction and returns.

In the second case, the semaphore is destroyed as soon as the number of processes
that have it open drops to zero. In the meantime, any further attempt to open the
semaphore fails, as if the semaphore did not exist, and the creation of a semaphore
with the same name creates a new semaphore distinct from the previous one. The fact
that sem_unlink takes as argument the symbolic name of the semaphore, rather
than a pointer to its descriptor, enables processes to destroy or mark a semaphore for
destruction without having opened it frst.

The function sem_unlink returns zero if it succeeds. Otherwise, it returns -1
and sets errno to a status code. Possible reasons for failure include:

ENOENT No semaphores named name exist in the system.
EACCES The caller lacks the permission to destroy the semaphore.

Although unnamed and named semaphores can be used interchangeably with
most other primitives, their creation and destruction functions must not be
mismatched. For instance, a named semaphore shall not be destroyed with
sem_destroy, because this would lead to undefned results.

For both kinds of semaphore, a group of functions implements several variants of
the abstract P() and V() primitives. More specifcally, the function:

int sem_wait(sem_t *sem);

performs a P() on semaphore sem, blocking the caller if necessary. Unlike its ab-
stract counterpart, sem_wait may fail. In this case, the most common status codes
are:

EINVAL The argument sem does not point to valid semaphore.
EDEADLK The operation was not performed because it would have resulted in a

deadlock.

The function sem_trywait is the non-blocking variant of sem_wait and has
the same prototype:

256 Real-Time Systems Development with RTEMS and Multicore Processors

int sem_trywait(sem_t *sem);

Accordingly, it shall fail if the P() could not be completed immediately, reporting
the following status code:

EAGAIN The value of the semaphore sem was zero, so the operation could not be
completed immediately.

A timed-wait variant is also available, with a slightly more complex interface:

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

The additional argument abstime indicates the absolute instant in time when
any wait initiated by the function must end and the function must return to the caller,
even though the P() could not be completed successfully. In this case, the function
reports the following status code:

ETIMEDOUT The timeout specifed by abstime expired before the P() could be
concluded.

Both sem_trywait and sem_timedwait may also report the same status
codes as sem_wait. In the case of sem_timedwait the meaning of EINVAL has
been extended to also indicate that the abstime argument was invalid.

The timeout is expressed as a structure of type struct timespec that contains
a time value specifcation and has already been introduced in Section 6.6. In the case
of sem_timedwait the reference clock is CLOCK_REALTIME, the system-wide
realtime clock that measures the time elapsed since the Epoch.

The V() operation is performed by the sem_post POSIX function:

int sem_post(sem_t *sem);

There are no variants of this function because V() is, by itself, a non-blocking
operation. The only argument of sem_post is the semaphore sem it shall operate
upon. Passing an argument that does not refer to a valid semaphore may cause the
function to fail with the following status code in errno:

EINVAL The argument sem does not point to valid semaphore.

The last semaphore-related POSIX function to be discussed here is sem_getvalue:

int sem_getvalue(sem_t *restrict sem, int *restrict val);

As it happens for the other semaphore-related functions, passing to sem_getvalue
an argument that does not refer to a valid semaphore may cause the function to fail
with the following status code in errno:

EINVAL The argument sem does not point to valid semaphore.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 257

This function stores into the variable pointed by val the current value of
semaphore sem. However, it is not as useful as it may seem because it cannot be ex-
ecuted atomically with respect to any other synchronization primitive. For instance,
trying to use a combination of sem_getvalue and sem_wait as follows is not a
good idea:

sem_t sem;
int sval, st;
...
st = sem_getvalue(&sem, &sval);
if(st == 0 && sval > 0) st = sem_wait(&sem);
...

This fragment of code is not equivalent to sem_trywait because nothing pre-
vents another task from changing the value of the semaphore between the invocation
of sem_getvalue and sem_wait, thus possibly causing sem_wait to block the
caller even though sval was greater than zero.

Mutual exclusion semaphores
Mutual exclusion semaphores, called mutex in the POSIX standard, are a specialized
kind of semaphore. They are optimized, as their name itself suggests, for mutual
exclusion. Accordingly, there are several important differences with respect to the
general-purpose semaphores described previously:

• Mutual exclusion semaphores can only have either 1 (unlocked) or 0
(locked) as a value.

• The P() and V() primitives that operate on a mutual exclusion semaphore
may not be placed arbitrarily in the code. They must always appear as pairs
that bracket the critical regions associated with the semaphore.

• In return for these restrictions, mutual exclusion semaphores offer operat-
ing system designers more opportunities for optimization. Therefore, they
are likely to be more effcient than general-purpose semaphores.

• Specialization also gives another beneft. For mutual exclusion semaphores
it becomes possible to address the unbounded priority inversion problem
described in Section 8.1.

• Last, but not the least, mutual exclusion semaphores, unlike general-
purpose semaphores, can be used as a building block to implement moni-
tors.

As for other POSIX objects, each mutex is characterized by a set of attributes,
stored in a mutex attribute object of type pthread_mutexattr_t that must be
mentioned upon mutex creation. Table 7.6 lists the POSIX function related to mutex
attributes and attribute objects that RTEMS supports. As usual, the mutex attribute
object must be initialized before use by means of the function:

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

258 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.6
RTEMS Mutex Attributes, POSIX API

Function
pthread_mutexattr_init
pthread_mutexattr_destroy

Purpose
Initialize a mutex attribute object
Destroy a mutex attribute object

pthread_mutexattr_getpshared
pthread_mutexattr_gettype
pthread_mutexattr_getprotocol
pthread_mutexattr_getprioceiling

Get the pshared mutex attribute (1)

Get the type mutex attribute
Get the protocol mutex attribute
Get the prioceiling mutex attribute

pthread_mutexattr_setpshared
pthread_mutexattr_settype
pthread_mutexattr_setprotocol
pthread_mutexattr_setprioceiling

Set the pshared mutex attribute (1)

Set the type mutex attribute
Set the protocol mutex attribute
Set the ceiling mutex attribute

(1) Unused in RTEMS.

TABLE 7.7
Default Values of Mutex Attributes, POSIX API

Attribute Value
pshared PTHREAD_PROCESS_PRIVATE
type PTHREAD_MUTEX_DEFAULT
protocol PTHREAD_PRIO_NONE
prioceiling Maximum priority supported by the scheduler

This function initializes the mutex attribute object pointed by attr and sets
all the attributes it contains to their default values, listed in Table 7.7. The mean-
ing of its return value and the status codes it returns are the same as for the
pthread_attr_init function described in Chapter 5.

Symmetrically, the function:

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

destroys the mutex attribute object pointed by attr and releases any dynamic mem-
ory possibly allocated for it by pthread_mutexattr_init. Also in this case, the
returned status codes are the same as for pthread_attr_destroy.

The pshared attribute can be set to either PTHREAD_PROCESS_PRIVATE (the
default) or PTHREAD_PROCESS_SHARED by means of the functions:

int pthread_mutexattr_getpshared(
const pthread_mutexattr_t *restrict attr,
int *restrict pshared);

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 259

TABLE 7.8
Possible Values of the type Mutex Attribute

Value Meaning
PTHREAD_MUTEX_DEFAULT Undefned behavior on recursive lock and errors
PTHREAD_MUTEX_NORMAL Self-deadlock on recursive lock, undefned behavior on errors
PTHREAD_MUTEX_RECURSIVE Enable lock count for recursive lock and unlock
PTHREAD_MUTEX_ERRORCHECK Enable additional error checks, also w.r.t. condition variables

int pthread_mutexattr_setpshared(
pthread_mutexattr_t *attr, int pshared);

Both functions take a pointer attr to an initialized mutex attribute object as frst
argument. For getpshared the second argument is a pointer to an int variable
where the function will store the value of the attribute fetched from the attribute
object. Instead the second argument of setpshared is an int that represents the
value the attribute must be set to.

As it happens with most of the functions that get and set an attribute to be dis-
cussed in the following, both getpshared and setpshared may optionally return
a non-zero status code when they detect that attr is invalid:

EINVAL The attr argument does not point to an initialized attribute object.

In addition, setpshared may also fail if its argument pshared is not one of
the legal values of the pshared attribute:

EINVAL The pshared argument is neither PTHREAD_PROCESS_PRIVATE nor
PTHREAD_PROCESS_SHARED.

When the pshared attribute of a mutex is set to PTHREAD_PROCESS_PRIVATE,
the mutex shall be used only by threads belonging to the same process as the thread
that created the mutex, otherwise the result is undefned. Instead, if the attribute is set
to PTHREAD_PROCESS_SHARED, any thread that has access to the area of memory
where the mutex object is stored may operate on it.

In general, the added fexibility may come together with a performance penalty,
so it is important to use PTHREAD_PROCESS_SHARED only when needed. In the
specifc case of RTEMS, getting and setting this attribute is supported but has no
effect because this operating system supports a multithreaded, single-process execu-
tion model.

As detailed in Table 7.8, the type attribute of a mutex lets programmer choose
among different levels of error checks and, most notably, enable the recursive lock
feature previously mentioned. It can be retrieved from, and stored into, an attribute
object by means of the functions:

260 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.9
Possible Values of the protocol Mutex Attribute

Value Meaning
PTHREAD_PRIO_NONE Disable all protocols against priority inversion
PTHREAD_PRIO_INHERIT Priority inheritance protocol
PTHREAD_PRIO_PROTECT Immediate priority ceiling protocol, see the prioceiling attribute

int pthread_mutexattr_gettype(
const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(
pthread_mutexattr_t *attr, int type);

A related attribute, whose possible values are listed in Table 7.9, is protocol. It
can be accessed by means of the functions:

int pthread_mutexattr_getprotocol(
const pthread_mutexattr_t *restrict attr,
int *restrict protocol);

int pthread_mutexattr_setprotocol(
pthread_mutexattr_t *attr, int protocol);

and allows the caller to enable either the priority inheritance protocol or the immedi-
ate priority ceiling protocol. Both algorithms have been discussed in Section 8.1. For
what concerns protocols suitable for multicores, MrsP cannot be selected through
the POSIX interface because this interface does not provide a way to set the required
per-scheduler ceiling priorities. Instead, RTEMS automatically uses OMIP instead
of priority inheritance on multicore systems.

When choosing the immediate priority ceiling protocol, the prioceiling at-
tribute must also be set to the desired ceiling. This attribute can be set and retrieved
by means of the functions:

int pthread_mutexattr_getprioceiling(
const pthread_mutexattr_t *restrict attr,
int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(
pthread_mutexattr_t *attr, int prioceiling);

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 261

TABLE 7.10
RTEMS Mutex Primitives, POSIX API

Function Purpose
pthread_mutex_init Initialize a mutex
pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock (perform a P() operation on) a mutex
pthread_mutex_unlock Unlock (perform a V() operation on) a mutex
pthread_mutex_trylock Non-blocking variant of lock
pthread_mutex_timedlock Timed variant of lock

pthread_mutex_getprioceiling Get the current ceiling of a mutex
pthread_mutex_setprioceiling Set the ceiling of a mutex after creation

In POSIX, mutex are represented by an object with data type pthread_mutex_t.
Table 7.10 summarizes the main functions that operate on them. The function:

int pthread_mutex_init(
pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

initializes the mutex pointed by the mutex argument with the attributes pointed by
the attr argument. If default mutex attributes are appropriate, attr can be left
NULL or, even more simply, the mutex can also be statically allocated and initialized
with the help of the macro PTHREAD_MUTEX_INITIALIZER:

pthread_mutex_t a_mutex = PTHREAD_MUTEX_INITIALIZER;

In both cases, only the pthread_mutex_t object initialized in one of these
ways may be used as a mutex. In other words, a copy of a mutex is not itself a valid
mutex. If the mutex is to be shared among multiple threads or processes, they all
must have access to the area of memory where the mutex is stored. This requirement
is easily met by threads belonging to the same process, because they implicitly share
the same address space. Instead, when sharing a mutex among multiple processes, it
must be stored in an explicitly shared memory segment.

The pthread_mutex_init function returns zero upon successful completion.
It shall fail and return a non-zero status code for the following reasons:

ENOMEM The mutex could not be initialized due to lack of memory.
EAGAIN The mutex could not be initialized due to lack of other resources.
EPERM The caller does not have the permission to create a mutex.

Care must be taken not to initialize the same mutex twice without destroying it
frst because this leads to undefned behavior, although implementations may detect
this error and make pthread_mutex_init return:

262 Real-Time Systems Development with RTEMS and Multicore Processors

EBUSY The mutex has already been initialized.

In addition, implementations may check whether or not attr refers to an initial-
ized mutex attribute object and return the following status code if the check fails:

EINVAL The attr argument is neither NULL nor a reference to an initialized mutex
attribute object.

The function:

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by the mutex argument. The mutex may no longer
be used after destroying it, unless it is initialized again. Moreover, attempting to de-
stroy a mutex that is currently locked or referenced in some other ways (for instance,
through a condition variable, to be discussed next) leads to undefned behavior. Op-
tionally, pthread_mutex_destroy may detect this condition and fail, returning:

EBUSY The argument refers to a locked mutex or a mutex referenced by another
thread.

Both pthread_mutex_init and pthread_mutex_destroy may also op-
tionally return:

EINVAL The mutex pointer is invalid.

All the other mutex-related functions take a reference to a mutex object as an
argument. The function:

int pthread_mutex_lock(pthread_mutex_t *mutex);

performs a P() on the given mutex, blocking the caller if necessary. A non-blocking
variant of the same function is also available, which returns immediately if the
mutex is already locked:

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Both functions fail and return a non-zero status code when they detect one of the
following error conditions:

EINVAL The priority ceiling protocol is enabled for the mutex and the calling task
has a priority higher than the mutex ceiling.

EAGAIN The mutex is recursive and it could not be acquired without exceeding the
maximum lock count.

Moreover, pthread_mutex_lock shall also fail if:

EDEADLK Additional error checks are enabled for the mutex (it is of type
PTHREAD_MUTEX_ERRORCHECK) and the operation would lead to a self-
deadlock because the calling task already owns the mutex.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 263

The same status code may also be returned if pthread_mutex_lock was able
to detect that the operation would lead to other kinds of deadlock. As outlined previ-
ously, being non-blocking, pthread_mutex_trylock also fails if:

EBUSY The mutex is already locked.

A timed variant of pthread_mutex_lock also exists, which enables the caller
to exercise an even fner control on the maximum amount of time that could be spent
waiting:

int pthread_mutex_timedlock(
pthread_mutex_t*restrict mutex,
const struct timespec *restrict abstime);

As for sem_timedwait, the additional argument abstime points to a struct
timespec and indicates the absolute instant in time when any wait initiated by the
function must end and the function must return to the caller. Besides the status codes
specifed for pthread_mutex_lock, this function may also return:

EINVAL The structure pointed by abstime is invalid.
ETIMEDOUT The timeout specifed by abstime expired before the P() could be

concluded.

A mutex that is currently locked by a thread can be released only by the same
thread, by means of the function:

int pthread_mutex_unlock(pthread_mutex_t *mutex);

If there are threads blocked on the mutex then one of them, chosen according to
the scheduling policy, acquires the mutex and is allowed to continue, otherwise the
mutex becomes unlocked. For a recursive mutex, this is done only when the number
of outstanding lock operations performed on the mutex by the calling thread goes
down to zero, otherwise this function has no other effect besides decrementing the
lock counter itself. As for pthread_mutex_lock and _trylock, it is recom-
mended that the _unlock function returns:

EINVAL The mutex pointer is invalid.

when it detects that the object pointed by mutex is not a valid, initialized mutex.
The last two functions listed in Table 7.10 pertain only to a mutex for which the

immediate priority ceiling protocol is enabled, that is, for a mutex whose protocol
attribute has been set to PTHREAD_PRIO_PROTECT. They allow the caller to re-
trieve and set the ceiling of a mutex after creation and have the following prototype:

int pthread_mutex_getprioceiling(
const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

264 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.11
RTEMS Condition Variable Attributes, POSIX API

Function Purpose
pthread_condattr_init Initialize a condition variable attribute object
pthread_condattr_destroy Destroy a condition variable attribute object

pthread_condattr_getpshared Retrieve the pshared attribute (1)

pthread_condattr_setpshared Set the pshared attribute (1)

(1) Unused in RTEMS.

int pthread_mutex_setprioceiling(
pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

The function pthread_mutex_getprioceiling stores in the location
pointed by prioceiling the current priority ceiling of mutex.

Instead, the function pthread_mutex_setprioceiling must frst lock the
mutex, as pthread_mutex_lock would do, but without necessarily adhering to
the immediate priority ceiling protocol. Then, it must store the current ceiling of the
mutex into the location pointed by old_prioceiling and change it to the new
value prioceiling. Last, it must unlock the mutex and return to the caller.

Both functions shall return the following non-zero status code when they detect
the corresponding error condition:

EINVAL The protocol attribute of the given mutex is PTHREAD_PRIO_NONE.
EPERM The caller does not have suffcient privileges to perform the requested oper-

ation.

Moreover, pthread_mutex_setprioceiling shall also fail when the inter-
nal pthread_mutex_lock failed, and return the same status codes. It should be
noted that, according to the POSIX standard, implementations are free to follow or
not follow the immediate priority ceiling protocol when locking the mutex as part
of pthread_mutex_setprioceiling. In the frst case, programmers must be
careful not to incur in the following failure reason:

EINVAL The mutex uses the PTHREAD_PRIO_PROTECT (immediate priority ceil-
ing) protocol, the implementation adheres to this protocol when locking the
mutex within pthread_mutex_setprioceiling, and the priority of the call-
ing thread was higher than the current ceiling of the mutex.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 265

TABLE 7.12
RTEMS Condition Variable Primitives, POSIX API

Function Purpose
pthread_cond_init Initialize a condition variable
pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable
pthread_cond_timedwait Like pthread_cond_wait, but with a timeout

pthread_cond_signal Signal a condition variable
pthread_cond_broadcast Unblock all threads blocked on a condition variable

Condition variables
A POSIX condition variable is an object of type pthread_cond_t. They are
used in concert with mutexes to implement monitors, as described in Section 7.3.
Condition variables can be confgured in the usual way, by means of attributes
stored in an attribute object of type pthread_condattr_t. As shown in
Table 7.11, this kind of attribute object is initialized and destroyed by means of
the pthread_condattr_init and pthread_condattr_destroy functions,
respectively. They are analogous to their counterpart that work on mutex attribute
objects:

int pthread_condattr_init(pthread_condattr_t *attr);
int pthread_condattr_destroy(pthread_condattr_t *attr);

The only condition variable attribute supported (but ignored) by RTEMS at the
time of this writing is pshared, which has the same meaning as the attribute with
the same name defned for mutex attribute objects and already discussed previously.

Table 7.12 lists the primitives related to condition variables. The function:

int pthread_cond_init(
pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

initializes the condition variable referenced by cond, setting its attributes as spec-
ifed by attr. As for a mutex, if default attributes are appropriate for a condition
variable, attr can be left NULL, and static allocation and initialization becomes
possible as well:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

As for a mutex, a copy of a condition variable is not a valid condition variable and
shall not be used. The function pthread_cond_init returns zero upon successful
completion or a non-zero status code if it detected an error. The function shall fail if:

ENOMEM The condition variable could not be initialized due to lack of memory.

266 Real-Time Systems Development with RTEMS and Multicore Processors

EAGAIN The condition variable could not be initialized due to lack of other re-
sources.

Initializing the same condition variable twice without destroying it frst leads
to undefned behavior, although implementations may detect this fact and make
pthread_cond_init return the following status code:

EBUSY The condition variable has already been initialized.

Similarly, implementations may check whether or not attr refers to an initialized
condition variable attribute object and return the following status code if the check
fails:

EINVAL The attr argument is neither NULL nor a reference to an initialized con-
dition variable attribute object.

The function:

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond. After the condition variable has
been destroyed, any reference to it becomes invalid until the condition variable is
initialized again, by means of a new call to pthread_cond_init.

Also in this case, destroying a condition variable that has not been initialized, or
destroying a condition variable while some threads are waiting on it leads to unde-
fned behavior, although some implementations of pthread_cond_destroy may
carry out more thorough checks and fail with the following status codes:

EINVAL The condition variable has not been initialized.
EBUSY There are threads currently waiting on the condition variable.

The function:

int pthread_cond_wait(
pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

blocks the calling thread on the condition variable referenced by cond and releases
the mutex referened by mutex in an atomic operation, thus performing the POSIX
counterpart of the abstract wait operation described in Section 7.3.2.

The calling thread must own the mutex referenced by mutex, which is assumed
to protect the boundary of the monitor to which cond belongs. Otherwise, unde-
fned behavior results unless mutex is of type PTHREAD_MUTEX_ERRORCHECK, in
which case the function shall fail and report a non-zero status code as detailed in the
following.

When the calling thread is eventually unblocked successfully by some other
thread, the pthread_cond_wait function must reacquire the mutex, blocking
again if necessary, before returning. As usual, the function shall return zero to indi-
cate that it completed successfully. The implementation shall also detect the follow-
ing error and return the corresponding non-zero status code:

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 267

EPERM The mutex is of type PTHREAD_MUTEX_ERRORCHECK and the calling
thread does not own the mutex.

Moreover, it is recommended that the function also checks the validity of the
objects referenced by cond and mutex and report an error if the check fails:

EINVAL The cond argument does not refer to a valid and initialized condition vari-
able object, or the mutex argument does not refer to a valid and initialized mutex
object.

The timed variant of the primitive has an additional argument abstime:

int pthread_cond_timedwait(
pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

Unlike pthread_cond_wait, this function shall fail and return to the caller
when the absolute time specifed by abstime is reached before the calling thread
is unblocked because the condition variable has been signaled or broadcast. How-
ever, the actual return may take place later than expected because the function must
nonetheless acquire the mutex again before returning, and this may take extra time.

In addition to the reasons previously listed for pthread_cond_wait, this func-
tion shall also fail because:

ETIMEDOUT The timeout specifed by abstime expired before the wait could be
successfully concluded.

EINVAL The structure pointed by abstime is invalid.

The function:

int pthread_cond_signal(pthread_cond_t *cond);

performs the POSIX counterpart of the abstract signal operation on a condition
variable. The argument cond is a reference to the condition variable to be signaled.

Besides the differences between the abstract operation and its concrete
POSIX counterpart already described in Section 7.3, the POSIX standard ex-
plicitly states that spurious wakeups might also occur. In other words, a single
pthread_cond_signal might wake up more than one thread blocked on the con-
dition variable.

The standard leaves this possibility open to allow a more effcient implementa-
tion of condition variables on multiprocessor and multicore systems. At the same
time, it does not hinder the effciency of the upper layers of software built upon con-
dition variables. This is because spurious wakeups occur with low probability and,
for the reasons described in Section 7.3.2, a POSIX thread that continues after a
pthread_cond_wait has to check that the condition it was waiting for is indeed
satisfed in any case.

268 Real-Time Systems Development with RTEMS and Multicore Processors

The standard does not defne any failure reasons for the function
pthread_cond_signal. However, it recommends that the function checks
the validity of cond and returns the following status code if the check fails:

EINVAL The argument cond does not refer to a valid, initialized condition variable.

If the implementation opts not to perform the recommended check, the result of
operating on an invalid condition variable is undefned.

A variant of pthread_cond_signal unblocks all threads currently waiting on
a condition variable referenced by cond:

int pthread_cond_broadcast(pthread_cond_t *cond);

The possible status code the function may return are the same as for
pthread_cond_signal.

Although the abstract defnition of monitor previously given does not
comprise a function like this and it could be implemented in terms of
pthread_cond_signal, it is nonetheless more effcient and quite convenient
from the practical point of view whenever a thread knows that it has made possi-
ble for multiple threads currently blocked on the same condition variable to con-
tinue their work. Mutual exclusion among them is still guaranteed because they
will have re-acquire the mutex that protects the monitor before returning from their
pthread_cond_wait or _timedwait and starting to operate on monitor data.

7.5 BARRIERS
7.5.1 GENERAL DEFINITION

A barrier is a synchronization object that enables a number of tasks to wait until all
of them have reached a programmer-defned milestone in their execution, and then
continue concurrently. This is useful in a lot of different circumstances, for instance:

• A set of cooperating tasks may need to go through an initialization phase
that they perform independently from each other before starting normal op-
eration. A barrier can be used to ensure that all these tasks have completed
their initialization—that is, their milestone—before any of them enters nor-
mal operational mode.

• Especially on multicore systems, it may be fruitful to split a time-
consuming, computation-intensive job into chunks, to be performed con-
currently by N tasks running on different cores. A barrier can guarantee
that all tasks have completed their share of the job before they continue
with further processing.

As shown in Figure 7.12, a barrier must be created before use, like it happens with
all other synchronization objects. Since barriers use up system resources, it is also
advisable to destroy them when they are no longer needed. In order to synchronize a
set of N tasks, appropriate calls to the barrier wait function must be inserted in each

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 269

Barrier

τ1

Barriers are created and
destroyed with

rtems_barrier_create
 and rtems_barrier_delete

τ2 τN⋯

Tasks may reach the barrier
and execute

rtems_barrier_wait
in any order

All tasks are unblocked together when
all N tasks have reached the barrier

(automatic release) or
rtems_barrier_release
is executed (manual release)

FIGURE 7.12 Task synchronization by means of a barrier (Classic API).

of them, immediately after they reached their milestone and before they perform any
subsequent operation.

If the number N of tasks to be synchronized is fxed and known in advance, upon
barrier creation, an automatic-release barrier can automatically unblock the N − 1
tasks already blocked on the barrier when the last one (that is, the N-th) reaches the
synchronization point. In other words, with this kind of barrier the frst N − 1 tasks
that reach the barrier get blocked. When the N-th and last task eventually calls the
barrier wait function, it does not block at all and also unblocks all the other tasks.

On the other hand, if the number of tasks to be synchronized may vary from
one scenario to another or is unknown when the barrier is created, a manual-release
barrier can be opened by explicitly calling a barrier release function. This unblocks
all the tasks currently blocked on the barrier, regardless of how many there are.

7.5.2 CLASSIC API

The classic API functions that operate on a barrier are depicted in Figure 7.12 and
listed in Table 7.13. The following function creates a barrier:

rtems_status_code rtems_barrier_create(
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id);

As most other RTEMS objects, a barrier has a user-defned name and a unique
identifer, which the function rtems_barrier_create stores into the location
pointed by the argument id upon successful completion. The barrier identifer must
be used to refer to the barrier in all subsequent operations on the barrier itself, except

270 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.13
RTEMS Barrier Primitives, Classic API

Function Purpose
rtems_barrier_create Create a barrier
rtems_barrier_ident Find the identifer of a barrier given its name
rtems_barrier_delete Delete a barrier

rtems_barrier_wait Wait on a barrier until it opens
rtems_barrier_release Manually open (release) a barrier

rtems_barrier_ident. The argument attribute_set specifes whether the
barrier to be created must be an automatic-release or a manual-release barrier. It may
have the following values:

RTEMS_BARRIER_AUTOMATIC_RELEASE The barrier is automatically opened
(released) and all tasks waiting on it are unblocked when maximum_waiters
have called the barrier wait operation. A manual, premature release is still pos-
sible when less than the specifed number of tasks are waiting, by means of the
corresponding function, to be discussed next.

RTEMS_BARRIER_MANUAL_RELEASE The barrier never opens automatically and
the argument maximum_waiters is ignored. The barrier must be opened man-
ually by calling the function rtems_barrier_release.

The rtems_barrier_create function returns RTEMS_SUCCESSFUL when it
completes successfully, or one of the following status codes upon failure:

RTEMS_INVALID_NAME The barrier name is invalid.
RTEMS_INVALID_ADDRESS The id pointer is NULL.
RTEMS_TOO_MANY The maximum number of barriers allowed in the system has

been reached and no more can be created. The maximum number of barriers is set
via the RTEMS_CONFIGURE_MAXIMUM_BARRIERS confguration item, as de-
scribed in Section 2.4.

The utility function:

rtems_status_code rtems_barrier_ident(
rtems_name name,
rtems_id *id);

looks for a barrier with a given name and stores its identifer into the location pointed
by id. Besides RTEMS_SUCCESSFUL, it may return the error codes:

RTEMS_INVALID_NAME No barriers with the given name have been found.
RTEMS_INVALID_NODE Barriers can only be accessed locally, but the barrier

name correspond to a barrier object that resides on a remote node.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 271

When a barrier is no longer in use it should be destroyed to free the resources
associated with it. This is done by the function:

rtems_status_code rtems_barrier_delete(
rtems_id id);

This function may fail for the following reasons:

RTEMS_INVALID_ID The barrier identifer given in the id argument is invalid.

If some threads are blocked on the barrier when it is deleted, they are all un-
blocked. In this case, their barrier wait operation, rtems_barrier_wait, fails
and returns the RTEMS_OBJECT_WAS_DELETED status code.

A thread signals that it has reached its milestone and waits for the others by calling
the function:

rtems_status_code rtems_barrier_wait(
rtems_id id,
rtems_interval timeout);

This function may block the calling thread until the barrier is manually
opened (for a manual-release barrier) or until the number of threads specifed in
maximum_waiters upon barrier creation has reached the milestone. As a conse-
quence, for manual-release barriers the calling thread is always blocked, whereas for
automatic-release barriers it may or may not be blocked depending on whether or
not the desired number of threads that arrived at the barrier has been reached.

The argument timeout specifes the maximum amount of time the function is
allowed to block the caller before failing. The special value RTEMS_NO_TIMEOUT
indicates that the calling thread is willing to potentially wait forever. The
rtems_barrier_wait returns RTEMS_SUCCESSFUL when it succeeds or one of
the following status codes when it fails:

RTEMS_INVALID_ID The barrier identifer given in id is invalid.
RTEMS_TIMEOUT The given timeout was not RTEMS_NO_TIMEOUT and it ex-

pired before the barrier was opened, either manually or automatically.
RTEMS_OBJECT_WAS_DELETED The barrier was deleted while it was still closed.

All tasks blocked on it have been unblocked prematurely.
RTEMS_UNSATISFIED The calling thread could not wait on the barrier because a

deadlock was detected in the thread queue enqueue logic.

Both an automatic-release and a manual-release barrier can be opened (released)
by calling the function:

rtems_status_code rtems_barrier_release(
rtems_id id,
uint32_t *released);

The argument id is the identifer of the barrier to be opened. The func-
tion stores into the location pointed by released the number of threads that

272 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 7.14
RTEMS Barrier Primitives, POSIX API

Function Purpose
pthread_barrier_init Initialize an automatic-release barrier
pthread_barrier_destroy Destroy a barrier

pthread_barrier_wait Wait on a barrier until it opens

were waiting on the barrier and have been unblocked. The function returns either
RTEMS_SUCCESSFUL when successful, or one of the following status codes upon
failure:

RTEMS_INVALID_ID The barrier identifer given in id is invalid.

For manual-release barriers, this is the only way to open a barrier. For automatic-
release barriers, the barrier can be opened either manually or automatically. In the
second case, the threads waiting on the barrier have no way to tell the two scenarios
apart.

7.5.3 POSIX API

The POSIX standard specifes a kind of barrier that is simpler than the ones offered
by the Classic API of RTEMS and, basically, corresponds to an automatic-release
barrier. The POSIX functions that operate on a barrier are listed in Table 7.14.

The function:

int pthread_barrier_init(
pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr,
unsigned count);

is the POSIX counterpart of rtems_barrier_init. In POSIX, a barrier is imple-
mented as an object of type pthread_barrier_t, whose storage must be allo-
cated and managed by the user. The function pthread_barrier_init initializes
the barrier object referenced by barrier. The barrier will open automatically when
count threads perform the barrier wait operation. Only the barrier object referenced
by barrier must be used in subsequent barrier operations, namely, the copy of a
barrier object is not itself a valid object and shall not be used.

Unlike rtems_barrier_init, which accepts barrier attributes directly as
an argument, the argument attr of pthread_barrier_init is instead a
pointer to a separate barrier attribute object. The barrier attribute object is of type
pthread_barrierattr_t and must be initialized and set up on its own, by means
of the functions listed in Table 7.15. If default attributes are desired, attr can be a

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 273

TABLE 7.15
RTEMS Barrier Attributes, POSIX API

Function Purpose
pthread_barrierattr_init Initialize a barrier attribute object with default attributes
pthread_barrierattr_destroy Destroy a barrier attribute object

pthread_barrierattr_getpshared Get the pshared attribute (1)

pthread_barrierattr_setpshared Set the pshared attribute (1)

(1) Unused in RTEMS.

NULL pointer. The function pthread_barrier_init returns zero upon success-
ful completion. Upon failure, it shall return one of the following non-zero status
codes instead:

ENOMEM There is not enough memory to initialize the barrier object.
EAGAIN The system lacks some resources, other than memory, to initialize the bar-

rier object.
EINVAL The value of count is zero. This value is invalid because the barrier would

invariably be open.

Trying to initialize an already initialized barrier object leads to undefned behav-
ior, whether or not there are threads blocked on it, although implementations are
encouraged to perform more thorough error checks and return one of the following
additional status codes if these checks fail:

EINVAL The attr argument is not NULL but it does not point to an initialized
barrier attribute object.

EBUSY The barrier argument refers to a barrier object that has already been ini-
tialized and there possibly are other threads blocked on it.

Barrier attribute objects must be initialized before use by means of the function:

int pthread_barrierattr_init(pthread_barrierattr_t *attr);

The function initializes the barrier attribute object pointed by attr and flls it
with default attribute values. If attr points to a barrier attribute object that has
already been initialized, results are undefned. The function returns zero upon suc-
cessful completion. Upon failure, it shall instead return:

ENOMEM There is not enough memory to initialize the barrier attribute object.

It is advisable to destroy barrier attribute objects when they are no longer in
use, to reclaim the resources that the system allocated for them. This is done by

274 Real-Time Systems Development with RTEMS and Multicore Processors

calling the following function, which accepts a reference to a barrier attribute object
as argument:

int pthread_barrierattr_destroy(
pthread_barrierattr_t *attr);

It is not mandatory for pthread_barrierattr_destroy to check the valid-
ity of the attr argument, but implementations are encouraged to do so and return
the following status code if the check fails:

EINVAL The attr argument does not refer to an initialized barrier attribute object.

Similarly, a barrier object should be destroyed when it is no longer in use, by
means of the function:

int pthread_barrier_destroy(pthread_barrier_t *barrier);

After calling this function, the barrier object referenced by barrier must no
longer be used. In general, the results of destroying a barrier object that has not
been initialized or while there are some threads blocked on it is undefned. However,
implementations are encouraged to perform additional checks and possibly return
the following status codes:

EINVAL The barrier referenced by barrier has not been initialized or has been
destroyed before calling this function.

EBUSY The barrier argument refers to a barrier object that is currently in use,
that is, there are some threads blocked on it.

In the second case, and this is the opposite of the approach taken by the RTEMS
Classic API, the barrier object is not destroyed and the threads stay blocked on the
barrier.

A thread signals that it reached its milestone and possibly waits until the barrier
opens by invoking the function:

int pthread_barrier_wait(pthread_barrier_t *barrier);

The only argument of the function is barrier, a pointer to the barrier object to be
used for synchronization. Its semantics are simpler than its Classic API counterpart,
rtems_barrier_wait, because the POSIX standard only specifes automatic-
release barriers. Therefore:

• If the number of threads that invoked pthread_barrier_wait on
the same barrier, including the calling thread, is still less than the
number specifed upon barrier creation—in the count argument of
pthread_barrier_init—this function blocks the caller.

• If the specifed count has been reached, this function does not block the
caller and opens the barrier, thus also releasing all the other threads blocked
on the barrier itself.

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 275

TABLE 7.16
RTEMS Events, Classic API

Function
rtems_event_send
rtems_event_receive

Purpose
Send a set of events to a task
Receive, and possibly wait for, a set of events

Upon successful completion of a barrier synchronization, all threads return from
pthread_barrier_wait and continue execution. Exactly one of them, chosen ar-
bitrarily, receives the reserved return value PTHREAD_BARRIER_SERIAL_THREAD,
whereas all the others receive zero. Therefore, care should be taken not to consider
PTHREAD_BARRIER_SERIAL_THREAD as an error indication.

Strictly speaking, calling pthread_barrier_wait on a barrier that is not ini-
tialized leads to undefned behavior, but the standard encourages implementations to
detect this error and return the following status code instead:

EINVAL The barrier referenced by barrier has not been initialized or has been
destroyed before calling this function.

7.6 EVENTS
With respect to semaphores and monitors, events provide a lower-level, but
higher-performance inter-task synchronization mechanism, which also supports the
exchange of a limited quantity of information. Events can be sent and received only
through the Classic API, by means of the directives listed in Table 7.16.

Each task has 32 event fags associated with it, numbered from 0 to 31, in one-to-
one correspondence with events. Tasks can refer to events by means of the macros
RTEMS_EVENT_0 . . . RTEMS_EVENT_31. When another task or an interrupt han-
dler sends an event to a task, the corresponding event fag is set and the event be-
comes pending for that task.

If an event is sent to a task in which the corresponding event fag is already pend-
ing, the new event is ignored. In other words, event fags have no queues associated
with them. Therefore, if an event is sent to a task more than once before being re-
ceived, all events but the frst are lost. An event carries no information by itself, ex-
cept the event number, which can nevertheless be used to convey some information
to the target task.

A task can receive events, and possibly block while doing so, by calling the event
receive directive, specifying as argument a set of events it is interested in. Depending
on the caller’s choice, the event receive directive blocks the calling task until either
all events in the set, or at least one of them, become pending. At this point, the
directive clears the event fags corresponding to the events it received and returns to

276 Real-Time Systems Development with RTEMS and Multicore Processors

the caller. The caller is informed about the set of events that has been received and
can then act accordingly.

Additional fags and parameters of the event receive directive allow the caller to
ask for a non-blocking operation, which only polls event fags, or set an upper cap on
the blocking time. The event send and receive directives are automatically serialized
when they access event fags, hence there is no risk of events being lost or duplicated
when these directives execute concurrently. Interrupt handlers have no event fags
and cannot use the event receive directive, although they can send events to tasks.

The rtems_event_send sends a set of events to a task:

rtems_status_code rtems_event_send(
rtems_id id,
rtems_event_set event_in

);

The target task is identifed by means of its unique id, which is returned upon task
creation and can also be retrieved at a later time given the task name, as described in
Section 5.4. The special value RTEMS_SELF is allowed and enables a task to send an
event to itself without explicitly specifying its own task identifer. The set of events
to be sent is represented by event_in, an instance of the rtems_event_set data
type. An event set is built by a bitwise OR of the event macros discussed previously.
For instance, RTEMS_EVENT_0 | RTEMS_EVENT_4 is a set that contains events 0
and 4. The macro RTEMS_ALL_EVENTS is an event set that contains all 32 events.

Sending events to a task may unblock that task, if it was waiting for these events
and their arrival fulflls its waiting condition. This may lead to the preemption of
the task that called rtems_event_send if the target task is managed by the same
scheduler and has a higher scheduling priority. If the target task is not waiting for the
events being sent, or their arrival is not yet suffcient to fulfll its waiting condition,
these events become pending and will be used to satisfy receive operations in the
future. The rtems_event_send directive returns to the caller one of the following
status codes:

RTEMS_SUCCESSFUL The events have been sent successfully.
RTEMS_INVALID_ID The events have not been sent because the task identifer id

was invalid.

A task receives events by invoking the rtems_event_receive directive:

rtems_status_code rtems_event_receive(
rtems_event_set event_in,
rtems_option option_set,
rtems_interval ticks,
rtems_event_set *event_out

);

The event_in argument specifes the set of events the task is interested in,
while option_set indicates the kind of receive operation to be performed. The

Inter-Task Synchronization and Communication (IPC) Based on Shared Memory 277

option_set argument is built by bitwise OR-ing together the macros that rep-
resent the options to be selected. Two mutually exclusive options determine how
event_in is interpreted:

RTEMS_EVENT_ALL indicates that the receive directive is satisfed when all events
in event_in have been sent to the calling task.

RTEMS_EVENT_ANY means that the receive directive is satisfed when one or more
events in event_in have been sent to the calling task.

Two more options determine whether or not the receive directive shall wait until
it is satisfed:

RTEMS_NO_WAIT indicates that the receive directive shall return immediately and
report an error if it cannot be satisfed immediately. The argument ticks is ig-
nored when this option is set.

RTEMS_WAIT means that the receive directive shall wait up to the maximum amount
of time specifed by the ticks argument to be satisfed. If ticks is set to the
special value RTEMS_NO_TIMEOUT the directive may potentially wait forever.

The default options, which can be requested by using RTEMS_DEFAULT_OPTIONS
as option_set, are RTEMS_EVENT_ALL and RTEMS_WAIT.

When invoked, the rtems_event_receive directive examines the event fags
of the calling task to check whether the condition specifed by event_in and
option_set is already satisfed. In this case, the directive succeeds and returns
immediately. Otherwise, if the option_set indicates that the directive shall wait,
it blocks the calling task until the waiting condition is satisfed by the arrival of some
new events or the amount of time specifed by the ticks argument expires.

When successful, the directive clears the event fags of the events it is reporting to
the caller and stores this set of events in the output argument pointed by event_out.
In all cases, rtems_event_receive returns to the caller a status code that refects
its outcome. The possible status codes are:

RTEMS_SUCCESSFUL The directive concluded successfully and stored the events it
received in the location pointed by event_out.

RTEMS_INVALID_ADDRESS The event_out pointer was invalid, the directive
failed without receiving any events.

RTEMS_UNSATISFIED The option_set specifed that the directive should not
wait (the RTEMS_NO_WAIT option was set) and the set of pending events at the
time of the call was insuffcient to satisfy the directive.

RTEMS_TIMEOUT The directive waited for the amount of time specifed by ticks,
then failed because the pending events at the time of the call, plus the events sent
to the task afterwards, were insuffcient to satisfy the directive.

Finally, the special value RTEMS_PENDING_EVENTS can be used as event_in
to indicate that rtems_event_receive shall immediately return the set of pend-
ing events, without clearing the corresponding event fags. This allows the caller to
“peek” event fags without affecting the outcome of future receive operations.

278 Real-Time Systems Development with RTEMS and Multicore Processors

7.7 SUMMARY
This chapter described the inter-task communication and synchronization methods
based on shared memory for data transfer. The chapter started with an introduction
to race conditions in Section 7.1 and explained how lock-based mutual exclusion can
solve this ubiquitous problem that affects virtually all concurrent software systems.

The next two sections, Sections 7.2 and 7.3 provided information about
semaphores and monitors, which are probably the most classic inter-task communi-
cation and synchronization methods. Then, the chapter discussed the RTEMS APIs
related to semaphores and monitors in Section 7.4.

The chapter ended with a description of two more specialized, but still very use-
ful in practice, inter-task communication and synchronization methods, barriers and
events, in Sections 7.5 and 7.6. While this chapter focused only on the mechanisms
of inter-task communication and synchronization, their impact on task execution and
scheduling will be the topic of the next chapter.

8 IPC, Task Execution, and
Scheduling

CONTENTS

8.1 Priority Inversion ...279
8.1.1 Mutual Exclusion and Priority Inversion..280
8.1.2 The Priority Inheritance Protocol ...283
8.1.3 The Priority Ceiling Protocol..286

8.2 Deadlock..290
8.2.1 Defnition and Examples of Deadlock..290
8.2.2 Deadlock in the Producers–Consumers Problems............................294
8.2.3 Deadlock Prevention...296
8.2.4 Deadlock Avoidance ...299
8.2.5 Deadlock Detection and Recovery ...306

8.3 Summary..309

Any kind of lock-based task interaction in a real-time system, and especially mutual
exclusion, must be designed, analyzed, and used with great care because it inevitably
introduces timing dependencies among tasks with different priorities.

Accordingly, this chapter tackles two extremely important issues, priority inver-
sion and deadlock, which may impair the timings of any real-time system if its lock-
based inter-task synchronization and communication mechanisms are used improp-
erly. In both cases, we discuss appropriate suitable design-time and implementation-
time methods that can solve those issues.

8.1 PRIORITY INVERSION
A very common occurrence in a real-time system is that a high-priority and a
low-priority task share some data and have critical regions controlled by the same
semaphore. It may then happen that the low-priority task enters its critical region
frst and forces the high-priority task to wait if it also tries to do the same.

This phenomenon is known as priority inversion and, on the one hand, is essential
to ensure that mutual exclusion (as any other lock-based synchronization method)
works correctly. On the other hand, though, it undermines the task priority assign-
ment because, if the mutual exclusion mechanism were not in effect, the high-priority

279

280 Real-Time Systems Development with RTEMS and Multicore Processors

task would always be preferred over the lower-priority one for execution and would
never be blocked by it.

If we stay with lock-based synchronization, a certain amount of priority inversion
is unavoidable but, to make things worse, in Section 7.2 we suggested that plain mu-
tual exclusion semaphores with a FIFO queuing policy may lead to an issue known
as unbounded priority inversion.

Informally speaking, this is a pathological condition in which a task is potentially
postponed by lower-priority tasks as it tries to enter a critical region and the post-
ponement may last for an unbounded amount of time. If not adequately addressed,
priority inversion can therefore adversely affect system schedulability, to the point
of making the response time of some tasks completely unpredictable.

8.1.1 MUTUAL EXCLUSION AND PRIORITY INVERSION

Even though proper software design techniques may alleviate the priority inversion
issue, for example, by avoiding useless or redundant critical regions, it is also clear
that the problem cannot be completely solved in this way, unless the system is de-
signed banning all forms of mutual exclusion.

Fortunately, it is possible to improve the semaphore-based mutual exclusion
mechanism to guarantee that the worst-case blocking time BTI endured by each in-i
dividual task in the system is bounded. The worst-case blocking time can then be
calculated and used to refne the response time analysis (RTA) method as discussed
in Section 4.1.3, in order to determine worst-case response times.

In order to better understand how unbounded priority inversion may arise, what it
really means in practice, and to appreciate how mutual exclusion semaphores can be
improved to address this issue, let us discuss a very simple example involving only
three tasks. The same example will also be used in the following to illustrate how the
countermeasures being described work.

Let us consider three periodic tasks τ1, τ2, and τ3, listed in order of decreasing
priority. Their running intervals are depicted in Figure 8.1 as rectangles flled with
different shades of gray. A darker color corresponds to a higher priority. For the sake
of simplicity, we assume that these tasks are under the control of a fxed-priority
scheduler on a single-core processor.

The fgure shows how the tasks evolve with time. Each task has its own horizontal
timeline. As mentioned previously, while a task is running, there is a rectangle with
the appropriate color on its timeline. Time intervals in which a task is ready for
execution, but not running, are represented by a solid line. Dotted lines represent
time intervals in which a task is waiting, because either its next instance has not been
released yet, or it is blocked on a semaphore.

For the sake of the example we will also assume that τ1 and τ3 share some infor-
mation, stored in a certain shared memory object O and protected by a mutual ex-
clusion semaphore s. Accordingly, τ1 and τ3 make access to O only within suitable
critical regions, properly delimited by P(s) and V(s) as described in Section 7.2.2.
Instead, τ2 does not share any information with τ1 and τ3. Its only relationship with

U
n
b
o
u
n
d
ed

p
ri

o
ri

ty
 i
n
ve

rs
io

n

Time

τ3

r3,j

Id
le

 t
im

e

τ3,jτ3

τ2

τ1

τ3,j

Nonblocking
P(s)

r1,k r2,m

τ2,m

Other releases of tasks with

priority between τ1 and τ3

τ1,k

Blocking
P(s)

Running task, shades of
gray denote task priorities

Blocked task

Ready task

tpi

FIGURE 8.1 Unbounded priority inversion with a plain mutual exclusion semaphore.

them is that its priority is lower than the priority of τ1, but higher than the priority
of τ3.

Even in a moderately complex system, this peculiar priority relationship may very
well be unknown to the programmers who wrote τ1, τ2, and τ3. When different parts
of a system are designed and implemented by different people, it is in fact normal
that programmers are unaware of the exact architecture of the parts of the system
they are not directly involved with.

Moreover, according to the Rate Monotonic (RM) priority assignment, the priority
of a task depends only on its period. When different software subsystems—likely
written by distinct groups of programmers, at different times, and made of several
tasks each—are put together to build the complete application, the priorities of tasks
belonging to different subsystems can easily become intertwined.

Referring back to Figure 8.1, the following sequence of events may occur:

• At the far left of the fgure, before r3, j, the system is idle and no tasks are
running.

• At r3, j the j-th instance of τ3 (the lowest-priority task) becomes ready for
execution, while τ1 and τ2 are still waiting for their next instance to be
released. Since at this time τ3 is the only ready task, the scheduler moves it
to the running state and starts executing it.

• After executing for a while, τ3, j attempts to enter its critical region by
means of a P(s) located at the critical region’s boundary. Since no other
tasks are accessing the shared object O at the moment, the P(s) is non-
blocking. Hence, τ3, j is allowed to continue immediately and keeps running
within the critical region.

IPC, Task Execution, and Scheduling 281

282 Real-Time Systems Development with RTEMS and Multicore Processors

• At r1,k the k-th instance of τ1 is released, while τ3, j is still in its critical
region. As a consequence, the scheduler preempts τ3, puts it back into the
ready state, then moves τ1 into the running state and executes it.

• At r2,m the m-th instance of τ2 is also released. The scheduler moves τ2
into the ready state, but this has no effect on the execution of τ1. Since the
priority of τ1 is higher than the priority of τ2, it continues execution without
being preempted.

• As τ1 proceeds with its execution, tries to enter its critical region by exe-
cuting a P(s), exactly as τ3 did earlier. At this point, τ1 blocks because the
value of semaphore s is zero. This behavior is completely correct because
the purpose of s is to enforce mutual exclusion when accessing shared ob-
ject O and τ3 is still within a critical region associated with O.

• Since τ1 is now blocked, the scheduler must pick another task to execute.
Among the two possible candidates, τ2 and τ3, the scheduler chooses τ2
because its priority is higher than the priority of τ3. Therefore, τ2 is brought
to the running state and executed.

Starting from tpi in Figure 8.1, a priority inversion region begins, because τ3 (the
lowest-priority task in the system) blocks τ1 (the highest-priority one) and the system
executes τ2 (another task with a lower priority than τ1). This region is highlighted
with a light gray background in the fgure. Although the existence of the priority
inversion region depends on how the mutual exclusion mechanism for shared object
O has been designed, it is crucial to determine for how long it may last.

First of all we can observe that, somewhat contrary to intuition, the duration of the
priority inversion region does not depend on any of the two tasks directly responsible
for it, τ1 and τ3, because:

• Task τ1 is blocked and, by defnition, it cannot perform any further action
on its own, until τ3 unblocks it by exiting from its critical region and exe-
cuting V(s).

• Task τ3 is ready for execution but it cannot proceed unless the scheduler
decides to run it. Until then, it may not continue through its critical region
and eventually reach the V(s) at its boundary.

The duration of the priority inversion region depends instead on how much time
τ2 and any other tasks whose priority is lower than the priority of τ1 but higher
than the priority of τ3 spend running. As long as at least one of these tasks is ready
for execution, the scheduler will never run τ3 and, as a consequence, τ3 will never
unblock τ1.

Bringing this line of reasoning to an extreme, these tasks could take turns entering
the ready state and being executed so that, even if none of them keeps running for an
inordinate amount of time individually, one of them is always running at any given
instant. This is the reason why τ1 might be blocked for an unbounded amount of time
by tasks like τ2, although they all have a priority lower than τ1 itself.

To conclude, the amount of blocking experienced by τ1 does not depend on the
lower-priority task τ3 that is directly blocking it, but mainly on other lower-priority

IPC, Task Execution, and Scheduling 283

tasks like τ2. Unfortunately, as discussed previously, in a complex software system
built by integrating multiple components, the programmers who wrote τ1 and τ3 may
even be unaware that such tasks exist.

It is also important to remark that, as for many other concurrent programming
issues, this is not a systematic error. Instead, it is a time-dependent issue that arises
only in certain specifc, low-probability scenarios like the one depicted in Figure 8.1.
Hence, it may easily go undetected when the system is bench tested.

8.1.2 THE PRIORITY INHERITANCE PROTOCOL

Looking back at the unbounded priority inversion example presented in the previous
section, we may notice that the issue stemmed from a bad interaction between two
key operating system mechanisms, namely, task synchronization and scheduling. So
far, these mechanisms have been defned to be completely independent from each
other.

By intuition, we can imagine that the issue may be solved by making the two
mechanisms cooperate. This cooperation can be implemented, for instance, by allow-
ing the mutual exclusion mechanism to temporarily boost task priorities as needed.
This is exactly the way the priority inheritance protocol proposed by Sha, Rajkumar,
and Lehoczky [110] works.

The general idea of the priority inheritance protocol is to dynamically increase
the priority of a task as soon as it is blocking some higher-priority tasks, and run the
task at increased priority until it is no longer blocking them. For example, as long as
a task (like τ3 in Figure 8.1) is blocking a higher-priority task (like τ1 in the same
fgure) it inherits its priority.

In general, as long as a task is blocking a set of higher-priority tasks, it inher-
its the highest priority among them. This prevents any mid-priority task from pre-
empting the low-priority task and unduly making the blocking experienced by the
high-priority tasks any longer than necessary or, even worse, unbounded.

More formally, the priority inheritance protocol relies on the following set of hy-
potheses and assumptions about the system being considered:

• The concept of task priority becomes more complex because it is now nec-
essary to distinguish between the initial, or baseline, priority given to a task
by the scheduling algorithm and its current, or active, priority.

• The baseline priority is used as the initial, default value of the active priority
but the priority inheritance protocol may increase the latter when the task
is blocking some higher-priority tasks.

• All tasks are under the control of a fxed-priority scheduler and run on a
single-core processor. The scheduler works according to active priorities.

• If there are two or more highest-priority tasks ready for execution, the
scheduler picks them in frst-come, frst-served (FCFS) order.

• Semaphore wait queues are also ordered by active priority. In other words,
when a task executes a V(s) on a semaphore s and there is at least one

Time

τ3

r3,j

Id
le

 t
im

e

τ3,jτ3

τ2

τ1

τ3,j

Nonblocking
P(s)

r1,k r2,m

Other releases of tasks with

priority between τ1 and τ3

τ1,k

Blocking
P(s)

Running task, shades of
gray denote task priorities

Blocked task

Ready task

τ3,j

τ1,k

τ2,m

Bounded
p. inversion

V(s)

tpi tv

FIGURE 8.2 Bounded priority inversion in the priority inheritance protocol.

task blocked on a P(s), the highest-priority waiting task is unblocked and
moved into the ready state.

• Semaphore waits due to mutual exclusion are the only source of blocking in
the system. Other causes of blocking such as, for example, I/O operations,
must be taken into account separately, as discussed in Section 4.1.3.

The priority inheritance protocol itself consists of the following set of rules [126]:

1. When a task τ1 attempts to enter a critical region that is “busy” because its con-
trolling semaphore has already been taken by another task τ3, it blocks. At the
same time, τ3 inherits the active priority of τ1 if the active priority of τ1 is higher
than its own.

2. As a consequence, τ3 executes the rest of its critical region with an active priority
at least equal to the priority it just inherited. In general, a task inherits the highest
active priority among all tasks it is blocking.

3. When a task τ3 exits from a critical region and it is no longer blocking any other
task, its active priority goes back to the baseline priority.

4. Otherwise, if τ3 is still blocking some tasks—this may happen when critical re-
gions are nested into each other—it inherits the highest active priority among
them.

Although this falls short of being a formal proof of correctness, we can now an-
alyze how the priority inheritance protocol performs on the simple example previ-
ously shown in Figure 8.1. The result is illustrated in Figure 8.2 and commented in
the following.

284 Real-Time Systems Development with RTEMS and Multicore Processors

285 IPC, Task Execution, and Scheduling

• The system behaves as before until tpi because no task is blocking any other
task until that point. All tasks are scheduled according to their initial, or
baseline, priority.

• The priority inheritance protocol is called into action at tpi, when τ1 blocks
on P(s). At this point, τ3 inherits the priority of τ1 because it is blocking
τ1 through semaphore s.

• Therefore, regardless of the presence of other mid-priority tasks, like τ2,
the scheduler resumes the execution of τ3 because it operates according
to the active priority of the ready tasks. Accordingly, this portion of τ3’s
execution has been colored with a darker shade of gray in the fgure.

• Task τ3 eventually exits from its critical section at tv and releases the mutual
exclusion semaphore by means of a V(s). The frst effect of this primitive
is to unblock τ1, which acquires semaphore s and returns to the ready state.

• The second effect pertains to the priority inheritance protocol. Since now
τ3 is no longer blocking any higher-priority task, its active priority goes
back to its baseline priority. As a consequence, the scheduler immediately
preempts τ3 to execute τ1.

• After tv, τ1 keeps executing until it terminates or blocks again. Only at this
point mid-priority tasks, like τ2, get a chance of being executed.

The example shows that the length of the priority inversion region is now bounded
and limited to the interval between tpi and tv highlighted in the fgure. This is because:

• Any tasks with a priority lower than the baseline priority of τ1 cannot pre-
empt τ3, and hence, they cannot increase the amount of time τ3 spends in
its critical region.

• Any tasks with a priority higher than the baseline priority of τ3, but lower
than the baseline priority of τ1, cannot preempt τ3 either, because of the
priority boost the priority inheritance protocol granted to it.

Tasks with a priority higher than the baseline priority of τ1 can still preempt τ3.
This may be due to two distinct reasons:

• If their baseline priority is higher than the baseline priority of τ1, they can
interfere with the execution of τ1 in any case, regardless of what the prior-
ity inheritance protocol does, but schedulability analysis already takes this
interference into account.

• If their baseline priority was lower than the baseline priority of τ1, but their
active priority is currently higher, this is due to the priority inheritance pro-
tocol and, also in this case, it can be proven that the additional time spent
by τ3 in its critical region for this reason is bounded.

If no such tasks exist, the worst-case length of the priority inversion region is
equal to the maximum amount of time that τ3 can possibly spend within its critical
region. In the general case, the worst-case blocking is given by Equation (4.7) in
Section 4.1.3.

286 Real-Time Systems Development with RTEMS and Multicore Processors

However, the same example also highlights that, within the priority inversion re-
gion [tpi, tv], τ3 now blocks both τ1 and τ2, whereas is only blocked τ1 in the previous
example. This fact leads us to observe that the priority inheritance protocol—like
any other algorithm dealing with unbounded priority inversion—entails a trade-off
between two contrasting goals:

• ensure there is a fnite upper bound on the length of priority inversion re-
gions, and

• introduce additional blocking in the system.

More specifcally, for the priority inheritance protocol we identify two distinct
kinds of blocking:

1. Direct blocking occurs when a high-priority task tries to acquire a mutual exclu-
sion semaphore before accessing a shared object, while the semaphore is held by
a lower-priority task. This is the kind of blocking affecting τ1 in this case. Direct
blocking is an unavoidable consequence of mutual exclusion and its goal is to
ensure the consistency of shared objects.

2. Push-through blocking is the additional blocking introduced by priority inheri-
tance and is the kind of blocking experienced by τ2 in the example. It occurs when
an intermediate-priority task (like τ2) is not executed even though it is ready be-
cause a lower-priority task (like τ3) has inherited a higher priority. This kind of
blocking may affect a task even if it does not actually use any shared object,
exactly as it happens with τ2 in the example, but it is necessary to avoid the un-
bounded priority inversion.

8.1.3 THE PRIORITY CEILING PROTOCOL

Referring back to the example shown in Figure 8.1, we may observe that one under-
lying cause of the unbounded priority inversion was the preemption of τ3 by τ1 at
r1,k, while τ3 was in its critical region. If some mechanism could delay the context
switch from τ3 to τ1 until after the execution of V(s) by τ3, that is, until the end of
its critical region, the issue would not have occurred.

On a single-core system, a very straightforward solution to the unbounded prior-
ity inversion problem is to forbid preemption completely while a critical region is
being executed. This may be obtained by temporarily disabling the operating system
scheduler or, even more drastically, turning interrupts off. As a result, any task that
successfully enters a critical region implicitly gains the highest possible priority in
the system, so that no other task can preempt it. The task goes back to its regular
priority when it exits from the critical region.

The main advantage of this strategy is its simplicity of implementation. Moreover,
it is easy to be convinced that it really works. Informally speaking, if no tasks can
ever lose the processor while they are holding a mutual exclusion semaphore, they
will not directly block any higher-priority tasks by defnition.

287 IPC, Task Execution, and Scheduling

However, as hinted previously, the method invariably introduces a new kind of
blocking, of a different nature and quite pervasive. More specifcally, if any other
task τ2 becomes ready while a low-priority task τ3 is within a critical region, it will
not get executed until τ3 exits from the critical region. This happens regardless of the
priority of τ2 and whether or not it has any relationship with τ3.

The problem has been solved anyway, because the amount of blocking endured
by τ2 is indeed bounded by the worst-case amount of time τ3 may actually spend
running within its critical region. However, all tasks in the system are affected by
this blocking.

For this reason, this way of proceeding is appropriate only for very short critical
regions, because it causes pervasive, and often unnecessary, blocking. In addition, it
can hardly be applied to multi-core processors, in which globally disabling interrupts
is a complex and often time-consuming affair. This does not mean the underlying
idea is ineffective, though. Indeed, we shall see that the approach just discussed is
merely a strongly simplifed version of the priority ceiling emulation protocol, to be
described next.

Even if the priority inheritance protocol described in Section 8.1.2 enforces an
upper bound on the number and the duration of the blocks that a high-priority task
τ1 can encounter, it has a couple of shortcomings:

• In the worst case, if τ1 tries to acquire in sequence n mutual exclusion
semaphores that have been locked by n lower-priority tasks, it will be
blocked for the duration of n critical regions, one for each lower-priority
task. This phenomenon is called chained blocking.

• The priority inheritance protocol, by itself, does not prevent deadlocks.
They must therefore be addressed by some other means, for example, by
imposing and respecting a total order on the semaphores in the system, as
discussed in Section 8.2.3.

All of these issues are addressed by the priority ceiling protocol and its immediate
variant, also proposed by Sha, Rajkumar, and Lehoczky [110]. They both possess the
important property that a high-priority task can be blocked by lower-priority tasks at
most once during its execution, and they also prevent deadlocks. Moreover, the worst-
case blocking time is still bounded as stated by Equation (4.8) in Section 4.1.3.

The underlying concept of the priority ceiling protocol is to extend the priority
inheritance protocol with an additional rule that controls whether or not tasks can
immediately acquire a free mutual exclusion semaphore. The goal of the additional
rule is to ensure that, if a task τ3 has already acquired a semaphore and it could block
a higher-priority task τ1 for this reason, then no other semaphores that could also
block τ1 can be acquired by any other task except τ3 itself.

As a consequence a task can be blocked not only because it attempted to acquire a
busy semaphore, as it happens for all kinds of mutual exclusion semaphore, but also
when acquiring a free semaphore could lead a higher-priority task to be blocked more
than once. In other words, the priority ceiling protocol trades off some useful prop-
erties for yet another form of blocking that did not exist in the priority inheritance

288 Real-Time Systems Development with RTEMS and Multicore Processors

protocol. The new kind of blocking that the priority ceiling protocol introduces, in
addition to direct and push-through blocking mentioned previously, is called ceiling
blocking.

The underlying hypotheses of the original priority ceiling protocol are the same
as the ones of the priority inheritance protocol, listed in Section 8.1.2. In addition:

• It is assumed that each semaphore has a fxed ceiling value associated with
it. It can easily be calculated during software design and implementation,
by looking at the application code, because it is defned as the maximum
initial priority of all tasks that use the semaphore.

As in the priority inheritance protocol, each task has a current (or active) priority
that is greater than or equal to its initial (or baseline) priority, depending on whether
it is blocking some higher-priority tasks or not. The priority inheritance rules are
exactly the same in both cases. Moreover, the priority ceiling protocol operates ac-
cording to the following additional rule:

1. When a task τ tries to acquire a semaphore, its active priority is checked against
the ceiling of all currently busy semaphores, except the ones that τ has already
acquired in the past and not released yet.

2. If the active priority of τ is higher than all those ceilings, τ can proceed with the
semaphore operation and possibly block if the semaphore is busy.

3. Otherwise, τ is blocked until this condition becomes true, regardless of whether
the semaphore it is trying to acquire is busy or free. Afterwards, τ can proceed
with the semaphore operation.

The immediate priority ceiling protocol (also called priority ceiling emulation
protocol) takes a more straightforward approach. Also for this reason, it has been
specifed together with priority inheritance in the POSIX standard [68] and is avail-
able in RTEMS. Namely, the immediate priority ceiling protocol raises the priority
of a task to the ceiling associated with a semaphore as soon as the task acquires it,
rather than only when the task is actually blocking a higher-priority task. More for-
mally, at each instant the active priority of a task is equal to the maximum among its
baseline priority and the ceilings of all semaphores it has acquired and not released
yet so far.

It can be proven that, when using the immediate priority ceiling protocol on a
single-core system, a task can only be blocked at the very beginning of its execution,
that is, as soon as it is released. Additional differences with respect to the original
priority ceiling protocols are:

• The immediate priority ceiling protocol is easier to implement, as blocking
relationships must not be monitored.

• It leads to less context switches, since blocking may only occur prior to the
frst execution.

• On average, it requires more priority movements, as this happens with all
semaphore operations, rather than only if a task is actually blocking an-
other.

Time

τ3

r3,j

Id
le

 t
im

e

τ3,jτ3

τ2

τ1

τ3,j

Nonblocking
P(s)

r1,k r2,m Other releases of tasks with

priority between τ1 and τ3

τ1,k

Nonblocking
P(s)

Running task, shades of
gray denote task priorities

Blocked task

Ready task

τ1,k

τ2,m

V(s)

Bounded
p. inversion

tp tv

FIGURE 8.3 Bounded priority inversion in the immediate priority ceiling protocol.

To conclude this section, let us refer back to the simple scenario shown in
Figure 8.1 and analyze the behavior of the immediate priority ceiling protocol on
it. As shown in Figure 8.3:

• Task instance τ3, j assumes an active priority equal to the baseline priority of
τ1 as soon as it executes its P(s) at tp. The P(s) is nonblocking as before
and τ3, j keeps executing in the critical region with the increased priority.

• Neither the release of τ1,k at r1,k, nor the release of τ2,m at r2,m cause the
preemption of τ3 because, even though the baseline priority of both these
tasks is higher than τ3’s.

• As a consequence, both τ1,k and τ2,m are blocked by τ3, j until it executes its
V(s) at tv. Note that, as stated previously, these task instances are indeed
blocked at the very beginning of their execution, that is, as soon as they are
released.

• At tv task instance τ3, j returns to its baseline priority, the priority inversion
region that started at r1,k ends, and the scheduler picks τ1,k for execution.
From this point on τ2,m is no longer blocked by τ3, j either. Instead, it suffers
ordinary interference from τ1,k due to the baseline priority order.

• The P(s) that τ1,k executes at a later time is nonblocking. This further
confrms the fact that, with the immediate priority ceiling protocol, a task
can be blocked only once at the beginning of its execution, and τ1,k already
suffered such a block.

• Eventually, τ2,m runs when τ1,k completes its execution.

IPC, Task Execution, and Scheduling 289

290 Real-Time Systems Development with RTEMS and Multicore Processors

Other variants of the original priority ceiling protocol are or were in practical
use as well. For instance, RTAI, one of the Linux real-time extensions, made use of
the adaptive priority ceiling protocol. It still had a strong similarity with the algo-
rithms just discussed, but entailed a different trade-off between the effectiveness of
the method and implementation complexity.

8.2 DEADLOCK
Task execution always requires and relies on the availability of a number of re-
sources, for instance, memory areas to store data and devices to perform input–output
operations. Resources must often be shared among tasks because they are in limited
supply. Hence, tasks have to compete with each other to acquire them, possibly wait-
ing if the resources they need are not immediately available.

The concept of acquiring a resource also applies not only to physical objects, like
the ones just mentioned, but also to software entities, like the right to access a shared
object in a mutually exclusive way, or the ability to retrieve a data item that another
task produced.

Waiting for resources in an uncontrolled way is however dangerous because it
may lead a set of tasks to block indefnitely and prevent them from concluding their
job. This is what happened with the incorrect solution to the producers–consumers
problem described at the end of Section 7.2.4. Even if the probability of this phe-
nomenon, usually called deadlock, is generally low, it must still be dealt with ade-
quately, especially in systems that are performing critical activities.

8.2.1 DEFINITION AND EXAMPLES OF DEADLOCK

A deadlock can be defned in the most general way as a condition in which a set of
tasks is blocked waiting for an event that can only be generated by another task in
the same set. When focusing on resources, there is a deadlock when all tasks in a set
are waiting for some resources that have been previously acquired by other tasks in
the same set. The consequences of a deadlock are twofold:

• The deadlocked tasks will no longer make any progress, that is, they will
stay blocked forever.

• All the resources allocated to them will never be released, and hence, they
will never again be available to other tasks.

Four conditions, originally formulated by Havender [55] and Coffman et al. [37],
are individually necessary and collectively suffcient for a deadlock to occur. These
conditions are of both theoretical and practical signifcance. From the theoretical
point of view, they defne deadlock in a general way, which abstracts away as much
as possible from any irrelevant characteristics of the tasks and resources involved.
Practically speaking, they have been used as the basis for a family of deadlock pre-
vention algorithms. These algorithms are all based on the fact that, if an appropriate
policy is able to prevent one of the four condition from ever being fulflled in a

291 IPC, Task Execution, and Scheduling

ρ
2

ρ
1

τ
1

τ
2

ρ
3

τ
3

ρ
4

τ
4

ρ
6

τ
5

ρ
5

A A BC

D

FIGURE 8.4 An example of resource allocation graph.

system, then no deadlock can possibly occur in the system by defnition. The four
conditions are:

1. Mutual exclusion: Each resource can be used by at most one task at a time, so at
any given time a resource can only be either free or assigned to one task. If a task
tries to acquire a resource currently assigned to another task, it must wait.

2. Hold and Wait: The tasks involved in a deadlock must have successfully acquired
at least one resource in the past, and have not released it yet as they wait for more
resources. In other words, they must both hold some resources and wait for others.

3. Non-preemption: Any resource involved in a deadlock cannot be taken away from
the task it has been assigned to, unless the task voluntarily releases it.

4. Circular wait: The task and resources involved in a deadlock can be arranged
to form a circular chain of wait operations. That is, tasks can be ordered so that
the frst task is waiting for a resource assigned to the second, the second task is
waiting for a resource assigned to the third, and so on up to the last task, which is
waiting for a resource assigned to the frst.

Another very useful tool for reasoning about deadlock is the resource allocation
graph proposed by Holt [61]. It has the twofold goal of capturing in a rigorous way
the state of a system for what concerns resource allocation at a given instant, and
assisting in detecting deadlock conditions.

As shown in Figure 8.4, a resource allocation graph is a directed graph with two
kinds of nodes and two kinds of arcs. In the most common notation adopted, for
example, by Tanenbaum and Woodhull [119] and Silbershatz et al. [112]:

• circular nodes represent tasks, and
• square nodes represent resources.

292 Real-Time Systems Development with RTEMS and Multicore Processors

The two kinds of arcs convey instead request and ownership relations between
tasks and resources. In particular:

• An arc directed from a task to a resource indicates that the task requested
the resource and is currently blocked, waiting to acquire it.

• An arc in the opposite direction, that is, from a resource to a task, indicates
that the task currently owns the resource and can therefore make use of it.

Arcs connecting two tasks, or two resources, are forbidden because they would
bear no meaning. In other words, the resource allocation graph must be bipartite with
respect to tasks and resources.

Unlike for request arcs, the existence of an ownership arc does not imply that
the corresponding task is blocked. Tasks that neither own nor are waiting for any re-
sources, as well as free resources, are often not shown in graphical representations of
resource allocation graphs, because these nodes have neither incoming nor outgoing
arcs. Moreover, the geometric shapes used to represent tasks and resources are obvi-
ously completely unimportant. In fact, in the original Holt’s paper [61] the notation
was exactly the opposite.

The resource allocation diagram depicted in Figure 8.4 represents a set of 5 tasks
and 6 resources. As an example, by looking at the diagram, we can observe that:

• Task τ1 owns resources ρ1 and ρ2 (as indicated by the two arcs labeled A)
and is not waiting for any additional resources.

• Instead, task τ5 owns ρ6 (arc B) but is blocked, because it also needs ρ5 to
proceed (arc C). Its request cannot be granted at the moment because ρ5 is
owned by τ2 (arc D).

In general, tasks that have at least one outgoing arc are blocked because they
lack some resources they need to proceed. Instead, tasks with no outgoing arcs can
proceed from the resource allocation point of view. In the fgure, all tasks except τ1
are blocked. Similarly, resources can have at most one outgoing arc, because they
can be assigned to at most one task at a time. The presence of an outgoing arc means
the resource is busy, its absence indicates that the resource is free. Incoming arcs
denote that some tasks are waiting for the resource and also necessarily imply the
presence of one outgoing arc, otherwise tasks would have been blocked improperly.

This data structure can be used by an operating system to keep track of the evolv-
ing allocation state of system resources. In this case:

• When a task τi requests a resource ρ j, the operating system checks whether
there is an outgoing arc from ρ j or not. If there is no such an arc, it may
assign the resource to τi immediately, adding an ownership arc from ρ j to
τi. Otherwise, it blocks τi and adds a request arc from τi to ρ j to memorize
the pending request. Note that deadlock avoidance algorithms, discussed in
Section 8.2.4, may compel a task to wait, even if the resource it is request-
ing is free.

293 IPC, Task Execution, and Scheduling

• When a task τi releases a resource ρ j, the operating system deletes the
ownership arc from ρ j to τi. The arc must necessarily exist because τi must
have acquired ρ j before releasing it. This fact also gives the operating sys-
tem the ability of checking whether the operation τi is trying to perform is
legitimate or not.

• If ρ j has just been released, but has incoming request arcs, the operating
system may now pick one of the tasks blocked on ρ j and reverse the direc-
tion of the corresponding request arc to transform it into an ownership arc.
Also in this case, deadlock avoidance algorithms may affect which task, if
any, the operating system is going to pick.

It has been proved that the presence of a cycle in the resource allocation graph
is a necessary and suffcient condition for a deadlock to occur. Due to this property,
the graph can be used to check whether a certain sequence of resource requests and
releases leads to a deadlock. To this purpose, the system must keep track of requests
and releases as described previously, and then check if there is a cycle in the graph
at each step.

For instance, the resource allocation graph shown in Figure 8.4 indicates a dead-
lock because τ2 → ρ3 → τ3 → ρ4 → τ4 → ρ5 → τ2 is a cycle. The related arcs are
drawn in bold in the fgure. Like for any other directed graph, arc orientation must be
taken into account when looking for cycles. For this reason, τ2 → ρ1 → τ1 ← ρ2 ← τ2
is not a cycle.

Besides generically fagging the presence of a deadlock, a cycle in the resource
allocation graph also provides additional information: If there are one or more cycles
in the graph, the deadlock involves the resources and at least all the tasks that belong
to the cycles. More specifcally, the deadlocked tasks are the ones in the cycles, plus
all the other tasks that are blocked on some resources held by one of the tasks in
the cycles. In the example of Figure 8.4, resources ρ3, ρ4, and ρ5, as well as tasks
τ2, τ3, and τ4 are directly involved in the deadlock because they belong to the cycle.
Moreover, also τ5 is deadlocked because (due to arc C) it will wait indefnitely for
ρ5, which is held by τ2.

Dealing with deadlock becomes more complex if, instead of considering individ-
ual resources as done so far, we divide resources into classes. In this case, we allow
multiple resources to be in each class and resource requests must be directed to a
class rather than to a specifc resource within it. All resources in a class are consid-
ered to be identical and any of them can be used interchangeably to satisfy a resource
request.

This is a scenario of practical interest because, for instance, in a paged memory
system, when any task dynamically requests a page to store some data, any free page
will do. Other examples of resources that can be assigned and used interchange-
ably include disk blocks (if we neglect access time optimization) and entries in most
memory-resident operating system tables.

The defnition of resource allocation graph can be extended to handle resource
classes, giving rise to a general resource allocation graph [61]. However, as also
proved in Reference [61], the theorem that relates cycles and deadlocks becomes

A

Access to the critical regions,
controlled by mutex

ρ1

τ2

τ1

Producer directly involved in
the deadlock

ρ2

Availability of free buffer
elements, controlled by empty

τ4

Other producers locked on
mutex

ρ3

Availability of full buffer
elements, controlled by full

τ3

Producers

void prod(int d) {

 P(mutex);

 P(empty);

buf[in] = d;

in = (in+1) % N;

 V(mutex);

 V(full);

}

Consumers

int cons(void) {

 int c;

 P(full);

 P(mutex);

c = buf[out];

out = (out+1) % N;

 V(mutex);

 V(empty);

 return c;

}

Consumers waiting for full
buffer elements

Any consumer that could
free a buffer element

B

C

D

E

G

F

FIGURE 8.5 A simple deadlock condition.

weaker. Namely, the presence of a cycle is still a necessary condition for a deadlock
to take place, but it is no longer suffcient. The theorem is still useful in practice,
though, because it can still be used to deny the presence of a deadlock in the system
if there are no cycles in the general resource allocation graph.

8.2.2 DEADLOCK IN THE PRODUCERS–CONSUMERS PROBLEMS

We are now in the position to analyze the deadlock condition we found in the
incorrect solution to the producers–consumers problem we have discussed at the

294 Real-Time Systems Development with RTEMS and Multicore Processors

295 IPC, Task Execution, and Scheduling

beginning of Section 7.3. The corresponding code is shown at the top of Figure 8.5
and the questionable statements in the producers’ code are highlighted in bold. To an-
alyze the system with respect to the Havender–Coffman condition stated previously,
we shall frst of all identify the following three resources in the system:

• The right to access the critical regions that manipulate the circular buffer.
Access is controlled by the mutex semaphore.

• The availability of at least one empty buffer element, determined by the
empty semaphore.

• Symmetrically, the availability of at least one full buffer element, deter-
mined by the full semaphore.

All resources can be used by at most one task at a time. For the critical regions,
this constraint is enforced by the corresponding mutual exclusion semaphore. Simi-
larly, empty and full buffer elements are acquired for exclusive use by producers and
consumers, respectively. They can be reused over time, but not used concurrently by
multiple tasks. As a consequence, the system satisfes the mutual exclusion condition.

Depending on the circumstances, producers and consumers can also satisfy the
hold and wait condition. This fact can be confrmed by looking at their code and ob-
serving that both contain multiple, potentially blocking P() primitives in sequence
without any intervening V(). When a certain task blocks on the second P(), it
clearly holds a resource (because it went past the frst P()) and waits for another
(because it is blocked on the second).

Due to the way their code has been designed, producers and consumers use re-
sources in a non-preemptive way. For instance, the producer cannot be forced to re-
lease the mutual exclusion semaphore before it gets some empty buffer space. Simi-
larly, the consumer cannot be forced to release some empty buffer space without frst
passing through its critical region, controlled by the mutual exclusion semaphore.
Therefore, the system also satisfes the non-preemption condition.

Last, but most importantly, as soon as a producer blocks on P(empty) and a
consumer is blocked on P(mutex), there is also a circular wait in the system. In
other words, the producer waits for the consumer to release the resource “availability
of at least one empty buffer element,” an event represented by V(empty), and the
consumer waits for the resource “critical region access,” whose release is marked
by a V(mutex). The fact that all four conditions are satisfed leads us to formally
conclude there is deadlock in the system.

We can draw the same conclusion by examining the resource allocation graph at
the time of the deadlock, shown in the lower part of Figure 8.5. The graph has been
constructed according to the following reasoning:

• The producer τ1 that tries to store a data item in a buffer that is completely
full acquires the mutual exclusion semaphore with P(mutex) to get ac-
cess to its critical region (arc A in the fgure), and blocks on P(empty)
waiting for a buffer element to become free (arc B). These two resources
are denoted as ρ1 and ρ2.

296 Real-Time Systems Development with RTEMS and Multicore Processors

• Any consumer like τ2 that does not block on P(full) could free a buffer
element (arc C) and signal this event by means of V(empty) but, in order
to do so, it must wait for the right of entering its critical region (arc D) by
performing a P(mutex).

• As consumers continue to arrive, full.v continues to decrease. When it
reaches zero, consumers start blocking on P(full). As τ3 does in the fg-
ure, they start waiting for the resource “availability of full buffer elements,”
represented by ρ3 (arc E). This resource is owned by τ1 (arc F) because it
is the only task that could possibly store a new data item in the buffer.

• All the other producers wait on ρ1, that is, for the right of entering their
critical region (arc G). As said previously, resource ρ1 is owned by τ1 (arc
A) because τ1 is the task that is in its critical region.

B C→
τ τThe deadlock involves tasks and because they part of the cycle. Moreover, are1 2

→ D→ AThe presence of the cycle τ1 ρ2 τ2 ρ1 → τ1 indicates there is a deadlock.

→E

τ1. Both paths denote that these tasks are waiting for resources owned by

Fit also involves all tasks like τ3, due to τ3 ρ3 → τ1, and all tasks like τ4, due to
G A

τ1, which is part of the deadlock cycle.
On the contrary, it is also easy to note that, if we rearrange P(mutex) and

P(empty) in the producers’ code and put them in the right order (P(empty) frst
and P(mutex) next) the cycle cannot exist anymore. This is because the presence of
arc A prevents the existence of arc B (because a producer that has acquired mutex
cannot wait on empty afterwards) and vice versa (because a producer waiting on
empty cannot own mutex).

→→

8.2.3 DEADLOCK PREVENTION

Generally speaking, according to an idea originally proposed by Havender [55], it is
possible to prevent deadlocks by making sure that at least one of the necessary con-
ditions identifed in Section 8.2.1 can never be satisfed in the system. This constraint
is enforced by establishing appropriate software design and implementation rules.

1. Generally, the mutual exclusion condition cannot be removed by working directly
on the resources involved because it often depends on some hardware characteris-
tics of the resources themselves. For instance, a printer cannot easily be modifed
to allow multiple tasks to print concurrently and, even if this were possible, the
output would be illegible. However, it is often possible to achieve the same result
by means of an additional software layer, often called spooler, positioned between
the tasks and the device.
In its simplest form, a spooler is a task that, on one side, has permanent, exclusive
ownership of a device, like the printer in our example. It is easy to prove that,
if a resource is assigned permanently to a task, a circular wait that involves the
resource may not occur, because other tasks may not wait for it. Therefore, a
deadlock may not occur on the device side of the spooler.

τ4 ρ1

297 IPC, Task Execution, and Scheduling

On the other side, the spooler collects print requests from other tasks in the sys-
tem, and carries them out one at a time. Even if the spooler still sends documents
to the printer one at a time, in order to satisfy the printer’s mutual exclusion re-
quirement, it is also able to accept multiple, concurrent print requests because it
makes use of other resources, like memory buffers or mass storage, to collect and
temporarily store the documents to be printed. The overall result is that, from the
point of view of the requesting tasks, the mutual exclusion constraint has been
lifted and deadlock may not occur on their side.
Deadlocks can still occur within the spooler, though. This may happen, for in-
stance, if the spooler has to compete with other tasks and possibly wait to acquire
the memory or disk buffers it needs for temporary storage. Unless the spooler is
designed properly, there is therefore the possibility of merely moving the risk of
deadlock from one part of the system to another. Another, even more important
issue with spooling techniques is the limited range of devices they can be applied
to. For example, it is likely impossible to use a spooler on a graphics card.

2. We can falsify the hold and wait condition by working on either of its two parts.
For instance, we can prevent tasks from waiting for resources by assigning them
all the resources they may possibly need during their execution right from the
beginning, when tasks are created. In a general-purpose system, this goal may be
diffcult to achieve because it is hard to know in advance what resources a task
will need during its execution. For example, the amount of memory needed by a
word processor is highly dependent on which document the user is working on at
the moment, and this is hard to predict in advance.
Even when it is possible to identify the set of resources to be assigned at task cre-
ation, the effciency of resource utilization will usually be low with this method.
This is because it forces system designers to request resources well in advance, on
the basis of predicted or potential needs rather than facts. For instance, when fol-
lowing this approach, the word processor would immediately request an amount
of memory large enough for the biggest document it can handle, although in real-
ity the user is only going to write a one-page letter. As a result, a potentially large
quantity of memory will stay unused, but still unavailable to other tasks, until the
word processor terminates.
In relatively simple real-time systems, however, these disadvantages may no
longer be a limiting factor because many resources, like hardware devices, are
naturally tied to certain tasks. For example, allocating an analog-to-digital con-
verter (ADC) to the task that acquires, validates, and flters the data it produces
when the task is created is likely to be perfectly acceptable. Early allocation and
low utilization are not an issue in this case, because no other tasks in the system
would be capable of using the ADC anyway, even if it were available. Moreover,
accepting that tasks may wait for resources in a hard real-time system implies
being able to calculate an upper bound on the waiting time, a non-trivial task in
many cases.
Alternatively, tasks could be constrained to release all the resources they own
before requesting new ones, thus invalidating the hold part of the condition. The

298 Real-Time Systems Development with RTEMS and Multicore Processors

new set of resources being requested can include, of course, some of the old ones
if they are still needed, but the task must accept a temporary loss of resource
ownership anyway. Although it is correct in theory, this approach is rarely used in
practice because many resources are stateful. If they are lost and then reacquired,
the resource state is lost, too.

3. In order to falsify the non-preemption condition for a resource we must introduce
a resource preemption mechanism, that is, a way of forcibly take away a resource
from a task. Like for the mutual exclusion condition analyzed previously, the pos-
sibility of doing this heavily depends on the resource and is often impractical. For
instance, in Chapter 3 we saw that preempting a processor is relatively straight-
forward and is done quite effciently by many operating systems.
Instead, going back to the printer we considered in previous examples, preempting
a print operation sounds awkward at best, even if the operation is later resumed
from the right place. Nevertheless, this technique was actually used in the past by
the THE operating system [45, 43]. It might preempt its printers on a page-by-
page basis and a patient operator was supposed to put the pieces together before
handing users their printouts.

4. The most popular way of attacking the circular wait condition consists of defning
a total order relation on resource classes and demanding that tasks follow the order
when allocating resources. Namely, if there are N resource classes in the system
and we uniquely label each resource class as ρi,1 ≤ i ≤ N, a suitable total order
relation is the one that orders resources by increasing index: ρ1, . . . ,ρN .
We can then express the rule on resource allocation order by stating that, if a task
already owns a resource in class ρi, it can request another resource in ρ j if and
only if i < j. It can easily be proven by contradiction that a circular wait may not
occur in the system if all tasks obey this rule [112].
Let us assume that, although all tasks followed the rule just stated, there is a
circular wait in the system. Without loss of generality, let us also assume that the
circular wait involves M tasks, τ1, . . . ,τM , and M resource classes ρq1 , . . . ,ρqM ,
with 1 < M ≤ N, so that:

τ1 owns a resource in ρq1 and waits for a resource in ρq2 ,
· · ·

τk owns a resource in ρqk and waits for a resource in ρqk+1 , 1 < k < M (8.1)
· · ·

τM owns a resource in ρqM and waits for a resource in ρq1 .

If tasks τ1, . . . ,τM−1 followed the rule, it must be qk < qk+1, 1 ≤ K < M because
each of these tasks owns a resource in class ρqk and is waiting for a resource in
class ρqk+1 . If τM also followed the rule, it must be qM < q1. We can therefore
write the following chain of inequalities:

q1 < . . . < qM < q1 (8.2)

Due to the transitive property of inequalities, we come to the contradiction q1 <
q1, thus disproving the presence of a circular wait.

IPC, Task Execution, and Scheduling 299

In a complex system, the main shortcoming of this method is the diffculty of en-
forcing the resource allocation rules, and then verifying whether they have been
followed or not. For instance, the FreeBSD operating system kernel uses this ap-
proach but, even after many years of handmade improvements, a relatively big
number of “lock order reversals” (that is, situations in which locks are actually
requested in the wrong order) were still present in the kernel code. To address
the issue, a special tool was specifcally designed to help programmers detect
them [19].

8.2.4 DEADLOCK AVOIDANCE

In the previous section we saw that the most important feature of deadlock prevention
algorithms, that is, the fact they operate at system design time, is both an advantage
and a disadvantage. On the positive side, deadlock prevention methods do not cause
any direct run-time overhead. On the other hand, they impose some design rules that
may be diffcult or inconvenient to follow.

Deadlock prevention algorithms take a different approach because they entirely
work at run time, rather than design time. Their underlying idea is to check resource
allocation requests one by one, as tasks submit them, and determine whether or not
they are safe for what concerns deadlock. In order to do this, a deadlock prevention
algorithm has to store and maintain some data structures that represent the current re-
source allocation state of the system and provide a way to predict its future evolution,
as resource allocation and releases continue to arrive. Moreover, most algorithms also
need a certain amount of advance information about possible tasks behavior to work
properly.

Unsafe requests, that is, requests that could bring the system into a deadlock,
are postponed even though the resources being requested are in fact free, and the
requesting task is blocked. Postponed requests are reconsidered at a later time, and
eventually granted when the deadlock prevention algorithm can prove their safety.
By intuition, this usually happens when other tasks release system resources, thus
moving the system into a more favorable resource allocation state.

Among all the deadlock avoidance algorithms, we will describe in detail the
banker’s algorithm, originally proposed by Dijkstra for a single resource class [42]
and later extended by Habermann to multiple resource classes [54].

In the following we will use capital letters to denote matrices and boldface to
denote vectors. Moreover, we will sometimes treat the j-th column of a matrix M
as a column vector and write it as mj. To simplify the notation, we also introduce a
weak ordering relation between vectors. In particular we state that, given two vectors
of the same length, v and w:

v ≤ w ⇐⇒ ∀i vi ≤ wi. (8.3)

Informally speaking, a vector v is less than or equal to another vector w of the
same length if and only if all its elements are less than or equal to the corresponding

300 Real-Time Systems Development with RTEMS and Multicore Processors

elements of the other one. Analogously, the strict inequality is defined as

v < w ⇐⇒ v ≤ w ∧ v (8.4)= w.

If there are n tasks and m resource classes in the system, the banker’s algorithm
must maintain the following data structures:

• A column vector t of length m, which represents the total number of re­
sources of each class initially available in the system: ⎛ ⎞

t1 ⎜ . ⎟t = ⎝ . ⎠ (8.5).
tm

The i-th element of t, denoted by ti, indicates the number of resources of
the i-th class initially available in the system. The vector t is assumed to
be constant, thus implying (somewhat unrealistically) that resources never
break up or become unavailable for use for any other reason.

• A matrix C, with m rows and n columns, that is, a column for each task and
a row for each resource class: ⎛ ⎞

c11 . . . c1n
C = ⎝. ⎠ (8.6)

cm1 . . . cmn

The elements of C represent the current resource allocation state. More
specifically, the element ci j indicates how many resources of class i are al­
located to the j-th task at the moment. As a consequence, the column vector
cj summarizes how many resources of each class are currently allocated to
the j-th task. Initially, ∀i, j ci j = 0, because it is assumed that no resources
are allocated when the system starts up, and then the contents of C change
as the system evolves.

• A matrix X , also with m rows and n columns: ⎛ ⎞
x11 . . . x1n

X = ⎝. ⎠ (8.7)
xm1 . . . xmn

This matrix represents an example of the auxiliary information about tasks
behavior needed by this kind of algorithms, because is specifies the max­
imum number of resources that each task may possibly require, for each
resource class, during its whole lifetime. In other words, it is assumed that
each task τ j will declare in advance its worst-case resource needs by means
of a column vector xj: ⎛ ⎞

x1 j ⎜ . ⎟ xj = ⎝ . ⎠ (8.8).
xm j

301 IPC, Task Execution, and Scheduling

Overall, matrix X can be built by placing all the vectors xj provided by tasks
τ j, j = 1, . . . ,n side by side. Moreover, tasks are not allowed to change their
mind about their needs unless they have no resources currently allocated to
them, that is, τ j cannot ask the banker to change its xj unless its cj is zero.
A further constraint on the value of each xj is that it must be ∀ j xj ≤ t,
otherwise τ j could never get all the resources it needs and complete its job,
even if it were executed alone in the system.

• A matrix N, representing the worst-case future resource needs of the tasks.
It has the same size as C and X , and can readily be calculated as:

N = X −C	 (8.9)

Since C changes over time, N also does. In addition, since C, X , and N
are clearly dependent on each other, real-world implementations of the
banker’s algorithm may store only two of them explicitly if they prefer
storage efficiency to execution efficiency.

• A column vector r, which represents the resources remaining in the system
at any given time: ⎞⎛

r1
. . ⎜⎝ ⎟⎠ . (8.10)r = .

rm

The elements of r can be calculated from other data structures as follows:

n
ri = ti − ∑ Ci j ∀i = 1, . . . , n. (8.11)

j=1

As it happens for N, this gives implementations the choice of not storing r
explicitly, at the expense of execution efficiency.
Informally speaking, equation (8.11) simply means that ri (the number of
remaining resources in class i) is given by ti (the total number of resources
in class i) minus the resources in that class currently allocated to any task.
This value can be calculated by summing up the i-th row of C, whose el­
ements Ci j indicate how many resources in class i have been allocated to
task τ j.

For uniformity, resource requests issued by tasks are also represented by vectors.
Namely, a request coming from task τ j is represented as a column vector qj defined
as: ⎞⎛

q1 j
. . ⎜⎝ ⎟⎠ . (8.12)qj = .

qm j

Within qj, the element qi j indicates how many resources in class i task τ j is re­
questing. A value of zero is allowed and means that τ j is not requesting any resource
of class i.

302 Real-Time Systems Development with RTEMS and Multicore Processors

Whenever it receives a new request qj from τ j, the banker executes the following
algorithm to determine whether or not the request shall be granted immediately, or
the requesting task must wait.

1. It verifes that the request is legitimate, that is, τ j is not trying to exceed xj, which
contains the maximum number of resources τ j itself declared it needs. Since the
j-th column of N, denoted by nj represents the worst-case future resource needs
of τ j, this test can be written as:

qj ≤ nj (8.13)

If the test is satisfed, the banker proceeds with the next step of the algorithm.
Otherwise, it returns an error indication to the calling task. This indication is not
deadlock-related, but it has to do with an erroneous behavior of the task.

2. It compares the request with resource availability, to check if there are enough
free resources in each class to satisfy the request immediately, without letting τ j
wait. Given that r represents the resources that are currently free in the system,
this test can be written as:

qj ≤ r (8.14)

If the test is not satisfed the request cannot be granted immediately, not for
deadlock-related reasons but because, quite simply, there are not enough resources
available at the moment. In this case, the banker blocks the requesting task until
the system evolves more favorably. Otherwise, the banker continues with the next
step of the algorithm, in which it will check whether or not granting the request
would put the system at risk of deadlock.

3. The general idea of this and the next steps is that the banker simulates the effects
of the request at hand on the resource allocation state, and then checks whether or
not the simulated state is safe for what concerns deadlock.
To carry out the simulation, the banker calculates a new state and, in particular,

0new task-specifc resource allocation information cj
0 and future needs nj , as well

as a new resource availability vector r0:

0cj := cj + qj
0nj := nj − qj (8.15)

r0 := r − qj

4. To assess the safety of the simulated state computed in the previous step, the
banker tries to build a safe sequence of tasks. To be safe, a sequence must include
all the n tasks in the system and allow each task, in turn, to reach its worst-case
resource requirement, and hence, successfully conclude its work. To build the safe
sequence, the banker makes temporary use of two additional data structures:
• A column vector w of m elements, one for each resource class. It is initially set

to the currently available resources (that is, w = r0) and tracks the evolution of
the available resources as the safe sequence is being constructed.

303 IPC, Task Execution, and Scheduling

• A row vector f, of n Boolean elements. The j-th element of the vector, f j,
corresponds to task τ j. Element f j is false if and only if task τ j has not yet
been inserted into the safe sequence. At the beginning, all elements of f are
false, because the safe sequence is still empty.

The construction of the safe sequence proceeds according to the following steps:
a. Try to fnd a task suitable for being appended to the safe sequence being

constructed. In order to be a ftting candidate, task τ j must not be part of
the safe sequence already, and must be able to reach its worst-case resource
need given the currently available resources. That is, it must be:

f j = false (τ j is not in the safe sequence yet)
∧ (8.16)
nj
0 ≤ w (there are enough resources to satisfy nj

0)

If no suitable candidates can be found, the algorithm proceeds to step 4c.
b. Append the candidate task τ j to the safe sequence. At this point, the correct

termination of τ j is guaranteed by defnition (because it will be able to get
all the resources it needs to conclude its work). Upon termination, τ j will
release all the resources it holds and the banker can update its notion of
available resources as it extends the safe sequence:

f j := true (τ j belongs to the safe sequence now)
(8.17)0w := w+ cj (τ j releases its resources upon termination)

Then, the algorithm goes back to step 4a, to further extend the sequence with
additional tasks.

c. At this stage, the safe sequence has been extended as much as possible. If
∀ j f j = true, then all tasks belong to the safe sequence and safety verifca-
tion succeeds, otherwise it fails.
Failing the safety verifcation does not necessarily imply that a deadlock
is going to occur. This is because the algorithm considers the worst-case
resource requirements stated by each task, and it is therefore being conser-
vative. Even if a system state is unsafe according to the banker’s defnition,
all tasks could still be able to conclude their work without deadlock if, for
example, they never actually request the maximum number of resources they
declared.

It should also be remarked that the preceding algorithm can arbitrarily choose any
suitable task in step 4a and does not need to backtrack when there were multiple
candidates at some steps, but the safe sequence it has constructed does not com-
prise all tasks. A theorem proved in Reference [54] guarantees that, in this case,
no safe sequence exists. The most important consequence of this property is that
is considerably reduces the computational complexity of the algorithm.

5. If the simulated state has been confrmed to be safe, then the request is granted
and the simulated state becomes the new, actual state of the system:

0cj := cj
0nj := nj (8.18)

r := r0

304 Real-Time Systems Development with RTEMS and Multicore Processors

Otherwise, the simulated state is discarded and the requesting task has to wait,
even though the resources it requested are in fact available.

The banker may force tasks to wait as they ask for additional resources, at steps 2
and 5 of the algorithm just presented. This may happen because either there are not
enough free resources to satisfy a request, or granting the request would bring the
system into an unsafe state.

We should therefore explain when and how the banker evaluates their requests
again, and possibly grant some of them. By intuition, it is pointless to do so as the
banker grants further resource allocation requests made by other tasks because, in
this case, the state of the system becomes even worse from the perspective of the
waiting tasks. It can actually be proven that, if the banker postponed a certain re-
source allocation request, a re-evaluation of the same request with even less free
resources in the system would necessarily lead to the same result.

On the contrary, the banker goes back to examine the waiting tasks’ situation
when a task releases some resources. When a task τ j releases some of the resources
it owns, it presents to the banker a release vector, lj. This column vector has one
element for each resource class and its i-th element li j indicates how many resources
of the i-th class the j-th task wants to release. As for resource requests, if a task does
not want to release any resource of a given class, it leaves the corresponding element
of lj at zero. Upon receiving a resource release request from τ j, the banker executes
the following algorithm:

1. It checks if the request is legitimate, that is, the task is trying to release only
resources it legally acquired in the past. More specifcally, it must be lj ≤ cj,
otherwise the banker gives an error indication to the calling task.

2. It updates its state variables to refect that the resources indicated in lj have been
freed, as follows:

cj := cj − lj
nj := nj + lj (8.19)
r := r + lj

Unsurprisingly, this update is symmetric with respect to the one performed in
(8.15) to simulate resource allocation. The only difference is that, in this case, the
update is performed directly and immediately on the state variables because no
safety checks are necessary.

3. In this step, the banker reconsiders the pending requests from tasks that were
blocked in step 2 (due to insuffcient resources) or step 5 (deadlock-related safety
considerations) of the resource allocation algorithm. In order to do this, the banker
follows the same algorithm as for newly arrived requests, with the exception of
step 1 because pending requests have already been proven to be legitimate.

The order in which pending requests are considered in step 3 of the resource
release algorithm just described affects the time-related properties of the tasks in-
volved, a frst-in, frst-out (FIFO) policy being a common choice because it guaran-
tees that no tasks will ever be forced to wait for an unbounded amount of time.

305 IPC, Task Execution, and Scheduling

The complexity of the banker’s algorithm is O(mn2), where m is the number of
resource classes, and n is the number of tasks in the system. Its complexity is domi-
nated by the safety assessment (step 4 of the resource request algorithm) because it
requires up to n iterations, each composed of a number of vector operations, in con-
trast with all the other steps that are made up of a fxed sequence of vector operations
on vectors of length m, each having a complexity of O(m). This overhead is incurred
on every resource allocation and release because, in the latter case, the banker has
to reconsider any waiting requests and this is done by performing again most of the
resource request algorithm.

In the safety assessment algorithm, the banker builds the safe sequence one task
at a time, without backtracking. In order to do this, it must check at most n candidate
tasks at the frst step, then up to n − 1 at the second step, and so on. The maximum
length of the sequence is n, and hence, the worst-case number of checks is:

n(n+ 1)
n +(n− 1)+ . . . + 1 = (8.20)

2

Each individual check (8.16) is made of a comparison between two scalars, as
well as a comparison between two vectors of length m, leading to a complexity of
O(m). Combining this result with the worst-case number of checks given by (8.20)
leads to a total complexity of O(mn2) for the whole inspection process.

Appending a task to the safe sequence (8.17), an operation performed at most n
times, does not worsen the complexity because the complexity of one insertion is
O(m), thus giving a complexity of O(mn) for n insertions.

So far, the banker’s algorithm has been discussed assuming that the number of
tasks n is constant. However, as seen in Chapter 5, most operating system support
the dynamic creation and termination of tasks. Luckily, the banker’s algorithm can
be easily extended to deal with this scenario. In particular:

• The creation of a new task τn+1 requires the extension of matrices C, X , and
N with an (n + 1)-th column. The additional column of C must be initial-
ized to zero because a newly created task does not own any resources. The
additional column of X must contain the maximum number of resources of
each class the new task will possibly need during its lifetime. Finally, the
initial value of the additional column of N must be xj+1, according to the
defnition of N given in (8.9).

• Similarly, when task τ j terminates the corresponding j-th column of ma-
trices C, X , and N must be suppressed—or, alternatively, it can be reused
for a new task at a later time—after confrming that the current value of
cj is zero. If this is not the case, it means τ j has concluded its execution
without releasing all the resources that have been allocated to it. Therefore,
the banker must release those resources forcibly, to enable other tasks to
use them again in the future.

306 Real-Time Systems Development with RTEMS and Multicore Processors

8.2.5 DEADLOCK DETECTION AND RECOVERY

Although in the previous sections we discussed only a couple of specific deadlock
prevention and one deadlock avoidance algorithms, they all share the same general
characteristics. Namely, deadlock prevention algorithms often impose significant re­
strictions on system designers. Avoidance algorithms require information about tasks
behavior that may or may not be readily available and have a significant run-time
overhead.

In general-purpose operating systems, a third approach is possible, which acts
even later than deadlock avoidance algorithms. With this approach the system may
enter a deadlock condition, but a deadlock detection algorithm is able to recognize it.
The system then reacts with a deadlock recovery action. Therefore, these algorithms
are collectively known as deadlock detection and recovery algorithms.

If there is only one resource in each resource class, a straightforward way to de­
tect a deadlock condition is to maintain a resource allocation graph as described in
Section 8.2.1 and update it whenever a resource is requested, allocated, and released.
With the help of an efficient underlying data structure, all these updates are not com­
putationally expensive and can be performed in constant time, because they only
involve adding and removing arcs from the graph.

Then, the resource allocation graph is examined at regular intervals, looking for
cycles. Due to the theorem discussed in Section 8.2.1, the presence of a cycle is
a necessary and sufficient indication that there is an ongoing deadlock in the sys­
tem. Moreover, it provides information about the tasks and resources involved in the
deadlock, which proves valuable in the subsequent deadlock recovery action.

If there are multiple resources belonging to the same resource class, this method
cannot be applied because the presence of a cycle in the resource allocation graph
is still necessary, but no longer sufficient, to identify a deadlock. However, other
algorithms serve the same purpose. In the following, we will describe an algorithm
similar to the banker’s algorithm and due to Shoshani and Coffman [111, 37]. The
algorithm makes use of the following data structures:

• A matrix C that represents the current resource allocation state. As for the
banker’s algorithm, the j-th column of C, denoted by cj, indicates how
many resources of each class task τ j currently owns.

• A column vector r, indicating how many resources are currently available
in the system.

• For each task τ j in the system, the column vector: ⎞⎛

sj = ⎜⎝
s1 j
. . .

sm j

⎟⎠

indicates for how many resources of each class τ j is currently waiting, if
any. A zero in element si j means that τ j is not waiting for any resource of
the i-th class. When τ j is not waiting for resources at all, all the elements
of its sj are zero.

307 IPC, Task Execution, and Scheduling

All these data structures must be updated whenever a task requests, receives, and
releases resources because they must give a faithful representation of the resource
wait and allocation state at any time. However, all of them can be maintained in
constant time. The deadlock detection algorithm is then based on the following steps:

1. Defne an auxiliary column vector w, with an element for each resource class, and
initialize it with the vector that represents the currently available resources, that
is, w := r.

2. Defne an auxiliary row vector of Booleans f, with an element for each task, and
initialize its elements to false. This vector plays the same role as the vector with
the same name in the banker’s algorithm, that is, it records which tasks have suc-
cessfully concluded as the algorithm progresses.

3. Find a task τ j that has not been marked in f yet and whose pending resource
request can be satisfed, that is:

f j = false (τ j has not been marked yet)
∧ (8.21)
sj ≤ w (there are enough resources to satisfy its request)

Tasks that are not currently waiting for resources have their sj at zero. For them,
the condition sj ≤ w is always satisfed regardless of w and they can always be
picked.

4. Mark the task τ j picked in step 3 and simulate its successful termination by re-
turning the resources it holds to the pool of available resources:

f j := true (mark τ j) (8.22)w := w + cj (release its resources)

Then, go back to step 3 until no more tasks can be picked.

It can be proved that a deadlock exists if, and only if, there are unmarked tasks—
in other words, at least one element of f is still false—at the end of the algorithm.
This algorithm bears a strong resemblance to the state safety assessment part of the
banker’s algorithm presented in Section 8.2.4 and has the same computational com-
plexity. There are also two important differences, though:

• The deadlock detection algorithm works on actual resource requests that
tasks perform as they proceed with their execution, represented by the sj
vectors. Instead, the banker’s algorithm relies on a priori statements (or
forecasts) that tasks make about their worst-case resource needs, when they
communicate their xj vectors.
As a consequence, the banker’s algorithm results are conservative and, also
depending on how accurate the xj vectors are, may pessimistically mark a
state as unsafe even though a deadlock will not necessarily ensue. On the
contrary, the deadlock detection algorithm just presented provides exact
on-the-spot indications.

308 Real-Time Systems Development with RTEMS and Multicore Processors

• Although the complexity of one execution of the banker’s algorithm and of
the deadlock detection algorithm is the same, there is a crucial difference,
very important from the practical standpoint. The banker’s algorithm must
necessarily be invoked whenever tasks request and release any resource,
and hence, how often the banker’s algorithm is executed only depends on
tasks behavior. On the contrary, the execution frequency of execution of the
deadlock detection algorithm can be chosen at will.
Therefore, it can be adjusted to obtain the best trade-off between conficting
system properties, such as the maximum deadlock detection overhead that
may be imposed on the system and the reactivity to deadlocks of the system
itself, that is, the maximum time that may elapse between the onset of a
deadlock and its detection.

The major problem after detecting a deadlock is to decide how to recover from it.
A very simple recovery principle, proposed in Reference [37], consists of aborting
the tasks that have been caught in the deadlock. Less aggressive strategies abort
tasks one at a time, until the additional resources made available in this way allow
the remaining tasks to exit from the deadlock. More sophisticated algorithms, one
example of which is also given in References [37, 111], forcibly remove resources
from deadlocked tasks based on a cost function.

In both cases, assigning a cost to the abortion of a task or to the forced removal of
a resource from a task may be a daunting proposition because it depends on several
factors, like the role and importance of a task in the system, its relationship with the
others, and its ability to recover from resource preemption.

Other recovery techniques act on resource requests. In order to recover from a
deadlock, they deny one or more pending resource requests and give an error indi-
cation to the corresponding tasks. In this way, they force some of the sj vectors to
become zero and bring the system in a more favorable state with respect to deadlock.
The choice of the most appropriate requests to deny is still subject to cost consider-
ations similar to those already discussed.

The same technique can also be used with deadlock avoidance algorithms. In this
case, potential deadlocks are still detected on a request-by-request basis, by means
of a deadlock safety assessment algorithm like the one presented in Section 8.2.4.
However, instead of forcing tasks to wait if granting their request would bring the
system into an unsafe state, they immediately receive an error indication, thus shift-
ing the burden of reacting to a potential deadlock from a general algorithm that is
part of the operating system into a specifcally designed part of the application logic.
This is the approach taken by the POSIX standard [68], in which some primitives
may optionally fail and return an EDEADLK error indication to the caller when they
detect that executing the primitive would cause a deadlock.

Another important aspect of deadlock avoidance based on passive wait and auto-
matic deadlock recovery is that these methods have hard to predict, adverse effects
on task timeliness and may make them violate their deadlines. Moreover, some dead-
lock recovery strategies—like the possibility of aborting a task chosen automatically
at an arbitrary point if its execution—may be plainly unacceptable in a real-time

IPC, Task Execution, and Scheduling 309

system. Deadlock avoidance based on error reporting, like in POSIX, is more favor-
able from this point of view because each task has an explicit, well-defned deadlock
recovery strategy in place, and its effects on task timings can be accurately predicted
and measured.

8.3 SUMMARY
In this chapter, we described two important issues that may arise when lock-based
task interactions are designed or implemented incorrectly, namely, unbounded pri-
ority inversion and deadlock. One of these issues, unbounded priority inversion, is
especially relevant in real-time systems because it may affect task timings in a sub-
tle and time-dependent way and should be solved by introducing ad-hoc methods,
known as protocols, to properly manage the priority of tasks engaged in a critical
region.

Deadlocks can also be prevented, avoided, or at least detected by means of a
variety of methods, which offer different trade-offs between runtime overhead and
added design complexity or programmer’s discipline. Operating systems themselves
may offer, at least for some kinds of synchronization device, facilities to detect and
report incumbent deadlocks.

http://taylorandfrancis.com

9 IPC Based on Message
Passing

CONTENTS

9.1 Unifed Synchronization and Data Exchange..311
9.2 Message Passing Synchronization Models..313
9.3 Direct and Indirect Naming ...318
9.4 RTEMS API for Message Passing...321

9.4.1 Classic API ...321
9.4.2 POSIX API ...327

9.5 Summary..336

This chapter complements the previous one by presenting message passing, an IPC
mechanism that does not implicitly assume the availability of shared memory for
data transfer. Message passing primitives do provide inter-task data exchange be-
sides synchronization, but the details of how it takes place are left to the underlying
implementation and are transparent to their users.

In principle, this approach paves the way to a unifed IPC technique that is appli-
cable to a whole range of system architectures, from relatively simple concentrated
systems with a single processor, in which the availability of shared memory can be
taken for granted, to large distributed systems whose nodes are connected by a real-
time network and shared memory is not generally available.

As is done in the rest of the book, after presenting the mechanisms from the the-
oretical point of view, we describe how programmers can use them in RTEMS. Al-
though this chapter focuses on message passing as an IPC mechanism among tasks
residing on a tightly coupled set of cores or processors, the theoretical concepts pre-
sented here also apply and serve as a general introduction to Chapters 10 and 11,
which discuss network-based communication in detail.

9.1 UNIFIED SYNCHRONIZATION AND DATA EXCHANGE
The inter-task synchronization and communication methods introduced in Chap-
ter 7 are able to convey synchronization signals from one task to another by them-
selves, but must rely on shared memory for data exchange. Like the producers and
consumers depicted in Figure 7.6, tasks read and write information from and to a
shared memory buffer. The data transfer is meaningful because a set of semaphores

311

312 Real-Time Systems Development with RTEMS and Multicore Processors

ensures that tasks perform read and write operations at the appropriate time, but those
semaphores play no other role in the data transfer. Even the value of a semaphore,
which could be seen as a small item of information shared among tasks, is often not
directly accessible. Even when it is, like in POSIX semaphores, tasks can only read
the value but cannot change it at will. In other words, these methods depend on two
distinct mechanisms:

• Semaphores, to pass synchronization signals from one task to another.
• Shared objects, to support data transfer.

Message passing takes a radically different approach to inter-task synchronization
and communication by providing one single mechanism that implements both syn-
chronization and data transfer at the same time and with the same set of primitives.
In this way, the mechanism works at a higher level of abstraction and becomes easier
to use. Even more importantly, it can be adopted with minimal updates on systems
where shared memory is not available, for instance, in distributed systems in which
communicating tasks may be executed by distinct computers linked by a commu-
nication network. As will be discussed in Chapters 10 and 11, virtually all network
protocol stacks export their services through a message passing interface.

In its simplest and most abstract form, a message passing mechanism is based on
two basic primitives, defned as follows:

• A send primitive, which transfers a message from one task to another. Be-
sides control information, the message encloses a certain amount of data
provided by the sender. In addition to data transfer, a send operation may
imply a synchronization action that blocks the sender until the data transfer
can take place.

• A receive primitive, which allows the caller to retrieve the contents of a
message sent to it by another task. Also in this case, the primitive may
block the calling task if the message it is looking for is not immediately
available, thus synchronizing the receiver with the sender.

Although this defnition still lacks many important lower-level details that will
be discussed later in this chapter, it is already clear that the most apparent result of
message passing primitives is to transfer a certain amount of information from the
sending task to the receiving one. At the same time, message passing primitives also
take care of synchronization because they may block the caller when needed.

Moreover, mutual exclusion is not a concern with message passing because mes-
sages are never shared among tasks. On the contrary, the message passing mecha-
nism works “as if” the message were atomically transferred from the sender to the
receiver—even though real implementations do their best to avoid actually copying
messages to improve performance. Along with message contents, the logical own-
ership of a message is also passed from the sender to the receiver when message
passing takes place. In this way, even if the sender modifes its local copy of a mes-
sage after sending it, this does not affect the message it sent. Symmetrically, the

IPC Based on Message Passing 313

receiver may modify a message it received without affecting the sender’s local copy
at all.

Real-world message passing schemes comprise a number of variations around
the basic theme outlined so far. The main design choices left open by our summary
description and to be discussed in the next sections are:

1. The synchronization model, that is, under which circumstances communicating
tasks shall be blocked, and for how long, when they are engaged in message pass-
ing.

2. How many message buffers, to hold messages already sent but not yet received,
the operating system shall provide, if any.

3. How to identify the intended recipient of a message when sending and, symmetri-
cally, how to specify intended senders when receiving a message. In other words,
a suitable naming scheme for message passing must be defned.

4. Whether the message passing system should be aware of and preserve message
boundaries during the transfer, or treat messages as mere sequences of bytes to
be sent one after another.

9.2 MESSAGE PASSING SYNCHRONIZATION MODELS
Message passing incorporates both data transfer and synchronization within the same
communication primitives. The data transfer mechanism is straightforward and is
invariably accomplished by moving a message from the source to the destination
task. However, synchronization aspects are more complex and subject to variations,
giving rise to several different synchronization models.

The most basic synchronization constraint, which is always supported, stipulates
that the receive primitive must be able to block the caller and wait for a message
to arrive, if it is not already available. In the asynchronous model, this is the only
synchronization constraint in effect. This gives rise to two possible scenarios, both
depicted in Figure 9.1:

• If the receiving task τ2 executes receive before the sending task τ1 has
sent the message, it blocks and waits for the message to arrive. The message
transfer will take place when τ1 eventually sends the message and τ2 will
also continue at that time.

• If the sending task τ1 sends the message before the receiving task τ2 has
performed a matching receive, the system buffers the message—that is,
stores it somewhere temporarily—and lets τ1 continue immediately. The
message becomes available for reception so that a receive later per-
formed by τ2 will be immediately satisfed.

In this fgure and in the other fgures of this chapter, time fows vertically from
top to bottom and thick vertical lines depict tasks evolution, namely, a solid line
indicates that a task is ready or running, while a dashed line denotes that a task is
blocked. Rectangles represent message passing primitives and thin arrows portray

314 Real-Time Systems Development with RTEMS and Multicore Processors

τ1 τ2

Blocked task

Ready or executing task

Message

receive

send

Receive before send

τ1

send

Send before receive

τ2

Message

receive

Message available
for reception

 The sender never blocks

 The receiver blocks if no
messages are available

FIGURE 9.1 Asynchronous communication model with unlimited buffer.

message fow. Small circles mark the instant in time at which a message becomes
available for reception.

One important aspect to keep in mind about the asynchronous model is that when
τ2 eventually receives a message from τ1 it does not also acquire any signifcant
timing information about τ1. This is because, due to the asynchronous nature of
the send operation, the sender might already be executing well beyond it and, in
principle, could even have sent more than one message that were all duly buffered by
the system. In other words, an asynchronous message transfer may convey outdated
information to the receiver. Symmetrically, τ1 does not acquire any information about
the timings of τ2 either, for the same reasons.

Although the asynchronous model is very useful from the theoretical point of
view, also because it is used as the building block of more complex communication
models, it has one important shortcoming that hinders its direct practical applica-
bility. Namely, its implementation may require a large, and potentially unbounded
number of buffers, which is hardly feasible.

τ1 τ2

receive

send
Message

Message

The queue has limited
capacity, typically set

upon creation

Blocks the receiver if the queue
is empty, unblocks one waiting
sender if the queue was full

 Blocks the sender if the queue
is full, unblocks one waiting

receiver if the queue was empty

FIGURE 9.2 Asynchronous communication model with limited buffer.

To visualize this scenario it is suffcient to go back to Figure 9.1 and imagine a
sender τ1 that periodically performs a send and a receiver τ2 that does not perform
any receive at all or, more subtly, systematically receives and consumes message
at a lower rate. In order to fulfll the asynchronous communication model require-
ments, the system would need a number of buffers that grows indefnitely with time.
As a side effect, the messages received by τ2 would become more and more outdated,
and probably less useful, as time goes by.

For this reason, the variant of the asynchronous model with limited buffer illus-
trated in Figure 9.2 is the one provided by RTEMS and specifed by the POSIX
standard. The most important differences with respect to the original model are:

• A queue is interposed between the sender and the receiver. The system uses
the queue to buffer messages that have been sent but not yet received. Its
capacity is fxed and is defned when the queue itself is created.

• As in the original model, the receiving task (τ2 in the fgure) still blocks in
its receive operation when no messages are available, that is, the queue
is empty.

• Moreover, the sending task (τ1 in the fgure) also blocks in the send opera-
tion if the queue is completely full. The system will unblock the task when
some space in the queue becomes available, so that the message being sent
can be enqueued successfully.

Despite the additional synchronization constraint just introduced, if we consider
the case in which the queue is neither empty nor full, messages still fow asyn-
chronously from the sender to the receiver. No synchronization actually occurs be-
cause neither of them is blocked by the message passing primitives it invokes.

In most real-world implementations—including the one provided by RTEMS and
the one specifed by the POSIX standard—there are also non-blocking variants of
receive and send. A non-blocking receive simply checks whether a message is

IPC Based on Message Passing 315

τ1 τ2

Data message

receive

send

send

receive

Ack message

Message available
for reception

Blocked task

Ready or executing task

Synchronous
send: sequence of
two asynchronous

primitives Synchronous
receive: sequence

of two
asynchronous

primitives

The sender waits
until the recipient
has received the

message

First asynchronous transfer (data) Second asynchronous transfer (ack)

FIGURE 9.3 Synchronous communication model.

available and, in that case, retrieves it, but fails without ever waiting if it is not. Sim-
ilarly, a non-blocking send fails immediately when asked to enqueue a message in
a queue that is completely full. Even though these variants may sometimes be useful
from the software development point of view, they will not be further discussed here
because they simply remove a synchronization constraint.

Another widespread variant, especially in real-time systems, is a timed version of
send and receive, in which it is possible to specify the maximum amount of time
these primitives are allowed to block the caller before failing. If the operation cannot
be completed within the allotted time, they unblock the caller anyway and return an
error indication.

When necessary, more elaborate forms of synchronization can be implemented
using the asynchronous model as a building block. As shown in Figure 9.3, a se-
quence of two asynchronous transfers going in opposite directions can be used to im-
plement a synchronous communication model, also called rendezvous. More specif-
ically:

• In the frst part of the synchronous transfer the sender τ1 sends its data mes-
sage to the recipient τ2 by means of an asynchronous transfer. As described
previously, τ1 is never blocked as a result of this transfer, whereas τ2 may
or may not be blocked depending on whether its receive preceded the
matching send or not. The fgure illustrates the second case.

• In the second part of the synchronous transfer τ1 waits for an acknowl-
edgment (ACK) message from τ2. As shown in the fgure, τ2 sends this
message immediately after receiving the data message.

316 Real-Time Systems Development with RTEMS and Multicore Processors

317 IPC Based on Message Passing

As a result, in a synchronous transfer the task τ1 that sends the data message is
blocked until the message recipient τ2 has received the message. Moreover, as in an
asynchronous transfer, the recipient is blocked until a message becomes available.

A peculiarity of the second part of the synchronous transfer, corresponding to the
dark gray primitives in Figure 9.3, is that it does not actually move data between
tasks—the transferred message may, in fact, be empty—but it is important only for
its synchronization semantics. Its purpose is to block τ1 until τ2 has successfully
received the data message and has sent the acknowledgment.

The differences between the asynchronous and the synchronous models have an
important side effect for what concerns message buffering and performance, too.
Since in a rendezvous the sender is forced to wait until the receiver has received the
message, the system must not necessarily provide any form of temporary buffer to
handle the transfer. The message can simply be kept by the sender until the receiver
is ready and then copied directly from the sender to the receiver address space, thus
saving one memory-to-memory copy operation. For this reason in some program-
ming languages, for instance, Promela [62], the synchronous communication model
is expressed as an asynchronous communication model with a zero-size buffer.

A remote invocation message transfer, also known as extended rendezvous, en-
forces even stricter synchronization constraints between communicating tasks. More
specifcally, when task τ1 sends a remote invocation message to task τ2, it is blocked
until a reply message is sent back from τ2 to τ1. Symmetrically—and here is the
difference with respect to a synchronous transfer—τ2 is blocked until that reply has
been successfully received by τ1.

As the name suggests, this synchronization model imitates a function call, or
method invocation, using message passing. As in a regular function call, the request-
ing task τ1 prepares the arguments of the function it wants task τ2 to execute. Then,
it encapsulates them into a request message and sends the message to τ2, which will
be responsible to execute the requested function. Then, τ1 performs two receive
operations in sequence. The frst one waits for an ACK message from τ2 and ensures
that τ2 has successfully received the request, while the second one blocks τ1 until
function results become available.

Meanwhile, τ2 has received the request and, through a local computation, executes
the requested function and eventually generates some results. When results are ready,
τ2 encapsulates them in a reply message, sends it to τ1, and unblocks it. Afterwards,
τ2 blocks until the reply has been received by τ1, as confrmed by a second ACK
message that τ1 sends back to τ2.

Although, as has been shown previously, asynchronous message transfers can be
used as a “building block” for constructing the most sophisticated ones—and are
therefore very fexible and popular in real-world operating systems—they have some
drawbacks as well. As has been remarked, for instance, in Reference [29] the most
important concern is probably that asynchronous message transfers give “too much
freedom” to the programmer, somewhat like the “goto” statement of unstructured
sequential programming.

318 Real-Time Systems Development with RTEMS and Multicore Processors

τ1 τ2

Method
arguments

receivesend

The server blocks until a
request arrives

receive

sendAck
Remote method

execution

send

receive

receive
Method
results

Ack send

The client
blocks until the
remote method

completes

Both tasks
continue after
the interaction

Blocked task Message available
Ready or executing task for reception

First synch. transfer (arguments) Second synch. transfer (results)

FIGURE 9.4 Remote method invocation.

The resulting programs are therefore more complex to understand and check for
correctness, also due to the proliferation of explicit message passing primitives in
the code. This observation leads us to highlight the importance of good programming
practice to avoid using those message passing primitives directly if at all possible, but
encapsulate them within higher-level communication functions, which implement
the stricter, but more structured, semantics presented in this section. This trend is
further encouraged by the availability of portable, open-source libraries, like Open
MPI [48], which go in the same direction.

9.3 DIRECT AND INDIRECT NAMING
The message transfer diagrams drawn in Figures 9.1–9.4 leave two important and
related points open, that is, how message senders and recipients identify each other,
and whether the send and receive primitives are symmetric or not. This is the role
played by the naming scheme in message passing.

319 IPC Based on Message Passing

Module BModule A

τ2’

τ1

τ2

Message queue at
module interface

Indirect naming scheme

Module BModule A

τ1

τ2

Direct naming scheme

The sender directly
names the

destination task

FIGURE 9.5 Direct versus indirect naming in message passing.

Concerning the frst point, the most straightforward and intuitive approach is for
the sending task to name the receiver directly, for instance, by passing its task identi-
fer to send as an argument. For instance, as shown in the upper part of Figure 9.5, if
τ1 would like to send a message to τ2, it directly names τ2 when it invokes the send
primitive.

More complex naming schemes are also possible and useful, though. In particu-
lar, when the software gets more complex, it may be more convenient to adopt an
indirect naming scheme. With this naming scheme, the send and receive primi-
tives are not associated based on task identities, but because they both name the same
intermediate entity, as shown in the bottom part of Figure 9.5.

In the fgure, this intermediate entity is represented by a gray rectangle and called
message queue, because this is the name used by both the POSIX specifcation and
RTEMS. Other operating systems and programming languages sometimes use other
terms as well, for instance, port (in the Mach microkernel) or channel (in the Promela
programming language).

The fgure highlights that an indirect naming scheme is advantageous to software
modularity and integration. If, for example, a software module A wants to send a
message to another module B using a direct naming scheme, the task τ1 of module A
responsible for the communication must know the identity of the intended recipient
task τ2 within module B.

320 Real-Time Systems Development with RTEMS and Multicore Processors

In other words, module A becomes dependent not only on the interface of module
B, which would be perfectly acceptable, but also on its internal design and imple-
mentation. For instance, if the internal architecture of B is later changed, so that the
intended recipient becomes τ2

0 instead of τ2, module A must be updated accordingly,
or communication would no longer be possible.

Moreover, sometimes the unique task identifer used to name a task becomes
known only after the task itself has been created, and there is no way to guaran-
tee that the identifer of a certain task will stay the same, for instance, across reboots.
In this case, module B becomes responsible of publishing in some way the task iden-
tifers other modules may need.

On the contrary, when using an indirect naming scheme, module A and its task
τ1 must only know the name of the message queue that module B is using for in-
coming messages. The message queue can then be viewed as located at module B’s
boundary and becomes part of the external interface of the module itself. Hence, it
will likely stay the same even if B’s implementation and internal design change with
time, unless the external interface of the module is radically redesigned, too.

Another consequence of indirect naming is that the relationship among commu-
nicating tasks may become more complex. For both direct and indirect naming, two
kinds of relationship are already possible:

1. A one-to-one relationship, like the one depicted in Figures 9.1–9.4, in which one
task sends messages to another.

2. A many-to-one relationship, in which many tasks send messages to a single recip-
ient.

With indirect naming, since multiple tasks can receive messages from the same
message queue, a one-to-many relationship becomes possible, too. In this case, a
task sends a message to a group of many tasks, all receiving from the same message
queue, without caring about or specifying which of them will actually get the mes-
sage. A further generalization, encompassing multiple potential senders, leads to a
many-to-many relationship.

This is often useful to conveniently handle concurrent processing on the server
side in a client–server communication paradigm. For instance, the server may be
implemented as a set of worker tasks, all able to process one request at a time. This
keeps the internal structure of workers simple, because they do not have to take
concurrency into account.

All workers wait for requests by performing a receive from the same message
queue. When a request arrives, one of the workers will get it, process it, and provide
an appropriate reply to the client. Meanwhile, the other workers will still be wait-
ing for additional requests and may start working on them concurrently. As long as
requests are independent from each other, no worker-to-worker communication is re-
quired, thus avoiding the introduction of undue timing relationships among requests.

A further, important aspect of naming schemes is their symmetry or asymmetry:

• In a symmetric scheme the sender task names either the recipient task or
the destination message queue, depending on whether naming is direct or

321 IPC Based on Message Passing

TABLE 9.1
RTEMS Message Queue Primitives, Classic API

Function Purpose
rtems_message_queue_create Create a message queue
rtems_message_queue_ident Find the identifer of a message queue given its name
rtems_message_queue_delete Delete a message queue

rtems_message_queue_send Send a message, enqueuing at the rear
rtems_message_queue_urgent As above, but enqueuing at the front
rtems_message_queue_broadcast Send a message to all tasks blocked on a message queue

rtems_message_queue_receive Receive a message, possibly blocking the caller
rtems_message_queue_flush Remove all messages from a message queue

rtems_message_queue
Retrieve the number of messages in a message queue

_get_number_pending

indirect. Symmetrically, the receiver names either the sending task or the
source message queue.

• In an asymmetric scheme the sender still names either the recipient task
or the destination message queue. However, the receiver does not name
the source of the message in any way. Instead, it accepts messages from
any source, and it is often informed by the system of where the received
message comes from.

The asymmetric scheme fts the client–server paradigm better because, in this
case, the server is usually willing to accept requests from any of its clients and may
not even know their identity in advance.

9.4 RTEMS API FOR MESSAGE PASSING
9.4.1 CLASSIC API

Message queue creation and attributes
The RTEMS component in charge of implementing message queues is the Mes-
sage Manager. Table 9.1 summarizes the primitives it provides. The function
rtems_message_queue_create creates a new message queue:

rtems_status_code rtems_message_queue_create(
rtems_name name,
uint32_t count,
size_t max_message_size,
rtems_attribute attribute_set,
rtems_id *id);

322 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 9.2
RTEMS Message Queue Attributes, Classic API

Attribute Meaning
RTEMS_LOCAL Local message queue
RTEMS_GLOBAL Globally accessible message queue

RTEMS_FIFO Use a frst-in, frst-out (FIFO) queuing policy when receiving
RTEMS_PRIORITY Use a priority-based queuing policy when receiving

This function creates a message queue with the given name and, if success-
ful, stores its unique identifer into the location pointed by id. This identifer
must be used to refer to the message queue in all ensuing operations on it, ex-
cept rtems_message_queue_ident. The message queue can store up to count
messages, each consisting of up to max_message_size bytes. The argument
attribute_set allows the caller to select some aspects of the message queue
to be created and consists of the bitwise OR of the constants listed in Table 9.2.

The frst two attributes, RTEMS_LOCAL and RTEMS_GLOBAL, are mutually ex-
clusive and determine the visibility and accessibility of the message queue. They
have the same meaning as the semaphore attributes with the same name described in
Section 7.4.

The attributes RTEMS_FIFO and RTEMS_PRIORITY are also mutually exclusive.
They establish the queuing policy of tasks that are waiting to receive a message from
an empty queue, and hence, the order in which they will obtain a message and be
unblocked when messages arrive.

More specifcally, RTEMS_FIFO (the default) indicates that task are enqueued
in the same order as they perform the blocking receive operation on the mes-
sage queue and will be unblocked in frst-in, frst-out (FIFO) order. Instead,
RTEMS_PRIORITY specifes that tasks must be enqueued according to their pri-
ority. When there are multiple tasks blocked on the same, empty message queue, a
message sent to that message queue will be received by the highest-priority blocked
task.

The function rtems_message_queue_create returns the status code
RTEMS_SUCCESSFUL if it was able to create the message queue correctly. Other-
wise, it returns one of the following status codes to indicate failure:

RTEMS_INVALID_NAME The name of the message queue given in the name argu-
ment is invalid.

RTEMS_INVALID_ADDRESS The id argument is a NULL pointer, and hence, it
does not point to a valid location where the new message queue identifer could
be stored.

RTEMS_INVALID_NUMBER The number of messages specifed in the count argu-
ment is invalid.

323 IPC Based on Message Passing

RTEMS_INVALID_SIZE The maximum message size specifed in the max_
message_size argument is invalid.

RTEMS_TOO_MANY The new message queue could not be created because the max-
imum number of local message queues or global objects in the system (depending
on the kind of message queue being created) has been reached. These limits are
set by means of the RTEMS confguration system, as described in Section 2.4.
For instance, the value of RTEMS_CONFIGURE_MAXIMUM_MESSAGE_QUEUES
determines the maximum number of local message queues.

RTEMS_UNSATISFIED The message queue could not be created because the sys-
tem could not allocate the number of message buffers that have been requested.

RTEMS_MP_NOT_CONFIGURED The attribute set given as argument asked for a
global messages queue, that is, RTEMS_GLOBAL was set, but multi-node support
has not been enabled in the system confguration.

Although the message queue creation function just described stores the message
queue identifer into the location pointed by the id argument, the identifer can also
be retrieved at a later time, starting from the message queue name, by means of the
function:

rtems_status_code rtems_message_queue_ident(
rtems_name name,
uint32_t node,
rtems_id *id);

This function looks for a message queues whose name is given by the name argu-
ment on node node and stores its identifer into the location pointed by id. If node
is the special value RTEMS_SEARCH_ALL_NODES, the function searches all nodes
in the system, starting from the local node, that is, the node where the calling thread
resides. If multiple message queues have the same name, the function is guaranteed
to return the identifer of a message queue with a matching name, but exactly which
one is left unspecifed.

Upon failure, rtems_message_queue_ident returns one of the following
status codes:

RTEMS_INVALID_NAME The function did not fnd any message queue with the re-
quested name within the scope of its search.

RTEMS_INVALID_NODE The node identifer is invalid.
RTEMS_INVALID_ADDRESS The id argument is a NULL pointer, and hence, it

does not point to a valid location where the message queue identifer could be
stored.

The function:

rtems_status_code rtems_message_queue_delete(
rtems_id id);

deletes the message queue whose unique identifer is id. The message queue may
have been created by another task, but must reside on the same node as the calling

324 Real-Time Systems Development with RTEMS and Multicore Processors

thread. The deletion of a remote message queue, that is, a queue that resides on a
remote node, is not supported. After a successful call to this function, the identifer
is no longer valid and shall no longer be used.

When a message queue is deleted, any tasks that are blocked on it
because of a pending receive operation are unblocked and receive the
RTEMS_OBJECT_WAS_DELETED status code. If the queue is not empty, all the mes-
sages it contains are deleted. In both cases, the system reclaims all the memory pre-
viously allocated to the message queue and its message buffers.

Besides RTEMS_SUCCESSFUL, which indicates that the message queue has been
successfully deleted, rtems_message_queue_delete may return the following
status codes:

RTEMS_INVALID_ID The message queue identifer is invalid.
RTEMS_ILLEGAL_ON_REMOTE_OBJECT The message queue could not be deleted

because it does not reside on the same node as the calling task.

Message queue operations
The concrete counterparts of the abstract send and receive operations described
in Section 9.2 are rtems_message_queue_send and _receive, plus a couple
of useful RTEMS-specifc variants also listed in Table 9.1. The function:

rtems_status_code rtems_message_queue_send(
rtems_id id,
const void *buffer,
size_t size);

sends the message referenced by buffer and consisting of size bytes, to the mes-
sage queue identifed by id.

If the queue is currently empty and there is at least one task blocked on a
receive operation this function picks one of them, according to the enqueuing
policy established when the message queue was created, copies the message into the
blocked task’s buffer, and unblocks it.

Otherwise, it copies the message into a message buffer and places it at the rear of
the message queue. If the message queue is full, that is, it already contains the maxi-
mum number of messages declared upon creation, rtems_message_queue_send
fails and immediately returns to the caller an appropriate status code. The function
may return RTEMS_SUCCESSFUL or one of the following status codes:

RTEMS_INVALID_ID The message queue identifer is invalid.
RTEMS_INVALID_ADDRESS The buffer argument is NULL, and hence, it cannot

refer to a valid message in memory.
RTEMS_INVALID_SIZE The size of the message is invalid, for instance, because

it exceeds the maximum message size declared upon message queue creation.
RTEMS_TOO_MANY The message queue is full, that is, it already contains the maxi-

mum number of messages specifed upon creation.
RTEMS_UNSATISFIED The system ran out of message buffers.

325 IPC Based on Message Passing

The function:

rtems_status_code rtems_message_queue_urgent(
rtems_id id,
const void *buffer,
size_t size);

has the same signature as rtems_message_queue_send, the same possible status
codes, and similar semantics, the only difference being that it places the message at
the front of the message queue, rather than the rear.

Although the RTEMS Classic API—unlike the POSIX API to be discussed next—
does not provide the ability to assign a priority to individual messages, a mind-
ful use of rtems_message_queue_urgent (to send high-priority messages) and
rtems_message_queue_send (to send low-priority messages) on the same mes-
sage queue is a straightforward alternative way of implementing a two-priority mes-
sage passing scheme.

Another variant of the send operation broadcasts copies of the same message to
all tasks waiting on a message queue:

rtems_status_code rtems_message_queue_broadcast(
rtems_id id,
const void *buffer,
size_t size,
uint32_t *count);

As for the other functions described so far, id identifes the target message queue,
while buffer and size locate the buffer that contains the message to be sent and
its length in bytes. When successful, the function returns RTEMS_SUCCESSFUL and
stores into the variable pointed by count the number of tasks it unblocked.

If no tasks are blocked on the message queue at the moment, the function stores
zero in the location pointed by count and does not store the message into the mes-
sage queue for later use. Upon failure, rtems_message_queue_broadcast re-
turns one of the following status codes:

RTEMS_INVALID_ID The message queue identifer is invalid.
RTEMS_INVALID_ADDRESS Either buffer or count (or both) are NULL point-

ers, and hence, cannot refer to a valid memory location.
RTEMS_INVALID_SIZE The size of the message is invalid, for instance, because

it exceeds the maximum message size declared upon message queue creation.

It is worth noting that rtems_message_queue_broadcast never returns
RTEMS_TOO_MANY or RTEMS_UNSATISFIED because it never stores the message
into the message queue.

The function:

rtems_status_code rtems_message_queue_receive(
rtems_id id,

326 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 9.3
RTEMS Message Queue Receive Blocking Rules, Classic API

Argument Meaning
option_set timeout
RTEMS_NO_WAIT — Never block the caller
RTEMS_WAIT RTEMS_NO_TIMEOUT No upper limit on blocking time
RTEMS_WAIT k Block the caller for up to k ticks

void *buffer,
size_t *size,
rtems_option option_set,
rtems_interval timeout);

receives a message from the message queue specifed by id. Upon successful com-
pletion, it stores the message into the buffer pointed by buffer and writes its size, in
bytes, into the location pointed by size. The buffer must be big enough to contain a
maximum-length message, that is, the length specifed in the max_message_size
argument when the message queue was created.

The behavior of the function when the message queue is empty is controlled by
the arguments option_set and timeout, as summarized in Table 9.3. In more
details:

• If option_set is set to RTEMS_NO_WAIT the function fails im-
mediately, without blocking the caller, and returns the status code
RTEMS_UNSATISFIED.

• If option_set is set to RTEMS_WAIT and timeout is set to the spe-
cial value RTEMS_NO_TIMEOUT the function blocks the caller potentially
forever, until it either successfully receives a message or an error occurs.

• If option_set is set to RTEMS_WAIT and timeout is set to a timeout
k expressed in ticks, the function blocks the caller only for up to k ticks. If
no message has been successfully received before the timeout expired, the
function returns the status code RTEMS_TIMEOUT.

When the calling task blocks on an empty message queue, the enqueuing or-
der is determined by the message queue attributes specifed upon creation, namely,
RTEMS_FIFO (frst-in, frst-out order) or RTEMS_PRIORITY (priority order).

Besides RTEMS_SUCCESSFUL, which indicates successful completion, the func-
tion rtems_message_queue_receive may return one of the following status
codes:

RTEMS_INVALID_ID The message queue identifer is invalid.

IPC Based on Message Passing 327

RTEMS_INVALID_ADDRESS Either buffer or size (or both) are NULL pointers,
and hence, cannot refer to a valid memory location.

RTEMS_UNSATISFIED The message queue was empty and option_set specifes
RTEMS_NO_WAIT.

RTEMS_TIMEOUT The option_set specifes RTEMS_WAIT and no messages
could be received before the timeout specifed in timeout expired.

The following functions removes (fushes) all messages from the message queue
identifed by id:

rtems_status_code rtems_message_queue_flush(
rtems_id id,
uint32_t *count);

Upon successful completion, the function stores into the location pointed by
count the number of messages it removed and returns RTEMS_SUCCESS. Flushing
an empty queue is not an error and makes the function store zero into the location
pointed by count. Upon failure, rtems_message_queue_flush returns one of
the following status codes:

RTEMS_INVALID_ID The message queue identifer is invalid.
RTEMS_INVALID_ADDRESS The argument count is a NULL pointer.

The last function in this group queries a message queue and returns the number of
pending messages, that is, the number of messages currently waiting to be received.
In particular:

rtems_status_code rtems_message_queue_get_number_pending(
rtems_id id,
uint32_t *count);

stores into the location pointed by count the number of pending messages in the
message queue identifed by id. If the message queue is empty, it stores zero into
the location pointed by count. Besides RTEMS_SUCCESSFUL, which denotes a suc-
cessful completion, the function may return one of the following status codes to in-
dicate failure:

RTEMS_INVALID_ID The message queue identifer id is invalid.
RTEMS_INVALID_ADDRESS The argument count is a NULL pointers.

9.4.2 POSIX API

Unlike for semaphores, the POSIX standard specifes only one kind of message
queue, which works according to the asynchronous communication scheme with
limited buffer discussed in Section 9.2. Message queues are named global objects,

328 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 9.4
RTEMS Message Queue Primitives, POSIX API

Function Purpose
mq_open Create/open a message queue
mq_close Close a message queue
mq_unlink Mark a message queue for destruction

mq_getattr Retrieve message queue attributes
mq_setattr Modify message queue attributes

mq_send Send a message
mq_timedsend Timed variant of mq_send
mq_receive Receive a message
mq_timedreceive Timed variant of mq_receive
mq_notify Request an asynchronous notifcation of message arrival

are represented by the opaque data type mqd_t, and are handled like the named
semaphores presented in Section 7.4.2. However, there is an important practical dif-
ference with respect to named semaphores:

• A named semaphore is represented by the data type sem_t. The function
sem_open returns a pointer to a semaphore object, that is, a sem_t *,
while the function sem_init initializes an object of type sem_t provided
by the user. After initialization, a pointer to the semaphore object must be
used to refer to the semaphore.

• A (named) message queue is represented by the data type mqd_t. The func-
tion mqd_open returns an object of that type and the object itself, not a
pointer to it, must be used to refer to the message queue in all the other
message queue-related functions.

Message queue creation and destruction
The POSIX message functions available in RTEMS are summarized in Table 9.4.
The function:

mqd_t mq_open(const char * name, int flags, ...);

can be used to get access to an existing message queue or to create a new one. In both
cases, the message queue is identifed by a unique character string referenced by the
name argument and, upon successful completion, the function returns a value of type
mqd_t that represents the message queue. The flags argument is the bitwise OR
of the fags listed in Table 9.5. They affect some aspects of the function’s behavior
and of the subsequent send and receive operations on the message queue.

329 IPC Based on Message Passing

TABLE 9.5
RTEMS Message Queue Flags, POSIX API

Flag Meaning
O_CREAT Create the message queue if it does not exist
O_EXCL Fail is the message queue already exists

O_RDONLY Open the queue only for receiving messages
O_WRONLY Open the queue only for sending messages
O_RDWR Open the queue both for receiving and sending

O_NONBLOCK Make send and receive operations non-blocking

The frst two fags, O_CREAT and O_EXCL, determine whether mq_open should
create the message queue if it does not exist already, and if it should fail when at-
tempting to create an already existing message queue:

O_CREAT This fag, when set, allows mq_open to create the message queue if it
does not exist already. New message queues are initially empty, that is, they con-
tain no messages. When O_CREAT is set, mq_open takes two additional argu-
ments in place of the ellipses ... shown in the prototype:
• mode_t mode determines the access permissions of the newly created

message queue, and
• struct mq_attr *attr points to a data structure that contains the

message queue attributes, to be discussed later.
O_EXCL This fag shall only be set together with O_CREAT. When set, it causes

mq_open to fail when trying to create a message queue that already exists. The
existence check and the creation are carried out in an atomic step with respect to
other tasks doing the same.

The second set of fags, comprising O_RDONLY, O_WRONLY, and O_RDWR, de-
termines which kind of operations the calling thread would like to perform on the
message queue. More specifcally:

O_RDONLY Open the message queue only for receiving messages (that is, “reading”
from the message queue).

O_WRONLY Open the message queue only for sending messages (that is, “writing”
into the message queue).

O_RDWR Open the message queue for both receiving and sending messages.

The last fag, O_NONBLOCK, controls whether a receive operation from an empty
queue, and a send operation to a full queue, should block the caller or fail immedi-
ately. When set, it makes these operations non-blocking.

A struct mq_attr contains the felds listed in Table 9.6. The felds used by
mq_open while creating a message queue are:

330 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 9.6
RTEMS Message Queue Attributes, POSIX API

Field Meaning
long mq_flags Message queue fags (the O_NONBLOCK fag is read-write)
long mq_maxmsg Maximum number of messages the queue can hold (read-only after creation)
long mq_msgsize Maximum size of individual messages (read-only after creation)
long mq_curmsgs Number of messages in the queue (read-only)

mq_maxmsg The maximum number of messages the message queue can store.
mq_msgsize The maximum size of each message, in bytes.

A call to mq_open may fail for a variety of reasons. Upon failure, the function
returns the special value (mqd_t) -1 instead of a valid message queue descriptor
and sets errno to a status code that provides more information about the error it
encountered. The most common status codes are:

ENOENT The message queue does not exist, but flags did not include O_CREAT.
EEXIST The message queue already exists, but both O_CREAT and O_EXCL were

set in flags.
EINVAL The given name is not a valid name for a message queue, or the flags

include O_CREAT and the value of mq_maxmsg or mq_msgsize specifed in the
structure pointed by attr was zero or negative.

EACCES The message queue could not be accessed or created due to permission
issues.

Other status codes, like EMFILE, ENFILE, ENOMEM, and ENOSPC indicate that
the system lacks various kinds of resources it needs to create the message queue.

Tasks should close a message queue when they no longer intend to use it, by
means of the function:

int mq_close(mqd_t mqd);

The only parameter of this function is mqd, the descriptor of the message queue
to be closed. No further operations on mqd shall be attempted after a successful
mq_close. The function returns zero when it succeeds and -1 when it fails. In this
case, it also sets errno to a status code. The only possible status code is:

EBADF The message queue descriptor mqd is invalid.

By itself, mq_close only breaks the association between the message queue and
its descriptor mqd, without destroying the message queue itself, unless it has been
previously marked for destruction by means of the function:

331 IPC Based on Message Passing

int mq_unlink(const char *name);

This function takes the name of a message queue rather than a descriptor, and
hence, it can be used even if the caller does not hold any valid message queue de-
scriptor. For instance, a task can mark a message queue for destruction without open-
ing it frst. The execution of mq_unlink has two possible outcomes, depending on
how many active references to the message queue exist. More specifcally:

• If no tasks have the message queue open at the moment, mq_unlink de-
stroys the message queue immediately.

• Otherwise, the message queue is marked for destruction. Further attempts
to open the message queue fail. Any attempt to create a message queue with
the same name succeeds, but creates a new message queue distinct from the
previous one. The message queue will be destroyed as soon as the number
of active references to it drops to zero.

The function mq_unlink returns zero if it succeeds. Otherwise, it returns -1 and
sets errno to a status code. Possible reasons for failure include:

ENOENT No message queues named name exist in the system.
EACCES The caller lacks the permission to destroy the message queue.

Message queue attributes
As reported in the description of mq_open, some of the message queue attributes
listed in Table 9.2 are set when the message queue is created. They can all be re-
trieved at a later time by means of the function:

int mq_getattr(mqd_t mqd, struct mq_attr *attr);

The function mq_getattr, given a message queue descriptor mqd, retrieves the
message queue attributes and stores them into the data structure pointed by attr.
It returns zero upon successful completion. Upon failure, the function returns -1 and
sets errno to the status code:

EBADF The message queue descriptor mqd is invalid.

Besides mq_maxmsg and mq_msgsize, which have already been discussed
previously and cannot be changed after the message queue has been created, the
struct mq_attr also contains the following felds:

mq_curmsgs is the number of message currently in the message queue. Unlike
mq_maxmsg and mq_msgsize, this attribute changes as messages are sent and
received through the queue.

mq_flags is the set of fags given to mq_open when the message queue descriptor
was created, and possibly modifed afterwards by means of the mq_setattr
function.

332 Real-Time Systems Development with RTEMS and Multicore Processors

Unlike all the other attributes, mq_flags is associated with the message queue
descriptor rather than the message queue itself, and affects only the functions that
operate on the message queue through that specifc descriptor.

The function mq_setattr retrieves the current attributes of the message queue
identifed by the descriptor mqd and stores them into the data structure pointed by
old_attr (like mq_getattr does). In addition, it modifes the attributes accord-
ing to what is specifed in the data structure pointed by new_attr:

int mq_setattr(mqd_t mqd,
const struct mq_attr *restrict new_attr,
struct mq_attr *restrict old_attr);

In the current edition of the standard, only the O_NONBLOCK fag in mq_flags,
plus other implementation-defned fags, can be modifed, whereas the other felds of
*new_attr are ignored. Being mq_flags an attribute associated with the message
queue descriptor, it takes effect on subsequent message queue operations invoked on
the descriptor mqd, without affecting any other descriptors associated with the same
underlying message queue.

Like most other functions in this group, mq_setattr returns zero to indicate
successful completion. When it fails, it leaves the message queue descriptor fags
unchanged, returns -1, and sets errno to the following status code:

EBADF The message queue descriptor mqd is invalid.

Send and receive operations
The function:

int mq_send(mqd_t mqd, const char *buffer, size_t size,
unsigned priority);

sends a message to the message queue represented by the message queue descriptor
mqd. The message to be sent is copied from a user-provided buffer consisting of
size bytes starting at memory address buffer. Unlike the RTEMS classic API,
which lets callers decide whether to enqueue the message at the rear or the front of
the message queue, the POSIX API lets callers assign a priority to each message they
send.

The priority is given by the unsigned integer argument priority, whose value
must be greater than or equal to zero and less than MQ_PRIO_MAX. Higher val-
ues correspond to higher enqueuing priorities, that is, higher-priority messages
are enqueued in front of lower-priority messages. The minimum required value of
MQ_PRIO_MAX is 32, which is also the minimum required number of execution
scheduling priorities.

The function may exhibit three different behaviors depending on the current state
of the queue:

1. If the message queue is empty and there is at least one thread waiting to receive
a message, the message is transferred directly to one of the waiting threads and

333 IPC Based on Message Passing

the queue remains empty. Provided the Priority Scheduling POSIX option is sup-
ported (as is the case in virtually all POSIX-based real-time operating systems),
the receiving thread is selected based on its scheduling priority. More specifcally,
the highest-priority waiting thread is selected and, in case of a tie, the thread that
has been waiting the longest. The priority argument does not play any role in
this scenario.

2. If there are no threads waiting on the message queue and it is not full, the message
is enqueued based on its priority and mq_send returns without blocking the
caller, thus realizing a completely asynchronous message passing operation.

3. If the message queue is full, that is, it already contains a number of messages equal
to the value of mq_maxmsg specifed upon message queue creation, the function’s
behavior depends on the setting of the O_NONBLOCK fag of the message queue
descriptor mqd. As discussed previously, this fag is set when the message queue
is opened and can later be modifed by means of mq_setattr.
If O_NONBLOCK is not set (the default), mq_send blocks the caller until it be-
comes possible to enqueue the message. Namely, when space becomes available
in the message queue, one of the threads waiting to send a message is selected,
according to its scheduling priority. This thread is allowed to enqueue its message
in the message queue and then continue past mq_send.
Instead, if O_NONBLOCK is set, mq_send fails and immediately returns to the
caller without sending the message, after setting errno to EAGAIN.

Upon successful completion, mq_send returns zero. Otherwise, it returns -1 and
sets errno to one of the following status codes:

EBADF The message queue descriptor mqd is invalid, or send operations are not
allowed on it because neither O_WRONLY nor O_RDWR was specifed when the
message queue was opened.

EINVAL The priority argument is outside the valid range. It must be greater than
or equal to zero and less than MQ_PRIO_MAX.

EMSGSIZE The message is too long to be sent, that is, the size argument exceeds
the mq_msgsize attribute specifed upon message queue creation.

EAGAIN The message queue was full and the O_NONBLOCK fag is set in the mes-
sage queue descriptor, calling for a non-blocking send.

A timed variant of the send operation also exists:

int mq_timedsend(mqd_t mqd,
const char *buffer, size_t size, unsigned priority,
const struct timespec *abstime);

Compared to mq_send, the timed variant has one additional argument, abstime.
It indicates the absolute instant in time when any wait initiated by the function
when the target message queue is full must end and the function must return to
the caller, even though the message could not yet be sent. As for semaphores (see
Section 7.4.2), the reference clock of abstime is CLOCK_REALTIME.

334 Real-Time Systems Development with RTEMS and Multicore Processors

In all other cases, mq_timedsend behaves identically to mq_send. The two
functions are equivalent and the abstime argument is ignored when:

• The message queue is empty and there are threads waiting to receive a
message from it.

• There are no threads waiting on the message queue and it is not full.
• The O_NONBLOCK fag is set in the message queue descriptor.

The function mq_timedsend shall fail and set errno to the following status
codes, besides the ones already described for mq_send:

EINVAL The function had to block the calling thread, but the abstime argument
was invalid.

ETIMEDOUT The timeout specifed by abstime expired before the send operation
could be concluded.

A thread can receive a message from a message queue and possibly block until
one becomes available, by calling the function:

ssize_t mq_receive(mqd_t mqd,
char *buffer, size_t size, unsigned *priority);

The function operates on the message queue referenced by mqd. Upon successful
completion it stores the received message in the user-provided buffer pointed by
buffer and its priority in the unsigned variable pointed by priority. Moreover,
it returns the length of the received message in bytes that, by defnition, is a non-
negative integer.

Upon failure, it returns -1 and sets errno to one of the status codes to be dis-
cussed later. The argument size is the actual length of the user-provided message
buffer and is used to avoid overfowing the buffer when storing the received mes-
sage into it.

As for mq_send, the behavior of mq_receive depends on the state of the un-
derlying message queue. Two scenarios are possible:

1. If the message queue is not empty, mq_receive extracts the highest-priority
message from it and immediately returns to the caller, without blocking. If more
than one message with the highest priority is available, the function extracts the
oldest one, that is, the one that has been in the queue for longest. The extraction of
a message from a full message queue may also unblock one of the threads waiting
to send a message to it, if any, as mentioned in the description of mq_send.

2. If the message queue is empty, mq_receive may or may not block the caller
depending on the setting of the O_NONBLOCK fag associated with the message
queue descriptor mqd. If O_NONBLOCK is not set (the default), mq_receive
blocks the caller until a message becomes available for reception.
Whenever a message is sent to the message queue, one of the blocked threads
is selected to receive the message and continue, in scheduling priority order. In
case of a tie, the system selects the highest-priority thread that has been blocked

335 IPC Based on Message Passing

for the longest time. Instead, if O_NONBLOCK is set, mq_receive fails without
receiving any message and returns to the caller after setting errno to EAGAIN.

The function mq_receive shall fail for the following reasons:

EBADF The message queue descriptor mqd is invalid, or receive operations are not
allowed on it because neither O_RDONLY nor O_RDWR was specifed when the
message queue was opened.

EMSGSIZE The user-provided buffer is not big enough to hold a maximum-size
message coming from the message queue, that is, the size argument is less than
the mq_msgsize attribute specifed upon message queue creation.

EAGAIN The message queue was empty and the O_NONBLOCK fag is set in the
message queue descriptor, calling for a non-blocking receive.

In addition, some implementations may perform additional consistency checks on
the received message and also report:

EBADMSG The message was corrupted.

Threads willing to block while waiting for a message to become available, but not
indefnitely, may make use of the timed variant of mq_receive:

ssize_t mq_timedreceive(mqd_t mqd,
char * restrict buffer, size_t size,
unsigned * restrict priority,
const struct timespec * restrict abstime);

The function mq_timedreceive behaves identically to mq_receive, except
when the underlying message queue is empty and it must block the caller. In this
case, the additional argument abstime comes into play.

As for mq_timedsend, this argument indicates the absolute instant in time when
any wait initiated by mq_timedreceive because the message queue was empty
must end and the function must return to the caller even though no message could be
received. Also in this case, the reference clock of abstime is CLOCK_REALTIME.
Due to this additional semantics, mq_timedreceive shall also fail and set errno
to the following status codes, besides the ones already described for mq_receive:

EINVAL The function had to block the calling thread, but the abstime argument
was invalid.

ETIMEDOUT The timeout specifed by abstime expired before the receive opera-
tion could be concluded.

Asynchronous notifcations
Message queues support asynchronous notifcations, confgured by means of a
struct sigevent data structure as described in Section 6.5. Asynchronous noti-
fcations are managed with the function:

336 Real-Time Systems Development with RTEMS and Multicore Processors

int mq_notify(mqd_t mqd,
const struct sigevent *notification);

Depending on the value of the notification pointer, this function activates or
deactivates asynchronous notifcations for message queue mqd. More specifcally:

• If the notification argument is NULL, the function deactivates asyn-
chronous notifcations for the given message queue.

• If the notification argument is not NULL, the function activates asyn-
chronous notifcations for the given message queue, according to the
method specifed in the struct sigevent structure it points to.

When asynchronous notifcations are active, a notifcation is sent only when the
queue transitions from the empty to the non-empty state, that is, when the queue
changes state. In particular, no notifcations are sent if the message queue is already
non-empty when mq_notify is called to activate them. Moreover, if a message is
sent to an empty queue while asynchronous notifcations are active, but there is also a
pending receive operation on the queue, the receive operation takes precedence. That
is, the message satisfes the receive operation and no notifcations are sent. Another
aspect worth noting is that, in any case, asynchronous notifcations are automatically
deactivated when a notifcation is sent, and must be explicitly activated again as
needed.

The function mq_notify returns zero upon successful completion. Otherwise, it
returns -1 and sets errno to one of the following error codes:

EBADF The message queue descriptor mqd is invalid.
EBUSY The notification argument is not NULL, but notifcations are already

active for the message queue.

Moreover, the function may optionally perform additional checks on the notifca-
tion status and also return the following status code when appropriate:

EINVAL The notification argument is NULL, but notifcations are not active for
the message queue.

9.5 SUMMARY
This chapter described message passing, an inter-task communication mechanism
that is equally suited to systems with and without shared memory because its primi-
tives encompass both task synchronization and data transfer.

The frst part of the chapter, that is, Sections 9.1–9.3 introduced key concepts like
the most common synchronization models for message passing primitives and the
problem of identifying message passing endpoints by means of a suitable naming
scheme.

Instead, the second part of the chapter, Section 9.4 was devoted to more practi-
cal considerations and provided a thorough description of the RTEMS Classic and
POSIX message passing APIs, highlighting their analogies and differences.

Part IV

Network Communication

http://taylorandfrancis.com

10 Network Communication
in RTEMS

CONTENTS

10.1 Internal Structure of the RTEMS Networking Code339
10.2 Protocol Stack Organization..340
10.3 Main Data Structures...343
10.4 RTEMS Port and Adaptation Layer ..347

10.4.1 Mutual Exclusion and Sleep/Wakeup ...347
10.4.2 Software Interrupts and Network Daemon349
10.4.3 Timeout Emulation ...350
10.4.4 Device Driver Organization ..351

10.5 Summary..352

In this chapter, we outline how RTEMS implements its TCP/IP network commu-
nication facilities, by means of suitable protocol stacks. More specifcally, we will
describe the internal structure of the RTEMS networking code and highlight the most
important aspects of operating system–protocol stack integration, such as synchro-
nization and the device driver interface. A detailed discussion of the network com-
munication application programming interface (API) will be the topic of the next
chapter.

10.1 INTERNAL STRUCTURE OF THE RTEMS NETWORKING CODE
At the time of this writing, RTEMS support two distinct TCP/IP protocol stacks:

• The standard protocol stack is part of the core RTEMS distribution and
derives from a snapshot of the FreeBSD protocol stack forked in 1998.
The FreeBSD code has been frozen and cannot be updated easily from
upstream.

• A port of a newer version of the FreeBSD, which replaces the standard
one, is available in the RTEMS LibBSD project []. Unlike the previous one,
this new port is meant to be updated by pulling from the FreeBSD kernel
sources directly.

339

340 Real-Time Systems Development with RTEMS and Multicore Processors

Both ports are compatible with the POSIX sockets API, and hence, they can be
used interchangeably at the application level, provided the application restricts itself
to use that interface. However, they differ signifcantly for what concerns features.

In this chapter, we will recall the internal organization of the standard RTEMS
protocol stack, mainly focusing on its layered structure and the synchronization
mechanisms used among layers. Both derive directly from the original TCP/IP proto-
col stack of the “Berkeley UNIX” operating system [86]. This has several purposes:

1. Describe one of the very frst implementations of the socket concept, which was
used as a starting point by many other protocol stacks nowadays found in popular
open source real-time operating systems [91, 103].

2. Discuss how a complex piece of software, most importantly a real-world protocol
stack in widespread use, has been designed and implemented.

3. Highlight how the original, historical inter-level synchronization mechanisms
have been adapted to a modern, real-time operating system with minimal changes.

10.2 PROTOCOL STACK ORGANIZATION
Figure 10.1 summarizes the internal structure of the protocol stack. There are four
main software layers, to be discussed in top-down order:

1. At the top, a set of small functions sometimes called stubs enables user-level code
to invoke the system calls corresponding to the socket functions. These functions
are part of the C runtime library and their execution implies a trap into the oper-
ating system kernel.
Besides causing the processor to transition from unprivileged to privileged mode,
the execution of the system call trap also puts in effect a peculiar form of mutual
exclusion typical of traditional single-processor BSD kernels. In these kernels,
as soon as a process enters the kernel by means of a system call, it cannot be
preempted by other processes until it exits from the kernel or blocks within it.
Similarly, the operating system scheduler also enforces mutual exclusion when a
process resumes execution in the kernel after blocking.
For example, the system call recv is implemented by means of a user-level li-
brary function with the same name, which adapts the arguments to the kernel
calling conventions if needed, and executes a trap into the operating system. The
system call trap handler then dispatches the processor to the in-kernel implemen-
tation of the system call, embodied by the soreceive protocol stack function in
this case.

2. The second layer from the top is executed with interrupts fully enabled for the
most part. It is responsible for the implementation of the socket-level portion of
the system calls. For instance, the soreceive function is responsible for moving
data from protocol stack buffers into user buffers.
To enforce mutual exclusion and ensure data consistency, the functions in this
layer temporarily raise the interrupt priority level (IPL) of the processor to mask
off some interrupts when they need to access data shared with lower layers.

341 Network Communication in RTEMS

System call interface
(trap to the OS,

dispatch)

TCP UDP

IP

Mutual exclusion by
means of splnet

Mutual exclusion by
means of splimp

Network
interface driver(s)

System call
implementation

(e.g. soreceive)

System call stub
(e.g. recv)

Execution scheduled
by posting a software

interrupt

Implicit mutual
exclusion upon

entering the kernel

1

2

3

4

Network
hardware

Protocol input queue

Execution by direct
call (downstream) or
interrupt (upstream)

OS timeout
mechanism

FIGURE 10.1 Simplifed structure of the BSD 4.4 TCP/IP protocol stack.

More specifcally, when they need to execute in mutual exclusion with respect
to the functions in the layer immediately below, they raise the IPL to splnet.
When an even wider-range mutual exclusion is needed, for example, including
also the bottom software level, the IPL will be raised to an even more restrictive
value, splimp. The traditional names of these IPLs derive from the names of the
functions used in the kernel to actually change the IPL.

3. The third layer is further subdivided into multiple sub-layers. The sub-layers fol-
low the typical layered structure of network protocols and each protocol mod-
ule is generally responsible of implementing a specifc protocol. As an example,
Figure 10.1 shows the most well-known protocol modules typically implemented
by a TCP/IP protocol stack: TCP, UDP, and IP.
Functions in this layer can be executed, as described previously, as a consequence
of a direct call from the upper layer. For instance, a connection request made by
an application that calls the connect function on a TCP socket will ultimately
result in a call to the function within the TCP layer that is responsible of initiating

342 Real-Time Systems Development with RTEMS and Multicore Processors

a connection. In turn, according to the layered structure of the protocol stack, this
will give rise to related calls into the IP layer, to transmit the messages needed to
initiate a connection request.
However, a signifcant amount of protocol stack processing must also be per-
formed when incoming frames are received from a network interface. Besides
being obviously needed for data exchange, bidirectional communication is also
required for other purposes. For instance, TCP connections are established by
means of a three-way handshake, which implies the exchange of three protocol
messages going in opposite directions.
Protocol stack processing is initiated by the bottom layer by posting a software
interrupt request, at the splnet IPL, after enqueueing the incoming frames in a
protocol input queue. This approach ensures that the third layer is always executed
in mutual exclusion on a single-core system, regardless of whether its execution
has been triggered from the layer above or below it.
The use of a queue is necessary to buffer incoming frames, retrieved at relative
high hardware IPL of the network interface, until the processor can process them
at the usually much lower splnet IPL. With respect to the unbuffered approach,
this enables the system to better sustain transient peaks in the processor load with-
out losing incoming frames.
Moreover, many protocols need to be notifed of elapsing time to perform time-
based internal activities, like re-transmissions in the case of TCP. This feature
is implemented with the help of the standard BSD kernel timeout mechanism.
Elapsing time is measured by means of a hardware timer that generates interrupts,
or ticks, periodically.
Kernel functions can arrange for a function to be called back by the operating
system timer handler after a certain number of ticks has elapsed. The call takes
place at the splsoftclock IPL, and hence, the called function must explicitly
change its IPL to splnet before proceeding to execute any other functions in the
third layer.
In order to reduce the number of callbacks submitted to the kernel timeout mecha-
nism and, above all, keep their number constant regardless of the number of active
protocol modules, the protocol stack registers by itself two callbacks, called fast
and slow timeout, which are invoked every 200 ms and 500 ms, respectively.
Within the protocol stack, each protocol module can defne its own slow and fast
timeout functions. Upon each activation, the main callbacks will invoke these
functions for all active protocol modules. The two periods have been chosen to
suit the needs of most network protocols. Although nothing prevents a protocol
module from having its own additional callbacks, none of the RTEMS protocol
modules makes use of this feature.

4. The bottom layer contains the network interface drivers. Their execution is trig-
gered either by a synchronous, direct call from the layer above, or by a hardware
interrupt. As described previously, these interrupts all have an IPL lower than
splimp, so the upper layers can ensure mutual exclusion with respect to all net-
work interface drivers by temporarily raising the IPL to this value. The splimp

343 Network Communication in RTEMS

IPL is guaranteed by design to be higher (more restrictive) than splnet.
Figure 10.1 also includes the operating system timeout mechanism in this layer,
although its callbacks are initially executed at a different IPL (splsoftclock
instead of splimp).

An important aspect of kernel mutual exclusion has to do with blocking and syn-
chronization of different parts of the protocol stack. Even though the mutual exclu-
sion enforced upon kernel entry, plus the appropriate manipulation of the processor
IPL, are adequate for mutual exclusion as long as the processes involved are contin-
uously ready for execution, a different mechanism is needed when a process needs
to block within the kernel.

This is very common occurrence in the protocol stack, since most socket prim-
itives may wait until an event of interest takes place. For instance, the application-
level function connect, which initiates a connection request, may block the caller
and wait until connection has been established. Similarly, the functions that receive
data from a socket may wait until some data arrive.

In this case, the synchronization mechanism should allow other processes to exe-
cute and, possibly, let one of them enter the kernel as well. When the blocked process
is eventually unblocked, the same mechanism shall also guarantee that it is not exe-
cuted until no other process is also executing within the kernel.

To implement this aspect of synchronization, the BSD protocol stack makes
widespread use of wait channels, the traditional synchronization mechanism of the
BSD operating system kernel. Two abstract primitives are defned on a wait channel:

• The sleep primitive blocks the caller in a passive wait on the channel and
schedules another process for execution. In doing this, it also implicitly
releases the kernel mutual exclusion constraint, so that another process is
also allowed to enter the kernel if it executes a system call trap.

• The wakeup primitive awakens all processes blocked on the channel. Un-
like semaphores, wait channels have no memory, hence a wakeup per-
formed before a matching sleep does not prevent sleep from blocking,
thus leading to the loss of the event signifed by the execution of wakeup.

Since this mechanism has no equivalent counterpart in other operating systems, its
emulation constitutes a signifcant part of the effort needed to port the BSD protocol
stack, as discussed in Section 10.4.

10.3 MAIN DATA STRUCTURES
The Berkeley Sockets implementation is based on several key data structures, with
most of them summarized in Figure 10.2.

• The domain data structure struct domain (not shown in the fgure)
holds all information about a communication domain. For instance, it con-
tains the symbolic address family identifer assigned to the communica-
tion domain (like AF_INET, which identifes the Internet communication

344 Real-Time Systems Development with RTEMS and Multicore Processors

User-mode application

User-kernel
boundary

Mapping through the
file table

Socket structure (struct socket)

Network interface structure
(struct ifnet)

Network interface

Software-hardware
boundary

Socket actions, data
output (pr_usrreq)

Data output
(if_output)

Control operations
(if_ioctl)

Incoming frames
(pr_input,

sometimes hardcoded)

Incoming data
(sbappend)

Selection through
routing algorithm

Static reference
(so_proto pointer)

Selection based on
protocol identifier

Protocol structure(s)
(struct protosw)

FIGURE 10.2 Main BSD 4.4 protocol stack data structures.

domain), its human-readable name. Most importantly, it also contains a
pointer to an array of protocol switch structures, one for each protocol sup-
ported by the communication domain, to be described next.
In addition, it contains a set of pointers to domain-specifc routines for
the management and transfer of access rights to a socket, and for routing
initialization. The socket implementation maintains a globally-accessible
table of domain structures, one for each communication domain known to
the system and confgured for use. In RTEMS, the table contains two en-
tries, one for the Internet communication domain, the other for the abstract
route domain, used to control and confgure the Internet routing function of
the protocol stack.

• The protocol switch data structures struct protosw, shown in the mid-
dle of Figure 10.2, describe protocol modules. Among other information,
a protocol switch specifes the type of sockets it supports, the communica-
tion domain it belongs to, and a unique protocol number used throughout
the protocol stack to refer to the protocol itself. This information is used to

345 Network Communication in RTEMS

choose the right protocol when creating a new socket.
Moreover, it holds a set of pointers that indirectly reference the externally
accessible functions, or entry points, of the protocol module. The set of
pointers is the same for all protocol modules, although some of them are
optional and may be left unimplemented. Hence, they can be used as a
uniform interface to access any protocol module. This gives to the protocol
modules an object-oriented design, in which these entry points can be seen
as abstract methods although they are implemented in C, a language that
intrinsically does not support objects.
Instead, the main interface between the topmost protocol module and the
socket level, is the entry point referenced by the pr_usrreq pointer in
the protocol switch. This entry point is invoked by the topmost level of the
protocol stack, with an appropriate request code and additional arguments,
whenever the protocol module must perform an action on their behalf. For
example, the pr_usrreq entry point is invoked with the PRU_SEND re-
quest code when a send operation is invoked at the socket level. In turn,
this asks the protocol module to send some data and may result in further
requests directed to other protocol modules below it.
This is because protocol modules can be, and usually are, stacked on top of
each other to build a whole protocol stack. For instance, the TCP protocol
module is invariably stacked on top of the IP protocol module. Since in this
case the association between protocols is fxed, the interface between mod-
ules takes place with direct calls instead of passing through function point-
ers, to improve effciency. For instance, the TCP protocol module directly
calls the IP output function (ip_output) by name whenever it needs to
transmit an IP datagram.
An alternate, more effcient interface towards a protocol module is also
possible. It makes use of a structure struct pr_usrreqs linked to the
protocol switch. The structure contains a set of entry points, one for each re-
quest code, thus eliminating the need for explicitly passing the request code
as argument and checking its value within the pr_usrreq entry point.
A different entry point, referenced by the pr_input pointer in the protocol
switch, is used to push incoming data through the protocol stack. These data
originate at the lowest level of the stack and are forwarded to upper layers,
possibly after consulting and removing some lower-level protocol headers.
In some cases, when the name of the input function to be called is fxed
and known in advance, the function is called directly instead of indirectly.
This is the case, for instance, of the ip_input function, which is called
directly by the splnet software interrupt handler for incoming IP traffc.

• The socket data structure struct socket represents a communication
endpoint. It contains information about the type of socket it supports and
its state. In addition, it provides buffer space for data coming from, and
directed to, the process that owns the socket and may hold a pointer to a
chain of protocol state information.

346 Real-Time Systems Development with RTEMS and Multicore Processors

Upon creation of a new socket, the table of domain structures and the ta-
ble of protocol switch structures associated with each domain are scanned,
looking for a protocol switch entry that matches the requirements set forth
by the arguments passed to the socket creation function. That entry is then
linked through the so_proto pointer of the socket data structure, and is
used as the only interface point between the top-level socket layer and the
communication protocol.
Within the socket data structure there are two data queues, one for trans-
mission and the other for reception. These queues are manipulated through
a uniform set of utility functions. For example, the sbappend function ap-
pends a chunk of data to a queue and is therefore invoked whenever a new
data message is received from the lower levels.
At the user application level, the association between a socket descriptor
and the corresponding socket structure is carried out by means of a ta-
ble that, in general-purpose operating systems, often coincides with the
in-kernel fle table. On simpler systems, it can simply be a per-process ar-
ray of pointers to socket structures, in which the socket descriptor (a small
integer) is used as an index.

• The network interface data structure, struct ifnet, represents a net-
work interface module, with which a hardware device is usually associ-
ated, and to its device driver. It provides a uniform interface to all network
devices that may be present on a host, and insulates the upper layers of soft-
ware from the implementation details of each device and its corresponding
device driver code. Uniform interfacing is realized in the same way as for
the protocol switch, that is, by means of a set of function pointers to the
externally visible entry points of the network interface device driver.
The main purpose of a network interface module is to interact with the
corresponding hardware device, in order to send and receive data-link
level packets. Within a struct ifnet, the main entry point pointers are:
if_output, which is responsible for data output through the interface,
and if_ioctl, which performs all control operations on the interface.
On networks that provide for network-layer routing, for example the Inter-
net, the selection of the correct output interface for a certain IP frame is
usually carried out by the local routing algorithm. Therefore, there is no
static link between a struct protosw and a struct ifnet, contrary
to what happens between the higher layers. For incoming data, the selection
of the correct pr_input entry point to be called is based on the incoming
protocol identifer, usually contained in the data-link level header. A list of
struct ifaddr data structures, each representing an interface address in
possibly different communication domains, is linked to the main struct
ifnet structure.

Another data structure not shown in Figure 10.2, the struct mbuf, is used
whenever dynamic memory allocation is needed. Its implementation makes it partic-
ularly suitable to prepend and append further data to an existing buffer, an operation
frequently used in communication protocol for encapsulation and de-encapsulation.

347 Network Communication in RTEMS

10.4 RTEMS PORT AND ADAPTATION LAYER
With respect to the description of the general structure of the BSD protocol stack
given in Section 10.2, most of the porting effort is concentrated in a few key areas:

• The implicit mutual exclusion upon entering a single-processor BSD ker-
nel through a system call has no counterpart in most real-time operating
systems, including RTEMS, and must be implemented explicitly by means
of a mutual exclusion device.

• The sleep/wakeup mechanism on a wait channel does not exist in RTEMS.
It must therefore be emulated by means of one of the synchronization de-
vices RTEMS provides, the closest one being the events discussed in Sec-
tion 7.6.

• A signifcant amount of processing, within layer 2 of the protocol stack
depicted in Figure 10.1, takes place in software interrupt handlers, whose
execution is triggered by the lower layer upon incoming traffc.

• Similarly, a non-negligible amount of processing concerning incoming and
outgoing frames through network interfaces is performed within hardware
interrupt handlers. Since hardware and software interrupt handlers escape
the normal operating system scheduling policy, their use is discouraged in
a real-time execution environment.

• The protocol stack relies on the BSD kernel timeout mechanism to schedule
internal, periodic activities for execution. This mechanism, also based on
software interrupts, has no direct counterpart in RTEMS.

10.4.1 MUTUAL EXCLUSION AND SLEEP/WAKEUP

The specifc synchronization device chosen to emulate kernel mutual exclusion is
the RTEMS recursive mutex outlined in Section 7.4.1. As shown in the top-right
part of Figure 10.3, the uppermost layer of the protocol stack has been modifed to
call the RTEMS adaptation layer functions rtems_bsdnet_semaphore_obtain
and rtems_bsdnet_semaphore_release where the system call boundaries to
enter and exit from the kernel were originally placed. These functions are sim-
ple wrappers around the RTEMS recursive lock acquisition and release functions
rtems_recursive_mutex_lock and rtems_recursive_mutex_unlock
described in Section 7.4.1.

In order to work correctly, the mutual exclusion mechanism must be properly
integrated with the sleep/wakeup mechanism, so that mutual exclusion is released
when a task sleeps, and then acquired again before the task continues after having
been woken up.

Per se, the sleep/wakeup mechanism relies on RTEMS system events. To inte-
grate it with mutual exclusion, the blocking call to the system event receive func-
tion has been surrounded by calls to rtems_bsdnet_semaphore_release and
rtems_bsdnet_semaphore_obtain. Besides this, two additional expedients
are however required to emulate the original mechanism properly:

348 Real-Time Systems Development with RTEMS and Multicore Processors

Layers 2 and 3 of Figure 10.1

recv

recvfrom

recvmsg

User-mode application

soreceive

Acquire the mutex

(rtems_bsdnet_semaphore_obtain) before

calling protocol stack functions, release it

(rtems_bsdnet_semaphore_release) afterwards

ipintr

arpintr

Timeout functions

Network daemon (separate task)

Wait for events

Handle software int. requests

Handle timeouts

Release the mutex, passively wait for

events with timeout, reacquire the mutex

before continuing

(rtems_bsdnet_event_receive)

Receive daemon (separate task)

Wait for events

ether_input

Retrieve incoming frame(s)

Pass frame(s) to the upper layers

Analyze the incoming frame, generate

(pseudo) soft interrupt requests

(rtems_bsdnet_schedisr)

Transmit daemon (separate task)

Wait for events (tx requests)

Retrieve outgoing frame(s)

Wait for events (tx complete)

(*if_output), often
ether_output

(*if_start)

Send tx request event to the

transmit daemon

(rtems_bsdnet_event_send)

Call tx start function if the

transmit path is inactive

Receive int. handler Transmit int. handler

Send event to the

corresponding daemon

User-level C library code

Protocol stack code

RTEMS adaptation layer code

Device driver code

Sleep:

- release the mutex

- wait for an event

- reacquire the mutex

Wakeup:

- send an event to the blocked task

FIGURE 10.3 RTEMS network adaptation layer and device driver.

349 Network Communication in RTEMS

• RTEMS events have memory, that is, if a task looks for an event that has
already been generated in the past, it receives the event and then continues
without blocking. On the contrary, a wakeup call that precedes a matching
sleep call shall have no effect and the subsequent sleep shall still block the
caller.
Therefore, the implementation of the sleep function must fush all pending
events before releasing the mutual exclusion semaphore and calling the
system event receive function rtems_event_system_receive. With
this approach, the boundary between past and future events with respect to
the sleep call is set to the instant in which the mutual exclusion semaphore
is released: All events generated before that instant are discarded, whereas
any event generated afterwards will wake up the calling task.

• Since the call to rtems_event_system_receive and then to
rtems_bsdnet_semaphore_obtain are not performed as an indivis-
ible unit, there is the possibility that further events are generated after
rtems_event_system_receive returned, but before the task could
obtain the mutual exclusion semaphore again and continue. Conceptually,
these events have been generated before the sleep operation was completed,
and hence, should be taken into account.
To this purpose, the sleep function performs a second, non-blocking system
event receive operation after re-acquiring the mutual exclusion semaphore
and combines the events received in this way with the ones received with
the frst call. The fact that other tasks are allowed to generate wakeup events
only if they hold the mutual exclusion semaphore themselves prevents fur-
ther events from being generated after the re-acquisition of the mutual ex-
clusion semaphore.

Strictly speaking, a minor difference between the original sleep/wakeup mecha-
nism and the one provided by RTEMS remains. Namely, a wakeup operation should
wake up all tasks sleeping on the matching wait channel. Instead, in the RTEMS
emulation, only one task is woken up. This is a direct consequence of the fact that
RTEMS events must be directed to one specifc task.

However, this difference has no practical consequence since in the BSD protocol
stack this “broadcast” feature of the wakeup function is not used, as long as at most
one task is allowed to sleep on a certain socket at any given time.

10.4.2 SOFTWARE INTERRUPTS AND NETWORK DAEMON

In order to eliminate software interrupts, the RTEMS adaptation layer implements
a network daemon as a separate task. This task provides a proper execution context
for the protocol stack code formerly executed within software interrupt handlers. To
support the orderly coexistence of the network daemon with other real-time task, its
scheduling priority and affnity mask can be confgured at will by the user.

Software interrupt requests are emulated by means of the same event mecha-
nism already used to emulate the sleep and wakeup operations. Namely, the network

350 Real-Time Systems Development with RTEMS and Multicore Processors

daemon consists of an infnite loop in which it waits for an event to arrive. An event
towards the network daemon is generated by the rtems_bsdnet_schedisr when
a software interrupt request would have been posted in the original code.

No changes to the protocol stack are needed in order to do this because the orig-
inal protocol stack consistently invokes the function schedisr to post a software
interrupt, and this function is directly mapped onto rtems_bsdnet_schedisr by
the RTEMS adaptation layer.

After being woken up by an event, the network daemon analyzes the event to
determine which software interrupt has been requested and call the appropriate pro-
tocol stack function. As shown in Figure 10.3, the most important software interrupt
entry points are ipintr (for incoming IP traffc) and arpintr (for incoming ARP
traffc).

In order to ensure mutual exclusion, the function used by the network daemon
(and by all the other tasks playing a similar role to be discussed in the following)
to wait for an event, rtems_bsdnet_event_receive, releases the mutual ex-
clusion semaphore that protects the protocol stack before waiting, and re-acquires it
afterwards.

Moreover, the function rtems_bsdnet_newproc used to create the network
daemon ensures that the network daemon acquires the mutual exclusion semaphore
before it starts executing its main entry point, by means of a suitable trampoline.

This approach realizes a different, and somewhat stricter, form of mutual exclu-
sion than in the original protocol stack, in which the software interrupt handlers and
other parts of the protocol stack could execute concurrently unless these other parts
raised the IPL to at least splnet.

This is safe because the scope of the mutual exclusion enforced by the RTEMS
adaptation layer has indeed a wider scope than the original, and also enables the
removal of all IPL changes within the protocol stack. An additional beneft is that
the mutual exclusion mechanism also works correctly on multi-core systems.

10.4.3 TIMEOUT EMULATION

The network daemon is also responsible of emulating the timeout mechanism out-
lined in Section 10.2, used by the protocol stack to schedule the future execution
of its internal activities. The implementation leverages the timeout feature of the
RTEMS system event wait function. More specifcally:

• When it is about to block for events, the network daemon calculates the
timeout to be passed to the system event wait function by consulting the
list of pending timeout requests. The timeout is calculated so that, even in
absence of events, the system event wait function returns to the network
daemon when the frst pending timeout is due to expire. If there are no
pending timeouts, an infnite timeout is used.

• After calling the appropriate software interrupt entry points triggered by
the incoming events, if any, the network daemon checks the elapsed time

351 Network Communication in RTEMS

before blocking again and, if any pending timeouts expired, calls the cor-
responding timeout handling function within the protocol stack.

Also in this case, mutual exclusion is guaranteed without additional provisions,
because the timeout handling functions are always called while the network daemon
holds the protocol stack mutual exclusion semaphore.

10.4.4 DEVICE DRIVER ORGANIZATION

The idea of replacing execution in interrupt handlers (and the shortcomings associ-
ated with it) with execution in a task context, which the RTEMS adaptation layer
adopted for software interrupts, has been extended to hardware interrupts as well.

As shown at the bottom of Figure 10.3, the activities performed within the inter-
rupt handlers of a network device shall be reduced to a minimum by design. In other
words, interrupt handlers must perform only time-critical device operations that can-
not be postponed and delegate everything else to two tasks, the receive and transmit
daemons, by sending appropriate events to them.

These two tasks are responsible for retrieving incoming frames from the network
interface and push them up through the protocol stack, and to initiate the transmission
of outgoing frames coming down from the protocol stack, respectively.

The structure of the receive daemon, at the bottom left of the fgure, is similar
to the one of the network daemon and makes use of the same mutual exclusion and
synchronization mechanisms:

• The receive daemon consists of an infnite loop in which it waits
for events and processes them. The wait is carried out by calling
rtems_bsdnet_event_receive, the same function used by the net-
work daemon, to ensure proper mutual exclusion with other parts of the
protocol stack. This approach also enables the removal of all IPL changes
to the splimp level in the protocol stack code.

• Events are generated by the hardware interrupt handler upon arrival of in-
coming frames. Unless the interface itself is capable of direct memory ac-
cess (DMA), the receive daemon must retrieve each frame from the net-
work interface, encapsulate it into an appropriate chain of struct mbuf,
and enqueue it in the appropriate protocol input queue depending on the
network-level protocol while also removing the data link-level header. Af-
ter that, the receive daemon must trigger further protocol stack activities by
posting the appropriate software interrupt request, which also depends on
the network-level protocol.
For Ethernet devices, most of these activities except frame retrieval, which
depends on the characteristics of the underlying hardware device, are per-
formed by the ether_input function of the protocol stack.

Referring back to Figure 10.3, the struct ifnet that describes a network in-
terface has two entries related to frame transmission:

352 Real-Time Systems Development with RTEMS and Multicore Processors

• The function referenced by the if_output function pointer is called by
the protocol stack when a frame shall be enqueued for transmission. It re-
ceives as argument a chain of struct mbuf that contains the IP datagram
to be transmitted.
This function is responsible for adding an appropriate data link-layer
header to the datagram and enqueueing the resulting frame in the inter-
face transmission queue, which is also linked to the struct ifnet. If
the transmit path of the interface was idle, this function must also call the
function pointed by if_start to start it.
For Ethernet interfaces, all these functions are performed by the function
ether_output, provided by the protocol stack itself. For a device driver
to use it, it just needs to link it to the if_output feld of the struct
ifnet.

• Instead, the function referenced by the if_start fuction pointer is typ-
ically implemented on a case-by-case basis by the device driver. Its main
purpose is to send an appropriate event to the transmit deamon, so that it
can pull the outgoing frames from the interface transmission queue and
transfer them to the hardware. The details of this operation depend on the
underlying hardware and its level of sophistication.

The transmit deamon itself consists of an infnite loop in which it waits for events
that either request it to enqueue some outgoing frames for transmission or signal that
the transmission of some frames has been completed. In the frst case, the events
come from the if_start function, while in the second case they are generated by
the transmit interrupt handler. Mutual exclusion with respect to other parts of the
protocol stack are handled as for the network and receive daemons.

10.5 SUMMARY
In this chapter we outlined how network communication is implemented in RTEMS.
The discussion began with Section 10.1, in which we briefy discussed the two
TCP/IP protocol stacks that RTEMS supports. Then, in Sections 10.2 and 10.3, we
described the internal organization of one of those protocol stacks and its main data
structures.

In the next section, Section 10.4, we focused instead on the adaptation layer be-
tween the protocol stack and the RTEMS operating system. There, we provided more
details on the most important aspects of this layer, namely, the mutual exclusion and
passive wait mechanisms, the interface toward network device drivers, and the em-
ulation of some synchronization mechanisms needed by the protocol stack but not
directly available in RTEMS.

11 POSIX Sockets API

CONTENTS

11.1 Main Features ..353
11.2 Communication Endpoint Management..354
11.3 Local Socket Address ..359
11.4 Connection Establishment ...361
11.5 Connectionless Sockets ...366
11.6 Data Transfer ...367
11.7 Socket Options...375
11.8 Non-Blocking I/O and Synchronous I/O Multiplexing383
11.9 Summary..391

This chapter is entirely devoted to the application programming interface for net-
work communication specifed by the POSIX standard. By means of this interface,
widely available on a variety of operating systems, applications gain access to net-
work communication in a system- and protocol-independent way, to the beneft of
portability.

11.1 MAIN FEATURES
The sockets API, nowadays backed by the POSIX international standard [68], was
frst introduced in the “Berkeley Unix” operating system many years ago [86]. It
is now available on virtually all general-purpose operating systems and most real-
time operating systems that support network communication. Generally speaking,
the main advantage of the sockets API with respect to a custom interface, tailored
to a specifc network or protocol, is that it supports in a uniform way any kind of
communication network, protocol, naming conventions, and hardware.

In this sense sockets represent abstract communication endpoints that are largely
agnostic with respect to the underlying networks and protocols. Semantics of com-
munication and naming are captured by communication domains and socket types,
both specifed upon socket creation. Namely, communication domains are used to
distinguish between IP-based network environments and other kinds of network,
while the socket type determines whether communication will be stream-based or
datagram-based and also implicitly selects which network protocol a socket will use.

Additional socket characteristics can be set up after creation through ab-
stract socket options. For example, a socket option provides a uniform,

353

354 Real-Time Systems Development with RTEMS and Multicore Processors

implementation-independent way to set the amount of receive buffer space associ-
ated with a socket, without requiring any prior knowledge about how buffers are
managed by the underlying implementation of the communication layers. As often
happens, the price to be paid for these advantages is mainly related to effciency in
terms of execution time and memory footprint, as well as the expressive power of the
API, which are usually lower for POSIX sockets with respect to other, less general
approaches.

For instance, the OSEK VDX operating system specifcation [73, 93], focused
on automotive applications, specifes a communication environment (OSEK/VDX
COM) less general than sockets and oriented to real-time message-passing networks,
such as the Controller Area Network (CAN) [72]. The API that this environment pro-
vides is more fexible and effcient because it allows applications to easily set mes-
sage flters and perform out-of-order receives, thus enhancing their timing behavior.
Neither of these functions is straightforward to implement with sockets, because they
do not ft well within the more general and abstract socket paradigm, although it is
defnitely possible [75, 114].

Table 11.1 summarizes the main functions made available by the POSIX sock-
ets API, divided into functional groups that will be described in more detail in the
following.

11.2 COMMUNICATION ENDPOINT MANAGEMENT
The frst thing to do in order to use the sockets API for network communication, is to
create at least one communication endpoint, known as socket. This is accomplished
by means of the socket function:

int socket(int domain, int type, int protocol);

Its three arguments indicate:

1. An address family identifer, which uniquely specifes the network communica-
tion domain the socket belongs to and operates within.

2. A socket type identifer, which specifes the communication model that the socket
will use and, as a consequence, determines which communication properties will
be available.

3. A protocol identifer, to select which specifc protocol stack, among those suitable
for the given protocol family and socket type, the socket will use—if more than
one protocol is available.

A communication domain groups together sockets with common communication
properties, for example, their endpoint addressing scheme or the underlying commu-
nication protocols they use. It also implicitly determines a communication boundary
because data exchange can take place only among sockets belonging to the same do-
main. At the time of this writing, the default protocol stack of RTEMS supports only
the AF_INET address family, which identifes the Internet communication domain.

The communication domain and the socket type are frst used together to de-
termine a set of communication protocols that belong to the domain and obey the

355 POSIX Sockets API

TABLE 11.1
Main Primitives of the POSIX Sockets API

Function Purpose

Communication endpoint management
socket Create a communication endpoint
shutdown Shutdown a connection, in part or completely
close Close a communication endpoint
getsockopt Retrieve a socket option
setsockopt Set a socket option
fcntl Make socket operations blocking or non-blocking
ioctl Perform assorted control operations on a socket

Local socket address
bind Assign a well-known local address to a socket
getsockname Retrieve the local address of a socket

Connection establishment
connect Initiate a connection
listen Prepare a socket to listen for incoming connections
accept Accept an incoming connection from a listening socket
getpeername Retrieve the address of a connected peer

Data transfer
send Send a message from a connected socket
sendto Send a message to a given destination
sendmsg Gather a message from memory and send it to a given destination
recv Receive a message from a connected socket
recvfrom Receive a message and its source address information
recvmsg Receive a message and scatter it into memory
write Send data from a connected socket
read Receive data from a connected socket

Synchronous I/O multiplexing
select Simple interface for synchronous I/O multiplexing
pselect Improved select
poll General interface for synchronous I/O multiplexing
FD_ZERO Initialize an empty fle descriptor set
FD_SET Add a fle descriptor to a set
FD_CLR Remove a fle descriptor from a set
FD_ISSET Check whether or not a fle descriptor belongs to a set

356 Real-Time Systems Development with RTEMS and Multicore Processors

communication model the socket type indicates. Then, the protocol identifer is used
to narrow the choice down to a specifc protocol within this set.

The special protocol identifer 0 (zero) specifes that a suitable default protocol,
selected by the underlying socket implementation, shall be used. In most cases, this
is not a source of ambiguity because most protocol families support at most one
protocol for each socket type.

When it completes successfully, socket returns to the caller a non-negative in-
teger, known as socket descriptor, which shall be passed to all other socket-related
functions, in order to refer to the socket itself. Instead, the negative value -1 indi-
cates that the function failed and no socket has been created. In this case, like for
most other POSIX functions, the errno variable conveys to the caller additional
information about the reason for the failure:

EAFNOSUPPORT The system does not support the address family given in the
domain argument.

EPROTOTYPE The system does not support the socket type given in the type argu-
ment.

EPROTONOSUPPORT The system does not support the communication protocol
specifed in the protocol argument, or the protocol is unsuitable for the given
combination of domain and type.

EMFILE The limit on the number of open fle descriptors that the calling process is
allowed to have has been reached.

ENFILE The system-wide limit on the number of open fle descriptors has been
reached.

Optionally, the socket function may also check the following additional error
conditions and fail if it encounters them:

EACCESS The calling process does not have suffcient privileges to create the
socket.

ENOBUFS The system does not have suffcient resources to create the socket.
ENOMEM The system does not have enough memory to create the socket.

The default RTEMS protocol stack currently supports three different socket types:

1. The SOCK_STREAM socket type provides a connection-oriented, bidirectional,
sequenced, reliable transfer of a byte stream. The underlying protocol does not
necessarily keep track of message boundaries, and hence, a message sent as a
single unit may be received as two or more separate pieces. The opposite is also
possible, that is, multiple messages may be grouped together at the receiving side
and received as a single unit.

2. The SOCK_DGRAM socket type supports a bidirectional data fow, but does not
provide any guarantee of sequenced or reliable delivery. In other words, messages
sent through a datagram socket may be duplicated, discarded, or received in an
order different from the transmission order, with no indication about these facts
being conveyed to the user. Message boundaries are preserved though.

357 POSIX Sockets API

TABLE 11.2
Supported Raw Protocols in the AF_INET Family

Name Acronym RFC Protocol ident.
Internet Control Message Protocol ICMP RFC 792 [98] IPPROTO_ICMP
Internet Group Management Protocol IGMP RFC 3376 [32] IPPROTO_IGMP
Resource Reservation Protocol RSVP RFC 2205 [22] IPPROTO_RSVP
IP Encapsulation within IP IPIP RFC 2003 [95] IPPROTO_IPIP
Raw access to all IP traffc — — IPPROTO_RAW

3. The SOCK_RAW socket type is similar to SOCK_DGRAM, but gives applications
direct access to lower-level protocols, further specifed by the protocol identifer
argument of socket. The format of datagrams sent and received through this
type of socket depends on the underlying protocol and on the protocol stack im-
plementation.

The POSIX standard also specifes a fourth socket type, SOCK_SEQPACKET. It
is similar to SOCK_STREAM, but it also preserves message boundaries. On the trans-
mitting side, a single message can be built incrementally with a sequence of send
operations, marking the last one in a special way to indicate the end of a message.

Similarly, a single message may be returned in one or more chunks at the receiving
side, but the end of the message is still marked, thus giving the receiver the ability to
recognize message boundaries. Although the default RTEMS protocol stack supports
this socket type in principle, it does not implement any underlying protocols able to
provide its features unless suitably extended.

For what concerns SOCK_STREAM sockets, the only protocol supported in the
AF_INET address family is TCP [100], and hence, the protocol identifer argu-
ment to socket is ignored in this case. Similarly, the only protocol supported for
SOCK_DGRAM sockets is UDP [97], still in the AF_INET address family. As a conse-
quence, their protocol identifers, IPPROTO_TCP and IPPROTO_UDP respectively,
are seldom used.

Instead, the protocol identifer becomes important for SOCK_RAW sockets, which
provide access to several other Internet protocols, listed in Table 11.2 along with the
Request For Comments (RFC) documents that defne them and their protocol iden-
tifers within the AF_INET family. Moreover, using the pseudo-protocol identifer
IPPROTO_RAW grants unfltered access to all the underlying IP traffc.

The default RTEMS protocol stack also supports the PF_ROUTE domain, which
will not be further discussed here. Opening a socket in this domain and sending/re-
ceiving messages through it allows a thread to manipulate the protocol stack routing
tables.

The function close closes and destroys a socket. Its only argument is descriptor
of the socket to be closed, formerly returned by socket:

358 Real-Time Systems Development with RTEMS and Multicore Processors

int close(int fildes);

This function is the same function also used to close regular fles and must be used
to reclaim system resources—for instance, memory buffers—assigned to a socket
when it is no longer in use. It is important to highlight that—unless the default be-
havior is changed by setting the SO_LINGER socket option, to be discussed in Sec-
tion 11.7—the close function is designed to return to the caller as soon as possible.

More specifcally, the function may return to the caller before all the data sent
through a socket have actually reached their destination. In this case, there is no
guarantee that data transmission will eventually be successful, even though the un-
derlying socket type (like SOCK_STREAM) promises reliable data delivery.

In addition, when using the TCP protocol, the close function may abort the
connection instead of closing it gracefully (by means of a TCP RST instead of the
usual FIN) if there are unread data in the socket receive buffers. This is done to make
the peer at the other side of the connection aware that some of the data it sent has
not been received and processed. Interested readers should refer to [104] for more
information about these important TCP-related topics.

The close function returns zero when successful, otherwise it returns −1 and
sets errno to an error code. The function shall fail if:

EBADF The given fle descriptor fildes is invalid.
EINTR The function was interrupted by a signal.

The error code EINTR can also be returned by many other socket-related func-
tions, for the same reason. In the descriptions that follow, it will be omitted for con-
ciseness, unless it is particularly important for the function at hand.

The standard also specifes a way to shutdown a socket only partially, by disabling
further send and/or receive operations, but without destroying the socket itself. This
is done by means of the shutdown function:

int shutdown(int socket, int how);

The how argument specifes which direction of the data transfer shall be
shutdown:

SHUT_RD Further receive operations will no longer be allowed.
SHUT_WR Further send operations will no longer be allowed. In the case of TCP,

this request enqueues the transmission of a FIN.
SHUT_RDWR Combines SHUT_RD and SHUT_WR, that is, further send and receive

operations will no longer be allowed.

The shutdown function returns zero when successful, otherwise it returns −1
and sets errno to an error code. The function shall fail if:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
EINVAL The how argument does not have one of the values previously mentioned.

359 POSIX Sockets API

ENOTCONN The socket is not connected.

In addition, shutdown may also fail if:

ENOBUFS The system lacks the resources needed to carry out the operation.

11.3 LOCAL SOCKET ADDRESS
When it is initially created by means of the socket function, a socket has no local
network address associated with it. However, a socket must have a unique local ad-
dress to be actively engaged in data transfer. This is because the local address is used
as the source address for outgoing data frames, and incoming data are conveyed to
sockets by matching their destination address with local socket addresses.

The exact address format and its interpretation may vary depending on the com-
munication domain. Within the Internet communication domain, addresses consist
of a 4-byte IP address and a 16-bit port number, assuming that IPv4 [99] is in use.

For connection-oriented sockets used to initiate a connection, the explicit assign-
ment of a local address is unnecessary since the system implicitly binds the socket
to an appropriate, unique local address when given an unbound socket. The address
consists of the IP address of the outgoing network interface and a unique ephemeral
port, usually taken from a system-dependent range of port numbers located above
port 1024. In this case, the application is not concerned at all with local address
assignment but it also has no control on it.

On the contrary, explicit address assignment is mandatory in order to use a
connection-oriented socket as a listening point for incoming connection requests,
because the peer must obviously know the target address to initiate a connection. For
the same reason, connectionless sockets are also explicitly given a local address in
virtually all cases.

The bind function explicitly assigns a local address to a socket:

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

As usual, the socket is identifed by means of its socket descriptor socket. The
data structure that contains the address is referenced by the pointer address and
the argument address_len indicates the size of the structure, in bytes.

An IPv4 address is stored in a struct sockaddr_in data structure. According
to the general address format described previously, it contains the following felds:

• The feld sin_family, of type sa_family_t, denotes the address fam-
ily to which the address belongs and must be set to AF_INET.

• The IP address is held in the feld sin_addr, of type struct in_addr.
In turn, this structure contains a feld called s_addr, of type in_addr_t,
which is equivalent to a 32-bit integer and holds the IP address.

• The feld sin_port, whose type in_port_t is equivalent to a 16-bit
integer, holds the port number.

360 Real-Time Systems Development with RTEMS and Multicore Processors

To make them compatible with all possible communication domains and their ad-
dress formats, bind and all other functions that take a network address as argument
use a pointer to a generic struct sockaddr to refer to it.

When dealing with an address belonging to a specifc communication do-
main, for instance, an IPv4 address, programmers must explicitly cast its struct
sockaddr_in pointer into a struct sockaddr pointer when passing it as ar-
gument, to avoid compiler warnings. Even more importantly, it is the programmer’s
responsibility to ensure that the address given to bind or any other function belongs
to the same address family as the socket they operate upon.

Another common source of mistakes comes from the fact that both the IP address
and the port number—stored in the felds sin_addr.s_addr and sin_port,
respectively—must be written in network byte order. For historical reasons, this is
big-endian for IPv4, and hence, does not coincide with the native byte order of many
computer architectures in common use nowadays.

A portable conversion from host to network byte order and vice versa can be
performed by means of the following functions:

• The functions htons and htonl take a 16-bit (also called short) or a 32-
bit (also called long) integer as argument, respectively, convert it from host
to network byte order, and return the result.

• The functions ntohs and ntohl do the opposite, that is, they convert a
16-bit or a 32-bit integer from network to host byte order and return the
result.

Th bind function may fail for a variety of reasons. In this case, like most other
sockets functions, it returns −1 to the caller instead of zero, and sets errno to an
error code that better explains the error:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
EOPNOTSUPP The socket does not support the bind operation.
EAFNOSUPPORT The address referenced by address is not valid for the address

family of the given socket.
EADDRNOTAVAIL The address is not available on the local machine. This may hap-

pen, for instance, if the IP address given in the network address does not belong
to any of the network interfaces confgured on the machine.

EADDRINUSE The address is already in use. No two sockets can be bound to the
same local address at the same time.

EALREADY Another address assignment request is already in progress for the same
socket. This is possible because sockets are shared among all threads belonging
to the same process and they can operate on them concurrently.

EINVAL The socket has previously been bound to an address and the underlying
protocols do not support rebinding it to a new address, or the socket has been
shutdown.

ENOBUFS The system lacks the resources needed to carry out the operation.

361 POSIX Sockets API

Regardless of the way the local socket address has been assigned, it can be re-
trieved by means of the getsockname function:

int getsockname(int socket,
struct sockaddr *restrict address,
socklen_t *restrict address_len);

Upon successful completion, the function stores the local address of the given
socket into the data structure pointed by address. When invoked on a socket that
has not been bound to any local address, the value stored into the data structure is
unspecifed.

Addresses belonging to different communication domains may have different
lengths and it may be diffcult to precisely determine in advance what the address
family of the address to be returned should be. To avoid buffer overfows, the vari-
able of type socklen_t referenced by address_len has a twofold meaning:

• The caller must initialize it to the size in bytes of the buffer referenced by
address before calling getsockname.

• Then, getsockname updates the value to refect the actual size of the
address it stored in the buffer. If the buffer size is insuffcient to store the
whole address, the function truncates it.

Upon failure, getsockname returns −1 to the caller instead of zero, and sets
errno to an error code that better explains the error:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
EOPNOTSUPP The socket does not support the getsockname operation.

Moreover, getsockname may also fail if:

EINVAL The socket has been shutdown and no longer has a local address.
ENOBUFS The system lacks the resources needed to carry out the operation.

11.4 CONNECTION ESTABLISHMENT
A connection-oriented socket of type SOCK_STREAM implements a bidirectional,
point-to-point communication between two peers. As its name itself says, it must
therefore be connected to another socket before data transfer can take place between
them. This is done by means of the connect function:

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

The frst argument, socket, is a socket descriptor that identifes the local commu-
nication endpoint. The other two arguments, address and address_len provide

362 Real-Time Systems Development with RTEMS and Multicore Processors

Socket interface Socket interface

Connection
Establishment

Data Transfer

socket

Socket descriptor

socket

Socket descriptor

Network

bind

Status code

accept

listen

Status code

connect

New socket descr.Status code

send, recv

Status code, data

send, recv

Status code, data

Time

Connection
Shutdown

close
close

Status code (*)
Status code (*)

Status code (*)

(*) Depending on SO_LINGER settings

FIGURE 11.1 Lifetime of a SOCK_STREAM connection.

the address of the target communication endpoint, specifed in the same way as for
the bind function.

As shown in the top left part of Figure 11.1, when invoked on a connection-
oriented socket, as those using the TCP protocol are, it sends out a connection request
directed toward the target address specifed in the second and third argument. If the
local socket is currently unbound, the system also selects and binds an appropriate
local address to it beforehand, as described in Section 11.3.

363 POSIX Sockets API

If the function succeeds, it associates the local and the target sockets, and data
transfer can begin. Otherwise, it returns to the caller an error indication. In order to
be a valid target for a connect, a socket must satisfy two conditions:

1. It must have a well-known address assigned to it—because the communication
endpoint willing to connect has to specify this address in the second and third
argument of the connect function. This is usually obtained by means of a bind
operation.

2. It must have been marked as willing to accept connection requests, by means of
the listen function to be discussed next. Newly created sockets do not accept
incoming connection requests by default.

Upon failure, connect returns −1 to the caller instead of zero, and sets errno
to an error code that better explains the error:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
EALREADY Another connection establishment attempt is already in progress for the

same socket.
EADDRNOTAVAIL The connection attempt failed because the socket has been bound

to a local address that is invalid, or the system ran out of ephemeral local ports.
EAFNOSUPPORT The target address referenced by address is not valid for the

address family of the local socket.
EPROTOTYPE The address referenced by address corresponds to a socket of a

different type than the local socket.
EISCONN The local socket is already connected.
ECONNREFUSED The target address refused the connection, for instance, because it

was not listening for incoming connections.
ENETUNREACH The target network is unreachable.
ETIMEDOUT The connection establishment process timed out before the connection

could be established.

Moreover, connect may also fail if:

EINVAL The target address family or the address length are invalid.
EADDRINUSE The connection attempt failed because it tried to use address/port

combinations the were already in use.
ENETDOWN The local network interface that should have been used to reach the

target is down.
EHOSTUNREACH The target host is unreachable.
ECONNRESET The remote host reset the connection
EOPNOTSUPP The socket is listening for incoming connection requests, and hence,

it cannot be used to send outgoing connection requests.
ENOBUFS The system lacks the resources needed to carry out the operation.

The listen function marks a socket as willing to accept incoming connection
requests:

364 Real-Time Systems Development with RTEMS and Multicore Processors

int listen(int socket, int backlog);

The frst argument of this function is, as usual, the socket descriptor to be acted
upon. Informally speaking, the second argument is an integer that specifes the max-
imum number of outstanding connection requests that can be waiting acceptance
on the given socket, known as backlog. The special value zero, or a negative value,
leaves the underlying implementation free to choose a suitable backlog size. It should
also be noted that, even if the user specifes a non-zero value, it is treated as a hint by
the socket implementation, which is free to reduce it if necessary.

If a new connection request is received while the queue of outstanding requests
is full, the connection can either be refused immediately or, if the underlying proto-
col implementation supports this feature, the request can be retried at a later time.
Reference [104] contains more in-depth details about how the backlog mechanism
works.

When successful, the listen function returns zero to the caller. Otherwise, it
returns −1 and sets errno to an error code. The function shall fail for the following
reasons:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
EOPNOTSUPP The underlying protocol does not support the listen operation.

This may happen, for instance, when calling listen on a connectionless socket.
EINVAL The socket is already connected, and hence, it cannot be used to listen for

incoming connection requests.
EDESTADDRREQ The socket is not bound to a local address and the underlying pro-

tocol, like TCP, does not support listening for incoming connection requests on
an unbound socket.

Moreover, listen may also fail if:

EINVAL The socket has been shutdown and can no longer be used for listening.
ENOBUFS The system lacks the resources needed to carry out the operation.

A successful execution of bind and listen is necessary, but not yet suffcient, to
listen for incoming connection requests and establish new connections. The accept
function must also be used, after listen, to wait for the arrival of a connection
request on a given socket. The whole process is summarized in the top right part of
Figure 11.1. The accept function has the following prototype:

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

The function blocks the caller until a connection request arrives, then accepts it,
creates a new socket and returns its descriptor to the caller. It returns −1 upon failure,
but this is not a source of ambiguity because socket descriptors are non-negative inte-
gers by defnition. The new socket is connected to the socket that originated the con-
nection request, sometimes called the peer socket, while the original socket passed

365 POSIX Sockets API

to accept as argument is still available to wait for and accept further connection
requests, if used with accept again.

In addition, if the address argument is not a NULL pointer, accept stores
the address of the socket that originated the connection request into the location
pointed by it. The address_len argument is handled in the same way as the
getsockname function does. Namely, the location it points to is used both to indi-
cate the size of the buffer pointed by address and the actual length of the address
that accept stored into it.

The accept function shall fail for the following reasons:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
EINVAL The given socket is not accepting connections.
EOPNOTSUPP The underlying protocol does not support the accept operation.
ECONNABORTED The connection has been aborted.
EMFILE The limit on the number of open fle descriptors that the calling process is

allowed to have has been reached.
ENFILE The system-wide limit on the number of open fle descriptors has been

reached.
ENOBUFS The system lacks the buffer space needed to carry out the operation.
ENOMEM The system does not have enough memory to carry out the operation.

The address of the peer socket can also be retrieved at a later time by means of
the getpeername function, which should be invoked on a connected, connection-
oriented socket:

int getpeername(int socket,
struct sockaddr *restrict address,
socklen_t *restrict address_len);

Also in this case, the location referenced by address_len has a twofold mean-
ing, as explained previously. The getpeername function returns zero upon suc-
cessful completion, or −1 upon failure. It shall fail for the following reasons:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid, but does not refer to a socket.
ENOTCONN The given socket is not connected, and hence, it does not currently have

a peer.
EOPNOTSUPP The underlying protocol does not support the getpeername opera-

tion or the concept of peer.

In addition, the function may fail if:

ENOBUFS The system lacks the buffer space needed to carry out the operation.

Figure 11.1 on page 362 summarizes the steps that the two peers must take in
order to establish a connection between them. More specifcally:

366 Real-Time Systems Development with RTEMS and Multicore Processors

1. Both peers must create a new connection-oriented socket by calling socket. The
two sockets must necessarily belong to the same communication domain and be
of the same type.

2. The peer that will passively wait for incoming connection, shown on the right of
the fgure, must call bind to give its socket an address that is well-known to the
other peer.

3. Then, it must mark the socket as willing to accept connections by invoking
listen on it.

4. Finally, it must call accept to block and wait for incoming connection requests.
5. The peer that will actively initiate the connection request, shown on the left of the

fgure, does not need to call bind because the system will automatically pick a
local address for its socket as needed.

6. Instead, it can proceed directly to call connect, which will block the caller until
the connection is established.

7. After a successful connection establishment, both peers have a socket available for
data transfer: The peer that initiated the connection will use the socket returned by
its call to socket, and the peer that waited for an incoming connection request
will use the socket returned by accept.

8. The socket marked with listen is still available to accept further incoming
connection requests if so desired.

11.5 CONNECTIONLESS SOCKETS
Once connected to a peer, a connection-oriented socket implements a point-to-point
communication channel between two peers. The establishment of a connection is
a prerequisite for data transfer. Instead, connectionless communication does not re-
quire any form of connection negotiation or establishment before data transfer can
take place. It is typical of datagram sockets, such as the ones using the UDP protocol.

Since in datagram communication each message is routed independently from any
other, connectionless sockets readily support multi-point communication in which a
single socket is used to send messages to multiple targets. Symmetrically, one single
socket can also receive messages from multiple sources.

Socket creation proceeds in the same way as it does for connection-oriented sock-
ets, and bind can be used to assign a specifc, well-known local address to a socket.
Moreover, if a data transmission operation is invoked on an unbound socket, the
socket is implicitly bound to an available local address before transmission takes
place. Instead, due to the lack of need for connection establishment, listen and
accept may not be used on a connectionless socket.

The connect function can still be used, albeit with different semantics. When in-
voked on a connectionless socket, connect does not send any connection request—
it would not make sense—but simply associates the given destination address with
the socket. In this way, it becomes possible to use the socket with data transmission
functions that do not explicitly indicate the destination address, for instance, send.

367 POSIX Sockets API

Moreover, after a successful connect, only data received from that remote address
will be delivered to the user.

The connect function can be used multiple times on the same connectionless
socket, but only the last address specifed remains in effect. Unlike for connection-
oriented sockets, in which connect implies a certain amount of network activity,
connect requests on connectionless sockets return almost immediately to the caller,
because they simply perform a local operation. The only way to send data through a
connectionless socket without using connect is by means of a function that allows
the caller to specify the destination address on a message-by-message basis, such as
sendto.

11.6 DATA TRANSFER
The functions send, sendto, and sendmsg send data through a socket, with differ-
ent trade-offs between expressive power and interface complexity. The send func-
tion is the simplest one. The most important underlying assumption of its interface is
that the destination address is already known to the system. This is true in two cases:

• If the function is invoked on a connection-oriented socket that has been
successfully connected to a remote peer in the past and has not been dis-
connected yet.

• On a connectionless socket, the use of send is allowed if a remote address
has been associated with the socket by means of a connect call.

On the contrary, send cannot be used, for instance, on a connectionless sockets on
which no connect has ever been performed. Its four arguments specify the socket
to be used, the position and size of a memory buffer containing the data to be sent,
and a set of fags that may alter the semantics of the function:

ssize_t send(int socket, const void *buffer,
size_t length, int flags);

More specifcally:

• The socket argument is a socket descriptor
• The buffer argument points to the in-memory data buffer and length

gives its length, in bytes.
• The flags argument contains the bitwise OR of the fags.

Of all the fags available to the caller, here we will only discuss MSG_OOB and
MSG_NOSIGNAL, which are the most relevant to real-time systems:

MSG_OOB is used on sockets that support out-of-band communication to send a (usu-
ally limited) quantity of out-of-band data. These data are sent and received inde-
pendently of normal data and may have a higher delivery priority. The TCP pro-
tocol supports one single outstanding byte of out-of-band data at any given time.
The presence of out-of-band data waiting to be delivered is signaled to the remote
peer, but they are nevertheless sent in sequence with respect to normal data.

368 Real-Time Systems Development with RTEMS and Multicore Processors

MSG_NOSIGNAL is used to suppress the SIGPIPE signal that would normally be
generated if send is called on a stream-oriented socket that is no longer connected
to its remote peer. When this fag is set, send fails and returns the EPIPE error
code instead.

The send function returns the non-negative number of bytes successfully trans-
ferred from the user buffer given as argument into network buffers to be sent. If there
is no buffer space available, send blocks the caller until some space becomes avail-
able. The function may also succeed partially, that is, it may return a number of bytes
lower than length.

It is important to remark that a success indication from send (or from any other
data transmission primitives that will be discussed in the following) does not guar-
antee in any way that any data has actually been delivered to the remote peer. This
is true even though the underlying network protocol, like TCP, promises reliable de-
livery. In fact, a successful send does not even imply that the system has started
sending those data, because there may still be older data in the queues of the network
transmission data path.

The only true meaning of a successful send is that no local errors that would
prevent the transmission have been detected, the data to be transmitted have been
successfully moved into suitable network buffers, and the system will do its “best
effort” to deliver them in due course. If a timely delivery confrmation is needed, it
must be implemented by means of a higher-level protocol above the socket layer.
For instance, a very simple approach could be to have the remote peer send back an
acknowledgment message whenever it successfully received a valid data message.

Upon failure, send does not send any data, returns −1 to the caller, and sets
errno to an error code. The send function shall fail when:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid but does not refer to a socket.
ENOTCONN The given socket is connection oriented but it is not currently connected

to a peer.
EDESTADDRREQ The given socket is connectionless and no predefned destination

address has been set with connect.
EOPNOTSUPP The underlying protocol does not support some of the flags.
EMSGSIZE The length of the message is too large.
ECONNRESET The remote peer closed the connection.
EPIPE This error code is returned when the conditions to raise a SIGPIPE signal

are satisfed, but signal generation is disabled by the MSG_NOSIGNAL fag.

In addition, send may also detect and report the following additional error con-
ditions:

EACCESS The calling process does not have suffcient privileges to send data.
ENETDOWN The local network interface that should have been used to reach the

target is down.
ENETUNREACH The target network is unreachable.

369 POSIX Sockets API

ENOBUFS The system lacks the buffer space needed to carry out the operation.

With respect to send, the sendto function is more fexible because it enables
the caller to explicitly specify a destination address by means of the dest_addr
and dest_len arguments, making it suitable for connectionless sockets on which
connect has not been used:

ssize_t sendto(int socket, const void *message,
size_t length, int flags,
const struct sockaddr *dest_addr, socklen_t dest_len);

When invoked on a connection-oriented socket, sendto silently ignores the des-
tination address given as argument. When used on a connectionless socket on which
connect has never been used, sendto simply sends the message to the address
given as argument. Instead, when connect has previously been used on the socket,
the implementation has two choices:

• Send the message to the address given as argument anyway, thus overriding
the one set by connect.

• Fail and report the EISCONN error code.

As usual in the POSIX sockets interface, the destination address is specifed by
means of two additional arguments:

• A pointer dest_addr to the data structure that holds the address.
• The size of the data structure, dest_len, in bytes.

The other arguments have the same meaning as for the send function. As send
does, sendto also returns the number of bytes of data that have successfully been
moved into network buffers for transmission, or −1 to indicate an error. The sendto
function shall detect and report the same error conditions as send, plus:

EAFNOSUPPORT The target address referenced by dest_addr is not valid for the
address family of the local socket.

EISCONN The sendto function has been invoked on a connectionless socket on
which connect has been used, and the implementation opted to fail in this sce-
nario.

The sendto function may also detect and report the same additional error condi-
tions as send, plus:

ENOMEM The system does not have enough memory to carry out the operation.

The sendmsg function is the most general of the group. The most important
difference with respect to the previous ones is that it can gather the data to be sent
from a set of memory buffers of various sizes, instead of accepting as argument a
single, monolithic buffer. This makes application-level memory management more

370 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 11.3
Fields of a struct msghdr, POSIX API

Field Purpose
msg_name Pointer to a communication endpoint address
msg_namelen Size of the address pointed by msg_name
msg_iov Pointer to an array of struct iovec, used to gather/scatter the

message to be sent/received
msg_iovlen Number of elements in the array pointed by msg_iov
msg_control Pointer to ancillary data, beyond the scope of this book
msg_controllen Length of the ancillary data referenced by msg_control
msg_flags Flags on received messaged, unused when sending

effcient because, for instance, the application can leverage the advantages of fxed-
size rather than variable-size dynamic memory allocation, and at the same time it
also avoids extra memory-to-memory copy operations, which are often expensive,
especially on low-end microcontrollers.

To avoid having too many arguments, only the flags are passed as an argument
on their own, while most of the information sendmsg needs must be stored in a
structure of type struct msghdr, to be allocated by the caller. Then, the address
of this structure shall be passed to sendmsg as a single argument, message:

ssize_t sendmsg(int socket,
const struct msghdr *message, int flags);

The struct msghdr includes the felds listed in Table 11.3. Besides the felds
msg_name and msg_namelen, which hold a pointer to the destination address and
its size, respectively, the data structure also contains the two felds msg_iov and
msg_iovlen. As illustrated in Figure 11.2, these two felds give to sendmsg the
information it needs to gather the data to be sent from a number of non-contiguous
buffers in memory.

In particular, the msg_iov feld of the struct msghdr points to an array of
struct iovec. The msg_iovlen feld contains the number of elements of the
array, not to be confused with its size in bytes. Each element of the array corresponds
to, and describes, a contiguous memory buffer that holds part of the data to be sent.
As shown in the fgure, each struct iovec contains two felds:

• The iov_base feld points to the base (the lowest memory address) of the
buffer.

• The iov_len indicates its length, or size, in bytes.

In order to gather the data to be sent, the sendmsg function scans the array ref-
erenced by msg_iov starting from the frst element and logically concatenates the
data it fnds in the memory buffers (depicted as dark gray rectangles in Figure 11.2).

371 POSIX Sockets API

iov_base

iov_len

msg_iov

msg_iovlen

struct msghdr

struct iovec []

iov_base

iov_len

iov_base

iov_len

⋯

Buffer #0

⋯

⋯

Number N of elements in
the array (each element is

a struct iovec)

Buffer #1

Buffer #N-1

Size of the
buffer in bytes

Pointer to the
buffer

FIGURE 11.2 Data gathering and scattering through a struct iovec.

It is important to remark that this is a logical operation, which may or may not corre-
spond to a physical copy of the data into a single, contiguous memory buffer before
transmission. As recalled previously, this is a computationally expensive operation
that protocol stack implementations try to avoid if possible.

The other felds of the struct msghdr are related to the transmission and re-
ception of ancillary data, whose meaning is highly dependent on the underlying com-
munication protocols and are therefore beyond the scope of this book. The sendmsg
function returns zero when successful. Otherwise, it returns −1 after setting errno
to an error code. The error codes are the same as for sendto. In addition, sendmsg
shall fail and report the EMSGSIZE error code if the number of elements of the array
pointed by msg_iov exceeds IOV_MAX, whose value is guaranteed to be at last 16
across POSIX-compliant implementations.

Symmetrically, the recv, recvfrom, and recvmsg functions allow a process
to wait for and receive incoming data from a socket. These functions have different

372 Real-Time Systems Development with RTEMS and Multicore Processors

levels of expressive power and complexity, like their data transmission counterparts.
The simplest one is the recv function:

ssize_t recv(int socket,
void *buffer, size_t length, int flags);

The recv function waits for data to be available from socket, if needed. When
data are available, the function stores them into the memory buffer referenced by
buffer, and returns to the caller the length of the data just received. The argument
length contains the size of the memory buffer, and hence, sets the upper bound on
the quantity of data the function may receive and store into it.

The function also accepts as argument a set of fags, stored in the flags argu-
ment, which alter the semantics of the function. The main fags are:

MSG_OOB The recv function will receive out-of-band data instead of ordinary data.
Out-of-band data are sent by giving the same fag to send, sendto, or sendmsg.

MSG_PEEK The recv function will not remove the data it received from the socket,
so that the next receive will still return the same data

MSG_WAITALL On a SOCK_STREAM socket, the recv function will wait until
length bytes of data have been received. The function may still return earlier
if it is invoked on a SOCK_DGRAM socket, if the peer closes the connection, or if
an error occurs.

The return value of recv indicates the amount of data that has been received and
the occurrence of an error or other abnormal conditions. More specifcally:

• When the function returns a non-zero positive value, it represents the
amount of data, in bytes, successfully received and stored into the buffer
referenced by buffer. This value cannot exceed length, that is, the
length of the buffer itself.

• A return value of zero indicates that the peer shutdown the connection in
a normal way and no more data were available to be received. This corre-
sponds to the “end of fle” indication for regular fles.

• The value −1 is an error indication. In this case, the function also sets
errno as described below to provide more information about the error.

For a SOCK_STREAM socket, even if no errors occur, the recv function may
return after receiving more than zero, but less than length bytes of data, unless the
MSG_WAITALL fags has been set in the flags.

It is important that the application is prepared to deal with this scenario correctly
because the exact amount of data actually received by recv cannot be predicted.
In the case of TCP it depends, among other things, on the inner workings of the
segmentation mechanism of the underlying transport protocol. On the same lines, it
is useful to remark once more that SOCK_STREAM sockets treat data as an unstruc-
tured stream of bytes that fows from the source to the destination socket and do not
preserve message boundaries in any way.

373 POSIX Sockets API

In any case, although the recv function may arbitrarily split incoming data
into pieces and return prematurely, it will never discard data. On the other hand,
SOCK_DGRAM sockets do preserve message boundaries, but this may lead to other
unexpected buffer-related issues. In particular, the recv function always consid-
ers the message as an indivisible unit for this kind of socket. If the message length
exceeds the length of the buffer provided by the user, the extra bytes are silently
discarded.

The recv function shall fail for the following reasons and set errno to the cor-
responding error code:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid but does not refer to a socket.
EOPNOTSUPP The underlying protocol does not support some of the flags.
ENOTCONN The given socket is connection oriented but it is not currently connected

to a peer, and hence, no data can possibly be received from it.
ECONNRESET The remote peer forcibly closed the connection. In case of orderly

connection shutdown, the recv does not report an error, but returns zero instead.
EINVAL The caller requested out-of-band data by setting the MSG_OOB fag, but the

socket does not support out-of-band data.
ETIMEDOUT The connection establishment process timed out before the connection

could be established or a transmission timeout occurred afterwards.

In addition, recv may also fail if:

ENOBUFS The system lacks the buffer space needed to carry out the operation.
ENOMEM The system does not have enough memory to carry out the operation.

With respect to recv, the recvfrom function has two extra arguments that en-
able the caller to retrieve the address of the sending socket along with data:

ssize_t recvfrom(int socket,
void *restrict buffer, size_t length, int flags,
struct sockaddr *restrict address,
socklen_t *restrict address_len);

In particular, if the address argument is not NULL, recvfrom stores into the
data structure pointed by address the address of the sending socket. Also in this
case, the location referenced by address_len has a twofold meaning: It is used to
specify both the size of the data structure referenced by address and provided by
the caller (as input to the recvfrom function), as well as the actual length of the
address that recvfrom stored there (as output from the recvfrom function itself).
The meaning of recvfrom’s return value and the possible values of errno are the
same as for recv.

The most powerful and fexible receive function is recvmsg:

ssize_t recvmsg(int socket,
struct msghdr *message, int flags);

374 Real-Time Systems Development with RTEMS and Multicore Processors

As for sendmsg, most of the arguments to recvmsg must be stored by the caller
in a data structure of type struct msghdr, whose address is then passed as the sin-
gle argument message. The sendmsg function also uses some felds of this struc-
ture to provide additional information to the caller. Only the flags are passed as
an argument on their own. The felds of the struct msghdr are the ones listed
in Table 11.3. They are used in a similar was as sendmsg does, with the following
differences:

• The felds msg_name and msg_namelen are used to return the address
of the sending socket, like the address and address_len arguments of
recvfrom.

• The information referenced by msg_iov is used to scatter the receive data
into multiple receive buffers, instead of gathering.

• The feld msg_flags provides additional information about the received
data, instead of being unused.

More specifcally, the msg_flags feld may contain the bitwise or of the follow-
ing fags:

MSG_OOB The received data consist of out-of-band data rather than ordinary data.
MSG_TRUNC The ordinary data received from a SOCK_DGRAM socket were trun-

cated because the caller-provided buffers were not big enough to hold the whole
message.

The meaning of recvmsg’s return value are the same as for recv and
recvfrom. In addition to the possible values of errno used by recv, recvmsg
shall also fail if:

EINVAL The sum of all the iov_len felds of the array elements referenced by the
msg_iov feld of the struct msghdr given as argument cannot be represented
by an ssize_t data type.

EMSGSIZE The number of elements of the array pointed by the msg_iov feld of
the struct msghdr passed as argument—given in the msg_iovlen feld of
the same data structure—exceeds IOV_MAX. The value of IOV_MAX is guaranteed
to be at last 16 across POSIX-compliant implementations.

Finally, if we look at SOCK_STREAM sockets, we may notice some important
analogies with the sequential fle access model specifed in POSIX. Both provide
reliable access to a sequential, byte-oriented stream of data without any notion of
record or message boundaries. For this reason, POSIX specifes that the fle-access
primitives write and read, with their standard signature, shall also be applicable
to sockets:

ssize_t write(int fildes, const void *buf, size_t nbyte);
ssize_t read(int fildes, void *buf, size_t nbyte);

The mapping between write and read onto send and recv, respectively, is
extremely straightforward. Namely, the function calls:

375 POSIX Sockets API

write(fildes, buf, nbyte);
read(fildes, buf, nbyte);

are implemented as:

send(fildes, buf, nbyte, 0);
recv(fildes, buf, nbyte, 0);

by the protocol stack.

11.7 SOCKET OPTIONS
Socket options are used to customize the general behavior of a socket, as well as
some aspects of the underlying communication protocols. In addition, some read-
only socket options provide useful information about the state of a socket. Options
also have sensible default values, which are automatically applied if they are not
explicitly set by the application. Default values are adequate in the majority of appli-
cations.

Socket options are organized hierarchically, in multiple levels, which refect the
typical layered structure of communication protocols and software. Within a level,
individual options are uniquely identifed by an option name, a preprocessor macro
that expands into an integer value.

Options have a value associated with them. Since the data type of the value may
change from one option to another, values are passed by reference by means of a
generic void * pointer and an ad-hoc mechanism is used to convey the intended
and actual size of an option value when interacting with the protocol stack. The
actual mechanism is similar to the one used to accommodate variable-length network
address, described in the previous sections.

Socket options are retrieved by means of the getsockopt function:

int getsockopt(int socket, int level, int option_name,
void *restrict option_value,
socklen_t *restrict option_len);

where:

• The socket argument is a socket descriptor and indicates which socket
the function must operate on.

• The level and option_name arguments are the level and the unique
name within the level of the option to be retrieved, respectively.

• The option_value points to a caller-provided memory buffer in which
the function shall store the value of the option.

• The object referenced by option_len is both an input and an output ar-
gument of the getsockopt function. As an input argument, it indicates
the length, in bytes, of the buffer pointed by option_value. As an output
argument, getsockopt sets it to the actual length of the option it stored
in the buffer.

376 Real-Time Systems Development with RTEMS and Multicore Processors

To avoid buffer overfows, the getsockopt function silently truncates the option
value if it is too big to ft in the caller-provided buffer. Since, as a consequence,
the option value would most likely be unusable, this scenario should however be
considered a programming error and avoided.

The return value of getsockopt indicates whether the function succeeded or
failed. Namely, a return value of zero means that the function stored the value of the
option into the buffer pointed by option_value as requested by the caller. Instead
a return value of −1 signifes that an error occurred. In this case, getsockopt also
sets errno to an error code that provides more information about the error. The
getsockopt function shall fail if:

EBADF The given fle descriptor socket is invalid.
ENOTSOCK The given fle descriptor is valid but does not refer to a socket.
EINVAL The option specifed by option_name is not valid at the given level.
ENOPROTOOPT The option option_name is valid, but either the socket or the un-

derlying network protocols, depending on level, do not support it.

Moreover, getsockopt may also fail if:

EACCESS The caller does not have suffcient privileges to retrieve the option.
EINVAL The option cannot be retrieved because the socket has been shutdown.
ENOBUFS The system lacks the resources needed to carry out the operation.

Symmetrically, an option can be set by invoking the setsockopt function:

int setsockopt(int socket, int level, int option_name,
const void *option_value, socklen_t option_len);

The arguments to the function have the same meaning as for the getsockopt
function, the only differences being:

• The memory buffer pointed by option_value must be preset by the
caller to the desired value of the option being set. The setsockopt func-
tion does not change its contents in any way.

• The option_len argument is the actual length in bytes of the memory
buffer pointed by option_value, rather than a pointer to the length, be-
cause it is an input-only argument to setsockopt.

The return value of the setsockopt function has the same meaning as the one
of getsockopt. The reasons why setsockopt shall fail are also the same, plus:

EISCONN The socket is connected and the given option cannot be set while the
socket is in this state.

EDOM The desired value of the option is outside the allowed domain. For instance,
if the option has a timeout as a value, the timeout may be excessive.

In addition, setsockopt may also fail if:

377 POSIX Sockets API

ENOMEM The system does not have enough memory to carry out the operation.

As described previously, the way of specifying a socket option in POSIX has
been modeled after the typical layered structure of the underlying communica-
tion protocols and software. In particular, each option is uniquely specifed by a
(level, name) pair, in which:

• The level indicates the protocol level at which the option is defned. The
protocol level can be one of the protocol identifers defned by the protocol
stack headers as symbolic constants, and hence, correspond to a real com-
munication protocol. For instance, the IPPROTO_TCP symbolic constant
corresponds to the TCP protocol.
In addition, the special level identifer SOL_SOCKET is reserved for the
uppermost layer of the hierarchy, that is, the socket level itself, which does
not have a direct correspondence with any communication protocols.

• The name determines the option to be set or retrieved within the level.
Although names are represented as integer numbers, applications should
never use those numbers directly because they are system-dependent. In-
stead, they should make use of the symbolic constants defned in the proto-
col stack headers and discussed in the following.
The name of an option implicitly determines the data type of the ob-
ject referenced by the option_value argument to getsockopt and
setsockopt and, as a consequence, the meaning of its contents, which
represent the option value.

Tables 11.4 and 11.5 summarize the general options defned at the SOL_SOCKET
level, divided into two categories: read-write options, which can be set and retrieved
at will by applications, and read-only options. By defnition, any attempt to set a
read-only option shall fail.

These tables do not list buffer-related options, which will be described separately.
Some of the options deserve further explanations in the context of the standard
TCP/IP protocol stack implemented by RTEMS. They are discussed in the same
order as they appear in the tables.

• In the standard RTEMS protocol stack, only the TCP protocol module has
functions that record and output debugging information. They are enabled
only if the protocol stack has been compiled with the compile-time option
TCPDEBUG enabled, which is not the default. Unless this option is enabled,
setting the SO_DEBUG option succeeds, but has no effect.

• Although the TCP protocol does not foresee a dedicated request to probe
whether a connected peer is still reachable, an equivalent effect can be
obtained by periodically sending an acknowledgment message containing
a zero-length data segment. This is the approach taken by the RTEMS
TCP/IP protocol stack when the SO_KEEPALIVE socket option is set.

• The value associated with the SO_LINGER option is a struct linger
that contains two felds. The l_onoff feld is an integer treated as a

378 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 11.4
Read-Write General Options Defned at the SOL_SOCKET Level, POSIX API

Name Type Meaning
SO_BROADCAST int (1) Determines whether the socket is allowed to trans-

SO_DEBUG int (1)

SO_DONTROUTE int (1)

SO_KEEPALIVE int (1)

SO_LINGER struct linger

SO_OOBINLINE int (1)

SO_RCVTIMEO struct timeval (2)

SO_SNDTIMEO struct timeval (2)

SO_REUSEADDR int (1)

mit broadcast datagrams, only for sockets of type
SOCK_DGRAM.
Enables or disables the debugging of socket activ-
ities. The actual amount of debugging information
provided depends on whether and to which extent the
underlying protocol modules support this option.
If set, normal network-layer routing algorithms are
disabled and routing is performed only based on the
destination address. This implies that the destina-
tion node must be directly reachable by one of the
sender’s network interfaces.
On a connection-oriented socket, determines
whether or not messages meant to check whether the
connection is alive (often called keepalive messages)
should be periodically exchanged between peers.
Must be supported by the underlying communication
protocols.
Determine how queued, but still unsent, data are han-
dled when the socket is closed. See the description in
the main text for more information.
If set, out-of-band data are placed together with or-
dinary data in the receive queue, rather than being
enqueued separately.
Specifes the maximum amount of time a receive op-
eration from the socket is allowed to wait for incom-
ing data before failing and returning a timeout indi-
cation. A value of zero (the default) means that re-
ceive operations never time out.
Specifes the maximum amount of time a send opera-
tion is allowed to block the caller, in order to wait un-
til all data can be enqueued for transmission. When
this amount of time elapses the function returns to
the caller anyway, although it was able to enqueue
only part of the data. A value of zero (the default)
means that send operations never time out.
When set, this option relaxes the algorithm that
checks whether the address given to bind can be
used or not, to enable an easier/faster reuse of local
addresses. See the description in the main text for an
explanation of how this option affects the TCP pro-
tocol.

(1) Used as a Boolean, a non-zero value meaning true and zero meaning false.
(2) Not to be confused with struct timespec, see Section 11.8 for more information.

379 POSIX Sockets API

TABLE 11.5
Read-Only General Options Defned at the SOL_SOCKET Level, POSIX API

Name Type Meaning
SO_ACCEPTCONN int (1) Tells if the socket is accepting connection requests,

that is, it has been marked with listen.
SO_ERROR int Retrieves and then clears any pending error number

on the socket, returns 0 if there are no pending errors.
SO_TYPE int Returns the socket type (SOCK_...), useful when

inheriting a socket created by others.

(1) Used as a Boolean, a non-zero value meaning true and zero meaning false.

Boolean fag. A non-zero value indicates that the option is enabled. The
l_linger feld is an integer, too, which contains the linger time in sec-
onds. The contents of this feld are used only if the linger option is enabled
according to l_onoff.
The SO_LINGER option only applies to connection-oriented sockets and
affects the behavior of a close operation performed on a socket while the
socket has some queued, but still unsent, data. When the option is disabled,
close shall return to the caller as quickly as possible, without waiting until
those data are sent. Afterwards, the protocol stack may or may not perform
further attempts to transmit them. As a consequence, there is no way for
the caller to know whether any of those data will eventually reach the other
peer or not.
If the SO_LINGER option is enabled with a zero l_linger time, execut-
ing close aborts a TCP connection (by sending an RST) instead of closing
it gracefully. As a result, close returns immediately to the caller but any
queued, unsent data are discarded. Another scenario in which some TCP
implementations may do the same, that is, abort the connection instead of
closing it gracefully, is when close is called on a socked that has some
data in its receive buffers. In this case, the abort makes the peer aware that
some of the data it sent (the ones in the receive buffer) are not going to be
received and processed.
Instead, when the option is enabled and the l_linger time is not zero,
close blocks the caller until either all queued data have been sent and
acknowledged by the peer, or the time indicated by l_linger elapsed.
However, this is still not enough to guarantee that the peer application has
actually received and processed all data—they may have been acknowl-
edged by the peer TCP, but still be in the peer socket receive buffers. In
order to ensure end-to-end, application-level data delivery an explicit, an
application-level acknowledge is generally needed.

• The SO_RCVTIMEO and SO_SNDTIMEO set the timeout of blocking

380 Real-Time Systems Development with RTEMS and Multicore Processors

receive and send functions, respectively. The timeout represents the maxi-
mum amount of time these functions are allowed to block the caller if no
data are available to be received, or no data can be transferred from user to
system buffers for transmission. If no data at all were actually transferred
before the timeout expired, the operations report a failure by returning −1
and set errno to EAGAIN or EWOULDBLOCK.
The timeout is expressed by means of a struct timeval, which holds a
relative time value written as an integral number of seconds and a fractional
part in microseconds. This is also the same data structure used to represent
the timeout of the select function, to be discussed in Section 11.8.

• When a TCP connection is closed gracefully, the socket that took the initia-
tive of closing it (the so called active close of a connection) ends up in the
TIME_WAIT state and remains in that state for a relatively long period of
time, equal to twice the TCP Maximum Segment Lifetime (MSL). In turn,
the MSL represent the maximum amount of time a TCP segment could
possibly be active in the network before it is discarded. It is specifed to
be two minutes in [100], although some implementations may use smaller
values.
Sockets that responded to a close request without actively starting it (per-
forming a passive close) do not enter the TIME_WAIT state. Also, if a con-
nection is aborted rather than closed gracefully, neither of the peers enters
the TIME_WAIT state.
If the SO_REUSEADDR option is not set, a new socket cannot be bound
to a local address and port number combination (by means of the bind
function) for which a socket in the TIME_WAIT state currently exists. Al-
though this behavior is generally needed to avoid interpreting residual TCP
segments from an old connection as segments belonging to a new connec-
tion, in some cases it may be useful to immediately reuse a local address.
This can be done by setting the SO_REUSEADDR option to a non-zero value
before invoking bind.

Another group of options, listed in Table 11.6, is related to how transmit and
receive data buffers associated with the socket are handled:

• The SO_RCVBUF and SO_SNDBUF options set the size in bytes of the re-
ceive and transmit data buffers, respectively.

• The SO_RCVLOWAT and SO_SNDLOWAT set the threshold in bytes of the
receive and transmit “low-water” mechanism, respectively, as discussed in
the table.

The receive low-water mechanism affects both the blocking socket operations
discussed so far and the non-blocking operations to be discussed together with syn-
chronous I/O multiplexing in Section 11.8. The send low-water mechanism is of
importance only when non-blocking operations are in use.

The POSIX standard does not specify any standard options for protocols below
the SOL_SOCKET level, with the exception of the IPv6 protocol that the standard

381 POSIX Sockets API

TABLE 11.6
Buffer-Related Options Defned at the SOL_SOCKET Level, POSIX API

Name Type Meaning
SO_RCVBUF int Sets the size, in bytes, of the receive buffers associ-

ated with the socket. The default value is protocol and
implementation-dependent.

SO_SNDBUF int Sets the size, in bytes, of the send buffers associ-
ated with the socket. The default value is protocol and
implementation-dependent.

SO_RCVLOWAT int The value of this option determines the minimum amount
of incoming data, in bytes, which a receive operation waits
to be available before returning. The default value is 1 and
causes receive operations to return as soon as any data
are available. Higher values may improve effciency be-
cause they reduce the number of distinct receive opera-
tions needed to receive a given amount of data. (1)

SO_SNDLOWAT int The value of this option determines the minimum amount
of send buffer space that must be available for the syn-
chronous I/O multiplexing function (Section 11.8) to sig-
nal the ability to transmit through the socket. It does not
affect ordinary, blocking send operations that, unless an
error occurs, process all the data they have been given. The
default value is implementation and protocol-dependent.

(1) Receive operations may still return less data than requested by this options if an error
occurs or a signal is caught.

RTEMS protocol stack does not support. Therefore, although these options may be
very convenient for some classes of application, their use makes the code potentially
non-portable.

It should be noted, however, that often these portability issues are not of practical
concern because many commonly used TCP/IP protocol stacks (including the ones
available in RTEMS) were derived from the original BSD stack [86] and retained
its TCP- and IP-level options. As an example, Table 11.7 summarizes the options
available for the TCP protocol (that is, at the IPPROTO_TCP level) in the standard
RTEMS protocol stack.

382 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 11.7
TCP-Level Options of the Standard RTEMS Protocol Stack

Name Type Meaning
TCP_NODELAY int (1) Under some circumstances that depend on the presence of sent

but not yet acknowledged data, the TCP implementation tem-
porarily gathers data coming from multiple application-level
send operations to transmit them all together at a later time.
This behavior improves throughput because it avoids the trans-
mission of multiple small segments on the network, but may
also increase data transfer latency signifcantly. This option,
when set, disables the gathering algorithm. By default this op-
tion is not set, that is, the gathering algorithm is enabled.

TCP_MAXSEG int The value of this option determines the maximum size of out-
going TCP segments. By default, it is equal to the maximum
size negotiated between the peers when the TCP connection
was established. Any value set by the application must not ex-
ceed the negotiated value, otherwise setsockopt fails with
the EINVAL error number.

TCP_NOOPT int (1) Most TCP implementations may include a number of options
in the TCP packet headers they send. Options are a standard
mechanism conceived to support various extensions to the TCP
protocol by adding optional contents to its packet headers.
When this option is not set (the default) the TCP implementa-
tion is allowed to send the options corresponding to the various
protocol extensions it supports. If this fag is set, options are
disabled in an effort to improve compatibility with other TCP
implementations, although conforming implementations should
ignore any option they do not recognize anyway.

TCP_NOPUSH int (1) When this option is not set (the default) the TCP implementa-
tion normally starts transmitting immediately after a call to any
of the send functions, if allowed to do so by the protocol state.
Moreover, it marks the last segment transmitted with the push
(PSH) bit, to recommend the peer to make the data received so
far available to the application. If this option is set, the TCP
implementation will instead delay data transmission until the
socket is closed or its send buffers are full.

(1) Used as a Boolean, a non-zero value meaning true and zero meaning false.

383 POSIX Sockets API

11.8 NON-BLOCKING I/O AND SYNCHRONOUS I/O MULTIPLEXING
The description of the sockets API functions in Sections 11.2–11.7 referred to their
default blocking mode. Informally speaking, when operating in this mode, these
functions block the caller until they can proceed with at least a partial success or
an error occurs. For example, the recv function, when called with no special fags
set, blocks the caller until there are some data available to be received from the socket
(even though the amount of data is less than what the caller requested) or an error
occurs.

The same functions can also operate in non-blocking mode. In this case, they
always return to the caller immediately, without blocking it, and signal whether or not
they were able to perform all or part of the operation by setting errno appropriately.
For instance, invoking the recv function in this operating mode enables the caller
to poll the socket and check whether data are immediately available to be received
from it, but without blocking until they arrive.

The default behavior in which socket functions block the caller until comple-
tion is quite useful in many cases, since it allows the software to be written in a
simple and intuitive way. However, it may become a disadvantage in other, more
complex situations because, especially for connection establishment and data trans-
fer in connection-oriented communication, it may tie the timings of the two com-
municating peers in an excessive and undesirable way. The SO_RCVTIMEO and
SO_SNDTIMEO socket options (see Section 11.7 and Table 11.4) help alleviate this
issue for what concerns data transfer functions, but do not affect the behavior of other
kinds of function.

There are three possible ways to switch a socket to non-blocking mode: by means
of the fcntl function invoked on the socket, by means of the ioctl function also
invoked on the socket, or by passing the MSG_DONTWAIT fag to any function that
supports fags as an argument. The most important differences among the three meth-
ods are:

• The use of the fcntl function is the only one explicitly mentioned in the
POSIX standard. The other two methods are generally available, especially
on protocol stacks derived from the original BSD stack [86], but neither of
them is standard.

• Both fcntl and ioctl operate at the socket level, and hence, affect the
behavior of all future operations performed on that socket until the setting
is changed again.

• The MSG_DONTWAIT fag is fner-grained since it works on a call-by-call
basis, but it can be used only with functions that support a flags argu-
ment, either directly (send, sendto, recv, and recvfrom) or indirectly
through a struct msghdr (sendmsg and recvmsg).

Moreover, selecting the non-blocking behavior at the socket level by means of
fcntl or ioctl overrides the MSG_DONTWAIT fag passed upon individual func-
tion calls. In other words, if a socket has been set to be non-blocking, all functions
invoked on it will be non-blocking regardless of the MSG_DONTWAIT fag.

384 Real-Time Systems Development with RTEMS and Multicore Processors

A socket can be switched to non-blocking or blocking mode by setting or clearing,
respectively, the O_NONBLOCK fag associated to its socket descriptor, by means of
the fcntl function:

int fcntl(int fildes, int cmd, ...);

In this particular usage pattern, the fildes argument of fcntl represents the
socket descriptor and cmd must be equal to F_SETFL, which corresponds to the “set
fags” command of fcntl. The third argument, corresponding to the ellipsis ...
in the signature, must be an int that holds the bitwise OR of the fags. The fcntl
function returns a value other than −1 if it was able to successfully set the fags.
Otherwise, it returns −1 after setting errno to an error code. Reasons for failure
are:

EBADF The given fle descriptor fildes is invalid.
EINVAL The command cmd is invalid. It may not happen if cmd is F_SETFL be-

cause the implementation of this command is mandatory.

Since the fags associated with a socket descriptor may include other fags be-
sides O_NONBLOCK, and some of them can be used and manipulated by the system
behind the scenes, it is advisable to never forcibly set the fags to a specifc value,
but always work on them in a read-modify-write fashion. Therefore, in order to set
the O_NONBLOCK fag without disrupting the other fags inadvertently, the applica-
tion should frst of all read the current fags associated with the socket descriptor,
then perform a bitwise OR of the value with O_NONBLOCK, and fnally set the fags
according to the result.

To this purpose, the fcntl function can also be used to retrieve the fags by means
of the F_GETFL command. When fcntl is used in this way, its fildes argument
still represents the socket descriptor, cmd must be F_GETFL, and the function takes
no additional arguments. It returns the current value of the fags, which is guaranteed
to be a non-negative value, or −1 upon error. The possible values of errno are the
same as described previously.

As an example, the following fragment of code sets the O_NONBLOCK fag on
socket descriptor s:

int fl;

if((fl = fcntl(s, F_GETFL)) == -1)
{

/* error handling */
}
else
{

fl |= O_NONBLOCK; /* Use fl &= ˜O_NONBLOCK to clear the flag */
if(fcntl(s, F_SETFL, fl) == -1)
{

/* error handling */

385 POSIX Sockets API

}
}

The second way to switch a socket in and out of non-blocking mode is to invoke
the ioctl function on the socket descriptor:

int ioctl(int fildes, int request, ...);

Like fcntl, also ioctl is a generic function, able to carry out a variety of com-
mands, also called requests, on a fle descriptor. They are encoded in the request
argument. Depending on the command, ioctl may require additional arguments.
Here we will focus only on two commands especially relevant in this context.

1. The FIONBIO command allows the caller to set or reset the O_NONBLOCK socket
fag, like fcntl does. For this command, ioctl requires a third argument of type
int *. The location referenced by it must contain an integer, which the function
interprets as a Boolean. If its value is not zero (Boolean true) the socket is put in
non-blocking mode. Instead, if the value is zero (Boolean false) the socket reverts
to the default, blocking mode.
Unlike fcntl, ioctl operates only on the non-blocking fag of the socket de-
scriptor. Therefore, there is no need to read the current fags, modify them, and
write them back.

2. The FIONREAD command lets the caller know how many bytes of data are im-
mediately available and waiting to be received from the socket at the moment,
without actually retrieving those data or removing them from the receive buffers.
Also in this case, ioctl requires a third argument of type int *, which it uses
to store the value requested by the user.

As for many other functions, the return value of ioctl indicates whether the
function completed successfully or not. A return value of zero means successful
completion, while −1 denotes that an error occurred. In the last case, the function
also sets errno to provide more information about the error itself. For the specifc
requests just described the ioctl function shall fail if:

EBADF The given fle descriptor fildes is invalid.

The third and last method is probably the simplest because it merely implies pass-
ing an additional fag (MSG_DONTWAIT) to the socket-related functions and allows
the non-blocking behavior to be selected on a call-by-call basis. However, as outlined
previously, it has two main shortcomings:

• Not all socket-related functions support fags as an argument. For instance,
this method cannot be used in the connection establishment phase.

• Although it is widely available this method is not standardized, and hence,
it should be avoided when writing code meant to be portable.

Regardless of how it is activated, non-blocking mode has a profound effect on
the behavior of many socket-related functions, also affecting the possible error codes
they may generate. In particular:

386 Real-Time Systems Development with RTEMS and Multicore Processors

• The bind function will return −1, a failure indication, and set errno
to EINPROGRESS if it is unable to perform the requested local address
assignment immediately. However, this does not actually indicate a fail-
ure because the system will perform and complete the address assignment
asynchronously.

• If no connection requests are immediately available to be accepted, the
accept function will fail—returning −1 and setting errno to either
EWOULDBLOCK or EAGAIN—instead of blocking the caller until there is
one.

• If the connect function is unable to establish a connection immediately
it will return −1 and set errno to EINPROGRESS instead of blocking the
caller until connection establishment is complete. The system will establish
the connection asynchronously.

• The receive functions will not block the caller if no data are available to
be received immediately. Instead, they will return −1 and set errno to
either EWOULDBLOCK or EAGAIN. A return value of zero is still reserved to
indicate that the connection has been shutdown normally (for connection-
oriented sockets).

• Similarly, the send functions will not block the caller if no data can imme-
diately be transferred from user to system buffers. Instead, they will return
−1 and set errno to either EWOULDBLOCK or EAGAIN.

Somewhat contrary to the general approach just discussed, putting a socket in non-
blocking mode does not affect the blocking that may occur in the close function
due to the lingering interval discussed in Section 11.7.

Switching sockets to non-blocking operation mode enables a single process or
thread to service multiple sockets without running the risk of ever blocking on one
of them, thus neglecting the others.

However, as it generally happens with many polling-based approaches to input-
output, choosing the best polling frequency for each socket may be challenging
because it represents a trade-off between improving reactivity (which would push
toward a higher polling frequency) and keeping overheads stemming from useless
polling under control (which would of course beneft from a lower polling fre-
quency).

For this reason, the POSIX standard also supports an event-driven, rather than
time-driven, approach to socket input-output. With this method, socket operations
are carried out in two stages, usually enclosed in an infnite loop:

1. The thread waits until some event of interest occurs on a set of sockets. The oc-
currence of an event on a socket signifes that an input–output operation became
possible on the socket, or the system detected an error or an exceptional condi-
tion that affects the socket. The wait operation terminates and returns to the caller
as soon as at least one event of interest occurs on any of the sockets in the set.
Therefore, incoming events are handled in a frst-in, frst-out fashion regardless of

387 POSIX Sockets API

which socket they relate to. In addition, the wait function can provide information
on exactly which events have occurred, to facilitate further processing.

2. Based on the information provided by the wait function invoked in the previous
step, the thread performs one socket operation for each event. The operations to
be performed on a socket depend on the events that occurred on the socket itself.
It is unnecessary to set the socket to non-blocking mode because the occurrence
of an event implies that, even though the corresponding socket operation could
potentially block the caller, it will not.

For instance, one of the events of interest is “ready for reading.” When this event
occurs on a socket, it is guaranteed that a receive function (recv, recvfrom, or
recv) invoked on the socket would not block the caller. However, the outcome of
the function does not necessarily imply any actual data transfer. The function may
indeed return some data, but it may also indicate that the remote peer has closed the
connection normally or that an error occurred on the socket.

Overall, this mechanism is sometimes called synchronous input–output multiplex-
ing because thread activities are still performed in a synchronous way after a passive
wait. Input–output operations on different sockets are multiplexed based on the order
of arrival and carried out sequentially.

The simplest and, historically, the oldest event waiting function specifed by the
POSIX standard is select:

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

The select function takes as arguments three pointers to three sets of socket
descriptors: readfds, writefds, and errorfds. Each set is represented by an
object of type fd_set and the sets may partially or completely overlap, that is, the
same socket descriptor may belong to more than one set. The nfds argument limits
the range of socket descriptors to be checked. Namely, the select function will
check only the socket descriptor whose numerical value is between 0 and nfds-1
included. Numerically higher socket descriptors are ignored, even though they be-
long to the sets previously described.

The select function supports three possible events of interest for each socket:
“ready for reading”, “ready for writing”, and “exceptional condition.” The way the
three sets of socket descriptors are constructed indicates whether or not the caller is
interested in these events. For instance, if a socket descriptor belongs to readfds,
the caller is interested in the “ready for reading” event occurring on that socket.

The timeout argument specifes the maximum amount of time the select
function is allowed to block the caller and is a pointer to an object of type struct
timeval. A struct timeval has two felds that together express a time value:

time_t tv_sec represents the number of seconds, and
time_t tv_usec represents the number of microseconds.

388 Real-Time Systems Development with RTEMS and Multicore Processors

This data type must not be confused with the struct timespec discussed
in the previous chapters, in which the fractional part of a second is expressed in
nanoseconds rather than microseconds. The timeout argument can be set in three
possible ways:

• A NULL pointer means no timeout, that is, the select function will wait
indefnitely, until one of the events of interest occurs or it detects an error.

• A pointer to a struct timeval that contains a time value of zero (that
is, it has zero in both the tv_sec and tv_usec felds) means that the
select function must still check whether the events of interest already
occurred in the past and report them back appropriately, but it must not
block the caller if none of them occurred yet. This is equivalent to a polling
operation performed on multiple sockets.

• A pointer to a struct timeval that contains a non-zero time value indi-
cates that the select function must block for at most the specifed amount
of time, waiting for any of the events of interest to occur. The time value is
interpreted in a relative way with respect to the time of the call to select.

The select function examines the descriptors belonging to each set in order to
check whether at least one of them is ready for reading, ready for writing, or has
a pending exceptional condition, respectively. If the timeout argument permits,
the select function may also block the caller if none of the events of interest has
already occurred. Upon successful completion, the select function also updates the
three sets of socket descriptors to inform the caller about which socket descriptors
became ready for the corresponding kind of operation, that is, which events actually
occurred.

More specifcally, a socket is considered ready for reading if:

• It has been marked with the listen function and there is at least one
pending connection request on it, that is, the accept function invoked on
the socket would be able to accept a connection request without blocking
the caller.

• It has not been marked with listen and there are some pending data in
its receive buffers, or the peer has shutdown the connection. In both cases,
a receive function invoked on the socket would return without blocking the
caller.

• If the socket has been confgured to place out-of-band data together with
ordinary data (by means of the SO_OOBINLINE socket option), the socket
is considered ready for reading also if there are out-of-band data waiting to
be received.

A socket is considered ready for writing if:

• A pending connection attempt, initiated by calling connect with the
socket in non-blocking mode, has been completed either successfully or
unsuccessfully.

389 POSIX Sockets API

• A local address assignment, initiated by calling bind with the socket in
non-blocking mode, has been completed. In this case, the socket is also
marked as ready for reading.

• A send operation of at most SO_SNDLOWAT bytes would be able to enqueue
this amount of data immediately, without blocking the caller.

Finally, a socket has an exceptional condition pending if:

• There is a pending error condition on the socket.
• A receive operation with the MSG_OOB fag set would return a certain

amount of out-of-band data without blocking the caller, or out-of-band data
are present in the ordinary data receive queue.

Although protocol stacks are free to add additional conditions to the previous lists,
they are beyond the scope of the POSIX standard and their use would make the code
no longer portable on other systems.

Upon successful completion, the return value of the select function is the (non-
negative) total number of events that have been reported to the caller, that is, the
number of socket descriptors that select inserted in the sets of descriptors pointed
by readfds, writefds, and errorfds. Otherwise, select returns −1 and sets
errno to indicate which error occurred. The select function shall fail if:

EBADF At least one of the fle descriptors in the sets referenced by readfds,
writefds, and errorfds is invalid.

EINVAL The timeout interval referenced by timeout or the value of nfds are
invalid.

EINTR The function was interrupted by a signal before any of the events of interest
occurred.

The fle descriptor sets used with the select function must be allocated by the
caller and initialized before use by means of the FD_ZERO function:

void FD_ZERO(fd_set *fdset);

The function takes as argument a pointer fdset to a fle descriptor set and “ze-
roes” it out, that is, initializes it to the empty set. This function, as well as the other
functions that manipulate fle descriptor sets, can be implemented as a macro on sys-
tems where macro expansion is more effcient than inline function expansion. It is
important to remember that macros may evaluate their arguments more than once.
This may lead to an unpredictable behavior if their arguments are expressions with
side-effects, for instance, pre- or post-increments and decrements.

Afterwards, individual fle descriptors can be added to, or removed from, a set by
means of the functions:

void FD_SET(int fd, fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);

390 Real-Time Systems Development with RTEMS and Multicore Processors

Both functions take a pointer fdset to a fle descriptor set and a fle descrip-
tor fd as argument, and update the fle descriptor set in-place. The numeric value
of the fle descriptor being added or removed must be in the range from zero to
FD_SETSIZE-1 included, but no error checks are performed. Using an out-of-range
fle descriptor leads to undefned behavior. Instead, adding a fle descriptor to a set
that already contains it (or, symmetrically, removing a fle descriptor from a set that
does not contain it) is allowed and produces no effects.

The last function in this group, FD_ISSET, queries whether a fle descriptor be-
longs to a set or not:

int FD_ISSET(int fd, fd_set *fdset);

As before, the two arguments fdset and fd are a reference to a set and a fle
descriptor, respectively. The function returns an integer value to the caller, which
must be interpreted as a Boolean value. More specifcally, the return value is not
zero (true) if fle descriptor fd belongs to the set referenced by fdset, otherwise it
is zero (false).

Besides select, the POSIX standard specifes two other functions with a sim-
ilar purpose, pselect and poll. Although they are not supported by RTEMS at
the time of this writing, they will be briefy discussed here anyway for the sake of
completeness. The pselect function:

int pselect(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

is similar to select, although there are three important differences:

• The timeout is represented by means of a struct timespec instead of
a struct timeval. This is more in line with other POSIX functions,
like the ones discussed in Chapters 5, 7, and 9, which also accept a timeout
as argument. As for select, a NULL pointer denotes an infnite timeout,
whereas a pointer to a struct timespec that contains zero indicates
that pselect must immediately return to the caller without blocking.

• It it guaranteed that the pselect function never modifes the time value
referenced by the timeout argument.

• The argument sigmask allows the caller to install a specifc signal mask
for the duration of the call. When sigmask is a NULL pointer the pselect
function behaves like select from this point of view.

The poll function is even more sophisticated and allows the caller to wait for
a wider set of conditions related to a fle descriptor, rather than just the three broad
categories that select and pselect support:

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

391 POSIX Sockets API

The array fds consists of nfds element of type struct pollfd. Each of these
structures contain the set of conditions the caller is interested in for a certain fle
descriptor. More specifcally:

• The fd feld contains a fle descriptor.
• The events feld contains the bitwise or of the event fags the caller is

interested in for fle descriptor fd. Each of these event fags is represented
by a symbolic constant whose name starts with POLL. The POSIX standard
specifes about 10 different event fags.

• The revents feld is set by poll to the bitwise OR of the event fags
that were true for fle descriptor fd when poll returned. Besides the event
fags explicitly requested by the user by means of the events feld, poll
may also set other, unsolicited event fags associated with various error
conditions.

Another difference with respect to select and pselect is the way of express-
ing the timeout. In this case, it is given by an int argument that represents a time in
microseconds. The special values 0 indicates that poll must check whether the re-
quested events occurred and return immediately, without waiting for them. The value
−1 denotes an infnite timeout, that is, poll will return only when at least one of
the requested events occurred or the call was interrupted.

Both synchronous I/O multiplexing and, to some extent, non-blocking I/O were
introduced in the past to allow a single-threaded process to manage multiple sockets
effectively, on operating systems that did not necessarily support multithreading. It
can be argued whether or not these techniques are still useful on more modern sys-
tems, on which creating multiple threads and putting them in charge of one socket
each, is relatively easy and quite effcient. Appropriate coordination among these
threads is not a problem either, because POSIX systems nowadays offer a wide set
of inter-thread communication devices presented in Chapters 7 and 9.

However, there are still several advantages in having these functions available:

• They facilitate the maintenance and the migration of legacy code to newer
systems, without radically changing its design and, often, without signif-
cantly modifying its implementation.

• Polling a socket at a fxed rate instead of handling, for instance, incoming
data as they arrive helps limiting the processing time dedicated to commu-
nication even if the communicating peers misbehave.

11.9 SUMMARY
This chapter described how applications can get access to network communica-
tion by means of the POSIX sockets application programming interface. In Sec-
tions 11.1–11.4, we described the main functions that applications can use to create
communication endpoints, assign well-known network addresses to them when nec-
essary, establish a connection between endpoints, and close them when they are no
longer in use.

392 Real-Time Systems Development with RTEMS and Multicore Processors

Section 11.5 highlighted the differences between connection-oriented and con-
nectionless sockets, and provided more details about the latter kind. Next, Sec-
tion 11.6 discussed data transfer functions. These functions are mostly uniform
across both kinds of socket, but offer different trade-offs between complexity and
power.

Some aspects of sockets behavior can be changed by setting a variety of socket
options appropriately, a feature we described in Section 11.7. In the last section of the
chapter, Section 11.8, we focused on two mechanisms that enable a single-threaded
process to manage more than one socket at the same time, namely, non-blocking
input–output and synchronous input–output multiplexing.

Part V

Multicores in Real-Time
Embedded Systems

http://taylorandfrancis.com

12 Multicores in Embedded
Systems

CONTENTS

12.1 Motivation..395
12.2 Multiprocessors and Multicores ..397

12.2.1 Basics of Multicore Architectures ..397
12.2.2 Memory Consistency Models ...400
12.2.3 Cache Coherency ..409
12.2.4 Practical Implementation on ARM Processors.................................418
12.2.5 Compiler-Level Instruction Reordering..428

12.3 Software Challenges Introduced by Multicores ..431
12.3.1 Loss of the Critical Instant Theorem ..431
12.3.2 Dhall’s Effect ..434
12.3.3 Implicit Mutual Exclusion ..438

12.4 Summary..446

This chapter provides an introduction to multicore processors in the context of em-
bedded systems. The frst part of the chapter focuses on the motivation behind the
widespread diffusion of multicore processors and provides a short overview of their
architecture, going from more abstract aspects down to their practical implementa-
tion on contemporary ARM processors.

The second part of this chapter is entirely devoted to summarizing the signifcant
challenges introduced by multicore in software development for embedded systems,
especially in the areas of task scheduling, schedulability algorithms and analysis, and
proper inter-task communication and synchronization. The next chapters will further
analyze these issues and discuss some common ways to approach and solve them.

12.1 MOTIVATION
The widespread adoption of real-time embedded systems in multiple, dissimilar ap-
plication domains, combined with fast-paced, market-driven technological progress,
has put a strong emphasis on continuously increasing their computing capacity.

Indeed, this additional capacity is key to accommodate the ever-growing embed-
ded software complexity and size, and to provide end-users with appliances that are
sophisticated but, at the same time, easy and convenient to use.

395

396 Real-Time Systems Development with RTEMS and Multicore Processors

More recently, the demand posed on the computing capacity of embedded sys-
tems has increased further because, more often than not, they are moving towards
some form of ubiquitous network connectivity, according to the so-called “Internet
of Things” trend.

Considering the complexity of contemporary protocol stacks, the overall impact
of network communication on the processor load of an embedded system is not at all
negligible although, strictly speaking, most related activities are not subject to hard
deadlines.

Also on the industrial automation front, embedded systems in charge of control-
ling some hardware equipment in real time are quickly evolving from a centralized
I/O architecture, in which peripheral devices—sensors and actuators—are connected
directly to the controller with dedicated, discrete buses, to a distributed I/O architec-
ture. In a distributed I/O architecture, the controller and its peripherals are connected
by means of a real-time communication network, for instance, the Controller Area
Network [72], EtherCAT [66] or PROFIBUS [63], just to name a few.

Besides the inherent complexity of its protocol stack, which is often comparable
or even exceeds the complexity of TCP/IP, distributed I/O communication is also
subject to strict, hard real-time execution constraints. This is because any disruptions
of communication timings are bound to hinder control algorithms accuracy and may
even lead to their failure.

As a consequence, network communication can no longer be considered a
straightforward add-on to an embedded system. On the contrary, its computing re-
quirements must be taken into account right from the design phase.

For years, the most common way of increasing the computing capacity of a pro-
cessor has been to increase its clock frequency by reducing chip geometries. More-
over, considerable effort has been put into improving the number of instructions per
clock cycle a processor is able to complete without sacrifcing the apparently sequen-
tial execution of machine instructions, that is, transparently to the software being
executed.

This goal has been achieved at the expense of circuit complexity, at frst by means
of pipelines, and then through sophisticated execution techniques that, like the ones
used in superscalar processors, dispatch multiple machine instructions for parallel
execution on distinct execution units within the processor itself.

Additional hardware ensures that, although instruction execution is carried out in
parallel to the maximum extent possible, execution results are still the same “as if”
execution had been performed sequentially.

However, in the last decade, continuing on the path of increasing the chip clock
frequency has run more and more frequently into problems of excessive power con-
sumption and heat dissipation, along with higher manufacturing costs due to lower
yield, thus leading chip makers to defne sort of “barriers”, that is, upper limits to the
clock frequency that are unlikely to be surpassed. Currently, this symbolic barrier is
set at around 5 GHz. Indeed, processors that operate beyond that frequency and, at
the same time, are suitable for use in embedded systems, are uncommon.

Multicores in Embedded Systems 397

One signifcant reason is that thermal issues are exacerbated in industrial embed-
ded applications, because processors that operate in such an environment have to op-
erate at ambient temperatures much higher than their commercial counterparts, often
up to 70 °C. Moreover, even if a processor could theoretically operate at those am-
bient temperatures, its active thermal dissipation system—comprising, for instance,
heat sinks and fans—would be too expensive, fragile, or bulky anyway.

At the same time, improvements in superscalar execution have been introduced
at a slower and slower pace in recent years, after reaching the point at which further
performance gains are limited and might not justify the additional circuital complex-
ity they entail, along with the associated testing effort and risk of hardware bugs that
could emerge in obscure circumstances.

12.2 MULTIPROCESSORS AND MULTICORES
As increases of clock speed and improvements of instruction execution strategy got
closer to their limit, more than 20 years ago processor designers moved in another
direction, that is, they started to integrate multiple processors, all connected to a
common memory bus, in the same system. This gave rise to multiprocessors, which
further evolved into multicore processors.

As its name says, a multicore processor embeds multiple execution cores, or just
cores for short, in the same chip. Like in multiprocessors, all cores still have uniform
access to a common, shared memory. From the hardware design point of view, this
poses signifcant challenges that are outside the scope of this book and will be only
shortly summarized in this section, mainly focusing on the effects some of them
have on software design and development. More comprehensive references about
multiprocessor and multicore systems include, for instance, References [57, 89].

12.2.1 BASICS OF MULTICORE ARCHITECTURES

In its most common form [21], a multicore processor consists of a number of in-
dependent cores that, at least in conventional designs, have the same instruction set
architecture as legacy single-core processors, possibly extended with additional dedi-
cated instructions for inter-core communication and synchronization. This backward
compatibility has the advantage of enabling the immediate reuse of existing soft-
ware development environments and toolchains when applications are migrated to a
multicore processor.

The memory system of a multicore processor is considerably more complex than
its single-core processor counterpart. In a single-core processor, it essentially con-
sists of a hierarchy of on-chip cache memories, called levels. Usually, cache levels
are numbered from one (the closest to the processor) to some value n (the closest to
main memory).

Each cache level realizes different trade-offs between access speed and size,
namely, caches become bigger but slower as their distance from the processor in-
creases. The hierarchy has the on-chip processor memory interface at its top and
ends with a bus controller, which connects to an off-chip memory, at the bottom.

398 Real-Time Systems Development with RTEMS and Multicore Processors

Each cache level holds a subset of the contents of the level immediately below
it, down to the bottom level, which holds a subset of the main memory contents.
Appropriate load and eviction algorithms fll each cache level with instructions and
data from the level immediately below it (or from main memory, in the case of the
bottom cache), and remove data previously stored in a cache when space is needed
for other instructions and data, respectively.

To improve effciency and reduce overhead, the granularity of load and eviction
operations is at the level of a cache line rather than individual machine words. There-
fore, load and eviction algorithms treat cache lines as indivisible units when transfer-
ring instruction and data from one cache to another, or to/from main memory. Cache
line sizes vary from one architecture to another, but are typically between 32 and 128
bytes.

Informally speaking, the overall goal of these algorithms is to keep as close as
possible to the processor the instructions and data it is likely to need in the near
future, moving them across levels as appropriate. If the algorithms work properly
and the applications are suffciently well-behaved, the net result is that, statistically,
to the processor memory appears to be as large as main memory and (almost) as fast
as the level-one cache.

Write operations issued by the processor may be immediately propagated through
the cache hierarchy down to main memory (write-through policy). More often, they
may be performed only on the frst cache level initially, and propagated through the
cache levels when an eviction takes place (write-back policy). In other words, to
improve performance the write-back policy aims at reducing the number of cache-
to-cache and cache-to-main-memory write operations by postponing them as much
as possible. In this way, for instance, if the same memory location is written more
than once before being evicted from a certain cache level, all write operations into
the cache level below it, except the last one, are suppressed altogether.

An important consequence of the write-back policy is that there is a time window
in which some caches contain fresh data written by the processor, but these data
have not been written into main memory yet. This fact is completely transparent
to the processor itself, because it makes access to memory exclusively through the
same caches, and hence, it always reads back fresh data. On the contrary, if any other
agent makes access to memory directly (or through its own, separate cache hierarchy)
within this time window, it may get stale data.

On a single-core system, usually the only agents that can access memory in this
way are fast devices capable of Direct Memory Access (DMA). Therefore, only
device driver programmers must be aware of this peculiarity and take appropriate
countermeasures when they deal, for instance, with data buffers shared between a
(hardware) DMA-capable device and its (software) device driver.

When pushing data from the device driver to the device, this is done by means
of special machine instructions that fush the whole cache or part of it—that is, en-
sure that cache contents are actually written back to main memory before continuing
and letting the hardware access them. Symmetrically, before reading data from a
buffer flled by the device, the device driver must use similar machine instructions to

399 Multicores in Embedded Systems

Core 1 Core N Cores

Instruction
cache (L1)

Data
cache (L1)

Unified instruction and
data cache (L2)

Unified instruction and
data cache (L2)

Instruction
cache (L1)

Data
cache (L1)

Shared cache (L3)

Memory bus controller

Dedicated
per-core

caches

Shared
cache(s)

⋯

⋯

⋯

FIGURE 12.1 Example of cache hierarchy on a multicore processor.

invalidate the corresponding cache lines, to ensure that all subsequent read accesses
will actually retrieve fresh data from main memory, rather than stale data from the
cache.

Instead, as shown in Figure 12.1, the issue becomes considerably more complex
in multicores, because each core makes access to main memory through a cache
hierarchy in which at least some of the upper levels are private to that core. Namely,
the fgure shows an example of 3-level cache hierarchy common on contemporary,
general-purpose multicore processors:

• The level-1 (L1) caches are dedicated to individual cores, hence each core
has its own caches. Moreover, separate caches hold instructions and data,
to take the best advantage from the differences in statistical characteristics
of instruction and data access patterns.

• The level-2 (L2) caches are unifed—that is, they hold both instructions and
data without distinguishing between them—but they are still dedicated to
individual cores. Hence, each core has its own unifed L2 cache.

• A level-3 (L3) cache lies at the bottom of the hierarchy. This cache is shared
among all on-chip cores and interfaces with the main memory bus con-
troller that, in turn, mediates off-chip main memory accesses.

Several variations to this general scheme are possible, especially on systems with
many cores. For instance, cores may be grouped into clusters and L2 caches may be
shared among all cores in a cluster instead of being dedicated to a single core.

Regardless of the details, special care must be taken to ensure cache coherence, an
all-important concept to be outlined in the following, to guarantee that all cores have
the same image of main memory contents at any time. In turn, the cache coherence
is related to the concept of memory consistency model, which will also be briefy
discussed in the following.

400 Real-Time Systems Development with RTEMS and Multicore Processors

Shared variables
a, b

(initial value 0)

Private variable
r1

Private variable
r2

Op. 0

τ1

a = 1

r1 = b

Op. 2

Op. 1

τ2

b = 1

r2 = a
Op. 3

FIGURE 12.2 Sample code to illustrate the sequential consistency model.

12.2.2 MEMORY CONSISTENCY MODELS

The purpose of a memory consistency model is to defne a set of rules that determine
how memory operations must be performed by a set of agents, like cores, which
operate on a shared memory. Namely, a memory consistency model stipulates if and
to which extent memory operations performed by a core can be reordered during
execution, and whether or not these operations must be observed by the other cores
in the same order.

The problem is extremely complex and we can provide only a short introduction
here, focusing on several aspects of interest to application and system programmers.
For what concerns the practical implementation of memory consistency models, we
will briefy describe the approach taken by ARM Cortex-A processors [14] as an
example. Readers should refer to the extensive literature on the subject for more
in-depth information.

Sequential consistency model
Arguably the most well-known memory consistency model is the sequential con-
sistency model, defned in Lamport’s seminal paper [79]. This model has the big
advantage of being relatively simple and intuitive, that is, it defnes systems whose
behavior are easy for programmers to understand and work with. In the author’s own
words [79], the sequential consistency model stipulates that “the result of any exe-
cution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in this se-
quence in the order specifed by its program.”

Figure 12.2 shows two tasks τ1 and τ2 that share two variables a and b, whose
initial value is zero, and execute on two distinct processors or cores. Each task sets
one of the two variables to one, and then copies the contents of the other variable

401 Multicores in Embedded Systems

into its own private storage, for instance, into a processor register. The defnition of
sequential consistency model entails two distinct constraints on the order of the four
operations Op. 0, . . . , Op. 3 collectively performed by the two tasks:

1. The frst condition of the model specifes that the four operations must take place
in some sequential order, although it does not specify exactly which one. There-
fore, for instance, the system is allowed to execute (Op. 0,Op. 1,Op. 2,Op. 3) or
(Op. 0,Op. 2,Op. 3,Op. 1).
The system may freely choose different sequences from one execution of the code
to another provided that, for each execution, it is always possible to determine
exactly which sequential order was chosen and the fnal system state is consistent
with that order.

2. According to the second condition of the model, operations performed by a task
within the sequence must take place in the same order specifed by that task. For
instance, since Op. 1 follows Op. 0 in τ1, it must also follow it in the sequence.
As a consequence, the sequence (Op. 0,Op. 2,Op. 3,Op. 1) is allowed (be-
cause Op. 1 follows Op. 0 although they are not contiguous) whereas
Op. 1,Op. 0, Op. 2, Op. 3 is clearly forbidden (because Op. 1 precedes Op. 0).

The sequential consistency model avoids some counterintuitive results of the code
in Figure 12.2 but, at the same time, does not make the system completely determin-
istic and leaves the system free to reorder operations at runtime to some extent, in
order to improve performance. In this specifc case, of the four possible results of the
code shown in the fgure:

• The results (r1 = 1,r2 = 0), (r1 = 0,r2 = 1), and (r1 = 1,r2 = 1) are
all possible. They correspond to the sequences (Op. 2,Op. 3,Op. 0,Op. 1),
(Op. 0,Op. 1,Op. 2,Op. 3), and (Op. 0,Op. 2,Op. 1,Op. 3), respectively.

• Instead, the result (r1 = 0,r2 = 0) is impossible, because none of the al-
lowed sequences of operations may lead to that result.

This scenario indeed corresponds to the programmers’ intuition that the read op-
erations performed by tasks τ1 and τ2 (Op. 1 and Op. 3) may take place after one
or both write operations (Op. 0 and Op. 2) have been performed, thus giving one of
the frst three results. However, they may not both be performed before both write
operations, which would lead to the fourth result.

As summarized in Table 12.1, the sequential consistency model allows only 6 of
the 24 possible execution sequences stemming from the code in Figure 12.2, and the
allowed sequences lead to the three different results just described. Even from this
simple discussion, it is evident that the defnition of a memory consistency model is
extremely important because it acts like a contractual boundary between the hard-
ware architecture and software programmers. More specifcally:

• The memory consistency model determines which results of a given excerpt
of code are possible.

• Based on this, software programmers must be prepared to deal with all
possible results and ensure their code behaves correctly in all cases.

402 Real-Time Systems Development with RTEMS and Multicore Processors

Core

Towards shared memory/cache

FIFO store buffer

Write
operations

Reads not satisfied by the
store buffer access the

cache hierarchy

Reads are satisfied from
the store buffer

(store buffer forwarding)

FIGURE 12.3 Simplifed functional diagram of a FIFO write buffer.

Total store order (TSO)
A main issue of the sequential consistency model is its lack of effciency because,
as we just saw, it forbids many kinds of reordering. This is especially important for
write operations, which are very expensive on many contemporary architectures in
terms of execution time.

The underlying reason for this can be readily appreciated by referring back to
Figure 12.1: In order to become visible to the other cores, a write operation must be
propagated down through the cache hierarchy, starting from the core that issued the
write and down to the L3 cache at least.

Moreover, looking at Figure 12.2, in order to respect the sequential consistency
model, Op. 1 cannot start before Op. 0 has been completed and the write operation
has become visible to all the other cores, although we can easily argue that there is
no compelling reason for postponing a read of variable b until a write to the totally
unrelated variable a has been completed. The same reasoning also applies to Op. 3
with respect to Op. 2.

A widespread way to alleviate this issue is to relax the memory consistency model
to allow the interposition of a store buffer (sometimes called write buffer) between
a core and its cache hierarchy, as shown in the simplifed diagram of Figure 12.3.
As its name says, the store buffer temporarily holds one or more write operations so
that they can be completed at a later time, while the core continues executing other
memory operations in the meantime. Informally speaking:

• Write operations are pushed into the store buffer instead of being immedi-
ately forwarded to the shared cache or memory. Buffered write operations
proceed concurrently with the execution of subsequent read operations is-
sued by the core until they are eventually committed to the shared cache or
memory in frst-in, frst-out (FIFO) order.

• Read operations consult the store buffer to check whether it contains a
write operation to the same address. In this case, the read obtains the
value directly from the store buffer, with a process known as store buffer

403 Multicores in Embedded Systems

forwarding. Otherwise, the read operation accesses the shared cache or
memory through the cache hierarchy, as usual.

Due to the interposition of the store buffer, write operations issued by a core can
now be postponed from the point of view of other cores although, thanks to store
buffer forwarding, they always appear to be performed exactly where they are found
in the code from the point of view of the core that issued them. In other words, the
presence of the write buffer is transparent for the core that is connected to it.

Instead, from the point of view of other cores and of the shared memory, write
operations performed by a certain core may be viewed as if they went beyond some
subsequent read operations issued by that same core. On the contrary, due to the
FIFO nature of the store buffer, write operations issued by a certain core cannot pass
other writes issued by that same core.

Overall, although write operations can be reordered with respect to subsequent
read operations issued by the same core as described previously, they are still com-
mitted to memory and observed by all other cores in some total order. For this reason,
this memory model is called total store order (TSO). Several variants of this model
are in widespread use, for instance, in modern Intel processors [107].

With respect to the simplifed model illustrated here, the main complications of
real models come from the fact they have to support locked instructions, that is,
instructions that perform an indivisible read-modify-write operation on a memory
cell.

Referring back to the example of Figure 12.2, we can easily note that the TSO
model is more relaxed than the sequential consistency model. In particular, since
the code of each task contains a write operation followed by a read operation, the
hardware is free to commit to memory the write operation after the read operation.

As a consequence, all 24 possible sequences of operations listed in Table 12.1
are allowed by the TSO model and, as shown in the rightmost column of the table,
the result (r1 = 0,r2 = 0) becomes possible, although it still sounds implausible
to a programmer who just looks at the code. This happens when the write buffers
postpone the two write operations issued by τ1 and τ2 until after they have performed
both read operations.

Despite its extreme simplicity, this example also illustrates how the adoption of
one memory model or another is always a trade-off between:

• Improving performance, by giving the hardware more freedom to reorder
memory operations.

• Accepting less intuitive behaviors and results, like the one just described.

The classical sample code listed in Figure 12.4 illustrates an execution outcome
that is still forbidden by the total store order model. There are four tasks in the sys-
tem, of which:

• Tasks τ1 and τ2 update two shared variables a and b. The update changes
the value of the variables from 0, their initial value, to 1.

404 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 12.1
Execution of the Code of Figure 12.2 Under Different Memory Models

Sequential consistency Total store order (TSO)
Sequence Allowed Result Allowed Result
(Op. 0,Op. 1,Op. 2,Op. 3) X (r1 = 0,r2 = 1) X (r1 = 0,r2 = 1)
(Op. 0,Op. 1,Op. 3,Op. 2) × — X (r1 = 0,r2 = 1)
(Op. 0,Op. 2,Op. 1,Op. 3) X (r1 = 1,r2 = 1) X (r1 = 1,r2 = 1)
(Op. 0,Op. 2,Op. 3,Op. 1) X (r1 = 1,r2 = 1) X (r1 = 1,r2 = 1)
(Op. 0,Op. 3,Op. 1,Op. 2) × — X (r1 = 0,r2 = 1)
(Op. 0,Op. 3,Op. 2,Op. 1) × — X (r1 = 1,r2 = 1)
(Op. 1,Op. 0,Op. 2,Op. 3) × — X (r1 = 0,r2 = 1)
(Op. 1,Op. 0,Op. 3,Op. 2) × — X (r1 = 0,r2 = 1)
(Op. 1,Op. 2,Op. 0,Op. 3) × — X (r1 = 0,r2 = 1)
(Op. 1,Op. 2,Op. 3,Op. 0) × — X (r1 = 0,r2 = 0)
(Op. 1,Op. 3,Op. 0,Op. 2) × — X (r1 = 0,r2 = 0)
(Op. 1,Op. 3,Op. 2,Op. 0) × — X (r1 = 0,r2 = 0)
(Op. 2,Op. 0,Op. 1,Op. 3) X (r1 = 1,r2 = 1) X (r1 = 1,r2 = 1)
(Op. 2,Op. 0,Op. 3,Op. 1) X (r1 = 1,r2 = 1) X (r1 = 1,r2 = 1)
(Op. 2,Op. 1,Op. 0,Op. 3) × — X (r1 = 1,r2 = 1)
(Op. 2,Op. 1,Op. 3,Op. 0) × — X (r1 = 1,r2 = 0)
(Op. 2,Op. 3,Op. 0,Op. 1) X (r1 = 1,r2 = 0) X (r1 = 1,r2 = 0)
(Op. 2,Op. 3,Op. 1,Op. 0) × — X (r1 = 1,r2 = 0)
(Op. 3,Op. 0,Op. 1,Op. 2) × — X (r1 = 0,r2 = 0)
(Op. 3,Op. 0,Op. 2,Op. 1) × — X (r1 = 1,r2 = 0)
(Op. 3,Op. 1,Op. 0,Op. 2) × — X (r1 = 0,r2 = 0)
(Op. 3,Op. 1,Op. 2,Op. 0) × — X (r1 = 0,r2 = 0)
(Op. 3,Op. 2,Op. 0,Op. 1) × — X (r1 = 1,r2 = 0)
(Op. 3,Op. 2,Op. 1,Op. 0) × — X (r1 = 1,r2 = 0)

• Tasks τ3 and τ4 read those variables in reverse order and copy their content
into local storage.

We can easily observe that the result (r1 = 1,r2 = 0,r3 = 1,r4 = 0) is impossible
according to the total store order model, because:

• The partial result (r1 = 1,r2 = 0) implies that τ3 found variable a already
updated to 1 and variable b still at 0 when it performed its read opera-
tions. Therefore, from the point of view of τ3, the write operations were
performed in the order (Op. 0,Op. 1) and the read operations of τ3 took
place between the two.

• Symmetrically, The partial result (r3 = 1,r4 = 0) implies that τ4 observed
the two write operations in the opposite order, that is, (Op. 1,Op. 0), but
this contradicts the fundamental property of the total store order model.

However, it turns out that permitting this kind of behavior may be useful to fur-
ther optimize the hardware. To dig deeper into the underlying reasons for this, let us

405 Multicores in Embedded Systems

Shared variables
a, b

(initial value 0)

Private variables
r1, r2

Private variables
r3, r4

τ1

a = 1

τ2

b = 1 r1 = a

r2 = b

τ3

r3 = b

r4 = a

τ4

Is r1=1, r2=0,

r3=1, r4=0

possible?

Op. 0 Op. 1

FIGURE 12.4 Sample code for more advanced forms or reordering.

Shared FIFO
store buffers

Write
operations from

both cores

Core 3 (exec. τ3)

Towards shared memory/cache

Core 1 (exec. τ1)

B1

Core 4 (exec. τ4)

Towards shared memory/cache

Core 2 (exec. τ2)

B2

FIGURE 12.5 Hypothetical quad-core architecture with shared FIFO store buffers.

consider the hypothetical quad-core architecture depicted in Figure 12.5. With re-
spect to the architecture shown in Figure 12.3, the main difference is that some cores
(cores 1 and 3, and cores 2 and 4) are now “closer” than others because they share
the same store buffer.

Let us discuss why and how executing the code of Figure 12.4 on this architecture
may sometimes lead to (r1 = 1,r2 = 0,r3 = 1,r4 = 0), assuming that the four tasks
τ1, . . . ,τ4 are each executed on their own, same-numbered core. This result stems
from the following execution sequence (and others):

406 Real-Time Systems Development with RTEMS and Multicore Processors

• τ1 executes its write operation on core 1, which temporarily goes into write
buffer B1.

• τ2 executes its write operation on core 2, which temporarily goes into write
buffer B2. At this point, the value of a and b in memory is still 0.

• τ3 executes both its read operations on core 3. Since cores 1 and 3 share
the same write buffer, τ3 gets the (updated) value of a directly from write
buffer B1, whereas it reads the (original) value of b from memory since it
has no visibility of the update held in write buffer B2. As a result, τ3 obtains
(r1 = 1,r2 = 0).

• τ4 executes both its read operations on core 4. Since cores 2 and 4 share
the same write buffer, τ4 gets the (updated) value of b directly from write
buffer B2, whereas it reads the (original) value of a from memory since it
has no visibility of the update held in write buffer B1. As a result, τ4 obtains
(r3 = 1,r4 = 0).

• Eventually, the content of write buffers B1 and B2 will be fushed to main
memory, but this does not affect the result.

In summary, the fact that some cores are closer than others in the hardware archi-
tecture may lead some cores to become aware of write operations sooner than others.
In turn, this may alter the order of write operations from the point of view of some
cores with respect to others, with side effects visible to software.

Although we may rather doubt that sharing write buffers among cores is a fruitful
hardware design approach, it is worth noting that also dividing cores into groups and
sharing some levels of the cache hierarchy among a group of cores may lead to the
same effect, and this is indeed commonplace in contemporary multicore processors.

Some architectures, like the ARM Cortex-A [14], proceed even further along this
path and specify that store buffers are not necessarily managed in frst-in, frst-out
order [11, 13]. As a consequence, on these architectures even write operations issued
by the same core may be reordered at runtime.

Unless properly managed, write reordering may easily lead to subtle software
bugs, even in very simple cases. This is better illustrated by means of the program
shown in Figure 12.6, which implements a one-shot synchronization between two
tasks that execute on two different cores and access a common data buffer called
data:

• Task τ1 prepares the data and writes them into the shared buffer data. In
order to signal that data are ready, it then sets the shared fag rdy, whose
initial value is 0, to 1.

• Task τ2 contains a busy-waiting loop in which it repeatedly checks the value
of rdy. The task stays in the loop until rdy becomes 1. Afterwards, τ2
makes use of data.

Although this code seems correct at frst sight, it malfunctions if the two write
operations performed by τ1, on data and rdy, are observed in a different order by
τ2. When this happens, τ2 may be allowed to proceed past the busy-waiting loop and
access data before τ1 has fnished writing into it.

407 Multicores in Embedded Systems

Shared variables
data, rdy

(initial value 0)

τ1

data = …

τ2

Can τ2 use data

before τ1 prepared it?

rdy = 1

Check rdy

1

0

Use data

FIGURE 12.6 Simple, one-shot inter-task synchronization with busy waiting.

If the shared buffer is a complex data structure rather than just a single machine
word, this is an issue not only of data freshness (τ2 may access an outdated version
of data), but also of data consistency (if the update to data requires more than one
write operation by τ1, τ2 may get access to a mix of old and new data).

We can further generalize this concept and state that, recalling the defnition of
critical region entry and exit code (given in Section 7.1.3), any reordering that makes
the effect of a store operation visible to other cores before the critical region entry
code has been successfully executed (or, symmetrically, its effect is seen beyond the
critical region exit code) undermines the very concept of mutual exclusion among
tasks, which critical regions are meant to guarantee.

Memory barriers and other countermeasures
On the one hand, reordering memory operations has the indubious advantage of im-
proving execution performance, because it allows hardware to hide memory latency
in many cases. By intuition, we can also reckon that, as the approach to reorder-
ing becomes more aggressive, performance improves further and further. On the
other hand, we also saw that reordering store operations may easily lead seemingly
straightforward pieces of code to fail.

It is therefore important to be able to limit reordering, or disable it completely, in
some crucial portions of code. On most architectures, this goal can be achieved in
two possible ways, differing in the granularity of their action.

• Memory barriers or fences are special instructions that, as their name says,
act as fences that cannot be crossed by memory operations. In its simplest
form, a barrier instruction ensures that all memory operations that precede
it in the code have been executed and are visible to other cores strictly
before any of the operations that follow it starts.

408 Real-Time Systems Development with RTEMS and Multicore Processors

Realizing the barrier’s semantics usually entails a signifcant performance
penalty because, in its most common implementation, it forces the core
to wait until all memory operations that precede it have been “fushed” to
memory.
For this reason, many architectures implement several different favors of
barrier, with different levels of permeability to different kinds of memory
operation. For instance, besides the most restrictive form of barrier just
described, they may also provide a weaker barrier, which still prevents store
operations from crossing it, but lets load operations through.

• In some cases, the need to limit or disable reordering is more related to
the target address of memory operations than their specifc position in the
code. This happens, for instance, when software must manipulate a set of
device registers. More often than not, read or write operations on a device
register trigger hardware-related side effects and it is usually necessary to
ensure that they are performed in the exact order specifed in the code. This
applies not only to multicore, but also to single-core processors.
For instance, a simple device that implements a serial interface may have
a data register, in which the data to be transmitted must be written, and a
control register, which starts the transmission when set appropriately. For
the device to work correctly, it is clearly crucial that the processor updates
the data register before writing into the control register.
For similar reasons, it is also necessary that any cache interposed between
the processor and the device does not hide or delay any operation on device
registers from the point of view of the underlying device.
In this case, a whole region of address space can be marked in a special way,
to signal that it is used to interface with devices. This is often done during
software initialization and has the effect of disabling both caching and re-
ordering for all memory operations that target the region. This approach has
an additional beneft, that is, the code that operates on the device afterward
can do so without explicitly using any barrier instruction.

Both these techniques are of interest mainly to system or device driver program-
mers. If we focus solely on inter-task communication and synchronization, the use of
operating system-provided synchronization devices, like the ones described in Chap-
ters 7 and 8, ensures that the high-level software built upon them works properly.
This is because barrier instructions are already embedded in the operating system
code that implements the corresponding communication and synchronization primi-
tives. As better described in Section 12.2.5 for the C and C++ languages, the fact that
these primitives are invoked by means of a function call also prevents other kinds of
undesirable reordering at the compiler level.

On the contrary, the implementation of any lock or wait-free communication al-
gorithms, like the ones exemplifed in Chapter 13, implies a judicious use of memory
barriers. Again, the use of a proven synchronization library as opposed to an ad-hoc
implementation of these algorithms from scratch, is valuable to solve or at least mit-
igate the problem.

409 Multicores in Embedded Systems

12.2.3 CACHE COHERENCY

In Section 12.2.1 we saw that caches have become an essential component of many
contemporary embedded systems, because they are meant to fll the ever-increasing
speed gap between processor and memory, which has now reached one or two orders
of magnitude. As the gap became wider, processor architects resorted to multiple
levels of caches arranged in a hierarchical manner, like the ones depicted in Fig-
ure 12.1, in an effort to achieve the best tradeoff between access speed, capacity,
additional cost, chip area and power consumption, and interconnection complexity.

In an effort to further improve performance, the rules—or protocols—that con-
trol cache behavior have also become more complex, especially for store operations.
They went from simple write-through update policies, in which a store operation
was immediately forwarded all the way back to main memory, to more sophisti-
cated write-back policies, in which new data are temporarily held in the cache and
forwarded to main memory only at a later time, for instance, when the space they
occupy in the cache must be put to other use.

Informally speaking, the side effect of the write-back approach is similar to what
we described for write buffers in Section 12.2.2. Namely, there are time windows in
which main memory contains stale data, that is, its contents do not refect the latest
store operations performed by a core, when observed from another core. For write
buffers, the most commonly adopted solution, briefy described in Section 12.2.2, is
to use special barrier instructions. Essentially, those barriers prevent write buffers
from postponing store operations in a way that may be harmful to the correctness of
the algorithms at hand.

For what concerns caches, it is certainly possible to selectively fush and invalidate
part of them when dealing with DMA-capable devices. Flushing (or cleaning, as
some processor manuals say) the cache before letting a device read from memory
ensures that the device gets access to the latest data. Symmetrically, invalidating the
cache after a device wrote into memory and before letting the processor read from it
ensures that the processor does not continue to use old data still present in its cache.

Given the sheer size of modern caches and the impact they have on performance,
it is very important for these operations to be as selective as possible, that is, they
must affect only the smallest possible portion of the caches. For devices, this is fea-
sible because the location of the memory buffers shared between the processor and
a device is always well-known to the device driver and virtually all cache controllers
provide a way to selectively fush or invalidate cache entries based, for instance, on
the physical address they refer to. Moreover, data sharing among the processor and a
device takes place only in well-known points, internal to the device driver itself.

However, a similar issue also arises when data are shared among cores in which—
as shown in Figure 12.1 and as is becoming more and more common in contemporary
embedded processor architectures—at least the highest cache levels are dedicated, or
private, to each core. This is the case of L1 and L2 caches in the fgure.

Let us assume, for simplicity, that in a dual-core processor each core has only
one level of dedicated, write-back cache. As shown in Figure 12.7, the following
sequence of events is possible when two fragments of code running on the two cores

Core 0 Core 1 Cores

Dedicated
per-core

caches

Main
memory

1) Core 0 loads the word at address w

orig.

orig.w

orig.w

Core 0 Core 1 Cores

Dedicated
per-core

caches

Main
memory

2) Core 0 updates the word at address w

neww

orig.w

new

Core 0 Core 1 Cores

Dedicated
per-core

caches

Main
memory

3) Core 0 loads the word at address w again

neww

orig.w

new

Core 0 Core 1 Cores

Dedicated
per-core

caches

Main
memory

4) Core 1 loads the word at address w

neww

orig.

orig.w

orig.w

FIGURE 12.7 Sharing data between cores without cache coherency.

410 Real-Time Systems Development with RTEMS and Multicore Processors

411 Multicores in Embedded Systems

operate on a shared memory word at address w that was previously cached by either
core:

1. Core 0 loads the word at address w. Since we are assuming that the contents of w
are not cached already, a new cache line is allocated for them and flled with data
from memory.

2. Core 0 updates the word at address w. Since the contents of w are now cached
and the cache is write-back, the update is not propagated all the way back to main
memory and the updated value stays in the cache of core 0.

3. If now core 0 reads back from w it gets the correct contents from its cache, thus
confrming that the presence of a write-back cache is transparent to the corre-
sponding core.

4. Instead, if core 1 loads the word at address w at this point, it will incur in a cache
miss and retrieve the old contents of w from memory.

The net result of this sequence of events is that, although core 1 read from w after
core 0 updated its contents, it still got the original, and now stale contents of w. In
other words, the two cores no longer have a coherent view of memory contents. This
anomaly persists until the new contents of w are eventually fushed from the cache of
core 0 back into memory. In addition, if w is a complex data structure instead of just
a memory word, the possible values that core 1 might get will not only be either the
old or new contents, but also any mix of the two, which will inevitably lead to data
corruption.

It would of course still be possible to obtain the expected behavior by properly
fushing and invalidating the caches. For instance, in this particular case, it would be
necessary to fush the cache of core 0 after writing into w. It would also be prudent to
invalidate the cache of core 1 before reading from w, in case it already contained an
obsolete copy of w’s contents. However, a general use of this technique leads to two
main issues:

• In a multi-threaded environment all threads belonging to the same process
implicitly share the whole address space. It is therefore hard to determine
which data they actually share in an automatic and systematic way, espe-
cially with programming languages that support aliasing and pointers. On
the other hand, fushing and invalidating caches every time a thread makes
access to any data that could potentially be shared would likely be unac-
ceptable from the performance point of view. For these reasons, the cache
maintenance burden must be left to programmers, who might well be un-
aware of the underlying implications of executing their code on a multicore
system.

• An additional complication arises in systems that let the scheduler preempt
and migrate threads from one core to another during execution, accord-
ing to the global scheduling principle, because the software-based cache
maintenance approach just mentioned may be hard to implement without
interfering with the scheduling algorithm. Let us consider the following
pseudo-code fragment to be executed whenever w is updated:

Core 1 Core N Cores

Dedicated
per-core

caches

Main
memory

Cache coherency logic

⋯

⋯

FIGURE 12.8 Cache coherency logic.

1. Store a new value into w
2. Flush the portion of cache that contains w

Although this code seems correct according to the previous discussion, it
may fail if its execution starts on core 0, but the scheduler decides to mi-
grate it to core 1 between the frst and the second instruction. If this hap-
pens, the code will fush the cache of the wrong core and memory will still
contain the old value of w even after both instructions have been executed.
Moreover, the fact that on most architectures the code fragment can be im-
plemented with just two assembly instructions makes the error extremely
unlikely (but not at all impossible) and makes debugging even harder. Dis-
abling thread migration during the two instructions would address the prob-
lem, but only at the expense of additional overhead.

For this reason, many architectures adopt hardware-based, rather than software-
based, techniques to ensure cache coherency. As shown in Figure 12.8, this is done
at the expense of some hardware complexity and additional power consumption, by
interposing a cache coherency logic layer between the caches and main memory.

Depending on the number of cores, the cache coherency logic may span across
all cores and caches, as depicted in the fgure, or the system can be subdivided into
multiple cache coherency domains, with separate and independent cache coherency
logic modules. In this case, the properties guaranteed by each cache coherency logic
are valid only within its domain.

As before, we assume there is only one cache level to simplify our discussion,
but the principle applies equally well to multiple cache levels. In this case, distinct
cache coherency logic layers must be inserted between adjacent cache levels in the
hierarchy.

The cache coherency logic is responsible of maintaining cache coherency by ob-
serving all cache and memory transactions and altering the state of cache lines ac-
cording to a well-defned protocol. Here, we will summarily discuss the MESI proto-
col, frst discussed in Reference [94], because it is used in various forms and variants

412 Real-Time Systems Development with RTEMS and Multicore Processors

413 Multicores in Embedded Systems

in several processor architectures for general-purpose and embedded computing—
for instance, the MOESI protocol adopted in the ARMv8-A architecure [14] and the
MESIF protocol developed by Intel [67].

In the MESI protocol each cache line is characterized by one of four possible
states. It is also assumed that the cache works in write-back mode. The four states
are:

• The invalid (I) state indicates that the cache line does not hold valid data.
• The exclusive (E) state indicates that the cache line contents are valid, con-

sistent with main memory, and no other cache has the same line.
• The shared (S) state also indicates that the cache line contents are valid and

consistent with main memory, but other caches may have the same line.
• The modifed (M) state indicates that the cache line contents are valid but

have been modifed with respect to the value in main memory. No other
cache has the same line.

The exclusive and shared states are often called clean states, because the cache
line is consistent with main memory. Instead, the modifed state is called dirty be-
cause the cache line contains data that are more recent than main memory, and hence,
inconsistent with it. A key goal of the MESI protocol is to prevent other cores from
reading and using outdated data from memory areas corresponding to dirty cache
lines on a certain core. To this purpose, the cache coherency logic gives to a cache
the ability to satisfy a read request from another core, bypassing main memory.

Cache lines transition from one state to another under the control of the cache
coherency logic when two kinds of operations occur, namely:

• Local operations, which include read and write requests from the local core,
that is, the core to which the cache is directly attached, as well as the cache
line clean operation, applied to a non-invalid cache line before reusing it.
In the following, these operations will be called Lr (local read), Lw (local
write), and Lc (local clean), respectively.

• Operations initiated by other cores and snooped (that is, observed) through
the bus that interconnects the cores and is also part of the cache coherency
logic. There are three operations that a core may initiate or observe on the
interconnecting bus: Br (read), Bi (invalidate), Bri (read+invalidate). They
will be defned in the description that follows.

Figure 12.9 summarizes in a state/transition diagram how the MESI protocol re-
acts to local operations. In the fgure:

• Grey circles corresponds to the four possible states of a certain cache line.
• Arrows indicate a transition of a cache line from one state to another, sub-

ject to certain conditions written in the transition label.

The transition label is composed of two parts separated by a slash:

414 Real-Time Systems Development with RTEMS and Multicore Processors

M

E

S

I

L
r
/ — L

w / —

L
w / —

L
r
/ —

L
w / Bi

L
r
/ B

r
(from cache)

L
r
/ B

r
(from mem.)

L
w / Bri

L
c / —

L
c / —

L
c / write-backL

r
/ —

FIGURE 12.9 Main states and transitions of the MESI protocol, local operations.

• The frst part is the local operation that triggers the transition when it ap-
plies to the cache line. Local read and write operations apply to the cache
line that corresponds to the memory address of the operation, while the lo-
cal clean operation applies to the cache line selected for reuse by the cache
replacement algorithm, not covered by the MESI protocol.

• The second part lists the bus operations that are performed during the tran-
sition, if any. The notation “—” indicates that no bus operations are per-
formed, and hence, the transition cannot be snooped by the other cores.

When a core issues a Lr (local read) operation, the following actions take place:

• The local cache is consulted to determine whether the requested data are
already in the cache (cache hit) or not (cache miss).

• If there is a hit, then a cache line already holds the requested data, and it
must be in the S (shared), E (exclusive), or M (modifed) state. The read

415 Multicores in Embedded Systems

operation is satisfed by the cache and the cache line keeps its current state.
No bus operations are issued, and hence, the operation does not become
visible to the other cores.

• If there is a miss, a new cache line must be allocated. Cache lines in the I
(invalid) state are the most suitable candidates because they do not hold any
useful data. If the cache is completely full, it becomes necessary to select
a cache line suitable for reuse. This implies the execution of a Lc (local
clean) operation on it, which will be discussed later, to possibly fush its
data back to main memory and bring it to the I (invalid) state.

• Then, a Br (bus read) operation is issued to retrieve the data and fll the
new cache line. If no other caches have the requested data, the answer to
the operation will come from main memory. In this case, the cache line goes
to the E (exclusive) state. Otherwise, the answer will come from another
cache and, accordingly, the cache line goes to the S (shared) state.

The course of action taken when a core issues a Lw (local write) operation is
similar:

• As before, the local cache is consulted to determine whether there is a hit
or a miss.

• If there is a hit, the cache line goes to the M (modifed) state, to refect
the fact that its contents are no longer consistent with main memory. If the
cache line was in the S (shared) state, other caches may hold the same, now
outdated information. Therefore, a Bi (invalidate) bus operation is issued to
instruct them to invalidate any matching cache lines. Instead, no bus opera-
tions are required if the cache line was in the M (modifed) or E (exclusive)
state, because both states guarantee that no other caches in the system hold
the same information.

• If there is a miss, a new cache line must be allocated, possibly after clean-
ing it with a Lc (local clean) operation. Then, a Bri (bus read+invalidate)
operation is issued to fll the cache line. Finally, the cache line is updated
according to the write operation and moves to the M (modifed) state. The
bus operation instructs other caches to provide the requested data, if they
have it, write any updated data back to main memory, and then invalidate
any matching cache lines. If no caches have the requested data, the answer
to the Bri request will come from main memory.

The purpose of a Lc (local clean) operation is to prepare a cache line for reuse by
bringing it back to the I (invalid) state. Therefore:

• If the cache line is in the S (shared) or E (exclusive) state, its contents
are consistent with main memory and are simply discarded with no further
action. A side effect of this approach is that the S (shared) state is imprecise.
As we explained previously, a cache line moves from the E (exclusive) into
the S (shared) state when other caches holds the same information, but it

M

E

S

I

B
r
/ answer

B
ri

/ answer

B
i
/ —

B
r
/ answer

B
ri

/ answer

B
r
/ write back, answer

B
ri

/ write back, answer

FIGURE 12.10 Main states and transitions of the MESI protocol, bus operations.

never goes back to the E (exclusive) state when this is no longer the case
due to undetectable Lc operations taking place on those other caches.

• If the cache line is in the M (modifed) state, its contents are written back
to main memory before bringing it to the I (invalid) state. Although this
operation could potentially be snooped by other caches, the MESI protocol
does not foresee any action they should perform in this case.

Figure 12.10 illustrates how all the other caches must react to bus operations is-
sued by a certain cache. The reaction takes place only on matching cache lines, that
is, lines that are not in the I (invalid) state and correspond—by memory address—to
the cache line that gave rise to the bus operation in the frst place. This address is
communicated to the other caches through the interconnecting bus along with the
kind of operation that, as stated previously, can be Br (read), Bi (invalidate), or Bri
(read+invalidate). The response to a Br (read) operation is fairly intuitive:

416 Real-Time Systems Development with RTEMS and Multicore Processors

417 Multicores in Embedded Systems

• All caches with a matching cache line must reply with the requested data,
regardless of the cache line state—which cannot be I (invalid). If multiple
caches respond, they must by defnition respond with the same data and an
appropriate arbitration logic will select one of them.

• If one of the matching cache lines was in state E (exclusive), it moves
to state S (shared) to refect the fact that other caches now hold the same
information. By defnition, there can only be at most one matching cache
line in the E (exclusive) state.

• If one of the matching cache lines was in state M (modifed), its contents
are written back to main memory and it is moved to the S (shared) state.
As before, there can only be at most one matching cache line in the M
(modifed) state.

This behavior guarantees that the requesting cache always gets the most recent
data available because, if there is a cache with a matching cache line in the M (mod-
ifed) state, it will be the only cache to answer the request. At the same time, the
most recent data is written back to main memory if necessary and the state of all
matching cache lines is set to S (shared), to refect the fact that these data are present
in multiple caches (at least two). This is possible and correct because the Br (read)
operation signifes that the requesting cache needs the data it is requesting, but does
not intend to modify them.

The response to a Bri (read+invalidate) operation is similar, with one notable dif-
ference:

• After replying with the requested data and possibly writing back to main
memory the contents of the matching cache line in the M (modifed) state,
if any, all caches invalidate the matching cache line, that is, they uncondi-
tionally move it to the I (invalid) instead of the S (shared) state.

The difference is due to the consideration that the Bri (read+invalidate) opera-
tion indicates that the requesting cache intends to immediately modify the data it
requested. Hence, it must become the sole place in which these data reside, more
specifcally, in a cache line in the M (modifed) state.

The Bi (invalidate) bus operation is issued when a cache line in the S (shared) state
moves to the M (modifed) state because its contents have been updated. In response,
all the other caches must invalidate any matching cache lines they may have. It is
worth noting that, due to the way the MESI protocol works, all these cache lines
must necessarily be in the S (shared) state.

In summary, one important property of the MESI protocol from the programmer’s
perspective is that it handles cache write-back and invalidation automatically, thus
ensuring that all caches in the coherency domain give to the attached cores a coherent
view of main memory contents.

Even more importantly, this is done transparently with respect to the application
tasks that run on the cores. The memory read and write operations they perform will
always operate correctly on shared data without the need of extra code or care, re-
gardless of what the cache coherency logic is doing behind the scenes. This property

418 Real-Time Systems Development with RTEMS and Multicore Processors

stays true even if tasks are migrated from one core to another, but still within the
same coherency domain, at arbitrary points of their execution.

The two main caveats are that programmers must still ensure that the hardware ac-
tually performs read and write operations in the intended order (see Section 12.2.2)
and timings. As it already happened with single-core caches, the actual operations
that the cache coherency logic must perform, to satisfy a read or write request from
the attached core, vary depending on the state of the caches in the system. Hence,
their execution time also varies accordingly and these timing variations are observ-
able by the application code—although they do not affect the functional correctness
of the code itself.

12.2.4 PRACTICAL IMPLEMENTATION ON ARM PROCESSORS

As a practical example of how the methods and techniques described in the previous
sections can be implemented in practice, this section illustrates the key concepts
taking the ARMv8-A architecture as a reference. The discussion will necessarily be
brief and will focus only on the most essential points. More thorough information can
be found in References [13, 11, 14], which address these topics with an increasing
level of detail.

Memory system
The typical memory system of multicore processors that implement the ARMv8-A
architecture is depicted in Figure 12.11. For what concerns the memory system, the
structure is very close to the generic cache hierarchy shown in Figure 12.1. Its main
elements are:

• A number of cores, grouped into one or more clusters. All cores in the
same cluster are identical to each other. Instead, cores belonging to different
clusters are identical in their instruction set, but may have different clock
speed, internal architecture, and power requirement.

• Each core has its own instruction (I) and data (D) L1 caches. To attain max-
imum performance, the hardware does not enforce any kind of coherence
between these two caches, because they do not normally share information
except in particular cases, for instance, when executable code is loaded
into memory (as data, through the D cache) and then executed (as instruc-
tions, through the I cache). Hence, software must manage these special
cases through explicit fush and invalidate instructions (see Section 12.2.3).

• Each cluster has a unifed L2 cache, shared among all cores in the cluster.
This cache is equipped with a coherence control logic, often called Snoop
Control Unit (SCU) in the ARM documentation, which arbitrates accesses
to the L2 cache from all L1 instruction and data caches. In addition, it
keeps all L1 data caches in the cluster coherent. As noted previously, L1
instruction caches are not part of the intra-cluster coherency domain.

• In high-performance systems a cache-coherent interconnect, which embeds
a unifed L3 cache, connects multiple clusters together and, thanks to its

419 Multicores in Embedded Systems

Cluster

Cores

Cache-coherent interconnect with
cache coherency logic and unified (I+D) cache

Per-core
L1 caches

⋯

Cluster

Core 1 Core 2

Cache coherency logic and
Unified (I+D) cache

I
cache

D
cache

⋯

⋯
I

cache
D

cache

Core N-1 Core N

Cache coherency logic and
Unified (I+D) cache

I
cache

D
cache

⋯

⋯
I

cache
D

cache

Per-cluster
L2 caches

L3 cache

Peripheral devices

Cache-coherent
device

Cache-coherent
device

Dynamic memory controller
(DMC)

Dynamic RAM

Chip boundary

Not part of the
coherency domain

⋯

FIGURE 12.11 ARMv8-A memory system and cache coherency domain (simplifed view).

own cache coherence logic, arbitrates access to the L3 cache from all L2
caches and keeps them coherent to form a single coherency domain across
all clusters. Again, since L1 instruction caches were kept out of the co-
herency domain at a higher level in the hierarchy, they cannot be part of the
coherency domain at this level.

• The cache-coherent interconnect may also be attached to some high-speed
peripherals—for instance, a Graphics Processing Unit (GPU) or a network
interface—that have their own Direct Memory Access (DMA) engines and
internal caches. This approach enables those peripherals to access main
memory through the interconnect and use the L3 cache to reduce access la-
tency. Even more importantly, their Direct Memory Access (DMA) engines
are given a coherent view of main memory contents and processor-side,
software-based cache fush and invalidation before and after input-output
operations becomes unnecessary.

• The cache-coherent interconnect also provides access to off-chip main
memory when required. This is usually done through a Dynamic Memory
Controller (DMC), which takes care of scheduling, timing and interfacing

420 Real-Time Systems Development with RTEMS and Multicore Processors

requirements of external dynamic RAM. In Figure 12.11, the entities that
are part of the coherency domain are highlighted in gray.

Memory management unit and memory types
In ARMv8-A systems, memory accesses are always mediated by a Memory Man-
agement Unit (MMU), in charge of three main functions:

• Address translation between virtual and physical addresses. A virtual ad-
dress is the address generated by a core whenever it fetches an instruction,
or loads and stores data. A physical address is the corresponding address
seen by memory (and often, by caches) for the same transaction.

• Memory access protection, to defne and enforce specifc access rights to
certain memory regions, depending on the execution mode of the core (un-
privileged or privileged) and the kind of access (fetch, load, or store).

• Defnition of memory attributes for certain memory regions, which infu-
ence the behavior of caches and cache coherency logic modules, as well as
memory operations ordering rules.

All three functions are performed by means of a memory-resident data structure
called translation table. Up to four distinct translation tables may exist, each core
uses one or another depending on its current privilege level and the range in which
the virtual memory address to be translated falls.

The description of the internal structure of a translation table, and how the Mem-
ory Management Unit uses it for address translation and memory access protection,
is beyond the scope of this book also because it would involve plenty of architecture-
specifc details that are inherently not applicable elsewhere.

Instead, we will focus on the meaning of memory attributes that—although some-
times called with different names—have a direct counterpart in other processor ar-
chitectures and provide an example of how the concepts outlined in Sections 12.2.2
and 12.2.3 are embodied in real hardware.

As shown in Table 12.2, the ARM-v8A architecture defnes two memory types:
normal and device. These two types are mutually exclusive and all memory regions
accessible to the cores must be categorized as one type or another.

Normal memory
This kind of memory provides maximum performance because it enables all memory
operations reordering strategies the cores are capable of. The normal memory type
should hence be used whenever possible, for instance, for regions of Flash, ROM,
and RAM memory. Early versions of the architecture specifcation set forth very few
limitations on the kind and extent of reordering cores could perform, thus making the
memory order model very complex and giving a lot of freedom to implementations.

However, further limitations were introduced at a later time in order to streamline
and simplify the model [101], because it was discovered that part of the freedom was
never exploited by production implementation. In other words, it was determined

421 Multicores in Embedded Systems

TABLE 12.2
Memory Types and Attributes Supported by the ARMv8-A Architecture

Type Attribute Description
Normal

Tagged (1) Enable the tagged memory extension [14].
Cacheable / non-cacheable (2) Enable caching.
Write-through / write-back (2) Control cache behavior on write operations.
Transient / non-transient (2) Prefer short-term rather than long-term caching.
Read-allocate (2) Allocate a cache line on read miss.
Write-allocate (2) Allocate a cache line on a write miss.

Device
Gathering (3) Group together multiple write operations.
Reordering (3) Reorder memory operations.
Early write acknowledgment (3) Continue before write operations are fully concluded.

(1) Implies inner/outer Cacheable, Write-back, Non-transient, Read-allocate, Write-allocate.
(2) These attributes can be specifed separately for inner and outer caches.
(3) The negation of one of these attributes implies the negation of all the preceding ones.

that the model complexity gave programmers a burden not justifed by the potential
performance improvements.

More specifcally, the architecture was originally non-multicopy-atomic. As a
consequence, the model had the rather counterintuitive property that a memory write
performed by a core could at frst become observable only to a subset of the other
cores, before becoming observable by all of them. The model was then amended to
make it multicopy-atomic, and hence, guarantee that a memory write performed by
a core becomes visible to all the other cores exactly at the same instant.

In the previous sentence, it is important to stress the word other because the vis-
ibility rule of multicopy atomicity does not include the core that issued the write
operation. In other words, the write operation can still become visible to the issuing
core before it becomes visible to the others, to still allow the use of the performance-
critical store buffers discussed in Section 12.2.2.

Read operations issued by a core may be reordered by hardware, and are not
required to be performed in program order. Write operations may also be reordered
and multiple writes can be combined into a single memory write operation. Write
operations can be reordered with respect to reads, too, with the only constraint of
not breaking any data dependencies. For instance, it is forbidden to postpone a write
operation after a read operation on the same memory address.

The core may also issue instruction fetch and data read operations from memory
addresses that are not explicitly referenced in the program, as a consequence of spec-
ulative execution. For instance, a core may start fetching and executing instructions
on one side of a conditional branch instruction—and also read the data they require

422 Real-Time Systems Development with RTEMS and Multicore Processors

from memory—before knowing for certain whether or not the branch will be taken,
in an effort to improve performance if the speculation was correct.

Within a region of normal memory, programmers can force the cores to deviate
from the default behavior and explicitly restrict reordering on a case-by-case basis
by means of barrier instructions, to be discussed later. Barriers come in various
favors and provide different trade-offs between how strong the restriction they pose
on reordering is and the consequent performance penalty.

Normal memory regions have additional attributes, also listed in Table 12.2,
which determine how the caches and the cache coherence logic modules shall work
and will be analyzed in the following.

Device memory
The device memory type is used to set implicit, rather than explicit, restrictions on
reordering for a whole memory region, when using barrier instructions would be
too complex or onerous. As shown in Table 12.2, the device memory type is further
characterized by several attributes:

• The gathering attribute, when set, allows multiple memory accesses to be
combined together into a single, equivalent access, to save memory band-
width. For instance, two half-word writes at consecutive addresses can be
combined into one full-word write. When not set, there is a one-to-one cor-
respondence in number and width between memory accesses in the code
and those observed by caches and main memory.

• The reordering attribute, when set, allows the cores to reorder accesses
to addresses within the same address block within the region. The block
size is implementation-dependent, but typically coincides with the part of
the region allocated to a single peripheral device. When not set, accesses
to non-reordering blocks are performed in program order, although they
can still be reordered with respect to accesses to other regions, in which
reordering is enabled.

• The early write acknowledgment attribute, when set, allows the cores
to continue after a write operation—and assume that the write opera-
tion completed—after some intermediate bus agent within the interconnect
logic provided a write acknowledgment. As a consequence, the cores may
continue before the write operation has actually been observed by the tar-
get device. When this attribute is not set, the write acknowledgment must
necessarily come from the target device itself.

In the previous list, attributes are ordered hierarchically, that is, the architecture
forbids to set an attribute without also setting all the other attributes that follow it
in the list. For example, if gathering is enabled, both reordering and early write ac-
knowledgment must also be enabled. Instead, when gathering is disabled, reordering
may or may not be enabled.

423 Multicores in Embedded Systems

Cacheability and shareability
Two very important attributes of a normal memory region are its cacheability and
shareability.

• Quite intuitively, the cacheability attribute controls whether or not region
contents are to be cached. Somewhat counter-intuitively, there may be rea-
sons for not caching a region, for example, when it is known in advance that
its contents will be read only once, as is common for input-output buffers.
In this case, caching would not bring any speed advantage upon reading
(because the frst and only read would not hit the cache) but would still
displace other more valuable data from the cache itself.

• The shareability attribute specifes if region contents are private to a cer-
tain core or shared among multiple cores and other DMA-capable agents.
In turn, this determines whether the coherency mechanisms described in
Section 12.2.3 are to be used or not. Also in this case, unnecessarily declar-
ing a region as shareable when it is not actually shared gives no benefts,
but still brings all the overheads associated with maintaining coherency.

Since, as shown in Figure 12.11, the number of components in a memory system
can easily be large, the architecture provides a way to specify the cacheability and
shareability of a memory region not in absolute terms, but within and with respect to
different domains, nested into each other. More specifcally, the architecture defnes
an inner and an outer domain.

Special care must be taken when reasoning about these domains because their
exact boundaries may vary from one architecture implementation to another. Even
more importantly, their defnition may differ for cacheability and shareability so that,
for instance, the cacheability inner domain might not necessarily be the same as the
shareability inner domain. For cacheability, the domains are generally defned as
follows:

• The inner cacheability domain refers to the caches internal to a core, like
the L1 caches in Figure 12.11, while the L2 caches could be either in the
inner or the outer domain depending on the implementation.

• The outer cacheability domain comprises multiple inner cacheability do-
mains and includes caches externally to the core. In the fgure, the L3 cache
would be in the outer cacheability domain.

Therefore, depending on the implementation, the contents of an inner-cacheable
region will be cached only in the L1 caches (the ones closest to the core) and possibly
in the L2 caches, whereas the contents of an outer-cacheable region will also be
cached in the L3 cache.

When a region is marked as cacheable further attributes, specifed independently
for the inner and outer domains, affect the policy used for caching:

• An attribute determines whether the hardware must use the write through
or the write back policy when handling a write operation.

424 Real-Time Systems Development with RTEMS and Multicore Processors

• Unlike the previous one, the read allocation attribute is a hint. When set,
it suggests the hardware should allocate and fll a cache line upon a cache
miss during a read operation.

• The write allocation attribute is also a hint. When set, means that the hard-
ware should allocate and fll a cache line upon a cache miss during a write
operation.

• Optionally, a transient attribute may be defned. When set, it suggests that
the beneft of caching is for a relatively short period and the hardware may
adjust its cache allocation policy accordingly.

The shareability of a memory region specifes if, and to what extent, the contents
of a memory region are shared among cores and other DMA-capable agents. Also
in this case, inner shareability and an outer shareability domains are defned, giving
rise to four possible settings:

• A non-shareable region is used by only one core, and hence, it is unneces-
sary to keep its contents coherent.

• A inner shareable region is shared among multiple cores and the hard-
ware must keep its contents coherent for all of them. Referring back to
Figure 12.11, the inner shareability domain usually includes all clusters in
the system.

• The coherency scope of an outer shareable region is even wider. It is made
of one or more inner domains and usually includes all clusters plus all of
the devices attached to the cache-coherent interconnect.

• The widest possible domain is the full system domain, which includes all
memory observers in the system and may contain multiple outer domains.

Also in this case, it is important to specify the shareability of memory regions
carefully and according to how they are actually used because, generally speak-
ing, the wider the domain is, the more complex and time-consuming guaranteeing
coherency becomes. The architecture uses a MOESI-based protocol for coherency
management, a variant of the MESI protocol discussed in Section 12.2.3 optimized
to further decrease the number of accesses to the lower levels of the cache hierarchy
or main memory.

The cache coherency protocol is enabled for normal memory, when it is also
marked as shareable and write-back, write-allocate cacheable. The difference be-
tween an inner and an outer shareable region lies in how many levels in the cache
hierarchy get involved and have to execute the cache coherency protocol when the
region is accessed.

As in other architectures, a proper confguration of the cacheability and share-
ability attributes of a memory region in ARM-v8A is crucial to ensure that certain
inter-core synchronization instructions to be described in Chapter 13—such as the
load exclusive and store conditional instructions—work correctly within the region.

Device memory regions are always treated as non-cacheable and outer-shareable.
Therefore, any operation on them does not involve any cache and write operations
become immediately observable by all agents in the outer domain.

425 Multicores in Embedded Systems

TABLE 12.3
Main Kinds of Barrier Instruction Supported by the ARMv8-A Architecture

Kind Description
ISB Instruction Synchronization
DMB Data Memory (1)

DSB Data Synchronization (1)

LDA(X)R Load-Acquire
STL(X)R Store-Release

(1) These instructions accept an argument that specifes the properties of the barrier, as spec-
ifed below.

Property Value
Kinds of access Load-Load and Load-Store

Store-Store
Any-Any

Shareability domain Non-shareable
Inner shareable
Outer shareable
Full system

Barriers
The ARMv8-A architecture provides several barrier instructions, listed in Table 12.3,
for accesses to normal memory regions. They provide programmers a way to enforce
a specifc order among memory operations and optionally synchronize further code
execution with their completion. It is especially important to remark, as already done
in more theoretical terms in Section 12.2.2, that the use of a barrier entails a signif-
icant penalty, especially on modern processors, because it negates them the oppor-
tunity to leverage the sophisticated memory access optimization techniques much of
their performance depends on. It should therefore be used with care and only when
necessary to ensure the functional correctness of the code.

The frst barrier instruction is the Instruction Synchronization Barrier (ISB). It is
peculiar with respect to the other barriers because its scope is not only limited to
memory accesses like we have seen so far, but it also includes other kinds of oper-
ations of which programmers may need to ensure the completion before continuing
with code execution. More specifcally, the ISB instruction fushes the pipeline of the
executing core and stops execution until all so-called context-changing instructions
the core itself has previously issued have completed.

In this way, it is guaranteed that the effect of those instructions are visible to the
next instruction executed after the ISB. Similarly, if there are other context-changing
instructions after the ISB in program order, it is also guaranteed that their effect is
not yet visible before the barrier itself, giving rise to a two-way barrier.

426 Real-Time Systems Development with RTEMS and Multicore Processors

A notable example of context-changing instructions, beside explicit cache main-
tenance instructions like invalidate and fush, are the instructions that maintain the
Translation Lookaside Buffer (TLB). This is a very important on-chip component
that, as a cache does for memory accesses, accelerates the address translations per-
formed by the MMU. Although the details are beyond the scope of this book, it is
clear by intuition that its contents must be invalidated after modifying the translation
tables in memory, to prevent the TLB from holding now-outdated translations.

The second and third instruction also establish a two-way barrier and are con-
ceptually closer to the barriers we outlined in Section 12.2.2. They are called Data
Memory and Data Synchronization Barrier (DMB and DSB, respectively). As their
name say they operate on the core’s data path, unlike ISB that operates on the in-
struction path instead. The main difference between the two is that:

• The Data Memory Barrier enforces ordering constraints on the memory
access instructions that precede and follow it, but does not stop the core on
which it is executed.

• The Data Synchronization Barrier enforces the same ordering constraints
as the Data Memory Barrier, and has the additional effect of stopping ex-
ecution of any further instruction until synchronization is complete. More-
over, it also waits until all cache, TLB, and branch predictor maintenance
operations issued by the core before the barrier have completed.

In both cases, the strength of the constraints depends on the instruction argument,
which affects two orthogonal properties of these barriers:

• The frst property determines the kinds of access the barrier applies to. It
has three possible settings:
• A load-load, load-store barrier requires all load instrucions issued be-

fore the barrier to complete, but does not pose any requirement on store
instructions. Both load and store instructions that follow the barrier in
program order are constrained to wait until all loads issued before the
barrier are complete. Instead, store instructions that precede the barrier
may still be moved past it.

• A store-store barrier requires all stores issued before the barrier to com-
plete before any store instructions that follow the barrier complete. It
is transparent to load instructions, which can therefore freely cross the
barrier in both directions.

• An any-any barrier requires all memory access instructions (both loads
and stores) issued before the barrier to complete before any memory
access instructions that follow the barrier complete.

A subtle distinction is that the barrier instruction ensures that load and/or store
instructions complete, but not that the corresponding memory operations also com-
plete. Due to the interposition of several level of caches and the early write acknowl-
edgment feature, memory may never observe the operation (for a load instruction, if
the data is already in a cache) or observe the operation only at a later time (for a store

427 Multicores in Embedded Systems

LDAR

STLR

Loads and
stores

Loads and
stores

Loads and
stores

No memory operations

after LDAR can

complete before it

No memory operations

before STLR can

complete after it
Memory operations can

cross LDAR (and STLR) in

one direction, but not in the

other

FIGURE 12.12 ARMv8-A one-way barriers.

instruction that goes through a write-back cache, only when the cache line is fushed
back to memory).

This observation is also related to the second property, which defnes the share-
ability domain to which the ordering constraints enforced by the barrier apply. Wider
domains can still observe the effects of memory access instructions in a different
order. Remembering the defnition of shareability domain given previously, four set-
tings are possible: not shared, inner shareable, outer shareable, and full system.

The last two barrier instructions, called Load-Acquire (LDAR) and Store-Release
(STLR), differ from the previous ones in two important aspects:

• They are one-way rather than two-way barriers, that is, certain memory
operations can cross them in one direction but not in the other.

• They combine the barrier semantics with a load or store operation in a
single instruction.

Moreover, both instructions have exclusive/conditional variants (called LDAXR
and STLXR) especially useful to implement wait and lock-free synchronization (see
Chapter 13). The idea behind LDAR and STLR is that they must be used in pairs, as
shown in Figure 12.12, to delimit a region of code and prevent memory operations
from “escaping” from the region.

As shown in the fgure, memory operations that precede STLR in program order
cannot complete after it and memory operations that follow LDAR in program order
cannot complete before it. As a result, memory operations that are between the two
barriers in program order are forced to complete between them. The same fgure
should also make the meaning of the term one-way barrier clearer, because:

428 Real-Time Systems Development with RTEMS and Multicore Processors

• Memory operations can cross the LDAR barrier only in one direction, that
is, they can be moved forward and past the barrier, with respect to program
order, but not backward.

• Similarly, memory operations can be moved backward, before the STLR
barrier, but not forward and past it.

The advantages of these barriers, with respect to the more traditional ones pre-
sented previously, are twofold:

• Being one-way instead of two-way barriers, the ordering constraints they
enforce are weaker and the performance penalty that ensues is therefore
less pronounced.

• They combine a barrier with a special form of load or store instruction
commonly used to delimit critical regions in multicore systems. This fur-
ther enhances performance and, at the same time, ensures that critical re-
gion semantics are correct by preventing memory operations issued within
it from being observed outside it by other agents.

Unlike for DMB, LDAR and STLR do not have an explicit shareability domain
as argument because they implicitly infer it from the corresponding attribute of their
target memory address.

12.2.5 COMPILER-LEVEL INSTRUCTION REORDERING

In the previous section, we discussed how hardware may reorder instructions, mem-
ory operations in particular, to improve effciency. When writing code in a high-level
language, programmers must be aware that the compiler may also do the same while
it translates high-level language constructs into assembly code, within certain limits
imposed by the language standard.

In addition, the compiler can suppress memory operations altogether if it can
prove they are redundant. For instance, the compiler can omit a load operation if it
already performed the same load in the past, the value is still in a processor register
and, according to its knowledge, memory contents have not been modifed in the
meantime. The goal is the same as before: Improve performance and at the same
time ensure that the code still works correctly, that is, produces correct results.

The underlying side effect of this approach is that other observers can see memory
operations happening in a different order than the one stated in the high-level code, or
not happening at all. On single-core processors, this is often overlooked because it is
generally not an issue at the user application level. Indeed, on a single-core processor
the only other observers are DMA-capable devices, and they are dealt with at the
device-driver level.

Instead, the issue becomes important on multicore systems if the user application
is multithreaded because, as we explained previously, all the cores are independent
observers of each other’s memory operations, and the unexpected reordering of op-
erations on shared memory may lead to subtle bugs in the code. To make the matter

429 Multicores in Embedded Systems

even more complex, these bugs are often platform-dependent, because compilers tar-
geting different processor architectures are likely to have different reordering strate-
gies and rules.

In the C language, up to and including the C99 revision of the standard [70],
reordering constraints were mainly based on the concepts of sequence point and
volatile object, which we will briefy explain in the following. Sequence points are
specifc points in the execution sequence, defned by the standard. Examples of se-
quence points include function calls (after argument evaluation) and the end of a full
expression (which coincides with the semicolon at its end).

At each sequence point the compiler must guarantee that, regardless of the op-
timizations it performed on the generated code, certain side effects of the language
statements that precede the sequence point are complete, while certain side effects
of any language statement that follows the sequence point have not taken place yet.
Informally speaking, side effects are changes to the state of the execution environ-
ment and include, for example, load and store operations to volatile objects and store
operations into non-volatile objects.

The standard specifes the least requirements that the code generated by a com-
piler must satisfy at sequence points, in order to be conforming to the standard. The
full list can be found in the standard itself but, for the sake of this discussion, the most
important one is that, at sequence points, all previous accesses to volatile objects are
complete and any subsequent access to volatile objects has not yet occurred.

Volatile objects are objects whose data type is volatile-qualifed, that is, the data
type defnition includes the volatile type qualifer. The underlying idea is that a
volatile object may be modifed in ways unknown to the compiler and accessing it
may have other side effects the compiler is unaware of. This also prevents the com-
piler from optimizing accesses to them in other ways, for instance, by suppressing a
seemingly redundant load operation according to the compiler’s view. For instance,
the requirements just described guarantee that, in the execution of the following frag-
ment of code:

volatile int a;
volatile int b;
...
a = 0;
b = 3;
if(a == 3) ...;

• The store operation on a precedes the store operation on b, and the load
operation on a in the if statement follows the store operation on b, because
the end of each statement is a sequence point and both a and b are volatile-
qualifed.

• The load operation on a in the if statement is actually performed although,
by looking only at the code at hand, the compiler could prove that the value
of a must be zero. Indeed, a was set to zero by the frst store, was not

430 Real-Time Systems Development with RTEMS and Multicore Processors

modifed by the second store, and there were no intervening function calls
or other instructions that could have altered its value.

The standard puts additional constraints in place when calling a function that does
not belong to the same translation unit, and when returning from it. In these cases,
regardless of optimizations, the values of all externally linked objects—for instance,
global variables—and all other objects the called function can access through point-
ers must have the expected value, according to the abstract language semantics, be-
fore the call takes place. Moreover, the value of all its parameters and all objects
that can possibly be accessed through them via pointers must also have the expected
value. Symmetrically, the values of all externally linked objects and all other objects
that the caller can access through pointers must have the expected value before re-
turning from a function. For instance, when translating the following fragment of
code:

extern void f(void);
int a;
...
a = 3;
f();

the store operation on a cannot be moved past the call to the function f, because this
function is external to the compilation unit and could access a because it is a global
variable.

This is also what ensures that the critical sections discussed in Chapter 7 work
correctly. They are delimited by semaphore operations, which the compiler sees as
regular function calls. Hence, the previously mentioned constraints ensure that the
compiler does not move any instructions in and out of them, if those instructions
produce side effects observable by other threads.

In the embedded software domain, it is still important to take these aspects into
consideration even in single-threaded programs, when some high-level functions are
used as interrupt handlers. In this case, besides obeying all other restrictions imposed
by the language and the operating system on this kind of functions, programmers
must also make sure that any object they access and share with others is volatile-
qualifed. Otherwise, for instance, other functions might continue to use outdated
object contents after they have been altered by an interrupt handler, unknowingly to
the compiler.

Since version C11 of the standard [71], a more sophisticated memory model
has been introduced, with weaker guarantees than its predecessor, in which explicit
fences offer a standard, platform-independent way to impose stricter ordering con-
straints than the model would normally guarantee when needed, with a semantics
similar to barriers. A description of the overall model would be very complex and
beyond the scope of this book, but it has been the subject of a considerable amount
of research work. Readers can fnd a suitable starting point for further reading in
Reference [46].

431 Multicores in Embedded Systems

TABLE 12.4
Parameters of the Tasks Depicted in Figure 12.13

Task Period Ti and deadline Di Execution time Ci

τ1 10 4
τ2 11 1
τ3 20 5
τ4 40 4

12.3 SOFTWARE CHALLENGES INTRODUCED BY MULTICORES
As outlined in the previous section, even though the evolution from single-core to
multicore systems may seem straightforward—after all, we are just duplicating the
functional unit responsible of program execution to improve performance—it has
deep consequences on the system as a whole. Moreover, some of its effects are def-
initely not transparent to application software, ranging from scheduling theory to
practical software implementation.

12.3.1 LOSS OF THE CRITICAL INSTANT THEOREM

A signifcant challenge introduced by multiprocessor and multicore systems is that
the addition of extra cores to a system may have counterintuitive, negative effects
on schedulability even though the set of tasks it is supposed to execute does not
change at all. More specifcally, one of the most interesting outcomes is the loss
of an important theorem, called the critical instant theorem, on which many of the
results described in Chapters 3 and 4 are based.

Besides having been formally proven in 1973 [84], this theorem states a very
intuitive fact. It can be informally summarized by saying that, in a fxed-priority task
system that satisfes the basic task model and is executed by a single processor—as
defned, for instance, in Section 3.2.3—any given task is going to have its largest
possible response time when it is released simultaneously with all higher-priority
tasks. This is because, in this scenario, the task suffers the worst-case amount of
interference from the others.

However, let us consider a synchronous, periodic task set whose parameters are
listed in Table 12.4. Without loss of generality, both the period and the execution
time are expressed in terms of an arbitrary time unit. For the sake of illustration,
we assume that these tasks have implicit deadlines, that is, their deadline is equal
to their period. Moreover, we assume that their priority is fxed and has been set
according to the Rate Monotonic priority assignment, a provably optimum algorithm
on single-core systems under these circumstances.

Therefore, their priority is inversely proportional to their period and Table 12.4
lists them in order of decreasing priority. Since the tasks are executed by a priority
scheduler, when the number of ready tasks exceeds the number of idle processors

432 Real-Time Systems Development with RTEMS and Multicore Processors

Time

τ1

Release of τ1, τ2, τ3, and τ4

f4,0 = 8

Core 1

Core 2 τ2

τ4

τ3

t = 0

Time

τ1

Release of τ1, τ3, and τ4

f4,1 = 9

Core 1

Core 2

τ2

τ4τ3

t = 40 t = 44

Release of τ2

Time unit

FIGURE 12.13 Counterexample of the critical instant theorem on a multicore system.

at any given time, the scheduler will pick the highest-priority tasks for execution,
starting from τ1 and down to τ4.

Since the task set is synchronous, all tasks are released together at t = 0. The
upper part of Figure 12.13 depicts the corresponding scheduling diagram on a two-
core system. More specifcally:

• At t = 0, all four tasks are ready for execution. Since there are only two
cores available, the scheduler runs τ1 and τ2 concurrently, whereas τ3 and
τ4 stay in the ready state.

• At t = 1, τ2 completes its execution and the core it was executing on be-
comes available to another task. Both τ3 and τ4 are ready, but the core goes
to τ3 because it has a higher priority.

• τ1 completes its execution at t = 4 and its core is assigned to τ4, which
starts executing.

433 Multicores in Embedded Systems

• At t = 6, τ3 completes its execution and its core remains idle because there
are no other tasks ready at the moment.

• Eventually, the frst instance of τ4 completes its execution at t = 8, leading
to a response time f4,0 = 8.

According to the critical instant theorem, on a single-core system the value
f4,0 = 8 we just derived would be the worst-case response time of τ4 and we could
safely state that R4 = f4,0 = 8. By analogy, to analyze schedulability on a dual-core
system, we might therefore believe it would be suffcient to consider the scenario
just discussed as it was done, for instance, with the Response Time Analysis (RTA)
method in Section 4.1.2.

Unfortunately, this is not the case, as it becomes evident if we consider the second
instance of τ4, released at t = 40. Due to the harmonic relationship between the
period of τ1, τ3, and τ4, both τ1 and τ3 are released together with τ4 at this time. On
the contrary, τ2 will be released for the ffth time at t = 44. At t = 40, τ2 is not ready
because its previous instance has already completed its execution.

The corresponding scheduling diagram is shown in the lower part of Figure 12.13.
We can observe that:

• At t = 40, the scheduler runs τ1 and τ3 because they both have a priority
higher than τ4.

• At t = 44 two simultaneous events occur: τ1 completes its execution and a
new instance of τ2 is released. As a consequence, τ2 replaces τ1 on core 1.
Even though τ4 is also ready at this time, it does not run because its priority
is lower than τ2.

• At t = 45, τ3 completes its execution and the core it was running on be-
comes available to execute τ4. At the same time, τ2 completes its execution
on the other core.

• Eventually, τ4 completes its execution at t = 49 with a response time f4,1 =
49 − 40 = 9.

• Another option would be to execute τ4 on core 1 instead of core 2, but this
would not change its response time because, also in this case, its execution
would still start at t = 45 as before.

In summary the diagram shows that, contrary to intuition, f4,1 > f4,0 although
only τ1 and τ3, but not τ2, were released together with the second instance of τ4.
This result has important ramifcations because, as hinted at previously, many other
useful theorems and properties of the single-core scheduling algorithms described so
far depend on it. For instance:

• Neither the Rate Monotonic (RM), nor the Deadline Monotonic Priority
Order (DMPO), nor the Earliest Deadline First (EDF) priority assignment
and scheduling algorithms are optimal on systems with more than one core.

• In the general case, it is unfeasible to determine the schedulability of a
set of periodic or sporadic tasks by identifying a single worst-case release
sequence of task instances and analyzing only that one. As a consequence,

434 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 12.5
Parameters of the N Tasks Described in [41] and Depicted in Figures 12.14,
12.15, and 12.16

Task Period Ti and deadline Di Execution time Ci

τ1, . . . τN−1 1 2ε
τN 1 + ε 1

the strategy fruitfully used by the Response Time Analysis (RTA) method
is inapplicable to multicore systems.

12.3.2 DHALL’S EFFECT

The loss of the critical instant theorem discussed in the previous section puts into
question the optimality of Rate Monotonic (RM) and Earliest Deadline First (EDF).
However, one could still rely on their excellent performance record on single-core
systems and expect that their straightforward extension to multicore systems would
still behave in a reasonably good way in any case.

Such an extension might operate according to the principle of global scheduling,
that is, all M cores would be managed by a single scheduler instance, which would
assign them to the M highest-priority tasks ready for execution, according to the
priority assigned to them by RM or EDF.

Unfortunately, due to the Dhall’s effect frst described in [41], this is not true
because some extremely problematic task sets exist, for which the use of a global
RM or EDF scheduler to execute tasks on multiple cores leads to an extremely low
utilization.

To better illustrate Dhall’s effect, let us consider the set of N ≥ 2 tasks presented
in [41], whose parameters are listed in Table 12.5. Both the period and the execution
time are expressed in terms of an arbitrary time unit, as a function of a parameter
0 < ε � 1. As before, we assume that these tasks are periodic and synchronous,
adhere to the basic task model, and have implicit deadlines.

The total utilization of the task set is:

N Ci 2ε 1 1
U = ∑ = (N − 1) + = 2ε(N − 1)+ (12.1)

1 1 + ε 1 + εi=1 Ti

First of all, we note that if N ≥ 2, then U > 1 for all ε . Moreover, as parameter ε
becomes smaller and tends to zero, the total utilization tends to:

1
lim U = lim 2ε(N − 1)+ = 1 (from above) (12.2)

ε→0+ ε→0+ 1+ ε

435 Multicores in Embedded Systems

τ1

Simultaneous release of τ1, …, τN

Core 1

Core 2 τ2

t = 0

Time

𝜀

τN-1

⋯
Core N-1 τN

t = 1 t = 1+ 𝜀

DeaDline of τN

DeaDline of τ1, …, τN-1

t = 2𝜀

Violation

FIGURE 12.14 When executed on N − 1 cores with global RM of EDF, the task set of
Table 12.5 is not schedulable.

The fact that U > 1, combined with the necessary schedulability test discussed in
Section 4.1.1, precludes the use of a single-core processor to execute this task set.
We can then ask how many cores we need to successfully schedule it—that is, to
fulfill all task deadlines—by means of RM or EDF.

Although from Section 12.3.1 we know this may or may not be the worst case
for what concerns schedulability, let us focus anyway on the very first release of all
tasks in the task set, which occurs at t = 0. In this scenario, Table 12.5 lists tasks in
order of decreasing priority of their first instance, and this priority assignment is the
same for both RM and EDF.

If we observe that some deadlines are violated during the analysis, we can surely
conclude that the task set is not schedulable. On the other hand, if all deadlines are
satisfied, we can come to the weaker conclusion that the task set could be schedulable
in general.

Figure 12.14 shows how global EDF schedules the task set on N − 1 cores:

• At t = 0 the first instance of all tasks is ready for execution. Since N task
instances are ready and there are only N − 1 cores, the scheduler picks the
N − 1 highest-priority tasks for execution, in this case τ1, . . . ,τN−1. Task τN
does not execute yet at this point.

• Tasks τ1, . . . ,τN−1 complete their execution at t = 2ε , fulfilling their dead­

line. All cores become idle at this point and the execution of τN can start.
The figure shows that the scheduler executes the task on core N − 1, but
using any other core would lead to the same result.

• The execution of τN continues at least until t = 1, when a new instance of
tasks τ1, . . . ,τN−1 becomes ready. At this point, the RM scheduler would
preempt τN and assign its core to one of them, whereas the EDF sched­

uler would continue the execution of τN anyway, because its deadline

436 Real-Time Systems Development with RTEMS and Multicore Processors

Simultaneous release of τ1, …, τN

Deadline of τN

Core 1

Core 2

Core N-1

Core N

τ1

τ2

τN-1

⋯

τN

Deadline of τ1, …, τN-1

t = 0

Time

t = 1 t = 1+ #

FIGURE 12.15 A successful execution of the task set of Table 12.5 with global RM of EDF
requires at least N cores.

(at t = 1 + ε) is earlier than all the others (at t = 2). Figure 12.14 shows
how the EDF scheduler behaves, because it is more favorable than RM for
what concerns the schedulability of τN .

• Although the execution of τN continues beyond t = 1, it is bound to miss
its deadline anyway, because the deadline expires at t = 1 + ε whereas the
execution of τN would conclude at t = 1+ 2ε .

It can easily be seen that using less that N − 1 cores makes the schedulability
scenario even worse for τN . Instead, in order to successfully execute the task set of
Table 12.5 with global RM or EDF, we need a system with at least N cores, as shown
in Figure 12.15, that is, at least one core per task. Although the fgure only shows
that the task set is schedulable in the simultaneous-release scenario, it can easily be
proven that this is true in general.

In summary, we reach this rather counterintuitive conclusion: For any system with
N cores there exists at least a pathological set of N tasks, like the one just considered,
which strictly requires all the cores in order to be executed successfully with global
RM or EDF, because is not schedulable on N − 1 cores or less. Moreover, this hap-
pens even though the total utilization U of the task set can be brought as close to 1
as we desire. On the contrary, the use of a different scheduling approach may lead to
much more favorable results. For instance, as Figure 12.16 shows, two cores may be
suffcient to successfully execute the task set if we schedule tasks τ1, . . . ,τN−1 on one
core, and τN alone on the other. This is possible only as long as ε is small enough.

437 Multicores in Embedded Systems

τ1

Simultaneous release of τ1, …, τN

τ2

𝜀

τN-1⋯Core 1

τN

Deadline of τN

Deadline of τ1, …, τN-1

Core 2

t = 0

Time

t = 1 t = 1+ 𝜀

FIGURE 12.16 For small ε , two cores may be sufficient to successfully execute the task set
of Table 12.5 with a different priority assignment or scheduling algorithm.

More specifically, it must be:

N−1

∑ Ci = (N − 1)2ε ≤ 1, (12.3)
i=1

because we may not exceed the total capacity of the first core. In turn, this constraint
implies:

1
ε ≤ . (12.4)

2(N − 1)
However, this is still way better than global RM or EDF, which cannot schedule

the task set on less that N cores regardless of how small ε is. As before, although we
verified schedulability only in the simultaneous task release scenario, it can easily be
proven that this is true in general.

After publication, this seminal result influenced subsequent research, steering it
towards partitioned, rather than global, multiprocessor and multicore scheduling al­

gorithms. Partitioned scheduling algorithms follow the strategy outlined in the pre­

vious example and, as the name says, are algorithms that work in two stages:

1. Tasks are subdivided into N groups, one for each processor or core. The subdi­

vision is done offline, once and for all. Therefore, tasks do not migrate from one
processor to another at run time.

2. A separate scheduler is in charge of each processor or core and operates inde­

pendently from the others, controlling the execution of the tasks assigned to that
processor or core.

On the other hand, a closer scrutiny of the task set of the example shows that it has
a peculiar characteristic. Namely, it is composed of a number of very low-utilization

438 Real-Time Systems Development with RTEMS and Multicore Processors

tasks, τ1, . . . ,τN−1, whose utilization tends to zero as ε tends to zero, plus one very
high-utilization task, τN , whose utilization tends instead to one as ε tends to zero.

This leads to the intuition that we could obtain better results by retaining the
concept of global scheduling, but treating high-utilization tasks specially, instead of
putting the whole set of tasks under the control of global RM or EDF. Even more
specifcally, it turns out that privileging high-utilization tasks, like we did in the ex-
ample, leads to better results than using global RM or EDF unaltered.

12.3.3 IMPLICIT MUTUAL EXCLUSION

In Chapter 7 we highlighted that mutual exclusion is at the core of traditional inter-
task communication that relies on shared memory. At the same time, we also dis-
cussed how to implement mutual exclusion by means of a semaphore.

The semaphore-based approach works correctly regardless of the number of tasks
involved and is independent of the number of processors or cores in the system.
In other words, if a properly designed set of tasks makes use of semaphores for
mutual exclusion, it will work correctly regardless of whether tasks are executed in
a concurrent way only apparently, by time-sharing the processor among them, or for
real, as it happens on a multiprocessor or multicore system.

However, on a single-core system, there are other, less orthodox ways to achieve
the same result and programmers sometimes resort to them because they are more
effcient than semaphores.

Task priority and mutual exclusion
Let us consider a single-core system and neglect interrupt handlers for the time being.
If we focus on the highest-priority task in the system, we can easily observe that, as
soon as it starts executing, it will run to completion unless it voluntarily blocks or
yields the processor.

We can see this as a limited, but still useful, form of mutual exclusion because
it also implies that, as long as the highest-priority task keeps executing, it cannot
be preempted by any low-priority tasks and its execution will never be interleaved
with them. The contrary is of course still possible, that is, any low-priority task can
be preempted by the highest-priority task if it becomes ready while the low-priority
task is executing.

This property can be leveraged to build the highest-priority task so that, for in-
stance, it can still read a complex data structure d shared with one or more low-
priority tasks in a controlled way, even without using semaphores or other forms of
explicit mutual exclusion.

In order to do this, as shown in Figure 12.17, the low-priority tasks must apply
the following protocol to update the shared data structure:

1. They coordinate among themselves to get exclusive access to the shared data. This
can be accomplished by means of a mutual exclusion semaphore if there is more
than one low-priority task, or be taken for granted if there is only one.

439 Multicores in Embedded Systems

τH

Check f

Postpone access to
d or use local copy

Use d, possibly
make a local copy

for later use

1 0
Shared data d

Access control
flag f (initial

value 0)

Consistency ensured
by the non-preemption

of τH and atomic

access to f

τLk
τL1 ⋯

Ensure mutual
exclusion among

τL1, …, τLk

Release mutual
exclusion

Set f to 1

Set f to 0

Update d

Totally ordered
memory accesses

Mutual exclusion
bracket among

low-priority tasks
only

FIGURE 12.17 Implicit mutual exclusion with the highest-priority task.

It must be noted that the semaphore is used only by low-priority tasks, and not by
the highest-priority task. As a consequence, the execution of the highest-priority
task is not subject to any mutual exclusion constraint because of this semaphore.

2. The low-priority task that got access to the shared data sets a shared fag f with an
atomic memory operation before starting to update the shared data structure. This
can be accomplished in a straightforward way on most computer architectures as
long as the data type of the fag is suffciently small, typically if it fts in a machine
word.
Recent versions of the C language standard [70] defne portable data types to this
purpose, like sig_atomic_t, which is an integer type that can be accessed as
an atomic entity.

3. The low-priority task then updates the shared data structure and fnally resets
the aforementioned fag. We assume that the memory accesses performed by the

440 Real-Time Systems Development with RTEMS and Multicore Processors

low-priority task are totally ordered, so that terms like before and fnally in the
discussion above correspond to the temporal order of memory updates.
On high-performance hardware architectures that naturally perform out-of-order
memory accesses unless instructed otherwise, temporal constraints can be en-
forced at run time by means of appropriately placed memory barrier instruc-
tions. Similarly, the volatile data type qualifer of the C language, along with
the more recent atomic_signal_fence and atomic_thread_fence direc-
tives [71], can be used to prevent memory operations from being reordered or
suppressed at compile time, during code generation.

If all these conditions are met it can easily be proven that, when the highest-
priority task starts executing, only two cases are possible:

1. The shared fag f is set, which means that the highest-priority task preempted
a low-priority task while it was potentially updating the shared data structure.
Hence, it shall not access the data structure at this time, because it might be in-
consistent. In this case, the high-priority task may either postpone the access or
use a local copy of the data structure it previously made.

2. The shared fag is not set. In this case, the high-priority task can access the data
structure at will and possibly make a local copy for later use.

Neither the read operation on the shared fag, nor the data structure access are
time-critical because, as said previously, once the highest-priority task runs, it can-
not be preempted by any of the low-priority tasks. For instance, if the high-priority
task falls in the second case described above, there is no risk that a low-priority
task starts updating the shared data—thus rendering it inconsistent—while the high-
priority task is accessing it.

Similarly, which of the two cases the highest-priority task must deal with is
uniquely determined right from the beginning of its execution, because there is no
way for a low-priority task to change the value of the fag while the high-priority task
is running.

With respect to the most obvious alternate approach—that is, using a mutual
exclusion semaphore to enforce mutual exclusion among all tasks, including the
highest-priority task—there are two main advantages:

• The only overhead that the highest-priority task has to endure is to check
the shared fag f before accessing shared data. This operation can be per-
formed in one or two machine instructions on most architectures and is
therefore at least one order of magnitude faster than any semaphore opera-
tion.
Given that the highest-priority periodic tasks are often also the ones with
the shortest period (as stipulated, for instance, by the Rate Monotonic algo-
rithm), reducing their overhead has a substantial positive effect on overall
utilization.

• Since low-priority tasks do not share any semaphores with the high-priority
task, unbounded priority inversion (defned and described in Section 8.1)

441 Multicores in Embedded Systems

τi

Shared data d

Data shared among tasks τ1, …, τk

Set own’s priority to the
maximum priority of

τ1, …, τk

Return to the original
(baseline) priority

Use and/or update d

Mutual exclusion
ensured by the
priority change

Elevating the priority above
the maximum has no adverse

effect on mutual exclusion

FIGURE 12.18 Implicit mutual exclusion by means of priority elevation.

cannot occur by defnition between these two groups, and no special tech-
niques are needed to avoid it.

• As a special case, if there is exactly one low-priority task, shared data con-
sistency can be ensured without using any semaphore. This further reduces
the overhead on the low-priority task to the couple of machine instructions
required to set and reset the shared fag f.
In Chapter 13, we will discuss some general methods to properly synchro-
nize multiple tasks without semaphores or any other kind of lock, and with-
out introducing any assumption about their relative priorities. However,
they are considerably more complex than this one.

Hand-crafted priority elevation and scheduler lock
A key point of the approach just described is that, if a group of k tasks τ1, . . . ,τk
shares some data structure d, the highest-priority task τH among them gets uninter-
ruptible access to the data structure as soon as it starts executing, because it cannot
be preempted by any of the lower-priority tasks in the group.

Even if we allow the presence of even higher-priority tasks in the system, provided
they do not use any of the shared data, the basic properties of the approach are still
valid. Although τH can now be preempted during execution, this preemption cannot
alter the state of the shared data because none of the intervening tasks uses them.

On a single-core system we can then generalize and symmetrize the previous
approach by having each task τi in the group of k tasks τ1, . . . ,τk follow the shared
data access protocol depicted in Figure 12.18. More specifcally, if we call PC the
maximum priority among tasks τ1, . . . ,τk:

1. Before accessing the shared data, the task elevates its priority to PC.

442 Real-Time Systems Development with RTEMS and Multicore Processors

2. It can then access and possibly update the shared data.
3. Afterwards, it returns to its original priority.

With respect to the previous approach there is now priority inversion, which is a
direct consequence of priority elevation, and special care must be taken to ensure it is
properly bounded. For this, we can leverage the close analogy between this method
and the immediate priority ceiling protocol discussed in Section 8.1.

In particular, we can observe that the hand-crafted task priority movements in
this method are the same as in the immediate priority ceiling protocol if we assume
that resource accesses are not nested and the underlying semaphore foreseen by the
priority ceiling protocol is always free when a task requests it. Therefore, it is easy to
prove that priority inversion is bounded and the same calculations as for immediately
priority ceiling can be applied to calculate the worst-case blocking time.

By itself, replacing a semaphore operation with a priority movement may or may
not lead to a signifcant performance improvement, because on many operating sys-
tems these operations have similar complexity. However, we may push our reasoning
further, and observe that the method still works correctly even if we elevate the task
priority more than it is strictly necessary.

In particular, it still works if we raise the task priority to be the highest in the
whole system. Although, at frst sight it may seem that doing so would not affect
performance at all, it must be noted that most real-time operating systems, RTEMS
included, offer a way to temporarily lock the scheduler or, in other words, temporarily
disable task preemption. More details about the interfaces provided to this purpose
can be found in Section 5.7.

Such an action also temporarily gives the invoking task the highest priority in the
system but, unlike a real priority movement, can be implemented in a very effcient
way on a single-core system. Namely, from the operating system’s perspective, it
requires little more than setting/resetting an internal fag as appropriate, and checking
the fag before preempting the running task.

The obvious negative side effect is that the set of tasks affected by priority in-
version becomes bigger than before—because it includes all the tasks in the system
instead of just τ1, . . . ,τk. However, priority inversion is still bounded and, especially
when critical regions are very short, the impact of blocking on the system may be
acceptable or even negligible, also because it is compensated by the high effciency
of the critical region entry and exit code.

Disabling of interrupts
So far, the attention was focused on ensuring mutual exclusion among tasks, but in
some cases, mutual exclusion has to be enforced with respect to interrupt handlers,
too. This is typical of device drivers, in which the functions invoked from a task con-
text must share data with interrupt handlers, and hence, must ensure their consistency
in some manner.

A very low-overhead solution on single-core systems is the disabling of inter-
rupts around critical sections. In this way, the arrival of an interrupt request and the

443 Multicores in Embedded Systems

consequent execution of the interrupt handler cannot preempt a task while it is inside
a critical section. The opposite—that is, the preemption of an interrupt handler by a
task—cannot happen by design, and hence, mutual exclusion is guaranteed.

The general structure of the solution is still the same as shown in Figure 12.18,
but priority movements are replaced by the following actions:

1. Before accessing the shared data, interrupts are disabled after taking note of
whether they were enabled or not.

2. After accessing the shared data, interrupts are re-enabled if they were enabled
before step 1.

The implementation of these actions inherently depend on the underlying hard-
ware architecture, but most operating systems provide portable interfaces for them.
They are discussed in Section 5.7 in the case of RTEMS.

Recording whether interrupts were enabled or not before disabling them, and re-
enabling them only if they were originally enabled, is only marginally more complex
than disabling and enabling them unconditionally, but has the additional advantage
of working correctly if critical regions are nested, without running the risk of re-
enabling interrupts too early.

A less-invasive variant of the method, which can be used on hardware architec-
tures that support exception priorities like the one described in Section 4.2, consists
of raising the execution priority of the processor instead of disabling interrupts com-
pletely. More specifcally, the execution priority must be raised to the highest priority
among all exceptions whose handler may access the shared data. In this way, han-
dlers with an even higher priority are still allowed to run and their latency is not
impacted in any way.

At the same time, and without introducing further overhead, the disabling of in-
terrupts also ensures mutual exclusion among tasks. This is because, as discussed in
Section 4.2, only the acceptance and handling of an interrupt can trigger a context
switch and possibly a preemption. With respect to the scheduler lock discussed pre-
viously, priority inversion is still bounded but also involves interrupt handlers, which
leads to an increase of interrupt latency. As before, the actual impact on system per-
formance can be limited if critical regions are kept suffciently short.

Issues with multiprocessor and multicore systems
Unfortunately, none of the techniques outlined in this section works on a multipro-
cessor or multicore system. The main reason is that they all implicitly assume that
there is at most either a single task or a single interrupt handler running at any given
time. Even the description of the techniques is full of references to the running task
(singular).

First of all, the implicit mutual exclusion methods depicted in Figures 12.17
and 12.18 are based on the assumption that the highest-priority task (in the frst
method) or the task that temporarily elevated its priority to be the highest (in the
second) will never be preempted by other tasks unless it voluntarily blocks.

444 Real-Time Systems Development with RTEMS and Multicore Processors

Shared data d

Task execution
automatically

forbidden during
interrupt handling

Disabling of
interrupt prevents
interrupt handler

execution

Single processor

τT

x = interrupt_disable();

(regular task)

Critical region that
uses d

interrupt_enable(x);

τI (interrupt handler)

Critical region that
uses d

Mutual exclusion
enforced by the

lock

Multi-processor (or multicore)

τT

lock_acquire(…);

(regular task)

Critical region that
uses d

lock_release(…);

τI (interrupt handler)

Critical region that
uses d

lock_acquire_isr(…);

lock_release_isr(…);

Mutual exclusion
enforced by the

lock

FIGURE 12.19 Mutual exclusion with respect to an interrupt handler.

445 Multicores in Embedded Systems

Although, strictly speaking, this is still true if we focus only on a single processor
or core within a multiprocessor or multicore system, nothing prevents other cores
from running other tasks in the meantime. Thus, truly concurrent execution of multi-
ple tasks, and the race condition that may ensue, are still possible even if there is no
preemption at all.

As a side effect, even disabling preemption by locking the scheduler on a certain
core would not prevent other cores from running other conficting tasks. For this
reason, functions of this kind are often disabled when a real-time operating system
is confgured for multiprocessor or multicore hardware.

Secondly, a similar issue arises with interrupt handlers. Even though the pseudo-
code shown on the top half of Figure 12.19 works correctly on a single-processor or
single-core system, it is insuffcient to ensure mutual exclusion in a multiprocessor
or multicore system.

On such a system, disabling interrupt on a processor or core has no effect on the
others. It is therefore still possible that the interrupt handler τI executes concurrently
with the regular task τT , although τT brackets its critical section with functions to
disable/enable (local) interrupts, if the scheduler runs them on two different cores.

Although on some multicore architectures it is indeed possible to disable inter-
rupts globally, that is, on all cores, the overhead of this operation is often high,
because it must be performed by working on the interrupt controller, which is a
component external to the cores themselves. By contrast, local interrupts can usually
be disabled in a single machine instruction.

To make the matter even more complex, since the cores and the interrupt con-
troller may operate asynchronously, the global interrupt disable operation might not
take effect instantaneously, and hence, some interrupts may still be accepted even
after the processor issued the commands to disable them.

Although it is possible to circumvent these issues, as the number of cores in-
creases, in any case the overhead of disabling all interrupts on all cores to ensure
mutual exclusion within a device driver quickly becomes a bottleneck as the number
of cores and devices to be managed increases.

One correct approach is therefore to use a different device for mutual exclusion,
for instance, a mutual exclusion lock, which has the same semantics as a mutual
exclusion semaphore, works correctly when used across multiple processors or cores,
is more effcient than a semaphore, and can be used in an interrupt context. This
entails some changes to the original code. In particular, as shown in the bottom half
of Figure 12.19:

• The task code keeps the same structure, except for the operations that
bracket its critical region. Instead of disabling and enabling interrupts, re-
spectively, they acquire and release a lock.

• The critical region in the interrupt handler must now be bracketed, too, be-
cause, as explained previously, concurrent execution of a regular task and
an interrupt handler is now possible. As for the task code, this is accom-
plished by means of lock acquire and release operations, depicted as darker
rectangles in the fgure.

446 Real-Time Systems Development with RTEMS and Multicore Processors

In the fgure, the actual arguments to the lock acquire and release functions have
been replaced by ellipses, because the details vary across operating systems and
kinds of lock. As also shown in the fgure, some kinds of lock may require the use
of two different sets of primitives, one on the task side and the other on the inter-
rupt handler (ISR) side. Chapter 13 provides more specifc details about the RTEMS
application programming interface.

As an alternative, communication between the task and the interrupt handler can
be re-designed in terms of lock or wait-free synchronization, which allow multiple
agents to consistently exchange information without using any locks. An introduc-
tion to these methods will also be given in Chapter 13.

12.4 SUMMARY
The chapter frst described the motivation behind the widespread adoption of multi-
core processors in general-purpose computing and, in more recent times, embedded
systems. Then, Section 12.2 provided an overview of multicore architectures, with
practical references to contemporary ARM processors. Special attention was given
to the concepts of memory model and cache coherency, because they play a much
more important role in multicore system than they did in single-core ones.

Section 12.3 gave a summary of the most important challenges facing software
designers and programmers when they transition to multicore systems, explaining
why multicore execution has a profound—and sometimes counterintuitive—impact
on several key areas of concurrent programming presented in Chapters 3–9, namely,
scheduling algorithms, schedulability analysis, as well as inter-task communication
and synchronization. In the following, Chapter 13 will outline some common ways
to tackle those issues.

13 Multicore Concurrency:
Issues and Solutions

CONTENTS

13.1 Classes of Multicore Scheduling Algorithms..447
13.2 Multicore Scheduling Algorithms in RTEMS...449
13.3 Schedulers Confguration ..452
13.4 Multicore Synchronization Devices ..456

13.4.1 Multiprocessor Resource Sharing Protocol456
13.4.2 O(m) Independence-Preserving Protocol ...461

13.5 Lock-Free and Wait-Free Communication ..467
13.5.1 Basic Principles and Defnitions...469
13.5.2 Lock-Free Multi-Word Counter Read...470
13.5.3 Four-Slot Asynchronous Communication ..474
13.5.4 Universal Construction of Lock-Free Objects482

13.6 Spinlocks and Interrupt Handling Synchronization491
13.7 Summary..496

This chapter contains an introduction to the RTEMS scheduling algorithms and syn-
chronization devices suitable for symmetric multiprocessor and multicore systems.
In particular, it describes how scheduling algorithms are confgured and outlines how
the MrsP and OMIP semaphore protocols work to tackle unbounded priority inver-
sion in this kind of systems, and how they can be accessed through the RTEMS
application programming interface.

The central part of the chapter discusses more advanced synchronization meth-
ods, namely, lock-free and wait-free synchronization, which have not been covered
in Chapters 7 and 9, along with several practical implementation examples. The last
section gives a short introduction to spinlocks, a kind of synchronization device often
based on lock-free or wait-free techniques. Besides being useful by themselves, es-
pecially for synchronization between tasks and interrupt handlers, spinlocks are also
a main building block of more complex synchronization devices, like semaphores.

13.1 CLASSES OF MULTICORE SCHEDULING ALGORITHMS
Scheduling algorithms for multiprocessor and multicore systems have been the
subject of considerable theoretical and applied research, especially in the past

447

448 Real-Time Systems Development with RTEMS and Multicore Processors

τNτ1 ⋯ ⋯Tasks

1 global
scheduler

Cores

Scheduler
instance

Global scheduling

P1 PM
⋯

Partitioned scheduling

τ1 ⋯Tasks ⋯ τN⋯

Scheduler Scheduler SchedulerM scheduler
instances

P1 PMCores

Clustered scheduling

τ1 ⋯Tasks ⋯ τN⋯

Scheduler Scheduler Scheduler

1 ≤ K ≤ M scheduler
instances

P1 PM⋯ ⋯Cores

FIGURE 13.1 Global, partitioned, clustered multicore schedulers.

40 years [39]. Since the very beginning [83], it was clear to researchers that the
real-time scheduling problem was much more diffcult on multiprocessor and multi-
core systems than single-core systems. In Section 12.3, we provided a few examples
that show why this is the case and why a straightforward extension of single-core
scheduling algorithms to multiprocessor and multicore systems is somewhat sim-
plistic.

Currently, multiprocessor and multicore scheduling algorithms belong to one of
three categories, depicted in Figure 13.1. At the two ends of the range lie global and

Multicore Concurrency: Issues and Solutions 449

partitioned scheduling algorithms:

• Global scheduling algorithms put all processors or cores in the system un-
der the control of a single scheduler instance. In a system with M cores
this scheduler instance is therefore in charge of picking, at any time, up to
M ready tasks that will be executed in parallel. Although this approach is
quite intuitive, it may lead to poor schedulability, at least for some pecu-
liar sets of tasks, as described in Section 12.3.2. Moreover, algorithms that
are provably optimal on single-core systems under certain hypotheses are
no longer optimal when extended for global multiprocessor or multicore
scheduling.

• Partitioned scheduling algorithms run one scheduler instance for each pro-
cessor or core. Tasks are statically assigned to a certain core at design time
and cannot migrate to other cores under normal circumstances. As a conse-
quence, all the schedulability theorems and methods discussed in Chapter 4
can still be applied on a scheduler instance-by-instance basis. This is be-
cause, informally speaking, an M-core system works exactly like M single-
core systems from the scheduling point of view, if we neglect inter-core
interferences due to shared hardware components—like caches, memory
buses, and main memory—outlined in Section 12.2.
The price to be paid, with respect to global scheduling, is a generally lower
processor utilization. An intuitive argument toward this conclusion is that
partitioned scheduling algorithms are not work-conserving, that is, they
may at times leave a core idle (because there are no ready tasks assigned to
it) while some tasks assigned to another core are ready, but unable to exe-
cute (because there is already a higher-priority task running on that core).

The third class of algorithms are based on clustered scheduling. In this case, as
shown at the bottom of Figure 13.1, the M cores are divided into 1 ≤ K ≤ M clusters.
Each cluster consists of at least one core and all cores in a cluster are managed by
one scheduler instance so that, in total, there are K scheduler instances in the system.
Clustered scheduling can also be seen as a generalization of global and partitioned
scheduling because these two approaches are a special case of clustered scheduling
when K = 1 or K = M, respectively.

13.2 MULTICORE SCHEDULING ALGORITHMS IN RTEMS
When RTEMS is confgured to run on a symmetric multiprocessor (SMP) or multi-
core system, several scheduling algorithms suitable for this kind of system become
available. They are summarized in Table 13.1 and replace the algorithms for single-
core systems listed in Table 5.1.

By default, RTEMS works according to the global scheduling approach depicted
in Figure 13.1 and puts all available cores under the control of a single scheduler
instance, whose scheduling algorithm is specifed in the confguration, up to a maxi-
mum of 32 cores. However, users can instruct the operating system to use clustered

450 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 13.1
Multicore Scheduling Algorithms of RTEMS

Confguration macro Default Description
(CONFIGURE_SCHEDULER_. . .) name
EDF_SMP "MEDF" Earliest Deadline First Scheduler (default)
PRIORITY_SMP "MPD " Deterministic Priority Scheduler
SIMPLE_SMP "MPS " Simple Priority Scheduler
PRIORITY_AFFINITY_SMP "MPA " Arbitrary Processor Affnity Scheduler

scheduling instead, by explicitly instantiating all the scheduler instances they need in
the application compile-time confguration, as described in Section 13.3. Partitioned
scheduling is supported, too, as a special case of clustered scheduling in which each
scheduler instance is in charge of exactly one core.

Multicore earliest deadline frst (EDF)
If the user does not explicitly specify any scheduler in a multicore system confgura-
tion, RTEMS defaults to the multicore Earliest Deadline First (EDF) algorithm. Like
its single-core counterpart introduced in Section 5.2, this scheduler uses a red-black
tree [53] as its underlying data structure and divides tasks into two classes, fore-
ground and background, depending on whether or not a deadline has been specifed
for them, respectively. It also enjoys the same desirable properties, namely:

• Background tasks, that is, tasks for which no deadline has been specifed,
are scheduled according to their priority, exactly like a fxed-priority sched-
uler would do. As a consequence, an application that did not specify dead-
lines and ran under the default fxed-priority scheduler on a single-core
system will still be scheduled in the same way when ported to a multicore
system, with the obvious exception that multiple tasks will run in a truly
parallel way on the latter.

• All foreground tasks, that is, tasks for which a deadline has been specifed
by means of the Rate Monotonic Manager (see Section 5.5) have a higher
priority than all of the background tasks and are scheduled based on their
deadline.

In addition, on a multicore system the EDF scheduler offers limited support for
affnity masks, which can be set in two possible ways:

• A one-to-all task-to-core association, in which the mask contains all online
cores, thus giving the scheduler total freedom to choose on which core the
task runs, and move it from one core to another during execution as needed.
In all cases, except when semaphore sharing is involved, the cores on which

451 Multicore Concurrency: Issues and Solutions

a task may run is the intersection between the task’s affnity mask and the
set of cores managed by the home scheduler instance in charge of the task.

• A one-to-one association, when the mask pinpoints exactly one core. Spec-
ifying a mask in between these two cases is not fagged as an error, but
RTEMS interprets it as a one-to-one association with the highest-numbered
core contained in the mask. It is important to note that specifying a restric-
tive affnity mask does not always prevent multicore semaphore locking
protocols, to be presented in Chapter 13, from running a task on cores not
included in its affnity mask. This may still happen when semaphores are
shared among tasks assigned to distinct scheduler instances and these pro-
tocols decide to temporarily migrate a task away from its home scheduler
instance.

Besides the one-to-one task-to-core association just mentioned, which binds a task
to a specifc core in a relatively permanent way, that is, unless a multicore semaphore
sharing protocol gets into action or the affnity mask is changed, the EDF scheduler
also supports a similar, but short-term, association called pinning.

Pinning can be used within a task that has a liberal affnity mask to ensure that a
certain region of code—delimited by calls to the RTEMS directives _Thread_Pin
and _Thread_Unpin—is executed as a whole by a single core. Exactly which core
is unspecifed, it could be any of the cores on which the task is allowed to run ac-
cording to its affnity mask and, more specifcally, the one that was executing the task
when _Thread_Pin was called. Regions of this kind can be nested and behave as
expected, that is, the task stays pinned until it exits from the outermost region.

The use of task pinning must be limited to short regions of code because it is
stronger than a one-to-one affnity mask and prevents the multicore semaphore lock-
ing protocols just mentioned from working effectively. This is because pinning pre-
vents them from migrating tasks from one core to another when appropriate.

Multicore deterministic priority scheduler (DPS)
As shown in Table 13.1, RTEMS also offers two fxed task-level priority schedulers,
whose behavior is identical to their single-core counterparts:

• the Deterministic Priority SMP scheduler, and
• the Simple Priority SMP scheduler.

Both schedulers use the same underlying data structures as their single-core coun-
terpart, depicted in Figures 5.1 and 5.2, respectively. They support 256 priority levels
by default, but the number of levels can be changed in the application compile-time
confguration. These schedulers do not support affnity masks and may schedule tasks
on any of the cores assigned to them, regardless of how their masks are set.

Like it happens with their single-core counterparts, although these two schedulers
consistently take exactly the same scheduling decisions, they provide users with two
different trade-offs between scheduler effciency and memory footprint, namely:

452 Real-Time Systems Development with RTEMS and Multicore Processors

• Typical scheduler operations are performed in constant time by the De-
terministic Priority SMP scheduler and in linear time, with respect to the
number of ready tasks, by the Simple Priority SMP scheduler. This may or
may not be a shortcoming, depending on how many ready tasks there are.

• The memory footprint of the Deterministic Priority SMP scheduler is
roughly linear with respect to the number of confgured priority levels, be-
cause it uses one ready queue for each level. Since the Simple SMP sched-
uler has only one queue for all ready tasks, its memory footprint is smaller
and constant, regardless of the number of confgured priority levels.

Arbitrary affnity masks
The Arbitrary Processor Affnity scheduler allows users to specify arbitrary affnity
masks and honors them, thus providing fne-grained control on which cores tasks are
allowed to run without resorting to clustered or partitioned scheduling. It uses the
same data structures as the Deterministic Priority SMP scheduler, but different algo-
rithms to pick suitable tasks to execute on each core, considering both their priority
and their affnity masks, which may prevent them from running on certain cores.

In all cases, the user-specifed affnity mask of a task is further restricted to stay
within the cores assigned to the scheduler in charge of the task, so the scheduler will
never execute a task on a core outside of its control. An exception to this rule, which
is common to all scheduling algorithms and has already been discussed previously,
is the task migration put in place by the semaphore locking protocols.

This scheduler is still considered experimental at the time of this writing and
may be unsuitable for production use, because its implementation is incomplete and
the computational complexity of some of its operations is higher than linear with
respect to the number of ready tasks. However, it highlights the fexibility of the
RTEMS scheduling framework in accommodating the more and more sophisticated
scheduling algorithms that, as research progresses, will be needed in future real-time
multicore systems.

13.3 SCHEDULERS CONFIGURATION
For relatively simple applications, users do not have to explicitly confgure RTEMS
schedulers on multicore systems. By default, these systems use a global EDF sched-
uler across all cores, which is adequate in most circumstances. Users can also select
another scheduling algorithm for the global scheduler exactly like they did in single-
core systems, as described in Section 2.4.

In more complex cases, users can go through the full schedulers confguration
process summarized in Figure 13.2 and opt for clustered or partitioned scheduling,
possibly using different scheduling algorithms in each cluster or partition. There
are four confguration steps and their logical order coincides with the order of the
corresponding sections in the RTEMS confguration fle.

453 Multicore Concurrency: Issues and Solutions

Configuration file
Se

ct
io

n
 1

Scheduling algorithms selection
#define CONFIGURE_SCHEDULER_scheduler
…

#include <rtems/scheduler.h>

Select scheduling algorithm(s). Only the

algorithms selected here can be used in

Section 2

Se
ct

io
n

 2

Scheduler instantiation

Instantiate a scheduler for each

invocation of these macros and allocate

the data structures it needs

Scheduler-specific

configuration arguments

RTEMS_SCHEDULER_scheduler(data_id, …)
…

Se
ct

io
n
 3 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \

 RTEMS_SCHEDULER_TABLE_scheduler(data_id, \
 rtems_build_name('n', 'a', 'm', 'e')), \
 …

Scheduler instance table

Give to each scheduler instance a

symbolic name and assign them an

index in the scheduler instance table

Se
ct

io
n
 4 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \

 RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER, \
 RTEMS_SCHEDULER_ASSIGN(index, attr), \
 …

Core-to-scheduler assignments

Assign cores to a scheduler instance,

specified by means of its index in the

scheduler instance table

scheduler: Name of a scheduling algorithm, i.e., PRIORITY_SMP

data_id: Part of the scheduler instance’s data structures designator

'n', 'a', 'm', ‘e’: Symbolic name of the scheduler instance (character-by-character representation)

index: Index of a scheduler instance in the scheduler instance table

attr: Assignment properties (attributes): mandatory or optional

FIGURE 13.2 Clustered scheduling confguration in RTEMS.

Scheduling algorithms selection
The frst confguration step selects all the scheduling algorithms that will
be used in the system, among those available. This is done by defning
some of the macros listed in Table 13.1. For instance, defning the macro
CONFIGURE_SCHEDULER_PRIORITY_SMP selects the Deterministic Priority
Scheduler and enables it for use. Since each scheduling algorithm enabled during
this step may introduce some per-task memory overhead, it is advisable to select
only those scheduling algorithms that will actually be used, in order to save memory.

At the end of this confguration step, users must include the RTEMS header
rtems/scheduler.h to get access to the scheduler-specifc confguration macros
to be used in the next steps.

454 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 13.2
RTEMS Scheduler Instantiation Macros

Instantiation Macro Additional arguments
(RTEMS_SCHEDULER_. . .) besides the data structure designator
EDF_SMP Number of cores to be supported
PRIORITY_SMP Number of priority levels to be supported
SIMPLE_SMP —
PRIORITY_AFFINITY_SMP Number of priority levels to be supported

Scheduler instantiation
In the second step, all of the schedulers needed in the system must be instan-
tiated, by invoking appropriate macros listed in Table 13.2. For each schedul-
ing algorithm, the macro to be invoked in this step has the same name as
the macro that selects the scheduling algorithm (see Table 13.1), but with the
prefx RTEMS_SCHEDULER_ instead of CONFIGURE_SCHEDULER_. For example,
in order to create an instance of the Deterministic Priority Scheduler, the macro
RTEMS_SCHEDULER_PRIORITY_SMP must be invoked.

Each invocation of these macros creates an instance of the corresponding sched-
uler, which will manage a set of cores assigned to it in confguration step 4, and al-
locates its underlying data structures. All macros have at least one argument, which
will become part of the scheduler data structure designators. For this reason, it must
be unique and conforming to the syntactic rules for C-language identifers. It is im-
portant to note that this identifer is only used in the confguration phase and is not
the symbolic name that the application will use to refer to the scheduler. This name
will be assigned to the scheduler in confguration step 3.

Some scheduler instantiation macros have additional, instance-specifc arguments
listed in the right column of Table 13.2. They are used to further confgure each
individual scheduler instance being created. It is of course possible to instantiate the
same scheduling algorithm more than once, possibly with different instance-specifc
arguments, provided that designator names are different, and hence, unique.

Defnition of the scheduler instance table
The third confguration step gathers all scheduler instances created in step 2 into a
scheduler instance table. As a result, the scheduler instance table has one element for
each scheduler instance in the system. This also implicitly assigns to each scheduler
instance a unique index that represents its position in the table and starts from zero
for the frst scheduler instance. The index is important because it must be used to
refer to the scheduler in the fourth and last confguration step.

Another important operation performed in this confguration step is to bind
to each scheduler instance a symbolic name that the application can use to

Multicore Concurrency: Issues and Solutions 455

retrieve the object identifer of the scheduler instance, by means of the directive
rtems_scheduler_ident described in Section 5.2. As shown in Figure 13.2,
symbolic names are assembled by means of the rtems_build_name macro.

As illustrated in Figure 13.2, in order to do this, users must defne the macro
CONFIGURE_SCHEDULER_TABLE_ENTRIES to a comma-separated list of macro
invocations. There must be one macro invocation for each scheduler instance cre-
ated in confguration step 2 and the name of the macro must be derived from
the scheduler instantiation macro by substituting the prefx RTEMS_SCHEDULER_
with RTEMS_SCHEDULER_TABLE_. In other words, matching macros must con-
sistently be used in confguration steps 2 and 3. For instance, in order to place an
instance of the Deterministic Priority Scheduler in the table, the macro to be used is
RTEMS_SCHEDULER_TABLE_PRIORITY_SMP.

Core-to-scheduler assignments
The fourth and last confguration step assigns cores to the scheduler instances
created in confguration step 2. In order to do this, users must defne the macro
CONFIGURE_SCHEDULER_ASSIGNMENTS to a list of entries, one for each core
confgured in the system, for a total of CONFIGURE_MAXIMUM_PROCESSORS en-
tries. Each entry specifes whether or not the corresponding core is assigned to
a scheduler instance, and whether the assignment is mandatory or optional. More
specifcally, each entry can be:

RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER The core is not assigned to any
scheduler instance. This does not mean that the core will sit unused, but only that
RTEMS will not attempt to use it in any way. This does not preclude a hypervi-
sor to allocate the core to another operating system or even to another RTEMS
instance.

RTEMS_SCHEDULER_ASSIGN(scheduler_index, attr) The core is as-
signed to the scheduler instance whose index in the scheduler instance table de-
fned in confguration step 2 is scheduler_index.

When a core is assigned to a scheduler instance, the attr argument of the assign-
ment macro just described further specifes the assignment properties. It can assume
one of the following values:

RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY The assignment is manda-
tory. RTEMS will raise a fatal error, which terminates the system, if one or more
mandatory cores are not present in the system or cannot be started at bootstrap.

RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL The assignment is op-
tional. The unavailability of an optional core does not cause a fatal error, but
simply prevents the scheduler instance it is assigned to from using it.

RTEMS_SCHEDULER_ASSIGN_DEFAULT This value calls for default assignment
properties and is the same as RTEMS_SCHEDULER_ASSIGN_PROCESSOR_
OPTIONAL at the time of this writing.

456 Real-Time Systems Development with RTEMS and Multicore Processors

Besides the static core-to-scheduler assignments just described, which are
specifed at compile-time, it is also possible to dynamically add/remove cores
to/from scheduler instances by means of the directives rtems_scheduler_add_
processor and rtems_scheduler_remove_processor, respectively. Both
were described in Section 5.2.

In a multicore system one of the cores, often called boot core, is generally re-
sponsible of initializing the operating system before the other cores are started and
the system enters multitasking mode. This core must necessarily be assigned to a
scheduler instance in the compile-time confguration. A fatal error results if this re-
quirement is not fulflled.

13.4 MULTICORE SYNCHRONIZATION DEVICES
Like scheduling algorithms, also the protocols against unbounded priority inversion
behind lock-based synchronization devices must be redesigned to work properly and
effectively on multicore systems. When confgured for a multicore system, RTEMS
supports two state-of-the-art protocols for binary semaphores with priority queuing:

1. The multiprocessor resource sharing protocol (MrsP) by Burns and Wellings [28],
derived from the priority ceiling protocol.

2. The O(m) independence-preserving protocol (OMIP) by Brandenburg [23], de-
rived from the priority inheritance protocol.

Besides being of practical interest because they can be readily implemented in a
real-time operating system, both protocols come accompanied by signifcant theo-
retical results. In the frst case, a method to extend response time analysis (RTA) to
consider MrsP-induced blocking time exists, while in the case of OMIP the asymp-
totic optimality of its priority-inversion induced blocking time has been proven.

13.4.1 MULTIPROCESSOR RESOURCE SHARING PROTOCOL

The multiprocessor resource sharing protocol (MrsP) [28] is an evolution of the
immediate priority ceiling protocol described in Chapter 8 and was designed with
schedulability analysis in mind. More specifcally, one important design goal was to
be able to analyze the schedulability of a system that makes use of MrsP by means
of the response time analysis (RTA) method discussed in Chapter 4.

Like the immediate priority ceiling protocol, MrsP requires programmers to spec-
ify, for each semaphore, what is the priority of the highest-priority task that can
ever acquire that semaphore, for each scheduler instance. As a result, each MrsP
semaphore has multiple priority ceiling values, one for each scheduler instance in
the system, rather than just one system-wide value as for the immediate priority ceil-
ing protocol.

Without going deep into MrsP implementation, there are nevertheless three as-
pects that are important from the programmer’s point of view:

457 Multicore Concurrency: Issues and Solutions

• When a task successfully acquires a semaphore, its priority is temporarily
elevated to the ceiling priority of the semaphore for the scheduler instance
the task is normally assigned to. In RTEMS, this scheduler instance is also
called the home scheduler instance of the task.
The priority elevation lasts until the task releases the semaphore. From this
point of view, MrsP works in the same way as the immediate priority ceiling
protocol.

• Tasks that are waiting to acquire a semaphore spin, that is, perform an ac-
tive wait and remain running from the scheduler’s point of view, instead of
waiting passively by moving to the blocked state of the task state diagram.
Informally speaking, this prevents the spinning task from suffering fur-
ther priority inversion-induced blocking after it eventually acquires the
semaphore, due to lower-priority tasks that might have been run and have
had their priority elevated by MrsP in the meantime.

• In some cases, a helping protocol among scheduler instances may tem-
porarily migrate a task from the set of cores it is normally assigned to,
according to the partitioned or clustered scheduling approach, onto other
cores.
In the most basic case, this happens when the task is preempted by a higher-
priority task while it holds a semaphore, and on the other core there is a task
waiting for the same semaphore. In other words, this also means that a task
may temporarily execute on cores that are not managed by its own home
scheduler instance, but belong to other scheduler instances where there is
at least another task that shares a semaphore with it.

MrsP usage in RTEMS
The RTEMS operating system implements the MrsP protocol on symmet-
ric multiprocessor (SMP) and multicore systems for local binary semaphores
with priority-based queues, which is arguably the kind of semaphore most
suitable for mutual exclusion. This protocol is selected by specifying the
RTEMS_MULTIPROCESSOR_RESOURCE_SHARING attribute (together with the
RTEMS_LOCAL, RTEMS_BINARY_SEMAPHORE, and RTEMS_PRIORITY attributes)
upon semaphore creation.

Initially, all priority ceiling values of a new semaphore are set to the priority speci-
fed upon creation, which is hardly adequate in most practical cases. A specifc direc-
tive exists, rtems_semaphore_set_priority, to set a more appropriate value
for each scheduler instance afterwards. Moreover, MrsP semaphores cannot be cre-
ated locked, and hence, their initial value must necessarily be 1. Any attempt to create
a semaphore with an initial value of 0 results in the RTEMS_INVALID_NUMBER sta-
tus code. Since MrsP semaphores are used only to delimit critical regions for mutual
exclusion, this is not a practical issue in most cases.

An MrsP semaphore can be used like any other mutual exclusion semaphore for
the most part, bearing in mind the following restrictions:

458 Real-Time Systems Development with RTEMS and Multicore Processors

• Tasks must release MrsP semaphores in the reverse order with respect to
the sequence in which they were acquired, as it comes natural if critical
regions are properly nested. Attempts to deviate from the prescribed or­
der are detected and reported with the RTEMS_INCORRECT_STATE status
code upon semaphore release.

• MrsP semaphores cannot be acquired recursively. Any attempt to do
so results in the RTEMS_UNSATISFIED status code being returned by
rtems_semaphore_obtain.

• Besides self-deadlocks that would result from recursive semaphore ac­
quisition, the system also detects more complex kinds of deadlock
that would be created by acquiring a semaphore. In this case, the
rtems_semaphore_obtain directive fails and returns the status code
RTEMS_UNSATISFIED.

• Finally, but this is a restriction that does not concern only MrsP
semaphores, an MrsP semaphore cannot be taken from an interrupt context
or whenever thread dispatching is disabled. Any attempt to do so results in
an internal RTEMS error or undefined behavior.

Scheduling analysis
Let us recall the main recurrence relationship of response time analysis
(RTA) [16, 17], that is, Equation (4.5) of Section 4.1.2:

(h)
(h+1) wi
wi = Ci + ∑ Cj. (13.1)

Tjj∈hp(i)

(0) (0) (1)It has been proven that, if we let w = Ci and the succession w , w , . . . con-i	 i i
verges, it converges to Ri, the worst-case response time of τi. If we consider a parti­
tioned multicore system, that is, a system in which tasks are statically assigned to a
specific core for execution and cannot autonomously migrate elsewhere, this recur­
rence formula is still valid to calculate the worst-case execution time of task τi if we
take into account only the interference it may suffer from other tasks being executed
on the same core.

This is reasonable because a task running on a certain core does not suffer in­
terference from tasks running in parallel on other cores, if we neglect the indirect
interference caused, among other things, by cache and memory access contention
outlined in Chapter 12. In this scenario, the set hp(i) must be replaced by another
set hpl(i), defined as the set of indices of the tasks with a priority higher than τi and
local to τi, that is, assigned to the same core as τi:

(h)
(h+1) wi
wi = Ci + ∑ Cj. (13.2)

Tjj∈hpl(i)

The basic RTA succession (4.5) was then extended to consider blocking time,
that is, the time tasks spend waiting on semaphores for shared resources to become

459Multicore Concurrency: Issues and Solutions

available for use. This led to a new recurrence relation, Equation (4.6). It can be
proved that the same relation still holds for MrsP-induced blocking, by replacing
hp(i) with hpl(i) as before:

(h)
(h+1) wi
wi =Ci +Bi + ∑ Cj. (13.3)

Tjj∈hpl(i)

in which the term Bi represents the worst-case blocking time endured by τi. In single-
core priority ceiling, the worst-case Bi is bounded (somewhat pessimistically) by
BPC, calculated as in Equation (4.8): i

BPC K
i	 = max{usage(k, i)C(k)} , (13.4)

k=1

where:

• K is the number of semaphores in the system.
• usage(k, i) is a function that returns 1 if semaphore Sk is used by (at least)

one task with a priority less than the priority of τi, and also by (at least) one
task with a priority higher than or equal to the priority of τi, including τi
itself. Otherwise, usage(k, i) returns 0.

• C(k) is the worst-case execution time among all critical regions associated
with, or guarded by, semaphore Sk.

To proceed further, if we restrict our attention to non-nested critical regions for
the time being, we can express the worst-case execution time Ci of τi as:

Ci = Wi + ∑ nk,iC(k), (13.5)
k∈usedby(i)

• Wi is the worst-case execution time of τi, excluding the time spent within
critical regions.

• usedby(i) is the set of indices of the semaphores that τi uses at least once.
• nk,i is the number of times that τi “uses” semaphore Sk, that is, enters a

critical region controlled by Sk.

It can then be proven that the worst-case response time of τi when using the MrsP
protocol is given by value to which recurrence relation (13.3) converges when sub­
stituting (13.4) and (13.5) into it, and finally replacing C(k) with the quantity:

E(k) = |cores(uses(k))|C(k), (13.6)

where:

• uses(k) represents the set of indexes of the tasks that use semaphore Sk at
least once.

• cores(·), given a set of task indexes, returns the set of cores these tasks are
assigned to.

460 Real-Time Systems Development with RTEMS and Multicore Processors

. |.| gives the cardinality (number of elements) of a set.

Finally, we obtain:

w(h+1)
i =

Ci. .. .
Wi + E

keusedby(i)
nk,iE(k)

+

Bi. .. .
K

max
k=1
{usage(k, i)E(k)}

+ E
jehpl(i)

.
w(h)

i
Tj

. C j.
W j + E

keusedby(j)
nk, jE(k)

.
.

(13.7)

The formal proof of (13.6) is given in [28] and is outside the scope of this book.
However, the intuition behind the formula is that, when there can be parallel acqui-
sition requests for a semaphore Sk from up to m distinct cores with FIFO queueing,
it is reasonable to expect that, in the worst case, a task has to wait for (m-1)C(k) to
acquire the semaphore and then spends C(k) within the corresponding critical region.
As a consequence, the total worst-case cost of executing the critical region is:

(m-1)C(k)+C(k) = mC(k)

and the correct value of m to be used for Sk is indeed given by |cores(uses(k))|.
The original MrsP paper [28] suggested that nested critical regions can easily

be accommodated in the analysis with a different and only slightly more complex
definition of E(k):

E(k) = (|nested(k)|+ |cores(uses(k))|)C(k), (13.8)

where nested(k) is the set of semaphores that access semaphore Sk in a nested way.
In other words, a semaphore Sh e nested(k) if and only if there is at least one critical
region controlled by Sk nested within a critical region controlled by Sh.

The informal reasoning behind this formula is that, in the worst case, semaphore
Sk can be accessed directly from up to |cores(uses(k))| contending sources like in the
non-nested case, and indirectly from up to |nested(k)| critical regions controlled by a
different semaphore. In the second case, the outer critical region serializes accesses
to the semaphore, so these sources must be counted only once regardless of from
how many sources the semaphore that controls the outer critical region is accessed.

Therefore, from the point of view of a task that wants to acquire the semaphore
and execute the corresponding critical region, each of those sources introduces an
execution overhead of up to C(k), including the time the task needs to execute its own
critical region. The same reasoning also provides the starting point to further extend
the analysis and consider clustered scheduling. As a final remark, in all the above

461 Multicore Concurrency: Issues and Solutions

formulae we neglected operating system-induced blocking due to critical regions
needed to implement, for instance, task switching and dispatching, like we did in
Chapter 4. Further insights on nested critical regions in MrsP, along with a more
comprehensive and refned analysis, were given in [50].

13.4.2 O(M) INDEPENDENCE-PRESERVING PROTOCOL

Like MrsP does, also the O(m) independence-preserving protocol (OMIP) [23] ex-
tends a protocol originally devised for single-core systems—the priority inheritance
protocol described in Chapter 8—to multiprocessor and multicore systems by means
of a helping mechanism that enables temporary task migration from the home sched-
uler instance to another.

However, unlike MrsP, OMIP is not based on spinning and only relies on pas-
sive wait to regulate critical region access. Even more importantly, OMIP does not
require any user-provided prior information about which tasks contend for which
semaphores and their priorities. For this reasons, in RTEMS the OMIP protocol is a
drop-in replacement for priority inheritance on symmetric multiprocessor and multi-
core systems. In other words, when users select the priority inheritance protocol on
such systems, they automatically get OMIP instead.

Independence-preserving protocols
Another OMIP design goal of practical importance, also in common with MrsP, is
the fact of being an independence-preserving protocol, as its name says. Informally
speaking, the concept of independence preservation captures a very desirable prop-
erty of a locking mechanism, which can be expressed in a very simple way: The
execution of high-priority tasks must be independent of, and shielded from, any in-
terference coming from accesses to unrelated critical regions by lower-priority tasks.

Last, but not the least, it can be proved that the blocking time due to priority
inversion in OMIP is asymptotically optimal, that is, it grows like O(m) as m, the
number of cores, grows. This result is valid under suspension-oblivious analysis,
that is, a kind of schedulability analysis in which task blocking is considered in an
implicit way, as part of the execution time of the task itself. Moreover, the proof does
not take nested critical regions into account and considers clustered scheduling in
which the m cores are uniformly divided among clusters.

A short discussion of how the priority inheritance protocol falls short of expec-
tations on a multicore system and how temporary task migration solves the issue,
along with an example of a different approach that is not independence-preserving,
will help us understand the underlying strategy of the OMIP protocol. Most of the
reasoning to be carried out in the following is applicable to task migration in MrsP
as well.

A further, interesting result proved in [23] is that, except in the case of global
scheduling, it is impossible for a protocol to simultaneously fulfll the following three
properties, at least when using a scheduling algorithm in which task priorities may

462 Real-Time Systems Development with RTEMS and Multicore Processors

Time

C1=5, T1=9, 𝜑1=2

C2=10, T2=20, 𝜑2=0

C3=4, T3=12, 𝜑2=2

τ2

τ1

τ2

τ3

τ1

τ3

This part of τ3,s blocking time depends on C1

- unbounded priority inversion

Priority inheritance has no
effect (priority of τ1 still > τ2)

τ3 blocks

Deadline
miss

t=0 t=2

t=3 t=7

t=12 t=15

Execution on core #1 Task state

Blocked
Execution on core #2 Ready

Not ready
Within critical region

FIGURE 13.3 Priority inheritance and unbounded priority inversion in multicores.

be dynamic, but job priorities are fixed (like Rate Monotonic or Earliest Deadline
First):

1. Prevent unbounded priority inversion
2. Be independence-preserving
3. Not use task migration

Priority inheritance on multicores
Let us consider, as shown in Figure 13.3, three periodic tasks to be executed on two
different cores under partitioned Rate Monotonic scheduling. The top half of the
figure depicts task characteristics. Their execution time is represented by a rectangle
in which diagonal stripes highlight two critical regions in τ2 and τ3, controlled by
the same semaphore. More specifically:

463 Multicore Concurrency: Issues and Solutions

• Task τ1 has an execution time C1 = 5, a period T1 = 9, and an initial phase
ϕ1 = 2. All these quantities are times expressed in an arbitrary, but consis-
tent, time unit. The task does not contain any critical region and, being the
task with the shortest period, has the highest priority in the system.

• Task τ2 has an execution time C2 = 10, a period T2 = 20, and an initial
phase ϕ2 = 0. It enters a critical region controlled by a semaphore S after
executing for 1 time unit and executes within the region for 6 time units.
This task has the longest period, and hence, the lowest priority.

• Task τ3 has an execution time C3 = 4, a period T3 = 12, and an initial phase
ϕ3 = 2. It contains a critical region controlled by the same semaphore S
that starts after 1 time unit since the beginning of its execution and lasts
for 1 time unit. According to the Rate Monotonic priority assignment, its
priority is lower than the priority of τ1 and higher than the priority of τ2.

Tasks τ1 and τ2 are statically assigned to core 1 for execution, while τ3 is assigned
to core 2. In the fgure, execution on core 1 is represented by a light gray color, while
a darker gray indicates execution on core 2. Thin horizontal lines denote that a task
is not ready for execution, because it is waiting for its next activation, thick lines
indicate that a task is ready, and dotted thick lines indicate that a task is blocked, that
is, it is waiting to acquire semaphore S.

The bottom half of Figure 13.3 shows how the system behaves when using the
priority inheritance protocol:

• At t = 0 task τ2 becomes ready and start executing on core 1. The other two
tasks, τ1 and τ3, are not ready for execution yet. Since ϕ1 = ϕ3 = 2, these
tasks are still waiting for activation.

• At t = 2 both τ1 and τ3 become ready for execution. Both start executing
immediately, because τ3 is alone on core 2 and τ1 preempts τ2 on core 1
because it has a higher priority. It is worth noting that τ2 is preempted after
it acquired S and entered its critical region.

• At t = 3 task τ3 tries to acquire S as well, and blocks because τ2 did not
release the semaphore yet. The priority inheritance protocol elevates the
priority of τ2 to the priority of τ3.

• However, τ1 keeps executing, because its priority is even higher. As a con-
sequence, τ2 resumes execution only when τ1 completes at t = 7 and waits
for its next activation.

• Task τ2 eventually exits from its critical region at t = 12 and unblocks τ3.
• Task τ3 would fnish at t = 15, but it misses its deadline, which is set at

t = ϕ3 + T3 = 14.

Overall, we can conclude that priority inheritance not only does not make τ3 meet
its deadline, but it also does not even allow us to determine an upper bound in its
worst-case blocking time. This is because, by looking at Figure 13.3, we can see that
part of the blocking time depends on C1, the execution time of a totally unrelated
task that does not even compete for the same semaphore. This is exactly the same

Time

τ1

τ2

τ3

Priority boosting prevents τ2 from

being preempted by the release of τ1

τ3 blocks

An unrelated, higher-priority task

misses its deadline

→ not independence-preserving

Priority boosting
ends

t=0 t=1 t=2 t=7 t=10
t=11

FIGURE 13.4 Priority boosting is not independence-preserving.

scenario that led us to the concept of unbounded priority inversion in Section 8.1 and
Figure 8.1.

Priority boosting
The observation that one reason of the unbounded blocking time just described is the
preemption of τ2 by τ1 may lead to the introduction of priority boosting techniques,
based on a concept not unlike priority ceiling. More specifcally, a task that enters a
critical region may temporarily be granted a boost that makes its priority higher than
any other normal priority. Many multiprocessor and multicore semaphore protocols
actually employ various variations on this basic theme. This approach prevents tasks
within a critical region from being preempted by tasks that do not hold any lock but,
as illustrated in Figure 13.4, it has other side effects.

If we consider again the same set of tasks analyzed previously, introducing prior-
ity boosting leads to the following behavior:

• As before, task τ2 becomes ready at t = 0 and start executing on core 1.
• At t = 1, it enters its critical region and gets a priority boost, which has no

immediate consequences.
• At t = 2, both τ1 and τ3 become ready for execution. However, only τ3

starts executing immediately, because it is alone on core 2. Instead, τ1 does
not preempt τ2 on core 1 because of the priority boost just discussed.

• As a consequence, τ2 continues executing until it leaves the critical sec-
tion at t = 7 and the priority boost ceases. At this point τ1 preempts τ2.
In addition, task τ3 is unblocked and resumes execution in its own critical
section.

• Task τ3 successfully concludes its execution at t = 10.
• However, τ1 misses its deadline, which is set at t = ϕ1 + T1 = 11.

464 Real-Time Systems Development with RTEMS and Multicore Processors

Time

τ1

τ2

τ3

τ2 temporarily migrates to core 2 and

acquires the priority of τ3

τ3 blocks τ2 returns to core 1 when it

exits from the critical region

τ1 preempts τ2

t=1 t=2 t=3

τ2 acquires S

t=8 t=11

FIGURE 13.5 Temporary task migration in OMIP.

Overall, priority boosting prevented τ3 from missing its deadline, at the expense of
τ1 though. This example shows that priority boosting is not independence-preserving
because the execution of τ1—the highest-priority task in the system—was not at all
independent of the accesses to critical regions by τ2 and τ3, although these critical
regions are completely unrelated to τ1 itself.

How deeply the lack of independence preservation affects real-world systems of
course depends on how long critical regions are because, in general, the shorter crit-
ical sections are, the less they disrupt unrelated task timings. However, worst-case
critical regions length may be hard to estimate in many cases of practical relevance,
which further increases the interest of independence-preserving protocols. For in-
stance:

• Complex applications that make use of proprietary, third-party libraries
where the exact nature of the shared data structures they manipulate and
the algorithms they use may be unknown or hard to assess.

• Presence of shared data structures whose size is variable and hard to bound
at design time, even if they are only shared among low-priority tasks.

• Open systems, in which the actual task mix may be little known at design
time and may comprise unrelated tasks of different timing criticality.

Task migration
With the help of Figure 13.5 we can now informally see how task migration solves
the issue. A more complete, formal proof of why this strategy works can be found
in [23], and also in [28] for what concerns task migration in MrsP. More specifcally,
OMIP defnes a so-called migratory priority inheritance rule. The rule states that
whenever a task τi is ready for execution, but not running, and there is another task
τ j that would be eligible for execution on its cluster, but is blocked waiting for one

Multicore Concurrency: Issues and Solutions 465

466 Real-Time Systems Development with RTEMS and Multicore Processors

of the semaphores held by τi, then τi migrates to the cluster of τ j and temporarily
takes τ j’s priority until it releases the semaphore. This is exactly the situation tasks
τ2 and τ3 are in at t = 3, because:

• Task τ2 is ready for execution on core 1, but it is not running because it has
been preempted by τ1 at t = 2, after acquiring semaphore S at t = 1.

• Task τ3 would be eligible for execution on core 2, because it is the only
task on that core, but is blocked waiting for S, the semaphore that task τ2
holds.

Therefore, τ2 migrates to core 2 and assumes τ3’s priority so that, informally
speaking, it “runs on τ3’s place” on that core. Execution continues as follows:

• Thanks to the migration, τ2 continues its execution on core 2 until it even-
tually releases semaphore S at t = 8.

• At this point, τ2 returns to core 1 and reverts back to its original priority. It
keeps executing on core 1, though, because in the meantime τ1 successfully
concluded within its deadline.

• Also at t = 8, τ3 is given semaphore S and unblocked. Being the only ready
task on core 2, it immediately starts execution.

• Both τ2 and τ3 conclude their execution at t = 11, thus meeting their dead-
lines.

OMIP queuing strategy
The last aspect to be discussed is how tasks are queued when they are blocked on
a semaphore. In the case of priority inheritance, a single, priority-based queue for
each semaphore is adequate and suffcient for blocking time analysis, as described in
Chapter 8. In the case of OMIP, Reference [23] advocates a more complex queuing
strategy, depicted in Figure 13.6, to optimize blocking time and reach O(m) asymp-
totic optimality. From right (closer to the semaphore) to left (closer to tasks), the
queues associated to a certain semaphore S are organized in three stages:

1. A global frst-in, frst-out (FIFO) queue G that can hold up to one task for each
cluster in the system. The task at the head of this queue is the one that holds the
semaphore, when the queue is empty it means that no tasks hold the semaphore.

2. A per-cluster FIFO queue F , whose maximum length is the number of cores in
the cluster.

3. A per-cluster priority queue P , of unlimited length.

The three queues are used according to the following rules:

• When a task τi tries to acquire S and queue F is empty, it is enqueued in
both F and G . If G was also empty, τi obtains the semaphore immediately,
otherwise it is blocked.

• Otherwise, if queue F is not full, τi is enqueued in F , but not in G , and
blocked.

467 Multicore Concurrency: Issues and Solutions

���
������

�����

����
���	�
��������
�����������������������

�
��
��
��
��
�

�
��
��
��
��
�

⋯

�������������	�
������������
�������������������������������

������������
��������������

𝒢������

ℱ������𝒫������

FIGURE 13.6 OMIP waiting queues for critical region access.

• If queue F is full, τi is enqueued only in P and blocked. Queue P has
unlimited length, so it cannot be full as well.

• When a task τi releases semaphore S, it is removed from both G and F .
• Since now there is at least one empty element in G and F , the system fills

it according to the queue hierarchy. Namely, if P is not empty, its head
is removed and enqueued in F . Moreover, if F is not empty, its head is
duplicated and enqueued in G .

• If G is not empty after these updates, the task at its head is unblocked and
given semaphore S.

13.5 LOCK-FREE AND WAIT-FREE COMMUNICATION
From the previous chapters, Chapter 7 in particular, we know that a shared object is
a data structure that can be accessed and modified by means of a fixed, predefined set
of operations by a number of concurrent tasks. Uncontrolled access to a shared object
may lead to a race condition, which usually entails the unrecoverable corruption of
object contents.

For this reason, object access is traditionally controlled by means of critical sec­

tions or regions. A mutual exclusion mechanism, for example, a semaphore or a
monitor, governs the access to critical regions and makes tasks wait if necessary, so
that only one of them at a time is allowed to access or modify the object. Although
critical sections are not apparent in inter-task communication based on message

468 Real-Time Systems Development with RTEMS and Multicore Processors

passing, they are still needed within message-passing primitives if they rely on some
form of shared memory for data transfer.

With this approach, often called lock-based object sharing, a task that wants to
access a shared object must obey the following protocol:

1. Acquire a lock of some sort before entering its critical region.
2. Access the shared object within the critical region.
3. Release the lock when exiting the critical region.

A crucial point is that, as long as a task holds a lock, other tasks contending for
the same lock are forced to wait for a certain amount of time because, during the
lock acquisition phase, a task τ1 blocks if another task τ2 is currently within a critical
region associated with the same lock. The block takes place regardless of the relative
priorities of the tasks. It lasts at least until τ2 leaves the critical region and possibly
more, if other tasks are waiting to enter their critical region, too.

Even though both τ1 and τ2 still proceed normally from the functional point of
view, and hence produce correct results, if the priority of τ1 is higher than the priority
of τ2, the way mutual exclusion is implemented goes against the concept of task
priority, because a higher-priority task is forced to wait until a lower-priority task
has completed part of its activities. In Chapter 8, we saw that special techniques are
needed to solve this issue, and still be able to bound and calculate the worst-case
blocking time suffered by higher-priority tasks.

Even so, it is still true that in modern processors multiple hardware components
may introduce execution delays that are inherently hard to predict precisely, like the
caches we described in Chapter 12. This implies a certain uncertainty on how much
time a given task will actually spend within a critical region in the worst case and
may lead to an overestimation of this time. In turn, the uncertainty is refected back
into worst-case blocking time computation.

As shown in Figure 13.7, bringing this reasoning to the extreme we can also ob-
serve that if τ2 halts for any reason while within its critical region, τ1 and all of the
other tasks willing to enter a critical region associated with the same lock will be
blocked forever and will be unable to make any further progress. Although in most
operating systems it is possible to specify a timeout for lock acquisition (see Chap-
ter 7) at the very least the shared object cannot be safely used again, because it may
have been left in an inconsistent state by a partial update performed by τ2 before
halting.

Even though a full discussion of the topic is beyond the scope of this book, this
section contains a short introduction to a radically different approach to object shar-
ing, known as lock-free and wait-free communication. Unlike lock-based object shar-
ing, this approach is able to guarantee the consistency of a shared object without ever
forcing any task to wait for another. For this reason, lock-free and wait-free com-
munication is unaffected by random task halts, although it is still sensitive to soft
failures, which lead a task to sporadically perform incorrect operations and continue
rather than halting completely.

469 Multicore Concurrency: Issues and Solutions

Critical region
3) 𝜏2 halts after partially

updating the shared objectCritical region

Task 𝜏2Task 𝜏1

Shared object

Partial
update

1) 𝜏2 enters the critical region

2) 𝜏1 blocks

Critical region entry/exit code

4) 𝜏1 will make no

further progress

FIGURE 13.7 Issues with lock-based synchronization when a task halts.

After giving some basic definitions, we will first look at two very specific algo­

rithms, one of which is lock-free while the other is wait-free. These examples will
give readers a general feeling of what these algorithms look like. Then we will dis­

cuss a method that solves the problem in general terms and allows objects of any kind
to be shared in a lock-free way. From these examples, it will become clear that the
inner workings of this kind of algorithms are considerably more complex than, for
instance, semaphores. For this reason, although lock-free and wait-free algorithms
are already in use for real-world applications, they are still an active research topic,
above all for what concerns their actual implementation.

The development and widespread availability of open-source libraries containing
a collection of lock-free data structures such as, for example, the Concurrent Data
Structures library (libcds) [74] is encouraging. In this way, more and more program­

mers will be exposed to them in the near future, and they will likely bring what today
is still considered an advanced topic into mainstream programming. Interested read­

ers may refer to References [4, 5, 6, 56, 57, 58, 78] for a more detailed introduction
to this subject and its applications to real-time embedded systems.

13.5.1 BASIC PRINCIPLES AND DEFINITIONS

Given a system of tasks T = {τ1, . . . , τn} wishing to access a shared object O, the
implementation of O is lock-free if some task τi ∈ T must complete an operation
on O after the system T takes a finite number of steps.

In this definition, a step means an elementary execution step of a task, such as the
execution of one machine instruction. The concept of execution step is not tightly
related to time, but it is assumed that each execution step requires a finite amount
of time to be accomplished. In other words, the definition guarantees that, in a

470 Real-Time Systems Development with RTEMS and Multicore Processors

fnite amount of time, some task τi—not necessarily all of them—will always make
progress regardless of arbitrary delays or halting failures of other tasks in T .

It is easy to show, by means of a counterexample, that sharing an object by intro-
ducing critical regions leads to an implementation that is necessarily not lock-free.
That is, let us consider a shared object accessed by a set of tasks T = {τ1, . . . , τn}
and let us assume that each task contains a critical section, all protected by the same
lock.

Pursuing the same reasoning presented at the very beginning of this section, if
task τi acquires the lock, enters the critical section, and halts without releasing the
lock, regardless of what and how many steps the system T takes as a whole, none
of the tasks will complete its operation. On the contrary, all tasks will wait forever
to acquire the lock, without making further progress, as soon as they try to enter the
critical section.

Similarly, given a set of tasks T = {τ1, . . . , τn} wishing to access a shared ob-
ject O, the implementation of O is wait-free if each task τi ∈ T must complete an
operation after taking a fnite number of steps, provided it is not halted.

The main difference is therefore that a wait-free implementation guarantees that
all non-halted tasks—not just some of them as for a lock-free implementation—will
make progress, regardless of the execution speed of other tasks. For this reason,
the wait-free property of an implementation is strictly stronger than the lock-free
property.

Both lock-free and wait-free objects have a lot of interesting and useful proper-
ties. First of all, they are not (and cannot be) based on critical sections and locks.
Therefore, lock-free objects are typically implemented using retry loops, in which a
task repeatedly attempts to operate on the shared object until it succeeds.

Those retry loops are potentially unbounded and theoretically might give rise to
starvation for some tasks, that is, they might be unable to make progress although the
scheduler allows them to spend some time executing. However, the probability p that
a task has to retry is usually extremely small and the probability of retrying k times
can be approximated by p−k . Being a negative exponential, this quantity quickly
decreases toward zero as the exponent k increases. Wait-free methods go one step
further and preclude all waiting dependencies among tasks, including retry loops.
Individual wait-free operations are therefore necessarily starvation-free, another im-
portant property in a real-time system.

13.5.2 LOCK-FREE MULTI-WORD COUNTER READ

As an example of ad-hoc lock-free communication technique we will examine a
programming problem that often arises in practice, that is, how to consistently read
a counter, which is being concurrently updated by another agent, called writer.

To better defne the problem, let us specify that the counter we would like to use is
composed of multiple (two or more) digits, according to the nomenclature chosen in
a seminal reference paper about this subject [78]. It is assumed that hardware makes
it possible for the processor to read individual digits atomically, but not the whole
counter. Instead, it is possible for another agent to write all digits in an atomic way.

471 Multicore Concurrency: Issues and Solutions

Although no assumptions are needed on how wide a digit is, in the following we will
assume that digits coincide with machine words for simplicity.

This is realistic because in most processors—including multi-core ones—atomic
access to individual machine words is easily implemented in hardware, typically by
means of a bus arbiter, and always guaranteed. The real issue may be to guarantee
that memory or device access operations are actually performed in the intended or-
der, avoiding unwelcome optimization performed either by the compiler or by the
hardware itself but, as we saw in Chapter 12, valid methods do exist to address this
issue.

On the writer’s side, the assumption that atomic updates to multiple digits are
possible is often satisfed, for instance, if all digits are actually registers of the same
hardware device, which is then able to make their new values visible to the processor
all at once. When needed, it is also possible to relax the assumption about the atomic
update of the whole counter, but this requires the use of algorithms more sophisti-
cated than the one being described here. Interested readers can refer to [78] for more
information about this point, as well as an example of those algorithms.

The most important consequence of atomic access is that, if a digit is read while
it is being updated by the writer, the reader gets either the old or the new value,
but no other cases are possible. However, since atomic read access from software is
not possible for the whole counter, the only way to access it is to read its digits in
a non-atomic sequence. By intuition, this may lead to inconsistent readings unless
appropriate countermeasures are taken.

To better highlight the practical application of this method, let us consider an
example. Many microcontrollers embed a Real Time Clock (RTC) able to keep track
of wall-clock time autonomously. Often, thanks to an auxiliary power source, the
RTC also works when the processor is inactive and the rest of the microcontroller
is powered off. For convenience, the RTC hardware often makes available different
parts of the wall-clock time in distinct registers. For instance, the LPC1768 RTC [90]
has 8 registers for seconds, minutes, hours, day of month, and so on. Atomic access
to individual registers is generally possible, but not to all of them together. Instead,
all registers are updated atomically on the RTC side.

As a running example, in the following we consider a very simplifed RTC that
provides only two wall-clock time registers: SECS, holding seconds, and MINS, hold-
ing minutes, although the method we are going to describe can be easily extended
to handle more than two registers. Going back to the original nomenclature, each
register can be considered as a digit of a counter, in base 60. The RTC hardware is
responsible of updating these digits every second.

As shown in the left part of Figure 13.8, the writer updates both registers in an
atomic way, bringing them from an old value (in light gray) to a new one (dark
gray). Instead, as shown in the right part of the fgure, the reader must perform a
minimum of two independent read operations to read registers individually. Although
the fgure shows a single reader, the reasoning that follows stays true for any number
of concurrent readers. Read operations may be carried out in two different orders:

472 Real-Time Systems Development with RTEMS and Multicore Processors

MINS SECS

12 59

13 00

13 5912 00

12 59

13 00

12 59

13 00

Writer’s update Reader’s results, 2 reads

Register before writer’s update

Register after writer’s update

Time Time

Inconsistent results

(undetectable)

FIGURE 13.8 Possible outcomes of non-atomic RTC reads with a concurrent update.

1. From left to right. Assuming that most signifcant digits (and registers) are written
on the left of a number, this order corresponds to reading the most signifcant digit
MINS frst, and then SECS.

2. From right to left, that is, least signifcant digit frst or, in other words, SECS and
then MINS.

Considering that read operations take place concurrently with the update, it is ev-
ident that neither order is suffcient to guarantee that the reader gets correct results—
that is, either 12:59 or 13:00. Indeed, as shown in the fgure, in both cases it is
possible that the reader obtains a wrong result, 12:00 or 13:59. What is more, the
reader has no way to detect this condition, and hence, no opportunity to correct it,
for instance, by retrying the operation.

From this observation we can readily draw the conclusion that two read opera-
tions, regardless of the order in which they are performed, are not enough to con-
sistently read a two-digit counter under our assumptions. As a side note, it is not a
coincidence that the fgure depicts the scenario in which there is carry propagation
from one digit to the next, because this is the only scenario in which inconsistent
results may be obtained.

However, by looking more carefully at Figure 13.8, we can also notice that three
read operations are able to give a reader both the value of the whole counter—if it
was able to read it correctly—or an indication to retry. The order of read operations
is actually a combination of the left-to-right and then right-to-left orders shown in
the fgure, namely:

1. The reader frst reads MINS;
2. Then, it reads SECS (in left-to-right order);
3. Last, it reads MINS again (in right-to-left order).

473 Multicore Concurrency: Issues and Solutions

FIGURE 13.9 Possible outcomes of a sequence of 3 non-atomic RTC reads.

For the code to work as intended, besides ensuring that read operations are actu-
ally forwarded to the memory or I/O bus in the same order as they appear in the code,
it is also important that the second read of MINS is performed “for real”, that is, the
data it returns actually come from the bus and not from somewhere else. Ensuring
this requires a twofold approach, which works on both the hardware and software
side:

• On the hardware side, individual register accesses or the address range in
which the register address resides must be marked non-cacheable. As re-
called in Section 12.2.4, on the ARMv8-A architecture, this is done implic-
itly when an address range is classifed as device memory.

• On the C-language software side, the data type used to access the register
must be qualifed as volatile, as indicated in Section 12.2.5, to prevent
the compiler from reusing an outdated value that might still be present in
some processor register.

Figure 13.9 shows the four possible outcomes of the sequence of read operations
just described. In the fgure, time fows vertically and outcomes are shown besides
each other horizontally. Light gray and dark gray rectangles still denote old and new
values, respectively.

• In two cases (the leftmost and the rightmost) the reader gets the same value
from the frst and second read of MINS. This ensures that SECS was not
updated between the two reads of MINS, and hence, the counter value ob-
tained by the reader is correct.

• In two other cases, the reader gets different values from the frst and second
read of MINS. This outcome may correspond to a genuine inconsistent re-
sult (in which the reader obtained 12:00 from the counter). Otherwise, it

474 Real-Time Systems Development with RTEMS and Multicore Processors

may also be a false alarm, in which the reader obtained a consistent result,
12:59, but the check spotted an inconsistency anyway.

When the two reads of MINS differ, the reader must retry the operation, counting
on the fact that the next attempt will go better. Even without going deep into mathe-
matics, we may still believe this is a sensible course of action because the probability
of having to retry is low (if updates happen infrequently enough with respect to pro-
cessor execution speed) and the cost of retrying is also low (just three read operations
and a comparison).

For the same reason, it also becomes acceptable to retry for no good reasons, that
is, when a false alarm occurs. From this point of view it is important to remark that,
although the method we are describing may give false alarms, or false positives, it
never gives false negatives, thus ruling out any possibility of obtaining and using
inconsistent readings. In other words, we are willing to accept this method because a
false positive only affects its performance, whereas a false negative would affect its
correctness.

13.5.3 FOUR-SLOT ASYNCHRONOUS COMMUNICATION

A seminal work by Simpson [113] analyzed and solved the all-important problem
of the asynchronous communication of an arbitrary memory-resident data structure
between a single writer and a single reader. In the context of the work, the meaning
of asynchronous is the absence of any kind of timing interference between the tasks
involved, which corresponds to the defnition of wait-free implementation given in
Section 13.5.1. Briefy discussing this solution gives us the opportunity to explore
wait-free communication methods and highlight some of the possible pitfalls in the
quest for a fully correct solution. Besides asynchronism, the two additional, quite
intuitive requirements posed on the solution are:

• Coherency: data produced by the writer must become available to the
reader as an atomic unit, although they consist of multiple memory words
that cannot be read or written atomically as a whole. In other words, the
reader must never obtain a mix of partial data produced by multiple write
operations because this would likely lead to data corruption.

• Freshness: the reader must obtain the most recent data fully produced by
the writer at the time it starts the read operation, rather than some older
version. This property is especially important for real-time systems because
it guarantees that communication will not only be correct, but also timely.

The main assumption of the work—to avoid an obvious chicken-and-egg issue—
is that the underlying hardware architecture supports asynchronous, coherent, and
fresh access to one-bit variables. As discussed in the previous chapters, this assump-
tion is amply satisfed on virtually all contemporary multicore architectures, which
support atomic access to data at least as big as a memory word.

475 Multicore Concurrency: Issues and Solutions

�������
𝜏 �

��	����
𝜏 �

��	����
�

��

������

�������� ��������

�����	�

��	����

��	���

FIGURE 13.10 Incoherent read in single-buffer communication.

Strictly speaking, hardware-based atomic access does not fully satisfy the asyn­

chronism assumption because the memory system most often implements it by seri­

alizing memory accesses, and hence, there is indeed a certain amount of timing in­

terference among competing tasks. However, given that the time needed to perform a
single memory access—or wait until the access initiated by another task completes—
is usually orders of magnitude smaller than the time scale on which tasks operate,
this interference can be neglected in most practical cases.

Since memory-based communication is accomplished by means of a certain num­

ber of memory buffers shared among the tasks involved, an interesting question is
what is the minimum number of buffers needed to obtain a solution that satisfies the
asynchronism, coherency, and freshness properties just mentioned.

As shown in Figure 13.10, a single shared buffer is inadequate because the co­

herency property is no longer satisfied as soon as a read operation overlaps with a
write operation. In the example shown in the figure, if read operation #1 overlaps
with write operation #2, it will get part of the “old” (light gray) data pertaining to the
previous write operation, write #1, and part of the “new” (dark gray) data presently
begin written. Instead, the freshness property is satisfied because, as also shown in
the figure, a read operation always gets access to the most recent data.

In the previous chapters, notably Chapter 7, we learned to call this issue a race
condition and solve it by establishing and enforcing some timing constraints be­

tween the reader and the writer—for instance, with the help of a mutual exclusion
mechanism—to prevent unwelcome overlaps from ever happening. However, this
approach invalidates the asynchronism property and is hence unsuitable in this case.
Solutions of this kind, which satisfy the asynchronism property only with the help of
additional timing constraints external to the solution itself, are called conditionally
asynchronous in [113].

The two-buffer approach is similar to the previous one, and still conditionally
asynchronous, but allows for more relaxed timing constraints. It was called the swung
buffer method in [113] and is commonly referred to as double buffering nowadays.
As depicted in Figure 13.11, a shared index L identifies which of the two buffers
contains the latest data, that is, the most recent data that has been completely written
by the writer. The reader and the writer operate as follows:

476 Real-Time Systems Development with RTEMS and Multicore Processors

Writer
𝜏1

Reader

𝜏2

Shared cuffer
#2

Shared cuffer
#1

Index of the latest, fully written cuffer

Update still in progress

L

ReAd #2

ReAd #1

Erite #1 Erite #2

Eriter

ReAd/Erite
overlAp

ReAder
Coherent reAd

Erite #3

ReAd #2 stArts Before
write #2 finishes

ReAder

Incoherent
reAd

ReAd #2 finishes
After write #3 stArts

FIGURE 13.11 Incoherent read in double-buffer communication.

• The reader retrieves L immediately before starting an operation and per-

forms the whole operation reading from the buffer indicated by it, even if

the value of L changes during the operation itself.

• The writer consults L immediately before starting a write operation to iden-

tify the “other” buffer, that is, the buffer not referenced by L itself. The

writer fills the other buffer and, at the end of the write operation, updates L
so that it refers to it.

In other words, the writer alternates between the two buffers for writing and marks

a buffer as containing the latest data, by switching L to it, only after completing a

write operation. This ensures that the writer does not corrupt the buffer referenced

by L until new data have been completely written, and hence, solves the simple race

condition due to overlapping operations we identified in the one-buffer approach.

Referring back to Figure 13.11, if read #1 starts after write #1 has been completed,

it will read from the buffer last written by the writer (light gray in the figure), thus

gaining access to the latest data at the moment and fulfilling the freshness property.

Any new write operation, like write #2, which starts while read #1 is still in progress

does not corrupt the data being read by the reader, because the writer operates on

the other buffer (darker gray in the figure). The asynchronism property is implicitly

satisfied, too, because the algorithm just described does not introduce by itself any

form of timing dependency between tasks.

477 Multicore Concurrency: Issues and Solutions

Although this gives the reader more timing freedom with respect to the one-buffer
approach, it still does not address all the possible race conditions that may arise. The
worst case from the timing point of view happens when a read operation starts while
a write operation is in progress and partially overlaps with it, as it happens to read
#2 with respect to write #2 in the fgure.

Since write #2 has not fnished—and L has not yet been updated to refer to the new
data being written—read #2 still operates on the buffer written by write #1. When
write #2 eventually fnishes, the writer switches L to the dark gray buffer, which
does not directly affect the reader as we saw previously. However, if write operation
#3 starts before read #2 fnishes, it will write into the light gray buffer again, thus
corrupting the data being read.

Therefore, the solution just described fulflls the coherency property only if the
interval between the end of a write and the beginning of the next is guaranteed to be
longer than the time it takes to fully perform a read operation. Even though this is still
not completely satisfactory in general, the condition holds in a variety of situations
of practical interest, which makes the solution useful especially when combined with
methods that allow the lack of coherency to be detected at least, if not avoided.

A very simple detection method, which will also be introduced in a slightly differ-
ent form in Section 13.5.4, is to use an index L larger than strictly needed to identify
which buffer contains the latest data. More specifcally, the least-signifcant bit could
be used to identify the buffer, while the n most-signifcant bits could be reserved for
consistency checks.

Then, when the writer wants to switch L from one buffer to the other, it incre-
ments L instead of simply toggling its least-signifcant bit. The reader reads L before
starting a read operation (as it already did), and then again after fnishing it. It is easy
to see that the read operation may have retrieved corrupt data only if the two values
of L before and after the operation differ by more than one.

The detection method may actually lead to a false negative if there were so many
intervening write operations while the read operation was in progress that L wrapped
around completely. However, the probability of this unfortunate event may be made
negligible with respect to other causes of failure by making n suffciently big.

An obvious shortcoming of the double-buffer approach is that in some circum-
stances the writer is forced to choose between two undesirable outcomes when it
initiates a new write operation:

• It may reuse the buffer currently being read by the reader, thus sacrifcing
the coherency property. This is what happens in write #3 of Figure 13.11.

• Otherwise, it may reuse the same buffer as in the previous write operation,
thus overwriting the data it previously wrote and violating the freshness
property while the write is in progress.

Based on this reasoning, we might think that offering the writer a third option,
in the form of a third buffer to write into, should completely solve the problem.
However, pursuing this approach for a while will give us the opportunity to show
that intuition, based on sequential programming concepts, does not always work as

478 Real-Time Systems Development with RTEMS and Multicore Processors

Read #1

Write #1 Write #2

Writer

Writer
𝜏1

Reader

𝜏2

Shared buffer
#2

Shared buffer
#1

Index of the latest,
fully written buffer

Buffer being written
(by write #3)

Write #3

Reader
Coherent read

L

Shared buffer
#3

Buffer being read
(by read #1)

System state when
write #3 starts

R Index of the buffer
being read

FIGURE 13.12 Triple-buffer asynchronous communication.

expected when designing a lock-free or wait-free algorithms and leads to other, sub-

tler issues.

As shown in Figure 13.12, an apparently correct solution may be based upon:

• Three buffers, one that stores the latest fully written data, another that keeps

data being read, and the third to accommodate an in-progress write opera-

tion.

• A shared index L that identifies the buffer with the latest fully written data,

as before.

• An additional shared index R, which refers to the buffer currently being

read.

Together, L and R give the writer the means to identify the third buffer, which is

the buffer it can use for a new write operation.

To perform a write operation, the writer operates as follows:

• It reads L and R to determine which buffer it can write into, that is, the

buffer that is referenced by neither L nor R.

• It writes into the buffer.

• It updates L to refer to the buffer just written, to indicate to the reader where

the latest data now are.

Symmetrically, the reader:

• Sets R to the value of L, to indicate to the writer that it is about to start

reading from that buffer.

• It reads from the buffer.

479 Multicore Concurrency: Issues and Solutions

Read (using buffer #2)

Shared buffer
#2

Write #2 (using buffer #2)

Writer

Shared buffer
#1

New value of L

after write #1

Reader

Incoherent read

L

Shared buffer
#3

Buffer being read

R

L is still 2

L becomes 3

The reader sets R to 2 after

write #2 started

L=3, R=1 → Write

#2 uses buffer #2

Write #1 (using buffer #3)

FIGURE 13.13 Race condition in triple-buffer asynchronous communication.

Even if we assume that L and R consist of a single memory word and can individually
be read and written in an atomic way—as it is reasonable to do on most contempo-
rary processor architectures—this solution can still malfunction if an unfortunate
interleaving between read and write operations takes place. However, we can ascer-
tain the issue only if we do not stop at a too-high level of abstraction when looking
at the operations discussed previously, but go down to examine how the processor
really implements them.

A key point is to notice that the frst step to be performed by the reader, set R to the
value of L, cannot be performed atomically because it consists of a sequence of two
atomic memory operations, that is, the load of R into a processor register, followed
by the store of that register into L.

With this aspect in mind, it becomes clear that the sequence of steps illustrated in
Figure 13.13 may indeed occur when a read and two write operations overlap:

• The writer starts a write operation. For the sake of the example, let us as-
sume that L = 2 and R = 1, as shown in Figure 13.13, so the writer is going
to write into buffer #3.

• The reader starts a read operation, reads the value of L, and gets 2.
• Before the reader has the chance to update R and set it to 2, the writer

completes the write operation and sets L to 3.

480 Real-Time Systems Development with RTEMS and Multicore Processors

Shared buffer
#1

Shared buffer
#3

Shared buffer
#2

Shared buffer
#4

Index of the buffer to be

read, within each pair

Slot[2]

L

Index of the pair that

contains the latest,

fully written buffer

R

Index of the pair the

reader is reading

from

Buffer with the latest data

Buffer possibly being read from

Buffer[2][2]

FIGURE 13.14 Shared data in quadruple-buffer asynchronous communication.

• Then, the writer starts a second write operation, which fnds L = 3 and
R = 1. Therefore, this operation will write into buffer #2.

• The reader eventually sets R to 2 to indicate it is about to start reading from
that buffer.

At this point, both the reader and the writer continue concurrently, both using buffer
#2. The reader can therefore retrieve corrupt data that have been partially overwritten
by the writer.

The next step will be to show that adding a fourth shared buffer can solve this
issue and lead to a full solution of the problem. Although the discussion will be kept
at an informal level in this book, Reference [113] includes a full correctness proof.

As depicted in Figure 13.14, the four buffers are arranged in a matrix with two
rows and two columns, named Buffer, which gives rise to two logical pairs of buffers,
one on the left and one on the right in the fgure. Three additional, shared control
variables regulate how the reader and the writer use them. In particular:

• The one-bit index variable L has a similar meaning as in the triple-buffer
solution, but now indicates which pair, rather than which buffer, contains
the latest fully written buffer.

• Also the one-bit index variable R mostly keeps the meaning it had previ-
ously, and indicates from which pair the reader is possibly reading at the
moment.

• The array of two one-bit indexes Slot has one element for each pair. For
the pair referenced by L, it indicates which buffer in the pair contains the
latest data, and hence, should be read from. For the pair referenced by R, it
indicated which buffer the reader is possibly being reading from.

It is possible that L and R reference the same pair, when the reader is reading
from the pair that contains the latest fully written buffer. This does not lead to a

Shared data
d1. int L
d2. int R
d3. int Slot[2]
d4. data Buffer[2][2]

Read operation
r1. p = L
r2. R = p
r3. i = Slot[p]
r4. Read from Buffer[p][i]

Write operation
w1. p = 1 - R
w2. i = 1 - Slot[p]
w3. Write into Buffer[p][i]
w4. Slot[p] = i
w5. L = p

481 Multicore Concurrency: Issues and Solutions

FIGURE 13.15 Quadruple-buffer asynchronous communication (from [113]).

contradiction because, in this case, the Slot index for the pair has both the meanings
just described, while the Slot index for the other pair is unused and holds no specifc
meaning.

The reader and the writer perform their operations according to the pseudo-code
listed in Figure 13.15, which also summarizes the shared data presented so far at the
top. For simplicity, variables L, R, and Slot are integers although, as said previously,
a one-bit index would suffce. It is also assumed that the abstract data type data rep-
resents a buffer. Shared variables are capitalized, while local variables are lowercase.
In order to perform a write operation, the writer:

• Chooses the pair of buffers not currently used by the reader at the moment,
by consulting R and calculating 1 − R, then stores its index into local vari-
able p (step w1 in Figure 13.15).

• Locates the buffer not referenced by the Slot index of the pair with the same
technique, and stores its index into local variable i (step w2).

• Writes into the buffer (step w3).
• Indicates that the buffer it just used now contains the latest fully written

data, by setting the Slot index of the pair to the value of i and L to the
value of p (steps w4 and w5).

Symmetrically, the reader:

• Determines which pair contains the latest fully written data by consulting
L and declares it is about to start reading from that pair by setting R to the
value of L. The pair index is now in local variable p (non-atomic sequence
of steps r1 and r2 in Figure 13.15).

• Within that pair, uses the Slot index to locate the index i of the buffer it
must read from (step r3).

• Reads from the buffer (step r4).

482 Real-Time Systems Development with RTEMS and Multicore Processors

The way the reader and the writer operate on L and R is very similar to what they
did in the triple-buffer algorithm and may hence lead to the same race condition, due
to the non-atomicity of reader’s steps r1 and r2. As a consequence, it is possible that
the reader and writer use the same pair for a concurrent read and write operation.

However, the fact that L and R now work at the pair (rather than at the buffer) level
together with the use of the Slot index within the pair prevents them from clashing
on the same buffer. Namely, if multiple write operations occur while a read is in
progress:

• The frst write might use the same pair p as the read, but it will for sure
write into a different slot, because the read operation uses the Slot[p] index
of the pair, whereas the write uses 1 − Slot[p].

• The next writes will certainly use the other pair because the reader steered
R away from the pair it was going to use before it started reading data from
the buffer.

In summary, the algorithm just presented does not contain any conditional state-
ment or retry loop. Therefore, it implements a completely wait-free data transfer
between the writer and the reader, and also guarantees transfer coherency and fresh-
ness.

13.5.4 UNIVERSAL CONSTRUCTION OF LOCK-FREE OBJECTS

Ad-hoc techniques, such as the ones described in Sections 13.5.2 and 13.5.3, have
successfully been used as standalone solutions or as building blocks to realize more
complex lock-free objects. Although the algorithms we examined, especially the
fully asynchronous communication mechanism of Section 13.5.3, are applicable in
a reasonable large number of practical scenarios, they still do not solve the problem
in completely general terms and may be diffcult to understand and prove correct.
Even more importantly, they must be proved correct again, possibly from scratch,
whenever any aspect of the algorithms change.

Both issues may hinder the adoption of those methods for real-world applications
and go against consolidated software design concepts, like design patterns [49]. This
stimulated other researchers to look for a more general and practical methodology.
As summarized by Herlihy [56], the underlying goal is that “A practical methodol-
ogy should permit a programmer to design, say, a correct lock-free priority queue
without ending up with a publishable result.”

According to Herlihy’s proposal [56], an arbitrary lock-free object can be de-
signed in two steps:

1. First, the programmer designs and implements the object as a stylized, sequential
program with no explicit synchronization, following certain simple conventions.

2. Then, the sequential implementation is transformed into a lock-free or wait-free
implementation by surrounding its code with a general synchronization and mem-
ory management layer that is independent on the inner workings of the sequential
implementation.

483 Multicore Concurrency: Issues and Solutions

It can be proven that, if the sequential implementation is correct, the transformed
implementation is correct as well. Crucially, the proof still holds even if the sequen-
tial implementation changes radically. Therefore, the lock-free or wait-free transfor-
mation can be seen as a well-formed universal design pattern.

Besides the usual atomic read and write operations on shared variables already
mentioned for digit access in Section 13.5.2 Herlihy’s approach requires hardware
support for two additional operations:

• A load linked or load exclusive operation, which atomically reads a shared
variable and copies it into a local task variable.

• A store conditional operation, which must follow a load exclusive at the
same memory address. It stores back a new value into the shared variable,
but only if no other task has modifed the same variable in the meantime.

• Otherwise, store conditional does not do anything and, in particular, does
not modify the shared variable.

• In both cases store conditional returns a success/failure indication, so that
the task that executed it is made aware of its outcome.

• To provide room for an easier and more effcient implementation, store
conditional is permitted to fail, with a low probability, even if the variable
has not been modifed at all.

Even if these requirements may seem exotic at frst sight, most processors nowa-
days provide such instructions, or similar ones, due to their extreme usefulness. For
example, starting from version V6 of the ARM processor architecture [7], the fol-
lowing two instructions are available:

1. LDREX loads a register from memory. In addition, if the address belongs to a
shared memory region, it marks the physical address as exclusive access for the
executing core.

2. STREX performs a conditional store to memory. The store only occurs if the exe-
cuting core has exclusive access to the memory addressed.

Moreover, STREX puts into a destination register a status value that represents
its outcome. The value returned is 0 if the operation updated memory, or 1 if the
operation failed to update memory because the core did not have exclusive access
anymore. As said before, exclusive access is revoked when another core modifes the
same memory word.

Moreover, in Section 12.2.4 we also remarked that, in the more recent V8-A
architecture [14], even more sophisticated instructions exists—called LDAXR and
STLXR—which conveniently combine the semantics of LDREX and STREX with a
one-way barrier.

At the same time, the practical implementation of these instructions is still rea-
sonably straightforward and effcient when there is an underlying cache coherency
protocol like, for instance, MESI. The fne details are beyond the scope of this book
but, by intuition, it can be seen that:

484 Real-Time Systems Development with RTEMS and Multicore Processors

• If a core issues a load exclusive instruction on a cacheable memory location
shared with other cores, its contents will be cached and the corresponding
cache line will be in the exclusive (E) state.

• If other cores also issue a load exclusive instruction on a memory location
whose address hits the same cache line, the cache line will move to the
shared (S) state.

• Assuming that no cache lines have been evicted in the meantime, the frst
core that issues a store conditional instruction will fnd that the store hits a
cache line in either the E or the S state. Based on this information, it will
be able to conclude that no other cores have modifed the same location in
the meantime—or another location whose address has hit the same cache
line—so it will actually perform the store and succeed.

• As a consequence of the store, the MESI protocol will invalidate all the
cache lines corresponding to the same location in the other cores.

• At this point, the execution of a store conditional instruction on other cores
will result in a cache miss. From this, the cores will conclude that the same
location—or another location whose address has hit the same cache line—
has been modifed by another core and report that the store conditional
failed.

The fact that cache lines are wider than the memory words on which load exclu-
sive and store conditional operate makes store conditional fail for no good reason
with low probability. Moreover, it is usually necessary to reset the per-core logic that
couples a load exclusive with the subsequent store conditional, thus forcing store
conditional to fail, when switching a core from a task to another or when handling
an exception (including interrupts). On most architectures this is done automatically
in whole or in part, and can also be manually forced by means of a dedicated instruc-
tion, for instance, the CLREX instruction in the ARM architecture.

As we did previously, we defne a concurrent system as a collection of N tasks.
As usual, tasks communicate through shared objects and are sequential, that is, all
of the operations they invoke on the shared objects are performed in a well-known
fxed sequence, possibly with the help of barriers. Moreover we allow tasks to halt
at arbitrary points of their execution and exhibit arbitrary variations in speed.

Shared objects are typed. The type of an object defnes the set of its possible val-
ues, as well as the operations that can be carried out on it. Objects are assumed to
have a sequential specifcation that defnes how the object behaves when its opera-
tions are invoked sequentially by a single task.

As was done in Chapter 3, when dealing with a concurrent system it is necessary
to give a meaning to interleaved operation execution. According to the defnition
given in Reference [58], an object is linearizable if each operation on the object
appears to have taken place instantaneously at some point between the invocation of
the operation and its conclusion.

This property implies that tasks operating on a linearizable object appear to
be interleaved at the granularity of complete operations. Moreover, the order of

485 Multicore Concurrency: Issues and Solutions

New version of
the shared

object

3) Update the copy

2) Copy object into a

new block

Shared pointer to

current object version

Old version of
the shared

object

1) load exclusive

(LDAXR)

4) store conditional

(STLXR)

Task

FIGURE 13.16 Basic technique to transform a sequential object implementation into a lock-
free implementation.

non-overlapping operations is preserved. Linearizability is the basic correctness con-
dition of Herlihy’s concurrent objects.

Since the universal construction we are going to discuss relies on making a copy
of shared objects before operating on them, it is assumed that those objects are small
enough to be copied effciently. Other universal constructions have been proposed
for large objects, for instance Reference [4].

Moreover, it is understood that a sequential object occupies a fxed-size, contigu-
ous area of memory called a block. Any sequential operation invoked on an object
cannot have any side effect other than modifying the block occupied by the object
itself. Sequential operations must also be total, that is, they must have a well-defned
behavior for any legal or consistent state of the object they are invoked on. For ex-
ample, a dequeue operation invoked on an empty queue is allowed to return an error
indication but is not allowed to trigger an exception because it tried to execute an
illegal instruction or follow an invalid pointer.

Figure 13.16 depicts the basic technique to transform a sequential implementation
into a lock-free implementation. All tasks share a pointer that references the current
version of the shared object and can be manipulated by means of the load linked
and store conditional instructions. Each task operates on the object by means of the
following steps:

1. It reads the pointer using load exclusive.
2. It copies the version it references into another block.
3. It performs the sequential operation on the copy.
4. It tries to move the pointer from the old version to the new by means of a store

conditional.

486 Real-Time Systems Development with RTEMS and Multicore Processors

If the store at step 4 fails, it means that another task disturbed the shared object
somewhere between the load exclusive and the store conditional itself, that is, be-
tween steps 1 and 4. In this particular scenario—barring the sporadic spontaneous
failure of store conditional mentioned previously—this also implies that some other
tasks successfully updated the shared object in the meantime. Therefore, the task
must retry the operation from the beginning. Each iteration of these steps is some-
times called an attempt.

The linearizability of the concurrent implementation is straightforward to prove.
From the point of view of the other tasks, a certain operation appears to happen
instantaneously, exactly when the corresponding store conditional succeeds, because
the underlying memory system guarantees that the pointer update takes place atom-
ically. Moreover, the order in which operations appear to happen is total and well-
defned, and is the same as the order of the fnal, successful execution of store con-
ditional operations.

If store conditional cannot fail spontaneously, even if all the N tasks in the system
try to perform an operation on the shared object concurrently, at least one out of every
N attempts to execute store conditional must succeed, the one that is performed frst.
Hence, the implementation is indeed lock-free according to the defnition given in
Section 13.5.1.

However, we saw that in cache-based implementations, store conditional may fail,
with low probability, even if the shared pointer has not been touched. The probabil-
ity of this event, which does not affect the correctness of the method just described
but is detrimental to its practical effciency because it leads to an unnecessary retry,
depends on the length of the time window between the load exclusive and the corre-
sponding store conditional.

One way of narrowing the window by leaving out the object copy operation is to
perform a regular load instead of a load exclusive in the frst step and then read the
pointer again, this time with a load exclusive, immediately before the store condi-
tional. The task then retries the operation if the pointer has changed between the frst
load and the second. Otherwise, it proceeds with the store conditional as before.

An important issue still to be discussed is memory management, that is, how the
memory blocks that hold distinct object versions should be allocated to individual
tasks and released as appropriate. From the practical point of view, it is also important
to keep in mind that only a fnite number of such blocks are available, and they must
therefore be reused over and over again.

Apparently, if we refer back to Figure 13.16, N + 1 blocks of memory should
suffce, provided they are used according to the following straightforward rules:

• At each instant, each of the N tasks owns one block of memory.
• The N +1-th block holds the current version of the object and is not owned

by any tasks.
• In step 2 of the algorithm, the task copies the object’s current version into

its own block.

487 Multicore Concurrency: Issues and Solutions

Shared pointer to
current object version

1) load exclusive
(LDAXR)

Task 𝜏1 Task 𝜏2

Memory block
#2

1) load exclusive
(LDAXR)

2) 𝜏2 Copies the

object into its
own block

Memory block
#1

3) 𝜏2 updates the copy

Memory block
#3

Task 𝜏1 Task 𝜏2

4) store conditional
(STLXR)

Stale pointer in 𝜏1 after 𝜏2,s update

Memory block
#1

Memory block
#2

Memory block
#3

Block assigned to 𝜏1

Block assigned to 𝜏2

Block with the current version

FIGURE 13.17 A possible race condition in object access.

• When a task performs a successful store conditional, it becomes the owner
of the block that held the object’s previous version and releases the block it
owned previously because it now contains the current object version.

However, this approach is incorrect because it may lead to a subtle race condition
in object access. Let us assume, as shown in Figure 13.17, that there are two tasks

488 Real-Time Systems Development with RTEMS and Multicore Processors

in the system, τ1 and τ2, and three blocks of memory, #1 to #3. In the fgure, the
allocation of each block is indicated by the block’s color: dark gray means that the
block holds the current version of the shared object, light gray and white indicate
that the block belongs to τ1 and τ2, respectively.

Accordingly, at the beginning block #1 contains the current version of the shared
object, block #2 belongs to τ1, and block #3 belongs to τ2. In this scenario, the
following interleaving may take place:

• Both τ1 and τ2 retrieve a pointer to the current object version, held in block
#1, as shown in the upper half of Figure 13.17.

• One of the task, τ2 in the example, continues. It copies block #1 into its
own block, block #3, and updates the object.

• The store conditional of τ2 succeeds. The new version of the object is now
stored in block #3, and τ2 is now the owner of block #1.

• However, as depicted in the lower half of the fgure, τ1 still holds a stale
pointer to block #1, which contains what is now an obsolete version of the
object.

If τ2 begins a new operation at this point, it will retrieve a pointer to the current
object version, now in block #3, will copy its contents into its own block #1, and then
operate on it. Since τ1 is still engaged in its operation, and the next action it is due to
perform is to copy the object from block #1 to block #2, the two copies performed
by τ1 and τ2 may overlap.

In other words, as shown in Figure 13.18, τ1 may read from block #1 while τ2
is overwriting it with the contents of block #3, and then updating the object it con-
tains. As a result, τ1’s copy of the shared object into block #2 might not represent a
consistent state of the object itself.

This race condition is subtle because it does not harm the consistency of the shared
object itself. Indeed, when τ1 will eventually performs its store conditional, this op-
eration will certainly fail because τ2’s frst store conditional preceded it. As a conse-
quence, τ1 will carry out a new update attempt.

Nevertheless, it still poses signifcant issues from the software engineering point
of view. Although it is relatively easy to ensure that any operation invoked on a con-
sistent object will not do anything nasty (execution of an illegal instruction, division
by zero, and so on), this property may be extremely diffcult to guarantee in practice
when the operation is invoked on an arbitrary bit pattern, like the one τ1 may be
confronted with.

The issue can be addressed by inserting a consistency check between steps 2 and
3 of the algorithm, that is, between the copy and the execution of the sequential
operation. If the consistency check fails, the copy might be inconsistent and the task
must retry the operation from step 1, without acting on the copy in any way. On
some architectures, the consistency check is assisted by hardware and is built upon a
validate instruction. This instruction works like store conditional and checks whether
a variable previously read with load exclusive has been modifed or not, but does not
store any new value into it.

489 Multicore Concurrency: Issues and Solutions

Memory block
#3

2) 𝜏2 Copies the

object into its
own block

Block assigned to 𝜏1

Block assigned to 𝜏2

Block with the current version

2) 𝜏1 Copies the

object into its
own block

Task 𝜏2Task 𝜏1

1) load exclusive
(LDAXR)

3) 𝜏1 updates

the inconsistent
copy

Memory block
#2

3) 𝜏2 updates the copy

Memory block
#1

FIGURE 13.18 A task may operate on an inconsistent copy of the object.

If the underlying architecture does not provide this kind of support, like the
ARM V6 processor architecture [7], a software-based consistency check can be used
as a replacement. In this case, two counters, C0 and C1, complement each object ver­

sion. It is usually assumed that counters can be read and written atomically, although
in Section 13.5.2 we saw that techniques to ensure consistent readings of, and up­

dates to, multi-word counters do exist [78]. Both counters start from the same value
and are used according to the following rules:

• Before starting to modify an object, a task increments C0. After finishing,
it also increments C1.

• A task reads C1 before starting to copy an object and reads C0 after finishing
the copy, respectively.

• The consistency check consists of comparing these values: if they match,
the copied object is definitely consistent. Otherwise, it might be inconsis­

tent and must be discarded as described previously.

In [56], both counters are also assumed to be unbounded—that is, they never
overflow or wrap around—but for practical purposes it is sufficient that they are large
enough to make the probability of false matches negligible. Since the consistency
check may succeed incorrectly only when a counter cycles all the way around, this
probability can be made arbitrarily small by enlarging the counters.

490 Real-Time Systems Development with RTEMS and Multicore Processors

1. old = load_exclusive(Q)
2. N->C0 = N->C1+1
3. O1 = old->C1
4. Copy Q->obj into N->obj
5. O0 = old->C0
6. If O0 = O1 then retry from step 1
7. Perform sequential operation on N->obj
8. N->C1++
9. If store_conditional(Q, N) fails then retry from step 1
10. N = old

6

FIGURE 13.19 Universal construction of a lock-free object (from [56]).

As an example, 64-bit unsigned integer counters may give a false match only
when they are incremented 264 ' 1019 times by other tasks while a certain task is
performing the copy. The probability of such an occurrence is almost certainly much
lower than other equally disruptive events, for instance, a hardware failure or a mem-
ory error.

We can now discuss the full algorithm to build a lock-free object from a sequential
one in a universal way proposed in Reference [56], shown in Figure 13.19. Although
we will keep the discussion at an informal level here, Reference [56] also formally
proved its correctness. In the listing:

• Q is a shared variable that points to the current version of the shared object
and corresponds to the pointer at the top left of Figures 13.16–13.18.

• N is a per-task local variable that points to the block owned by the task
according to the memory management scheme described previously.

• Shared objects are assumed to be structures containing three felds: the obj
feld holds the object contents, while C0 and C1 are the two counters used
for consistency checks.

• The obj feld does not incorporate the counters. So, when the obj feld is
copied from one structure to another, the counters of the destination struc-
ture are not overwritten and retain their previous value.

• It is assumed that the code includes appropriate barriers to ensure that mem-
ory operations are performed in program order when necessary, although
they are not shown for clarity.

The algorithm proceeds as follows:

• It starts by getting a local pointer, called old, to the current object version,
using a load exclusive operation (step 1 of Figure 13.19). This corresponds
to step 1 of the abstract algorithm described earlier in this section.

• The block owned by the executing process, pointed by N, is then marked
as invalid. This is done by incrementing its C0 counter using C1 as a ref-
erence. This step is very important because, as discussed previously, other
processes may still hold stale pointers to it (step 2).

491 Multicore Concurrency: Issues and Solutions

• The counters associated to the object version pointed by old are copied
into local variables before and after copying its contents into the block
pointed by N (steps 3–5).

• After the copy, the values obtained for the two counters are compared. If
they do not match, another process must have worked on the object in the
meantime and the whole operation must be retried (step 6).

• If the consistency check is successful, then the block pointed by N contains
a consistent copy of the shared object, and the executing process can per-
form the intended operation on it (step 7). This step is not detailed in the
listing because it only depends on the sequential object implementation,
and not on the lock-free wrapper.

• After fnishing the update, the object version held in the block pointed by
N is marked as consistent by incrementing its C1 counter (step 8). The in-
crement brings C1 to the same value as C0, which was incremented in step
2.

• It is now time to publish the updated object by performing a store condi-
tional of the local pointer N into the shared object pointer Q (step 9). The
conditional store will fail if Q was modifed by some other process since
it was loaded by the executing process in step 1. In this case, the whole
operation must be retried.

• If the conditional store was successful, the executing process lost owner-
ship of the block that contains the new object version, but can claim owner-
ship of the block that contains the now-outdated version. The local pointer
N is therefore updated accordingly (step 10).

It is worth noting that, although here we only discussed the construction of a lock-
free object starting from a sequential object, a transformation that makes the object
wait-free is also possible, for instance, by means of a general technique known as
operation combining presented in Reference [56].

13.6 SPINLOCKS AND INTERRUPT HANDLING SYNCHRONIZATION
Section 12.3.3 highlighted the need of switching from implicit to explicit mutual
exclusion between tasks and interrupt handlers when using a multicore processor.
RTEMS provides two synchronization devices specifcally tailored to this purpose,
one accessible through the Classic Interrupt Manager API, the other by means of the
POSIX API.

Both are spinlocks, that is, synchronization devices in which tasks are blocked by
trapping them in an active spin loop rather than moving them to the blocked state of
the task state diagram. Their implementation, not covered in this book, often relies
on lock-free and wait-free synchronization. Being very effcient, these devices are
often used within operating system kernels, RTEMS included, to protect critical data
structures and as building blocks of more complex and user-friendly synchronization
devices. For instance, spinlocks can be used to ensure that semaphore primitives are
atomic in a multicore system.

492 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 13.3
RTEMS Interrupt Manager API, Spinlocks

Function Purpose
lock_initialize (1) Initialize an interrupt service routine (ISR) lock
lock_destroy Destroy a lock
lock_acquire Acquire an ISR lock from a task
lock_release Release an ISR lock from a task
lock_acquire_isr Acquire an ISR lock from an ISR
lock_release_isr Release an ISR lock from an ISR

(1) All Interrupt Manager functions start with the rtems_interrupt_ prefx.

The portion of Classic Interrupt Manager API that applies to single-core systems
has been presented in Section 5.7. The same manager also makes available the di-
rectives listed in Table 13.3. They implement an effcient, low-overhead kind of lock
called interrupt lock, built as a thin API layer on top of the ticket locks, frst pro-
posed in [87], which the RTEMS core uses internally for low-level synchronization.
Interrupt locks must be allocated by the user and initialized before use. The directive:

void rtems_interrupt_lock_initialize(
rtems_interrupt_lock *lock,
const char *name

);

initializes the interrupt lock referenced by lock and gives it a symbolic name, used
for debugging purposes. The directive does not return any status code because it al-
ways succeeds. However, as for many other initialization functions that operate on
synchronization devices, users must ensure that locks are initialized sequentially, that
is, multiple concurrent calls to rtems_interrupt_lock_initialize referenc-
ing the same lock do not occur, because this would lead to unpredictable results. In
addition, since the string pointed by name could be referenced at any time during the
lifetime of the lock, users must guarantee that it will remain valid throughout it.

The directive:

void rtems_interrupt_lock_destroy(
rtems_interrupt_lock *lock,

);

destroys the lock referenced by lock. As for lock initialization, concurrent lock
destruction is unsupported and leads to unpredictable results.

On the tasks side, an interrupt lock referenced by lock shall be acquired and
released by means of the directives:

493 Multicore Concurrency: Issues and Solutions

void rtems_interrupt_lock_acquire(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

);

void rtems_interrupt_lock_release(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

);

Besides a pointer to the lock, both directives take as second argument a pointer
lock_context to another user-allocated data structure that represents the lock con-
text. A separate lock context must be provided for each pair of acquire/release direc-
tive calls that can possibly be executed concurrently. Lock contexts do not need to
be shared and can be stored on the stack in automatic variables.

Invoking rtems_interrupt_lock_acquire disables interrupts on the call-
ing core and acquires the lock referenced by lock. Any wait that could
be necessary to acquire the lock is implemented by means of a busy loop
and does not lead to the preemption of the calling task. Symmetrically,
rtems_interrupt_lock_release releases the lock and restores interrupts as
they were when the matching rtems_interrupt_lock_acquire was called.
The lock context passed to rtems_interrupt_lock_release must be the same
given to the matching rtems_interrupt_lock_acquire.

Interrupt locks do not support recursive lock acquisition. Any attempt to acquire
a lock within the critical region delimited by an acquire/release pair of the same lock
results in an infnite busy loop with interrupts disabled on the calling core.

These two directives can also be called from an interrupt handler and work as
intended, with the side effect that all mask-able interrupts—including the ones with a
higher priority than the interrupt handler being executed—will be disabled within the
critical region they delimit. When this is undesirable, specifc variants are available
for use from within an interrupt handler, which only acquire/release the lock without
changing the interrupt level:

void rtems_interrupt_lock_acquire_isr(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

);

void rtems_interrupt_lock_release_isr(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

);

When using these variants, it is especially important to consider that the interrupt
handler might still be preempted while within the critical region by a higher-priority
interrupt handler, if the underlying architecture supports interrupt nesting and the

494 Real-Time Systems Development with RTEMS and Multicore Processors

TABLE 13.4
RTEMS Interrupt Manager Spinlocks on a Single-Core System

Function Behavior on a single-core system
lock_initialize Do nothing
lock_destroy Do nothing
lock_acquire Disable all mask-able interrupts
lock_release Restore interrupt level as it was before lock_acquire
lock_acquire_isr Do nothing
lock_release_isr Do nothing

interrupt request is accepted by the same core. If this happens and the nested handler
also tries to acquire the same interrupt lock, results are unpredictable.

An interesting and useful aspect of these primitives is that, on a single-core sys-
tem, they automatically assume the behavior listed in Table 13.4. Accordingly, the
data types rtems_interrupt_lock and rtems_interrupt_lock_context
are defned differently, and become smaller, on these systems. This enables the same
code to also compile and run on a single-core system and, at the same time, keeps
lock semantics unchanged.

POSIX spinlocks represent an alternative to the Interrupt Manager spin-
locks just discussed. A POSIX spinlock is a user-allocated object of type
pthread_spinlock_t used with the functions listed in Table 13.5. A compari-
son between Tables 13.3 and 13.5 reveals that the interfaces in the two cases are very
similar. In particular, the function:

int pthread_spin_init(
pthread_spinlock_t *lock,
int pshared

);

initializes the POSIX spinlock referenced by lock. The second argument pshared,
if non-zero, allows the spinlock to be shared among multiple processes. Unlike other
POSIX objects, spinlocks do not have a static initializer and must therefore always be
initialized at runtime, by means of this function. The pshared argument is ignored
in RTEMS, since it implements multiple concurrent threads within a POSIX single-
user, single-process (SUSP) execution environment.

Unlike its Interrupt Manager counterpart, this function returns a status code to the
caller, which is zero upon successful completion. Otherwise, it shall return one of
the following error numbers:

EAGAIN There are insuffcient resources, other than memory, to initialize the lock.
ENOMEM There is not enough memory to initialize the lock.

Moreover, the standard recommends that the function detects and reports one ad-
ditional error condition:

495 Multicore Concurrency: Issues and Solutions

TABLE 13.5
RTEMS POSIX Spinlocks

Function
pthread_spin_init
pthread_spin_destroy
pthread_spin_lock
pthread_spin_trylock
pthread_spin_unlock

Purpose
Initialize a spinlock
Destroy a spinlock
Lock (acquire) a spinlock
Lock a spinlock without waiting if it is already locked
Unlock (release) a spinlock

EBUSY The lock referenced by lock is already initialized.

In the case of RTEMS, neither EAGAIN nor ENOMEM may occur, because the
spinlock is implemented as a completely self-contained object and no additional re-
sources besides the memory allocated to the pthread_spinlock_t object are
needed to initialize and use it. The error number EBUSY may not occur either, be-
cause at the time of this writing RTEMS does not check for the corresponding, op-
tional error condition. The function:

int pthread_spin_destroy(
pthread_spinlock_t *lock

);

destroys the spinlock referenced by lock. The function returns to the caller a status
code that refects the outcome of the operation, zero indicates successful completion.
In general, destroying a locked spinlock or a spinlock that has not been initialized
leads to undefned behavior, but the standard recommends to check for this condition
and return one of the following error codes instead:

EBUSY The lock referenced by lock is locked.
EINVAL The lock referenced by lock is not initialized.

At the time of this writing, RTEMS does not perform these optional checks.
Therefore, pthread_spin_destroy always returns zero.

Spinlocks are acquired and released—locked and unlocked in POSIX terms—by
means of the following functions:

int pthread_spin_lock(
pthread_spinlock_t *lock

);

int pthread_spin_unlock(
pthread_spinlock_t *lock

);

496 Real-Time Systems Development with RTEMS and Multicore Processors

Both function take a pointer to an initialized lock as argument and return to the
caller a status code, which is zero if they completed successfully. They can be called
from both a task and an interrupt context. Passing an uninitialized lock to either
function or attempting a recursive lock leads to undefned behavior. Optionally, im-
plementation may check for these conditions and return one of the status codes listed
below. Currently RTEMS does not perform these checks and both functions always
return zero.

EINVAL The lock referenced by lock is not initialized.
EDEADLK The lock referenced by lock is already locked by the caller or, more

generally, locking the lock would lead to a deadlock.

It is worth noting that, although tasks are not allowed to acquire the same spin-
lock or interrupt lock recursively, they may still acquire multiple, distinct locks, giv-
ing rise to nested critical regions. In this case, programmers must ensure that this
behavior does not lead to a deadlock, by means of one of the techniques described
in Section 8.2. Considering that in most practical cases the use of these locks aims
at maximum execution effciency, deadlock prevention strategies that involve zero
runtime overhead (like total lock order) are especially suitable to this purpose.

The POSIX standard also defnes a non-blocking variant of pthread_spin_lock,
which immediately returns to the caller with an EBUSY indication if the spinlock ref-
erenced by lock is already locked:

int pthread_spin_trylock(
pthread_spinlock_t *lock

);

In the current RTEMS implementation, this function is defned as an alias of
pthread_spin_lock. It always succeeds and returns zero to the caller.

Like interrupt locks do, POSIX spinlocks also change their behavior automatically
on single-core systems. In this case, they implement mutual exclusion by completely
disabling mask-able interrupts.

13.7 SUMMARY
This chapter briefy described several scheduling algorithms and synchronization
technique suitable for symmetric multiprocessor and multicore systems. In partic-
ular, after giving a general outline of scheduling policies and algorithms in Sec-
tion 13.1, it described the multicore scheduling algorithms available in RTEMS and
how they are confgured in Sections 13.2 and 13.3, respectively.

Section 13.4 discussed the MrsP and OMIP semaphore protocols, both available
in RTEMS. These protocols, especially the ones that support nested, fne-grained
locking [50, 123], are still an active area of research even though some proposals,
like the RNLP protocol [124], achieved signifcant theoretical and practical results.
Interested reader may refer to the recent survey by Brandenburg [24] for comprehen-
sive information about the evolution and current status of these protocols.

497 Multicore Concurrency: Issues and Solutions

Then, Section 13.5 provided some information on lock-free and wait-free syn-
chronization, together with several simple example to outline how it works in prac-
tice and the principle it is based upon. At the end of the chapter, Section 13.6 gave an
introduction to spinlocks, a very effcient and specialized mutual exclusion lock used
to synchronize tasks and interrupt handlers in multicore systems, and as a building
block of more complex and sophisticated synchronization devices.

http://taylorandfrancis.com

References
1. L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time sys-

tems. In Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS), pp. 4–13,
December 1998.

2. Aeronautical Radio, Inc. Avionics Application Software Standard Interface: ARINC
Specifcation 653, 2010.

3. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Pearson Education Ltd., Harlow, England, 2nd edition,
September 2006.

4. James H. Anderson and Mark Moir. Universal constructions for large objects. IEEE
Transactions on Parallel and Distributed Systems, 10(12):1317–1332, 1999.

5. James H. Anderson and Srikanth Ramamurthy. A framework for implementing objects
and scheduling tasks in lock-free real-time systems. In Proc. 17th IEEE Real-Time
Systems Symposium, pp. 94–105, December 1996.

6. James H. Anderson, Srikanth Ramamurthy, and Kevin Jeffay. Real-time computing with
lock-free shared objects. In Proc. 16th IEEE Real-Time Systems Symposium, pp. 28–37,
December 1995.

7. ARM Ltd. ARM Architecture Reference Manual, July 2005. DDI 0100I.
8. ARM Ltd. ARMv6-M Architecture Reference Manual, September 2010. DDI 0419C.
9. ARM Ltd. ARMv7-M Architecture Reference Manual, February 2010. DDI 0403D.

10. ARM Ltd. Cortex-M4(F) Lazy Stacking and Context Switching — Application Note 298,
March 2012. DAI 0298A.

11. ARM Ltd. ARM² Cortex²-A Series — Programmer’s Guide for ARMv8-A, March
2015. DEN 0024A.

12. ARM Ltd. Procedure Call Standard for the ARM² Architecture, November 2015. IHI
0042F.

13. ARM Ltd. ARMv8-A Memory Systems, February 2017. 100941_0100_en.
14. ARM Ltd. ARM Architecture Reference Manual — ARMv8, for ARMv8-A architecture

profle, July 2019. DDI 0487E.a.
15. N.C. Audsley. On priority assignment in fxed priority scheduling. Information Pro-

cessing Letters, 79(1):39–44, 2001.
16. Neil C. Audsley, Alan Burns, Mike Richardson, and Andy J. Wellings. Hard real-time

scheduling: The deadline monotonic approach. In Proc. 8th IEEE Workshop on Real-
Time Operating Systems and Software, pp. 127–132, 1991.

17. Neil C. Audsley, Alan Burns, and Andy J. Wellings. Deadline monotonic scheduling
theory and application. Control Engineering Practice, 1(1):71–78, 1993.

18. Theodore P. Baker and Alan Shaw. The cyclic executive model and Ada. In Proc. IEEE
Real-Time Systems Symposium, pp. 120–129, December 1988.

19. J. H. Baldwin. Locking in the multithreaded FreeBSD kernel. In BSDC’02: Proceedings
of the BSD Conference 2002, Berkeley, CA, 2002. USENIX Association.

20. E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic analysis: the hyperbolic
bound. IEEE Transactions on Computers, 52(7):933–942, July 2003.

21. G. Blake, R. G. Dreslinski, and T. Mudge. A survey of multicore processors. IEEE
Signal Processing Magazine, 26(6):26–37, November 2009.

499

500 References

22. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Proto-
col (RSVP) – Version 1 Functional Specifcation, RFC 2205. September 1997.

23. B. B. Brandenburg. A fully preemptive multiprocessor semaphore protocol for latency-
sensitive real-time applications. In Proceedings of the 25th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 292–302, July 2013.

24. Bjorn ¨ B. Brandenburg. Multiprocessor real-time locking protocols: A systematic review,
September 2019. arXiv preprint number 1909.09600.

25. P. Brinch Hansen. Structured multiprogramming. Communications of the ACM, 15(7):
574–578, 1972.

26. P. Brinch Hansen. Operating System Principles. Prentice-Hall, Englewood Cliffs, NJ,
1973.

27. P. Brinch Hansen, editor. The Origin of Concurrent Programming: from Semaphores to
Remote Procedure Calls. Springer-Verlag, New York, 2002.

28. A. Burns and A. J. Wellings. A schedulability compatible multiprocessor resource shar-
ing protocol – MrsP. In Proceedings of the 25th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 282–291, July 2013.

29. Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages. Pear-
son Education, Harlow, England, 3rd edition, 2001.

30. G. Buttazzo and G. Lipari. Ptask: An educational C library for programming real-time
systems on Linux. In Proc. 18th Conference on Emerging Technologies Factory Au-
tomation (ETFA), pp. 1–8, September 2013.

31. Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Predictable Scheduling Al-
gorithms and Applications. Springer-Verlag, Santa Clara, CA, 2nd edition, 2005.

32. Brad Cain, Steve Deering, Isidor Kouvelas, Bill Fenner, and Ajit S. Thyagarajan. Inter-
net Group Management Protocol, Version 3, RFC 3376. October 2002.

33. Steve Chamberlain and Cygnus Support. Libbfd — The Binary File Descriptor Library.
Free Software Foundation, Inc., 2008.

34. Steve Chamberlain and Ian Lance Taylor. The GNU linker ld (GNU binutils) Version
2.20. Free Software Foundation, Inc., 2009.

35. Kuan-Hsun Chen, Georg von der Bruggen, ¨ and Jian-Jia Chen. Overrun handling for
mixed-criticality support in RTEMS. In Proc. Workshop on Mixed-Criticality Systems
(WCS), Porto, Portugal, November 2016.

36. Ivan Cibrario Bertolotti and Gabriele Manduchi. Real-Time Embedded Systems: Open-
Source Operating Systems Perspective. CRC Press, Taylor & Francis Group, Boca Ra-
ton, FL, 1st edition, January 2012.

37. E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Computing
Surveys, 3(2):67–78, 1971.

38. P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and
“writers”. Communications of the ACM, 14(10):667–668, October 1971.

39. Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiproces-
sor systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011.

40. Raymond Devillers and Joel ¨ Goossens. Liu and Layland’s schedulability test revisited.
Information Processing Letters, 73(5-6):157–161, 2000.

41. Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations
Research, 26(1):127–140, February 1978.

42. Edsger W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123,
Eindhoven University of Technology, 1965. Published as [44].

References 501

43. Edsger W. Dijkstra. The multiprogramming system for the EL X8 THE. Technical
Report EWD-126, Eindhoven University of Technology, June 1965.

44. Edsger W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages: NATO Advanced Study Institute, pp. 43–112. Academic Press, Villard
de Lans, France, 1968.

45. Edsger W. Dijkstra. The structure of the “THE”-multiprogramming system. Communi-
cations of the ACM, 11(5):341–346, 1968.

46. Marko Doko and Viktor Vafeiadis. A program logic for C11 memory fences. In Bar-
bara Jobstmann and K. Rustan M. Leino, editors, Proc. 17th International Conference
on Verifcation, Model Checking, and Abstract Interpretation (VMCAI), pp. 413–430,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

47. Free Software Foundation, Inc. GNU Make, 2014. Available online, at http://www.
gnu.org/software/make/.

48. Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lums-
daine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, concept, and design of a next generation MPI implementation. In Pro-
ceedings of the 11th European PVM/MPI Users’ Group Meeting, pp. 97–104, Budapest,
Hungary, September 2004.

49. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

50. Jorge Garrido, Shuai Zhao, Alan Burns, and Andy Wellings. Supporting nested re-
sources in MrsP. In Johann Blieberger and Markus Bader, editors, Reliable Software
Technologies – Ada-Europe 2017, pp. 73–86, Cham, 2017. Springer International Pub-
lishing.

51. Charles M. Geschke, James H. Morris, Jr., and Edwin H. Satterthwaite. Early experience
with mesa. Communications of the ACM ACM, 20(8):540–553, August 1977.

52. M. D. Godfrey and D. F. Hendry. The computer as von Neumann planned it. IEEE
Annals of the History of Computing, 15(1):11–21, 1993.

53. L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Pro-
ceedings of the 19th Annual Symposium on Foundations of Computer Science (SFCS),
pp. 8–21, Oct 1978.

54. A. N. Habermann. Prevention of system deadlocks. Communications of the ACM,
12(7):373–377, 1969.

55. J. W. Havender. Avoiding deadlock in multitasking systems. IBM Systems Journal,
7(2):74–84, 1968.

56. Maurice P. Herlihy. A methodology for implementing highly concurrent data objects.
ACM Trans. on Programming Languages and Systems, 15(5):745–770, November 1993.

57. Maurice P. Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised
Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

58. Maurice P. Herlihy and Jeannette M. Wing. Axioms for concurrent objects. In Proc.
14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 13–26, New York, 1987.

59. C. A. R. Hoare. Towards a theory of parallel programming. In Proc. International
Seminar on Operating System Techniques, pp. 61–71, 1971. Reprinted in [27].

60. C. A. R. Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549–557, 1974.

http://www.gnu.org
http://www.gnu.org

502 References

61. Richard C. Holt. Some deadlock properties of computer systems. ACM Computing
Surveys, 4(3):179–196, 1972.

62. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Pearson
Education, Boston, MA, 2003.

63. IEC. Industrial Communication Networks—Fieldbus specifcations—Part 3-3: Data-
Link Layer Service Defnition—Part 4-3: Data-link layer protocol specifcation—Type 3
elements, December 2007. Ed 1.0, IEC 61158-3/4-3.

64. IEEE Std 1003.13™-2003, IEEE Standard for Information Technology—Standardized
Application Environment Profle (AEP)—POSIX² Realtime and Embedded Application
Support. IEEE, 2003.

65. IEEE Std 1003.1™-2008, Standard for Information Technology—Portable Operating
System Interface (POSIX²) Base Specifcations, Issue 7. IEEE and The Open Group,
2008.

66. Industrial Communication Networks—Fieldbus specifcations—Part 3-12: Data-Link
Layer Service Defnition—Part 4-12: Data-link layer protocol specifcation—Type 12
elements. IEC, December 2007. Ed 1.0, IEC 61158-3/4-12.

67. Intel Corp. Intel² 64 and IA-32 Architectures Software Developer’s Manual, 2007.
68. International Standard ISO/IEC/IEEE 9945, Information Technology—Portable Oper-

ating System Interface (POSIX²) Base Specifcations, Issue 7. IEEE and The Open
Group, 2009.

69. International Organization for Standardization and International Electrotechnical Com-
mission. ISO/IEC 9899, Programming Languages — C, 1st edition, December 1990.

70. International Organization for Standardization and International Electrotechnical Com-
mission. ISO/IEC 9899, Programming Languages — C, 2nd edition, December 1999.

71. International Organization for Standardization and International Electrotechnical Com-
mission. ISO/IEC 9899, Programming Languages — C, 3rd edition, December 2011.

72. ISO 11898-1—Road vehicles—Controller area network (CAN)—Part 1: Data link layer
and physical signalling. International Organization for Standardization, 2003.

73. ISO 17356-1 — Road vehicles — Open interface for embedded automotive
applications—Part 1: General structure and terms, defnitions and abbreviated terms.
International Organization for Standardization, January 2005.

74. Max Khiszinsky. CDS: Concurrent Data Structures library. Available online, at http:
//libcds.sourceforge.net/.

75. Marc Kleine-Budde. SocketCAN — the offcial CAN API of the Linux kernel. In Proc.
Intl. CAN Conference (iCC), pp. 5-17–5-22, March 2012.

76. Sambasiva Rao Kosaraju. Limitations of Dijkstra’s semaphore primitives and Petri nets.
Operating Systems Review, 7(4):122–126, January 1973.

77. Karthik Lakshmanan and Ragunathan Rajkumar. Scheduling self-suspending real-time
tasks with rate-monotonic priorities. In Proc. 16th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pp. 3–12, April 2010.

78. Leslie Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806–811, November 1977.

79. Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Transactions on Computers, 9:690–691, September 1979.

80. Leslie Lamport. The mutual exclusion problem: part I—a theory of interprocess com-
munication. Journal of the ACM, 33(2):313–326, 1986.

81. Leslie Lamport. The mutual exclusion problem: part II—statement and solutions. Jour-
nal of the ACM, 33(2):327–348, 1986.

http://libcds.sourceforge.net
http://libcds.sourceforge.net

References 503

82. J. Y.-T. Leung and J. Whitehead. On the complexity of fxed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, 2(4):237–250, 1982.

83. Chung L. Liu. Scheduling algorithms for multiprocessors in a hard real-time environ-
ment. In JPL Space Programs Summary 37-60, volume 2. Jet Propulsion Laboratory
(JPL), November 1969.

84. Chung L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

85. Jane W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ, 2000.
86. Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman. The

Design and Implementation of the 4.4BSD Operating System. Addison-Wesley, Reading,
MA, 1996.

87. John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, Febru-
ary 1991.

88. Motorola Microcomputer Division and Software Components Group. Real Time Exec-
utive Interface Defnition, January 1988. Draft 2.1.

89. Bryon Moyer. Real World Multicore Embedded Systems. Newnes, May 2013.
90. NXP B.V. LPC17xx User manual, UM10360 rev. 2, August 2010. Available online, at

http://www.nxp.com/.
91. On-line Applications Research Corp. RTEMS Documentation, December 2011. Avail-

able online, at http://www.rtems.com/.
92. The ORKID Working Group Software Subcommittee of VITA. ORKID — Open Real-

Time Kernel Interface Defnition, August 1990. Draft 2.1.
93. OSEK/VDX. OSEK/VDX Operating System Specifcation. Available online, at http:

//www.osek-vdx.org/.
94. Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for multi-

processors with private cache memories. SIGARCH Comput. Archit. News, 12(3):348–
354, January 1984.

95. C. Perkins. IP Encapsulation within IP, RFC 2003. October 1996.
96. Roland H. Pesch, Jeffrey M. Osier, and Cygnus Support. The GNU Binary Utilities

(GNU binutils) Version 2.20. Free Software Foundation, Inc., October 2009.
97. Jon Postel. User Datagram Protocol, RFC 768. Information Sciences Institute (ISI),

August 1980.
98. Jon Postel. Internet Control Message Protocol—DARPA Internet Program Protocol

Specifcation, RFC 792. Information Sciences Institute (ISI), September 1981.
99. Jon Postel, editor. Internet Protocol—DARPA Internet Program Protocol Specifcation,

RFC 791. USC/Information Sciences Institute (ISI), September 1981.
100. Jon Postel, editor. Transmission Control Protocol—DARPA Internet Program Protocol

Specifcation, RFC 793. USC/Information Sciences Institute (ISI), September 1981.
101. Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Pe-

ter Sewell. Simplifying ARM concurrency: Multicopy-atomic axiomatic and opera-
tional models for ARMv8. Proceedings of the ACM on Programming Languages,
2(POPL):19.1–19.29, January 2018.

102. Ragunathan Rajkumar, L. Sha, and John P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. In Proc. 9th IEEE Real-Time Systems Symposium, pp. 259–
269, December 1988.

103. Red Hat Inc. eCos User Guide, 2013. Available online, at http://ecos.
sourceware.org/.

http://www.nxp.com
http://www.rtems.com
http://www.osek-vdx.org
http://ecos.sourceware.org
http://ecos.sourceware.org
http://www.osek-vdx.org

504 References

104. W. Richard Stevens and Gary R. Wright. TCP/IP Illustrated (3 Volume Set). Addison-
Wesley Professional, Boston, MA, USA, November 2001.

105. RTEMS Project. RTEMS C User Documentation — Release 4.11.3, February 2018.
106. RTEMS Project. RTEMS Source Builder — Release 4.11.3, February 2018.
107. Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.

Myreen. x86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, July 2010.

108. Lui Sha, Tarek Abdelzaher, Karl-Erik Arz° en, ´ Anton Cervin, Theodore P. Baker, Alan
Burns, Giorgio C. Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok.
Real time scheduling theory: A historical perspective. Real-Time Systems, 28(2):101–
155, 2004.

109. Lui Sha, Mark H. Klein, and John B. Goodenough. Rate monotonic analysis for real-
time systems. Technical Report CMU/SEI-91-TR-006, Software Engineering Institute,
Carnegie Mellon University, 1991.

110. Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: an
approach to real-time synchronization. IEEE Transactions on Computers, 39(9):1175–
1185, September 1990.

111. A. Shoshani and E. G. Coffman. Prevention, detection, and recovery from system dead-
locks. In Proc. 4th Princeton Conference on Information Sciences and Systems, March
1970.

112. A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John Wiley
& Sons, New York, 7th edition, 2005.

113. H. R. Simpson. Four-slot fully asynchronous communication mechanism. IEE Proceed-
ings E (Computers and Digital Techniques), 137(1):17–30, January 1990.

114. Socket-CAN. The Socket-CAN project. Available online, at https://github.com/
linux-can/, 2019.

115. Brinkley Sprunt, Lui Sha, and John Lehoczky. Scheduling sporadic and aperiodic events
in a hard real-time system. Technical Report CMU/SEI-89-TR-011, Software Engineer-
ing Institute, Carnegie Mellon University, 1989.

116. Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make — A Program
for Directing Recompilation, for GNU make Version 4.0. Free Software Foundation,
Inc., October 2013.

117. Richard M. Stallman and the GCC Developer Community. GNU Compiler Collection
Internals, for GCC Version 4.3.4. Free Software Foundation, Inc., 2007.

118. Richard M. Stallman and the GCC Developer Community. Using the GNU Compiler
Collection, for GCC Version 4.3.4. Free Software Foundation, Inc., 2008.

119. A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and Implementation.
Pearson Education, Upper Saddle River, NJ, 3rd edition, 2006.

120. L. R. Turner and J. H. Rawlings. Realization of randomly timed computer input and
output by means of an interrupt feature. IRE Transactions on Electronic Computers,
EC-7(2):141–149, June 1958.

121. William Von Hagen. The defnitive guide to GCC. Apress, Berkeley, CA, 2006.
122. J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History of

Computing, 15(4):27–75, 1993. Reprint of the original typescript circulated in 1945.
123. Bryan C. Ward and James H. Anderson. Supporting nested locking in multiprocessor

real-time systems. In Proceedings of the 24th Euromicro Conference on Real-Time Sys-
tems, ECRTS’12, pp. 223–232, USA, 2012. IEEE Computer Society.

https://github.com
https://github.com

References 505

124. Bryan C. Ward and James H. Anderson. Fine-grained multiprocessor real-time lock-
ing with improved blocking. In Proceedings of the 21st International Conference on
Real-Time Networks and Systems, RTNS’13, pp. 67–76, New York, NY, USA, 2013.
Association for Computing Machinery.

125. G. Bloom and J. Sherrill. Scheduling and thread management with RTEMS. ACM
SIGBED Review, 11(1): 20–25, February 2014.

126. S. Gadia, C. Artho, and G. Bloom. Verifying Nested Lock Priority Inheritance in
RTEMS with Java Pathfnder. In Ogata K., Lawford M., Liu S. (eds) Formal Meth-
ods and Software Engineering, ICFEM 2016. Lecture Notes in Computer Science, vol.
10009. Springer, Cham, October 2016.

http://taylorandfrancis.com

Index
.bss section, 28
.data section, 28
.text section, 28

A
Absolute deadline, 63
Absolute jump, 18
Absolute timer, 151
Absolute vs. relative delay, 204
Acceptance (of a signal), 193
Acceptance of a signal, 187
Acknowledgment (ACK) message, 316
Active priority, 283
Active wait (spin), 56, 457
Adaptive priority ceiling, 290
Address family, 354
Address translation, 420
Admission transition, 58
Affnity, 165
Affnity mask, 113, 129, 450

arbitrary, 452
one-to-all association, 450
one-to-one association, 451

Alignment constraint, 30
Aperiodic task, 60
Aperiodic timer, 200
Application compile-time confguration,

42
Application programming interface

(API)
Classic, 103, 114
POSIX, 114, 159

Archivier, 9
ARM architecture procedure calling

standard (AAPCS), 86
Assembler, 11
Asymmetric naming, 320
Async-signal-safe function, 186
Asynchronous, 474
Asynchronous notifcation, 335
Asynchronous transfer, 313

with limited buffer, 315

Attribute
condition variable, 265
memory, 420
message queue, 322, 329, 331
mutual exclusion semaphore, 259
semaphore, 240
task, 160

Automatic variable, 36–38
Automatic-release barrier, 269

B
Background task, 107
Backward jump, 18
Banker’s algorithm, 299

complexity, 305
Barrier

automatic-release, 269
Classic API, 270
creation, 270, 272
destruction, 271, 274
in POSIX, 272
instruction, 407, 409, 422, 425, 440
manual-release, 270
object, 269
one-way, 427
primitives, 270, 272
release, 270, 272
wait, 269, 271, 275

Baseline priority, 283
Basic task model, 431
Berkeley Unix, 340, 353
Binary semaphore, 241, 246, 247

static initializer, 247
Binary utilities package, 11
Blocked state, 55
Blocking, 74, 286

ceiling, 288
direct, 286
mode, 383
push-through, 286
time, 459

Board support package (BSP), 146, 154

507

508 INDEX

Boot core, 456
Bootloader, 25
Bootstrap

code, 9
of a toolchain, 10

Brinch Hansen’s monitor, 234
Build process, 31
Built-in rule, 38
BusFault exception, 80
Busy wait (spin), 56, 457

C
C compiler, 11, 12
C preprocessor, 11, 12
C runtime library, 9
Cache, 397

cleaning, 409
coherence, 399, 409
coherency domain, 412, 419
coherency logic, 412
eviction algorithm, 398
fush, 398, 409, 418
hit, 414
invalidate, 399, 409, 417, 418
level, 397
line, 398
line state, 413
local operation, 413
maintenance, 411
miss, 414
snooping, 413, 416, 418
timings, 418
unifed, 399
write-back, 398, 409, 413, 417, 423
write-through, 398, 409, 423

Cache-coherent interconnect, 418
Cacheability attribute, 423
Calendar time, 144
Cancelability state and type, 176
Cancellation, 175
Cancellation point, 177
Ceiling blocking, 288
Centralized I/O, 396
Chained blocking, 287

Circular buffer, 226, 227
Circular wait, 291, 295, 298
Classic application programming

interface (API), 103, 114
Cleanup handler, 166, 181
Clock, 143, 196
Clock manager, 146
Cluster, 399, 418
Clustered scheduling, 449
Code generation, 26
Coherence (data), 475
Coherency domain, 412, 419
Command line

execution options, 33
in a rule, 32, 33, 36, 37
interpreter, 33
option, 11, 32

Communication domain, 353
Communication endpoint management,

354
Communication model, 354
Compilation, 19
Compilation unit, 19
Compiler driver, 8, 11
Compiler support library, 9
Compiler workfow, 11
Computer architecture

Von Neumann, 212
Concurrent instruction execution, 214
Concurrent programming, 45, 50
Concurrent system, 485
Condition variable, 232, 251, 265

attributes, 265
destruction, 265
initialization, 265
primitives, 265
signal, 268
spurious wakeup, 268
static initializer, 265
timed wait, 267
wait, 267

Conditionally asynchronous, 476
Confdefs confguration, 42
Connection establishment, 361

INDEX 509

Connection-oriented socket, 361
Connectionless socket, 366
Consistency (data), 407
Consistency check, 489
Const qualifer, 25
Constant bandwidth server (CBS), 104,

108
Constrained deadline, 60, 131
Contention, 54, 459
Contention scope, 164
Context switch, 48, 52, 69, 79, 89
Context-changing instruction, 425
Controller area network (CAN), 354
Core, see Processor core
Counting semaphore, 241
CPU index, 111
CPU set, 111
Critical instant theorem, 431
Critical region, 212, 217, 407
Critical region entry/exit, 218
Critical section, see Critical region
Cross compilation, 10
Cross reference, 9, 17

circular, 22, 24
Cross-compilation toolchain, 10
Current priority, 283
Cyclic executive, 49

D
Data consistency, 407
Data freshness, 407
Data memory barrier (DMB), 426
Data property, 25
Data synchronization barrier (DSB), 426
Data transfer, 367
Datagram socket, 353, 356, 366
Datagram-based communication, 353,

356, 366
Deadline, 59, 60, 131

absolute, 63
constrained, 60, 131
implicit, 60, 107, 131
miss, 136
overrun, 135
relative, 62

Deadline monotonic priority order
(DMPO), 65, 105, 433

Deadlock, 279, 287, 290
avoidance, 299
detection and recovery, 306
prevention, 296

Delivery of a signal, 187
Dependency, 31
Destruction (of a semaphore), 253
Destruction transition, 58
Detached task, 164
Deterministic priority scheduler (DPS),

104, 105
Development system, 10
Device memory, 420, 422
Device register, 408
Dhall’s effect, 434
Direct blocking, 286
Direct memory access (DMA), 398,

409, 419, 428
Direct naming, 319
Directive (in GNU make), 38
Directory specifcation, 37
Dispatch, 92, 93
Distributed I/O, 396
Domain data structure, 343
Domino effect, 108
Double buffering, 476
Dynamic memory controller (DMC),

419

E
Earliest deadline frst (EDF), 64, 104,

106, 433, 434, 450
Early write acknowledgment attribute,

422
Entry point, 20, 119
Environment variable, 33, 34
Ephemeral port, 359
Epoch, 146, 147, 196
Errno, 356
Escape sequence, 34
Event, 275

receive, 277
send, 276

510 INDEX

Eviction algorithm, 398
Exception, 78, 89

entry, 85, 87
handling, 78
HardFault, 80
masking, 80
nesting, 83, 88
number, 83
PendSV, 79
priority, 78, 82
return, 86, 88, 89
SysTick, 79
vector table, 87

Executable image, 8, 9, 12, 16, 17, 20,
21

Execution effciency, 354
Execution priority, 443
Execution statistics, 141
Execution time

worst-case, 60, 62
Explicit rule, 36
Extended rendezvous, 317

F
Fault, 78
Fault escalation, 80
Fence, 407, 430
File descriptor set, 389
Fill pattern, 31
First-in, frst-out policy, 171
Flash memory, 25
Foreground task, 107
Forward variable reference, 36
Forwarding (store buffer), 403
FreeBSD protocol stack, 339
Freshness, 407
Freshness (data), 475
Full system domain, 424
Function (in GNU make), 38, 39
Function reference, 22
Function-like macro, 14, 15

G
Gathering attribute, 422

GCC compiler, 8
General-purpose semaphore, 251
Generation of a signal, 185
Global scheduling, 411, 434, 449
Global variable, 430
GNU compiler collection (GCC), 8
GNU make, 31–33, 38

assignment operators, 35
built-in rule, 38
directive, 38
function, 38, 39
pattern rule, 36

GNU-based toolchain, 7
Graphics processing unit (GPU), 419
Guard element, 226

H
Hand-crafted priority elevation, 441
Handler mode, 84
HardFault exception, 80
Hardware-based mutual exclusion, 218
Hoare’s monitor, 235
Hold and wait, 291, 295, 297
Home scheduler, 128, 457
Host machine, 7
Hyperbolic bound for rate monotonic,

71

I
Idle task, 120
Immediate priority ceiling, 242, 287,

442
Implicit deadline, 60, 107, 131
Implicit mutual exclusion, 438
Incoming exception priority, 82
Independence preservation, 462
Indirect naming, 319
Inference system, 31
Information hiding, 231
Init task, 120
Initial priority, 283
Initialized data, 19
Inner domain, 423
Input section, 28, 29

INDEX 511

description, 29, 30
Input sequence, 21, 23, 29
Instruction

locked, 403
Instruction execution, 213
Instruction reordering, 428
Instruction synchronization barrier

(ISB), 425
Inter-core communication, 397
Inter-task communication and

synchronization (IPC), 211,
408

Interference, 62, 431
Interleaving, 50, 215, 485
Internet communication domain, 354
Interrupt, 46, 79

arrival rate, 96
enable and disable, 47, 156, 442
global disable, 445
handling, 46, 69, 78, 103, 154, 155,

430, 446
in schedulability analysis, 95
latency, 78
lock, 492
nesting, 47
non-maskable, 79
per-device, 47
software, 79
vector, 154

Interrupt manager, 154, 155
Interrupt priority level (IPL), 341
Interrupt service routine (ISR), see

Interrupt handling
Involuntary task state transition, 56

J
Job, 59

release, 131
Join, 166
Joinable task, 164

Librarian, 9
Library, 9, 17, 20–23

group of, 23

Linearizability, 485
Linearizable object, 485
Linger socket option, 358, 379
Link editor command language, 16
Link map, 17
Linker, 9, 16

absolute expression, 27
input, 20, 21
option, 17
output, 17, 24
relative expression, 27
symbol, 18, 26

Linker script, 9, 16, 19
input and output, 19
memory layout, 19
section/memory mapping, 19

Load exclusive, 424, 483
Load memory address (LMA), 25, 30,

31
Load-acquire (LDAR), 427
Loader, 20, 25
Local cache operation, 413
Local interrupt disable, 157
Local socket address, 359, 361
Location counter, 27
Lock context, 493
Lock-based

mutual exclusion, 212, 217
sharing, 468
synchronization, 217

Lock-free
communication, 219, 408, 468, 469
example, 471
implementation, 485
object, 470, 483, 490

Locked instruction, 403
Login shell, 33

M
Macro, 13

defnition, 13, 14
expansion, 11, 14, 15
forward reference, 14

Make, see GNU make
Makefle, 31–33

L

512 INDEX

variable, 33
Makefle inclusion, 32
Makefle rule, 31
Manual-release barrier, 270
Master stack pointer (MSP), 81
Maximum value (of a semaphore), 253
Mbuf, see Memory buffer data structure
MemManage exception, 80
Memory

access protection, 420
allocation, 25, 53
attribute, 420, 422
bank, 19, 24, 31
barrier, 407
block, see Memory, bank
consistency model, 399, 400
fence, 407
layout, 19, 24
management, 487
mapping, 28, 31
region, see Memory, bank
system, 397, 418

Memory buffer data structure, 346, 351
Memory management unit (MMU), 420
Mesa monitor, 237
MESI protocol, 412
Message

acknowledgment (ACK), 316
boundary, 313
broadcast, 325
buffer, 313
pending, 327
priority, 332
receive, 312, 326, 334
send, 312, 324, 332
urgent, 325

Message manager, 321
Message passing, 311, 312

asynchronous, 313
channel, 319
extended rendezvous, 317
mutual exclusion, 312
naming scheme, 313, 318
port, 319

remote invocation, 317
rendezvous, 316
synchronization model, 313
synchronous, 316
with limited buffer, 315

Message queue, 319
asynchronous notifcation, 335
attributes, 322, 329, 331
creation, 321, 328
destruction, 324, 330
identifer, 323
operations, 321, 324

Monitor, 229, 231
Brinch Hansen’s, 234
condition variable, 232
Hoare’s, 235
in POSIX, 236, 265
Mesa, 237
method, 231
mutual exclusion, 231

Multicopy atomicity, 421
Multicore earliest deadline frst (EDF)

background tasks, 450
foreground tasks, 450

Multicore processor, 395, 397
Multicore scheduling algorithms, 449

deterministic priority scheduler
(DPS), 451

earliest deadline frst (EDF), 450
simple priority SMP scheduler, 451

Multiprocessor and multicore
scheduling, 448

clustered scheduling, 449
global scheduling, 449
partitioned scheduling, 449

Multiprocessor resource sharing
protocol (MrsP), 242, 261,
457

semaphore, 458
Multiprogramming, 48
Mutex, see Mutual exclusion semaphore
Mutual exclusion, 73, 212, 217, 231,

279, 291, 295, 296, 407, 445
correctness conditions, 219

INDEX 513

hardware-based, 218
implicit, 438
in a monitor, 231

Mutual exclusion semaphore, 222, 249,
251, 257

attributes, 259
lock/unlock, 251, 262, 263
primitives, 261
static initializer, 250, 261

N
Named semaphore, 252
Naming scheme, 313, 318
Native toolchain, 10
Nested exception, 88
Network byte order, 360
Network communication, 339
Network communication domain, 353,

354
Network daemon, 349
Network interface data structure, 346,

351
Nm, 9
Non-blocking socket I/O, 383
Non-maskable interrupt (NMI), 79
Non-preemption, 291, 295, 298
Normal memory, 420
Notifcation, 200

O
O(m) independence-preserving protocol

(OMIP), 242, 261, 457, 461
Objdump, 9
Object module, 9, 17, 20–23, 27, 29
Object-like macro, 14
Offine scheduling, 50
One-shot timer, 200
One-way barrier, 427
Online scheduling, 50
Open real-time kernel interface

defnition (ORKID), 115
OpenMPI, 318
Operating system, 9
Optimal priority assignment (OPA), 66,

105

Optimality
of earliest deadline frst (EDF), 65
of rate monotonic (RM), 64

Outer domain, 423
Output section, 28, 29
Output sequence, 21, 22
Overload, 136, 137
Overrun, 135
Overrun counter, 200

P
Partitioned scheduling, 437, 449
Passive wait, 56
Pattern rule, 36–38
Peer socket address, 365
Pending message, 327
PendSV exception, 79, 93
Per-device interrupt handler, 47
Per-scheduler ceiling, 246
Period control block (PCB), 132
Period object, 132
Period of a task, 61
Periodic task, 59, 131, 135
Periodic timer, 200
Phase (of a task), 62
Pinning, 451
Pipeline, 396
Polling, 45, 383
POSIX

application programming interface
(API), 114

barrier, 272
clock, 196
message queue, 327
monitor, 236
mutual exclusion semaphore, 257
scheduling model, 168
scheduling policy, 169
semaphore, 252
spinlock, 494
timer, 196

Postponement counter, 138
Precedence constraint, 224
Preemption, 57, 282
Preemption control, 108

514 INDEX

Preemptive scheduling, 108
Preprocessing library (cpplib), 11
Preprocessor

fle inclusion, 12
keyword, 13
macros, 12

Prerequisite, 32, 33, 36, 37
Priority boosting, 464
Priority ceiling, 75, 286, 287

protocol, 457
Priority ceiling emulation, 287, 288
Priority grouping, 83
Priority inheritance, 75, 242, 283, 286

migratory, 466
multicore, 462

Priority inversion, 75, 279, 464
Priority inversion region, 285
Process, 45, 48
Process stack pointer (PSP), 84
Process-level action, 185, 190
Process/thread hierarchy, 49, 168
Processor context, 46
Processor core, 397
Processor execution mode, 84
Processor state, 52
Processor utilization factor, 71
Producers and consumers, 226, 238, 294
Program counter (PC), 53
Protocol identifer, 354
Protocol stack, 340
Protocol switch data structure, 344
Push-through blocking, 286

R
Race condition, 212, 215, 217, 468
Race condition window, 216
Race condition zone, see Race condition

window
Random access memory (RAM), 25
Rate monotonic (RM), 63, 73, 105, 281,

433, 434
Rate monotonic analysis (RMA), 60
Rate monotonic manager, 107, 130
Raw socket, 357

Raw communication, 357
Read allocation attribute, 424
Read reordering, 421
Read-modify-write operation, 403
Ready state, 55
Real time clock (RTC), 146
Real time executive interface defnition

(RTEID), 115
Receive daemon, 351
Receive low-water mechanism, 381
Receive primitive, 312
Recursive lock, 252
Recursive mutual exclusion semaphore,

250, 347
Relative deadline, 62
Relative jump, 18
Relative timer, 151
Relative vs. absolute delay, 204
Release (of a job), 131
Relocation, 18, 20
Remote invocation, 317
Rendezvous transfer, 316
Reordering attribute, 422
Repetitive timer, 200
Reset, 81
Reset vector, 20
Resource allocation, 54
Resource allocation graph, 291
Response time analysis (RTA), 72–74,

433
succession, 73

Retry loop, 470
Round-robin policy, 171
Round-robin time interval, 172
RTEMS compile-time confguration, 40
RTEMS LibBSD project, 339
RTEMS source builder (RSB), 10
Running state, 55

S
Schedulability, 71, 76
Schedulability analysis, 69

interrupts in, 95
task interaction in, 73

INDEX 515

task self-suspension, 76
Scheduler, 50

confguration, 452
deadline monotonic (DMPO), 65
earliest deadline frst (EDF), 64
identifer, 110
lock, 441, 442
optimal priority assignment (OPA),

66
rate monotonic (RM), 63

Scheduling, 45
dynamic-priority, 64
fxed-priority, 63

Scheduling algorithm, 103, 104
Scheduling analysis

multicore, 459
single-core, 70

Scheduling notation, 61
Scheduling parameter, 174
Scheduling policy, 174
Section mapping, 19, 28
Self-suspension, 73, 76
Semaphore, 219

attributes, 240
binary, 241, 246
ceiling, 288
counting, 241
creation, 240
defnition, 220
destruction, 253
general-purpose, 251
identifer, 243
maximum value, 253
MrsP, 458
mutual exclusion, 222, 249, 251,

257
named, 252
operations, 244, 255
per-scheduler ceiling, 246
primitives, 220
queuing policy, 242
recursive mutual exclusion, 250
simple binary, 242
synchronization, 224

unnamed, 252, 253
value, 257

Semaphore manager, 240
Send low-water mechanism, 381, 389
Send primitive, 312
Sequence point, 429
Sequential consistency model, 400
Sequential packet communication, 357
Shareability attribute, 423
Shared memory, 211
Shared object, 212, 215, 231
Shared variable, see Shared object
Shell, 32, 33
Side effect (of an instruction), 429
Signal

acceptance, 187, 193
delivery, 187
generation, 185
handling, 181
mask, 187, 193
number, 182
process-level action, 185, 190
target thread, 188
wait, 194

Simple binary semaphore, 242
Simple priority scheduler (SPS), 104,

106
Single-user, single-process (SUSP), 168
Sleep/wakeup mechanism, 347
Snoop control unit (SCU), 418
Snooping, see Cache, snooping
Socket, 340

address family, 354
application programming interface

(API), 339, 353, 354
bind, 359
connection, 361
connection acceptance, 364
creation, 354
datagram, 356, 366
debugging, 377
descriptor, 356
destruction, 357
linger option, 358, 379

516 INDEX

listen for connection, 364
local address, 359, 361
non-blocking I/O, 383
options, 353, 375, 377
peer address, 365
primitives, 354
protocol identifer, 354
raw, 357
receive, 372
reliable delivery, 368
send, 367
sequential packet, 357
shutdown, 358
stream, 356
time_wait state, 380
type, 353, 354

Socket data structure, 345
Software interrupt, 79
Source code, 9
Specs fle, 9
Specs string, 11
Speculative execution, 421
Spin (active or busy wait), 457
Spinlocks, 492
Sporadic server policy, 171
Spurious wakeup, 268
Stack pointer, 53
Stale data, 409
Standalone preprocessor, 11
Startfle, 12
Startup code, 19–21, 25, 26
Startup object fle, 9, 20
Stem, 36
Store reordering, 406
Store buffer, 402
Store conditional, 424, 483
Store-release (STLR), 427
Stream socket, 353, 356
Stream-based communication, 353, 356
SuperCore, 114
Superscalar processor, 396
Supervisor call (SVC), 81
Suspension, 124
Suspension-oblivious analysis, 462

Symbol assignment, 27, 29
Symbol resolution, 18, 20
Symmetric naming, 320
Synchronization model, 313
Synchronization semaphore, 224
Synchronous I/O multiplexing, 383, 387
Synchronous transfer, 316
System code, 9
System events, 347
System fle, 12
SysTick exception, 79

T
Target, 36
Target dependency, 32, 33
Target machine, 7
Target pattern, 36, 37
Target regeneration, 32, 33
Target thread (of a signal), 188
Task, 45, 48, 49

admission, 58
affnity, 113, 129, 165
attribute, 53, 117, 160
background, 107
cancellation, 175
contention scope, 164
creation, 116, 162
deadline, 59, 131
descriptor, 162
destruction, 58, 125
detach state, 164, 167
dispatch, 92, 93
entry point, 119
foreground, 107
initial phase, 62
instance, 59, 61
interaction, 73
interference, 62, 63
join, 166
management, 103, 115
migration, 466
mode, 118, 126
model, 59
periodic, 131, 135

INDEX 517

pinning, 451
priority, 50, 127, 438
scheduling (in POSIX), 168
segment, 76
self-suspension, 76
state, 53, 54
suspension, 124
termination, 58, 126, 165
timer server, 144, 151, 153
worst-case response time, 62

Task control block (TCB), 52
Task manager, 115
Task state diagram (TSD), 54, 103, 122,

220, 221
TCP, 357
TCP listen backlog, 364
TCP maximum segment lifetime (MSL),

380
TCP/IP communication, 339
Terminated state, 57
Termination transition, 58
Thread, see Task
Thread mode, 84
Tick counter, 147
Tick interval, 144
Time of day, 146
Timekeeping, 103, 143, 196
Timeout mechanism, 342, 347, 350
Timer, 144, 150, 199

absolute, 151
aperiodic, 200
notifcation, 200
one-shot, 200
overrun counter, 200
periodic, 200
relative, 151
repetitive, 200

Timer server task, 144, 151, 153
Timer service routine, 144
Timeslicing, 109
Token, 13
Tokenization, 13
Total store order (TSO), 402, 403
Transient attribute, 424

Translation lookaside buffer (TLB), 426
Translation table, 420
Transmission control protocol, see TCP
Transmit daemon, 351
Two-stage interrupt handling, 99
Type defnition, 14

U
UDP, see User datagram protocol
Unbounded priority inversion, 75, 280,

282, 440
Unifed cache, 399
Unnamed semaphore, 252, 253
Uptime, 148
UsageFault exception, 80, 81, 89
User datagram protocol (UDP), 357
Utilization factor, 70
Utilization-based schedulability test, 70,

71

V
Value (of a semaphore), 257
Variable (in GNU make), 39
Variable assignment, 34
Variable in GNU make, 33

expansion, 34, 35
initial value, 25
recursively expanded, 35
simply expanded, 35

Virtual memory, 26
Virtual memory address (VMA), 25, 26,

30, 31
Volatile object, 429, 440
Voluntary task state transition, 56
Von Neumann computer architecture,

212

W
Wait channel, 343
Wait for a signal, 194
Wait-free

communication, 219, 408, 468, 469
object, 470

Wildcard, 29, 40

518 INDEX

Work-conserving (scheduling
algorithm), 449

Worker task, 320
Worst-case blocking time, 74–77, 280
Worst-case response time, 62, 72–74, 76
Write allocation attribute, 424
Write buffer, 402

Write reordering, 406, 421
Write-back cache, 398, 409, 413, 417,

423
Write-through cache, 398, 409, 423

Y
Yield, 57, 109, 123, 175

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	The Authors
	Chapter 1 Introduction
	Part I Operating System Basics
	Chapter 2 Cross-Compilation Toolchain
	2.1 From Source Code to the Executable Image
	2.1.1 The Compiler Driver
	2.1.2 The Preprocessor
	2.1.3 The Linker

	2.2 Linker Scripts
	2.2.1 Input and Output Sequences
	2.2.2 Memory Layout
	2.2.3 Linker Symbols
	2.2.4 Section and Memory Mapping

	2.3 GNU Make and Makefiles
	2.3.1 Explicit Rules
	2.3.2 Variables
	2.3.3 Pattern Rules and Automatic Variables
	2.3.4 Directives and Functions

	2.4 Basic Description of RTEMS and its Configuration System
	2.4.1 RTEMS Compile-Time Configuration
	2.4.2 Application Compile-Time Configuration

	2.5 Summary

	Chapter 3 Concurrent Programming and Scheduling Algorithms
	3.1 Foundations of Concurrent Programming
	3.1.1 From Interrupt Handling to Multiprogramming
	3.1.2 Cooperating Sequential Processes

	3.2 Scheduling Policies, Mechanisms, and Algorithms
	3.2.1 Task Interleaving and Timings
	3.2.2 Task Control Block and Task State Diagram
	3.2.3 Real-Time Scheduling Algorithms

	3.3 Summary

	Chapter 4 Scheduling Analysis and Interrupt Handling
	4.1 Basics of Real-Time Scheduling Analysis
	4.1.1 Utilization-Based Schedulability Tests
	4.1.2 Response Time Analysis
	4.1.3 Task Interactions and Self-Suspension

	4.2 Practical Considerations on Interrupt Handling
	4.2.1 Exception Handling in The Cortex-M Processor
	4.2.2 Exception Priorities and Entry/Exit Sequence
	4.2.3 RTEMS Context Switch and Exception Handling
	4.2.4 Interrupts in Schedulability Analysis

	4.3 Summary

	Part II Task Management and Timekeeping
	Chapter 5 Task Management and Timekeeping, Classic API
	5.1 Task Management Basics
	5.2 Scheduler Manager and Single-Core Scheduling Algorithms
	5.3 RTEMS Classic and POSIX API
	5.4 Task Management
	5.5 The Rate Monotonic Manager
	5.6 Timekeeping: Clocks and Timers
	5.7 Preemption and Interrupt Management
	5.8 Summary

	Chapter 6 Task Management and Timekeeping, POSIX API
	6.1 Attribute Objects
	6.2 Thread Creation and Termination
	6.3 Thread Scheduling
	6.4 Forced Thread Termination (Cancellation)
	6.5 Signal Handling
	6.6 Timekeeping
	6.7 Summary

	Part III Inter-Task Synchronization and Communication
	Chapter 7 Inter-Task Synchronization and Communication (IPC) Based on Shared Memory
	7.1 Race Conditions and Mutual Exclusion
	7.1.1 An Example of Race Condition
	7.1.2 Critical Regions
	7.1.3 Lock-Based Mutual Exclusion
	7.1.4 Correctness Conditions

	7.2 Semaphores
	7.2.1 Definition and Properties
	7.2.2 Mutual Exclusion Semaphores
	7.2.3 Synchronization Semaphores
	7.2.4 Producers and Consumers

	7.3 Monitors
	7.3.1 Definition and Properties
	7.3.2 Condition Variables

	7.4 RTEMS API for Shared-Memory IPC
	7.4.1 Classic API
	7.4.2 POSIX API

	7.5 Barriers
	7.5.1 General Definition
	7.5.2 Classic API
	7.5.3 POSIX API

	7.6 Events
	7.7 Summary

	Chapter 8 IPC, Task Execution, and Scheduling
	8.1 Priority Inversion
	8.1.1 Mutual Exclusion and Priority Inversion
	8.1.2 The Priority Inheritance Protocol
	8.1.3 The Priority Ceiling Protocol

	8.2 Deadlock
	8.2.1 Definition and Examples of Deadlock
	8.2.2 Deadlock in the Producers–Consumers Problems
	8.2.3 Deadlock Prevention
	8.2.4 Deadlock Avoidance
	8.2.5 Deadlock Detection and Recovery

	8.3 Summary

	Chapter 9 IPC Based on Message Passing
	9.1 Unified Synchronization and Data Exchange
	9.2 Message Passing Synchronization Models
	9.3 Direct and Indirect Naming
	9.4 RTEMS API for Message Passing
	9.4.1 Classic API
	9.4.2 POSIX API

	9.5 Summary

	Part IV Network Communication
	Chapter 10 Network Communication in RTEMS
	10.1 Internal Structure of the RTEMS Networking Code
	10.2 Protocol Stack Organization
	10.3 Main Data Structures
	10.4 RTEMS Port and Adaptation Layer
	10.4.1 Mutual Exclusion and Sleep/Wakeup
	10.4.2 Software Interrupts and Network Daemon
	10.4.3 Timeout Emulation
	10.4.4 Device Driver Organization

	10.5 Summary

	Chapter 11 POSIX Sockets API
	11.1 Main Features
	11.2 Communication Endpoint Management
	11.3 Local Socket Address
	11.4 Connection Establishment
	11.5 Connectionless Sockets
	11.6 Data Transfer
	11.7 Socket Options
	11.8 Non-Blocking I/O and Synchronous I/O Multiplexing
	11.9 Summary

	Part V Multicores in Real-Time Embedded Systems
	Chapter 12 Multicores in Embedded Systems
	12.1 Motivation
	12.2 Multiprocessors and Multicores
	12.2.1 Basics of Multicore Architectures
	12.2.2 Memory Consistency Models
	12.2.3 Cache Coherency
	12.2.4 Practical Implementation on ARM Processors
	12.2.5 Compiler-Level Instruction Reordering

	12.3 Software Challenges Introduced by Multicores
	12.3.1 Loss of the Critical Instant Theorem
	12.3.2 Dhall’s Effect
	12.3.3 Implicit Mutual Exclusion

	12.4 Summary

	Chapter 13 Multicore Concurrency: Issues and Solutions
	13.1 Classes of Multicore Scheduling Algorithms
	13.2 Multicore Scheduling Algorithms in RTEMS
	13.3 Schedulers Configuration
	13.4 Multicore Synchronization Devices
	13.4.1 Multiprocessor Resource Sharing Protocol
	13.4.2 O(m) Independence-Preserving Protocol

	13.5 Lock-Free and Wait-Free Communication
	13.5.1 Basic Principles and Definitions
	13.5.2 Lock-Free Multi-Word Counter Read
	13.5.3 Four-Slot Asynchronous Communication
	13.5.4 Universal Construction of Lock-Free Objects

	13.6 Spinlocks and Interrupt Handling Synchronization
	13.7 Summary

	References
	Index

