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1. Beginning

 Brian Greer, Ole Skovsmose, and  
David Kollosche

The contributions in this book focus on critically analysing the relationship 
between mathematics as a discipline and mathematics as a school subject. The 
discontents of school mathematics are universally acknowledged and include 
questions such as: Why do so many people, however intelligent and successful, 
have feelings of inadequacy and ﻿alienation towards the subject? Why does 
mathematics education in school not seem to improve despite all the effort 
put into it? Our collective attempt to address such questions through radical 
rethinking begins by arguing that it is more productive to speak in terms of 
doing mathematics, in a variety of senses, rather than using words that imply 
that mathematics exists as some kind of entity. In particular, we reject the 
notion of mathematics being independent of human ﻿agency. Such a reformulation 
is in line with recent developments in mathematics and the philosophy of 
mathematics that problematise the quest for a definitive and timeless definition 
of mathematics. Related developments in ﻿history of mathematics, ﻿anthropology, 
and related fields make it imperative to acknowledge historical, cultural, social, 
ethical, and political – in short, human – dimensions of mathematics and 
mathematics education. Multiple important themes that are generated by this 
perspective are summarised.

The purpose of this book is to examine, critically and in their full 
complexity, relationships between conceptions of mathematics 
(mainly presented in Part 1 of this book) and the teaching/learning of 
mathematics in schools (mainly presented in Part 2 of this book).

The reader of this introductory chapter, and of the book as a whole, 
can hardly fail to become aware of the tension produced by the attempt 
to keep within reasonable length a discussion that involves negotiating 
a minefield of exploding concepts while trying to avoid omission of 
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essential aspects. We have made certain decisions necessary to keep 
the scope within manageable bounds, such as essentially limiting the 
contexts to those of ‘the West’. Thus, we do not address, for example, 
Indian philosophies of mathematics, or mathematics education in 
China. Discussion on mathematics education relates predominantly to 
that which happens in schools, as opposed to university mathematics 
education and learning in out-of-school contexts. The following sections 
outline some of the main themes of the book.

Conceptions of mathematics

In his book What is Mathematics, Really?, Reuben ﻿Hersh makes the 
following observation:

The working mathematician is a Platonist﻿ on weekdays, a ﻿formalist on 
weekends. On weekdays, when doing mathematics, he’s a Platonist﻿, 
convinced he’s dealing with an objective reality whose properties he’s 
trying to determine. On weekends, if challenged to give a philosophical 
account of the reality, it’s easiest to pretend he doesn’t believe it. He plays 
﻿formalist, and pretends mathematics is a meaningless game. (Hersh, 
1997, p. 39)

We refer to such a formulation as a working philosophy of mathematics. It 
need not be well articulated, and, as indicated by Hersh, it need not even 
be consistent. Formal philosophies of mathematics have been elaborated 
in all directions (for overviews, see Benacerraf & Putnam, 1964; Hacking, 
2014; Shapiro, 2000). As a term avoiding a sharp distinction between the 
two, we tend to refer to ‘conceptions of mathematics’.

‘What is mathematics?’

A short sampling of answers:

Mathematics may be defined as the subject in which we never know what 
we are talking about, nor whether what we are saying is true. (﻿Russell, 
1901, p. 1)

Mathematics is the art of giving the same name to different things. 
(Attributed to ﻿Poincaré)
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Mathematics is the language in which God has written the universe. 
(Attributed to ﻿Galileo)

Mathematics is the study of all possible patterns. (Sawyer, 1955, p. 12)

Answers to the question ‘What is Mathematics?’ may be enigmatic, 
aphoristic, ﻿religious, hubristic, aesthetic. However, one also finds answers 
that have been elaborated through deep philosophical investigations. 
Let us briefly recapitulate the positions of logicism﻿, ﻿formalism, and 
﻿intuitionism.

Since ﻿Antiquity, ﻿Platonism﻿ has been carefully articulated and further 
developed. Gottlob ﻿Frege (e.g., 1967) reworked ﻿Platonism in relation to 
mathematics into a completely new format, claiming that the idealised 
and permanent mathematical objects are sets. In this way, he launched 
the logicist programme, which tries to show that mathematical entities 
in fact are logical entities, and that mathematical statements are logical 
statements. In ﻿Principia Mathematica, Alfred ﻿Whitehead and Bertrand 
﻿Russell (1910–1913) elaborated this programme to the extreme. As 
already quoted, Russell characterised mathematics as a subject in which 
‘we never know what we are talking about’. In a more serious mood, 
he declared George ﻿Boole’s Laws of Thought to be about formal logic, 
adding ‘and this is the same thing as mathematics’ (Russell, 1901, p. 1).

David ﻿Hilbert, wanting to systematically address mathematical 
theories, advocated formalising mathematics so that they could be 
investigated with respect to, for instance, consistency and completeness. 
This programme led directly to the idea that mathematics can be 
identified with formal systems. In ﻿Outlines of a Formalist Philosophy 
of Mathematics, Haskell ﻿Curry (1970) provides a comprehensive 
presentation of ﻿formalism and what it means to identify mathematics 
with ﻿formalism.

A third answer to ‘What is mathematics?’ comes from L. E. J. 
﻿Brouwer (e.g., 1913), who formulated ﻿intuitionism as a philosophy 
of mathematics. According to ﻿Brouwer, ﻿formalism represents a 
complete misunderstanding of mathematics and formal structures. 
While formalists see formal structures as being precise expressions of 
mathematics, ﻿intuitionists view formal structures as imprecise and, in 
many cases, inappropriate approximations to mathematics. Wagner 
(2017) summarises ﻿intuitionism as questioning ‘any mathematics that 
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cold not be finitely constructed starting with counting a sequence of 
moments (in a ﻿Kant-like framework of temporality)’ (p. 17). In this way, 
﻿Brouwer characterised mathematics as a human, mental, activity.

Philosophical answers to the question ‘What is mathematics?’ 
reveal multiple conceptions of mathematics. Some see mathematics as 
an essential constituent of our world while others consider it as man-
made. Such diversity and contrasts suggest that a search for a definitive 
characterisation of the essence of mathematics is a chimera, albeit one that, 
like the quest for the Philosopher’s Stone, stimulates productive inquiry. 

Posing a better question

We suggest that ‘What is mathematics?’ is not a good question. 
‘Mathematics’ means a lot of different things for school students, for 
engineers, for philosophers in contemporary times, in the late nineteenth 
century, in ﻿Antiquity. The very grammar of the question tempts us to 
search for a universal essence of mathematics. However, how such an 
essence could be found and verified constitutes an unsolved, arguably 
unsolvable, philosophical problem. Every attempt to capture the 
essence of mathematics entails the danger of generalising a particular 
perspective at the expense of others. Mathematics has, and will continue 
to evolve, a history, and the families of activity systems that involve 
mathematics are diverse. 

Semantically speaking, in terms of the discourse theory of Ernesto 
﻿Laclau and Chantal ﻿Mouffe (1985/2001), ‘mathematics’ constitutes 
a floating signifier, a concept whose strength in combining with 
other concepts, activities, and expectations depends on its conceptual 
flexibility, on its openness to assume different facets of meaning 
in different discourses. It is also worth questioning to what extent 
‘mathematics’ is best regarded as a noun. Could it be interpreted more 
like a verb? In fact, we are going to suggest a shift to thinking about what 
can be done through mathematics. We contend that the characterisation 
of mathematics is more usefully framed not in terms of an entity, but 
in terms of what humans, individually and collectively, do when they 
engage with mathematics.

Hans ﻿Freudenthal, inspired by ﻿Brouwer and by ﻿intuitionism, 
highlighted again and again that ‘mathematics is a human activity’ 
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(Chapters 7 and 8, this volume). Let us clarify what we mean by ‘human 
activity’. For emphasis, we may instead use the phrase ‘social activity’, 
reflecting an orientation that envisages collective mental activity, not 
just what ﻿Brouwer took to be an activity of a single mind. Such an 
individualistic formulation may seem natural when we consider a child 
having a breakthrough insight, or a solitary mathematician struggling 
with a ﻿proof. Even in such circumstances, however, the social nexus 
is still there. The mathematician is part of a community with well-
established norms (Chapter 9, this volume) that has worked on the 
problem; the child is in an educational setting. Indeed, to the extent that 
thought may be considered internal communication (a question we will 
not attempt to address), it is inherently socially grounded, in particular 
linguistically. 

School and its associated practices (and not just learning and 
teaching) constitute a very particular form of historically evolved social 
activity. In other cultural settings, there are very different forms of 
learning and teaching, including those in which ‘doing’ and ‘learning’ 
are embedded in the same activity. Contrast that with the familiar 
answer from mathematics ﻿teachers to the question ‘Why are we doing 
this?’, namely some variant of ‘Because it will be useful to you later’.

For all of these reasons, we contend that a better question than ‘What 
is mathematics?’ is to ask something like ‘What do people do when they 
use mathematics within an activity system?’. Such a shift away from 
essentialist to performative paradigms is not unique to the philosophy of 
mathematics. For example, there is a parallel with Ludwig ﻿Wittgenstein’s 
(1997/1953) later work of interpreting language through its use in what 
﻿John ﻿Searle (1969) called ‘﻿speech acts’. The conception of language 
shifted from a descriptive perspective to a performative perspective. In 
a similar way, then, we want to pay particular attention to performative 
features of mathematics, which are highlighted by Ole Ravn and Ole 
Skovsmose (2019) through their formulation of a four-dimensional 
philosophy of mathematics. We may point to ethnographic studies of 
people doing mathematics in workplace contexts, for example. George 
﻿Pólya’s (e.g., 1962) emphasis on how mathematicians behave stems 
from a similar motivation.

Seeing mathematics as a social activity has profound implications. It 
shifts the balance away from ‘mathematics’ as something that exists (in 



6� Breaking Images

whatever sense) to something that is done by people. It makes it natural to 
adopt both the historical and ﻿diversity lenses and prompts many other 
considerations that are relevant to both mathematics as an academic 
discipline and mathematics education. It becomes natural to consider 
how conceptions of mathematics have changed over historical time and 
to acknowledge that differently situated people might mean different 
activities when they refer to mathematics, even one and the same 
person might refer to different activities. For example, when we refer to 
mathematics in academic situations, activities such as defining concepts, 
testing hypotheses, and formulating ﻿proofs are central activities, but 
often they are not typical activities in school mathematics.

To signal and emphasise that one aspect among many is being 
highlighted, we use ‘as’ rather than ‘is’ in phrases such as ‘Mathematics 
as a process of discovery’ (see Ravn & Skovsmose, 2019). So, in addition 
to mathematics as academic discipline, we will also talk about, for 
example, mathematics as cultural constructions, mathematics as 
practices in work, mathematics as engineering techniques, mathematics 
as school subject, and so on. We allow ourselves to be unsystematic 
in our use of ‘mathematics as…’ and we fully recognise that we have 
to cope with a fuzzy way of using the words. Clearly, this phrasing in 
terms of families of practices in which mathematics is embedded is 
closely aligned with the concept of ﻿Ethnomathematics (Chapters 10 and 
17, this volume). 

Evolution of academic mathematics

As a human activity, that set of practices that we term ‘academic 
mathematics’ has a long history (Chapter 2, this volume). In the course 
of that history, radical conceptual restructuring has taken place, and 
continues to take place. To use the most familiar example, what is 
meant by ‘number’ stretches from the ‘natural numbers’ 1, 2, 3, … to the 
equation eiπ = –1 and beyond.

A first central question regarding such developments is: What are 
the processes through which conceptual restructuring occurs? Answers 
to this question minimally include the following:

•	 In response to human needs. For example, because of its late 
development, we have a relatively clear historical picture of 
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how ﻿probability theory was initially motivated by the needs of 
gamblers, and developed in close proximity to situations such 
as jury trials, risk assessment, social theories of the nature of 
man, and so on (Hacking, 1990).

•	 By asking ‘What if…?’ questions, such as ‘What if we 
don’t assume ﻿Euclid’s fifth axiom?’, a question that led to 
revolutionary developments in ﻿geometry.

•	 Through the symbiotic development of tools, including 
representational tools, for example, coordinate geometry 
based on the Cartesian representation.

•	 Through making connections between apparently disjoint 
fields, notably the translatability between ﻿geometry and 
﻿algebra achieved by René ﻿Descartes (discussed at length by 
Hacking, 2014).

•	 Through internal crises, disequilibria, a famous example being 
the realisation that the diagonal of a square is incommensurable 
with its side.

•	 Through the detachment of mathematical structures from 
their origins in ﻿systematised situations. A clear example is the 
concept of ‘group’ which eventually came to be defined as a set, 
together with an operation on ordered pairs thereof, having 
certain properties. Given this definition, mathematicians 
could pursue their researches independently of any particular 
examples or applications of group structures.

•	 Through the reconceptualisation of conceptual entities within 
mathematics. The case study by Imre ﻿Lakatos (1976) on a 
theorem about polygons is a prime example; changed ideas 
of the nature of mathematical ﻿proof given the advent of 
﻿computers is another.

A second key question is ‘To what extent is the development of 
mathematics necessary, and to what extent contingent?’ Rafael ﻿Núñez 
(2000) argues that it is not a binary choice, stating that that ‘mathematics 
is not transcendentally objective, but it is not arbitrary either (not 
the result of pure social conventions)’ (p. 3). There are mathematical 
developments that feel like they could not have happened otherwise 
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– for example, the extension from natural numbers to rational numbers 
and directed numbers. It is not so obvious, however, when it comes to 
the question posed by ﻿Núñez: ‘Have you ever thought why (I mean, 
really why) the multiplication of two negative numbers yields a positive 
one?’ (p. 3)

That the development of academic mathematics proceeds in a way 
that is absolutely predetermined is arguably disproved by the ﻿diversity 
within it. For example, ﻿Raju (2007, p. 413) declared that within European 
mathematics there are two streams: 

1.	 from Greece and Egypt a mathematics that was spiritual, anti-
empirical, ﻿proof-oriented, and explicitly ﻿religious, and 

2.	 from India via Islamic countries a mathematics that was pro-
empirical, and calculation-oriented, with practical objectives.

﻿Raju’s (2007) work is also an important contribution to one aspect of 
﻿Ethnomathematics, namely the construction of a counter-narrative to 
the myth that academic mathematics is a purely European achievement. 

Is doing mathematics inherently beneficial to 
humankind?

In the European context, since ﻿Antiquity, mathematics has been admired 
and celebrated, while, in academia, a critical conception of mathematics 
has only been articulated within the last century. ﻿Plato admired 
mathematics, which showed what it could mean to enter the world of 
ideas. Via the human senses such access was not possible, but through 
rationality, it was assumed, we can explore properties of idealised objects. 
The Platonist﻿ admiration of mathematics turned into a celebration 
of ﻿Euclid’s ﻿Elements, which brought together an axiomatisation of 
﻿geometry that right up to the late nineteenth century was considered to 
be perfect, serving as the epitome of the ﻿systematisation of mathematics 
within formal structures, and taken as the role model for how to build 
theories in science.

The admiration of mathematics acquired more fuel through the 
so-called scientific revolution. The people contributing to this were deep 
believers in God, as, for instance, Isaac ﻿Newton. They saw the world as 
created by God, meaning that insight and understanding of nature meant 
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insight and understanding of God’s creation. God had inserted laws of 
nature that could be captured by mathematics, truly an overwhelming 
insight. Through mathematics we human beings become able to grasp 
the rationality of God! When the natural sciences, following a protracted 
ideological struggle, separated from ﻿religious beliefs, the celebration of 
mathematics continued, and mathematics became nominated as the 
language of science. The celebration of mathematics has also become an 
integral part of much philosophy of science (e.g., Shapiro, 2000).

In contemporary circumstances, practitioners and proponents of 
mathematics (more generally the fashionable complex of Science, 
Technology, Engineering, and Mathematics, ﻿STEM) enjoy a great deal of 
political and cultural capital. In political and economic media discourse, 
statements to the effect that high achievement in ﻿STEM education 
is essential for economic competitiveness in the global marketplace 
are pervasive. A preponderance of what is written or spoken about 
mathematics in public, political, and academic discourses reflects an 
unexamined belief in what Paola Valero (2004) called ‘the unquestioned 
intrinsic goodness of both mathematics and mathematics education 
[that represents] the core of its “political” value’ (p. 13). 

In this book, we leave behind the blind admiration of mathematics 
and consider the emergence of a critical stance towards mathematics, 
in particular its dehumanising effects (Chapter 5, this volume). The 
most concerted critique has emanated from within the group of critical 
mathematics educators (Chapter 11, this volume; and see Greer & 
Skovsmose, 2012, for a history of that movement). Relatively few 
mathematicians have expressed a critical attitude towards what people 
have done using mathematics. Writers commenting on the human 
condition who have done so include, notably, Charles ﻿Dickens, who was 
repelled by the class oppression that was exacerbated by the ﻿Industrial 
Revolution (Chapter 12, this volume).

Perhaps we should make clear that we by no means discount the 
very many ways in which mathematics has been, and can be, used to 
benefit our lives both practically and intellectually. However, given that 
there is no lack of writing in praise of mathematics, we feel the need 
to emphasise rather its problematic uses, including in the service of 
imperialism, for advancing the techniques of war, and its inextricable 
links with ﻿capitalism.
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Ubiratan ﻿D’Ambrosio concluded his paper introducing 
﻿Ethnomathematics as follows:

Ideology […] takes a more subtle and damaging turn, with even longer 
and more disrupting effects, when built into the formation of the cadres 
and intellectual classes of former colonies, which constitute the majority 
of so-called Third World countries. We should not forget that ﻿colonialism 
grew together in a symbiotic relationship with modern science, in 
particular with mathematics, and technology. (D’Ambrosio, 1985, p. 47)

Beyond the material military contributions to colonial conquest through 
technology, we have to consider the symbolic violence of suppressing 
other forms of knowledge and replacing them with European 
epistemologies and practices.

Mathematics has long been used in the service of war, and many 
mathematicians have devoted their talents to the design of more 
effective ways of killing people. Others have used mathematics for 
the more efficient management of warfare. A very strong statement 
was made by Zygmunt ﻿Bauman (1989) that the ﻿Holocaust was not an 
anomaly within modernity but, in its monstrous effectivity, depended 
on the most modern practices of organisation, including mathematics 
(Chapter 5, this volume).

Again, the use of mathematics in the service of ﻿capitalism constitutes 
a vast subject and here we merely draw attention to some specific 
aspects. Most fundamental, perhaps, are the connections between the 
great abstractions of number and capital, intermediated through money 
as represented materially and, increasingly, in virtual forms. Economic 
and political theorists can present various dynamic system analyses 
of the possibly irreversible development of the particular pathological 
form of ﻿capitalism currently in the United States and beyond. We may 
consider to what extent contemporary mathematics education within 
particular political regimes plays a role in preparing children to be 
active proponents or passive citizens within ﻿capitalist systems.

In view of the discussion above, we take the position that it is no 
longer possible for mathematicians (or scientists, or any scholars) to 
claim ethical/political ﻿neutrality, such a claim in itself being a kind of 
ideology (Chapter 4, this volume). Specifically, in Chapter 3, Skovsmose 
discusses the views of G. H. ﻿Hardy as presented in ﻿A Mathematician’s 
Apology, in which ﻿Hardy (1967) suggests that a mathematician can 
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operate as a pure intellectual, with no responsibility for what is done 
with her/his work. Another mathematician, Chandler ﻿Davis (2015) 
issued a different kind of apology – not in the sense of ‘apologia’ – 
when he regretted that he and other mathematicians had not done 
more to oppose war, including the Mutually Assured Destruction 
(MAD) principle that guided policy during the ﻿Cold War, and was 
substantially based on the work of John von ﻿Neumann and others on 
game theory.

In direct opposition to ﻿Hardy’s stance, Ubiratan ﻿D’Ambrosio, in the 
manifesto for ‘Non-killing Mathematics’,1 asserts that it is not enough 
for mathematicians to do good work, they must pay attention to what 
will be done using that work, and that it is not enough for mathematics 
educators to teach students well, they must pay attention to what those 
students will do with what they have been taught. 

Development of mathematical understanding under 
instruction 

In considering relationships between the development of mathematics 
by humankind and the development of mathematical knowledge and 
understanding in a contemporary student, the most obvious point is 
that the former occurred over millenia as opposed to a small number 
of years. A child today is expected to deal, at least procedurally, with 
mathematical content that historically took multiple good brains 
collectively a very long time to figure out. 

As stated by ﻿Freudenthal (1991), ‘we know nearly nothing about 
how thinking develops in individuals, but we can learn a great deal 
from the development of mankind’ (p. 48). In response to his own 
question as to whether the learner should repeat the learning process of 
mankind, his response is ‘of course not’. Instead, his recommendation 
is that ‘the learner should reinvent mathematizing rather than 
mathematics; abstracting rather than abstractions; schematizing rather 
than schemes; formalising rather than formulas; alogrithmising rather 
than ﻿algorithms; verbalising rather than language’, which chimes with 

1� Ethics/Nonkilling/Mathematics (2024, April 5). Wikiversity, https://en.wikiversity.
org/wiki/Ethics/Nonkilling/Mathematics 

https://en.wikiversity.org/wiki/Ethics/Nonkilling/Mathematics
https://en.wikiversity.org/wiki/Ethics/Nonkilling/Mathematics
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our emphasis on actions. In the same spirit, ﻿Pólya argued for children 
having the opportunity to experience ﻿problem-solving for themselves: 
‘How can you know if you like raspberry pie if you have never tasted it?’ 
(﻿Pólya, 1945, p. v). 

Another important point has been clearly stated thus:

Teaching is one of the immense social influences that can affect a child, 
but its effects can be out of proportion to any other kind of social 
influence once the first beginnings of a child’s life are past. In it once 
again knowledge builds on knowledge, but the form of experience that 
makes it possible is really quite unlike those forms of experience that 
come the individual’s way when teaching is not involved. (Hamlyn, 
1978, p. 144)

Multidiversity

In terms of mathematics as a human activity, ‘multidiversity’ relates 
to differences among and within families of mathematical activities 
emergent from their cultural and historical underpinnings, including 
forms of life, worldviews, cognition, language, value systems, and so on. 
In terms of school mathematics, it relates to the myriad of differences, 
interacting in complex ways, among students (and also among ﻿teachers, 
a story in itself). These include, notably, ethnic diversity (Chapter 18, 
this volume) and ﻿gender (Chapter 19, this volume). Within mathematics 
education, much of the foundational work addressing diversity has been 
concerned with ‘﻿equity’ and ‘access’. The sloganising of these terms 
demands more careful analysis (e.g., Martin, 2019; Pais, 2012) and we 
pinpoint the following preliminary questions and comments:

•	 Access to what? Many if not most of the exhortations to 
improve access takes mathematics-as-school-subject as an 
unexamined given.

•	 Equity on whose terms? Is it merely assimilation, involving 
the denial of cultural ﻿identity?

•	 Beyond equity and access lie ﻿identity and ﻿agency. 

All of these, of course, are intensely political in nature.
In current circumstances, we can observe a hegemonical struggle 

between acknowledgment and valorisation of ﻿diversity in all its aspects, 
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and multifaceted forces tending towards ﻿homogenisation, linked with 
﻿globalisation (﻿Westernisation), corporatisation, metrification, and so 
on. Such ﻿homogenisation is certainly prominent within mathematics 
education. Perhaps the most obvious manifestation is in ﻿curricular 
documents, for which the ﻿Common Core State Standards within the 
United States may serve as an example. We draw attention to its stated 
principle of benchmarking with similar projects from other countries, 
contributing to a process of convergence towards global uniformity, 
exacerbated by the effects of the international comparison industry 
(Chapters 15 and 16, this volume).

Parenthetically, as a parallel, think of the onward march of English 
as a global language, among the consequences of which is a significant 
distortion of our field. This book, in English, has been written by speakers 
of many languages and edited by two people for whom English is a 
foreign language and one who grew up speaking English because of 
early colonisation and linguicide.2 

Epistemological pluralism is another central issue, including from 
the perspective of mathematics-as-discipline. Rik Pinxten, Ingrid van 
Dooren, and Frank Harvey (1983), who studied the fundamentally 
different epistemology of the ﻿Navajo people, in particular in relation to 
space, commented that: 

Through a systematic superimposition of the world view and thought 
system of the West on traditional non-Western systems of thought and 
action all over the world, a tremendous uniformization is taking hold 
[…] The risks we take on a worldwide scale, and the impoverishment we 
witness is – evolutionarily speaking – quite frightening. (pp. 174–175)

As a closing comment, we observe that in terms of families of 
mathematical practices, there is obvious diversity within mathematics 
as cultural constructions, mathematics in work practices, mathematics 
of everyday life, and, indeed, within academic mathematics (e.g., Hersh, 
2006). Yet this ﻿diversity is not generally manifest in school mathematics; 
we regard that as a problem.

2� To respect authors’ linguistic preferences and cultural identities, authors of 
each chapter have opted to follow British or American English in spelling and 
punctuation.
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Mathematics education as a research field

A survey volume edited by Anna ﻿Sierpinska and Jeremy ﻿Kilpatrick 
(1998) is tellingly titled ﻿Mathematics Education as a Research Domain: The 
Search for Identity. The emergence and development of mathematics 
education as a field has seen a diversification of influential disciplines and 
methodologies – broadly speaking, the balancing of technical disciplines 
by human disciplines such as ﻿sociology and ﻿anthropology, and formal 
statistical methods by interpretative methods of research and analysis. 

The desire to have clearcut methodologies avoiding complex human 
judgments has passed through many manifestations from the early 
alignment with ﻿logical positivism and related positions. In his address 
to the first International Conference on Mathematics Education in 
1969, Edward Begle explicitly recommended the empirical-scientific 
approach through a program of identifying the important variables and 
systematically studying the relations between them. In ﻿Begle (1979), he 
confessed to feeling depressed that a decade of experimental work had 
produced little progress. In fact, a range of theoretical frameworks may be 
characterised as attempts to apply scientific precision to the complexity of 
understanding and improving mathematics education – ﻿behaviourism, 
information-processing theory, ﻿Artificial Intelligence, neurocognition 
– aligned with a reliance on narrowly defined standards of empirical 
research and statistical modelling﻿. ﻿Kilpatrick (1981), in a paper entitled 
‘The Reasonable Ineffectiveness of Research in Mathematics Education’, 
cited Irving ﻿Kristol (1973), who raised the question why we can send 
a man to the moon, but cannot improve mathematics education, and 
answered it by pointing out that the former is a technical problem, the 
latter is a human problem. 

Academic mathematicians’ claims over mathematics 
education

The most obvious difference between mathematics-as-discipline and 
mathematics-as-school-subject lies in the nature of the populations 
involved. Picture a pyramid representing all those who are taught 
mathematics in school. A very small peak corresponds to those who 
will become academic mathematicians. A rather larger zone beneath 
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that corresponds to those, such as engineers, that will use significant 
technical mathematics. The largest part of the pyramid represents 
people who secure material support for those at the peak and who do, 
indeed, use mathematics, but most often learned in context as needed, 
using situated procedures unrelated to what they learned in school, and 
mediated by tools (Lave, 1988).

Accordingly, we ask ‘To what extent, and in what ways, should 
academic mathematicians be accorded control over school mathematics 
education?’ Mathematicians have vested interests in the reproduction of 
their kind, and so may be suspected of bias, as well as developmental 
ignorance, by which we mean that, in their expertise, they forget what it 
is like to struggle with mathematics. We put forward two propositions 
for consideration. The first is that mathematicians should not dominate 
school mathematics – simply put, mathematics education is far too 
important to be left to mathematicians. The second is that mathematics 
education is about much, much more than the transmission of a 
subset of accumulated and ﻿systematised mathematical knowledge 
and techniques. We take issue with the position that the predominant 
role of those who work in mathematics education should be simply to 
study and implement better ways to effect this transmission. For a clear 
statement of that position, broadly speaking, see the book edited by 
Michael ﻿Fried and Tommy ﻿Dreyfus (2014). 

The most obvious manifestation of mathematicians shaping 
mathematics education is through the formulation of ﻿curricula. The 
﻿Common Core State Standards for Mathematics in the United States, 
mentioned above, may be taken as representative of the search for the 
perfect model. It was primarily designed by three mathematicians, 
albeit with an advisory group that included mathematics educators. 
But there are many, many other actors that have direct and indirect roles 
in shaping mathematics education in the United States, as analysed in 
great detail by Mark Wolfmeyer (2014).

We suggest that the uses of the term ‘mathematics’ in political discourse 
support an unreasonable sway over the policies and administration of 
mathematics education. Both reflecting and influencing what politicians 
do, the images of mathematics and mathematics education among the 
public in general (Chapter 20, this volume) matter greatly.
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School mathematics as an instrument of the state

The advancement and perfection of mathematics are immediately connected 
with the prosperity of the state. (Attributed to ﻿Napoleon, 1800)

The functioning of the modern state presupposes a variety of mathematical 
technologies – accounting, ﻿statistics, and much more. Mathematics, on its part 

needs the institutions of the state (schools, universities, research institutions, 
etc.) to secure financing, recruitment and the rearing of competence. (﻿Høyrup, 

2019, p. 635)

Ian ﻿Hacking (1990) has documented, in painstaking detail, the ways in 
which the formal mathematics of ﻿probability and ﻿statistics developed 
within socio-political contexts, in close relationship to changing views 
of the nature of humans, and in the service of states. In a rare overtly 
political statement, he trenchantly observed that: 

We obtain data about a governed class whose deportment is offensive, 
and then attempt to alter what we guess are relevant conditions of 
that class in order to change the laws of ﻿statistics that the class obeys. 
(Hacking, 1990, p. 119)

The two most obvious mechanisms through which states control school 
mathematics are ﻿curriculum (in concert with mathematicians, see 
above) and standardised ﻿testing (in concert with psychometricians and 
others). We assert that ﻿curriculum, historically, has been characterised 
by inertia and stasis in terms of content and pedagogy, and as argued 
within this book, accords little weight to the needs of people in general. 

Arguably, however, the sharpest tool for state control of school 
mathematics lies within the proliferation of standardised ﻿testing, locally, 
nationally and globally, within which mathematics has a particular 
importance. On the one hand, mathematics is implicated because it 
underpins the models used to construct such ﻿testing and interpretations 
of the results and, at a deeper level, the culture of affording unjustified 
authority to numbers (e.g., Porter, 1975) and mathematical models 
(O’Neil, 2016; Skovsmose, 2005). And the imposition of such ﻿testing 
constrains and distorts mathematics teaching and learning (for a 
detailed historical survey by a battle-scarred participant, see Chapter 
14, this volume). 
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Formative assessment﻿, in the sense of assessment by a ﻿teacher in the 
course of interactions with students, forms an integral part of learning 
and teaching within a long-term relationship. Such a process has at least 
the potential of affording an effective form of communication. By contrast, 
summative assessment, in its typical forms, is a form of communication 
whose flaws are compounded across many stages (Miller-Jones & Greer, 
2009). In the United States, the standard use of the term ‘﻿achievement 
gap’, implying a deficit model, instead of ‘differences in test scores’ is 
another pernicious use of language. And accreditation in mathematics 
creates a barrier to educational and financial opportunities through 
imposing requirements unrelated to the actual needs of chosen career 
paths, as has been particularly well documented by Hacker (2016). 

Turning to the escalating power of international  comparative 
assessment exercises, Christine ﻿Keitel and ﻿Kilpatrick (1998) concluded 
a critique with the following damning assessment﻿:

The studies rest on the shakiest of foundations – they assume that the 
mantel of science can cover all weaknesses in design, incongruous data 
and errors of interpretation. They not only compare the incomparable, 
they rationalize the irrational. (p. 254)

In their edited volume, ﻿Education by the Numbers and the Making of 
Society, Sverker ﻿Lindblad, Daniel ﻿Pettersson, and Thomas ﻿Popkewitz 
(2018) analyse the dominance of international educational assessments 
(in which mathematics has a pre-eminent place in terms of its role in 
constructing models and in terms of its prominence as subject-matter 
of tests) in shaping ﻿educational policymaking on a global scale, to 
the extreme of shaping the right kind of people and the right kind of 
countries. Most fundamentally, they present arguments about the 
harmful effects of uncritical obeisance to the authority of numbers, and 
about the use of statistical and modelling﻿ techniques in furthering the 
rise of ﻿neoliberal hegemony in education. 

While ﻿curriculum and ﻿testing are the most blatant instruments, 
there are more subtle ways in which mathematics education may both 
reflect and frame forms of life and worldviews. Here we exemplify core 
elements of the standard school mathematics ﻿curriculum and their 
possible effects:
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•	 In many systems of mathematics education, considerable 
emphasis is given to procedural fluency with ﻿algorithms. 
Might it be that this helps form a disposition for following 
rules, and abdicating responsibility for making personal 
judgments? (Skovsmose, 1994).

•	 It has been amply documented (e.g., Verschaffel, Greer, & De 
Corte, 2000) that children manifest suspension of sense-making 
when solving word (or story) problems in mathematics. Is 
it going too far to suggest that this kind of experience over 
years of schooling contributes to inculcating a frame of mind 
whereby a person uncritically accepts an unproblematic 
mapping of situations in the world onto equations? (see, e.g., 
Porter, 1975).

•	 More generally, it could be argued that the nature of 
mathematical modelling﻿ in general is poorly conveyed in 
mathematics education, failing to address a critical attitude 
to modelling that takes into account the motivations of 
the modellers, the limitations of representational and 
physical modelling tools available, the reliance of models 
on assumptions made, the difficulty of gauging the effects 
of simplification, the complexities of interpretation, and 
the nuances of communicating conclusions. Accordingly, 
mathematics education typically fails to prepare students 
to become citizens with a critical disposition and a desire to 
achieve and wield ﻿agency. 

•	 A specific aspect of viewing the world that ﻿teachers and 
users of mathematics may unwittingly promote is the implicit 
rule that anything can be measured on a single dimension 
(Horkheimer & Adorno, 1944/1997). Once that is done, 
there are numerous implications, such as that averages can 
be worked out for different populations and compared (the 
history of measurements of intelligence provides an obvious 
example).
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Final comments

Commentaries on mathematics education in schools – from students, 
parents, ﻿teachers, mathematics educators, researchers, politicians, and 
people in general – tend to be dominated by discontents and a sense of 
puzzlement about why such education seems to be unsuccessful in many 
ways despite the efforts put into improving it. In this book we argue that 
one starting point in addressing these discontents and their causes is 
a back-to-basics analysis of what is meant by ‘doing mathematics’, in 
particular by people designated as ‘mathematicians’, and how that vast 
diversity of activities contributes to shaping what happens in school 
classrooms. Throughout, we emphasise that the doing and teaching and 
learning of mathematics are situated in historical, cultural, social, and 
political – in short, human – contexts.
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PART 1





2. Why and how people develop 
mathematics

 Brian Greer

The development of mathematics by humans has a long and unfinished history. 
In this, necessarily highly selective, overview, the discussion is framed in terms 
of the environments – physical, cultural, socio-political, specialised – within 
which people, including those designated as ‘mathematicians’ do what is called 
‘mathematics’ in all its many forms. These forms include the traditional divide 
between ‘﻿pure’ and ‘﻿applied’. A distinction is drawn between internal and 
external processes driving the development, and within internal drivers between 
those of creation and those of ﻿systematisation. The links between this chapter and 
Chapter 13 are stressed throughout.

Introduction

Philosophers, like most other people who think about it at all,  
tend to take ‘mathematics’ for granted (Hacking, 2014, p. 41). 

Arguably, ﻿Hacking’s observation also holds true for most mathematicians, 
mathematics ﻿teachers, researchers on mathematics education – and 
everyone else. A major thrust of this book is to combat this tendency.

One of the most important and powerful antidotes to taking 
mathematics for granted is to examine the history of people – in particular 
the special kinds of people who are designated as ‘mathematicians’ –  
creating, chronicling, developing, ﻿systematising, applying what people 
call ‘mathematics’ or ‘doing mathematics’.

A historian of mathematics faces the problem faced, mutatis mutandis, 
by the anthropologist, the child psychologist, the therapist, and many 
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others, namely how to understand, from within one's one cultural and 
epistemological frameworks, those of the Other. As pointed out by 
scholars who have done the hard work, notably Jens ﻿Høyrup (Greer, 
2021), some historians of mathematics address this challenge better 
than others. 

In the context of China, but with general application, Christopher 
﻿Cullen (2009) made a fundamental point in ruling out

the idea that there is a priori a universal ahistorical, cross-cultural ‘natural 
kind’ called ‘mathematics’ that can simply be located and studied once 
one can penetrate the linguistic barrier to see what it is called in Chinese, 
and on which one can simply impose all the structures and expectations 
that a modern person finds in the subject called ‘mathematics’ in twenty-
first-century English. (p. 592)

And, as with all history, the ﻿history of mathematics is complexified by 
gaps, errors of translation and interpretation, ideologically motivated 
falsifications, and other imperfections in the record. As a particularly 
striking instance, if you, the reader, would agree with the statement 
‘﻿Pythagoras was a mathematician’, you are recommended to read the 
entry on ﻿Pythagoras in the Stanford Encyclopaedia of Philosophy, available 
online (Huffman, 2018). And the entry on ﻿Socrates, in which it is stated 
that: ‘Each age, each intellectual turn, produces a ﻿Socrates of its own’ 
(Nails & Monoson, 2022).

It will be obvious that, in the service of writing this chapter, draconian 
selection was inevitable. The range of educational systems considered is 
limited. Topics are chosen with an eye to the arguments advanced in 
Chapter 13 in this volume. Thus, the preponderance of mathematical 
content addressed does not go beyond that of school mathematics. 
There is heavy reliance on what I judge to be load-bearing examples. 

As a simple but convenient scheme, I frame the discussion by asking 
what are the ‘drivers’ of mathematical development, choosing that word 
to connote both impulsion and steering, the ‘why’ and the ‘how’ of the 
chapter title. I distinguish between external and internal drivers. The 
former are framed in terms of adaptations to environments – physical, 
cultural, political. A theme throughout is the relationship between 
the two faces of mathematics – on the one hand, the decontextualised 
codifications of accumulated mathematical knowledge and, on the other, 
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the contextualised applications of mathematics to aspects of physical 
and human reality. 

I further divide the discussion of internal drivers into those 
relating to acts of creating mathematics, and those relating to acts of 
﻿systematising – again an obvious simplification that bears on discussion 
of a number of important issues, such as the fluid relationship between 
diversification and unification within mathematics, ways in which the 
development may be considered as following an inevitable trajectory 
or being contingent, and the relative contributions of individuals and 
collectives. 

Internal drivers shape the discipline that emerged as a self-aware field 
of human activity in diverse milieux, with their own subcultures and 
norms, as ‘constructed environments’. There are also special-purpose 
constructed environments relating to particular activity systems that 
mathematics can serve, such as military engineering.

The ﻿history of mathematics makes it abundantly clear that its 
development is a long and difficult process, and that constitutive of that 
development are epistemological crises and their resolutions. Periods 
of relatively steady elaboration and consolidation are punctuated by 
discontinuities. 

In discussing mathematical ﻿creativity, I do not focus on the stories of 
individual triumphs that are often prominent in superficially ‘popular’ 
histories; instead, the emphasis is on collective aspects and on some of 
the salient factors conducive to the gaining and dissemination of new 
insights. In this respect it is difficult to overstate the importance of 
material ﻿representations, including the revolutionarily new resources 
made available through ﻿computer technology.

Turning to ﻿systematisation of mathematical knowledge, it is argued 
that while many aspects of the development of mathematics are 
contingent and subject to cultural ﻿diversity, that development is not 
arbitrary, since mathematics is an activity of humans existing in bodies, 
within social groupings, on a planet that affords underpinnings for 
mathematics, notably countable entities. Thus, any ﻿systematisation will 
reflect the balance between contingency and constraints. In particular, 
those constraints are manifest in general mechanisms of development, 
variously described in terms of hierarchical levels with each succeeding 
level building on its predecessor, well articulated by Hans ﻿Freudenthal 
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(1991), or ﻿Piagetian notions of successions of local equilibria – permeated 
throughout by the dialectical imperative. Along the same lines, the 
mathematician William ﻿Thurstone (1994) invoked recursion:

As mathematics advances, we incorporate it into our thinking. As our 
thinking becomes more sophisticated, we generate new mathematical 
concepts and new mathematical structures: the subject matter of 
mathematics changes to reflect how we think. (p. 162)

Next, with a narrowing of focus to ‘﻿pure’ or ‘theoretical’ mathematics, 
attention is given to the emphasis within ‘modern mathematics’ on 
elusive, temporary and local, aspirations for ﻿certainty such as absolutely 
precise definitions, irrefutable ﻿proofs, impeccable structures. A 
particular example examined in some detail is the ﻿Bourbaki enterprise 
that enjoyed considerable influence within academic mathematics 
for much of the twentieth century. That analysis illuminates tensions 
between mathematics as an academic discipline and mathematics as a 
school subject, and debate over the extent and nature of the influence of 
the former over the latter. 

The chapter concludes with a brief summary and look ahead to 
Chapter 13.

External drivers

Mathematical practices may originate in the interactions between the 
human species and their physical environments, but humans, from a 
very early stage, have felt needs beyond the necessities of staying alive, 
including needs that may be described as spiritual, aesthetic, ludic, and 
the need for explanations and understanding. Thus, astronomy, which 
has been prominent for so long in so many cultures, has practical aspects 
relating to navigation, and has also been one of the salient areas for the 
metanotion that the physical world is governed by laws that can be 
mathematically framed, and it also has deeply ﻿religious connotations.

Then I briefly address the roles of mathematical activities within 
socio-political environments, with particular attention to how the 
discipline exists in a symbiotic relationship with the state, reflected 
in what might be called ‘the unreasonable political effectiveness of 
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“mathematics”’ (where the quotation marks signal that what is being 
referenced is the propagandistic use of the word.)

Looking ahead to the next two sections, I consider some of the 
ways in which, as mathematics emerged as a recognised discipline 
with its acknowledged experts, creators, systematisers, practitioners, 
and ﻿teachers, external drivers have interacted with the drivers internal 
to the discipline. And, as an overarching theme, it is proposed that 
mathematics has ‘two faces’, one abstract and formal, the other relating 
to ‘the real world’ (a concept that I will not attempt to define, but assume 
to be meaningful in some way to the reader).

Physical environments, practical needs

Humans originally developed practices involving mathematics as 
part of adapting to their physical environments and the practicalities 
of survival. There are many experiences underpinning aspects of 
mathematics that are universal – birth and death, the force of gravity, 
cycles of day and night, seasons, and tides, observations of the night 
sky, objects and other entities that afford counting (fingers, prenatally 
listening to the maternal heartbeat), the approximate symmetry of the 
human body, and on and on. At this point in history, we should add 
finiteness in its multiple manifestations as an inherent aspect of the 
planet we inhabit. 

As a counterpoint to universality (there is always a counterpoint) 
there is diversity in physical environments. It might be expected, for 
example, that the spatial epistemology, in interaction with visual 
perception, of people living in a dense forest would differ from that 
of people living on a treeless plain. One school of thought attributes 
﻿diversity within the human race to climatic and environmental variation.

As already alluded to, a natural starting point is the human body, 
with obvious relevance to counting, measuring, perception, movement… 
The use of the vocal tract, mouth etc. for communication, evolving into 
language, was foundational for social development, and there followed 
the emergence of writing which enables, to a significantly greater extent 
that oral transmission, the extension of communication across space and 
time (Kaput & Schaffer, 2002). Writing also exemplifies the essentially 
human (though not exclusively so) characteristic of the use of tools 
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extending the functionality of the body, underlying the emergence of 
cultural evolution beyond biological evolution.

Practices involving mathematics have been implicated in all 
forms of interactions of our species with the physical environment: 
adapting, observing and predicting, recording and organising data, 
understanding and explaining, controlling and changing to the point 
of destruction. Alan ﻿Bishop (1988) listed six families of practices 
significantly imbued with mathematical connotations that are found in 
essentially all cultures, namely counting, locating, measuring, playing, 
designing, and explaining. The first three, broadly speaking, represent 
ways of interacting with the physical environment in service of practical 
requirements, while the last three entail aspects that transcend, to a 
greater or lesser extent, the immediate needs of survival, as taken up in 
the next section. 

Cultural environments, supra-utilitarian desires

As humans came to live within increasingly complex social/cultural 
environments, practices involving mathematical elements transcended 
issues of survival and day-to-day life. The study of mathematics may 
have been significantly motivated by contemplation of an immortal 
soul in the face of the ephemerality of bodily death. For many of the 
recognised greats of European mathematics, even into relatively recent 
times, the links to (broadly speaking) ﻿religious beliefs have been 
extremely strong (and often overlooked in histories that emphasise the 
rationality of the ‘great men [sic] of mathematics’). Perhaps the hope 
of finding non-tautologous absolute ﻿certainty through mathematics 
in recent centuries is related to the loss, with the growth of scientific 
worldviews, of the feeling of absolute ﻿certainty attainable through blind 
﻿religious faith.

Aesthetic impulses run deep. Franz ﻿Boas (1927/1955) concluded 
that:

No people […] however hard their lives may be, spend all their time, all 
their energies in the acquisition of food and shelter […] Even the poorest 
tribes have produced work that gives them aesthetic pleasure […] [They] 
devote much of their energy to the creation of works of  beauty. (p. 9)
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Jens ﻿Høyrup (2019) discusses the relationship between the geometrical 
structures (symmetries, in particular) that can be found in pottery, 
weaving, and other artefacts, and the development of formal ﻿geometry. 
With particular reference to the studies by Paulus ﻿Gerdes and his 
colleagues into the decorative art of Subsaharan Africa, he asserted 
that ‘the decorations of many cultures […] can be regarded in full 
right as expressions of formal investigation and experiment’ (p. 202). 
Nevertheless, he cautioned that ‘no necessity leads from an aesthetics of 
forms to formal investigation of forms’ (p. 203). In any case, common to 
aesthetically motivated creations and formal mathematics is the idea of 
pattern (Mukhopadhyay, 2009). 

The ludic impulse (‘playing’, in ﻿Bishop’s list) likewise may be 
invoked as a wellspring of mathematical activity. In the earlier known 
recordings of mathematical activity, in such forms as cuneiform and 
papyri, are inscribed mathematical puzzles as well as data and practical 
problems. And besides puzzles, games of strategy and chance are also 
found across cultures. The attraction of intellectual play may be seen 
both in the popularity among general populations of puzzles such as 
crosswords (I can claim expertise in that field) and in the pursuit of 
‘﻿pure’ mathematics for its own sake. However, as Volker ﻿Runde (2003) 
reminds us, ‘mathematicians live in the real world and their mathematics 
interacts with the real world in one way or another’. Which takes us to 
the next section…

State environments, socio-political constraints

The functioning of the modern state presupposes a variety of mathematical 
technologies – accounting, ﻿statistics, and much more. Mathematics, on its part, 

needs the institutions of the state (schools, universities, research institutions, 
etc.) to secure financing, recruitment and the rearing of competence. (﻿Høyrup, 

2019, p. 635)

In a footnote, Høyrup further comments that, in the last four decades 
or so, ‘without information technology, the immense increase of 
administrative control of citizens (to mention but that) would never 
have been possible’. 
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As societies became more complex, mathematics became a major 
resource for governance and statecraft. For example, Gary ﻿Urton 
(2009) discussed the complex mathematical resources that served 
administration of the ﻿Inkan Empire. In such examples, we see early 
examples of what Houman Harouni (2015) terms ‘Commercial-
Administrative Mathematics’ (p. 59), dealing with finance, trade, 
censuses, labour, and citizenship. 

Within Europe, as the ﻿Industrial Revolution gathered steam and 
thereafter, mathematics education was progressively tailored to 
produce a minimally trained workforce and to prepare people to live 
as practitioners or consumers of ﻿capitalism. Beyond Europe, it was 
‘the secret weapon of imperialism’ (Bishop, 1990), and implicated in 
﻿White supremacy, so cogently expressed in ﻿Høyrup’s (2020) phrase ‘the 
ideological shroud assigning the right to conquer and kill in the name 
of moral superiority’ (p. 8).

At the beginning of the nineteenth century, ﻿Napoleon wrote that ‘the 
advancement and perfection of mathematics are immediately connected 
with the prosperity of the state’ (cited in Moritz, 1958). We find an echo 
in the Executive Summary of the Final Report of the National Mathematics 
Advisory Panel (2008), where it is stated that:

During most of the 20th century, the United States possessed peerless 
mathematical prowess […] But without substantial and sustained changes 
to its educational system, the United States will relinquish its leadership 
in the 21st century. Much of the commentary on mathematics and science 
in the United States focuses on national economic competitiveness and 
the economic well-being of citizens and enterprises. There is reason 
enough for concern about these matters, but it is yet more fundamental 
to recognize that the safety of the nation and the quality of life – not just 
the prosperity of the nation – are at issue. (p. xi)

This quotation exemplifies what President ﻿Eisenhower, in a draft of 
his retirement speech, referred to as the ‘military-industrial-academic 
complex’. Mathematicians benefit from the perceived importance of 
their discipline, typically with scant acceptance or even awareness of 
moral responsibilities; enabling ‘the unreasonable political effectiveness 
of “mathematics”’.

Another category proposed by Harouni, that of ‘social-analytical 
mathematics’ (p. 67) is exemplified in economics and social ﻿statistics. 
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A genealogical account of the development of mathematics of this kind, 
based on collecting vast amounts of data and creating conceptual and 
mathematical means for their analysis, inextricably intertwined with 
views on the nature of collective human behaviour within societies, 
was provided by ﻿Hacking (1990). Advances in information technology 
have immensely increased the ability to accumulate and process data 
and to build models that format many aspects of our lives (as pointed 
out by Ole Skovsmose for decades), models that are generally beyond 
the control of those affected and typically not even accessible to their 
inspection.

As for the relationship between mathematics education and 
governance, space does not permit even a minimal discussion, so I 
restrict myself to the following (adapted) aphorism: ‘All education tends 
to control, and mathematics education tends to control absolutely.’

Internal/external drivers, and the two faces of mathematics

Three main models have been traditionally used to explain scientific 
development and change. According to one, scientists respond to 
the results of earlier science and to questions raised by these results 
(‘internalism’); according to another, general (mostly technological) 
social needs are the moving force, and their absence a brake (one brand 
of ‘externalism’). The third approach […] looks into the general history 
of ideas more specifically into the history of philosophy, for the causes 
that make scientists organise their search and shape their theories as they 
do. (﻿Høyrup, 1994, p. 124)

Høyrup characterises the above as a simplistic, nevertheless convenient, 
scheme, and it is so applied in this chapter, simplified further by 
omitting explicit discussion of ‘the third approach’ though that does 
appear passim in relation to ‘general history of ideas’, in particular:

•	 the emergence of empirical science;

•	 ﻿Eurocentrism – more specifically, Grecocentrism;

•	 ﻿logical positivism and its extended family (discussed in many 
chapters of this book);

•	 ﻿structuralism (see below).
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The two faces of mathematics mentioned in the introduction are reflected 
in the conventional opposition of ‘﻿pure’ and ‘﻿applied’. In general, the 
external drivers bear more on applications, and the internal relate more 
to ﻿pure mathematics. Again, there are many interactions, such as the 
familiar observation that the ‘purest’ of mathematics turns out to have 
applications, often decades after its development – even for ﻿Hardy, for 
example (see Chapter 3, this volume). Hacking (2014, pp. 146–148) 
refers to the older term ‘mixed mathematics’ reflecting an area such 
as theoretical ﻿physics that is dependent on a combination of empirical 
investigations and mathematical modelling﻿. ﻿Runde (2003) also offered 
an improvement on ‘﻿pure’:

Pure mathematics isn’t pure: neither in the sense that it is removed from 
the real world, nor in the sense that its practitioners can ultimately avoid 
the moral questions faced by more applied scientists. It would much 
better be called ‘theoretical mathematics’. (p. 3)

This also covers the point made by ﻿Hacking (2014, p. 9) that mathematics 
can be ﻿applied to (theoretical) mathematics also.

Modelling acts constitute the interface between the two faces of 
mathematics. The modelling cycle is often simplistically represented 
in terms of mathematisation of a situation, derivation of results within 
theoretical mathematics, interpretation back into the context, and 
a reality check possibly followed by revision of the model. To those 
elements should be added (at least) the motivations of the modellers, 
the adequacy of the assumptions on which the modes is based, the range 
of applicable mathematics to hand or derivable for the task at hand, 
communication of interpretations to interested groups.

Historically, modelling was first applied to physical phenomena, 
notably in cosmology and ﻿physics; more recently, particularly through 
harnessing the power of ﻿computer simulations, the modelling of social 
and political phenomena has become prevalent. For such phenomena, 
the assumptions on which the model is based become critical, are 
often extremely tenuous, and ideologically porous. Modelling﻿ physical 
and social phenomena may be broadly contrasted as manifesting 
‘unreasonable effectiveness’ (Wigner, 1960) and ‘reasonable 
ineffectiveness’.
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Internal drivers: Creating

For internal drivers, another convenient distinction may be drawn 
between acts of creating, addressed in this section, and acts of 
organising, addressed in the next. As throughout the chapter, there is 
a concentration on strategically chosen aspects laying groundwork for 
arguments advanced in Chapter 13. 

Extending the general notion of environments – physical, cultural, 
and political – appealed to in the section on external drivers, the first 
part here deals with the constructed environments within which 
people designated as ‘mathematicians’ carry on the activities that 
are recognised as ‘doing mathematics’. Now primarily universities 
(historically also ﻿religious institutions, royal courts, intellectual salons, 
and other milieux), these also include settings outside the academy, 
notably military establishments, industry, and the corporate world.

Any study of the ﻿history of mathematics makes clear the importance 
of people running up against the puzzles created when their current 
ways of thinking cannot cope with what they are noticing. ﻿Galileo, for 
example, was intrigued that there are as many squared natural numbers 
as there are natural numbers, but it took nearly three centuries before 
Georg ﻿Cantor proposed a reconceptualisation that resolved the issue – 
and famously commented that ‘I see it, but I don’t believe it’.	

The next focus is on mathematical ﻿creativity, highlighting certain 
intellectual aspects and mental processes, such as those described 
by George ﻿Pólya based on his observations of the behaviour of 
mathematicians, including himself. A particularly powerful weapon 
in the mathematician's armamentarium is a sensitive antenna for the 
perception of structure, in particular the same underlying structure 
in apparently different contexts. Formally such insights are termed 
isomorphisms, aphoristically by Henri ﻿Poincaré’s characterisation of 
mathematics as the art of giving the same name to different things 
(Verhulst, 2012, p. 157).

Running through the whole story of human interplay between 
biological and cultural evolution is the role of material ﻿representations 
(Kaput & Schaffer, 2002). In particular, the impact of ﻿computers 
represents a fifth stage; for a seminal analysis, see Kaput, 1992.
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Constructed environments, disciplinary norms

Over the last two millennia or more, with cultural variations, formal 
mathematics has emerged as a discipline. Analysis in any detail of how 
this happened in different cultures would require another book. Here I 
merely stipulate some ‘boundary conditions’ for such a work, beginning 
with a caution from ﻿Cullen (2009): 

Can we identify an activity in ancient China with a family resemblance 
to what would nowadays be called ‘mathematics’? Or was there a 
self-conscious and publically recognized group of people in ancient 
China with a family resemblance to what would be called nowadays 
‘mathematicians’? (p. 593)

In a similar vein, ﻿Høyrup (2013) discussed the criteria that might be used 
to judge the appropriateness of the term ‘Babylonian mathematicians’ 
(concluding that there were some, even if a small minority). Fast-
forwarding to the modern era, Karen ﻿Parshall (2009) traced the 
internationalisation of mathematics between 1800 and 1960. 

Within the academy, the niches established/occupied by individual 
mathematicians are naturally diverse (the image comes to mind of ﻿Hardy 
at high table enjoying port and walnuts). In general, a mathematician 
with a university position has enough financial security to devote her/
his time to research and teaching, and most of them do. Further, such 
an individual enjoys the support of a local and extended community – a 
very full discussion of such collective aspects will be found in ﻿Hersh 
and ﻿John-Steiner (2011). The specific case of the ﻿Bourbaki collective, an 
extreme example of a norm-dense subculture, is discussed below.

There is also the issue of how mathematics relates to other disciplines 
– most obviously ﻿physics, ﻿statistics, and ﻿computer science but also social 
sciences – through statistical and other forms of ﻿modelling (see Chapter 
8, this volume). Further, what I term special-purpose constructed 
environments exist outside universities. Highly specific constructed 
environments that come to mind are the ﻿Manhattan Project to develop 
nuclear weapons, and the code-breaking team led by ﻿Alan Turing at 
Bletchley Park; current military applications include a great deal of 
﻿Artificial Intelligence, for example to program drones so that they can, 
without human intervention, ‘decide’ to kill people.
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The corporate business world also provides environments for 
mathematical work. Two examples that spring to mind are William Sealy 
﻿Gossett, developer of the t-test while employed as the Head Experimental 
Brewer by Guinness, and Claude ﻿Shannon, who developed Information 
Theory while working for Bell Labs. In both cases, work initially driven 
by situated problems proved to be of much wider significance (as any 
﻿psychology student knows).

Epistemological crises, conceptual change

Expanding mathematical knowledge is much more than mere 
accumulation; it is driven by conceptual restructuring. The ﻿history of 
mathematics is replete with examples of puzzlement. Epistemological 
crises may break in moments (relatively speaking) when the unthinkable 
becomes thinkable and the ineffable effable, but the ramifications can 
extend across centuries (for example, from ﻿Galileo to ﻿Cantor, referred to 
above), indeed millennia.

I begin by sketching the fascinatingly complex history of what 
people have meant by ‘number’. Every (or at least, essentially every) 
culture makes use of counting, and does so in natural ways reflecting 
the affordances of the environment; beyond that complications ensue. 
Here I minimally comment on four epistemologically revolutionary 
extensions of what is meant by ‘number’, intimately tied to the basic 
arithmetical operations. 

Natural numbers to positive rationals

It appears that for a long time, the conceptualisation of positive 
rationals remained tied to that of natural numbers. For the Greeks, for 
example, ﻿fractions intimately related to ratios and proportions, often in 
geometrical contexts. Cultural ﻿diversity is evident – why, for example, 
did the Egyptians and others restrict themselves almost entirely to unit 
﻿fractions? The Mesopotamians developed procedures for division by 
﻿fractions equivalent to the rule not infrequently taught to students today 
to ‘invert and multiply’, using table of reciprocals. And so on…
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Positive numbers to directed numbers

I cannot resist beginning with the quotation: 

3 – 8 is an impossibility, it requires you to take from 3 more than there is 
in 3, which is absurd.

The source of the above statement was neither someone writing centuries 
ago, nor a mathematical ignoramus. It was Augustus ﻿De Morgan (1806–
1871), an eminent English mathematician, in his extremely interesting 
book called ﻿Study and Difficulties of Mathematics (﻿De Morgan, 1831/1910). 

While it is relatively easy to expand the domain of application of 
numbers to directed numbers for addition and subtraction, it took a 
very long time to agree on an explanation for something the poet W. H. 
﻿Auden, in his ﻿A Certain World (1970), remembered from school:

Minus times minus makes a plus
The reason for this we need not discuss.

Rational numbers to real numbers

The realisation that, for example, the exact length of the diagonal of a unit 
square cannot be expressed as the ratio of two natural numbers required 
a reconceptualisation of number; the details are unclear in a historical 
record complicated by mythical stories. It is generally considered 
that a rigorous theory of irrational numbers was accomplished in the 
nineteenth century by Richard ﻿Dedekind, ﻿Cantor, and Karl ﻿Weierstrass. 

Real numbers to complex numbers

The story of how complex numbers came to be accepted is even more 
fascinating. A key part was the invention of ﻿diagrams providing a 
﻿representation for the numbers and arithmetical operations on them. 
And then there are quaternions, surreal numbers, on and on … And they 
are all called ‘numbers’!

The above sketch primarily relates to the expansion of numbers 
within theoretical mathematics. Another perspective is that numbers 
are embedded within cultural matrices – in ﻿Urton’s (1997) phrase, they 
have a ‘social life’. In contrast to the formal structural analysis of numbers 
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and the operations upon them (see ﻿Bourbaki discussion below), in 
human contexts multiplication and division are polysemous (Greer, 
1992). Emphasis on what people do with numbers, whether for practical 
purposes, societal functioning, or for intellectual pleasure, contrasts 
with what I assert, without further elaboration, is the unproductive, 
arguably even meaningless, question ‘Do numbers (of a specified type, 
especially negative, irrational, complex) exist?’. 

Beyond ﻿arithmetic, parallel examples can easily be found illustrative 
of the points attempted in this chapter from the histories of other 
components of school mathematics: ﻿algebra, ﻿geometry, ﻿calculus, 
﻿probability. Space allows only the briefest hints of how those discussions 
might go:

•	 For 2500 years, formal ﻿algebra (‘rich in structure but weak 
in meaning’ as René ﻿Thom put it) had little or no practical 
purpose (Høyrup﻿, 2013). The familiar school ﻿algebra of today 
(satirised as ‘the intensive study of the last three letters of 
the alphabet’) is the product of a representationally driven 
development over millennia.

•	 As the familiar story goes, ﻿Euclid’s ﻿Elements provided a model 
of the axiomatic method in mathematics until flaws were 
discovered and rectified by David ﻿Hilbert – at the cost of losing 
the simplicity of the original five axioms. And the problem 
of the fifth axiom, that bothered mathematicians (such as 
Omar ﻿Khayyam) for a very long time, finally was resolved 
(at least temporarily) by the emergence of non-﻿Euclidean 
﻿geometries. Further liberating reconceptualisations ensued, 
with the escape from a mere three dimensions to many, and 
on to ﻿Mandelbrot’s exposition of fractal ﻿geometry. For some 
mathematicians (notably the ﻿Bourbakists), ﻿geometry became 
detached from its roots in locating and spatial cognition, and 
was absorbed into ﻿formalism.

•	 The story of ﻿calculus is long, and profoundly illustrates the 
importance of ﻿representations (Kaput, 1994). While its roots 
lie deep in intuitions of time and movement as continuous, 
it became a major topic for the nineteenth-century drive for 
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rigour. And it raises issues of intellectual priority between 
‘Europe’ and India.

•	 ﻿Probability is a very special case, since its explicit 
mathematisation is relatively recent and hence more open 
to historical documentation and analysis. ﻿Hacking’s (1990) 
remarkable work shows how its development was related to 
the most general social and political issues of statehood, mass 
collections of data, conceptions of the nature of humanity in 
the mass.

Across all of the branches of mathematics, there has occurred a 
revolutionary shift from the conception of mathematical formulations 
as providing, in some sense, a direct picture of the world, to the 
reconceptualisation that they model the world, in some sense.

There are many theoretical frameworks that may be invoked to 
explicate the above. In terms of theoretical mathematics, a pervasive need 
is for closure, in the technical sense. It is a prime driver in the expansion 
of ‘number’ to more and more complex structures. When addition and 
its inverse, subtraction, and multiplication and its inverse, division, 
arise through contemplation and applications of the natural numbers, 
the fact that subtraction and division are not always possible drives 
consideration of the possibility of negative and rational numbers and 
so on, for each expansion. At each stage, a local equilibrium is achieved 
(the real numbers, with a coherent ﻿representation in the number line, 
the complex numbers underpinning the fundamental theory of ﻿algebra) 
which itself harbours the germ of a disequilibrium. The parallel with a 
central aspect of Jean ﻿Piaget’s account of cognitive development should 
be obvious. 

Mathematical creativity

Throughout the ﻿history of mathematics, there have been individuals who 
have realised remarkable insights in posing and solving mathematical 
problems. The completion of a ﻿proof of ﻿Fermat’s Last Theorem by 
Andrew ﻿Wiles and others arouses intense admiration among the general 
public, although, or perhaps because, the technical details are beyond 
all but a very small number of mathematicians; yet the pleasure of 
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solving a problem insightfully is open to everyone, including children. 
On the assumption that the reader knows some or many of the canonical 
examples, the focus of this section is on how the individual’s intellectual 
feats are embedded within the collective activities of communities of 
mathematicians.

To begin with a statement of the obvious, mathematicians approaching 
a creative challenge come forearmed with a great deal of resources 
– including methods, ﻿representations, ﻿proofs, structural analysis, 
﻿problem-solving strategies, and so on (and they differ fundamentally 
from schoolchildren in these respects). These resources have been 
recorded, accumulated, critiqued, and ﻿systematised over centuries 
and multiple cultures. Mathematicians operate within the circles of 
their forebears and contemporaries, which, due to communicational 
advances, are now globally and speedily accessed.

These resources are activated by deploying a range of routine 
methods, heuristics, strategies, combined with mental flexibility. Above 
all is the disposition to look for and exploit structure. One of my ﻿teachers 
used to say ‘Good mathematicians are lazy’ by which he meant that they 
would look for an insightful rather than routine but laborious technique. 
(The apocryphal story of the young ﻿Gauss finding a ‘smart’ way to sum 
the integers from 1 to 100 is the classic example.)

Through observation and analysis of the behaviour of mathematicians, 
including himself, and a great variety of examples, ﻿Pólya inductively 
taxonomised some of these strategies. The following are among the 
most salient aspects of mathematicians’ armamentaria:

•	 In its most explicit form, the exploitation of structure involves 
an isomorphism (Greer & Harel, 1998). A famous example is 
this account of a sudden insight:

The idea came to me, apparently with nothing whatever in my previous 
thoughts having prepared me for it, that the transformations which I 
had used to define Fuchsian functions were identical with those of non-
﻿Euclidean ﻿geometry. (﻿Poincaré, quoted in Newman, 1956, Vol. 4, p. 2020)

•	 By a kind of pattern recognition, before thinking about the 
details of a solution it is often possible to recognise problem/
solution types, e.g., ‘this kind of problem may well hinge on 
finding an invariant’, ‘clearly this can be handled by induction’, 
and so on.
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•	 Intuition is very frequently invoked by mathematicians. An 
agreed-upon definition, let alone a convincing theoretical 
explanation remains elusive (Fischbein, 1987). For present 
purposes, I take it to mean ‘any immediate inference in which 
there is no conscious reasoning’ (Hacking, 2014, p. 17). 

Beyond the deployment of these resources, in ways that may be more or 
less routinised, there are the most elevated forms of ﻿creativity when an 
individual or group achieves a conceptual restructuring, finds a hitherto 
unknown ﻿proof that goes to the structural heart of a big idea – or designs 
a transformative ﻿representation.

Material representations

Material ﻿representations have been of crucial importance in the creation, 
accumulation, organisation, and communication of mathematical 
results. As throughout this chapter, an attempt is made to use space 
efficiently through powerful examples. In this section, the focus is on 
inscriptions on paper and other materials (in particular notations), and 
﻿diagrams. A separate section, which follows, outlines the revolutionarily 
new resources afforded by advances in ﻿computer-based ﻿representations 
(Kaput, 1992). No attempt is made to address the vast topic of ﻿natural 
language and mathematics or that of mental ﻿representations.

A human starting point is the body; it is no accident that the most 
common bases for numerical systems are 5, 10, 20; some cultures go 
beyond manual and pedal digits. Body parts are also ubiquitous in 
measurement (hand, foot, cubit…). And in recent years much attention 
has been given to embodied cognition.

If it is helpful – which I doubt – to speak of mathematics as a language, 
then it is one that draws on ﻿natural languages, with enhancements, 
and with particular notations. A glance at the encyclopaedic work of 
Florian ﻿Cajori (e.g., 1928–1929/1993) is enough to make clear how rich 
and complex, messy and arbitrary, has been the evolution of such. A 
familiar example of how instrumental a good notational ﻿representation 
can be is the contrast between the user-friendliness of decimal numbers 
for purposes of calculation and the system used by the Romans. For a 
more advanced example, ﻿De Morgan (1910, p. 185), citing Pierre-Simon 
﻿Laplace and referring to notation for powers, wrote:
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﻿Newton extended to fractional and negative powers the analytical 
expression which he had found for whole and positive ones. You see in 
their extension one of the great advantages of ﻿algebraic language which 
expresses truths much more general than those which were at first 
contemplated […]

(which stands in marked contrast to his blinkered view on 3 – 8 cited 
above). Thus, the power of the notation xn is that it opens up the 
possibility of conceiving of other values of n, eventually leading to the 
remarkable equation eiπ = –1 (Lakoff & Núñez, 2000, p. 433).

Graphical ﻿representations, naturally enough, are central to ﻿geometry, 
combined with the conventions for using letters to label elements. Here 
may be mentioned the distinctive position of Reviel ﻿Netz, emphasising 
what Bruno ﻿Latour (2008, p. 3) called ‘scripto-visual inventions’:

I will argue that the two main tools for the shaping of deduction were the 
diagram, on the one hand, and the mathematical language on the other 
hand. Diagrams – in the specific way they are used in Greek mathematics 
– are the Greek mathematical way of tapping human visual cognitive 
resources. Greek mathematical language is a way of tapping human 
linguistic resources […] But note that there is nothing universal about 
the precise shape of such cognitive methods. They are not neural; they 
are a historical construct. […] One needs studies in cognitive history, and 
I offer here one such study. (Netz, 2003, pp. 6–7)

The fusion of ﻿geometry and ﻿algebra was, of course, a revolutionary 
passage in the ﻿history of mathematics, heavily dependent on the 
invention of Cartesian graphs. In similar vein, an extended analysis of 
the long history of ﻿representations in the development of ﻿calculus was 
provided by James ﻿Kaput (1994). And, as Kaput (1992) has pointed out, 
a fundamental level-shift in material ﻿representations lies between those 
which record and those which are manipulable, for example for executing 
calculations (e.g., the abacus or the Quechuan yupana). Computers have 
taken representational resources to new levels, as outlined next. 

Computers: Opening new representational windows

Computers and associated technologies have significantly changed 
the doing of, and the conception of, mathematics in multiple ways, 
including the following:
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•	 Most obviously, increase in brute computational power as 
exploited, for example, in ﻿testing conjectures and, generally, 
leading to the acceptance that an empirical element may enter 
mathematics.

•	 The theoretical notion of computability, captured in the 
conceptual device of the ﻿Turing machine, leading inexorably 
to analyses of the limitations of computability.

•	 Changes in the conception of ﻿proof prompted by ﻿computer 
﻿proofs and discussions – philosophical and practical – about 
their status. ﻿Hacking (2014) discusses the debate over whether 
a totally computerised ﻿proof machine will ever be possible.

Perhaps most importantly, ﻿computers have provided more powerful 
representational resources. Benoît ﻿Mandelbrot, the originator of fractal 
﻿geometry (a creative feat hard to imagine possible before the ﻿computer 
era), commented that ‘﻿computers have put the eye back into computing’. 
A small sample:  

•	 Being able to represent continuous change in a perceptually 
direct way, thereby moving ‘past the ﻿algebra bottleneck’ 
(Kaput, 1998, p. 278) en route to ﻿calculus.

•	 The ﻿representation of geometrical procedures, not just 
diagrams. For example, consider the theorem that joining 
the midpoints of the sides of any quadrilateral produces a 
parallelogram. Using Geometer’s Sketchpad, the user can 
store a procedure (not a static image) corresponding to that 
result. Then, any vertex of the quadrilateral can be ‘grabbed’ 
by the cursor and moved, and the whole configuration moves 
accordingly; it should be clear that this gives a whole new 
insight into the invariance at the centre of the theorem. 

•	 Generativity, as shown par exemple in the simplicity of the 
﻿Turing machine, relative to the huge mathematical edifice that 
can be built on that foundation. Another example is the ﻿Logo 
programming language built on the two primitives of moving 
forward a certain distance, and rotating through a certain 
angle. The language affords construction of a hierarchy of 
procedures building on procedures.
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•	 Computers allow the display of much more complex data, 
qualitatively as well as quantitatively for example data varying 
over time, and for realistic modelling, for example the software 
﻿STELLA, which enables school students to build, run, and 
evaluate system dynamical models ( e.g., Fisher, 2021).

Internal drivers: Systematising

A great part of mathematical activity today is organizing [...] When compared 
with creating, organizing scientific cognition seems to be an inferior activity. 

Yet […] in no science are these two activities so densely interwoven as they are 
in mathematics. (﻿Freudenthal, 1973, p. 414)

The sheer volume of established mathematical knowledge now is such 
that consolidating it as a coherent body of knowledge and techniques 
is a daunting task, even if restricted to ‘﻿pure’ mathematics, as is the 
focus of this section. Material resources deployed in the attempt include 
inscriptions, notational systems, taxonomies, books that survey the field, 
classical textbooks. Internally, there are definitions, axioms, theorems, 
visual ﻿representations, structures…

Does it make sense to speak, as Nicolas ﻿Bourbaki (1950) did, of ‘the 
architecture of mathematics’? Arguments against that are advanced 
below. Admittedly, there is considerable agreement on what is 
accredited within theoretical mathematics (using that term instead of 
‘pure’). Rejecting teleology as I do, thereby refusing to accept a forced 
choice between the development of mathematics being inevitable or 
contingent, the position of Rafael ﻿Núñez (2000) seems appropriate: 

Mathematics is not transcendentally objective, but it is not arbitrary 
either (not the result of pure social conventions). (p. 3)

In support of this position, examples are cited where some aspects of 
codified mathematics seem inevitable, being tied to the human condition, 
and reflecting a hard-to-deny internal coherence. Other aspects are 
contingent, reflecting environmental and cultural ﻿diversity, the impact 
of external events, technological developments, specific individual and 
collective creative acts. Relevant also is the evolutionary perspective; 
mathematics generated is subject to selection processes, only the fittest 
surviving.
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Three aspects central to the ﻿systematisation of theoretical 
mathematics are abstraction from its human roots, rigour, and structure. 
The drive for rigour is perhaps the most defining characteristic of 
European mathematics in the nineteenth and twentieth centuries. 
And the complex notion of structure (with loose and disputed ties 
to the amorphous movement called ‘﻿structuralism’), does provide a 
systematic summarising of a great deal of theoretical mathematics, 
which in turn constitutes a very powerful resource for mathematicians 
advancing the field.

All of those aspects are clearly exemplified in the ﻿Bourbaki movement 
of the twentieth century which made a heroic, but arguably doomed, 
attempt to define the architecture of which Jean ﻿Dieudonné spoke. 

Historico-genetic development of mathematics: Inevitable and 
contingent

A repeating process, an interplay of form and content, which characterizes 
mathematical thought (﻿Freudenthal, 1991, p. 10)

Explaining why he adopted the term ‘﻿anthropology of mathematics’ to 
characterise his scholarly field, ﻿Høyrup (1994) stated:

What I looked for was a term which suggested neither crushing of the 
socially and historically particular nor the oblivion of the search for 
possible more general structures: a term which neither implied that 
the ﻿history of mathematics was nothing but the gradual but unilinear 
discovery of ever-existing Platonic﻿ truths nor [...] a random walk 
[among] an infinity of possible systems of belief. A term, finally, which 
involved the importance of cross-cultural comparisons. (p. xi)

(And see the quotation from ﻿Núñez above.)  
The question ‘Is the development of mathematics inevitable or 

contingent?’ presents, in my view, a false choice. There are, indeed, 
aspects of the development of mathematics that it is hard to imagine 
happening otherwise. Arguably the clearest example is ‘number’ as the 
usages of the word developed over many centuries, from the naturally 
termed ‘natural numbers’. As ﻿Freudenthal (1991) put it:

The first non-trivial structure as such, i.e. whole number as the product 
of the process of counting, begot rich process and product content which, 
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organised by ever new structures, in turn begot new contents – a never 
ending cyclic process. (p. 10)

Mathematics has to be generative for the same reasons that language 
is generative. As more complex societies evolved, the practical need for 
dealing with large numbers meant that structural intervention became 
necessary in order to avoid the fate of Jorge Luis Borges’ character 
‘Funes the Memorious’, who had a separate image and name for every 
natural number. The specifics may be contingent, but the emergence of 
some such construction seems inevitable.

Further, there are many aspects of mathematics that make it difficult 
to disagree with ﻿Freudenthal (1991) when he stated that ‘mathematics 
grows, as it were, by a self-organizing momentum’ (p. 15). Again, think 
of numbers, and the simple example of going beyond whole numbers to 
﻿fractions, motivated by so many practical situations. Of course, this took 
many centuries, with great cultural variation. The extension to directed 
(negative as well as positive) took even longer to bring to the point of 
formal respectability, although people managed much earlier to deal 
with practicalities such as debt.

In a very thorough and nuanced discussion of the issue, ﻿Hacking 
(2014) declares his support for what he calls ‘the Latin model’, the name 
being suggested by an analogy of the evolution of Latin into Romance 
languages – contingent in detail, but subject to significant constraints. 
He also argued that, while ‘our notion of the infinite was not inevitable 
[…], our notion of complex numbers was inevitable’ (pp. 117–121). It is 
hard to see the development of numbers beyond the counting numbers 
as other than inevitable, but that is clear only insofar as some such 
development was driven by practical, and also supra-utilitarian, needs. 
But inevitable to what degree? Fractions and negative numbers, surely, 
but complex numbers? Quaternions and octonions? Conway’s surreal 
numbers? And when studying the natural numbers as a system became 
an interest, was it inevitable that prime numbers should take such a 
central role? Perhaps, but how about other named numbers with special 
properties given poetically suggestive names – ‘perfect’, ‘amicable’, and 
so on? 

The formalisation and ﻿systematisation of mathematics accomplishes 
a great deal in terms of generativeness. From the five axioms of ﻿Euclid, 
a huge edifice can be constructed (albeit ﻿Hilbert pointed out cracks a 
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long time later). The definition of a group is simple (see next section) 
yet on that foundation, again, so much can be constructed, including the 
recently completed classification of finite groups. 

Have you noticed that when people want to argue that mathematics 
is universal and certain, they use simple examples, such as ‘the angles 
of a triangle add up to 180°’ or 2 + 2 = 4? With appropriate clarification, 
it’s hard to argue with either statement. But similar statements about, 
for example, non-standard analysis are not at all clear. And there is no 
such simplicity or obviousness about ﻿probability, in particular subjective 
﻿probability (Devlin, 2014). It is a norm within academic mathematics 
to take ﻿proof as central, yet ﻿Hacking (2014) was prepared to argue that 
‘deep mathematics could have developed without ﻿proof at all’ (p. 115). 

‘Self-organising’ may be interpreted in terms of each local equilibrium 
containing within itself the germ of disequilibrium. Studying the 
real numbers, mathematicians, from at least the Babylonians, became 
interested in quadratic and cubic equations. Throw in the apparently 
very strong psychological need for closure, in the mathematical sense, 
and eventually the need for positing the square root of –1 became 
tempting though frightening, then it appeared to work, eventually it 
became formally ratified.

Thus, time-dependency must be acknowledged. What appears 
inevitable in hindsight was certainly not so during the struggles for 
epistemological coherence. And the temptation to believe in teleology, 
implying the possibility of a definitive characterisation of mathematics, 
does not hold up. In his critique of the ﻿Bourbaki-﻿Piaget axis (see Chapter 
13), ﻿Freudenthal (1973) stated as follows:

﻿Piaget is not a mathematician, so he could not know how unreliable 
mathematical system builders are […] Mathematics is never finished – 
anyone who worships a certain system of mathematics should take heed 
of this advice. (p. 46)

Or, as ﻿Høyrup (1995) put it:

No critique is ever definitive. What seemed at one moment to be an 
absolute underpinning […] turns out with historical insight to make 
other ‘naïve’ presuppositions which in their turn can be ‘criticized’. (p. 5)
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The discipline of the discipline: Abstraction, rigour, proof, 
structures

Dominant themes of (European and extended-European) theoretical 
mathematics in the nineteenth and twentieth centuries were: increased 
abstraction; the drive for rigour, yoked to the desire to establish 
unassailable ﻿proofs; specification of a structural architecture – all 
manifestations of a craving for absolute ﻿certainty, as was the dream of 
establishing mathematics on logic, discussed in various chapters of this 
volume. Elements of this quest include the chimerical search for absolute 
definitional precision, the power of axioms, impeccably formal ﻿proofs, 
and a network of abstract structures, replacing the problematic metaphor 
‘mathematical objects’ with webs of relations among undefined entities. 
Discussion of abstraction and rigour will be found in various chapters 
of this book (and see the next section, on ﻿Bourbaki); some key points 
about ﻿proof and on general and specific notions of structure, follow.

A great deal of ﻿Hacking (2014) is concerned with ﻿proof. In particular, 
he makes a clear distinction between ‘two visions of ﻿proof’ (p. 11) which 
he labels with the names of two mathematical greats:

There are ﻿proofs that, after some reflection and study, one totally 
understands, and can get in one’s mind ‘all at once’. That’s ﻿Descartes.

There are ﻿proofs in which every step is meticulously laid out, and can 
be checked, line by line, in a mechanical way. That’s ﻿Leibniz.

Leibnizian ﻿proof is the dominant image of how people do ﻿proofs, 
reinforced by the norm of publishing mathematical papers whereby all 
traces of how the ﻿proof was found are expunged.

One characterisation of mathematics is as ‘the study of all possible 
patterns’; patterns may be thought of as partial manifestations of the 
rigorously defined structures of modern mathematics. The pattern of 
addition and subtraction of even and odd integers (even + even = even, 
etc.) is accessible to quite young children; formally, this pattern is a 
feature of one instantiation of a group with two elements. The concept 
of a group is simple to define, yet with immense ramifications both in 
terms of ﻿modelling situations and in terms of the architecture of formal 
mathematics. A group is defined as the coupling of a set, S (which 
may have a finite or infinite number of elements), and an operation, 
S, applicable to any two elements of S and having certain properties 
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(the list is redundant relative to minimal definitional requirements), 
including the following:

•	 Closure: For any two elements of S, x and y, x∘y exists and is 
an element of S.

•	 Identity element: S contains a unique element, e, such that for 
any x, x∘e = x and e∘x = x.

•	 Inverse: for any x, there is another element x-1 in S such that 
x∘x-1 = x-1∘x = e.

All of these properties relate to extremely pervasive aspects of 
mathematics. 

The history of how this axiomatisation crystallised out of multiple, 
apparently unrelated, situations that could be modelled by groups is 
a fascinating episode in the ﻿history of mathematics. In ﻿arithmetic, the 
(positive and negative) integers, rationals, real numbers, and complex 
numbers, with the operation of addition, form groups, for example. In 
﻿geometry, systems of transformations form groups. ﻿Galois theory in 
﻿algebra is based on ﻿group theory. Groups are central to the theory of 
crystallography. They have been invoked by ﻿Piaget and Claude ﻿Lévi-
Strauss, and are pervasive in the work of M. C. ﻿Escher. Rubik’s cube 
was designed to help teach ﻿group theory. Groups and other structures 
such as rings and fields are central to the proposed architecture of 
mathematics as envisaged by the ﻿Bourbaki collective,  to which we next 
turn.

The case of Bourbaki

The most spectacular example of organizing mathematics is, of course, 
﻿Bourbaki. (﻿Freudenthal, 1973, p. 46)

There are two central reasons for including this section. First, as expressed 
in the quotation above, the ﻿Bourbaki project stands as the supreme 
attempt to deliver an organisation for selected parts of mathematics 
(excluding ﻿applied mathematics, ﻿probability theory, and much else). 
Second, as is taken up in Chapter 13, the influence of ﻿Bourbaki (not 
always emanating from ﻿Bourbaki itself) spread into mathematics 
education, with continuing and arguably harmful ramifications.
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﻿Bourbaki also serves as probably the most extreme example of 
a constructed environment within which self-described ‘working 
mathematicians’ could do mathematics, one whose origins can be 
traced back to the aftermath of the ﻿First World War, when the ranks 
of French academic mathematicians were depleted due to many of 
them falling in the war, and survivors wished to restore the standing 
of French mathematics. The very distinctive organisation of ﻿Bourbaki as 
a kind of secret society (Mashaal, 2006), or club, is well summarised 
in the Wikipedia entry (and see Hersh & John-Steiner, 2011, pp. 181–
191). What is clear is that their effort to ﻿systematise mathematics in 
an uncompromisingly ﻿formalist style based on defining mathematical 
structures was extremely influential on the field through much of the 
twentieth century, with residual influence to this day. The following, 
from one of the most distinguished mathematicians of the recent past, 
strikes me as a balanced view:

All mathematicians of my generation, and even those of subsequent 
decades, were aware of Nicolas ﻿Bourbaki, the Napoleonic general whose 
reincarnation as a radical group of young French mathematicians was 
to make such a mark on the mathematical world. His memory may now 
have faded, the books are old and yellowed, but his influence lives on. 
Many of us were enthusiastic disciples of ﻿Bourbaki, believing that he 
had reinvigorated the mathematics of the twentieth century and given 
it direction. But others believed that ﻿Bourbaki’s influence had been 
pernicious and narrow, confining mathematics behind walls of rigour, 
and cutting off its external sources of inspiration. (Atiyah, 2007, p. 1150)

﻿Atiyah neatly underlines the last point by pointing out that ‘had Euler 
worried too much about rigour, mathematics would have suffered’ (p. 
1151). 

While most emphasis is on the collective aspect of the ﻿Bourbaki 
mathematicians, Gerhard ﻿Heinzmann and Jean ﻿Petitot (2020) clarify that 
﻿Bourbaki ‘was at the same time the collective author of a monumental 
and long-lasting treatise […] and a pleiad of individual geniuses […] 
who were at the cutting edge of innovation and ﻿creativity’ (pp. 187–188). 
﻿Heinzmann and ﻿Petitot also emphasise the view within the collective 
persona of ﻿Bourbaki that they were providing a powerful toolbox to 
facilitate the ﻿creativity of ‘working mathematicians’. They also point to a 
central ﻿Bourbakian tenet of the unity of mathematics, as implied by the 
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singular form in the title of their treatise ﻿Elements de Mathématique, and 
as manifest in so many examples of structural connexions across diverse 
branches of mathematics. ﻿Hacking (2014, p. 13) stated that ‘the ﻿history 
of mathematics is one of diversification and unity’, so that when, for 
example, ﻿Descartes brought together ﻿geometry and ﻿algebra, they turned 
out to be ‘the same stuff’ (p. 11).

Other mathematicians diverged from ﻿Bourbaki, including ﻿Thom 
(1971) and ﻿Mandelbrot (2002). Alexander ﻿Grothendieck proposed a 
new organisation around ﻿category theory that was not taken on board. 
﻿Mandelbrot (2002) convincingly argues that ﻿Bourbaki’s history was 
shaped by a series of historical accidents that they never acknowledged, 
believing themselves to be ‘the necessary and inevitable response to the 
call of history’ (p. 31).

The attenuated but continuing impact of ﻿Bourbaki on school 
mathematics is discussed in Chapter 13. Here, for the sake of brevity, 
I point to some facets of what I see as the supreme irony of ﻿Bourbaki 
– the contrast between its adherence to mathematical rigour and the 
irrationality and contradictions of its philosophical and socio-political 
stances:

•	 Universal versus chauvinistic mathematics: The image of 
mathematics venerated within ﻿Bourbaki is universal, yet the 
organisation of ﻿Bourbaki as a constructed environment within 
which to ﻿systematise mathematics was decidedly French in 
terms of original motivation, membership (predominantly), 
and style.

•	 Cavalier attitude to philosophy: As expressed by Reuben ﻿Hersh 
most ‘working mathematicians’ do not fret over philosophical 
issues. ﻿Dieudonné (1970) made a similar comment:

On foundations we believe in the reality of mathematics, but of course 
when philosophers attack us with their paradoxes we rush to hide behind 
﻿formalism […]. Finally, we are left in peace to go back to our mathematics 
and do it as we have always done, with the feeling each mathematician 
has that he is working with something real.

•	 ﻿Mandelbrot (2002) stated that ﻿Bourbaki had ‘only contempt 
for the logical foundations of mathematics’, such as the work 
of Kurt ﻿Gödel and ﻿Turing (p. 31).
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•	 Bizarre claim to include all of mathematics: in their series of 
textbooks (more accurately described as an encyclopaedia, 
as Leo ﻿Corry (2009) has pointed out) they claimed to be 
surveying the whole of modern mathematics, despite totally 
excluding ﻿applied mathematics, any connection with ﻿physics, 
and also ﻿probability.

On a more specific point, their taboo against ﻿diagrams (while allowing 
themselves poetic licence in choosing technical vocabulary) is hard to 
understand, and I have found no clear explanation for that. It is hardly 
surprising, then, that mathematicians such as ﻿Thom and ﻿Mandelbrot 
were ﻿alienated.

Their claimed liaisons with other manifestations of the general 
cultural movement, ﻿structuralism (or, to be careful, other uses of the 
term) seem opportunistic – in particular, their rather one-sided romance 
with ﻿Piaget. ﻿Hacking (2014) proposed a clear distinction between 
‘mathematician’s ﻿structuralism’ and the ﻿structuralism of recent analytic 
philosophy (p. 237). ﻿Kantor (2011) unequivocally characterised the 
supposed relationship of ﻿Bourbaki's structures to ﻿structuralism as 
‘pure intellectual fraud’ and he elaborated that ‘referring to ﻿Bourbaki 
in ﻿structuralist essays was a way of giving some scientific credit and 
weight to works of variable quality’ (and see Aubin, 1997). 

The Bourbakists were, of course, entitled to define ‘mathematics’ as 
they wished, essentially ignoring one of its faces, as long as the definition 
was clear, which it was. However, it is arguable that they influenced the 
image of mathematics among mathematicians and non-mathematicians 
in an unbalanced way, which had harmful effects on mathematics 
education during the ﻿New Math period and continuing to this day.

Looking back and forward

Central to this book is disruption of the tendency to take for granted 
mathematics-as-discipline, mathematics-as-school-subject, and the 
relations between them; to that end, this chapter is intended to support 
arguments advanced in the intimately related Chapter 13. A necessarily 
broad-brush sketch of the history of people developing mathematics 
has been attempted, with a simplifying framework of distinguishing 
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between external and internal drivers, and between acts of creating and 
acts of ﻿systematising. 

The ﻿history of mathematics continues to happen. Looking into the 
future, a clearer picture of the powers and limitations of ﻿computers 
and ﻿Artificial Intelligence will emerge. There is no lack of unfinished 
business from the past. When ﻿Hilbert, in 1900, set out twenty-three 
mathematical problems to be solved in the twentieth century, the 
continuum hypothesis was the first. This unproved hypothesis relates 
to the cardinality of the real numbers, which, since ﻿Cantor, is known 
to be greater than that of the natural numbers (or the rationals) but it 
remains unknown whether there are any intermediate cardinalities. A 
major theorem which may help to settle the issue was recently published 
(Asperó & Schindler, 2021). This example serves admirably to show that 
many questions within mathematics remain open, as does the Wikipedia 
summary of the current consensus among mathematicians in relation 
to the ﻿Hilbert’s problems as to whether they have been solved, remain 
unsolved, or were not stated with sufficient precision.

Among the overarching themes in this chapter selected for the 
framing of Chapter 13 are: the conception of environments from 
physical through socially constructed, the emergence of mathematics 
and mathematicians as identifiable collective activities and actors, the 
two faces of mathematics, the centrality of epistemological shocks and 
their resolutions, the defining characteristic of mathematicians to look 
for and exploit patterns, and the role of material ﻿representations. 

Key issues to be addressed in Chapter 13, with references back to this 
chapter, include:

•	 The relevance of ﻿history of mathematics to school mathematics, 
rejecting any simplistic interpretation of ‘ontogeny 
recapitulates phylogeny’. In particular, what can be learned 
from epistemological crises and their resolutions to figure out 
how to help children through the radical reconceptualisations 
they need to negotiate.

•	 The embeddedness of mathematics in culture, despite 
historical disembeddings, which has massive implications for 
school mathematics.
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•	 Absolutely central point: the child learns under instruction – 
in a constructed environment, insofar as school learning is 
concerned. This is, perhaps, the fault-line between ﻿Freudenthal 
and ﻿Piaget. I will argue that the latter’s idea of some sort of 
‘natural development’, and variations on that theme by radical 
﻿constructivists, do not bear examination. ﻿Piaget was impressed 
by someone figuring out that the cardinality of a set of objects 
is independent of the order of counting but offered no account, 
as far as I can see, of how to get from there to, say, the solution 
of a quadratic equation.

•	 In particular, the supposed correspondence between the 
mother-structures of ﻿Bourbaki and the structures of ﻿Piaget’s 
developmental theory, and the educational damage that 
resulted, will be addressed. The waning direct influence 
of ﻿Bourbaki does not mean that it is dead. A contemporary 
﻿curricular framework (for which I suggest the ﻿Common Core 
State Standards in the US affords a representative example) 
could be characterised as ‘﻿Bourbaki light’ – a sequence 
structured in a superficially ‘logical’ form.

•	 School mathematics is predominantly presented as pre-
﻿systematised, with little opportunity for students to experience 
﻿systematising, let alone creating.

•	 In relation to mathematical ﻿modelling﻿, it will be argued that 
school mathematics, in general, fails to deal with the core 
issues. A long-term research program on word problems feeds 
directly into this discussion, and a thread can be followed from 
there to all the work on formatting and so on.

•	 Discussion of ﻿Bourbaki naturally raises the question of 
selection. Out of all the mathematics now assembled and 
organised, what should be selected for children to learn in 
school? Some possibly iconoclastic ideas for ﻿curriculum and 
pedagogy will be presented.

•	 It will be argued that academic mathematicians enjoy too 
much power to influence how school mathematics is framed 
and done.
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•	 Elementary mathematics education is foundational, not 
just for later mathematics education, but in the framing of 
an individual’s worldview; it will be argued that school 
mathematics, as typically practiced, tends to produce a 
destructive image of mathematics.
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3. Hardy’s deep sigh

 Ole Skovsmose

In his book ﻿A Mathematician’s Apology, Godfrey H. ﻿Hardy presents 
a conception of mathematics according to which real mathematics can be 
considered harmless and innocent. By ‘real’ mathematics, ﻿Hardy has in mind, 
for instance, advanced ﻿number theory. He contrasts real mathematics with 
different examples of ﻿applied mathematics and cases of elementary mathematics. 
﻿Hardy argues for the thesis of innocence by asserting that the utilitarian value of 
real mathematics is nil. Real mathematics does not have any useful applications. 
By assuming a utilitarian perspective on ethics, ﻿Hardy can claim that real 
mathematics operates at a comfortable distance from any ethnical and political 
controversies. However, ﻿number theory, that ﻿Hardy considered the epitome of 
real mathematics, has tremendous applications itself within war technology. 
﻿Hardy’s explicit justification of the thesis of innocence is simply fallacious. 
Most ironically, the doctrine of ﻿neutrality continues to operate. According to 
this doctrine, mathematics can be researched and developed while ignoring any 
kind of ethical and socio-political considerations. The doctrine of ﻿neutrality 
becomes acted out through mathematical research paradigms, dominating the 
vast majority of university departments in mathematics the world over.

By the turn of the nineteenth century, science and technology were seen 
as motors of progress. As part of the Western outlook, it was broadly 
assumed that science and technology ensure welfare in all aspects of life, 
whether we are dealing with material production, economic resources, 
health care, or education. The organisation in 1851 of the Great 
Exhibition in the ﻿Crystal Palace in London, the erection in 1899 of the 
﻿Eiffel Tower, and the presentation in 1900 of the Exposition Universelle 
in Paris symbolise the optimism that dominated the whole era. The very 
steel material used for the construction of the ﻿Eiffel Tower and the steel 
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and glass used for the ﻿Crystal Palace announce the potentials of the 
coming century.

Naturally, this optimistic celebration of progress presupposed that a 
range of socio-political and economic factors were ignored. The horrible 
living conditions of the working class in industrialised countries came 
to be seen as unavoidable and, therefore, ignorable necessities for the 
modern world order. The broadly assumed ﻿racist outlook ensured that 
the brutality of ﻿colonialism was ignored as well. By the turn of the 
century, people, in particular those belonging to the well-protected layers 
of Western societies, could enjoy reading about world exhibitions—if 
not in fact going there—and be contented by living during a period of 
assumed ongoing progress.

Such visions of the future were shattered by the outbreak of the 
﻿First World War. This catastrophe revealed a new dramatic connection 
between, on the one hand, science and technology, and on the other 
hand, war. While science and technology were supposed to constitute an 
integral part of peaceful and enlightened progress, they now appeared 
also as an integral part of the very machinery of war. The development 
of new and more powerful weapons was a science-based technological 
achievement. Submarines and airplanes became indispensable 
components of warfare. The application of poison gas likewise brought 
chemistry to the forefront of the battlefield. The ﻿First World War made 
evident that the image of science and technology as reliable motors of 
peaceful progress was an illusion.

A life

In 1940, as the ﻿Second World War was in dramatic development, Godfrey 
H. ﻿Hardy published the book ﻿A Mathematician’s Apology. Rather than 
reading it as an immediate reaction to the outbreak of that war it could 
be seen as a profound, but delayed, reaction to the ﻿First World War. In 
the inaugural lecture that ﻿Hardy gave in Oxford in 1920, one finds an 
‘outline of an apology for mathematics’ (﻿Hardy, 1967, p. 74); so ﻿Hardy’s 
first ‘apology’ was formulated long before ﻿A Mathematician’s Apology 
was published. The ﻿First World War put the relationship between 
mathematics and war on the agenda, and certainly also on ﻿Hardy’s 
agenda.
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﻿Hardy was born in 1877. In school, he was not particularly dedicated 
to mathematics, but from his early years demonstrated excellence in 
the subject. ﻿Hardy related that he primarily thought of mathematics in 
terms of competition, and found that there he could most decisively beat 
others.

In 1896, he entered Trinity College in Cambridge to study 
mathematics, and in 1900, he became a fellow. In 1898, he became a 
member of the Apostles, which was a closed elitist discussion group 
that also included George ﻿Moore (1873–1958), John Maynard ﻿Keynes 
(1883–1946), and Bertrand ﻿Russell (1872–1970). The Apostles was open 
only to brilliant scholars from the University of Cambridge, and at their 
meetings any topic could be addressed. The most famous non-member of 
the Apostles was Ludwig ﻿Wittgenstein (1889–1951), who was invited to 
join but did not find the group serious enough. Like Keynes and Russell, 
﻿Hardy also joined the Bloomsbury Group, which focused on literature 
and art. ﻿Hardy was well located in the academic and intellectual circles 
at the time, and was aware of the current and controversial issues being 
discussed, in relation to politics, literature, or art. In 1906, he secured a 
position as lecturer in mathematics in Cambridge, and during the ﻿First 
World War he preoccupied himself with his teaching and research.

﻿Russell was a declared pacifist, revolted by the English jingoism 
that accompanied the outbreak of the ﻿First World War. ﻿Hardy was not 
outspoken with respect to political issues, but well aware of ﻿Russell’s 
sentiments. Russell held a position as lecturer at Trinity College, but in 
1916 he was dismissed from this position as a consequence of his anti-war 
writings. In 1918, he was put in prison for five months, and during that 
time he wrote ﻿An Introduction to the Philosophy of Mathematics (Russell, 
1919/1993). ﻿Hardy shared Russell’s anti-war positions, and during the 
war he felt more and more uncomfortable staying in Cambridge, where 
jingoism was strongly articulated by some of his colleagues.

In 1919, ﻿Hardy took up a professorship in Oxford, and was received 
with enthusiasm by the younger mathematicians there. That he felt it 
important in his inaugural lecture to outline a defence of mathematics 
can come as no surprise. The atrocities of the ﻿First World War, and the 
roles played by mathematics, made such an apologia necessary. Its 
presentation made it possible for ﻿Hardy to concentrate completely on 
mathematical research, and the next ten years were very productive 
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for him. In particular, his work with John ﻿Littlewood and Srinivasa 
﻿Ramanujan became one of the outstanding collaborations in the ﻿history 
of mathematics.

A photo of Vladimir ﻿Lenin was displayed on the wall of ﻿Hardy’s room 
in New College, Oxford. This information is noted by C. P. ﻿Snow, who 
wrote a biographical sketch of ﻿Hardy as preface to ﻿A Mathematician’s 
Apology. I am not aware of any explanation of ﻿Hardy’s choice of photo, 
but one should not conclude that ﻿Hardy was a communist. If he had 
leftist inclinations, they likely reflected a non-standard interpretation of 
the term. At that time, many intellectuals in England demonstrated an 
open curiosity for what was taking place in the ﻿Soviet Union.

In 1920, ﻿Russell visited the ﻿Soviet Union as a member of a British 
delegation and, during the visit, had the opportunity to meet ﻿Lenin in 
person. Russell became disillusioned, and back home he wrote a critique 
of what he saw: ﻿The Practice and Theory of Bolshevism (Russell, 1920/2017). 
However, Russell’s critique was based on a profound political sympathy, 
and he states: ‘The existing ﻿capitalist system is doomed. Its injustice is 
so glaring that only ignorance and tradition could lead wage-earners to 
tolerate it’ (p. 2). I assume that ﻿Hardy had read Russell’s book, and the 
picture of ﻿Lenin might represent some feeling of resonance.

﻿Hardy was certainly in full accord with Russell’s attacks on 
Christianity. In 1927, Russell gave the lecture ‘Why I Am Not a Christian’, 
wherein, among other things, he states that ‘every single bit of progress 
in human feeling, every improvement in the criminal law, every step 
towards the diminution of war, every step toward better treatment of 
the coloured﻿ race, or every mitigation of slavery, every moral progress 
that there has been in the world, has been consistently opposed by the 
organized churches of the world’ (pp. 20–21). The lecture was circulated 
as a pamphlet, and later included in several books as, for instance, 
Russell (1957). ﻿Hardy shared Russell’s anti-Christian stance. He did 
not go to church, quite literally: he simply did not enter a church under 
any circumstances, not even when requested to do so for academic 
ceremonies.

When ﻿Hardy felt that his creative mathematical powers had 
declines, he experienced periods of post-creative depression. These 
moments provided the personal context that ultimately led him to 
write ﻿A Mathematician’s Apology. It opens with the following statement: 
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‘It is a melancholy experience for a professional mathematician to find 
himself writing about mathematics’ (p. 61). ﻿Hardy considered this type 
of writing second-rate work. He thought of writing about literature, 
theatre, as inferior activities: ‘Exposition, criticism, appreciation, is work 
for second-rate minds’ (p. 61). Presumably, ﻿Hardy had postponed this 
activity until he had no better things to do.

In 1941, ﻿Hardy published the booklet ﻿Bertrand Russell and Trinity 
(﻿Hardy, 1970), in which he provides an account of ﻿Russell’s dismissal 
from Trinity College in 1916. In the booklet, ﻿Hardy also gives glimpses 
of his own position, and he mentions that he had been secretary of the 
Cambridge branch of the Union of Democratic Control, founded shortly 
after the outbreak of the ﻿First World War. This was an organisation that 
represented war-sceptic positions. ﻿Hardy’s insider clarification of what 
took place in 1916 only appeared twenty-five years after the event. I have 
no doubt that ﻿Hardy maintained clear priorities in life: first things first, 
and mathematics was a clear number one. Only after his creative powers 
had left, and he had written his apology, did he find time for clarifying 
what he felt to be a grave injustice done to his friend Bertrand Russell. 
After publishing ﻿Bertrand Russell and Trinity, ﻿Hardy published nothing 
more. He died in 1947.

A mathematician

In mathematics, ﻿Hardy worked in close collaboration with others. 
During most of his career, he collaborated with John ﻿Littlewood (1887–
1977), who had entered Trinity College in 1903. Together they published 
more than 100 papers. ﻿Hardy also established a collaboration with the 
Indian mathematician Srinivasa ﻿Ramanujan (1887–1920), and together 
they published several papers.

Much of ﻿Hardy and ﻿Littlewood’s collaboration was in ﻿number 
theory, for instance about the distribution of prime numbers. It appears 
common sense to consider their density to be decreasing in the sense 
that one could expect the number of primes between, say, 18000 and 
19000 to be smaller than the number of primes between 8000 and 9000. 
Since ﻿Antiquity, it has been known that the number of primes is infinite, 
so their decreasing density will never reach zero. The prime number 
theorem provided an estimation of how the density decreases, and this 
estimation was first proposed by Carl Friedrich ﻿Gauss (1777–1855).
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One can also consider prime twins, pairs of primes like 11 and 13, 
41 and 43, and 107 and 109 that differ by 2. However, as the density of 
primes is decreasing, one could expect that the space between primes 
will be ever-increasing with the possibility that there is a largest pair 
of prime twins. However, according to the prime twin conjecture, there 
exist infinitely many prime twins, with decreasing density. ﻿Hardy and 
﻿Littlewood provided an estimation of how this density decreases, similar 
in nature to the one provided by ﻿Gauss for prime numbers.

With respect to his start as a mathematician at Trinity, which one can 
link to around the year 1900 when he became a fellow, ﻿Hardy (1967) 
states: ‘I wrote a great deal during the next ten years, but very little of 
any importance; there are not more than four of five papers which I 
can still remember with some satisfaction’ (p. 147). The important turns 
in ﻿Hardy’s career came in 1911 when he started his collaboration with 
﻿Littlewood, and in 1913 when he came to know ﻿Ramanujan. He wrote 
that ‘All my best work since then has been bound up with theirs, and it is 
obvious that my association with them was the decisive event of my life’ 
(p. 148). Then follows an emotional remark: ‘I still say to myself when I 
am depressed, and find myself forced to listen to pompous and tiresome 
people, “Well, I have done one thing that you could never have done, 
and that is to have collaborated with both ﻿Littlewood and ﻿Ramanujan on 
something like equal terms”’ (p. 148, italics in original).

I like very much his addition ‘on something like equal terms’. ﻿Hardy 
fully recognises that ﻿Littlewood and ﻿Ramanujan, both ten years younger 
than him, are mathematical geniuses. He is certainly also aware of his 
own unique creative powers. With both honesty and satisfaction, he can 
claim that he has co-operated with them – not at equal terms – but on 
something like that.

An apology

In ﻿A Mathematician’s Apology, ﻿Hardy (1967) presents a conception of 
mathematics which we can think of as ﻿Hardy’s working philosophy 
of mathematics.1 Throughout all his formulations, he expresses a clear 
Platonic﻿ outlook:

1� See Chapter 1 in this volume for an introduction to the notion of ‘working 
philosophy of mathematics’.
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I believe that mathematical reality lies outside us, that our function is to 
discover or observe it, and that the theorems which we prove, and which 
we describe grandiloquently as our ‘creations’, are simply notes of our 
observations. This view has been held, in one form or another, by many 
philosophers of high reputation from ﻿Plato onwards, and I shall use the 
language which is natural to a man who holds it. (pp. 123–124).

In his research, ﻿Hardy sees himself as making discoveries, as for 
instance with respect to the distribution of prime twins. Many research 
mathematicians operate with ﻿Platonism as an implicitly assumed element 
of their conception of mathematics. This observation has been elegantly 
captured by Reuben ﻿Hersh (1997), when he states that mathematicians 
are ﻿formalist on weekends while Platonist﻿ during working hours. 
﻿Hardy, however, was very aware of actual trends and positions in the 
philosophy of mathematics. In the article ‘﻿Mathematical Proof’, ﻿Hardy 
(1929) refers to the ideas and positions of, among others, David ﻿Hilbert, 
L. E. J. ﻿Brouwer, ﻿Russell, Alfred ﻿Whitehead, and ﻿Wittgenstein. When 
﻿Hardy assumes a ﻿Platonism, it is not as part of any implicit working 
philosophy of mathematics, but as a deliberate positioning.

In ﻿A Mathematician’s Apology, one meets a deep concern about the 
possible roles of sciences as well as of mathematics, in particular in times 
of war. That science forms part of the war machinery was made evident 
by the ﻿First World War, and even more evident by the start of the ﻿Second 
World War. This is a deep preoccupation for ﻿Hardy. He sees war as an 
abominable phenomenon, and it is horrible for him of think of science 
as a resource for war technology. But what about mathematics? Should 
a mathematician feel responsible? Should a mathematician feel guilty? 
No doubt ﻿Hardy was troubled by such questions, but he states that ‘a 
real mathematician has his conscience clear; there is nothing to be set 
against any value his work may have; mathematics is […] a “harmless 
and innocent” occupation’ (pp. 140–141).

This is the crucial claim in ﻿Hardy’s conception of mathematics: we 
are dealing with a harmless and innocent occupation. However, ﻿Hardy 
is not talking about mathematics in general, but only about what he 
refers to as real mathematics. 

﻿Hardy’s formulation could have been ‘like a physicist, a chemist, and 
an applied mathematician, also a real mathematician has his conscience 
clean’. But ﻿Hardy does not want to say anything like this. Rather his 
claim is: ‘in contrast to a physicist, a chemist, and many applied 
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mathematicians, a real mathematician has his conscience clean’. He 
states: 

There is one comforting conclusion that is easy for a real mathematician. 
Real mathematics has no effects on war. No one has yet discovered any 
warlike purposes to be served by the theory of numbers or ﻿relativity, 
and it seems very unlikely that anyone will do so for many years. It is 
true that there are branches of ﻿applied mathematics, such as ballistics 
and aerodynamics, which have been developed deliberately for war 
and demand a quite elaborate technique: it is perhaps hard to call them 
‘trivial’, but none of them has any claim to rank as ‘real’. They are indeed 
repulsively ugly and intolerable dull: even ﻿Littlewood could not make 
ballistics respectable, and if he could not who can? (p. 140)

Then follows the conclusion as already quoted: ‘A real mathematician 
has his conscience clear’.2

Rather than elaborating on the distinction between ﻿pure and ﻿applied 
mathematics, ﻿Hardy differentiates between real and trivial mathematics. 
According to ﻿Hardy, much mathematics is trivial, like school 
mathematics, ﻿calculus, and other such topics covered by introductory 
university textbooks, what can be referred to as engineering mathematics, 
and much ﻿applied mathematics. Contrary to real mathematics, such 
mathematics is ‘trivial’. ﻿Hardy also finds it to be ‘repulsively ugly’ and 
‘intolerable dull’. These are very strong words that might reflect ﻿Hardy’s 
profound aversion for the parts of mathematics, such as ballistics and 
aerodynamics, that are put into operation for purposes of warfare.

According to ﻿Hardy, mathematics developed as part of natural 
sciences can also be real, and he explicitly states: ‘I count Maxwell and 
﻿Einstein, Eddington and Dirac, among “real” mathematicians’ (p. 131). 
He also states that he counts Isaac ﻿Newton as ‘one of the world’s three 
greatest mathematicians’ (p. 71). As real mathematicians, they can 

2� In a note, ﻿Hardy (1967, p. 152) makes some modifying observations with 
respect to §28 in the Apology (pp. 139–143) from where the quotations are 
taken. According to ﻿Hardy, the modifications are inspired by comments to the 
manuscript made by C. D. Broad and C. P. Snow. ﻿Hardy acknowledges that they 
might have some points and that he might have been too ‘sentimental’ in his 
formulations. However, he adds that he, anyway, decided not to make changes 
in this part of the manuscript. §28 is based on a short article that ﻿Hardy had 
published previously in 1940 in Eureka, the journal of the Cambridge Archimedean 
Society.
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also have their consciences clear, while people contributing to trivial 
mathematics are not saved by ﻿Hardy.

I doubt that ﻿Hardy considered all elementary mathematics to be 
trivial. In the ﻿Apology, he refers to two classic mathematical ﻿proofs, 
one showing that the number √2 is irrational, and the other showing 
that there are infinitely many prime numbers.3 We are dealing with 
elementary mathematical ﻿proofs, but I think that ﻿Hardy found them to 
be exemplars for making real mathematical discoveries. As mentioned, 
﻿Hardy’s use of the descriptor ‘real’ indicates that he embraces a Platonic﻿ 
view. Mathematical entities have a real existence, and properties of 
these entities become revealed through mathematical demonstrations. 
Thus, the two ﻿proofs that he refers to reveal the existence of non-rational 
numbers and the existence of infinitely many prime numbers. Together 
with ﻿Littlewood he tried to discover whether or not there exist infinitely 
many prime twins. When ﻿Hardy refers to real mathematics, he might well 
have in mind mathematics that contributes to revealing the properties 
of mathematical reality. He might think of trivial mathematics as not 
making such contributions, but operating within what already exists of 
mathematical entities. Trivial mathematics might combine techniques of 
huge complexities, it might provide a range of applications, but it does 
not contribute with mathematical discoveries.

One way of cleaning a mathematician’s conscience could be to show 
that what is done through mathematics can be only ‘good things’. Such a 
line of argumentation could take an almost ﻿religious format. For instance, 
﻿Newton was a devoted believer in God. He revealed how mathematics 
captures the laws of nature, and therefore the way God had created 
the world. Mathematics could be thought of as an expression of the 
rationality of God, and as a consequence, one cannot say anything other 
than good things about mathematics. Versions of this line of thought 
have been repeated again and again. But not by ﻿Hardy. Any ﻿religious 
flavouring of an apology for mathematics was impossible to him.

﻿Hardy cleans the real mathematicians’ consciences by claiming that 
what they are doing is without any use. While trivial mathematics can 
be useful, there is no usefulness to be associated to real mathematics: ‘I 
have never done anything “useful”. No discovery of mine has made, or 

3� In Chapter 7 of this volume, the ﻿proof for the infinity of prime numbers is 
presented and discussed with reference to ﻿intuitionism.
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is likely to make, directly or indirectly, for good or ill, the least difference 
to the amenity of the world’ (p. 150). Contrary to trivial mathematics, 
real mathematics does not make a difference, neither for the good nor for 
the bad. Real mathematics has no utilitarian value whatsoever, whether 
in times of peace or in times of war. Real mathematics is harmless and 
innocent.

﻿Hardy uses different words to express that real mathematics is 
harmless and innocent, as, for instance, ‘gentle’ and ‘clean’. After making 
some references to ﻿Gauss, he states the following:

If the theory of numbers could be employed for any practically and 
obviously honourable purpose, if it could be turned directly to the 
furtherance of human happiness or the relief of human suffering, 
as physiology and even chemistry can, then surely neither ﻿Gauss nor 
any other mathematicians would have been so foolish as to decry or 
regret such applications. But science works for evil as well as for good 
(and particular, of course, in time of war); and both ﻿Gauss and lesser 
mathematicians may be justifying in rejoicing that there is one science 
at any rate, and that is their own, whose very remoteness from ordinary 
human activities should keep it gentle and clean (pp. 120–121).

﻿Hardy does not propose any theory about the ﻿neutrality of science. In 
fact, he highlights the opposite, that ‘science works for evil as well as 
for good’, and that it does so, in particular, ‘in times of war’. According 
to ﻿Hardy, mathematics is not any neutral science. The only thing he 
insists upon is that real mathematics operates beyond any evil-good 
controversies. Not because it contains any intrinsic goodness or any 
sublime ethical qualities, but because it is useless.

His utilitarian perspective on mathematics is consequential, as 
utilitarianism as an ethical position provides a non-﻿religious perspective 
on ethical questions. Whether something is ‘good’ or ‘bad’ cannot be 
judged according to some sublime ethical or ﻿religious principles, but 
only with respect to its utilitarian implications. By stipulating that 
real mathematics has no such implications, ﻿Hardy saves this part of 
mathematics from being considered harmful in any way. It is simply 
innocent.

Why then work with real mathematics? As ﻿Hardy set aside any 
possibility for providing a utilitarian justification for such work, one needs 
to ask what kind of justification is then possible. ﻿Hardy is well aware that 
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he leaves only a narrow space for himself to articulate justifications. His 
reaction, however, seems to be that he, in fact, does not need much such 
space. In some formulations in the ﻿Apology, he uses the notion of being 
‘serious’. Chess problems might be extremely challenging, but, according 
to ﻿Hardy, compared to real mathematical problems they are unimportant: 
‘The best mathematics is serious as well as beautiful – “important” if you 
like, but the word is very ambiguous, and “serious” expresses what I 
mean much better’ (p. 89, italics in original).

Elaborating justifications for working with real mathematics does not 
appear necessary to ﻿Hardy. To ask for any such justification, utilitarian 
or not, is like asking Mozart to provide a justification, utilitarian or not, 
for making his compositions. ﻿Hardy would rather state that Mozart’s 
work is serious (and innocent) like any other work of art, including real 
mathematics.

A doctrine

In ﻿A Mathematician’s Apology, ﻿Hardy (1967) elaborates a thesis of 
innocence, which can be summarised in the following way: sciences 
might work for the evil as well as for the good. Within science, however, 
there exists a small domain that is not under suspicion for being harmful, 
and this is real mathematics. It is useless, and as such it is harmless and 
innocent.

﻿Hardy’s thesis of innocence can be related to, but also contrasted 
with, a doctrine of ﻿neutrality. While ﻿Hardy’s thesis is well-articulated 
and refers to a particular domain within mathematics, the doctrine of 
﻿neutrality often operates as a discursive pattern and includes any kind 
of mathematics. The doctrine is deployed whenever one wants to cut off 
a discussion of possible socio-political impacts of mathematics. It turns 
into an ideology by assuming that mathematics as such is harmless 
and innocent, and that one can conduct mathematics research without 
engaging in critical reflections about what might be done through 
mathematics. Contrary to ﻿Hardy’s thesis of innocence, the doctrine of 
﻿neutrality operates as a discursive given, and not as a claim in need of 
justification. The doctrine is part of an implicit working philosophy of 
mathematics. It is called into operation when socio-political issues are 
stipulated as irrelevant when doing mathematical research.
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I see the doctrine of ﻿neutrality as a disproportionate and exaggerated 
shadow of ﻿Hardy’s thesis of innocence. The doctrine concerns any 
kind of mathematics, so that mathematics as such becomes stipulated 
as being neutral. There is no need to make specifications with respect 
to mathematical topics: ﻿algebra, ﻿calculus, ﻿number theory – all such 
subjects are harmless and innocent. They are neutral. Nor is it necessary 
to make specifications with respect to levels of mathematics: elementary 
mathematics, advanced mathematics, research mathematics – all are 
neutral subjects.

The doctrine of ﻿neutrality is materialised in the organisation of 
university studies in mathematics. Naturally there is a variety of such 
study programmes, but what I have in mind here I refer to as the 
university mathematics tradition.4 This tradition includes the following 
characteristics: (1) It defines the ﻿curriculum in well specified units 
such as Calculus 1, Calculus 2, Linear Algebra, Algebra 1, Algebra 2, 
﻿Probability Theory, non-﻿Euclidean Geometry, Projective Geometry, 
and so on. (2) Among these units there is no space for a philosophy 
of mathematics including ethical discussions related to the use of 
mathematics, and not much space for ﻿history of mathematics, which 
could include socio-political reflections. (3) Within the units, ethical 
and socio-political controversies that could be related to the particular 
mathematical subdiscipline are not addressed. (4) All tests and exams 
focus on mathematical competencies.

When we are dealing with a doctrine, the structure of its justification 
need not be explicit, nor even coherent. A doctrine is a general 
positioning, which can be articulated in different contexts and make 
part of a variety of discourses, insisting that mathematics is detached 
from socio-political issues. ﻿A Mathematician’s Apology has turned into 
a most questionable publication, as it has enabled many to maintain a 
doctrine of ﻿neutrality as part of a working philosophy of mathematics. 
The doctrine leads to a conception of mathematics that fosters a 
banality of mathematical expertise (see Skovsmose, 2020). This banality 
embraces the ignorance of possible implications of what one is doing. It 
ignores the context within which mathematical research is conducted 
and where mathematics is brought in action.

4� One can find a characterisation of the school mathematics tradition in Skovsmose 
and Penteado (2016).
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A sigh

﻿Hardy (1967) did not elaborate his thesis of innocence starting from 
systematic philosophical observations, but rather from his experiences 
as a mathematician. As already referred to, his principal justification for 
the thesis built on observations such as: ‘No one has yet discovered any 
warlike purposes to be served by the theory of numbers or ﻿relativity, 
and it seems very unlikely that anyone will do so for many years’ (p. 
140). The justification for his thesis is empirical, referring to what can be 
observed, or rather, to what has not (yet) been observed.

It is not surprising that ﻿Hardy refers to ﻿number theory, which is his 
paradigmatic case of real mathematics. That he also refers to ﻿relativity is 
a surprise to me. Relativity theory provides a mathematical conception 
of nature, and ﻿Hardy thinks of Albert ﻿Einstein, and other great 
physicists, as contributing to the domain of real mathematics. ﻿Hardy 
states: ‘The great modern achievements of ﻿applied mathematics have 
been in ﻿relativity and quantum mechanics, and these subjects are, at 
present at any rate, almost as useless as the theory of numbers’ (pp. 
131–132). According to ﻿Hardy, such examples of ﻿applied mathematics 
are not trivial, but real.

However, already in 1940 when ﻿Hardy published this statement, it was 
possible, with developments in the theory of ﻿relativity, to conceptualise 
the possibility of an atomic bomb, as expressed dramatically in the 
equation E = mc2. However, the route from this theoretical insight to 
the actual construction of a bomb only became identified in steps, many 
of which were kept as military secrets. In 1945, with the destruction of 
Hiroshima and Nagasaki, it was demonstrated to everybody that the 
theory of ﻿relativity was implicated as an integral part of modern war 
machinery. ﻿Hardy’s justification of the thesis of innocence by referring 
to ﻿relativity is simply wrong.

What would ﻿Hardy make of this? He witnessed the conclusion of the 
﻿Second World War and the destructions of Hiroshima and Nagasaki, 
but I am not aware he tried to make any revision of this formulation in 
his ﻿Apology. I also think that he did not really think of his remark about 
﻿relativity as being that crucial for his justification. The remark appears 
as an aside from his principal argument referring to ﻿number theory.
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In the article ‘Formatting Power of “Mathematics in a Package”: A 
Challenge for Social Theorising?’, Keiko ﻿Yasukawa and I (2009) discuss 
modern cryptography.5 Cryptography has a long history, and was 
applied already in ﻿Antiquity. The development of ﻿cryptography can be 
directly related to technological developments, and different mechanical 
machineries for coding and decoding have been invented, reaching an 
extreme sophistication during the ﻿Second World War. 

Two years after the death of ﻿Hardy, Claude E. ﻿Shannon (1949) 
published the article ‘﻿Communication Theory of Secrecy Systems’, 
which establishes the opening for an advanced mathematical approach. 
In New Directions in Cryptography, this approach was elaborated in 
detail by Whitfield ﻿Diffie and Martin ﻿Hellman (1976). As ﻿Yasukawa 
and I point out, the very identification of these new directions in 
﻿cryptography is based on profound number theoretical insights. The 
idea is to construct a technique for encoding and decoding that can be 
handled automatically without compromising security measures. The 
﻿computer makes such automatisation possible, so that huge amounts 
of data can be encoded and decoded. The whole process is complex, 
but the principal observation, which ensures the safety of the whole 
approach, is related to a simple observation: breaking the code turns out 
to be equivalent to being able to factorise a number that is the product of 
two huge prime numbers.

In ﻿Number Theory in Science and Communication, Manfred R. 
﻿Schroeder (1997) states that if we are dealing with a 200-digit number 
that is the product of two prime numbers of more or less equal size, the 
factorisation cannot be completed within any conceivable time limit. He 
points out that ‘not so long ago, the most efficient factorising ﻿algorithms 
on a very fast ﻿computer were estimated to take 40 trillion years, or 2000 
times the present age of the universe’ (p. 131). Certainly, this statement 
is time-dependent. The quotation here is from the third edition of the 
book, while in a previous edition from 1983, ﻿Schroeder makes the same 
statement, but referring to a 100-digit number. Newer editions of the 
book have been published, but I have not yet had the opportunity to 
check the possible reformulations of the quoted statement. Certainly 
new ﻿algorithms can be identified, and ﻿computers are becoming more and 

5� See also Yasukawa, Skovsmose, and Ravn (2012).
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more powerful. That we, independent of such development, continue to 
face a task that cannot be completed within any conceivable time limit 
is crucial for the whole ﻿cryptographic approach. To make such a claim 
about factorisation depends on a deep number theoretical insight.

How could it be that a factorisation explodes in complexity? Here 
comes a number n with 200 digits:

783350087122241855766633268290884426110902343377681777777325699
400967226183766454225112566700999599333851557363299228890099238
238882812482500038888217888299994898921156667211390080900765334
87112387111

I just pressed number keys 200 times, so if this number n turns out to 
be a product of two prime numbers of more or less the same size, it 
would be a most unlikely coincidence. However, if so, we should expect 
that it would take trillions of years until we discover which two prime 
numbers we are dealing with. My intuition does not point towards such 
a conclusion. To me the number looks large, but that the equation n = 
p1 p2 represents such overwhelming computational complexities, I could 
never imagine. In order to reach such an insight, one needs to draw 
on profound number theoretical insights. Furthermore, new number 
theoretical insights concerning the distribution of prime numbers and 
efficient ﻿algorithms for factoring might lead to a modification, if not a 
direct falsification, of the claim.

As ﻿cryptography makes an indispensable part of modern war 
technology, ﻿number theory forfeits all claim to be harmless and innocent. 
This observation is devastating for ﻿Hardy’s justification of the thesis of 
innocence. Number theory turns out to be extremely useful, in particular 
in times of war. It can be harmful in just the same way as ballistics and 
aerodynamics can be.

I imagine that ﻿Hardy is sitting in the same comfortable chair as 
shown at the cover of my edition of the Apology. He has an attentive 
look, his glasses are a bit down his nose, his hands are empty, and he 
seems just ready to grasp a book or a paper. I imagine that he gets an 
opportunity to look at the paper by ﻿Yasukawa and me. I have no doubt 
that, after a few moments, he will put aside the paper and ask for the 
original references. After looking through them, his expression will 
change. He is not really looking at anything or at anybody anymore. 
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His look turns inwards. I have no idea what he is going to say, but I can 
imagine his deep sigh.

While the maintenance of an articulated thesis might depend on the 
status of its justification, a doctrine could easily survive even the most 
downright falsification. Although ﻿Hardy’s justification of the thesis of 
innocence has collapsed, its disproportionately exaggerated shadow, the 
doctrine of ﻿neutrality, continues to be seen everywhere. This shadow 
provides a cover for mathematical research and university studies in 
mathematics to maintain a profound silence with respect to ethical and 
socio-political issues.6 Mathematics continues to be conceptualised as 
harmless and innocent. But it is not.

References

Diffie, W., & Hellman, M. E. (1976). New directions in cryptography. IEEE 
Transactions on Information Theory, 22(6), 644–654. https://doi.org/10.1109/
TIT.1976.1055638 

Hacking, I. (2014). Why is there philosophy of mathematics at all? Cambridge 
University Press. https://doi.org/10.1017/CBO9781107279346 

Hardy, G. H. (1929). Mathematical proof. Mind, 38(149), 1–25. https://doi.
org/10.1093/mind/XXXVIII.149.1 

Hardy, G. H. (1967). A mathematician’s apology. Cambridge University Press.

Hardy, G. H. (1970). Bertrand Russell and Trinity. Cambridge University Press.

Hersh, R. (1997). What is mathematics, really? Oxford University Press.

Russell, B. (1957). Why I am not a Christian and other essays on religion and related 
subjects. Simon and Schuster.

Russell, B. (1993). Introduction to mathematical philosophy. Routledge. (Original 
work published 1919)

Russell, B. (2017). The practice and theory of Bolshevism. Anodos. (Original work 
published 1920)

Schroeder, M. R. (1997). Number theory in science and communication: With 
applications in cryptography, physics, digital information, computing and self-
similarity. Springer.

6� In line with such an observation, Hacking (2014) makes the following comment: 
‘G. H. ﻿Hardy’s fantasy about ﻿pure mathematics, ﻿A Mathematician’s Apology, did 
much harm to philosophers’ (p. 185).

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1017/CBO9781107279346
https://doi.org/10.1093/mind/XXXVIII.149.1
https://doi.org/10.1093/mind/XXXVIII.149.1


� 773. Hardy’s deep sigh

Shannon, C. E. (1949). Communication theory of secrecy systems. The 
Bell System Technical Journal, 28(4), 656–715. https://doi.
org/10.1002/j.1538-7305.1949.tb00928.x 

Skovsmose, O. (2020). Banality of mathematical experience. ZDM Mathematics 
Education, 52(6), 1187–1197. https://doi.org/10.1007/s11858-020-01168-4 

Skovsmose, O., & Penteado, M. G. (2016). Mathematics education and 
democracy: An open landscape of tensions, uncertainties, and challenges. 
In L. D. English & D. Kirshner (Eds.), Handbook of international research in 
mathematics education (pp. 359–373). Routledge.

Skovsmose, O., & Yasukawa, K. (2009). Formatting power of ‘Mathematics 
in a package’: A challenge for social theorising? In P. Ernest, B. Greer, & 
B. Sriraman (Eds.), Critical issues in mathematics education (pp. 255-281). 
Information Age.

Yasukawa, K., Skovsmose, O., & Ravn, O. (2012). Mathematics as a technology 
of rationality: Exploring the significance of mathematics for social 
theorising. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and 
politics of mathematics education (pp. 265–284). Sense.

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/s11858-020-01168-4




4. Formalism, structuralism, and 
the doctrine of neutrality

 Ole Skovsmose

The doctrine of ﻿neutrality states that mathematics can be researched and 
developed without considering any ethical or socio-political issues. This doctrine 
became elaborated and argued in detail by the school of ﻿logical positivism. 
By the turn of the nineteenth century, a range of paradoxes and inexplicable 
mathematical phenomena appeared, a situation referred to as the foundational 
crisis of mathematics. To many, intuition was the scoundrel, and it had to be 
eliminated from mathematics. ﻿Formalism provided a principal approach by 
identifying mathematics with formal structures. This idea was embraced by 
logical positivists who claimed that mathematics as the language of science 
ensures the ethical ﻿neutrality of science. They considered mathematics not only 
as being neutral itself, but also as a guarantee for scientific ﻿neutrality in general. 
In this way, a most profound stipulation of the doctrine of ﻿neutrality was reached. 
Formalism developed into ﻿structuralism, which described mathematics as an 
architecture of pure formal structures. As part of the ﻿structuralist conception of 
mathematics, the doctrine of ﻿neutrality was expanded from being a conception of 
mathematical research to become also a doctrine shaping educational practices in 
mathematics. I am going to confront this conception. The doctrine of ﻿neutrality 
is a stipulation, which makes us ignore that a profound politicisation of both 
mathematics and mathematics education might be taking place.

Introduction

On the 22 June 1936, Moritz ﻿Schlick was murdered on the broad steps of 
the main entrance of the University of Vienna. He was shot from close 
range by a former student, Johann ﻿Nelböck. ﻿Schlick died immediately.
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In 1922, ﻿Schlick had been nominated as professor in Naturphilosophie 
(philosophy of nature) at the university, and ﻿Nelböck had studied there 
with ﻿Schlick as his advisor. In 1931, ﻿Nelböck graduated as a doctor 
in philosophy. During the trial, he gave different explanations for the 
killing, one referring to jealousy. He also claimed that ﻿Schlick’s anti-
metaphysical philosophy had troubled him. ﻿Nelböck was sentenced to 
ten years in jail.

The event became a controversial issue with much public attention. 
Although ﻿Schlick was a German Protestant, he became portrayed in the 
press as a key figure in suspicious academic Jewish circles, and ﻿Nelböck 
became celebrated by ﻿Nazi movements. In 1938, after the Anschluss, the 
German annexation of Austrian, ﻿Nelböck was released.

Soon after his nomination, ﻿Schlick organised a discussion group 
that later became known as the ﻿Vienna Circle (Wiener Kreis). This 
circle formulated a view on science and mathematics that came to be 
known as ﻿logical positivism. The circle was deeply engaged in recent 
developments in science, mathematics, and logic. They were conversant 
with developments in ﻿physics. They studied carefully the monumental 
work ﻿Principia Mathematica by Alfred ﻿Whitehead and Bertrand 
﻿Russell, published in three volumes in 1910–1913. The ﻿Tractatus Logico-
Philosophicus by Ludwig ﻿Wittgenstein, published in 1922, was also 
studied with extreme intensity.

The circle was also deeply engaged in the recent political developments 
in Austria and Germany. They launched a strong attack on any form of 
metaphysical thinking, including ﻿Nazi ideologies. No doubt, ﻿Schlick’s 
anti-metaphysical philosophy troubled not only ﻿Nelböck, but many 
from the ﻿Nazi movement.

The anti-metaphysical philosophy initiated by the ﻿Vienna Circle 
ended up providing a broad platform for claiming that science and 
mathematics can be kept separated from socio-political and ethical 
issues, that they are ﻿neutral subjects. In the previous Chapter 3, we 
saw how ﻿Hardy’s thesis of mathematics being innocent turned into a 
dogmatic claim of mathematics being neutral. In this chapter, we are 
investigating a much broader philosophical trend, which establishes a 
formidable manifestation of this dogmatism.1

1� This dogmatism was confronted by a critical conception of mathematics that I 
return to in Chapter 11 in this book.
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As an initial step into this dogmatism, I refer to the elimination of 
intuition from mathematics, which represents a de-contextualisation 
of mathematical notions and reasonings. I refer to ﻿formalism, which 
emerges as the result of this elimination of intuition, and which identifies 
mathematics with formal structures. Then I provide an exposition of 
﻿logical positivism that embraces ﻿formalism and claims that not only 
mathematics but science in general is neutral and detached from any 
socio-political stance. After that, I present ﻿structuralism, which represents 
a particularly elaborated version of ﻿formalism also embracing the 
dogma of ﻿neutrality. I show how the ﻿Modern Mathematics Movement 
emerged as an educational version of ﻿structuralism and manifests the 
de-policisation of mathematics education. As a kind of epilogue, I make 
a few  comments about ‘Poor ﻿Piaget!’.

Elimination of intuition

The elimination of intuition from mathematics includes three 
components: making explicit hidden axioms and assumptions that in fact 
are used in developing a mathematical theory; eliminating ontological 
issues referring to assumptions about the nature of mathematical 
objects; and identifying and formalising the logical patterns of deduction 
and reasoning used in mathematics.

Since ﻿Antiquity, ﻿Euclid’s ﻿Elements has been taken as the paradigmatic 
case of mathematical deduction.2 A deduction must start out from 
something, and this ‘something’ was presented by ﻿Euclid in terms of 
five axioms (which by ﻿Euclid were referred to as postulates). From these 
axioms, logical deduction leads to a range of theorems. If the axioms 
were true, all theorems would be true as well, since logical deduction 
provides a delivery of truth. As ﻿Euclid’s axioms appeared simple 
(although the fifth axiom seemed less so), their truth could be grasped 
immediately by intuition, and due to the strict deductive organisation 
of the Elements, all theorems could be considered true as well. So it was 
generally assumed.

This perception of the Elements only became challenged during the 
nineteenth century, where different studies revealed that more than the 

2� See Joyce (1998).
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five axioms were involved in the deduction of theorems. ﻿Euclid had also 
applied intuition, for instance concerning space. This came as a shock: 
How could it be that this had been overlooked for more than 2000 
years? In 1882, Moritz ﻿Pasch (1912) prepared the foundations for an 
extended axiomatics for ﻿Euclidean ﻿geometry. The process of making all 
applied axioms explicit was brought together in ﻿Foundations of Geometry 
(Hilbert, 1950), the first German version of which appeared in 1899. 
While the ﻿Elements includes five axioms, the ﻿Foundations of Geometry 
builds on twenty-one axioms (later it was showed that one of them was 
redundant). Besides the five included in the Elements, one also finds, for 
example, the axiom:

Let A, B, C be three points not lying in the same line and let a be a line 
lying in the plane ABC and not passing through any of the points A, B, C. 
Then, if the line a passes through a point of the segment AB, it will also 
pass through either a point of the segment BC or a point of the segment 
AC. (﻿Hilbert, 1950, p. 4)

This axiom, first made explicit by ﻿Pasch, was applied by ﻿Euclid, but 
just as an intuitive insight. It was taken as a given that, when a straight 
line cuts one of the sides of a triangle, it will also cut one of the other 
sides (except from the situation where the line passes through a vertex 
of the triangle). The axiom states that when a straight line cuts into a 
triangle, it will not disappear in the interior of the triangle, but cut out 
of the triangle as well. There are no Bermuda triangles to be found in 
﻿Euclidean ﻿geometry.

In order to eliminate intuition from mathematics, any deduction 
should be based on explicitly stated axioms. This was exactly what was 
prepared for by ﻿Pasch and accomplished by David ﻿Hilbert with respect 
to ﻿Euclidean ﻿geometry.

Ontological issues have been an ongoing challenge for the 
philosophy of mathematics: What is a number, a point, a line, or any 
other ‘mathematical object’ for that matter? In ﻿Euclid’s ﻿Elements, a point 
becomes defined as that which cannot be divided. This sounds clear 
enough, but it appears unclear what is the point of making this definition. 
It is not used later on in the deductive processes. Maybe the clarification 
of ontological issues is not crucial for mathematical proving. This point 
was clearly recognised by ﻿Hilbert (1950), who initiates the presentation 
in Foundations of Geometry by stating:
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Let us consider three distinct systems of things. The things composing 
the first system, we will call points and designate them by the letters A, 
B, C […], those of the second, we will call straight lines and designate 
them by the letters a, b, c, […], and those of the third system, we will call 
planes and designate them by the Greek letters α, β, γ, […]. The points 
are called the elements of linear ﻿geometry; the points and straight lines, the 
elements of plane ﻿geometry; and the points, lines, and planes, the elements of 
the ﻿geometry of space or the elements of space. (p. 2, italics in original)

﻿Hilbert’s point is that, for presenting ﻿geometry in an axiomatic format, the 
very nature of its objects is irrelevant. They can be referred to as ‘things’. 
In the quotation, he refers to ‘points’, ‘lines’, and ‘planes’, but, as he in 
1891 had pointed out in a conversation with two other mathematicians 
at a train station, he could as well have referred to ‘tables’, ‘chairs’, and 
‘beer mugs’.3 Hilbert did highlight this point in 1891. For a geometric 
theory, the intrinsic qualities of points, lines, and planes are irrelevant; 
only their relationships are relevant. Such relationships, and nothing 
else, become specified through the axioms of ﻿geometry. In this way, 
﻿Hilbert tried to eliminate intuition from ontological considerations, 
simply by considering ontology superfluous.

If an elimination of intuition from mathematics reasoning is to be 
properly carried out, one needs a firm grasp of what logical deduction 
could mean. This was the principal idea of Gottlob ﻿Frege’s life project. 
He wanted to provide an enumeration of all valid forms of logical 
deduction. But how to do this? It would become a long list, and in what 
order should it be organised? Frege had a clear approach in mind; he 
wanted to organise all valid logical deductions in an axiomatic system, 
and in the ﻿Begriffsschrift (Frege, 1967), the first German version of 
which was published in 1879, he presented how this could be done. His 
﻿Begriffsschrift provides a start of the formulation of modern formal logic.

Frege presents a set of logical axioms, seven in total, and two 
specific rules of inference, claiming that this defines a system that has 
as theorems precisely all valid forms of logical deduction. The system 
concerns propositional logic, but on top of this ﻿Frege added predicate 
﻿calculus. Here, however, let me concentrate on its propositional basis.

Frege used a particular formal terminology, which did not become 
common. However, his presentation in the ﻿Begriffsschrift has been 

3� See Shapiro (2000, p. 151), and Hilbert (1935, p. 403).
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carefully reworked in a symbolism that is now common in modern logic. 
A huge effort was made in ﻿Principia Mathematica by Alfred ﻿Whitehead 
and Bertrand ﻿Russell (1910–1913). The axioms that ﻿Whitehead and 
Russell used are a bit different from those suggested by ﻿Frege, but the 
scope of the axiomatic systems are quite the same. For the propositional 
﻿calculus, ﻿Whitehead and Russell operated with the following five 
axioms:

1.	 (p∨p)⇒p

2.	 q⇒(p∨q)

3.	 (p∨q)⇒(q∨p)

4.	 (p∨(q∨r))⇒(q∨(p∨r))

5.	 (q⇒r)⇒((p∨q)⇒(p∨r))

Russell and ﻿Whitehead maintained the two rules of inference as 
formulated by ﻿Frege. The first states that if A⇒B is a theorem or an axiom, 
and A is a theorem or an axiom, then B is a theorem. The second states that 
one can substitute a symbol with another. If, for instance, one has proved 
the formula p⇒(p∨p), then one can also conclude that q⇒(q∨q). No 
other rules of inference than these two were applied.

In summary, the elimination of intuition from mathematics was 
carried out by making hidden axioms explicit, by eliminating ontological 
issues from mathematical theorising, and by capturing mathematical 
reasoning by formal axiomatic systems. This triple-strategy for 
eliminating intuition created a new way of looking at mathematics. The 
triple strategy became defining for the ﻿formalist outlook.

Formalism

Mathematics has been seen as a unique way of obtaining ﻿certainty. When 
a mathematical ﻿proof has been completed, we conclude that the proved 
theorem is true, and true with ﻿certainty. While doubt and uncertainly 
accompany many forms of human knowledge, it can apparently be 
eliminated from the domain of mathematics. Mathematics seems a 
fortification against any possible invasions of scepticism. Therefore, it 
came as a shock when the fortification seemed to be collapsing.4

4� In my discussion of the foundational crisis of mathematics I draw on Ravn and 
Skovsmose (2019).



� 854. Formalism, structuralism, and the doctrine of neutrality

By the turn of the nineteenth century, a range of paradoxes and 
inexplicable mathematical phenomena appeared, creating a situation 
referred to as the foundational crisis of mathematics. In 1901, one paradox 
was discovered by Bertrand ﻿Russell; it was also identified by Ernst 
﻿Zermelo in 1899, but he communicated it only to a small circle of 
colleagues from Göttingen University, including ﻿Hilbert. The paradox 
has the following form: Let M denote the set of sets that are not members 
of themselves, thus M = {x│x∉x}. Then let us ask: is M a member of 
itself? If the set M is a member of itself, it has the property M∉M. If M is 
not a member of itself, it has the property ¬(M∉M). In other words, we 
can conclude M∈M. Thus, we have M∈M if and only if M∉M.

Not only did such explicit paradoxes emerge, but also strange 
phenomena were observed. Georg ﻿Cantor (1874) presented a new 
understanding of the notion of set, which until then had been taken as 
an uncomplicated intuitive notion. He showed that the infinity of real 
numbers is of a higher degree than the infinity of natural numbers. 
In fact, he revealed the existence of an infinity of degrees of infinities. 
Guiseppe ﻿Peano (1890) discovered a curve, commonly referred to as the 
﻿Peano curve, which is a surjective and continuous function from the unit 
line the unit square. This curve, with the surprising property of being 
able of cover an area, has also been referred to as ‘the bald man’s hope’. 
If just one hair, long enough, is left, then the baldness can be properly 
covered.

How could it be that mathematics, which appeared so carefully 
elaborated through ﻿proofs and theorems, could run into logical 
contradictions? What did the occurrence of new strange mathematical 
objects signify? Something seemed to have gone wrong. But how?

﻿Logicism, ﻿formalism, and ﻿intuitionism represent three main 
approaches for addressing the foundational crisis. To logicism﻿ and 
﻿formalism, the scoundrel was intuition, and the elimination of intuition 
from mathematics forms part of these two approaches. Contrary to these 
positions, ﻿intuitionism claims that intuition is crucial to mathematics, and 
that the paradoxes emergence when mathematics procedures become 
led astray by formalist procedures.5 In the following we concentrate on 
how ﻿Hilbert addressed the crisis.

5� In Chapter 7 in this volume, I discuss more carefully the ﻿intuitionist approach to 
mathematics.
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﻿Hilbert suggested a two-step metamathematical programme inviting 
a ﻿formalist outlook on mathematics. First, mathematical theories had 
to be formalised. This could be done by squeezing every juicy drop 
of intuition out of mathematics. Then only formal structures would 
remain. Second, these formal ﻿representations of mathematical theories 
had to be investigated, in particular with respect to completeness and 
consistency. If the completeness and consistency could be proved, then 
mathematical theories would be vaccinated against paradoxes.6

However, in 1931 ﻿Hilbert’s programme suffered a knock-out, when 
Kurt ﻿Gödel (1962) published his famous incompleteness theorem. 
This theorem states that if a formal system of a certain complexity is 
consistent, it will be incomplete. The idea of representing mathematical 
theories by complete and simultaneously consistent formal systems 
was revealed as an illusion. ﻿Gödel’s ﻿proof presupposes that the formal 
system in question is rich enough to include an axiomatisation of 
standard ﻿arithmetic, which was a minimal requirement for the whole 
metamathematical programme.7

The original idea of metamathematics was that mathematical theories 
could be represented by formal systems. Soon emerged the idea that 
mathematical theories could be identified with formal systems. This idea 
acquired much force, even after the metamathematical programme had 
stumbled over ﻿Gödel’s incompleteness theorem. The claim of ﻿identity 
between mathematics and formal structures is defining for ﻿formalism as 
a philosophy of mathematics. ﻿Hilbert has often been referred to as the 
father of ﻿formalism, but I doubt if he thought of formal systems as being 
anything more than ﻿representations of mathematical theories.

Formalism appears a powerful position, as it provides straightforward 
answers to such classic philosophical questions as: What is mathematics? 
The question simply becomes identical to the question: What is a formal 
system? This later question can be answered in specific steps by clarifying 
the notions of alphabet, formula, axiom, rule of inference, ﻿proof, and theorem.

A formal system has to operate with an alphabet, which refers to the 
set of symbols that can be applied. Such an alphabet can include symbols 
such as p, q, r, (, ), ∨, ⇒, ∀, ∈, and ∃. For any specific formal system, the 

6� For a detailed presentation of metamathematics, see Kleene (1971).
7� For further discussions of ﻿Gödel’s incompleteness theorem, see Budiansky (2021) 

and Goldstein (2005). 
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list of allowed symbols must be explicitly enumerated. It should be well-
defined whether or not a symbol belongs to the alphabet or not. It needs 
to be specified which sequences of symbols count as formulas in the 
system. One can think of this definition as the grammar of the formal 
system. A grammar could, for instance, define the sequence (p∨q) as 
being correct, and the sequence (⇒p∨q as being incorrect. The whole 
grammar has to be formulated in such a way that it is well-defined 
whether or not a sequence of symbols is a formula or not.

Some formulas have to be enumerated as axioms. This set will serve 
as a departure for the deductions to be made. Naturally, there are many 
issues related to the selection of axioms, as, for instance, not selecting 
axioms that might lead to contradictions. The rules of inference that are 
going to be applied in the system have to be enumerated. Such rules 
specify how one, from one or more formulas, can derive other formulas. 
The basic idea is that if the original formulas (the premises) are true, 
then the derived formulas (the conclusions) will be true as well. No 
formal system demonstrates the actual truth of any theorems, but it 
shows what can be considered true if the axioms are considered true. In 
a formal system, the notion of truth is of a hypothetical if-then nature.

A ﻿proof can be defined as a sequence of the formulas F1, … ,Fn, where 
any formula Fi (where 1≤i≤n) is either an axiom or can be derived from 
one or more of the formulas in the sequence F1, … ,Fi-1 in accordance 
with the rules of inference. This definition of ﻿proof brings us to the 
definition of a theorem as a formula which occurs as the last formula Fn 
in a sequence of formulas F1, … ,Fn, that composes a ﻿proof.

By such a clarification of alphabet, formula, axiom, rule of inference, 
﻿proof, and theorem, one gets a definition of formals system, and, as a 
consequence, a definition of ma thematics according to ﻿formalism.

Logical positivism

The ﻿formalist interpretation of mathematics had a huge impact on the 
formulation of ﻿logical positivism as a philosophy of science in general. 
According to ﻿logical positivism, mathematics and scientific theories have 
to be kept strictly detached, not only from intuition, but from any form 
of contextualisation. They have to be kept separated from subjective 
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preferences, ﻿religious convictions, ethical principles, cultural traditions, 
political priorities, and from any form of metaphysical thinking.

In ﻿A Mathematician’s Apology, ﻿Hardy formulated a thesis of innocence, 
with respect to what he referred to as ‘real’ mathematics. This thesis, 
however, invoked the much broader dogma of ﻿neutrality, according 
to which any form of mathematics can be researched and developed 
separately from ethical and political considerations. ﻿Logical positivism 
establishes an even much broader dogma of ﻿neutrality according to 
which not only mathematics, but also science in general, can be kept, 
and must be kept, ethically and politically ﻿neutral. This dogma came to 
dominate the perspective on mathematics and science, and was rarely 
questioned until the late 1960s, when critical conceptions of mathematics 
and of sciences were formulated.8 

The ﻿Vienna Circle, as organised by Moritz ﻿Schlick (1886–1936), 
included philosophers, scientists, and mathematicians. Rudolf ﻿Carnap 
(1891–1970), Herbert ﻿Feigl (1902–1988), Kurt ﻿Gödel (1906–1978), Hans 
﻿Hahn (1879–1934), Otto ﻿Neurath (1882–1945), and Friedrich ﻿Waismann 
(1896–1959) were among them.9 The Circle was deeply engaged in 
actual developments in science and mathematics. They studied Albert 
﻿Einstein’s formulation of the theory of ﻿relativity, and the principles 
of quantum mechanics. ﻿Hilbert’s metamathematical programme was 
carefully discussed, and recent developments in formal logic were 
investigated. In 1929, ﻿Gödel completed his PhD studies in formal logic 
with Hahn as his supervision,10 and two years later he presented his 
famous incompleteness theorem. ﻿Wittgenstein﻿’s ﻿Tractatus, published 
in 1922 in a German-English parallel edition, was studied carefully 
by the Circle. It provided a principal inspiration for formulating the 

8� See Chapter 11 in this volume for the formulation of a critical conception of 
mathematics.

9� Several other people became associated with the ﻿Vienna Circle, for instance Hans 
Reichenbach, who worked in Berlin. Together with ﻿Carnap, he edited the journal 
Erkentnis (Knowledge) that expressed the outlook of ﻿logical positivism. Carl 
﻿Hempel also worked in Berlin. Karl ﻿Popper was around, but even though he was 
actively contributing to the discussion of science and shared many of the concerns 
of the ﻿Vienna Circle, he was never invited by ﻿Schlick to join.

10� The result of this study is found in ﻿Gödel (1967). By proving the completeness 
theorem of predicate logic, ﻿Gödel demonstrated that Frege’s intuition was sound; 
the axiom system that he presented in the ﻿Begriffsschrift as the foundation of 
predicate logic was in fact complete.
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overall position of ﻿logical positivism including the dogma of ﻿neutrality. 
﻿Wittgenstein was also invited by ﻿Schlick to join meetings of the Circle.11

Members of the ﻿Vienna Circle were deeply concerned about political 
developments including the growing anti-Semitism. For them, ﻿Nazi 
conceptions such as ‘Arian Physics’ or ‘degenerate Jewish ﻿physics’ 
had nothing to do with science; as meaningless metaphysical notions, 
they had to be eliminated from any scientific outlook. Looking more 
carefully at scientific theories, one might find a broader range of 
metaphysical assumptions and preconceptions, not only of political but 
also of philosophical, ﻿religious, and psychological nature. According to 
the ﻿Vienna Circle, all such features of metaphysics had to be eliminated 
from science. They found that they were facing a huge task in a most 
difficult period of time, namely to clean up science and to ensure that it 
got its proper neutral format.12

In an attempt to eliminate metaphysics from the domain of science, 
the ﻿Vienna Circle formulated the principle of verification. According to 
this principle, a statement has a meaning if and only if it is possible 
to specify some observations that can serve as empirical evidence for 
that statement. If such a specification is not possible, the statement is 
meaningless. As an example, we can take the statement ‘God is almighty.’ 
As one cannot point out any possible empirical observations that could 
support this statement, it is meaningless. In general, ﻿religious claims 
end up in the waste bin together with any other forms of supposed 
nonsense. So do many statements from ﻿psychology and psychoanalysis. 
The waste bin also becomes stuffed with ethical statements, as no 
empirical evidence for such statements can be identified. Furthermore, 
established disciplines such as ﻿physics need critical investigations since, 
for instance, the concept of force might include metaphysical features.13

A variety of specific formulations of the principle of verification 
was carefully investigated by the ﻿Vienna Circle. However, it turned out 
that whatever formulation one gave the principle, one could not escape 
the dilemma that either the formulation would be too loose, meaning 

11� For a careful study of the ﻿Vienna Circle, see Stadler (2015). For captivating 
presentations of the ﻿Vienna Circle, see Edmonds (2020), and Sigmund (2017).

12	  Carnap (1959, first published in Erkenntnis in 1932) made a powerful presentation 
of this cleaning programme.

13� See Jammer (1957).
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that obvious metaphysical statements came to count as meaningful, 
or it would be too tight, meaning that general natural laws of ﻿physics 
became relegated as meaningless. Furthermore, what about the very 
principle itself? How could you verify the principle of verification? As 
it appears impossible to specify what empirical evidence might support 
the principle, it seems itself to become meaningless.14

The approach to eliminate metaphysics, however, also followed 
another much more powerful departure. ﻿Logical positivism expressed 
a huge doubt with respect to ﻿natural language. In doing so, it drew 
directly on the ﻿formalist conception of mathematics. The grammar of 
﻿natural language was all too loose, making ample space for formulating 
any kind of statement, also with a profound metaphysical content. 
Natural language opens an extensive space for expressing nonsense 
in grammatically correct ways. When used as the language of science, 
﻿natural language must be under suspicion.15

In the ﻿Tractatus, ﻿Wittgenstein (1992) assigned a particular role to 
formal language. Here he consistently talks about language as singular, 
and it really has to be read as the language. This is the formal language 
from ﻿Principia Mathematica, and the language that ﻿formalism had 
cultivated. This language ﻿Wittgenstein sees as the language of science, 
emphasised throughout the Tractatus and brought together in §6 and §7. 
In the concluding paragraph of the Tractatus, one can read:16

§7 Whereof we cannot speak about, thereof one must be silent.

Many times, this paragraph has been read as an elegant and artistic 
conclusion of the book, but it is much more than that. It condenses 
﻿Wittgenstein’s whole conception of science and ethics. §7 has to be read 
together with §6. While §7 states what cannot be said, §6 states what can 
be said:

§6 The general form of a truth-function is: [p̅, ξ̅, N(ξ̅)]. This is the general 
form of proposition.

14� An overview of the discussion of the principle of verification is presented by 
﻿Hempel (1959), first published in 1950.

15� One important contribution to the critique of ﻿natural language was previously 
formulated by ﻿Russell (1905) in the article ‘On Denoting’.

16� There exist several translations of the Tractatus into English. Here I cite the first 
translation by C. K. Ogden from the original German-English edition of 1922.
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By a truth-function, ﻿Wittgenstein refers to a property of a composed 
proposition, namely that its truth value is determined by the truth 
values of the propositions of which it is composed. The expression  
[p̅, ξ̅, N(ξ̅)] is ﻿Wittgenstein’s shorthand for an arbitrary proposition built 
up by logical connectives.17 Wittgenstein claims that any proposition has 
this form. If a linguistic formulation does not have the property of being 
a truth-function, it must, according to §7, be passed over in silence. 
﻿Wittgenstein’s claim is that the language of science is truth-functional.18

This claim was carefully discussed by the ﻿Vienna Circle. In the ﻿Logical 
Syntax of Language, the original German version of which was published 
in 1934, ﻿Carnap (1937) elaborated on the claim that a formal language 
can serve as the language of science. The discussion is rich in details, 
and ﻿Carnap recognised that one needs to apply a version of formal logic 
with a higher degree of complexity than the one ﻿Wittgenstein referred 
to in the ﻿Tractatus. I see ﻿Carnap’s discussion in ﻿Logical Syntax of Language 
as a careful elaboration of the clue provided by ﻿Wittgenstein in §6 of 
Tractatus.

What now to think of that which cannot be expressed in formal 
language? As mentioned, ﻿Wittgenstein’s answer comes in §7: Remain 
silent! ﻿Logical positivism agrees: Science has to concentrate on what can 
be expressed in formal language, and to leave the rest aside. Thus, §7 is 
a condensed expression of the claim that no metaphysical elements can 
be part of science, whether they take the form of ﻿religious convictions, 
political positions, or ethical principles. Together §6 and §7 provide as 
condensed formulation of the total separation between science and any 
value statements.

17� The connectives could be  and , as used by ﻿Whitehead and ﻿Russell in ﻿Principia 
Mathematica. In 1913, Henry ﻿Sheffer showed that it is possible to define the other 
connectives from just one connective, now referred to as the Sheffer stroke. 
Informally, the Sheffer stroke can be defined as ‘not both’, meaning that it occurs 
as a negation of a conjunction. In ﻿Wittgenstein’s symbolism, the Sheffer stroke 
is referred by be the symbol . Thus by ﻿Wittgenstein refers to an arbitrary truth-
function expressed by means of the Sheffer stroke.

18� The formulation seems to indicate that ﻿Wittgenstein thinks of the language of 
science as being that of proposition logic. That is certainly a simplistic claim. As a 
minimum, one should think of the language of predicate ﻿calculus as a prerequisite 
for the language of science. Any formulation of laws of nature would presuppose 
such a language.
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Acknowledging the principal idea of logicism﻿ that mathematics and 
logic are the same, ﻿logical positivism claims that mathematics as the 
language of science ensures that science does not include metaphysical 
elements and that science turns ethically neutral. In this way we have 
reached a most profound legitimation of the doctrine of ﻿neutrality.

Due to their explicit anti-﻿Nazi positions and, in several cases, also 
to their Jewish origins, many members of the ﻿Vienna Circle left Austria 
after Adolf Hitler came to power. Many escaped to the United States 
of America.19 As part of the transplantation into an English-speaking 
context, logical positivism did change. 20 From being a critical stance with 
respect to the present state of science, including a profound critique of 
﻿Nazi ideologies, it turned into a devise for legitimising science as, in fact, 
being detached from socio-political issues. In this way, the transplanted 
version of ﻿logical positivism came to operate as a legitimation of what 
was taking place in most university studies in sciences and mathematics, 
not only in the USA but the world over. ﻿Logical positivism turned into 
a legitimation of not engaging in socio-political issues as an integral 
part of any such study programmes. From providing a departure for 
a critique of science, ﻿logical positivism turned into a broadly assumed  
convenient dogma about ﻿neutrality.

Structuralism

Structuralism can be interpreted as an elaborated version of ﻿formalism, 
and ﻿structuralism had a profound impact on mathematical research. It 

19� In 1935, ﻿Carnap emigrated to the USA. ﻿Feigl’s parents were not ﻿religious, but 
they were Jewish, and in 1931 he left for the USA. In 1939, ﻿Gödel got a position 
at the Institute of Advanced Studies in Princeton, with which also ﻿Einstein was 
associated. In 1934, ﻿Neurath fled to the Netherlands and later on to England. 
﻿Waismann was a Jew, and in 1938 he emigrated to the USA. In 1933, Reichenbach 
was dismissed from his work due to his Jewish background, and in 1938 he moved 
to the USA. ﻿Hempel’s wife was of Jewish origin, and in 1937 they emigrated to 
the USA. ﻿Popper had Jewish origins as well, and in 1937 he emigrated to New 
Zealand.

20� The first English introduction to the ideas of the ﻿Vienna Circle was presented 
by Ayer (1970), when he published Language, Truth and Logic in 1936. Other 
presentations in English are found in Ayer (1959), ﻿Carnap (1962), ﻿Hempel (1970), 
and Reichenbach (1966). In 1961, Newman (1979) published The Structure of 
Science, which is a textbook-like presentation of how to do science.
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resulted in a restructuration of mathematical theories, which included 
the formation of new mathematical notions and structures.

Structuralism acknowledges the importance of outlining the alphabet, 
defining the formulas, and enumerating the axioms for developing a 
mathematical theory. Structuralism also emphasises the importance 
of specifying the nature of ﻿proof, although without operating with 
an explicit enumeration of rules of inference. With respect to proving, 
﻿structuralism sticks to the practice of mathematics, according to which 
proving must be strictly logical and transparent. There is no application 
of any form of intuition in mathematical proving; no figures or ﻿diagrams 
are necessary, not even in ﻿geometry. In this sense, ﻿structuralism assumes 
the whole approach of eliminating intuition from mathematics.21

Nicolas ﻿Bourbaki was an important exponent of ﻿structuralism. In some 
places, one can read that he worked at the Royal Academy of Poldavia, 
in other places that he was associated with the University of Nancago. 
However, behind the collective pseudonym one finds mathematicians 
including André ﻿Weil (1906–1998), Henri ﻿Cartan (1904–2008), Claude 
﻿Chevalley (1909–1984), and Jean ﻿Dieudonné (1906–1992). Over time, 
many more people have contributed to the collected works of Bourbaki.22

The ﻿Bourbaki working group was established in the mid-1930s. The 
original idea was to write a university textbook in mathematical analysis 
covering recent developments in mathematics. Soon, however, the work 
became much more ambitious and turned into a project of providing a 
systematic presentation of major parts of mathematics. The first volume 
of ﻿Elements of Mathematics (Éléments de Mathématique) was published in 
1939 (Bourbaki, 2004). It provides a presentation of ﻿set theory, which 

21� The formal logical systems, as presented in the ﻿Begriffsschrift or ﻿Principia 
Mathematica, operate with two rules of inference that easily can be stated explicitly. 
But if we are dealing with a mathematical formal system, such as ﻿Peano’s 
axiomatics for the natural numbers, many more rules of inference are going to 
be applied. But which? One could stipulate that the set of possible inferences 
for a ﻿Peano axiomatics correspond to the theorems in, say, ﻿Principia Mathematica. 
This seems consequential, as ﻿Principia Mathematica presents a system of valid 
inferences. However, the situation is more complex than that. There are forms 
of mathematical reasoning which are not captured by any theorem in ﻿Principia 
Mathematica, but which are broadly applied in making mathematical deduction. 
For mathematical research practice, also as shaped by ﻿structuralism, the 
implication is that the rules of inferences are not enumerated, but inferences are 
kept as transparent as possible.

22� See, for instance, Bourbaki (1950) and ﻿Dieudonné (1970).
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was considered the basis of mathematics; this idea ﻿Bourbaki shares with 
﻿Frege, ﻿Whitehead, and ﻿Russell, and logicism﻿ in general. Many more 
volumes of ﻿Elements of Mathematics followed covering topics like ﻿algebra, 
topology, and topological vector space.

Historically, there is a connection between ﻿formalism and ﻿Bourbaki’s 
﻿structuralism via Emmy ﻿Noether (1882–1935) who, for a period, worked 
at the mathematical department at Göttingen University, directed by 
﻿Hilbert. Bartel van der ﻿Waerden (1903–1996) was one of her students, 
and his book ﻿Modern Algebra, first published in two volumes in 1930 and 
1931, was deeply inspired by ﻿Noether’s lectures. The book is referred 
to by ﻿Dieudonné as an important resource for the ﻿Bourbaki group, 
preparing as it did for the definition of several of the formal structures 
to which they referred.

The ﻿Bourbaki group met a few times per year. At such meetings, 
manuscripts were presented and discussed carefully, sometimes being 
read aloud and criticised sentence by sentence. Alternative suggestions 
for completing a ﻿proof were suggested as well as alternative definitions 
of concepts. The meetings had no chair, and the discussion could be 
heated. When a manuscript had been worked through, a different 
member of the group got the task of presenting a revised version of the 
manuscript at the following meeting. This procedure continued meeting 
after meeting until consensus was reached.

Only one formal rule guided the work in the group, namely that, on 
turning fifty years old, the member had to leave the group. New members 
had to be recruited, and if members became aware of particular gifted 
students, they could be invited to join a meeting. Any newcomers who 
did not make significant contributions were dropped, though a second 
invitation could be considered.

It was presupposed that the members of the group had broad 
interests in mathematics since the work in the group was not for narrow 
specialists, the principal aim being to identify relationships between 
different areas of mathematics. ﻿Bourbaki tried to identify how structures 
and ﻿proofs in one area appeared similar to structures and ﻿proofs in 
other areas. When such similarities were identified, the challenge was to 
make them explicit, and ﻿Bourbaki identified a range of such overlapping 
structures.
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Mathematics is in rapid development, new theories and new concepts 
are constantly emerging. How can we effectively integrate and update 
all these developments? ﻿Bourbaki provided a suggestion. The ﻿Elements 
of Mathematics can be read as a kind of mathematical encyclopaedia, 
organised not in alphabetic order, but structurally.

Chapter 1 in the first volume of Elements of Mathematics makes a 
presentation of what is to be understood by formal mathematics. By 
making this start, ﻿Bourbaki explicitly takes a ﻿formalist departure. 
Chapter 2 presents ﻿set theory, defining notions like order pair, function, 
and correspondence. Chapter 3 addresses ordered sets, cardinals, and 
integers, while the final Chapter presents the notion of structure.

The crucial notion is structures, which became the building blocks of 
﻿Bourbaki’s architecture of mathematics. In order to describe a structure, 
the properties of its elements are without significance. ﻿Bourbaki agreed 
completely with ﻿Hilbert’s formulation in the ﻿Foundations of Geometry, 
when he enumerated objects like ‘point’, ‘line’, and ‘plane’ without 
specifying anything about these objects. The only thing relevant is to 
specify how they relate to each other, and this is done in terms of the 
axioms defining the structure.

Through ﻿Bourbaki’s profound studies of a variety of mathematical 
theories, three mother structures were identified: (1) a set organised by 
an operation; (2) a set organised by a relation; and (3) a set organised 
by a topology. The group (G,∘) is an example of a set G organised by 
an operation ∘ which is a function of two variables from G×G to G. The 
group (G,∘) fulfils the axioms:

1.	 ∀a,b,c ∈ G: (a∘b)∘c = a∘(b∘c)

2.	 ∃n ∈ G: ∀a ∈ G: a∘n = n∘a = a

3.	 ∀a ∈ G: ∃a-1 ∈ G: a∘a-1 = a-1∘a = n

One theorem in ﻿group theory states that there is only one neutral element. 
The ﻿proof runs like this: Assume that there exists two neutral elements n1 
and n2. According to the definition, we would have n1 = a∘a-1 as well as n2 

= a∘a-1. From this we can conclude that n1 = n2. Group theory developed 
further along such lines. The departure is the axioms, and nothing 
but axioms, and the proving needs to be logically straightforward and 
transparent. The group structures can be recognised in a variety of 
mathematical disciplines: ﻿number theory, ﻿geometry, vector ﻿calculus, etc.
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By means of the mother structures, a huge amount of other 
mathematical structures can be defined. Notions like ring, field, 
ordered field, vector space, and ﻿Hilbert space can be defined, and the 
many different classic disciplines start growing together in the same 
architecture.

By emphasising the importance of mother structures, ﻿Bourbaki 
diverged from a traditional ﻿formalist outlook as, for instance, 
summarised by Haskell ﻿Curry (1970) when he states that the ‘essence 
of mathematics lies […] not in any particular kind of formal system, 
but in formal structure as such’ (p. 56). ﻿Bourbaki does not assume any 
such relativism, but finds that some structures are more important 
than others to the extent that they express fundamental similarities 
between apparently different mathematical disciplines. That we are 
dealing with three mother structures is not any a prior given. It is an 
insight that emerged from the discussions in the ﻿Bourbaki group. More 
mother structures could be identified as mathematics develops. What 
we are dealing with is just a summing-up of structures identified by a 
certain group of mathematicians at a certain moment in the ﻿history of 
mathematics.

The ﻿Bourbaki group took as its point of departure the current state 
of mathematics. For identifying structures, they did not consider any 
historical developments that have brought forward the mathematical 
ideas and theories. Nor did they pay attention to possible applications of 
mathematics. Applications were not considered relevant for identifying 
mathematical structures.

Through a profound de-contextualisation of mathematics, 
﻿Bourbaki’s ﻿structuralism repeats the separation between mathematics 
and socio-political issues as advocated by ﻿logical positivism. I interpret 
﻿structuralism as a principal example of how the dogma of ﻿neutrality 
can be acted out within mathematics research. Most ironically, however, 
﻿structuralism gained a profound social impact through a widespread 
reformation of mathematics education.

The Modern Mathematics Movement

The seminar New Thinking in School Mathematics took place over 
twelve days in 1959 at Cercle Culturel de ﻿Royaumont, a more than 
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700-hundred-year-old abbey located north of Paris. The seminar was 
organised and financed by the Organisation for European Economic 
Co-operation (﻿OEEC), later to become the ﻿Organisation for Economic 
Co-operation and Development (﻿OECD).

In the peaceful environment provided by the ﻿Royaumont Abbey, an 
important feature of the ﻿Cold War was addressed. The tension between 
the East and the West had been steadily growing, and the military 
potentials were a crucial factor. The assumption had been, at least in the 
West, that the USA was well ahead of the ﻿Soviet Union with respect to 
technology in general, and military technology in particular. 

One important element of military technology was the capacity for 
deploying rockets, and it came as a major shock to the West when in 
1957 the ﻿Soviet Union launched their first ﻿Sputnik.

The seminar New Thinking in School Mathematics was provoked by the 
﻿Sputnik shock. It became accepted that in order to advance technology, 
recognised as an urgent matter, radical improvements in mathematics 
education were necessary. At the seminar, the mathematician Marshall 
H. ﻿Stone gave the introductory lecture and highlighted that the ‘teaching 
of mathematics is coming to be more and more clearly recognized as the 
true foundation of the technological society which it is the destiny of 
our time to create’ (p. 18). This and others of his formulations resonated 
nicely with the overall ﻿OEEC rationales for organising the seminar. 
However, right after the opening lecture, the seminar took an abrupt 
turn and references to social and technological issues were forgotten.

In his lectures, which turned out to become the principal reference 
for the whole seminar, ﻿Dieudonné presented drastically new ideas 
about the content of secondary school mathematics. (As mentioned, 
﻿Dieudonné was born 1906, meaning that he had turned fifty years old 
and therefore had to leave the ﻿Bourbaki group. This might have created 
space for him to engage in other activities.) He started his lecture this 
way:

My specific task today is to examine, from the point of view of present 
﻿curriculum in mathematics in universities and engineering schools: (a) 
What mathematical background professors in these institutions would 
like to find in the students at the end of their secondary school years. 
(b) What they actually get. (c) How it would be possible to improve the 
existing situation. (﻿OEEC, 1961, p. 31)
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﻿Dieudonné’s perspective is clear: a reform of the mathematical ﻿curriculum 
at secondary schools has to be guided by the actual ﻿curriculum at the 
university level. He asks for a radical updating of the ﻿curriculum:

The ﻿curriculum of the secondary schools has to be reorganised in order 
to eliminate any undue waste of time and to absorb as much as possible 
of the burden now resting entirely of the university as is compatible with 
the intellectual capacities of the children. (p. 34)

What reorganisation, then?

In the last 50 years, mathematicians have been led to introduce not only 
new concepts but a new language, a language which grew empirically 
from the needs of mathematical research and whose ability to express 
mathematical statements concisely and precisely has repeatedly been 
tested and has won universal approval. But until now the introduction 
of this new terminology has (at least in France) been steadfastly resisted 
by the secondary schools, which desperately cling to an obsolete and 
inadequate language. And so when a student enters the university, he 
will most probably never had heard such common mathematical words 
as, set, mapping, group, vector space, etc. (p. 34)

﻿Dieudonné wants a conceptual updating of secondary school 
mathematics. He is not referring explicitly to the work of ﻿Bourbaki, 
but it is clear that his suggestion reflects his ﻿structuralist outlook. The 
﻿curriculum of secondary school mathematics has to be developed 
around the basic mathematical structures.

This demand, ﻿Dieudonné turned into a slogan: ‘﻿Euclid must go!’ 
For centuries, ﻿Euclid’s ﻿Elements had existed as a principal departure for 
mathematics education. The Elements provided a path whereby ﻿proofs 
led to one theorem after the other. This path has been assumed to reveal 
the genuine nature of mathematics. But according to ﻿Dieudonné, this 
approach belongs to the museum of mathematics. ﻿Euclid must go in 
order to make space for a relevant updating of the whole discipline.23

‘﻿Euclid must go!’ condenses clearly the ﻿structuralist concern with 
respect to intuition. Intuitions had been incorporated in the whole 
﻿Euclidean presentation of ﻿geometry. This became obvious when ﻿Pasch 
and ﻿Hilbert made explicit the many ‘hidden axioms’ in ﻿Euclid’s Elements. 
That intuition had brought the deductive processes forward had been 

23� See also Dieudonné (1973).
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hidden by the presence of ﻿diagrams. Diagrams should not have any role 
to play in mathematics, but in ﻿Euclid’s ﻿Elements they did. According to 
﻿structuralism, this diagram-based intuition had to be eliminated, and in 
particular ﻿structuralist presentations of ﻿geometry could be completed 
without any use of ﻿diagrams.

Mathematicians from around the world with an interest in mathematics 
education joined the seminar. They listened to ﻿Dieudonné’s presentation, 
discussed over the twelve days, and gained much inspiration. From 
Denmark participated Svend ﻿Bundgaard, a mathematician from Århus 
University, and Ole ﻿Rindung, particularly interested in secondary 
school mathematics. At the seminar, it was decided that an expert group 
should be brought together in order to provide a synopsis for the new 
﻿curriculum for secondary school mathematics. The group had sixteen 
members, including Erik ﻿Kristensen, also from Århus University. In 
August–September 1961, the group met in Dubrovnik, and in 1961 their 
report Synopsis of Modern Secondary School Mathematics (﻿OECD, 1961) 
was published.

A few years later, ﻿Rindung and ﻿Kristensen published the first volume 
of a mathematical textbook for the Danish Gymnasium for sixteen- to 
nineteen-year-old students. This textbook was radically different from 
what had been seen until then. It started with ﻿set theory, and right from 
the beginning the symbolic language of formal logic was brought into 
operation. The principal mathematical structures were presented, and a 
new path into the whole landscape of mathematics was defined.

Soon there appeared textbooks for fourteen-year-old students at 
the Danish Folkeskole for six- to sixteen-year-old students, starting 
with ﻿set theory. Simultaneously, textbooks for ﻿teacher education and 
for in-service training of ﻿teachers became published, all reflecting the 
idea that ﻿set theory provided the start of learning mathematics. Bent 
﻿Christiansen from the Royal Danish School of Educational Studies was 
deeply engaged in implementing the reform by developing material 
for ﻿teachers as well as for students. Soon appeared textbooks for six- 
to seven-year-old children starting with ﻿set theory. In the end, the 
﻿structuralist approach came to dominate mathematics education in 
Denmark, at least for a while.

My reference to the development in Denmark serves as an illustration, 
as what took place in Denmark took place, mutatis mutandis, in many 
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other countries as well. We are dealing with a most powerful reform 
movement. I am not aware of any other educational reforms with such 
an immediate impact.

The ﻿Modern Mathematics Movement covered mathematics education 
through new structures together with an implicit claim about ﻿neutrality, 
totally distancing it from socio-political issues. Mathematical structures 
were the focus, not what could be done by means of mathematics. 
Although the rationale for the ﻿Royaumont Seminar was both economic 
and political, the ﻿structuralist outlook annihilated all such ‘externalities’. 
Structuralism focused on intrinsic features of mathematics, and it 
represented the ultimate de-contextualisation of both mathematics 
research and of mathematics education. It provided the final step of the 
ambition of ﻿logical positivism of characterising mathematics as neutral, 
establishing the dogma of ﻿neutrality.24

Poor Piaget!

In the middle of the 1970s, when the ﻿Modern Mathematics Movement 
was in full swing, and when I started studying mathematics education, 
one found references to the work by Jean ﻿Piaget everywhere. There 
appeared to exist a clear connection between his formulations of a 
genetic epistemology and the ﻿Modern Mathematics Movement.

When I first looked through the report from the ﻿Royaumont Seminar, 
I was surprised not to find any references to ﻿Piaget. It appeared to me that 
the implementation of the ﻿Modern Mathematics Movement came before 
its epistemological justification. I became interested in clarifying better 
the nature of ﻿Piaget’s genetic epistemology. An important resource for 
me was the book Mathematical Epistemology and Psychology, written by 
Ewert ﻿Beth and Jean ﻿Piaget (1966), which first appeared in French in 
1961. The book is divided into two parts, the first written by Beth, the 
second by ﻿Piaget.25

24� In this way, ﻿structuralism cemented the ground-zero from which ﻿critical 
mathematics education was to sprout, to which I return in Chapter 11 of this 
volume.

25	  Beth was deeply interested in the foundation of mathematics. His book of more 
than 700 pages, The Foundations of Mathematics (Beth, 1968), first published in 
1959, provides a most elaborated discussion of foundational issues. See also ﻿Piaget 
(1970).
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In his part, ﻿Piaget refers to a seminar that took place in 1952, in 
which both ﻿Dieudonné and he participated. ﻿Dieudonné presented the 
﻿structuralist view on mathematics as formulated by ﻿Bourbaki, and he 
outlined the nature of the three mother structures. ﻿Piaget presented 
how he had studied children’s operations with objects, and how he had 
condensed his observations by means of three operational structures. 
﻿Piaget tells that the high degree of correspondence between the three 
mother structures and the three operational structures appeared as a 
surprise to those participating in the seminar, and also to ﻿Piaget himself.

What can be concluded from such an observation of similarity? 
One can make a step further than just acknowledging similarities by 
claiming that there exists an intrinsic connection between the two 
types of structures. As the mother structures are the basic building 
blocks in ﻿Bourbaki’s architecture of mathematics, one can be tempted 
to stipulate children’s operational structures as being the genetic roots 
of mathematics. To me, this stipulation constitutes the departure for 
﻿Piaget’s genetic epistemology. The seminar in 1952 might be the occasion 
where this idea emerged.

The idea of a genetic epistemology is original. A classical empirical 
interpretation of the roots of mathematical knowledge has highlighted 
that mathematical concepts and insights emerge from observations of 
properties of physical objects. One experiences a very smooth surface, 
and one gets to the concept of a plain. One makes addition of different 
objects, and one gets to the basic laws of ﻿arithmetic. ﻿Piaget’s idea is 
different. He sees reflections on operations with objects as being the root 
of mathematics.

On various occasions, Hans ﻿Freudenthal pointed out that ﻿Piaget 
completely misunderstood the nature of Bourbaki’s work.26 According to 
﻿Freudenthal, ﻿Bourbaki’s suggestion for an architecture of mathematics 
just represents a particular event in the ﻿history of mathematics. The 
identified mother structures could have been different; their identification 
depended on the heated discussions in the ﻿Bourbaki group. What ended 
as the architecture was just a historical coincidence.

To ﻿Freudenthal it appears arbitrary, if not simply misunderstood, 
to conclude that – due to similarities between children’s operational 

26� In Chapter 7 of this volume, we will look more carefully into ﻿Freudenthal’s view 
on mathematics; here I restrict myself to mentioning his critique of ﻿Piaget.
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structures and some structures identified during the late 1930s by a 
group of French mathematicians – one had identified the genetic roots of 
mathematics. To me as well, it appears arbitrary, if not misunderstood. I 
find that the references to ﻿Piaget accompanying the ﻿Modern Mathematics 
Movement first of all served as a questionable legitimisation of what 
was taking place. ﻿Freudenthal (1973) points out the following:

Poor ﻿Piaget! He did not fare much better than ﻿Kant, who had barely 
consecrated ﻿Euclidean space as ‘a pure intuition’ when non-﻿Euclidean 
﻿geometry was discovered! ﻿Piaget is not a mathematician, so he could 
not know how unreliable mathematical system builders are. ﻿Bourbaki’s 
system of mathematics was not yet accomplished when the importance 
of categories was discovered. There can be little doubt that categories 
will be a new organizing principle and that rebuilding of ﻿Bourbaki’s 
structure in categorical style will leave no stone left on top of another. 
If a leading development psychologist could then convince us of the 
categorizing genesis of all mathematical concepts – which will certainly 
eventually happen – then it will just be in time to see the categorical style 
mathematics, before it is ready, being pulled down in favour of some 
new principle, which will certainly have its day. Mathematics is never 
finished – anyone who worships a certain system of mathematics should 
take heed of this advice. (pp. 45–46)

﻿Piaget’s genetic epistemology recapitulates the complete separation 
between the learning of mathematics and socio-political issues. His 
theory is about patterns of ‘natural growth’, and not about social and 
critical reflections.27

The dogma of ﻿neutrality was established as integral part of the 
﻿formalist outlook on mathematics. From there is became articulated 
by ﻿logical positivism as a much broader dogma of ﻿neutrality, not only 
with respect to mathematics but with respect to science in general. 
﻿Structuralism represents a further development of the ﻿formalist outlook 
with a profound impact on the mathematical research practice and the 
formation of mathematical theories. Structuralism embraces the dogma 

27� This separation is repeated by Ernst von ﻿Glasersfeld’s radical ﻿constructivism, 
which represents a further elaboration of ﻿Piaget’s genetic epistemology. In a 
conversation with me, Christine ﻿Keitel told that once she had the opportunity 
to ask ﻿Glasersfeld how he saw social and political issues related to mathematics 
education. ﻿Glasersfeld found the question interesting, but admitted that he had 
never thought about it.



� 1034. Formalism, structuralism, and the doctrine of neutrality

of ﻿neutrality, and via the ﻿Modern Mathematics Movement this dogma 
became propagated in mathematics education.
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5. Dehumanisation through 
mathematics

 David Kollosche

Mathematics can be seen as a project of dehumanisation in the sense that it 
allows us to work with a disregard for personal uniqueness. While the word 
‘dehumanisation’ has a negative connotation and invites us to study this property 
of mathematics carefully, dehumanisation is also one of the great strengths of 
mathematics and has proved invaluable for modern society. We will trace this 
field of tension along two indisputable ingredients of mathematics activity: 
calculation and logic. As there is enough literature praising mathematics, we 
allow ourselves to take a more critical stance towards dehumanisation through 
mathematics. We end with a sceptical discussion on whether mathematics can 
be rehumanised.

Dehumanisation

I will argue that mathematics is a project of dehumanisation.1 What do I 
mean with that term? Dehumanisation has become a present concept 
for the analysis of the psychological and sociological phenomenon 
of denying people their full humanness, usually in order to justify 
practices of injustice, violence, and silencing. This understanding 
of the term dates back to Herbert C. ﻿Kelman’s (1973) analysis of the 
mental configuration which allowed people to be well-educated and 
family-loving while, at the same time, committing some of the most 
devastating crimes in human history, especially in the ﻿Holocaust. Nick 

1� For a discussion of dehumanisation through mathematics education, see Bishop 
(1988, especially pp. 12–13).
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﻿Haslam (2015) provided a good overview of the research field that 
has developed on this basis, as does the freshly published Routledge 
Handbook of Dehumanization (Kronfeldner, 2021).

An older use of the term dates back to the work of Max ﻿Weber, 
one of the pioneers of ﻿sociology. In his monumental work ﻿Economy 
and Society, ﻿Weber (1978) argued that the ﻿bureaucratic organisation of 
administration is technically superior to any other form of administration 
because it is ‘dehumanised’ (entmenschlicht). Allow me to present the 
broader context of ﻿Weber’s thoughts:

Bureaucratization offers above all the optimum possibility for carrying 
through the principle of specializing administrative functions according 
to purely objective considerations. Individual performances are allocated 
to functionaries who have specialized training and who by constant 
practice increase their expertise. ‘Objective’ discharge of business 
primarily means a discharge of business according to calculabe rules and 
‘without regard for persons.’ […] When fully developed, ﻿bureaucracy 
also stands, in a specific sense, under the principle of sine ira ac studio 
[without anger and passion]. ﻿Bureaucracy develops the more perfectly, 
the more it is ‘dehumanized,’ the more completely it succeeds in 
eliminating from official business love, hatred, and all purely personal, 
irrational, and emotional elements which escape calculation. (p. 975)

Note that, first of all, ﻿Weber was not writing about people who become 
dehumanised. Instead, it is a form of administration, comprising a 
certain body of knowledge, specific practices and particular perspectives 
on social affairs, which are ‘dehumanised’. What is this supposed to 
mean? Clearly, ﻿bureaucracy has never been a human being, which could 
suddenly come to be denied this status. However, administrative action 
is executed by people and affects people. The idea of ﻿bureaucracy is that 
the practice of administration is organised in ways which ensure that 
the individuality of both administrators and administered is denied. 
All the administrator is supposed to do is ‘calculation’, a mechanical 
processing of official affairs, while the administered is relevant only in 
terms of the data retrieved for the processing of a specific administrative 
act. Dehumanisation, here, is understood as a social practice which 
contributes to the denial of somebody’s humanity.2

2� There is an interesting debate concerning the differences between the concepts of 
‘dehumanisation’ and ‘objectification’ (Mikkola, 2021), but this is not the place to 
continue this debate.



� 1075. Dehumanisation through mathematics

Turning the focus to the people performing ﻿bureaucratic work opens 
up another perspective on dehumanisation. ﻿Weber (1978) noted that 
‘the spirit in which the ideal official conducts his office’ is dominated 
by ‘a spirit of ﻿formalistic impersonality’. Administrators have to work 
‘without hatred or passion, and hence without affection or enthusiasm’ 
for their work. ‘The dominant norms are concepts of straightforward 
duty without regard to personal considerations’ and everybody ‘is 
subject to formal equality of treatment’ (p. 225). In consequence, the 
administrator has to work like a machine, has to behave in a way that 
could be called ‘dehumanised’. That means that the dehumanised practice 
of ﻿bureaucratic administration does not only lead to the dehumanisation 
of others, first of all it requires a dehumanisation of the self. It appears that 
these dimensions of dehumanisation necessarily go together.

Note that ﻿Weber (1978) wrote that ﻿bureaucracy would be technically 
superior to other forms of administration (p. 973)! Apparently, he was 
careful enough to reserve some scepticism about the good of a fully 
dehumanised practice. This scepticism was well placed. To address 
an extreme example, mind ﻿Bauman’s (1989) analysis that the highly 
demanding administrative organisation of the ﻿Holocaust was possible 
only because administrators worked in a demoralised, mechanical way. 
Despite his caution, ﻿Weber was a great admirer of ﻿bureaucracy which 
becomes clear when considering his historical situation. At his time, 
﻿Weber witnessed a transformation from a poorly organised society, 
which suffered from poverty, starvation and extreme inequalities and 
in which support and rights depended largely on birth right, to a highly 
organised society, in which support and rights were allegedly equally 
distributed. ﻿Bureaucracy, then, was perceived as a tremendous step 
towards efficiency and equality. Obviously, it would be naïve to simply 
consider dehumanisation something good or bad. However, both the 
positive and the negative potential call for a closer analysis.

Mathematics

Alan ﻿Bishop (1988) brought up the concept of dehumanisation when 
discussing rationalism and objectism (the study of objects instead of 
actions) as cultural values of mathematics:
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So, once again we see, with objectism as with rationalism, an ideology 
which is in some sense dehumanised. Rationalism is about certain 
criteria of theories, divorced from their human creators, while objectism 
is based on inanimate objects and not on animate phenomena, such as 
humans. Mathematics favours an objective, rather than a subjective, view 
of reality. (p. 66)

﻿Bishop’s remark suggests that dehumanisation is a central ingredient 
of mathematics, and that dehumanisation through mathematics is a 
concern for understanding our culture. I want to depart from ﻿Bishop’s 
remark and attempt to provide a more elaborated discussion of 
dehumanisation through mathematics.

My initial statement that mathematics is a project of dehumanisation 
could now be rephrased to claim that mathematics is a social practice 
which seeks to work with a disregard for personal uniqueness, with 
an emphasis on mechanical predictiveness. In this reading, my initial 
statement appears to be a negatively connotated account of something 
that is all too obvious: of course, there is an ideal that practices such 
as proving or calculating are independent of the individual. The 
belief that such practices are possible explains, to a large extent, the 
fascination for and use of mathematics. The technical possibility of this 
independence has been documented in the execution of such practices 
by electronic machinery. The ontological and epistemological status of 
this independence has been discussed under terms such as truth and 
objectivity.

Independent of the legitimacy of the perspective outlined in 
the last paragraph, there are good reasons to study mathematics 
as a dehumanised practice. Firstly, the possibility and reality of 
mathematics as a dehumanised practice is a psychological and 
sociological phenomenon which deserved attention. In what ways does 
mathematics achieve dehumanisation? How is such a practice even 
possible? Why would humans want to engage in it? All these questions 
focus on processes of dehumanisation. Secondly, the dehumanised 
practices of mathematics result in a dehumanised handling of the issues 
mathematics is applied to. This is how the prosperity of a dehumanised 
practice such as mathematics effects culture as a whole. This perspective 
proposes to focus our discussion also on consequences of dehumanisation. 
All these discussions have the potential to deepen our understanding 
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of mathematics from a sociological, psychological, and philosophical 
perspective.

Admittedly, one might want to add that there should also be a focus 
on the ideology of dehumanisation, which plays a central role when the 
values of objectivity and truth are wrongfully projected from ‘﻿pure’ 
mathematics to ﻿applications of mathematics. Especially the belief that 
the choice of mathematical models in application is not arbitrary but 
objectively necessary turns mathematics into a questionable tool of 
power. However, as intriguing as such a perspective is, much has already 
been written about it (Davis & Hersh, 1980; Desrosières, 1993; Dowling, 
1998; Porter, 1996; Skovsmose, 1994; Ullmann, 2008), and it is not the 
focus of this chapter.

Some readers might be uneasy with my description of mathematics as 
a dehumanising practice. Has the turn from mathematics-as-a-product 
to mathematics-as-a-practice (stimulated, e.g., by ﻿Pólya, 1945) not been 
a major step forward in the philosophy of mathematics, allowing for 
sociological perspectives on the human side of doing mathematics? Is the 
description of mathematics as a dehumanising practice not a step back 
to rightfully outmoded perspectives on mathematics? I argue otherwise, 
and for that I want to return to ﻿Weber’s discussion of ﻿bureaucracy once 
more. What did ﻿Weber mean when he argued that ﻿bureaucracy works 
the better ‘the more completely it succeeds in eliminating from official 
business love, hatred, and all purely personal, irrational, and emotional 
elements which escape calculation’? Note that ﻿Weber did not say that 
﻿bureaucracy was the practice that realised these attributes! Of course, 
even ﻿bureaucratic administration leaves open doors for some degree of 
personal variation based, for example, on annoyance or compassion.3 
Dehumanisation can instead be understood as an ideal of ﻿bureaucratic 
practice. Bureaucratic administration may never be fully dehumanised, 
but it is conceived the better, the more it reaches this ideal. Nevertheless, 
it is clear that human beings execute administration, and research could 
come to analyse the rather diverse practices that exist within ﻿bureaucratic 
institutions. In the same sense, dehumanisation can be understood as 
an ideal of research and school mathematics today without saying that 

3� Examples might be: receiving petitioners after closing time, allowing petitioners to 
hand in attachments for applications after their deadlines, offering superficial or 
profound consulting, providing tips how to get the most out of a specific situation.
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research and school mathematics is not still human-made or that the 
mathematical practices we engage in are no worthy part of the study of 
what we call mathematics.

What then is this ‘mathematics’ that is asserted to be a project 
of dehumanisation? I do not wish to attempt to answer the highly 
controversial question what mathematics is. Instead, I propose to further 
discuss two very general mathematical practices which have, beyond any 
doubt, become paradigmatic for the question what mathematics might 
be, namely calculation and ﻿proof. Calculation refers to a more hands-on 
characteristic of mathematics. It is closely connected to applications of 
mathematics and can be traced back to the very beginnings of human 
civilisation. Proof, then, at least in the Western tradition, refers to a 
more philosophical approach towards mathematics with only indirect 
connections to applications. It is closely connected to the manifestation 
of mathematics as part of academics and can be traced back to ﻿Ancient 
Greece.4 The following parts of the chapter will therefore be dedicated 
to the discussion in how far calculation and ﻿proof can be understood as 
a project of dehumanisation.5

Dehumanisation through calculation

Calculation is probably the central driving force of dehumanisation 
through mathematics. First, calculation owes its efficiency to a certain 
disregard of the objects of investigation, thus, when these objects are 
people, opening a space for the dehumanisation of others. Second, 
calculation demands from its applier a certain mindset that is not unlike 
the dehumanised mindset of the bureaucrat. Consequently, calculation 
appears to be a worthy start for a discussion of dehumanisation through 
mathematics.

Calculation, here, should be understood in a wide sense as any 
manipulative practice within a ﻿calculus and any application of such 

4� Note that there are traditions of the justification of mathematical knowledge 
that are closely connected to calculation and application, for example in Ancient 
Chinese mathematics (Chemla, 2012).

5� Some readers might notice that I have already discussed these issues elsewhere 
(e.g., Kollosche, 2014), but while my earlier approach towards that topic had been 
guided by socio-economic and didactical perspectives, I want to dare a closer look 
at epistemological aspects of mathematics here.
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calculi. ‘Calculus’, in the English language often closely associated 
with the infinitesimal ﻿calculus, refers to a system comprising a set of 
allowed signs, rules for their combination to statements, and rules for 
the manipulation of such statements (Krämer, 1998, p. 29). Besides 
infinitesimal ﻿calculus and among others, we have ﻿arithmetic, ﻿algebraic, 
and propositional calculi. The following discussions will circle around 
﻿arithmetic and elementary ﻿algebra, but the points made are meant to be 
valid for any form of calculation.

Calculation as a shared practice

For reasons of administration, every highly organised state appears to 
develop some proficiency in calculation. In the ﻿Rhind Papyrus, one of 
the oldest surviving textbooks for mathematics, dating back to Ancient 
Egypt around 1550 BC, we find the following mathematical problem:

A quantity, ¼ added to it, becomes it: 15.
Operate on 4; make thou ¼ of them, namely, 1; the total is 5.
Operate on 5 for finding of 15. There become 3.
Multiply: 3 times 4. There become 12.
The quantity is 12, ¼ of it is 3, the total is 15. (Chace et al., 1929, Vol. 2, 
Plate 48)6

We can see that the problem is posed without any contextualisation. Later 
examples in that script for solving linear equations feature measures 
for volumes without any change in the calculative techniques. It can be 
assumed that those who worked with this textbook were ready to apply 
this kind of calculative practice to a variety of situations. Or, to put a 
different emphasis on that last statement: a variety of situations came to 
be dealt with using identical mathematical techniques. The papyrus also 
includes many distribution problems, in which usually bread loaves 
are distributed among men, whereas in one problem measures of beer 
are distributed without changing the calculative techniques, except for 
measure conversions in some cases. By contrast, it is fair to doubt that 
bread loaves and measures of beer were the most pressing problems 
of distribution for the Egyptian administration. Calculation seems not 
to depend on what the numbers stand for, be it abstract entities such 

6� Chace et al. (1929) provide literal translations, hence the bumpy expression.
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as measured quantities and distribution shares or rather real and alive 
objects such as flocks of animals. For the practice of calculation, context 
is irrelevant. 

Now, imagine the problem presented above had a context, featuring, 
for example, a shepherd who lent his flock for ¼ interest and was paid 
back a flock of 15 animals. The question how many animals he lent 
in the first place could perfectly well be computed by the Egyptian 
solution. But what would ‘5’ in the second line or ‘3’ in the third line of 
the cited problem actually mean in our context? We cannot tell and we 
do not need to care. Calculative techniques work in a mechanical way, 
irrespective of context, which means that they can be applied also to 
human affairs without any regard for individual concerns of the objects 
they are applied to. They bear the possibility of dehumanisation.

In his ﻿Remarks on the Foundations of Mathematics, Ludwig ﻿Wittgenstein 
(1978) reflected on the nature of rule-following in mathematics. He 
sees this phenomenon based not only on the experience of shared 
perception, but also on our experience that imitation (in the sense of 
copying somebody’s actions and obtaining the same result) is possible. 
For ﻿Wittgenstein, the possibility of this kind of conformity is a basic 
truth of our experience and the beginning of any explanation. Following 
rules is only possible in the areas of our experience which allow for 
such conformity. The very idea of a ‘rule’ results from this experience 
of repetition of perception and act. Verbalised rules then are first and 
foremost descriptions of repeating perceptions and actions. Only on this 
basis can they be understood as prescriptive (in the sense of prescribing 
perceptions and actions whose description would be that very rule). 
This line of thought shows, as ﻿Wittgenstein stressed, that following rules 
is a cultural achievement and specifically human. Nevertheless, the very 
nature of following rules is not to be oneself but to follow the other, to 
universalise perception and action, to ignore the peculiarities one might 
experience, to eventually dehumanise the processing of our affairs. 

The annulment of meaning

Already the prehistorical example from Ancient Egypt teaches us that 
calculation is a technique whose internal working is ignorant to what 
it processes. This ignorance is one source for dehumanisation through 
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calculation, for calculation serves all its objects equally – be they pebbles, 
bread loaves, sheep, or human beings. Already here, calculation means 
following specific rules for perceiving and acting with numbers.

However, the history of formalisation teaches us that ignorance 
can have limitations. For example, the disputes accompanying the 
introduction of the number zero and of infinitesimals were primarily 
based on the question what these entities ought to be (Kleiner, 2001; 
Krämer, 1988a). We might not be able to say what ‘5’ means in the 
second line of the problem discussed in the last section, but at least 
we can refer to perceptions where we see five of something, which is a 
strategy for manifestation that we cannot use for zero and infinitesimals. 
Calculating with zero and infinitesimals actually requires to ignore the 
question what they might mean in reality. Apparently, not everybody 
was willing to make this sacrifice. Indeed, we can see that such instances 
of the ignorance of the question where concepts of mathematics are to 
be found in our world is a matter of modern times. When trying to 
locate where this attitude towards meaning has changed, we suddenly 
encounter developments that go far beyond mathematics and will prove 
relevant in a variety of ways.

In ﻿The Order of Things, subtitled An Archaeology of the Human Sciences, 
Michel ﻿Foucault (2007) tracked changes in ‘the epistemological field […] 
in which knowledge, envisaged apart from all criteria having reference 
to its rational value or to its objective forms, grounds its positivity’ (p. 
xxiii). With central importance to this project, he discusses changes in 
the use of signs in different cultural arenas. ﻿Foucault’s central finding is 
that at the beginning of the seventeenth century, signs were no longer 
assumed to be inseparably connected to the signified as they had 
been conceived ever before. Suddenly, they became to be considered 
arbitrary human constructions. In the arena of literature, he analyses 
the monumental novel ﻿Don Quixote by Miguel de ﻿Cervantes (1605), in 
which the protagonist imagines adventures as a knight only to be cast 
back to his profane reality. ﻿Foucault (2007) concluded that

writing has ceased to be the prose of the world; resemblances and signs 
have dissolved their former alliance; similitudes have become deceptive 
and verge upon the visionary or madness; things still remain stubbornly 
within their ironic ﻿identity: they are no longer anything but what they are; 
words wander off on their own, without content, without resemblance 
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to fill their emptiness; they are no longer the marks of things […]. The 
written word and things no longer resemble one another. (p. 53)

In the arena of the price for material goods, prices were no longer 
inseparably linked to the expenses of production, storage, and distribution 
but were legitimate to take any value. In the arena of medicine, the idea 
that plants sensuously resembled the body parts or infestations they 
were able to cure was replaced by a logic of empirical enquiry guided by 
measurement and logical order. In general, the idea of resemblance was 
replaced by the idea of an ordered choice of signs. What such an order 
could and should look like is not an essentialist question; it is a question 
of logic. In consequence, the seventeenth century sees the rise of a vivid 
academic discourse on how concepts should be framed and related.

Algebra is no arena of ﻿Foucault’s (2007) study, but it could just as 
well have been. Variables are a special sort of mathematical signs, and 
they change their nature within the time frame discussed by ﻿Foucault. 
Sybille ﻿Krämer presented an intriguing study of the change of the use 
of operative signs in mathematics.7 Already in the Ancient Egyptian 
problem discussed above, we see the appearance of variables, there 
translated as ‘a quantity’ (elsewhere as ‘a heap’), but noted as only 
one sign in the original hieroglyph script. ﻿Krämer (1988a) noted that 
this use of variables follows the idea that it stands in place of a well-
defined and yet-unknown number, which eventually can be computed. 
Variables, here, have a very specific meaning.8 They represent distinct 
numbers. ﻿Euclid’s ﻿geometry of ﻿Ancient Greece did not include variables 
for numbers, but it used line segments as general entities irrespective 
of their actual lengths. In this sense, the abstract line segment can be 
understood as a variable for lines segments with specific lengths. In 
some cases, the specific length will follow with necessity from other 
data in a geometrical construction, while in other cases, the general 
lines segment is allowed to assume any length. In the latter sense, the 
line segment can be understood as a geometric variable, as it no longer 

7	  Krämer (1988a) and ﻿Krämer (1991) are two rich and original studies in German. 
Where possible, I will refer to ﻿Krämer (1988b), which is an early summary in 
English.

8� The epistemology of the term ‘variable’ from Lat. variabilis, meaning ‘changeable’, 
is misleading in this case. Some scholars speak of ‘apparent variable’ or ‘bound 
variable’ when they refer to variables in the function of a placeholder.
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stands in place of a well-defined and yet-unknown length. It took a 
long international development to introduce the idea of the variable to 
﻿algebra as well, including a lot of work by scholars from the Islamic 
world. In Europe, the popularisation of use of variables in mathematics 
is often attributed to François ﻿Viète’s ﻿Isagoge in Artem Analyticam from 
1591, where variables are used to represent a wide range of numbers as 
in many of today’s equations such as a + b = b + a or y = 7x – 2. ﻿Krämer 
(1988b) analysed:

Thus it becomes possible to formulate rules of ﻿algebra with universal 
validity. Unlike the ciphers, the letters are no longer signs for single 
numbers, but rather signs for the whole class of numbers satisfying a given 
equation by substitution. The rules which refer to the transformation of 
equations can in this way be written down in a formal language. This 
means that their validity is independent of the numerical values entering 
into the calculation. Algebra becomes the transformation of series of 
signs according to rules which have no relation to the meaning of the 
signs. (p. 182)

We could also say that the meaning of ﻿Viète’s signs is defined by their 
use in the ﻿calculus, the formal language of mathematics, alone, and not 
by any reference to a meaning beyond them. This breakthrough laid the 
foundations for many influential developments to come, all depending 
on the use of signs as ontologically independent entities. René ﻿Descartes 
established an analogy between ﻿algebra and ﻿geometry and thus opened 
﻿geometry up for calculation as a tool for solving problems. Isaac ﻿Newton 
and Gottfried Wilhelm ﻿Leibniz developed an infinitesimal ﻿calculus, in 
which infinitesimals as well as functions become entities of calculation. 
﻿Leibniz already worked on a logical ﻿calculus and developed the idea 
that all the truths of the world could be computed on the basis of a 
sufficiently developed formal language. Here, truth becomes a question 
of the logic of signs, which no longer represent anything.

The cultural impact of calculation

Now, if thought indeed changed from a logic of resemblance towards 
a logic in which signs were set loose, would mathematics be a leader 
or a follower in this process? ﻿Viète published his ﻿algebra in 1591, 
whereas ﻿Don Quixote was published in 1605. But this difference might 
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be misleading, as it can be assumed that in all social arenas, the change 
came slowly and was only catalysed by intellectual pioneers, whose 
appearance in time is somewhat random. ﻿Foucault (2007) stated that the 
change occurred ‘roughly half-way through the seventeenth century’ 
(p. xxiv) and that the logic of resemblance was in use still ‘at the end of 
the sixteenth century, and even in the early seventeenth century’ (p. 19). 
Note that ﻿Descartes’s analytical ﻿geometry, the next big step in the ﻿history 
of mathematics and in the use of signs as independent entities, was not 
published before 1637 and was received with astonishment even then!

Still, there are other reasons to assume that mathematics was 
not a mere follower in this transition in the use of signs. Calculation 
techniques as in the Egyptian problem above had already illustrated 
that the manipulation of signs is possible without any reference to their 
meaning. The signs themselves were required to resemble something 
real, but their handling was not. The ﻿geometry of ﻿Euclid had already 
made implicit use of the idea of variables, albeit restricted to geometrical 
contexts. In the third century AD, ﻿Diophantus of Alexandria had 
introduced ancient Asian techniques for adding lengths and areas 
without the scruples of the earlier ﻿Ancient Greek tradition, as did many 
Persian and Arab scholars in the middle ages. Fifteenth-century Europe 
also saw the introduction of the Indian positional notation system 
(popularised through economic applications), which brought with it 
a further appreciation for the efficiency of sign manipulation as in the 
﻿algorithms of written calculation and a raising tolerance for meaningless 
signs such as the zero. These preconditions and developments have 
made it easier for ﻿Viète and those who followed to take the next step. So, 
mathematics seems to have been a, if not the, protagonist in the culture-
wide change of the understanding of signs (Krämer, 1991).

Problematising dehumanisation through calculation

While calculation practices which are ignorant of the meaning of its 
manipulative steps have flourished for more than 3000 years, modern 
mathematics refuses to ask for the meaning of the values and expressions 
of calculation altogether. Roland ﻿Fischer (2006) pointed out that this 
ignorance is a virtue: mathematics would not be useful for practical 
affairs, if it was compelled to explain the meaning of every concept and 
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manipulation. It is useful exactly because it can rely on calculation alone. 
All that may be so, but this potential of calculation comes with a price. 
The disregard for meaning requires those performing calculations to 
deny their individual thoughts in calculation and can operate on human 
beings only after reducing them to calculable magnitudes.

Formalism is the elaboration of the denial of meaning as an attitude 
in the philosophy of mathematics. It assumes mathematics to be 
nothing but a rule-based game with signs. The signs, representing and 
constituting mathematics, are held to have a meaning only within the 
game of mathematics. Reuben ﻿Hersh (1997) stressed that, from such a 
perspective, the applicability of mathematics cannot be explained; it must 
appear as an astonishing coincidence.9 However, applicability requires 
explanation, for, as Gottlob ﻿Frege (1960) argued, ‘it is applicability alone 
which elevates ﻿arithmetic from a game to the rank of a science’ (p. 187).

By abandoning the logic of resemblance, mathematics was able to 
set loose the power of its ﻿formalistic apparatus, but it lost a dimension 
of self-reflection. No longer asking for more than formal explanations 
of what a mathematical concept stands for, what a mathematical 
proposition says, what a mathematical procedure does, means losing 
the ability to critically reflect on our use of mathematics. Of course, 
mathematics is still widely applied in our societies, but the question if 
these applications are justified, the question in how far the mathematical 
model actually resembles our worldly problem, is no longer a matter of 
mathematics. 

The dialectics of the use of calculation for the processing of social 
affairs were best described by the Frankfurt School in philosophy. Max 
﻿Horkheimer (2004) argued:

As soon as a thought or a word becomes a tool, one can dispense 
with actually ‘thinking’ it, that is, with going through the logical acts 
involved in verbal formulation of it. As has been pointed out, often 
and correctly, the advantage of mathematics – the model of all neo-
positivistic thinking – lies in just this ‘intellectual economy.’ Complicated 
logical operations are carried out without actual performance of all 
the intellectual acts upon which the mathematical and logical symbols 

9� And mathematicians are astonished: Check, for example, Eugene ﻿Wigner’s (1960) 
infamous paper on ‘The Unreasonable Effectiveness of Mathematics in the Natural 
Sciences’.
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are based. Such mechanization is indeed essential to the expansion of 
industry; but if it becomes the characteristic feature of minds, if reason 
itself is instrumentalized, it takes on a kind of materiality and blindness, 
becomes a fetish, a magic entity that is accepted rather than intellectually 
experienced. (p. 16)

A central line of critique of calculation as a social practice questions the 
legitimacy and effects of a practice which has to atomise its perception 
of the world into countable entities. ﻿Horkheimer and ﻿Adorno (2002) 
explained:

Bourgeois society is ruled by equivalence. It makes dissimilar 
things comparable by reducing them to abstract quantities. For the 
Enlightenment, anything which cannot be resolved into numbers, and 
ultimately into one, is illusion; modern positivism consigns it to poetry. 
Unity remains the watchword from ﻿Parmenides to ﻿Russell. All gods and 
qualities must be destroyed. (pp. 4–5)

They go further in proposing that the mathematical handling of affairs is 
actually rendering our perception of reality and blocking aspects which 
cannot be dissolved into patterns of sameness and repetition:

When in mathematics the unknown becomes the unknown quantity in 
an equation, it is made into something long familiar before any value 
has been assigned. Nature, before and after quantum theory, is what 
can be registered mathematically; even what cannot be assimilated, the 
insoluble and irrational, is fenced in by mathematical theorems. (p. 18)

These practices do of course leave an imprint both on people who are 
subjected to th em and on people who are performing them:

Not only is domination paid for with the estrangement of human beings 
from the dominated objects, but the relationships of human beings, 
including the relationship of individuals to themselves, have themselves 
been bewitched by the objectification of mind. Individuals shrink to 
the nodal points of conventional reactions and the modes of operation 
objectively expected of them. (p. 21)

Concerning the conduct of the self when calculating, ﻿Wittgenstein 
(1978) demonstrated that calculation rests on rules. For ﻿Wittgenstein, 
rules do not hold any inner truth, they are nothing but patterns of 
repeated action. The whole sense of rules is securing that people can 
agree on procedures that yield the same results irrelevant of who is 
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performing them. Such predictability lies at the basis of games such as 
chess, and we would just as well expect it from calculation. It follows 
that learning to calculate includes learning to follow pre-given rules, to 
perform acts that are not original to the self but copied from others. This 
is how calculation dehumanises the self.

In mathematics education research, there remains a strange lack 
of reflection on how learners cope with the dehumanising side of 
calculation. Renate ﻿Voswinkel (1998), a pastor reflecting on her troubles 
with mathematics in school, reported:

We learned our times tables. I memorized the rows and only then checked 
if it was right that 7 times 3 is 21. 7 times 8 is 56, that is what I told 
myself in the morning when washing before we would write a test on the 
tables of eight. I did not keep this in mind because I kept thinking about 
further-reaching things that I cannot remember today. The result was an 
increasing quiet devaluation of my own thoughts. I forbade myself to 
think, because it confused me, although I made my own connections in 
all other subjects, had ideas, developed a lot of imagination […]. (p. 18, 
my translation)

Concerning the discourse on others, there are plenty of examples of 
how calculation is instrumental in dehumanising people. Andreas 
﻿Bell (2016) discussed how to allocate donor organs, where the usual 
practice in Germany relies on a mathematical model that calculates 
the individual claim on a donor organ on the basis of a few personal 
variables. Bell argues that although a society has an interest in installing 
a mathematical mechanism for the transparent allocation of donor 
organs on the basis of principles such as the social optimisation of 
this allocation, no mechanism can satisfy all possible expectations 
concerning optimisation, ﻿equity, and compassion. Here, reducing 
individual cases to a pre-defined set of variables is necessary in order 
to apply any systematic form of decision-making at all, and yet this 
process necessarily leads to a dehumanisation of those waiting for a 
donor organ.

Let me also cite an example from Philip ﻿Davis’ (2012) epilogue to a 
recent stud y edition of The Mathematical Experience:

We are indeed living in an increasingly techno-mathematized world. A 
recent hospitalization for a minor complaint drove this home to me. I was 
subjected to a battery of tests carried out on a variety of devices each of 
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which produced either numbers or a waveform. The medical attendant 
marked down all the numbers and perhaps a fast Fourier transform was 
applied to the waveform to obtain more numbers. As a patient, I was 
transfigured – some might say dehumanized – into a multicomponented 
vector. (p. 491)

My last example is an extreme case but rather revealing in its simplicity. 
Look at the following problem from a mathematics textbook in ﻿Nazi 
Germany:

In 1936, the annual expenditure for
1) 33 770 welfare children 19 881 000 RM10

2) 131 942 insane and mentally deficient 94 636 600 RM
3) 238 094 hereditary defective (deaf-mutes etc.) 166 000 000 RM

Calculate the cost per head [...].
How many single-family houses at 5000 RM could be built with the 

sum required for the insane (or the hereditary defective)?
How many families could make their living from these sums (1500 

RM per year)?

(Frank, 1939, p. 38, cited in Kütting, 2012, p. 11, my translation)

The scandal here is that the legitimacy of care for people in need is 
reduced to only one variable of their existence, namely to what they 
cost society. The comparisons that the demanded calculations suggest, 
though they are economic nonsense, were meant to raise the acceptance 
for the euthanasia policy of ﻿Nazi Germany. While this example is 
extreme, we will find similarly ambiguous uses of calculatory practices 
as legitimisations throughout today’s public life (Porter, 1996). The 
dehumanisation of human beings through mathematics is not a sporadic 
accident of the application of calculation, it is its predominant mode of 
operation, as has long been proposed by ﻿Davis and ﻿Hersh (1986):

The final intent of the application of mathematics to people is to be able 
to compare two individuals or groups of individuals, to be able to arrive 
at a precise and definitive opinion as to which is taller, smarter, richer, 
healthier, happier, more prolific, which is entitled to more goods and 
more prestige, and ultimately, when this weapon of thought is pushed 
to its logical limits and cruelly turned around, which is the most useless 
and hence the most disposable. Whenever anyone writes down an 

10� RM stands for Reichsmark, the official currency of Germany at that time.
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equation that explicitly or implicitly alludes to an individual or a group 
of individuals, whether this be in economics, ﻿sociology, ﻿psychology, 
medicine, politics, demography, or military affairs, the possibility of 
dehumanization exits. […] What is not often pointed out is that this 
dehumanization is intrinsic to the fundamental intellectual processes 
that are inherent in mathematics. (p. 283)

Dehumanisation through logic

The relationship between mathematics and logic can be heavily debated. 
There had been the ambitious but failed attempt by ﻿Whitehead and 
﻿Russell to ground all mathematics on formal logic (George & Velleman, 
2002). Others might argue that mathematical work can be disturbingly 
illogical, only to return to logical forms after a rather wild process 
of exploring and conjecturing. One way or the other, the product of 
mathematical work will be a theory, which is expected to follow certain 
criteria of logic, for example that it does not allow to deduce within it 
two mutually contradictory statements. In the process of creating such 
products, mathematicians will, to some extent or the other, use logical 
thinking. Eventually, even school mathematics, usually mirroring 
more elaborated mathematical theories in simpler forms, is a logically 
organised product.

A common assumption is that logical thinking is an innate capacity 
of human beings and that self-discipline and good education allow 
the individual to exploit this capacity to the fullest. From this point of 
view, logical thinking could be said to be a central part of evolving one’s 
humanity. Psychologically, that may be a way to see it, but ﻿sociology casts 
doubt. Is logical thinking really an innate capacity? Valerie ﻿Walkerdine 
(1988) radically criticised traditional ﻿psychology and showed in many 
experiments that what we call rationality is actually a form of the conduct 
of the self that is learnt in social interaction. But if we, following this 
insight, begin to understand logical thinking as a cultural phenomenon, 
it appears to be astonishing that, using logical thinking, different people 
come to the same conclusions, find the same arguments compelling, 
see the same contradictions. Here, I will explain this particularity by 
demonstrating that logic is a dehumanised practice in that it offers a 
mechanism of thought which negates individual concerns. 
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Fundamentals, and how (not) to read them

There is no single answer to the question what logic is. Formal logic is 
highly mathematical, providing different calculi in which statements can 
be noted and manipulated through computation. While formal logic is a 
modern phenomenon, we find an abstract and, to some extent, already 
formalised approach in ﻿Aristotle’s discussion of certain and uncertain 
forms of inference (﻿Aristotle, trans. 1989). Such descriptions of logical 
thinking are, in modernised form, of interest for ﻿psychology, which 
studies individual capacities to perform such forms of thought. However, 
even ﻿Aristotle’s approach can be argued to rest on some epistemological 
assumptions (as argued, e.g., by ﻿Leibniz, 1765/1896, pp. 404–410), 
which were already, though not systematically, mentioned by ﻿Aristotle, 
and systematically discussed by scholars such as Arthur ﻿Schopenhauer 
(1903). While categorising forms of inference and discussing logical 
calculi is rather technical work, the underlying assumptions are very 
far-reaching decisions of how to think about our world. My analysis of 
dehumanisation through logic will begin here.

This perspective will follow a somewhat ﻿Eurocentric interpretation 
of what logic might be. Notwithstanding the fact that other cultures 
developed reflections on logic or even described other forms of 
reasoning as logical, there are good reasons for the focus on ﻿Ancient 
Greek philosophy: first, it provides us with very early sources on the 
philosophy of logic, which allows a far-reaching look into the history 
of such reflections. Second, ﻿Ancient Greek logic has been studied by 
many scholars, upon which we can rely here. Third, ﻿Ancient Greek logic 
has been highly influential for European and modern philosophy and 
mathematics. However, it should be noted that there was no monolithic 
‘﻿Ancient Greek logic’, that the subject itself was much debated at that 
time, and that the philosophical worship of ﻿Ancient Greek logic as it has 
been perceived and retold by philosophical tradition may have clouded 
our view on epistemological alternatives. In any case, it should be noted 
that when I write ‘logic’ I refer to the ﻿Eurocentric reception of ﻿Ancient 
Greek logic. This use of the word is not meant to deny the existence and 
legitimacy of other forms of logic.

The formulation and meaning of these foundational assumptions of 
logic are a matter of ongoing debate, so that any presentation is already 
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biased by a specific interpretation. Allow me to present the assumptions, 
which are canonically called ‘principles’ or ‘laws’, in an interpretation 
following Klaus ﻿Heinrich (1981), only to provide more diverse context 
later:

1.	 Things stay the same; they do not change. (Law of ﻿identity)

2.	 Everything is or is not; there is no other way. (Law of excluded 
middle)

3.	 Nothing both is and is not. (Law of excluded contradiction)

4.	 Everything has a reason and is defined by it. (Law of sufficient 
reason)

Even though these words may provoke many associations, their meaning 
appears not to be straightforwardly clear. I do not wish to summarise 
the vast landscape of interpretational controversies here, but let me give 
some short examples for the interpretation of the law of ﻿identity. In the 
years around 1700, ﻿Leibniz (1896) held the law of ﻿identity to say that 
‘everything is what it is’ (p. 404), or, more formally, that ‘A is A’ (p. 405), 
thus reducing the law of ﻿identity to a mere tautology. ﻿Leibniz assumes 
that such ‘primate truths of reason […] seem only to repeat the same 
thing without giving us any information’ (p. 404). He cautiously added 
the word ‘seem’ because he saw a function of the law of ﻿identity for the 
manipulation of formal logical statements, but he did not see in the law 
of ﻿identity anything more than a self-evident statement. But would the 
law of ﻿identity have fascinated philosophers over centuries if it was a 
mere tautology, if it was not ‘giving us any information’?

﻿Foucault sets the scene for a different perspective. In his study on 
insanity, ﻿Foucault (1954) showed that the idea of insanity came into 
being only in modern times, perceived as a threat to reasonable thinking 
and accompanied by asylums as new institutions and ﻿psychology as a 
new academic discipline. Apparently, as natural and indispensable as 
the idea of insanity may seem to us today, there had been a kind of 
thinking in which this idea played no role at all for understanding our 
world. Based on this insight, ﻿Foucault (1966) studied more general 
patterns of thinking and reasoning over time, and showed that they 
change severely, including the role of logico-mathematical perspectives 
of understanding. He called his approach genealogy. ﻿Foucault (1984) 
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wanted to historically trace ideas not in order to show an inevitable way 
to any presumably necessary understanding we might have today, but 
in order to reveal the implicit meaning of the ideas by an analysis of 
alternatives they were positioned against, of fears, needs and desires 
that promoted their development. Might logic be a cultural answer to a 
specific configuration of fears, needs, and desires?

Attend to the following passage where ﻿Aristotle (trans. 1933) touched 
on the problem of ﻿identity:

Thus in the first place it is obvious that this at any rate is true: that the 
term ‘to be’ or ‘not to be’ has a definite meaning; so that not everything 
can be ‘so and not so.’ Again, if ‘man’ has one meaning, let this be 
‘two-footed animal.’ […] If on the other hand it be said that ‘man’ has 
an infinite number of meanings, obviously there can be no discourse; 
for not to have one meaning is to have no meaning, and if words have 
no meaning there is an end of discourse with others, and even, strictly 
speaking, with oneself […]. (1006a–b)

Here, ﻿identity appears to be a matter of the fixation of meaning in a social 
discourse. This perspective suddenly positions logic in the social realm. 
Identity demands that the meaning of concepts is made independent 
from individual interpretation, or, in other words, that their meaning 
becomes dehumanised. But why did ﻿Aristotle have to argue for the 
law of ﻿identity in the first place? Were there any alternatives whose 
legitimacy ﻿Aristotle wanted to disprove? What then is the historical 
background on the basis of which we can explicate the meaning of the 
logical assumptions listed above? It may seem that we need a genealogy 
of the very foundations of logic.

Genealogy of logic

Jean-Pierre ﻿Vernant’s (1982) Origins of Greek Thought provides an 
intriguing account that logic is not inherent but a cultural phenomenon 
that can, in the Western tradition, be traced back to ﻿Ancient Greece. I owe 
most of the philosophical perspective on this development to ﻿Heinrich 
(1981), whose research took as its objects of study ‘the supressed of 
philosophy, and not the accidentally suppressed but that, which in the 
systems of thought, in the rationalised systems of occidental thinking, 
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indeed returns’ in the form of a compulsive and unconscious formation 
of thought (p. 173, my translation).

﻿Hesiod’s ﻿Theogony and ﻿Homer’s epics illustrate the understanding 
of the world in ﻿Ancient Greece in the eighth century BC. It was, as in 
many other cultures, based on a polytheistic ﻿religion. In this worldview, 
the worldly forces were humanised in the sense of a human-like 
﻿representation as gods. For example, Ares stood for war, Demeter for 
agriculture, Dionysus for ecstasy, and Hermes for trade. Crisis in worldly 
affairs such as droughts, earthquakes, or diseases could be understood 
through the tempers of and struggles among the gods. Especially, the 
Greeks believed that all descendants of a god inherited his or her virtues 
and vices and could never escape this fate – a belief that we will return 
to.11

Historical changes led to doubt about the legitimacy of the 
polytheistic worldview (Vernant, 1962/1982). The vast trade network 
of ﻿Ancient Greece imported foreign religions, making the polytheistic 
worldview appear as a mere possibility among others. Wars led to the 
destruction of kingdoms whose legitimacy was closely connect to the 
old myth. Democratically organised city states (note that only the male 
aristocracy belonged to the dēmos) such as Athens developed a culture 
of public discussion where soon not only political but also moral and 
﻿religious standpoints came to be questioned. Whether the myth was 
the appropriate way to explain the world became a pressing question. 
Philosophy developed within this intellectual crisis as the project of 
finding better explanations. In this context, ﻿Heinrich (1981) reported 
that ﻿Plato had ﻿Socrates mourn that ‘it is the woe of the philosopher 
to be confused this way, for confusion indeed is the only source of 
philosophy’.12

11	  Heinrich (1981, p. 99) cited the Curse of the House of Atreus as an illustration, 
which is documented in the eleventh song of ﻿Homer’s Odyssey: The mythical 
god-king Tantalus, a son of Zeus, had offered his dismembered son Pelops as a 
meal to the gods to test their omniscience. They reassembled Pelops, revived him, 
and cursed the lineage of Tantalus. All descendants of Tantalus, including Pelops, 
his son Atreus, and his son Agamemnon, were subsequently involved in clan 
murders, hatred, and conspiracies. No descendant of Tantalus could escape this 
fate. The curse was inherited, and inheritance was so inescapable that even the 
gods could not exclude Pelops from the hereditary curse.

12	  Heinrich (1981, p. 31) differs from usual German and English translations of the 
ambiguous Greek original. For example, Harold N. Fowler translated: ‘For this 
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What follows, beginning in the sixth century BC, are philosophical 
attempts for a reliable theory of the world. Providing an overview of 
these attempts would carry us too far off, but I will return to the ideas 
of ﻿Anaximander of Miletus, probably a student of Thales, and of 
﻿Parmenides of Elea, a student of Xenophanes, both living in that time 
period and laying the intellectual ground for the work of ﻿Socrates, ﻿Plato, 
and ﻿Aristotle.

Deduction

Looking for the origins for the concept of deduction, one ends up with 
﻿Anaximander, who composed the philosophical poem ‘On Nature’ 
in the first half of the sixth century BC.13 There, Anaximander (2007) 
argued that ‘everything either is an origin or results from an origin’ (p. 
35, my translation).14 Not much is recorded which would further qualify 
this thought. However, what can be said is that, with ﻿Anaximander, the 
idea was set loose that things do have a reason. ﻿Anaximander goes on 
philosophising about the final reason, which we will get back to. For 
now, it is important to say that ﻿Anaximander’s worldview was the oldest 
surviving Greek view not to be built on divine entities. The reason for 
something to happen was not to be found in the realm of the gods but 
in nature. 

Some scholars say that ﻿Anaximander founded ﻿physics as he was 
the first to propose a cosmology that worked without gods and asked 
for reasons. ﻿Aristotle’s (trans. 1933) proposition ‘that we must obtain 

feeling of wonder shows that you are a philosopher, since wonder is the only 
beginning of philosophy’ (﻿Plato, trans. 1921b, 155d). ﻿Heinrich argues that the 
Greek word πά�θος (páthos) does not merely mean ‘feeling’ but has the connotation 
of suffering, and that θαυμά�ζειν (thaumázein) is not merely ‘wonder’ but 
something negative. I tried to provide an English translation in accordance with 
﻿Heinrich’s interpretation.

13� This poem has only survived through the citations of fragments of it by others. 
Gemelli Marciano (2007) compiled all the fragments available and offers a good 
translation into German. For the lack of a compilation with a translation into 
English, I will refer to the German compilation and offer translations from it.

14� The ambiguous Greek original ἀρχὴ (archē) can be translated to ‘beginning’, 
‘origin’, ‘sovereignty’, ‘sovereign’ or ‘principle’. Gemelli Marciano (2007) translates 
it to ‘Prinzip’, which would be ‘principle’ in English. Following ﻿Heinrich (1981), I 
chose a different translation to emphasise the close connection of ﻿Anaximander’s 
thought to deductive thinking.
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knowledge of the primary causes, because it is when we think that we 
understand its primary cause that we claim to know each particular 
thing’ (983a) shows that this idea set a standard even some centuries 
later. Through the Attic philosophers, the idea of deductive reasoning 
was set as a standard of Western academia.

It is interesting to note the structural analogy between inheritance 
and reason: just as the gods passed their traits to their offspring, which 
then could not escape this fate, deduction presupposes that concepts 
necessarily hold all the properties of the concepts from which they 
derive. It is more than a bizarre side note that the move from myth to 
﻿physics appears to be merely a replacement of gods with natural forces 
while keeping the overall architecture of argumentation untouched. 

Identity

As I have argued earlier, understanding ﻿identity as the tautology that 
‘a is a’ does not transport any meaning, needless to say. Instead, the 
principle of ﻿identity should be understood as the plea, the postulation, 
even the command that there should be things that stay the same. We 
can understand this postulation more socially following ﻿Aristotle who 
argued that people should make sure that they talk about the same 
things – from person to person and from instance to instance. We can 
also understand this postulation more religiously as the belief that our 
world is indeed based on things which do not change, and mathematics 
might be seen to belong to these things. Indeed, ﻿Socrates and ﻿Plato 
followed this essentialist belief, as did ﻿Anaximander and ﻿Parmenides.

﻿Anaximander (2007) knew that in his cosmos of deductions, the 
deductive chain would need to start somewhere. He argued that ‘there 
is no origin of the infinite, for otherwise it would be confined’ (p. 35, 
my translation). He continued that this ‘infinite’ had ‘not emerged’, was 
‘imperishable’, ‘immortal’, ‘indestructible’, ‘eternal’ and ‘not aging’, it 
‘seems to be the origin of all other things’ (pp. 34–37, my translation). In 
the cycle of time, the world emerges from the infinite, only to perish to it 
again. The inevitability of ﻿Anaximander’s infinite, on which everything 
depends, is more relentless than the mythical gods: at least, the latter had, 
through their humanesque character, a free will and could be fought. In 
﻿Anaximander’s cosmos, fate leaves no hope of being negotiable.



128� Breaking Images

About half a century later, ﻿Parmenides (trans. 2009) composed 
his own poem ‘On Nature’, in which the author ascends to the gods 
to hear an epiphany from Dike, the goddess of justice, morals and 
fair judgement. Therein, ﻿Parmenides formulated a first version of the 
law of ﻿identity and introduced the concept of ‘truth’, mostly referred 
to as ‘being’, to the philosophical discussion (pp. 56–57). ﻿Parmenides 
explained that ‘that Being is ingenerate and imperishable, entire, unique, 
unmoved and perfect’ (p. 64), ‘it never was nor will be, since it is now 
all together, one, indivisible’ (p. 66) and it is ‘bound fast by fate to be 
entire and changeless’ (p. 76). The analogies to ﻿Anaximander’s infinite 
are obvious. But while ﻿Anaximander’s infinite is a necessary element of 
his explanation of the world, ﻿Parmenides’ truth is an idea that belongs 
to a discussion of how to reason properly. Consequently, ﻿Parmenides 
has often been considered the founder of logic. It might be added as a 
side note that his poem also includes the oldest surviving example of a 
deduction.

What drove the intellectual development that resulted in the 
invention of truth? When we remember the state of confusion the 
﻿Ancient Greek aristocracy suffered, the idea of truth offered too good 
a promise. ﻿Heinrich (1981) summarised this promise in the fictional 
wording: ‘“Fear not”, for there is an existence which remains untouched 
by fate and death’ (pp. 45–46, my translation). We find reassurance for 
such an interpretation in ﻿Parmenides’ poem itself. ﻿Parmenides (trans. 
2009) wrote that Dike did not allow truth ‘either to come to be or to be 
perishing but holds it fast’ (p. 68). Dike also asked ﻿Parmenides to stay 
away 

from that on which mortals with no understanding stray two-headed, 
for perplexity in their own breasts directs their mind astray and they 
are borne on deaf and blind alike in bewilderment, people without 
judgement, by whom this has been accepted as both being and not being, 
the same and not the same […]. (p. 58)

While all beliefs include the danger of impermanence, truth would, by 
definition, never disappoint anyone. The price for that security is that 
truth is also completely independent from humans, that knowledge 
is dehumanised. In this vein, the vernacular expression of ‘dead 
knowledge’ for scientific truths resembles the ideas of ﻿Parmenides 
and his disciples rather well. Indeed, ﻿Plato (trans. 1921a) had the 
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death-sentenced ﻿Socrates say ‘that those who pursue philosophy aright 
study nothing but dying and being dead’ and that ‘it would be absurd 
to be eager for nothing but this all their lives, and then to be troubled 
when that came for which they had all along been eagerly practicing’ 
(64a). There might be becoming and perishing in life, but nothing but 
eternal truth in death. 

Dichotomies

The last quote from ﻿Parmenides (trans. 2009) also gives a hint that he 
already had an understanding of what earlier I presented as the laws 
of the excluded middle and the excluded contradiction. In fact, he is 
often attributed as the first philosopher to ever formulate these laws. 
In the quote above, the perplexed ‘two-headed’, who are incapable of 
judgement, unable to say what is, accept things ‘as both being and not 
being’, as both true and false, thus violating the law of the excluded 
contradiction (p. 58). Elsewhere, ﻿Parmenides added that ‘mortals’ 
suppose some things ‘to be coming to be and perishing, to be and not 
to be, and to change their place’ (p. 78). Here we have the connection 
in one line: allowing contradiction would invite the forces of becoming 
and perishing into philosophy, but these are deadly forces that change 
the face of the earth, that are unstable, and thus no foundation for any 
stable worldview.

Why start thinking like this?

We followed ﻿Vernant (1982) in maintaining that a driving force of 
philosophy in ﻿Ancient Greece was to build a more reliable fundament 
for understanding the world than the polytheistic myth had been able 
to. Apparently, the idea of truth promised the possibility of a secure 
understanding in its purest form. Nevertheless, it remains interesting 
to ask why scholars in ﻿Ancient Greece started to think like this, on the 
grounds of these fundamental assumptions of logic. We should hesitate 
to explain this development by assuming a logical order of the world or 
of the human mind, for that would mean that all scholars and cultures 
who did not follow the assumptions of logic discussed above have not 
reached the right access to our world or have not developed the right 
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way of thinking. Such a position would make us a complicit of the 
superiority which logicians such as ﻿Parmenides assume for the kind of 
thinking they present, whereas in research, we should seek to obtain 
an unbiased distance to what we study. Therefore, it is necessary to ask 
why logic is organised in this peculiar way, if there would be no other 
possibilities to explain the world on the basis of a concept of truth.

Now, is there a socio-cultural explanation for why logic assumed the 
form it did? I know only one such explanation: namely that this form 
copies an order which was already being lived in the patriarchal society 
of ﻿Ancient Greece. It would have been difficult to come up with an order 
of thought out of the blue, but it should have been easier to come up 
with an order that is an abstraction of lived social organisation. The 
analogy between the fate of gods and the law of reason already gave us 
a glimpse of such a connection. 

When I refer to patriarchy here, I refer to a very specific organisation 
of society which marks the beginning of Greek history. Pre-patriarchal 
societies know no fatherhood, no possession, no male superiority, and 
usually worshipped the holy mother who brought life into the world 
(Lerner, 1986). Patriarchal societies introduce the ideas of fatherhood, 
of male rule over women and offspring, of marriage, of property, and of 
inheriting.

﻿Horkheimer and ﻿Adorno (2002) claim that ‘the generality of the 
ideas developed by discursive logic, power [die Herrschaft] in the sphere 
of the concept, is built on the foundation of power in reality’ (p. 10). 
What might they have meant? Throughout their treatise, Horkheimer 
and Adorno (2002) point to the changes that have come with the 
introduction of patriarchy but do not illuminate that connection 
further. Only later, Gerhard ﻿Schwarz (2007) demonstrated the analogy 
between patriarchal and military hierarchy, while ﻿Fischer (2001) 
identified a structural analogy between the patriarchal and the logical 
order. Imagine a typical visualisation of hierarchies, a root network 
starting in one point and branching out downwards. At the top, we 
see the patriarchal father, the military commander, or the most general 
concept respectively. Branching out, we see the sons of that father and 
again their sons and grandsons; we see the soldiers second highest in 
rank, followed by those third highest in rank; we see concepts which 
are gradually more specific in meaning, for example, the triangle and 
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quadrilateral branch out from the broader category of polygon. The 
triangle, in turn, divides further into equilateral, isosceles, and scalene 
triangles. Now note that the logical assumptions described earlier are 
inscribed already in the historical configuration of the family and the 
military: the law of ﻿identity means that you stay who you are in that 
configuration, you cannot change your position, cannot become your 
father’s father or your superior’s superior.15 The law of sufficient reason 
means that everybody has a father, everybody has a direct superior. 
Admittedly, that might not be true for the founder of a house or for the 
commander-in-chief, just as ﻿Anaximander admitted for his logic that 
at least one thing cannot have an origin. Finally, the either-or resulting 
from the laws of the excluded middle and the excluded contradiction 
means that in regard of any person in the respective orders, this person 
either is your father or your direct superior respectively, or he is not. It 
is not possible that somebody is neither your father nor not your father, 
nor is it possible that somebody is both your father and not your father.

I know of no arguments which would explain why these analogies 
between the patriarchal family, military organisation, and the 
assumptions of logic discussed above are necessary. Instead, these 
analogies are very peculiar. Note that pre-patriarchal societies had no 
concept of fatherhood at all, and some partisan military groups partly 
renounce formal ranks. Note also that this logic cannot work if mothers 
were meant to enter it in a position equal to fathers, or if the paternity of a 
child is in doubt (which therefore causes a major crisis in the patriarchal 
order). ﻿Ancient Greece had also seen different ontologies which 
assumed that nothing is fixed and everything is in flux, as expressed 
by ﻿Heraclitus of Ephesus (trans. 1979) who, in the sixth century BC, 
stated that ‘one cannot step twice into the same river’ (p. 53), a saying 
further escalated by ﻿Cratylus, whom ﻿Aristotle (trans. 1933) reported to 
have added ‘that it cannot be done even once’ (1010a). A contemporary 
example might be the struggles around the erosion of the either-or in 
the dichotomy of ﻿gender (see Chapter 19 in this volume).

The analogous form of these notably particular social systems 
demands an explanation. An explanation for this apparent coincidence 

15� That should be clear for the family. For the military it should be noted that, in 
﻿Ancient Greece, positions were assigned by birth right and perhaps by economic 
status, without there being any system of promotion into higher ranks.
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would be that the patriarchal family served as a model for the military 
order and for the relationships between the gods (a system which we 
could have successfully included in the discussion of analogies above), 
and that the latter entered philosophical deliberations and was eventually 
secularised into the system of logic. Then, the assumptions of logic are 
not only not necessary, they also bear the imprint of a very specific form 
of social organisation, which legitimises disposing of somebody’s life, 
regarding women and children as property, exchanging individuality 
against obedience and loyalty, and holding social positions fixed instead 
of allowing people to become what they want. Besides, that logic also 
provides the basis for introducing further hierarchies such as those of 
social classes and of ethnicities. All this proposes that logic developed 
out of social practices which are at the root of dehumanising people.

Problematising dehumanisation through logic

Despite the inability of logic to provide fallacy-free theories (see Chapter 
4 in this volume), the logically organised discipline of mathematics 
has provided an astounding complexity of insights, which are used 
in countless applications in our world. From that point of view, the 
organisation of thought in analogy with the patriarchal social order 
can be called a success. Most of us would not want to live without 
the technological achievements of our time, which rely heavily on 
applications of mathematics and on logically order discourses. However, 
it has to be acknowledged that this success stands in a dialectical 
relationship with practices of dehumanisation.

If we look at logic as a social practice, we may ask: What does this 
practice entail? Following the above analysis, it entails thinking in 
permanent and universal concepts that are arranged in hierarchies 
and irreconcilable antagonisms, and assuming the properties of these 
concepts to necessarily follow from the properties of concepts that stand 
higher in the hierarchy. It should be acknowledged that this is a very 
particular form of organising thought and that not all discourses will 
follow this example. As one choice among many, logical thought will 
have a specific potential, a specific price to pray, and specific limitations, 
which altogether deserve critical attention.
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Logic is apparently a tool for the dehumanisation of others. ﻿Aristotle 
(trans. 1989) explicitly stated that his discussion of logic followed the 
purpose of understanding

what sorts of things one must look to when refuting or establishing, and 
how one must search for premises concerning whatever is proposed, in 
the case of any discipline whatever, and finally the route through which 
we may obtain the principles concerning each subject. (52b–53a)

﻿Aristotle’s philosophy of communication did not aim at mutual 
understanding and amicable compromise; it did not even foreground 
the discovery of truth. Instead, ﻿Aristotle presented logic as a tool of 
rhetoric dominance. Pointing to inconsistencies in the other’s use of 
concepts, to violations of antagonistic concepts and to contradictions that 
the other’s ideas might result in, are techniques to devalue somebody 
else’s thoughts. Instead, deduction is the attempt to force the other to 
accept one’s own argument. ﻿Wittgenstein (1978) reflected on the logical 
argument as a command directed at the other:

In what sense is [the] logical argument a compulsion?—‘After all 
you grant this and this; so you must also grant this!’ That is the way of 
compelling someone. That is to say, one can in fact compel people to 
admit something in this way.—Just as one can e.g. compel someone to 
go over there by pointing over there with a bidding gesture of the hand. 
(p. 81)

But why would the other follow the command to organise the discourse 
logically?16 Here, the Ancient Greek philosophers fail to provide good 
reasons and turn to defamation instead. While ﻿Aristotle (trans. 1933) 
merely stated that those questioning logic ‘lack education’ (1006a), 
﻿Parmenides (trans. 2009) scolded to keep back from the way

on which mortals with no understanding stray two-headed, for perplexity 
in their own breasts directs their mind astray and they are borne on deaf 
and blind alike in bewilderment, people without judgement, by whom 
this has been accepted as both being and not being the same and not the 
same, and for all of whom their journey turns backwards again. (p. 58)

We see that the birth of logic was accompanied by a clear dehumanisation 
of others who think differently. Whether they still ‘lack education’ or 

16� This is a question that ﻿Wittgenstein (1978) was puzzled by.
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whether they suffer from mental illness and sensory disabilities, they 
always lack something to their full humanness which the protagonists 
of logical thinking do not lack. This is the technique that labels non-
logical thought worthless and its wielder voiceless.

Logic is not only dehumanising others by stigmatising non-logical 
thinking, it itself leaves no possibility for people to express their 
individuality. Logic is not looking for the always different in the 
individual, it is looking for that which cannot change. ﻿Aristotle (trans. 
1934) concluded that scholars following logic

conceive that a thing which we know scientifically cannot vary; when 
a thing that can vary is beyond the range of our observation, we do 
not know whether it exists or not. An object of Scientific Knowledge, 
therefore, exists of necessity. It is therefore eternal, for everything existing 
of absolute necessity is eternal; and what is eternal does not come into 
existence or perish. Again, it is held that all Scientific Knowledge can be 
communicated by teaching, and that what is scientifically known must 
be learnt. (1139b)

In his reading of ﻿Anaximander, Friedrich ﻿Nietzsche (1962) tried to 
understand the mental state of the scholar. ﻿Anaximander’s contribution 
for the appreciation of truth over the dynamics of becoming and perishing 
can hardly be overestimated. In fact, ﻿Anaximander regarded the eternal 
as the only legitimate existence and, as ﻿Nietzsche (1962) formulated, 
‘all coming-to-be as though it were an illegitimate emancipation from 
eternal being, a wrong for which destruction is the only penance’ (p. 
46). The totalising worship of logic bears the danger of devaluating life 
itself.

Concerning the self, logical thinking, although it might come with 
the promise of aligning with the eternal (﻿Heinrich, 1981), demands a 
strict conduct of thought. I know of no psychoanalysis of this conduct 
of the self,17 but I find Elizabeth de Freitas’ (2008) report of Agnes, a 
fictional learner indulging in mathematics, to be a good provocation for 
scholarship:

17� Note the following comment by Paul Ernest (2016): ‘I do not ask the interesting 
psychological question as to why persons might feel uncomfortable with 
uncertainty and have or feel the need for ﻿certainty or indeed of the place of 
uncertainty in the human condition. This would take me in another direction, 
possibly needing psychoanalytic theory, beyond the scope of my present inquiry’ 
(p. 380). 
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The peacefulness of deduction, the lack of dissent or debate, allowed 
for austere moments of meditation. Agnes indulged in that quiet hard 
work. She developed a passionate attachment to the symbolic world of 
mathematics. She saw beauty in mathematics. But the beauty captured in 
a mathematical ﻿proof was a purist’s beauty that despised the messiness 
of the world. Agnes embraced this purist beauty and this method so 
completely that it crippled her will. She became possessed by reason; her 
body, emotions, and actions inscripted by logic. What began as tolerance 
and respect for the truth, devolved into a defensive self-abnegating 
disposition, a retreat from risk and adventure. An erasure of voice. (pp. 
284–285)

De ﻿Freitas might have thought about a point made by ﻿Horkheimer and 
﻿Adorno (2002) of how logic related to determinism and thus to the 
negation of choice:

The arid wisdom which acknowledges nothing new under the sun, 
because all the pieces in the meaningless game have been played out, 
all the great thoughts have been thought, all possible discoveries can be 
construed in advance, and human beings are defined by self-preservation 
through adaptation – this barren wisdom merely reproduces the fantastic 
doctrine it rejects: the sanction of fate which, through retribution, 
incessantly reinstates what always was. Whatever might be different is 
made the same. (p. 8)

Consequently, we might argue that logical thinkers deny their roles 
in changing the world, that they silence their voices, that they confine 
themselves to discover and proclaim the eternal truths based on logic. 
This is a way of denying one’s own humanity and reducing one’s own 
intellect to what, to an increasing extent, even ﻿computers can achieve.18

Rehumanising mathematics?

I tried to show that mathematics, through its practices of calculation and 
logic, aims at a dehumanisation of action and thought. Admittedly, we 
might ask if other scientific disciplines do not seek a dehumanisation of 
action and thought themselves, if dehumanisation is not intrinsic to the 
idea of science producing objective knowledge. If we followed ﻿Aristotle’s 

18� See Chapter 2 for a note on ﻿computers proving or refuting mathematical theorems 
on the basis of logical calculations.
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(trans. 1934) idea of science cited above, that would be so. However, 
science is no thoroughly logical enterprise, as already the co-existence 
of mutually conflicting theories in ﻿physics proves. Disciplines other than 
mathematics work empirically and have to offer theories that somehow 
work in practice. In contrast, mathematics, especially but not exclusively 
in its ﻿formalist fashion, reserved the luxury of considering itself a 
merely intellectual discipline. This ideal explains why mathematics can 
reject any empiricism, handle its objects in its liking, and mould them in 
forms that implement the idea of dehumanised action and thought like 
no other discipline. It is no coincidence that ﻿Leibniz (1996), who dreamt 
of a ‘universal characteristic’ that could express every scientific question 
and solve it through computation, was a mathematician.

Post-﻿structuralism has taught us that the meaning of concepts is never 
fixed but in a state of permanent renegotiation. I guess that this was what 
Ole Skovsmose (2011) had in mind when he presented ‘mathematics 
education as being undetermined’, ‘without “essence”’, able to ‘be acted 
out in many different ways and come to serve a grand variety of social, 
political, and economic functions and interests’ (p. 2). The same should 
hold true for mathematics. Mathematics is not imposed on us but what 
we make of it. Can we alter the modus operandi of mathematics so that 
dehumanisation leaves the equation?

Attempts to present mathematics as a social practice are important, 
but not sufficient, steps in this direction. Indeed, the mathematical 
philosophies behind the works of scholars such as George ﻿Pólya (1945) 
and Imre ﻿Lakatos (1976) as well as attempts to write a philosophy of 
mathematics as a social practice as proposed by ﻿Davis and ﻿Hersh (1980) 
can be understood as projects to show the human side of producing 
mathematics. Obviously, this action is not logical in nature, but full of 
individual ideas, emotions, and conflict. These attempts in mathematics 
related closely to programs in mathematics education, which lay 
emphasis on activities such as ﻿problem solving and modelling﻿ instead 
of presenting mathematics in its logical structure or as a toolbox 
of calculative techniques. Although these perspectives help us to 
understand the doing and learning of mathematics, they do not reject 
the idea that the final product of all this activity is a logically ordered 
discourse that provides techniques for calculation. None of these 
perspectives question, for example, the legitimacy of the ignorance 
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of meaning inscribed in calculative practices or the epistemological 
consequences of a two-valued logic.

Attempts to alter the inner working of mathematics itself are rare. A 
few general ideas can be found in ﻿feminist perspectives on mathematics 
and its education (see Chapter 19 in this volume), and a new perspective 
has secured recent attention in the form of Rochelle ﻿Gutiérrez’ projects of 
rehumanising mathematics and mathematx.19 Gutiérrez (2012) referred 
to problematisations of academic mathematics as White middle-class 
masculine knowledge. She argued that for ‘most women, the working 
class, and ﻿people of color, a focus on dominant mathematics means that 
engaging in school mathematics largely require becoming someone else’ 
and demanded a different kind of engagement with mathematics in which 
‘their participation will somehow change the nature of mathematics as a 
discipline’ (p. 30). In a later publication, ﻿Gutiérrez (2018) introduced the 
idea of ‘rehumanising mathematics’20 in the sense that ‘a student should 
be able to feel whole as a person—to draw upon all of their cultural and 
linguistic resources—while participating in school mathematics’ (p. 1). 
In a different publication, ﻿Gutiérrez (2017a) focused less on education 
and more on mathematics as a scientific discipline. There, she pleaded 
for ﻿mathematx as ‘a radical reimagination of mathematics, a version that 
embraces the body, emotions, and harmony’ (p. 15). ﻿Gutiérrez countered 
Western essentialism with ﻿Indigenous epistemologies as the new basis 
of a practice that is pleasing, aesthetic, action-based, embodied, and 
diverse. Although she provided some examples of what that might 
entail, she leaves open the question ‘which new forms of mathematics 
might arise’ (p. 20). Elsewhere, ﻿Gutiérrez (2017b) commented more 

19� IPA: [̩mæθməˈtɛʃ], or mathe-ma-tesh.
20� To avoid misunderstanding, it should be noted that what ﻿Gutiérrez (2018) meant 

with ‘rehumanising’ does not directly respond to what I called ‘dehumanisation’. 
While I presented dehumanisation as a denial of one’s full humanity and a 
prerequisite of mathematics, ﻿Gutiérrez assumes ‘that people throughout the 
world already do mathematics in everyday ways that are humane’ (p. 2), but that 
this doing is denied by the hegemonial practices in the mathematics education 
classroom. I refrain from sharing this position, for ﻿Gutiérrez’ list of such ways 
of doing mathematics (p. 4) reveals that we face what Dowling (1998) called 
‘celebrating non-European cultural practices only by describing them in European 
mathematical terms’ or the recognition of ‘a practice as mathematical only by 
virtue of recognition principles which derive from their own enculturation into 
European mathematics’ (p. 14). Regardless of this point of critique, I find value in 
﻿Gutiérrez’ overall ideas.
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carefully that ‘we do not have good models for what a ﻿feminist, pro-
Black/Indigenous/Latinx, socialist mathematics education would look 
like, or if even such a thing could exist’ (p. 12).

I meet ﻿Gutiérrez’ last comment with a good portion of pessimism. 
As ﻿Fischer (2006) and Bettina ﻿Heintz (2000) pointed out, a paramount 
social function and driving force of mathematics is the production of 
consensual knowledge and practice. The analyses of calculation and 
logic presented above concluded that both aspects of mathematics can 
be understood under the term of reaching consensus. The very nature 
of these techniques is that the individual is disregarded. Eventually, I 
would negate my earlier question if we can alter the modus operandi of 
mathematics so that dehumanisation leaves the equation. 

In contrast to that, ﻿Gutiérrez (2017a) suggested that ‘﻿mathematx 
acknowledges that all persons will seek, acknowledge, and create 
patterns differently in order to solve problems and experience joy’ 
and that ‘multiple knowledges are valued and sought’ (pp. 19–20). 
Apparently, ﻿mathematx would not be able to replace mathematics 
in its function of reaching consensus. A shift from mathematics to 
﻿mathematx would mean that this practice loses its paramount, maybe 
even its entire function for society, thus making itself expendable. Could 
it be that ﻿mathematx would turn out as something completely different 
than mathematics? And if so, why then talk about ﻿mathematx and not 
simply about an alternative epistemology? Or, asked differently, what of 
mathematics would be conserved in ﻿mathematx?

I propose that alternative epistemologies remain important for the 
study of dehumanisation through mathematics, because they help us to 
understand that our world can be understood differently. Such insights 
might not result in new epistemic forms of mathematics, but they might 
allow us to better capture the epistemological potential, limits, and 
dangers of mathematics. Admittedly, this perspective does not help us 
to counter epistemological discrimination in the mathematics classroom 
as was the initial attempt of ﻿Gutiérrez. We might come to find that 
we cannot wrench mathematics from the quills of White middle-class 
men that roam the history of the discipline. However, awareness of the 
particularities and political nature of the epistemology of mathematics, 
gladly aided by alternative visions of how to approach the world we live 
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it, can help us to understand, support, or confront the ways in which 
mathematics contributes to dehumanisation in our societies.
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6. A short commentary on 
Kollosche’s ‘Dehumanisation 

through mathematics’

 Roy Wagner

In this short response to David Kollosche, I briefly point out some complementary 
historical narratives of mathematics to suggest how mathematics may not only 
be complemented by more humanized forms of knowledge, but may also be 
inherently more humanized in itself.

In Chapter 5 of this volume, entitled ‘Dehumanisation through 
mathematics’, David Kollosche follows up on a well-known 
characterisation of mathematics: it is a rule-based, highly technocratic 
family of practices, which imposes uniform templates on disparate 
situations, setting aside not only the specific objects that we mathematise, 
but also the human – as practitioner, object, and addressee. 

Kollosche argues coherently and convincingly – perhaps so 
convincingly, that one might be tempted to consider him as a math-
basher. The critical tradition that he builds on served, at the time of 
Max ﻿Horkheimer and Theodor ﻿Adorno, to reign in a rampant scientism 
threatening to subjugate humanity. Today, it may end up playing into the 
hands of those who disparage science so as to dissuade us from acting 
on its warnings about the fate of our planet. Indeed, if mathematics is a 
dehumanising discipline, how can its own models, applied by climate 
scientists, serve to save humanity from demise? If the diagnostic tool is 
poisoned, how can we trust the cure that it suggests?

Kollosche’s solution, spelled out in his final paragraphs of the paper, 
is not to reform mathematics – he is explicitly pessimistic about such 
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a project. Since he acknowledges that we can hardly do without it, he 
proposes, instead, that we should complement mathematical analyses 
by less dehumanising forms of knowledge, balancing dehumanising 
mathematics with other methodologies. This is a fair and realistic 
prospect. To change mathematics is to move a mountain, and it is not 
clear if this mountain would serve us better once displaced. Anyway, it 
will take several generations to move it about.

I, however, am still tempted, if not to move the mountain, at least to 
try to chip at it, and rearrange some bits and pieces. For that, however, the 
﻿history of mathematics and logic needs to be retold along lines different 
from those highlighted by Kollosche. Indeed, not all mathematics is as 
dehumanising. The mystical-cosmological mathematical speculations 
that for most of the last three millennia were a hugely popular form 
of mathematics in Europe, North Africa, and Asia (mathematical 
astronomical/astrology, number-theoretic numerology – practiced by 
some of the most celebrated mathematicians, like Johannes ﻿Kepler and 
Isaac ﻿Newton), were deeply anchored in how humans experienced 
numbers and geometric patterns. The same goes for the mathematics 
of artisans and artists, who were after beautiful patterns, virtuosity, 
and elegance, and for pre-school children, for whom numbers at least 
begin (although for an all too short a while) with songs and games. And 
even contemporary research mathematicians evaluate mathematics in 
ways that cannot be reduced to dehumanised formal rigour (‘there is 
no permanent place in the world for ugly mathematics’, wrote G. H. 
﻿Hardy).

Deduction, as Kollosche notes, can be seen as analogous to patriarchal 
structures, and the implied genetic relation definitely deserves attention. 
But other forms of mathematical justification abound historically.1 Even 
today, the styles of mathematical reasoning pursued in various contexts, 
from engineering to elementary school teaching, are often far removed 
from strictly deductive ideals. 

More specifically, a long tradition in the historiography of 
mathematics has been taking great pains to show the complexities of the 
manifold relations between mathematical signs, practices, and forms 
of knowledge. This tradition problematises the dominant narrative of 

1� Just as a tip of the iceberg: Eulerian reasoning as analysed by Ferraro (2004, 2012), 
Chinese mathematics as analysed by Chemla (2020), and Indian mathematics as 
analysed by Srinivas (2005, 2015).
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‘loss of meaning’ that appears to connect Greek ﻿Antiquity to modern 
﻿formalism – a narrative that would be difficult to attribute even to David 
﻿Hilbert himself, who considers only one layer of mathematical signs to 
be purely syntactic, and assigns the epistemological authority of even 
that layer to its connection with meaningful signs (﻿Hilbert, 1983). 

The above revisionist narratives of mathematics are extremely 
important to a historian, who, like me, has devoted so much work 
to them. But I can understand how a grand narrative like ‘the loss of 
meaning’ is sufficient for others, as it highlights some of the most salient 
features of mainstream mathematics today. That these are, crucially, 
some of mathematics’ most objectionable, or at least controversial, 
features, however, is precisely what would lead the followers of this 
narrative to give up on the hope of humanising mathematics, which I 
would like to keep alive. 

Toward the very end of the chapter, Kollosche diagnoses the one 
aspect of mathematics that would block any attempt to humanise it: 
its rigid and impressive consensus. To maintain it, mathematics has to 
remain dehumanised, at least in some important senses. But even that 
is not a universal or necessary feature of mathematics. In fact, I recently 
argued that as a historical phenomenon, it is quite new and exceptional 
(Wagner, 2022). The most consensual aspect of mathematics today, 
namely the agreement on whether a given argument does or does not 
prove a given theorem in a given mathematical system, was much more 
open for debate in the past. Since many sciences are highly successful 
despite (or even because of) their longstanding controversies, a non-
consensual or less-consensual mathematics need not be thought of as a 
dead end. 

The mathematics we celebrate today is highly valuable and at the same 
time often dehumanising. But these are not universal characteristics of 
all past and present ways of doing mathematics. And while Kollosche is 
right that the most immediate way to handle dehumanising mathematics 
is to complement it by other styles of reasoning, I would like to hold on to 
the possibility of building on past and present practices of mathematics 
that do not set humans and non-humans aside.

 In fact, recent developments in ﻿Artificial Intelligence (﻿AI) suggest 
an interesting possible humanistic future for mathematicians – albeit 
currently restricted to the realm of science-fiction. If ﻿AI could, as is 
projected by some, learn to write valid mathematical ﻿proofs of open 
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problems, and if it would surpass humans in that capacity, then the 
role of the mathematician may change dramatically from a producer 
of ﻿proofs to that of a commentator. In other words, the mathematician 
would be charged with the task of making sense of the most important 
﻿AI-generated mathematical ﻿proofs. In the context of this task, intuitive 
and accessible narration of ﻿proofs for the purpose of large- and medium-
scale understanding would become more important than fine-grained 
rigour, since the rigour of ﻿proofs would already be guaranteed by the 
﻿AI that generated them. The mathematician would then become an 
interpreter-critic and communicator of mathematical ideas, not unlike a 
literature professor. While some would claim that this is already part of 
what the best mathematicians implicitly do, in our little science-fiction 
projection, interpretation, communication and critique would become 
the very definition of what a mathematician does. Would this open up 
the way to a (re-)humanized mathematics?
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7. Intuition revived 

 Ole Skovsmose

In the preface to ﻿Mathematics as an Educational Task, Hans ﻿Freudenthal 
states that his educational interpretation of mathematics betrays the influence of 
L. E. J. ﻿Brouwer’s view on mathematics. In this chapter we explore the nature of 
this possible influence. According to ﻿Brouwer, intuition plays a crucial role in 
any form of mathematical construction, which he specifies in terms of mental acts. 
He finds that mathematics does not have any adequate articulation in language, 
and that mathematical ﻿formalisms are nothing but imprecise and mischievous 
depictions of genuine mathematical processes. ﻿Freudenthal characterises 
mathematics as a human activity, thereby subsuming the overall ﻿intuitionist 
outlook that ﻿Brouwer had condensed into the notion of mental activity. While 
﻿Brouwer installed intuition in a central position in mathematics, ﻿Freudenthal 
created a vast space for intuition in all kinds of activities in mathematics 
education. In his writings, ﻿Freudenthal does not demonstrate any interest in 
socio-political issues related to mathematics. ﻿Structuralism and the ﻿Modern 
Mathematics Movement are manifestations of the dogma of ﻿neutrality, and so 
is ﻿Freudenthal’s formulation of mathematics as a human activity. However, 
although he does not repudiate a dogma of ﻿neutrality, he simultaneously provides 
ideas that help in formulating a ﻿critical mathematics education.

Intuitionism is one prime example of how a conception of mathematics 
may influence the teaching and learning of mathematics. L. E. J. ﻿Brouwer 
and Hans ﻿Freudenthal are two protagonists in this development. 
﻿Brouwer was a mathematician contributing to a broad range of topics, 
later focused on formulating an ﻿intuitionistic mathematics. For an 
extended period ﻿Freudenthal worked as ﻿Brouwer’s assistant as a 
dedicated mathematics researcher, while in the later part of his career 
he concentrated on mathematics education.

©2024 Ole Skovsmose, CC BY-NC 4.0  https://doi.org/10.11647/OBP.0407.07
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In the preface to ﻿Mathematics as an Educational Task, ﻿Freudenthal 
(1973) makes the following comment: ‘My educational interpretation 
of mathematics betrays the influence of L. E. J. ﻿Brouwer’s view on 
mathematics (though not on education)’ (p. ix).

Let us first look at the side-remark in the parenthesis. How was 
﻿Brouwer as a ﻿teacher? Bartel van der ﻿Waerden, who studied mathematics 
in Amsterdam, makes the following comment about ﻿Brouwer: 

I once interrupted him during a lecture to ask a question. Before the next 
week’s lesson, his assistant came to me to say that ﻿Brouwer did not want 
questions put to him in class. He just did not want them, he was always 
looking at the blackboard, never towards the students. (O’Connor & 
Robertson, 2003)

﻿Freudenthal’s side-remark might not be at all surprising to those who 
knew ﻿Brouwer as a ﻿teacher, and therefore let it remain in the parenthesis. 
What more does ﻿Freudenthal tell us in ﻿Mathematics as an Educational 
Task about Brouwer’s influence? Surprisingly, nothing.1 In Freudenthal’s 
other books on mathematics education – ﻿Weeding and Sowing (1978), 
﻿Didactical Phenomenology of Mathematical Structures (1983), and ﻿Revisiting 
Mathematics Education (1991) – one finds almost no mention of ﻿Brouwer, 
except for a couple of references. Thus, in ﻿Freudenthal’s own texts, 
one does not find a clarification of the nature of Brouwer’s influence.2 
Nevertheless, this influence is the focus of this chapter.

Luitzen Egbertus Jan ﻿Brouwer (1881–1966) worked in several 
mathematical areas, including topology, ﻿set theory, and ﻿measure theory. 
﻿Brouwer’s (1911) contribution to topology includes a theorem that 
is referred to as ﻿Brouwer’s fixed-point theorem. It states that for any 
continuous function f mapping a compact convex set onto itself there 
exists a point x0 such that f(x0) = x0. The theorem is fascinating. When 
one stirs a cup of coffee – and we assume that the coffee represents a 
compact convex set, and that the stirring operates like a continuous 
function – then at least one of the coffee atoms will end up in the same 
position as it had before the stirring.

In 1912, ﻿Brouwer secured a permanent position at the University of 
Amsterdam, and in his inaugural lecture ‘﻿Intuitionism and Formalism’ 

1� He refers only once more to ﻿Brouwer (p. 40), with respect to a different issue.
2� In la Bastide-van Gemert (2015), I did not find any clarification either.

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Convex_set
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he started articulating more carefully his conception of ﻿intuitionism. 
﻿Brouwer confronted ﻿formalism, in the first instance as represented by 
David ﻿Hilbert. This was a confrontation with many ramifications, for 
instance with respect to the editorial policy of Mathematische Annalen, 
which was the most important international mathematical research 
journal of the time. From 1902 to 1939, ﻿Hilbert was editor, while ﻿Brouwer 
was a member of the editorial board from 1914 to 1928. Due to ﻿Hilbert’s 
initiative, ﻿Brouwer was removed from the board; other members of 
the board protested, among them Albert ﻿Einstein. The confrontation 
between ﻿intuitionism and ﻿formalism was a clash between research 
paradigms as well as between personalities.

Hans ﻿Freudenthal (1905–1990) was born in Germany. In 1923, he 
started studying mathematics in Berlin, where, in 1927, he met ﻿Brouwer, 
who was giving a lecture. In 1930, ﻿Freudenthal completed his doctoral 
thesis on topology,3 and soon after he was invited by Brouwer to come 
to Amsterdam, where during the 1930s he worked as an assistant for 
﻿Brouwer. After the German invasion in 1940, ﻿Freudenthal was suspended 
from his position due to his Jewish origins. In 1943, he was sent to a 
concentration camp, but in 1944 through the support of his Dutch wife 
he managed to escape, and he went into hiding in Amsterdam until the 
end of the war. After the war, ﻿Brouwer was not interested in offering 
﻿Freudenthal a position again, and in 1946, he took up a position at the 
University of Utrecht, where he remained for the rest of his career.

﻿Freudenthal was a dedicated mathematics researcher with a 
specific focus on algebraic topology.4 However, he did not show any 
particular dedication to the detailed mathematical elaborations of 
﻿intuitionistic mathematics. From the late 1960s, ﻿Freudenthal started 
engaging in mathematics education. In 1968, he founded the journal 
﻿Educational Studies in Mathematics, and in 1971 he became nominated 
as director of the new research institute ﻿IOWO, the Dutch abbreviation 
for Institut voor de Ontwikkeling van het Wiskunde Onderwijs (Institute 
for the Development of Mathematics Education) in Utrecht. By that 
time, ﻿Freudenthal had published widely in mathematics education, and 

3� For an important result of this work, see ﻿Freudenthal (1931).
4� He proved what are referred to at ﻿Freudenthal’s spectral theorem and 

﻿Freudenthal’s suspension theorem. Other mathematical conceptions also carry his 
name.
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many of these publications were brought together and reworked into 
his monumental work ﻿Mathematics as an Educational Task that appeared 
in 1973.5

In the following, we explore how ﻿Brouwer saw mathematics as a 
mental activity. We move on to explore ﻿Freudenthal’s conception of 
mathematics as a human activity as it came to be expressed in ﻿Mathematics 
as an Educational Task. As an indication of what this conception could 
mean for mathematics education, we look at the example Ship Ahoy. As 
a conclusion we raise the question: What about socio-political issues?

Mathematics as a mental activity

As a way out of the foundational crises in mathematics, ﻿Brouwer 
launched an approach different from those suggested by logicism﻿ 
and formalism.6 According to him, both logicism and formalism 
were wrong in their approaches in trying to eliminate intuition from 
mathematics. The way out of the crisis had to be found in the opposite 
direction: intuition had to be installed in its proper position as the core 
of mathematical thinking.

﻿Brouwer found that the emergence of the paradoxes that brought 
about the foundational crises indicated that something had gone wrong 
within mathematics itself, and that this problem was manifest in logicism﻿ 
and ﻿formalism. What was needed was a much more radical approach. 
According to ﻿Brouwer, the emergence of paradoxes indicates that 
mathematics has applied forms of reasoning and ﻿proof strategies that 
are not valid in mathematics. Over time mathematics has incorporated a 
range of theorems, which should not count as such. It is not surprising, 
then, that paradoxes do appear. The whole body of mathematics had 
to be re-examined, and for doing so a revitalisation of intuition was 
needed. This is what ﻿Brouwer suggested by formulating an ﻿intuitionist 
conception of mathematics.

5� In 1991, one year after the death of ﻿Freudenthal, ﻿IOWO was renamed as the 
﻿Freudenthal Institute. In 2006, due to the integration of more areas, the institute 
turned into the ﻿Freudenthal Institute for Science and Mathematics Education (see 
van Heuvel-Panhuizen, 2015).

6� For the following presentation of ﻿Brouwer’s ﻿intuitionism, I draw on Ravn and 
Skovsmose (2019). For a discussion of the foundational crises in mathematics, see 
Chapter 4 in this volume.
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﻿Brouwer saw formalisations as being inaccurate, if not simply 
misleading. According to him, one can never identify mathematics with 
any ﻿formalism. That would be the same mistake as assuming that a 
plaster cast of a human being is the actual human being. Mathematics 
is alive, formalisms are not. Formalisms are only external and imprecise 
﻿representations of intuitive mental acts, which constitute genuine 
mathematics.

In 1905, ﻿Brouwer (1996) published a short text ﻿Life, Art and Mysticism, 
in which he states: ‘Always and everywhere truth is in the air, and 
whenever it breaks through, truth is always the same to those who 
understand’ (p. 404). ﻿Brouwer sees truth in absolute terms, and this idea 
he maintains in his formulation of ﻿intuitionistic mathematics. One could 
think of intuition as being imprecise and open-ended, making space 
for a variety of interpretations compromising the possible connections 
between mathematics and ﻿certainty. However, ﻿Brouwer does not operate 
with any common-sense interpretation of intuition. He does not relate 
intuition to uncertainty and ambiguity, but to particular mental acts that 
bring about mathematical truths with ﻿certainty. To him, truth becomes 
the same to ‘those who understand’.

In 1913, ﻿Brouwer published his inaugural lecture ‘﻿Intuitionism 
and ﻿Formalism’. Here he relates his ideas to those of Immanuel ﻿Kant 
(1973), who in ﻿Critique of Pure Reason, first published in German in 1781, 
provided a radical new departure for interpreting mathematics. ﻿Kant 
finds that our experiences become organised according to pre-given 
categories of understanding, and that mathematics provides the basic 
structures of the conceptual twins: space and time. That mathematics 
applies to our experiences of nature is not due to the fact that nature as 
such operates according to mathematical patterns, but to the fact that 
mathematics organises our experiences of nature. ﻿Brouwer (1913) sees 
﻿Kant as articulating an ﻿intuitionism, but he also highlights that in ﻿Kant 
‘we find an old form of ﻿intuitionism, now almost completely abandoned, 
in which time and space are taken to be forms of conception inherent in 
human reason’ (p. 83).

To ﻿Kant, ﻿Euclidean ﻿geometry reveals details of our category of 
space. Many interpreted the emergence of non-﻿Euclidean ﻿geometries as 
devastating for ﻿Kant’s conception of mathematics. ﻿Brouwer, however, 
is not troubled by this critique. He highlights that the position of 
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﻿intuitionism has ‘recovered by abandoning ﻿Kant’s apriority of space 
but adhering the more resolutely to the apriority of time’ (p. 85). For 
identifying the origin of mathematical intuition, ﻿Brouwer put aside any 
intuition of space, and concentrated on the intuition of time.

From where does an intuition of time emerge? One could think of 
it in psychological terms. In a ﻿System of Logic, first published in 1843, 
John Stuart ﻿Mill (1970) argues that all human knowledge, including 
mathematics, is based on empirical evidence. However, ﻿Brouwer does 
not assume any such psychologism. Like ﻿Kant, he sees time as a category 
for understanding, and not as a psychological notion referring to some 
particular experiences.

A critical notion to ﻿Brouwer is two-oneness. This notion represents 
the time-specific origin of mathematics. Let us start looking at ﻿Brouwer’s 
(1913) own presentation of the notion:

Neo-﻿intuitionism considers the falling apart of moments of life into 
qualitatively different parts, to be reunited only while remaining 
separated by time as the fundamental phenomenon of the human 
intellect, passing by abstracting from its emotional content into the 
fundamental phenomenon of mathematical thinking, the intuition of the 
bare two-oneness. (p. 85)

While ﻿Brouwer thinks of ﻿Kant’s position as an old form of ﻿intuitionism, 
he refers to his own formulation as a neo-﻿intuitionism.7 He highlights that 
time is the fundamental phenomenon of the human intellect. Through 
this formulation he somehow makes space for a psychologism, but 
immediately distances himself from this position by highlighting that 
we need to abstract away the emotional content associated with time in 
order to reach the fundamental phenomenon of mathematical thinking, 
thus sweeping aside psychological content in order to reach time as a 
pure category. In this way he gets to the fundamental mathematical 
phenomenon of mathematical thinking: the bare two-oneness.

7	  Brouwer acknowledges that there are several sources of inspiration for this new 
form of ﻿intuitionism, and, with reference to controversies with respect to the 
interpretation of mathematical laws, he refers to ‘﻿intuitionism (largely French) and 
﻿formalism (largely German)’ (﻿Brouwer, 1913, p. 82). ﻿Brouwer also makes references 
to Henri ﻿Poincaré and Émile Borel, who together with Henri Lebesgue and several 
others have been referred to as semi-﻿intuitionists (see Troelstra, 2011).
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In ‘﻿Intuitionism and Formalism’ ﻿Brouwer does not give any further 
explanation of why he uses the expression ‘two-oneness’, and not, say, 
‘one-twoness’. It would seem that the latter expression would indicate 
more directly the start of the counting process. However, there might 
be linguistic reasons for ﻿Brouwer’s choice of terminology. He might be 
alluding to the notion of ‘trinity’. In Dutch the word for trinity is drie-
eenheid, which literally means ‘three-oneness’. Later, as for instance in the 
Cambridge Lectures, ﻿Brouwer talks about a ‘twoity’, where the allusion to 
trinity is even more explicit.

The intuition of movement of time in terms of two-oneness is the 
basic departure for mathematical thinking. Any mathematical concept 
becomes created by this intuition:

This intuition of two-oneness, the basal intuition of mathematics, creates 
not only the numbers one and two, but also all finite ordinal numbers, 
inasmuch as one of the elements of the two-oneness may be thought of 
as a new two-oneness, which process may be repeated indefinitely; this 
gives rise still further to the smallest infinite ordinal number ω. (pp. 
85–86)

﻿Brouwer uses the formulation ‘the basic intuition of mathematics, 
creates…’. The notion ‘creates’ is crucial, it is a mental process that 
constructs mathematical entities staring out from the intuition of two-
oneness. The two-oneness is not an intuition through which one discovers 
mathematical truths. It is an intuition through which one constructs 
mathematical entities and mathematical truths. One can think of the 
two-oneness as referring to the first step in a process of counting: one, 
two. This process can be repeated, and one counts: one, two, three. It 
can be repeated again and again: one, two, three, etc. ﻿Brouwer does not 
accept the concept of actual infinity, but assumes the idea of potential 
infinity. The sequence of natural numbers can be indefinitely extended. 
It is in this sense we need to read ﻿Brouwer’s claim that the counting 
process gives rise to ‘the smallest infinite ordinal number ω’.

What about ﻿geometry? ﻿Brouwer has put aside intuition of space as 
being an irrelevant category, as he finds that also geometric notions are 
also developed from the intuition of time:

The apriority of time does not only qualify the properties of ﻿arithmetic as 
synthetic a priori judgments, but it does the same for those of ﻿geometry, 
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and not only for elementary two- and three-dimensional ﻿geometry, but 
for non-﻿Euclidean and n-dimensional ﻿geometries as well. (p. 86)

﻿Kant’s principal point is that mathematical statements are synthetic 
a priori judgements. ﻿Brouwer shares this idea with respect to time. 
That mathematical statements have a content and simultaneously 
are independent of empirical observations, is due to the fact that the 
intuition of time ensures an a priori structuring and simultaneously 
provides mathematical statements with a synthetic content.

After outlining the basic ideas of ﻿intuitionism, Brouwer continues in 
‘﻿Intuitionism and Formalism’ to address the paradoxes that provoked 
the foundational crises in mathematics. He points out that within an 
﻿intuitionistic approach such paradoxes will evaporate. For instance, 
the ﻿intuitionistic restrictions with respect to the construction of sets 
will imply that the set-theoretical paradox that was identified by 
Bertrand Russell and Ernst Zermelo will disappear.8 Thus Brouwer tries 
to demonstrate that ﻿intuitionism establishes a solid route out of the 
foundational crises.

After the presentation of ‘﻿Intuitionism and Formalism’, ﻿Brouwer 
elaborated intensively on all aspects of the ﻿intuitionist program, and 
he gave series of lectures. In 1926, he lectured in Göttingen, which 
was the most prominent place for mathematical research, directed by 
﻿Brouwer’s principal opponent, ﻿Hilbert. In 1927, he lectured in Berlin, 
where ﻿Freudenthal was in the audience. In 1928, he lectured in Vienna, 
where Ludwig ﻿Wittgenstein was attending and got inspired to return 
to philosophy. In 1934, ﻿Brouwer lectured in Geneva, and during the 
years 1947–1951, he gave a series of lectures in Cambridge. His intention 
was to organise these lectures in a book, and he completed five of 
the planned six chapters. They became published posthumously as 
﻿Brouwer’s Cambridge Lectures on Intuitionism (Brouwer, 1981).

In ‘﻿Intuitionism and Formalism’ (1913), he gave an opening outline 
of ﻿intuitionism, while the Cambridge Lectures can be read as his more 
reflected formulations. Here ﻿Brouwer (1981) uses the terminology that 
mathematics develops through particular acts. In this way, he highlighted 
explicitly the constructivist nature of ﻿intuitionism. He presents what he 
refers to as the first act of ﻿intuitionism in the following way:

8� See Chapter 4 in this volume, for a presentation of this paradox.
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Intuitionistic mathematics is an essentially languageless activity of 
the mind having its origin in the perception of a move of time. This 
perception of a move of time may be described as the falling apart of a life 
moment into two distinct things, one of which gives way to the other, but 
is retained by memory. If the twoity thus born is divested of all quality, 
it passes into the empty form of the common substratum of all twoities. 
And it is this common substratum, this empty form, which is the basic 
intuition of mathematics. (pp. 4–5)

As in ‘﻿Intuitionism and Formalism’, ﻿Brouwer refers to a ‘falling apart of 
a life moment’ as constituting the origin of mathematics. He talks about 
a twoity that when stripped of particular emotional qualities, turns into 
an ‘empty form of the common substratum of all twoities’. We are dealing 
with a pure twoity, which represents the basic intuition of mathematics. 
It signifies the first mental act of ﻿intuitionism. It is the same intuition 
that ﻿Brouwer previously had referred to as a two-oneness.

﻿Brouwer claims that ﻿intuitionistic mathematics is essentially a 
languageless activity. However, ﻿intuitionistic mathematics also becomes 
expressed through symbols, and I assume that ﻿Brouwer did write 
something at the blackboard when giving his Cambridge lectures. 
But still, according to ﻿intuitionism, this is just chalky shadows of what 
mathematics really is: a languageless activity of the mind.

In the Cambridge Lectures, ﻿Brouwer presents a second act of ﻿intuitionism, 
which is also a way of creating new mathematical entities:

In the shape of mathematical species, i.e. properties supposable for 
mathematical entities previously acquired, satisfying the condition 
that if they hold for a certain mathematical entity, they also hold for 
all mathematical entities which have been defined to be ‘equal’ to it, 
definitions of equality having to satisfy the conditions of symmetry, 
reflexivity and transitivity. (p. 8)

This second act refers to ways of creating species of already created 
mathematical entities. ﻿Brouwer does not use the notion of set, but one 
can think of species as a collection of entities being ‘equal’ to each other.

﻿Brouwer claims that all mathematics can be constructed through the 
two acts of ﻿intuitionism; no other pattern of construction is necessary. 
This is the clue to ﻿Brouwer’s constructive interpretation of mathematics.

Many traditional forms of mathematical inferences are not valid 
from an ﻿intuitionist point of view. Mathematics has been all too tolerant 
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by applying inferences which are not guided by the acts of ﻿intuitionism. 
Let us consider a classic ﻿proof of the theorem T: There exist infinitely many 
prime numbers. The negation ¬T states: There exists a maximum prime 
number that we can refer to as P. Let us assume ¬T. Let the sequence of 
prime numbers smaller than P be p1, p2, …, pn. We define a new number  
N as N = p1 × p2 × … × pn × P + 1. As for any number, N can be uniquely 
factorised as the product of prime numbers. Consider one of these prime 
numbers, which we can call Q. Q cannot be any of the numbers p1, p2, …, 
pn, P, as a prime number cannot be a factor in two consecutive numbers. 
It follows that Q must be bigger than P. By assuming ¬T, we reach a 
contradiction. As a consequence, we conclude T: There exist infinitely 
many prime numbers.

﻿Brouwer does not accept indirect proving, as this does not represent 
a constructive way of binging about a mathematical entity or a 
mathematical truth. Assuming a Platonist﻿ position, the set of natural 
numbers is a pre-existing entity, and so is the set of prime numbers. 
Either the set of prime numbers is finite, or it is infinite. Only these two 
alternatives are possible. If one assumes that there exists a maximum 
prime, and this leads to a contradiction, the alternative must be true. 
But this is not a constructive ﻿proof, according to ﻿Brouwer. If one wants 
to prove T, then one has to provide a construction that leads to T. One 
could easily be in a situation where one cannot prove T or ¬T, and 
according to ﻿Brouwer, neither T nor ¬T is true until one of them has 
been proved constructively.9

According to ﻿intuitionism, then, the whole body of existing 
mathematical theories needs a careful revision, which includes three 
elements. First, one needs to consider what classic mathematical 
results can be considered valid within an ﻿intuitionistic mathematics. 

9	  Brouwer (1981) makes the following observation: ‘The belief in the universal 
validity of the principle of the excluded third in mathematics is considered by 
the ﻿intuitionists as a phenomenon of the history of civilisation of the same kind 
as the former belief in the rationality of π, or in the rotation of the firmament 
about the Earth’ (p. 7). The validity of is nothing but a cultural phenomenon 
that can be explained along the same lines as many other superstitions. There 
is nothing in this logical formula except long-lasting preconceptions. However, 
﻿Brouwer does acknowledge that in some particular domains the principle of the 
excluded middle does work: it could be in everyday situations; it could also be in 
some more particular mathematical cases. But as a general principle to be used in 
mathematics, it is illegitimate.
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Second, one needs to consider which classic ﻿proofs can be reformulated 
and given new constructive formats. Third, one has to consider what 
parts of classic mathematics cannot be transferred into ﻿intuitionistic 
mathematics. Georg ﻿Cantor’s (1874) theory of sets, which leads to the 
idea of an infinity of infinities, is an obvious candidate. Through such 
a re-examination, mathematics will be cleansed of invalid results, and 
possible paradoxes will be eliminated.

Let us consider again the classic ﻿proof of the existence of infinitely 
many prime numbers. It applies the principle of excluded middle, and 
is therefore not constructive. But the theorem can be reformulated and 
the ﻿proof reorganised to meet constructivist standards. The theorem can 
be stated as: For any prime number P, it is always possible to construct a prime 
number Q that is bigger than P. Define N as in the non-constructivist ﻿proof 
above and let Q be a prime factor of N. It follows that Q must be bigger 
than P. This formation is in accordance with ﻿intuitionism, not assuming 
any actual infinity. Through the very proving, we have constructed the 
prime number Q bigger than P, and we can conclude: For any prime 
number P, it is always possible to construct a prime number Q bigger 
than P.10

In 1975 and 1976, Brouwer’s﻿ collected works appeared in two volumes. 
The first, Collected Works, Vol 1: Philosophy and Foundations of Mathematics 
is edited by Arend Heyting.11 The second, Collected Works, Vol. 2: 
Geometry, Analysis, Topology and Mechanics is edited by ﻿Freudenthal. The 
two editors, ﻿Heyting and ﻿Freudenthal, are real insiders of ﻿intuitionistic 
mathematics.12 

10� The reformulation of the classic ﻿proof for the infinity of prime numbers was not 
a big deal, as the classic ﻿proof already contained the constructive features; it just 
had to be reformulated. However, there are mathematical theorems that are much 
trickier. For instance, what about ﻿Brouwer’s own fixed-point theorem? He made 
the ﻿proof according to classic standards; however, Kellogg, Li and Yorke (1976) 
‘saved’ the theorem by giving a constructive ﻿proof. ﻿Brouwer’s fixed-point theorem 
makes part of ﻿intuitionistic mathematics.

11	  Heyting (1971) provides a captivating introduction to ﻿intuitionism.
12	 �Intuitionistic mathematics has had a tremendous development. Mathematical 

analyses have been developed according to an ﻿intuitionistic outlook (Bishop, 
1967; Lorenzen, 1971; Martin-Löf ,1968). It has turned out that this approach 
has a particular significance for computing (Martin-Löf, 1982). Intuitionism has 
paved the way for a new richness of philosophic discussions (Dummett, 1977; 
Lorenzen 1969). Intuitionistic logic, as formalised by ﻿Heyting (1930) to the great 
consternation of ﻿Brouwer, got related to other logical structures by ﻿Gödel (1933), 
and came to play a crucial role as a logic relevant for ﻿computer science (see Reeves 
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Summary of Brouwer’s conception of mathematics

No mathematical entity or mathematical truth exists before it has been 
constructed. This claim opposes the ontology of any form of ﻿Platonism﻿, 
which assumes that mathematical entities have a real existence, 
independent of human intervention. To Brouwer, ﻿processes of obtaining 
mathematical knowledge are processes of construction, not processes of 
discovery.

According to Brouwer, ﻿intuition plays a crucial role in any form 
of mathematical construction. This intuition he specifies in terms of 
two mental acts. Brouwer ﻿does not think of such acts as taking place 
in a specific mind. He does not present mental acts in psychological 
terms, and does not suggest any form of what could be referred to as 
psychological constructivism.13 Nor does Brouwer’s constructivism 
includes any trace of social ﻿constructivism. The mental acts Brouwer has﻿ 
in mind do not presuppose any interaction; they are idealised individual 
acts; and they bring about the same entities and the same truths for 
‘those who understand’.

An intuition of time is a fundamental phenomenon in human life, 
and after abstracting away all emotional features of the movement of 
time, we reach the fundamental phenomenon of mathematical acting: 
the intuition of the naked two-oneness, also referred to as a twoity. 
While the first act of ﻿intuitionism takes the form of counting, the second 
act takes the form of groupings of already constructed mathematical 
entities. According to Brouwer, ﻿all mathematics can be constructed 
through these two acts.

Mathematics is languageless. Mathematics does not have any 
adequate articulation in language, and mathematical ﻿formalisms are 
nothing but imprecise and at times mischievous depictions of genuine 
mathematical processes. Mathematical processes are alive, while 
mathematical formalisms are dead and distorted copies. Mathematics is 
a languageless activity of the mind.

and Clarke, 2003). For a general overview of the development of ﻿intuitionism, see 
Troelstra and Dalen (1988).

13� Compared to ﻿Brouwer’s ﻿constructivism, Jean ﻿Piaget’s ﻿constructivism is 
psychological by highlighting the importance of the mental processes of 
assimilation and accommodation for the construction of knowledge.
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Brouwer’s ﻿conception of mathematics means a revitalisation of 
intuition as a crucial feature of mathematics. By doing so, Brouwer 
﻿confronts ﻿formalism, which tried to eliminate intuition from 
mathematics. Formalism saw intuition as the cause of the foundational 
crisis in mathematics, Brouwer ﻿sees intuition in terms of well-defined 
mental acts, as saving mathematics from contradictions.

Mathematics as a human activity

Brouwer’s ﻿ideas did not directly bring changes to mathematics education. 
However, some of his ideas became re-elaborated by ﻿Freudenthal, who 
opened a new terrain for activities in mathematics education by making 
plenty of space in which for intuition to operate. Before ﻿Freudenthal, 
other Dutch mathematics educators sought inspiration in ﻿intuitionistic 
ideas, and such visions for mathematics education had been presented 
in the Dutch mathematics teacher education journal Euclides.14 However, 
these visions faded away, while ﻿Freudenthal’s elaboration turned out to 
have a profound impact.

We are going to consider ﻿Freudenthal’s conception of mathematics 
as expressed in Mathematics as an Educational Task.15 Freudenthal sees 
mathematics as a human activity, while Brouwer ﻿sees it as mental 
acts.16 We will point out similarities and differences between these 
two conceptions.17 We will try to clarify what Freudenthal referred to 
when, in the Preface, he mentioned that his educational interpretation 
of mathematics betrays the influence of Brouwer’s ﻿view of mathematics.

14� Let me refer to two publications: Rootselaar (1957) and ﻿Heyting (1957). ﻿Heyting 
observes that ﻿intuitionism might have an educational relevance, as several 
﻿intuitionistic concepts come close to students’ natural perceptions. Both papers 
focus on ﻿intuitionism as a source of inspiration for mathematics ﻿teachers, not as 
a proper goal in mathematics education. I do not read Dutch, but Danny Beckers 
has provided me with these references and a short summary of them.

15� Other important contributions by ﻿Freudenthal that we also could address are 
﻿Freudenthal (1978, 1983, 1991).

16� See Gravemeijer and Terwel (2000) for a careful presentation of what ﻿Freudenthal 
means by mathematics being a human activity.

17� We have to be aware of a principal difference in the presentation of the two 
conceptions. While ﻿Brouwer presents his conception explicitly, as in ‘﻿Intuitionism 
and Formalism’ and in the Cambridge Lectures, ﻿Freudenthal’s main focus in 
﻿Mathematics as an Educational Task is to formulate a view on mathematics 
education, rather than present an explicit conception of mathematics.
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When Brouwer ﻿launched his view, ﻿formalism was in powerful 
development, establishing itself not only as a philosophy of mathematics, 
but also as an emerging mathematical research paradigm. Brouwer’s 
﻿intuitionism was up against this powerful opponent identifying formal 
structures with mathematics itself. ﻿Freudenthal was also up against 
﻿formalism, specifically in the form of ﻿structuralism as advocated by 
﻿Bourbaki and acted out through the ﻿Modern Mathematics Movement. 
﻿Freudenthal did not see formal structures as providing a proper 
departure for mathematics education; instead, students should be 
involved in mathematical activities.

﻿Freudenthal refers to the Socratic method, which highlights the 
importance of developing understanding through the students’ own 
activities. He formulates this idea in the following way:

I will suppose as ﻿Socrates did that the teaching matter is re-invention or 
re-discovery in the course of teaching. Rather than being dogmatically 
presented, the subject matter originated before the students’ eyes. (p. 
101)

﻿Freudenthal’s critique of a delivery-education can be compared to Paulo 
﻿Freire’s (1972) critique of banking education. ﻿Freire criticises profoundly 
the idea that education means bringing parcels of assumed knowledge 
to the students, and ﻿Freudenthal expresses a similar critique.

The Socratic method is presented in ﻿Plato’s dialogue ﻿Menon, in 
which Socrates talks with Menon’s slave.18 The point of the dialogue 
is that ﻿Socrates does not teach the slave anything. ﻿Socrates only puts 
questions, so no ‘transfer’ of knowledge is taking place. Starting from 
these questions, the slave reaches a mathematical insight. This dialogue 
illustrates ﻿Plato’s idea that learning means remembering. We can 
interpret the example as embedded in a Platonic outlook, according to 
which any kind of obtaining mathematical knowledge takes the form 
of discovering some truths about an already exiting mathematical 
reality. This means that any form of mathematical learning becomes a 
re-discovery, or a dis-covery.19

18� See The Internet Classics Archive, http://classics.mit.edu/Plato/meno.html 
19� Kollosche (2017) provides a detailed analysis of the notion of discovery and dis-

covery addressing the Platonic features that might be included in these notions.

http://classics.mit.edu/Plato/meno.html
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While Brouwer ﻿would certainly oppose any such interpretation of 
learning mathematics, ﻿Freudenthal is not explicit in formulating an 
anti-Platonic position. However, I am tempted to interpret ﻿Freudenthal’s 
reference to the Socratic method not as an assumption of any ﻿Platonism﻿, 
but more as a general interpretation of learning as being resourced 
by interaction, communication, and dialogue. In making such an 
interpretation, ﻿Freudenthal certainly distances himself from Brouwer. 
One﻿ can think of ﻿Freudenthal as assuming a social interpretation of 
﻿constructivism, contrary to Brouwer’s ﻿individual ﻿constructivism. I see 
﻿Freudenthal’s reference to the Socratic method in this light. However, 
we also have to be aware that ﻿Freudenthal does not refer to his own 
interpretation of learning mathematics in terms of ﻿constructivism. This 
is a label, however, that I feel tempted to apply.

Being constructivist does not imply being relativist. To Brouwer, 
﻿mental constructions of mathematics will lead to the same mathematics. 
There is only one form of ﻿intuitionistic mathematics. Brouwer has 
﻿inserted an absolutism into his anti-Platonic ﻿constructivism. It might 
be possible to find shades of the same absolutism in ﻿Freudenthal’s 
conception of mathematics. This absolutism appears when ﻿Freudenthal 
presents learning as a guided activity, which leads to an insight in 
already established mathematical knowledge. ﻿Freudenthal not only uses 
the notion of re-discovery, but also the notion of re-invention. By talking 
about re-invention and not just about invention, ﻿Freudenthal makes 
clear that he does not think of learning mathematics as a process that 
brings about new mathematical insight in any objective interpretation, 
but in a subjective. This process brings about new mathematical insight 
for the students.

﻿Freudenthal does not use the notion of construction, but other 
related notions – such as activity, creative inventions, direct invention, 
and re-invention – that bring the message:

Today, I believe, most people would agree that no teaching matter should 
be imposed upon the students as a ready-made product. Most present-
day educators look on teaching as initiation into certain activities. Science 
at its summit has always been creative inventions, and today it is even so 
at levels lower than that of masters. The learning process has to include 
phases of direct invention, that is, of invention not in the objective but in 
the subjective sense, seen from the perspective of the students. (p. 118)
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﻿Freudenthal talks about a ready-made product being imposed on 
students, and with such a remark he points his finger at the ﻿Modern 
Mathematics Movement. Through this movement, the whole ﻿curriculum 
became predefined through the structural architecture of mathematics. 
Again and again, ﻿Freudenthal criticises this approach. I suspect he is 
being ironic when he states that today it is broadly agreed that ‘no 
teaching matter should be imposed upon the students as a ready-made 
project’. When ﻿Mathematics as an Educational Task was published in 1973, 
the ﻿Modern Mathematics Movement was still in full swing, although 
difficulties in its implementation had become recognised.

When ﻿Freudenthal describes processes of learning mathematics, 
he uses several expressions referring, not to the final and polished 
mathematical structures, but to the processes that can lead to 
mathematical understanding. ﻿Freudenthal changes the focus from 
‘what to teach’ to ‘how to learn’. He highlights that the ‘learning process 
has to include phases of direct invention’. Invention, however, is not 
to be understood in absolute terms, but always with reference to the 
students’ horizons. ﻿Freudenthal finds it crucial that students experience 
that mathematical insight becomes developed from within, and not 
imposed on them.20

Brouwer also﻿ concentrates on mathematical processes and refers to 
mental acts. However, Freudenthal ﻿has a much broader conception of 
mathematical activity in mind. I have no doubt that he was fully aware of 
the very specific interpretation of mathematical construction provided 
by Brouwer, and﻿ that he did not want to assume Brouwer’s ﻿metaphysics 
with respect to the nature of mental acts. To Brouwer the ﻿mathematics-
creating mental acts are individual; no trace of social interaction can be 
located in these acts. ﻿Freudenthal’s conception of mathematics as human 
activity is different. Formulating arguments, addressing possibilities, 
evaluating results are all features of mathematical activities, seen as 

20� Gravemeijer and Terwell (2000) make this point clearly in the following way: ‘As a 
research mathematician, doing mathematics was more important to ﻿Freudenthal 
than mathematics as a ready-made product. In his view, the same should hold 
true for mathematics education: mathematics education was a process of doing 
mathematics that led to a result, mathematics-as-a-product. In traditional 
mathematics education, the result of the mathematical activities of others was 
taken as a starting point for instruction, and ﻿Freudenthal (1973) characterised this 
as an anti-didactical inversion. Things were upside down if one started by teaching 
the result of an activity rather than by teaching the activity itself’ (p. 780).
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social processes among students and ﻿teachers. This is pointed out by 
Freudenthal ﻿through his reference to the Socratic method. Freudenthal 
﻿sees the role of the mathematics ﻿teacher, not as being a lecturer, rather 
as being a supervisor helping the students to come to participate in 
mathematical activities.

By highlighting that we are dealing with a human activity, Freudenthal 
﻿also stresses that mathematics is not an activity presupposing some 
particular abilities. It is a common activity. Everybody can participate in 
a mathematical activity. Freudenthal ﻿provides the conception of activity 
with a broad inclusivity, while Brouwer’s ﻿mental acts appear exclusive, 
reserved for ‘those who understand’.

Freudenthal ﻿talks about ‘connected mathematics’, and ‘lived-through 
realities’, which is very different form talking about mathematical 
structures:

To teach connected mathematics it is not wise to start out looking for 
direct connections; they should rather be found between the contact 
points where mathematics is attached to the lived-through reality of 
the learner. Reality is the framework to which mathematics attaches 
itself, and though these are initially seemingly unrelated elements of 
mathematics, in due process of maturation connections will develop. Let 
the mathematicians enjoy the freewheeling system of mathematics – for 
the non-mathematicians the relations with the lived-through reality are 
incomparably more momentous. (p. 77)

﻿Freudenthal’s clue is that it is not wise to start out looking for direct 
connections. The point of departure is not any mathematical structures 
already elaborated by others, but the students’ lived-through realities 
that include mathematics fraught with relations.

When speaking about mathematics fraught with relations, I stressed the 
relations with a lived-through reality rather that with a dead mock reality 
that has been invented with the only purpose of serving as an example of 
application. This is what often happens even in ﻿arithmetic teaching. I do 
not repudiate play realities. At a low level games may be useful means 
of motivation. But it is dangerous to rely too much on games. Ephemeral 
games are no substitutes for lived-through reality. The rules of games 
that are not daily exercised are easily forgotten as mathematics or even 
faster. The lived-through reality should be the backbone which joins 
mathematical experiences together. (pp. 78–79)
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By referring to a ‘dead mock reality’, Freudenthal ﻿not only criticises 
the ﻿Modern Mathematics Movement, but also the school mathematics 
tradition.21 In this tradition exercises invented by textbook authors play a 
particular role: Peter has to buy 4.5 kilos of apples … A family is driving 
on holiday with the average speed of 70 km per hour … The shadow of 
the flag post is 4.6 meter long … All such exercises are pure inventions; 
they do not represent any lived-through realities, rather stereotypical 
didactical inventions.

Brouwer is a﻿ radical anti-Platonist﻿. The existence of any mathematical 
entity or mathematical truth has to be constructed. Before being 
constructed, nothing exists. This claim brought him to abandon classic 
logic. Apparently, Freudenthal ﻿shares Brouwer’s ﻿disregard for formal 
logic. But while Brouwer is ﻿very specific in his critique of formal logic, 
Freudenthal ﻿simply makes space for all kinds of reasoning as forming 
part of mathematical activities.

Summary of Freudenthal’s conception of mathematics

If mathematics is an activity, it is not defined by any Platonic reality, nor 
by any logical or formal structures. Instead of activity, one can also try 
to use the notion of construction and think of mathematics as a human 
construction. I find that Freudenthal ﻿operates with a constructivist 
perspective on mathematics, although he does not use this label.

Brouwer did ﻿not include any relativism in his version of 
﻿constructivism, nor does Freudenthal ﻿seem to. While the construction 
of mathematics through research might represent objective inventions, 
the construction established through education represents subjective 
inventions.

Whereas Brouwer ﻿confronted ﻿formalism as represented by David 
﻿Hilbert, Freudenthal ﻿confronted ﻿structuralism as represented by 
﻿Bourbaki and the ﻿Modern Mathematics Movement. Confronting 
﻿formalism and ﻿structuralism means giving value to intuition, and both 
Brouwer and ﻿Freudenthal ﻿do so. While Brouwer ﻿installed intuition in 

21� For a characterisation of the school mathematics tradition, see Skovsmose and 
Penteado (2016).
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a central position in mathematics, Freudenthal ﻿made a vast space for 
intuition in all kinds of educational activities.

Brouwer did ﻿not see formal logic as capturing the nature of 
mathematical reasoning. Freudenthal ﻿shared this idea, however in 
﻿Mathematics as an Educational Task I do not see traces of Brouwer’s ﻿way 
of arguing for this position. Freudenthal ﻿acknowledges the different 
patterns of mathematical reasoning, but he never shows interest in trying 
to capture a universal pattern of this reasoning. Freudenthal ﻿is rather 
interested in exploring a broad spectrum of intuitive mathematical 
reasoning in educational contexts.

Many times, Freudenthal ﻿characterises mathematics as a human 
activity. By talking about human activity, he assumes the overall 
﻿intuitionist outlook that Brouwer had ﻿condensed in the notion for mental 
activity. By talking about human activity and not about mental activity, 
Freudenthal ﻿also distances himself from Brouwer. ﻿While mental activity 
refers to highly idealised constructive processes, human activity refers to 
real-life interactive processes of creating mathematical understanding.

﻿Freudenthal’s conception of mathematics means a revitalisation 
of intuition in mathematics education. It might be this revitalisation 
that Freudenthal ﻿had in mind when in the preface to ﻿Mathematics as an 
Educational Task, he mentioned that his educational interpretation of 
mathematics betrays the influence of Brouwer’s ﻿view on mathematics.

Ship Ahoy

The ﻿Modern Mathematics Movement was guided by a well-defined 
conception of mathematics: mathematics is formed by its structures, and 
three basis structures, also referred to as mother structures, had been 
identified by the ﻿Bourbaki group. According to Jean ﻿Piaget, three similar 
structures characterise children’s operations with objects, which brought 
him to assume that he had identified the genetic routs of mathematics. 
This assumption provided the whole ﻿Modern Mathematics Movement 
with an outstanding legitimisation: the structural organisation of 
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mathematics shows also the natural way of learning mathematics. 
Freudenthal ﻿considered this justification to be nonsense.22

Seeing mathematics as human activity opposes directly the conception 
of mathematics that guided the ﻿Modern Mathematics Movement. As an 
illustration of what this could mean, I refer to an example published in 
﻿Five Years ﻿IOWO, published as a special issue of Educational Studies in 
1976 when Freudenthal ﻿retired (Freudenthal ﻿et al., 1976).

Ship Ahoy is for children around ten to eleven years old. The whole 
project is planned to last for about ten lessons. Ship Ahoy starts with 
the children listening to a communication between two ships, Bermuda 
(B), a yacht, and Constance (C), a tug. The storm makes it sometimes 
difficult to hear what is said:

C: Do not read you. Repeat. Over.
B: This is Bermuda. This is Bermuda. We are in danger, in danger. The 
motor has failed … (noise) … Cast the anchor, but the chain can break 
any moment. Over.
C: I read you. What is your position? Over.
B: Do not know, do not know. Wemelringe area. Probably Wemelringe 
area. No vision. Over.
C: Do you see the coast? Over?
B: Yes, we … (noise) …
C: I do not read you. I do not read you. Over.
B: We see a lighthouse in the distance, lighthouse in the distance. Over.
C: We read you. Do you see a church tower? A church tower? Over.
B: Only water. Only water. Over.
C: Keep looking and call in. Over.
B: Yes. A church tower to the left of the lighthouse! Over.
C: Good, we have your approximate position. We are on our way. On our 
way. Over.
B: Thank you. Please hurry. Over.
C: We are on our way. Keep looking. There is a small house to the right of 
the lighthouse. Keep looking. Over and out.

In 1977, when I first time read the presentation of Ship Ahoy, I was 
surprised: Could this be mathematics? I am sure that I was not the only 
one being surprised. At that time, the perception of mathematics was 
dominated by the Modern Mathematics Moment, which operated with 

22� See Chapter 4 in this volume, for a short presentation of ﻿Piaget’s position and of 
﻿Freudenthal’s critique of ﻿Piaget.
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a clear idea of what counted as mathematics. This idea was shaken by 
this and other examples presented by ﻿IOWO. Freudenthal’s﻿ conception 
of mathematics, as formulated in ﻿Mathematics as an Educational Task, 
become both concrete and provocative.

The work in the classroom begins: What is the situation? What 
could happen? Why is Bermuda in difficulties? What can they see from 
Bermuda? The children are presented with some pictures showing the 
lighthouse, the church, and the small house in different positions. Could 
any of these pictures show the situation as observed from Bermuda? A 
map of the area is handed out. It shows the position of the lighthouse, 
the church, and the small house. The map has to be read and properly 
understood, and then comes the question: Where might Bermuda be 
located?

Could readings of maps and spatial reasoning be considered 
mathematical tasks? In 1976, this was hardly considered mathematics. 
In Denmark, a short textbook for students around fifteen years old 
had been published, giving a strict axiomatic presentation of incidence 
﻿geometry. Here lines were defined as sets of points and illustrated as 
sets conventionally are, within egg-shaped circles. Two non-overlapping 
eggs illustrated two parallel lines, and so on. The deduction from 
the presented axioms observed strict formalities. No intuition with 
respect to points and lines were necessary; such intuitions were in fact 
considered disturbing for the deduction. An initial part of incidence 
﻿geometry was carefully elaborated, and the majority of students were 
completely lost. Compared to such an approach to ﻿geometry, looking at 
maps and speculating about possible perspectives expand the scope of 
mathematical activities enormously. From being marginalised, intuition 
moves to the centre of mathematical reasoning.

The intuition cultivated in Ship Ahoy concerns three-dimensional 
space and three-dimensional ﻿geometry. The general assumption, 
associated with traditional mathematics education as well as with the 
Modern Mathematics Moment, was that one needed to start with two-
dimensional ﻿geometry and only later get to three-dimensional ﻿geometry. 
When paying particular attention to intuition and not to any axiomatic 
organisation of ﻿geometry, this order turns artificial. We live in a three-
dimensional space. All our daily-life experiences are located in such a 
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space. So why not start out with issues related to our three-dimensional 
space of life? That is precisely what Ship Ahoy does.

The rescue work continues. Bermuda is found, and Constance takes 
her on tow. However, it has become night before they reach the harbour. 
How to keep the right course? From Constance, one can see the two 
lights in the Harbour. How the two lights are placed in the harbour can 
be seen on a map of the harbour also handed out to the children. One 
light is positioned higher up than the other. How should the captain 
on Constance see the positions of the two lights in order to keep the 
right course? The children become engaged in such discussions, and 
the rescue work continues. Freudenthal ﻿talked about starting from 
situations fraught with relations, and Ship Ahoy is an illustration of what 
this could mean.

The inspiration from Freudenthal ﻿and ﻿IOWO spread world-wide. 
By the late 1970s, the inspiration had reached Denmark, where the 
﻿Modern Mathematics Movement had been broadly implemented. The 
Freudenthal ﻿and ﻿IOWO approach showed alternatives, and intuition got 
revitalised in mathematics education.23

What about socio-political issues?

In 1967, I graduated from a ﻿teacher education college in Denmark, 
where I had been carefully introduced to the ﻿Modern Mathematics 
Movement. In 1968, I started studying mathematics at university, and 
here I encountered a ﻿structuralist approach where, for instance, the 
introductory course in mathematical analysis began with abstract 
topology.

In 1977, I was accepted as a PhD student at the Royal Danish School 
of Educational Studies, which concentrated on in-service training of 
﻿teachers. Since the beginning of the 1960s, the ﻿Modern Mathematics 
Movement had been broadly introduced in Denmark, not least due 
to the dedicated work of Bent ﻿Christiansen from that institution. 
However, ﻿Christiansen became much inspired by Freudenthal’s ﻿work, 
and he directed a major change in mathematics education in Denmark. 

23� The notion of realistic mathematics has been coined and elaborated in detail at the 
﻿Freudenthal Institute. See, for instance Gravemeijer (1994), De Lange (1987), and 
Streefland (1991).
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﻿Christiansen and Tage Werner were my supervisors, and ﻿Christiansen 
told me about Freudenthal ﻿and about ﻿IOWO, and he showed me a 
copy of ﻿Five Years ﻿IOWO. During his whole career, Werner had been a 
consistent anti-﻿formalist, providing a range of suggestions for engaging 
students in mathematical activities. He was in line with ﻿IOWO even 
before ﻿Five Years ﻿IOWO was published.

The aim of my PhD project was to formulate a ﻿critical mathematics 
education, and soon after I got started my supervisors made it possible 
for me to visit ﻿IOWO in Utrecht and to meet with Freudenthal. I﻿ was 
anxious. At that time my English was not very good, Freudenthal ﻿was 
so famous, and I was overawed.

Freudenthal ﻿met me with a welcoming smile, and I felt relaxed. His 
enthusiasm was evident when he shared various possible mathematical 
activities. When I tried to explain about my project and wanted to 
ask how he viewed the connection between socio-political issues and 
mathematics education, he seemed, however, uninterested. I did not 
insist, so our conversation remained focused on possible mathematical 
activities. Through this interaction, I experienced the richness of 
educational ideas that emerge from viewing mathematics as a human 
activity.

I would have liked to insist on my question. Freudenthal ﻿uses the 
notion of lived-through reality, which I find to be powerful. It can be given 
a range of interpretations. The reality for whom? One could think of 
a lived-through socio-political reality. Such a conception can be related to 
Paulo ﻿Freire’s notion of generative themes, which opens towards a huge 
variety of mathematical activities with political significance. While 
Freudenthal ﻿talks about mathematics as a human activity, one could 
consider what it could mean to talk about mathematics as a political 
activity.

The notion of lived-through reality can be related to ﻿critical 
mathematics education, but in my meeting with Freudenthal, ﻿he was 
not interested in addressing any such possibility. Nor do I locate any 
interest in his writings. ﻿Structuralism and the ﻿Modern Mathematics 
Movement are manifestations of the dogma of ﻿neutrality. They operate 
as if mathematics is neutral and mathematics education can be kept 
separate from socio-political issues. Freudenthal ﻿operates with the 
same as if. He formulates mathematics as an educational task within 
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an apolitical outlook. However, although he embraces a dogma of 
﻿neutrality, he simultaneously provides notions and ideas that help in 
formulating a ﻿critical mathematics education.
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8. Human mathematics

 Ole Ravn

This chapter discusses how we can think about mathematics as a human 
enterprise. It takes as its starting point the portrait of a European tradition that 
has considered mathematics as essentially a non-human realm. As a challenge 
to this tradition, a ﻿Wittgensteinian interpretation of mathematics as a special 
type of language among all the human languages is outlined and used to 
develop a platform for understanding mathematics as ‘human mathematics’. 
This conception is finally given shape through two discussions, first through a 
challenge to the positioning of mathematics in our contemporary universities in 
close proximity to the natural and technological sciences. Instead, a narrowing of 
the gap between the sciences and the humanities with a consequent repositioning 
of mathematics in the epistemological landscape of our knowledge institutions is 
advocated. Secondly, a human mathematics conception is discussed in relation 
to learning and teaching. Connections are made to socio-cultural learning 
theory, and it is argued that the concepts of ‘fog of mathematics’ and ‘centreless 
mathematics’ can help in reconfiguring how to think about the learning of 
ma thematics.

Introduction

Dominant stories told about mathematics are often linked to science 
and the ﻿certainty of scientific knowledge. Other more socially oriented 
stories about mathematics are related to our everyday practices in 
schools, homes, or the workplace. From a ﻿Wittgensteinian perspective 
– a perspective I shall discuss in the following – these socially oriented 
stories and practices, in conjunction, hold the truth about what 
mathematics is. This difference in perspectives and understandings of 
mathematics is the axis around which this chapter revolves.  
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I will attempt to portray these two different perspectives in the 
following and discuss how there is an argument that the meaning of 
mathematics is nothing more than a social agreement in the use of 
signs we have developed over centuries – a purely human mathematics. 
This perspective highlights that non-human ontological ideas about 
mathematics could be utterly misleading and opens the discussion about 
socially oriented reinterpretations in the epistemology and ontology of 
mathematics. In this sense, the chapter deals with the question: What 
implications could a human and socially centred interpretation of 
mathematics have for our current practices?

My approach to getting closer to answering this question involves 
the following steps:

1.	 Give a short historical account of some of the central roles 
mathematics has played in our thinking about science and 
universities. This is a story dominated by the view that 
mathematics is non-human and represents the eternal 
structures of the world. 

2.	 Present a language-centred philosophical position that argues 
mathematics can be understood as a multitude of human 
language constructions with many different types of uses and 
functions in our lives. 

3.	 Discuss the opening of perspectives that presents mathematics 
as a completely social construction. I highlight two cases 
to illustrate this. The first case concerns university and 
mathematics – that is, how should mathematics be positioned 
in our epistemological and ontological landscape of 
sciences? In this case, the attempt is to give mathematics new 
interpretations in relation to the humanities as an expression of 
human ﻿creativity along the lines of poetry and literature. This is 
potentially a story of mathematics as exploring the limitations 
of (constructed) reasoning in the process of developing ever 
new and complex mathematical measures. The second case 
discusses how thinking about learning mathematics from 
the human mathematics perspective in general will differ 
somewhat from many traditional approaches. Thinking 
about the learning and teaching of mathematics under the 
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assumption that mathematics is a 100% social construction 
means that some principles can be highlighted to give direction 
for educational development.

With respect to point 2., I will draw upon the ﻿Wittgensteinian argument 
that mathematics consists of language games, which play many 
different roles in our lives, particularly in how we use, develop, and 
reach agreements on mathematical concepts. I will draw on Stuart 
﻿Shanker’s interpretation of ﻿Wittgenstein’s social turn in the philosophy 
of mathematics, which carves out a specific position in the interpretation 
of ﻿Wittgenstein’s writings on mathematics (Shanker, 1987). This is 
not a chapter that aims to persuade all critics of a thoroughly social 
interpretation of mathematics, but I will point to the main ideas and 
reasoning behind the position I call ‘a human mathematics’ in what 
follows.

Order of the galaxy

Historical configurations of knowledge and mathematics have a huge 
impact on our understanding of the role played by mathematics today. 
Consequently, it seems reasonable to start thinking about the positioning 
of mathematics in our scientific worldview with an outline of some of 
the historical constructions that have surrounded mathematics. In order 
to trace some of the routes mathematics has traveled until today I will 
discuss aspects of its institutional connections to science and knowledge 
in a European context. The aim is to highlight dominant patterns of 
thinking about mathematics in the European history of ideas, being 
fully aware that there are many non-European historical stories that go 
even further back in time. The author of this chapter is of European 
origin and this unfortunately puts some limits on his insights into other 
historical trajectories. Accordingly, the following should be thought of 
as a local perspective about past ideas related to mathematics and how 
we could conceivably think differently about them in the future. 

The local story inevitably connects to the highly influential 
interpretation by the Pythagoreans in ﻿Ancient Greece and the Academy 
built by ﻿Plato later on. The influence of this early interpretation of 
mathematics within a larger ontological framework can be traced in the 
medieval university structure, as presently discussed. And, in today’s 
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university, the idea of mathematics as an especially important element 
in exploring the world is, for example, reflected in the acronym ﻿STEM 
(Science, Technology, Engineering, and Mathematics) which at the 
same time disconnects mathematics from the sciences of language and 
social sciences. 

By echoing this classical interpretation, one runs the risk of 
oversimplifying the actual historical complexities and entanglements 
and the connections between both modern and medieval scholarship 
environments and their ﻿Ancient Greek counterparts (see, for example, 
Høyrup, 1996, for an interesting account of these complexities). However, 
as Jens ﻿Høyrup suggests, there is no doubt about the dominant narrative 
concerning ﻿Ancient Greek mathematics and its impact on the European 
interpretation of the development of mathematics: 

This tale, more or less biased or false as an historical account, has none 
the less become material truth in the sense that it has contributed to the 
self-understanding and thereby to the cultural ﻿identity of the European 
mathematical community/communities for centuries. (Høyrup, 1996, p. 
103)

However flawed this narrative is in representing the vast complexities 
of European and non-European origins of ideas about mathematics, 
its domination as a narrative is what matters for the argument of this 
chapter.

The Pythagorean interpretation of mathematics is often ridiculed as 
coming from a very speculative and ﻿religious environment. Nevertheless, 
the Pythagoreans are very importantly famous for connecting numbers 
and the relation between numbers to the heavenly spheres; in this way, 
they started a long tradition of relating mathematics to the structures of 
the universe and to the field of astronomy. 

﻿Archytas (428–347 BCE), at the time of ﻿Plato, explained how the 
Pythagoreans were the inspiration to connect the study of numbers to 
the study of the universe, as they ‘handed down clear knowledge of the 
speed of stars and their rising and setting, and of ﻿geometry, ﻿arithmetic, 
and spherics and not least music, for these studies turned out to be 
sisters’ (﻿Archytas, cited in Pedersen, 1979, p. 20). Spherics was closely 
associated with what we would refer to as astronomy today and it was 
thought of as the materialisation of numbers in nature in its continuous 
form. Music was thought of as numbers in nature in their discrete 
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form, while ﻿geometry and ﻿arithmetic were thought of as numbers in 
themselves—in both discrete and continuous forms (see Pedersen, 1979, 
p. 20).

The impact of the Pythagorean ideas about mathematics was 
established most forcefully by ﻿Plato. When he constructed his Academy, 
which later became an influential inspiration for the early medieval 
university, he found a central position for mathematics as a field that was 
of the utmost importance in the formation of thinking among his students. 
In many of ﻿Plato’s writings, and especially in ﻿The Republic (Plato, 2022a), 
he outlines how the road towards a deeper insight into the many aspects 
of life can be furthered by prolonged studies of mathematics. In this way, 
﻿Plato set the course towards putting mathematics on a pedestal among 
the sciences as the discipline that will train and strengthen reasoning 
and logical deduction. And it was notably a form of mathematics that 
was also considered as metaphysically connected to the order of things 
in the physical world.

When the first European universities were established in the 
eleventh century they were inspired by the ﻿Ancient Greek constellation 
and understanding of knowledge and their structuring of the different 
fields of study. In these universities, the faculties were normally the 
philosophical, the judicial, the medical, and the theological. To access 
one of the higher faculties one had to pass the bachelor exams in the 
philosophical faculty. Based on the tradition from the Pythagorean 
division of knowledge classification, these were ordered into ‘seven 
liberal arts’, divided between the study of Number (Quadrivium), with 
four subdisciplines, and the study of Letter (Trivium), which focused 
on grammar, logic, and rhetoric (Grane, 1991, p. 23). 

Mathematics was connected by the Pythagoreans to the study of 
the universe, implying that the building blocks of the universe are of a 
mathematical nature. This conception underlines the idea that Letters 
are about human matters whereas Numbers are about the matters of the 
universe. Studies related to the Letter were, on the other hand, directly 
associated with handling human life and the social sphere. In this way, 
the deep gap in the scientific community today between ﻿STEM and 
not-﻿STEM areas can be thought of as having been nurtured from this 
specific and speculative ontology in relation to the power of Numbers.
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﻿Plato himself was an active constructor in the reification of this 
constellation of knowledge. The key mathematical work to be handed 
down through history from ﻿Ancient Greece is ﻿Euclid’s ﻿Elements and 
much of its content was inspired by scholars educated or situated in 
﻿Plato’s Academy. ﻿Archytas has already been mentioned and other 
famous examples are ﻿Theaetetus (417–369 BCE) and ﻿Eudoxus of Cnidus 
(395–342 BCE) who both researched at the Academy (O’Connor & 
Robertson, 1999).

To highlight the philosophical significance of the Elements for the 
times to come one can make several observations. First of all, within the 
specific ﻿Euclidean framework of mathematics – a celestial mathematics, 
you might say – the only permitted construction methods for constructing 
objects were the use of a ruler and a pair of compasses. In the ﻿Euclidean-
Platonic epistemology of mathematics, these constructions represent 
eternal objects. Many students for centuries afterwards have been 
trained in these basic skills and the ruler and a pair of compasses were 
certainly to be found in the mathematics pupil’s toolkit.

The first book of ﻿Euclid’s Elements starts out by proving that one can 
construct an equilateral triangle from some basic actions of construction 
using the ruler and a pair of compasses. Many volumes later, the final 
﻿proof in the final book of the Elements establishes the construction of the 
so-called Platonic Solids (﻿Euclid, 1998, Book XIII). It is proven that there 
are exactly five of these solids, interpreted as representing the ‘elements’ 
(fire, earth, air, and water), with the fifth representing heaven and its 
twelve constellations. In other places, ﻿Plato relates the Platonic elements 
to the building blocks of all things and in this way makes a transparent 
connection between ﻿Euclid’s Elements and his own Pythagorean and 
mathematically inspired ontology (﻿Plato, 2022b).

In the last decades it has been more and more acknowledged that 
the early modern scientists like Isaac ﻿Newton and Johannes ﻿Kepler were 
much inspired by similar thoughts on mathematics. It is telling how 
﻿Kepler describes how the regular polyhedra can be understood as the 
structure of the universe and here very much brings the ontology of the 
Ancient Greeks into the core construction of modern science. In his early 
work ﻿Mysterium Cosmographicum, he describes how the regular polyhedra 
in ﻿Euclid’s Elements are to be conceptualised in an astronomical sense as 
the spherical structures surrounding earth (﻿Kepler, 1596). In this way, he 
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establishes a direct line to ﻿Plato’s ideas about mathematics. He is echoed 
by the insights and ideas of ﻿Galileo Galilei on the study of nature as a 
realm where only mathematics can reach the deepest insights (Galilei, 
1957, pp. 237–238).  

After having stripped away the metaphysical connotations, 
universities today are very much aligned with the conclusions of this 
story. In the modern Humboldtian inspired universities, mathematics 
is often located next to ﻿physics and the natural sciences. This means 
that mathematics is still connected to the idea that it is the main tool 
for describing and understanding the physical world around us. The 
essence of this conception of knowledge amounts to something like the 
following: to understand human actions you must study letters and 
﻿natural language and to understand the physical world, including the 
human body and its behaviours, you must use the numbers to get to 
the truth. And this is a relatively moderate interpretation of matters. 
The stronger interpretation goes along the lines that if you really want 
to understand any field of study you need the hard sciences defined by 
their use of quantification of the world throug  h the Number. 

A social enterprise

In the previous section, I have tried to portray how mathematics has been 
interpreted as connected to the building blocks of the universe. It is a 
deep cultural heritage in Western inspired universities that mathematics 
is the language that can tell you the most about the world.

However, a contrasting perspective does exist, though it is much 
less dominant. In fact, numerous challenges have been raised against 
the idea of mathematics as a mirror of real-world structures, inherently 
tied to fields like ﻿physics, chemistry, engineering, and technology more 
than to other fields of knowledge. Among these challenges I will try to 
highlight a ﻿Wittgensteinian perspective that suggests that mathematics 
is a human construction through and through. From this perspective 
mathematics is not about mirroring the logical structure of the world 
but instead about creating a diverse mathematical language to use 
in a multitude of different types of social practices. From the many 
interpretations of mathematics as a social structure, I have consistently 
found ﻿Wittgenstein﻿’s interpretation, in his later works, to be both the 
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most radical and the most credible. It is developed in the posthumously 
published ﻿Remarks on the Foundations of Mathematics but is also closely 
connected to his later principal work ﻿Philosophical Investigations. 
﻿Wittgenstein’s interpretation of anything is always subject to heavy 
debate and, as mentioned above, I will follow the interpretation 
presented by ﻿Shanker (1987) in ﻿Wittgenstein and the Turning-Point in the 
Philosophy of Mathematics. Explaining ﻿Wittgenstein’s position in detail is 
beyond the scope of this chapter; the discussion is developed further in 
Ravn and Skovsmose (2019, 2020). 

A social interpretation of language revolves around the idea that our 
words and sentences can only have meaning from a group of language 
users. In fact, ﻿Wittgenstein is famous for his argument that no single or 
isolated human would ever be able to pinpoint meaning within a word or 
symbol because there would be no group of users to discuss and reflect 
to what degree the use of the symbol or word would be correct. This is 
known as the private language argument in ﻿Wittgensteinian research, 
and it has been heavily discussed through the years (see, e.g., Candlish, 
1998, and his discussion of Saul ﻿Kripke’s notorious interpretation).

The argument is that only the use of symbols or words in a social 
group can establish the meaning of the symbol. In the ﻿Wittgenstein 
literature, this is known as the ‘meaning is use’ principle; to illustrate 
this, consider one of my favourite examples: the sign we make when we 
point our finger in a certain direction. This is a simple concept for adults 
to understand, and often across cultures. However, a young child might 
not grasp the symbolic meaning of the gesture in their early years, and 
may simply look just at your finger, regardless of the direction you are 
indicating. They do not know how to use this part of language and only 
gradually will they learn how to use this symbolic gesture.

The situation is similar in mathematics, according to ﻿Wittgenstein. 
When we are told to repeatedly add 2, we feel forced to write ‘2, 
4, 6, 8, …’ But what is it that compels us to do so? In ﻿Wittgenstein’s 
interpretation, the only force at stake is the social training and large-
scale practice in a community of mathematics users that, in the end, 
creates the sensation of the forced conclusion as being the most natural 
endeavour imaginable (﻿Wittgenstein, 1967, p. 3e–6e). If we imagine the 
sequence ‘2, 4, 6, 8, …’ written in chalk on a blackboard, ﻿Wittgenstein’s 
point is that there is nothing hidden behind the chalk. The symbols 



� 1838. Human mathematics

themselves do not have any concealed meaning that could force us to 
act as we all do. Often this feeling of force has been attributed to logic, 
but according to ﻿Wittgenstein there is nothing supernatural occurring in 
logic or mathematics. When he rhetorically asks, ‘In what sense is logic 
something sublime?’ the answer is clearly ‘in no way’, and instead he 
presents the idea that mathematics is essentially collective agreements 
about rule-following in connection to specific symbols (﻿Wittgenstein, 
1997, p. 42e): 

Let us remember that in mathematics we are convinced of grammatical 
propositions; so the expression, the result, of our being convinced is that 
we accept a rule. I am trying to say something like this: even if the proved 
mathematical proposition seems to point to a reality outside itself, still 
it is only the expression of acceptance of a new measure (of reality). 
(﻿Wittgenstein 1978, pp. 162–163)

But is this not a flawed position, as it might suggest that mathematics 
could then be arbitrarily agreed to mean anything? This arbitrariness 
is actually a cornerstone in ﻿Wittgenstein’s interpretation. It highlights 
that his view of mathematics is as a language that, in its development, 
is not constrained or dictated by a sublime logic, nature, the universe, 
or anything else:

But then doesn’t it (mathematics) need a sanction for this? Can it extend 
the network arbitrarily? Well, I could say: mathematicians are always 
inventing new forms of description. Some stimulated by practical needs, 
others from aesthetic needs—and yet others in a variety of ways. And 
here imagine a landscape gardener designing paths for the layout of a 
garden; it may well be that he draws them on a drawing-board merely as 
ornamental strips without the slightest thought of someone’s sometime 
walking on them. (﻿Wittgenstein 1978, p. 99)

The mathematician is an inventor – a poet of the numbers one might 
say – one that slowly, in co-operation with a collective of other 
mathematicians, pushes the boundaries of what can be thought of as 
being rational in terms of measuring the world. ﻿Wittgenstein therefore 
agrees that mathematics is special, but not in the supernatural sense 
of revealing deeper or hidden dimensions of reality, unlike ﻿natural 
language.
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We feel that mathematics stands on a pedestal – this pedestal it has 
because of a particular role that its propositions play in our language 
games. What is proved by a mathematical ﻿proof is set up as an internal 
relation and withdrawn from doubt. (﻿Wittgenstein 1978, p. 363)

What is special about mathematics is that it represents knowledge or 
grammar that has been established and removed from doubt. The task 
of the professional mathematical community is to push the limits for 
the ways in which we can measure reality and, in this process, to resolve 
any doubts about the rationality of these approaches. In this way the 
professional community of mathematicians has gradually constructed 
a grammar that supports science and calculations in everyday aspects 
of our lives.

This interpretation of mathematics is somewhat different from some 
of the other social interpretations of symbols of mathematics. In those 
views, mathematics is seen as resembling the empirical sciences by being 
based on extremely large amounts of empirical data and is, in principle, 
fallible, much like theories in ﻿physics or ﻿biology (as is well-known from 
the tradition following ﻿Lakatos – see, e.g., Hersh, 1998). ﻿Wittgenstein 
disagrees with this interpretation of mathematics. Mathematics does 
have a deep history based on human experiences, but this does not mean 
it has been forced upon us in any way by our surroundings. It would 
be more in line with ﻿Wittgenstein’s ideas to say that mathematics is a 
tool in a large language toolbox that, for example, enables us to express 
empirical statements in the sciences. Mathematics is itself a measure or 
grammar, rather than the thing being measured. 

This toolbox of mathematics has no clear boundaries – it can be about 
all sorts of measures relating to surfaces or ﻿statistics, strange types of 
numbers, and the many things that we cannot even imagine today 
that will come about in decades to come. The image of mathematics 
in this interpretation is one without a centre – mathematical concepts 
are continuously being developed and enriched by the structures 
and concepts surrounding them, and concepts of mathematics are 
constantly being renegotiated in minute details in everyday practices of 
mathematics users, but sometimes also on a major scale when new types 
of numbers, or the like, are introduced. 

﻿Wittgenstein was opposed to the interpretation provided by the 
influential logicians of the early twentieth century, including himself 



� 1858. Human mathematics

in the form of the so-called ‘early’ ﻿Wittgenstein. The outline presented 
above of mathematical development through gradual playing with the 
concepts is in stark contrast to his earlier thought patterns about logic 
and mathematics (﻿Wittgenstein, 1983, first published 1922). 

It is interesting to compare the multiplicity of the tools in language and 
of the ways they are used, the multiplicity of kinds of word and sentence, 
with what logicians have said about the structure of language. (Including 
the author of the ﻿Tractatus Logico-Philosophicus.) (﻿Wittgenstein, 1997, p. 
12e)

The aim of these early twentieth-century logicians was to show that 
(scientific) rationality could have only one form and that this form was 
definitely not a human form but something humans had access to (in 
contrast to animals) through labour or through talent etc. By denouncing 
his own earlier work in the Tractatus, the later ﻿Wittgenstein presents a 
much more vivid and organically developing image of mathematics that 
is open for new paths and absolutely freed from an axiomatic limitation 
on how mathematics can develop as we know it from ﻿Euc lid’s ﻿Elements.

If it’s a language?

The above arguments and discussions are all of a historical and 
philosophical nature and one meets many of them in research 
communities again and again. Taking the position that mathematics is 
social through and through, will it really make a difference? That is the 
question that will be pursued now.

As described in the introduction I will try to imagine what difference 
could be associated with our mathematical practices. I am deeply 
inspired by the ﻿Wittgensteinian interpretation of mathematics; however, 
in the following I will go far beyond what ﻿Wittgenstein (or ﻿Shanker) 
could be held accountable for. I will delve into two aspects of what I shall 
call a ‘human mathematics’. The first is the positioning of mathematics 
in the landscape of sciences in universities. The other aspect relates to 
the many learning situations that could be directly influenced by the 
social interpretation  of mathematics.
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The position of mathematics in the university

Let us imagine that university faculties were up for reconstruction. 
Where would mathematics fit within the new landscape? We have seen 
how mathematics was historically tied to the description of the universe 
and nature and therefore placed close to ﻿physics and other natural and 
technological sciences. 

Considering a human mathematics reconstruction of the university 
the positioning of mathematics could be quite different. The myriads 
of possible uses of mathematics today are related not only to the 
description of nature and the universe but, perhaps even more so, to 
human affairs and the structuring of the social sphere. This goes for the 
economy, infrastructure, working hours, tax systems, online presence, 
traffic, and so on. In many ways, the shift suggests that mathematics 
in practice also has a tremendous impact on almost all branches of the 
humanities and social sciences and that human life practices are flooded 
with numbers and measurements.

According to the human interpretation of mathematics, we should 
consider mathematics as being equally connected to the humanities, 
social sciences, and the natural sciences. Some might find this a 
disturbing or even threateningly invasive approach to repositioning 
mathematics, but it could also point towards something more fruitful. In 
the following we can consider different sub-elements of the discussion 
to qualify the issue.

First of all, there is a very famous cousin of mathematics often 
positioned in the humanities, namely logic (in accordance with the 
Trivium disciplines). Logic in many universities has been positioned 
within philosophy, where it is also closely related to the area referred 
to as theories of argumentation in philosophy. These studies within the 
humanities are not initially ﻿alienated from what we might call formal 
systems, including logic, mathematics, programming languages etc. 
From a ﻿Wittgensteinian perspective they could rightfully be called 
‘grammars’ and in this way share family resemblances with the studies 
of the ﻿natural languages.

Second, some parts of the humanities and social sciences are very far 
from using formulae and mathematical expressions in their practices of 
research. This might be the case for literature studies, and some language 
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and cultural studies, even though ﻿statistics or other applications of 
mathematics might be used in some approaches of these fields. However, 
while the scientific approach used in natural sciences focuses on numbers 
and quantifiable experiments, research in the humanities focuses on 
qualitative approaches. Humanistic research is never satisfied with 
counting or measuring but is in essence focused on establishing detailed 
narratives and rich interpretations about human culture under specific 
circumstances. This is known from approaches in phenomenology and 
hermeneutics as well as, for example, in organisational studies from 
post-structural perspectives. This means that Numbers can never be the 
focus or goal of all research. Mathematics in itself is a strong and diverse 
toolbox but it also has immense boundaries to what kind of knowledge 
and insights it can produce. Using only quantifiable measures in the 
world in research is only an extreme case of doing science that can 
reveal some things, but simultaneously it hides a lot of other things. In a 
possible narrowing of the gap between humanities, social sciences, and 
mathematics, mathematics must be given a clearer role in the scientific 
toolbox that holds a myriad of qualitative as well as quantitative 
approaches and attempts to merge or overlap approaches from these two 
main categories. To do better research overall, a landscape of scientific 
approaches much broader than mathematical tools is highly needed for 
both traditional studies in the ﻿STEM area as well as in the humanities 
and social sciences.

Third, it is interesting to discuss mathematics as an outdated science. 
I am hinting at the perspective that with the invention of ﻿computers 
– and the use of them in, so to speak, all practices in modern societies 
– new sciences have been constructed that are closely related to formal 
languages in new ways. ﻿Computer science is the broad term for the 
many logical studies that bring formal languages closer to practical 
use, whether it is used in a hardware or software product, or even in 
the theoretical underpinnings beneath the World Wide Web and other 
platforms of social interaction. It is from this perspective quite easy to 
get the idea that mathematics is more than anything else a cultural and 
historical phenomenon. 

Fourth, there are ways in which mathematics portrays family 
resemblances less with formal approaches but more with the creation of 
language as we know it from literature and poetry. In the human-oriented 
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interpretation of mathematics, the research component has the task first 
and foremost of developing new measures to be used in different aspects 
of life and of demonstrating their practical sensibility. In a way this 
resembles treading new paths in literature and poetry. Literature and 
poetry are developed both within well-known schematics or new forms 
of media that are used to help us think about reality by challenging 
everyday conceptions or playing with new meanings of concepts. In 
many ways, this could be thought of in parallel to the developments 
in mathematics. In this way, mathematics could be understood as a 
language in constant development, in parallel to literature where we 
essentially search for new ways of interpreting the world around us.

Finally, the division between the humanities and social sciences, on 
the one hand, and the natural sciences together with the technological 
disciplines, on the other, is a well-known issue of two scientific cultures. 
Often reference is made to the work of C. P. ﻿Snow (1993) who discussed 
how these cultures are in opposition to each other. The argument I will 
make is that the interpretation and positioning of mathematics is at 
the centre of this cultural dispute. As long as mathematics is seen as a 
secure foundation beneath all ‘real’ (read ﻿STEM) knowledge, then the 
humanities and social sciences will remain in the periphery of what is 
recognised as truly scientific science. The argument that mathematics is 
a purely human language formed in connection to the world around us, 
implies that the humanities are, in fact, a natural destination for thinking 
about mathematics. Languages have histories and are produced under 
the pressure of political and social circumstances that need to be 
understood in order to understand languages and their use – even in 
the case of formal languages.

This imaginative discussion of the positioning of mathematics 
leads me to the conclusion that narrowing the gap between the two 
scientific cultures necessitates a deeper reflection about the nature of 
science itself. This reflection should incorporate both mathematics as 
we know it today and qualitatively oriented research approaches in a 
collective narrative about the diversity of science and scientific research 
approaches. ﻿Wittgenstein describes how mathematics is placed on a 
pedestal for a specific reason. However, we need a much broader area 
of expertise than formal languages to be put on that pedestal in order to 
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establish the most insightful knowledge creation and dissemination in 
universit ies and beyond. 

Learning mathematics from a social perspective

In the landscape of learning theories, a dominant position is the so-called 
socio-cultural learning theory championed perhaps most forcefully by 
Etienne ﻿Wenger (1999) with the concept of ‘communities of practice’. In 
many ways this theory of learning can be understood as an extension of 
the social aspects of learning that a human mathematics could propose. 
According to this theory, key dimensions in a learning process relate to 
﻿identity building from participation in a community of learners. Each 
individual needs to travel the distance from the periphery of the social 
practice to its centre in order to become more and more proficient in the 
specific practices of the community. Learning in this framework has an 
extremely high focus on the community of learners as opposed to the 
individual. To learn something is to become a member of a certain social 
group and know their ways and behaviours. This is in stark contrast 
to an idea of teaching and learning that is focused on delivering clear 
logical packages of knowledge to a sole and rational learner. Instead, 
the idea is that all knowledge is so incorporated into social practices 
that learning content itself cannot be disconnected from being an active 
member of the practice. Learning mathematics is ﻿identity construction 
and is about becoming enculturated into the practices of mathematics.

In everyday school practices the social understanding of learning and 
mathematics will inevitably entail a strong emphasis on participating 
actively in mathematical practices. It is crucial to speak the language 
oneself in co-operation with fellow students and guided by ﻿teachers 
who are individuals that carry the social practices of mathematics as 
part of their ﻿identity. This way of thinking about mathematics learning 
and teaching is therefore ﻿alienated from an approach that tells students 
the ‘result’, so to speak, on a blackboard, based on the hope that a logical 
ability located in the skull of the individual will give them an ‘aha’ 
experience about the right way to prove or calculate something. The 
direct route to learning a particular part of mathematics is involvement 
in the actual practice of transforming chalk while discussing and 
evaluating with peers and strong community members.
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One principle that should be highlighted is what I will term the fog of 
mathematics (drawing on the idea of the ‘fog of war’ in many ﻿computer 
games, where only parts of the map are visible at any given moment – the 
rest of the map is hidden in fog, and you can only guess who is where). 
Under the social interpretation of human mathematics outlined above, 
students have no access to a logical faculty of the brain or something of 
the sort. We have touched upon the example of pointing a finger in a 
certain direction in parallel to the situation where you need to ‘add 2’. 
For the student unfamiliar with adding 2 ad infinitum this could mean 
many things. At first, the ﻿teacher may experience that things are going 
as planned – 2, 4, 6, … – but then when the student reaches 20, she starts 
to add 2 twice – 18, 20, 24, 28, … etc. There is absolutely nothing except 
the community of practitioners that can tell how the fog of war should 
be cleared. When one first enters a new practice, only imagination and 
familiarity with similar practices can advance understanding beyond 
solitary efforts. The only and final test of truly grasping a concept or 
practice lies in how it stands up to scrutiny and feedback from the 
experienced language users in the mathematics community.

﻿Wittgenstein’s argument on this topic is that no sign itself holds 
information about its own meaning. Even the simplest of signs in 
mathematics like ‘1’, ‘2’, ‘3’, … are completely open for interpretation in 
so far as a community has not clearly stated how to proceed and, even 
then, there will be millions of possibilities for misinterpretation of the 
proposed decided meaning of a concept or symbol.

In this way the human interpretation of mathematics deletes any 
notion of the contemplative approach to learning mathematics or 
studying mathematics. Mathematics is not located in the individual. 
Instead, being capable of doing mathematics means to be able to 
participate in communities of uses of different kinds. 

This participation in a mathematical community points towards 
what can be called the principle of a centreless mathematics (in the sense 
of there being many equally important and complex mathematical 
practices). One community of mathematics is located in first grade, and 
another is found in a discussion on vector spaces at an international 
conference. These communities have family resemblances in the way 
they possibly share some symbol transformation, argue by writing on 
the blackboard, or present mathematical themes to their peers. But they 
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are all also obviously incredibly different. ﻿Wittgenstein tries to highlight 
different practices that we relate under the same area or concept as for 
example ‘mathematics’ as having family resemblances (﻿Wittgenstein, 
1997, p. 32e). In this way doing mathematics is something that is deeply 
dependent on the context in which it is conducted. 

Even in the much more closely related communities of mathematical 
practice, such as first grade mathematics and seventh grade mathematics, 
the concepts and the use of symbols do not have the same meaning. 
In first grade, ‘2’ is the number focused on. In the seventh grade, 
the meaning of ‘2’ has been developed into ‘+2’ because it has been 
incorporated into a context including negative numbers. The meaning 
of mathematical concepts in this sense differs across the many practices 
where they are used even in the fairly similar contexts of school classes. 
And remember that in the interpretation of human mathematics there is 
no ‘real’ version or story about the number ‘2’. The meaning of ‘2’ in the 
first-grade classroom is just as valid and just as valuable as the meaning 
of ‘2’ in the international conference room. There is epistemologically 
and ontologically no true ‘2’ to gravitate towards. You might see the 
conference ‘2’ as more complex or further developed or more precise 
but there is no non-human reality to measure against, and this puts 
mathematical practices on an even footing, ontologically speaking.

Summary

In this chapter I have discussed several aspects about mathematics under 
a human mathematics interpretation. I have explored reconfiguring 
mathematics in relation to its position in the broader landscape of 
sciences and its influence on how we think about learning mathematics. 
The discussions are obviously only initial steps towards reshaping 
our notion of mathematics. They are also connected to many other 
discussions, for example to the problems in academia and beyond of 
putting quantitative research on a pedestal. 

Another connected discussion relates to what, in a Danish context 
(the author’s main frame of reference), is referred to as the distinction 
between the hard and the soft sciences. This normative description of 
sciences is used without any hesitation far too often. This chapter is also 
an attempt to reflect on what constitutes ‘soft’ versus ‘hard’. According to 
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my interpretation of human mathematics, disciplines like mathematics, 
﻿physics, and technology may be considered a lot ‘softer’ than typically 
assumed, especially in the context of funding allocations between 
﻿STEM fields and the humanities and social sciences. In fact, ‘soft’ might 
actually encompass some of the most challenging aspects of both life 
and research, following a human mathematics interpretation. We need 
a more balanced scientific landscape that will make dichotomies like 
these irrelevant and here our understanding of mathematics p lays a key 
role.
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9. The case of Ramanujan: 
Investigating social and 

sociomathematical norms outside 
the mathematics classroom

 Felix Lensing

Ever since mathematics education research has ‘divorced’ from the discipline of 
mathematics and set out to become a discipline in its own right, there has been 
a constant debate about what can and should be understood by mathematics 
education research. In this chapter, I start from the assumption that mathematics 
education research necessarily takes a ‘reflexive stance’ towards its objects of 
study: mathematics education research is not simply engaged with mathematics, 
but rather with the engagement with mathematics. It investigates the complex 
interplay of bodily, cognitive, and social processes that are involved in the genesis 
of mathematical knowledge – especially (but by no means only) when this 
genesis occurs in educational contexts. Against this background, I will examine 
the particular role that the distinction between social and sociomathematical 
norms may play in the empirical study of the social aspects of this genesis. To do 
so, I will proceed in two steps: I will first detach the distinction between social 
and sociomathematical norms from its ‘conceptual tie’ to mathematics classroom 
practice. Then, I will use the famous correspondence between mathematicians 
Srinivasa ﻿Ramanujan and G. H. ﻿Hardy as an example to show how the 
distinction may offer a fresh perspective on mathematical practices outside the 
mathematics classroom. 
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Introduction

In the second half of the last century, mathematics education research 
emancipated itself from the discipline of mathematics and set out to 
become a research discipline in its own right. An important insight that 
paved the way for this emancipation was the recognition that it is not 
mathematics itself, but rather the doing of mathematics, encompassing 
mathematical activity in all its different forms and contexts, that 
constitutes the field of study of mathematics education research. The 
mathematics education researcher does not simply see what those who 
participate in mathematical practices see, he or she does not focus on 
mathematical objects and their manifold relations, but rather examines 
the underlying ‘processes of objectification’ (Radford, 2013), that is, the 
processes in which these very objects and relations are constituted in the 
first place. As a consequence, mathematics education research does not 
produce mathematical knowledge, but knowledge about the production 
of mathematical knowledge. It does not, for instance, formulate and 
substantiate knowledge claims about mathematical objects, but it seeks 
to better understand the bodily, cognitive, and social conditions of 
these formulations and substantiations. It could perhaps be said that 
mathematics education research facilitates a reflection of mathematical 
practice upon itself. And it is, of course, particularly interested in 
mathematical activities as they take place in educational contexts. Once 
one adopts this ‘reflexive stance’ and no longer focuses only on the 
mathematics but rather on the bodily, cognitive, and social processes 
that underlie it, a whole new field of inquiry opens up. Now all sorts of 
extra-mathematical factors come into view that regulate these processes 
and thus also influence what ‘comes out’ as mathematics in the end.

In this chapter, I want to show how the distinction between social 
and sociomathematical norms (Voigt, 1995; Yackel & Cobb, 1996), 
a conceptual tool originally designed for analysing mathematical 
classroom practice, can be used to examine some of these extra-
mathematical factors. Taking the social practice of mathematical 
research as an example, I will attempt to show that said distinction is 
also appropriate for the analysis of mathematical practices outside the 
educational context. Such an analysis, however, requires a generalisation 
of the distinction between social and sociomathematical norms. So, before 
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it can be applied to all kinds of mathematical practices, the distinction 
must first be detached from its ‘conceptual tie’ to the mathematics 
classroom. In order to achieve this, I will begin with some theoretical 
considerations concerning the question of what can be understood 
by norms in general (Section 2). Then, I will introduce the distinction 
between social and sociomathematical norms as a further subdivision 
in the realm of norms, thus removing the restriction of the distinction 
to mathematical classroom practice (Section 3). Finally, I will take the 
famous correspondence between mathematicians Srinivasa ﻿Ramanujan 
and G. H. ﻿Hardy from the beginning of the last century (Berndt & 
Rankin, 1997) as an example to show how the distinction between 
social and sociomathematical norms may offer a fresh perspective on 
mathematical research practice (Section 4).1 

On the concept of norm

In the attempt at pinpointing the concept of norm, one will inevitably 
be faced with the problem that norms appear in the most diverse forms. 
There are cultural, legal, political, educational, linguistic, industrial, 
and moral norms, to name just a few. But what is the pattern that 
connects? What, for instance, do linguistic norms have in common with 
industrial norms? And what do these two share with moral norms? A 
common answer to these questions is: Whether linguistic, industrial, or 
moral, all these norms determine the way in which certain other things 
should exist. Norms do not say how things are, but how they ought to 
be. Linguistic norms dictate how signs of a language ought to be used, 
industrial norms prescribe how products ought to be manufactured, and 
moral norms determine how we ought to be acting. It is quite tempting 
to simply define norms by the factual presence of this peculiar ‘ought 
character’: Whenever one comes across something that determines how 
something else ought to be, let’s call it a norm. Such definition is of course 

1� Note that the aim of this chapter is not to reconstruct the story of Srinivasa 
﻿Ramanujan’s life, but to learn something general about the practice of 
mathematical research from the individual case of ﻿Ramanujan. What aspects of 
the person ﻿Ramanujan are relevant to my analysis, and thus what constitutes the 
case of ﻿Ramanujan (in the sense intended here) will become clear over the course 
of this chapter.
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possible and also frequently being used.2 But it leaves the social genesis 
as well as the social function of norms unexplored. It leaves unexplored 
how and under which circumstances (e.g., in which social relations of 
power and control) norms acquire their peculiar ‘ought character’ and 
what is gained thereby. 

Niklas ﻿Luhmann, hence, has proposed to define the concept of 
norm in a different way (﻿Luhmann, 1995, pp. 319–325). He begins with 
a more general concept – that of mutual expectation – and then asks: 
What is the essential quality that is added when a mutual expectation 
becomes a norm? In what way is it altered by its ﻿normalisation? His 
surprising answer is: not at all. Whether or not a mutual expectation 
is a norm, cannot be decided by any analysis – however detailed – 
of its qualities. Rather, it depends exclusively on how the mutual 
expectation is treated in the case of its disappointment: while mutual 
expectations of cognitive character are abandoned or, at least, altered in 
case of their disappointment, normative ones are being retained even 
when disappointed (see ﻿Luhmann, 1995, pp. 320–321). The normativity 
of a norm lies in its counterfactual stabilisation: whether or not the 
world events correspond to it, the norm is left unchanged. Normative 
expectations have a sort of ‘built-in safeguard’ that prevents them from 
being modified. It can thus be anticipated what to do in case of their 
disappointment, namely: hold on to them. From this analysis it follows 
that the peculiar ‘ought character’ of norms is merely a consequence of a 
more fundamental property, that of counterfactual stabilisation. Norms 
specify how something ought to be because factual violations have no 
consequences on them, i.e., do not lead to their alteration. 

What this analysis has not yet addressed is the question of what norms 
are for: What is their social function? Which social problem is solved 
by protecting mutual expectations against their alteration? ﻿Luhmann’s 
answer to those questions is: through the technique of ﻿normalisation, 
even highly uncertain expectations are able to obtain social validity. If 
one appeals to norms, then one can assure in the here and now ‘that one 
will not be left helpless by disappointment or reveal oneself as someone 
who simply does not know the world and harbored false expectations’ 

2� For example, Hans Kelsen (1959) writes: ‘Now, what is a norm? A norm is a 
specific meaning, the meaning that something ought be, or ought to be done, 
although actually it may not’ (p. 107).
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(﻿Luhmann, 1995, p. 320). Instead, the trajectories for how things might 
continue are already clearly mapped out. 

An example may illustrate that: a common norm in mathematics 
classrooms is that students ought to pay close attention to class. But 
teaching experience shows over and over again that this mutual 
expectation is being disappointed. Despite this obvious uncertainty of 
expectation, though, ﻿normalisation allows ﻿teachers and students to be 
prepared for these events of disappointment: Teachers, for instance, may 
think of disciplinary measures and, in addition, can be sure in advance to 
be able to justify having taken those measures. Likewise, students who 
are being held responsible for a classroom interruption can assume that 
it will be sufficient to indicate their readiness to reinstate the very norm 
they have just disappointed. All that is required is an apology after the 
fact and accepting imposed measures to rehabilitate the violated norm. 
Even denying a norm violation – or at any rate, its personal attribution 
(‘Gee, but it wasn’t me, Mrs. Baker’) – ultimately only confirms the 
violated norm and thus serves to reinforce it.

On the distinction between social and 
sociomathematical norms

Now that I have discussed some of the aspects that characterise norms 
in general, I want to introduce a further subdivision into the realm 
of norms, namely the distinction between social and sociomathematical 
norms. Whether in family life, educational contexts, or mathematical 
science, whenever a mathematical practice arises two types of norms can be 
delineated within the norms that govern the behaviour occurring in that 
practice: 1) those norms that regulate the behaviour with reference to its 
mathematical content, and 2) those norms that regulate it without such 
reference. While I will refer to the first type of norms as sociomathematical 
norms, I will call the second type social norms. To take up the above 
example: the norm that students ought to pay close attention to class 
is a social norm because it regulates the classroom practice without any 
reference to its mathematical content. It defines a general boundary 
between legitimate and illegitimate behaviour in the classroom, albeit a 
kind of ‘generalised’ one which is valid not only within the mathematics 
classrooms but across all school subjects. In contrast, the question of 
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what counts as a mathematical argument in a particular classroom, for 
instance, refers to a sociomathematical norm. This question can only be 
answered by recourse to the mathematical content as it is thematised in 
classroom communication. 

The distinction between social and sociomathematical norms was 
originally introduced as a conceptual tool to investigate norms in 
school mathematics classrooms (Voigt, 1995; Yackel & Cobb, 1996).3 
Later, it was also used to seek for normative orders in mathematics 
education contexts at university level (Yackel et al., 2000). With my 
determination of the distinction above, however, I am aiming at giving 
up its ‘conceptual tie’ to the educational context altogether. Naturally, 
mathematics instruction at all different educational levels remains a 
potential field of application for the distinction; but I am convinced that, 
in principle, any mathematical practice can be examined for its social 
and sociomathematical norms. In the remainder of this article, I will 
support this conviction with an exemplary analysis of some social and 
sociomathematical norms of mathematical research. 

Before I turn to this exemplary analysis it is, however, necessary to 
highlight an important methodological implication from the preceding 
theoretical considerations: if norms can be characterised by their 
counterfactual stabilisation, then situations in which they are violated 
are of particular interest in reconstructing norms. This point was also 
highlighted by Anna ﻿Sfard:

A norm becomes explicit and most visible when violated. Violation evokes 
interlocutors’ spontaneous attempts at correction, often accompanied by 
a condemnation of the transgressor’s illegitimate behavior. (﻿Sfard, 2010, 
p. 204)

In short, anyone who wants to investigate the social and sociomathematical 
norms of a particular mathematical practice should be looking for 
situations in which a norm violation occurs.

3� To be more precise: For Cobb, Yackel, and colleagues, the distinction played more 
than a purely analytical role; from the outset, it was linked to questions of how to 
develop new forms of mathematics instruction. As a consequence, they were, for 
example, also concerned with the question of how to give social validity to certain 
norms to which they wanted to orient the instruction in their project classrooms. 
In this chapter, however, I am primarily concerned with the distinction as an 
analytical tool for the empirical study of mathematical practice.
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The case of Ramanujan

An extreme case of norm violation occurred at the beginning of the last 
century. In January 1913, Godfrey Harold ﻿Hardy, at the time a professor 
at the University of Cambridge and one of the leading mathematicians 
in the fields of ﻿calculus and ﻿number theory, received a letter from a 
young Indian mathematician named Srinivasa ﻿Ramanujan. The letter 
began with the following words:

Dear Sir, 
I beg to introduce myself to you as a clerk in the Accounts Department 

of the Port Trust Office at Madras on a salary of only £20 per annum. I 
am now about 23 years of age. I have had no University education but I 
have undergone the ordinary school course. After leaving school I have 
been employing the spare time at my disposal to work at Mathematics. 
[…] I have made a special investigation of divergent series in general and 
the results I get are termed by the local mathematicians as ›startling‹. 
[…] I would request you to go through the enclosed papers. Being poor, 
if you are convinced that there is anything of value I would like to have 
my theorems published. I have not given the actual investigations nor the 
expressions that I get but I have indicated the lines on which I proceed. 
[...] 

I remain, Dear Sir, Yours truly, 
S. ﻿Ramanujan (Berndt & Rankin, 1997, pp. 21–22) 

﻿Ramanujan was a mathematical genius without any direct exposure 
to the specialised culture of European mathematics (‘I have had 
no University education’). The ‘enclosed papers’ consisted of nine 
densely written pages on which ﻿Ramanujan presented a selection of 
his mathematical findings. He had arrived at his – as it later turned 
out, groundbreaking – findings mainly through self-study.4 Only a 
few mathematics books served him as a base (Berndt & Rankin, 2000). 
﻿Ramanujan’s explicitly formulated goal was to publish his mathematical 
findings, probably also to earn some money (‘Being poor, if you are 
convinced that there is anything of value I would like to have my 
theorems published’). ﻿Ramanujan’s position as ‘mathematical outsider’, 
that is to say, his role as someone who had barely experienced guided 
forms of mathematical enculturation, makes this case an ideal object 

4� Accounts of his life can be found in Rao (1998) and Kanigel (1992).



202� Breaking Images

of study.5 Because who could commit greater norm violations than 
someone who has encountered prevailing norms only implicitly, namely 
through the study of a few selected books?

﻿Hardy replied to ﻿Ramanujan’s letter the following month:

I was exceedingly interested by your letter and by the theorems which 
you state. You will however understand that, before I can judge properly 
of the value of what you have done, it is essential that I should see ﻿proofs 
of some of your assertions.

Your results roughly seem to fall into three classes: 
1.	 there are a number of results which are already known, or are easily 

deducible from known theorems; 
2.	 there are results which, so far as I know, are new and interesting, but 

interesting rather from their curiosity and apparent difficulty than 
their importance; 

3.	 there are results which appear to be new and important, but in which 
almost everything depends on the precise rigour of the methods of 
﻿proof which you have used. (Berndt & Rankin, 1997, p. 46) 

The short excerpt of ﻿Hardy’s letter shows that in the presentation of his 
findings ﻿Ramanujan had violated several norms at once: some of his 
findings were not new or, at least, easily derivable from known theorems. 
His mathematical results were missing ﻿proofs. And ﻿Ramanujan himself 
did not seem to know which of his findings were merely interesting, and 
which were of great mathematical importance.

I am now going to consider these three aspects with regard to the 
social and sociomathematical norms that regulate the acceptance of 
mathematical findings for publication: I will deal with the norm of 
mathematical novelty first (a), then turn to the question of what counts 
as a valid result in mathematics (b), and finally deal with the question 
of how a particular finding can obtain mathematical importance or 
significance (c). 

On the novelty of mathematical findings

5� Note that it is this one ‘abstract’ aspect of the person ﻿Ramanujan (his being a 
‘mathematical outsider’ in the sense described above) that is relevant to the 
analysis conducted here, namely, to the reconstruction of some of the social and 
sociomathematical norms being valid in mathematical research at the turn of the 
century. 
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A major requirement for mathematical findings in order to be accepted 
for publication is mathematical novelty. Findings that are published in 
mathematical journals should neither be already known nor should 
they be direct consequences from what is already known (‘there are 
a number of results which are already known, or are easily deducible 
from known theorems’). Novelty practically means to disappoint 
expectations. For something new to emerge, one must deviate from 
the paths already walked in the epistemic processes. Without such 
deviation from the expected, no new mathematical knowledge can 
evolve. By elevating mathematical novelty into a necessary condition for 
publication, mathematics embraces the unexpected. In a sense, it forces 
itself to learn. Mathematics cannot reject mathematical findings because 
it does not know anything about them yet. If new mathematical findings 
arise, then mathematics is compelled to expand its knowledge. The 
boundary between the known and the unknown is redrawn with every 
mathematical publication. In this successive advancement of knowledge, 
not only mathematical knowledge increases, but also what is yet 
mathematically unknown. Each newly developed mathematical theory 
leads to further mathematical problems. Every solved mathematical 
problem generates a multitude of resultant problems. As David ﻿Hilbert 
(1902) once put it: ‘It is by the solution of problems that the investigator 
tests the temper of his steel; he finds new methods and new outlooks, 
and gains a wider and freer horizon’ (p. 438).

Since any decision concerning the novelty of a mathematical finding 
can only be made on the basis of the current state of mathematical 
knowledge, mathematical novelty is a sociomathematical norm. 
However, this sociomathematical norm is based on a social norm: it 
holds true for science in general that it forces itself to shift the boundary 
between the known and the unknown in consideration of new findings. 
That mathematics aims at surprising itself is thus a norm that it shares 
with other sciences.

On the validity of mathematical findings

However, their mathematical novelty is not enough for mathematical 
findings to be published. Another important question is how to decide 
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upon the validity of mathematical results.6 To answer this question, first 
hints can be drawn from the excerpt of ﻿Hardy’s letter. ﻿Hardy points 
out that he can only make a final judgment about the scientific value 
of ﻿Ramanujan’s mathematical work with access to the ﻿proofs for his 
findings (‘You will however understand that before I can judge properly 
of the value of what you have done, it is essential that I should see 
﻿proofs of some of your assertions’).7 It becomes evident from his choice 
of words that ﻿Hardy is not referring to a mere personal expectation here, 
but to a norm generally valid in mathematics. By prefacing his argument 
with the phrase ‘You will however understand that’, it becomes clear that 
﻿Ramanujan is expected to be able to rehabilitate the norm he violated. 
The said norm can perhaps be formulated as follows: 

(1) Whether a mathematical finding is valid or not ought to be decided 
on the basis of mathematical ﻿proof.

First, it must be emphasised that this norm is an evolutionary 
achievement of mathematics: by no means has it always been the case 
that the validation of a mathematical finding had to be carried out on the 
basis of proof.8 Moreover, a comparison with other scientific disciplines 

6� This question, of course, is at the heart of the traditional understanding of 
philosophy of mathematics, or more precisely: epistemology of mathematics, and 
one could fill entire libraries with books written on the question of the justification 
of mathematical knowledge. Hence, in the following I will limit myself to only 
those few aspects that appear in the correspondence, and I ask the reader’s 
indulgence for falling far short of the level of discussion reached in the philosophy 
of mathematics. Indeed, my goal in this chapter is not so much to contribute 
to this discussion, but simply to show that the distinction between social and 
sociomathematical norms can be used as a conceptual tool in the empirical study 
of mathematical research practice.

7� Comparing Hardy’s response with Ramanujan’s letter, it is noticeable that the term 
‘value’ has undergone a subtle semantic transformation: while in ﻿Ramanujan’s 
letter ‘value’ also seems to be linked to an economic aspect (‘Being poor, if you 
are convinced that there is anything of value I would like to have my theorems 
published’), this aspect no longer appears in ﻿Hardy’s answer (see above). Here, 
the term ‘value’ seems to be used solely in the sense of ‘scientific value’. 

8� For example, one reads in Kleiner (1991) about Babylonian mathematics: 
‘Babylonian mathematics is the most advanced and sophisticated of pre-Greek 
mathematics, but it lacks the concept of ﻿proof. There are no general statements 
in Babylonian mathematics and there is no attempt at deduction, or even at 
reasonable explanation, of the validity of the results. This mathematics deals with 
specific problems, and the solutions are prescriptive – do this and that and you 
will get the answer’ (p. 292). For a more comprehensive account of Babylonian 
mathematics, see also the work of  Jens ﻿Høyrup, particularly Høyrup (2002). 
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shows that this norm is a sociomathematical norm. It is true for science 
in general that findings always require a scientific justification. Just like 
in the case of mathematical novelty, the sociomathematical norm refers 
to a more general social norm. But there are very few disciplines besides 
mathematics in which ﻿proof plays such a prominent role in the context 
of justification. If one asks for the validity of a mathematical finding, 
one is thus referred to a mathematical ﻿proof. But if it is the ﻿proof upon 
which the validity of the mathematical finding rests, then the question 
arises as to when a mathematical ﻿proof can be considered as valid. The 
sociomathematical norm as expressed in (1) may thus be specified as 
follows: 

(2) Whether a mathematical finding is valid or not ought to be decided 
by examining the validity of the associated mathematical ﻿proof.9

But what are the criteria for a mathematical ﻿proof to be valid? The answer 
can only be: it depends. Even a brief look at the ﻿history of mathematics 
leads to the conclusion that the criteria for validity of a ﻿proof have 
changed again and again in the socio-cultural evolution of mathematical 
research (Calude et al., 2003; Chemla, 2015; Kleiner, 1991; MacKenzie, 
1999). History of mathematics is rife with ‘incomplete’ ﻿proofs that were 
‘completed’ by mathematicians of a following generation, only to be 
exposed as incomplete again and so on.10 But if leading mathematicians 
of any generation repeatedly come up with incomplete ﻿proofs, this can 
only be a sign that the underlying validity criteria change over time.

9� This could be a starting point for historical studies that reconstruct the 
transformation of the validity criteria for mathematical ﻿proofs over the course of 
time. For the purposes of this analysis, however, such a purely formal description 
of the sociomathematical norm shall suffice.    

10� As an example may serve the ﻿proof history of the ﻿Fundamental Theorem of 
Algebra. The ﻿Fundamental Theorem of Algebra states that every non-constant 
single-variable polynomial with complex coefficients has at least one complex root. 
With regard to its ﻿proof history, Kline (1990) says: ‘Proofs offered by d’Alembert 
and Euler were incomplete. In 1772, Lagrange, in a long and detailed argument, 
‘completed’ Euler’s ﻿proof. But Lagrange, like Euler and his contemporaries, 
applied freely the ordinary properties of numbers to what were supposedly the 
roots without establishing that the roots must at worst be complex numbers. Since 
the nature of the roots was unknown, the ﻿proof was actually incomplete. The first 
substantial ﻿proof of the fundamental theorem, though not rigorous by modern 
standards, was given by ﻿Gauss in his doctoral thesis of 1799 at Helmstädt’ (p. 
598). 
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The notion of proof ﻿is not absolute. Mathematicians’ views of what 
constitutes an acceptable proof ﻿have evolved. […] The validity of a proof 
﻿is a reflection of the overall mathematical climate at any given time. 
(Kleiner, 1991, p. 291)

Based on the previous considerations, this metaphorical description of 
validity criteria as ‘a reflection of the overall mathematical climate at a 
given time’ can be further clarified: validity criteria are consolidated as 
sociomathematical norms on the ground of the ongoing acceptance and 
rejection of mathematical findings in mathematical publication practice. 
The normative requirements that must be met in the presentation 
of mathematical findings are not imposed on mathematics from 
the outside. Rather, they arise from within. It is mathematics itself 
that writes the norms to the sky that guide the publication process. 
These norms do not have an absolute character, but their normative 
character means precisely that they can only be changed in the longer 
term. And only because these expectations are always already found 
as valid norms by every mathematician who wants to participate in 
mathematical communication, mathematicians can also use them as 
a sort of self-control device. ﻿Hardy, for instance, can expect himself 
to have certain expectations about the presentation of mathematical 
findings by other mathematicians only because the relevant norms 
have already acquired validity in the social practice of mathematics. 
Regular participation in this social practice (e.g., the reading, writing, 
and reviewing of mathematical papers) leads to socialisation effects 
in the minds of participants. In this way, mathematicians learn what is 
expected from them when they present their mathematical results to 
other mathematicians and vice versa.

On the importance of mathematical findings

The acceptance of a mathematical finding for publication is thus 
conditioned by at least two normative aspects: first, the finding must 
be a mathematical novelty, and second, it must be accompanied by a 
valid mathematical proof.﻿ There is, however, a third aspect mentioned 
in the passage of ﻿Hardy’s letter that influences the publication 
process: the mathematical importance of a finding. In his classification of 
﻿Ramanujan’s new mathematical results, ﻿Hardy distinguishes between 
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merely interesting and important results (‘there are results which, so 
far as I know, are new and interesting, but interesting rather from their 
curiosity and apparent difficulty than their importance’). There are 
countless new and interesting truths in mathematics, but only a few 
of them are also mathematically important. But what exactly does this 
mean? What is the mathematical importance of a finding? ‘We may say, 
roughly, that a mathematical idea is ›significant‹ if it can be connected, 
in a natural and illuminating way, with a large complex of other 
mathematical ideas’ (Hardy & Snow, 2004, §11). ﻿Hardy thus argues 
that the yardstick for the mathematical importance of a mathematical 
finding is therefore its ‘mathematical connectivity’. The greater the 
number of mathematically important ideas to which a certain finding 
can be connected, the greater its mathematical importance. Whether a 
particular finding is mathematically important or not, thus, can often 
only be decided in retrospect. It depends on how and to what extent 
further mathematically important results can be connected to it. While 
the novelty or validity of a mathematical finding can already be judged 
with a certain degree of ﻿certainty in the here and now, many times its 
importance becomes apparent only in the future. Mathematical results 
will have been important. They often acquire their importance only 
from a certain point in the future, from which it becomes clear that 
they were the basis for a multitude of further mathematically important 
results. This inscribed reference to the future prevents the value of 
mathematical importance from becoming a necessary decision criterion 
in the publication process. Concrete examples are the works of Évariste 
﻿Galois on the theory of polynomial equations, Hermann ﻿Grassmann’s 
grounding of what was later called linear ﻿algebra, or Gottlob ﻿Frege’s 
founding of modern logic, all of which had in common that they were 
hardly noticed, let alone appreciated, by their contemporaries. 

With such an analysis, however, the relation between mathematics 
and time is still insufficiently grasped. Mathematics constantly projects 
findings from the present into the future. Mathematical relationships are 
permanently explored on the basis of hypotheses. If a given hypothesis 
were true, then this set of propositions could be derived from it. This 
way, in many cases one can already know in the present that the 
proof ﻿of a certain mathematical hypothesis in the future would be of 
greatest mathematical importance. Whoever solves one of the so-called 
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millennium problems, for example, is guaranteed mathematical fame. 
This ‘anticipated’ importance of a mathematical finding has an influence 
on the publication process. Although mathematical importance cannot 
be elevated to a necessary condition for publication due to its immanent 
reference to the future, it can, at least, influence where (i.e., in which 
mathematical journals) a particular result is published. In contemporary 
mathematics it makes a considerable difference whether a finding is 
published in the Annals of Mathematics or in the Mathematische Annalen. 
Mathematics introduces a rank order within its field of acceptance: it 
establishes a hierarchy of mathematical findings through the distribution 
of publications among the various journals.

Conclusion

I have set out to show that the distinction between social and 
sociomathematical norms can shed light on some of the extra-
mathematical factors involved in the production of mathematical 
knowledge. For this purpose, I took a series of steps: I first criticised 
the common practice of defining norms by their peculiar ‘ought 
character’ and argued that norms are better understood as a specific 
kind of mutual expectation. Norms differ from all other kinds of mutual 
expectations in that they are retained in cases of disappointment. This 
characterisation does not simply replace the ‘ought character’ of norms 
but explains it. If a mutual expectation is counterfactually stabilised, i.e., 
if factual violations do not lead to a norm’s modification, then one is 
able to know in advance (and independently of what is actually done) 
what is ought to be done. Based on these theoretical considerations 
about norms in general, I then introduced the distinction between social 
and sociomathematical norms: while sociomathematical norms are 
those norms of a mathematical practice that regulate the participants’ 
behaviour with reference to some mathematical content, social norms 
do so without such reference. Compared to the original conception of 
this distinction, which limited its scope to educational contexts, this 
characterisation is an attempt at extending the distinction to all kinds 
of mathematical practices. This extension was based on the following 
assumption: while there may be significant differences between different 
mathematical practices in terms of which social and sociomathematical 
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norms are established, that such norms emerge is a universal feature that 
is common to all mathematical practices. To support this assumption, I 
then analysed the correspondence between ﻿Ramanujan and ﻿Hardy and 
showed that social and sociomathematical norms are ‘active’ not only 
in mathematics classrooms but also in mathematical research practice. 
By analysing the role that sociomathematical norms of mathematical 
novelty and validity play in the evaluation of mathematical findings, I 
showed that social and sociomathematical norms are often intertwined 
with each other without, however, coinciding. It is, for example, a 
social norm common to all scientific disciplines that findings are in 
need of justification, but how they are to be justified is governed by 
sociomathematical norms specific to mathematical research practice. 
This peculiar relationship was also noted in the context of mathematics 
education. Erna ﻿Yackel and colleagues (2000), for instance, provide the 
following examples: 

The expectation that one is to give an explanation falls within an 
analysis of social norms, but what is taken as constituting an acceptable 
mathematical explanation falls within an analysis of sociomathematical 
norms. Likewise, the expectation that one is to offer a solution only if it 
is different from those already offered falls within the realm of social 
norms, but what is taken as constituting mathematical difference falls 
within the realm of sociomathematical norms. (p. 282)

So we always have, on the one hand, a social norm that says that 
something should be done and, on the other hand, a correlated 
sociomathematical norm that tells us how it should be done. In all of 
these cases, sociomathematical norms specify social norms for the 
particular context, and, conversely, sociomathematical norms are 
‘backed up’, so to speak, by more general social norms. But since there 
are also social norms, such as the norm that students should follow 
class attentively, that can stand for themselves, that do not require any 
further specification by a sociomathematical norm, the question arises: 
under what conditions does this special relationship between social 
and sociomathematical norms occur? The empirical analyses have led 
us to the conceptual limits of the distinction; they revealed that further 
distinctions are needed to account for all facets of the normative orders 
of mathematical practices. 
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Moreover, the analysis of the correspondence between ﻿Ramanujan 
and ﻿Hardy has also led to the conclusion that by no means all social 
structures of mathematical research practice are norms. The example 
of the value of mathematical importance made it quite clear that the 
distinction between social and sociomathematical norms captures 
only a small ‘section’ of the extra-mathematical factors involved in the 
production of mathematical knowledge. It is thus an important question 
for further research addressing the distinction between social and 
sociomathematical norms to focus on the relation of these two types 
of norms to other kinds of social structures (e.g., to what Sfard, 2010, 
pp. 200–208, calls ‘metadiscursive rules’ or what Voigt, 1985, 1995, calls 
‘patterns of interactio n’). 
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10. A performative and relational 
Ethnomathematics

 Aldo Parra

This chapter presents a reconceptualisation of the ﻿Ethnomathematics research 
field, as composed of a series of contingent and purposefully constructed 
relations between mathematics and culture. This reconceptualisation is useful 
in formulating a non-essentialist positioning on the nature of mathematics 
without adhering to cultural relativism. An overview of research experiences 
on ﻿Ethnomathematics is made to illustrate how the reconceptualisation emerged 
and what are its implications and potentialities, particularly on controversial 
issues for ﻿Ethnomathematics, like mathematics ontology, research validation, 
and the roles of researchers.

Since its inception as a movement, those working on ﻿Ethnomathematics 
have expressed two of their aims: to question the modernist narrative of 
triumphalism and uniqueness that surrounds academic mathematics, 
and to address the geopolitical repercussions that such epistemic 
prestige has had. Ubiratan ﻿D’Ambrosio stated: ‘We should not forget 
that ﻿colonialism grew together in a symbiotic relationship with modern 
science, in particular with mathematics and technology’ (﻿D’Ambrosio, 
1985, p. 47).

The intense history of definitions and redefinitions of 
﻿Ethnomathematics is also a history of how the field has tried to achieve 
those two aims, sometimes providing accounts of mathematical 
knowledge and its nature. This has created a kind of expectancy towards 
﻿Ethnomathematics to address and solve an ontological question on 
mathematics. Such an intended definition would provide a clear-
cut characterisation of what is (or is not) mathematical, and would 
allow us to recognise several cultural knowledge(s) and practices 
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as having significant mathematical elements embedded in them. As 
﻿Ethnomathematics has not reached such a definition yet, it can be 
discussed to what extent the field has been successful in contesting the 
narrative of supremacy of academic mathematics through the methods 
and frameworks that the field employs. 

Criticisms of a philosophical nature have been raised against 
﻿Ethnomathematics. In particular, it has been accused of not having a 
clear account of mathematical knowledge, and falling into a cultural 
relativism (Horsthemke & Schafer, 2007; Rowlands & Carson, 2002). It 
is natural to ask, therefore, if it is possible to reject an essentialist account 
of mathematical knowledge without adhering to cultural relativism. To 
what extent does the recognition of multiple and incommensurable 
forms of mathematical knowledge entail a ‘particularism that precludes 
the possibility of construction of translocal relations’ (Savransky, 2012, 
p. 358)? 

Criticisms of a political nature have been raised as well, particularly 
about the ways of empowering and dignifying populations being 
discriminated against and minoritised through mathematics (Pais, 
2013; Vithal & Skovsmose, 1997). The debate emerges within the tension 
between the rights of minorities not to be marginalised and their rights 
to be treated differentially. 

Researchers such as Bill ﻿Barton (1996b, 2008), and, more recently, 
Roger ﻿Miarka and Maria ﻿Bicudo (2011) have characterised the ways in 
which representative ﻿ethnomathematicians conceptualise mathematics 
and its relation to the field. Such characterisations not only highlight the 
﻿diversity of backgrounds and positionings of influential practitioners, 
but also help to prefigure an ethnomathematical approach towards 
mathematics that can address expectations and respond to pertinent 
questions.

In this chapter, I attempt to summarise such an approach for 
﻿Ethnomathematics,1 asserting that, in order to succeed in its goal of 
overcoming modernist accounts of mathematics, the field does not need 
to produce a stable, finished, non-self-referential, and free-of-doubt 
definition of what mathematics is. I contend that rather than look for 
a modernist answer, ﻿Ethnomathematics can forge a ﻿decolonial answer. 

1� A fully detailed version of the theoretical position was presented elsewhere 
(Parra, 2018).  
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﻿Decolonial studies meet ﻿Ethnomathematics in their concern for the 
assemblages of knowledge and power. Within this chapter, I formulate 
a particular understanding of the ﻿Ethnomathematics program as a 
decolonising program, that vindicates performativity, interaction, and 
non-essentialism as values to be promoted in the quest for new insights 
on mathematics as a manifold of culture-based practices that change 
over time. An overview of recent experiences of ﻿Ethnomathematics 
research is provided to exemplify how such values operate.

Mirar y no tocar se llama respetar2

During the Q&A session at a Colombian seminar on ﻿Ethnomathematics 
in 2020, a concerned student asked: ‘As ﻿Ethnomathematics aims to 
extract the mathematics present in a certain community, is it okay to 
transform it? Should I change it?’ His sincere question reveals an 
underlying assumption that I want to highlight: a certain apprehension 
about intervening in ancestral or vernacular knowledge that is seen as 
mathematical. This fear emerges because the ethnomathematician’s 
regular work is supposed to be a recognition of knowledge, wisdom, 
and practices of mathematical nature, that occur in non-conventional 
or non-academic environments, and are collected to be reported within 
academic agoras. Such regular work is visible in two types of studies 
intensely practiced in ﻿Ethnomathematics. 

A first type is composed of studies revealing knowledge and practices 
of the past, through descriptions of the characteristics and circumstances 
of a past event or issue (e.g., how land was measured in a certain place 
or how an object or food was manufactured). Such methodological 
procedures generate products that resemble necropsies or archaeological 
reports and therefore the work of the ethnomathematician emulates that 
of the forensic scientist or archaeologist.

The second type consists of the non-participant observation of 
practices that are currently occurring in some group or community 
(e.g., the preparation of a typical meal, the mathematical knowledge 
of a gardener or a locksmith, or the locating practices of blind people 

2� This is a popular saying in Colombia that can be translated as ‘respect is about 
watching without touching’. 
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or ﻿Indigenous children). Here the documents are similar to a chronicle 
issued by a special correspondent who reports ‘from the scene’. Thus, the 
profession of the ethnomathematician is related to that of the journalist, 
or the classical ethnographer, who brings news from exotic places. 

The two types of studies converge in that the knowledge and practices 
investigated pre-exist the specific research. That is to say, when the 
ethnomathematical researcher arrives in a community, the emergence 
of non-classical mathematical ideas has already occurred within 
that community and he comes a posteriori to identify and record that 
exceptional practice. The event, which is neither scientific nor academic, 
is mathematical to some extent, in some particular sense. The researcher 
comes to admire and contemplate epistemological ﻿diversity, but not to 
create or extend it.

This bucolic image of contemplative admiration has been taken for 
granted by many scholars when describing ﻿Ethnomathematics. My task 
in this chapter is to break that image, by noticing some of its limitations 
and also by presenting: (i) an alternative interpretation of what kind 
of action underlies an ﻿Ethnomathematics research; (ii) an exploration 
of what things research could make possible by making such actions 
deliberate.

In order to contest the perspective that conceptualises non-Western 
rationalities as obsolete and in need of upgrading, by imagining a 
modernist I and an inferior Other, ﻿ethnomathematicians look for the 
recognition and appraisal of types of knowledge coming from diverse 
worldviews. A distinctive feature of contemplative admiration is the set 
of ways in which assumed knowledge diversity becomes recognised. 
According to this admiration stance, ﻿Ethnomathematics is performed 
by a ‘civilised I’ that needs to expand their scientific/positivist notions 
of mathematics and knowledge. Meanwhile, the Other (﻿Indigenous, 
peasant, etc.) is discouraged to engage in the reciprocal move, because 
they will be harmed in their way of life when coming into contact with 
disciplinary practices (formal mathematics). They must be confined 
in a source of epistemic purity, an otherness that is not polluted with 
Cartesian categories. 

Such muted Others and their sublimated otherness are necessary to 
claim that ﻿ethnomathematicians are ‘giving voice’, ‘recognising wisdom’, 
and ‘valuing knowledge’. They are also needed to establish the debates 
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around whether the ‘literate I’ can/should use their mathematical 
gaze to describe cultural practices and whether the academic audience 
can trust in their descriptions and ﻿representations. What underlies 
the reflexivity debates unleashed by contemplative admiration is the 
conception of ﻿Ethnomathematics as an academic endeavour, in which 
local communities gets a social impact due to the in/exclusion led by the 
scholarly trained ethnomathematician. The latter has the main role, as the 
one who contemplates, defining the times, methods, goals, and written 
results of the research, who will represent the targeted otherness and 
finally grasp the ‘emic’ perspective, by the ethnographical procedure of 
‘being there and writing here’. 

Besides the reductions of ﻿Ethnomathematics to the academy, and 
of ﻿ethnomathematicians to classic ethnographers, contemplative 
admiration brings us another limitation, namely the framing of the 
ontology of mathematics. This aspect is also related to the sublimation 
of otherness and becomes explicit when certain techniques or models 
are designed to extract and elucidate the mathematical component of a 
cultural practice (Albertí Palmer, 2007; Uribe Suarez, 2021), as if certain 
mathematical attributes were hidden in an artefact, ritual, or practice. 
Therefore, the discussion is ontological, in order to establish whether 
the studied cultural practice is mathematical or not. No matter if by 
‘mathematical’ we understand a disciplinary object that belongs to a 
‘near-universal, conventional mathematics’ or a notion coming from a 
local ‘system for dealing with quantitative, relational, or spatial aspects 
of human experience’ (Barton, 2008), the central task is to contend that 
the practice possesses the attribute.3

If ﻿ethnomathematicians assume that their work is to contemplate an 
event until they can determine whether it represents ‘the mathematics of 
cultural practices’, then they must be very clear which essence they are 
seeking. Thus, they need to delimitate what qualifies as mathematical 
knowledge, or, more precisely, what constitutes ‘doing mathematics’. 

In order to not fall into a quasi-Platonic universalism, some 
﻿ethnomathematicians have opted to look for an epistemic relativism 
in which there are several ways of knowing, according to each culture. 
Then, such ways would be the ‘(Ethno)mathematics’ of the place and 

3� This means that the two theoretical views of the ﻿Ethnomathematics that Albanese 
et al. (2017) proposed are just variations of the same contemplative approach.
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the field of ﻿Ethnomathematics is the study of those many ways of 
knowing. When trying to explain how different cultures have found 
similar results, this trend takes the ﻿Wittgensteinian notion of ‘family 
resemblances’ to avoid a ground zero for mathematical knowledge, 
and formulates that several forms of life share and communicate some 
characteristics, and therefore, their ways of knowing can converge in 
some matters. Although this theoretical displacement is interesting, as it 
avoids certain forms of essentialisation, it cannot entirely escape a sense 
of contemplative admiration, since it leaves open the question of how 
(and why) a family resemblance is noticed. I wonder if ﻿Wittgenstein 
would agree that a resemblance can be discovered. 

The last thing to say in this section about contemplative admiration is 
that even if its two types of studies (archeological and non-participant) 
seem to represent an important amount of ﻿Ethnomathematics research, 
they hardly cover the vast diversity of approaches and methodologies 
explored. Many astonishing works (e.g., Alangui, 2010; Borden, 2013; 
Cauty, 1999, 2001; Knijnik, 1998; Meaney, Trinick, & Fairhall, 2012; 
Mesquita, 2010; Oliveira, 2013) go far beyond the idea of reporting 
exotic practices. All of these long-term and well-established research 
programs share a commitment to working with local communities 
around mathematics and local knowledge in a creative way that puts 
communities’ interests and agendas face-to-face with academic goals. 
Interestingly, it is remarkable how critiques of ﻿Ethnomathematics do not 
comment on work of this nature, although authors like Gelsa ﻿Knijnik  
and Mônica ﻿Mesquita have been presenting them since the beginnings 
of ﻿Ethnomathematics, and scholars such as Wilfredo ﻿Alangui and 
Tamsin ﻿Meaney are increasingly being referenced within the field 
nowadays. I wonder if these works are left aside because they would 
be counterexamples to the idea of cultural statism and the sublimation 
of otherness, which is so much projected onto ﻿Ethnomathematics by its 
critics. 

Outsiders at the centre

Considering the handful of experiences that disrupt contemplative 
admiration, in my search for a different explanation of ﻿Ethnomathematics 
and its affordances, I realise that a salient characteristic has been the 
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human relationship between researchers and the communities over 
time. Authors and communities become engaged and collaborate 
in diverse affairs that are often not bound by the limited scope of an 
isolated research project; they build and sustain a bond not mediated by 
reports, deadlines, or institutional funding.

This depth of engagement shapes the researcher’s perspective in 
such a manner that the published research constitutes just a brief part of 
a broader life experience rooted in partnership. In these collaborations, 
communities seek to develop and produce a variety of outcomes – such 
as loan applications to banks for some Movimento Sem-Terra (﻿MST, 
Landless People Movement) peasants, demonstrations advocating for 
unpolluted water in Costa de Caparica, or school commemorations of 
ancestors’ arrival by boat in Aotearoa – that demand the use of some 
academic disciplinary mathematics, prompting the scholar to offer 
explanations. Scholars do not have a god´s eye view, nor can they 
alone decide the times, spaces, participants, goals, and outputs of the 
experience. They need to understand each community´s aims, desires, 
and ways of thinking about the situation of interest and also the official 
mathematics it embodies; then, they must translate, mediate, and 
articulate the two types of perspectives in order to collaborate within a 
collective learning environment that enhances the community’s abilities 
to participate in social and public debates according to their own 
organisational style and perspective. 

An important point to note here is that scholars do not ‘represent’ 
or act ‘on behalf of’ communities. Instead, they must find out a way 
to collaborate in the creation of a new, organic communitarian 
knowledge that can effectively embrace the external (institutional) 
knowledge required by the situation. They are urged to provide neither 
a mathematical model of a vernacular practice, to be understood by 
public officers, nor an insider model of the same practice. Accordingly, 
concepts such as emic/etic or situated mathematical interpretation 
seem insufficient, as the tasks are not about representing local ideas 
for a global audience, or the reverse, and not about one individual 
acting an enlightened medium. Instead, the focus is on about fostering 
collective learning, igniting local processes of interpretation, discussion, 
adaptation, appropriation, and mainly creation. 
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It can be many things, but not anything

If contemplative admiration falls short in describing these styles of 
research and interaction, and the works are definitely fulfilling the 
ethical, social, and political call of Ubiratan ﻿D’Ambrosio, what is it, then, 
that they are doing with the knowledge and mathematics involved? 
Well, by trying to answer this question I have found an idea that can be 
useful to theorise the activity of the ethnomathematical field, in a way 
that can overcome some of the limitations and address new challenges. 

One guiding notion cuts across these experiences. When the ﻿Kwibi 
Urraga Laboratory in Colombia was trying to translate an ﻿algebra book 
from Spanish to an Indigenous language, and when the ﻿Maori Language 
Commission of New Zealand was engaged in creating a dictionary of 
mathematical terms in Te Reo Maori, they were not creating meanings 
for words that would express in a complete way all the formal syntax and 
semantics of the mathematical formal objects they were dealing with. 
Rather than hoping to solve the epistemic mismatch between a formal 
discipline and an ﻿Indigenous knowledge system, they attempted to build 
a mathematical register, a trustable framework of communication within 
which to negotiate meanings. They did not achieve the submission of 
one worldview to another ‘more complete’ worldview. Better than that, 
they succeeded in establishing relations among elements coming from 
diverse knowledge systems.

In a similar manner, when peasants of the Brazilian ﻿MST compare 
and contrast their own techniques for measuring the volume of wood 
planks with official techniques (Knijnik, 2007), they put their ways of 
knowing into relation with those coming from ‘book mathematics’. Not 
to substitute one technique with the other, but to ‘broaden not only their 
mathematical world, but also their ways of seeing the complex social 
relations involved in different forms of life that produce such different 
language games’ (Knijnik, 2007, p. 16).

To summarise, ﻿Ethnomathematics builds relations. Relations among 
institutional disciplinary mathematics and local ways of knowing. 
Relations among their languages. Relations among knowledgeable 
people of diverse traditions and places.

Thus, one ethnomathematical research project is an effort to raise, 
explain, and share relations among certain objects or practices of two 



� 22110. A performative and relational Ethnomathematics

different knowledge systems. Relations can be traced from the cultural 
knowledge system of a group to the realm of mathematics, for instance 
when ﻿Alangui connects Philippine rice terracing practices with a system 
of ordinary differential equations (Alangui, 2010). Relations can also 
be proposed from the realm of mathematics to the cultural knowledge 
system of a group, as in the description of geometrical relations made 
by Miguel Andrés ﻿Gutiérrez (2019) through concepts of Colombian folk 
dancers.

When researchers formulate a relation, they need to engage in 
a debate on the plausibility, pertinence, and utility of the relation. 
Debates of this nature demand the interaction of several stakeholders 
and scenarios that have the legitimacy to sanction the relation as 
acceptable or useful. During the examination of the potential relation, 
new kinds of learning emerge, and re-elaborations and translations are 
needed (an epistemic re-arrangement). New personal relations among 
people of diverse backgrounds, values, interests, skills, certainties, and 
foregrounds are also established (a political re-arrangement). These 
re-arrangements are the most substantial part of the research process, 
more important than the original relation proposed. Because what is at 
stake in the process is the power to change cultural and mathematical 
practices. When the examination ends, whether or not the relation was 
accepted or rejected, an educational experience has occurred, expanding 
the boundaries of what is assumed to be meant by mathematics and 
culture, at personal and collective levels. In short, we are less interested 
in the prey (an ethnomodel suspected of being pareidolic) than in the 
hunt (a deterritorialization that certainly happened).

Contemplative admiration has misled us into thinking that 
﻿Ethnomathematics was about uncovering hidden attributes, an act of 
discovery, a quest to answer ontological questions like: Is this cultural 
practice a mathematical object? Is this mathematical practice legitimately 
cultural? By contrast, a relational approach knows that relations are 
neither given nor automatic because they live in the realm of potentiality. 
Their formulation implies a creative act, a performative challenge of 
what could happen if we operate with this? What understandings are 
unleashed by accepting this relation? 
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After this explanation of the main features of a relational theorisation, 
I will describe some values associated with it that are useful for 
addressing the limitations of the contemplative admir ation approach. 

Re-visiting ontology

As stated earlier when describing the question of mathematical 
ontology, ﻿ethnomathematicians have rejected the metaphysics of 
Platonist﻿ accounts by appealing to a conventionalist approach that leads 
them to assume cultural/epistemic relativism. The growing interest in 
﻿Wittgenstein﻿ (Albanese, Adamuz-Povedano, & Bracho-López, 2017; 
﻿Barton, 1999; Knijnik, 2012; Vilela, 2010) proves that appeal. The notions 
of mathematical language games and family resemblances have emerged 
as useful to explain the convergence of different cultures to some 
mathematical results. ﻿Barton gives us a key insight here into the role of 
relations in his resemblances:

What happens when different mathematical systems meet? ﻿Wittgenstein’s 
answer is that there are no ‘gaps’ in mathematics. Each system is complete 
at any moment. It is not waiting to be added to with new mathematics. 
Thus (Shanker, 1987, p. 329), any connection between two worlds is not 
in the same space as either of the worlds. The interconnections are not 
waiting to be discovered. We choose whether or not to make connections 
between systems, and if we do then the connections create a new system. 
(﻿Barton, 2008, p. 130) 

With this excerpt, ﻿Barton helps us to understand how family 
resemblances among mathematical language games work and what 
they produce. We identify resemblances because we want to do so, 
because we have the will to find them, the need to use them, and an 
interest in making comparisons among seemingly unrelated things. The 
resultant thing is a new system, an expanded version of mathematics, 
and/or an enhanced cultural practice. This insight is crucial because it 
stresses how culture and mathematics are historical, an idea that Luis 
﻿Radford has also stressed:  

There is no regulatory, universal reason. The reason is historical 
and cultural. Their specific forms, what ﻿Foucault calls epistemes, are 
conditioned in a way that is not causal or mechanical, by its nesting in 
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the social and political practices of the individuals. (Radford, 2016, p. 36, 
italics given) 

The concept of culture that ﻿Marx elaborates indirectly in his writings is, in 
fact, profoundly historical and transformative. Individuals create culture 
and, in a reverse or dialectical movement, culture offers the conditions 
for individuals to create systems of thought whether scientific, aesthetic, 
legal, etc., and to create themselves. That is why, from a materialist 
dialectical perspective, human cultures are much more than reified and 
static entities. (﻿Radford, 2014, p. 56, my translation)

So, by noticing the historicity of mathematical knowledge we can accept 
that relations have the potential to become reconfigured mathematics. 
However, those relations have constraints, as they do not operate freely 
in a void. Some of these constraints are noted by ﻿Barton and Denise 
﻿Vilela:

This does not mean that mathematics is arbitrary, and thereby open the 
way for mathematical anarchy. We are free to construct the grammatical 
rules of mathematics, but not ‘blindly or capriciously’ (Shanker, 1987, 
p. 319). The arbitrariness ﻿Wittgenstein refers to is its autonomy. [...] 
Cultural mathematics’ are not arbitrary in the sense that they could be 
anyhow. They are arbitrary in that any culture is free to make its own 
sense of the world. Mathematics is the way it chooses to express that 
sense. (﻿Barton, 1996a, p. 182)

In particular, mathematics or ﻿Euclidean ﻿geometry, as a set of grammatical 
rules, are applied because these rules must have an empirical origin and 
became rules, or forms of intelligibility. (Vilela, 2010, p. 352)

Is it possible that the ‘empirical origin’ and the limits of a ‘mathematical 
anarchy’ reside in a non-human realm? In addition, how do we explain 
the universal human capacity for playing language games? There are 
issues with the post-metaphysical turn that deserve more elaboration 
and ﻿Ethnomathematics needs to address these questions without a 
return to essentialism. In fact, André Cauty and ﻿Barton already warned 
about the ontological dead-end: 

We defend a thesis based on the observation of the historical construction 
of mathematics, as well as on the observation of the epigenetic time of 
the formation of a mathematician. This thesis prevents us from fully 
adhering to the most extreme doctrines: idealism and positivism. 
Therefore, neither do we believe only in the reality of ideas (Conceptus), 



224� Breaking Images

like the too much idealistic doctrines do, nor believe only in the reality 
of things (Res), as the too much materialistic doctrines do. A classic 
solution consists in considering a third order of reality, the one of signs 
(Vox) and ﻿representations. That is, to address entities that are neither 
things nor ideas, but substitutes for references, both imaginary and real. 
(Cauty, 2001, p. 77, my translation)

There would be no question about whether they [the mathematical 
objects] exist independently or about how we come to know them. 
We mathematise, and therefore we create the objects by our thought, 
and attempt to communicate them to one another. The ontology and 
epistemology of mathematics simply is not a problem anymore. (﻿Barton, 
2012, p. 228)

At this point, it becomes clear how important it is to find a way to blur 
divisions between ontology and epistemology and escape the dichotomy 
of essentialism/conventionalism. Scholars from the trend of Science 
and Technology Studies have developed some insightful ideas on this 
matter. Inspired by the ﻿Latourian interactions among the human and 
the non-human, Andrew ﻿Pickering introduced the idea of disciplinary 
﻿agency, assumed as the ‘﻿agency of a discipline that leads us through 
a series of manipulations within an established conceptual system’ 
(Pickering, 2010, p. 115). Such ﻿agency interacts with human ﻿agency, 
producing a dynamic of accommodation and resistance among agencies. 
Then, mathematical knowledge would be the result of that dynamic, 
explaining why mathematics is neither arbitrary nor predetermined.

This is very useful to ﻿Ethnomathematics because it explains how some 
mathematical results have been known by different groups throughout 
history. It is not due to the existence of some essence or structure, but 
rather a result of groups responding similarly to a non-human ﻿agency 
that presented constraints. In the same manner that sculptors working 
with the same raw material produce different statues, cultural groups 
approach the metaphysical and produce different mathematics. Just 
as we do not equate sculptures with rocks, because we can recognise 
and value the human ﻿agency in the resultant sculpture, we should not 
equate mathematics with the metaphysics. That is the crucial point here.

Aligned with that, an understanding of reality as continuously 
transforming and becoming allows us to see controversies about 
diversities among cultural/mathematical practices as examples of 
ontopolitics in which entities and worlds are ‘shaped, sustained and 
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transformed by the social, technical and material practices that take 
place – and make place – in them’ (Savransky, 2012, p. 360). If these 
cultural/mathematical practices are assumed to be inventive practices, 
then power and knowledge become entangled and human ﻿agency cannot 
abdicate the political responsibility in an uncertain and unstable reality 
of multiple worldviews colliding and interacting through relations.  

Multiplicity and interaction lead ﻿Ethnomathematics to the terrain 
of ﻿decoloniality, namely the ecology of knowledges proposed by 
Boaventura ﻿de Sousa Santos (2012):

Granting credibility to non-scientific knowledge does not imply 
discrediting scientific knowledge. What it does imply is using it in a 
counterhegemonic way. This consists, on the one hand, in exploring 
alternative scientific practices made visible through plural epistemological 
scientific practices and, on the other, in promoting interdependence 
between scientific and non-scientific knowledge. (p. 57)

Re-visiting validation

Contemplative admiration is, at the deepest level, an instance of 
validation: a mechanism by which non-academic and informal practices 
become certified as mathematical by academic institutions. This is why 
the ﻿Ethnomathematics produced under this contemplative spirit is 
basically concerned with how the academy can generate conceptions 
about mathematics that include the cultural and linguistic ﻿diversity that 
societies possess; therefore, its target audience is the academy itself. 

The role of scholarly trained ﻿ethnomathematicians as validators is 
highly problematic, since, on the one hand, some of them get confused 
by the presence of their own disciplinary gaze and struggle to not see 
‘with their own eyes’ (the paradox of Millroy, 1992), while, on the 
other hand, critics wonder to what extent this certification procedure 
enthrones even more the modern rationality that the field promised to 
problematise (Pais, 2013). Such problems are just another enactment 
of the reflexivity debates deriving from ﻿anthropology (Salzman, 2002; 
Woolgar, 1988), and arise due to the extended use of classic ethnography 
as the ‘natural’ method for ﻿Ethnomathematics. 

Reflexivity issues lose their importance when classic ethnographical 
methods are problematised and when knowledgeable people, 
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not necessarily working for (or trained in) academic institutions, 
are considered ﻿Ethnomathematics researchers in their own right, 
intervening and collaborating in each part of the research experience, 
being accountable for the results of the research. Within a ﻿decolonial 
perspective, insiders’ insights can no longer be made invisible or 
subjected to the realm of ‘Not-being’, or impersonated through dubious 
emic ﻿representations. As ﻿de Sousa Santos states: ‘Non-existence is 
produced whenever a certain entity is discredited, and considered 
invisible, non-intelligible, or discardable’ (de Sousa Santos, 2012, p. 52). 

In ﻿decolonial studies, the concept of ﻿sociology of absences is used to 
refer to the type of research that unveils the ways in which denial and 
non-existence is actively produced. A ﻿sociology of absences ‘amplifies 
the present by adding to the existing reality what was subtracted from it’ 
(de Sousa Santos, 2012, p. 56), and for our discussion, such amplification 
is expected to be a regular procedure for a relational ﻿Ethnomathematics.

The reconceptualisation of ﻿Ethnomathematics unfolded in this 
chapter is interested in promoting a broader vision of mathematical 
knowledge within other social contexts. But what is knowledge other 
than an interconnected system of people, beliefs, values, institutions, and 
instances that constitute it in a certain time and space? In that sense, to 
push the boundaries of what is sanctioned as mathematical is an attempt 
at intervening in such a system, calling into question the exclusivity of 
some instances (e.g., the academic ones) as being legitimate.

For that matter, it implies that ﻿Ethnomathematics needs to conceive 
itself as accountable to scenarios other than the academy, otherwise it will 
not be able to make a strong academic reading of the epistemological/
political dimensions of mathematics. A broad idea of validation needs 
to consider new agents, scenarios, and procedures in such a way that 
﻿Ethnomathematics become a ﻿sociology of absences (de Sousa Santos, 
2012). 

﻿Knijnik and ﻿Alangui envisaged first the ﻿agency of local insiders as 
validators proposed by a relational ﻿Ethnomathematics:

﻿Ethnomathematics offers an arena where ﻿indigenous peoples can assert 
their alternative views and knowledge about the world. (Alangui, 2010, 
p. 25)

I use the expression ethnomathematical approach to designate research into 
the conceptions, traditions, and mathematical practices of a specific 
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subordinated social group and pedagogical work involved in making the 
group members realize that: 
1.	 They do have knowledge; 
2.	 They can codify and interpret their knowledge; 
3.	 They are capable of acquiring academic knowledge;
4.	 They are capable of establishing comparisons between these two 

different types of knowledge in order to choose the more suitable one 
when they have real problems to solve. (Knijnik, 1993, p. 24) 

More recently, authors like Natalia ﻿Caicedo et al., (2012), Cristiane 
﻿Coppe and ﻿Mesquita (2015), and Mesquita (2013) have presented 
experiences of communitarian research within ﻿Ethnomathematics. 
Those are examples of collaborative research as a co-theorisation process 
(Rappaport, 2008) that pursues a decolonisation of research methods 
(Smith, 2013). 

Performativity

In order to look for alternative ways to embrace the call of 
﻿Ethnomathematics to appreciate cultural and epistemic ﻿diversity, a useful 
question emerges: What is the antonym of ‘difference’? A quick response 
would be: ‘similarity’, but I want to point to ‘indifference’. That is the 
major threat to cultural diversity, as it comes with uncommunication, 
apathy, passiveness, and inactivity. Conversely, in this line of thought, 
communication, empathy, engagement, and initiative are values that 
surround and enhance difference and diversity in an active manner.  

To illustrate how this manner breaks the contemplative image, I can 
mention the ﻿Wittgensteinian understanding of mathematics as a social 
practice and the assumption that the meaning of a word/concept is given 
by the use of such word/concept within the social practice (Knijnik, 
2012). Rather than merely using such ﻿Wittgensteinian insight as an 
analytical tool to describe or interpret mathematical knowledge, we 
can assume it also as a performative tool, emphasising that people can 
intervene and operate within social practices; and people can therefore 
impact what is assumed to be mathematical. The cultural historicity of 
mathematical knowledge became a place in which we can operate, we 
can perform.  
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In the previous two sections we embraced the culture-dependence 
and historicity of (mathematical) knowledge and appreciated the 
﻿agency of groups and communities in the constitution of new forms 
of knowledge. A coherent consequence of that appraisal is to make 
a reorientation of the regular practices and the expected outcomes 
of ethnomathematical activity, around a relational perspective that 
emphasises the importance of interpretation and interaction when 
proposing connections among different domains. Interpretation and 
interaction are necessarily performative. 

An ethnomathematical work under this relational perspective 
necessarily comprises a performative condition, in which relations 
cannot be stated once and for all. They detonate collective processes 
of meaning-making and, because of that, relations constantly demand 
rephrasing, reframing, and reassessment. They are to be lived, 
re-enacted again and again. As the research results are ephemeral and 
vanish, ﻿Ethnomathematics research becomes a type of performance that 
is different in each instantiation.

Concerns with the ﻿agency of communities within the research 
also entail a performative demand. Agreements, responsibilities, and 
commitments need to be established differently with each community, 
every time, and evolve throughout the research process. 

This performative character of ﻿Ethnomathematics is an enactment of 
the ﻿decolonial notion of ﻿sociology of emergence, because: 

The ﻿sociology of emergences consists in undertaking a symbolic 
enlargement of knowledges, practices, and agents in order to identify 
therein the tendencies of the future (the Not Yet) upon which it is 
possible to intervene so as to maximize the ﻿probability of hope vis-à-vis 
the ﻿probability of frustration. (de Sousa Santos, 2012, p. 56)

This quotation allows me to ask how ﻿Ethnomathematics can deserve to 
be called a proper research program if it does not assume performativity. 
By revolving around contemplative schemes, it will never be a ﻿sociology 
of emergences.

Finding new places

Although this relational approach was originally built to explain a 
reduced set of contemporary works that involves communitarian 
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participation, it turned out to be an entire reconceptualisation of the 
ethnomathematical field. As I said elsewhere: 

According to this view, ethnomathematical research basically traces 
connections between cultural practices and mathematical objects, to show 
how culturally embedded is knowledge production. Any modelling or 
mathematical description of cultural practices is a connection. Cultural 
contextualizations of mathematical practices are also connections. (…) 
No matter if they are defrosting mathematics (Gerdes, 2003), finding a 
family resemblance among practices (Knijnik, 2012), or describing the 
QRS-systems of a group (Barton, 2008). (Parra, 2018, p. 215)

This means that ﻿Ethnomathematics has always been relational. The 
crucial point is to what extent we have been aware of that condition 
and how purposefully we have developed concepts and methodological 
procedures aligned with relationality. In the same way, there is no doubt 
that every piece of ethnomathematical research attempts to expand the 
frontiers of what is accepted as mathematical knowledge and culture. 
The question is which agents and scenarios have been privileged to 
establish the success of each attempt.

An open and conscious embrace of a relational and performative 
approach for ﻿Ethnomathematics can change many things for the 
field. Some political and epistemological dilemmas and critiques get 
dissolved. Also, many new theoretical and methodological concerns 
can appear, through notions like translation, symmetry, barter, minga, 
propio, locus of enunciation (Parra, 2018), deconstructionist therapy, and 
deterritorialisation (Tamayo-Osorio, 2017). Pedagogical consequences 
of this perspective need to be developed as well: I am currently exploring 
them through notions like repertoire and jurisdiction (Parra, 2024).  

To close the chapter, I contend that the current image of contemplative 
admiration needs to be refined by a relational one that is more 
politically driven and can help ﻿Ethnomathematics celebrate ﻿diversity by 
multiplying it, and not merely by registering it. 
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11. A critical conception of 
mathematics

 Ole Skovsmose

A critical conception of mathematics emerged through several routes: this 
chapter takes a closer look at three of them. First, we follow how the students’ 
movement, beginning in the late 1960s, inspired a critique of university studies 
in mathematics. This analysis turned into a critique of mathematical ﻿modelling, 
emphasising that it is an illusion that mathematics ensures objectivity and 
﻿neutrality. It became recognised that, when brought into action, mathematics 
may have all kinds of technological, economic, and political impacts, including 
many of the most questionable kind. Second, we see how mathematics becomes 
recognised as a plurality of constructions. I show that mathematics is shaped 
through social, historical, cultural, and political – in short, human – processes, 
and that any uniform conception of mathematics is a deception, if not a 
falsification. Third, I illustrate how mathematics can be developed as a critical 
resource and become a means for identifying forms of economic and political 
oppression. Mathematics can play a part in the struggle for ﻿social justice.

Since ﻿Antiquity, mathematics has been admired and celebrated, while a 
critical conception of mathematics has become clearly formulated only 
within the last century.

﻿Plato put mathematics on a pedestal, as to him it revealed what it could 
mean to enter the world of ideas. ﻿Euclid’s ﻿Elements brought together an 
axiomatisation of ﻿geometry that, right up to the late nineteenth century, 
was celebrated as showing a perfect exposition of mathematics as well as 
a pattern for presenting knowledge in general. In Europe the admiration 
for mathematics gained additional fuel through the so-called scientific 
revolution. The people contributing to this – Nicolas ﻿Copernicus, ﻿Galileo 
Galilei, Johannes ﻿Kepler, and Isaac ﻿Newton, to name a few – were all 
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deep believers in God. They saw the world as created by God, implying 
that an insight into and understanding of nature are an insight into 
and understanding of God’s creation. Apparently, this creation had 
been completed according to mathematical principles. After the natural 
sciences separated from ﻿religious beliefs, the celebration of mathematics 
continued, with mathematics becoming nominated as the language of 
science.

In this chapter, we leave behind any such unexamined admiration 
of mathematics and look for the emergence of a critical conception 
of mathematics. Elsewhere in this volume, different conceptions of 
mathematics have been outlined, for example those of Godfrey ﻿Hardy, 
Nicolas ﻿Bourbaki, George ﻿Pólya, Ludwig ﻿Wittgenstein, L. E. J. ﻿Brouwer, 
and Hans ﻿Freudenthal. However, when it comes to the formulation of a 
critical conception of mathematics, it is not possible to provide any such 
name-related simplification.

In many common-sense interpretations, critique means pointing out 
flaws, weaknesses, and problematic issues. This forms part of a critical 
activity, but a critique can also point out strengths, advantages, and 
positive qualities. This is generally assumed when one talks about film 
critique, literary critique, art critique, and this also applies when one 
talks about a critical conception of mathematics. We will follow three 
routes towards a critical conception of mathematics: seeing mathematics 
as a multiplicity of actions, as a plurality of constructions, and as a 
critical resource.1

Mathematics as a multiplicity of actions

The extreme optimism that accompanied modernity assigned a crucial 
role to science and technology as being the true motors of the progress 
that would ensure economic welfare, a richer cultural life, and a 

1� More routes lead to the formulation of a critical conception of mathematics, 
including those addressed by Houman Harouni in the next chapter. Feminism 
represents another such route, see Chapter 19 in this volume and also Leone 
﻿Burton (1995) on a ﻿feminist epistemology of mathematics, and Gabriele ﻿Kaiser 
and Pat ﻿Rogers (1995) for providing a broader overview of the movement. Also, 
﻿critical race theory (see Chapter 19) and related movements open for a critical 
conception of mathematics, as addressed in the work of Danny Martin and his 
colleagues (Martin, 2013, 2019; Martin & Gholson, 2012).
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permanent state of peace. This optimism, that reached its peak by the 
turn of the nineteenth century was, however, not for everybody. It was 
based on ignoring the atrocities caused by ﻿colonialism and the brutal 
exploitations of workers. Such reservations being disregarded, the 
world was seen as enjoying steady progress. Science and technology 
could be celebrated, and the general admiration of mathematics seemed 
well-grounded.

The outbreak of the ﻿First World War called into question and 
undermined this narrow-minded optimism. In the most dramatic way, 
this war demonstrated that science and technology form an integral 
part of the machinery of war. Airplanes were constructed for military 
purposes, and chemical weapons used for the first time in history. It 
is true that for centuries mathematicians had worked on ballistics, but 
now it became greatly more obvious how mathematics contributes to 
the further development of war technologies.2

It would seem that the time had come where the blind admiration 
of mathematics could, and should, be questioned. But it was not. It took 
some more time before a proper critical conception of mathematics 
became formulated.

Fachkritik

Emerging during the late 1960s, the students’ movement advanced a 
broad spectrum of political ideas, also about university education. 
Demands emerged for a new organisation of this education, not 
according to traditional disciplines. It should address social issues; 
it should be problem-oriented; it should be project-organised. The 
students should have a principal say in what to study, and how to study 
it. Professorial dominance should be broken, and the topics taught at the 
university had to be subjected to a profound critique. 

In German this critique was referred to as a ﻿Fachkritik; in Danish we 
have a similar word fagkritik, but I have never seen any adequate English 
translation. Fach means school subject or discipline, and ﻿Fachkritik refers 
to a critique of subject matter issues. One can be specific and talk about 

2� For discussion of relationships between mathematics and war, see Booss-Bavnbek 
and Høyrup (2003).
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a ﻿Fachkritik in ﻿biology, ﻿physics, or in mathematics. The notion became 
broadly applied within the students’ movement. 

﻿Fachkritik developed from a broad critique of positivism as a 
philosophy of science. Inspired by the work of the ﻿Vienna Circle, ﻿logical 
positivism claimed that science should ensure objectivity and ﻿neutrality, 
and that scientific investigations should be kept separated from political 
issues.3 Logical positivism underwent a transformation from its 
programmatic formulations during the 1930s to, from the beginning of 
the 1950s, becoming a broadly assumed working philosophy of science. 
As part of this working philosophy, the normative claim about what 
science should do turned into the descriptive claim that science, as it 
is actually acted out at universities and research institutions, observes 
objectivity and ﻿neutrality. The ﻿Fachkritik reacted strongly to such an 
interpretation of science, claiming that positivism represents a dubious 
ideology rather than a proper philosophy of science.

One source of inspiration for a critique of positivism came from 
critical theory. In 1968, Jürgen ﻿Habermas published the first German 
version of ﻿Knowledge and Human Interests, where he presented the idea 
of knowledge-constituting interests. In other words, he argued that no 
knowledge exists that is entirely neutral. A technical interest guides 
natural science and technical disciplines; an interest in understanding 
guides the humanities; and an emancipatory interest guides the social 
sciences. This stipulation invited a strong critique of the social sciences to 
the extent they were organised in accordance with positivist principles. 
Assuming ﻿Habermas’ (1971) terminology, positivism advocated a 
technical interest in general, also with respect to the social sciences. 
When guided by such an interest, the social sciences came to ally with 
oppressive forces. This observation provided a powerful departure for 
﻿Fachkritik with respect to the social sciences.

﻿Habermas associated a technical interest with the natural sciences, 
which did not motivate any ﻿Fachkritik related to these disciplines. 
Nevertheless, such a ﻿Fachkritik was developed profoundly, with other 
sources of inspiration. This observation applies also to the development 
of a ﻿Fachkritik of mathematics. An important inspiration came from 

3� See Chapter 4 in this volume.
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many critical investigations of mathematical ﻿modelling, on which we 
will concentrate in the following section.

During the same period, the notion of kritischer Mathematikunterricht 
started circulating; this is the German phrase for ﻿critical mathematics 
education. Initial ideas were presented by Peter ﻿Damerow, Ulla ﻿Elwitz, 
Christine ﻿Keitel, and Jürgen ﻿Zimmer (1974), and by Dieter ﻿Volk (1975). 
Soon after, Volk edited ﻿Kritische Stichwörter zum Mathematikunterricht 
(Volk, 1979), which provides a wide range of references and ideas, not 
only for a ﻿critical mathematics education, but for a critical conception 
of mathematics as well.4 The development of critical conceptions of 
mathematics and of mathematics education includes much overlapping, 
but here I concentrate on the routes leading to a critical concept ion of 
mathematics.

Critique of mathematical modelling

Although the further formulation of a critical conception of mathematics 
took place in different contexts, I concentrate on what took place in 
Denmark. In 1972, Roskilde University Centre opened, organised 
according to priorities of the students’ movement. In 1974, Aalborg 
University Centre opened with a similar profile; later it was renamed 
Aalborg University.

At these two universities, problem-orientation and project-
organisation were implemented in all study programmes: ﻿sociology, 
﻿biology, history, ﻿physics, mathematics, etc. Through problem-orientation 
the studies gained an interdisciplinary format. It was a period in 
which much educational innovation and experimentation took place, 
accompanied by the enthusiasm of both students and ﻿teachers.5

In mathematics many different problems became addressed through 
the students’ project work. An approach often applied was to investigate 
real cases of mathematical modelling. Project groups investigated 

4� During the same period, I started pondering what a ﻿critical mathematics 
education could mean in a Danish context, and in 1977 I had a PhD study 
approved with this ambition in mind.

5� For a presentation of how the mathematical study programmes at Aalborg 
University became problem-oriented and project-organised, see Vithal, 
﻿Christiansen, and Skovsmose (1995). See also Jensen, Stentoft, and Ravn (2019), 
and Kolmos, Fink, and Krogh (2004).
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such macro-economic models as the ﻿Annual Danish Aggregate Model 
(ADAM) applied by the Danish Ministry of Finance. Other projects 
addressed more theoretical economic models like the ﻿Goodwin Model 
that provides a possible interpretation of cyclic movements within a 
﻿capitalist economy.6 Project groups explored models applied by airlines 
for seat reservations, revealing that overbooking is not due to any 
systemic mistakes but to a carefully elaborated strategy for maximising 
profit.7 The North Sea Model constructed by the Danish Institute for 
Fishery and Marine Research in order to maximise the fishing yield in 
the North Sea was examined in order to show how particular industrial 
interests became engraved in the mathematical structure of the model. 
One finds students’ project reports addressing the ﻿Rasmussen Report, 
which is based on models that estimate an extremely low ﻿probability of 
a serious accident occuring at a nuclear power plant.8

All such project works contributed to the further development of a 
﻿Fachkritik of mathematics. A recurring preoccupation was to identify 
possible political and economic interests embedded in mathematical 
models, thereby revealing that the postulate of mathematics-based 
objectivity and ﻿neutrality in such models is an illusion.

As an illustration of what such a critique might include, let us observe 
the book Beskæftigelsesmodellen i ﻿SMEC III [The Model of Employment 
in ﻿SMEC III], written by Mogens ﻿Niss and Kirsten ﻿Hermann (1982). 
﻿Niss has been working at Roskilde University Centre from its opening 
and has been deeply engaged in its whole development and in 
supervising project works in mathematics. Hermann has worked as a 
secondary school mathematics ﻿teacher also with a deep concern about 
mathematical ﻿modelling.

1.	 The Simulation Model of the Economic Council (﻿SMEC) was 
developed by Danish economists with the aim of advising the 
government and politicians about economic policy and its 
possible consequences. The ﻿SMEC exists in different versions, 

6� For further comments on the ﻿Goodwin Model, see, for instance, Chapter 18 in 
Skovsmose (2014, pp. 263–280).

7� For a further discussion of such a model, see, for instance, Skovsmose (2005, pp. 
79–82).

8� I supervised the group of students investigating both the ﻿North Sea Model and the 
﻿Rasmussen Report. See Skovsmose (2023) for a more detailed discussion of the 
﻿North Sea Model.
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but ﻿Niss and ﻿Hermann concentrate on the third version 
and on the parts of the model dealing with employment. 
The ﻿Beskæftigelsesmodel in the ﻿SMEC III relates the level of 
unemployed to different economic factors, some of which can 
be influenced by political decisions. It is important to be able to 
specify as accurately as possible what could be the implications 
of such decisions before they are carried out. A function of 
the ﻿Beskæftigelsesmodel is to provide hypothetical reasoning to 
identify potential consequences of not-yet completed political 
actions.

2.	 As pointed out by ﻿Niss and Hermann, in order to develop a 
critical attitude towards the Beskæftigelsesmodel, one has not 
only to understand its mathematical components, but also to 
identify its assumptions. To construct a model, choices must 
be made, for instance which parameters to consider and how 
to integrate them into equations. There does not exist an 
economic reality as such waiting ‘out there’ to be described by a 
model. A macro-economic model is not just any representation 
of ‘reality’, rather it is an expression of an interpretation of 
economic activities and relationships. This interpretation can 
be guided by theoretical insights, economic priorities, political 
assumptions, and a range of particular interests.

3.	 For bringing together the whole structure of the 
﻿Beskæftigelsesmodel, the ﻿Cobb-Douglas function of production 
plays a crucial role. According to this, we have f = f(L, 
I) stating that the national product f is a function of two 
variables, namely the labour force L and capital investment I.9 
This function becomes used in the model-building process for 
identifying relevant parameters and for integrating them into 
equations. Simultaneously the ﻿Cobb-Douglas function creates 

9� A first step in specifying this function is to stipulate that , where is an arbitrary 
constant. This stipulation is based on the idea that in order to increase the 
production by a factor , one needs to increase both the number of workers and 
the investment by the same factor . The function can be given particular ﻿algebraic 
expressions. One is , where is an arbitrary constant and is a constant between and 
. See also Chapter 13 in Skovsmose (2014, pp. 181–196) for comments about the 
﻿SMEC III model.
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a particular economic outlook by being a principal component 
of a classic liberal approach to economics. Through this 
function, an overall liberal outlook becomes installed in the 
way economic expertise advises the Danish government and 
politicians.

4.	 I see the critique of the ﻿Beskæftigelsesmodel as provided by 
﻿Niss and ﻿Hermann as being exemplary in addressing not only 
the mathematical content of the model, but also assumptions 
incorporated in its mathematical structure. Such assumptions 
shape the space of possible recommendations that can be 
derived from the model. More generally, a mathematical model 
provides a particular description of a phenomenon, which 
reflects features of the model and of how it was constructed, 
rather than just features of what it was supposed to describe.

Critique of mathematics in action

A picture theory of language was presented by Ludwig ﻿Wittgenstein 
(2002) in the ﻿Tractatus Logico-Philosophicus, first published in a German-
English edition in 1922. According to this theory, the principal function 
of language is to provide descriptions or pictures of reality. Furthermore, 
﻿Wittgenstein claimed, at that time, that it is a formal language such as 
mathematics that can ensure such a picturing. An important development 
away from the picture theory of language became established through 
﻿speech act theory. This theory highlights that language is not primarily 
descriptive, but performative. One does something through language. 
Speech act theory was anticipated by ﻿Wittgenstein (1997) in ﻿Philosophical 
Investigations, first published in 1953, two years after his death, and 
further developed by John ﻿Austin (1962) and ﻿John Searle (1969). The 
concept of ﻿speech acts was further developed in discourse theory, where 
the whole performative feature of language became addressed also in 
terms of its political ramifications.10

Inspired by ﻿speech act theory and discourse theory, one comes to 
recognise the performative aspect of mathematics. One can do things, 
not only with words, but also with mathematics. As one can do 

10� See, for instance, Torfing (1999).
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﻿speech acting, one can do mathematics acting. By acknowledging the 
performative interpretation of mathematics, the scope of a critique of 
mathematics and of mathematical ﻿modelling﻿ gets a new profoundness. 
It is one thing to criticise mathematical picturing as being more or 
less reliable; it is quite a different thing to criticise mathematics-based 
actions. I aim to establish critique not only as a critique of mathematical 
﻿representations but also as a critique of the actions that rely on them.11 
Here I will indicate what this could mean by referring to some examples.

Mathematics can form part of a fabrication of risks and crises.12 Many 
processes get automatised by means of mathematical ﻿algorithms. This 
phenomenon can be observed in all kinds of economic transactions: 
when paying with a credit card at the supermarket, when selling and 
buying on the stock market. In order to operate on the stock market, 
one needs to make decisions, and do it fast: decisions about selling or 
buying, about when to do it, and about how much to trade. Any such 
decisions can be ﻿systematised and condensed into ﻿algorithms. This 
means that stock market decisions can become executed automatically. 
In 2006, a third of all stock market transactions in the European Union 
and the United States had the form of algorithmic trading.13 That makes 
it possible for economic transactions to become accelerated. It can 
accelerate the whole situation out of balance, even with an economic 
crisis as a consequence. The economic crisis that took place in 2008 can 
be related to the mathematics that was brought into operation in the 
stock market.14

Automatic trading is just one example of mathematics brought into 
action in order to bring efficiency to a process. One finds automatisation 
in all kinds of processes, steering an aeroplane being one example. The 
automatic pilot can take over completely, but even when the real pilot 
is in control many manoeuvres are made automatically. The degree of 
automation gets more and more profound, and any such automatisation 
is made possible by a configuration of mathematical ﻿algorithms. Like 
any such configuration, unexpected implications can occur. As with 

11� See, for instance, Skovsmose (2004, 2012, 2015).
12� For a discussion of mathematics and crises, see Skovsmose (2021). A reworked 

version of this text appears as Chapter 9 in Skovsmose (2023).
13� For a detailed presentation of ﻿algorithmic trading, see Johnson (2010).
14� For discussion of the relationship between mathematics and the economic crisis in 

2008, see O’Neil (2016).



244� Breaking Images

financial crashes, so also airplane crashes might have their explanation 
in some mathematical automatics going astray.15

Mathematics can form part of the fabrication of decisions. This 
encompasses all kinds of decisions, for instance decisions regarding 
medical issues and health care programmes. As an illustration of what 
this could imply, I refer to the efforts in calculating the value of a human 
life. Kathrin ﻿Hood (2017) points out that experts have spent ‘over a 
century trying to develop a scientifically sound way to measure the 
economic value of human life’ (p. 442). Whatever method the experts 
have arrived at, an extensive mathematical calculation is put into 
operation. We are still dealing with an example of mathematics brought 
into action.

﻿Hood (2017) presents the following example: ‘Every day, government 
analysts make calculations about how much human lives are worth 
compared to the cost of saving or prolonging them’ (p. 442). One could 
think of the health system as forming an integral part of a humanitarian 
effort to save or prolong lives. However, it is also possible to look at the 
health care system from an economic perspective. One can think of it as 
making part of the government’s investments. This leads one to consider 
to what extent the government is dealing with a good business. In order 
to clarify this, one needs to compare the amount of money spent on the 
system compared with the amount of money gained. This consideration 
makes it necessary to calculate the value of a saved or prolonged life. 
To complete such calculations, mathematics makes available a range of 
approaches. To me, they illustrate that mathematics fabricates decisions 
as well as overall perspectives that may guide decisions.16

Mathematics can also form part of the fabrication of possibilities. 
An important feature of technological development is technological 
imagination. Like sociological imagination, technological imagination 

15� See Hawkins (2019), who raises the question whether the Boeing plane crashes 
can be related to automatisation.

16� The approach to identifying the value of a human life has to consider what the 
person would have been able to produce during the rest of his or her lifetime. 
A more recent approach is to consider life as a commodity, meaning that the 
value of a life should be identified with the price one is ready to pay for it. A 
recent development is found in paying attention to both the marginal costs and 
the marginal gains of saving a life. For a short discussion of such approaches, 
see Skovsmose (2021); a revised version of this text appears as Chapter 8 in 
Skovsmose (2023).
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refers to the conception of things that do not, as yet, exist. For 
formulating a technological imagination, ﻿natural language might 
be relevant. However, ﻿natural languages have some limitations in 
articulating technical possibilities. Mathematics provides a different 
kind of language for this purpose. Whatever modern construction we 
might think of has been specified through a mathematical blueprint 
before it was constructed. This statement applies to drones, cell phones, 
tablets, and so on.

A mathematical conception makes it possible to identify radical 
new technological possibilities. As an example, one can think of the 
conception of the digital ﻿computer and of possibilities of digitalisation. 
An important step was taken by ﻿Alan Turing (1937), when he presented 
the abstract calculating device that later became referred to as the ﻿Turing 
machine. This is a mathematical conception of a ﻿computer. For doing 
any computing, one needs to represent an object. Within analogue 
computing this ﻿representation is somehow similar to the original object. 
In digital computing the ﻿representation is quite different: objects become 
represented by numbers. The whole idea of digitalisation cannot be 
formulated through ﻿natural language; only through mathematics can 
one recognise the possibility and power of digitalisation. In terms of 
industrial revolutions, the third one has been characterised as the digital 
revolution.17 This revolution would not have been possible without 
mathematics.

I have restricted myself to three examples of mathematics-based 
fabrications; many more could be mentioned. Mathematics makes an 
integral part of automatisations at workplaces, and in the constructions 
of robots. One finds mathematics-based patterns of surveilling and 
controlling in all possible domains, face recognition in public places 
being just one example of such mathematics-based Big Brothering. 
Medical technologies become mathematics-based, and so do modern war 
machineries. Modern communication technologies are mathematics-
based, and so are all security measures on the Internet. Mathematics-
based fabrications can be found in all spheres of life, and with all kinds 
of social impact.

17� The First ﻿Industrial Revolution was characterised through the innovations of a 
range of new technologies. The Second ﻿Industrial Revolution refers to a phase of 
standardisation and automatisations of production processes.
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Summary

A mathematical ﻿Fachkritik inspired a critical conception of mathematics. 
Initially such a critique concentrated on revealing that application of 
mathematics is not a ﻿neutral activity.

The critical conception of mathematics gained a new profoundness 
through a performative interpretation of mathematics. A critique of 
mathematics turned into a critique of mathematics-based actions, which 
I also refer to as mathematics-based fabrications. Such fabrications can 
concern any aspect of our life-worlds. There are no particular qualities 
associated to such fabrications due to the fact that they are mathematics-
based. They can be interesting, reliable, questionable, cynical, risky, 
inefficient, misleading, accurate, disastrous, destructive, expensive, etc. 
Accordingly, a critique of mathematical performatives comes to address 
a range of socio-political and ethical issues.

Mathematics as a plurality of constructions

One can talk about engineering mathematics, street mathematics, 
﻿applied mathematics, everyday mathematics, school mathematics, ﻿pure 
mathematics, any kind of ﻿Ethnomathematics. One may posit that behind 
this ﻿diversity there exists some kind of definitive mathematics. In fact, 
it is common to assume that so-called ‘pure’ mathematics represents the 
real mathematics.

An important idea developed along the second route towards a critical 
conception of mathematics is that a ‘real mathematics’ does not exist. 
Mathematics as manifest in its many varieties is a social construction, 
constructed in a diversity of ways. This means that ‘mathematics’ is an 
open and dynamic concept with a range of different interpretations, 
and new interpretations will continue to occur. There is no essence 
to be located within the notion of mathematics. The glorification of 
mathematics was based on the idea that mathematics is something 
unique and sublime, elevated above historical and social processes. 
That mathematics is a social construction removes a singularity from 
mathematics and its flavour of being divine.

The recognition of mathematics as a ﻿diversity of social constructions 
has different sources, and I will refer to three of them. First, to some 
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philosophical observations concerning mathematics and grammar. 
Second, to historical observations showing that mathematics did not 
develop along any one-way route. Third, to ethnomathematical studies 
documenting the different cultural manifestat ions of mathematics.

A plurality of linguistic constructions

In 1939, ﻿Wittgenstein﻿ gave a series of lectures in Cambridge, where he 
elaborated on conceptions of mathematics.18 As was his custom, it was 
for a rather closed group of people. ﻿Wittgenstein challenged such well-
established conceptions of mathematics as ﻿Platonism﻿ and ﻿formalism. 
﻿Turing – already well known for his presentation of the ﻿Turing machine 
(Turing, 1937) – joined the lectures, and he argued consistently for a 
﻿formalist outlook. His presence was crucial to ﻿Wittgenstein, and once 
when Turing was not able to assist the lecture, Wittgenstein cancelled it.19

During the lectures, ﻿Wittgenstein argued against any uniform 
conception of mathematics, and through invented examples and thought 
experiments, he presented the prospect of seeing mathematics as a 
social construction. Furthermore, he made it possible to recognise the 
existence of a ﻿diversity of different forms of mathematics. In his lectures, 
﻿Wittgenstein distanced himself from the conception of mathematics that 
he had presented in the ﻿Tractatus.

﻿Wittgenstein was radical in his anti-﻿Platonism﻿. Rules play a crucial 
role in mathematics, but according to ﻿Wittgenstein mathematical 
rules are not based on any discoveries. There is no reality behind 
such rules. Mathematical rules are constructed; they have the nature 
of being conventions. ﻿Wittgenstein also confronted any ﻿formalism. 
According to ﻿formalism, a mathematical theory needs to be consistent, 
otherwise it has no place in mathematics. Turing insisted on this, but 
according to ﻿Wittgenstein consistency is not an essential requirement 
for a mathematical theory. What is considered consistent, and what 
not, depends on the rules that are put into operation – and rules could 
always be different. There do not exist any a priori rules for judging 
mathematical theories. We have to make do with social constructions.

18� The lectures have been collected edited by Cora Diamond and published as 
﻿Wittgenstein (1989). See also ﻿Wittgenstein (1978).

19� For a mention of this episode, see Monk (1990).
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One can compare mathematical rules with grammatical rules.20 
Grammatical rules become formulated and developed during history. 
There is nothing ‘eternal’ about grammatical rules. They are social 
constructions. Grammatical rules have some degree of permanency, 
and one can make grammatical mistakes by not observing the rules that 
are considered valid at the present period of time. Still, there is nothing 
ahistorical or eternal in grammatical rules.

In a similar way, mathematical rules can be interpreted as formed 
through historical processes, specifying ways of counting and using 
notions like number, point, line, and plane. There is nothing Platonic that 
brings validity to certain ways of using such notions. The conventions 
that guide their use are social constructions. Mathematical rules bring 
about mathematical truths, and such truths become social constructions 
as well. As with language, mathematics makes part of an ongoing social 
development. There is one more important observation to be made out 
of this metaphorical comparison between language and mathematics. 
There exist many different languages, guided by many different sets of 
grammatical rules. In the same way one can conceptualise the possibility 
of a ﻿diversity of mathematics, guided by different sets of rules.

﻿Wittgenstein fiercely attacked dominant conceptions of mathematics. 
However, his philosophical critique can be taken further: it reveals that 
one can see mathematics as a plurality of social constructions with 
political coloration.21 This observation is crucial for articulating a critical 
conception of mathematics.

A plurality of historical constructions

The ﻿Eurocentric presentation of the ﻿history of mathematics constitutes 
an integral part of the celebration of mathematics. Mathematics becomes 
articulated as a Western phenomenon, and simultaneously as a unique 
form of human knowledge. This ﻿Eurocentrism has been repeated again 

20	  Wittgenstein (1989) presents this idea in the following way: ‘I have no right to 
want you to say that mathematical propositions are rules of grammar. I only have 
the right to say to you, “Investigate whether mathematical propositions are not 
rules of expression […]”’ (p. 55).

21� That mathematics is a social construction has also been highlighted by Ernest 
(1998) and Restivo (1992). See also Restivo, Bendegem, and Fisher (1993).
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and again, for instance in many textbooks that include summaries of the 
﻿history of mathematics.

A strong effort to show that the ﻿Eurocentric presentation is biased if 
not simply wrong, has been presented by George Gheverghese ﻿Joseph 
(2000), who exposes in detail the multi-cultural roots of mathematics. 
As a start, Joseph presents what he refers to as the ‘classic’ ﻿Eurocentric 
trajectory of mathematics. According to this trajectory, nothing of 
significance took place before the Greeks formulated mathematics in 
an axiomatic way and by doing so eliminated the empirical features 
in mathematical thinking. Then follows a ‘Dark Age’, where nothing 
happened in mathematics, except that Greek mathematics was carefully 
reproduced in the Arabic world. The ‘Dark Age’ became interrupted by 
the rediscovery of Greek philosophy, mathematics, and culture in general; 
and through the Renaissance and onwards mathematics developed in 
Europe and in ‘her cultural dependencies’. Joseph describes a modified 
﻿Eurocentric trajectory, according to which Mesopotamia and Egypt are 
acknowledged as important resources for Greek mathematics.

Joseph reveals any such ﻿Eurocentric trajectories, modified or not, as 
gross simplifications by outlining the very many cultural centres where 
mathematics developed during the so-called ‘Dark Ages’. He provides a 
radically different picture of the historical development of mathematics 
than that outlined by any version of ﻿Eurocentrism. By also paying 
attention to what took place in India, China, Japan, Africa, and South 
America, Joseph documents the multiplicity of historical constructions 
of mathematics.22

Through his work, Joseph helps us to recognise that mathematics 
is not any unique and uniform phenomenon. It develops through 
complex historical processes, including many forms of interaction and 
communication combined with local discoveries and achievements. 
Mathematics appears in many different versions in different historical 
settings. We come to recognise that mathematics represents pluralities. 
The plurality of mathematics as pointed out by ﻿Wittgenstein gets an 
additional historical interpretation.

22	  Raju (2007) argues that there are two streams of mathematics: a mathematics ‘that 
was spiritual, anti-empirical, ﻿proof-oriented, and explicitly ﻿religious’, emerging 
from Greece and Egypt; and a mathematics emerging from India via Arabs ‘that 
was pro-empirical, and calculation-oriented, with practical objectives’ (p. 413).
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A specific issue addressed by ﻿Joseph, namely the development of 
﻿calculus in India prior to its development in Europe and the transmission 
of that knowledge to Europe, has been analysed in depth by Chandra 
Kant Raju (2007).23 Raju presents a careful analysis of the nature of 
knowledge transmission and the historical methods for evaluating 
evidence of such transmission. In addition to historical analysis, ﻿Raju 
argues for what he terms ‘epistemological continuity’ (p. 274), namely 
a conceptual interpretation of the available mathematical texts to seek 
signs of transmission of forms of thinking. ﻿Raju refers to the phenomenon 
of ‘Hellenisation’ which he describes as ‘a simple trick by which a pure 
Greek origin was attributed to any incoming knowledge regarded as 
useful to Europeans’ (p. 268).24

How could it be, then, that the ﻿Eurocentric version of the ﻿history 
of mathematics took such a dominant position? Important explanations 
are presented by Marin ﻿Bernal (1987) in ﻿Black Athena: Afroasiatic Roots of 
Classical Civilization, Volume 1: The Fabrication of Ancient Greece, 1785–1985. 
Let us take an extra look at the title and subtitle of the book. Bernal talks 
about the fabrication of ancient Greece, and he provides an account of 
that fabrication during the two-hundred-year period, 1785–1985. In fact, 
he starts his account much earlier than 1785. He covers the whole period 
when colonisations took place around the world, and where ﻿racism 
formed part of the Western outlook. By talking about ‘fabrications’ 
of ﻿Ancient Greece and not, say, about ‘discoveries’ of ﻿Ancient Greece, 
Bernal highlights that profound interpretations and re-interpretations 
of ﻿Antiquity took place during the colonial times. Such interpretations 
were guided by deep and extensive sets of preconceptions.

During the historical period explored by Bernal, it was difficult in the 
West to accept that Greek culture could have been influenced by the East. 
The whole interaction with the East as well as with Africa had to be played 
down in order to establish Greek culture as an integral part of Western 
culture. It was simply unthinkable that the White supreme European 
culture could have any roots in Africa or in the Orient.25 Bernal shows 

23� For a discussion of Kerala mathematics and its possible transmission to Europe, 
see Almeida and Joseph (2009) and Joseph (2011).

24� A particularly important example is the capture of Toledo and its library in 1085 
and the subsequent translation of its books into Latin.

25� A particular version of ﻿racism took the form of ‘orientalism’, as coined by Said 
(1979).
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how linguistic studies during the 1800s, not least at German universities, 
tried to explain away that Greek language demonstrates much influence 
from Eastern languages. Simultaneously, efforts were made to establish 
connections between Greek and German; such connections were in turn 
explained by a migration taking place thousands of years ago of people 
from the Caucasian region, with some groups moving into Greece while 
other groups continued into Germany. As ﻿Bernal ironically remarks, 
this migration seems to be the only one in history that did not leave 
behind a trace of broken pottery or other residues. Every kind of effort 
was made in order to fabricate the celebrated Greek culture as being a 
genuine Western culture.

The ﻿Westernisation of Greek culture also applied to the ﻿history of 
mathematics. When Greek culture was safely reinterpreted as being 
Western, Greek mathematics turned Western as well, and could be 
conceived of as a Western achievement. This process of ‘Hellenisation’, 
as referred to by ﻿Raju, highlights how the political power of the Christian 
church played a central role in this transformation.26 Everything got 
together: a celebration of mathematics, a celebration of Greek culture, 
and a celebration of the West.

This whole worldview has to be revealed as being false, and ﻿Joseph, 
﻿Raju, and others have made a huge effort to do so. The outlook is based on 
a wrong conception of the ﻿history of mathematics combined with layers 
of ﻿racism. To turn this explicit is a crucial component of establishing a 
critical conception of mathematics. The view of mathematics as a sublime 
discipline has developed together with processes of colonisation, the 
development of ﻿racism, and the formation of ideologies about the 
supremacy of European culture.

A brief discussion of the use of the expression ‘Western mathematics’ 
is warranted here: this phrase is often used by those aiming to critique 
precisely what they refer to in this way. However, the term troubles me 
for the following reason: if we look around the world today, there is 
nothing inherently Western about mathematics. Mathematics research 
occurs globally, mathematics is applied everywhere, and taught in 
schools as a discipline worldwide. If we go back in history, as ﻿Joseph 
and ﻿Raju have shown, mathematics was not exclusively ‘Western’ either. 

26� See also Raju (2012).
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So, when was mathematics fabricated as being Western? This occurred 
during the historical period addressed by ﻿Bernal, when ﻿colonialism 
and ﻿racism dominated the Western outlook, leading to a revision of the 
﻿history of mathematics to fit this narrative.

A plurality of cultural constructions

More than any other research programme, ﻿Ethnomathematics 
has addressed the cultural plurality of mathematics.27 In 1984, the 
ethnomathematical outlook was presented by Ubiratan ﻿D’Ambrosio 
in a plenary lecture at the International Congress on Mathematics 
Education (﻿ICME-5) in Adelaide in Australia. ﻿Ethnomathematics 
refers to the mathematics of any cultural group. It could be ﻿Indigenous 
people, shoemakers, bank assistants, engineers, ﻿pure mathematicians. 
﻿D’Ambrosio (2006) highlighted the importance of establishing this 
broader interpretation of ﻿Ethnomathematics.28

While ﻿Joseph provides an insight into the ﻿diversity of historical 
constructions of mathematics, ﻿Ethnomathematics reveals the plurality 
of cultural constructions of mathematics. This concretises what 
﻿Wittgenstein indicated by seeing mathematics as a rule-following 
activity. Mathematical rules can be different like grammatical rules can 
be different. Mathematics can be different as languages can be different. 
Just as one can operate with a diversity of language games, one can 
operate with a diversity of mathematics.29

As an example of a recent contribution to ﻿Ethnomathematics, 
let us refer to Aldo Parra’s (2018) study Curupira’s Walk: Prowling 
﻿Ethnomathematics Theory through ﻿Decoloniality. Curupira is a figure from 
﻿Indigenous mythology, who walks with his feet pointing backwards, 
which makes it difficult to follow his route. Parra provides an extensive 
empirical study, and at the same time he contributes with an important 
conceptual development of ﻿Ethnomathematics.

27� See D’Ambrosio (1992, 2006).
28� For a recent overview of the field see Rosa, ﻿D’Ambrosio, Orey, Shirley, ﻿Alangui, 

Palhares, and Gavarrete (2016). Important examples of ethnomathematical studies 
are found in, for instance, Gerdes (2008, 2012) and Palhares (2008).

29� Explicit references to ﻿Wittgenstein’s notion of language game have been made by 
Knijnik (2012, 2014, 2017).
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Parra presents ﻿Ethnomathematics as studies of relationships. Let me 
illustrate what he means by that. Parra worked in a Nasa community, a 
group of ﻿Indigenous people living in Colombia. Among many things, 
he was interested in coming to understand their conception of space, 
and how they measured areas and distances. They had elaborated 
techniques for doing this, and Parra learned about these. However, 
he does not see research in ﻿Ethnomathematics as just identifying 
and describing culturally embedded notions and techniques. He sees 
﻿Ethnomathematics as being concerned with relationships, which can be 
formed between such insights embedded in the Nasa culture and other 
forms of mathematics. Parra not only registered techniques applied by 
the Nasa community, but he also introduced alternative mathematical 
approaches; thus he showed how Google Maps functions.

Parra sees ﻿Ethnomathematics as ‘composed of a series of contingent 
and purposefully constructed relations between mathematics and 
culture’ (p. 13).30 This could be mathematics from within a specific 
culture, but also mathematics that does not belong to that culture. Parra 
engaged himself in the educational programme developed by the Nasa 
community, and he also tried to contribute to this. He was not making 
studies of the Nasa people; he was doing studies together with them in 
an attempt to contribute to their environment and to meet their interests. 
Parra did not see himself as first of all an observer, but as a participant.

This way Parra adds a new aspect to the ethnomathematical research 
programme. ﻿Ethnomathematics is not first of all a study of some 
culturally embedded mathematical techniques and insights, it is as 
well a process of involvement. Being involved also means ‘collaboration’, 
‘participation’, and ‘sharing’. Such notions capture the way Parra acts 
out his approach to ﻿Ethnomathematics.

Milton ﻿Rosa and Daniel Clark ﻿Orey (2016) outline different 
dimensions of ﻿Ethnomathematics, one being the political. I find it 
extremely important to recognise this dimension, and Parra illustrates 
what this dimension might include by his involvement. Let me just 
indicate a different example of what involvement could mean. The 
Amazon Rainforest has been shrinking. It represents huge economic 
resources: trees can be cut and sold, and new farmland can be opened 

30� In making the claim that ﻿Ethnomathematics has to do with relationships, Parra 
mentions that he is inspired by ﻿Alangui (2010).
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up. The life conditions for the ﻿Indigenous people living there are 
threatened. Any ethnomathematical study engaged with ﻿Indigenous 
people in the Amazon needs to be involved in this drama. To try to 
operate as a descriptive observer means to become, not a neutral, but a 
cynical observer.31

Parra’s study concerned the Nasa community. Other 
ethnomathematical studies address other communities. Taken together 
it becomes documented how different cultural contexts and practices 
give rise to different forms for mathematics. The ethnomathematical 
research programme presents mathematics as a plurality of cultural 
constructions. To recognise this is crucial for formulating a critical 
conception of mathematics.

Summary

Mathematics is formed through linguistic, historical, and cultural 
processes of construction, which bring about different versions of 
mathematics. Mathematics includes diversities. Mathematics is plural. 
This observation is crucial for formulating a critical conception of 
mathematics that does not assign any divine qualities to mathematics.

Above, I highlighted that mathematics-based actions can have any 
kind of qualities. This applies to any form of mathematics: engineering 
mathematics, street mathematics, ﻿applied mathematics, everyday 
mathematics, school mathematics, ﻿pure mathematics, any kind of 
﻿Ethnomathematics. Whatever version of mathematics that is brought 
into action, also any version of ﻿Ethnomathematics, the result can be 
interesting, reliable, questionable, cynical, risky, inefficient, misleading, 
accurate, disastrous, expensive, etc. Mathematics, in whatever version 
we are dealing with, is in need of being critically addressed.

Mathematics as a critical resource

As already emphasised, critique not only means pointing out flaws, 
weaknesses, and problematic issues, but also strengths, advantages, and 

31� The very idea of involvement also forms part of Knijnik’s (1996) outlook. She 
points out resistance as being important for acting out the political dimension of 
﻿Ethnomathematics.
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positive qualities. In fact, a critique can point out any kind of qualities 
(positive or negative) of a phenomenon.

If we return to the ﻿Fachkritik of mathematics, as formulated during 
the 1970s and 1980s, one not only finds extensive questionings of 
mathematical modelling﻿, but also efforts to identify models that could 
contribute to critical enterprises. This could be by documenting levels 
of economic inequalities, revealing different treatments of men and 
women, identifying dangers at the workplaces, showing implications of 
automatisation of production processes, and so on. In the initial period 
of the students’ movements, much effort was made to ally with the 
general interests of workers. So, during that period, mathematics was 
also thought of as a possible critical resource. This possibility we will 
concentrate on now.

Questioning hegemonic ideologies

By publishing the article ‘﻿Critical Mathematics Education: An 
Application of Paulo ﻿Freire’s Epistemology’, Marilyn ﻿Frankenstein 
(1983) formulated the idea of ﻿critical mathematics education in the 
English-speaking context. She drew inspiration from the pedagogical 
ideas developed by Paulo ﻿Freire, combined with a profound critical 
perspective on mathematics.

Frankenstein pointed out the importance of addressing mathematics 
critically. This is due to the fact that forms of oppression can be masked 
by layers of numbers that establish an appearance of a ‘necessity’ of 
oppressive socio-economic structures. This point she formulates in the 
following way: 

A significant factor in the acceptance of this society’s hegemonic 
ideologies is that people do not probe the mathematical mystifications 
that in advanced industrial society function as vital supports of these 
ideologies. (p. 327) 

A pedagogy should address critically all forms of hegemonic structures, 
and Frankenstein highlights that mathematics also has a role to play in 
this critique:

Critical mathematics education can challenge students to question these 
hegemonic ideologies by using ﻿statistics to reveal the contradictions 
(and lies) underneath the surface of these ideologies by providing 
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learning experience where students and ﻿teachers are ‘co-investigators’ 
[…]. Further, ﻿critical mathematics education can link this questioning 
with action, both by illustrating how organized groups of peoples are 
using ﻿statistics in their struggles for social change and by providing 
information on such local groups as students may wish to join. (p. 329)

﻿Frankenstein operates with the two main features of a critical conception of 
mathematics. She highlights that critique of mathematical mystifications 
that may function as vital support for hegemonic ideologies is essential. 
Simultaneously, she states that mathematics, in the form of ﻿critical 
mathematics education, can challenge students to question any patterns 
of explicit or implicit forms of oppression. Frankenstein is explicit in 
pointing out critical potentials of mathematics. She finds that critique 
is not only a reflective activity; questionings can be linked with actions. 
To Frankenstein ﻿critical mathematics education is not only a classroom 
practice; it makes part of a struggle for ﻿social justice.

In the book ﻿Relearning Mathematics: A Different Third R – Radical 
Maths, Frankenstein (1989) presents a richness of examples illustrating 
how a ﻿critical mathematics education can address oppressive structures. 
Frankenstein’s work has inspired many, but I will focus here just on 
the work of Eric ﻿Gutstein (2006, 2016, 2018), who develops further 
the inspiration from ﻿Freire by showing what ‘reading and writing the 
world’ with mathematics could mean and how to combine educational 
activities with an activist approach.

The notions of reading and writing the world are inspired by 
﻿Freire, who talked about ‘reading the word’ and ‘reading the world’.32 
By ‘reading the world’, he refers to processes of interpreting social 
phenomena. It can be with respect to patterns of oppression that might 
be integrated in daily-life routines, and in this way concealed within 
practices that are taken for granted. By ‘writing the world’, Gutstein 
refers to processes of changing the world. This could be with respect to 
any kind of experienced social injustices. By seeing reading and writing 
the world as features of educational processes, education comes to 

32� See ﻿Freire and Macedo (1987). Here ﻿Freire states: ‘ It is impossible to carry out my 
literacy work or to understand literacy […] by divorcing the reading of the word 
from the reading of the world. Reading the word and learning how to write the 
word so one can later read it are preceded by learning how to write the world, that 
is, having the experience of changing the world and touching the world’ (italics in 
the original).
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include reflective as well as activist features. By talking about reading 
and writing the world with mathematics, ﻿Gutstein (2006) captures the 
critical potential of mathematics. It could be that mathematics forms 
part of hegemonic structures, as highlighted by ﻿Frankenstein, but 
simultaneously mathematics has a critical potential. It can be used for 
identifying forms of oppression and come to be a reso urce for political 
activism.

Media and racism

Racism is addressed by Frankenstein, Gutstein, and many others 
contributing to critical mathematics education.33 Here I want to refer to 
the project Media and Racism, organised by Reginaldo ﻿Britto (2013, 2022) 
in a Brazilian context.34 

Many ﻿statistics shows the degree of acted-out ﻿racism in Brazil. As an 
example, at a prominent university in São Paulo the students completing 
a degree in medicine are almost all White.35 If we look at people put in 
jail the vast majority is Black, and the same goes for the soaring number 
of police killings – in 2019 in Rio de Janeiro, 1,810 people.36 There are 
many such ﻿statistics that can be explored. In Media and ﻿Racism the focus 
was on making the students experience how their own observations 
could become expressed in numbers.37 The project also illustrates what 
‘reading the world with mathematics’ could mean.

The departure point for the students’ investigations was the visibility 
of Black children in magazines circulating in Brazil. The students were 
divided into groups, and they were given the task of collecting photos 
of children shown in the magazines during a one-week period. A first 
observation was to see if the child was identifiable as Black or White 
(other racialised identities were not considered). Next, the students 
were asked to classify the environment in which the child was located as 
being either ‘positive’ or ‘negative’. A positive environment could mean 
that the child was located in a wealthy and nice-looking setting, while 

33� See, for instance, Davis and Jett (2019) and their chapter is this volume.
34� I have also presented Britto’s projects in Chapter 2 in Skovsmose (2023).
35� See Silva and Skovsmose (2019).
36� See ‘Rio violence’ (2020). 
37� During years, the project Media and Racism has been conducted by different groups 

of students, but in the following I concentrate on one occasion.
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a negative environment could show poverty or violence. The process 
of classification called for a range of questions. In some cases, the 
classification of the child was not straightforward, and the classification 
of environments in being positive or negative also called for further 
discussions. Sometimes, the negative features were only hinted at.

Of the 41 photos that were collected by one of the groups, 36 
presented White children, while 5 presented Black children. Of the 
White children 35 appeared in situations that were classified as positive, 
while only 1 appeared in a negative situation. Of the 5 photos of Black 
children, 3 appeared in positive situations while 2 appeared in negative. 
These observations became expressed through the notion of Degree of 
Visibility (DV).

The degree of visibility DVi, where i refers to a particular ethnic 
group, is a number calculated as:

DVi =
Number of photos with a person from the ethnic group i

Number of photos with a person from any ethnic group

Thus, the visibilities of black children DVb and of white children DVw, 
as observed by the group in question, can be calculated as:

DVb = 5/41 = 0.12

DVw = 36/41 = 0.88

The numbers reflect the students’ impressions: White children appear 
much more often in the magazines than Black children.

The DVi provides the degree of visibility, whatever is positive 
or negative. However, it is possible to consider the quality of the 
environment, and the Degree of Negative Visibility of an ethnic group i, 
DNVi, and of positive visibility, DPVi, can be defined as:

DNVi =
Number of appearances with negative content of the ethnic group i

Number of appearances in total of the ethnic group i

DPVi =
Number of appearances with positive content of the ethnic group i

Number of appearances in total of the ethnic group i
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The students could then calculate the following:

DNVb = 2/5 = 0.40
DNVw = 1/35 = 0.03
DPVb = 3/5 = 0.60

DPVw = 35/36 = 0.97

The point of making such calculations was to show that qualitative 
experiences can be expressed in numbers. However, such numbers are 
not the final words in the discussion; rather they provide a starting point 
for more profound explorations.

Any process of investigation calls for more investigations. We 
are dealing with open-ended processes. It would be natural for the 
students to ask, for example, if one could identify variations according 
to magazines. One could calculate the value of DVi, DNVi, and DPVi, 
for Black and White children in different magazines. One could also 
investigate if there are changes over time. One could concentrate on 
photos from commercials, or on photos related to news. Media and 
﻿Racism creates an opening for a range of further investigations. Through 
such activities, the potentials of operating with a notion like Degree of 
Visibility can become experienced by the students.

The approach used for showing the visibility of Black and White 
children can be used for showing the visibility of Black people and 
White people in any context. One can address visibility in different 
workplaces, different neighbourhoods, different educational settings, 
different political settings, different governments, etc. Furthermore, the 
approach can be used in relation to any classification of people in mind: 
women, men, immigrants, people with disabilities, etc. The very notion 
of Degree of Visibility and its associated calculations can be applied 
in many contexts. Furthermore, it is an approach whose mathematical 
part can be developed into a powerful tool for addressing any issue of 
representativity.38

38� For a further analysis of representativity, see Barros (2021). See also the 
presentation of the Bias Index in Skovsmose (2023).
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Climate change

Many observations indicate that the climate of the planet is changing, 
and that the changes are caused by human beings. The changes are 
so profound that it is plausible to assume that we are entering a new 
historical period.39

Mathematics is intimately related to the discussion of ﻿climate change. 
A first observation is that it is impossible to talk more specifically 
about ﻿climate change without using mathematical modelling﻿. In order 
to conceptualise ﻿climate change one needs to do forecasting. Weather 
forecasting is a common practice, which is now entirely based on 
mathematical modelling, in particular the application of dynamic system 
analysis. Weather forecasting has been practiced for centuries, and it 
existed before mathematics became applied. However, the forecasting 
with respect to climate changes cannot exist in any quantified form 
without mathematics. Mathematical climate models are tremendously 
complex.40

Through climate models, we might grasp the degrees of ﻿climate 
change taking place. We might also get an idea of what actions would 
prevent, or slow down, further changes. We are dealing with an example 
of experimental forecasting. Such forecasting is impossible without 
mathematics. A range of parameters forms part of a climate model, 
and the actual values of these parameters can be estimated through 
empirical observations. With changes in the values of such parameters, 
one might get a description of the present climate situation and how this 
will develop if no interventions are made. In experimental forecasting, 
one changes the value of some parameters in the model and observes 
how this will change the forecast. Through a systematic experimental 
forecasting one might ascertain the relevant initiative with which to 
respond. Experimental forecasting is crucial for formulating political 
recommendations for how to cope with climate changes.

Let us now return to the notions of reading and writing the world 
with mathematics. These expressions were used with reference to cases 

39� Such a claim is made by Crutzen and Stoermer (2000), who refer to the 
Anthropocene as characterised by the fact that human beings are influencing the 
atmosphere of the earth.

40� See McKenzie (2007), Coiffier (2011), and Warner (2011).
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of social injustices concerning, for instance, economic exploitations, 
﻿sexism, and ﻿racism. It was also acknowledged that such readings and 
writings could be mis-readings and mis-writings. These possibilities 
are obvious when we think of reading and writing climate changes 
with mathematics. Any climate model might incorporate a range of 
assumptions, political priorities, industrial interests, also of the most 
dubious nature. Any mathematics-based reading and writing needs to 
be critically addressed.

In ‘A Critical Mathematics Education for Climate Change: A Post-
Normal Approach’, Richard ﻿Barwell and Kjellrun Hiis ﻿Hauge (2021) 
discuss how climate change is addressed through mathematics.41 Based 
on this discussion they provide recommendations for how to address 
problems concerning ﻿climate change in mathematics education. ﻿Barwell 
and ﻿Hauge present three groups of educational principles, which 
concern authenticity, participation, and reflections on mathematics.

With reference to authenticity, they recommend that we address 
problems concerning ﻿climate change that students find relevant in their 
lives; that students come to work with real data as much as possible; that 
the students’ own ideas and values adopt a central role; and that students 
get the opportunity to engage in meaningful debate relating to ﻿climate 
change. With respect to participation, ﻿Barwell and ﻿Hauge recommend 
that students take part in the selection of problems, the mathematising 
of problems, the selection of data, the selection of mathematical tools, 
and the construction of models. Furthermore, they recommend that 
students actively participate in their communities and get engaged in 
public debates. With respect to reflections on mathematics, ﻿Barwell and 
﻿Hauge recommend that students are afforded opportunities to reflect 
on the usefulness of mathematics, but also on the limits of mathematics.

These recommendations emerged through discussion of ﻿climate 
change, but they are relevant whenever we try to make use of the critical 
potentials of mathematics. I see these recommendations as applicable to 
any form of reading and writing the world with mathematics. They are 
crucial whenever one brings mathematics into action.

41� See also Barwell (2013).
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Summary

The references presented in this section illustrate that mathematics 
can be mobilised to work for ﻿social justice. To acknowledge this is an 
important feature of a critical conception of mathematics. Naturally the 
point is not to claim that such efforts will be successful, only that they 
are possible.

Formulating a critical conception of mathematics presupposes that 
one addresses any form of mathematics brought into action and tries 
to show the different qualities such applications might have. Also, any 
mathematics that tends to reveal and document forms of social injustices 
requires critique.

Critical mathematics education

A critical conception of mathematics education is formed through many 
contributions. The formulation of this conception cannot be related to a 
few people. It appears as a collective achievement.

A critical conception of mathematics challenges any understanding 
of mathematics as being a sublime subject representing a unique and 
unquestionable form of human knowledge. Instead, mathematics 
becomes interpreted as a powerful structure when brought into action; 
as a social construction incorporating linguistic, historical, and cultural 
pluralities; and also as a possible resource for working for ﻿social justice.

I do not try to make any distinction between ﻿critical mathematics 
education and mathematics education for ﻿social justice. Both approaches 
draw on a critical conception of mathematics. They acknowledge that 
mathematics can be implicated in forms of oppression and exploitation, 
but also that mathematics includes potentials for reading and writing 
the world critically. How a ﻿critical mathematics education can be put 
into practice is naturally an open question, but numerous attempts and 
reflections have been presented and explored in the literature.42

42� See, for instance, Alrø, Ravn, and Valero (2010), Andersson and Barwell 
(2021), Avcı (2019), Bartell (2018), Ernest, Sriraman, and Ernest (2015), Greer, 
Mukhopadhyay, Powell, and Nelson-Barber (2009), Skovsmose (2011, 2014), 
Skovsmose and Greer (2012), and Wager and Stinson (2012).
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12. Art and anti-mathematics

 Houman Harouni

Scattered across history and cultures, we encounter instances of people trying 
to limit or reject the expansion and application of mathematics. These actions, 
which we can refer to as “anti-mathematics”, are particularly common among 
artists of the modern era. This chapter tries to decipher, through a close reading 
of a large group of examples, the different motivations and desires that give 
rise to anti-mathematics across different contexts. The author argues that such 
actions are attempts at shielding particular ways of life from the encroachment 
of forces (economic, philosophical, and administrative) that use mathematics 
as their main instrument. In art, the pain and confusion caused by the uses 
of mathematics can be hurled back at those uses and expose their underlying 
violence. Anti-mathematics, however, does not only expose. It always creates 
new zones, new approaches, new products for thinking and life. The author 
finally connects these historical examples with the experience of children in 
contemporary schools and suggests that a study of anti-mathematics might be the 
key to developing an autonomous and rational relationship to the irrationality 
of mathematized reason. 

Let it not be four: Anti-mathematics and science

“Every prayer”, Ivan ﻿Turgenev wrote in 1881, “reduces itself to this: 
Great God, grant that twice two be not four” (﻿Turgenev, 2015, p. 102). 
Almost eighty years earlier, in Germany, ﻿Novalis had written that 
“miracles, as facts contrary to nature, are anti-mathematical” (Novalis, 
2021, p. 289). Both sayings open, almost immediately, onto a familiar 
battlefield: the one between the hard rationality of science on one side 
and the softened allure of ﻿religion, ﻿occultism, and romanticism on the 
other. It is a sentiment that energized many in the European eighteenth 
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and nineteenth centuries, as they stood amid the transformation of the 
world through a power whose surest instrument, beside gunpowder, 
was mathematics. Almost seventy years earlier, in 1813, Lord ﻿Byron 
had written to his wife-to-be, the mathematician Anne ﻿Milbanke: “I 
know that two and two make four—& should be glad to prove it too 
if I could—though I must say if by any sort of process I could convert 
2 & 2 into five it would give me much greater pleasure” (﻿Byron, 1899, 
p. 404). In all of these pronouncements on the nature of 2+2 we can 
hear two ideas, stated simultaneously. The first is a desire for something 
anti-mathematical, something that breaks the bounds of ﻿certainty. The 
second is a confession that reality has already become fully subject 
to mathematical models and explanations. 2+2 was not merely a 
mathematical sentence, but a weapon that could be used to promote or 
forestall social transformation. Only a few years before and not far from 
where ﻿Turgenev wrote ‘The Prayer’, the revolutionary Mikhail ﻿Bakunin 
had used the formula to dismiss deism, perhaps the last rationalist 
attempt at a ﻿religious perspective, as “a philosophical vinegar sauce of 
the most opposed systems […] accompanied, of course, by an ignorance, 
as contemptuous as it is complete, of natural science, and proving just 
as two times two make five, the existence of a personal god” (Bakunin, 
1910, p. 63). 

For most of history, whenever a person has been called “anti-
mathematical”, or labeled as someone who wants 2+2 to equal a number 
other than four, the connotation has been purely negative. It has been 
an epithet reserved for the ignorant, the occultist, or the dimwitted.1 

1� To relieve the text of the burden of multiple citations, I offer a few historical 
examples in this footnote. Fauvel-Gouraud (1845, p. 86) applies the term 
antimathematical to a young person who is too slow to learn numbers. Similar 
uses are frequent, for example in Sonnenschein (1889, p. 577): “even the dullest 
and most antimathematically minded boy can hardly fail to understand”. Medical 
scientists could use the term to disparage colleagues who, in their opinion, refused 
to get with the times and apply hard science to their craft (e.g., Young, 1813, p. 
603). The astronomer Heaviside (1893, p. 309) applies it to those who do not 
know enough mathematics to understand basic ﻿physics. In education, the term 
was used at least once (by White, 1919, p. 29), to refer to those “who give much 
encouragement to the movement against mathematics as a required subject in 
the high school and who try to persuade our present and future ﻿teachers and our 
school officials that mathematical training does not have sufficient value to justify 
requiring it in the high school”. It is important to note that White does not cite 
any of his opponents, and probably could not do so, because arguments against 
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The connotation of being a loser in the game of reality is particularly 
strong whenever the term “anti-mathematical” is applied to a person or 
a movement, an adjective purporting to describe a way of being that is 
out of step with truth itself.2 Almost no one has ever applied the term 
to themselves.3 The only serious exception to the rule happens to be 
extremely common: I am referring to the many students who proclaim 
or admit, without self-irony, that they “hate mathematics”. We will have 
a chance, before the end, to discuss the relationship between this cry of 
exasperation and the more self-assured statements by those like ﻿Byron 
and ﻿Turgenev. 

It is a defeated territory, defenseless and open to all forms of 
trespass, that we set out to explore in this chapter. But, for all that, it is 
not unpopulated or eventless. Many figures, many chains of occurrence 
pass through here.

We should suspect that there is more to the prayer that wishes to 
unmoor the laws of mathematics than mere ﻿occultism. After all, ﻿religion 
itself is more than the opiate of masses: Karl ﻿Marx saw in ﻿religion “the 
sigh of the oppressed creature, the heart of a heartless world, and the 

teaching mathematics in schools were not published in scholarly journals of the 
time (see also Barber, 1990, pp. 103–105). 

2� In philosophy, August Comte (1876) was probably the first to use the term, 
applying it to ﻿Plato and his followers, whom he put in opposition to ﻿Aristotle: 
“Archimedes and even Hipparchus intellectually emanated from ﻿Aristotle, as did 
Leibnitz, and even ﻿Newton, from ﻿Descartes. The other schools, not excepting those 
that made the greatest noise, never shared in the great scientific discoveries the 
reaction of which on methods of reasoning was thoroughly repugnant to them. 
The bent of ﻿Plato’s talent—his pompous inscription notwithstanding—was just 
as emphatically anti-geometrical as, on the contrary, the character of ﻿Aristotle’s 
genius was mathematical” (p. 266). For Comte, ﻿Plato is a loser in the game 
of positive science. It would take more than a century before a philosopher, 
Alexander Koyré, would use the term neutrally. Incidentally, Koyré applied the 
characteristic to ﻿Aristotle: “﻿Aristotle’s ﻿physics”, he wrote, “is based on sense 
perception, and for that reason it is resolutely anti-mathematical” (1966, p. 207). 
In this latter instance there is no hidden, negative connotation. Koyré admired 
﻿Aristotle and was simply describing what he saw as an aspect of the old master’s 
approach to ﻿physics. 

3� I can locate only two instances. In both, the term is used jokingly. In Germany, in 
the 1890s, a group of engineering professors campaigned against the excessive 
teaching of mathematics in their schools, and they might have referred to 
themselves as “the anti-mathematical movement” (see Hansson, 2018). The other 
instance is the mathematician Florentin Smarandache, who, in his pamphlet 
Aftermath and Antimath (2012), promotes absurdist plays on ﻿word problems and 
other mathematical questions. 
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soul of soulless conditions” (1970, p. 11). When Fyodor ﻿Dostoevsky has 
his mouthpiece in Notes from the Underground protest “Two times two is 
four is no longer life, gentlemen, but the beginning of death!”, he might, 
on one plane of thought, be militating for that obsolete ﻿religious faith 
that he held on to for most of his painful life. On another level, however, 
he is arguing on behalf of something new and yet-to-come, a creative 
project that recedes in the face of numerical ﻿certainty. “Gentlemen”, he 
says, “what sort of will of one’s own can there be if it comes to tables 
and ﻿arithmetic, and the only thing going is two times two is four?” 
(﻿Dostoevsky, 2011, p. 30).

 It is only by looking at the positive, creative aspects of the above 
examples that we can perceive the real differences between the speakers. 
﻿Byron, for example, who would “be glad” to partake of the work of 
﻿proofs, and who respects in his correspondent, Anne ﻿Milbanke, her 
work on mathematics, does not wish merely to uproot numbers, but to 
search far enough until a zone of chaos can present itself. This is how 
his letter continues: 

The only part [of my mathematical education] I remember which gave 
me much delight were those theorems (is that the word?) in which after 
ringing the changes upon A, B and C, D etc., I at last came to “which is 
absurd”—“which is impossible” and at this point I have always arrived 
and I fear always shall through life—very fortunate if can continue to 
stop there. (﻿Byron, 1899, p. 404)

Here ﻿Byron, a man who looked for liberty within the discipline of the 
military or of the strictest rhyme schemes, has greater affinity with a 
figure like Goethe—also accused of being “anti-mathematical” (e.g., 
in Read, 1898, p. 216)—who explored within scientific logic itself for 
pathways that could not be reduced to logic. He is far from, to look 
at another example, ﻿Turgenev’s spiritualized nihilism, the acquiescence 
to living in a world absolutely bereft of miracles, while nonetheless 
believing in them. For ﻿Turgenev, the only solution, as the ending of 
‘Prayer’ suggests, is a defiant resignation:

And if they set about confuting him [the believer] in the name of truth, 
he has but to repeat the famous question: “What is truth?”

And so let us eat, drink, and be merry—and say our prayers. 
(﻿Turgenev, 2015, p. 104)
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This kind of quietism, in turn, is alien to ﻿Dostoevsky, whose lonely 
characters often rage against the logic of their surroundings—money, 
morals, measures—by violent means, doomed to exhaustion and 
disgust. 

In each of these cases, the artist is carrying an opposition to the uses 
of mathematics on behalf of a form of life. The more a society rationalizes 
its terrain, the more strictly it defines (i.e., cuts from the infinite) the 
world by dividing it into manageable zones—then the more likely for 
various forms of life to become threatened. It is then not unlikely for 
certain people to take on the burden of illuminating chaos in their 
actions, in their mode of existence. We do not have to think of this as 
a modern phenomenon. Highly traditional, small societies, with strict 
rules of conduct and a willingness to let the unknown be unknown, 
give rise to the figure of the shaman with his or her chaotic and magical 
relationship to social norms. It is in very rare instances, such as early 
medieval Islam, where tremendous diversity and curiosity are allowed 
to live side-by-side with imposed order, in such a way that the task of 
engaging with chaos does not become a specialized activity. There, 
polymaths proliferate, so that an Omar ﻿Khayyam can both write the 
most precise treatises on cubic equations, the theory of parallels, and 
astronomic calculations, and also compose spiritual poems that render 
all precision and prediction, other than death, ineffective. At the same 
time, ﻿Khayyam’s doubts as a spiritualist were not exiled from his work 
on mathematics, which, by doubting the assumptions of the old masters, 
produced the first inkling of a non-﻿Euclidean ﻿geometry (see Smith, 
1935). The Islamic Golden Age is a long procession of such complexities: 
﻿Avicenna, ﻿Al-Biruni, ﻿Ibn Firnas, ﻿Al-Farabi. Everywhere chaos and order 
mingle, so that the same person, in a single train of thought, moves from 
science to mysticism to poetry in patterns that define the vastly varying 
cosmologies of that all-too-brief period. 

A major distinction of the modern era is the solidification of science 
as a separate realm, for which consistent patterns of movement can be 
devised. At the most decisive moment of this new era, that is at the 
moment when ﻿Philosophiæ Naturalis Principia Mathematica obliterated the 
need for philosophy in understanding nature, it was still possible for its 
author, a devout Christian and an alchemist, to think, in all seriousness, 
that divine intervention might be necessary to keep the machinery of 
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the universe running without a hitch (﻿Newton, 1952, p. 402). But Isaac 
﻿Newton did not work this hypothesis into the Principia. The axiomatic 
logic had finally become so tightly bound and so extensible that it left no 
room for such metaphysical conjectures. Philosophy and art now stood 
outside the periphery of science. Science did not need them, but they 
could not ignore it. Of the three (the scientist, the philosopher, and the 
artist), it was the artist who received most clearly the task of dealing 
with chaos and uncertainty as they impact the senses. We can say with 
Gilles ﻿Deleuze and Félix ﻿Guattari that the “artist brings back from the 
chaos varieties that […] set up a being of the sensory, a being of sensation, 
on an anorganic plane of composition that is able to restore the infinite” 
(1994, pp. 202–203). However, we need to restore to the statement the 
historical background that ﻿Deleuze and ﻿Guattari have ignored. What 
they describe is the artist as the product of a specific, historical division 
of labor.4 In other words, “restoring the infinite” is neither the artist’s 
sole vocation, nor is it solely the artist’s burden. Anyone who feels the 
overwhelming power of the absolutely-defined and the irrevocably-
measured also has the opportunity to pose counter-measures to that 
power. 

This is why we are on more secure ground when we think of anti-
mathematics as a series of actions (rather than a way of being, as implied 
by the term “anti-mathematical”) which are scattered across epochs and 
cultures. Their apparent goal is to either limit the encroachment—the 
expansion—of mathematics into a way of life, or to encroach on the 
realm set apart by mathematics. The motivating purposes of these 
acts, however, are open only to speculation. The evidence for any 
definitive statement is lacking. Almost everywhere, the actors have held 
back from disclosing, or even exploring, their own motives at length. 
Perhaps the opposing force has always remained too powerful, held 
too overwhelming a claim to truth. Whoever speaks against this force, 
speaks in the self-doubting voice reserved for prayer.

4	  Deleuze and ﻿Guattari contrast varieties, as the order-producing result of the arts 
in relation to the infinite, with variations and variables, which they view as the 
instruments of philosophy and science, respectively. One has only to consider the 
early days of a science—e.g., ﻿psychology—to see to what extent such distinctions 
are inapplicable: for example, “ego,” “the self,” and “the I” are all varieties of 
variations on a variable that did not yet have a clear definition. 
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Beyond a prayer: The larger terrain of anti-mathematics

Not all acts of anti-mathematics are the work of artists per se. Various 
philosophers have also put up a resistance to the science. We have 
﻿Zeno of Elea’s paradoxes, which might have been devised to curb the 
ambitions of the Pythagoreans (Matson, 2001), ﻿Augustine of Hippo’s 
highly influential exhortations in ﻿De Doctrina Christiana (1995, p. 123) 
that the clergy limit their study of mathematics to the most rudimentary 
topics, Blaise ﻿Pascal’s expressions of horror at the idea of a rationalized 
universe (see Zakai, 2010), and Martin ﻿Heidegger’s (1969) vilification of 
“calculative thought”, to name only a few examples. Elsewhere, I study 
these instances in detail (Harouni, forthcoming) and so will only pause 
here to point out two important theses. First, all of the above actors 
recognize the legitimate claim of mathematics to encroach on what we 
can call their “domains of interest”. In fact, all of them had a relatively 
strong command of the mathematics of their time, and, just as in the 
statement “two plus two does not equal four”, some also use numerical 
reasoning to bolster their ideas (e.g., Zeno’s paradoxes). Second, in all 
cases, the opposition, in contrast to what Charles ﻿Wolfe (2017) claims 
regarding his seventeenth-century examples, is not based on some 
scientific scepticism regarding the utility of mathematics.5 It is purely 
ideological. The problem is never the instruments of ﻿arithmetic and 
﻿geometry in and of themselves. It is what an opposing ideology is trying 
to do with those instruments. 

It is important to remember that mathematics is not only the 
instrument of an explanatory (scientific) power. People shape it into a tool 
for a wide range of activities—for example, commerce, administration, 
and construction (Harouni, 2015b)—and in turn humanity is shaped by 
these uses. There are forms of anti-mathematics that do not aim their 

5� One of the most systematic studies of anti-mathematics to date is that of Schliesser 
(2017, 2011) and, following him, Wolfe’s (2017). They call the phenomenon 
“antimathematicism” (i.e., a stance, not an act, as I have formulated) which, 
for them, arose in reaction to what Schliesser calls “﻿Newton’s Challenge”—the 
possibility of mathematizing all science. “Antimathematicists” are those who 
try to limit the utility of mathematics based on doubts regarding its universal 
applicability. The definition is, on the one hand, extremely limited in its 
historical scope, and on the other, far too expansive to be of use: all conscientious 
statisticians, for example, who try to limit the implications of their studies, 
suddenly turn out to be antimathematicists.  
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opposition at a scientific perspective at all, but at certain organizations 
of social life. Nothing in the examples I have given so far prepares us 
to understand, for example, the taboo against the counting of human 
beings that we find among the ancient Israelites (Park, 2013), various 
communities in Africa (Githuku, 2001), and the Quechua in South 
America (Urton, 1997). In each case, the taboo appears alongside an 
administrative or cultural system that obsessively reckons people and 
their possessions (an opprobrium against counting livestock sometimes 
accompanies the one against counting humans). It is as if the culture, 
knowing that it must surrender all its members as units in a giant 
scheme of reckoning refereed by kings, empires, or avaricious men, 
tries at the last moment to warn itself of the ultimate consequences. The 
Torah establishes the ban on counting humans just at the moment that 
Yahweh demands a military census from Moses (Exodus 30:11–16). Such 
taboos are not merely outdated superstitions. Contemporary culture 
still carries forms of aversion to the infringement of numbers on certain 
aspects of life: A calculating mindset in the context of family or romantic 
love disgusts us (Belk, 2005). To demand that you be paid back, in equal 
monetary terms, for a gift you gave out of love does not belong in the 
harmonious sphere of marriage, but in the explosive zone of divorce. 
The ﻿certainty of mathematical reasoning in the realm of exchange or 
administration is not in itself a problem; but when extended into other 
realms, it can pose a formidable challenge to those forms of life that 
must shirk it to survive. 

The nineteenth century, my point of departure in this chapter, marks 
the era in which money economy and state administration (﻿statistics, the 
science of the state) finally overtook nearly every arena of life. It also 
marks the beginning of a widespread awareness of the consequences 
of such a takeover. Medieval Europe, particularly among its aristocracy, 
had harbored an opposition to monetary relations and, with them, to 
the craft that made monetary exchange possible: ﻿arithmetic (see Davis, 
1960; Harkness, 2007). But this was an issue for the high-handed fringes 
of society who had access to surplus resources, and to those who built a 
living around the movement of this surplus through loans and luxuries. 
The serf, the priest, the craftsman, or the soldier, placed in immutable 
social positions and exploited or rewarded according to set formula, 
had very little to do with these concerns. We must travel a long way to 
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arrive at a system that promotes the total fungibility of labor, objects, 
and values in the manner that, for example, plagued the thinking of 
Charles ﻿Dickens. His books are populated by characters who are, on the 
one hand, obsessed by money, as it determines their movement through 
society (upward or downward—﻿Dickens had experienced both in his 
life), and who, on the other hand, are incapable of comprehending its 
value when they have it in hand. The incomprehension is essential to 
the humanity of these characters—the upstart, Pip, for example, in ﻿Great 
Expectations—but they are not heroes fit for their own adventure if they 
do not give in to the desires that their universe dictates (in the same 
novel, the saintly blacksmith, Joe, is not a hero, but a pole that attracts 
or repels young Pip). 

﻿Dickens could see the same push and pull in the operations of 
the state and its agents. To reduce individuals to statistical units both 
sheds light on social problems and, at the same time, annihilates the 
individuals within those problems. This is made ham-fistedly clear in 
a passage from ﻿Hard Times. I quote it at length, because it concerns the 
character with whom this discussion will end: the child who comes to 
say that he/she hates mathematics. Here we see her in the person of 
little Sissy, who has come home after receiving a scolding at school and 
is describing the ordeal to her benefactor:

‘Then Mr. M’Choakumchild said he would try me again. And he said, 
“This schoolroom is an immense town, and in it there are a million of 
inhabitants, and only five-and-twenty are starved to death in the streets, 
in the course of a year. What is your remark on that proportion?”. And 
my remark was—for I couldn’t think of a better one—that I thought it 
must be just as hard upon those who were starved, whether the others 
were a million, or a million million. And that was wrong, too.’

[Louisa] ‘Of course it was.’
‘Then Mr. M’Choakumchild said he would try me once more. And he 

said, “Here are the stutterings—”’
‘Statistics,’ said Louisa.
‘Yes, Miss Louisa––they always remind me of stutterings, and 

that’s another of my mistakes—of accidents upon the sea. And I find 
(Mr. M’Choakumchild said) that in a given time a hundred thousand 
persons went to sea on long voyages, and only five hundred of them 
were drowned or burnt to death. What is the percentage? And I said, 
Miss;’ here Sissy fairly sobbed as confessing with extreme contrition to 
her greatest error; ‘I said it was nothing.’
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‘Nothing, Sissy?’
‘Nothing, Miss—to the relations and friends of the people who 

were killed. I shall never learn,’ said Sissy. ‘And the worst of all is, that 
although my poor father wished me so much to learn, and although I am 
so anxious to learn, because he wished me to, I am afraid I don’t like it.’ 
(﻿Dickens, 1854, p. 69)

Sissy in the above passage acts as an artist. The sentences she crafts 
rise, supposedly, from working-class experience, and they twist the 
utilitarian logic of the schoolmaster (the brutal Mr. Gradgrind, with 
his motto “the Facts, sir; nothing but Facts”) to express what bourgeois 
calculations stifle. But these words are an obvious idealization of what 
real working-class children can usually articulate in schools. Sissy’s 
tears, her pain, and her confusion are closer to reality than her words. “I 
am afraid I don’t like it” is anti-mathematics in its most defeated form. 
A contemporary expression of the sentiment is the exasperated cry of 
Detective McNulty in the most Dickensian of all-American television 
series,6 The Wire: “Fuck the fucking numbers already! The fucking 
numbers destroyed this fucking department” (Simon & Burns, 2008). 
Each season of ﻿The Wire centers on a social institution that, under the 
pressure of calculated costs and benefits, has lost its capacity to serve its 
purpose. Almost every time someone makes a calculation in ﻿The Wire, 
it is an act that affirms the supremacy of the economic factor. In one 
scene (Simon & Burns, 2002), a young girl comes to her older brother 
to ask for help with a math homework problem. The children live in a 
dilapidated squat, and the older brother, a very low-level drug dealer, 
is the breadwinner. It is a simple ﻿word problem, about the number of 
people on a bus after such and such number step in or out at various 
stations. The girl cannot answer it, and so the brother, frustrated, restates 
the question in terms of street drug dealing:

Wallace: Damn Sarah, look! Close your eyes. You working the ground 
stash. Twenty tall pinks. Two fiends come up to you and ask for two each 
and another one cops three. Then Bodie hands you off ten more. But 
some white guy rolls up in a car, waves you down, and pays for eight. 
How many vials you got left? 

6� See Joy DeLyria and Sean Micheal Robinson’s (2011) clever essay that brings out 
the relationship between ﻿The Wire and ﻿Dickens’s critique of social institutions by 
presenting the television series as a serialized, nineteenth-century novel. 
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Sarah: Fifteen.
Wallace: How the fuck you able to keep the count right and not be 

able to do the ﻿word problem then? 
Sarah: Count be wrong, they’ll fuck you up. 

Educational scholars have seen in this very scene (e.g., Dixon-Román, 
2014), and ethnographic data like it (e.g., Mesquita et al., 2011), the 
antidote to working-class children’s resistance to learning school 
mathematics. If only someone had the wherewithal, Ezekiel ﻿Dixon-
Román (2014) muses, to take advantage of these “deviantly marked 
cultural repertoires” (i.e., child labor in the extreme violence of the 
drug economy) in order “to pedagogically mediate [the children’s] 
textbook learning experience,” then “the academic mathematics” 
would “function effectively within the particularities of marginalized 
communities” (p. 20). 

Charitable approaches, like the one described above, do not offer the 
marginalized child a way into the academic system. Rather, they deprive 
them of the last vestiges of dignity with which their indignation at the 
system had equipped them. The children do not receive Sissy’s ability to 
see through the uses and abuses of numbers. Rather, they are lulled (the 
educationalist hopes) into total capitulation to that all-encompassing 
economic system within which, if “count be wrong, they’ll fuck you up.” 

Sissy’s soul and feelings

In art, the pain and confusion caused by the uses of mathematics can be 
hurled back at those uses. The action often relies on an extrapolation of 
what mathematical models leave out or override. This is, in part, similar 
to what critical social science tries to do with economic and statistical 
data (see Harouni, 2015b). ﻿Marx’s theory of value, for example, walks 
back the calculations of commodity exchange until one reaches the 
element that buying and selling had obscured—that is human labor. 
In fact, there are entire arenas of art that cannot be distinguished from 
politically motivated data visualization. The German artist K. P. ﻿Brehmer, 
in 1972, rigged a West German flag so that the sizes of the three colors—
black, red, and gold—were determined by the distribution of wealt h in 
the country (Figure 12.1).
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 Fig. 12.1 K. P. ﻿Brehmer, Korrektur der Nationalfarben, Gemessen an der 
Vermögensverteilung (Version I) [Correction of the National Colours, Measured by 
Distribution of Wealth (Version I)], 1972, Collection Alexander Schröder, Berlin. 
Exhibition photo from KP Brehmer. Real Capital-Production, Raven Row, 2014. 

Photograph by Marcus J. Leith. Reprinted with permission.

The extrapolation here is still thoroughly within the realm of 
mathematical sense-making and indistinguishable from social science. 
We can compare the flag to another of Brehmer’s works, the series 
titled The Soul and Feelings of a Worker, where the artist renders the 
incalculable elements of the worker’s life (Sissy’s tears and Sissy’s 
imagination) as precise but nonsensical geometrical constructions 
arranged  on graph paper (Figure 12.2). 
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 Fig. 12.2 K. P. ﻿Brehmer, Seel und Gefühl eines Arbeiters [Soul and Feelings of a 
Worker] 1980, Photo from K. P. Brehmer, Wie mich die Schlange sieht. Daadgalerie. 

1986. Reprinted with permission.

The obvious and intentional failure of Brehmer’s graph to capture 
“the soul and feelings” illuminates the irreducibility of the inner life 
of the worker to the products of calculation. Of course, so much of the 
external life of labor revolves around hard numberings that even social 
or governmental movements with the expressed aim of improving that 
life have to return, again and again, to those calculative reductions. By 
placing itself within this tension, Brehmer’s graph becomes an act of anti-
mathematics. In one sense, it is part of a tradition that tries to oppose the 
administrative function of mathematics through rendering it senseless. 
The Slovakian artists, Stano ﻿Filko, Alex ﻿Mlynárčik, and Zita ﻿Kostrová, 
in their 1965 project, ﻿HAPPSOC (a mix of “happy,” “happening,” and 
“socialism”) created census data that pushed against the communist 
regime’s obsession with ﻿representations of its own achievements. “One 
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Danube… six cemeteries”, one piece of data claimed (Hoptman & 
Pospiszyl, 2002, p. 86). Zhang ﻿Huan’s 1995 performance piece in which 
a group of naked artists piled on top of each other to “Add One Meter 
to an Anonymous Mountain” can also be seen as a ridicule of Chinese 
governmental propaganda that constantly recounted the roads, dams, 
schools, and hospitals built in a year. But, in another sense, ﻿Brehmer’s 
piece differs from these other works in that it contains also a call for 
taking into account, in the mathematical sense of the phrase, the non-
product ive aspects of a worker’s life.

 Fig. 12.3 Zhang Huan, To Add One Meter to an Anonymous Mountain (1995). 
Reprinted with permission.

There is an intellectual and emotional sophistication in each example 
we have studied so far—a sophistication born of residing in the tension 
of a dilemma: Mathematics has become one of the most powerful 
instruments of definition and measurement, and, as such, it calls to 
the artist as a topic of investigation that, nonetheless, cannot be treated 
artistically. Or, to put it another way, each artist must acknowledge the 
“unreasonable effectiveness of mathematics” (Wigner, 1960) in science 
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and administration, even try to incorporate some of that power, while 
giving voice to powers that are rejected by it. 

That sophistication may not need to have any impact on the world 
beyond its own expression. But I would like to suggest at least one 
potential extension of its impact. Consider Gustave ﻿Flaubert’s famous 
“Age of the Captain” problem, which he invented for his younger sister: 

Since you are now studying ﻿geometry and trigonometry, I will give you 
a problem. A ship sails the ocean. It left Boston with a cargo of wool. It 
grosses 200 tons. It is bound for Le Havre. The mainmast is broken, the 
cabin boy is on deck, there are 12 passengers aboard, the wind is blowing 
East-North-East, the clock points to a quarter past three in the afternoon. 
It is the month of May. How old is the captain? (Flaubert, 1893, p. 39)

The nonsensical little story mounts a small opposition to the way 
mathematics was, and continues to be, taught in schools. Different 
versions of it have been used to that effect ever since its composition (see 
Verschaffel et al., 2000). Its oppositional force, however, only extends 
to what happens in schools and schoolbooks. It critiques the use of 
fictional ﻿word problems that reduce the complexity of a context such as 
a merchant ship to a few cliched situations within which a mathematical 
calculation can find an example. Works like ﻿Dickens’s, ﻿Brehmer’s, 
﻿Huan’s, and ﻿HAPPSOC, however, go further. They challenge the social 
systems that made mercantile-administrative mathematics (Harouni, 
2015b), with its constant emphasis on calculation and reduction of 
objects to values, a staple of the modern education system (Harouni, 
2015a). They do not stay with the age of the captain, but hint at a 
challenge to the movement of wool from Boston to Europe in 1841 (the 
year Flaubert wrote his ﻿word problem), and the structures that make 
such a movement possible or necessary. 

We find a stronger version of this challenge in the works of the Chilean 
poet (and physicist) Nicanor ﻿Parra, who simultaneously disrupts our 
conception of school mathematics and the social activities that give rise 
to it. The piece titled “Mission Accomplished” (Parra, 2004, pp. 59–61) 
begins and ends as follows:
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trees planted 17
children begotten 6
works published 7
sum total 30

[…]

European capitals 548
lice and fleas 333333333
Apollo 16 1
sum total 49

regular kisses 48
“ with tongue 17
“ at the mirror 1
“ luxury 4
“ Metro Goldwyn Mayer 3
sum total 548

tears 0
drops of blood 0
sum total 0

In form, ﻿Parra (probably unwittingly) returns us to the earliest ﻿word 
problems on record—the little stories that Babylonian scribes created to 
teach their craft and worldview to the youth who, one day, would take 
over the duties of accounting and organizing labor on behalf of the state:7 

649,539 barley-corns
72,171 ears of barley
8,091 ants

891 birds
99 people

730,791

7� For a thorough discussion of the historical occurrences of this Babylonian problem 
see Friberg ( 2005), and for an analysis of its relationship to forms of labor see 
Harouni (2015a, 2015b). I have simplified the ﻿representation of the original text, 
which is written on two sides of a tablet and in two numerical systems. 
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In order for a sum to be gained, all these different objects (ants, birds, 
corn, people) must lose their ﻿identity, even as genera and species, 
until nothing but an evenly distributable ﻿identity—i.e. pure value for 
accounting—remains to them (see Chapter 5 in this volume). It is such 
losses and gains that ﻿Parra comingles in his writing, acknowledging 
and discarding both: all kisses, or injuries, or works accomplished, can 
indeed be summed up—but the final results may be wrong, and in the 
end both profit and loss will return to that grounding of blood and tears 
wherein they both draw and lose their meanings. That Parra does not 
divorce this image from its historical background can be seen in his riff 
on the 2+2 motif, in the poem “Watch Out for the Gospel of the Times” 
(p. 5):

2 parallel lines that always intersect
create a perfect marriage
a river that flows against its own current
never arrives at a happy end
everything is permitted
absolute freedom of movement
that is, without leaving the cage
2+2 doesn’t make 4:
once it made 4 but
today nothing is known in this regard

For students in today’s math-obsessed schools, a study of anti-
mathematics will at least elevate their sense of opposition to the school 
subject from defeatism to a critical, historical, and artistic stance. It 
might even help free them from the designs of all those educationalists 
who conspire to spoon-feed them, day after day and for more than a 
decade, a set of skills that, should we accept Jacques ﻿Ranciére’s (1991) 
historical examples, one could pick up with a few months of interested 
and diligent study, paced according to one’s own needs or desires. 

New spaces

The examples I have gathered so far seem to stand at a distance from the 
work of mathematics itself. They comment on it, impact its role in social 
or private life, but do not touch it directly. So-called ﻿pure, theoretical 
mathematics might prove immune to the influence of anti-mathematics. 
As a strictly reasoned discourse, it forces all opposition to express itself 
in strictly reasoned terms, at which point it has already proven itself 
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victorious. This is what it did to ﻿Zeno’s paradoxes, which, in the beginning, 
might have been posed against the influence of the Pythagoreans on 
philosophy. The paradoxes were posed in mathematical terms—for 
example, “that which is in locomotion must arrive at the half-way stage 
before it arrives at the goal [and so will never reach it]” (﻿Aristotle, 1984, 
239b11). Eventually, the paradoxes became part of mathematics itself, 
rather than any reaction against it. Their arguments fueled not less, but 
more mathematical exploration and power (Salmon, 2001). 

But, as various activities draw on mathematical power to expand 
their reach, the strict reasoning of mathematics loosens, sometimes to 
such an extent that it becomes merely a mask for the chaotic desires that 
try to impose themselves on life. In these instances, anti-mathematics can 
expose the unreason that masquerades as reason. The false equations 
and orders break apart under the power of an opposition that through 
transposition of mathematical terms, expresses their limits. To return to 
﻿Dickens’s ﻿Hard Times:

‘I am almost ashamed,’ said Sissy, with reluctance. ‘But today, for instance, 
Mr. M’Choakumchild was explaining to us about Natural Prosperity’.

‘National, I think it must have been,’ observed Louisa. 
‘Yes, it was. But isn’t it the same?’ she timidly asked. 
‘You had better say, National, as he said so,’ returned Louisa, with 

her dry reserve. 
‘National Prosperity. And he said, “Now, this schoolroom is a 

Nation. And in this nation, there are fifty millions of money. Isn’t this a 
prosperous nation? Girl number twenty, isn’t this a prosperous nation, 
and a’n’t you in a thriving state?”’ 

‘What did you say?’ asked Louisa. 
‘Miss Louisa, I said I didn’t know. I thought I couldn’t know whether 

it was a prosperous nation or not, and whether I was in a thriving state 
or not, unless I knew who had got the money, and whether any of it was 
mine. But that had nothing to do with it. It was not in the figures at all’, 
said Sissy, wiping her eyes. 

‘That was a great mistake of yours’, observed Louisa. 
‘Yes, Miss Louisa, I know it was, now’. (﻿Dickens, 1854, p. 68)

The sum total of available currency in a country might, and only might, 
be a tightly reasoned fact; but that reason does not extend to a discussion 
of “national prosperity,” a term whose meaning is decided subjectively. 
Sissy shatters the veneer of objectivity under which the term parades as 
a fact. 
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Anti-mathematics, however, does not only expose. It always creates 
new zones, new approaches, new products for thinking-life. We can see 
this more clearly if we look at a plastic and three-dimensional example. 
In his architectural designs, Friedensreich ﻿Hundertwasser mounted 
an opposition to the straight line. According to his own words, he was 
“against rationalism in architecture” (1958). The straight line, he said, 
is “something cowardly drawn with a rule, without thought or feeling,” 
and “any design undertaken with the straight line will be stillborn. 
Today we are witnessing the triumph of rationalist knowhow and yet, at 
the same time, we find ourselves confronted with emptiness. An esthetic 
void, desert of uniformity, criminal sterility, loss of creative power” (as 
quoted in Peitgen & Richter, 1986, p. v).  

In his own buildings, lines undulate and spiral. The floors and 
stairs are uneven, forcing the inhabitant to think and feel with every 
step: “An uneven floor is melody to the feet” (quoted in Karberg et al., 
1995). The anti-mathematical force of these statements and actions does 
not destroy mathematics as such: ﻿Hundertwasser still needs numbers 
to erect his buildings. Rather, it disrupts the march of standardization 
and anonymization that, in modernism, cloaks itself in reasonability—
efficiency paraded as justice. 

The apartment-house tenant must have the freedom to lean out of his 
window and as far as his arms can reach transform the exterior of his 
dwelling space. And he must be allowed to take a long brush and as far as 
his arms can reach paint everything pink, so that from far away, from the 
street, everyone can see: there lives a human who distinguishes himself 
from his neighbors, the pent-up livestock! (﻿Hundertwasser, 1958)

﻿Hundertwasser himself could not clearly grasp the implications of 
his own work. He confused false reason with reason itself, and in 
his writings, such as the ﻿Mouldiness Manifesto against Rationalism in 
Architecture (1958), he proposed that it was rationality itself that must 
be fought. The work, nonetheless, surpasses the words. In his buildings 
a new rationality survives the onslaught of the fiendish powers that can 
only rest happy by turning people into objects living within objects. 

The students who know as much anti-mathematics as they do 
mathematics will not betray the latter with the former. Rather, it is only 
such students who, rendering the limits of mathematics discernable to 
themselves, return the science to its proper rationality.
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PART 2





13. How children, under 
instruction, develop mathematical 

understanding

 Brian Greer

The relationship between the development and institutionalisation of 
mathematical understanding across millennia and its development for an 
individual child is the starting-point for this chapter. Greatly influenced by the 
writings of Hans ﻿Freudenthal, a position is taken in opposition to the theory 
propounded by Jean ﻿Piaget. The counterposition emphasises that a child can 
only be said to acquire any but the most elementary mathematics under more 
or less formal instruction and other forms of social and cultural interactions. 
The perennial debate about the relative weights that should be afforded in school 
mathematics to procedural competence and deep understanding is also related to 
the historical development of mathematics, particularly in relation to conceptual 
restructuring. This relationship is illustrated by the progressive enrichments of 
what is meant by ‘number’ and the basic arithmetical operations. The expansion 
of mathematical ﻿modelling from physical phenomena to the complexity of human 
interactions remains to be adequately addressed in school mathematics. And the 
question ‘What is mathematics education for?’ should be constantly revisited.

Introduction

How humanity collectively has created and ﻿systematised mathematics 
as a discipline is sketched in Chapter 2 of this volume. This chapter is, 
likewise, necessarily extremely selective. The vast literature on theory 
and research related to the teaching and learning of mathematics (e.g., 
Lerman, 2020) is minimally touched upon. The focus is restricted 

©2024 Brian Greer, CC BY-NC 4.0  https://doi.org/10.11647/OBP.0407.13

https://doi.org/10.11647/OBP.0407.13


294� Breaking Images

largely to the context of formal schooling (not including the tertiary 
level) in advanced industrial countries. The fascinating relationship 
between mathematics and language is barely touched upon. Many of 
the assertions made are offered as hopefully provocative (in the best 
sense of the word) speculation.	

Building on Chapter 2, I attempt to elucidate the complex relationships 
between the development of mathematics as a project of humanity 
and the development of mathematics as a project for a contemporary 
school pupil and his/her ﻿teachers and others in social/cultural/political 
contexts. To provide an overview, the following key points will serve as 
an advance organiser:

1.	 Millennia versus years. Many have pointed to the immense 
challenge that is implied by expecting children to learn in a few 
years mathematics that took the combined intellectual efforts 
of humankind millennia to develop. Insofar as the individual 
development of mathematics happens, it happens under 
instruction in schools, and in other milieux, with the benefit of 
resources created and ﻿systematised during history, refined by 
evolutionary processes. Any precise correspondence between 
the two projects is simplistic.

2.	 School mathematics should be democratic. The number of people 
who become academic or professional users of formal or 
technical mathematics is small in relation to essentially 100% 
of children who attend formal schools where such exist and 
spend a lot of time in mathematics classes. Accordingly, it 
seems reasonable to recommend that mathematics education 
should be designed to serve the bulk of the population, 
while by no means neglecting cultivation of the next cadre of 
mathematical specialists. In pursuing this ideal, the guidance 
of mathematicians is obviously necessary, but far from 
sufficient, and sometimes obstructive. 

3.	 Curricular issues. School mathematics ﻿curriculum has been 
showing signs of rigor mortis for decades, characterised as it is 
by inertia, slowness to incorporate new content and resources, 
dominated by the twin fetishes of ﻿algebra and ﻿calculus, 
permeated by premature formalisation, failure to address 
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the nurturing of critical attitudes towards, and ﻿agency about 
applying, mathematics. 

4.	 Intellectual rights. Children should be accorded intellectual 
rights, including the right to sense-make, to receive teaching 
that is developmentally appropriate and conducive to 
understanding, and that is relevant to issues important to 
them, their future as adults, and their communities and 
cultures. 

5.	 The dynamic balance between ﻿homogenisation and ﻿diversity. 
Within academic mathematics there is constant interplay 
between what Ian ﻿Hacking (2014, p. 13) calls ‘unification and 
diversification’. In contrast to the diversity of manifestations 
of mathematics within cultural practices, applications and 
work, and everyday life, school mathematics is becoming 
locally and globally more homogenised, in particular due to 
the convergence of ﻿curricula and standardised ﻿testing. 

6.	 Two faces of mathematics. Mathematics may be thought of 
as having two faces. On the one hand, there is the formal 
apparatus of ﻿pure mathematics; on the other, there is the use of 
mathematics in modelling﻿ aspects of reality, including physical 
phenomena and, increasingly for some time, phenomena 
involving the complexities of human life.

7.	 Two places of mathematics. Children learn mathematics beyond 
school, whether under some form of instruction (for example, 
by parents or community members) or through their own 
﻿creativity when interacting with their environments, and 
by absorbing manifestations of mathematics within their 
cultures. Much more could be done to articulate the learning 
that occurs in the two places.

An overarching question is: ‘What is mathematics education for?’. This 
cannot be separated from a consideration of the ethical responsibilities of 
mathematicians and mathematical educators. Mathematics education, 
like mathematics itself, is embedded in historical, cultural, social, and 
political – in short, human – contexts. And the challenge is to embrace 
the possibility that things can be different.
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Under instruction, for understanding

Teaching is one of the immense social influences that can affect a child, 
but its effects can be out of proportion to any other kind of social 
influence once the first beginnings of a child’s life are past. In it once 
again knowledge builds on knowledge, but the form of experience that 
makes it possible is really quite unlike those forms of experience that 
come the individual’s way when teaching is not involved. (Hamlyn, 
1978, p. 144)

In my opinion, David ﻿Hamlyn’s point is particularly true when it comes 
to mathematics teaching/learning. As argued further below, it makes no 
sense to posit that any child could formulate much, for example, about 
﻿fractions and operations on them without instruction from others, and 
without a collective representational system. The origins of mathematical 
cognitive activity may be traced, as Jean ﻿Piaget has it, to reflection on 
actions on the physical environment, but how far can that take one? 
Likewise, the neuroscientists – in their study of how people develop 
constructs about number, in particular – seem to exhibit the same form 
of what might be called the foundationalist fallacy, namely that the 
development of any complex, multi-levelled edifice of understanding 
can be analysed by focusing on its beginnings. 

In Chapter 2, the notion of universities and other institutions/sites 
as constituting constructed environments for the doing of mathematics 
was introduced, and the same, of course, goes for mathematics classes 
within schools. Following Jean ﻿Lave (1992) and many others, it will be 
emphasised that children learn much more than technical mathematical 
content in such classes. They may learn or be taught, in some general 
sense, to think mathematically (if they are lucky), for example to become 
solvers of mathematical problems in the tradition of George ﻿Pólya. They 
are much less likely to be taught – though it is argued below that they 
should be – how mathematics is embedded in human contexts; worse, 
they may be inculcated into harmful beliefs about the dehumanising 
power of numbers and equations. Unfortunately, for too many, their 
recollections of school mathematics are suffused with ﻿alienation and 
perceived irrelevance. It will also be suggested that school mathematics 
is instrumental in forming lasting and consequential facets of an 
individual’s worldview, in particular relating to a simplistic view of 
mathematical ﻿modelling﻿.
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Researchers of mathematical teaching and learning devise their 
own particular constructed environments, as when, for example, an 
experimenter sits with a child and presents a ﻿Piagetian conservation 
task. Such activity represents one form of the general problem of 
understanding the Other. Assessment﻿ may be viewed through a similar 
lens, as an activity involving communication. As emphasised below, the 
term ‘assessment’ needs to be differentiated in relation to very different 
activity systems, from its use by the state as an instrument of control 
to its embeddedness as an integral part of teaching and learning. And, 
in general, a major issue with ﻿testing arises when the test item refers, 
at least on the surface, to ‘real-life’ scenarios, since the reactions of 
students, and indeed the evaluations of their responses, are affected by 
the degree to which the reality sketched in the item lies within the life 
experience of the person being tested, evaluating the test, or using the 
evaluations to inform their teaching.

The other emphasis implied by the title for this section reflects 
an aspiration that mathematics education produce ‘understanding’ 
as contrasted with superficial competence in ‘pawing at symbols’ 
(by analogy with Paulo ﻿Freire’s canine metaphor of ‘barking at text’, 
which he contrasted to reading in what he considered the full sense). 
‘Understanding’ is not so easy to define, but it is not difficult to exemplify, 
particularly in its absence (examples are given below). 

Beginnings and continuations

Children acquire number in the stream of their physical and mental 
activities, which makes it difficult for researchers to find out how this 
happens in detail. (﻿Freudenthal, 1991, p. 6)

Schools have existed for a long time, but not always, and there are still 
societies in which ‘our’ form of schooling is not practiced. However, 
discussion here is limited to the familiar forms of schooling, to the 
interplay between learning in and out of school, and, in particular, 
to ‘the poor permeability of the membrane separating classroom and 
school experience from life experience’ (﻿Freudenthal, 1991, p. 5).

Children develop and are taught by others before they go to school 
and once they are at school they continue to learn in out-of-school 
contexts. Consider a subset of what a five-year-old child starting school 
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might know about uses of the number 5 (beyond being able to count to 
5): her age is 5, perhaps represented by 5 candles on a birthday cake; 
everyone (essentially) has 5 fingers on each hand and 5 toes on each 
foot (‘digits’); he may be familiar with a single coin representing the 
same value as 5 coins each representing 1 with the same unit; 5 spots 
in a pattern on a die or playing card; she may live in a house numbered 
5 (between numbers 3 and 7), or travel in a bus with that number; and 
know that there are 5 days in the school week, 5/5 represents the 5th 
of May, 5.05 is five minutes past five o’clock (with the minute hand 
pointing to 1, representing 5), and on and on and on…

Many mathematicians (e.g., Schoenfeld, Chapter 14, this volume) 
report childhood insights; I can do likewise. While playing with some 
cardboard boxes (age five?) I found I had two boxes of different sizes, 
neither of which would fit inside the other. That struck me as odd, 
until a simple thought experiment involving a roughly cubical box and 
a long thin one elucidated it for me. Or take my various encounters 
with ﻿probability. As a child growing up some seventy years ago in a 
small seaside town, I had plenty of opportunities for gambling and 
so developed some intuitive understanding of probabilistic events 
(and an innoculation against gambling). Years later I was introduced 
to ﻿probability theory at school; later at college it was characterised as 
a branch of ﻿measure theory; more recently, I have written about it in 
relation to socio-cultural issues. So, it is possible to see what ﻿Piaget is 
getting at when he talks about mathematics originating in reflections on 
our actions. But there is a vast chasm between that and the mathematical 
content that even a ten-year-old is expected to engage with in school.

After a relatively short time in school, the contextual and 
phenomenological richness and spontaneous thinking of the child are 
liable to be inhibited. Further, as the child progresses through school, 
the disconnect referred to by Hans ﻿Freudenthal (cited above) may 
be strengthened through the norms of the mathematics classroom. 
Consider the following observation:

It was a lesson under the heading of ‘ratio and proportion’ and the 
﻿teacher told me that she wanted to approach the mathematical concepts 
in a practical way. So she offered […] [a scenario involving mixing paints 
to reproduce a particular colour]. The problem seemed quite clear and 
pupils started to calculate using proportional relationships. But there 
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was one boy who said: ‘My father is a painter and so I know that, if 
we just do it by calculating, the colour of the room will not look like 
the sample. We cannot calculate as we did, it is a wrong method!’. In 
my imagination I foresaw a fascinating discussion starting about the use 
of simplified mathematical models in social practice and their limited 
value in more complex problems […] but the ﻿teacher answered: ‘Sorry, 
my dear, we are doing ratio and proportion’. (﻿Keitel, 1989, p. 7)

Constructed environments of school mathematics

In Chapter 2, I introduced the idea of ‘constructed environment’ 
in relation to the doing of mathematics, and the same applies to the 
learning/teaching of school mathematics. As ﻿Lave (1992, p. 81) put it,  
schooling ‘is a site of specialized everyday activity – not a privileged site 
where universal knowledge is transmitted’.

While being mindful of the distorting lenses of contemporary 
framings, more or less similarly organised schools have been around in 
many cultures for a very long time. If you stop and think about it, there 
is something very artificial about ‘children spending large amounts of 
time in formal schools where their activity is separated from the daily 
life of the rest of the community and mediated by technologies of 
literacy and numeracy as well as specialized uses of language’ (Cole, 
2005, p. 195).

Many of the issues are exemplified very clearly in the ways in 
which ‘﻿word problems’ (or ‘story problems’) are presented in school 
mathematics (Lave, 1992; Verschaffel, Greer, & De Corte, 2000). Children 
learn that there is a ‘Word problem game’ (Verschaffel et al., Chapter 
5) whose rules include ignoring what the child knows of reality. A 
striking example is the following statement by a ﻿teacher in the course of 
a discussion with a student’s mother:

Of course, we all know that nowadays a loaf of bread costs considerably 
more than 21.5 francs. But after all, that’s not what students have to worry 
about when doing ﻿algebra problems. It’s the construction and execution 
of the mathematical expression that counts, all the rest is décor. (Van der 
Spiegel, personal communication (1997), cited in Verschaffel, Greer, & 
De Corte, p. 57, emphasis added)

More generally, the notion of the didactical contract between ﻿teacher 
and students (Brousseau, 1997) is a useful construct for describing the 
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mutual norms that are progressively created, often implicitly, governing 
interactions in mathematics classrooms. By contrast with the typically 
implicit nature of the didactical contract, Paul ﻿Cobb (e.g, Yackel & 
Cobb, 1996) advocated for explicit promotion of what he termed 
‘sociomathematical norms’. 

During their very considerable amount of time in mathematics 
classes, children form images about the nature of mathematics. Too often 
they infer from what they are exposed to that mathematics historically 
was the intellectual achievement of predominantly White males. They 
come to believe that low marks on mathematics tests are an indication 
of stupidity and a deserved lack of access to educational and economic 
opportunities. They are much less likely to form a critical disposition or 
sense of ﻿agency in relation to uses of mathematics. Likewise, they form 
images of the nature and purposes of mathematics education. For many 
of them, and repeatedly, when they ask the reasonable question ‘Why do 
we have to do this?’ they get the answer ‘Because it will be useful later’.

Students also learn, too often the hard way, about how society 
constructs success and failure (Varenne & McDermott, 2018), in 
particular through ﻿testing. That instrument is particularly powerful 
in relation to attaching numbers to mathematical performance, 
against the background of the unreasonable political effectiveness of 
‘mathematics’. In the United States, a racially coded message is sent by 
the pervasive use of the term ‘﻿achievement gaps’ when test score gaps 
are being referred to. Most generally, mathematics classrooms constitute 
constructed environments within which children learn how to fit within 
state systems.

Constructed environments of research on mathematical 
cognition

Whenever a researcher who is not the ﻿teacher engages with a child in 
order to try to understand that child’s mathematical learning or thinking, 
it constitutes another very special kind of constructed environment. 
Here I am restricting discussion to the scenarios in which a researcher 
comes from outside the school and engages, typically for a short time, 
with students one by one. Rather than cursorily survey this vast field, I 
draw attention to specific aspects. 
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Typically, in such research, the child is asked to address a task 
designed by the theorist/researcher, often involving customised 
equipment or ﻿representations. The vast range of experiments carried 
out by ﻿Piaget’s team constitute a familiar example, and will serve to 
make important points, especially through the critique of ﻿Freudenthal 
(1973, Appendix I, pp. 662–677). The typical experiment constitutes a 
very particular kind of social interaction; by analogy with the notion of a 
didactical contract, the idea of an experimental contract may be invoked. 
It is necessary to consider how the children in this situation construe 
what is going on, why they are there, what is required of them. In my 
experience and observation, such considerations are often m inimally 
addressed by experimenters.

Aligned with this framework, ﻿Freudenthal (1973) very strongly 
criticised ﻿Piaget’s insufficient attention to the language used and 
whether or how the child understands it; a parallel may be drawn with 
the role of communication in assessment﻿ (see below). Experiments on 
conservation, for example, are particularly open to this kind of scrutiny 
and a range of experiments has shown that altering the experimental 
contract or the nature of the communication in apparently minimal ways 
can have a marked effect on the responses (see, e.g., Donaldson, 1978).

Most seriously, we may ask the general question: How does the 
experimenter/theorist know that the design and presentation of the 
task, and the children’s responses, constitute an appropriate test of the 
constructs embedded in the theory? Is it possible that the experimental 
tasks and communications, consciously or unconsciously, are designed 
to support rather than test the theory? That is an extremely serious 
charge that deserves to be taken seriously. For example:

By a suggestive design of the experiments it is achieved that the subjects 
reconstruct a landscape according to the ﻿Piaget theory of multiplication 
of relations, that is by means of a Cartesian coordinate system. 
(﻿Freudenthal, 1973, p. 669)

To return to the point made in the opening quotation, in relation to 
conservation of volume, I would be much more impressed by a report 
of two children being poured lemonade from identical bottles into 
differently shaped glasses and one of them objecting that it was unfair.
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‘Assessment’

If you want to sort people, make them run a race; if you want to see if kids can 
‘do it’, then give them adequate time to ‘do it’. (Stage, 2007, p. 358)

For a long time, I have found it problematic to use the same word to refer 
to two very different families of practices. One family, the focus of this 
section, involves producing measures that allow students, and groups of 
students, to be measured and ranked, often with high stakes attached. 
Another family has to do with interacting with the student in order to 
form conjectures about the student’s understanding, cognition, beliefs, 
and so on; as such, it is an integral part of teaching/learning.

Following these introductory remarks, I consider just three from the 
vast range of relevant aspects: the analysis of assessment in terms of 
communication; the diversity of social realities in relation to attempts to 
include mathematical modelling﻿ in test items; political issues in the uses 
of ﻿testing for purposes of the state.

Assessment as communication

Concentrating on the communicational functions of assessment affords 
pointed contrasts between the two activity systems distinguished above. 
In general, assessment involves: communication to the student about a 
specific competence to be demonstrated through a particular task; action 
by the student in an attempt to demonstrate the required competence 
insofar as they understand it; some form of evaluation of that attempt; 
and communication of the interpretation of that evaluation to the 
﻿teacher and others. In these terms, a standardised written or ﻿computer-
administered test may be seen as extremely impoverished in terms of 
communication at every stage, particularly when there is no opportunity 
for clarification through subsequent iterations of communication. ‘In 
short, the typical written assessment is closed in terms of time, in terms 
of information, in terms of activity, in terms of social interaction, in 
terms of communication’ (Verschaffel, et al., 2000, p. 72).

To take a simple contrasting example, a ﻿teacher may ask a student 
to subtract 17 from 24 and the student might give the answer ‘13’. The 
﻿teacher may conjecture that the student has exhibited the ‘subtract the 
smaller from the larger within any column’ misconception and ask 
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further questions to test this conjecture. Finally, the communicative act 
of evaluation may consist of much more than a simple statement that the 
student’s answer was wrong, but be combined with an explanation of 
why, and of how that misconception can arise.

Assessment and modelling

Test items often resemble ﻿word problems in presenting a description 
of a real-world situation that the assessed is expected to interpret and 
model mathematically. In the absence of open communication, it then 
often happens that the model depends on the life experience of the 
generalised modeller as well as that of the testee, as in the following 
example discussed by William ﻿Tate (1995, p. 440):

It costs $1.50 each way to ride the bus between home and work. A weekly 
pass is $16.00. Which is the better deal, paying the daily fare or buying 
the weekly pass?

It should be obvious that assumptions made (e.g., that work occurs five 
days a week) will affect a person’s interpretation and response and that 
the person’s form of life will influence the assumptions made. There 
is no ‘right answer’ and if it is assumed that there is, and there is no 
opportunity for clarification, the item is accordingly unfit for assessment. 
In particular, as ﻿Tate (1995, p. 440) pointed out, ‘the underpinnings of 
school mathematics, assessment, and pedagogy are more often closely 
aligned with the idealised experience of the White middle class’. More 
generally, ﻿testing may be seen as an instrument of cultural violence, as 
when ‘test-score gaps’ are mislabelled as ‘﻿achievement gaps’ with no 
qualifications as to how achievement is defined.

Testing as an instrument of the state

Above all, ‘assessment’ is a political issue. Episodes of recent history 
within the United States in terms of clashes between political, corporate, 
and educational goals are analysed by Alan Schoenfeld (Chapter 14, 
this volume), a battle-scarred veteran of many campaigns. A key point 
that he makes is that another communicative function of ﻿testing is to 
convey to ﻿teachers and students what is expected, encapsulated in the 
acronym ‘﻿WYTIWYG’ (What You Test Is What You Get). Schoenfeld 
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illustrates from his experience how the ways ﻿teachers teach are liable 
to be distorted under the pressure of upcoming high-stakes tests. The 
politics of global ﻿testing are analysed by Paola Valero and Lisa Björklund 
Boistrup (Chapter 15, this volume) and Mark Wolfmeyer (Chapter 16, 
this volume).

The goal of understanding

Most people have been taught mathematics as a set of rules of processing 
– an agreeable experience when they have learned to master them, and a 

disagreeable one if they have failed. (﻿Freudenthal, 1991, p. 3)

Later, ﻿Freudenthal argues that elementary ﻿arithmetic cannot be learned 
other than through insight, but as the school student progresses to more 
advanced mathematics, ‘the learner’s insight tends to be superseded 
by the ﻿teacher’s, the textbook writer’s, and finally by that of the adult 
mathematician’ (﻿Freudenthal, 1991, p. 112).

The section title expresses an aspiration that mathematics education 
should produce ‘understanding’, something that is difficult to define but 
easy to illustrate, particularly in its absence. A simple example comes 
from Productive Thinking (Wertheimer & Wertheimer, 1982/1945). 
Children were asked (p. 130) to find what number the following 
expression is equal to: 

274 + 274 + 274 + 274 +274

5

A child who correctly computes a repeated addition, or multiplication, 
followed by a division, demonstrates computational fluency, but such 
a performance surely suggests a lack of understanding. The authors 
related his surprise that, while most of the bright students he asked 
‘enjoyed the joke’ (p. 112), ‘a number of children who were especially 
good at ﻿arithmetic […] were entirely blind’ (p. 113). 

As a second example, I posed this question to future elementary 
school ﻿teachers studying slope as represented on graphs:

A candle, initially 24 cm high, is burning down at the rate of 3 cm per 
minute. If you plot the graph of height of the candle (in cm) against time 
(in minutes), what will be the slope of the line?
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Most of the students demonstrated competence by plotting the line and 
calculating the slope; hardly any showed understanding by pointing to 
the answer (-3) given in the italicised part of the question.

A distinction may be drawn between ‘internal’ understanding and 
‘external’ understanding. The former refers to making connections, 
noticing and exploiting structure, within ‘disembedded’ (Donaldson, 
1978) mathematics, as in the example from the Wertheimers’ book cited 
above. The second example is about articulating procedures (plotting 
points and calculating slope) as opposed to understanding that slope of 
a straight line corresponds to a constant rate of change in some variable.

The relationship between procedural competence and conceptual 
understanding is central in discussions on mathematics and 
mathematics education. The problem, as suggested in the opening 
quotation, arises when procedural competence dominates (as it does in 
communicationally impoverished forms of ﻿testing).

Learning from history

We know nearly nothing about how thinking develops in individuals, but we 
can learn a great deal from the development of mankind. (﻿Freudenthal, 1991, 

p. 48) 

It is with children that we have the best chance of studying the development 
of logical knowledge, mathematical knowledge, physical knowledge, and so 

forth. (﻿Piaget, 1970, pp. 13-14)

The first obvious comment is that these quotations illustrate the chasm 
between the positions of ﻿Piaget and ﻿Freudenthal, as reflected below. 
Studying the ﻿history of mathematics is extremely difficult to do for many 
reasons, and it has often been done very poorly, as Jens ﻿Høyrup, for one, 
has made clear (Greer, 2021). The central question in this section of the 
chapter is: ‘What guidance for mathematics education can be derived 
through studying the ﻿history of mathematics?’. Many have pointed out 
that children in school are expected in a few years to come to grips with 
mathematics that took humankind millennia to develop: 

School is seen as a magical shortcut that allows ideas arduously 
developed by humanity over thousands of years to be transmitted in a 
few years to a random human being. (Hofstadter & Sander, 2013, p. 391)
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To the extent that those ideas can be transmitted, how is it possible? The 
short answer is that it is achieved predominantly through instruction in 
a constructed environment.

The position taken here is that any kind of simplistic version of 
‘ontogeny recapitulates phylogeny’ (Gould, 1985) is untenable. The 
complexity of the interactions between biological and cultural evolution 
must be addressed (Cole, 2005). Some general comments on ﻿Piaget’s 
treatment of mathematics within his theory of genetic epistemology 
are followed by a specific critique of the supposed correspondence he 
claimed between the ‘mother structures’ of ﻿Bourbaki and constructs 
within his theory of cognitive development. A contrasting position is 
based largely on ﻿Freudenthal’s (1991) conception of ‘﻿guided reinvention’ 
and James ﻿Kaput’s (1994) conception of ‘applied phylogeny’.

Among the facets of the cultural environments in which children 
grow up is the panoply of ﻿representations, both formally introduced 
within mathematics classes and encountered in the environment 
in general. Assimilation/accommodation of existing, collectively 
sanctioned, ﻿representations is a very different matter from the original 
slow development, with evolutionary selection, of those ﻿representations. 
Another glaringly obvious historical observation, evident through a 
cursory glance through Florian ﻿Cajori’s (1928) painstaking work, is that 
notations and ﻿representations are contingent, arbitrary, underdesigned 
– whether that will ever change is doubtful.

Finally, in this section, to illustrate some of the issues, I take a look at 
a particular content area, that of negative numbers. 

Simplistic parallelism: Piaget and Bourbaki

The fundamental hypothesis of genetic epistemology is that there is a 
parallelism between the progress made in the logical and rational organization 

of knowledge and the corresponding formative psychological processes. 
(﻿Piaget, 1970, p. 4)

In this section, I first offer some general assertions about the significance 
of ﻿Piaget for the study of mathematical cognition and the practice of 
mathematical education, then I specifically discuss ﻿Piaget’s claim that 
the mother structures of ﻿Bourbaki correspond to empirically supported 
developmental cognitive structures.
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﻿Piaget identified himself primarily as a genetic epistemologist, not 
a developmental psychologist. He became the latter in service of the 
former, arguing, as cited earlier, that since little is knowable about 
the origins of human thinking, the best recourse is to study children. 
Moreover:

The defining feature of ﻿Piaget’s approach […] is that the stages and 
mechanisms that he postulates are not psychological, or historical (so 
he is not ‘reporting’ an accidental parallel between the two), but rather, 
epistemological – this is how knowledge is inherently constructed. 
(﻿Kaput, 1994, p. 84)

Rather than attempt a systematic critique of this position – an enormous 
undertaking – I merely state my conviction that I find it unconvincing, 
unless it is reduced to the banal statement that knowledge grows through 
developmental processes which can be described in such general terms 
as to fit both domains. I would even conjecture that having framed his 
position on intellectual-aesthetic grounds, ﻿Piaget devoted much of his 
life as an experimentalist to confirming it. 

Further, while in the spirit of making controversial statements, I 
will suggest that in his emphasis on adaptation, initially with respect 
to the physical environment and originating in his first experimental 
investigations as a biologist studying adaptation of molluscs, ﻿Piaget 
extended, in a kind of metaphorical way, to the other environments that 
I have labelled cultural and constructed (educational). In contrast, it has 
been argued that

the contemporary study of the role of culture in human development 
is hampered by the continued failure of behavioral scientists to take 
seriously the co-evolution of phylogenetic and cultural-historical change 
in shaping processes of developmental change during ontogeny. (Cole, 
2007, p. 236)

﻿Piaget’s monumental oeuvre is of great importance, especially against 
the backdrop of ﻿behaviourism in the earlier part of the twentieth 
century (space does not allow consideration of the part played by Lev 
Vygotsky and other Russian psychologists in theorising the social, 
collective complexities of education, nor the intimate involvement of 
Russian mathematicians in school mathematics). At a macro-level, 
﻿Piaget revealed the complexity of children’s thinking; however, there 
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are several criticisms that are particularly relevant to mathematics 
education. Of these, perhaps the most important is that, in postulating 
an explanation in terms of adaptation to environment, he understated 
the differences between physical, social, political, and constructed 
environments. Having spent a reasonable amount of time studying his 
work, and doing related research on children’s cognition, I, like others, 
find the claim unconvincing that people, whether historically and 
collectively, or contemporarily and individually, construct mathematics 
through reflection on their interactions with the environment:

The epistemological approach which starts from the position of the 
individual alone is so wrong. The fact that such an approach fits in with the 
biological approach which similarly considers the individual organism in 
relation to its environment equally shows the inappropriateness of that 
as a model on which to construe the growth of knowledge and cognitive 
development generally. (Hamlyn, 1978, p. 59)

﻿Piaget believed that the ﻿systematisation of (some parts of) mathematics 
by ﻿Bourbaki, in particular their postulation of three ‘mother structures’ 
constituted a striking confirmation of his position. It is my impression 
that the ﻿Bourbaki group was willing to collude in this belief as it 
strengthened their own case to be central to a network of ﻿structuralist 
ideas. The strongest critique of the supposed relationship was made by 
﻿Freudenthal, who wrote:

Poor ﻿Piaget! He did not fare much better than ﻿Kant, who had barely 
consecrated ﻿Euclidean space as a ‘pure intuition’ when non-﻿Euclidean 
﻿geometry was discovered! ﻿Piaget is not a mathematician, so he could 
not know how unreliable mathematical system builders are. […] 
Mathematics is never finished – anyone who worships a certain system of 
mathematics should take heed of this advice. (﻿Freudenthal, 1973, p. 46, 
emphasis added)

﻿Piaget (1970) did acknowledge the emergence of ﻿category theory as a 
systemic reformulation, but without suggesting how that affected his 
correspondence hypothesis. 

Another mathematician who tangled with ﻿Piaget was René ﻿Thom, 
a topologist known for his development of catastrophe theory. In 
particular, ﻿Thom argued that ﻿Piaget’s position on ﻿geometry was gravely 
wrong, as did ﻿Freudenthal: ‘it is a serious mistake if, to justify a particular 
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kind of didactics, people tell you ﻿Piaget proved ﻿Euclidean ﻿geometry to 
start psychologically with Cartesian coordinates’ (1973, p. 669).

To close, a particular issue that has puzzled me for nearly forty years 
is the ontological status of ‘cognitive structures’ as something that a 
child ‘has’ (Jeeves & Greer, 1983, pp. 65–69). In those pages, we used 
a lengthy quotation from ﻿Feldman and ﻿Toulmin (1976, p. 426), which 
seems to go to the heart of the issue: 

Nowhere, it seems, are the differences between the problems involved 
in formally representing a theory and the problems in empirically 
﻿testing it so difficult to keep separate as in the area of cognition. Just 
because the theoretical system in question can plausibly be represented 
as corresponding to some mental system in the mind of an actual child, 
we may be led to conclude that the ﻿formalism of the theoretical system 
must be directly represented by an isomorphic ﻿formalism in the mind of 
the child… In this way, ontological reality is assigned to the hypothetical 
mental structures of the theory simply on the basis of the formal 
expressions by which they are represented in the theory.

 Guided reinvention, applied phylogeny

Children should repeat the learning process of mankind, not as it factually 
took place but rather as it would have done if people in the past had known a 

bit more of what we know now. (﻿Freudenthal, 1991, p. 48)

The qualification within the statement is crucial; ﻿Freudenthal’s vision 
of reinvention was with strategic instruction, guided by what Kaput 
(1994, p. 83) termed ‘applied phylogeny’. ﻿Kaput introduced this term 
with appropriate warnings about the cognitive appeal of ‘ontogeny 
recapitulates phylogeny’ including ‘the differences between a collective 
historical enterprise and an individual’s learning’ and ‘the irregularity 
of historical developments’. To use an obvious example, nobody would 
suggest that children should be taught the Roman way of labelling 
natural numbers before the decimal system. 

By way of example of ‘repeating the learning process of mankind’, 
consider multiplication and division of positive real numbers. In ancient 
Mesopotamia (as extensively documented by ﻿Høyrup) and in Peru 
(Urton, 1997), for example, the operations were linked polysemously to 
cultural practices. For the Quechua of Peru, multiplication and procreation 
were closely connected (and remember that, in the Bible, people are told 
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to ‘go forth and multiply’). To put it another way, multiplication and 
division can be used to model many classes of situation. In particular, 
there is a marked contrast between ‘asymmetrical’ situations – in which 
the quantities multiplied are clearly distinguishable as multiplicand and 
multiplier – and ‘symmetrical’ situations, such as rectangular area, in 
which they play equivalent roles. As a consequence, in the former case, 
there are two distinct forms of division, but not in the latter (Greer, 1992).

Contrast the above with the formal treatment of the operations. 
From a ﻿Bourbakian perspective, they are applied in decontextualised 
computation and organised within groups and other disembedded 
structures. In schools, arguably a great deal too much emphasis is on 
computation and formal properties such as commutativity, treated 
abstractly and not in relation to situations modelled, within which 
its nature varies greatly – sometimes addition and multiplication are 
trivially commutative, sometimes not. Similar comments apply to the 
statements that addition and subtraction, multiplication and division 
are inverse operations. 

The contrast between an abstract structure, such as a group, and 
diverse instances of it, such as transformation groups in ﻿geometry, was 
characterised by ﻿Freudenthal (1991, p. 20) in terms of ‘rich’ and ‘poor’ 
structures. Groups, historically, were encountered as rich structures in 
multiple different contexts and only axiomatised relatively recently. In 
﻿Freudenthal’s vision for teaching mathematics, the axiomatisation should 
come as the culmination of a long process – starting with the axioms 
or the poor/pure structure was, in his view, a gross pedagogical error, 
a ‘didactical inversion’. Thus (p. 29) ‘the didactically recommendable 
direction will be the same as that in which mathematics arises, that is, 
from rich to poor’. 

In ﻿Freudenthal’s vision, also, he emphasised changing the view of 
mathematics learning as accumulating content and ‘neatly tailored 
abilites, the mastery of which can be tested “objectively” (as they call 
it) – that is, by ﻿computers’ (1991, p. 49) to experiencing important 
mathematical activities: 

The learner should reinvent mathematising rather than mathematics; 
abstracting rather than abstractions; schematising rather than schemes; 
formalising rather than formulas; algorithmising rather than ﻿algorithms; 
verbalising rather than language… 
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﻿Cajori (1898) wrote that: ‘The ﻿history of mathematics may be instructive 
as well as agreeable; it may not only remind us of what we have, but 
also teach us how to increase our store’. Citing Augustus ﻿De Morgan, 
he continued: ‘The early history of the mind of men with regard to 
mathematics leads us to point out our own errors; and in this respect 
it is well to pay attention to the ﻿history of mathematics’. This principle 
lies at the heart of ﻿Kaput’s notion of applied phenology. Painstaking 
research in the historical record can identify cognitive obstacles and the 
ways in which they were, often after considerable time, resolved. That 
can then guide the teaching of children, in line with the quotation at the 
start of this section.

Material representations

A class in ﻿arithmetic […] will find it astonishing that it should have taken so 
long to invent a notation which they themselves can now learn in a month. 

(﻿Cajori, 1928, p. 3)

The importance of ﻿representations in the growth of mathematics 
historically is discussed in Chapter 2. There are, of course, huge 
differences between, on the one hand, the invention by mathematicians 
of ﻿representations in the service of the mathematics symbiotically being 
created and ﻿systematised, and, on the other, the presentation to children 
of evolutionarily stable ﻿representations. Is it any wonder that the 
presentation of the products of such long-drawn-out efforts as off-the-
shelf resources for children to use is rife with complications? For example, 
mathematicians are prone to regard the graphical ﻿representations of 
functions in the Cartesian plane as perspicuous, yet a mass of empirical 
evidence exists to show that misinterpretations are extremely common 
and difficult to dislodge.

In passing, a point that is obvious to anyone reading ﻿Cajori’s (1928) 
painstaking survey is that mathematical vocabulary, notations, and 
representational conventions are created very arbitrarily (an example 
being the conventional use in ﻿algebra of a, b, c as parameters and x, y, z 
as variables). Why do children (in English, as in many other European 
languages, but not German) have to deal with ‘isosceles’ rather than 
the Anglo-Saxon ‘twesided’ used by Robert Recorde in the sixteenth 
century (﻿Cajori, 1922)? For a discipline whose exponents pride 
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themselves on their rationality, the ﻿representations used in mathematics 
are surprisingly user-unfriendly. 

One way in which design has been prominent is in the conscious 
development of material teaching/learning resources termed 
‘manipulatives’. The earlier history of these in (some parts of) European 
mathematics education is well covered in De ﻿Bock and ﻿Vanpaemel (2019). 
Reflecting a distinction that is very clear for ﻿computer ﻿representations 
(Kaput, 1992), these are representational resources which children can 
use for recording, but also for acting upon. For teaching ﻿arithmetic, 
examples include Cuisenaire rods and the multibase ﻿arithmetic blocks 
designed by Zoltán ﻿Dienes.

The prominence of manipulatives has declined. One reason is that 
their pedagogical effectiveness has been called into question. Rather like 
the problems in trying to turn ﻿Pólya’s heuristics into classroom gold the 
issue is that you cannot understand how to exploit a heuristic such as 
‘think of a related problem’ unless you know a great deal already about 
what a related problem looks like. Likewise, those who can understand 
how a manipulative relates to the mathematics it is designed to illuminate 
have little need for the manipulative. Conversely, manipulatives may be 
of limited effectiveness for those who do not understand the connections 
(like the child who told Kath Hart that ‘bricks is bricks and sums is 
sums’). With respect to the multibase ﻿arithmetic blocks:

Children who already understood base and place value, even if only 
intuitively, could see the connections between written numerals and these 
blocks […] But children who could not do these problems without the 
blocks didn’t have a clue about how to do them with the blocks […] They 
found the blocks […] as disconnected from realty, mysterious, arbitrary, 
and capricious as the numbers that these blocks were supposed to bring 
to life. (Holt, 1982, pp. 281–219)

New representational windows

[…] information technology will have its greatest impact in transforming the 
meaning of what it means to learn and use mathematics by providing access 

to new forms of ﻿representation as well as providing simultaneous access to 
multiple, linked ﻿representations. (﻿Kaput, 1986, p. 1)
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I seem to remember Benoit ﻿Mandelbrot, speaking in 1992 saying that 
‘the ﻿computer has put the eye back in mathematics’. In evolutionary 
perspective, the ﻿computer age represents a new epoch in the creation 
of representational resources, with consequent massive implications for 
cognition (Kaput & Shaffer, 2002). Examples follow.

One of the first such revolutionary visions exploiting developments 
in information technology (IT) was the language ﻿Logo, designed by 
Seymour ﻿Papert. It rivals the ﻿Turing machine in terms of the simplicity 
of its primitives. Inspired by the young ﻿Papert’s fascination with gears, 
the basic mechanism (literally embodied in drawing machines called 
‘turtles’ which drew geometrical configurations controlled by the 
language) was an axle with equally sized wheels on the ends, which 
turn at the same speed either in the same direction, thus moving the 
turtle forward a stipulated distance, or in opposite directions, rotating 
it through a stipulated angle. The second element in generativity is the 
programming language in which the user can define and name routines; 
the names are then appended to the language. ﻿Logo produced a way of 
conceiving planar ﻿geometry very differently from ﻿Euclidean ﻿geometry. 
A circle, for example, is approximated to any desired degree of precision, 
as a regular polygon.

Another geometrical system, more closely linked with traditional 
﻿geometry is ﻿Geometric Supposer (GS) (see also Cabri, and 3-D 
versions). Within GS, constructions can be defined similar to those of 
﻿Euclidean ﻿geometry and recorded as procedures rather than drawings. 
The theorem that if you construct any quadrilateral and join the 
midpoints of the four sides you get a parallelogram takes on a different 
feel when you can grab it by a vertex and make the whole construction 
waltz on the screen. Among many other wonderful creations may 
be mentioned Fathom, which affords exploration of ﻿probability and 
statistical ﻿modelling.

﻿Kaput himself designed ﻿SimCalc and other software as resources 
for teaching ﻿calculus exploiting the kinds of features that he analysed 
(Kaput, 1992). And ﻿STELLA makes dynamic system modelling 
accessible to high school students (Fisher, 2021). 

Reading such work in the 1990s, a reader might well have thought: 
‘Just think what they’ll be able to do in schools thirty years from now’. 



314� Breaking Images

They would be greatly disappointed. There are many reasons for 
this, some of which are to do with the IT industry seeing more profit 
in other kinds of product than in tackling the complexity of teaching 
mathematics. Another major reason is the failure to grasp the need for 
﻿teacher training and to provide the necessary support. For example, 
﻿Papert’s vision of ﻿Logo as a mathematical world in which children could 
learn by themselves was arguably overoptimistic, and it progressively 
became clear that its effectiveness could only be realised under the 
guidance of skilled teaching. 

A historical example: Directed numbers

3 – 8 is an impossibility, it requires you to take from 3 more than there is in 3, 
which is absurd. (﻿De Morgan, 1810/1931)

Minus times minus makes a plus. 
The reason for this we need not discuss. (Attributed to W. H. ﻿Auden)

The case of directed numbers may be taken as paradigmatic for 
considering how a study of the ﻿history of mathematics might inform 
contemporary teaching. ﻿De Morgan was an eminent mathematician but 
balked at an arithmetical expression that quite young children today are 
expected to take in their stride. He was right if the only interpretation 
of n – m (where n and m are whole numbers) is the removal (in some 
sense) of m countable entities from a set of n. (And he did acknowledge 
the ﻿algebraic interpretation of n – m when m > n.) 

It could be argued that there is a fundamental epistemic shift 
illustrated here, from n – m as a direct ﻿representation of a situation 
(taking objects away from a set of objects) to n – m as a mathematical 
expression that can be used to model many situations – such as bank 
balances (did ﻿De Morgan never get into debt?) or scales with a zero 
such as those for measuring temperature or altitude relative to sea level. 
(When children later are being taught multidigit subtraction, e.g. 43–18, 
the ﻿teacher may say something like ‘you can’t take 8 from 3, so you 
borrow 10 and take 8 from 13’). From a purely structural point of view, 
the expansion of the positive whole numbers to all integers means that 
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subtraction is closed over the set of whole numbers, which form a group 
under addition, with ﻿identity element 0.

Ademio ﻿Damazio (2001, p. 209), on the basis of classroom 
observations of children being taught about directed integers, concluded 
that ‘the students did not overcome the concept of number as an ability 
to count concrete objects instead of as abstract objects that can be 
operated independently’. Well, why would you expect them to achieve 
such a feat over a series of twenty class lessons, what ﻿De Morgan, after a 
full mathematical education and career, failed to achieve? But try telling 
that to ﻿curriculum developers!

On the basis of observations of a ﻿teacher, Damazio (2001, p. 208) 
commented that ‘the ﻿teacher ceases to evidence relevant aspects for 
concept formation. You can do that if you are concentrating on calculative 
fluency alone. In particular, the notion of a relative zero (as a reference 
point) as opposed to that of absolute zero […] is the foundation of the 
concept of relative whole numbers’.

The case of multiplying and dividing negative numbers is much more 
complex than addition and subtraction and took even longer to resolve 
to the satisfaction of rigour-demanding European mathematicians 
(with false starts over centuries along the way, and eventual survival of 
what works). Within this context, the shift to modelling﻿ is even clearer. 
How can the plausibility of the rule ﻿Auden was told not to discuss (see 
above) be communicated to a child? There are a number of general 
approaches:

•	 Patterns. A two-dimensional table can be constructed with 0, 1, 
2, 3, … along each axis and the products in the body of the table. 
Extending back along each axis to –1, –2, –3, … and following 
the patterns makes the rules for multiplying directed numbers 
at least somewhat plausible (for an excellent discussion, see 
Sawyer, 1964, pp. 297–300) and a similar exercise can be 
carried out graphically (pp. 300–309). (Such patterns could 
be thought of as ‘localised structures’, partial reflections of the 
structures of ﻿Bourbaki and the like.)

•	 Modelling linear change over time. Suppose you are walking on 
steps at a constant rate of n steps per minute, not up (+n), 
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but down (–n). Then t minutes earlier (–t) you were nt steps 
higher than you are now.

•	 The ﻿algebraic/geometrical approach of the Babylonians. Consider 
the expression (x – a)(y – b). It is straightforward if x > a and y 
> b and easily verified through examples that its expansion as 
xy + x(–b) + (–a)y + (–a)(–b) ‘works’ if interpreted as xy – xb 
– ay + ab. And there is a geometrical counterpart.

•	 In Greer (2005), I cited a hilarious formal ‘﻿proof’ written by 
mathematicians for sixth-grade students and I cannot resist 
reproducing the start of it here: 

First, if a number a satisfies b + a = 0; then a is –b. That is how (–b) is 
defined, as the additive inverse of b. Second, N × 0 = 0 for any number 
N because the area of a rectangle with one side zero is zero […] Third:

0 =(–1) × 0 = (–1) × (1 + (–1) = (–1) × (1) + (–1) × (–1) 
(California Department of Education, 2000, p. 144)

	 (How I like mathematicians to speak of ‘a rectangle with one 	
	 side zero’!).

•	 A student’s pragmatism. I asked students in a general college 
mathematics class to (a) say if they believed (–1) x (–1) = 
+1 and (b) explain why. The answers were, as you might 
expect, mainly appeals to authority of some kind. However 
one student wrote that he believed it because every time he 
had operated according to that belief in a test he had gained 
marks, and conversely.

I would be prepared to argue for what would generally be considered 
a radical solution, namely to postpone treatment of multiplication and 
division of directed numbers until college, at which point it could be 
treated with the formal and informal thoroughness it warrants with 
students who have more relevant experience. I can cite one prominent 
mathematician who wrote that ‘the multiplication of negative numbers 
(like the addition of ﻿fractions) can and should be postponed’ (Hilton, 
1984, p. 8). Whenever it is introduced, it damned well ought to be 
discussed.



� 31713. How children, under instruction, develop mathematical understanding

What is mathematics education for?

Introduction

Mathematics as an aim in itself […] is an important aspect, although of less 
concern to us here, since our subject of mathematics education embraces a 

much larger group than only future professionals of whom once again only a 
small minority choose mathematics in itself. (﻿Freudenthal, 1991, p. 3)

In the above quotation, ﻿Freudenthal expresses clearly a theme that is 
omnipresent in the following discussion. Think of a pyramid representing 
the population of those who spend a lot of time in mathematics classes at 
school – in most of the world, essentially everyone. A very small section 
at the top then corresponds to those who will constitute the next cadre 
of mathematics researchers and tertiary level ﻿teachers of mathematics. A 
larger section below that represents those who use significant amounts of 
mathematics in their work – scientists, engineers, (some kinds of) social 
scientists and, generally, certain specialists within most fields (though 
there is considerable research showing that architects, for example, may 
use little of the formal mathematics of which they have been required 
to show mastery (Hacker, 2016)). The remaining bulk of the pyramid 
represents everyone else. Quite simply put, the thrust of this section of 
the chapter is to argue that the pyramid should be inverted, so to speak, 
so that school mathematics much more deliberately reflects the needs 
of the majority; to put it provocatively, school mathematics education is 
too important to leave to mathematicians who are primarily invested in 
perpetuation of their subspecies.

As a start, I pick up on earlier discussion of how formal mathematics 
influences ﻿curriculum, a particular case being the impact of ﻿Bourbaki. 
While the overt influence of ﻿Bourbaki has waned, its ghost still haunts 
mathematics classrooms (along with those of its extended family) in 
terms of premature formalisation. The ﻿Common Core State Standards 
used in the United States may be taken as a representative contemporary 
﻿curricular design in terms of content that could be termed ‘﻿Bourbaki light’ 
– a framework based on progressive mathematical structuration with 
premature formalisation rather than pedagogical and developmental 
considerations, and with scant attention to long-term pre-emptive 
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planning or to the critical points at which conceptual change must be 
carefully nurtured.

Accordingly, a counter-position is presented whereby ﻿curricular 
design is fundamentally respectful of the child’s capacity for 
understanding and accumulated experience at any point. The first point 
to be made is that given the vast amount of recorded and ﻿systematised 
mathematics, the selection problem (already mentioned in relation 
to ﻿Bourbaki) rears its head. In the face of what might be considered 
the (somewhat) reasonably reactionary nature of ﻿curricula, a number 
of radical alternative design principles are proposed, in particular 
aimed at making school mathematics useful to the adults that students 
become, rather than being a preparation for a small elite. As part of that 
argument, I contend below for substantial reductions in the level of 
formalisation of content and framing (which would also help ﻿teachers). 
These proposals are also linked with the proposal to move the centre 
of gravity, substantially, away from technical mastery and towards 
understanding – which, it is argued, would benefit also the elite who 
become advanced students of mathematics (and, again, ﻿teachers).

Given the degree to which mathematics formats our lives (to use 
Skovsmose’s term), those who frame school mathematics now have a 
responsibility to include instruction about ﻿modelling, its purposes, 
and its limitations. These aspects arise sharply, and very early on in 
elementary school, in the context of ‘the bizarre genre of ﻿word problems’, 
a locus within which quite young children could be taught to distinguish 
between modelling that is precise, modelling that is a more or less good 
approximation, and modelling that is plain wrong.

All of these considerations build to the argument that the relationships 
between mathematics and the social sciences be re-examined (see 
Chapter 9, this volume). Particularly important aspects include:

•	 The nature and purposes of mathematical ﻿modelling.

•	 Talking with students about mathematics, what it is for, how 
it is taught/learnt, the cognitive obstacles, its history, and its 
political ramifications.

•	 Mathematics in relation to aspects of life important to the 
students, their families and communities.
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Premature formalisation

The influence of ﻿Bourbaki on mathematics and mathematics education 
in the twentieth century is discussed in Chapter 2. While the overt 
influence of ﻿Bourbaki and other formally-intensive statements by 
mathematicians has waned, its lingering influence can be seen in the 
perseverance of premature formalisation. 

By way of an example, the ﻿Common Core State Standards for 
Mathematics (﻿CCSSM) developed in the United States may be taken as 
a reasonably representative ﻿curricular framework in terms of specifying 
mathematical content. It is critically flawed in many ways, in particular 
in its failure to offer pedagogical guidance. In his masterly comparative 
analysis of national ﻿curricula in fourteen countries, Geoffrey ﻿Howson 
(1994, p. 26) made the crystal-clear point that ‘a ﻿curriculum cannot be 
considered in isolation from the teaching force which must implement 
it’. I argue below that the dominance of mathematicians in its framing 
illustrates the harmful effects that mathematicians can have on school 
mathematics education. 

Unlike some manifestations of ﻿New Math of the 1960s (which I 
remember living through), ﻿set theory is not proposed as the starting 
point for children’s learning of mathematics, thus avoiding the 
absurdity of confusing the foundations of mathematics education 
with the foundations of mathematics as traditionally presented by 
philosophers; nevertheless, premature formalisation is pervasive. 
The ghost of ﻿behaviourism lurks, in that the framework is very much 
presented in terms of an incremental progression on a superficial 
metric of complexity, logical in the sense of the adult mathematician’s 
retrospection, not in terms of children’s ability to understand.

As an example, consider the extension of multiplication and division 
beyond the natural numbers. This is what we read:

Apply and extend previous understandings of multiplication and 
division to divide ﻿fractions by ﻿fractions.

Interpret and compute quotients of ﻿fractions, and solve ﻿word 
problems involving division of ﻿fractions by ﻿fractions, e.g. by using visual 
﻿fraction models and equations to represent the problem. For example, 
create a story context for (2/3) ÷ (3/4) and use a visual ﻿fraction model 
to show the quotient; use the relationship between multiplication and 
division to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In 
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general, (a/b) ÷ (c/d) = ad/bc. How much chocolate will each person get 
if 3 people share ½ lb. of chocolate equally? How many ¾-cup servings 
are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land 
with length ¾ mi and area ½ square mi? (﻿CCSSM, p. 42, for Grade 6)

If you are not laughing, you have not been paying attention. It is hard 
to expunge the image of someone embarrassedly saying to a guest ‘I 
am so sorry, I can only offer you 8/9 of a serving of yoghurt’. Another 
compelling image is of the unfortunate person tasked with devising a 
believable story to go with (2/3) ÷ (3/4) = 8/9 for a sixth grader.

Indeed, the ways in which ﻿fractions are treated are indicative of the 
problems I am trying to elucidate. Here are some of the issues:

•	 Essentially nobody apart from children in school needs to 
compute something like 4/7 + 5/11. People like carpenters 
and engineers, who make things that work, use decimals 
or binary fractions. What would be lost by following their 
example, restricting instruction to the few fractions and uses of 
fractions that people generally find useful (as approximations, 
for example)? The loss for formalists would be the lack of 
the formal closure of the positive rationals under the four 
arithmetical operations.

•	 Not unrelated is the common observation that ﻿fractions often 
constitute the first wall of incomprehension in mathematics 
class. A Peanuts cartoon depicts a young child responding 
to her teacher’s enquiry ‘Do you have any questions (about 
fractions)?’ by asking ‘Do you hate us?’.1

•	 Typically, mathematics educators see ﻿fractions as having 
multiple aspects, embedded in the complex conceptual field 
of multiplicative structures (Vergnaud, 2009). On the other 
hand, Hung-His Wu (1999) objects to this position on various 
grounds, appealing to the mathematician’s dogma that 
mathematics is formal, abstract, simple, precisely defined. 
For example, the student is expected to ‘understand a rational 
number as a point on the number line’ (CCSSM, p. 43). How can 

1� See Charles Schulz (November 7, 1991), GoComics, www.gocomics.com/
peanuts/1991/11/07

http://www.gocomics.com/peanuts/1991/11/07
http://www.gocomics.com/peanuts/1991/11/07
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a number be a point? A full treatment of Wu’s position would 
require a book (which I may yet write). Mathematicians tend 
to approach fractions in terms of computational properties 
and embeddedness in formal structures, such as groups, and 
to try to project that perspective onto learners.

﻿CCSSM (pp. 6–8) has a very short section on ‘Standards for mathematical 
practice’ namely:

1.	 Make sense of problems and persevere in solving them

2.	 Reason abstractly and quantitatively

3.	 Construct viable arguments and critique the reasoning of others

4.	 Model with mathematics

5.	 Use appropriate tools strategically

6.	 Attend to precision

7.	 Look for and make use of structure

8.	 Look for and express regularity in repeated reasoning

Together with a brief characterisation of each, with examples. As such, 
this is a fine list, but the ﻿teachers who plunge into ﻿CCSSM expecting 
enlightenment on how to cultivate such practices in their classrooms 
will find little. In particular, I find the treatment of Modelling﻿ (Standard 
4) decidedly undernuanced and overly limited to a straightforward 
encoding of a described situation into a precise mathematical 
formulation. 

Arguably, premature formalisation represents the most pervasive 
and harmful influence from mathematicians on mathematics-as-school-
subject. For the sake of making an argument, let me list positions that 
can be found in the writings of mathematicians (sometimes bordering 
on caricature):

•	 The attitude that if you define everything with precision, build 
everything up logically, step by step, and they still don’t get it, 
it’s their fault.

•	 Mathematics-as-school-subject exists primarily for the 
preparation of the next cadre of research mathematicians. 
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Schools should teach a great deal of ﻿calculus, in particular, 
so that university mathematics instruction can hit the ground 
running. 

•	 In lamenting what he perceives as a schism between 
mathematicians and mathematics educators, Michael ﻿Fried 
(2014, p. 4) expressed nostalgia for the time when ‘asking 
about the distinction between mathematics and mathematics 
education would have been like asking about the distinction 
between mathematics and ﻿geometry’. 

•	 In addressing the mathematical education of children, 
mathematicians tend to project their own images (or ‘pictures’, 
see ﻿Freudenthal, 1991, p. 131) of mathematics onto children.

Overall, it can be argued that mathematicians (of course, with many 
exceptions, have had harmful effects in multiple ways: 

•	 Perpetuation of the Graecocentric narrative of the history of 
academic mathematics through a combination of laziness and 
ideology. In my opinion a line can be drawn between this and 
the manifestations of ﻿racism in contemporary classrooms.

•	 Denigration of the mathematical practices of those who make 
things that work (Chapter 17, this volume).

•	 A tendency to assume that being good at mathematics is not 
only a necessary but also a sufficient condition for being good 
at teaching mathematics.

•	 ﻿Alienation from, and perceived irrelevance of, mathematics 
combined with a propensity for intimidation. 

•	 Failure to sew the seeds of criticality and ﻿agency in future 
citizens.

•	 Misuses of mathematics in the service of states.

As mentioned above, throughout history there have been exceptions. I 
will mention some personal heroes. Ubiratan ﻿D’Ambrosio brought to 
our field the necessary radically different kind of thinking that began to 
liberate ﻿Eurocentric ﻿anthropology and psyschology from their imperial 
and ﻿colonialist roots. The influences of Hans ﻿Freudenthal and Jim ﻿Kaput 
on my thinking must be obvious in this chapter. (I vividly remember 



� 32313. How children, under instruction, develop mathematical understanding

the latter commenting on a paper and drawing on the blackboard 
a large, amorphous creature, representing mathematics education. 
He then meticulously drew one toenail and commented ‘We spend 
too much time analysing toenails on the creature when we should 
be analysing the creature’.) Reuben ﻿Hersh was one of the leaders in 
a radical reformulation of what philosophy of mathematics might be 
about, communicated accessibly what mathematicians do when they do 
mathematics, and illuminated the pervasive ﻿diversity within academic 
mathematics. Alan Schoenfeld, and his career, speak for themselves in 
his chapter in this volume.

Rethinking curriculum

Here I am using ﻿curriculum in the sense of a plan for the contents and 
sequencing of school mathematics. As a starting-point, remember the 
metaphor of inverting the pyramid, introduced above. Taking that 
position has heavy implications for content. Above all, combined with a 
shift in the centre of gravity from mere competence to understanding and 
﻿problem solving, and attention to premature ﻿formalism, there could be 
a drastic reduction in the amount of ‘technical’ mathematics, including, 
as argued above, work with ﻿fractions and multiplying negative numbers 
(Hilton, 1984). Of course, there are protests against such a position. One 
such argument, that I find ill-founded, is that it hurts those children 
who are mathematically gifted. By way of counterarguments, I would 
characterise such giftedness as partly a cultural construct heavily loaded 
with connotations of cultural capital and that, in these days when 
masterclasses can be put online, enrichment is easily provided for those 
children who should (in whatever sense) have it (with careful provision 
to ensure such facilities are equitably accessible). As for students arriving 
at university with less technical knowledge under their belts, maybe the 
university ﻿teachers need to up their game. And, bearing in mind the 
adage that if you have four hours to chop wood, you should spend the 
first two hours sharpening the axe, if they arrive better able to ‘think 
mathematically’ (and enjoying mathematics rather than, at best, being 
rewarded by competence) that may be more than ample compensation.

As argued at various points, and see further below, in modern 
times mathematical modelling﻿ needs to be taken seriously, with a lot 



324� Breaking Images

more attention to the socially and politically situated processes of 
assumption-making, simplification, mathematisation, interpretation, 
and communication of results. The historical alignment of mathematics 
with the physical sciences is discussed in Chapter 8, together with 
suggestions that this traditional alignment be reconsidered. The 
extension of mathematical modelling to social phenomena is reflected 
in the prominence of the use of mathematical techniques in social 
sciences such as experimental ﻿psychology (emphasis on measurement, 
psychometrics, and ﻿statistics).

Then there are what I think of as the rights of the child. As far as 
cognition goes, foremost of these is the right to sense-making. As far as 
﻿identity goes, there are cultural rights, including access to an accurate 
(as far as possible) and balanced history of the development of academic 
mathematics, as well as an appreciation of the ‘funds of knowledge’, 
which is ‘based on a simple premise: People are competent, they have 
knowledge, and their life experiences have given them that knowledge’ 
(Gonzalez, Moll, & Amanti, 2005, p. ix). And then there are the multiple 
aspects of equitable treatment, educationally and personally. 

Curriculum developers, in my opinion, can show a remarkable 
ability to fail to learn from history; this reflects, and partly explains, the 
stultifying inertia that characterises school mathematics, the slowness 
to embrace new content and resources. Lessons from the failure of the 
variety of attempts made under the banner of ﻿New Math have not been 
sufficiently absorbed. Paralleling trends in assessment﻿, ﻿curriculum 
designers appear increasingly to benchmark against productions in other 
countries. This can lead to the error of importing a particular resource 
without the cultural embedding that makes it effective in its original 
milieu. It also encourages convergence (almost in a mathematical sense) 
with consequent implications for ﻿homogenisation.

If we look back as recently as the 1990s, at that time there were 
significant advances in assessment, even to the point of creating 
optimism (see review in De Corte, Greer, & Verschaffel, 1996, pp. 530–
534). That has largely disappeared – by way of example, one only has to 
look at the fate of ﻿Smarter Balanced Assessment Consortium as narrated 
by Schoenfeld (Chapter 14, this volume). In a similar way, as described 
above, the potential of ﻿computers as reviewed by ﻿Kaput (1992) has yet 
to be adequately realised in classrooms.
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And there are what might be called emotional rights. There is no 
reason why elementary mathematics instruction should not be an 
intellectual playground. There is no reason why mathematics ﻿teachers 
should tend to authoritarianism, but the subject certainly provides 
multiple opportunities for any such tendency. Mathematicians who 
love mathematics express sympathy for those who are ﻿alienated by it 
(or more accurately what they have been confronted with), but might 
spend more time thinking about whether they need to show intellectual 
empathy for the children who lack the facility with mathematics that 
they themselves typically enjoyed when young.

Teachers have rights, too, but that’s another story.

 Coherent long-term design

Calculus might be regarded as a web of ideas that should be approached 
gradually, from elementary school onward, in a longitudinally coherent school 

mathematics ﻿curriculum. (﻿Kaput, 1994, p. 78)

Kaput was talking specifically about ﻿calculus – which he suggests 
should be reconceptualised as ‘the mathematics of change’ (p. 152) and 
not necessarily built on the traditional foundation of ﻿algebra (pp. 77–78) 
– but the point applies equally to any major branch of mathematics. 
To give another example, instead of the framing ‘the transition from 
﻿arithmetic to ﻿algebra’, the inherently ﻿algebraic nature of ﻿arithmetic may 
be recognised, and there are plenty of pedagogical moves to do just 
that.	

Here I make what I see as vital points about ﻿curricular design being 
long-term, coherent, forward-looking, and mindful of conceptual 
obstacles and pedagogical dilemmas. At a very concrete level, a century 
ago, Edward ﻿Thorndike (1922) observed that children’s mathematical 
conceptualisations are significantly framed by the examples to which 
they are exposed. A narrow range can result in a narrow understanding. 

 The lingering effects of ﻿behaviourism in folk pedagogy include a 
belief in the obviousness of the principle of monotonic and incremental 
movement along a simple/complex dimension, and the short-termism 
engendered by the desire to maximise scores on the next test. Efraim 
﻿Fischbein pointed out the consequent dangers:
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From the educational point of view there is an important problem to be 
considered by ﻿curricula writers and by ﻿teachers. A certain interpretation 
of a concept or an operation may be initially very useful in the teaching 
process as a result of its intuitive qualities (concreteness, behavioral 
meaning etc.). But as a result of the primacy effect that first model may 
become so rigidly attached to the respective concept that it may become 
impossible to get rid of it later on. The initial model may become an 
obstacle which can hinder the passage to a higher-order interpretation – 
more general and more abstract – of the same concept. (Fischbein, 1987, 
p. 198)

A similar warning was expressed by ﻿De Morgan in relation to number 
and ﻿arithmetic:

If we could at once take the most general view of numbers, and give 
the beginner the extended notions which he may afterwards attain, the 
mathematics would present comparatively few impediments. But the 
constitution of our minds will not permit this. (﻿De Morgan, 1831/1910, p. 33, 
emphasis added)

Accordingly, it is essential to identify points at which conceptual 
change is difficult (and here history can be an indispensable guide) 
and then look for bridging resources. A clear example is the extension 
of multiplication and division beyond the positive integers to positive 
rational numbers, particularly those less than 1. The ramifications of 
this extension have been very extensively researched, in particular how 
‘multiplication makes bigger, division makes smaller’ is no longer valid 
(here ﻿Thorndike’s precept is particularly relevant). The consequent 
difficulties can be ameliorated, as discussed in Greer (1994), by pre-
emptively including examples of multiplication and division by numbers 
less than 1 as early as possible and by the use of bridging example sets 
and ﻿representations. The point was well made by ﻿Cajori (1898):

That, in the historical development, multiplication and division should 
have been considered primarily in connection with integers, is very 
natural. The same course must be adopted in teaching the young. First 
come the easy but restricted meanings of multiplication and division, 
applicable to whole numbers. In due time, the successful ﻿teacher causes 
students to see the necessity of modifying and broadening the meanings assigned 
to the terms. (p. 183, emphasis added)
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As an overarching principle, the above considerations should be 
discussed with students. ﻿Fischbein, for example, has recommended 
telling students about historical examples showing that conceptual 
change is difficult for mathematicians too.

Many other examples come to mind of the consequences of lack of 
forethought. To a mathematician, it is obvious that when performing 
calculations on numbers that are measures of quantities, e.g., multiplying 
speed by time to get distance, the operation is invariant in relation to the 
numbers; for a child this principle is very far from evident, as shown 
by considerable research. Again, to a mathematician, multiplication is 
commutative, but in certain contexts it isn’t, in the sense illustrated by 
the following example. To find the distance travelled by something at a 
constant speed of 0.75 miles per hour for 3 hours is instantly recognised 
as being found by multiplying the two numbers, but if it is 3 miles at 0.75 
miles per hour, not so (many children will say the answer can be found 
by dividing 3 by 0.75, plausibly because they realise that the answer 
will be less than 3 and ‘multiplication makes bigger, division makes 
smaller’).

 Modelling: From unreasonable effectiveness to reasonable 
ineffectiveness

The unreasonable effectiveness of mathematics. (Wigner, 1960, title) 

The reasonable ineffectiveness of research on mathematics education. 
(﻿Kilpatrick, 1981, title)

Eugene ﻿Wigner’s seminal article addressed the question of how it is 
possible, for example, to predict through mathematics the movements 
of celestial bodies. Jeremy ﻿Kilpatrick, in relation to mathematics 
education, pointed out that the answer to ‘How can we send a man to 
the moon, but cannot improve mathematics education?’ is that the first 
is, however complex, a technical problem, while the second is a human 
problem. A similar contrast is evident in moving from the modelling of 
physical phenomena to the modelling of phenomena involving humans. 
Further, given the pervasiveness of what Skovsmose has characterised 
and analysed for decades as the formatting of our lives through 
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mathematical modelling, it is important that the ﻿curriculum address the 
associated complexities.

The simple schematic for modelling in terms of mathematisation, 
development of implications, evaluation, and revision needs to be 
elaborated to include the following aspects:

•	 Considerations of who is doing the ﻿modelling and for what 
purpose; there is massive added complexity, particularly at the 
stages of mathematising the situation, including, in particular, 
what assumptions are made.

•	 Limitations imposed by technology and techniques available – 
these diminish with computing developments, but are still an 
issue for students.

•	 Evaluation of the outcomes of manipulating the model are 
also subject to the motivations of the modellers.

•	 Communication and dissemination of the results, especially 
some sense of their fragility (reasonable ineffectiveness); 
motivations of the modellers are also central at this point.

The foregoing considerations have massive implications for what 
should be taught – not just modelling in the sense of examples of 
how it is done, but questions of why. An extreme (in my view) 
counterargument was put, with admirable clarity, by André ﻿Toom 
(1999). His position was that, rather than viewing ﻿word problems as 
having anything to do with applications, the purpose of including 
such problems is simply to help teach ﻿pure mathematics and students 
to quickly learn the rules. The issue is pinpointed in the remarkable 
amount of discussion about the single equation 2 + 2 = 4. As Houman 
Harouni (see Chapter 12, this volume) outlines, this discussion can 
become very rarified; I find the explanation by Reuben ﻿Hersh (1997, 
p. 16) straightforward and convincing, that the equation has a double 
meaning, as a statement of ﻿arithmetic, and as a description of what 
happens when 2 stable entities are put together, without interaction, 
with 2 other stable entities. To elucidate slightly, 2 + 2 = 4 may afford a 
precise model – if I go to the bakery for donuts and my wife has said to 
get two for her, and two for myself, I could be in trouble if I come back 
with a number of donuts other than four. Or it could be totally wrong 
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as a model – if your doctor says you can drink 2 pints a night and a 
second opinion confirms that recommendation, that is not a licence to 
drink 4 pints a night.

In Verschaffel, Greer, and De Corte (2000), we argued that what are 
called ‘﻿word problems’ or, especially in the United States, ‘story problems’ 
could, indeed should, be treated as simple exercises in ﻿modelling. There 
is no reason why, through such problems, young children should not be 
introduced to the core insight that models may be exact, approximate, 
or plain wrong, and that it is possible to discriminate among those cases. 
Giyoo ﻿Hatano (1997) argued that the cost of increasing the demands 
on students by having them learn about complexities is too high; the 
position taken in this chapter that the cost of not doing so is also too high. 
In extension of this line of thinking, I would argue that mathematics 
education inculcates simplistic thinking. Children are taught the rules 
of the ﻿word problem game, foremost of which is that when you enter the 
mathematics classroom, you can ignore what you know about the real 
world and enter:

A strange world in which you can tell the age of the captain by counting 
the animals on his ship, where runners do not get tired, and where water 
gets hotter when you add it to other water. (Back cover of Verschaffel, 
Greer, van Dooren, & Mukhopadhyay, 2009)

Early school mathematics can be seen as foundational in establishing 
not just the beginnings of understanding and competence, but also 
epistemological biases beneath the surface of mathematical content and 
techniques, including, in particular:

•	 The implicit assumption that essentially anything can be 
measured on a single dimension, and therefore individuals 
and groups can be measured in terms of that variable. The 
case of IQ provides a particularly clear and consequential 
example.

•	 The idea that real-world situations can be ﻿modelled 
unproblematically in terms of mathematical structures and 
operations and that once numbers and models have been 
specified, they cannot be disputed. 
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It does not have to be like that

Many issues about the development of mathematics-as-discipline by 
humankind were raised in Chapter 2. Likewise, there are fundamental 
questions in considering mathematics-as-school-subject:

•	 What are the relationships between the development of 
mathematics by humanity over millennia and the growth of 
mathematical understanding in an individual? How can a 
child be expected to come to grips with conceptual networks 
that took the combined intellectual resources of humankind 
millennia to create? How can this challenge be addressed 
within constructed environments?

•	 Why is school mathematics so ﻿alienating, and unused/
unusable for so many (including highly intelligent people), 
problematic even for those who succeed, and loved by only a 
few (Hersh & John-Steiner, 2011)?

•	 Why do states/societies ask children to endure such stupidity?

•	 Why is systematic design, illuminated by study of the past, 
conspicuously lacking?

Above all, we should always return to the basic questions ‘What is 
mathematics education for?’. Why could it not be different, and in 
what ways? Some thirty years ago, I was asked to say briefly what I 
had learned about mathematics education. I responded: ‘For too many 
people, school mathematics is a personally and intellectually negative 
experience. It does not have to be like that’. That remains a good 
summary of how I feel. 
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14. Rethinking mathematics 
education

 Alan Schoenfeld

I am now concluding my fiftieth year as a professional mathematics educator. 
That benchmark provides an opportunity to reflect on the emergence of ideas 
and understandings over the past five decades, and the persistence of challenges 
that the field continues to face. To quote from the opening page of ﻿A Tale of 
Two Cities, “it was the best of times, it was the worst of times, it was the age 
of wisdom, it was the age of foolishness, it was the epoch of belief, it was the 
epoch of incredulity, it was the season of light, it was the season of darkness, 
it was the spring of hope, it was the winter of despair.” On the one hand, 
our intellectual advances have been extraordinary. We understand thinking, 
teaching, and learning in ways that transcend previous understandings. In this 
chapter, we take a chronological tour through such discoveries—the nature of 
﻿problem solving, of teaching, of powerful learning environments. On the other 
hand, both social progress and institutional progress have been hard to come by. 
Schools and classrooms reflect the structural and racial ills of American society; 
mathematics instruction, while potentially meaningful and useful in people’s 
lives, has little to do with the kinds of sense-making it could support. If anything, 
school mathematics’ distance from meaningful issues in people’s lives serves to 
reify current structures rather than to problematize and challenge them. The 
chapter concludes with a proposal to address this state of affairs. 

Introduction

I had the good fortune to fall in love with mathematics as a child and to 
spend the early part of my career as a mathematician. Then, intrigued 
by George ﻿Pólya’s ideas about ﻿problem solving, I turned to mathematics 
education. The challenge as I understood it was, can we understand 
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enough about mathematical thinking and ﻿problem solving to help 
students get good at it? Wouldn’t it be great if increasing numbers of 
students could experience the power and beauty of mathematics, and 
even come to feel about it the way I do?1

From my current vantage point, the picture is far more complex. Over 
the years I have come to see mathematics as highly political, in the sense 
of realpolitik. It has become increasingly clear, as I have worked to help 
build a rigorous research base for productive change, that those of us 
who concern ourselves with the improvement of mathematics teaching 
and learning have far less to say about the enterprise than we might; that 
school math does little good in the “real world”; and that huge numbers of 
students are systematically excluded from participation in mathematics. 
Such realizations crystallized amidst the onset of ﻿COVID and the increase 
in racial tensions across the United States due to the murder of George 
﻿Floyd. Schooling has been massively disrupted, with the concomitant 
exacerbation of already significant racial inequities. Yet nowhere have there 
been calls for re-thinking what is possible or appropriate—standards and 
﻿testing remain unchallenged and meaningless concerns about “learning 
loss” predominate. Societal preoccupations and plausible academic goals 
conflict in uncomfortable ways.

This chapter provides a political/intellectual narrative, ultimately 
raising questions regarding the character of appropriate goals for 
mathematics education and how one might think about attaining them. 
It tells the larger, political story of my experiences as a researcher and 
developer as I have pursued deeper understandings of the nature of 
mathematical thinking, teaching, and learning. The narrative takes a turn 
at the end, as I reflect on my mathematics-related experiences in recent 
years. I still love mathematics for its beauty and power, but I am deeply 
concerned about its non-use (except for those who have a professional 
need for it) in real-world contexts that matter. In my personal life I have 
made significant use of ﻿K-12 mathematics over the past few years—
but in very different ways than the current goals of ﻿K-12 mathematics 
would suggest or support. It is time to rethink the rhetoric and reality 
of mathematics education. As I reflect on my real-world mathematical 

1� Of course, what anyone takes pleasure in is a matter of taste. But we can imagine 
all students having opportunities to experience mathematics (or art, or sports, or 
literature) in ways that open up the potential for such pleasure. 
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thinking during times of ﻿COVID, on the systematic exclusion of students 
from the mathematical pipeline, and on what I have found it important 
to emphasize in my ongoing ﻿problem-solving courses, I think significant 
change is necessary. The question is, what should the goals of mathematics 
instruction be and how might we attain them? This chapter concludes 
with a proposal for change. That proposal is unlikely to gain traction, but 
perhaps something good can come from the issues it raises.2

I am going to tell this tale as a chronological narrative, in that it 
reflects what might be called my sentimental education, from a young 
naïf to an older and perhaps somewhat wiser scholar-activist who has 
many of the same goals he had in his youth—to help students experience 
mathematics in ways that enable them to become mathematical sense-
makers, experiencing its power and beauty—but is more cognizant both 
of the social obstacles that impede progress and of the failures of extant 
﻿curricula. 

The narrative begins with a focus on mathematical thinking, a brief 
recap of key ideas from my ﻿problem-solving work. Once I understood 
what it is to be a powerful mathematical problem solver, I focused on 
understanding teaching, and then learning environments. Increasingly, 
as well, I focused on things that can make a difference—﻿curriculum, 
assessment﻿, and professional development.3 Second, there is my 
evolving political awareness. This was, of course, nascent early on; it 
was clear many decades ago that the nature of statewide standards and 
assessments shaped what was possible in the classroom. But the political 
nature of the standards process was not apparent to the young me—the 
“﻿math wars” came after the first sets of standards were released. Similarly, 
the politics of professional development only became apparent to me 
when I engaged up close. These issues, in turn, paled in significance 
when society’s utter disregard for ﻿teachers became apparent during the 
onset of the ﻿COVID pandemic. Amid the chaos of 2020, there was good 
reason to re-think the purposes and impacts of education; but there was 

2� The issues that unfold in my narrative are sometimes grounded in the culture of 
the United States and sometimes general. Experiences within the socio-political 
context of the U.S. may or may not have analogs in other nations, but aspects of 
mathematical thinking are in large measure universal. My goals for mathematics 
instruction are thus a hybrid of the two.

3� This is somewhat oversimplified, of course. These issues overlap, substantively 
and chronologically—e.g., my first assessment project began in 1991. 
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little work to do so. Increased income inequality and the blatancy of 
﻿racial violence make the challenges we face that much more salient. 

As has always been the case, my teaching and thinking are deeply 
intertwined; such issues make their way into my course on mathematical 
thinking and ﻿problem solving, and experiences in the course shape my 
thinking about what matters. It goes without saying that I write from a 
position of privilege, and that my history and my perspective have been 
shaped accordingly.

In the beginning

I’ve always loved mathematics. When I was a kid, my entertainments 
were mathematical: trips to the library brought back books like George 
﻿Gamow’s (1947) 1, 2, 3, … Infinity and even on recreational outings I would 
find myself doing something like estimating the number of windows in 
a (large, New York City) housing development. Although my working-
class parents desperately wanted me to become a doctor, I loaded up on 
math courses as an undergrad, and when I told the mathematics chair 
at Queens College4 that I wanted to change from my pre-med chemistry 
major to mathematics, he asked “What took you so long?”.

There are many reasons to love mathematics. Part of what makes 
mathematics so special is that it’s not arbitrary; you can figure things 
out. I have no idea at what point my first conscious mathematical 
discovery was. Perhaps it was the observation that every time I added 
two odd numbers, the result had to be even. Perhaps it was something 
else. Whatever it was, it was magical. And, it was mine – I’d figured it 
out, I owned it! This wasn’t somebody’s rule, which I had to memorize; 
this was something I’d figured out, and I understood why it was true. In 
other fields I had to memorize things. Where did Ohm’s law come from, 

4� It’s worth noting that aspects of the social compact were in place when I was 
an undergraduate. Education was considered a public good. Tuition and fees 
at Queens College (Part of the City University of New York) for New York 
City residents were $32 per semester. All the way into the 1990s, ﻿tuition and 
fees at the University of California were under $2000. Then, in a massive shift, 
politicians came to consider higher education to be a private good—people with 
college degrees earn more money over their lifetimes—and tuition fees began to 
skyrocket. The result is the massive student debt that current graduates suffer 
from—a distinctly U.S. phenomenon.
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for example? Or biological taxonomies, or multiple and conflicting 
interpretations of Hamlet? In math, things made sense. 

To me, that meant that math was fundamentally democratic. It was 
open for discovery. And, assuming you showed (proved) something 
correctly, it was true—period. Nobody could argue it away; no authority 
could declare otherwise. What fun, what power! I had the sense, long 
ago (see, e.g., Schoenfeld, 1994) that much of mathematics could be 
learned via sensemaking and ﻿problem solving. It seemed to me that 
most ﻿curricular content could emerge as the result of well-structured 
investigations rather than being imposed from on high. And, I had no 
idea that there could be anything political about mathematics. If anyone 
could do it and own it, how could it be political? (I remember a chat 
with some Spanish colleagues back in the late 1980s, when one of them 
claimed that mathematics was inherently political. I was incredulous—
in fact, his statement didn’t really “compute”.)

Graduate school and early professional life: The late 60s 
and early 70s

Some time before I earned my Ph.D. in mathematics, I ran across ﻿Pólya’s 
(1945/1957) ﻿How to Solve It. I read the book with fascination. Page after page, 
﻿Pólya described methods of ﻿problem solving. As I read through the book, 
my smile got wider. If I was doing the things ﻿Pólya said mathematicians 
do, then I must be a real mathematician! But then I wondered, why hadn’t 
I been introduced to these methods? Was mathematics a secret guild, 
where the price of entry was figuring such things out for yourself? (In a 
sense, the answer is yes; but it’s more complex than that.)

In any case, doing math was fun. So was teaching. After earning my 
Ph.D., I taught for two years as a lecturer at University of California, Davis. 
That was my first introduction to academic politics: I was advised by my 
senior colleagues that I was spending far too much time with my students 
and that if I wanted to have a successful academic career I should limit my 
office hours and either close the door or go home to prove theorems. I very 
much enjoyed my teaching and earned high teaching evaluations; but I 
was told that that could be seen as a kiss of death among my department 
colleagues. The choice framed for me was, am I a researcher or a ﻿teacher?
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At the time, I’d been reflecting (as a total amateur) on my teaching 
and had written about useful classroom techniques (Schoenfeld, 1977). 
I spoke with a biologist friend who was involved in educational efforts at 
Berkeley. She suggested that I chat with Fred ﻿Reif, a physicist who chaired 
an interdisciplinary group called SESAME (﻿Search for Excellence in 
Science and Mathematics Education) at Berkeley. Fred convinced me that 
there was a future to ﻿cognitive science and education, so I took a postdoc 
at Berkeley. Basically, I did so on the basis of an informal expected value 
computation. On the one hand, I loved mathematics and I wasn’t bad 
at it. But the odds that I’d do something transformative in mathematics 
were very slim – the pioneers of the previous few centuries were hard 
acts to follow, and the field itself had existed for two thousand years. By 
contrast, mathematics education was in its infancy. ﻿Educational Studies 
in Mathematics first appeared in 1968, ﻿Journal for Research in Mathematics 
Education in 1970. When I did my postdoc at Berkeley from 1975–1978, 
the field of ﻿cognitive science didn’t really exist. (The first issue of the 
journal ﻿Cognitive Science appeared in 1977.) So, there were opportunities 
to participate in the growth of the field from the very beginning, 
bringing together my love of mathematics and my wish to go deeper 
into understanding mathematical thinking and teaching. In addition, I’d 
always felt somewhat guilty being a professional mathematician. Being 
paid for producing theorems felt like being paid for doing crossword 
puzzles. It was fun, but to what benefit? If research on ﻿problem solving 
made it more accessible, then there was a potential payoff for students in 
terms of teaching and learning. I was, of course, totally naïve about what 
it takes to have an impact on school systems. But, the opportunity to 
shape the emergence of a new field, to combine my love of mathematics 
with my love of exploring thinking and learning, and, if I was lucky, to 
have some influence on practice, was irresistible.

The early years: Problem-solving research and 
development, 1975–1990

For a number of reasons, I began my research on mathematical ﻿problem 
solving at the college level. I thought about working with doctoral 
students (but did they really need my help?) or on niche areas like 
the Putnam exam (but to tell the truth, I wasn’t great at that kind of 
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problem). I thought that ﻿Pólya’s ﻿problem solving strategies were pretty 
sophisticated, so college students (rather than secondary students) 
were probably the right audience; I started with upper division Berkeley 
students, just to be safe.

What I found very quickly was that my students—among the best 
and the brightest—were woefully unfamiliar with even the most basic 
﻿problem-solving strategies. They were smart, they were creative… 
and they had gotten as far as they had because they were very good 
at mastering the mathematics they were instructed to master. There 
was, not only for these students, but in general, an unspoken didactical 
contract: their ﻿teacher will establish the context and show the students 
what they are responsible for. Homework assignments will stretch the 
students a bit, but they are largely repetitive. Tests will, with the possible 
exception of problems designed to “reveal the A students,” reward 
students who have done their homework. Although they were referring 
to ﻿K-12 ﻿curricula, Glenda ﻿Lappan and Elizabeth ﻿Phillips (2009) tapped 
into at least a ﻿K-14 universal when they referred to the dominant mode 
of instruction as ‘demonstrate and practice’.

The net result was that students had little or no experience with 
﻿problem solving, or what John ﻿Mason, ﻿Leone Burton, and Kaye ﻿Stacey 
(1982) called ‘thinking mathematically’. I came to realize that my 
students were fundamentally deprived, in mathematical terms. I moved 
my ﻿problem-solving courses down to the lower division level, so that 
my students—whether intending math majors or not—could at least 
experience a dose of mathematical thinking. If they planned to go on 
in mathematics, they should at least have a sense of what mathematical 
sensemaking looks like. And if they didn’t, then there was at least as 
much reason to give them a sense that mathematics could be interesting 
and exciting. There’s enough mathophobia in the world as it is.

The core aspects of my work on mathematical ﻿problem solving are 
fully documented (see, e.g., Schoenfeld 1985, 1992), so I’ll summarize 
them briefly. Then I’ll discuss what I found along the way. The central 
work on ﻿problem solving evolved over a decade or so. I first focused 
on ﻿problem solving strategies, or ‘heuristics’, as identified by ﻿Pólya 
(1954, 1957, 1981). The key insight was that ﻿Pólya was right about 
the strategies—mathematicians do use them, having picked them 
up, idiosyncratically, from their experience. (Rough paraphrase: a 
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technique used twice becomes a strategy.) But, the grain size of ﻿Pólya’s 
descriptions was wrong: a strategy such as ‘exploit an easier related 
problem’ was unteachable on its own terms because it actually consists 
of at least a dozen different sub-strategies for identifying easier related 
problems and exploiting their solutions. My research showed that the 
sub-strategies could be learned and that when students learned enough 
of the sub-strategies, they could implement ‘the strategy’. (Rough 
analogy: if you learn to cook a range of vegetables, and starches, and a 
variety of meats, then you can put together a complete balanced meal.)

Interestingly, solving the sub-strategy problem created a new 
problem. ﻿Pólya had identified perhaps two dozen major heuristic 
strategies, a manageable number. But if learning each strategy entailed 
learning a dozen sub-strategies, then the challenge jumped by an order 
of magnitude. The difficulty isn’t simply a learning challenge, although 
mastering hundreds of techniques rather than dozens certainly ups the 
ante; it’s a management challenge. How in the world do you decide which 
technique to use, when you have hundreds at your disposal? (Rough 
analogy: if I give you a key ring with a dozen keys, the odds are you’ll 
be able to open a door within a reasonable amount of time. You can try 
them all if need be. But if I give you a key ring with hundreds of keys, 
the odds of your success diminish substantially.) That led to the issue 
of metacognition, more specifically the issue of monitoring and self-
regulation. The bottom line is that self-monitoring can also be learned. 
With appropriate attention to reflecting on progress duri  ng ﻿problem 
solving, students can get good at it.

I was interested in what helped students succeed and what caused 
them to fail. There was no good reason to ask students to solve problems 
for which they didn’t have the relevant knowledge, so I chose problems 
for which the students had the appropriate backgrounds. At the time, 
plane ﻿geometry was a required high school course, so I could be 
confident that the students knew the basics. I gave my first-year college 
students a simple ﻿geometry construction problem—which, despite their 
knowledge, they all approached empirically. I pursued the issue for 
some years, ultimately having the students prove results that solved the 
construction problem just before I gave them the construction problem 
to work on. Amazingly, the students ignored what they had just proved 
and made conjectures that contradicted it. Those findings led to the 
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study of mathematical beliefs and their origins. And that pursuit led me 
into the schools, where I observed both what was taught and why. My 
experiences in schools led me to consider a series of structural issues, 
starting with the role of ﻿curricula and assessment﻿ in shaping students’ 
learning. 

Given that I had uncovered the challenge of unproductive beliefs 
in ﻿geometry, I started by sitting in on high school ﻿geometry classes. 
In the 1980s, New York was one of three major states (the other two 
being California and Texas) that had state-wide ﻿testing, along with 
state-supported ﻿curricula designed or selected in concert with the tests. 
What soon became apparent were the ways in which ﻿testing deformed 
instructional practice. The New York State Regents exams had a very 
specific format, with 10 points awarded for ‘solving’ (i.e., reproducing 
the ﻿proof of) each of two ﻿proof problems out of a dozen or so ‘required’ 
﻿proofs. What happened of course was that students memorized all the 
﻿proofs, for a guaranteed 20 points out of 100 on the exam. The test also 
had one ‘construction problem’. Students could earn two points for 
producing a sequence of lines and arcs on the page that looked just like 
one of the ‘required’ constructions.

The way that instruction was organized in the school that I observed 
made the power of the exam very clear. Although geometric constructions 
were discussed about half-way through the text, the math department 
reorganized instruction so that constructions were taught just before 
the statewide exam. The rationale was simple: since students were 
intended to memorize the constructions and carry them out precisely, it 
was unwise to have too much time pass between memorizing and test-
taking. Indeed, one of the most memorable quotes from instruction that 
year came from the ﻿teacher, shortly before students were to take a unit 
test on constructions: “You’ll have to know all your constructions cold so 
that you don’t spend a lot of time thinking about them.” The emphasis 
was on speed and accuracy, tailored to test performance. What mattered 
when producing constructions was that the arcs on the page looked 
good, and that they were reasonably accurate. 

A range of research findings included those observations (see, e.g., 
Schoenfeld 1988, 1989). These findings were not about any particular 
﻿teacher; they were general. Hugh ﻿Burkhardt’s acronym ﻿WYTIWYG 
(What You Test Is What You Get) accurately summarized the influence 
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of high stakes assessments. That hasn’t changed. Course texts were, 
and still are, tied to assessments. The literature has long indicated that 
﻿teachers follow texts with great fidelity. 

It should be stressed that the ﻿teachers in this and other studies were 
uniformly well intentioned—they were doing what they thought was 
in the best interests of their students. But, test pressures are enormous. 
That was the case even before the ﻿No Child Left Behind Act, and it 
remains so. I have had National Board Certified ﻿teachers tell me that 
they would try out the ideas in our professional development program 
for one year, but if their students’ test scores dropped by even one point, 
they would leave. I have seen an ﻿equity-focused ﻿teacher who built a 
summer program based on ideas related to growth mindset that was 
designed to help prepare ‘low-performing’ students build confidence 
and ﻿agency completely forsake those ideas during the regular school 
year because there wasn’t time for such things in a ﻿curriculum aimed at 
the high stakes state exams. 

The point here is that by the early 1990s mathematics education 
researchers had a good idea of what mattered in mathematical 
performance. Understanding content—having mathematical resources 
at one’s disposal—had always been considered important. The National 
Council for Teachers of Mathematics (﻿NCTM) endorsed ‘﻿problem 
solving’ and we had a theoretical understanding of how to decompose 
and teach heuristic strategies, although the process had not been done 
and ﻿curricula supporting ﻿problem-solving instruction had not been 
built. The roles of metacognition and belief systems were understood, as 
were the causes of counterproductive beliefs (Schoenfeld, 1985, 1992). 
The obstacles to bringing these ideas into the classroom were structural 
and (socio)political. 

The 1990s and the math wars

If there is one phrase to describe the 1990s in mathematics education, it’s 
“the ﻿math wars”. I’ve written extensively about this (Schoenfeld, 2004, 
2008; Schoenfeld & Pearson, 2009) so I won’t repeat the details but will 
make some observations.

People have multiple reasons for aligning with or leading political 
‘movements’, as has become all too clear in the intertwining of ﻿White 
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supremacy, structural ﻿racism, fervid, and sometimes ‘post factual’ 
(e.g., ﻿QAnon) belief, and personal advantage in Trumpian politics. The 
same was the case, albeit not as blatantly, in the ﻿math wars. There is 
no question that some of the participants considered the integrity of 
mathematics to be at stake and felt that they were protecting it. There 
is also no question that partisanship gave some people, both inside 
and outside the mathematics community, opportunities for personal 
advantage such as visible prominence and political advancement. Here 
I want to point to some more structural issues.

The first issue is financial. I was a member of the group that wrote 
the 1992 ﻿California Mathematics Framework. Our meetings were public. 
They were sparsely attended, apart from one group—there were always 
representatives from major publishers at our meetings. They delivered 
one clear message: ‘reform’ is impossible because it would be too 
expensive. It cost $25 million to develop and produce a ﻿K-8 textbook 
series, they said, and no publisher was going to risk that much money 
on an untried concept. They were right. What did happen was that the 
National Science Foundation (﻿NSF) realized that the lack of suitable 
textbooks was a roadblock to progress, so ﻿NSF issued a funding initiative 
for the production of ‘standards-based’ or ‘reform’ texts. 

Reform texts catalyzed the ﻿math wars, which raged over much of 
the 1990s. To understand whether politics or substance matters, it is 
essential to note that the ﻿math wars were waged largely in the absence 
of hard data. The motivation for reform was clear: there was undeniable 
evidence of the shortcomings of ‘traditional’ instruction and a decade 
of small-scale reform-oriented studies suggested that the directions 
in which the ﻿NSF-funded ﻿curricula were headed were likely to be 
productive. The hard evidence to support this hypothesis didn’t really 
start coming in until 2000, however. The case for reform became stronger 
when Sharon ﻿Senk and Denisse ﻿Thompson’s (2002) summary volume 
indicated across-the-boards wins for reform. (The one-line summary: 
students using standards-based materials did roughly the same on 
tests of skills as students who received ‘traditional’ instruction; they 
outperformed such students on tests of ﻿problem solving and conceptual 
understanding (Schoenfeld, 2002)). The fact that the wars persisted for 
so long in the absence of hard data indicates that the forces that drove 
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much ﻿educational policy were political rather than grounded in data 
and research.

Moreover, although the issues are far less direct, issues of﻿ race 
and its ofttimes inextricable partner, socio-economic status, were also 
implicated. One of the underpinnings of the ﻿Standards movement, and 
an explicit goal of some Standards-based ﻿curricula, was to move toward 
more equitable instruction.5 To state things directly, there are those 
who believe that excellence and ﻿equity are in conflict—that there is a 
gradation of mathematical talent, and that an attempt to enfranchise all 
students mathematically is a disservice to those talented students who 
would profit from more ‘rigorous’ training. From that perspective, if less 
‘talented’ students fall off the mathematical ladder, that’s their problem; 
there is ‘enough’ mathematical talent to advance the nation’s interests, 
and one should not dilute instruction to serve the masses.

The ﻿math wars were fomented in California by a group called 
‘Mathematically Correct’, whose website still exists.6 It is no accident 
that the wellsprings of ﻿Mathematically Correct were San Diego and 
Palo Alto. San Diego was a hotbed of right-wing conservatism, partly 
because of its proximity to the Mexican border and the fact that the 
Spanish-speaking population was increasing rapidly. Immigration 
backlash included the sponsoring of California’s state ﻿Proposition 227, 
essentially an ‘English only’ mandate for the schools. The analysis from 
‘Ballotpedia’, an independent analysis group, summarized Prop 227 as 
follows:

Proposition 227 changed the way that ‘Limited English Proficient’ (LEP) 
students are taught in California. Specifically, it: 

Required California public schools to teach LEP students in special 
classes that are taught nearly all in English. This provision had the effect 
of eliminating ‘bilingual’ classes in most cases.

Shortened the time that most LEP students stayed in special classes.
Eliminated most programs in the state that provided multi-year 

special classes to LEP students by requiring that (1) LEP students move 
from special classes to regular classes when they had acquired a good 

5	  NCTM’s stance on ﻿equity and ﻿diversity has been problematized. See, e.g., Martin 
(2009); for an update, see Martin (2019). However partial or inadequate the 
﻿NCTM position may have been, it was a flash point for controversy, as discussed 
above.

6� See http://www.mathematicallycorrect.com 

http://www.mathematicallycorrect.com
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working knowledge of English and (2) these special classes not normally 
last longer than one year. (1998 California ﻿Proposition 227, 2022)

This was one of many policies implemented by the right wing, tapping 
into the ﻿xenophobia that ultimately metastasized into Donald ﻿Trump’s 
immigration policies. In San Diego in the 1990s, the White voting 
majority felt threatened by a growing Latino minority. Claiming that 
high quality learning was being threatened by untested ﻿equity-driven 
mathematics programs, with the tacit implication that the new programs 
were tailored to minority students, was a perfect wedge issue to mobilize 
White voters. 

Palo Alto represented similar issues in a different way. The area had 
a mixed but separated demographic: Palo Alto itself was upper-upper 
middle class, and East Palo Alto had a largely minoritized population 
consisting in large measure of the people who cooked for, cleaned for, 
and maintained the homes of those (literally!) on the other side of the 
tracks. Here the issue wasn’t fear of disenfranchisement, but loss of 
privilege. The ‘good schools’ in Palo Alto reliably sent their students to 
the best schools and universities. Why tinker with success, for abstract 
reasons of equity and ﻿diversity? If it ain’t broke (for your children, that 
is), don’t fix it. (N.B. My rhetoric is mild, but the rhetoric of the political 
battles in Palo Alto was anything but.)

The tensions remain. The same right-wing players who brought us 
the ﻿math wars are now manufacturing a battle over the anti-tracking 
stance in the 2021 draft ﻿California Mathematics Framework. 

The 2000s, part 1: No Child Left Behind

On a purely personal note, I want to bring up one of my signal failures. I 
was a lead author of the successor volume to the 1989 ﻿NCTM Standards. 
The process by which Principles and Standards was created and vetted 
was beautifully managed and the endorsement of the process by all of 
the major mathematics societies quieted the ﻿math wars. 

All too aware of the impact of ﻿testing and the import of ﻿WYTIWYG, 
I argued that our assigned task, writing standards and providing 
examples of interesting classroom activities, was good but not good 
enough: the wording of the Standards (on the order of ‘students will 
understand X’) was somewhat vague and aspirational, and could be 
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misconstrued. At the time the standards movement nationwide was 
morphing into a test-based accountability movement, so the nature of 
assessments was vitally important. It would be easy, I argued, to craft 
assessments that bastardized our intentions. I proposed to the writing 
team that we incorporate sample assessments into our document. It was 
put to a vote, and I lost 25 to 1.

The result was a disaster. Had ﻿NCTM produced sample assessments, 
it would have taken the lead in saying ‘This is what we want students to 
be able to do with the mathematics they learn’; there is a good chance 
that such tests would have shaped statewide assessments, and thus 
shaped instruction. When ﻿NCTM failed to do so, the vacuum was filled 
by the ﻿No Child Left Behind Act (commonly known as ﻿NCLB). Under 
﻿NCLB, states built their own assessments. Most of those assessments, 
in line with traditional assessments, focused on low-level skills. This 
effectively undermined the goals of Principles and Standards.

Some good intentions motivated the creation of ﻿NCLB. Each state 
defined its own standards, assessments, and performance targets. The 
idea was to ratchet up performance standards gradually and to provide 
support and rewards for reaching those standards. Disaggregation 
mechanisms—every demographic group had to meet the standards—
assured attention to the performance of all students. And, there were 
carrots and sticks. The carrots were that schools that lagged behind 
would be given significant resources to improve. The sticks were that 
if they failed to improve for ‘too long’, penalties would be imposed. 
Individual students would be left back; ﻿teachers would be dismissed; if 
a school failed to meet progress goals for a number of years in a row it 
would be dismantled, and whole districts would be put in receivership.

That approach might have been workable (although highly punitive) 
if the carrots were in place, so that districts that faced challenges in 
making adequate progress were provided with resources to address the 
challenges they faced. But guess what? In the congressional sausage-
making process, the penalties for failing to make progress were carved 
in stone but the resources to support failing districts were never 
authorized. 

Problems abounded. There was huge variability in the sets of 
standards and assessments built by the states. Most of the assessments 
were of low quality. Some states gamed the system, demanding minimal 
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progress until right before the 2013–2014 year; somewhat paradoxically, 
setting low standards allowed them to avoid penalties. But the main 
issue was structural inequality. Rich districts had the resources to do 
well enough, at least at the beginning. That’s not to say that ﻿testing didn’t 
bend schools out of shape. When I went to observe some classes in late 
February, a ﻿teacher I knew from my having worked in her school told 
me not to bother watching instruction—“all we’re doing is prepping 
for the test, there’s no real teaching going on”. But that was a district 
that could afford ‘business as usual’. The challenges faced by poor and 
minoritized districts were far worse. 

Because the enacted version of ﻿NCLB failed to provide fiscal support 
for ‘failing’ districts but did penalize them, under-resourced and 
minoritized districts quickly found themselves being penalized. A local 
district I was working in was the first to be put in receivership. The 
results were devastating, adding injury to injury. The district, with a 
90% minoritized population and hardly any resources, was forced into 
continuous test-prep mode. The result is that the students who were in 
the greatest need of meaningful instruction were systematically denied 
it. This was but one example of the structural ﻿racism within the system. 
It is consistent, of course, with many equally blatant examples (e.g., 
Kozol, 1992; Rothstein, 2017).

The bottom line: seemingly reasonable policy decisions can have 
significant negative impact on people’s lives. This, again, is the issue of 
‘learning loss’.

The 2000s, part 2: The What Works Clearinghouse

Some background on ﻿testing is necessary before I proceed here. Testing 
is not a neutral measure of proficiency. Any test assesses what is 
declared to be important to some degree, depending on how artfully 
the test is constructed. But there’s great variation. Take literacy as an 
example. If you define “literacy” as having a specific vocabulary, you 
give vocabulary tests and ﻿teachers wind up drilling their students on 
vocabulary. If you define “literacy” as the ability to analyze text, you 
develop a very different kind of test; kids read and think. The nature of 
the test is consequential, because students are declared to be “literate” 
(or not) based on their test scores.
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It’s the same in math. One definition of mathematical proficiency 
is skills- and knowledge-based. The basic idea is that students should 
be able to execute the skills taught in the ﻿curriculum. A more inclusive 
definition calls for having students demonstrate proficiency in skills, 
conceptual understanding, and ﻿problem solving. Depending on which 
approach you assess, you get very different results.

Table 14.1 shows the differences in the two approaches. The ﻿SAT-9 
was a skills-based assessment used across California in the 1990s. The 
﻿MARS test was a test of skills, concepts, and ﻿problem solving. ﻿Ridgway 
and colleagues (2000) administered both tests to more than 5000 
students at each of grades 3, 5, and 7. The patterns are the same across 
grades.

 Table 14.1 Student proficiency as reflected by the ﻿MARS and ﻿SAT-9 tests 
(Ridgway, Crust, Burkhardt, Wilcox, Fisher, & Foster, 2000).

﻿SAT-9
﻿MARS Not proficient Proficient

Grade 3 (N = 6136)
Not proficient 27 % 21 %
Proficient 6 % 46 %

Grade 5 (N = 5247)
Not proficient 28 % 18 %
Proficient 5 % 49 %

Grade 7 (N = 5037)
Not proficient 32 % 28 %
Proficient 2 % 38 %

Let’s take grade 3 as an example. If a student was declared proficient on 
the ﻿MARS test, there’s a 46/52 = 88% chance that the student would be 
declared proficient on the ﻿SAT-9. That looks like pretty good alignment. 
But if a student was declared proficient on the ﻿SAT-9, there was a 
46/67 = 69% chance that the student will be declared proficient on the 
﻿MARS test. To put this more directly, 31% of the students declared to be 
“proficient” by California’s official test turn out to be “not proficient” 
when conceptual understanding and ﻿problem solving were assessed in 
addition to skills.
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This result is a big deal if you care about conceptual understanding 
and ﻿problem solving. It’s also a big deal if you care about ﻿curricula. If 
you use the ﻿SAT-9 to assess grade 3 performance, it looks like 67% of the 
students are proficient. That’s not wonderful, but it seems within bounds; 
there appears to be a base for improvement. If you use the ﻿MARS test 
to assess grade 3 performance, however, you get a very different story. 
Only 52% of the students test proficient; you’d better make some radical 
changes. In short, what you test matters. It’s shocking that I have to say 
this—but read on.

The background just provided establishes the context for some 
general comments and then a description of my specific experience with 
the “proficiency-based” ﻿testing. 

﻿No Child Left Behind was only one of the ﻿educational policy initiatives 
put in place during George W. ﻿Bush’s presidency. There was also the 
misguided attempt on the part of the U.S. Department of Education to 
define randomized controlled trials (RCTs) as the ‘gold standard’ of 
educational research (see, e.g., U.S. Department of Education, 2003). The 
issue is not that randomized trials aren’t an excellent way of conducting 
research under certain circumstances. The issue is that in pragmatic 
terms, the ﻿Department of Education discounted almost all other forms of 
research—it didn’t consider evidence produced by alternative methods 
to be adequate evidence of effectiveness. For a broader discussion of 
alternative methods and their validity, see Scientific Research in Education 
(National Research Council, 2002), which was produced in rebuttal to 
the Department of Education’s agenda (although, of course, it didn’t 
say so); see also Schoenfeld (2007), which lays out criteria for rigorous 
and meaningful research and problematizes the use of randomized 
controlled trials in educational research.

If this discussion were merely ‘academic’, that would be one thing. 
But the relevant issues turn out to be Political, with a capital P. As part of 
its agenda to certify high quality instructional materials, the Department 
of Education’s Institute of Educational Sciences created the What Works 
Clearinghouse. ﻿WWC’s mandate was to certify when instructional 
interventions had been validated by rigorous means. If a ﻿curriculum 
or other instructional treatment had been evaluated by means of 
some formal assessment, ﻿WWC staff would evaluate the quality of the 
evaluation. A carefully conducted randomized controlled trial would 
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get you the highest marks—the equivalent of the ‘Good Housekeeping 
seal of approval’ for the ﻿curriculum. ﻿WWC was established to conduct a 
large literature review, identifying interventions that ‘worked’.

In 2003 I was appointed the ﻿WWC’s Senior Content Advisor for 
Mathematics. Basically, my responsibility was to ensure the intellectual 
integrity of the enterprise. (Staff did the work.) 

An early article I produced for ﻿WWC was intended to serve as part of 
a large technical document that framed ﻿WWC’s approach to certifying 
instructional materials. The article explained the ﻿history of mathematics 
﻿curriculum development and assessment. It predicted slim pickings for 
the ﻿WWC mathematics literature review, because very few instructional 
treatments had been subjected to the kinds of randomized controlled 
trials that the ﻿WWC used as its evaluation standard. The Institute for 
Educational Sciences (﻿IES), which funds ﻿WWC, instructed ﻿WWC to 
remove my article from the document. When I complained, ﻿WWC said 
that I would have the opportunity to revise the document for publication 
when some instructional treatments had been reviewed and ﻿WWC was 
further along in the process.  

I waited. After the ﻿WWC staff produced its first series of evaluations, 
I was informed that the Clearinghouse planned to work with a journal 
to create a special journal issue characterizing ﻿WWC’s work. I was told 
to update my article and submit it to the journal. When I went through 
the new data, the predictions I had made in my earlier piece were 
confirmed: very few studies met ﻿WWC’s criteria. More importantly, as 
I worked through the data I discovered a fundamental flaw in ﻿WWC 
methodology. ﻿WWC had not analyzed what the assessment measures 
used in the studies actually assessed. Thus ﻿WWC’s certifications of 
quality had little meaning. When an instructional treatment was 
judged to meet ﻿WWC criteria, it was impossible to know what exactly 
the treatment did well. Did students learn skills, or ﻿problem solving, 
or conceptual understanding, or something else? There was no way 
of knowing without conducting a content analysis of the assessment. 
Because there was only a handful of certified programs, I urged ﻿WWC 
to conduct the relevant content analyses. They refused.

I revised my article. The revision, like its antecedent, contained the 
﻿history of mathematics ﻿curricula and my prediction of slim pickings. It 
documented the accuracy of the predictions and contained a discussion 



� 35314. Rethinking mathematics education

of why ﻿WWC’s refusal to perform content analyses was deeply 
problematic. I submitted my revision to the journal and waited for 
reviews. After a very long delay I was informed that, after conducting 
a “prepublication review,” ﻿IES had instructed ﻿WWC to remove from 
the journal every single paper that had been written by ﻿WWC staff. 
Of course, it made no sense to publish my paper as a stand-alone; the 
journal issue was cancelled. 

The only way I can see to interpret the sequence of events that I have 
just described is that ﻿IES killed the special issue in order to prevent the 
publication of my piece. (This is not the first case of a federal agency 
blocking publication of ‘inconvenient truths.’ There is a history of such 
actions with regard to ﻿climate change and other areas.) I resigned from 
my role as a ﻿WWC advisor and published the details of the story in 
Educational Researcher together with a rejoinder from ﻿WWC and my 
response (Schoenfeld, 2006a; Harman et al., 2006; Schoenfeld, 2006b).

The 2010s

The previous section described the negative impact of deliberate policy 
choices. What follows in this section features the laws of unintended 
consequences—the epitaph for which is a Robert Burns’ quote, “the best 
laid schemes o’ mice an’ men / Gang aft a-gley”. I include these stories 
because they help frame my final discussion of the goals of mathematics 
instruction.

In math-ed terms, the 2010s can be considered the decade of the 
﻿Common Core and the assessment systems that enforce it. Despite the 
best of intentions and some positive outcomes (e.g., greater consistency 
in nation-wide goals for instruction) there are deeply problematic 
aspects to both. I appreciate the challenges faced by the authors of the 
Common Core, who had little time to compile their work and were doing 
their best to avoid rekindling the ﻿math wars. The result, in contrast to the 
﻿NCTM Standards volumes, is a rather slender volume. ﻿NCTM’s (2000) 
Principles and Standards weighed in at more than four hundred densely 
packed pages that described and exemplified content and processes, 
with equal space given to both – that is, the fundamental processes of 
﻿problem solving, reasoning, communicating, making connections, and 
using mathematical ﻿representations received as much attention as the 
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content that was described (number and operations, ﻿algebra, ﻿geometry, 
measurement, and data analysis and ﻿probability). 

The ﻿Common Core contains a three-page list of ‘standards for 
mathematical practices’ and a seventy-four-page list of ‘standards for 
mathematical content’. Here is a sample from the beginning of the grade 
6 content description:

Use ratio and rate reasoning to solve real-world and mathematical 
problems, e.g., by reasoning about tables of equivalent ratios, tape 
﻿diagrams, double number line ﻿diagrams, or equations.

a.	 Make tables of equivalent ratios relating quantities with whole-
number measurements, find missing values in the tables, and plot the 
pairs of values on the coordinate plane. Use tables to compare ratios.

b.	 Solve unit rate problems including those involving unit pricing and 
constant speed. For example, if it took 7 hours to mow 4 lawns, then at 
that rate, how many lawns could be mowed in 35 hours? At what rate were 
lawns being mowed?

c.	 Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity 
means 30/100 times the quantity); solve problems involving finding 
the whole, given a part and the percent.

d.	 Use ratio reasoning to convert measurement units; manipulate 
and transform units appropriately when multiplying or dividing 
quantities. (Common Core State Standards Initiative, 2010, p. 42)

In my experience, such neat clean descriptions get turned by school 
districts into ﻿curricular checklists—“Have we worked problems on tables 
of equivalent ratios? Yes, check. Have we practiced on tape ﻿diagrams? 
Yes, check”. And so on. That is, it’s easy to go from bullet points to scope 
and sequence. You get content ‘coverage’ in the narrowest sense.

And what about important practices and processes? The Common 
Core discusses eight key practices on pages 6–8, and the list of those 
practices is reprinted at the beginning of each content chapter. We’ve 
known for decades that ﻿problem-solving success hinges on: students’ 
knowledge base; their access to ﻿problem solving strategies; effective 
metacognition, specifically monitoring and self-regulation; and 
productive belief systems, about mathematics and about oneself vis-
à-vis mathematics—in today’s language, productive mathematical 
identities (Schoenfeld, 1985). To speak bluntly, the Common Core offers 
no meaningful support for anything but content. Functionally, there is 
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no support for ﻿problem solving. There is no support for the development 
of metacognitive skills, and beliefs and mathematical identities are not 
addressed. 

When discussing ‘real-world’ implementations of ﻿curricula, Ann 
Brown and Joseph Campione (1996) observed that all ﻿curricula and 
frameworks undergo mutations when they move into classrooms. The 
challenge, she said, was to avoid lethal mutations. Unfortunately, (a) the 
﻿Common Core’s list of bullet points is easily converted into a ﻿curricular 
scope-and-sequence, (b) the Common Core offered no meaningful 
support for mathematical processes and practices, and (c) it provided 
no exemplification of rich and interesting mathematical problems and 
discussions. In consequence, in addition to not providing direct support 
for ambitious ﻿curricula, the Common Core left the door wide open for 
lethal mutations.

There are two ways out of this dilemma. The first is large-scale 
﻿curriculum development, a process that takes many years and large 
investments. For the most part, that just didn’t happen. It is the case that 
some good Standards-based ﻿curricula were retrofitted to the Common 
Core, and some ongoing projects are providing good materials. The 
problem is that high stakes assessments were going to be implemented 
soon after the Common Core was adopted. School districts needed 
Common-Core-consistent ﻿curricula as soon as possible. The results 
were mostly cut-and-paste disasters. This is a systemic failure.

The second way out of the lethal mutations dilemma could be the 
use of well-constructed assessments. Given ﻿WYTIWYG (What You 
Test is What You Get), a set of robust assessments that interpreted the 
Common Core in the right ways could have driven instruction in the 
right directions. Hugh ﻿Burkhardt and I were asked to head the team 
that drafted the specifications for the ﻿Smarter Balanced Assessment 
Consortium (﻿SBAC) (Schoenfeld & Burkhardt, 2012), which contracted 
with about half the states in the US to implement Common-Core-
consistent assessments. We were excited about the possibilities because 
they promised two fundamental changes. First, we constructed a 
system that was able to provide meaningful and reliable sub-scores 
regarding students’ knowledge of: (1) concepts and procedures, (2) 
﻿problem solving, (3) communicating reasoning, and (4) ﻿modelling and 
data analysis. The point of such sub-scores is that they can highlight 
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particular students’ or schools’ strengths and weaknesses rather 
than providing single numerical grades. Second, we exemplified the 
assessment with a collection of mathematical tasks that embodied the 
mathematical richness we wanted students to engage with. The tasks 
were taken largely from task banks constructed by the ﻿Mathematics 
Assessment Project.7 They have been used in secure testing situations 
for many years. 

The 2012 ﻿SBAC specs are no longer on the ﻿SBAC website. In fact, the 
specs were never implemented in ways consistent with ﻿Burkhardt’s and 
my expectations. The problem is that the ﻿SBAC Governing Board always 
planned to move toward ﻿computer-graded exams, which are cheaper, 
more ‘reliable’, and more ‘secure’ than person-graded exams.8 SBAC 
built what it could and implemented it. In my opinion, the transition 
to ﻿computer-based exams de-natured the mathematics in the exams to 
the point where the exams fail to represent the mathematical richness 
that we had built into the exam specifications. (To be fair to ﻿SBAC, I am 
measuring them against high standards. The assessments produced by 
the other national assessment consortium, ﻿Partnership for Assessment 
of Readiness for College and Careers, are far worse.)

The point is that there have been opportunities to orient the system 
toward richer and more engaging—even if somewhat traditional—
mathematical content. For largely systemic and political reasons, that 
hasn’t been done.

The 2020s

The first few years of the 2020s have already given us more than a 
decade’s worth of challenges. As I wrote in Schoenfeld (2022):

The murders of George ﻿Floyd, Breonna Taylor, Trayvon Martin, Sandra 
Bland, Ahmaud Arbery, and numerous other Blacks at the hands of 
police and white supremacists laid bare for all except those who refuse 
to acknowledge it the structural ﻿racism that underpins American society 
(Center for American Progress 2019, Urban Institute 2020, Wilkerson 

7� See https://www.map.mathshell.org
8� There are mechanisms for hand-grading exams that are comparatively inexpensive 

and secure – see the arguments in Burkhardt & Schoenfeld 2019. ﻿AI-graded exams 
could have been phased in gradually. 

https://www.map.mathshell.org
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2020). It’s not that such issues were unknown; it’s that the murders and 
the protests they engendered made them much more difficult to ignore. 
The reality that many minoritized people live in a world apart from 
White America, with different and much more devastating expectations 
for quality of life (including education) has been rendered day after day 
in high resolution.

If anything, the situation has gotten worse in the years since I penned 
those words. The completely manufactured ‘controversy’ over teaching 
﻿critical race theory in schools represents a full-fledged attempt to ban 
the teaching of the history of oppression described in the previous 
paragraph. Such actions and their consequences reach into every 
mathematics classroom. 

In much of my previous work I theorized about what took place 
inside ostensibly closed systems–-people solving problems in isolation, 
﻿teachers making decisions, actions in the classroom. My ﻿problem-solving 
research asked: “What are the aspects of thinking and understanding 
that need to be examined in order to determine the success or failure 
of any individual’s attempt to solve a problem?” The (theoretically 
complete) answer was: “You need to know about the individual’s 
knowledge base, ﻿problem solving strategies, metacognitive behavior, 
and belief systems” (Schoenfeld, 1985, 1992). Similarly, my research 
on ﻿teachers’ decision-making asked: “What do you need to know in 
order to model the in-the-moment choices a ﻿teacher makes during 
instruction?” The (theoretically complete) answer was: “If you know 
the ﻿teacher’s resources, orientations, and goals in very fine detail, then 
you can produce a detailed model of the ﻿teacher’s choices by using a 
specific ﻿probability-based decision mechanism” (Schoenfeld, 2010). 
My ongoing classroom research asks the question: “Which dimensions 
of classroom interactions are necessary and sufficient to ensure that 
students will emerge from instruction as knowledgeable, resourceful, 
and agentive thinkers and problem solvers?” The (theoretically 
complete) answer is: “It suffices to examine the five dimensions of the 
Teaching for Robust Understanding (﻿TRU) Framework: the quality 
of the mathematics; opportunities for productive struggle; equitable 
access to meaningful engagement with core content; opportunities 
for the development of ﻿agency and positive mathematical identities; 
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and formative assessment” (Schoenfeld 2013, 2014; Schoenfeld & The 
Teaching for Robust Understanding Project, 2016). 

The challenge is that these closed systems, while allowing for 
theoretically complete solutions, also wind up finessing key questions of 
causality. In ﻿problem solving, where do knowledge and belief systems 
come from? In a society where students are stereotyped, tracked, and 
provided very different opportunities to learn, such issues matter: it’s 
not just what individuals bring to a problem situation, it’s what shaped 
their knowledge and belief systems before they sat down to work on the 
problem. It’s the same with teaching: Where do ﻿teachers’ orientations 
come from? For example, we have to think about what led a ﻿teacher 
to say, when I asked him whether he’d ever consider giving his class a 
problem and let them grapple with it, “not these students, it would just 
confuse them. I do that with my honors students”. And, when we think 
about the construction of powerful learning environments along the 
lines of the ﻿TRU Framework, we have to think about the distributions of 
opportunity to do so. These are massive societal issues. The solutions to 
the closed system problems point to what needs to be done, but larger 
systemic issues need to be taken into account when we consider what 
caused things to be as they are and how we might address them.

Nowhere is the set of larger social issues clearer than when we consider 
the national impact of ﻿COVID-19. Essential workers—disproportionately 
﻿people of color—were forced to work but were not given prioritization 
for vaccination. The consequences are all too predictable, as indicated 
by a piece in the ﻿New England Journal of Medicine entitled “Structural 
Racism, Social Risk Factors, and Covid-19—A Dangerous Convergence 
for Black Americans” (Egede & Walker, 2020).

Similarly, children of poverty and children of color suffer the academic 
impacts of ﻿COVID disproportionately: see “Addressing Inequities in 
Education: Considerations for Black Children and Youth in the Era 
of ﻿COVID-19” (Gaylord-Harden, Adams-Bass, Bogan, Francis, Scott, 
Seaton, & Williams 2020). That article has the following section heads: 

Systemic Racism is the Pre-Existing Condition Affording ﻿COVID-19 
the ﻿Opportunity to Disproportionately Impact the Black American 
Community

Black Families are Facing More Severe Economic Consequences
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Black Children Face Disadvantages in Remote Learning Settings

Schools That Serve Black Children are Less Able to Provide Remote 
Learning Experiences

Black Children are Experiencing Elevated Levels of Stress

There are similar findings for a wide range of minoritized populations.9 
Despite consistent evidence along these lines, the predominant 

concerns in the media are focused on ‘learning losses’. That’s what 
makes headlines. Earlier this year I wrote an editorial to that effect, titled 
“It’s Time for an Academic Reset”. It made the following arguments:

What really matters? First and foremost, students’ mental and 
emotional well-being. ﻿COVID’s impact has fallen disproportionately on 
communities of ﻿color and people who are economically disadvantaged. 
Privileged students often have good technology, good ﻿Wi-Fi, and nice 
places to study. One of my former students, who teaches in a low-
income, highly diverse district, had to find her students to give them 
electronic tablets they could work on; then some of those students had 
to park themselves outside of schools to get a ﻿Wi-Fi signal. The current 
crisis magnifies longstanding inequities. Making believe we can make 
‘normal’ progress under these circumstances without doing serious 
damage to the most disadvantaged students is just plain crazy. We 
need to find modes of schooling that support students socially and 
academically.10

The editorial was rejected by the ﻿New York Times, the ﻿Washington 
Post, the ﻿Sacramento Bee, ﻿Education Week, and more. Well, OK, maybe 
they weren’t interested in the arguments put forth by a lone academic. 
So, I worked with the Laureate Chapter of the education honor society 
﻿Kappa Delta Pi—a Who’s Who of scholars and ﻿equity advocates—to 
craft an updated version of the editorial. No luck. The challenge is that 
‘learning loss’ sells in policy terms, while thoughtful examinations of 
underlying issues are a tough sell. And inequities persist.

9� See the collection of SRCD policy papers at https://www.srcd.org/research/
briefs-fact-sheets/statements-evidence

10� See https://gse.berkeley.edu/news/its-time-academic-reset for the editorial. See 
also McKinney, de Royston, & Vossoughi, 2021.

https://www.srcd.org/research/briefs-fact-sheets/statements-evidence
https://www.srcd.org/research/briefs-fact-sheets/statements-evidence
https://gse.berkeley.edu/news/its-time-academic-reset
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What really matters in mathematics learning?

In this section I put forth a somewhat radical proposal based on (a) 
reflections on my recent experiences using mathematics in my personal 
life, (b) recent political events, and (c) reflections on the evolution of 
ways in which I have been teaching my course on mathematical thinking 
and ﻿problem solving.

Let me start with my roots. I’m a math person. My Ph.D. is in 
topology and ﻿measure theory and I truly love mathematics. I have 
spent my entire professional career aimed at the goals described in the 
opening paragraph of this chapter.

Over the years, my thinking about what matters has broadened. 
There are ﻿problem-solving strategies; there are issues of monitoring 
and self-regulation; there are belief systems. There are what I’ve called 
“productive patterns of mathematical thinking” (Schoenfeld, 2017) or, 
more traditionally, mathematical practices (Schoenfeld, 2020a). Then 
there are questions of what kinds of learning environments support 
students in developing such understandings, and what it takes to 
teach for robust understanding of mathematics (Schoenfeld 2020b; 
Schoenfeld and the Teaching for Robust Understanding Project, 2018.) 
So, my roots are firmly planted in (relatively ﻿pure) mathematical soil. 
But…

When I ask the question “what mathematics have I used in my 
non-professional life that was important and consequential?”, the 
answer is “almost nothing I learned in school”. And yet, I have made 
very meaningful use of straightforward mathematics. Here are two 
examples.

Example 1

I chair the Coronavirus Advisory Committee (CAC) for a residential 
program that serves adults who have developmental and other disabilities. 
CAC is responsible for setting policies and protocols for residents and 
staff that concern vaccinations, safety, masking and distancing, travel, 
and ﻿testing. Establishing and updating these policies takes place in 
the context of rapidly changing and often incomplete or contradictory 
information and recommendations from available sources. When you 
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look closely, it becomes clear that some policy decisions, including those 
from US government agencies such as the FDA and CDC, are politically 
influenced. Indeed, within a period of weeks, new guidance issued by 
these agencies has conflicted with earlier recommendations without the 
evidence base having changed substantially. 

This is a ‘real-world’ problem of some significance. How do you 
think about issues of ﻿COVID rationally, based on available information? 
How do you cut through conflicting information to make sane policy 
decisions? Here’s a problem which I have discussed: 

It is now generally accepted that the primary mechanism of Covid-
19 transmission is the inhalation of aerosol particles. Under most 
circumstances 6 feet of physical distancing is considered a safe distance 
to avoid infection. Let’s take those as scientifically established for the 
sake of discussion. The other day as I was out for a walk (wearing a cloth 
mask) I was irritated by cigarette smoke produced by a smoker who was 
across the street, a good 30 feet away. If an aerosol irritant could bother 
me at a distance of 30 feet, why is 6 feet of physical distancing considered 
safe for ﻿COVID? (Schoenfeld, 2021, p. 397)

Have fun with this problem if you wish (or see my solution in 
Schoenfeld, 2021). In broad-brush terms, here’s how I thought about the 
problem. I don’t know much ﻿biology, but that’s not an issue regarding 
this problem—if I could frame the underlying issues in the right ways 
a Google search would give me reasonable data. What I needed to do 
was figure out the right questions to ask. These questions were all I 
needed to address the issue. Regarding ﻿COVID transmission: how big 
are infectious ﻿COVID-transmitting particles and how far are they likely 
to travel? How dense are they in an infected person’s exhalations? 
Similarly, regarding cigarettes: how big are cigarette smoke particles 
and how far are they likely to travel? How dense are they in a smoker’s 
exhalations? Answers to those questions were easy to find and to 
triangulate. Once I had them, some elementary mathematics resolved 
the issue. (Smoke particles waft, and there are tons of them. There 
are way less ﻿COVID-transmitting particles, which are much larger, 
and sink.) This type of thinking with emerging data has helped our 
Coronavirus Advisory Committee establish and modify appropriate 
safety protocols.
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Example 2

This case of mathematical thinking concerns my personal health. I was 
diagnosed as having type 2 (adult onset) diabetes more than twenty 
years ago. It’s not a major concern; my blood sugar levels are easily kept 
within bounds by a combination of diet, pills, and exercise. When I was 
first diagnosed I started keeping track of what I ate and how my blood 
sugar levels changed.

I quickly learned that the general dietary guidance provided by 
nutritionists is of limited use because the dietary categories in the 
recommendations are too broad and there are significant differences in 
metabolism from individual to individual. White rice sends my sugar 
skyrocketing, for example, but brown rice is fine; my favorite Chinese 
restaurant noodle dish sent my sugar through the roof and I had to 
stop eating it, while my homemade pasta wasn’t a problem. Simple 
data tracking revealed which of my pleasures I could enjoy without 
significant risk. It also revealed, contrary to dietitians’ dogma, that a 
reasonable quantity of wine with dinner of wine lowered my average 
blood sugar rather than raising it. To settle a longstanding point of 
contention with my doctor, I went for three weeks without wine and 
compared my sugar levels with those of the previous three weeks. Wine 
won over abstinence!

A more serious issue arose recently when my doctor suggested 
substituting a new diabetes pill (medicine A) for a pill I’d been using 
(medicine B), because the newer medicine offers increased protection 
against heart disease. To my dismay but not my surprise, no information 
was available regarding how doses of medicine A and medicine B 
compare. So, my doctor and I had to proceed empirically.

Medicine A comes in doses of 10 and 25 mg. Our first empirical trial 
involved a roughly half-and-half switch: I added the small (10 mg) dose 
of medicine A to my daily regimen and cut back half on B. (To give my 
metabolism time to stabilize, each of the empirical trials described here 
took about three weeks.) The numbers from the half-and-half switch 
looked pretty good. 

The next question was, is 10 mg of A enough by itself? To find out I 
stopped taking B. That didn’t work well; my blood sugar rose above the 
levels we wanted. That led us to consider the 25 mg dose of medicine A. 
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Under the natural assumption that the impact of A would be proportional 
to dosage, we expected the extra 15 mg of A to provide a very good 
reduction in blood sugar levels. So, I stayed off medicine B but increased 
medicine A to 25 mg. The result was a surprise. There wasn’t nearly as 
much effect as we expected—the 25 mg of A didn’t reduce my blood 
sugar levels much more than the 10 mg dose had. That meant that we 
had to reconsider our basic model. My doctor had said that medicines 
A and B used two different mechanisms to remove sugar from people’s 
systems. Since the move from 10 mg of A to 25 mg of A didn’t help that 
much, it was now reasonable to assume that the mechanism by which A 
worked had maxed out at a little more than 10 mg. On the other hand, 
since medicine B worked by a different biological mechanism, its impact 
might well be in addition to that of medicine A. That’s why 10 mg of A 
plus half of the B I’d been taking had been effective. 

I won’t run through the numbers here, but I will say they’re 
compelling. What I want to focus on is the process that produced 
the results. My doctor and I faced a situation for which there was no 
medical guidance, but for which short-term experimentation was low 
risk (I could stop taking any combination of medicines immediately if 
my blood sugar numbers looked bad). We did some simple experiments 
assuming that the impact of the drugs would be proportional to the 
dosage, and then revised our assumptions when the data didn’t turn out 
as expected. The result is a much better medical regime for me.

The kind of thinking described in examples 1 and 2 could literally 
be matters of life and death. In both cases I wondered if the situation 
at hand could be modelled using some simple proportional reasoning. 
And—and this is the critical part—in both cases I had the sense of ﻿agency 
that led me to build the models and see if they explained things. The 
odds are that a very small percentage of people would think in these 
ways or have the personal ﻿agency to do this kind of mathematically 
based experimentation. That’s a very big problem. 

I believe that problem comes in large part from the insularity of the 
﻿curriculum and from the lack of ﻿agency that students develop because 
of the ways we teach. By insularity, I mean that students historically 
learn to solve only the categories of problems we explicitly prepare 
them to solve. Rather than thinking of the mathematics they’ve learned 
as tools that could apply in a wide range of situations, they think of 
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that mathematics as applying to very narrow classes of problems—
specifically, the kinds of problems they’ve been taught to solve. Just 
as students learned to expect that “all problems can be solved in 
five minutes or less” on the basis of their classroom experience (see 
Schoenfeld, 1985), students also learn to expect that “the math I learn 
in school is not applicable in meaningful ways to issues that take place 
outside the classroom”. With such expectations, they don’t think to use 
the math they know in situations like those in examples 1 and 2. The 
problem is compounded by the fact that most students have almost no 
experience pursuing mathematical ideas on their own. If you haven’t 
done so in the classroom, why would you do so outside the classroom?

Mathematical ﻿agency is a fundamentally important issue. I am, once 
again, teaching my ﻿problem-solving course this semester. Over the years 
I’ve found myself ‘covering’ less and less, in that my students and I work 
fewer problems than before—but we work them much more deeply, 
exploring the mathematical issues and connections they might suggest. 
This semester my students and I were playing with the mathematics of 
3x3 magic squares. In looking at possible extensions and generalizations 
a student conjectured that the sum of 9 consecutive integers would 
always be divisible by 3. That student ultimately argued that (a) the 
sum of 3 consecutive integers could be shown to be divisible by 3; (b) 
9 consecutive integers could be divided into 3 triples, each of which is 
divisible by 3; (c) since 3 was a factor of each triple, 3 was thus a factor 
of the sum. 

The student’s observation and our reflections on it led to other 
questions. What about the sum of 5 consecutive integers? What about 
the sum of n consecutive integers, if n is odd? What if n is even? Things 
got complicated as we played with examples. Some numbers could 
be obtained as sums of consecutive integers, but some (4 and 8, for 
example) couldn’t. That led to this question: which integers can be 
expressed as the sum of consecutive integers? The class was off and 
running, in directions I hadn’t expected. They worked through the 
class break, wrote about the problem passionately in our class logs, and 
ultimately followed their ideas until they produced a complete solution 
to the problem. Now, in this particular instance my students produced a 



� 36514. Rethinking mathematics education

solution to a known problem, but that doesn’t matter.11 They were doing 
mathematics, and it was exhilarating. More important than the fact that 
they solved a particular problem was the fact that they saw themselves 
as honest-to-goodness mathematical sense-makers. When you have that 
sense of yourself, you’re empowered to tackle new problems—and if 
doing so becomes enough of a habit, you might feel empowered enough 
to take on the kinds of ﻿COVID and health-related problems I discussed 
at the beginning of this section. That is: students who have engaged 
in that kind of generative mathematical thinking throughout their 
academic careers are much more likely to be mathematically agentive. 

Let me try to pull the various themes of this discussion together. First, 
structural inequities in schooling have worsened during ﻿COVID. Society 
at large has done its best to ignore the issue, focusing on meaningless 
‘learning loss’ instead. Second, we know that myriad students are 
disaffected from mathematics. There are multiple reasons for this, 
including its perceived irrelevance and perceived inaccessibility. Third, 
if people can’t use elementary mathematics to reason about what are 
literally life-and-death issues, mathematics as taught is a dismal failure. 
Fourth, if people have no mathematical ﻿agency, they won’t use what 
they ‘know’, so their school knowledge is irrelevant. 

If you take these issues seriously, radical reform is in order. For 
mathematics to be personally meaningful to students, it must be more 
exploratory; a sense of ﻿agency simply can’t come from being trained to 
apply methods and ideas you’ve been taught. And, for mathematics to 
be meaningful, it must be more personally relevant. Here I don’t mean 
the superficial relevance of topics drawn from ‘real life’, for example, 
discussions of sharing pizza equitably when students are learning 
﻿fractions. 

Many meaningful examples can be drawn from real life, and they can 
be mathematized. That, in part, is the general issue of “mathematical 
literacy” (see Burkhardt & Schoenfeld, in preparation). Issues of ﻿social 
justice can and must be mathematized as well. There is a small body 

11� Historical note: my students have, at times, derived new mathematics when 
pursuing ideas they found interesting, and the results have been published. That 
didn’t happen this semester, but that’s not the point. What matters is that these 
students saw themselves as capable of creating new mathematics and took great 
pleasure in it.
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of research and resources along these lines (see, e.g., Gutstein 2006, 
Gutstein & Peterson 2015), and there needs to be much more. But there’s 
more to be considered than mathematizing real world and ﻿social justice 
contexts in classrooms. The challenge is to design ways for students to 
do that mathematizing in ways that result in their empowerment—the 
feelings of ﻿agency and ﻿identity that make it natural to see oneself as 
someone who can approach meaningful problems and make sense of 
them. What if we thought about organizing ﻿curricula with these goals in 
mind? I think there are possibilities, if only hypothetical for now. In what 
follows I briefly outline the pie-in-the-sky version, and then suggest that 
it isn’t impossible.

Imagine a massive research and development project centered 
around the creation of multiple-days-to-weeks-long units that feature:

a.	 potentially meaningful issues to be addressed or resolved;

b.	 a student-centered pedagogy supporting exploration in ways 
consistent with the development of student agency; and

c.	 scaffolding for ﻿teachers that helps them engage with issues (a) 
and (b) in increasingly powerful ways over time. 

Imagine, further, that the units address a broad range of issues, including

•	 interesting and important mathematical concepts and 
practices;

•	 meaningful challenges from the ‘real world’ that can profit 
from mathematizing; and,

•	 issues of ﻿social justice.

And, as long as we’re imagining things, imagine building the kinds of 
professional networks that support ﻿teachers in leveraging what they’ve 
learned from working with such instructional units.

This vision isn’t impossible. Evidence shows that carefully designed 
instructional materials can result not only in student learning, but in 
﻿teacher change—at scale. The Formative Assessment﻿ Lessons (﻿FALs) 
developed by the ﻿Mathematics Assessment Project are two- to three-day 
units that present students with one or more challenges to address, in 
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exploratory fashion.12 The teacher support provided in the FALs consists 
of twenty-page lesson plans that structure the explorations and help 
﻿teachers support the students in those explorations. The lesson plans 
include descriptions of students’ likely misconceptions and ways to 
address them, while maintaining an ambience of inquiry. Studies of FAL 
implementation indicate significant student learning gains (Herman et 
al., 2014) and ﻿teacher learning (Research for Action, 2015). The fact that 
there are twenty ﻿FALs per grade (in grades 6 through 10) means that 
it is possible to build fifty to sixty days of instruction per grade in this 
mode. That’s a third of an academic year. If you can do that, it’s possible 
to build a full year’s worth of instruction in similar fashion.

The ﻿FALs were constructed to be aligned with the ﻿Common Core. 
What if we were to treat some meaningful real-world problems the same 
way? What if we were to treat some ﻿social justice issues the same way? 
What if we were to craft an entire ﻿curriculum with a mix of centrally 
important mathematics, ﻿social justice, and applied units? On the one 
hand, I think that such materials could make a significant difference—
and that a funding ﻿agency with a sense of vision could help to make 
some of this happen. On the other hand, I can imagine the prospect of 
the first complete ﻿social justice unit being caricatured on Fox News and 
catalyzing the next round of the ﻿culture wars. I could say more, but 
this isn’t the place to go into such ideas in depth. My intention here is 
to plant some seeds for thought. Perhaps some of them can be helped 
to grow.
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12� See https://www.map.mathshell.org/lessons.php

https://www.map.mathshell.org/lessons.php
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15. Networks, controversies, 
and the political in mathematics 

education research

Lisa Björklund Boistrup and Paola Va lero

The stories about what constitutes the field of mathematics education research are 
threaded in a network of institutions, people, and materialities that both produce 
and sustain them. In such distributed network, controversies concerning these 
stories are constantly negotiated. Drawing on ﻿Latourian concepts and analytical 
strategies, such stories, network and controversies are explored in an attempt of 
understanding the political in mathematics education as a ‘matter of concern’. 
An analysis is deployed of the contemporary controversy on the justification for 
school mathematics in the school ﻿curriculum as it is played out in research that 
engages with the ﻿Organisation for Economic Co-operation and Development 
(﻿OECD)’s Program for International Student Assessment (﻿PISA) as an event 
shaping the political reasoning about mathematics education. Using the format 
of a play, the results show the positions entangled in the controversy surrounding 
mathematics education in current societies. Casting light to these controversies 
helps trace the multiple entanglements between mathematics education and the 
cultural politics and economy of our times.

Stories in/on mathematics education

What to say about mathematics education as a domain of scientific 
research depends on the perspective from which one decides to look 
at the field. Already in 1998, Jeremy ﻿Kilpatrick and Anna ﻿Sierpinska 
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(1998) published an ICMI-Study1 volume on mathematics education as 
a research domain wherein a number of recognised researchers at that 
time reflected on the core of the research field. Since then, a number 
of overview publications in handbooks and in special collections in 
books and journals have produced new insights and discussions about 
the advances and limitations of the field of research (e.g., Inglis & 
Foster, 2018; ﻿Niss, 2019). In these meta-reflections, that show the field’s 
reflexivity regarding its practices and results, one can find stories about 
its history, origins, development, and evolution, as well as its hopes and 
aspirations for its future. To call these accounts ‘stories’ does not imply 
any kind of diminishing of their veracity, accuracy, or foundation. It 
only signals that there may not be an absolute and objective description 
of mathematics education research and its results, but that there will 
always exist localised attempts by storytellers to articulate an account 
of the people, materialities, and practices that, in specific time-space 
configurations, are considered key elements in shaping mathematics 
education as a field of investigation. That stories are diverse and are told 
from different vantage points does not, however, mean that those stories 
do not have a resonance. Indeed, they do, as they become part of what 
the many people involved in the activities of the field come to express 
when referring to mathematics education research.

Traces of those stories are to be found in the very same way that 
the people involved think and talk about the field: a relatively new area 
of research with a place in universities, of interdisciplinary nature but 
identified as a social science, where mathematics in a broad sense plays 
a role. It is a field of academic inquiry in search of an ﻿identity, with 
local and regional roots, but also highly international, with the overall 
aim of understanding teaching and learning practices and contributing 
to their improvement. It is necessary as a foundation and support 
for bettering ﻿teacher education and actual teaching and learning 
in schools. It contributes to achieving higher results in large-scale 
measurements, a part of the national strategies to increase interest in 
the Science, Technology, Engineering, and Mathematics (﻿STEM) fields 
and promoting and sustaining individual progress, social development, 
national economic competitiveness, and so on. Out of all these traces, 

1� International Commission on Mathematical Instruction (﻿ICMI).
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and plagued by a mathematical desire to find order or at least a secure 
point to hold onto, one could succumb to the temptation of producing a 
definition that most people – if not all – could endorse:

Mathematics education is [...] concerned with the technologies of learning 
and teaching in institutionalized pedagogic settings. It [also] includes 
researching mathematics education in sites beyond the classroom (e.g., 
local communities and families, workplaces, policy making, the media, 
textbook production) and research activities that describe and theorize 
these practices, including research that is directed towards studying 
the social, economic and political conditions and consequences of those 
practices. (Jablonka et al., 2013, p. 43)

This definition, broader than the one proposed by ﻿Kilpatrick and 
﻿Sierpinska in 1998, features a widely encompassing variety of elements, 
resembling the sense of a network of practices of mathematics 
education (Valero, 2010). From another perspective, inspired by the 
﻿Anthropological Theory of Didactics (e.g., Artigue & Winsløw, 2010), 
there are the multiple, embedded levels of praxeologies that organise 
mathematics education practices and also its study. Yet other resonant 
accounts of the field are to be found in the onto-semiotic approach 
to the didactics of mathematics (e.g., Godino et al., 2019) or the 
socioepistemology of mathematics teaching and learning practices (e.g., 
Cantoral, 2020), to mention a few. All these accounts are frequently seen 
as theoretical frameworks that articulate notions about what constitutes 
mathematics education, identifying the people, processes, materialities, 
and institutions involved in its making. These stories about mathematics 
education and, concomitantly, mathematics education research unfold 
particular sensibilities towards the focus of attention. They inevitably 
foreground some elements and shade others. What is common to all 
these accounts, however, is that each one of them actualises ways of 
conceiving of the elements that constitute mathematics education; and 
through such actualisation, the stories, in fact, actively shape what 
counts – and what does not count – in research. In other words, these 
stories do something; they have ﻿agency; they effect power.

When we come to the discussion of how to determine what counts – 
or not – and what is possible to think and do in mathematics education, 
we usher in the political question of how the stories of mathematics 
education research constantly contest one another and how they 
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perform the very same objects and relationships that they intend to 
portray. Thus, what is said in a field of study about itself is subject to 
discussion. It is a controversial issue, more than a matter of fact. It is 
indeed here that thinking about mathematics education research with 
Bruno ﻿Latour (e.g., 1999, 2005, 2018) may help map new territories. 
In particular, this approach may help us when considering the power 
effects of the accounts. What could be possible? What may become new 
potential imaginations for mathematics education research?

In this chapter we embrace some notions and analytical strategies in 
the work of ﻿Latour to think about the stories of mathematics education 
as a field of research. While his insights on the functioning of the 
natural sciences as a terrain of practice have informed studies on science 
and technology in society and, to some extent, have also illuminated 
directions in science education (e.g., Elam et al., 2019; Kwak & Park, 
2021), the use of ﻿Latourian ideas in mathematics education has been 
limited (De Freitas, 2016; Valero, 2019). As ﻿Latour’s recent work on the 
intermeshing of the multiple crises facing humanity poses unavoidable 
questions about the political orientation of the world (﻿Latour, 2018), we 
find that troubling the political stories of mathematics education as a 
field, bringing it in conversation with ﻿Latourian concepts and analytical 
strategies, is a fruitful and compelling step to take.

The chapter starts with an account of some of ﻿Latour’s ideas – such 
as ﻿actor-network theory, controversies and ﻿globalisation in a time of 
﻿climate change – that we adopt when discussing mathematics education 
research. Then we concretise these ideas as analytical moves to explore 
a central controversy in mathematics education nowadays, namely the 
justification for school mathematics in the school ﻿curriculum. With an 
interest in mathematics education research around the globe, we made 
the decision to pay specific attention to a global phenomenon, which 
has had significant influence on mathematics education, namely the 
﻿Organisation for Economic Co-operation and Development (﻿OECD) 
Program for International Student Assessment (﻿PISA) (Jablonka, 
2016). Assessment﻿ in various forms clearly shapes what mathematics 
and mathematics education may be about (Boistrup, 2017) and in 
these international comparisons the political aspects of assessment 
also on a societal level are highlighted. Working with ﻿Latourian tools, 
we performed a limited empirical investigation of how mathematics 
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education research texts from 2004 to 2020 establish relationships to ﻿PISA 
and which controversies are noticeable in the research. We conclude 
with some remarks about how ﻿Latourian tools offer us a different set of 
concepts and strategies to understand mathematics education research 
as an actant in sustaining particular possibilities and stories about 
practices in the fi eld.

A new political look at mathematics education research

How many hours, if one were able to count them one by one or do a 
rough estimation, do the children of the world sit in a mathematics 
lesson? (Far too many?) And of that enormous number of hours, in how 
many did children follow, listen, and actually grasp a mathematical 
idea? (Far too few?) If far too much time is being spent with little result, 
such time for children and all those involved could be seen as a poor 
investment… any savvy ﻿capitalist mind would say. Wouldn’t it be more 
productive or generate a better outcome to do something else instead? 
Doing exercise to improve health, mastering a practice, or serving the 
community could give a more profitable return. And still, all around 
the globe there seems to be a sustained political clamour to increase 
the allocated hours of mathematics in compulsory school ﻿curricula. The 
expected effects have the attention of a wide range of people, all hoping 
wishfully to score the jackpot of a mathematically talented child.

Few school subjects cause as much of a stir as mathematics, and 
few have so many contradictions. It suffices to look at local newspapers 
around the world every time there are new mathematics test results 
(e.g., Barwell & Abtahi, 2019; Lange, 2019). The question that emerges 
is: What sustains the ways of doing that generate this situation? ‘The 
social’ would be one answer. If we follow ﻿Latour’s provocative challenge 
(﻿Latour, 2005) to the social sciences, the use of the adjective ‘social’ to 
refer to the fuzzy ‘something among people that makes things happen’ 
is inaccurate, even not productive. Instead of assuming the existence 
of the ‘social’, he proposes to identify and trace the relationships that 
take place when things happen, and understand how those relations 
among people, artefacts, and other types of materialities, institutions, 
etc. are instances of performance and enactment and, at the same time, 
the moments that, repeated over time, sustain how we collectively do 
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things and think about them. Furthermore, such relationships are not 
simple one-to-one exchanges or points of contact, but rather extended, 
changeable networks with more or less strong connections among a wide 
range of ﻿actants (﻿Latour, 2005). ‘﻿Actants’ is also a term that signals the 
attempt to not only focus on human actors, but also on the wide diversity 
of things that can mobilise ﻿agency. Networks are unstable, fragile arrays 
that depend on the multiple materialities that allow connections to 
become established within a fully local universality (﻿Latour, 2011). And 
rather than an existing entity, the network can better

designate a mode of inquiry that learns to list, at the occasion of a trial, 
the unexpected beings necessary for any entity to exist. A network, in 
this second meaning of the word, is more like what you record through a 
Geiger counter that clicks every time a new element, invisible before, has 
been made visible to the inquirer. (﻿Latour, 2011, p. 799)

In other words, networks make visible the arrays in which things – 
human and non-human – emerge as significant and powerful. In this 
sense, ﻿Latour means that notions that were coined centuries ago to 
designate some kind of ‘phantom’ forces that steer or regulate people 
– such as ‘nature, society, or power, notions that before were able to 
expand mysteriously everywhere at no cost’ (﻿Latour, 2011, p. 802) – can 
finally be pinned down to the localised configuration of relationships 
that constitute collective existence in all its manifestations.

With these ideas in mind, we can now refine our question into more 
specific inquiries. What relationships among ﻿actants (human and non-
human) sustain the ways of doing in mathematics education, with its 
successes and failures? In particular, what relationships sustain the 
heightened focus on school mathematics, and the desire to politically 
steer it towards an expected benefit of individuals, communities, and 
nations? To explore the questions above, an empirical investigation that 
follows the ﻿actants and their relationships would be appropriate. There 
could also be many points of entry into the exploration. ﻿Latour (2005) 
suggests that the identification of a dispute, a controversy on what seems 
to be central for the whole arrangement of practice, can be a productive 
point of departure. 

Controversies constitute important jolts from which the functioning 
and doing of science can be entered (﻿Latour, 2005). While some views of 
scientific knowledge and practices would emphasise the production of 
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facts and truth as the main result of the scientific endeavour, a relational 
form of inquiry makes it possible to reveal that results stand, not just 
because of their intrinsic veracity, but rather because there is a network 
of people, institutions, and materialities that sustain their production 
and their legitimacy as reliable discoveries or significant factual 
revelations. This, in no way, means that the results of science are simply 
‘social constructions’ or fabrications of discourse without a real material 
existence. On the contrary, the point is rather that the formulation of 
scientific statements is the instantiation of different concrete scientific 
work, doings and crossings of the elements, human and non-human, 
that produce them. Their being is not in the fact, but in the network of 
relationships that supports the fact. Such production is full of discussions, 
ranging from the methods and artifacts used in the investigation to the 
support for findings and their dissemination in society. Suffice to say that 
the discussions that scale to serious controversies have to do with the 
fact that scientific results do not just stay as debates among academics – 
in scientific journals or conferences – but are part of larger connections 
that mobilise resources, influence, and even the belief in their rightness 
and adequacy. As knowledge and scientific practices are entangled in 
the broad network of actions and decisions in society in issues that are 
at stake for different ﻿actants, science is no longer a matter of finding true 
facts. As ﻿Latour argues, the doing of science and its result has become a 
matter of concern. And, as such, science – of any type – is not an external 
observer, nor a privileged vantage point to tell the world – but one of 
the many forces is in the midst of politics and of the effecting of power.

The controversies of science come close to all people, even in 
instances that do not seem so evidently clear. Scientific controversies of 
different types are at the core of democracy in times where governing 
is deeply enmeshed with, and steered through, expert knowledge. 
This is the characteristic that Michel ﻿Foucault had already pointed to 
concerning the entanglement of knowledge and power in modernity 
(﻿Foucault & Faubion, 2000). Recent times have made this clear: Is it 
safe and preferable to be vaccinated for the ﻿COVID-19 virus? Which 
of the vaccinations is best and for whom? These have been quite large 
controversies of global reach during a massive scientific mobilisation 
following the outburst of a pandemic in the years 2020–2021.



380� Breaking Images

Still, other minor controversies could be: Which type of assessment﻿ of 
students’ mathematical learning is more desirable? Which one is fairer, 
or which can be more inclusive? This controversy has been discussed in 
terms of the configuration of an assessment dispositif, encompassing 
multiple associated discourses and practices (e.g., Boistrup, 2017). 
Apparently, some controversies are more ‘important’ than others, 
some more ‘scientific’ than others. However, in different times and 
scales and for different people, these issues come closer and can have 
different effects. In the terrain of mathematics education, controversies 
that have to do with knowledge and science constantly emerge and are 
negotiated. This is why one can consider the network of mathematics 
education as a field of cultural politics (Diaz, 2017; Valero, 2018) where 
constant issues of concern are under dispute to be defined. One of these 
issues is why school mathematics is important to keep as a central 
subject in the school ﻿curriculum – despite its many sustained failures. 
The controversy on the justifications for school mathematics does not 
only occupy researchers in mathematics education (e.g., ﻿Niss, 1996), but 
also concerns politicians, economists, educators, local authorities, and 
of course the very many children who enjoy/suffer it and ask: Why do 
we have to learn mathematics?

This controversy is pivotal for mathematics education research and 
the many stories about its purpose, objects, and methods discussed 
at the beginning of this chapter. The controversy lies at the heart of 
how the reasons for school mathematics are articulated – implicitly 
or explicitly – through the relationships among the multiple ﻿actants 
involved in directing mathematics education. With that also come 
the types of knowledge and research that are deemed valuable and 
useful to operate in the network. Different stories about mathematics 
education as a field of research link in particular ways to the clamour for 
more mathematically competent populations to secure a large enough 
workforce qualified in ﻿STEM. For example, a recurring assumption in 
the field is that the mathematical knowledge learned in the classroom 
can easily be transferred to other fields, such as technology and even 
everyday use. This assumption has theoretically and empirically been 
contested, addressing how transfer is a simplistic idea connected to 
particular views of knowledge and learning (e.g., Lave, 1988; Lobato, 
2006). What takes place is rather the transformation (recontextualisation 
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or transposition) of mathematics into other fields for it to be relevant, for 
instance into vocational contexts (FitzSimons & Boistrup, 2017) or, even 
in university, interdisciplinary contexts (Valero & Ravn, 2017). The point 
is that mathematics, when entering other fields and connecting to other 
knowledge-tools and practices, does not remain ‘the same’ as before, but 
is actively re-assembled with elements and overarching ideas of the new 
context (Boistrup & Hällback, 2022).

The narrative of the power of mathematics residing in its 
transferability – and direct usability – to almost all fields of knowledge, 
in turn, has been supported by an array of ﻿actants such as governments 
and changes in ﻿educational policy and school ﻿curricula. Also, by 
professional associations and economic interest groups demanding the 
production of a qualified workforce, and by international organisations, 
such as the United Nations Educational, Scientific, and Cultural 
Organization (﻿UNESCO) and the ﻿OECD, providing quite concrete tools 
for action to make ﻿STEM education a clear element of modernisation 
(e.g., Zheng, 2019). In particular, the earlier Organisation for European 
Co-operation (﻿OEEC), which in 1961 turned into the ﻿OECD, as part of 
the support of education for technological development and building of 
human capital (Rizvi & Lingard, 2009), has systematically sponsored 
both national school reforms in mathematics and the establishment 
of collaborative sites of meeting between practitioners in schools and 
people who started studying and developing mathematical pedagogy 
and ﻿curricula at ﻿teacher education or universities. The role of ﻿OECD in 
the boosting of mathematics education has been discussed in the case of 
various European countries (e.g., De Bock & Vanpaemel, 2019; Gispert, 
2014).

The clearest example of this support was the realisation of the 
﻿Royaumont Seminar in 1959 (﻿OEEC, 1961), which is recognised as 
an important event, a point of controversy regarding the purpose of 
mathematics and mathematics education in the context of educational 
modernisation for economic reconstruction. Research on the ﻿history 
of mathematics education, particularly at the time of the ﻿New Math 
movement (Prytz, 2020) has documented and studied its impact in 
mathematics education. Historians of education have also contextualised 
the event as a point in the creation of the scientific modernisation 
of education, central to the medicalisation of educational research 
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(e.g., Tröhler, 2015). While for mathematics education researchers 
the ﻿Royaumont Seminar initiated a controversy on the ideal views 
of mathematics that should inform a ﻿New Math ﻿curriculum, for a 
historian of education this is an important point of configuration of 
a ‘technocratic culture characterized by confidence in experts rather 
than in practicing professionals’ (Tröhler, 2014, p. 749). The network of 
connections around what should count for (mathematics) education 
allowed a ‘particular organistic understanding of the social reality [to 
be] taken for granted and research [to be] conducted under the mostly 
undiscussed premises of this particular understanding’ (p. 749). Within 
this configuration, mathematical competence has come to be perceived 
as a key factor in individual and national development (e.g., Tsamadias, 
2013). Mathematics education is an area of the ﻿curriculum that can be 
used to monitor and govern differences among people and populations. 
Research in mathematics education is expected to produce the expert 
knowledge to improve schooling and to support the growing desire 
to make populations mathematically literate and competent, a central 
asset in the production of human capital (Valero, 2017).

At this point, the question emerges of the significance of these 
connections for recent mathematics education research and for the 
stories produced about the field. Tracing the networks of mathematics 
education is an investigation strategy in which we (e.g., Boistrup & 
FitzSimons, in press; Valero, 2017) and others (e.g., Andrade-Molina, 
2021; Ziols & Kirchgasler, 2021) have previously engaged. With this 
strategy, we explore the controversy surrounding the justifications for 
mathematics education that emerge in research related to ﻿OECD’s ﻿PISA, 
given its current salience in locating mathematics education at the centre 
of educational governing (Popkewitz, 2 022).

Researching connections and controversies in 
mathematics education research

As we will illuminate, there have been a variety of positions over the years 
in the field of mathematics education research, as revealed when authors 
connect to international comparisons by ﻿OECD. Some have justified the 
relevance of mathematics through the existence of such international 
comparisons, while others have been more critical towards their presence 
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and effects. Even when taking a critical perspective towards ﻿PISA (or 
the connected ﻿PIAAC, the Program for the International Assessment of 
Adult Competencies, a form of ﻿PISA adapted for adults aged sixteen 
to sixty-five), there are different positions adopted. For instance, it is 
possible to take a critical stance as to how ﻿PISA/﻿PIAAC limits what 
mathematics might be conceived as. In Boistrup and FitzSimons (in 
press), this kind of critique is expanded, with inspiration from ﻿Latour’s 
(2018) way of conceptualising ﻿globalisation. Boistrup and FitzSimons 
take ﻿Latour’s two versions of ﻿globalisation, minus and plus, as a starting 
point for discussing ﻿globalisation in relation to matters concerning 
vocational mathematics education. The authors illuminate how ﻿PIAAC, 
particularly in the construction of survey questions for text takers, is a 
clear example of ﻿globalisation minus, in line with the following quote:

The term is used to mean that a single vision, entirely provincial, 
proposed by a few individuals, representing a very small number of 
interests, limited to a few measuring instruments, to a few standards and 
protocols, has been imposed on everyone and spread everywhere. It is 
hardly surprising that we don’t know whether to embrace ﻿globalization 
or, on the contrary, struggle against it. (﻿Latour, 2018, pp. 12–13)

In the chapter, the authors discuss how the limitations of ﻿PISA/﻿PIAAC 
have affected local contexts of the world, such as how mathematics 
vocational education in Australia has undergone a shift towards a 
restricted and limited view, far from acknowledging the complexities of 
mathematics in workplace contexts. Their conclusion is that even if the 
data from ﻿OECD’s international assessment﻿s may be used to gain some 
interesting insights – which has been challenged by, for example, Anna 
﻿Tsatsaroni and Jeff ﻿Evans (2014) and more recently by Chiara ﻿Giberti 
and Andrea ﻿Maffia (2020) – the negative political effects still outweigh 
any benefits of such international comparisons.

Alexandre ﻿Pais and Paola Valero (2014) in their commentary on a 
special issue on social theory and research in mathematics education 
also address ﻿PISA/﻿PIAAC critically, when pointing out that it is not 
enough for a critical (or social, as they put it) approach to mathematics 
education to criticise the misuses to which both ﻿teachers and different 
policies put this school subject. They argue that mathematics itself ‘has 
to be problematized by means of understanding its importance, not in 
itself – ﻿problem solving, utility, beauty, cultural possibilities, and so on 
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– but in terms of the place this subject occupies within a given societal 
arrangement’ (p. 5).  

﻿Giberti and ﻿Maffia (2019) have, similarly to us, an interest in how 
﻿OECD’s ﻿PISA is used in mathematics education research, and they 
present a comprehensive literature review. They address the relevance 
of critical research into the effects of ﻿PISA: ‘As a conclusion, we suggest 
that critical research into the effect of ﻿PISA can be developed further, 
especially in those countries that have joined the ﻿OECD survey in recent 
years’ (p. 266). When reading further into the article, it becomes clear 
that what these authors mainly focus on is not the field in general vis-à-
vis ﻿PISA, but how, de facto, the test and data from ﻿PISA are being used 
in research. Among their findings they present a list of topics, in order of 
occurrences in the articles analysed, where the ﻿PISA test and data were 
utilised for the purpose of analysis:

•	 comparative studies at national level;

•	 ﻿teacher education;

•	 comparative studies on tests;

•	 ﻿curriculum development;

•	 ﻿gender;

•	 affect and motivation;

•	 ﻿modelling;

•	 technology;

•	 ﻿equity;

•	 language;

•	 textbooks;

•	 lifelong education;

•	 other.

On the one hand, the authors address critical discussions of ﻿PISA, 
mainly when they refer to Clive ﻿Kanes, Candia ﻿Morgan and Anna 
﻿Tsatsaroni (2014), and how technologies produced by the ﻿OECD can 
be understood as constituting the ‘﻿PISA mathematics regime’. On the 
other hand, ﻿Giberti and ﻿Maffia (2019) did not include the article by 
﻿Kanes et al. when composing their identified list of topics, since these 
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authors did not statistically analyse data from ﻿PISA. We infer that 
the kind of critical research into ﻿PISA that ﻿Giberti and ﻿Maffia call for 
would concern comparisons of, for example, ﻿gender differences in ﻿PISA 
outcomes. This means that our interest in this section of the chapter is 
quite different from the interest of the comprehensive study by ﻿Giberti 
and ﻿Maffia. We rather want to understand the field of mathematics 
education research by tracing how ﻿PISA has been discussed over the 
years in published mathematics education research, and what claims 
regarding mathematics and mathematics education have resulted from 
these discussions, in terms of connections and controversies between 
different human and non-human ﻿ac tants.

Tracing research controversies

The data used in this study are derived from a selection of published 
research where ﻿PISA has a central role. The selection started with a 
full text search of the word ‘﻿PISA’ in the journal Educational Studies in 
Mathematics (﻿ESM) up to, and including, the year 2020. ﻿ESM was chosen 
as one of the broadest international journals in the field of mathematics 
education. The result was 101 articles. Editorials and commentary texts 
were excluded. We then selected the articles with four or more mentions 
of ﻿PISA in the text, excluding the references. The criterion of four entries 
was chosen after examining a number of articles, which revealed that 
three or fewer entries appeared in articles where ﻿PISA was not addressed 
in a significant way. The result then was twelve full articles. 

In a second stage, for each of the twelve articles, we selected the 
paragraphs where ﻿PISA is mentioned. We also added related paragraphs 
that explain the reasoning connected to paragraphs mentioning ﻿PISA. 
When pasting these paragraphs into one document, including titles and 
abstracts, the total data set consisted of almost 30000 words.

For each article we analysed the selected paragraphs, addressing the 
following analytical questions:

•	 How is ﻿PISA mentioned in the text? For instance, ﻿PISA results 
may be used to justify the relevance of a study.

•	 What claims in relation to ﻿PISA are possible to read from the 
text? For instance, ﻿PISA results can be regarded as telling the 
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truth about the quality of the teaching practices in mathematics 
in a country.

•	 What connections do the authors make between different 
﻿actants involved? For example, the ﻿PISA tasks, governments, 
media, researchers.

•	 What controversies do the authors address between ﻿actants 
etc.? For instance, are there key tensions or disagreements, 
such as ﻿PISA being seen as embodying a good type of 
education, and traditional school mathematics as representing 
a bad type.

For all articles we identified connections and controversies among the 
twelve analysed articles, and between ﻿actants addressed in the articles. 
Following ﻿Latour, we have aimed to stay close to the data to avoid 
creating a presumed ‘social’. Instead, we focus on how the authors 
address ﻿PISA, while tracing associations among statem ents. 

Connections and controversies around PISA in ESM

We start by briefly presenting the twelve articles following a timeline 
of publication. This has the purpose of giving voice to each of the 
publications, while simultaneously providing the reader with some 
overview of the content of the analysed articles. We then articulate a 
network of connections and controversies identified in the data set, also 
addressing the roles of different ﻿actants, as construed in our analysis. We 
have chosen to do this in the form of a play, where the ﻿actants, human 
and non-human, are the characters in a play, displaying glimpses of 
connections and controve rsies.

Articles addressing PISA in ESM

The first article addressing ﻿PISA in ﻿ESM is by Uwe ﻿Gellert (2004), who 
critically reflected on the use of didactic material in mathematics classes. 
A ﻿PISA task is here presented as an example of non-inclusive tasks, 
which are best solved putting everyday knowledge aside (like how to 
share a pizza). A year later, Anna ﻿Sfard (2005) drew heavily on ﻿PISA 
when presenting the results of a Survey Team study at the International 
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Congress of Mathematics Education (﻿ICME-10), on the relations between 
mathematics education research and practice. A significant claim is that 
the mathematics education research field has much to gain from adding 
quantitative analysis drawing on ﻿PISA to the more frequent qualitative 
studies. Four years later, César ﻿Sáenz (2009) presented an analysis of 
the difficulties Spanish student ﻿teachers have in solving the ﻿PISA 2003 
released items. ﻿Sáenz adopted the ﻿PISA methodology, through the use 
of tasks, but also the conceptualisation of mathematical competence 
developed in the ﻿PISA framework, and its ﻿testing procedures.

Oduor ﻿Olande (2014) also drew on the ﻿PISA methodology when 
examining Nordic students’ school performance on items containing 
graphical artefacts. This article by Olande is the first of several during 
2014, in which ﻿PISA was addressed. The article by Paul ﻿Andrews, 
Andreas ﻿Ryve, Kirsti ﻿Hemmi, and Judy ﻿Sayers (2014) has its main 
focus on ﻿PISA in a critical analysis of the successful Finnish ﻿PISA 
results compared to an analysis of the authors’ own interview and 
classroom data. The authors also base their argumentation on the fact 
that the Finnish results on another international comparison Trends 
in International Mathematics and Science Study (﻿TIMSS) were rather 
mediocre. Throughout the article, the authors problematise the taken-
for-granted view of the Finnish ﻿PISA results as a sign of the quality of 
the teaching. 

In a special issue on social theory and research in mathematics 
education, two articles focus on ﻿OECD’s international comparisons. 
﻿Kanes et al. (2014) adopted theoretical tools from Basil ﻿Bernstein and 
﻿Foucault to analyse the ‘﻿PISA regime’, comprising both the knowledge 
structures produced by the regime but also the ways in which students, 
﻿teachers and other agents may be produced as subjects. They propose 
critical research on how to better understand the forms and the 
mechanisms of ﻿PISA in different local contexts, rather than using the 
﻿PISA shock in society and media for justification of research on how to 
enhance practice. ﻿Tsatsaroni and ﻿Evans (2014) also adopted a framework 
based on ﻿Bernstein and ﻿Foucault to study ﻿PIAAC, while also addressing 
﻿PISA in their writing at some points. On the one hand, they argue 
that the version of mathematical competence in ﻿PIAAC is far from the 
complexities of mathematics in adult life, and that ﻿PIAAC/﻿PISA require 
serious consideration and debate in mathematics education research 
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with a focus on power relations. On the other hand, they advocate for 
the use of ﻿PISA/﻿PIAAC data in further studies, for example related to 
demographic data. Ariyadi ﻿Wijaya, Marja ﻿van den Heuvel-Panhuizen, 
and Michiel Doorman (2015) adopt the ﻿PISA methodology when seeking 
the explanation in the national context (as reflected in textbooks) for the 
low Indonesian ﻿PISA result on context-based mathematics tasks.

The above studies are followed by three studies which all address 
﻿gender differences vis-à-vis mathematics in ﻿PISA. A study by Zvia 
﻿Markovits and Helen ﻿Forgasz (2017) draws on ﻿PISA results on ﻿gender 
differences in performances as part of the background of the study. The 
study is then carried out on different data. Yan ﻿Zhu, Gabriele ﻿Kaiser, and 
Jinfa ﻿Cai (2018) make use of ﻿PISA data to carry out a secondary analysis 
on the Chinese ﻿PISA 2015 data to examine ﻿gender ﻿equity in Chinese 
students’ mathematical achievement. They focus on societal aspects at 
the individual level (e.g., students’ socio-economic status) and systemic 
aspects. Trine ﻿Foyn, Yvette ﻿Solomon, and Hans Jørgen ﻿Braathe (2018) 
describe in the introduction how the Norwegian ﻿PISA results display no 
﻿gender differences in mathematics performances, as opposed to results 
in other contexts. ﻿PISA then paves its way into the data set, in a focus 
group interview, where girls discuss a newspaper article about the ﻿PISA 
survey with the headline ‘Norwegian Girls Have Maths Anxiety’. The 
girls in the study described the boys in the high ability group as more 
self-confident in mathematics. 

The final article in our data is Merrilyn ﻿Goos and Sila ﻿Kaya (2020). 
They presented a comparative review of research on understanding and 
promoting students’ mathematical thinking. They analyse papers from 
﻿ESM during two periods: 1994–1998 and 2014–2018. Their review is 
guided by an analysis of conceptualisations of ‘mathematical thinking’ 
proposed in the research, wherein the ﻿PISA 2021 assessment framework 
is one  part.

Actants and actors in play

When going through the twelve articles from ﻿ESM which address ﻿PISA, 
we noticed that the authors bring in different ﻿actants (﻿Latour, 2005). 
Some of these lean more towards what ﻿Latour labels non-human, for 
example the ﻿PISA tasks, ﻿PISA framework, education systems, and 
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media, while others are human, in the sense of different kinds of actors, 
such as researchers, politicians, ﻿teachers, leaders, and students. 

We organise the account around the main groups of ﻿actants in the 
data for which there are connections and controversies vis-à-vis other 
﻿actants. We now also start to introduce the play; for each actant, we also 
provide a description in the form of its role as a character in a theatrical 
play. The play is subsequently presented, reflected through a selection 
of scenes.

Actants – Actors Characters in the play

﻿PISA methodology refers to the 
overall framework of ﻿PISA, where 
mathematical competence is 
described. We also refer to test items 
that are made public, and hence 
possible for researchers to use in 
research. In the ﻿PISA methodology 
we include the data from ﻿PISA, 
which is possible, when permission 
is given, to use for reanalysis. 
In different ways, the ﻿PISA 
methodology is present in almost all 
of the twelve articles.

﻿PISA methodology, with test items 
and assessment procedures, 
sometimes acts as a ghost affecting 
others while not showing itself. 
Sometimes it plays openly, declaring 
its concerns about essential 
mathematical content for students’ 
adult life, or the desire for ﻿testing 
etc. It aims at becoming bigger and 
stronger.

﻿PISA results refer to the results 
of the tests and questionnaires 
which are made public by the ﻿PISA 
administration. Most of the articles 
address ﻿PISA results, but in different 
ways.

﻿PISA result is a character with a 
strong voice, almost yelling its 
important message around the 
world.

(School) Mathematics is present 
in about half of the articles when 
addressing how ﻿PISA connects to 
claims about what mathematics 
(e.g., school mathematics) is or 
should be.

Mathematics has different 
appearances, mainly as part of the 
stage design, with different versions 
of mathematics outlined in writing 
on screens. In certain scenes it is 
in the spotlight, other times it is 
backgrounded. This main character 
takes many shapes, similar but also 
very different.
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Education systems refer to the 
diversity of state organised 
education systems in the ﻿PISA 
participating countries. Those 
systems are presented as being often 
quite stable over time, which is 
addressed in connection to ﻿PISA in 
around a third of the articles.

Education system is a powerful 
character, who moves and changes 
very slowly. It has much impact on 
many of the other characters. It fears 
﻿PISA results.

Media (e.g., newspapers) is a 
significant actant in relation to 
﻿PISA in about a third of the articles, 
often in the background, where the 
societal effects of ﻿PISA are described.

The media shouts out messages as a 
speaker for a variety of characters 
when it presents ﻿PISA results. 
Simultaneously this actor has a 
will of its own as it chooses what 
to shout out to the world, and what 
to keep quiet about. This character 
is driven by a wish to be seen 
and heard, even at the expense of 
creating a real stir in society.

Governments with politicians are 
addressed in a couple of articles as 
those steering education through 
policy in relation to ﻿PISA.

Government with politicians is a 
powerful character, representing 
a broad range of governments of 
the world. It is in charge of some 
of the other characters, such as 
the education system, leaders 
and ﻿teachers. Simultaneously, the 
government is afraid of ﻿PISA results. 
It is similar to education systems and 
belongs to the same family.

The practices of teaching and learning 
mathematics with leaders, ﻿teachers, 
and students. The articles address 
and connect to this group of ﻿actants 
in different ways. For example, the 
practice of teaching mathematics in 
a country may be connected to its 
﻿PISA results.

Leaders, ﻿teachers, and students who 
practice and learn mathematics 
is a group of characters that 
communicate mainly among 
themselves. However, many other 
groups like to talk about this group.
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Researchers and research fields. 
Researchers individually and as part 
of a field of research are ﻿actants. 
Through their writing they connect 
to each other and to other ﻿actants 
in different ways, representing a 
variety of research fields.

Powerful researcher speaks from a 
privileged powerful position, both 
acting and speaking on behalf of a 
significant research organisation, 
but also for arguing for what is 
necessary in a broad research field. 
This character speaks for a group 
of researchers that trusts ﻿PISA and 
mainly sees the benefits of ﻿PISA 
for mathematics and mathematics 
education.

Critical researcher represents a group 
of researchers who rather sees the 
﻿PISA characters as threats to many of 
the characters in the play, including 
themselves.

Trusting researcher represents a group 
of researchers who wants to be 
friends with the ﻿PISA methodology 
and the ﻿PISA results, or at least 
tries to avoid acting in opposition to 
these characters. This character is a 
follower of the powerful researcher.

 The chorus comments on the events 
on the stage, both foreseeing what 
will come and commenting on what 
has happened.

‘Tell us the truth, oh PISA, and we will follow’

Scene 0

The chorus (chanting as a remote incessant whisper, far away in the 
distance, not visible on stage):

Where is the truth to follow?

Where is the truth to follow?

Tell us the truth and we will follow.
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Scene 1: The everyday and mathematics

Critical researcher: Look everybody! (pointing at different local 
contexts). Look at our world. Is it not quite remarkable, in all its 
complexities?

Government: Yes, maybe. But what has that to do with my people?

Education system: What does it have to do with my mathematics?

PISA methodology: Well, I﻿ think that this is really relevant. Look at our 
PISA tests. We have, ﻿finally, managed to grasp and measure young 
people’s competence to do something with knowledge. That is what 
PISA ﻿testing is about, ﻿to test mathematics in use.

Mathematics: I have been for so long lost in the world of ideas, so hidden 
in the mind. But now (looking thankfully at PISA methodology) I 
get a﻿ true body: me in this complex world of everyday life. Me in use.

Trusting researcher: Wow! So great, so beautiful. PISA tests are created 
﻿for the good of mathematics in everyday life, by powerful people. 
Hurray!

Critical researcher: But, hey, look at the test items, they are not about 
everyday life. If we really look at what they are about, they do not 
reflect everyday lives of real people. 

Trusting researcher (not looking at the critical researcher, but in awe 
at PISA methodology): In my ﻿research I can rely on PISA. I will take 
the ﻿PISA items as authentic. ﻿Then I can trust that my research gets to 
have good quality.

The chorus (chanting, getting a little bit closer):

Tell us the truth and we will follow.

Tell us the truth about mathematics in everyday life.

Tell us the truth and we will follow.

[Scenes 2–4 omitted]
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Scene 5: The quality of mathematics education research 

(On a high pedestal, PISA methodology and PISA﻿ result stand holding﻿ 
one hand and lifting the other victoriously.)

Powerful researcher (Enters the scene. Walks slowly, with a straight 
back, to an elevated position on the stage. Turns to all present 
researchers): Hear what I have to say. The research in mathematics 
education needs to do better, and for that, we should learn from PISA. 
We cannot continue ﻿with all these small qualitative studies. Instead, 
we need more data, solid data, consistent data, laaaarge DATA.

The chorus (chanting, same distance as previously): 

Tell us the truth and we will follow.

Tell us the truth about the need for more PISA data.

Tell us the ﻿truth and we will follow.

Critical researcher: But, hey, wait. First, we need to establish if the data 
is of good quality. What claims can we make if the PISA test does not 
bring ﻿out relevant data? Please let us not be hasty here. Actually, my 
colleagues…

Trusting researcher (interrupting the critical researcher): We should 
trust PISA! This is what I mean﻿ (looks at the powerful researcher)! 
I can use the data that PISA produces (looks at ﻿PISA methodology 
in awe),﻿ and by that do quantitative analyses, and then produce 
research that is counted as solid, good quality, secure research.

Government (turning to other governments, PISA methodology, 
and ﻿also ﻿teachers): Look, look, look. We… some of us are doing 
good. We (with emphasis in the voice and turning its back to some 
governments) are improving mathematics education and researchers 
are making good use of the PISA data.

PISA ﻿methodology (looking﻿ at all others): This is what we told you. 
This is what we wanted. Now more studies based on PISA can 
spread around ﻿the world, advocating for the one and only version of 
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mathematical competence, the one that really matters for all around 
the world. Now we can really count!

The chorus (chanting, a little bit closer):

Tell us the truth and we will follow.

Tell us the truth about how PISA will save us.

Tell ﻿us the truth and we will follow.

[More scenes omitted]

Scene n: Effects of the debate around PISA

(PISA result ﻿whispers to ﻿The media.)

The media (runs frenetically around the stage, holding PISA result by 
the hand, ﻿shouting): I have news, great news: Now we know who 
the winners and losers are, in the competition game of mathematics! 
Breaking news, listen to me!

Governments together: Tell us! Tell us! Was my country successful? 
Are my people good? Did we win? Are we better in mathematics 
now?

The media (pointing at different governments): You are a winner; you 
are a loser; you are better than last time; you are worse than last time. 
You are just OK; you should try harder. And you… you have no hope.

Government A (looking at Teacher A): Look at the results from PISA! 
You need to be ﻿better, so our country will get a better result next 
time the PISA competition runs, ﻿sorry, I mean comparison, not 
competition.

Government B: And I mean that it is important that the students in our 
country learn better mathematics. Anyway, it is your responsibility 
(pointing at a ﻿teacher)! And yours (pointing at school leader), and 
especially yours (pointing at Student B). Anyway, you all go and FIX 
IT!
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Mathematics (placed behind Teacher A with both hands on her 
shoulders): How difficult can I be? Me in use, me for competition, 
me for a better world. Just fix it!

Teacher A (looking down): I am doing my best… (puts an arm around 
Student A’s shoulders)

(Student A looks up at Teacher A and sighs.)

Trusting researcher (to other researchers): Have you thought about 
all the fuss that PISA creates in media. ﻿Should we not address this?

Critical researcher: Yes, I agree. PISA actually restricts ﻿how we view 
mathematics and the PISA shock that spreads ﻿around the world is 
not really relevant. Instead, we should problematise the effects of 
PI…

Powerful researcher (interrupting critical researcher): Well, well, well 
my little friend… We acknowledge the sometimes-non-beneficial 
attention PISA gets in media. But ﻿we should rather celebrate the 
large attention and interest in mathematical matters. It is not only we, 
researchers in mathematics education, who care about this important 
subject area of mathematics, it is everybody. We are thriving well! 
(Takes PISA methodology and ﻿mathematics by the hand, smiles and 
looks around.)

Trusting researcher: Yes, you are right. And look at all the data that is 
there free to use. I will tell my colleagues that this is the way forward 
to a good career and good research, to make all our dreams come 
true.

The chorus (entering the stage):

Tell us the truth that we can follow.

PISA tells us the truth ﻿and we will follow.

PISA tells us the truth ﻿and we will trustfully (4/5 of the choir sings) 
follow.

PISA tells us the truth ﻿and we will critically (1/5 of the choir sings) 
follow.
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Stories of power of/in a research field of controversy

What constitutes mathematics education, as a domain of research, is 
a question to which one can respond in many ways, through different 
stories about the people, the practices, the materialities, and institutions 
that support ideas and the concrete everyday activities of the many 
﻿actants involved. Even though it is not so controversial anymore to state 
that such stories are political – in the sense that they carry with them 
particular directions about the whole series of elements and connections 
that form part of the field, and also in the sense that such stories 
agentively effect and bring to life the very same relationships, objects, 
and phenomena that they study – there is still a discussion, almost a 
kind of controversy, in mathematics education research about how to 
think and how far to go when conceiving of the network of mathematics 
education as political. Such controversy revolves around a very core 
issue, namely what counts as mathematics for the education of people 
and what justifies its prominence in contemporary, state-governed 
school ﻿curricula.

Many of the stories about the field that we mentioned at the beginning 
of this paper have more or less explicit positions about how political the 
field is, and why. Concomitantly, each of these stories articulates a position 
on the question above. The answers to this question have broadened 
since the publication of the ﻿ICMI volume ﻿Mathematics Education as a 
Research Domain: A Search for Identity (Sierpinska & Kilpatrick, 1998). Eva 
﻿Jablonka et al. (2013) included more sites and practices to count as part 
of mathematics education research, including the study of ‘the social, 
economic, and political conditions and consequences of those practices’ 
(p. 43). As a result of an overview of the growth around the turn of the 
twentieth century of theories to study the social, cultural, and political 
dimensions of mathematics education, the authors concluded that:

From our interrogation we see signs of a shift away from cognitive 
﻿psychology and evidence of critical questioning, of the creation of new 
ideas, and new ways of doing things, as well as a tolerance for multiplicity. 
All of these observations will contribute to the development of a body of 
professional knowledge in our discipline, informed by theory rather than 
driven by policy. We believe the international research community holds 
the reins of exciting potential for further development of leading edge 
knowledge in mathematics education. (p. 62)
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The impulse that ﻿Jablonka et al. identify towards multiplicity of 
identities – or different competing stories, sometimes in controversy – 
can be supported nowadays. Indeed, our attempt to tease these stories 
of the field from a ﻿Latour-inspired perspective brought us to focus on 
the distributed network of relationships within which mathematics 
education unfolds. The question of what counts as mathematics for 
education and how it is justified can be then addressed tracing the 
connections between a variety of ﻿actants and figuring out what comes to 
be stated as stories and what becomes disputed, in other words, which 
controversies emerge in such a network.

While many of the stories of mathematics education as a field of 
research tend to delimit the network of ﻿actants that define it narrowly 
around the people and materialities more directly linked with teaching 
and learning in classrooms, a ﻿Latourian move brings us to open up the 
network in search of other significant ﻿actants in the network. In previous 
research, we have argued that the striving to understand the conditions 
and consequences of mathematics education practices brings us outside 
of the comfortable space of didactical and pedagogical relationships to 
locate research in the field of cultural politics, including the governing 
dispositives of our time (e.g., Boistrup, 2017; Valero, 2018). The 
entanglement of mathematics education and the striving for economic 
growth is to be traced in the close ties between economic agendas, 
the increasing governing of school mathematics education, ﻿curricular 
reforms across and within countries, and the very same research stories 
that the field produces.

In our empirical investigation we set out to explore the controversies 
present in published research as we examined how researchers have 
related to ﻿OECD’s PISA program. Since its ﻿launch in 2000, PISA and 
its series of ﻿materials, functioning, and institutions has become an 
authoritative voice in the governing of mathematics education. Thus, 
its connections to research in mathematics education would show 
important aspects of the stories about the field at this moment. When 
going through the twelve articles from ﻿ESM published between 2004 
and 2020, which address PISA, we could ﻿distinguish an assemblage in 
which the authors bring in different ﻿actants. Some of these lean more 
towards what ﻿Latour (2005) label non-human – the PISA tasks, PISA 
﻿framework, education﻿ systems, and media – while others are human 
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actors such as researchers, politicians, ﻿teachers, leaders, and students. 
As it was shown above, these ﻿actants, non-human and human, have 
different kind of roles in the assemblage and in the controversies.

In our tracing of a network of mathematics education, we focused 
on controversies within the twelve articles, which allowed us to create a 
play that intends to make explicit some of the ﻿actants and relationships 
present in the examined research text. In relation to the question of what 
counts as mathematics for education and what justifies its prominence 
in the ﻿curricula of education systems, the play grasps different 
controversies in mathematics education, where some researchers take 
on a critical perspective vis-à-vis international comparisons such as 
PISA, while other ﻿researchers – a larger number – adopt PISA as a truth 
teller, ﻿embracing the important role of mathematics that PISA advocates 
for. One ﻿controversy is about PISA items in relation to﻿ the real world. 
While critical researchers (henceforth, CR) address how the test items 
neither reflect any contextual reality in a relevant sense, nor any cultural, 
local aspects, more trusting researchers (henceforth, TR) take the PISA 
framework for ﻿granted and accept PISA’s claims of ﻿testing﻿ mathematics 
in everyday life.

Another controversy in the analysed texts revolves around the 
opportunities of quantitative studies adopting PISA methodology 
with ﻿respect to the diversified trend of smaller, qualitative studies. 
Following TR, PISA as a source for ﻿research should be embraced, since 
mathematics education practices are in need of improvement. CR, on 
the other hand, question the ‘PISA regime’ and its ﻿effect on the research 
field. Yet another controversy concerns the relationships between PISA, 
﻿teachers, and the ﻿media, and whether ﻿teachers are to be blamed or not 
for PISA results. CR call for﻿ a mathematics education field which ‘feels 
for’ the ﻿teacher, while TR use the PISA results to evaluate ﻿teachers’ 
work. Included in this controversy is whether to trust and build on (or 
not) connections between ﻿teachers’ subject knowledge and teaching 
effectiveness as measured by PISA, or between PISA ﻿results and the ﻿state 
of teaching practices in a country. The controversy around mathematics 
is also present as PISA-defined mathematical﻿ knowledge appears as 
‘good’ and desirable, and traditional school mathematics as ‘bad’ and 
in need of change. Following TR, PISA gets the role of ﻿telling the truth 
about what school mathematics should be. CR questions this and 
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advocates for PISA as a threat to a ﻿view of mathematics as a plurality of 
mathematical practices incorporating cultural and contextual aspects. 

Finally, a larger controversy that becomes evident in the analysis 
and as a result of the whole paper is the ties between mathematics 
education and ﻿capitalism. The push for mathematical qualifications to 
be central for the economic growth and development of the individual, 
communities, and nations has become a central point of controversy 
around what counts as mathematics education and why it is important, 
and ﻿OECD’s PISA has become a clear ﻿actant here. Several recent studies 
have paid attention to this issue and have drawn pointed to the benefits 
and dangers of the link between mathematics education and growing 
﻿capitalism—and its associated, brutal in(ex)clusions. For example, Mark 
Wolfmeyer, in Chapter 16 of this volume, examines the ‘assessment 
spread’ connected to ﻿TIMSS and its related technologies and institutions 
and shows the connections that sustain a global view for generating a 
﻿consumerist trained human capital through mathematics. The clear 
emphasis on a critique of mathematics education (research) to serve 
particular economic organisations is a way of exploring how power is 
effected within the networks that constitute mathematics education 
practices. Our ﻿Latourian exploration binds us in connection to the larger 
network that constitutes the narratives of our field, which we cannot 
ignore. 
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16. Globalisation of mathematics 
education and the world’s first 

monoculture: Assessment spread’s 
association with consumerism 

and human capital

 Mark Wolfmeyer

The global spread of mass schooling supports ideologies of human capital and 
﻿consumerism that we can consider as the world’s first ﻿monoculture. Educational 
organisations with global reaches, such as the ﻿International Association for the 
Evaluation of Educational Achievement and the ﻿Organisation for Economic 
Co-operation and Development, spread particular mathematics education 
goals that present opportunities for analysis and critique by mathematics 
educators who seek to advance causes beyond or in opposition to the consumer-
industrial complex. In this chapter I utilise Joel ﻿Spring’s review of perspectives 
on ﻿globalisation and education to motivate extended analysis of one example 
of ‘assessment spread’ within mathematics education, namely the ﻿Trends in 
International Mathematics and Science Study. Complementary methods of 
analysis (historical/contextual and content-based) reveal a strong association 
between mathematics education assessment spread and the rise of a world 
culture emphasising human capital and lifelong ﻿consumerism.

Introduction

In this chapter I take up themes on the purpose of mathematics 
education that resonate with other chapters in this volume, in which 
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mathematics education is viewed as relating to global ﻿capitalism. I 
suggest the possibility that mathematics education practices are not just 
responsive to the context of global ﻿capitalism; rather, they are perceived 
by the world’s power elite as a means to achieve their objectives. In my 
contribution, I collocate perspectives on ﻿globalisation and ﻿globalisation 
of education with phenomena that we, as mathematical enthusiasts and 
mathematics educators, know all too well: international mathematics 
educational assessments like the Trends in International Mathematics 
and Science Study (﻿TIMSS). I argue that such phenomena, what 
I refer to as ‘assessment spread’ to highlight the historical context of 
increasing participation, serve as one of many vehicles through which 
a global culture can permeate the world, creating a first ﻿monoculture. 
Specific tenets of this ﻿monoculture include commitments to laissez-faire 
﻿capitalism, markets dominated by ﻿consumerism, and education systems 
oriented to those ends. In other words, with the global economy as its 
foundation, the first ﻿monoculture’s twin features are increasing the 
number of people in the world that 1) enter the wage labour market 
and 2) become lifelong consumers of goods and services in a market-
based system. Mathematics education is seen by the power elite as an 
opportunity to extend this vision for the world.

I begin with the perspectives on ﻿globalisation and ﻿globalisation of 
education as reviewed by Joel ﻿Spring (2014). Among the options he 
presents, which include ‘world system’ and ‘culturist’, what he terms 
‘the world culture theory’ on ﻿globalisation provides the most suitable 
means for analysing the assessment spread phenomena at the heart of 
this project. In utilising this framework, I turn the theory on its head by 
describing the exact nature of this world culture that is spreading: a first 
﻿monoculture dominated by laissez-faire ﻿capitalism and the supports 
required by it, such as education for human capital. Existing literature 
from ﻿globalisation and mathematics education studies contributes 
important connections to the theories on ﻿globalisation as well as laying 
the ground for my present inquiry into assessment spread. 

In my focus on ﻿TIMSS, I begin with a narrative to document this 
ongoing activity as an example of assessment spread. This includes 
tracing the growing list of participating countries, with attention paid 
to their relative engagement with the global economy. Along with this 
historical narrative, I provide a contextual analysis (similar in goal but 
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different in method from my other projects, e.g., Wolfmeyer, 2014) to 
describe the motives represented in this project, mostly by analysing the 
implications presented by the ﻿World Bank’s involvement in ﻿TIMSS. A 
primary finding of interest emerges from this historical and contextual 
analysis: several participating ﻿TIMSS countries increased their 
engagement in the global economy during their periods of participation. 
Specifically, the vast majority of participating countries maintained high-
level income or significantly increased their per-capita income levels during 
the years of participation in ﻿TIMSS. As I will argue, this data presents 
a perfect instantiation of the ﻿World Bank’s vision for a global society 
with everyone participating in the wage labour market and consumer 
society. To be sure, I dare not make any claim of causality, that ﻿TIMSS 
participation actually caused countries’ citizens to better engage in the 
global economy, but suggest that the association displayed by the data 
carries weight for my argument that ﻿TIMSS and assessment spread 
relate to an emerging world culture of human capital and ﻿consumerism. 

In the final section, I complement the historical and contextual 
analysis with content analysis; I engage with Houman Harouni’s (2015) 
notion of the political economy of mathematics to analyse released 
mathematics assessment items from a recent implementation of ﻿TIMSS. 
This content analysis again confirms the relationship of ﻿TIMSS to the 
spread of the global economy. The vast majority of content items within 
﻿TIMSS are associated with mathematical preparation for human capital, 
with a very limited scattering of alternatives, thereby signifying to users 
of this assessment that mathematics could not be applied to anything but 
behaviours relating to wage labour and being a consumer. Thus, taking 
content and context analyses together, I suggest that the mathematics 
education assessment spread over time is associated heavily with a 
global economy of laissez-faire ﻿capitalism and human capital existing 
primarily for a ﻿consumerist, profit-driven world culture.

Perspectives on globalisation and education

In this section I review ﻿Spring (2014) for a variety of perspectives 
on ﻿globalisation, with specific attention to their relationship to the 
﻿globalisation of education. This review presents several options for 
consideration when analysing the assessment spread phenomena in 
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mathematics education and ultimately, what ﻿Spring terms the ‘world 
culture’ perspective seems the most fitting to the spread’s aims and 
origins. In addition, I also provide some analyses in existing literature 
regarding ﻿globalisation of education as it pertains to the world culture 
theory as well as a few contributions from among the mathematics 
education literature that engage the ﻿globalisation perspectives as 
reviewed here.

﻿Spring (2014) reviews existing bodies of scholarship on ﻿globalisation 
of education to produce three broad categories: world culture theorists, 
world system (﻿postcolonial/critical), and culturist. These reflect his 
understanding of the ways that scholars engage in the activities of 
spreading education practices across the globe. World culture theory 
resonates most closely to the assessment spread of a global mathematics 
education because it insists ‘all cultures are slowly integrating into a 
single global culture’ (p. 7). However, review of each is important 
for understanding the opportunities at play when analysing global 
phenomena in education. 

Clear examples of how educational systems are unifying globally 
are abundant. For instance, ﻿Spring point out that most school systems 
comprise a sequential ladder from the elementary to middle level to 
secondary years of schooling, with groupings of students by age and 
with achievement as indicating progress through the ladder. However, 
he notes how John ﻿Meyer, David ﻿Kamens, and Aaron ﻿Benavot (1992) 
suggest that the spread of the nation state required education of the 
citizenry to ensure political stability and economic growth. The authors 
argue that ‘the gradual rationalisation of the Western polity, the modern 
﻿curricular structure became a take-for-granted “model” by the turn of 
the twentieth century’ (p. 72). As the Western concept of the nation 
state spread, ‘the standard model of the ﻿curriculum has also diffused 
throughout the world, creating a worldwide homogeneity in the over-all 
categorical [﻿curriculum categories] system’ (﻿Spring, 2014, p. 8). 

The spread of educational practices across the globe corresponded, 
thus, to the spread of governing people through the structure of the 
nation-state. A main feature of the ﻿globalisation of education is what 
﻿Spring highlights, from the work of Francisco ﻿Ramirez (2003), as 
the ‘credentialed society’. By tying educational achievements to the 
opportunity to obtain employment, global education spread commits 
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not only to the needs of a nation’s citizenry but to the ﻿capitalist economy 
and markets that rose alongside it. A key feature of such developments is 
increasing the number of people engaging in the wage labour structure. 
The naturally occurring relationship between the nation state and 
﻿capitalism is well documented in literature. For example, Arun ﻿Ghosh 
(1997) states: ‘At any rate, historically, ﻿capitalism and nation states 
evolved and prospered together’ (p. 683). Furthermore:

Ramirez locates the origins of world cultural theorists in the work of John 
Boli, Frank Lechner, George Thomas, and Immanuel Wallerstein. These 
theorists argue that a world culture began with the spread of Western 
Christian ideas in the late nineteenth century and escalated after the end 
of World War II. (Spring, 2014, p. 8)

World cultural theorists primarily focus on the relationship between the 
spread of nation state governing structures and the similar schooling 
systems set up across these nation states. What appears explicitly absent 
in a world culture’s emphasis on nation state is the acknowledgment that 
a modern nation state requires a ﻿capitalist economic structure as well. 
This could be sometimes suggested by those utterances that confuse ‘the 
development of ﻿capitalism with the development of “liberal” thought’ 
(Ghosh, 1997, p. 683). The suggestion of credentialing as a key feature 
within world culture’s schooling systems implies this entanglement 
between ﻿capitalism and the modern nation state. My contribution 
here recognises the entanglement of developing nation states and 
free-market ﻿capitalism, not always going hand in hand, but very often 
co-developing, as illustrated by analysis of ﻿TIMSS and its association 
with the ﻿World Bank.

﻿Spring also describes critiques of ﻿globalisation via ﻿postcolonial 
theory, also referring to related scholars as ‘world systems theorists’ who 
‘argue that the richest nations legitimise their power by imposing their 
educational values on other nations. These educational values include 
schooling for economic growth and developing workers for a free market 
economy’ (﻿Spring, 2014, p. 10). Specific discussions here include the 
ways that the ﻿World Bank enacts educational programs in its broader 
mission to enact laissez-faire ﻿capitalism across the globe (﻿Spring, 2004). 
The ﻿World Bank and their networked actors put forth the suggestion of 
a knowledge economy as the key for emerging economies in so-called 
‘developing nations’. This policy features in multiple ﻿World Bank 
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publications, such as ﻿Building Knowledge Economies: Advanced Strategies 
for Development (World Bank, 2007). Similarly, the global economic elite, 
as represented by the ﻿Organisation for Economic Co-operation and 
Development (﻿OECD), declares an education for human capital among 
the wealthy nations as the primary educational imperative (as in Keeley, 
2007). 

Viewing world culture theory alongside world systems and 
﻿postcolonialist critiques of ﻿globalisation immediately reveals important 
insights for understanding a globalised mathematics education, as 
observed through assessment spread phenomena. I will argue that the 
assessment spread and globalised mathematics education practices 
are generated from a world culture theory framing: they situate in a 
movement towards a unified ﻿monoculture emphasising the nation 
state and its concomitant laissez-faire ﻿capitalism and ﻿consumerism. By 
asserting this, then, I align with world systems theorists’ portrayal of the 
state of affairs we have witnessed over the last hundred years. In other 
words, both theoretical framings engage with my present work and, as a 
rhetorical strategy, my chapter title and framing assert the dominance of 
world cultural theory as a perspective for signifying just what is at stake 
with such assessment spread phenomena, namely the dominance of a 
unifying world culture emphasising human capital and ﻿consumerism. 

The remaining theorists on ﻿globalisation and education of interest 
to ﻿Spring are worth considering, though they are less significant to 
this project. The culturist perspective provides a viewpoint suggesting 
﻿agency across parties in the ﻿globalisation of education. ﻿Spring points out 
their rejection of movement towards a unified practice in education and 
declaration in favour of a concept of ‘educational borrowing and lending’ 
(﻿Spring, 2014, p. 11). Culturists represent a variety of interpretations; 
they differ, however, in how helpful they are in understanding 
assessment spread in mathematics education. One culturist example, as 
indicated by ﻿Spring, occurred with the late 1980s educational fad in the 
United States that looked to the schooling practices in Japan. Implicit in 
this discussion, however, is the framing of a quest to perfect a system 
across the globe in service of nation-state and ﻿capitalist economies; 
the practice was less about borrowing and lending than it was about 
deepening commitments to ﻿capitalism and the nation state. 
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Other culturist examples provide optimism and balance to the 
significant and weighty suggestions by world culture theory and the 
world systems critique. As ﻿Spring suggests, culturists argue that there is 
not just one world education model: 

Anderson-Levitt argues that there are two competing world models for 
education. World culture theorists, she argues, consider the goal of the 
world education model to be preparing students to be workers in the 
global economy. She identifies two competing world education models, 
which I will label ‘Economic Education World Model’ and ‘Progressive 
Education World Model’. I propose the existence of two other competing 
global models, which I label ‘Religious Education World Models’ and 
‘Indigenous Education World Models’. These last two global models 
openly reject world models of schooling based on Western education. 
(﻿Spring, 2014, p. 13)

These competing global models for education are worth considering 
in mathematics education, as I note below, although will not factor 
into my discussion of assessment spread. Mathematics education as a 
global practice, via assessment spread and closely associated ﻿curricular 
convergence, appears to me as a dominant ‘Economic Education 
World Model’ that seeks to define and claim a particular set of human 
behaviours that are identified as mathematical. 

Concepts relating to this review of ﻿globalisation and education have 
been applied to studies in the ﻿globalisation of mathematics education 
prior to my contributions here. For example, ﻿Spring (2014) frames 
his discussion on ﻿globalisation and mathematics education with the 
dominating discourse of the knowledge economy (in part via the 
﻿World Bank, as I note above). This appears as a critical world systems 
approach, as reviewed above, especially when he suggests an ‘export’ 
of ﻿Eurocentric models of education and higher education across the 
globe and, specific to my focus, a suggested ‘appropriation effect’ via 
the assessment spread, as in: 

[Projects] can also be focused on applying some predetermined 
framework as in international assessment and comparative studies (e.g., 
﻿SIMS, ﻿TIMSS, ﻿PISA) typical of scientific paradigm research. In both 
of these types of research there is what I shall term the appropriation 
effect. In this, locally gathered knowledge from ‘developing’ countries 
is appropriated for academic and other uses in ‘developed’ countries. 
(Ernest, 2016, p. 40)
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As another example, Bill ﻿Atweh and Phillip ﻿Clarkson (2010) frame 
inquiries into internationalising mathematics education with an open 
perspective on ﻿globalisation, as somewhat of a commitment to ﻿Spring’s 
culturist perspective, but with clear intentions to be critical of the 
negative effects, as in the world systems and ﻿postcolonial approach:

[Some] internationalization and ﻿globalization processes may be good, 
whereas others may be less desirable and should be contested. Further, 
what is considered good aspect of internationalization and ﻿globalization 
for a particular group of people may very well be at the expense of other 
groups. (p. 80) 

And in provoking discussions about differing models of global 
mathematics education systems, perhaps resonating with a culturist 
approach, I would promote the work of Peter ﻿Appelbaum and Susan 
﻿Gerofsky (2013), with their vision of an alterglobalisation in mathematics 
education. They suggest ‘another world is possible’ by reviewing the 
alterglobalisation ‘movements of people who are extremely concerned 
about the ﻿neoliberal agenda of a self-regulating free-market, and the 
linkage between global cultures and a dominant Western culture that 
often runs counter to many of the values and principles by which 
people live their lives’ (p. 27). Asserting a stance that is not quite anti-
﻿globalisation, they emphasise a need for global ‘renewal of political 
citizenship and activism’ and, specific to mathematics education, 
suggest a world model of mathematics education grounded in the arts 
and participatory democratic practice. 

Finally, recall that the mathematics education community initiated 
an early critique of the internationally comparative mathematics tests! 
Hans ﻿Freudenthal (1975) provided pointed arguments against the early 
efforts that ultimately led to the ﻿TIMSS, emphasising many points such 
as that mathematicians and mathematics educators were not involved 
in the design, and dubious conclusions are often made from the data. 

And what could be blunter than the summary by Christine ﻿Keitel 
and Jeremy ﻿Kilpatrick (2012) that: 

The studies rest on the shakiest of foundations – they assume that the 
mantel of science can cover all weaknesses in design, incongruous data 
and errors of interpretation. They not only compare the incomparable, 
they rationalize the irrational. (p. 254)
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In the present project, I aim to take up these conversations critiquing 
﻿TIMSS yet again, and specifically by associating the project with its 
broader policy objectives. Providing insights and critique of significant 
projects like ﻿TIMSS (and other examples of mathematics education 
spread) aims to complement the literature for mathematics educators 
and enthusiasts who recognise the relationships between mathematics 
educational practice and social life, such as scholars working among the 
international Mathematics Education and Society group.  

Reviewing perspectives on ﻿globalisation and education has 
uncovered a promising framework for investigating assessment spread 
in mathematics education across the globe. Situating the phenomena 
as grounded by a world-culture perspective allows us to consider how 
dominating and powerful agencies envision a global, unified culture and 
practice in service of particular elite goals. In this manner I put forth a 
critical, some might say ﻿postcolonial, analysis of the power embedded in 
assessment spread of mathematics. With this critique, I aim to motivate 
rejections of the seemingly benign or neutral assessment spread that we 
witness in mathematics education. My contribution complements the 
culturist contributions from mathematics education, reviewed above, 
that provide much-needed optimism when we have such a formidable 
force in mathematics education with which to contend. I next turn 
to tracing the history and social context of the ﻿TIMSS practice before 
offering a content analysis of released test items from that assessment’s 
recent iteration. 

From 10 to 60+: TIMSS, the World Bank, and a global 
economy

In this section I survey the history and context of ﻿TIMSS to provide 
additional material for analysing the global spread of assessment in 
mathematics education. In its origins, the practice began with only a 
handful of similar countries, but over time, the entanglement of the ﻿World 
Bank with the main organisation behind ﻿TIMSS, IEA (﻿International 
Association for the Evaluation of Educational Achievement) suggests a 
new context in line with the world-culture perspective that frames my 
inquiry. In this section, I will trace this history and context as well as 
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present the data on participating countries and their participation rates 
in the global economy, as measured by per-capita income levels. 

The ﻿IEA practices began with their pilot study of twelve countries 
in 1959, which included subjects beyond mathematics and science. The 
countries were Belgium, England, Finland, France, (Federal Republic of) 
Germany, Israel, Poland, Scotland, Sweden, Switzerland, United States, 
Yugoslavia, and the language that IEA uses to describe the original 
project suggests a culturist framing: 

The founders of the IEA viewed the world as a natural educational 
laboratory, where different school systems experiment in different ways 
to obtain optimal results from educating their youth. They assumed that 
if research could obtain evidence from across a wide range of systems, 
the variability would be sufficient to reveal important relationships that 
would otherwise escape detection within a single education system. 
(IEA, n.d., n.p.)

In other words, although mostly comprising a list of nations powerful at 
the time, the originators of this practice suggested that there was ‘no one 
way’ to teach but that there was one way to assess. This would allow for 
best practices to be shared and analysed for efficacy; the contradiction 
arises from the assumption that one assessment implies consensus on 
educational goals. This assumption in the pilot study, albeit framed 
through a culturist lens, suggests a global objective to unify both the goals 
and the practices of education. At this point in the history, these goals 
were less explicit and more open than at later stages, as the assessment 
spread continued and especially once the ﻿World Bank became involved. 

The following tables indicate the countries that have been brought 
into IEA’s assessment practice in mathematics over time. After the 
pilot study in 1959, we have the ﻿FIMS (First International Mathematics 
Study) of 1964, the ﻿SIMS (second) of 1980–1982, the ﻿TIMSS (third and 
including science) of 1995, and finally, the renaming of the practice to 
﻿TIMSS (Trends in International Mathematics and Science Study) and 
its iterations via a four-year cycle with the last completed in 2019. Table 
16.1 below shows the countries that participated prior to the renaming. 
Table 16.2 includes the countries participating in the four-year iterative 
assessments since 1995, with an additional variable presented, namely 
the ﻿World Bank’s analytical classification for each country based on the 
Gross National Income (GNI) per capita. I will use these classifications 
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to make arguments about the significance of the assessment spread. 
In Table 16.2, the categories of economic classification are high, upper 
middle, lower middle, and low income. Thresholds for these categories 
vary slightly from year to year and increase over time due to inflation of 
the US dollar. The thresholds for 2019’s analytical classifications were: 
Low – GNI per capita less than $1035 US, lower middle – between $1036 
and $4045, upper middle – between $4046 and $12535, high – above 
$12535. Sources to create these tables include the ﻿IEA (n.d.) website 
with lists of participating countries and ﻿World Bank Group (n.d.), a 
data set with historical classifications according to the economic groups 
listed above. 

To help illustrate the geographic spread of a globalised mathematics 
education, I accompany each table with a dymaxion world map 
indicating participating countries. I chose the dymaxion two-
dimensional projection of the world sphere to destabilise typical 
projections’ assumptions of north-south superiority/inferiority as 
well as to more accurately represent land mass proportionally. The 
projection I used is an adaptation of Buckminster ﻿Fuller’s Airocean 
projection (1954), adapted by Visioncarto (2018) and free for all uses. A 
participating country is indicated by a circle on the dymaxion map. The 
darker the circle, the earlier the country began participation. In Figure 
16.1, to represent the first three iterations, the participating countries 
have darker circles; accordingly, in Figure 16.2 (to accompany Table 
16.2), the additional countries added in the iterations of the assessment 
occurring from 1995 to 2019 are indicated with lighter gray circles.

 Table 16.1 Participating countries in IEA’s early mathematics 
assessments.

1959

(Pilot)

1964

(﻿FIMS)

1982

(﻿SIMS)
Belgium Australia Belgium
England Belgium Canada
France England England/Wales
W. Germany Finland Finland
Israel France France
Poland W. Germany Hong Kong



416� Breaking Images

Scotland Israel Hungary
Sweden Japan Israel
Switzerland Netherlands Japan
US Scotland Luxembourg

Sweden Netherlands
US New Zealand

Nigeria
Scotland
Swaziland
Sweden
Thailand
USA

﻿

 Fig. 16.1 Participating countries through 1982. Adaptation of Buckminster ﻿Fuller’s 
Airocean projection (1954), adapted by Visioncarto (2018).

The next table shows countries of participation from (19)95 to (20)19, 
with economic classification by the ﻿World Bank. (All country names are 
as stated in the ﻿TIMSS reports, and are not necessarily the same as the 
name used by either the ﻿World Bank, the nation state itself, or its people 
at the time.) The first batch of countries are those with the highest 
income level per capita. Their years of participation are indicated by 
4s in the appropriate column which also signifies their income level. 
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The next batch of countries are those that only participated in one year. 
Their year of participation is marked in the column of the year and 
with the income level 1 (low), 2 (lower middle), or 3 (upper middle). 
Since these countries participated for only one year, we cannot make 
any conclusions about the relationship between participation and the 
country’s income level. The next batch of countries in Table 16.2 are 
those that participated and did not increase income level. It should be 
noted that for these countries (fifteen plus Palestine, for which income 
data were not available) they remained at their income level during their 
years of participation. The last batch of countries in Table 16.2 are those 
that increased their income levels during ﻿TIMSS participation. Twenty-
three countries in total are included in this final batch, signifying that 
the majority of countries with lower income levels who participated in 
﻿TIMSS did increase their income levels over time. 

 Table 16.2 Participating countries in ﻿TIMSS, years 1995 to 2019, with 

income level.

95 99 03 07 11 15 19
Participating countries with high per-capita income levels
Australia 4 4 4 4 4 4 4
Austria 4 4 4
Bahrain 4 4 4 4
Belgium 4 4 4 4 4 4
Canada 4 4 4 4 4 4 4
Chinese Taipei 4 4 4 4 4 4
Cyprus 4 4 4 4 4 4
Denmark 4 4 4 4 4
England 4 4 4 4 4 4 4
Finland 4 4 4 4 4
France 4 4 4
Germany 4 4 4 4 4
Hong Kong SAR 4 4 4 4 4 4 4
Iceland 4
Ireland 4 4 4 4
Israel 4 4 4 4 4 4 4
Italy 4 4 4 4 4 4 4
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Japan 4 4 4 4 4 4 4
Korea 4 4 4 4 4 4 4
Kuwait 4 4 4 4 4
Malta 4 4 4 4
Netherlands 4 4 4 4 4 4 4
New Zealand 4 4 4 4 4 4 4
Northern Ireland 4 4 4
Norway 4 4 4 4 4 4
Oman 4 4 4 4
Poland 4 4 4
Portugal 4 4 4 4
Qatar 4 4 4 4
Scotland 4 4
Singapore 4 4 4 4 4 4 4
Spain 4 4 4 4 4 4
Sweden 4 4 4 4 4 4
Switzerland 4
USA 4 4 4 4 4 4 4
Participating countries – only one year of participation
Algeria 2
Azerbaijan 3
Bosnia and Herzegovina 2
El Salvador 2
Estonia 3
Greece 3
Honduras 2
Mexico 3
Mongolia 2
Participating countries – No increase in income level
Argentina 3 3 3 3
Botswana 3 3 3 3 3
Colombia 2 2
Croatia 4 4 4
Egypt 2 2 2 2
Kazakhstan 3 3 3 3
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Lebanon 3 3 3 3 3
Malaysia 3 3 3 3 3 3
Moldova 1 1
Palestine P P P P P
Philippines 2 2 2
Serbia P 3 3 3 3
South Africa 3 3 3 3 3
Syria 2 2 2
Ukraine 2 2
United Arab Emirates 4 4
Participating countries – Increase in income level
Armenia 2 2 2 2 3
Bulgaria 2 2 2 3 3 3
Chile 3 3 3 4 4
Czech Republic 3 3 4 4 4 4
Georgia 2 2 3 3
Ghana 1 1 2
Hungary 3 3 3 4 4 4 4
Indonesia 2 1 2 2 2 2 3
Iran 2 2 2 2 3 3 3
Jordan 3 2 2 3 3 3
Latvia 2 2 3 3
Lithuania 2 2 3 3 3 3 3
Macedonia 2 2 3
Morocco 2 1 2 2 2
Romania 2 2 2 3 3
Russian Federation 2 2 2 3 3 3 3
Saudi Arabia 3 4 4 4 4
Slovak Republic 2 3 3 4 4 4 4
Slovenia 3 4 4 4 4 4 4
Thailand 2 2 2 3 3 3
Tunisia 2 2 2 3
Turkey 2 3 3 3 3
Yemen 1 1 2
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 Fig. 16.2 Participating countries in ﻿TIMSS through 2019. Adaptation of Buckminster 
﻿Fuller’s Airocean projection (1954), adapted by Visioncarto (2018).

The tables reveal several interesting phenomena after careful 
consideration of the years and involvement over time. The simple 
and clear statement that this assessment has spread across the globe 
throughout the years cannot be understated and is best viewed when 
looking back and forth between Figures 16.1 and 16.2. What began as an 
initial pilot study to compare a handful of countries is now a consistent 
practice with about sixty-one countries participating on average in 
the last four iterations. Looking geographically, what began as eight 
European countries, the United States and Israel, now also routinely 
includes several countries from North, Central and South America, the 
Middle East, Asia, Oceania, and Africa. And economically, what began 
as a group of predominantly wealthy nations has expanded to include a 
diverse group of lower, lower middle, upper middle, and higher-income 
countries. The phenomenon of mathematics education assessment 
spread is laid bare by these tables; providing them in their complete 
form is a clear method to capture the spread. 

However, the significance of the spread moves beyond the increasing 
geographic ﻿diversity and simple glimpse at economic diversity. To the 
latter, I first offer further consideration of the ﻿World Bank’s economic 
classifications for each country by relating more details and analysis 
regarding the ﻿World Bank’s involvement with ﻿TIMSS and education 
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in general. The ﻿World Bank is a regular funding source for ﻿IEA and is 
regularly listed as a funding partner for each cycle of ﻿TIMSS. The first 
year that this was displayed on their reports and/or websites was in 
the 1999 ﻿TIMSS cycle. The significance of ﻿World Bank’s involvement in 
﻿TIMSS is best understood by considering the ﻿World Bank’s involvement 
in global education generally. 

Earlier, I pointed to the ﻿World Bank’s push for a global economy of 
human capital. ﻿Spring (2004) offers poignant analysis to the framing in 
which ﻿World Bank takes educational action:

[Their] educational ideology contains a particular vision about how 
society should be organized. For many people, this vision is just 
assumed to be a necessary part of the advancement of world societies. 
It is an image of the good society that is often unquestioned because 
of its promise of economic abundance for all […] As envisioned by 
the ﻿World Bank, a good society is one based on the mass production 
of consumer goods within a global economy. Each region or nation 
contributes to mass production through factory and agricultural goods. 
The production of agricultural goods is done on large corporate farms or 
plantations. Small family agricultural units are replaced by large units 
with factory-like organization. Workers in these larger units are trained 
for specialized roles and work in corporate teams. Those who previously 
worked on family farms either work on corporate agricultural units or 
move to urban centers. […] From the viewpoint of the ﻿World Bank, the 
problem is that many countries have not reached a high enough level of 
economic development to participate in the mass consumer society. The 
role of education is to help them make this leap. (pp. 40–41)

As ﻿Spring continues, he provides examples of the types of educational 
activities that the ﻿World Bank has enacted over time. These include a 
variety of ﻿curricula, funding and loans, and assessment programs. In 
this chapter, I am pointing to specifically one of these, namely the ﻿World 
Bank’s funding of and entanglement with ﻿TIMSS. It’s clear that ﻿TIMSS 
has been enacting the ﻿World Bank’s educational ideology since at least 
1999 when they acknowledged the ﻿World Bank as a significant funding 
source. With deeper analysis, however, by returning to the economic data 
from Tables 16.1 and 16.2, the participating countries and their economic 
classifications are a perfect instantiation of the ﻿World Bank’s vision for 
the globe. The data speak volumes especially for their connections to the 
vision for a ﻿monoculture of human capital and ﻿consumerism. 



422� Breaking Images

Looking at the diversity of GNI per capita among the countries in 
the 1995 ﻿TIMSS, we see a majority of participating countries with high 
levels of income but also seven that are upper middle and eleven that are 
lower middle income. In the next few iterations of ﻿TIMSS, the numbers 
of lower middle income increase (to thirteen participating countries 
in years 1999 and 2003) and the participating countries include those 
with lower income now as well (two countries in 1999 and four in 
2003). The pattern of increasing economic diversity holds steady as 
the cycles move on, but interestingly toward the later years we begin 
to see fewer numbers in the lower and lower middle income categories. 
In the last few years, the expansion of participating countries has not 
kept pace with the rapid additions we observed earlier. However, the 
data reveals a striking fact: taking together the full list of participating 
countries in ﻿TIMSS cycles, there are eighty-four in total, and while 
many of these countries have high-income classifications, some do not. 
Exactly twenty-three countries from among all participating increased 
their GNI per-capita income category as classified by the ﻿World Bank 
during the years of participation in ﻿TIMSS, many holding steady at their 
higher income levels in the last few cycles of ﻿TIMSS. As another way 
of looking at this data, of the eighty-four participating countries five 
began participation classified as ‘low income’, of which four increased 
their income category during the years of ﻿TIMSS participation. To be 
sure, participating countries increased their economic productivity 
within the context of increasing global ﻿capitalism. The point is not that 
these countries are distinguished by participation in ﻿TIMSS but that 
their economic growth occurred at the same time as they participated. 
It would be much more interesting to find that the majority of ﻿TIMSS 
participating countries’ economics remained stagnant or ‘lowered’ as 
they increased participation in ﻿TIMSS. 

The countries with increased income levels over the years were 
Armenia, Bulgaria, Chile, Czech Republic, Georgia, Ghana, Hungary, 
Indonesia, Iran, Jordan, Latvia, Lithuania, Macedonia, Morocco, Russia, 
Romania, Saudi Arabia, Slovak Republic, Slovenia, Thailand, Tunisia, 
Turkey, and Yemen.

The increase in income level corresponds exactly to ﻿Spring’s 
description of the ﻿World Bank’s global vision. A country that increases 
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its per-capita income levels over time means that more people in the 
country are entering the wage labour market and have the ability to 
consume goods and services in market economies. When the ﻿World 
Bank looks at data for countries like these, it sees its vision realised: 
more people entering the global marketplace as both the human capital 
that markets need and as consumers in an ever-increasing demand for 
products.

Looking specifically at the ﻿TIMSS participating countries, we see an 
increase in GNI per capita for these twenty-three countries equating 
to about one quarter of all participating countries in ﻿TIMSS. Furthermore, 
all twelve high-income countries hold steady at the high-income level. 
These are remarkable data; the ﻿World Bank is surely pleased to see that 
countries participating in its activities are increasing the numbers of 
people entering the wage labour market, or at the very least increasing 
their salaries by engaging in global ﻿capitalism, and increasing demands 
for global consumption. The ﻿World Bank and ﻿IEA might even make 
a leap in suggesting that the ﻿TIMSS mathematics assessment, in 
close association with converging ﻿curricula, causes new mathematics 
education practices that in turn enables a country’s citizens to enter 
the global economy more readily. However, such an assertion would 
be poor mathematics. In other words, I am not pointing to any 
cause-and-effect relationship between ﻿TIMSS participation and the 
increase in income levels of participating countries; I am pointing to 
the association between the two. A nation state’s choice to participate 
is likely indicative of several other actions they are taking, many of 
them additionally with support of the ﻿World Bank, to increase their 
engagement with the global economy. At the very least, participating 
in ﻿TIMSS represents a country’s willingness to engage in the ideology 
that ﻿Spring describes and it should come as no surprise, then, that the 
majority of countries who could increase their income levels actually 
did. Although there can be no suggestion of cause and effect between 
﻿TIMSS and increasing global economic activity, it will serve useful to 
indicate further how the two are associated. This appears in the next 
section when I lay out the content of ﻿TIMSS and how it clearly accords 
with the world’s first ﻿monoculture. 
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The commercial-administrative mathematics of TIMSS

Given ﻿TIMSS’s history within the context of the ﻿World Bank, which is 
clearly linked to the goals of increasing human capital and ﻿consumerism, 
as argued above, I next offer content analysis of ﻿TIMSS material to further 
explicate the association between mathematics assessment spread and 
the global economy. Although I am careful not to suggest a cause-and-
effect relationship here, at the very least my content analysis below 
displays that ﻿TIMSS practice is very much in line with global ﻿capitalism. 
The discussion here will reveal that the majority of mathematical 
activities referred to in ﻿TIMSS material displays a narrow-minded view 
of the opportunities within the array of mathematical behaviour. To do 
so, I first review Harouni’s (2015) categories of mathematics, since I use 
these as a tool to code the contents of test items released by ﻿TIMSS.

Harouni (2015) traces the ﻿history of mathematics/mathematics 
education in terms of its direct correspondence to engagement in the 
political economy. Thus, the categorisation of mathematical behaviours 
he provides are highly relevant to the nature of my present inquiry. 
His four categories of mathematical behaviour are commercial-
administrative, artisanal, philosophical, and social-analytical. 

Commercial-administrative mathematics centres on the mathematical 
activity of counting and always implies the market economy’s use 
of currency, even when not made explicit. He writes: ‘Ultimately, in 
modern ﻿curricula, when a textbook question talks about apples and 
oranges, it does not mean apples and oranges. It means money’ (p. 62). 
Furthermore, explicit examples of this type abound in mathematics 
education; very often, mathematics students practice problems to do 
with interest rates, buying and selling, breaking even, and the like. 

Artisanal mathematics, as Harouni suggests, centres on the mathematics 
of measurement and uses numbers and ﻿geometry to engage in the three-
dimensional world as creators and doers. 

Philosophical mathematics, centring on patterns, is ‘the one 
corresponding to the math practiced in universities. This type of math 
stands neither inside nor beside productive labour. Its product is neither 
an object nor an interaction in the world but an order in the mind’ (p. 
64). For example, mathematics students sometimes engage in creative 
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discovery of mathematical concepts, like determining a pattern about 
the three sides of any right triangle. 

Finally, social-analytical mathematics takes the materials and tools from 
among the three others and engages the social world for understanding 
patterns and making group decisions. Harouni clarifies that in 
some ways, this category can be used to extend the objectives in the 
commercial-administrative category, such as in a corporation making 
decisions based on big data. However, Harouni also points to the 
traditions in ﻿critical mathematics education as examples of the category 
that move in a different social-analytical direction (e.g., Frankenstein, 
1983; Gutstein, 2006). 

Harouni’s categories emerge from his discussion of the political 
economy’s relationship with mathematics education. In associating 
mathematical practice to the ways that the political economy emerged 
over the course of history, these categories provide an opportunity 
to classify mathematical practices that exist in the current historical 
moment. For this reason, I located ﻿TIMSS-released items from their grade 
8 assessment in 2011 (IEA, 2013) and used these categories to analyse 
the types of problems that appear in the document; in all there were 
seventy-seven mathematical tasks to code. The document organised the 
mathematical tasks according to content strands, including Number, 
Algebra, Geometry, and Data and Chance. As I refer to specific problems 
as examples, I will use the code for each problem as it appears in the 
document, typically the letter M followed by a six-digit number.

I first split the tasks into two lists, those mathematical tasks that were 
situated in context versus those that had no context. The total number of 
tasks with no context, that is, no relationship to a real-world situation 
or scenario, was fifty-four. For example, one mathematical task that is 
without a context asks the test-taker to find a ﻿fraction equivalent to a 
given decimal (item M042059). As another example, ﻿test-takers are asked 
to determine the largest value that can be obtained when the product 
of any pair of two-digit numbers is found using the digits 3, 5, 7, and 
9 exactly once (item M042002). There were twenty-three mathematical 
tasks that had an explicit context to relate to the mathematical action to 
be performed. Examples of these kinds of tasks included calculating the 
area of a garden (item M052173), using a histogram to interpret data 
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about soda sales (item M032701), and calculating the cost of a taxi trip 
(item M032477). 

I chose to start with context because of the implications of 
mathematical purpose that context can reveal. The scenarios that ﻿test-
takers read for uses of mathematics suggest the types of mathematical 
behaviour that ﻿TIMSS promotes. I will return to the no-context problems 
later but will continue for now with the twenty-three items coded as 
in-context. For these, I next used Harouni’s insights (2015) to specify 
the explicit connections to the real world and purposes for mathematics 
that are displayed by the task. For the twenty-three context-driven 
mathematical tasks, I coded nine as commercial-administrative, eight 
as artisanal, and six as social-analytic. However, in working with the 
data it became immediately obvious that a second round of coding was 
needed for several items because of implications towards commercial-
administrative, as suggested by Harouni. For example, the social-analytic 
can be used for commercial-administrative means. It will be helpful to 
look at an example item to make transparent these coding decisions that 
I made.

Figure 16.3 reproduces item M032695, a task denoted as ‘Make a pie 
chart with labels’ and with the topic paraphrased as ‘Where people go 
after secondary school’. I coded the task as social-analytic because the 
mathematics requires the test-taker to look at counts of people in relation 
to the whole and make a visual display to present details, with the 
potential that a viewer could make inferences about some social data. To 
be clear, the task does not require this kind of critical thinking (making 
inferences from data) and amounts to not much more than a test-taker’s 
recall of the procedures in making a pie chart. However, as seen in the 
example, notice the categories of people to be analysed. Students in a 
school are grouped by their next choices in life with a small percentage 
attending university, a greater percentage going immediately into the 
workforce, and over half attending either business or trade school. 
There is not any other option or any ‘other’ category. The options for 
after school are all in keeping with a human capital and ﻿consumerist 
vision for every individual. With the aims of the ﻿World Bank and their 
motives in entangling with ﻿TIMSS as laid out in the previous section, it 
is almost as if the ﻿World Bank itself wrote this mathematical task. 
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 Fig. 16.3 Item M032695, ‘Make a pie chart with labels’. SOURCE: ﻿TIMSS 2011 
Assessment. Copyright © 2013 ﻿International Association for the Evaluation of 
Educational Achievement (IEA). Publisher: ﻿TIMSS & PIRLS International Study 
Center, Lynch School of Education, Boston College, Chestnut Hill, MA and 
﻿International Association for the Evaluation of Educational Achievement (IEA), 

IEA Secretariat, Amsterdam, the Netherlands.

Similarly, all of the items classified as social-analytic received a second 
coding of commercial-administrative because they did not correspond 
to any sense of social analytics beyond individual competition and/or 

Copyright © 2013 International Association for the Evaluation of Educational Achievement (IEA). 100

TIMSS 2011 8th-Grade Mathematics Concepts and Mathematics Items

Content Domain

DATA AND CHANCE

Main Topic

Data	Organization	and	
 Representation

Cognitive Domain

Applying

Make	a	pie	chart	with	labels

Of the 400 students in a school, 50 plan to go to university, 100 to a polytechnic  
school, 150 to a business college, and the remainder plan to enter
workforce.

Use the circle below to make a pie chart showing the proportions of students 
planning to do each of these. Put labels on your chart.

 

Item Number: M032695

SCORING
Correct Response
•	 Pie	chart	correctly	divided	and	labeled	
(1	section	–	university;	2	sections	–	polytechnic;	2	sections	–	workforce;	3	sections	–	business	

college)

Partially Correct Response
•	 Four	sections	with	at	least	two,	but	not	all,	of	correct	size	and	correctly	labeled
•	 Four	sections	of	correct	size	but	no	labels,	or	labels	50,	100,	150,	100

Incorrect Response
•	 Four	sections	with	one	or	none	of	correct	size
•	 Other	incorrect	(including	crossed	out,	erased,	stray	marks,	illegible,	or	off	task)

Overall Percent Correct

Education system
Percent 
correct

Singapore 84
Chinese Taipei-CHN 80
Japan 77
Korea, Rep. of 77
Hong Kong-CHN 74
Finland 70
Russian Federation 67
Australia 65
Slovenia 64
Hungary 63
England-GBR 61
New Zealand 60
Lithuania 58
Norway 57
Israel 55
Sweden 54
Italy 53
United States 53
International average 45
Malaysia 45
Ukraine 44
Turkey 43
Thailand 43
Chile 43
United Arab Emirates 35
Romania 35
Kazakhstan 34
Iran, Islamic Rep. of 33
Macedonia, Rep. of 30
Jordan 29
Bahrain 29
Tunisia 28
Oman 27
Indonesia 26
Palestinian Nat’l Auth. 25
Qatar 25
Armenia 25
Georgia 23
Saudi Arabia 23
Lebanon 20
Syrian Arab Republic 19
Morocco 13
Ghana 10

Benchmarking 
 education system

Percent
correct

Massachusetts-USA 70
Quebec-CAN 69
Ontario-CAN 63
Minnesota-USA 61
North Carolina-USA 61
Connecticut-USA 60
Colorado-USA 60
Alberta-CAN 58
Indiana-USA 58
California-USA 47
Florida-USA 43
Dubai-UAE 39
Alabama-USA 39
Abu Dhabi-UAE 36

 Percent higher than International average
 Percent lower than International average
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profit-related contexts. The same was true for a bulk of mathematical 
tasks coded as artisanal. Many of these problems that present a real-
world scenario have explicit or immediate implications in relation 
to the consumer economy or wage-labour market. For example, item 
M042041 requires the test-taker to calculate measurements of a pipe, 
presumably for fitting to a plumbing scenario or other such need for a 
pipe. The exact text in the question signifies the central character who 
needs to know this measurement as the ‘workman’. A different word 
choice might position this person in relation to their craft and thereby 
be coded as artisanal, but IEA’s choice here reflects a position as a wage 
labourer who cuts pipes for some profit-driven situation in which he 
serves as a cog in the wheel (let alone the poor wording that reinforces 
﻿gender norms). Other examples of artisanal tasks that I aligned also 
to commercial-administrative include items M052061 (‘Packing eggs 
in boxes’) and M052206 (‘Number of books to fill the box’). With 
the second round of coding, it turns out that only three items do not 
contain commercial-administrative as the primary or secondary code. 
The table below summarises the codes for the items that had context, 
with the vast majority having a primary or secondary connection to 
commercial-administrative. 

 Table 16.3 ﻿TIMSS Released items with context, coded by type.

Commercial-administrative 9
Artisanal (2nd: Commercial-administrative) 5
Social analytic (2nd: Commercial-administrative) 6
Artisanal 3

Therefore, ﻿TIMSS-released items indicate that, where overt displays of 
mathematical behaviour are connected to the real world, these are most 
likely to be related to commercial-administrative goals. 

However, what can be said about the remaining tasks, those that do 
not display a connection to the real world? For these, the items that I 
coded with ‘no context’, I relied on Harouni’s notion of philosophical 
mathematics, what he describes as the mathematics of universities and 
researchers in the field. For many of the fifty-four tasks that had no 
context, however, this immediately proved to be controversial. Coding 
a mathematical task that requires the test-taker to convert a decimal 
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to a ﻿fraction (as in item M042032) seemed hardly to be what Harouni 
imagines for philosophical mathematics. For help in distinguishing what 
I could code as truly philosophical, I turned to literature in mathematics 
education that distinguishes between procedural mathematics and 
‘doing mathematics’ like that of research mathematicians. Mary Kay 
﻿Stein and Margaret Schwan ﻿Smith (1998) offer clarity in comparing 
procedural mathematics with non-routine tasks that require higher 
order thinking by students, making connections, noticing patterns, etc. 

Thus, to further code the problems with no context in the ﻿TIMSS-
released items, I clarified which problems were 1) procedural problems 
that (when considering mainstream middle school textbooks) are often 
taught to be routines that students memorise and without connections 
to mathematical concepts and 2) problems that were not routine and 
required activating either conceptual connections and/or deductive 
approaches. As examples, the two items I mentioned earlier as no-context 
tasks provide an example of the two types. Item M042032 (decimal to 
﻿fraction) is a typical routine that students practice ad nauseum in the 
classroom. On the other hand, M042002 requires ﻿test-takers to use 
their understanding of place-value and problem-solve by carefully 
considering some cases to determine which product will be greatest. 
While the solution can be found by a routine (trying out each case), this 
is not a typical problem like converting from a decimal. 

With this coding scheme in hand, I could then distinguish within 
the fifty-four ﻿TIMSS-released items that were devoid of context. 
Exactly forty-seven of them were coded as procedural problems with 
no conceptual connections and only seven remained as nonroutine 
problems requiring ﻿problem solving, deductive reasoning, and/
or conceptual connections. I argue that these tasks overwhelmingly 
represent routine mathematics requiring speed and memorisation 
rather than analytical, higher cognitive demand mathematics. I argue 
these forty-seven routine, no-context tasks resonate strongly with a 
mathematics education for human capital and ﻿consumerism. Recall 
Harouni’s argument that counting oranges and apples is a stand-in 
for counting money. In the same way, the emphasis on procedural 
mathematics, devoid of context, devoid of meaning, implies a context 
that is yet again commercial-administrative. By emphasising the automatic 
processes in mathematics, the lack of thought and connection, these 
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tasks commit to mathematical practices that wage labourers need to 
perform quickly and without critical thought.

Taking all the codes and implications thereof together, ﻿TIMSS 
mathematics items from 2011’s grade 8 test contain sixty-seven items 
with overt and/or implied connections to the commercial-administrative 
purpose for mathematics with only ten that fit outside this norm. Three 
items are purely artisanal and seven items are purely philosophical. The 
exhaustive coding process I have detailed thus indicates a content 
analysis to complement the context analysis earlier in this chapter. 
The content of assessment﻿ spread is commercial-administrative, the 
increased use of these materials across the globe also increases the 
suggested associations between mathematical behaviour and corporate-
profit, competition, and ﻿consumerism. Although it is far too big a leap 
to suggest that the content in ﻿TIMSS caused the increased income levels 
of participating countries, revealing this content analysis does suggest 
how such participation, one among likely many other actions taken 
by participating countries, at the very least resonates heavily with the 
goal that said country engages more fully with the world’s emerging 
﻿monoculture of the global economy, of human capital and ﻿consumerism. 

Assessment spread in mathematics education is not unique to 
﻿TIMSS. A similar analysis could focus on the Program for International 
Student Assessment (﻿PISA) created by the ﻿Organisation for Economic 
Co-operation and Development (﻿OECD). As an assessment spread that 
initially focused its reach on elite countries and now has extended its 
spread to include ‘developing countries’ as well, future research areas 
can consider how contextual analysis and content analysis, as above, 
might reveal the extent to which assessment spread via ﻿PISA provides a 
complementary understanding of assessment spread. 

As another, related topic, assessment spread reveals several open 
questions regarding the ways that the mathematics education and 
﻿educational policy worlds interpret and discuss the findings. For example, 
future research might suggest that assessment practices and their ensuing 
competitions in reporting results unify both a global mathematics 
education and, thereby, implications for a ﻿monoculture emphasising 
laissez-faire ﻿capitalism and ﻿consumerism as noted throughout this 
analysis. The repeated outperformance of particular nation states in these 
global competitions results in leadership and guidance of particular 



� 43116. Globalisation of mathematics education and the world’s first monoculture

nation states, with some interesting potential patterns for exploration. 
Not only do these monocultural features (laissez-faire ﻿capitalism, 
human capital, exploitation, and ﻿consumerism) appear highly present 
in the ‘best’ performing countries, but many countries who are seen as 
leaders in the global competition of mathematics education also ascribe 
to the most severe governmental structure associated with ﻿capitalism, 
namely, authoritarian ﻿capitalism. I began to initiate these arguments in 
Wolfmeyer (2014, Chapter 3), however a fresh discussion is warranted 
given the emergence of new geopolitical spaces and discussions about 
authoritarian ﻿capitalist governments across the globe in recent years. 

In this chapter, I have articulated via two research methods that 
﻿TIMSS as a phenomenon of assessment spread is concomitant with 
the spread of the global economy. I conclude that a dominant global 
mathematics education associates with the twin goals of increasing 
the number of people who enter the wage labour market and become 
lifelong consumers. On the one hand, critical mathematics educators 
must develop clear arguments, as presented here, to assert their claims 
about these entanglements rather than passively accepting the reports 
from ﻿TIMSS, ﻿PISA, and the like (as dramatically conveyed in Chapter 
15 of this volume). On the other hand, we can use these analyses to 
motivate culturist perspectives in mathematics education, such as an 
alter-﻿globalisation mathematics education (Appelbaum & Gerofsky, 
2013), that would resist a global and dominating mathematics education 
solely dedicated to support human capital and ﻿consumerism.
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17. Bringing ethnomathematical 
perspectives into classrooms

 Swapna Mukhopadhyay and Brian Greer

In this chapter, we offer some suggestions, informed by our personal histories 
and experiences, as to how ethnomathematical perspectives might enrich school 
mathematics classrooms. We regard this as inherently political work, in terms 
of combatting the intellectual ﻿White supremacy that pervades the ﻿Eurocentric 
narrative of the history of academic mathematics and that is explicitly or 
subliminally everpresent in so many mathematics classrooms. Likewise, we 
argue that the ongoing worldwide ﻿homogenisation of school mathematics is 
unhealthy. Above all, we argue that school mathematics is culpably deficient in 
terms of its relations with other forms of mathematical activities and insofar as it 
does characterise such relationships, often harmfully misleading.

Introduction

﻿Ethnomathematics is the mathematics practiced by cultural groups, such 
as urban and rural communities, groups of workers, professional classes, 

children in a given age group, ﻿indigenous societies, and so many other groups 
that are identified by the objectives and traditions common to these groups. 

(﻿D’Ambrosio, 2002, p. 1)

As Ole Skovsmose (2022) establishes, the concerns of ﻿Ethnomathematics 
are intimately related to those of ﻿critical mathematics education in 
general.

We begin by drawing out of our backgrounds the insights that inform 
our current perspectives. As presently described, Swapna’s engagement 
goes back to the 1980s, her doctoral research being conducted in a village 
in India, studying children learning in a way very different from being 
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schooled, and at a time when it was becoming clear to anthropologists 
and cultural psychologists that ascribing universality to local European 
descriptions and theories of humanity is absurd. During the 1980s and 
1990s Brian was moving from studying mathematical cognition, to 
mathematics education, and thence to ﻿critical mathematics education. He 
heard Ubiratan ﻿D’Ambrosio speak for the first time in 1995 and soon after 
that the authors of this chapter began to work together, as sketched below.

We summarise our engagements with ﻿Ethnomathematics across our 
careers and relate these to what we see as important themes. Against 
this background, we pose the central question: In what ways, given 
the realpolitik of educational regimes across the world, could school 
mathematics classrooms be enriched by ethnomathematical perspectives 
appropriate to the particular socio-political contexts? We mainly 
address classrooms in the United States (but of course, with relevance, 
mutatis mutandis, to many other educational systems). Accordingly, this 
chapter contrasts with Aldo Parra’s (Chapter 10, this volume) which is 
about directly collaborative political work with communities in South 
America; however, in the current state of educational regimes almost 
anywhere, any attempt to infuse school classrooms or initial preparation 
of ﻿teachers with an ethnomathematical perspective is a political act. 
Such work presents both challenges and opportunities (Greer, 2021; 
Vithal & Skovsmose, 1997). 

The experiences that we relate and reflect upon are illuminating 
for several broad themes that we highlight. A central thrust in the 
inherently political nature of ﻿Ethnomathematics has always been the 
construction of a counternarrative to the ﻿Eurocentric myth about the 
development of academic mathematics, a myth that can be seen as a 
long-established, deeply-entrenched, and ongoing manifestation of 
﻿White (intellectual) supremacy. We also address the air of intellectual 
superiority of the mathematical academy towards what we have 
termed ‘the mathematics of people who make things that work’ 
(Mukhopadhyay & Greer, in press). 

Much more attention needs to be given to establishing links 
between school mathematics and the day-to-day lived experiences of 
students, their families, and communities. And the paraphernalia of the 
technological age, with all their associated opportunies and dangers, 
form a pervasive part of their lives.
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Ethnomathematical studies

Studying the children of weavers, potters, and farmers  
in rural India

During the 1980s, when Swapna was working on her doctorate at 
Syracuse University, it was becoming increasingly clear, through the 
work of scholars such as Jerome ﻿Bruner, Michael ﻿Cole, and many 
precursors, that cognition is never culture-free and that, for example, 
﻿Piagetian tasks should not be viewed as universal windows into 
children’s cognition.

The fieldwork for Swapna’s doctoral dissertation was carried out 
while living in a small village in India near the Bangladesh border. As 
part of the preparation for this work, she took classes in weaving and 
pottery, the latter being something she still does. In the village, she 
totally embedded herself in the lives of the community, who looked after 
her with great care. Coming from a middle-class big-city background, 
the experience was formative in so many ways, not least in leading her 
to respect the knowledge, skills, and adaptability of the people and to 
see a very different way of growing up, in which the children, from 
the earliest years, learn by involvement in the family’s work – what 
Andrew ﻿Dayton and Barbara ﻿Rogoff (2016) characterise as ‘learning by 
observation, participation, and invention’. 

Specifically, she wanted to explore how this early experience might 
be reflected in children’s cognitive, in particular spatio-mathematical, 
functioning. The children were aged eight to twelve, and the expectation 
that their contributions to the family would take precedence over going 
to school, meant that their exposure to schooling was minimal. The form 
of weaving, carried out by looking down on a two-dimensional surface 
contrasts with the three-dimensional pottery, made on a wheel. It was 
confirmed that the weavers’ children performed relatively better on two-
dimensional tasks and the potters’ children on three-dimensional, with 
both groups outperforming farmer’s children on spatio-mathematical 
tasks in general. All groups performed computational tasks embedded 
in story problems at comparable levels.
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As one example, when she posed conservation of liquid volume tasks 
to girls, they accurately predicted the level that the liquid would rise to 
in the second container, reflecting their experience and responsibility in 
buying cooking oil poured into a container at the market and ensuring 
the price was fair.

Thus, in many respects, the work illuminated the great differences 
between a schooled childhood (in which learning is separated from 
life-related consequences) and learning while doing, though graduated 
apprenticeship, and with consequences for actions.

The boat-builders of Frasergunj

During a trip to the Bay of Bengal some fifteen years ago, we visited 
a small village called Frasergunj, where we came across a group of 
men building a large wooden fishing-boat. Throughout the period 
since, Swapna has formed a close and ongoing friendship with these 
craftsmen, while conducting extensive observations and interviews to 
try to understand how they make such complex and well-constructed 
boats (Mukhopadhyay, 2013). 

A team of eight to ten men, of varying age and experience build a boat 
in for to six months during the dry season. They are carpenters, mostly 
unschooled and illiterate, from villages in Bangladesh, who have adapted 
to the specialist skills of boat-building. They work almost always without 
blueprints – when asked about this, they told Swapna that they can work 
to plans if required but ‘it slows us down’. While working, there is very 
little speaking. Less experienced members of the team are mentored, 
often without speaking, and learn by doing. 

When asked about how they know that some part of the process has 
been done correctly, for example, curving a plank by heating and pulling 
over a fulcrum so that it can be added in the progressive construction 
of the hull, their responses hardly go beyond saying something like ‘we 
can see it’. And when asked how they judge if a boat is a good boat, they 
answer along the lines that it keeps the fishermen safe and lasts a long 
time – in other words, it works. 

We do not suggest that boat-building as a topic could naturally 
be introduced into mathematics classrooms unless the context is 
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appropriate – for example, Jerry ﻿Lipka and his team (Lipka, Wong, 
Andrew-Ihrke, & Yanez, 2012) have included canoe construction in 
﻿curricular materials they developed and used with children of the 
﻿Yup’ik people of Alaska. The implications are at a more fundamental 
level. Is there a place for teaching mathematics less in the typical style 
wherein the motivation for learning something is that it will be useful 
for learning more mathematics (and that justification can be repeated 
indefinitely) or for some vague work-related purpose? At the most 
general level, as discussed further below, could school mathematics be 
more relatable to the students’ lives? At a theoretical level, what are the 
implications of the distinction made by Edwin ﻿Hutchins (2000) between 
‘cognition in captivity’ and ‘cognition in the wild’.

Tlingit culture: ‘Sharing our knowledge’

A more recent formative experience for Swapna has been working with 
the ﻿Tlingit people of the Pacific Northwest coast of the United States, 
mainly in South-West Alaska. The ﻿Tlingit share the history of oppression 
of all ﻿Indigenous Americans, North and South, through cultural 
genocide, linguicide, exploitation, and intergenerational trauma. As 
well as being subjected to oppression by Europeans, they suffered at the 
hands of the Russians, from whom the United States ‘purchased’ Alaska 
in 1867.

 With a population of about 600000, and spread across the border 
into Canada, present-day ﻿Tlingits, with the neighboring ﻿Haida and 
﻿Tsimshian, strive to reclaim their cultural ﻿identity and pride. Swapna 
has worked closely with the Sealaska Heritage Institute in Juneau.1 In 
particular, she has collaborated with ﻿Tlingit weavers and basket-makers 
in Juneau, Sitka, Hoonah, and with school educators, to explore how 
the ethnomathematical perspective might enrich the school experience 
of ﻿Tlingit children. For example, she has interacted intensively with the 
legendary ﻿Haida master-weaver, Dolores Churchill, with whom she 
co-taught professional development classes for ﻿teachers. Of interest 
is that, while Swapna’s attention is drawn to the complex ﻿geometry 
of the finished designs, the expert weaver focusses on the line-by-line 

1� See https://www.sealaskaheritage.org 

https://www.sealaskaheritage.org
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creation, with a primary emphasis on counting. Numerous aspects, 
such as the conception of the finished product the creator has during 
the act of making it, and how expert knowledge is passed on, remain to 
be understood, and underline how ﻿ethnomathematicians must exercise 
caution when projecting formalised mathematics on to what are not 
primarily mathematical activities. 

Another fascinating aspect is the deep ecological consciousness 
embedded in the complex Ethnoscience involved in the preparation of 
materials for basket-making (Mukhopadhyay, 2009). Prior to European 
contacts, these finely woven watertight spruce root baskets were widely 
used for food preparation by submerging heated rocks with edibles to 
be cooked.

Swapna was indeed very fortunate to teach summer sessions for 
local ﻿teachers with eminent ﻿Tlingit and ﻿Haida local scholars and elders. 
One of these experiences focused on ﻿STEAM (Science, Technology, 
Engineering, Art, Mathematics) ﻿curricula examined the evolved design 
and construction of traditional halibut fish-hooks (which work).

﻿Tlingit artefacts, whether practical or ceremonial, are always for 
use and complexly decorated. Bilateral symmetry, whether in canoe 
construction, realistic carvings of living creatures for totem polls, 
abstract patterns in weaving and basketry, is pervasive. Moreover the 
concept of symmetry, related to balance, has symbolic importance 
within the culture, though the ﻿Tlingit language does not have an 
equivalent word. The ﻿Tlingits are divided into two moieties, the Eagles 
and the Ravens, and whenever any discussion is taking place, there is an 
agentive expectation that if an Eagle or a Raven speaks, he or she must 
be balanced by a spokesperson for the other moiety.

We have been fortunate to attend a number of ﻿Tlingit Clan 
Conferences in Juneau, which combine cultural events with academic 
papers on important issues such as the effects of intergenerational 
trauma, and with a major emphasis on language revival, particularly 
among young people; also related gatherings in various places under 
the wonderfully appropriate title ‘Sharing our Knowledge’, reflecting 
a relational conception of the interactions between cultural knowledge 
systems (Parra, this volume).
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Digging where we stand

Teacher preparation

Throughout her career as faculty at various universities working with 
future ﻿teachers, Swapna has introduced students and others to the ideas 
of ﻿Ethnomathematics through activities in and beyond class. In particular, 
she developed a strong relationship with ﻿Portland Art Museum, which 
displays rich examples of ﻿Native American culture artefacts, and which 
has an outstanding outreach to public education. By taking students to 
the museum on field trips (once holding classes for an entire term in a 
room within the museum), she focused on students learning to see and 
analyse the mathematics in typically unconsidered contexts. Students 
were encouraged to bring their children and other family members 
to such field trips. In particular, the native artefacts, both decorative 
and functional, are steeped in bilateral, translational, and rotationsl 
symmetry (Washburn & Crowe, 1987). By asking students to examine 
those symmetries, and to create new designs of their own (for example 
by making printing blocks for generating symmetry-rich designs) she 
introduced formal analysis of symmetry, a topic that forms part of the 
national mathematical framework. 

﻿Portland Art Museum, like many museums, is going through 
the process of re-examining their roles. One aspect in which they 
have shown leadership is through exhibitions that demonstrate how 
contemporary ﻿Native American painters, weavers, photographers, 
fashion designers, and so on are establishing relational bridges with 
other modern traditions, thereby negating the image of ﻿Indigenous 
peoples as belonging only to the past.

Culturally Responsive Mathematics Education

In 2004, under the auspices of the Centre for Learning and Teaching—
West, a program funded by the National Science Foundation (﻿NSF) 
spanning Portland State and four other universities, a conference was 
held at ﻿NSF headquarters with the above title. Participants included 
many of the most prominent figures in mathematics education taking, 
broadly speaking, an ethnomathematical stance.
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We took responsibility for editing a book reflecting contributions 
to that conference and it duly appeared, with Arthur ﻿Powell and 
Sharon ﻿Nelson-Barber also co-editing (Greer, Mukhopadhyay, 
Powell, & Nelson-Barber, 2009). As far as we are aware, the specific 
term ‘culturally responsive mathematics education’ originated in this 
endeavour. We illustrate the nature of the book by reference to two of 
the contributions. 

Geneva ﻿Gay’s (2009) contribution begins with analysis of reasons why 
many ﻿teachers have an image of mathematics as culture-independent 
thereby absolving themselves of the responsibility of knowing how to 
teach in a culturally responsive manner. Rejecting that position, she asks 
a question of central importance in the United States context, marked as 
it is by large populational discrepancies between students and ﻿teachers: 
‘How can middle-class, monolingual European American math ﻿teachers 
work better with students who are predominantly of color, attend school 
in poor urban communities, and are often multilingual?’ (p. 189).

﻿Lipka worked with the ﻿Yup’ik people of Alaska for four decades 
(Lipka, Yanez, Andrew-Ihrke, & Adam, 2009; Lipka et al., 2012). Much 
of his work focused on ﻿curricular development, the creation of modules 
linking standard mathematical content to culturally-situated activities 
such as canoe construction, house construction, star navigation. The 
account he gives (e.g., Lipka et al., 2009) makes clear how his research 
program was carried out very much within the rules of the system. The 
bottom line was that in order to secure and retain funding for research 
it was necessary to produce statistically significant results from rigidly 
designed experiments providing evidence that the approach used 
yielded better outcomes as defined by test results. 

However, in retrospect, Lipka (2020), in reviewing the intersection 
between Indigenous knowledge from various cultures and attempts to 
escape catastrophe through ﻿climate change, concluded that he needed 
to make a significant paradigm shift from ‘ethnomathematics [in] the 
school context to the larger social-cultural-ecological systems’ thus 
bringing him close to the political involvement advocated by Parra 
(Chapter 10, this volume) and exemplifying environmental issues as 
one arena where promising collaborations between formal science and 
﻿Indigenous knowledge are happening.
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Alternative ways of knowing (in) mathematics

At Portland State University, starting in 2006, Swapna organised a public 
lecture series, attended by appropriately diverse audiences, under the 
title ‘Alternative forms of knowledge construction in mathematics’. Most 
of the invited speakers contributed chapters to a subsequent edited 
volume: 

This book is about the celebration of ﻿diversity in all its human form, 
specifically in relation to mathematics and mathematics education: 
culture, ethnicity, ﻿gender, forms of life, worldviews, cognition, language, 
value systems, perceptions of what mathematics education is for. 
(Mukhopadhyay & Roth, 2012, p. 1, italics in original)

In this book, the contribution by Mariana Kawall Leal ﻿Ferreira (2012) 
exemplifies her intense political involvement with ﻿Indigenous peoples 
in Brazil (see especially Ferreira, 2015). The chapter contributed by 
Gary ﻿Urton (2012) exemplifies the interplay between mathematics and 
politics in the context of colonisation, in this case the Spanish invasion 
of the ﻿Inkan Empire. Specifically, he describes how the highly developed 
statecraft of the Inkas, using khipus to record data, was forcibly replaced 
by double-entry bookkeeping in the European style. This exemplies a 
theme all too common in the history of ﻿colonialisation, the suppression 
of often superior cultural practices by the invaders (several examples, 
such as navigation, are described by ﻿Raju (2007). It is very important 
that, following colonisers’ suppression of alternative knowledge in, for 
example, environmental science, botany, medicine, we are beginning to 
see extremely important collaborations across such knowledge systems. 
Without elaborating, we suggest that in the case of mathematics, the 
historical trajectory has been different, taking more strongly the form of 
assimilation.

Culturally Responsive Elementary Mathematics Education 
(CREME)

In 2014, the ﻿Oregon Department of Education funded a dozen or so 
projects under the Culturally Responsive Pedagogy and Practices Grant. 
Our project was the only one dealing specifically with mathematics, and 
it focused on elementary school students because of the importance we 
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attach to the foundational impact of the early years. It was based on 
intensive interactions with a small number of dedicated ﻿teachers and 
their students in two Portland schools. We were fortunate to have as 
supportive advisers Danny ﻿Martin, Geneva ﻿Gay, and Marta ﻿Civil.

We worked mostly in two contrasting schools in North Portland. Rosa 
Parks Elementary, and Trillium Charter School. The students at Rosa 
Parks (though not the ﻿teachers) are predominantly African Americans, 
migrants, and refugees from many countries in Africa and elsewhere. 
Throughout our time working there, the school was under severe 
pressure on account of test scores being low. Trillium, an independent 
charter school (rather than the profit-oriented or religiously based 
kind), had relative pedagogical freedom in the elementary grades since 
the performance of students in the later grades was good. Thus, ﻿teachers 
enjoyed a considerable amount of autonomy, as illustrated below.

The project proved extremely educational and fulfilling for us. Ten 
﻿teachers engaged fully, and we owe them a great deal. In the process, 
we learned very clearly about the power of the systemic straightjacket 
limiting ﻿teachers at Rosa Parks, an aspect well documented by Alan 
Schoenfeld (see Chapter 14, this volume)—above all, how ﻿testing 
imposes constraints. 

The overall organisers held regular meetings at which representatives 
of all the projects reported on their work and we exchanged views. We 
became aware of a degree of tension between our aims and those of the 
organisers as interpreters of the funders’ requirements; let’s just say we 
were not in sympathy with the crude requirement to demonstrate rises 
in test scores as evidence that our approach had merit. 

We also learned about the daily reality of the students. One of the 
﻿teachers was asked why a student was sleeping and explained that he 
could not sleep at night (in a car) because the street lights were too 
bright. We tried hard to communicate with families, following the 
inspiring work of Marta Civil (e.g., Civil & Quinteros, 2012) and to 
channel Luis ﻿Moll’s concept of ‘funds of knowledge’ which is ‘based 
on a simple premise: People are competent, they have knowledge, and 
their life experiences have given them that knowledge’ (Gonzalez, Moll, 
& Amanti, 2005, p. ix). In these attempts we encountered substantial 
obstacles, including the natural guardedness of immigrants and refugees 
in the current political climate.
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Nevertheless, on looking back, there were many highlights in our 
rich reactions with students and ﻿teachers. A chapter co-authored with 
the ﻿teachers begins with a vignette about the power of simply asking 
students to find out and report to their class how to count up to twenty 
in languages spoken at home (Ford et al., 2018, pp. 169–170). One of the 
﻿teachers (Koopman, 2017) conducted a project which began by students 
checking the labels on their t-shirts to see where they were made. These 
data were recorded on a world map. Koopman then told the students 
how the t-shirt was introduced as a working garment at the beginning 
of the twentieth century. He provided them with a mass of data relating 
to the economic lives of the workers and their families (most of whom 
also worked) in relation to the cost, at the time, of essential items. With 
these data, the students analysed family budgets. He also elaborated on 
the union movement, and concluded with some data on contemporary 
sweatshops in Asia and elsewhere.

A major element of ﻿CREME, linked to mathematics where possible, 
was to counter deficit models with support for student ﻿identity and 
﻿agency. For examples, students recorded lists of what they could do 
(‘I can bath my baby brother, I can do multiplication, I can skateboard 
backwards’) on strips of paper rolled up and kept in containers they 
could hang around their necks, which we called ‘talismans’. In the 
same vein, students (with minimal guidance from ﻿teachers) drew self-
portraits and wrote poems beginning ‘I am from’ about themselves 
and their families (often in languages other than English). These were 
collected and self-published in three volumes ‘Where we are from’, ‘We 
are from’, and ‘We are’ with book-launches attended by parents and 
communities of the two schools at which children read their poems.

Themes

We next identify major themes that we can illustrate from our experiences 
as described in the previous section. Overarching all is the intimate 
relationship between forms of ﻿capitalism and the political enterprise 
that is (mathematics) education. ﻿Gay (2009, p. 194) expressed it 
forthrightly: ‘mathematics becomes a proxy for academic ﻿racism, ethnic 
inequities in educational opportunities and a means of perpetuating a 
class system of “haves” and “have nots”’. Although the reader should 
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catch many resonances in what follows and elsewhere in this book, that 
is too massive a topic to address adequately in this chapter.

Bringing more evidential rigour to the history of mathematics

Within ﻿Ethnomathematics, since the outset, a prominent theme has 
been the construction of a counternarrative to ﻿Eurocentric claims about 
the development of academic mathematics, more specifically what Jens 
﻿Høyrup (1992) calls the ‘Greek myth’. Many of the contributions in the 
seminal early compilation by Arthur ﻿Powell and Marilyn ﻿Frankenstein 
(1973) address this challenge. 

What might be called the social construction of ‘﻿Pythagoras’ is an 
appropriate starting point. According to a leading student of Greek 
mathematics ‘﻿Pythagoras the mathematician finally perished AD 
1962’ (Netz, 2003, p. 272). The date refers to a book by Walter ﻿Burkert 
(1962/1972), which is heavily cited in the entry on ﻿Pythagoras in the 
online Stanford Encyclopedia of Philosophy (Huffman, 2018). In surveying 
historical writings relating to ﻿Pythagoras, it is notable that forgeries are 
mentioned thirteen times. The article ends by stating that the consensus 
among scholars is that ﻿Pythagoras was neither a mathematician nor a 
scientist.

At the systemic level, Morris ﻿Kline provided a definitive statement of 
the Graecocentric myth:

Mathematics is a living plant [that] finally secured a firm grip on life in 
the highly congenial soil of Greece and waxed strong for a brief period. 
In this period it produced one perfect flower, ﻿Euclidean ﻿geometry. The 
buds of other flowers opened slightly [...] but these flowers withered 
with the decline of Greek civilization, and the plant remained dormant 
for one thousand years. Such was the state of mathematics when the 
plant was transported to Europe proper and once more embedded in 
fertile soil. (Kline, 1953, p. 27)

Important counters to this absurdly extreme position have been 
provided by, for example, George Gheverghese ﻿Joseph (1991), Chandra 
Kant ﻿Raju (2007), Jim ﻿Al-Khalini (2010), and throughout the work of 
serious historians of mathematics such as ﻿Høyrup (see Greer, 2021, for 
an overview of his work and its implications for mathematics education). 
By way of example, there is strong evidence that important elements of 
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﻿calculus were developed in India before Gottfried Wilhelm ﻿Leibniz and 
Isaac ﻿Newton (Joseph, 1991), that the channels of communication existed 
to carry that knowledge to Europe, and that ﻿Eurocentric historians of 
mathematics have sought to suppress consideration of such evidence 
(Raju, 2007).

Contemporary educational politics in the United States

Without taking the space to elaborate, we assert that the position so 
clearly enunciated by ﻿Kline in the quotation above can be seen as an 
intellectual component of the ﻿White supremacy that is evident in the 
contemporary United States and many other parts of the world. The 
provocations of ﻿ethnomathematicians and other critical mathematics 
educators in opposing this position have contributed to the dragging of 
mathematics education into the ‘﻿culture wars’ within the United States. 
Relative to the earlier ‘﻿math wars’ described by Schoenfeld (Chapter 14, 
this volume), these developments are taking an extreme form, including 
personal attacks on individuals (Boaler, 2022). 

A pervasive problem is illustrated by Jo ﻿Boaler with a quotation from 
a Nobel-prize-winning physicist:

When I talk about education, I frequently have physicists lecture me 
on how I am wrong [reflecting that] nearly everyone […] believes that 
they are an expert on education, just by virtue of having been to school 
or having a child who has attended school. (Wieman, personal e-mail 
message, cited by Boaler, 2022)

This rings true, above all, in relation to mathematics education. We 
offer the observation that a great many people, in particular politicians 
and educational administrators, will pontificate on the importance of 
children being able to, for example, solve quadratic equations, while 
themselves being unable to do so. 

The mathematics of people who make things that work

The above phrase refers to another massive swath of humanity whose 
expertise is generally looked down upon by mathematicians and, at least 
until recently, largely ignored by historians of mathematics. In ancient 
Athens, it has been pointed out that:
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A consensus has emerged that Greek mathematics was heterogeneous 
and that the famous mathematicians are only the tip of an iceberg that 
must have consisted of several coexisting and partially overlapping fields 
of mathematical practices. (Asper, 2009, p. 107)

Ray ﻿McDermott (2012) alludes to many examples showing the falsity 
of the ‘official story’ of the role of mathematics in work. A particularly 
striking example is a report on ethnographic studies of architects:

In nearly a year of a fieldwork at the architecture firm, I never saw any 
of the architects write down an equation and then manipulate it. I rarely 
saw calculations more complex than the basic ﻿arithmetic operations. The 
extent of geometric practice was a deep familiarity with shapes, often 
﻿Euclidean ones, and an ability to visually and physically transform them 
in design practice. (Stevens, 2010, p. 83)

This does not sound so different from the boat-builders described above!
Two other working architects are described in vividly contrastive 

terms:

‘Stupid Gerry’ was terrible at the ﻿fractions examination he had to pass 
to become a professional draftsman, BUT he was smart and excellent 
at drafting, even at the parts that seemed to require a green-thumb 
knowledge of ﻿fractions […] ‘Dumb Ted’ could be found looking 
incompetent wherever ﻿teachers or other students were pushing 
mathematics […] but his work was excellent as long as he did not have to 
solve mathematics problems on a test. (McDermott 2012, p. 86)

Diversity versus homogeneity

Humanity is diverse in multiple ways, including language, ways of 
life, epistemologies, knowledge systems, ways of conceptualising 
and interacting with the environment. Arguably, awareness of this 
multidiversity is being eroded by ﻿globalisation (﻿Westernisation), as 
warned against earlier in a study of the spatial epistemology of the 
﻿Navajo people:

Through a systematic superimposition of the world view and thought 
system of the West on traditional non-Western systems of thought and 
action all over the world, a tremendous uniformization is taking hold 
[…] The risks we take on a worldwide scale, and the impoverishment we 
witness is – evolutionarily speaking – quite frightening. (Pinxten, Van 
Dooren, & Harvey, 1983, pp. 174–175) 
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﻿Ethnomathematics points to mathematics being embedded in multiple 
families of activity systems. In simplistic terms, we can point to those 
situated within: formal (academic) mathematics; mathematically-
suffused cultural practices; mathematics of work; ‘everyday 
mathematics’; school mathematics (see Harouni, 2015). With the 
exception of the first and last (to a degree), each of these is a very fuzzy 
category.

The ﻿diversity within formal mathematics, illustrating that it is open-
ended, and that its history extends to the present and future, is illustrated, 
for example, in ﻿Hersh (2006). That there is enormous diversity within 
the next three families is obvious. By contrast, school mathematics, 
locally and globally, is increasingly characterised by homogeneity – 
converging towards a ﻿monoculture, to use the term of Mark Wolfmeyer 
(Chapter 16, his volume), with ﻿curricular frameworks and global ﻿testing 
(Chapter 15, this volume) as major instruments. It is also characterised 
by relational isolation from other families of mathematical activities. 
Indeed, we argue that, as exemplified in the discussions above about the 
﻿history of mathematics, about mathematics in work contexts, and about 
mathematical modelling﻿ of human situations, insofar as those relations 
are promoted, they are often misguided and harmful. 

Another aspect of diversity relates to terminological usage that may 
have consequences in framing images. It is understandable that a great 
deal of writing to date refers to ‘Asians’, ‘Europeans’ and so on, but surely 
it is time to move beyond such essentialising. Swapna, as an Indian, feels 
little in common with the Japanese, for example, while Brian is acutely 
aware that the Irish, as well as contributing to ﻿White supremacy, were 
also the victims of English oppression. In a similar vein, we regard it 
as dangerously superficial to refer to, say, ‘African culture’ given the 
diversity of African cultures. Pre-European peoples of North America, 
such as the ﻿Tlingits and the ﻿Navajo, are as diverse as the environments 
to which they are adapted. And it is surely possible to improve on the 
nonsensical term ‘Western mathematics’! 

Lived experiences of children, their families, and communities

Django Paris and H. Samy Alim (2017, p. 7) point out that ‘contemporary 
linguistic, pedagogical, and cultural research has pushed against the 
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tendency of researchers and practitioners to assume static relationships 
between﻿ race, ethnicity, language, and cultural ways of being’. This 
protest is echoed by ﻿Indigenous peoples who reject the all-too-common 
characterisation of them in terms of what they were, rather than what 
they are, and will be.

It is a pervasive criticism of school mathematics that it is impoverished 
in terms of connections with the lives of the students, their families, 
and their communities. The ﻿CREME project (see above) gave us some 
insights into the lives of the children we were working with. When one 
child was asked ‘Is there any mathematics at home?’ the response was 
only in terms of worksheets brought home from school, an image of 
‘what is mathematics’ that we tried hard to demolish. Our attempts to 
involve students’ families in the project were very much informed by 
Luis ﻿Moll’s conception ‘funds of knowledge’ (see above). 

The reality of one young person’s life was brought home to us when 
she asked how her mother could come to the launch of the students’ book 
since she was in prison part of what Skovsmose (e.g., 2022) refers to as 
her ‘foreground’. Moreover, as Skovsmose (2022) points out, children’s 
(often realistic) appraisals of their educational and life possibilities 
may be an important factor in their engagement or lack of engagement 
with the mathematics presented to them in school. To put it starkly: If 
a young Black person is concerned about staying out of prison or even 
staying alive, why should he or she be interested in solving quadratic 
equations?

In terms of what children are exposed to in mathematics classrooms, 
an issue that is discussed in Chapter 13 of this volume is that of 
inappropriate framing of ways in which aspects of the real world can 
be modelled mathematically. In particular, mathematical problems as 
presented may have little relevance to, and indeed be incompatible 
with, the experience of the students. There is no reason why children 
could not be introduced, from an early age, to aspects of mathematical 
modelling﻿, including how to discriminate between situations precisely 
modelled by simple arithmetical expressions, approximate cases, and 
purported correspondences that are absurd. 

If a test item, in a context that admits of no discussion, invokes a 
situation to be modelled, this can have serious implications when the 
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interpretation of the situation is culturally or class-relative (see the 
discussion of the ‘bus fare’ problem by ﻿Tate, 1995, in Chapter 13). 

The technological age

If you watch the film ‘Timbuktu’ (directed by Abderrahamane ﻿Sissako, 
2014), you will see a young girl living in a small tent in the desert in Mali 
climb a hill to get reception for her cell phone to talk with her brother. 
These devices are everywhere and consequent changes are happening 
so quickly we have dangerously minimal idea of what the repercussions 
are. In Chapter 20 (this volume), Melissa ﻿Andrade-Molina and Alex 
﻿Montecino present a striking review of the images of mathematics held, 
by young people in particular, as revealed by comments on social media.

As ﻿Artificial Intelligence surges, there are increasing concerns about 
its likely effects, many of which are already strikingly apparent. What 
could be more chilling than the American warmonger (and winner of the 
Nobel Peace Prize!) Henry ﻿Kissinger declaring the possibility of ‘a world 
relying on machines powered by data and ﻿algorithms and ungoverned 
by ethical or philosophical norms’ (cited by Ochigame, 2021, p. 167)? 
Surely this represents the ultimate dehumanisation by ﻿algorithm.

Information technological developments already have had major 
effects on how are lives (often without any control or access to the 
models) are ‘formatted’ by ‘mathematics in action’ (Skovsmose’s terms). 
Further, Ian ﻿Hacking (1999) points to the dual aspects of phenomena 
and the social constructs that accrete around them, including new terms 
(linguistic models), and mathematical models that are developed in 
relation to those, resulting in ‘looping effects’ whereby the constructs 
modify the phenomena, so that ‘In the end, mathematics comes to 
constitute basic features of our life-worlds’ (Skovsmose, 2022). As 
analysed in Chapter 13, school mathematics manifests no recognition of 
these aspects of contemporary life, let alone preparing students with the 
appropriate dispositions and ﻿agency to respond to t hem.

The above are minimal comments on the harmful effects on young 
people of technology and the implications for their mathematical 
education. A very different framework is what Ron ﻿Eglash and his 
team term ‘Ethnocomputing’. As the term suggests, it relates the 
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representational possibilities offered by ﻿computer technology and the 
cultural knowledge of students.2 

So what could be done in mathematics classrooms?

As described above in relation to the ﻿CREME project and vividly related 
by Schoenfeld (Chapter 14, this volume), constraints on ﻿teachers who 
might want to introduce something of the ethnomathematical spirit into 
their classes are extremely severe. We suggest that the following are 
minimal feasible efforts, closely related to the themes listed earlier. 

Being more honest about the history of academic mathematics

It is hard to imagine that any ﻿teacher would knowingly lie to the children 
in their class, yet it is easy to point to ways in which mathematics ﻿teachers 
fail to tell the truth, insofar as it is known. In terms of the specific case of 
the non-mathematician ﻿Pythagoras, as discussed above, many people, 
including mathematicians, are misinformed. At the systemic level, the 
same holds for the image of academic mathematics as essentially the 
achievement of Europeans only, as illustrated by the quotation above 
from ﻿Kline. 

A straightforward way in which a knowledge of the ﻿history 
of mathematics can enhance teaching is through the use of load-
bearing examples and the examination of misattributions of pieces of 
mathematics (the ‘Theorem of ﻿Pythagoras’ being a clear example). 
What is called ‘Pascal’s Triangle’ (or ‘Tartaglia’s Triangle’ in Italy) can be 
shown in its Chinese version dating from the thirteenth century (see the 
excellent resource that is Swetz, 1994, p. 328). A short test on ﻿history of 
mathematics might ask: ‘Which of the following was a mathematician: 
﻿Pythagoras, Omar ﻿Khayyam, Lewis ﻿Carroll, Florence ﻿Nightingale’ to 
which a reasonable answer is ‘All of them, except ﻿Pythagoras’.

Another pointed exercise, for example in the contexts of statements 
about the importance of symbolic ﻿algebra, would be to point to 

2� Rather than attempt to summarise this very comprehensively developed theory, 
we refer the interested reader to https://csdt.org/publications for applications 
to education and https://generativejustice.org/publications for applications to 
economy and development.

https://csdt.org/publications
https://generativejustice.org/publications
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achievements in many societies in the past which pre-dated abstract 
﻿algebra and ﻿calculus. 

Valorising students, allowing students to valorise themselves

In the ﻿CREME project (see above), a major emphasis was on the 
children’s images of themselves, which, from our perspective, are liable 
to be greatly damaged in specific ways by school mathematics, as when 
performance on tests is used as a proxy indication of level of intelligence. 
The foundations for the current extreme situation in the United States 
were laid with the ﻿No Child Left Behind Act of 2002. In the words of 
﻿McDermott and Kathleen ﻿Hall (2007, p. 10) that presented ‘a vision 
for achieving progress in education through increased control and 
standardisation, a form of rational ﻿bureaucratic authority Max ﻿Weber 
[…] described as central to modernity’ (see Chapter 5, this volume). 
Absolutely central was the use of ﻿testing, with results to be reported 
by ethnic categories, supposedly in the service of identifying ‘failing 
schools’ that could then be helped. Instead, as McDermott and Hall (p. 
11) put it: ‘Quantitative tests of aptitude and achievement have given 
U.S. education a way to sort children by﻿ race and social class, just like the 
old days, but without the words “race” and “class” front and center’. All 
is encapsulated in the pernicious phrase ‘﻿achievement gaps’, a gloss on 
‘differences in test scores’. These effects are magnified in mathematics, 
given the political importance attached to the subject and the ease with 
which tests can be quantified (either you can compute 3/7 + 5/9 or you 
can’t).

There are many other factors, including, as already discussed, the 
ways in which images of mathematics lend themselves to the projection 
of intellectual ﻿White supremacy. These reasons motivated our attempts 
in the ﻿CREME project (see above) to valorise the abilities and knowledge 
of the students. At the same time, we recognise that the children are 
forming understandings of the obstacles facing them in contemporary 
socio-political circumstances that obstruct their future possibilities in 
life. School mathematics education plays a major role in this regard. 
Accordingly, we argue that access and ﻿equity to the edifice are 
insufficient; it is essential to go beyond, to develop ﻿agency, in particular 
towards critiquing the nature of the edifice.
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Relating school mathematics to the lives of students, their 
families and communities

Parra (Chapter 10, this volume) powerfully argues for research on 
﻿Ethnomathematics to be reconceptualised as relational. As a parallel, a 
great deal of what we are attempting to articulate in this chapter can 
be expressed as the aim of reconceptualising school mathematics as 
relational, above all in relation to the children’s funds of knowledge.

Critical mathematics educators argue that one aspect of making school 
mathematics relational is to relate it to the socio-political circumstances 
of the students, their families and communities. A clear instantiation 
of this perspective lies in the work of Rico ﻿Gutstein (e.g., 2006, 2012), 
influenced by Paulo ﻿Freire. He describes his work with the math for 
﻿social justice class of seniors in 2008–2009 in which they collectively 
decided on five topics (generative themes, in Freirean terms): elections, 
populations displacement within their city (Chicago), HIV/AIDS, 
criminalisation, and ﻿sexism. All of these topics lend themselves naturally 
to investigation using mathematics. Gutstein (personal communication, 
2010) resists characterising this work as ethnomathematical, yet it is 
surely related to the socio-political circumstances of the students. The 
choice of generative themes related to their lives makes such pedagogy 
relational, as does another feature of his work, namely having students 
make presentations to the community presenting the findings of their 
analyses. He summarises his work as follows:

[…] three types of interrelated, yet distinct, knowledges relate to ‘reading 
and writing the world with mathematics’ [namely] community, classical, 
and critical knowledges, which all have mathematical components 
[…] community knowledge refers to […] knowledge of one’s own life 
circumstances and perspectives on reality. Classical knowledg refers to  
‘traditional’ academic knowledge and critical knowledge means critiques 
and analyses of relations of power and issues of (in)justice. (Gutstein, 
2012, p. 27)

In Chapter 13 of this volume, the importance of the early years in the 
learning of mathematics is discussed. As discussed there, children 
learn at an early age – through absurdly unrealistic ﻿word problems, 
in particular – that mathematics is not expected to cohere with their 
lived experience, their funds of knowledge, or even to make sense. The 
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emphasis on early imprinting of images of mathematics also applies to 
issues of this chapter, including the image of mathematics as the sole 
creation of White (male) people and the associated beliefs about who 
can and cannot do mathematics.

Educate the privileged and future powerful

It is natural enough that most of the writing in the spirit of this chapter 
has focused on improving the education of marginalised groups. 
However, speaking at the 2008 ﻿ICME conference in Monterrey, Mexico, 
Ubiratan ﻿D’Ambrosio suggested that more attention be paid to the 
children enjoying privilege and likely to become powerful. This echoes 
themes in ﻿postcolonial writing such as Albert ﻿Memmi (1957/1965) 
about the deadly symbiosis between colonisers and colonised. Apart 
from the strategic reasons for taking this suggestion seriously in terms of 
attempting to speak truth to power, we may also consider the intellectual 
and moral harm done to privileged children (compare the discussion in 
Chapter 18 (this volume) on ‘﻿WhiteCrit’). This is a line of argument that 
we hope to develop more systematically in the future.

For similar reasons, the same comment may be made about those 
who major in mathematics at university. There are many reasons for 
incorporating courses on the ﻿history of mathematics for such students, 
but such courses tend to be inadequate from our point of view, rarely 
addressing the ﻿Eurocentric bias. How many mathematicians know of the 
cases discussed by Rodrigo ﻿Ochigame (2021) such as the development 
of paraconsistent logic in Brazil in the 1950s or the idea of a non-binary 
﻿Turing machine based on the Jaina sevenfold system of predication, 
conceived by scientists in India in the aftermath of its independence?

Final thoughts

What give mathematics and mathematics education the special character 
that makes it an ideological battleground? It is not controversial to talk 
about language as a general human faculty and particular languages, 
about architectures, in the plural, related to cultural and environmental 
﻿diversity, about different forms of music. Perhaps the answer lies in the 
importance of mathematics as a powerful means for shaping people as 
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desired by a state? And regardless of the nature of the regime, a common 
aspect of this is conformity, the following of rules. 

George ﻿Lakoff (1996) proposed a way of thinking about the 
differences between conservatives and liberals (his words) in terms 
of two core metaphors, labelled ‘Strict Father’ and ‘Nurturant Parent’, 
and argues how these help to explain how positions in relation to so 
many issues that on the surface appear unrelated are, in fact, highly 
correlated. Foreshadowing the extremes of the contemporary situation 
in and beyond the United States, he wrote that:

Conservatives have, at least since the 60s, seen their system of values 
under attack—from ﻿feminism, the gay rights movement, the ecological 
movement, the sexual revolution, multiculturalism, and many more 
manifestations of Nurturant Parent morality. (p. 229)

At the most general level, perhaps it is an unavoidable consequence 
of the complexity of modern societies that there is a conflict between 
education and governance (Skovsmose, 2022). Munir ﻿Fasheh asked:

Is it possible to teach mathematics effectively – that is, to enhance a 
critical attitude of one’s self, society, and culture; to be an instrument in 
changing attitudes, convictions, and perspectives; to improve the ability 
of students to interpret the events of their immediate community, and 
to serve its needs better –without being attacked by existing authorities 
whether they are educational, scientific, political, ﻿religious, or any other 
form? (Fasheh, 1982, p. 2)
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18. Mathematics education as a 
racialized field

 Christopher C. Jett and Julius Davis

Racism is endemic in society, in education, and in mathematics education. Thus, 
as a discipline, mathematics education functions as a racialized field. In this 
chapter, we explore ﻿critical race theory (﻿CRT) as a theoretical frame to address this 
problem. In so doing, we offer offshoots of ﻿CRT – ﻿BlackCrit, ﻿LatCrit, ﻿TribalCrit, 
﻿AsianCrit, and ﻿critical Whiteness theory – for mathematics educators to use in 
their scholarship. We also issue a call to mathematics educators regarding the 
urgent need to advance﻿ race-related work. We conclude the chapter by posing 
thought-provoking questions for consideration and action.

Introduction

﻿Racism pervades society. It is endemic to the political project called 
education; it takes specific forms within mathematics education in 
particular. This phenomenon is readily apparent in the United States of 
America, referred to as the United States (US), given the racial contention 
in the broader society and mathematics education.1 Given this, it must 
be stated from the outset that this chapter is written primarily in the 
context of the US, considering our experiences as mathematics education 
researchers within this country. Of course, there is a great deal of wider 
significance that can be extracted from US mathematics education 

1� Those familiar with the United States context will be aware that mathematics 
education has been pulled back into the ‘﻿culture wars’, to a considerable extent 
because of the efforts of activist researchers and scholars. We do not attempt to 
address that complex situation within this chapter; the short answer is that it is a 
manifestation of ﻿White supremacy.

©2024 Christopher C. Jett & Julius Davis, CC BY-NC 4.0  https://doi.org/10.11647/OBP.0407.18
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regarding racialization. Consequently, examining the racialized nature 
of mathematics education is important for mitigating racialized barriers 
that hinder minoritized students’ mathematics achievement, persistence, 
and success.   

In Western-dominated countries, and arguably beyond, mathematics 
education scholarship has propagated and primarily centered ﻿Eurocentric 
perspectives, experiences, knowledge systems, and paradigms (Davis, 
2018, 2021; Powell & Frankenstein, 1997; also see Greer, 2021, for a short 
guide to the immensely important historical/anthropological work of 
Jens Høyrup). Resultantly, a high proportion of the discipline-specific 
handbooks, journals, and other mainstream publications have been 
authored and edited by White men. In the United States, White men 
have predominantly served as the leaders of mathematics educational 
organizations. By way of illustration, Julius Davis (2021) argued:  

The ﻿Mathematical Association of America (MAA) and National Council 
of Teachers of Mathematics (﻿NCTM) were founded in 1915 and 1920, 
respectively, as two predominately White organizations that have and 
continue to shape the field of mathematics education. White men were 
the primary founders and leaders of these organizations and were 
derived historically from White higher education institutions […] 
Both organizations have played a significant role in shaping school 
mathematics, mathematics content, pedagogy, learning, assessment﻿, 
research, and the future direction of mathematics education. (p. 789)

Mathematics education has largely been constructed through the White 
male gaze. As a result, racially minoritized groups’ perspectives and 
interests have been largely excluded vis-à-vis disciplinary knowledge 
systems, policies, and practices. Furthermore, institutional and 
structural ﻿racism persist and, in turn, materialize in the field. It stands to 
reason, then, that mathematics education functions as a racialized field. 
Given this reality, mathematics educators must employ﻿ race-conscious 
theoretical frames in their work. That is the goal of the current chapter.     

We begin with our positionality to provide some context about who 
we are as two Black men who conduct mathematics education research 
through a critical2 lens (also see Martin & Gholson, 2012, for a compelling 
discussion on being critical Black scholars in mathematics education). 

2� For further related work on ﻿critical mathematics education, see, e.g., Frankenstein, 
1983; Greer & Skovsmose, 2012; Skovsmose, 2023.
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After that, we delve into ﻿critical race theory (﻿CRT) and position it as 
a theoretical frame for consideration in the field. Then, we challenge 
mathematics education researchers to shift the paradigm, so to speak, 
and infuse critical theories of﻿ race in their work. Afterwards, we share 
discipline-specific examples and call for mathematics educators to use 
these theories. We conclude the chapter by briefly summarizing these 
main ideas and posing some critical questions to advance race-related 
work in mathematics education. 

Our positionality

We are Black men who grew up and completed our mathematics education 
in the United States, which has a troubled history of ﻿racism regarding 
Black life that persists to this day. As examples, the ongoing ﻿Black Lives 
Matter movement and the murders of George ﻿Floyd, Breonna ﻿Taylor, 
and several other Black people at the hands of police have intensified 
international awareness of racial injustice in an unprecedented way. 
Because of our racialized identities, we have designed research agendas 
that interrogate racial issues in mathematics education with respect to 
Black (male) students, ﻿teachers, and communities (Davis, 2014, 2016, 
2021, 2022; Jett, 2012, 2019a, 2019b, 2022; Jett et al., 2022; Larnell et 
al., 2016). As emerging researchers and leaders of ﻿CRT scholarship in 
mathematics education, our professorial experiences have catapulted 
our desires to contribute race-related work to the field.

The first author has been a race-conscious scholar for as long as he 
can remember. Stated differently, his critical race journey dates back 
to his childhood. He is from the predominately Black community of 
Memphis, Tennessee, which exposed him to racial issues, challenges, 
and problems. For example, the city of Memphis is where the honorable 
Dr. Martin Luther ﻿King, Jr. – civil rights activist, ﻿social justice warrior, 
and racial ﻿equity advocate – was assassinated in 1968. Although this 
occurred before the first author was born, he learned about the race 
riots that ensued and has witnessed the racial tensions that still occur 
within the city. As such, his previous experiences have exposed him 
to the institutionalized ﻿racism endemic in society and propelled him 
to produce antiracist scholarship, especially work highlighting Black 
people’s strengths. 
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The second author enters the field as a﻿ race-first scholar and uses 
﻿CRT to interrogate race and ﻿racism in mathematics education. He views 
﻿CRT as the theoretical lens to understand and explain the problems 
plaguing the global Black community, which include issues within 
and outside of mathematics education. In prior work, he used ﻿CRT to 
study how race and ﻿racism impacted Black people in his community of 
West Baltimore, a city in Maryland, and better understand how broader 
social constructions impacted the mathematics education Black people 
received there. As his knowledge of ﻿CRT scholarship has matured, 
he has begun to use it to critique mathematics education holistically 
and challenge false notions that White men have been the primary 
architects of mathematics (Davis, 2018, 2021). Jointly, the authors use 
﻿CRT to counter ﻿White supremacist logics that attempt to devalue the 
mathematics contributions and accomplishments of Black scholars. 

Critical race theory in mathematics education

﻿CRT is the leading theoretical lens employed to examine the racialized 
experiences of minoritized people in law, education, and mathematics 
education. As a framework, ﻿CRT emanates from critical legal studies 
(﻿CLS) because of the dissatisfaction with how legal scholars fail to 
address race and ﻿racism in the law (Crenshaw et al., 1995; Tate, 1997). 
From a ﻿CRT perspective, social constructions of race are essential to 
understanding how ﻿racism functions in society, its institutions, and 
the law (Delgado & Stefancic, 2001). ﻿CRT operates from the premise 
that ﻿racism is a deeply rooted, permanent, and ever-changing feature 
of American society and its institutions to maintain ﻿White supremacy 
and power. ﻿CRT recognizes mainstream legal claims of objectivity, 
﻿neutrality, colorblindness, and meritocracy as disguises for the self-
interest of Whites in power. Furthermore, ﻿CRT validates the experiential 
knowledge of minoritized people and recognizes the importance 
of crossing disciplinary boundaries to understand the racialized 
experiences of minoritized people. In short, critical race theorists are 
committed to achieving racial justice. 

In the 1990s, ﻿CRT began to take shape in education. Even though 
William ﻿Tate (1993) used ﻿CRT in mathematics education prior to 1995, 
the formal introduction of ﻿CRT in the broader education research 
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community occurred in 1995 through Gloria ﻿Ladson-Billings and 
﻿Tate’s (1995) path-breaking article ‘Toward a Critical Race Theory of 
Education’, published in Teachers College Record. In it, they ushered this 
theoretical perspective from ﻿CLS into (mathematics) education to center﻿ 
race and challenge mainstream multiculturalism, which largely pointed 
to equitable access to mathematics education without questioning the 
nature of what is being accessed. Danny ﻿Martin (2019) commented 
that ‘the forms of inclusion offered up in ﻿equity-oriented discourses 
and reforms have typically involved two trajectories: (1) inclusion 
accompanied by marginalization; and (2) assimilation into the existing 
cultures of mathematics education’ (p. 460). As a result, ﻿CRT radically 
shifted the multiculturalist and colorblind paradigm in education to 
accentuate race, ﻿racism, and other forms of oppression. 

Daniel ﻿Solórzano and Tara ﻿Yosso (2002) assert that there are five 
defining elements of ﻿CRT in education; namely, that it: (1) asserts 
that race and ﻿racism are endemic and permanent fixtures of American 
society and structures; (2) challenges dominant ideology; (3) ascribes a 
commitment to ﻿social justice; (4) centralizes the experiential knowledge 
of minoritized people; and (5) uses an interdisciplinary approach to 
better understand ﻿racism, ﻿sexism, and classism.

As mentioned earlier, the genealogy of ﻿CRT in mathematics 
education (﻿CRT(ME)) can be traced back to the scholarship of ﻿Tate. 
﻿Tate (1993) published the first ﻿CRT(ME) article entitled ‘Advocacy 
Versus Economics: A Critical Race Analysis of the Proposed National 
Assessment in Mathematics’. That same year, ﻿Tate and colleagues 
published an article merging law, ﻿CRT, education, and mathematics 
education (﻿Tate et al., 1993). Because of this foundational work, scholars 
have credited ﻿Tate as the chief architect of ﻿CRT in (mathematics) 
education (Davis, 2014; Davis & Jett, 2019; Lynn & Adams, 2002). ﻿Tate, 
however, credits Derrick ﻿Bell, recognized as the father of ﻿CRT, with 
being the first scholar to use ﻿CRT to examine educational issues; see 
Bell’s (1975) article ‘Serving Two Masters: Integration Ideals and Client 
Interests in School Desegregation Litigation’ in The Yale Law Journal for 
an education-related critical race analysis. Be that as it may, ﻿Tate is a 
trailblazer regarding the production of scholarship focused on ﻿CRT in 
education that interweaves mathematics education specifically. 
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﻿Martin (2009), another prominent﻿ race scholar in mathematics 
education, argues that ﻿CRT reckons with the historically and socially 
constructed nature of race and ﻿racism. He challenges the racial 
hierarchies of mathematical ability, participation, and power. Moreover, 
he asserts that:

Drawing on analyses of the ways that race and ﻿racism are conceptualized 
and studied outside of mathematics education will help illustrate the need 
for similar kinds of analyses within mathematics education. I argue that 
rather than exploiting the usefulness of sociological and critical theory 
frameworks, the vast majority of mainstream mathematics education 
research and policy purporting to explain so-called racial ﻿achievement 
gaps between African American, Latino, and Native Americans on one 
hand, and White and Asian students on the other, continues to rely on 
inadequate and impoverished approaches to race, ﻿racism, and racialized 
inequality. (p. 297)

In this article, Martin admonishes the mathematics education 
community for its poor treatment and analysis of race in research and 
policy. A more comprehensive race-based analysis, he argues, will 
further illuminate the racial issues present in mathematics education 
research, elucidate how mathematics education policy operates and is 
implicated in sustaining racial hierarchies, and lead to more nuanced 
race-based analyses among mathematics educators.   

Building on this firm foundation of race scholarship, many Black 
mathematics education researchers have used ﻿CRT(ME). To illustrate, 
we co-edited Critical Race Theory in Mathematics Education (Davis & 
Jett, 2019). This edited volume includes chapters written by scholars 
who extrapolate the tenets of ﻿CRT to advance race-conscious analyses 
in our field. More precisely, scholars merged ﻿CRT and mathematics 
education knowledge to establish stronger connections between the 
two. We acknowledge the racial atrocities thrust upon Black people 
and center Black students in mathematics contexts in our work. We 
also acknowledge that other minoritized groups have experienced 
mathematics education as a racialized field. Therefore, we call for a 
paradigm shift – one that explicitly and unapologetically attends to 
issues of race, ﻿racism, and racialization – to the study of these groups to 
contribute race scholarship to the field. 
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Shifting the paradigm: Infusing critical theories of race 
and ethnicity into mathematics education

﻿CRT has a growing influence on education. The ﻿CRT literature 
continues to expand, as ﻿CRT-related publications have focused on 
school-based education, tertiary education, and other (emerging) 
academic disciplines. Over the last two decades, ﻿CRT has incorporated 
the racialized and ethnicized experiences of minoritized people. Given 
this emphasis, offshoots of ﻿CRT, including ﻿BlackCrit, ﻿LatCrit, ﻿TribalCrit, 
﻿AsianCrit, now address racial oppression beyond the Black/White 
binary.3 Further, White scholars have used critical Whiteness theory 
to look inward and behind the mirror to expose White privilege and 
challenge ﻿racism (Delgado & Stefancic, 1997). 

Here, we expound on the four aforementioned theoretical 
perspectives that were birthed out of ﻿CRT to more systematically 
examine﻿ race, ﻿racism, ethnicity, classism, and other forms of oppression 
applied to diverse racial and ethnic groups in mathematics education 
as well as the complementary perspective of Whiteness studies. These 
frameworks can be useful for mathematics educators who explicate race 
and ethnic-conscious analyses within the field. We acknowledge that, 
in this overview, we are not attempting to address the complexities of 
﻿diversity within each of these groupings. Contemporary immigrants 
from Africa differ in significant ways from the descendants of enslaved 
Africans; ﻿Indigenous people are as diverse as the environments in which 
they are ecologically embedded, and so on. These issues have added 
importance because of the tendency of supremacists to essentialize, and, 
over time, they will evolve as an essential extension of our analysis.

BlackCrit

Since ﻿CRT’s inception in education, scholars have argued that this 
theoretical framework has privileged the Black experience, Blackness, 
and in some regards, African Americans (Dumas & ross, 2016; Phillips, 
1998). Michael Dumas and kihana ross argued that ﻿CRT in education 

3� FaithCrit, QuantCrit, and QueerCrit represent other emerging offshoots of ﻿CRT. 
For related reading, see, e.g., Garcia et al., 2018; Malone & Lachaud, 2022; Valdes, 
1998.    
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moved away from focusing on Blackness because of critiques from 
non-Black scholars. However, they emphasized that there is a need 
to incisively analyze the specificity of Blackness and antiBlackness in 
education and agreed that there is, indeed, an implicit focus on Blackness 
in ﻿CRT in education.  

﻿BlackCrit analyses the specificity of Blackness and antiBlackness 
by explaining how Black people have been marginalized, disdained, 
disregarded, and excluded in educational spaces (Dumas & ross, 2016). 
Distinguishing ﻿BlackCrit from ﻿CRT, ﻿Dumas and ﻿ross proffer that ﻿CRT 
is not intended to address how antiBlackness informs and influences 
﻿racist ideology and institutional practice. Rather, ﻿BlackCrit is necessary 
to evaluate ‘how blackness matters in our understanding of key tenets 
related to, for example, the permanence of ﻿racism and whiteness as 
property’ (p. 417). 

Dumas and ross (2016) offer three foundational ideas of ﻿BlackCrit 
in education: (1) ‘AntiBlackness is endemic to, and is central to, how 
all of us make sense of the social, economic, historical, and cultural 
dimensions of human life’ (p. 429); (2) ‘Blackness exists in tension with 
the ﻿neoliberal-multicultural imagination’ (p. 430); and (3) ‘﻿BlackCrit 
should create space for Black liberatory fantasy, and resist a revisionist 
history that supports dangerous majoritarian stories that disappear 
Whites from a history of racial dominance’ (p. 431). 

Mathematics educators have begun to use ﻿BlackCrit to advance 
understandings of Black children’s and adults’ experiences (Martin 
et al., 2019; Matthews et al., 2021). Martin and colleagues used 
﻿BlackCrit to examine systemic violence regarding the experiences 
of Black mathematics learners. They also used ﻿BlackCrit to offer a 
Black Liberatory Mathematics Education, which advances a radical 
reimagination of mathematics education for Black students. ﻿Martin and 
colleagues recognized that liberatory mathematics education cannot 
exist within the current educational system rooted in ﻿racism (﻿White 
supremacy) and antiBlackness. In other work, Lou ﻿Matthews and 
colleagues used ﻿BlackCrit in a reflective essay to explore possibilities 
for the Black community to honor families’ ﻿agency, expand digital 
﻿equity, and prioritize approaches that support liberatory mathematics 
education during the ﻿COVID-19 global pandemic.
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LatCrit

﻿LatCrit examines the positioning of Latinas/os4 writ large and 
encompasses unique issues directly related to the Latina/o community, 
including immigration, language, and phenotype (Bernal, 2002). 
﻿LatCrit also values the strengths of Latina/os to highlight community 
wealth, challenges commonly held beliefs about the racial hierarchy of 
ability, and problematizes the notion of a﻿ race-﻿neutral society. Similar 
to ﻿CRT, ﻿LatCrit is derived from the following five foundational tenets: 
(1) the centrality of race and ﻿racism intersecting with other forms of 
oppression; (2) a challenge to dominant discourse and ideology; (3) a 
profound commitment to ﻿social justice; (4) the validation of experiential 
knowledge; and (5) the incorporation of a transdisciplinary perspective 
(Bernal, 2002; Fernández, 2002; Solórzano & Yosso, 2001). Drawing 
from these tenets, scholars have used ﻿LatCrit to highlight how their 
ethnicity, language, immigrant status, and culture have been rejected in 
classrooms. 

While there is a rich literature on Latinos/as and mathematics 
education (e.g., Tellez, Moschkovitch, & Civil, 2011), there has been 
limited use of the term ‘﻿LatCrit’ in mathematics education. Rochelle 
﻿Gutiérrez (2013) offered it as a theoretical perspective to consider using 
in the socio-political turn. She recognized that scholarship on ﻿LatCrit 
was scant, but the framework provided evidence about the ability to 
challenge and dismantle social constructions of race, ﻿racism, Whiteness, 
﻿sexism, classism, and other forms of oppression (e.g., language, 
immigrant status). ﻿Gutiérrez also pointed out that social activism 
and testimonios were important features for those using ﻿LatCrit in 
mathematics education. 

In her study, Maria ﻿Zavala (2014) used ﻿LatCrit to examine Latina/o 
students’ narratives of learning mathematics in an urban multilingual 
high school. Her findings revealed that Latina/o students had to 
grapple with racial stereotypes and linguistic challenges given that 
American English served as the official language of mathematics 

4� Like other critical scholars, we problematize the ﻿gender binary present in 
Latina/o. We use this language here to honor the way it was presented by the cited 
authors even though we recognize that language continues to shift regarding the 
Latinx community.  
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instruction. These complex factors significantly impact Latina/o 
students’ mathematics identities and ultimately influence how they see 
themselves as mathematics learners. In summary, ﻿LatCrit has allowed 
mathematics education researchers to better understand how Latina/o 
students’ mathematics identities were co-constructed in relation to their 
ethnic, linguistic, and gendered experiences. 

TribalCrit

﻿TribalCrit addresses the racialized challenges thrust upon ﻿Indigenous 
people (Brayboy, 2005). ﻿CRT purports that ﻿racism is endemic, while 
﻿TribalCrit purports that colonization is endemic. Regarding theory, 
many Indigenous scholars view it as a roadmap for their community’s 
continuous survival. Researchers have used ﻿TribalCrit to examine the 
misappropriation of Native mascots, the misrepresentation of cultural 
symbols, and fraudulent ethnic policies (Castango & Lee, 2007; Marshall, 
2018). The interest convergence tenet, in particular, has often been used 
to demonstrate how these matters have served the interests of White 
people, institutions, and systems. 

Education researchers have used ﻿TribalCrit in mathematics 
education and other science, technology, engineering, and mathematics 
(﻿STEM) fields (Kokka, 2018; Marshall, 2018; also see Deloria, 1997; 
Stavrou & Miller, 2017). Samantha Marshall used ﻿TribalCrit to produce 
an Indigenous sovereign Tribal nation in mathematics education. In 
her qualitative study, she provided insights into the value Indigenous 
leaders hold for the education of their youths, including cultural 
congruity, cultural and linguistic sustainment, and sovereignty. Her 
article illuminated the complexities of ﻿Indigenous education and Tribal 
nation-building in and through the lens of mathematics education. In 
a different study, mathematics educator, Kari ﻿Kokka, used ﻿TribalCrit to 
examine the experiences of four ﻿STEM ﻿teacher activists who created a 
﻿social justice ﻿STEM organization. She found that firsthand experiences 
with being oppressed led them to become ﻿STEM ﻿teacher activists. She 
also found that being ﻿STEM activists became a vehicle of healing for 
them as they addressed the inequities they experienced or witnessed in 
their communities. 
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AsianCrit

As another adaptation of ﻿CRT, ﻿AsianCrit grounds the experiences, 
perspectives, and voices of Asian Americans in light of the ﻿racism thrust 
upon them (Iftikar & Museus, 2018; Museus & Iftikar, 2014). Asian 
American groups often include: ‘Bhutanese, Burmese, Cambodian, 
Chinese, Hmong, Indian, Indonesian, Japanese, Korean, Lao, Pakistani, 
Taiwanese, Thai, and Vietnamese Americans, in addition to many 
other ethnic groups’ (Iftikar & Museus, 2018, p. 4). ﻿White supremacist 
constructions of these groups have attempted to lump them into a 
singular category, but they have distinct languages, norms, values, and 
traditions. ﻿Martin (2009) notes that social constructions of ‘Asian’ in an 
international context frame them as negative and in direct competition 
with White students and the global White power structure to invoke 
strong US nationalism. 

﻿AsianCrit proposes seven tenets to better understand and examine the 
racial and ethnic realities of Asian Americans (Iftikar & Museus, 2018). 
These tenets elucidate the ﻿White supremacist sustenance that attempts 
to corral Asian Americans into a single group and simultaneously 
thwart their advancement. They include: (1) ‘Asianization is grounded 
in the reality that people within the US only become “Asian” because 
of ﻿White supremacy and the racialization processes that it engenders. 
Specifically, ﻿White supremacy and pervasive nativistic ﻿racism in the 
US result in Asian Americans being racialized as perpetual foreigners, 
threatening yellow perils, model and deviant minorities, and sexually 
deviant emasculated men and hypersexualized women’ (p. 8); (2) 
transnational contexts highlights the global relationships between Asian 
Americans and ﻿White supremacist logics; (3) (re)constructive history 
draws upon the assets, contributions, and voices of Asian Americans 
to produce an accurate depiction of the group’s history; (4) strategic 
(anti)essentialism purports that Asian Americans join forces to gain 
power and advocate against ﻿White supremacist structures and policies; 
(5) intersectionality explores how other constructs such as ﻿gender, class, 
and sexual orientation fuel systematic oppression for this group; (6) the 
story, theory, and praxis tenet espouses that racially minoritized groups’ 
experiential knowledge challenges dominant, deficit narratives about 
Asian Americans; centers their real experiences; and offers a more 
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holistic orientation to their perspectives; and (7) the commitment to 
﻿social justice tenet advances that ﻿AsianCrit seeks ‘to eradicate ﻿racism, 
﻿sexism, heterosexism, ﻿capitalist exploitation, and other systemic forms 
of dehumanization and domination’ (p. 9).

Scholarship using AsianCrit in mathematics education5 is in short 
supply. ﻿Kokka and Theodore ﻿Chao (2020), two Asian American 
mathematics educators, used ﻿AsianCrit to study Asian American 
﻿teachers’ experiences with ﻿racism and conceptualize their conjoining 
racial, ethnic, and mathematics ﻿teacher identities in the wake of the 
model minority myth that pervasively suggests that Asians are good 
at math (Shah, 2019). Kokka and Chao’s findings indicate that the four 
Asian American mathematics ﻿teachers experienced internalized ﻿racism 
and engaged in stereotype management by distancing themselves from 
other Asian Americans, avoiding discussions about their own difficulties 
in mathematics, and intentionally reaching out to develop relationships 
with Black and Latinx students. 

WhiteCrit?

The four cases just described suggest a fifth, namely ‘﻿WhiteCrit’, yet 
that word has scarcely appeared in the literature. There are, however, 
critical studies of Whiteness in mathematics education, influenced by 
﻿CRT (Battey, 2013; Foste & Irwin, 2020; Nishi, 2021). These studies name 
and expose the inner workings of White privilege and examine﻿ race, 
﻿racism, and racial ﻿identity within mathematics education, revealing 
how Whiteness functions to maintain racial dominance. Power 
and oppression are articulated, redefined, and reasserted through 
individual and institutional practices that privilege Whiteness (Corces-
Zimmerman & Guida, 2019). The power of Whiteness intersects with 
other systems of domination, including but not limited to patriarchy, 
﻿capitalism, ableism, and genderism. 

Jeremy ﻿Bohonos (2019) contends that ﻿critical Whiteness theory does 
not have a clear set of tenets that govern it. However, other scholars have 
identified the following three core elements that guide it: (1) Thinking 
Whitely explains the many ways that Whiteness and ﻿White supremacy 

5� In related work, see Cvencek et al. (2015) for a poignant discussion regarding the 
development of math–race stereotypes. 
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influence White people’s conscious and unconscious thoughts to maintain 
racial superiority and dominance (Corces-Zimmerman & Guida, 2019). 
(2) Behaving Whitely includes well-intentioned White people who 
maintain White domination consciously and unconsciously through 
actions, White complicity, and White emotionality (Corces-Zimmerman 
& Guida, 2019; Foste & Irwin, 2020). White complicity includes the 
unconscious negative beliefs that White people hold about non-White 
people, which affect their practices and habits centered on Whiteness, 
and the consequences of those practices and habits. White emotionality 
underscores the racialized ways that White people experience and act on 
emotions such as shame, guilt, denial, anger, rage, sadness, discomfort, 
and defensiveness as a means to protect White fragility (Anderson, 
2016; Corces-Zimmerman & Guida, 2019; DiAngelo, 2018). (3) Speaking 
Whitely refers to the discursive and rhetorical strategies, the elusive and 
deceptive language, White talk, colorblindness, and color-evasiveness 
that White people use to reinforce the status and privilege of Whiteness 
(Annamma et al., 2016; Bonilla-Silva, 2006; Corces-Zimmerman & 
Guida, 2019; McIntyre, 1997).  

﻿Martin (2009, 2019) notes how there has not been a systematic 
study of Whiteness and its relations to mathematics education (i.e., 
mathematics participation, opportunity to learn, and achievement) 
even from mathematics education researchers who claim to study﻿ race 
in their analysis of mathematics achievement. Whiteness is a salient 
aspect of the mathematics education enterprise; most professors, 
researchers, ﻿teachers, and students are White and benefit from the 
individual, institutional, and structural arrangement of Whiteness 
(Battey & Leyva, 2016; Davis, 2021; Stinson, 2017). Martin (2009) also 
notes that Whiteness is a part of the larger system of ﻿racism that operates 
to privilege White mathematical knowledge construction. White male 
mathematics educators and researchers represent a highly racialized 
and gendered space that is privileged in the field and has influenced 
social and policy perspectives about mathematics (Davis, 2021; Martin, 
2008, 2009). 

﻿BlackCrit, ﻿LatCrit, ﻿TribalCrit, and ﻿AsianCrit are, in general, about 
how these groups of people are harmed by White domination. What 
might it mean to postulate ﻿WhiteCrit as analysis of the harm done to 
White people, specifically through mathematics education? At first 
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sight, that might seem a strange suggestion given White privilege; 
however, James ﻿Baldwin did raise the question, pointing out that, for 
White racists, ‘their moral lives have been destroyed by the plague 
called color’ (Buccola, 2019, p. 383).6 WhiteCrit in this sense could add 
another dimension.

Discipline-specific examples

Mathematics education researchers have emphasized the racialized 
nature of mathematics policies, textbooks, and ﻿word problems (Martin, 
2009; Martin et al., 2019; ﻿Tate, 1995). Numerous other examples 
demonstrate the racialized nature of the field and show how ﻿racist 
practices manifest in systematic and institutional ways. One striking 
example is tracking, which denies minoritized students access to ‘high-
quality’ mathematics instruction. There are several issues in relation 
to ﻿testing, perhaps starting with the characterization of differences in 
test scores as ‘﻿achievement gaps’ (Davis & Martin, 2018; Miller-Jones 
& Greer, 2009). And the traceable connection between the ﻿Eurocentric 
myth of the development of academic mathematics and intellectual 
﻿White supremacy is discussed at various points in this volume.

In this section, we provide two discipline-specific examples that 
brought racial issues to the fore and simultaneously gained national 
attention in the United States. The first example occurred in the state of 
Georgia; ironically, the first author currently works at one of the state 
institutions that prepares mathematics ﻿teachers for this particular school 
district (although it was not revealed where the ﻿teacher in this scenario 
received their teaching credential). Notwithstanding, a third-grade 
﻿teacher shared the following exercise with students: ‘Each tree had 56 
oranges. If 8 slaves pick them equally, then how much would each slave 
pick?’ (AFRO Staff, 2012). Another exercise read: ‘If Frederick got two 
beatings per day, how many beatings did he get in 1 week?’ Interestingly, 
another ﻿teacher made copies of the assignment. As a result, these ﻿word 

6� The quotation is from a debate with the avowed ﻿White supremacist, William 
F. Buckley, Jr., at the Cambridge Union in 1965, described in detail, and with 
interwoven biographies of the protagonists giving historical background, in 
Buccola’s The Fire Is Upon Us.
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problems, embedded with ﻿racist logics, were spread to a racially diverse 
group of third-grade students in four distinct classrooms.  

In a California mathematics classroom, a White woman ﻿teacher 
was placed on leave after a video went viral of her mocking Native 
Americans. In the video, she was dressed in clothing representative 
of ﻿Native American culture with imaginary tomahawks in her hand. 
She was repeatedly saying SOH-CAH-TOA, a mnemonic often used to 
help students remember the trigonometric functions: Sine (opposite 
over hypotenuse), Cosine (adjacent over hypotenuse), and Tangent 
(opposite over adjacent). The blatant ﻿racism encroached in this 
mathematics ﻿teacher’s primitive stereotypes about ﻿Native American 
practices provides another example of how ﻿racist ideologies thrive in 
mathematics classrooms. Taken together, these two discipline-specific 
examples could use ﻿BlackCrit and ﻿TribalCrit, respectively, to highlight 
the dehumanizing aspects of mathematics practices for racialized 
students and clearly indicate which racial groups win and which ones 
lose apropos their mathematics education. In so doing, these examples, 
among others not mentioned here, necessitate a call to the mathematics 
education community regarding the racialized nature of the field. 

A call to mathematics educators 

Socially and politically constructed meanings of Black, Latinx, Native, 
Asian, and White American pervade the racialized and ethnicized 
experiences of these groups in mathematics education research, policy, 
and practice. Hence, these constructions perpetuate the racial hierarchy 
of mathematical ability, participation, and power that remains unchanged 
and unchallenged in meaningful ways. ﻿Martin (2009) argues that, 
‘rather than questioning and deconstructing the racialized nature of this 
hierarchy, many mainstream math educators accept it as their natural 
starting point’ (p. 316). He also maintains that the racialized nature of 
students’ experiences, research, and policy in mathematics education 
contributes to the social devaluing of African Americans, Latinx, and 
Native Americans. Contrastingly, Whiteness or being White occupies a 
privileged space that does not result in being socially devalued. Earlier, 
we delved into ﻿BlackCrit, ﻿LatCrit, ﻿TribalCrit, ﻿AsianCrit, and ﻿WhiteCrit, 
and our heartfelt charge is for mathematics educators to use these 
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frameworks to critically examine issues of﻿ race, ﻿racism, ethnicity, and 
other forms of oppression.

In this vein, we are calling for a racial awakening that expands ﻿CRT 
in mathematics education to address, question, and deconstruct the 
racialized and ethicized experiences of Black, Latinx, Native, Asian, and 
White Americans. ﻿CRT’s offshoots, namely, ﻿BlackCrit, ﻿LatCrit, ﻿TribalCrit, 
﻿AsianCrit, and ﻿WhiteCrit, offer tools for systematic examinations. These 
manifestations of ﻿CRT should be further conceptualized, expanded, and 
merged with our disciplinary field to properly address, mitigate, and 
dismantle ﻿racist practices. Empowering racially minoritized scholars 
to explore their own racialized and ethnicized group’s mathematics 
education experiences will unearth additional insights given their 
requisite knowledge systems, skills, and realities.  

Concluding thoughts

In this chapter, we have expounded ﻿CRT, which has been central to our 
work as Black male mathematics education researchers. We have also 
brought focused attention to ﻿BlackCrit, ﻿LatCrit, ﻿TribalCrit, ﻿AsianCrit, 
and Whiteness studies with the goal of having more mathematics 
education researchers use them in their work. While these theoretical 
frames draw from ﻿CRT, they can all distinctly address the racialized 
nature of the field with respect to and across different racial categories. 
Furthermore, we offer the following questions for consideration:  

•	 In what nuanced ways can mathematics education scholars 
use these critical theories of ﻿race to advance knowledge about 
the racialized nature of the field and ways to address it? 

•	 In what ways can we conjoin theories of race to build on and 
extend foundational scholarship in mathematics education 
(e.g., critical mathematics education) to strengthen race-
related work? 

•	 What is the specific role of mathematics education scholars in 
this ﻿racist and ﻿xenophobic political climate (i.e., when critical 
race scholars are being attacked, mathematics ﻿curricular 
materials are being censored, and disciplinary textbooks are 
being banned)? 
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•	 What opportunities exist to facilitate change regarding 
the racialized nature of mathematics beyond securing 
grant funding, conducting research studies, presenting at 
conferences, and writing scholarly publications?  

•	 What can we learn from international scholars, their histories, 
and their﻿ race-oriented epistemologies about mathematics 
education that could be instructive for the field? 

In closing, please know that we have not hit a plateau with race work, 
as these questions indicate that issues of race, ﻿racism, and racialization 
continue to run amok in mathematics education. It is important to 
emphasize that Black, Latinx, Native, and Asian American scholars, 
students, and families should not bear all of the responsibility to address 
Whiteness and ﻿racism in the field. White mathematics educators must 
take greater responsibility for doing race work with White populations 
to challenge and dismantle the system of ﻿racism and ﻿White supremacy. 
As this chapter demonstrates, there is still much more work that 
needs to be done to understand the experiences of racially minoritized 
students in mathematics education, break the image of mathematics as 
a White male domain, and honor the full humanity of racialized groups 
in mathematics contexts. 
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19. Gender, mathematics, and 
mathematics education

 David Kollosche, Daniela Steflitsch, and  
Kora Maria Deweis-Weidlinger

This chapter approaches the discipline of mathematics from the perspective 
of ﻿gender studies. It provides an overview of the gendering of mathematics 
and mathematics education based on aspects such as images of mathematics, 
achievement, ﻿representation, ﻿biology, cognition, learning preferences, classroom 
interaction, and belonging. These aspects are then critically addressed from a 
post-structural perspective on ﻿gender and mathematics. Special attention is paid 
on moral dilemmas in dealing with ﻿gender inequality in mathematics and on the 
question how the perspective of ﻿gender studies can enrich our understanding of 
mathematics.

Introduction

Why bother to look at mathematics and mathematics education from 
the perspective of ﻿gender? At a first glance, the political struggles for 
the recognition and non-discrimination of different genders seem to 
be very far away from the presumably objective and logical shores 
of mathematics. Daring a closer look, we might be surprised that we 
have entered a rose garden of thorny questions and paradoxes: Why 
is mathematics commonly regarded as a male domain? Why is there 
only one female winner of the Fields Medal, the highest decoration for 
success in mathematics research? Why is there a clear male majority of 
university professors of mathematics? And why are far fewer women than 
men pursuing mathematics-intensive careers? These are examples for 
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persistent inequalities, while school achievement in mathematics differs 
only slightly between girls and boys, while some countries even show 
higher achievements among girls, and while female mathematicians are 
just as successful as their male counterparts.

These differences between men and women in the field of 
mathematics demand an explanation for different reasons. Politically, 
they raise the question whether women in mathematics are being 
systematically discriminated against. Economically, motivating more 
women to pursue mathematics-intensive careers is often believed to 
be beneficial for a country’s economic development. Didactically, we 
might want to ask if girls and boys have different resources and needs 
in the mathematics classroom and should be taught differently. Even 
for the sake of mathematics, an investigation into ﻿gender aspects of 
mathematics and mathematics education might be illuminating: Would 
not an answer to the question why mathematics is commonly regarded 
a male domain deepen our understanding of mathematics? Might not 
the hypothetical result that women do mathematics differently but are 
systematically excluded from higher mathematics call for a different 
way of doing mathematics? We shall return to these questions.

We know no other field of inquiry into mathematics education which 
would include as many theoretical perspectives and interest-based 
positions as the ﻿gender-and-mathematics discourse. For an intense 
experience of that variety, see the forty-two divergent peer commentaries 
on Camilla Persson ﻿Benbow’s (1988) contribution to the topic in the 
journal Behavioral and Brain Sciences; and even further perspectives have 
been developed since. The questions that Betty ﻿Johnston (1995) raised 
give a quick taste of this melange:

How does the imbalance manifest itself? What ‘facts’ are we using to 
help us see it, who collected them, for what purpose, on what evidence? 
What does ‘good at maths’ mean and how do we measure it? How 
do we construct our understanding of the ‘facts’? How do we use it? 
And, finally, why do we care so very much that everyone should do 
mathematics? (p. 228)

Noteworthy of this research field is the nearly exclusive reliance on a 
men-versus-women dichotomy. There is hardly any research, especially 
nothing that we found to be a useful reference, about ﻿gender issues in 
mathematics and mathematics education, that would transcend that 
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dichotomy and focus on non-binary identities. We think that it is an 
urgent research desideratum to open up the ﻿gender concepts used in 
mathematics education research, but we will not be able to achieve that 
in this chapter.

The next part of this chapter will deal with the concept of ﻿gender, 
which has proven to be an important concept for explaining and 
problematising differences between men and women. In the third part 
of this chapter, we will address differences and explanations regarding 
mathematics. We dedicate a separate part to post-structural perspectives 
on ﻿gender and mathematics, as we consider them to be extremely 
powerful but also surprisingly alien to common thinking. In the fifth 
part, we allow ourselves to place a critique of the common discourses 
on mathematics and ﻿gender by proposing a closer focus on a possible 
﻿gender bias of mathematics itself. In the last part, we turn to moral 
questions in asking what could and should be done in mathematics and 
mathematics education as a consequence of the provided insights.

The concept of gender

The concept of ﻿gender has been developed as a counterpart to the 
concept of sex. The first section of this part of the chapter presents the 
﻿gender concept and addresses how it can help us understand certain 
aspects of differences between men and women. The second section 
problematises the concept of ﻿gender from a post-structural perspective.

Sex and gender

The distinction between the concepts sex and ﻿gender has been established 
to point out that some differences between men and women are biological 
in nature while many others are social constructions and open to change. 
The term ‘﻿gender’ has presumably been introduced to academia in the 
above sense by John ﻿Money (1955). His perspective on the cultural 
conditions of the differences between men and women became of wider 
academic and public interest to describe socially created inequalities. 

We are usually able to assign the sex of a person with quite a 
﻿certainty by detecting the external sexual organs, and we start doing so 
even before a baby is born. However, when it comes to the attribution 
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of ﻿gender, it is usually more difficult or less clear. What we can perceive 
are gendered signs and forms of behaviour, for example a certain 
stature, shape of a face, haircut, dress code, certain ways of moving 
and talking, also interests in certain activities, such as in mathematics. 
In rare cases, we might be puzzled by seemingly conflicting signs and 
wonder in which pigeonhole to put that person, but in most cases, we 
easily assign a ﻿gender and, by doing that, activate certain expectations 
or ﻿gender-specific role models. These stereotypes can be clearly visible 
and obvious, as for example in a group photo of the all-male staff of a 
fire station. They can also be more subliminal, for example in television 
advertisements for cough syrup, when the image of the caring and 
nurturing mother and wife is implicitly conveyed in the marketing of 
medical products that are equally suitable for both sexes. 

In the United States, an early influence in academia had been 
anthropologist Margaret ﻿Mead (1949) who showed that different 
societies ascribed different social roles to the sexes. Michael N. ﻿Friedan’s 
(1963) ﻿The Feminine Mystique, documenting the dissatisfaction of 
housewives, became a bestseller and made ﻿feminism an issue of the 
general public in the US and beyond. Such contributions opened an 
intellectual space in which alternative roles for women in society could 
be envisioned and expressed. The analysis and change of ﻿gender roles 
were at the heart of the subsequent women’s right movement in the 
second half of the twentieth century. This movement included not only 
political struggle for women’s suffrage, equal access to education and 
professions and sexual autonomy, it also led to a critique of theories 
that positioned women as inferior to men and motivated research on 
femininity.

Janet Saltzman ﻿Chafetz (2006) provides an impressive overview 
of the variety of theoretical approaches to ﻿gender theory. Among this 
variety, social learning theories have become widely used to describe 
﻿gender as a social role one is educated into. As Jennifer ﻿Marchbank and 
Gayle ﻿Letherby (2014) put it, social learning theories assume ‘that girls 
and boys learn ﻿gender-appropriate behaviour from birth as we are all 
surrounded by ﻿gender socialisation messages from our families, peers 
and the media’, and they have ‘been the basis of most sociological work 
on masculinity and femininity, mainly focused on determining how 
we learn, internalise, and then recreate ﻿gender stereotypical roles’ (p. 
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9). Social learning theories make us aware that, having undergone 
education in a ﻿gender-biased society, we are always-already part of this 
social structure.

Problematising gender

The ﻿gender discourse has been fundamentally criticised from a post-
structural perspective. This perspective is closely connected to the 
French philosopher Michel ﻿Foucault, who worked out the discursive 
constitution of reality in such fields as mental illness (﻿Foucault, 1961), 
delinquency (﻿Foucault, 1975), sexuality (﻿Foucault, 1976), or patterns of 
thought more generally (﻿Foucault, 1966). The main line of argumentation 
is that reality is not just out there in a pre-structured form but 
constructed by humans in discourse. Reality, therefore, is not objective 
but ambiguous, constituted differently from different perspectives in 
different times and places, and a product of interests and power. To take 
the example of mental illness, ﻿Foucault (1961) worked out how the idea 
of mental illness is the product of a modern discourse which is designed 
to exclude from society any forms of behaviour deviating from the 
modern rationalist ideal and tempting us to fall back to a pre-rationalist 
existence by abandoning our self-discipline. Thereby, the construction 
of reality does not only include the assertion of a certain discourse, it 
also includes the organisation of social practices and institutions, the 
legitimisation of specific arguments, and the validity of a certain body 
of knowledge. In the case of mental illness, institutions such as asylums, 
academic discourses such as ﻿psychology, the distinction of experts on 
mental illness, and practices of removing the mentally ill from the public 
sphere work together in a complex web that constitutes what mental 
illness means for us today.

In his later work, ﻿Foucault (1982) investigated how power is executed 
on people by discourses. He explained that discourses do not simply 
direct and forbid, rather they create temptations and design rooms 
in which to position the self. People then make these discourses their 
own by filling them out individually within the given boundaries, thus 
becoming an accomplice of the discourse itself. As an example, consider 
speaking in your mother tongue: sure enough, you have a distinct style 
of expressing yourself in it, but there are also certain boundaries you 
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would not cross, certain rules you will stick to, rules you would even 
demand others to follow. ﻿Foucault (2007) stressed the possibility of 
resistance against discourses that govern us and understood critique 
as the art ‘not the be governed like that, by that, in the name of those 
principles, with such and such an objective in mind and by means of 
such procedures, not like that, not for that, not by them’ (p. 33, original 
emphasis). Now, from this post-structural perspective, it would seem 
promising to direct one’s attention at the discursive constitution of 
women, men and ﻿gender.

In ﻿Gender Trouble and her later ﻿Undoing Gender, Judith ﻿Butler 
(1999, 2004) approached the ﻿gender discourse from a post-structural 
perspective. With traditional ﻿feminism she shared the assumption that 
﻿gender roles are cultural constructs and designed in a way to secure the 
social privilege of men. However, ﻿Butler’s view differed from traditional 
﻿feminism in some crucial points. Foremost, studies asking for the 
nature of femininity, for example with the goal of a more girls-friendly 
organisation of education, reproduce the idea that we are born into 
our roles as males and females. In contrast to that assumption, ﻿Butler 
argues that even sex is discursively constructed. As Penelope ﻿Eckert and 
Sally ﻿McConnell-Ginet (2003) pointed out, ‘there is no obvious point at 
which sex leaves off and ﻿gender begins, partly because there is no single 
objective criterion for male or female sex’ (p. 10). For example, the 
configuration of genitals is sometimes ambiguous, and controversially 
discussed medical procedures are systematically being undertaken to 
adjust the configuration of genitals to social expectations. In the light of 
the variety of possibly inconsistent biological features used to determine 
sex, including anatomical, genetical and hormonal features, and in the 
light of the sometimes ambiguous nature of these features, the decision 
which sex to assign to a person is ultimately social.

﻿Butler (1999) problematised that traditional ﻿feminist studies, by 
adhering to the dichotomy of the two genders, proved unable to explain 
cases of third, mixed, and changing ﻿gender. Further, neither ﻿biology nor 
social learning theory can explain the different varieties of masculinity 
and femininity. Neither can they explain instances of individual 
resistance to ﻿gender roles, of ﻿testing their boundaries, playing with 
them, maybe even redefining them. 
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Post-structural theories redirect our attention from the question what 
could typically count as masculine or feminine to the question how the 
necessarily political discourses on ﻿gender interact with the constitution 
of our identities, with the goals we deem approachable, the roles we feel 
comfortable in, and the expectations directed at us. Our various discourses 
often include ﻿gender roles and direct men and women to specific positions 
within the discourse, for example to positions of ability or disability. 
Deviations from such discursively set roles are difficult to accept for 
others sharing that discourse, but they may also lead to conflict within 
the respective person. For instance, it may be difficult to position oneself 
as a loving mother and well-organised housewife and simultaneously as 
following a professional career. Heather ﻿Mendick (2005) calls the inner 
negotiation of the different discourses ‘﻿identity work’.

At the same time, the post-structural perspective points out that we 
are not only inevitably educated into ﻿gender discourses, but, from that 
position within the discourse, always-already accomplices of ﻿gender 
discourses and ‘doing ﻿gender’ (﻿Butler, 1999, p. 41). This perspective does 
not present women as passive victims of ﻿gender stereotypes but assumes 
an active role of women in positioning themselves in ﻿gender discourses. 
This shift is not meant to reassign the blame for ﻿gender inequalities to 
women. Instead, it is meant to highlight the ways in which we could 
do ﻿gender differently. Eventually, the benefit of understanding ﻿gender 
as a product of discourse is that ﻿gender differences are not inescapable 
but open to change. From a post-structural perspective, promoting such 
change begins with a deconstruction of dominant discourses and a 
search for possibilities to think differently. At least in academia, though 
not that easily in the social pressures of daily life, we are not reduced 
to the decision where to position us in given ﻿gender discourses but can 
eventually decide ‘not to be governed like that’.

Differences and explanations

How do men and women differ at all concerning mathematics? Before 
we give a short presentation of ﻿gender differences in mathematics, we 
want to address the question whether investigating such differences 
bears dangers. In her insightful book ﻿Sex Differences in Cognitive Abilities, 
Diane F. ﻿Halpern (2012) explained:
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Many psychologists and others are opposed to any comparisons of 
women and men. Much of the opposition is based on the fear that when 
differences are found, the data will be interpreted and misused in ways 
that support a misogynist agenda or unwittingly provide support for the 
idea that there are ‘proper roles’ for men and women. (p. 3)

Roberto Ribeiro ﻿Baldino (2000) was surprised by the acceptance and 
tolerance for his conference presentations where he explained that 
a gene had been identified which allowed for higher mathematical 
understanding in the first place, and for which ‘it has been possible do 
determine that only 10 to 15 per cent of men and 5 to 8 per cent of women 
are […] carriers’, explaining among other inequalities ‘why the majority 
of mathematicians are men’ (p. 145). The whole theory was bogus, 
the presentation an experiment conducted with a clueless audience 
of researchers in mathematics education, but, aside from much else, it 
showed that seemingly scientific explanations for differences are often 
too uncritically accepted, maybe even welcomed, and eventually set to 
use in the legitimisation of inequalities. We assume that any contestation 
of differences is dialectical in nature, on the one hand assisting in the 
explanation of inequalities, while on the other hand forming a basis for 
their legitimisation. We will have to bear in mind this twofold nature 
of stated differences if we seek to avoid being trapped by explanations 
that, from a different perspective, turn out to be questionable and 
problematic.

Paul ﻿Ernest (2007) warned against taking up a one-dimensional 
perspective in which we assume that there is one ﻿gender problem in 
mathematics. He found that what is addressed when discussing ﻿gender 
and mathematics is a whole array of different inequalities, and that 
authors often talk about rather different issues under similar headings. 
Ernest claimed that what poses a ﻿gender-related problem is eventually a 
question of perspective and interest. We can conclude that talking about 
the ﻿gender problem in mathematics is diffusing the discussion and may 
even be proposing that ﻿gender itself is the problem, rather than facing a 
range of different problems, which shine up from different perspectives 
and become problematic for people with specific interests. Here, we 
decided to distinguish the following perspectives on ﻿gender differences 
in mathematics:
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1.	 Gender differences in images of mathematics.

2.	 Gender differences in achievement.

3.	 Gender differences in ﻿representation.

4.	 Gender differences in biology.

5.	 Gender differences in cognition.

6.	 Gender differences in learning preferences.

7.	 Gender differences in classroom interaction.

8.	 Gender differences in belonging.

These areas can serve as an explanatory basis for each other, but they are 
not easily brought into a linear order of cause and effect. For example, 
﻿gender differences in learning preferences can explain differences in 
achievement and demand an explanation themselves. Consequently, 
﻿gender-oriented studies in mathematics education need to navigate 
through a complex web of interrelating issues, which shine up with 
different intensity when different interests come to play. ﻿Ernest (1995) 
proposed to understand ﻿gender inequality in mathematics as a vicious 
cycle of mutually reinforcing phenomena. We will address this idea in 
the section titled ‘Where is mathematics?’. On the following pages, we 
wish to address the various perspectives on ﻿gender differences in their 
own right. Afterwards, we will revisit these discourses more critically 
from a post-﻿structuralist perspective.

Images of mathematics

For a long time and in many places, mathematics had been considered 
to be male. Even today, mathematics and mathematics-related domains 
are still stereotyped as masculine and are therefore difficult to reconcile 
with female ﻿gender roles. Public images are influences by role models, 
with whom people can identify more or less easily. In mathematics, 
the names and faces of such role models are predominantly male (and 
White, one might add). There are several reasons for that. One reason is 
that the successes of female mathematicians have often been withheld 
in the history writing of predominantly male historians. The most 
outstanding ancient example is ﻿Hypatia of Alexandria, whose story 



494� Breaking Images

has only recently become a vivid field of historical study. A more recent 
example is the controversy around the impact of Albert ﻿Einstein’s wife 
Mileva ﻿Marić on her spouse’s work in theoretical ﻿physics. 

However, the number of published contributions of women to 
mathematics have indeed been few compared to those of men. The reason 
here is not necessarily that women are less interested in mathematics. 
Teri ﻿Perl (2010) examined an annual magazine published in England 
from 1704 to 1841, which contained enigmas, queries, and mathematical 
questions and was aimed specifically at women. Its existence over 
decades suggests that there was a wide market for such publications 
among women and that women were indeed interested in mathematics. 
The main explanation rather seems to be that, until fairly recently in 
human history, patriarchal structures in society have not allowed or at 
least strongly hindered women to appear as an independent intellectual, 
to receive the necessary education and formal qualification, to have their 
voices heard and their work published, and to secure paid positions in 
mathematics. In this vein, Reuben ﻿Hersh and Vera ﻿John-Steiner (2011) 
tell the stories of Sophie ﻿Germain, Sofya ﻿Kovalevskaya and Emmy 
﻿Noether. Today, as we shall see in a later section on ‘Representation’, 
female mathematicians are no longer the exception but still a minority.

Stereotypical images about mathematics and mathematicians are 
transported through popular media. Gilah ﻿Leder (1995) analysed 
articles of well-known newspapers in Australia and Canada regarding 
﻿gender ﻿equity. These articles confirmed the prevailing stereotypical 
views about male-dominated power structures much more often than 
they questioned them. She concluded that ‘it appears that the subtle 
messages conveyed in the popular press are consistent with small but 
consistent differences in the ways females and males perceive and value 
mathematics and related careers as appropriate for themselves’ (p. 125). 

﻿Mendick (2005) analysed movies presenting mathematics and 
mathematicians and stated: ‘This dominant discourse around 
mathematicians in popular culture depicts them as boring, obsessed 
with the irrelevant, socially incompetent, male and unsuccessfully 
heterosexual’ (p. 214). Movies with mathematical contents (e.g., 
﻿A Beautiful Mind, ﻿Enigma, ﻿Good Will Hunting, ﻿Pi) make use of such 
stereotypical images and at the same time shape our image of a ‘typical’ 
mathematician. In all films, the protagonists struggle with mental illness 
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that is directly or indirectly related to mathematics. In these movies, 
mathematics is presented as something where femininity does not fit in. 
However, in a later analysis of fictions published after the financial crises 
of 2008, ﻿Mendick (2017) finds that mathematics has been portrayed in 
more diverse and critical ways. ﻿Hidden Figures, a movie about a group 
of female Afro-American mathematicians contributing crucial work 
to NASA projects, was too new to find its way in Mendick’s paper but 
serves as an outstanding example for that shift.

Stereotypical images about mathematics and mathematicians 
are also reproduced in and influence education. Natthapoj Vincent 
﻿Trakulphadetkrai (2017) analysed the ﻿representation of girls and 
women in sixty-four Anglophone mathematical picture books produced 
for private education and entertainment. He found that girls and 
women were considerably underrepresented. In a study on images 
of mathematics in the mathematics classroom, Mary Schatz ﻿Koehler 
(1990) concluded that the image of mathematics as a male domain was 
reinforced by the portrayal of mostly male mathematicians and the use 
of mostly masculine context in test questions.

In a mathematics course designed for re-entry into science and 
technology fields, Zelda ﻿Isaacson (1990) explored the reasons why the 
attending women (all in their twenties and thirties) chose to opt out of 
mathematics somewhen in their school career. Some explained that as 
a woman you are considered weird if you like maths. One example of a 
conversation with colleagues about what course one of these women is 
in, shows this clearly: ‘They look at you in absolute horror, and that’s the 
end of the conversation’ (p. 24). Within these conversations, the impact 
of stereotype-based family pressure and peer influence crystallised. 
Another woman described mathematics as a subject where competences 
such as ﻿creativity or imagination are not used and thus women who 
are more likely to show such skills (in her view) cannot connect with 
mathematics. While we will return later to the question of how women 
negotiate their identities in the light of such images of mathematics, 
﻿Isaacson’s study showed that images of mathematics do have an impact 
on women’s choices. Other evidence, which we will only mention here, 
comes from a statistical analysis of ﻿gender-science stereotypes and sex 
differences in science and math achievement in thirty-four countries, 
which established ‘that nation-level implicit stereotypes predicted 
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nation-level sex differences in 8th-grade science and mathematics 
achievement’ (Nosek et al., 2009, p. 10593).

Achievement

Mathematics is often considered a discipline in which men show higher 
proficiency than women. Statistical data reveals that this is the case in 
some environments but no general phenomenon. As an illustration, we 
can look at the results of large-scale assessment﻿ regimes such as ﻿PISA. In 
﻿PISA 2012, the latest ﻿PISA run with an emphasis on mathematics when 
we wrote this chapter, boys had significantly higher mean scores than 
girls in mathematics performance in thirty-seven of the participating 
sixty-five countries, reaching differences in the mean scores of boys 
and girls as high as 22 score points in Austria and 25 in Colombia and 
Chile (﻿OECD, 2014, p. 305). However, there were also six countries 
in which girls performed significantly better than boys, including 
Iceland, where girls on average scored 6 points more than boys, and 
Jordan, where the difference amounted to 21 points. Summing up the 
data from the thirty-four participating ﻿OECD states (the only average 
values provided by the study), the mean score of boys is 12 points 
higher than that of girls. What do these numbers tell us? First, the ﻿PISA 
score is normalised with a standard deviation of 100. 12 score points 
amount to only 12% of that deviation in score points. Second, the mean 
scores between comparable countries often differ more drastically than 
between girls and boys in the countries. For example, Belgium scored 
20 points higher than neighbouring France, Switzerland scored 25 
points higher than neighbouring Austria, and Finland scored 40 points 
higher than neighbouring Sweden. On average, Finnish girls scored 37 
points higher than Swedish boys. Other comparative assessment﻿s yield 
similar patterns (e.g., Hanna 1989, 1994; Ernest 2007). We conclude 
that differences in mathematics achievement in favour of boys can be 
detected but appear to be very small and possibly negligible when 
compared to other variations.

Countries in which girls perform significantly better than boys prove 
that higher performance by boys is no general phenomenon and indicate 
that local factors such as culture and school systems must play a crucial 
role. Obviously, it would be difficult to explain these differences between 
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countries by biological theories, which claim universal validity, alone 
(Nosek et al., 2009). In a study with 2300 school leavers in England, 
Geoffrey ﻿Driver (1980) compared the mathematical achievement of 
students with English descent with that of students with West Indian 
descent. It was not very surprising that boys of English descent slightly 
outperformed girls of English descent. However, West Indian girls 
outperformed English boys and West Indian boys performed at the 
level of English girls. Driver explained these ﻿gender differences in 
performance between students of English and students of West Indian 
descend by the different social roles of men and women in both societies.

Admittedly, one might contend that the mathematical literacy 
defined and measured by ﻿PISA and school mathematics as assessed in 
Driver’s study are something different than higher secondary or even 
tertiary mathematics, where ﻿gender differences could show differently. 
This is why we compared the number of enrolments in tertiary 
education programs (including Bachelor, Master and doctoral studies) 
in mathematics and ﻿statistics with the number of graduations in these 
programs within the European Union as documented by the European 
Statistical Office Eurostat. In 2014, the latest year for which we have 
union-wide data, there were 117064 women and 147901 men enrolled, 
while 25074 women and 27871 men graduated in these programs 
(Eurostat, 2019a, 2019b). That yields 0.214 female graduates per female 
enrolments, whereas the ratio is only 0.188 for men. Although the 
﻿statistics include no information about the obtained grades, women 
appear to be more successful students of mathematics than men. We 
conclude that there is no evidence that men would generally achieve 
better in tertiary mathematics either.

Representation

As the Eurostat data presented in the last paragraph documented, 
considerably less women than men enrol in tertiary education in 
mathematics, and slightly less women than men graduate from 
such programmes. Such an underrepresentation of women can be 
found in many forms. We already addressed the fact that women are 
underrepresented in depictions of mathematics in popular media, but 
underrepresentation can also be found in schools and in research.
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When we look at academic positions, the proportion of women, 
depending on the ascending level of qualification, ranges from 
35% (lower level) to 15% (highest level) in ﻿STEM fields compared 
to 46% and 24% across all scientific fields in the European Union 
(European Commission, 2019). In the US, an average of 30% of PhDs 
in mathematics were awarded to women between 2005 and 2008 and 
in 2005 only 9% of all full-time tenured professors in doctoral-level 
mathematics departments were women (Popejoy & Leboy, 2012). Even 
more severe underrepresentation of women is reported from African 
countries (Gerdes, 2006; Masanja, 2010). Apart from some exceptions, 
this list could easily be extended further. In summary, both horizontal 
and vertical segregation can be observed. This means that not only the 
proportion of women is significantly lower in mathematics-related areas 
than in other areas, but also that women are less frequently represented 
in higher status areas than in lower status areas.

The underrepresentation of women in mathematics can partly 
be explained historically. Isolde ﻿Kinski (1994) studied the history of 
the underrepresentation of women in mathematics from a German 
perspective. Until the last century, education was reserved for only a 
few people and a privilege of men. The distribution of tasks between 
the sexes and the societal roles associated to the sexes restricted women 
to the domestic sphere and thus excluded them from higher education. 
It was argued that dealing with science or mathematics was against 
women’s nature. Even when, from around 1820 onwards, bourgeois 
daughter schools became more common in the German-speaking 
world and elsewhere, these were limited to teach girls only elementary 
﻿arithmetic necessary for keeping the household. 

At the beginning of the twentieth century, there were initial 
discussions about girls’ access to school-leaving examinations and thus 
access to universities. Even though women were officially admitted 
to study in German countries from 1900 onwards, they had to fight 
different obstacles for decades. In those days it was unthinkable for many 
universities to award doctorates to women. For example, Christine ﻿Ladd, 
who was the first American woman to fulfil all formal requirements for 
a PhD in 1883, was not officially recognised until forty-three years later 
(Green, 2001). Even in 1981, only about 6% of the thousand speakers 
at the meetings of the American Mathematical Society were women 
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(Kenschaft, 1982). Nevertheless, with the admission of women to the 
universities, the contents of the higher girls’ schools changed. ﻿Curricula 
for girls’ and boys’ schools were unified and coeducation was introduced 
in the course of the twentieth century. Since then, representational 
inequalities have decreased but they still exist to a considerable extent.

Sapna ﻿Cheryan (2012) suggested that ‘seeking out math-related 
careers is still a ﻿gender role violation for women’ (p. 184, without 
original emphasis). She explained that the public image of mathematics 
as a male domain and activity remained an obstacle for the perusal of 
mathematical careers by women. However, there are other possible 
explanations for the underrepresentation of women in mathematics 
which we will address in the following sections.

Biology

Biological explanations for ﻿gender differences in mathematics often 
focus on abilities in spatial visualisation. Three different approaches are 
repeatedly found in the literature: a cerebral explanation, a hormonal 
explanation, and a genetic explanation. The cerebral explanation refers 
to the neuropsychological effect of lateralisation. This describes the 
unequal distribution of individual functions between the two halves of 
the brain. Studies show that an asymmetrical organisation of the brain 
is more pronounced among men (Halpern, 2012). Therefore, women 
tend to use both brain hemispheres when solving exercises requiring 
spatial abilities while men particularly use the right brain half, to which 
skills such as spatial thinking and numerical reasoning are attributed. 
However, there is no evidence that one way of using the brain for spatial 
ability tasks is more successful than the other. Other studies show that 
the level of certain hormones might have an impact on the performance 
in spatial ability tests (Hampson, 1990; Hampson & Rovet, 2015). 
Approaches which linked spatial ability to specific genes have been 
found unconvincing (Boles, 1980), but the assumption that men and 
women might have different genetical dispositions for spatial ability as a 
result of their archaic roles as hunters and fighters persists among some 
scholars (Geary, 1998; Halpern et al., 2007).

Despite these attempts to explain sex-related differences biologically, 
different meta-studies on biological differences between men and 
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women concluded that, in most areas, differences are minimal, if not 
negligible. That includes fine motor skills, mental rotations, spatial 
perception and visualisation, mathematical ability, computational 
skills and understanding of mathematical concepts (Hines, 2010) but 
also general intelligence (Colom et al., 2000) as well as language skills, 
communication behaviour, ﻿computer use, self-esteem, aggression, 
helpfulness, leadership skills and sexual behaviour (Hyde, 2005). 
Consequently, Janet Shibley ﻿Hyde (2005) proposed ‘that males and 
females are similar on most, but not all, psychological variables’ (p. 
581). Obviously, ﻿biology appears not to explain much.

Cognition

Some scholars argue that ﻿gender differences in academia derive from the 
fact that men and women think differently. One of the most provocative 
studies in this direction is Mary Field ﻿Belenky, Blythe McVicker 
﻿Clinchy, Nancy Rule ﻿Goldberger, and Mattuck Jull ﻿Tarule’s Women’s 
Ways of Knowing (for a similar study resulting in a somewhat different 
categorisation see Magolda, 1992). ﻿Belenky and colleagues (1997) 
argued that women think differently than men and that academia is 
usually organised in a way that values only masculine ways of thinking 
with the effect of silencing women. The psychologists conducted 
interviews with a wide variety of US-American women to learn about 
‘the way they perceived themselves and the world around them’ (p. 4): 

What is truth? What is authority? To whom do I listen? What counts 
for me as evidence? How do I know what I know? Yet to ask ourselves 
these questions and to reflect on our answers is more than an intellectual 
exercise, for our basic assumptions about the nature of truth and reality 
and the origins of knowledge shape the way we see the world and 
ourselves as participants in it. (p. 3)

﻿Belenky and colleagues (1997) described received knowledge, which relied 
solely on authorities and was the main form of knowledge organisation 
for many women before they developed subjective knowledge. The latter 
form of knowledge is the first step towards building confidence in 
oneself and includes a drastic refusal of authoritarian truth claims:

Subjectivist women distrust logic, analysis, abstraction, and even 
language itself. […] The fervor with which subjectivist women draw 
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sharp lines between intuitive knowledge and what they assume to be 
the impersonality of abstract thought harks back to the dogmatism and 
either/or thinking characteristic of the women we described in earlier 
chapters. It is not that these women have become familiar with logic 
and theory as tools for knowing and have chosen to reject them; they 
have only vague and untested prejudices against a mode of thought that 
they sense is unfeminine and inhuman and may be detrimental to their 
capacity for feeling. (p. 71)

Some women in the study felt a need to abandon purely subjectivist 
positions for the sake of universal perspectives which would, for 
example, fulfil the requirement of academic or other interpersonal 
debate. However, the way of knowing adopted by women differed 
from that of men in what ﻿Belenky and colleagues (1997) termed 
procedural knowledge. Procedural knowledge focused not on how things 
are but on how something can be done, including an appreciation 
of different perspectives on situations. Here, objectivity was gained 
not by assuming that there is one true way but by leaving subjective 
positions and opening up for a variety of perspectives. However, the 
authors stressed that the adopted procedures are most often man-made 
and might bear in them a ﻿gender bias, which allows for answering 
questions relevant for men rather than questions relevant for women. 
Such a bias might be found in a very specific example, but it was also 
identified on a very general level: ﻿Belenky and colleagues reported men 
to strive for separate knowing, which positions the learner in a distance 
to the object of learning and looks for procedures for its manipulation, 
whereas women are found to strive for connected knowing, which is a 
very personal endeavour to find ever new procedures to understand the 
object in question. Women, especially those engaged in academia, were 
found to also perform separate knowing, but they often reported to find 
it meaningless or to have turned to connected knowing later. A last way 
of knowing, termed constructed knowledge, assumes the post-﻿structuralist 
position that knowledge is but a construction. Constructers of their own 
knowledge embark on the mission to unify valuable input and subjective 
positions into a narrative that personally makes sense and still meets the 
requirements of successful communication with others.

Discussing the relevance of women’s ways of knowing to mathematics 
education, Olive ﻿Chapman (1993) argued that a positivist ‘view of 
mathematics tends to dehumanize or objectify it, thus limiting it to a 
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framework with characteristics that are more compatible with separate 
knowing than connected knowing’ and that ‘all of the circumstances 
that could facilitate connected knowing are stripped away’ in traditional 
teaching settings with the result of silencing connected and mostly 
female knowers (pp. 208–209). She demanded ‘that mathematics 
be reconceptualized to reflect its humane features and mathematics 
classroom processes revised to facilitate the characteristic ways of 
knowing of both males and females’ (p. 209), a demand that we will 
return to. We recommend Joanne Rossi ﻿Becker’s (1995) more detailed 
account of what it might mean to allow for connected knowing in the 
classroom.

The work of German mathematics educator Inge ﻿Schwank departs 
from different theoretical frameworks but could be interpreted as an 
application of the insights presented above. In her analysis of ﻿problem-
solving strategies in Information Technology studies and mathematics, 
﻿Schwank (2002) identified two typical cognitive approaches, which she 
terms predicative and functional thinking: 

The label predicative was used to characterize a ﻿problem solving behaviour 
highly orientated at and sensible for features, relations and judgements, 
whereas the label functional was used to characterize a ﻿problem solving 
behaviour highly orientated at and sensible for courses, modes of actions 
and effects. (p. 489, original emphasis) 

We find it striking that predicative thinking as described by ﻿Schwank 
aims at understanding very much in the sense of what ﻿Belenky and 
colleagues (1997) called procedural knowledge, while functional 
thinking as described by ﻿Schwank aims at manipulation very much in 
the sense of what ﻿Belenky et al. called separate knowing. Given that 
analogy, it does not come as a surprise that ﻿Schwank (1994) reported that 
women tend to think mostly in a predicative way, while the majority of 
men seems to apply a functional way of thinking. A small proportion of 
men was found to prefer predicative thinking but functionally thinking 
girls seem to be a real exception. However, there are people who cannot 
be assigned to either one or the other way of thinking.

Through the analysis of ﻿problem-solving behaviour, 
electroencephalogram (EEG) patterns, and eye movement in 
experiments, ﻿Schwank (1999, 2002) showed that the way of solving 
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a task within logical reasoning differs greatly with the method of 
thinking. There are tasks where one method of thinking is more 
successful than the other, depending on the way the task is presented. 
Broken down to mathematics classes, it also seems to be decisive how 
the ﻿teacher articulates help when students have problems in solving 
tasks. In contrast to the functional thinker, who likes to elaborate 
solutions step by step with active trying, it will not be quite helpful for a 
predicative thinker to tell him or her to ‘just give it a try’ (Bischof-Köhler, 
2002/2011). Students who are using a predicative strategy tend to think 
about the whole problem with all its aspects before they start working 
on it. Teachers largely attributed this approach of solving problems to 
the female students in their class and therefore often characterised the 
girls as being insecure. Hence, we can imagine that the way of thinking 
might also explain why girls and boys differently participate in class. 
While boys as a part of their way of thinking just try to find solutions 
to the problem and accept wrong answers along the way without 
being discouraged, girls might need some time to grasp a problem in 
its entirety and to build up the relations between single elements. The 
reason why boys and girls act differently in mathematics lessons could, 
therefore, be partly due to different ways of thinking.

﻿Halpern and colleagues (2007) suggested that there might be sex 
differences within the underlying cognitive processes, as there seem 
to be specific tasks where females perform better than males and 
vice versa. Examples where women tend to excel men are language 
production, reading, writing, and ﻿algebra. These are all tasks requiring 
fast retrieval of information stored in long-term memory and the use 
of language to create connections. Males, on the other hand, seem to 
use strategies focusing on the maintenance and manipulation of mental 
﻿representation in working memory, letting them outperform females in 
mathematical ﻿problem solving, mental rotation or spatial perception 
tasks. This approach seems to largely coincide with that of ﻿Schwank, 
suggesting that girls and boys might just use different strategies for 
solving problems. However, it is not possible to say with ﻿certainty to 
what extent these findings really influence performance in mathematics 
class. The step from cognitive ﻿psychology to mathematics teaching and 
learning does not seem to have been sufficiently explored and one can 
only speculate to what extent the different cognitive processes lead 
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to ﻿gender differences in mathematics achievement or cause different 
degrees of interest in mathematics.

Learning preferences

The idea that people use different styles of thinking and that these styles 
are used with different frequency among men and women, quickly 
leads to the question of how far classrooms are organised in a way 
that welcomes both styles. Jo ﻿Boaler (1997) took up that question. She 
followed the cohorts moving from school years 9 to 11 in two schools 
over the course of three years and used ethnographic methods, including 
classroom observations as well as questionnaires and interviews with 
students and ﻿teachers, to learn how students experience mathematics 
education. 

One issue Boaler pointed out is that addressing a ‘lack of 
understanding of the mathematics they encountered in class […] was 
particularly acute for the girls, not because they understood less than 
the boys, but because they appeared to be less willing to relinquish 
their desire for understanding’ (p. 112). For example, in an interview, a 
student called Marsha explained that ‘you have to work it out and you 
get the right answers but you don’t know what you did, you don’t know 
how you got them’ (p. 114), whereas a student called Gary explained 
that ‘once you know how to do it, you’re away’ (p. 115). Apparently, 
students such as Marsha strive for what ﻿Belenky and colleagues (1997) 
called connected knowing, while students such as Gary strive for 
separate knowing.

Boaler (1997) pointed out that the use of different ways of knowing 
interacts with teaching styles. Textbook work, which offers only one 
perspective on the mathematical content and usually one approach to 
performing procedures, is usually preferred by boys. In contrast to that, 
girls preferred working with individualised booklets and in groups:1

The reasons that the girls liked these approaches were related to the 
freedom they experienced to use their own ideas, work as a group or 

1� In a similar study in Germany, female students were reported to prefer to work 
with the textbook as it provided orientation, whereas male students preferred 
to work without the textbook (Jahnke-Klein, 2001, p. 119), which proposes that 
reoccurring and singular ﻿gender preferences have yet to be discriminated.
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work at their own pace. All these practices, the girls claimed, gave them 
access to a depth of understanding that textbook work denied them. (p. 
114)

﻿Boaler also discussed the desire expressed by many boys to solve 
problems quickly. This competitive desire to excel in speed and number, 
or at least not to fall behind, reduced the need for knowledge to knowing 
how to solve the involved problems and stands in opposition to a wish 
for understanding. Teachers quickly pacing through the mathematical 
contents are then clearly meeting the desires of separate knowers and 
disregarding the needs of connected knowers. 

Some of Boaler’s findings had already been reported by Jacquelynne 
﻿Eccles (1989), who stated that competitive activities, drills, and practices 
are attributes of classrooms that produce high sex differences, while 
classrooms with low sex differences in mathematics tend to be more 
co-operative and supportive. In her course for re-entrants, which was 
attended only by women, ﻿Isaacson (1990) worked mainly in the form of 
group work, which most women reported to be the decisive difference 
to mathematics lessons at school. The participants acknowledged the 
importance of this form for building deeper understanding through 
explaining contents to other group members and discussing their 
answers until all agree. Boaler’s study coincided with a German study 
by Sylvia ﻿Jahnke-Klein (2001). She obtained similar results and posed 
the question whether boys, who seek technical understanding and want 
to move on faster, appear more gifted or higher achieving than girls, 
who want to dwell on contents to understand them thoroughly.

It becomes apparent that different styles of teaching are to a different 
extent able to meet the desire for learning of connected knowers. Boaler 
(1997) reported a number of cases where girls with a high potential 
in mathematics hardly participate in mathematics lessons for reasons 
closely associated with unfitting ways of knowing. As this ‘disparity 
[…] was most acute for the highest ability girls’ (p. 123), Boaler raised 
the question if unfitting teaching styles could be responsible for unequal 
achievement and ﻿representation of girls in high-ability environments.

On the other hand, ﻿Boaler reported of boys in reform-oriented 
classrooms with open teaching approaches, who complained that ‘they 
wanted more structure in their work, they wanted someone to tell them 
what to do’ (p. 120). Obviously, there are also teaching styles that do 
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not meet the wishes of separated knowers. However, Boaler added that 
these boys were able to adjust to the different teaching styles within one- 
or two-years’ time.

Classroom interaction

There are numerous studies on the behaviour of both ﻿teachers and pupils 
in mathematics lessons. Many of these studies show that ﻿teachers treat 
boys more favourably than girls and that boys act differently from girls. 
This may not only lead to the conclusion that girls are disadvantaged by 
the interactions, structure, and climate in the classroom, but might also 
have an impact on the performance, the choice of course, and also on the 
motivation and self-image of students.

While different treatment can already be found in interactions with 
children who do not yet attend school (Olson et al., 2010), most studies 
have been conducted with students in secondary school education. 
﻿Becker (1981) reported that classroom environment seems to be more 
supportive of males than of females both academically and emotionally. 
Interactions on a non-academic level such as joking are much more 
common between ﻿teachers and male students. Females do not seem 
to have an active role during class and seem to react to ﻿teachers’ 
bonding with boys by becoming even more passive. Becker observed 
that ﻿teachers seemed to reinforce the traditional view of mathematics 
as a male domain, for example through language or examples used 
for explanations. Therefore, the identified class environment was not 
considered as a positive way to stimulate girls to continue their study in 
mathematics. In contrast, it seemed to have led girls to behave in ways 
that reinforce ﻿teachers’ expectations of male superiority.

﻿Koehler (1990) confirmed that boys receive more help from ﻿teachers 
than girls, they are more often involved in conversation with ﻿teachers, 
they receive more feedback on their behaviour from ﻿teachers, and they 
are provided more critical feedback on their work outcomes by ﻿teachers. 
Joachim ﻿Tiedemann (2002) documented that ﻿teachers attributed higher 
mathematical abilities and higher effort-resources to boys than to girls. 
Elizabeth ﻿Fennema, Penelope L. ﻿Peterson, Thomas P. ﻿Carpenter, and 
Cheryl A. ﻿Lubinski (1990) argued that the potential in mathematics of 
boys is usually overestimated, while that of girls is rather underestimated. 
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By examining ﻿teacher perceptions about their students’ mathematical 
ability by letting them classify if they consider maths classes as too easy 
or too hard for them, Catherine ﻿Riegle-Crumb and Melissa ﻿Humphries 
(2012) found that especially on mid-level classes, White females are 
more likely to be judged as being in a course too difficult for them.

Helga ﻿Jungwirth (1991) investigated how boys and girls interact in 
﻿teacher-centred classroom conversations, which are still widely found in 
everyday school life in the German-speaking part of the world. ﻿Jungwirth 
does not refer to the work of ﻿Belenky and colleagues (1997), but 
analogies in the results are obvious. She found that boys are more likely 
to respond to open and ambiguous questions or to give fragmentary 
answers, on which this teaching method basically thrives, while girls 
hardly respond at all to ambiguous questions or try to answer questions 
completely. This tends to disrupt the structure of this method and might, 
therefore, let them appear less competent. Furthermore, boys tend to 
hide their lack of knowing by dismissing it as a little mistake, taking up 
the ﻿teacher’s advice and corrections, while girls tend to emphasise their 
lack of knowing by sticking to their solution in a desire for thorough 
understanding. However, this mismatch of conversational expectations 
might give the impression that girls are less competent than boys. 
﻿Jungwirth stressed that girls adjust to such classroom cultures, so that 
changing classroom culture without addressing the role expectations of 
girls might be futile.

It is conceivable that certain aspects mentioned above show other 
patterns in single-sex schools, whose effects have been investigated 
in several studies (Becker, 2001; Delon, 1995; Hiddleston, 1995; Lee & 
Anderson, 2015; Morrow & Morrow, 1995; Prendergast & O’Donoghue, 
2014; Thompson, 1995). Although the research interests and approaches 
in the various studies are quite different, most studies show that girls 
benefit from single-sex schooling in mathematics education. The 
question is if this benefit stands even when girls engage with mathematics 
together with boys in future situations.

Jessica Brooke ﻿Ernest, Daniel L. ﻿Reinholz, and Niral ﻿Shah (2019) put 
on record that men appear more competent in mathematics than women 
also in student-centred post-secondary education in mathematics. They 
were able to show that women prove their mathematical competence 
in small-group discussions and in side talk and that they participate 
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in these discussions almost equally as men. However, in many cases 
their ideas do not find their way into public plenary discussions, which 
means that these discussions are not only dominated by men, but also 
that women’s mathematical competence remains invisible. 

Regarding the ﻿gender-specific treatment of women and men in higher 
education in mathematics, studies by Irene ﻿Pieper-Seier (2009) not only 
showed that women report more experiences of discrimination as their 
level of qualification increases. Moreover, personal support within the 
academic community is found to be particularly decisive for success but 
more often offered to men than to women, possibly due to a culture of 
self-sex support.

Belonging

Experiences based on the dimensions of ﻿gender and mathematics 
discussed above add up to very different feelings of belonging to 
mathematics, often to the disadvantage of girls and women. Catherine 
﻿Good, Aneeta ﻿Rattan, and Carol S. ﻿Dweck (2012) pointed out that 
the sense of belonging acts as a contributory factor when it comes to 
choosing maths courses or a career in this field. They found that the sense 
of belonging to maths is a strong predictor of the intent to pursue maths 
and to remain in the discipline. Feelings of belonging are more than 
changing the perspective from the structural effects of the dimensions of 
﻿gender and mathematics discussed above to individual manifestations 
of ﻿gender inequalities. They are very personal answers to situations in 
which mathematics, ﻿gender and the self interact in complex ways.

Women’s sense of belonging seems to be quite vulnerable to the 
perceptions of their academic environment. Stereotype threat – the effect 
of explicitly or implicitly believing a negative stereotype about a social 
group – seems to trigger psychological processes leading to a weaker 
performance. Steven J. ﻿Spencer, Claude M. ﻿Steele, and Diane M. ﻿Quinn 
(1999) found that when female students believe the stereotype that they 
are not as able as males to do good at maths, their test performances 
decline. Sian L. ﻿Beilock, Elizabeth A. ﻿Gunderson, Gerardo ﻿Ramirez, 
and Susan C. ﻿Levine (2010) showed that female ﻿teachers’ maths 
anxiety correlated with negative self-concepts and low achievement 
among female primary students. These finding might be just the tip 



� 50919. Gender, mathematics, and mathematics education

of the iceberg, and stereotype threat might influence women’s feelings 
of belonging to mathematics more widely. Consequently, this could 
well lead to less interest to become a member of this community, even 
among high-achieving women. This is especially likely to be the case 
if the surrounding environment of women underlays the fixed-ability 
concept. ﻿Good, ﻿Rattan, and ﻿Dweck (2012) showed that, in environments 
with malleable ability attitudes, even high ﻿gender stereotypes did not 
harm women’s sense of belonging to maths. Therefore, it appears to be 
crucial if the surrounding community of women holds mathematical 
ability to be fixed or developable, and how it sees women’s maths ability 
relative to the ones of men. 

A special research focus has been laid on the interplay of feelings 
of belonging and the personal attribution of success and failure. 
Bettina ﻿Hannover (1991) documented that female students of German 
grammar schools are likely to assume less competence and expect less 
success than male students with comparable mathematical achievement 
– an effect that did not show for the subject of German language. Their 
self-assessment﻿ of their mathematical abilities is therefore much less 
favourable than their actual performance (Ludwig, 2010). Alternatively, 
one could speak of overestimation among boys, as they tend to judge 
their mathematical achievements higher than their grades are. 

The issue of confidence in the own mathematical ability also 
shows up on university level. In a project on students’ experiences of 
undergraduate mathematics, Melissa ﻿Rodd and Hannah ﻿Bartholomew 
(2006) conducted interviews to ask female students for their experiences 
studying mathematics. As at earlier educational levels, the women 
showed patterns of doubting their own mathematical abilities. Two 
keywords came up again and again during these interviews: specialness 
and invisibility. The stories of the women drew a picture of still being 
special when studying mathematics as a woman. In their observations 
of a lecture, Rodd and Bartholomew found that women showed a 
higher attendance rate than men, were the higher attaining group but 
mostly men were participating in it. Even high attaining women felt 
uncomfortable when they were asked to contribute. Consistent with the 
studies on the different roles of boys and girls in mathematics lessons, it 
seems that women choose different ways to acquire knowledge and that 
traditional forms of university teaching do not meet women’s learning 
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preferences. Jillian M. ﻿Knowles (2010) took up these insights when she 
noticed that her female mathematics students made considerably less 
use of tutoring than male students, identified underlying organisational 
structures as obstacles for the female students, and introduced a ﻿gender-
friendly support system for students of mathematics. In a study at a US 
university, Abbe H. ﻿Herzig (2004) found that even female mathematics 
staff were troubled by feelings of not belonging and chose to abandon 
mathematics on these grounds.

﻿Dweck and N. Dickon ﻿Reppucci (1973) introduced the concept of 
learned helplessness to explain the effect of the way in which success 
and failure are dealt with on a learner’s motivation and self-image. 
Men often attribute failure externally to certain circumstances or other 
person’s fault or simply talk about having had bad luck. On the other 
hand, they usually attribute success to personal skill. This means that 
even in the case of failure there is no reduction in self-confidence, while 
self-confidence is boosted in the light of success. Women often show 
exactly the opposite pattern. They blame themselves for failure and 
attribute success to external factors. This tends to lead to a lower level of 
self-confidence (Dweck et al., 1978). ﻿Leder (1980) suggested that learned 
helplessness at least partly explains ﻿gender differences in mathematics 
education, as they stand in the way of feelings of belonging.

Another explanation is that girls deny any belonging to mathematics 
by underestimating their abilities for tactical reasons (Bischof-Köhler, 
2002/2011). Matina ﻿Horner (1968) caused some controversy with her 
fear-of-success theory, according to which women are reluctant to 
prove their abilities because they fear that performing well within male 
domains will cause them to be rejected by society. Therefore, lower self-
confidence within this area might act as a kind of self-protection to meet 
the stereotypical expectations of society. Although not all subsequent 
studies came to the same results, some did reach the same conclusion: 
women in non-traditional careers were the least popular within both 
sexes (Pfost & Fiore, 1990). Men still seem to tend to react critically 
when women enter traditionally male domains, and women reflect this 
attitude. So, the fear of success is not without reason, even though it 
may not be as severe a problem today as it was in the days of ﻿Horner’s 
study.



� 51119. Gender, mathematics, and mathematics education

A different line of explanation locates the problem rather in 
environmental conditions than in the individual. ﻿Dweck (2007) argued 
that the combination of the mindsets that success in mathematics 
required talent rather than work and that this talent was more common 
among men than among women led to a loss of confidence when 
challenges occur. Especially in mathematics, it adds to the problem that 
effort is not valued as high as giftedness. She stated:

So if you believe in a math gift and your environment tells you that 
your group does not have it, then that can be disheartening. However, 
if, instead, you believe that math ability can be cultivated through your 
efforts, then the stereotype is less credible. (pp. 49–50)

A talent-focused mindset is therefore especially harming girls, as they 
might easily believe the negative stereotype that boys show more 
mathematical ability and hence are more likely to not deepen their 
mathematical knowledge. A change to mindsets in which mathematical 
ability is not a fixed thing but a consequence of work might protect 
women from such stereotypical views and might increase their 
confidence within mathematical tasks. Studies showed that the ﻿gender 
gap in mathematical achievement nearly disappeared when only 
looking at the students with such more beneficial mindsets (Dweck, 
2007). It seems like girls who believe that mathematical abilities can 
be developed and are not something unchangeable are doing just as 
good as boys do. This would indicate the need for some change within 
cultural values in the educational environment. Instead of believing that 
one is smart only if things come easily, a greater belief in the power of 
effort and the appreciation of it will lead to more confidence among all 
students. 

Problematising the discourse on mathematics and 
gender

Earlier, we introduced a post-structural perspective, which assumes that 
our reality is constituted through discourse, and that such discourse 
is necessarily ambiguous and interest-driven. We stressed that we are 
necessarily part of such discourses and reproduce them, positioning 
us as accomplices of such discourses. But we also stressed that we can 
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step out of such discourses and deconstruct them by analysing the 
way the discourses present reality, how they allow to interpret what 
is happening, which social roles they arrange, which forms of conduct 
they demand. Here, we will first attempt to deconstruct the discourses 
on mathematics and ﻿gender presented above. Then we will outline how 
a post-structural approach to mathematics and ﻿gender can help us build 
new ways of understanding.

Deconstructing the gendering of mathematics

Deconstructing these discourses does not mean to discard their validity 
but to contextualise and relativise the claims made. It aims at revealing 
the underlying assumptions and interests manifested in certain 
discourses and at opening spaces to think differently. In this spirit, we 
revisit the perspectives addressed above:

•	 The idea that different images of mathematics compete, and 
that they represent the interests of different groups, is no 
post-structural insight. From a post-structural perspective, 
we have however become aware that images of mathematics 
are closely intertwined with more general ideas of rationality, 
objectivity, and government, and that they usually direct at 
deprivileged positions for women. Valerie Walkerdine and the 
Girls and Mathematics Unit (1989) draw on Foucault (1975) to 
argue that rationalism has constructed modern academia as a 
truth-seeking and masculine enterprise, relegating women to 
household work. This idea is deeply rooted in contemporary 
discourses on how and by whom academic work should be 
approached and creates struggles for women who want to 
unite mathematical success and femininity in their identity 
work. 

•	 Much effort is being laid in the measurement and comparison 
of achievement in mathematics. From a post-structural 
perspective, objective achievement does not exist and the 
very idea of achievement and differences in achievement are 
inseparably linked to the practices through which discourses 
on achievement are constituted. Most assessment﻿ programs 
on the basis of which performance is compared by ﻿gender 
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use batteries of short and one-ended tasks. As shown in our 
discussion on cognition, learners differ in how quickly and 
technically instead of carefully and holistically they want to 
understand issues, in how much they enjoy racing through 
competitive situations, and in whether they share the style 
of thinking in which a problem is presented. Pamela L. Paek 
(2010) tested a group of 122 Californian high school students 
once with a timed pen-and-paper test and then with an 
untimed online ﻿computer system. She found that boys showed 
better achievements in the timed pen-and-paper test while 
girls performed better in the untimed online test. How far can 
the small differences in national and international assessments 
between boys and girls then be said to indicate differences in 
mathematical ability, and how far do they only indicate that 
the assessment instruments serve rather male than female 
expectations and strengths?

•	 As the often-documented underrepresentation of girls and 
women in mathematics addresses limited educational 
options and limited access to socio-economically prestigious 
careers, such underrepresentation is usually considered a 
problem that has to be challenged. However, we propose 
to also critically address the social environment in which 
such underrepresentation can be constituted as a problem. 
For example, from a perspective in which uncritical use 
of mathematics and science is held responsible for the 
technological devastation of our planet, the overrepresentation 
of boys and men in mathematics might be seen as a social 
problem. Such a change of perspective does not change the 
socio-economic consequences of underrepresentation, but it 
might help to understand and question the system in which 
women deciding against mathematics come to be seen as a 
problem.

•	 Biological attempts to explain inequalities between men 
and women in mathematics depart from an uncritical 
understanding of ﻿biology. From a post-structural perspective, 
﻿biology itself is not objective, but necessarily a political 
discourse. This becomes obvious when revisiting historical 



514� Breaking Images

biological theories that were intended to prove the superiority 
of a specific ﻿gender, ethnicity or﻿ race, and it is still effective 
today as becomes obvious in the often-practiced dichotomic 
definition of ﻿gender or the assumption that body and mind 
are widely separated entities. Alternative positions, which 
are just as scientifically sound, propose that body and mind 
are closely interwoven, that our experiences and discourses 
can influence the composition of the body, and that bodily 
differences between the sexes, at least those deemed to affect 
our relationship to mathematics, may well be produced 
discursively. For example, visuospatial skills are not biological 
invariants but can be improved through training (Marulis et 
al., 2007; Sorby & Baartmans, 2000).

•	 Cognitive explanations suggest that there are innate differences 
in the ways men and women think. Studies such as Women’s Ways 
of Knowing (Belenky et al. 1986/1997) had a historical function 
in claiming a distinct female identity instead of regarding 
femininity merely as an inferior version of masculinity, but 
they also carry the message that there are ways of knowing 
closely connected with being a woman in a biological sense. 
From a post-structural perspective, we contend that there 
are different meta-discourses that regulate how knowledge 
is valued, connected, structured and communicated. Again, 
such meta-discourses are ambiguous and interest-driven. 
Cognitive studies show that different styles of thinking are not 
used exclusively by one gender but cross gender boundaries. 
Gender differences appear because a majority of men prefers 
a certain style amongst the alternatives they have, while 
most women prefer a different style. Such preferences need 
not be natural; instead, they can be assumed to result from 
other gender-biased cultural influences. Therefore, it would 
be short-sighted to uncritically take different ways of knowing 
as a departure of a differentiated organisation of mathematics 
education. Instead, the different cognitive approaches deserve 
closer analysis as to how they organise our relationship to the 
world. Such an analysis might come to the conclusion that 
education in a specific way of knowing is crucial for our society 
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and that it is legitimate to form students’ thinking accordingly. 
Such an analysis might also come to the conclusion that it is 
paramount to introduce all students to a plurality of ways of 
knowing, and to critically address the position of mathematics 
within this cognitive field.

•	 Just like ways of knowing, learning preferences clearly differ 
between men and women, but do not allow to draw clear lines 
between the genders. Boaler (1997) documented that a few 
girls have the same preferences as the majority of boys, that 
some boys have the same preferences as the majority of girls, 
and that some preferences are shared by both genders. Anna 
Llewellyn (2012) raises the question if such preferences are 
formed by the discourses of what it means for girls and boys 
to be a good student. Again, it would be short-sighted to take 
the discourses which say that women need to be taught in one 
way and men in another way for granted. These attempts to 
change classroom interaction, which has already been identified 
as a source of gender inequality in mathematics education, can 
easily produce new inequalities and reinforce the assumption 
that boys and girls are different species in the mathematics 
classroom.

•	 While it has been established that feelings of belonging and 
not belonging influence students’ educational and vocational 
choices, it would be dangerous to search for the reasons 
for different feelings in the individuals or in a specific 
﻿gender alone. Indeed, psychological work on stereotype 
threat, learned helplessness, and fear of success depart 
from an analysis of the individual. Interventions based on 
such theories usually attempt to change the mindset of the 
individual. However, all these theories already acknowledge 
that feelings of not belonging result from an interplay of 
individuals and their social environment. Consequently, the 
social environment and the interplay mechanisms, which 
allow for structural exclusion by feelings of not belonging in 
the first place, should receive just as much attention as the 
psyche of the individual.
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Understanding the gendering of mathematics

Post-structural analysis investigates how ﻿gender is incorporated 
when learners construct discourses that explain their relationship 
to mathematics. Thereby, ﻿gender is seen as a problematic discourse 
itself, rather than as the safe grounds from which to engage in further 
analysis. ﻿Walkerdine and the ﻿Girls and Mathematics Unit (1989) stated 
that dominant views tend to present possible causes of such differences 
as something real and true. Contrary to that, their way of dealing with 
the ﻿gender problem is ‘one which treats truth not as something easily 
empirically verifiable but as slippery stuff created out of fantasies and 
fictions which have been made to operate as fact’ (p. 19).

They pointed out that there is the trap of thinking mathematics and 
﻿gender in patriarchal patterns formed by society, trying to prove the 
assumption that there is a gap between girls and boys and then finding 
ways to put right what was found wrong. They argued that research 
about ﻿gender tends to focus on searching for differences, whereas 
similarities are often neglected and seen as a failure to show significant 
differences. The interpretation of results, they wrote, often indicated 
that the approach of the study was to show that girls lack something 
that boys have (e.g., competence, confidence, spatial abilities) or to show 
that girls are different. The problem with this approach, however, is that 
with a search for deficits, one group is always portrayed as a problem 
and bears the blame. ﻿Walkerdine and the ﻿Girls and Mathematics Unit 
questioned if such a perspective can help women in any way.

According to them, rationality and mathematical thinking are still 
viewed as closely linked to the cultural definition of masculinity within 
society. Such patriarchally shaped societies are affected by the myth that 
women and mathematics are not inherently compatible and therefore 
differences between males and females are seen even when there are 
none. Since we are all part of society, we are quite likely to adopt this 
view, even if we are not aware of it. Thus, whenever participating in 
society we tend to confirm and reproduce this view.

Just as much as ﻿gender discourses influence the discourses we 
relate to when making sense of us in relation to mathematics, our 
relation to mathematics influences how we constitute ourselves as 
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gendered people. Thereby, ﻿identity work on ﻿gender cannot be reduced 
to deciding whether we are male or female. Rather, ﻿identity work on 
﻿gender requires a positioning in discourses that describe ﻿gender roles 
differently, in combining different discourses, maybe in rejecting and 
reauthoring them. In this sense, although we have evidence of women 
who do not combine discourses of mathematical success and femininity 
and consequently abandon mathematics when they have the chance to 
(Herzig, 2004), mathematical success can also be the source of a new 
kind of femininity (Foyn et al., 2018, addressed below).

In her analysis of case studies, ﻿Mendick (2006) documented how 
﻿identity work negotiates among divergent discourses on ﻿gender and 
mathematics. She found that the students positioned themselves 
and others within binary oppositions such as talent vs. hard work or 
real understanding versus rote learning. Thereby, both sides of the 
oppositions are unequally valued with higher-valued sides associated 
with masculinity and lower-valued sides associated with femininity. 
This is the discursive minefield in which girls and women have to build 
an ﻿identity as a learner of mathematics.

After Mendick (2006) had documented the gendered ﻿identity work 
of school students in mathematics, further case studies resulted in 
similar findings and deeper insights, also in different environments. 
Trine ﻿Foyn, Yvette ﻿Solomon, and Hans Jørgen ﻿Braathe (2018) presented 
case studies of high-achieving girls in mathematics and presented how 
they identified as a ‘nerd’ and how they had to renegotiate their social 
roles. ﻿Elizabeth de Freitas (2008) authored a fictional biography of a 
girl obsessed with mathematics and illuminated possible connections 
between the epistemology of mathematics and ﻿gender stereotypes. 
Jennifer ﻿Hall (2010) reported how female high school and university 
students of mathematics dealt with the feeling of not belonging to 
mathematics. A longitudinal study by Fiona ﻿Walls (2010) traced the 
﻿identity work of both male and female students of mathematics from 
primary to secondary school and illustrated how ﻿identity work in 
mathematics relates to the gendered discourses that adolescents are 
subjected to. Yvette ﻿Solomon, Darinka ﻿Radovic, and Laura ﻿Black (2016) 
presented a retrospective on the ﻿identity work of a female mathematician 
within a field of experienced contradictions.
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Where is mathematics?

It is astonishing how little reference is made to mathematical contents 
and methods when ﻿gender differences in mathematics and mathematics 
education are discussed. Our argument here is that an important 
perspective on ﻿gender and mathematics is missing in the current 
literature. We will show this shortcoming in the discussion of a text by 
﻿Ernest, only to later express some initial thoughts on how mathematics 
might come into play.

The strange absence of mathematics

One would assume that the discourse called mathematics would have 
an impact on ﻿gender differences in mathematics and mathematics 
education. How then is mathematics addressed in ﻿gender-oriented 
research in mathematics education? We already saw that the 
relationship between ﻿gender and mathematics can be located in 
different dimensions, but none of these address mathematics as a 
discourse in itself.

Public images of mathematics might be the closest to an analysis 
of the discourse of mathematics, as the suitability of such images 
is usually evaluated by their suitability to certain philosophies of 
mathematics. Ernest (1995) presented one of the most profound 
discussions of images of mathematics in connection to the philosophy of 
mathematics. He indicated analogies between absolutist philosophies 
of mathematics, traditional teaching styles, and a masculine style of 
thought on the one hand and fallibilist philosophies of mathematics, 
reform teaching styles, and a feminine style of thought. On this basis, 
which would itself be worthy of discussion, he postulated that ‘such 
values, stereotypes and beliefs end up as a vicious cycle denying 
women equal opportuniti es’ (p. 456).
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 Fig. 19.1 The reproductive cycle of ﻿gender inequality in mathematics education 
(after P. ﻿Ernest, 1995, p. 457).

Ernest’s vicious cycle, presented in Figure 19.1, is powerful indeed. 
However, what role does mathematics play in this explanation? 
Where in the cycle does the specificity of mathematics come into play? 
What is special about mathematics so that this vicious cycle works 
for mathematics as it would for chemistry but not for ﻿psychology? If 
we do not want to make ourselves believe that ﻿gender inequalities in 
mathematics are a mere coincidence or historical artefact, we will have 
to look for the reasons in mathematics.

Ernest’s argument that a fallibilistic philosophy of mathematics 
is associated with reformist teaching styles and that it approaches 
mathematics in line with feminine ways of thinking assumes that 
mathematics itself has no ﻿gender-bias so that the image of mathematics 
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could be changed towards a more ﻿gender-inclusive form. This assumption 
is shared by many, both in studies on ﻿gender and mathematics (e.g., 
Chapman, 1993) and beyond (e.g., Skovsmose, 2011). In his Invitation to 
Critical Mathematics Education, Ole Skovsmose (2011) sees ‘mathematics 
education as being undetermined’, ‘without “essence”’, able to ‘be 
acted out in many different ways and come to serve a grand variety 
of social, political, and economic functions and interests’ (p. 2). In this 
spirit, ﻿Leone Burton (1995) proposed ‘that the perceived male-ness of 
mathematics is equally an artefact of its production and its producers’ 
(p. 215). Critical and ﻿feminist research in mathematics education is then 
supposed to find a way of teaching mathematics that allows for equality. 
Here also, critique is reduced to the teaching methods and does not 
cover the discourse of mathematics.

We deem it possible that the social turn in the philosophy of 
mathematics, which allowed to understand mathematics as a social 
construction, left the impression that this construction was fully open to 
change and could be adjusted to social interests. Pat ﻿Rogers and Gabriele 
﻿Kaiser (1995) assumed that a ﻿gender-inclusive form of mathematics 
‘will involve a fundamental shift in what we value in mathematics, in 
how we teach it, in how mathematics is used, and in the relationship of 
mathematics to the world around us’ (p. 9). Obviously, such a change 
of mathematics might mean that mathematics would no longer be 
able to play the role it plays in society today, that we create something 
completely different. Here, we do not talk about what we approach as 
mathematics today, but about a fiction called mathematics, without any 
idea of how much both ideas would overlap.

From a post-structural perspective, contemporary mathematics is 
a collection of practices, knowledge, beliefs, and applications whose 
meaning is constituted discursively. As a discourse, mathematics is 
necessarily ambiguous, interest-driven, and inseparably connected to 
the other discourses it is defined by. Mathematics might not have any 
metaphysical ‘essence’, but it has meaning which is well-demarcated 
through its use in discourses. We propose to investigate that meaning 
in order to analyse in what sense mathematics can be understood as a 
gendered activity.
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Mathematics as separated knowing

With reference to the distinction between separate and connected 
knowing presented by ﻿Belenky and colleagues (1997), ﻿Chapman (1993) 
warned us that ‘the traditional view of mathematics as a value-free, 
purely cognitive endeavour […] tends to dehumanize or objectify 
it, thus limiting it to a framework with characteristics that are more 
compatible with separate knowing than connected knowing’ (p. 
208). She demanded that ‘mathematics be reconceptualised to reflect 
its humane features and mathematics classroom processes revised to 
facilitate the characteristic ways of knowing of both males and females’ 
(p. 209). In ‘Moving Towards a Feminist Epistemology of Mathematics’, 
﻿Burton (1995) drew on conceptualisations of mathematics as a social 
practice, refused the myth of objectivity, and stressed that mathematics 
is open to error, never fixed, and requires different perspectives and 
exchange – all in line with connected knowing.

We argue that this discourse still does not advance to the issue of 
mathematics. Admittedly, these philosophical attitudes try to make sense 
of mathematics and can align more to separate or connected ways of 
knowing. However, this tells us more about these attitudes than about the 
social practice of mathematics. Ian ﻿Hacking (2014) argued that usually 
mathematicians neither participate in these philosophical discussions 
nor do they find them enlightening of their practice. The work of ﻿Davis 
and ﻿Hersh (1980) was composed in this spirit. They dedicated only 
one chapter of their The Mathematical Experience to these philosophical 
debates and far more to reflections of doing mathematics. They further 
noted ‘that the typical working mathematician is a Platonist﻿ [assuming 
mathematics to be objective and truth to be recognisable] on weekdays 
and a ﻿formalist [assuming mathematics to be ambiguous constructions 
and knowledge related to such constructions] on Sundays’ (p. 321). It 
is telling that such a view constitutes a paradox for the philosopher but 
does not hinder the work of the mathematician. We propose that, while it 
is clear that mathematical work is partly subjective, open to debate, and in 
need of different perspectives, objectivity is an ideal that mathematicians 
strive for. On weekdays they have a Platonist﻿ attitude when working 
towards this ideal, while on Sundays they can lean back and admit that 
mathematics stays messy and the ideal has not been reached. Platonist﻿ 
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attitudes can then be considered one form of describing that ideal, while 
alternative attitudes, which argue that such an ideal cannot be fully 
realised, do not hinder anyone on holding these ideals.

We also propose that this ideal permeates the whole mathematical 
discourse. David Kollosche, in Chapter 5 of this volume, argues that 
calculation and logic, two practices present in any area of mathematics, 
are explicitly directed at such objectification, at separating mathematics 
from us rather than connecting it to a plurality of meanings. This 
disconnectedness of mathematics is what constitutes it as a discipline 
in its own right and establishes it in opposition to applied disciplines 
such as ﻿physics. From this perspective, mathematics is not waiting to 
be humanised or to open up for connective knowing. Rather, separated 
knowing is the very ideal of mathematics. Changing that ideal would 
require mathematics to become something very different, something 
that might not be assigned the same cultural value. We think that before 
asking mathematics to change, we should direct our attention more 
closely to the social situatedness of mathematics and its connection to 
separated knowing. That does not mean that the teaching and learning 
of mathematics cannot be changed to more ﻿gender-inclusive forms, 
nor do we think that the separated nature of mathematical knowledge 
necessarily excludes women. Instead, we should endeavour towards 
a transparent, explicit, and unbiased discussion of the importance, 
potential, limits, and dangers of mathematical forms of knowledge. 
Making the gendering of mathematics and connected styles of thinking 
explicit should constitute a vital step towards rejecting presupposed 
﻿gender-roles and finding new ways of identifying with mathematics.

Mathematics as a patriarchal project

Another feature of the discourse of mathematics which is closely 
related to ﻿gender issues is the analogy between logical hierarchies and 
patriarchal social systems as discussed in detail by Kollosche in Chapter 
5 of this volume. While communities before did not know fatherhood 
and private property, patriarchal societies connected the ideas of 
property and father-son relationship through the idea of inheritance. In 
this logic of inheritance, one’s position in the net of relationships is static 
as you always stay your father’s son. Further, you either are somebody’s 
son or you are not – this dichotomy does not allow for mixed or third 
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identities. Eventually, you are defined by whose household you will 
inherit. This logic of inheritance can be found again in the organisation 
of the military and in the organisation of the world of polytheistic gods. 
Eventually, a logic of thought has been developed in patriarchal ﻿Ancient 
Greece, which shows the same organisation: the meaning of its objects 
is static through definition, its subsumption under other objects is either 
true or false, and its features can be deduced from objects under which 
it is subsumed.

We find it hard to disregard the structural analogy between the 
patriarchal organisation of society and the logic that some ﻿Ancient 
Greek philosophers and rationalists celebrated as its purest expression. 
It seems unlikely that the development of logic as a very distinct 
organisation of thought in ﻿Ancient Greece was completely independent 
from the development of patriarchy in the same culture only a few 
centuries earlier. We propose reconsidering to what extent the ideas 
that meaning is static, can be expressed through dichotomies, and is 
inherited through directed bipolar relationships represent ﻿gender-
biased assumptions. These assumptions, we argue, lie at the heart of 
mathematics and present it as a patriarchal project for making sense of 
our world. Thereby, understanding mathematics as a patriarchal project 
does not mean that women are excluded from mathematics or less 
able to do mathematics. Instead, it means that mathematics mirrors a 
social organisation which reproduces male hegemony, thereby possibly 
reinforcing the latter and provoking sentiments differing by ﻿gender.

Moral dilemmas instead of a conclusion

The documentation of inequalities in the education system and beyond 
is often accompanied by demands to take action. But, as might be 
guessed from the deconstruction of ﻿gender, what might seem to be a 
good intervention from one perspective may raise serious concerns 
from a different perspective on mathematics and ﻿gender. Sue ﻿Willis 
(1996) differentiated between four perspectives on mathematics and 
﻿gender, identifying either women, classroom practices, the mathematics 
﻿curriculum, or social inequality itself as the main problem. We will 
address some of the moral paradoxes invoked by these perspectives in 
this last part of our chapter with the hope of further elaborating the 
grounds on what can be done.
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Changing women

Since the 1960s, programs have been installed around the globe to 
positively influence the achievements, career choices and self-images 
of girls and women in mathematics. ﻿Burton (1990), ﻿Rogers and ﻿Kaiser 
(1995), as well as Lynda R. ﻿Wiest (2010) included reports about various 
such programs. However, many of these programs have been criticised, 
as they tend to ignore ﻿feminist approaches to mathematics and seek to 
adjust feminine intellect, choices, and attitudes to a masculine norm, 
thus installing masculine approaches to mathematics as normality and 
portraying feminine approaches as inferior. For example, Olive ﻿Fullerton 
(1995), who taught mathematics methodology for prospective primary 
school ﻿teachers at university, stated:

One of the barriers to understanding mentioned frequently by the 
﻿teacher candidates working with me, was that, for them, mathematics 
was neither relevant nor meaningful. They did not appreciate that 
mathematics permeated their lives, that their every action was in some 
way connected to mathematics, that the beauty and harmony of their 
world was due in large measure to mathematics. (pp. 44–45)

In her statement, Fullerton assumed that there is a truth about the role 
mathematics plays and should play in our world, and that her female 
students require assistance to recognise this truth. As ﻿Willis (1996) 
framed it from a deficit perspective, ‘the problem lies with the children, 
who, because of their ﻿gender,﻿ race, ethnicity, social class or disability, 
lack the knowledge, skills or motivations necessary for access to, and 
success in, school mathematics’ (p. 44). ﻿Boaler (1997) criticised how 
such a perspective is not interested in the girls’ experiences and in the 
reasons for their action; it is only interested in changing the girls so that 
they can reach the achievements and ﻿representation of boys.

There are, however, many programs that opened up for feminine 
approaches to mathematics. For instance, Charlene ﻿Morrow and James 
﻿Morrow (1995) repeatedly organised summer schools for female high-
school students in the United States. These included classes in ﻿problem 
solving, in fundamental mathematics concepts, and in programming. 
The organisers wrote that they laid special foci on allowing for women’s 
ways of knowing, on increasing self-confidence in mathematics, and on 
developing a voice in mathematics. From the student feedback presented 
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by the organisers, it becomes clear that such opportunities can have an 
empowering effect for the participants. Such feedback is reassuring and 
documents that this approach is worth considering.

While programs that take place independently from school can be 
assumed to usually meet the interests of the girls and women who 
choose to participate, programs interacting with schools, for example 
by working in schools, inviting classes, or providing teaching materials, 
approach girls who might have no desire to renegotiate their relationship 
to mathematics. No matter how well-intentioned, sensitive, and open 
such obligatory programs might be, they are still forms of manipulation. 
Is it really emancipation to encourage women to pursue mathematics, 
even when they have valid reasons not to? If the environment in which 
women learnt not to identify with mathematics does not change, 
would not fostering enthusiasm for mathematics, especially in secure 
environments, only create a deeper conflict of ﻿identity for these women 
when they return to their original environments? May there even be 
good reasons not to be too enthusiastic about mathematics as a way to 
approach our world? It seems fair to conclude that programs, which 
offer women a safe space to investigate their relationship to mathematics, 
are important. However, they should be open to the possibility that 
women might have good reasons not to pursue mathematics, and they 
should be accompanied by ﻿gender-inclusive changes of the mathematics 
classroom and the mathematics ﻿curriculum.

Besides, it is an interesting thought experiment to consider whether 
boys, rather than girls, should change their relationship to mathematics. 
This is not to suggest that boys should aim for lower achievements in 
mathematics to achieve equal outcomes. However, given the critique 
that assessment﻿ instruments usually benefit a masculine approach 
to mathematics, instruments favouring women might put men in 
a deficit position and demand them to change in order to fill that 
gap. Concerning the didactical shift from mastering mathematical 
procedures, which now can be outsourced to ﻿computers, to a critical 
understanding of mathematics, connected knowers might indeed be 
advantaged over separated knowers. Eventually, it might turn out that 
a separated and therewith uncritical approach to mathematics laid the 
basis for devastating applications in modernity. Such a perspective 
might explicitly position mathematics as a problem of masculinity.
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Changing classrooms

Changing the teaching and learning of mathematics in order to challenge 
﻿gender inequality in mathematics leads to moral dilemmas as well. The 
work of ﻿Boaler (1997) shows clearly that the preferred ways of teaching 
and learning differ between boys and girls. Does that mean that the 
organisation of teaching and learning should be adjusted to meet 
the wishes of all learners? Is that even possible? Or is the implication 
that students should be allowed to choose from mathematics courses 
that differ in their styles of teaching and learning, even if that led to 
something close to single-sex education in mathematics? If we followed 
this latter plan to approach mathematics in such safe havens, what would 
that mean for our students’ abilities to approach mathematics once they 
leave our safe havens and engage with mathematics in their future lives? 
Do we risk that our students fall back into old patterns because they had 
no chance to learn how to navigate in an environment with divergent 
approaches to mathematics? In the end, does meeting students’ ﻿gender-
sensitive learning preferences actually reproduce ﻿gender inequalities?

A more general question is whether teaching styles should be chosen 
on the basis of students’ learning preferences at all. Educational theory 
might present well-founded arguments on why to teach mathematics 
in specific ways. For example, if mathematics education was meant to 
produce technocrats who are able to technically master mathematics 
without asking many why questions, would it not be only natural to 
rely on exposition and individual exercise, irrespective of how boys 
and girls reacted to this orientation? If, on the other hand, mathematics 
education was meant to allow for a critical and multifaceted perspective 
on mathematics, would it not be only natural to allow for diverse 
approaches to mathematics and to facilitate discussions on these 
approaches, again irrespective of how boys and girls reacted to that 
orientation? What causes ﻿gender inequalities here is that specific ways 
of teaching and learning are gendered and not equally accessible for or 
valued by all genders.

We conclude that there are no clear answers on how to change 
classroom practice to combat ﻿gender inequalities in mathematics 
education. The overall problem is that the teaching of mathematics is 
embedded in a complex social system. Even if we know that specific 
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measures have the potential to fight ﻿gender inequalities, they might 
produce ﻿gender inequalities of a different kind and further problems or 
radical changes regarding the teaching and learning of mathematics. A 
pragmatic approach here, in order to avoid getting stuck in the midst of 
these paradoxes, is to promote changes to the best of our knowledge and 
to deal with upcoming problems as they arise. The awareness that there 
are no easy answers for classroom interventions may help us to see such 
problems coming and to meet them with open eyes.

Changing contents

﻿Willis (1996) reminded us that ‘the choices made in developing school 
mathematics ﻿curricula will reflect the values, priorities and lifestyles of 
the dominant culture’ (p. 45). She continues that, with respect to ﻿gender, 
school mathematics could privilege characteristics of mathematics which 
are identified more closely with the masculine over characteristics more 
closely identified with the feminine, such as the logical over the intuitive, 
the context-free over the context-bounded, the rational and abstract over 
the personal and social, the unambiguous over the ambiguous, or the 
absolute over the relative (ibid.).

Indeed, many of the ﻿curriculum reforms undertaken in many 
countries in the last decades can be interpreted as pointing in this 
direction. The mastery of standard techniques for calculation and ﻿proof, 
together with a desire to accumulate truths, which were dominant in 
traditional mathematics ﻿curricula, are well aligned to what ﻿Belenky 
and colleagues (1997) termed the more masculine separate knowing. 
The corresponding activities made room for more connected knowing 
in the sense of a multi-faceted understanding: individual approaches 
in ﻿problem solving and ﻿modelling, appreciation of different voices in 
group work and classroom discussions, productive ways of dealing 
with seemingly wrong ideas, even critical reflections on the use of 
mathematics. Aside from questioning how far this shift from viewing 
mathematics as a product to seeing it as a social activity (see Chapter 
1 in this volume) has affected the mathematics classrooms, could it be 
that the prescribed mathematics ﻿curriculum has already opened up for 
more diverse and especially connected approaches to the subject? We 
see two problems here.
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First, it is unclear how far such reforms indeed affect schools. 
Kollosche (2018) proposes that many reform initiatives in mathematics 
education fail because they disregard the social expectations directed 
at schools. Contributions in the so-called math-war discussions 
in the US, where some mathematicians expressed their interest in 
preserving a conservative conception of mathematics (summarised in 
J. R. Brown, 2008, pp. 207–217), lay bare such expectations, but we can 
expect that this is just the tip of the iceberg and that most expectations 
are communicated through more subtle channels. Tony ﻿Brown and 
Olwen ﻿McNamara (2005) captured how the growing industry of 
standard ﻿testing with its focus on test items, which can be answered 
unambiguously and quickly, has caused ﻿teachers to direct their teaching 
away from the reform ﻿curricula and back to teaching mathematical 
techniques and truths. Consequently, we wonder how far ﻿curriculum 
reforms that would open up mathematics for various ways of knowing 
is still nothing but an aspiration.

Second, it is unclear how far the mathematics ﻿curriculum can open 
up at all. Curriculum change has addressed the methods through which 
the mathematical contents are approached. We agree that it is possible 
to allow for other ways of knowing here. However, the mathematical 
contents remain widely untouched. The triangle stays a triangle; the 
﻿Pythagoras theorem stays the ﻿Pythagoras theorem. As we concluded 
earlier in this chapter, mathematics as a body of knowledge is closely 
related to a distinct way of knowing, and it is questionable how far it 
can be altered at all.

Changing us

Socio-critical scholars proposed that ﻿gender inequalities in mathematics 
are an active part of a larger problem, and that they should be addressed 
as such. Paul ﻿Dowling (1991) stressed that the inequalities are actually 
functional in reproducing social advantages of men. The mathematics 
classroom then appears as a mere part in a larger system which aims 
at securing and reproducing discourses that position men in superior 
social positions. From such a perspective, it seems questionable how 
far ﻿gender ﻿equity in mathematics education can be achieved while the 
discourses reproducing inequality survive throughout society. In short, 
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does it make sense to fight ﻿gender inequalities in the mathematics 
classroom, or would it be necessary to become a ﻿gender activist with a 
general agenda?

We would argue that change has to start somewhere and in many 
places before social systems can be said to have changed as a whole. 
It would be unethical to tolerate structural disadvantages for girls 
and women while waiting for global answers to ﻿gender inequality. 
Pending further research and without a global solution, change has 
to be promoted by us, mathematics educators or not, concerning the 
ways mathematics is publicly perceived, the ways we understand 
mathematical achievement, the ways of knowing that we accept for 
approaching mathematics, the styles in which we teach and learn, how 
we treat each other as ﻿teachers and learners of mathematics, and the 
stories we tell about our and others’ relations to mathematics. These 
goals are unlikely to be achieved through a few interventions alone. We 
assume that they will provide challenges for generations of ﻿teachers 
and students of mathematics to come. Eventually, these changes may 
alter our understanding of mathematics and ourselves as mathematical 
beings in ways that cannot yet be i magined.
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20. Societal perceptions of 
mathematics and mathematics 

education

 Melissa Andrade-Molina and Alex Montecino

That ‘people are naturally bad at mathematics’ or that ‘mathematics is reserved 
only for people with higher intellect’ are naturalised discourses rooted in the image 
and belief about mathematics and mathematics education. This chapter focuses 
on mapping societal perceptions of mathematics and mathematics education. 
These perceptions are tracked within naturalised discourses circulating on social 
networks, such as ﻿YouTube and ﻿Twitter, and in the media, such as newspapers and 
TV shows. We unpack the ways of thinking and understanding mathematics and 
mathematics education in peoples’ comments based on their daily experiences 
as humans navigating modern society and news websites that have published 
articles related to mathematics and mathematics education in order to map and 
take a critical position on societal perceptions circulating about mathematics and 
mathematics education among the public.

Introduction

Now, look, we’re gonna be dealing with some real serious stuff today. You 
might have heard of it. It’s called math! And without it, none of us would even 
exist, so let’s jump right in. (Mr Goldenfold in ﻿Rick and Morty, ‘Pilot’, season 1, 

episode 1)

Nowadays, it is possible to find many references to mathematics and 
mathematics education on social networks – ﻿YouTube, Facebook, ﻿Twitter 
(now X) – and in the media – newspapers, TV shows, and so on. For 
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example, in the sitcom ﻿The Big Bang Theory, mathematics appears in 
the form of complex formulas located on whiteboards, whether in the 
offices of Caltech University or the apartments of the characters Leonard 
and Sheldon. The formulas are drawn from applied and theoretical 
﻿physics, which puts mathematics at an unreachable level in which even 
the physicists themselves are not sure about what they are doing – for 
example when ﻿Leonard needs Sheldon’s help and draws a symbol that 
ends up being Charlie Brown’s hair instead of a mathematical notation. 
Ordinary people, such as the character Penny, an ‘average’ American, 
are typically portrayed as people that find mathematics hard and rely 
on the rest of the characters to help them. This issue is not restricted to 
﻿gender bias. The character Stuart, an art major from the Rhode Island 
School of Design and owner of the comic bookstore, The Comic Center, 
also struggles with complex calculations. Being a scientist, or having a 
PhD in a ﻿STEM (Science, Technology, Engineering, Mathematics) field, 
seems to guarantee a character’s high intellect and interests bordering 
on geekiness, exemplified by many characters from ﻿The Big Bang Theory 
or Ross Geller from ﻿Friends. Well, except if the character is a woman, 
apparently. ﻿Futurama is an animated science fiction sitcom in which 
the character Amy Wong, a Martian, has a PhD in engineering from 
Mars University. Her interests are more related to social and fashion 
topics. She more rarely contributes to her field or engages in scientific 
discussions than her male peers. However, there are a few exceptions 
where this pattern does not happen (see, for example, the animated 
sitcom The ﻿Simpsons). 

That mathematics is challenging and that only smart people can 
understand its working seem to be common assumptions. ‘I’m not 
a mathematician’ is a recurring response when someone is asked to 
perform any type of calculation that requires even the basic operations 
of addition, subtraction, multiplication, and division. An example of this 
phenomenon occurs in ﻿Friends when the character Joey faces a situation 
that unfolds as follows: 

Joey: Full name. 

Cliff: Clifford Burnett.

Joey: Date of birth? 
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Cliff: November 16, 1968. 

Joey: Age? 

Cliff: Can’t you figure that out based on my date of birth? 

Joey: I’m a doctor, Cliff, not a mathematician. (﻿Friends, season 8, 
episode 23)

In movies and TV series, mathematics is portrayed as a highly complex 
subject. Mathematics is beyond reach, as, for example, in the film ﻿A 
Beautiful Mind about the mathematician John Nash. And this is not 
only for mathematics but extends to mathematics education as well. 
Even superheroes are nonplussed by mathematics. In the movie 
﻿Incredibles 2, Dash must do his mathematics homework and his father 
Bob (Mr. Incredible) starts helping him. Dash corrects Bob by saying 
‘That’s not the way you’re supposed to do it, dad. They want us to 
do it this way’. Here Bob replies with a reaction most parents could 
relate to nowadays: ‘I don’t know that way. Why would they change 
math? Math is math. Math is math!’ From examples like this, styles 
of teaching school mathematics have become a common subject of 
discussion. After watching several movies and TV shows, it becomes 
natural to begin wondering if mathematics is restricted only to brilliant 
minds. 

When it comes to understanding the struggle with mathematics, it is 
possible to posit several hypotheses. For example, Neil ﻿deGrasse Tyson, 
a contemporary physicist, elaborates on why most people are bad at 
mathematics (Cosmology Today, 2017). He asserts that ‘I’ve looked at 
how much trouble people have with mathematics typically because any 
one subject that the most people say, “I was never good at…” concerning 
a topic, it’s gonna be math’. His hypothesis deals with how our brains 
work: ‘I say to myself: If our brain were wired for logical thinking, then 
math would be the most, easiest subject, everything else would be harder. 
So, I am kinda forced to conclude that our brain is not wired for logic’. 
Here the apparent fictional reality of movies and TV series becomes 
an actual hypothetical phenomenon of generalised low academic 
performance in school mathematics. Being not good at mathematics 
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is, apparently, a shared experience for most people. A Google search 
on ‘why math is hard’ gives 667000000 results. The majority are articles 
addressing why people struggle with mathematics, with titles like ‘Why 
so many students struggle with math’, ‘Top 6 reasons math is hard to 
learn’, ‘Why is math so hard for some children’, ‘Why so many students 
hate math (and how to fix it)’, and so on. A Google search on ‘Why is 
math easy’ gives 593000000 results, within whose titles there is still the 
stigma of mathematics being hard, such as ‘How to learn mathematics 
easily’, ‘3 ways to make math easy’, ‘How I rewired my brain to become 
fluent in math’, ‘If you can’t learn math, maybe it’s not your fault’, ‘How 
to succeed in math’, and so on. 

The reaction of people to mathematics is not that distant from what 
﻿deGrasse Tyson stated. If ‘mathematics’ is searched on ﻿YouTube, the 
most-watched video with, almost fifty million views, is ‘15-year-old 
Yaashwin Sarawanan is a human calculator!’ (Asia’s Got Talent, 2019). 
On this video, one of the most ‘liked’ comments is: ‘Q. What is 4+5? Me: 
I think that should be 9. Pulls out a calculator just to ensure’ (22000 likes 
and 133 replies). At least twenty-two thousand people can relate to this 
situation, not trusting themselves in performing simple mathematical 
tasks. On the video ‘The surprising beauty of mathematics’ (TEDx 
Talks, 2014), with over six million views, one of the comments with more 
replies is: ‘I used to be great at math until I was taught the “proper” 
way to do it. Now I pretty much hate math’ (375 likes and 61 replies). 
One reaction for the previous comment refers to the style of teaching his 
﻿teacher had when he was a student and how it influenced his thoughts 
about mathematics: 

I had the same problem all my life. I used to be really bad at math, at 
least I thought so, because of the reasons you gave, ﻿teachers wouldn’t 
accept my work either, and worse, sometimes they would say that I just 
played with numbers without making sense, and copy the result from 
somebody else, especially, when I didn’t know how to explain, how I got 
my results. And I used to feel so lousy, and a total idiot.

These discourses seem to be part of the common sense of people. For 
instance, that mathematical problems have only one right answer or 
that mathematics is so abstract that it is not useful in day-to-day life 
and impractical due to rote memorisation of formulas (Colagrossi, 
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2018). Such discourses elevate mathematics to a supra-level of Platonic 
ideas far from the reach of mundane, average people, not being part of 
everyday life, and belonging only to mathematical geniuses. A parody 
of such discourses can be seen in The ﻿Simpsons (season 14, episode 7) 
when a math ﻿teacher teaches teenage gang members that ‘differential 
equations are more powerful than bullets’.

Mathematics is often portrayed as a highly relevant subject: Without 
mathematics, humankind, and life as we know it would not exist, but 
how many people do see mathematics as important? Apparently not 
so many. For a long time, research on the teaching and learning of 
mathematics and educational policies have tried to include ‘all’ people 
within the practices of school mathematics by arguing that people 
fully use it in their daily lives and that it should be enjoyable to work 
with (Pais, 2018). Some dominant narratives around mathematics 
have become highly recurrent within society, dealing with the value of 
mathematics (Pais, 2013). For Stephen ﻿Lerman (2014), such perceived 
value performs a role that has resulted in putting mathematics in a 
privileged position.

In this chapter, we seek to map and take a critical position on 
societal perceptions circulating about mathematics and mathematics 
education among the public. The study is relevant because it may 
critically rethink the role the media have in constructing meaning 
and the circulation of naturalised discourses about mathematics. The 
aim is to trace what has been said outside academia, often tropes that 
propagandise mathematics, offer salvation narratives, and (re)produce 
myths about, and dehumanise, mathematics. Therefore, the attention 
is not going to be on the places where mathematics education is taken 
as a scientific discipline, namely academia, but where the teaching and 
learning of mathematics stop being virtual.1 By placing the attention 
outside the field, we are aiming to break the predominant tendency 
within mathematics education research, which is to focus on internal 
issues of the teaching and learning of mathematics (Lerman, 2014), to 
(re)produce successful experiences (Gutiérrez, 2013), and to promote 
solutions (Pais, 2012).

1� ‘Virtual’ in the sense of Deleuze (2007). 
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Mapping social media’s discourses

That ‘people are naturally bad at mathematics’, or that ‘mathematics is 
reserved only for people with higher intellect’ are common assumptions 
found in social discourse. School mathematics has been one of the 
leading causes of anxiety (math anxiety) and fear (math phobia). How 
people approach mathematics depends on several factors coming from 
their previous or present experiences and preconceptions. 

As humans, we encounter a plethora of social stimuli in our 
environments every day and utilise a series of highly adaptive systems 
(e.g., attention, perception, memory) to make sense of incoming 
information. Together, these systems systematically alter the information 
in order to make it interpretable. Ultimately, the aim of using these 
systems and, more generally, of social information processing is to allow 
us to make attributions about others. Such attribution-making processes 
vary interpersonally in that two people may perceive the same event yet 
conjure up two different attributions. The bases of individual differences 
in perception are preconceptions, or ‘schemas’, that are acquired with 
experience as people encounter people, objects, or events (Garrido, 
2020, p. 5071). 

Perception becomes an adaptive process through which people 
sometimes make inaccurate interpretations of the social world (Garrido, 
2020). According to David ﻿Dunning (2001), research in the field of social 
perception has been focused on three key aspects: (i) debates regarding 
the types of information people pay attention to, (ii) tracing the cognitive 
processes people follow when receiving this type of information, and 
(iii) the types of judgments people can reach. Our interest in this 
chapter is how ordinary life’s language reveals the circulating and 
dominant narratives around mathematics and mathematics education. 
As Philippe ﻿Chassy (2014) contends, language provides a systematically 
biased perception of what is taken to be ‘reality’. In this regard, ‘the 
perceptual filters superimposed by language on social realities bias how 
individuals build a ﻿representation of the situation’ (p. 36). Along these 
lines, we approach mathematics through language, which is submerged 
into linguistic ﻿relativity (Sapir, 1929). He states that humans are ‘very 
much at the mercy of the particular language which has become the 
medium of expression for their society’ (p. 210). We cannot free 
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ourselves from bias about mathematics and mathematics education 
within social activity.

This chapter focuses on mapping societal perceptions of mathematics 
and mathematics education. Within mathematic education, perception 
has been addressed mainly in relation to students or ﻿teachers and their 
relationship with some mathematical topics or roles of mathematics 
in society (see Chan & Wong, 2014; Ikeda, 2018; Leung & Lee, 2013). 
Toshikazu ﻿Ikeda (2018) asserts that how students perceive the role 
of mathematics in society ‘should be distinguished from student 
appreciation of mathematics’ utility in society (p. 261). This is because 
‘some students might not appreciate the utility of mathematics in society, 
even though they can recognize its roles’. Aiming to unpack the ways of 
thinking and understanding mathematics and mathematics education, 
we search for circulating and naturalised discourses on online news 
and within expressions of people’s opinions. The search involves places 
where people comment about mathematics and mathematics education 
in their daily experiences as humans living in modern society and 
news websites that have published articles related to mathematics and 
mathematics education. 

We set some parameters to delimit the data. We started with sites 
where people verbalise their opinions without being asked to do so, 
such as a ﻿YouTube video comment box. There are plenty of ﻿YouTube 
channels related to the teaching and learning of mathematics and 
scientific topics engaged with mathematics. Therefore, social media 
sites, ﻿YouTube, and ﻿Twitter in particular, are the first places to look for 
societal perceptions. Facebook is not part of the sample since many 
pages dedicated to mathematics or mathematics education are not 
public. The second source of data is online news in English through the 
search engine provided by Google at news.google.com. After data were 
collected, they were further analysed using the big data software Nvivo, 
and then the analysed results were compiled and graphed using Gephi. 
The gathered data consist of 1500 ﻿YouTube comments, 1250 tweets, and 
846 pieces of online news.

On the one hand, social media study is based on: (i) ﻿YouTube video 
comments, and (ii) ﻿Twitter posts. Using the ﻿YouTube search tool, we 
identified the five most popular channels regarding mathematics 
– including mathematics teaching or dissemination of specific 

http://news.google.com
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mathematical topics. These five channels are the result of triangulating 
a ﻿YouTube search with the keywords: ‘math’ and ‘mathematics’ and the 
filters ‘Channel’ and ‘View count’. Additionally, we considered only the 
channels that enable posted comments (some channels have disabled 
the comment section for the most-viewed videos; these were therefore 
not part of the sample). The channels included: Numberphile, Khan 
Academy, Professor Leonard, PatrickJMT, and 3Blue1Brown. We selected 
only the comments from the five most-watched videos of each channel. 
Using the Chrome extension ﻿Twitter Archiver, we collected ﻿Twitter 
posts referring to math, mathematics, and mathematics education. This 
extension – the free version – enables saving up to one hundred tweets 
per hour by keywords. The tweets collected are a sample of a significant 
number of tweets published around the world. We selected only tweets 
posted in English.

On the other hand, the study from online news is based on a 
search at Google news. We gathered news regarding mathematics and 
mathematics education published between 2015 and 2019. We know this 
methodology can be affected by the search ﻿algorithm from Google, that 
prioritises some news over others. Multiple factors – a lot of these are 
beyond our control – are key for showing what is more ‘appropriate’ for 
each user. However, it is plausible to see a sort of saturation regarding 
the published online news despite this bias.

The strategy for studying ﻿YouTube video comments and ﻿Twitter 
posts is based on saturation of discourses around mathematics and 
mathematics education. We decided to approach the sample with 
this strategy given the nature of the data and the number of possible 
comments and posts we could gather. Saturation becomes helpful since 
it ‘is a term used to describe the point where you have heard the range 
of ideas and aren’t getting new information’ (Krueger & Casey, 2014, p, 
64). In other words, at some point, the selected samples should become 
repetitive in their content and purpose. And although some readers 
may consider this review superficial or general due to the nature of the 
sample and its limited volume, we may cite social network analytics’ 
recurrences. 
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The media, societal perception, and mathematics 
education

It is not rare to encounter news headlines such as ‘The myth of being 
“bad” at maths’ (Wen, 2012), published by BBC News Online. This article 
reveals that, according to a study by Silke ﻿Luttenberger, Sigrid ﻿Wimmer, 
and Manuela ﻿Paechter (2018), around 93% of US adults experience some 
level of math anxiety. Thus, people unable to understand mortgage 
interest payments are advised not to feel alone anymore. The article also 
elaborates on how mathematics has become the school subject of the 
one-right-answer or the right-or-wrong conundrum, so ﻿teachers should 
emphasise to students that mistakes are part of mathematics learning. 
And so, math anxiety is naturalised as a cause of bad performance (or, 
at least, an essential part). This means that only 7% of US adults do 
not experience math anxiety; such people are not part of the myth of 
being ‘bad’ at mathematics. As for young children, they are not exempt 
from math anxiety. The news article ‘“Maths anxiety” causing fear 
and despair in children as young as six’ (Weale, 2019) released by The 
Guardian exposes math anxiety as a possible cause of physical symptoms 
and behavioural problems in class, leading students into a cycle of 
despair and suffering, harming their mathematics performance. The 
article asserts that this phenomenon may be contributing to a growing 
mathematics crisis in the United Kingdom, given that there is a general 
sense of mathematics being hard compared to other school subjects, 
which is implicated in students losing their confidence. Here, the way the 
media decide to present some studies by researchers and international 
organisations (such as the ﻿Organisation for Economic Co-operation 
and Development, ﻿OECD, or the United Nations Educational, Scientific 
and Cultural Organization, ﻿UNESCO) in laypersons’ terms plays an 
important role in circulating certain dominant narratives. The media’s 
power and impact have been an interesting topic for research in 
modern societies, specifically on consumer goods, services, and election 
campaigns (see Udanor, Aneke, & Ogbuokiri, 2016). The media – such 
as online news, social networks, non-Internet-based written news such 
as newspapers – have enabled a larger and quicker distribution of 
information, providing the possibility of reacting in real time to events 
happening anywhere in the world. 
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According to the data gathered for this analysis, one of the main 
kinds of circulating and naturalised discourses around mathematics and 
mathematics education on social media consists of biased opinions based 
on people’s particular experiences, mostly with school mathematics 
or encounters, whether good or bad, with their school mathematics 
﻿teachers. Statements such as: ‘After watching this, I am convinced that 
school is not necessary’ (﻿YouTube comment), ‘My current math ﻿teacher 
makes me worried. You restore my confidence. You have no idea what 
that means to me’ (﻿YouTube comment), or ‘Why is math so hard … 
maybe its just me being dumb’ (﻿Twitter post) reveal the prejudices 
people have about mathematics and its teaching. For example, someone 
decided to post on a ﻿YouTube video’s comment section that the number 
of dislikes was due to mathematics instructors/﻿teachers feeling 
deficient while watching the video: ‘The dislikes must have been from 
﻿calculus instructors, who feel inadequate after watching this’ (﻿YouTube 
comment). 

Another kind of circulating discourse is about math phobia, the 
fear of mathematics: ‘As a kid I really struggled with math. I just had 
a flashback of my mom trying to help me with math homework [...] I 
can’t imagine being a kid right now having to do school from home. Me: 
about to say the wrong answer again Mom’ (﻿Twitter post). Another type 
is built around failure narratives. For instance, ‘This test is so hard that I 
didn’t even understand the question’ (﻿YouTube comment). Also, about 
the lack of utility of mathematics in day-to-day life. For example, on a 
﻿YouTube video that explains how to cut a cake scientifically, a person 
posts: ‘Science needs to know its place and stay away from cake baking 
and eating [...] I’ve baked plenty of cakes in the 90s with my Kenwood 
mixer and without needless advice’. In the same vein, on a video that 
explains probabilities, a person commented: ‘The ﻿probability i am ever 
using ﻿probability is 0%’.

It is possible to find opinions stating that people have learned much 
more from a ﻿YouTube video than from their formal classes in school: 
‘You’re a god. I’ve learned more from you in the last few hours than I 
have in my math class during the last few months’ (﻿YouTube comment). 
Other comments imply that mathematics is generally beyond human 
understanding. When this happens – to have learned something 
considered impossible to learn or to have understood a particular 
topic or problem – it deserves a celebration: ‘AT 35:28: Me screaming...; 
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roommate: did you win the lottery?; Me: no, I just did my first ﻿calculus 
problem’ (﻿YouTube comment).

Figure 20.1 shows frequencies of the categories found within all 
the ﻿YouTube comments collected from the saturation strategy used to 
approach the gathered data. The statements found on ﻿YouTube are based 
on, and related to, a particular watched video. In this light, videos become 
a source that evokes past or present experiences with mathematics or 
mathematics ﻿teachers and personal feelings and opinions that help 
reveal people’s perception of math and math education. Likewise, 
Figure 20.2 shows the frequencies of the categories found within all 
the ﻿Twitter posts collected. Here, opinions are not based on, or related 
to, a specific video; instead, they are based on people’s willingness to 
post a comment. Although the source that provokes posting a Tweet is 
not revealed in most of the cases, the comments can also reveal societal 
perceptions of math a nd math education. 

 Fig. 20.1 Frequencies of ﻿YouTube comment categories. Figure created by authors, 
using Gephi software.
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 Fig. 20.2 Frequencies of comment categories in ﻿Twitter posts. Figure created by 
authors, using Gephi software.

As previously mentioned, the first category of comments gathered 
from ﻿YouTube and ﻿Twitter comprises biased opinions regarding school 
mathematics practices. These comments heighten the narrative that 
mathematical concepts taught in school are pointless, that teaching 
styles need attention, and that mathematics education, in general, 
should be revised. 

This kind of math is the one needed to be taught in classroom. so fun, 
entertain. (﻿YouTube comment)

I could not imagine a better way for learning and loving Math <3 Thank 
u So much for that! (﻿YouTube comment)

Talking about math is essential. It’s what mathematicians do. While 
students may think that mathematicians simply sit around working 
out computation problems, that’s not at all an accurate picture. 
Mathematicians ask big questions, come up with ideas, … (﻿Twitter post)

my math is so bad 😭😭 10 weeks to get both of these to 160 at the very 
lowest though we got this (﻿Twitter post)
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I have a question Is it just the topic or math in general that was the 
problem? (﻿Twitter posts)

A second category comprises comments built around what we take to 
be successful outcomes from mathematics teaching and learning. These 
comments reveal the difficulties people have while learning mathematics. 
Certain events – such as watching a video – have a positive impact on 
their understanding of mathematics or their mathematics tests. Also, 
overcoming these difficulties is something worth sharing.

I will now put ‘knows how to solve the hardest problem on the hardest 
test’ on my resume (﻿YouTube comment)

This is legit the only time I've ever enjoyed math in my entire life, ur 
works beautiful bro (﻿YouTube comment)

Thank you Bro! I got B+ on exam! You helped me!; I wish you all the best! 
Sory for my bad english=) thanks from Kyrgyzstan! (﻿YouTube comment)

i overthink everything but at least i got the answers to da math test 
now🐢🐢 (﻿Twitter post)

i have a b+ in math call me the math queen i love ﻿algebra (﻿Twitter post)

A third category is composed of comments dealing with stereotypical 
visions of mathematics and its teaching and learning. This understanding 
of mathematics is based on people’s unfortunate experiences of school 
mathematics that have developed into particular stereotypes of believing 
that mathematics occurs only in one form. It also includes the beliefs 
that mathematics is not for all, and that only a certain type of person is 
mathematically competent – drawing on harmful distinctions regarding﻿ 
race, ﻿gender, nationality, etc.  

me: I like math, not my favourite but it’s cool; these kind of problems: 
*appear *; me: wow I’m going to study philosophy and never look at a 
number ever again (﻿YouTube comment)

Teacher: there will only be 3 questions; Me: thank god; Test: 1,1A,1B,1C, 
2, 2A, 2B, 2C, 3, 3A, 3B, 3C (﻿YouTube comment)

Asian parents when their kids finish this test: ‘That was an improvement, 
but it’s not hard to improve on garbage. *DO IT AGAIN*’ (﻿YouTube 
comment)
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Normal people: im going to major in neuroscience/﻿biology/engineering/
business/etc everyone: oh!! thats so cool!! me: im gonna double major in 
﻿physics and math. everyone: oh . .. . thats .. . . cool. (﻿Twitter post)

Rewatched Jurassic Park and i’ve decided the only acceptable way 
someone can flirt with me is by using mathematic theories (﻿Twitter post)

A fourth category is composed of narratives about fear and hate. These 
narratives are built on people disliking specific experiences they had 
or still have with mathematics and notions of math phobia. It also 
includes jokes people make as a way of mocking particular aspects of 
mathematics. Most comments entail narratives of failure in the practices 
of learning mathematics and of encountering not-so-good experiences 
with different ﻿teachers and styles of teaching. 

This test is so hard that I didn’t even understand the question (﻿YouTube 
comment)

Me: not understanding anything; Also me: yes, big brain indeed 
(﻿YouTube comment)

I try to solve the tasks; My Brain: don’t even think about it (﻿YouTube 
comment)

Math keeps making my brain hurt in ways I never thought it was possible. 
thanks for the video! I freaking love this channel. (﻿YouTube comment)

oh god, Im still just as lost, I’m screwed! thanks though (Youtube 
comment) 

apparently i lost my mathematic skills someone please teach me (﻿Twitter 
post)

i suck at math woop woop😔😔 (﻿Twitter post)

im doing math work but i dont know how to do any of it im going to fail 
school cause of this virus (﻿Twitter post)

A fifth category is composed of comments about the useless nature of 
mathematics. Most comments within this category entail narratives 
of perceiving mathematics as lacking meaning and coherence. For 
many people, mathematics is pointless and without any practical use 
outside the boundaries of school. It is possible to evidence discourses 
around the lack of sense school mathematics has in daily-life practices. 
These discourses come from particular experiences people have when 
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engaging with day-to-day tasks without using the formal mathematics 
they learnt at school. 

notice how everyone is learning this because they use it at school but no 
adults that are using this at work (﻿YouTube comment)

useless as always; Thx you for wasting my time (﻿YouTube comment)

Does Mathematic still needed? (﻿Twitter post)

We especially need imagination in science. It is not all mathematics, nor 
all logic, but it is somewhat beauty and poetry. (﻿Twitter post)

The best math you can learn is how to calculate the future cost of current 
decisions (﻿Twitter posts)

A sixth category is built around notions of self-fulfilling prophecies. 
These commentaries reveal how certain beliefs people have regarding 
mathematics and its teaching become materialised, such as a 
mathematics test grade. Most comments deal with a low expectation 
that people will perform well at mathematics tests, or a belief that 
people will accumulate bad experiences when encountering something 
related to mathematics. These narratives intertwine with auto-exclusion 
from mathematics practices.

Me: thinking I studied well for a test; Putnam: so you’ve chosen death 
(﻿YouTube comment)

I failed Calculus, I not surprising... from now on, I'm watching these 
videos (﻿YouTube comment)

Sometimes I wonder why I felt so bold and decided to choose a science 
major,,,, I ain’t good at science nor math and I have to take so many 
courses for the two uGH. (﻿Twitter post)

LMAOOOO i definitely failed my math exam: D.D. (﻿Twitter post)

From the frequency graphs for YouTube comments and Twitter posts,1 it 
is possible to notice that: (i) ﻿Twitter Posts’ Frequency Network, TPFN (see 
Figure 20.2), is more compact in comparison with ﻿YouTube Comments’ 
Frequency Network, YCFN (see Figure 20.1). This compactness shows 
that the peripheral vertices (nodes) – namely the categories of self-fulfilling 

1� The ﻿algorithm Force Atlas 2 from Gephi was applied to visualise both graphs.
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prophecies and the useless nature of mathematics – in TPFN are most 
distant from the network. The compactness of a network indicates that 
discourses within its categories are more balanced. Thus, the dispersion 
of ideas and discourses about mathematics and mathematics education 
is less in TPFN than in YCFN. We also notice that (ii) YCFN shows 
a concentration of discourses built around two categories: bias and 
stereotypes. This exhibits the dominant narratives circulating on ﻿YouTube 
comments. Successful outcomes and fear form the second largest group 
of categories within the spectrum of dominant narratives. And (iii) the 
dominant discourses in TPFW occur in a different distribution than 
those in YCFN. Most ﻿Twitter posts are built around narratives of bias, 
this category being the most prominent. Narratives of fear and successful 
outcomes are the second-largest circulating discourses. The differences 
between YCFN and TPFN could be explained by each platform’s nature 
and use. ﻿YouTube has become a platform from which people seek 
virtual help (see, e.g., Aguilar & Puga, 2020). This is not the case for 
﻿Twitter, which people might use for informative purposes and to post 
their opinions on dive rse subjects. 

 Fig. 20.3 ﻿YouTube comments’ co-occurrences. Figure created by authors, using 
Gephi software.
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 Fig. 20.4 ﻿Twitter posts’ co-occurrences. Figure created by authors, using Gephi 
software.

When observing the co-occurrences of such categories, it is possible to 
note how they relate. From ﻿YouTube comments (Figure 20.3), narratives 
about bias intertwine with stereotypes, fear and hate, and successful 
outcomes – building a community2 – more than with the useless(ness) 
of mathematics and self-fulfilling prophecies. Communities are visible 
according to the colour of the nodes. Useless(ness) and self-fulfilling 
prophecies are in a different colour than the rest of the categories. This 
exhibits how comments intertwine amongst these four categories to 
(re)produce dominant narratives about mathematics and mathematics 
education. For example, 

2� The tool Modularity helps in detecting communities. These are displayed by the 
use of different colours for each community. Nodes that are connected with higher 
density belong to the same community.
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Calc II is the last thing standing between me and my degree (It’s already 
been 4 loooong years). You are the only reason I’m graduating. I can't 
thank you enough! (﻿YouTube comment)

professor, you are my hero. I started learning with you since my ﻿calculus 
1. Now I am in ﻿calculus 3!!! (﻿YouTube comment)

The class: A minute has 60 seconds; The homework: calculate how many 
minutes has the day.; The exam: Calculate the exact amount of seconds 
there are till the Sun dies, taking into account the seconds you lost 
reading this question, and then calculate the equivalent hours. (﻿YouTube 
comment)

Within the dominant narratives circulating in ﻿YouTube comments, it is 
possible to evidence a closer connection – proximity – between bias and 
stereotypes categories. This is composed of comments such as:

It would take me the rest of my life to understand this level of maths 
(﻿YouTube comment)

When you understand the main idea of Fourier Transformation finally in 
a youtube video instead of in a whole semester in university. (﻿YouTube 
comment)

Oh.. My.. God; This thing just taught me more math that 2 yrs of 
Engineering lectures couldn’t teach me (﻿YouTube comment)

When it comes to ﻿Twitter posts (Figure 20.4), all categories built one 
large community – this is visible given that all the nodes are displayed 
in the same colour. However, some connections between categories are 
denser. The density is visible through the weights of the edges – some 
lines connecting two categories are visibly thicker than others. Here, it is 
possible to evidence the dominant narratives that arise from what people 
decide to share and showcase when posting their bias and fear related 
opinions regarding their past or present experiences with mathematics 
and mathematics education. Within such posts, plenty of statements 
circulate around people’s low expectations for their mathematical skills 
and performance. Often, people consider themselves as ‘bad at math’ or 
‘not good enough or are not meant to do and engage with mathematics’. 
Opinions such as: 

Why is math so hard... maybe it’s just me being dumb. (﻿Twitter post)
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When I read this for the first time in the textbook my mind exploded 
(﻿YouTube comment)

Now I have a grudge against that math ﻿teacher for life, no offense but I 
hope he goes to hell or something. He singlehandedly made the bullying 
worse and gave me anxiety n an irrational fear of people (﻿Twitter post)

I couldn't even do math in class, how the fuck they think ima be able to 
do it online? (﻿Twitter post)

I've been going through finals, failed my math final, and am having an 
existential crisis about whether or not I wanna be an engineer anymore. 
but I'm trying. After tomorrow, I should be on more for plotting and 
writing. (﻿Twitter post)

These narratives shed light on societal perceptions of mathematics 
and mathematics education as a disciplinary field inserted in school 
practices. Most people’s views on mathematics are entangled with the 
useless nature of this knowledge in practical daily-life activities. It seems 
that the apparent impracticality of mathematics instantiates feelings of 
anger, anxiety, frustration, and discomfort. 

Dominant narratives from international organisations, educational 
policies, and stakeholders acknowledge mathematics as key knowledge 
for modern society. The salvation themes arising from such discourses 
involve notions of ‘mathematics for all’ (see Pais, 2018), in which 
everyone needs mathematics proficiency to secure their future. Then, 
people’s perceptions of mathematics align with elaborations produced 
by the media, of mathematics being difficult and inaccessible for people 
with average IQ. For example, The Conversation published an article 
entitled ‘Maths: six ways to help your child love it’ (Johnston-Wilder 
& Penazzi, 2018), which deals with two types of engagement with 
mathematics: one by mathematicians and the other by everybody else. 

There is a widespread perception that mathematics is inaccessible, and 
ultimately boring. Just mentioning it can cause a negative reaction in 
people ... For many people, school maths lessons are the time when 
any interest in the subject turns into disaffection. And eventually maths 
becomes a topic many people don’t want to engage with for the rest of their 
lives... At the opposite end of the spectrum, professional mathematicians 
see mathematics as fun, engaging, challenging, and creative.

Although there have been multiple efforts to make mathematics more 
accessible to students (including the variety of theories, methods, and 
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materials produced by mathematics educators worldwide), school 
mathematics seems to be bounded by the alchemic process that produces 
the mathematics ﻿curriculum (see Popkewitz, 2004). This alchemy of the 
school mathematics ﻿curriculum might explain the different nature of 
the mathematics of professional mathematicians and the mathematics 
of school practices. Within the media, the apparent spotlight is on the 
decreasing performance of students. On the one hand, research engages 
with making mathematics accessible to all to achieve certain standards. 
In contrast, the media highlight that mathematics-learning standards 
are not close to being achieved. For example, the French news site The 
Connexion uses the phrase ‘catastrophic maths’ to describe students’ 
performance (Connexion journalist, 2018): ‘A new report that found the 
level of mathematics among French students today to be “catastrophic” 
has recommended 21 possible solutions, including the so-called 
“Singapore method”’.

Another example comes from The Conversation, an article titled 
‘Challenging the status quo in mathematics: Teaching for understanding’ 
(Rakes, 2017). This news story outlines the minimal changes achieved 
by the national reforms in the United States intended to improve 
students’ performance in mathematics: ‘Despite decades of reform 
efforts, mathematics teaching in the U.S. has changed little in the last 
century. As a result, it seems, American students have been left behind, 
now ranking 40th in the world in math literacy’.

The media have also covered stories highlighting the emotions 
students experience as a result of the impact that teaching and learning 
school mathematics has on them. These deal with various negative 
side-effects that arise from engaging with mathematical tasks, such as 
anxiety, fear, and even physical symptoms (see Weale, 2019; Henry-
Nickie, 2018). Within this type of news, mathematics is presented as 
damaging and scary, with statements even asserting that not all students 
should be obliged to learn this school subject. 

Children as young as six feel fear, rage, and despair as a result of 
‘mathematics anxiety’, a condition which can cause physical symptoms 
and behaviour problems in class, according to a study [...] Pupils in both 
primary and secondary school can find themselves locked in a cycle of 
despair, suffering from anxiety which harms their maths performance, 
which in turn leads to increased anxiety. (Weale, 2019)
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The mathematics discipline usually strikes fear into the hearts of most 
students and working-age adults in the U.S. (Henry-Nickie, 2018)

Along similar lines, there is also a cluster of news stories that deals with 
disseminating mathematics updates. These news types are focused on 
the accomplishments in the field, for example, awards or improvements 
on students’ performance worldwide. ScienceAlert emphasises the 
recognition of the first woman awarded the Abel Prize, Karen ﻿Uhlenbeck 
(Starr, 2019):

For the first time, a woman has been awarded the prestigious Abel Prize. 
Karen Keskulla Uhlenbeck of the University of Texas at Austin will 
receive the annual prize for her tremendous contributions to the field... 
The news is notable because historically, most of the mathematics and 
science prizes have been awarded primarily to male recipients. Of the 
904 individual Nobel laureates, only 51 have been women. (Starr, 2019)

The Baltic News Network (Baltic News Network, 2019) elaborates on the 
positive results of Latvian students in ﻿PISA (Program for International 
Student Assessment), within which low performance has decreased 
in mathematics by 2.6 points since 2012. The Telegraph (Gurney-Read, 
2016) highlights the countries with high achievement in mathematics 
international tests, such as ﻿TIMSS (Trends in International Mathematics 
and Science Study): 

The average results of Latvian pupils were scored 496, which is 
statistically higher than the average ﻿OECD level – 489. Authors of the 
study say this is the highest result in mathematics Latvian pupils have 
achieved in seven cycles of the Programme for International Student 
Assessment (﻿PISA). (Baltic News Network, 2019)

Singapore, Hong Kong, Korea, Chinese Taipei, and Japan continue to 
dominate international rankings for maths and science, the latest league 
tables have revealed. (Gurney-Read, 2016)

Mathematics is perceived as a school subject in which students struggle 
the most. Sometimes, it is presented as scientific approximations to 
situations for ordinary life that need more assistance, for example, in 
finding love. The Daily Mail (Gray, 2015) discusses how a mathematician 
calculated a formula for finding true love. There is also a mathematics 
formula, according to Greek Reporter (Kokkinidis, 2019), to select the 
most beautiful woman on the planet.
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Mathematics is probably not a subject that many people find sexy, but 
it could hold the key to finding true love [...] Mathematicians have 
developed a series of theories that can help people find the perfect 
partner. (Gray, 2015)

British scientists have recently determined exactly who is the most 
beautiful woman on the planet – according to a mathematical formula 
used by ancient Greeks. (Kokkinidis, 2019)

The media also gather news that focuses on debunking myths around 
mathematics and mathematics education, such as ﻿gender disparities in 
students’ performance. The use of research to build such arguments is a 
common factor of this type of news. Genetic Engineering & Biotechnology 
News (Genetic Engineering & Biotechnology News, 2019) highlights 
one piece of neuroscientific research that found no differences between 
boys’ and girls’ neural development.   

A comprehensive examination of neural development in boys and girls 
has now effectively refuted this myth, and demonstrated that neural 
functioning is similar in both sexes. Findings from the study indicate that, 
at a neurological level, there should be no reason why girls would have 
less aptitude for maths than boys. (Genetic Engineering & Biotechnology 
News, 2019)

And even though ﻿gender bias and stereotypes did not appear in ﻿YouTube 
comments or ﻿Twitter posts, there are various places where the ﻿gender 
gap is addressed, mostly related to prejudices of women performing 
poorly within ﻿STEM fields. It is often visible in sitcoms and animated 
series, such as The ﻿Simpsons, in the episode ‘Girls just want to have sums’: 

Principal Skinner: You know, Juliana, it’s no surprise you became such a 
success. You always got straight As in school.

Juliana: Well, I remember getting a B or two in math.
Principal Skinner: Well, of course you did. You are a girl.
[Audience gasps.]
Principal Skinner: All I meant was, from what I’ve seen, boys are 

better at math, science, the real subjects.
Juliana: [To audience] Calm down, calm down. I’m sure Principal 

Skinner didn’t mean girls are inherently inferior.
Principal Skinner: No, of course not. I don’t know why girls are worse. 

(The Simpsons, season 17, episode 19)
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Discussion

Can’t believe they gave me a math assignment in dental school (﻿Twitter post)

Recalling ﻿Chassy (2014), perception of what is taken as real is strongly 
influenced by languages – that are relativistic, according to Edward 
﻿Sapir (1929). From social science and social psychological research, it 
is clear that beliefs and expectations of people can distort perception 
in various forms, which influence the way of viewing objective ‘social 
reality’ (Jussim, 2012). Wendy ﻿Wood (2000) explores how social ﻿identity 
theorists have studied group influence as well as other aspects of group 
behaviour:

When people categorize themselves as an in-group members, the 
in-group serves as a reference for social comparison, and people adopt the 
prototypical in-group attitudes and beliefs as their own […] agreement 
from others categorized as similar to self enhances one’s subjective 
﻿certainty and suggests that the shared attitudes reflect external reality 
and the objective truth of the issue. (p. 557)

Within this taken-as-real context, the media and social networks 
contribute to fabricating an image for mathematics and shape how people 
decide to adopt specific beliefs about mathematics and mathematics 
education. Although there is little research on how the media influence 
the societal perception of mathematics and mathematics education, there 
exist some efforts, for example, regarding the learning of mathematics 
with the use of digital media (see Kynigos, 2008). The social media 
matrix has become a powerful ‘magic wand’ able to determine the 
structure of society as it ‘forms a basis for polarization and dissolutions 
and also ensures mergers and agreements’ (Gündüz, 2017, p. 91). And 
so, social media can reveal, reflect, and even shape, how society views 
mathematics, whereby stereotypical ﻿representations of mathematicians 
can actually be discouraging to a group of subjects.

Trying to read societal perceptions from a linguistic perspective implies 
understanding discourse analysis, building on Norman ﻿Fairclough’s 
work (1995). However, the focus here is not on using signifiers to 
critically analyse ﻿YouTube comments and ﻿Twitter posts. Instead, it is 
on mapping the dominant narratives surrounding mathematics and 
mathematics education in order to unfold the particular spatiotemporal 
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conditions that enable a certain type of rationality – a system of reason 
– that shapes certain kinds of people. From this, the ‘taken-as-truth’ 
statements about mathematics and mathematics education circulate to 
evolve into societal perceptions about what a mathematician is believed 
to be. These ‘taken-as-truth’ statements become discursive formations 
(Jørgensen & Phillips, 2002) that have been produced and reproduced 
by the interaction of different spheres of modern life (Foucault, 1972) 
and are entangled in the practices of everyday life. Within this realm of 
societal perceptions, discourses regarding the relevance of mathematics 
for society and day-to-day life should be denaturalised. For instance, 
discourses that link, mathematical proficiency with intellect, enabling 
the belief that people not performing well in mathematics are cognitively 
deficient; and discourses that link mathematics proficiency with being 
male, socially inadequate, not good at sports, poor sight, and so on. 
Or discourses that link mathematics proficiency with success. Here, 
discursive frameworks shape the boundaries within which people 
can negotiate what it means to be good or bad at mathematics, to 
have or not have mathematical abilities, to enjoy or hate mathematics 
etc. When people take a position regarding mathematics or school 
mathematics, their perceptions based on dominant narratives about 
success, usefulness, and value of mathematics play a determinant role. 
In this light, circulating discourses about mathematics and mathematics 
education shape people’s perceptions and predispositions towards 
mathematics, given that:

Our perception of objects is formed within the limits of discursive 
constraints [Discourse] causes a narrowing of one’s field of vision, to 
exclude a wide range of phenomena from being considered as real or 
as worthy of attention, or as even existing; thus, delimiting a field is the 
first stage in establishing a set of discursive practices. (Mills, 2001, p. 51)

People respond to mathematics and school mathematics in diverse 
ways. How people perceive mathematics and mathematics education 
will depend on their frame of reference, values, beliefs, experiences, 
interests, etc. These alter not only our perceptions of social reality 
but also of reality itself. Societal perception could be understood as 
a portrait of reality shaped by our beliefs, experiences, or interests; 
but also, as a way of constructing our reality and social order. Johann 
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﻿Engelbrecht, Salvador ﻿Llinares, and Marcelo ﻿Borba (2020) assert that 
at the same time that humans develop and build new media, the 
media themselves transform and ‘construct’ a new kind of human. The 
media complex does more than represent or describe the world and its 
relations; it produces and reproduces narratives about mathematics 
and mathematics education. It seems natural to think that how people 
conceive of mathematics is determined and situated. However, subjects 
are not passive entities within a system. In this context, the media might 
be seen as having ﻿agency (see Butler, 1997).

Mathematics undergoes an alchemic process (Popkewitz, 2004) 
deeply rooted in spatiotemporal conditions that transform the 
mathematics ﻿curriculum. As Yip-Cheung ﻿Chan and Ngai-Ying 
﻿Wong (2014) contend, ‘social, political, and even economic and 
cultural/﻿religious backgrounds of a period generate a social mood that 
affects the ﻿curriculum worldview’ (p. 274). Under this light of ‘social 
mood’, mathematics becomes the epitome of modernism, whether by 
the intrinsic characteristics of mathematics itself (logical and rational), 
or the capacity of promoting the development of valuable competencies 
for humankind (such as ﻿problem solving and the capability of changing 
reality). School mathematics is structured to reach as much of the 
population as possible, materialised in political agendas such as ‘no 
child left behind’ or ‘mathematics for all’. Educational policies are 
entangled within a system of reason in which mathematics becomes 
a powerful knowledge for securing people’s future and, thus, it is 
framed as something that should be enjoyable to learn (see Pais, 2018). 
However, societal perceptions about mathematics and mathematics 
education, rooted in the same system of reason from which political 
agendas portray mathematics as useful and vital, differ entirely from 
educational aspirations and desires. This finding problematises the 
teaching and learning of mathematics as a means of self-segregation, 
by constructing categories of ‘normal’ and ‘smart’ citizens in contrast to 
‘abnormal’ and ‘undesirable’ citizens.
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21. Beginning again

 Brian Greer, David Kollosche, and  
Ole Skovsmose

In this book, we started from the position that the doing of mathematics and 
mathematics education are human activities, with all that that implies. As the 
book was developed, the notion of ‘images’ of mathematics and mathematics 
education, both influencing, and being propagated by, human actors became 
salient. We suggest that an analysis of such images may shed important light 
on the many acknowledged discontents of mathematics education. For too many 
people, their actual and remembered engagement with mathematics in schools 
is unnecessarily ﻿alienating rather than the enlightening and empowering 
experience that it could be. 

The title of this volume refers to breaking images of mathematics and 
mathematics education. We began by advocating, in alignment with new 
developments in what qualifies consensually among those in the field as 
‘philosophy of mathematics’, a radical shift from the chimerical quest to 
define mathematics as some kind of entity. In particular, we reject what 
is called the ﻿Platonic view that the entity of mathematics exists, in some 
way, independently of human beings. Instead it is argued throughout the 
book that the appropriate framing is to describe what people do when 
they ‘do mathematics’. Further, what counts as mathematics is socially 
negotiated and these negotiations are historically contingent and subject 
to cultural ﻿diversity. Accordingly, such a shift in perspective necessitates 
historical and cultural lenses. As stated at the outset, mathematics and 
mathematics education are situated within historical, cultural, social, 
ethical, and political – in short, human – contexts.

We argue that mathematics education and its discontents cannot 
be adequately addressed internally, by yet another empirical study of 
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children struggling with ﻿fractions and the Holy Grails of the ﻿teacher-
﻿proof textbook, the perfect ﻿curriculum, the all-revealing test. Nor is there 
some complete architecture of cognitive development which, when fully 
developed, will render mathematics education straightforward. The 
discontents highlighted throughout this volume demand consideration 
of external contexts; the problems are human problems, and cannot be 
solved by technical means alone.

The aspiration to disassociate mathematics from the perceived 
contamination of human limitations has a long heritage, within which 
﻿Platonism﻿ has played a dominant role. There is the image from early 
in the modern scientific era of the universe operating like a clockwork 
mechanism, suggesting that if one possessed total knowledge of every 
aspect of the universe at any given time, the future could be predicted. 
The desire to eliminate human imperfection can be seen in the 
progressive waves of ﻿formalism in mathematics, ﻿logical positivism in 
science, ﻿behaviourism in ﻿psychology. Unwarranted power of numbers 
is pervasive; ﻿psychology is heavily implicated through the conflation 
between ‘X’ and ‘an inescapably imperfect measure of X’; the ignoring 
of that conflation underlies failure to acknowledge the limitations of 
psychometrics. An obvious example, with massive implications, is the 
idea that intelligence can be measured as a single number. 

Similar issues of (de)humanisation arise in relation to mathematical 
modelling﻿, whereby the relative precision of models of physical 
phenomena may be projected onto models of phenomena involving 
human complexities. Hence the formatting of our lives, accelerated 
by information technology, by models to which few have access, and 
over which even fewer have any control. The above considerations 
have been complexified by developments in ﻿Artificial Intelligence and 
the phenomena of the post-truth era, in which constructed images of 
alternative realities can dominate.

Over the five-year gestation of this book, in the creating of its 
diverse chapters, the phrase ‘image of mathematics’ has become 
increasingly salient. This phrase is necessarily nebulous but speaks to 
very real phenomena. The images of mathematics that people acquire 
through schooling and social life, and the images that people project in 
furtherance of ideological aims, have extraordinary power in both school 
mathematics and in the control of societies by state apparatuses. While 



� 57121. Beginning again

explicitly or implicitly touched upon by many of the contributors in this 
volume, the intimate relationship between mathematics education and 
﻿capitalism in its many forms remains to be thoroughly explicated. The 
reader of this book will have picked up multiple resonances of how 
these factors play out in practice. One theme that has been stressed is 
that the writing of the history of academic mathematics by the winners 
has contributed, to a significant and consequential extent, in the creation 
of an image underpinning intellectual ﻿White supremacy.

Our collective objective of questioning accepted wisdom about 
mathematics and mathematics education may be served by describing 
and interrogating such images. The word ‘image’ has numerous 
connotations, including: pictorial ﻿representation; idol, object of 
veneration; the conscious attempt to create a positive impression of a 
person or object, idea or picture in the mind. Obviously, there are many 
pictorial ﻿representations that reflect images of mathematics. That topic 
merits a series of books in itself. There is also the fascinating field of the 
fictional and non-fictional portrayal of mathematics and mathematicians 
in books, plays, and films.

Then there is the use of ‘image’ to refer to an object of veneration. 
In relation to mathematics, we have highlighted two aspects at various 
points in the book. Common among mathematicians, and uncritically 
accepted by many non-mathematicians, are what we consider inflated 
notions of the intellectual superiority of mathematics compared to 
other intellectual achievements. Among all groups in society, there is 
an associated public image of mathematical geniuses. Secondly, there 
is an often unexamined assumption that the doing of mathematics is 
inherently beneficial to humanity, as a driver of ‘progress’ and so on. 
Such beliefs are commonly held by those with power, which helps 
to explain the unreasonable political effectiveness of what might be 
termed ‘mathematical propaganda’. Belief in the intrinsic goodness of 
mathematics forms an integral part of the whole outlook of modernity. 

‘Images’ are also social constructions for politicians, ﻿religious 
leaders, film stars, and others and there is a field of expertise in the 
art/science of fabricating such social constructions that can become 
more important than the ‘real people’ (whatever that may mean). Such 
activities have an obvious affinity with advertising material goods and 
the public relations industry ﻿systematised by Freud’s nephew, Edward 
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﻿Bernays, in the 1920s. Especially prominent in the advertising copy for 
mathematics are under-examined slogans such as ‘mathematics for all’ 
and ‘mathematics helps you to think’. ﻿Algebra and ﻿calculus are products 
that have been sold hard, yet most people do not use school ﻿algebra to 
any significant degree, and ﻿calculus even less. And the assertion that 
they are essential to national achievement is undermined by looking at 
the works of civilisations predating their development as formal tools.

In ﻿Plato’s parable of the cave, people look at shadows projected on the 
wall from an independently existing reality. In this book, we have joined 
in a general rejection of ﻿Platonism﻿ as a philosophy of mathematics. We 
suggest that the images perceived by people are human constructions, 
including those intentionally designed for ideological reasons.

And so to the core of our argument, which focuses on a cluster of  
images of mathematics and mathematics education, including images 
of mathematicians, mathematics learners and learning, mathematics 
﻿teachers and teaching. These images influence the thinking and actions 
of mathematicians, scientists, philosophers of mathematics, mathematics 
learners and ﻿teachers, the general adult population, people with power 
to apply mathematics, and those with power to influence mathematics 
education.

It has often been commented that working mathematicians do not 
allow themselves to be distracted by philosophical considerations, even 
less by ethical and political issues (G. H. ﻿Hardy being an influential 
apologist for this position). If mathematicians were quarantined, their 
political and emotional detachment would not matter so much. Let us 
simply assert (the supporting evidence and arguments are scattered 
throughout the book) that when mathematicians put their thumbs 
on the scales of school mathematics, they can do a lot of harm (with 
honourable exceptions, of course, many figuring prominently in this 
book). The ﻿Bourbaki movement in mathematics, and its spillover 
into school mathematics (by no means entirely the fault of ﻿Bourbaki) 
represents the extreme case that may be characterised as confusing 
the foundations of mathematics (in the sense of the old philosophy of 
mathematics) with the foundations of mathematics education.

The institution of formal schooling is so familiar we forget how 
artificial it is as a cultural construction, removing children from their 
families during a large part of their development. For mathematics, a 
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pervasive aspect of this artificiality is the chasm between what children 
experience in the mathematics classroom and what they experience in 
life. In school, too many people learn to fear and hate mathematics – to 
be more accurate, the interpretations and images of doing mathematics 
with which they are confronted and the demands placed upon them. 
Far too many individuals and groups of people, through classroom 
interactions and through ﻿testing, may have their self-images damaged 
as people who ‘cannot do mathematics’ and, by implication, as 
intellectually deficient.  

In many ways, what could be termed natural rights of children, 
in particular sense-making and valorisation of the multiple forms of 
﻿diversity, are violated. The example of ﻿Pythagoras (considered by a 
consensus of contemporary scholars to have been neither a mathematician 
nor a scientist) illustrates a failure to adhere to ethical standards of 
historical accuracy, insofar as that is possible. At the systemic level, work 
continues on a counternarrative to the ﻿Eurocentric myth of the origins 
and development of academic mathematics, that may be regarded as a 
manifestation of white intellectual supremacy.

What also deserves more penetrative research is the extent to which 
school mathematics, particularly in the early years, is foundational in 
forming people’s worldviews – for example, that everything can be 
measured one-dimensionally and then ranked, that ‘everything is 
linear’, and that numbers as such have unimpeachable authority, no 
matter how flawed are the models that produce them. The fascination 
of mathematicians with the infinite may innoculate people against 
grasping the implications of living a finite life on a finite planet.

Whence do people get their images of mathematics? Mostly in school, 
but also out of school; mostly the latter tends to reflect and reinforce the 
former. People who failed to master abstract ﻿algebra, or fell at the early 
hurdle of ﻿fractions (when does anyone, really, need to compute 4/7 + 
7/11??) are easily intimidated by what mathematics appears to them to 
be, yet have a feeling that is somehow of great significance and demands 
reverence. With immense political implications, a sense of the limitations 
of mathematical modelling﻿ is not generally nurtured in, or out of, schools, 
especially in relation to anything involving human complexity.

After school, a small minority pursue further studies within 
mathematics and are likely to be enculturated into the discipline. Many 
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more use mathematics in their studies or work; in those cases they 
are likely to encounter and learn mathematics in context, often using 
specialised ﻿representations and formulations, rather than recollecting 
related, but decontextualised, elements of school mathematics. 
Increasingly, the mathematics needed for work is embedded in software.

The majority of people do not use significant amounts of formal 
mathematics, and the mathematics they use in ‘everyday life’ is learned 
in context. They remain open to the socio-cultural influences that shape 
images of mathematics in the media, in the very particular genre of 
books, plays, films about mathematicians, in the echo-chamber of asocial 
media (see the previous chapter in this volume), and so on. We suggest 
that most politicians, even those closely involved in ﻿educational policy 
and governance, are not much different from the general population and 
largely share their images of mathematics and mathematics education. 
They often have a minimal understanding of mathematics associated 
with a strong tendency to defer to mathematicians as authorities. 

Accordingly, we envisage a programme of sustained research and 
analysis, building on the very considerable work already done. 

The guiding framework for this effort would be that the framing of 
school mathematics shows a continuity from the images established 
in elementary school, developing progressively through later life into 
adulthood, and ultimately looping back into school mathematics. 
Contributing to the closing of this loop is the influence of those with 
political power, including mathematicians, who, to a considerable extent, 
shape school mathematics. In our opinion, mathematics education 
in schools will not fundamentally improve until this feedback loop is 
disrupted. One focus for the research program that we are advocating 
could be deciding which parts of the cycle are open to such disruption 
and how that might be achieved. We hope that more mathematicians will 
emerge from their ivory towers and recognise their consequential roles 
and ethical obligations in this project. In the same spirit, we welcome 
the philosophers of mathematics who have stopped endlessly mending 
their nets and actually put out to sea.

Meanwhile, we observe the manifestations of the vast chasm between 
the projected image of mathematics as the epitome of rationality and the 
collective irrationality of our species in failing to confront a confluence 
of existential crises.

All of these are human problems.
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