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Foreword: New Methods for a New Approach to Neuroimaging

Neuroimaging finds itself at a thrilling point in its evolution. From its early days with small
sample sizes, the neuroimaging field has evolved to embrace the scientific advantages of large
datasets, an approach that is personally resonant. Collaborations are generating datasets
incorporating thousands of images, and open science movements are succeeding in the
synthesis and aggregation of data. However, this evolution means that researchers working
with large neuroimaging datasets must, at a minimum, have a working knowledge of
neuroscience, computer science, and best practices in conducting reproducible research.
Therefore, there is a pressing need for a practical guide to navigating the terrain of popula-
tion neuroimaging. This book provides such a guide: editors Whelan and Lemaı̂tre have
curated a set of chapters that address the full spectrum of challenges and opportunities posed
by large neuroimaging datasets. Chapters delve into the intricacies of cloud computing,
EEG data processing at scale, and the application of deep learning to raw MRI images, to
name just a few.

Designed to assist both novices and experienced researchers, each chapter offers a
comprehensive guide to a particular topic, including practical examples. Dedicated chapters
in the book focus on best practices for efficiency, reproducibility, preprocessing, and statisti-
cal analyses, ensuring researchers are well-equipped to seamlessly navigate the evolving
landscape of neuroimaging. This book stands as a testament to the adaptability and
forward-thinking nature of the neuroimaging community. Combining the insights of
experts in the field with the latest technological advancements, this volume is positioned
to be a guiding beacon for researchers tackling the complexities of large datasets.

Beyond data handling and analysis, the book champions the ethos of open science,
collaboration, and equity, particularly concerning the use of open-source tools. The empha-
sis on transparent and reproducible research is a core value. It is hoped that an open-access
book such as this will increase the diversity of researchers working in human neuroimaging
around the globe, and ultimately increase the diversity of training samples for important
applications (e.g., to Alzheimer’s disease). Ultimately, it is through cooperation, across labs
and countries, that will advance our science in the field of neuroimaging.

Imaging Genetics Center, Mark & Mary Stevens
Institute for Neuroimaging & Informatics,
Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA

Paul Thompson
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Jivesh Ramduny, Mélanie Garcia, and Clare Kelly

5 Optimizing Your Reproducible Neuroimaging Workflow with Git . . . . . . . . . . . 61
Mélanie Garcia and Clare Kelly

6 End-to-End Processing of M/EEG Data with BIDS, HED,
and EEGLAB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Dung Truong, Kay Robbins, Arnaud Delorme, and Scott Makeig

7 Actionable Event Annotation and Analysis in fMRI: A Practical Guide
to Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Monique J. M. Denissen, Fabio Richlan, Jürgen Birklbauer,
Mateusz Pawlik, Anna N. Ravenschlag, Nicole A. Himmelstoß,
Florian Hutzler, and Kay Robbins

8 Standardized Preprocessing in Neuroimaging: Enhancing Reliability
and Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Oscar Esteban

9 Structural MRI and Computational Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Felix Hoffstaedter, Georgios Antonopoulos, and Christian Gaser

10 Diffusion MRI Data Processing and Analysis: A Practical Guide
with ExploreDTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Michael Connaughton, Alexander Leemans, Erik O’Hanlon,
and Jane McGrath

11 A Pipeline for Large-Scale Assessments of Dementia EEG Connectivity
Across Multicentric Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Agustı́n Sainz-Ballesteros, Jhony Alejandro Mejı́a Perez,
Sebastian Moguilner, Agustı́n Ibáñez, and Pavel Prado
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Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center, Universidad
de San Andrés & CONICET, Buenos Aires, Argentina
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Chapter 1

Introduction to Methods for Analyzing Large Neuroimaging
Datasets

Robert Whelan and Hervé Lemaı̂tre

Abstract

There is a recognition in the field of neuroimaging that sample size must drastically increase to achieve
adequate statistical power and reproducibility. Several large neuroimaging studies and databases, such as
OpenNeuro and the Adolescent Brain and Cognitive Development project, have emerged, offering open
access to vast amounts of data. However, there is a dearth of practical guidance for working with large
neuroimaging datasets, a deficit that this book seeks to address. With the emphasis on providing hands-on
instruction, chapters contain worked examples using open-access data.

Key words Neuroimaging, Electroencephalography, Standardization, Toolboxes, Machine learning,
Artificial intelligence

1 Structure of the Book

This book on methods for analyzing large neuroimaging datasets is
organized as follows. In Subheading 4.1, the reader is shown how
to access and download large datasets, and how to compute at scale.
In Subheading 4.2, chapters cover best practices for working with
large data, including how to build reproducible pipelines, the use of
Git for collaboration, and how to make electroencephalographic
and functional magnetic resonance imaging data sharable and stan-
dardized. In Subheading 4.3, chapters describe how to do struc-
tural and functional preprocessing data at scale, incorporating
practical advice on potential trade-offs of standardization. In Sub-
heading 4.4, chapters describe various toolboxes for interrogating
large neuroimaging datasets, including those based on machine
learning and deep learning approaches. These methods can be
applied to connectomic and region-of-interest data. Finally, the
book contains a glossary of useful terms.

Robert Whelan and Hervé Lemaı̂tre (eds.), Methods for Analyzing Large Neuroimaging Datasets, Neuromethods, vol. 218,
https://doi.org/10.1007/978-1-0716-4260-3_1, © The Author(s) 2025
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2 Why This Book Is Needed: Neuroimaging Datasets Are Getting (Much) Bigger

Human brain imaging is in a period of profound change. The
sample sizes of the first neuroimaging studies were relatively low,
perhaps with dozen subjects [1] or even single-subject analyses
[2]. Such studies were incredibly valuable, facilitating
non-invasive exploration of human brain structure and function.
Those early studies paved the way for a new generation of neuros-
cientists. A few decades later, we have more complete and increas-
ingly detailed maps of the human brain, but there is a growing
recognition that sample size must drastically increase to achieve
adequate statistical power and reproducibility. Indeed, it has been
suggested that brain-wide association studies using neuroimaging
may be unreliable without very large samples [3]. Fortunately—
with added impetus from the fields of imaging genetics and
neuroepidemiology—there has been a radical increase in the num-
ber of subjects within neuroimaging studies. For imaging genetics,
the main reason was statistical power because the effects of com-
mon individual genetic variants are small and thus required large
samples of subjects [4]. For neuroepidemiology, there was a para-
digm shift from a goal of identifying robust diagnostic biomarkers
to a prevention/prediction orientation, which necessarily requires
large samples of healthy subjects, some of whom may subsequently
develop a disease [5].

Given the scientific benefits of increased sample sizes, several
large neuroimaging studies have been established. For example, the
Adolescent Brain and Cognitive Development study (ABCD:
https://abcdstudy.org/) is a 10-year neuroimaging project that
will recruit over 10,000 people. Importantly, ABCD data are
open access, and available with minimal restrictions. The UK Bio-
bank (https://www.ukbiobank.ac.uk/) has neuroimaging data
from 100,000 people, and these data are available to researchers
for an access fee. Similar open-access magnetic resonance imaging
(MRI) databases include the Alzheimer’s Disease Neuroimaging
Initiative (ADNI: http://adni.loni.usc.edu/) and Open Access
Series of Imaging Studies (OASIS; https://www.oasis-brains.
org/). Open access electroencephalographic (EEG) databases
include Two Decades-Brainclinics Research Archive for Insights
in Neurophysiology (TDBRAIN) [6] and the Child Mind Institute
Multimodal Resource for Studying Information Processing in the
Developing Brain (MIPDB). There are also datasets that belong to
large consortia, such as IMAGEN (https://imagen-europe.com)
[7] and EuroLADEEG [8].

As part of the effort to address poor reproducibility in neuro-
imaging research, the open science movement has fostered neuro-
imaging research to share data, codes, and publications [9]. In
addition to the single studies with very large sample sizes described
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above, advances in open science have provided the conditions to
allow researchers to access large neuroimaging datasets, or to com-
bine several datasets to conduct meta- or mega-analyses
[10, 11]. OpenNeuro (https://openneuro.org) [12] is a popular
resource that hosts a variety of brain data, shared according to FAIR
principles. The NeuroElectroMagnetic data Archive and tools
Resource (NEMAR; https://nemar.org/) [13], contains EEG,
magnetoencephalography, and intracranial EEG from OpenNeuro.

3 Why Focus Specifically on Analysis Methods for Large Neuroimaging Datasets?

We proposed to develop this book because several additional chal-
lenges arise when analyzing large—rather than small or medium—
neuroimaging datasets. These challenges include the need for
greater standardization, importance of good code management,
use of scalable methods to process large volumes of data, and use
of appropriate methods to uncover between-group or individual
differences. The following chapters will bring the reader systemati-
cally through the essentials of working with large neuroimaging
datasets, from downloading and storing data; to best practices for
ensuring reproducibility; to preprocessing functional and structural
data; to toolboxes for statistical analysis. Each chapter has compre-
hensive step-by-step instructions on a particular method (including
examples of code where appropriate). We have not included any
chapters in this book on neuroimaging acquisition. This is because,
with respect to very large neuroimaging datasets, the data have
either already been collected or will be collected according to a
consensus protocol.

4 Overview of Chapters in This Book

4.1 Section 1:

Accessing and

Computing at Scale

Chapter 2 is titled “Getting Started, Getting Data” (Lemaı̂tre et al.)
and illustrates different methods for downloading datasets using
command lines (wget, curl), data management tools such as Data-
lad, Amazon Web Services, and graphical user interface options
(e.g., Cyberduck). Chapter 2 demonstrates how to download data
from OpenNeuro for a range of operating systems, which is impor-
tant for using the worked examples later in the book. In general,
after reading Chapter 2, researchers will be equipped with the
knowledge and tools to download large neuroimaging datasets.

Analysis of large neuroimaging datasets requires scalable com-
puting power and storage, plus methods for secure collaboration
and for reproducibility. For example, data preprocessing is unlikely
to be possible on a single computer. In Chapter 3 (Madhyastha)—
Neuroimaging Workflows in the Cloud”—the theory and practice
of using cloud computing to address many of these requirements is

Introduction 3
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presented. Cloud computing offers a highly flexible model that is
typically more cost-effective than a single laboratory investing in
computer equipment to accommodate its peak demand. Chapter 3
describes the various considerations and options related to cloud-
based neuroimaging analyses, including cost models and architec-
tures. In this chapter, you will learn how to run a neuroimaging
workflow in order to leverage cloud-computing capabilities. Using
data from the AOMIC-PIOP2 project hosted on OpenNeuro, this
chapter shows how to use Nextflow to create a very simple skull
stripping and tissue segmentation workflow using FSL’s bet and fast
programs installed on a local computer. Nextflow allows scalability
from a laptop to a cluster to cloud-native services with no code
changes.

4.2 Section 2: Best

Practices for Working

with Large Data

Unlike neuroimaging datasets with ~30 participants, where it could
be possible to manually or individually apply processing steps or
statistical tests, a key part of working with large neuroimaging
datasets involves controlling all steps with code. Therefore, we
devote Chapter 4, “Establishing a Reproducible and Sustainable
Analysis Workflow” (Ramduny et al.), to best practices for produc-
ing reproducible pipelines. In Chapter 4, you will also learn about
FAIR principles (data should be Findable, Accessible, Interopera-
ble, and Reusable). The BIDS (Brain Imaging Data Structure)
format, which provides a common structure for data organization,
is an extremely important tool for working with neuroimaging data
(including M/EEG). Chapter 4 contains a worked example with
Docker, using fMRIprep on an open-access dataset. There is also a
section on working with Python notebooks and invaluable advice
on writing sharable and reusable code, including commenting and
debugging tips. Finally, perhaps the most impactful advice in
Ramduny et al. is to write code and process data in the most
efficient way possible to minimize the energy burden.

Continuing the emphasis on efficient code management,
Chapter 5—“Optimising Your Reproducible Neuroimaging Work-
flow with Git” (Garcia and Kelly)—demonstrates the use of Git,
which is a very important tool for collaboration and scalable neu-
roimaging. In Chapter 5, you will learn via a worked example of a
cluster analysis on open-access data: version control, branching
(especially useful when collaborating), and conflict resolution. Gar-
cia and Kelly also describe how to use GitHub, and again the
benefits of collaboration are outlined.

In addition to very large, centrally coordinated studies (e.g.,
ABCD), data aggregation is an efficient way to build large datasets.
“Mega” analyses can provide insights that are otherwise not
afforded by smaller studies. Making data sharable and standardized
is therefore crucially important, and we include chapters here rele-
vant to both EEG and functional MRI (fMRI). With respect to
EEG, in Chapter 6—“End-to-End Processing of M/EEG Data
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with BIDS, HED, and EEGLAB”—Trong and colleagues intro-
duce a combined BIDS and Hierarchical Event Descriptors (HED)
approach that addresses a notable gap in the methods landscaper:
namely, a standardized approach to characterize events during time
series data. HED is a vocabulary designed to describe experiment
events in a structured human-readable and machine-actionable way
and HED metadata can enable intelligent combining of event-
related data from different recordings and studies. HED can be
accessed in several ways: as online tools, Python-based command
line scripts and notebooks, and MATLAB scripts and plug-in tools
for EEGLAB. Chapter 6 is focused on neuroelectric approaches
and, as with all chapters, there is a worked example of end-to-end
processing of EEG data using standardized BIDS and HED format
to organize and describe information about the dataset. With
respect to fMRI, in Chapter 7—“Actionable Event Annotation
and Analysis in fMRI: A Practical Guide to Event Handling”—
Denissen et al., again building on BIDS, describe tools for effi-
ciently generating event files from experimental logs. These event
restructuring tools (remodelers) allow users to modify a dataset’s
event files by specifying a series of operations in a JSON text file,
improving reproducibility, and reducing the need for bespoke cod-
ing solutions. An example of using HED remodeling tools is given
via a simple analysis of two datasets, working through the required
event restructuring.

4.3 Section 3:

Preprocessing

Preprocessing of large MRI and M/EEG datasets can be computa-
tionally expensive. Here, we describe methods for preprocessing
data derived from functional MRI (Chapter 8), from structural
MRI data—both gray (Chapter 9) and white matter
(Chapter 10)—and from EEG (Chapter 11).

Chapter 8 (Esteban), using NiPreps as a foundation, focuses on
the preprocessing stage of neuroimaging pipelines, exploring the
rationale, benefits, and potential tradeoffs of standardization. It
explores dimensions such as standardizing inputs and outputs,
and modularization using tools such as NiPreps and NiReports.
Emphasis is placed on version control, software engineering prac-
tices, and the use of TemplateFlow for standardizing spatial map-
pings. Challenges in implementation choice are discussed. Finally,
Chapter 8 delves into the integration of artificial intelligence,
including the importance of developing transparent, interpretable
deep-learning models, trained on openly available data.

Voxel-based morphometry (VBM) is a widely used method for
structural MRI analysis, quantifying local gray matter volume
(GMV) by segmenting whole brain scans into tissue classes. Apply-
ing VBM to detect structural brain-behavior associations in moder-
ate-to-large-sized samples faces challenges, with findings prone to
overestimation and limited replicability. Chapter 9 (Hoffstaedter,
Antonopoulos, and Gaser)—“Structural MRI and Computational
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Neuroanatomy”—is a demonstration of the fully automatic proces-
sing of a public dataset with CAT12 in a fully reproducible work-
flow [14]. Chapter 9 emphasizes the importance of methodological
transparency, public data sharing, and the availability of analysis
code to enhance reproducibility and facilitate replications. A practi-
cal demonstration of fully automated processing using CAT12 on a
public dataset is presented, showcasing a reproducible workflow.

Chapter 10—(Connaughton et al.) begins with an introduc-
tion to the concepts and techniques of diffusion MRI data proces-
sing used in the field and a step-by-step guide for processing
diffusion imaging data and for generating tractography.
Chapter 10 demonstrates the usage of the popular diffusion imag-
ing toolbox, ExploreDTI [15]. Working with BIDS-formatted data,
Chapter 10 contains advice specific to very large datasets, plus
several helpful recommendations (especially for the novice), and
identifies common pitfalls. Chapter 10 describes steps that can be
taken to reduce processing time through resource optimization,
and options are given to find the optimal balance between recon-
struction accuracy and processing time.

In Chapter 11 (Sainz-Ballesteros et al.), the ConneEEGtome
toolbox is introduced. Although this toolbox also contains meth-
ods for between-group comparisons, we included it in this section
because users will encounter the preprocessing features first. Rela-
tive to MRI, multicentric high-density EEG studies are less com-
mon, even though EEG is much more scalable than MRI
[16]. EEG presents extra challenges with data harmonization, not
least because there are many different hardware configurations and
montages. ConneEEGtome offers an elegant and open-access solu-
tion to these challenges, including the option of a graphical user
interface. Using data in EEG-BIDS format, the authors bring the
reader step-by-step through from preprocessing to classification.
Notably, an automatic artifact rejection approach based on inde-
pendent components is included, as is bad channel interpolation.
Recommendations are provided for optimizing storage needs.

4.4 Section 4:

Toolboxes for

Statistical Analysis

In the next section, we introduce several toolboxes for statistical
analysis of large datasets. The ConneEEGtome described in
Chapter 11 is a toolbox that includes a classifier, with feature
selection followed by Gradient Boosting Machines and a feature
importance report. Chapter 12 (Hahn et al.) describes the Brain
Predictability toolbox (BPt), which is a Python-based, cross-plat-
form, toolbox. BPt can run analyses on single personal computers,
with the option to scale up to be used in a cloud-computing
environment, and has many user-friendly features, with inbuilt safe-
guards to prevent the many common errors that beginner users
make. BPt provides support for several common data preparation
steps: data organization, exploratory data visualization, transforma-
tions such as k-binning and binarization, automatic outlier
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detection, information on missing data, and other summary mea-
sures. A very useful aspect is the ability to correctly impute missing
data (i.e., without data leakage). Recommendations are included
for when to tune model hyperparameters. Understanding your
model is made easier because feature importances from BPt can
be easily visualized through the related Python package. As with the
other chapters, a step-by-step example is included.

Chapter 13 (Serin et al.) describes the NBS-Predict toolbox,
which builds on network-based statistics (NBS) to produce
connectome-based predictions. In this way, connected graph com-
ponents are used as features, thus incorporating the topological
structure of features into account. NBS-Predict is a particularly
user-friendly tool that allows the user to easily create models via a
graphical user interface and enables automatic generation of train-
ing and test datasets for cross-validation purposes. There are two
worked examples in Chapter 13: a linear regression and a
classification.

The Predictive Clinical Neuroscience (PCN) Toolkit is
described in Chapter 14 (Rutherford & Marquand), and offers an
easy way to apply the powerful tool that is Normative Modeling.
With Normative Modeling, the overarching aim is to define a
reference range for a certain given structural or functional brain
measurement in a certain sample and to create a reference standard.
This reference standard can then be used as a comparator for
individuals living with neurological or psychiatric conditions. The
PCN toolbox is Python based. In the step-by-step tutorial, you will
make predictions for a multi-site transfer dataset, derived from
open-access data. The PCN toolkit contains a very useful facility
to create an “adaptation dataset” to account for confounding vari-
ables such as site effects. The PCN toolkit outputs several evalua-
tion metrics, which can be saved for later plotting/interrogation,
and advice and recommendations for further post hoc analyses are
included.

In Chapter 15 (Boyle and Weng) presents a flexible method,
optimized for large datasets, for implementing connectomic predic-
tive modeling (a popular approach for predicting phenotypes from
fMRI connectivity data). Notably, this chapter includes an option
to use leave-site-out validation. A schematic overview is provided
plus all code necessary to conduct an analysis: only a beginner level
of coding is needed. A helpful schematic of all decision points is
included. Recommendations—such as doing global signal regres-
sion and for handling missing data—are provided, as are resources
for plotting the output and for implementing computational
lesions.

Turning to toolboxes that can be used to interrogate structural
MRI, in Chapter 16, Moguilner and Ibañez describe in detail their
application of DenseNet (a convolutional neural network) to MRI
images. Notably, these images had not been preprocessed: the
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ability to utilize rawMR images expands the possibilities for the use
of medical images, which are acquired with a variety of sequences
from a range of manufacturers and include heterogeneous samples.
All of the relevant code is open source, based on MONAI’s
PyTorch-based tools. A step-by-step example in Google Colab,
using structural data from the AOMIC database, is provided
including starting parameters for the DenseNet. Code is included
for plotting model performance and metrics such as area under the
curve of the receiver operating characteristic from the test set are
included, as is code for an “occlusion sensitivity” map, which shows
the brain regions that contribute to the prediction.

At the end of this book, we have added a list of resources. These
include a list of tools described in the book. We also refer the reader
to an excellent compilation of ~300 resources by Niso et al.
[17]. There is also a list of open-access neuroimaging databases,
and we refer the reader to Madan [18] Table 1 for a comprehensive
list. The list of resources also includes information on resources for
learning coding languages such as Python. There is also a glossary
at the back with explanations of technical terms used in this book.

5 Concluding Comments

In summary, as neuroimaging datasets continue to grow in size, the
need for standardized methodologies, efficient code management,
and scalable data processing becomes increasingly crucial. This
book seeks to address these challenges, and it is our goal to equip
researchers with the practical knowledge necessary for conducting
robust and reproducible analyses of large neuroimaging datasets.
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Chapter 2

Getting Started, Getting Data

Hervé Lemaı̂tre, Christopher R. Madan, Declan Quinn, and Robert Whelan

Abstract

This chapter explores the availability and accessibility of open-access neuroimaging datasets. It describes
how to download datasets using command-line tools (e.g., wget, curl), data management tools such as
Datalad, Amazon Web Services (i.e., AWS CLI), and graphical user interface options (e.g., CyberDuck).
The chapter emphasizes the importance of accessibility and of documentation for improved research
reproducibility. After reading this chapter, researchers will be equipped with the knowledge and tools to
download large neuroimaging datasets, including those utilized in this book. We also demonstrate how to
download data from OpenNeuro for a range of operating systems.

Key words Neuroimaging, Open access, Download, Data management

1 Introduction

There has been a remarkable increase in the availability of neuroim-
aging datasets through open access on the Internet (see Madan,
2022 for a comprehensive overview of these datasets, including
their significance and diversity [1]). Open-access data allow
researchers to conduct neuroimaging studies on over a thousand
subjects without the need for scanning them anew. Moreover, this
accessibility promotes research reproducibility by enabling the
reanalysis of the same data. Notwithstanding the advantages of
open-access data, it is important to consider financial or legal
agreement issues before downloading these ostensibly “open-
access” data. For instance, should the researchers who initially
collected the data be included as authors? Should someone coordi-
nate what projects are in progress, in the event that more than one
group are working on the same data, and one group might “scoop”
another?

One of the pioneering datasets accessible to researchers was the
International Consortium for Brain Mapping (ICBM) dataset,
which emerged in the late 1990s as a collaborative effort among
multiple research institutions [2]. The field of neuroimaging has
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since witnessed substantial growth in initiatives offering open
access to data. Some noteworthy examples include the Human
Connectome Project (HCP), involving large-scale data collection
of many imaging modalities from over 1000 young adults [3], UK
Biobank study, aiming to include 100,000 scanned subjects [4],
and the ABCD study, which is following more than 10,000 ado-
lescents over 10 years [5].

The nature of the data that can be accessed varies depending on
the neuroimaging dataset at hand. For example, data may be either
“raw” or “derivative”. Raw MRI data require subsequent prepro-
cessing, which can be time intensive (cf. Chapter 16). Conversely,
access may be limited to derivative images, eliminating the need for
individual preprocessing but also preventing any modification, and
limiting control over preprocessing steps. Another distinction con-
cerns individual versus group-level data. Certain platforms provide
access to individual subject data, allowing researchers to perform
primary analysis at the group level according to their preferences.
OpenNeuro (formerly openfMRI) is an example of such a platform
[see Resources] [6, 7]. On the other hand, some platforms focus on
granting access solely to group-level images, facilitating meta-
analysis studies. NeuroVault [see Resources] is an online platform
specifically designed as a repository for sharing, visualizing, and
analyzing statistical maps derived from an extensive collection of
neuroimaging studies [8].

In this chapter, we will explore various solutions for down-
loading such datasets, using the AOMIC dataset stored on Open-
Neuro as an illustrative example [9]. The complete AOMIC
dataset, including all derivatives, occupies approximately 408 GB
of storage space. These data can be downloaded via a browser (see
instructions https://openneuro.org/datasets/ds003097/vers
ions/1.2.1/download); however, this is not recommended for
larger datasets if the connection is not stable. Therefore, we dem-
onstrate how to download using a robust method, for Windows,
macOS, and Unix. By the end of this tutorial, the reader will be
equipped to access other available datasets as well (e.g., HCP,
https://www.humanconnectome.org; ADNI, https://adni.loni.
usc.edu).

This chapter will focus on importing data to your local
machine. It is worth noting that the reverse process also exists.
For instance, Coinstac [see Resources] is a framework and platform
that enables computation to be conducted locally on each partici-
pant’s machine, while the data remains securely stored at its original
source [10]. This approach can be viewed as exporting your analysis
without the need to import the actual data, thereby addressing
concerns related to data privacy, legal restrictions, and data-sharing
agreements.

Throughout this tutorial, command lines will be predomi-
nantly employed for Unix-based systems (e.g., Linux, macOS),
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specifically Ubuntu, thus requiring basic familiarity with the Unix
operating system. If you are using a different Unix operating sys-
tem, please ensure the availability and installation of the required
tools. For those unfamiliar with the Unix operating system, a good
explanation of its structure and key components can be found at
https://www.javatpoint.com/unix-operating-system. If you are a
Windows or Mac user, you can download and use Ubuntu directly
(https://ubuntu.com/desktop) for free, or you can try it without
committing to major changes to your PC by using a virtual machine
(https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-
a-virtual-machine-using-virtualbox#1-overview). The following
Unix/Ubuntu sections will use the “shell [see Glossary]”, or
command-line/terminal, to download open-source neuroimaging
data files, and a good explainer/tutorial can be found at https://
ubuntu.com/tutorials/command-line-for-beginners#1-overview.
You will also find in the Annex section the specific DataLad instruc-
tions for the different chapters of the book.

2 Cyberduck (Windows, macOS)

If you prefer a graphical user interface (GUI) for your data transfer
needs, there are several tools available (e.g., Filezilla, WinSCP).
However, for the purpose of this tutorial, we will specifically use
Cyberduck, which is compatible with both macOS and Windows
operating systems. At the time of writing, there are no freely
available file transfer clients with a GUI for Ubuntu that can estab-
lish a connection to the OpenNeuro repository.

Cyberduck [see Resources] is a popular file transfer client that
supports various protocols, including FTP, SFTP, WebDAV, Ama-
zon S3, and more. It provides a GUI that allows users to connect to
different servers and transfer files between their local machine and
remote servers. Once you have successfully downloaded and
installed the suitable version of Cyberduck for your specific
operating system, proceed to launch the Cyberduck application.
Locate and click on the “Open Connection” option, as illustrated
in Fig. 1, and configure the connection settings as follows:

• Select “Amazon S3”

• In the “Server” field, enter: s3.amazonaws.com

• In the “Port” field, enter: 443

• In the “Access Key ID” field, enter: anonymous

• In the “More options” panel and in the “path” field, enter: /
openneuro.org/ds003097/

• Click on “Connect”
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Following the aforementioned setup, you should now have the
capability to navigate through the entirety of the AOMIC dataset
and proceed with downloading ID 1000 data.

3 DataLad (Windows, macOS, Unix)

DataLad [see Resources] is an open-source data management tool
designed to facilitate the management, sharing, and version control
of large-scale datasets [11]. The name “DataLad” stands for “Data
Lightweight Access and Distribution”. It combines the features of
data versioning systems, such as Git [see Chapter 5], with data
distribution capabilities, making it easier to track changes, collabo-
rate on datasets, and ensure reproducibility in scientific research
and data analysis workflows.

Fig. 1 Connect to the AOMIC dataset using Cyberduck
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First, you need to install DataLad on your system (https://
www.datalad.org/#install).

In Ubuntu:

# Install Datalad

sudo apt-get install datalad

Notes
• For Unix, DataLad can also be installed using pip or conda if

you are more familiar with these tools.

• For Windows, ensure you have Git and Python with pip installed
for successful download of DataLad.

Then, you can use DataLad to download the AOMIC dataset:

# Install the AOMIC dataset

datalad install https://github.com/OpenNeuroDatasets/

ds003097.git

# Note that this command does not download data per se on your

local system but only the data structure

# Download the entire dataset. The get command will actually

download and store data on your local system

cd ds003097

datalad get.

# get: actually download and store data on your local system

# Download a subpart of the dataset (the raw data for the first

subjects)

cd ds003097

datalad get sub-000*

# You can use the data structure to download any kind of

subpart of the dataset

# example:

# sub-0001/anat

# derivatives/freesurfer/sub-0001

4 AWS (Windows, macOS, Unix)

AWS stands for Amazon Web Services [see Resources]. It is a
comprehensive cloud computing platform provided by Amazon.
AWS offers a wide range of cloud services, including computing
power, storage, databases, networking, analytics, machine learning,
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artificial intelligence, security, and more. Some neuroimaging data-
sets are stored on the Amazon Simple Storage Service (S3) for
object storage. The AWS CLI (Amazon Web Services Command
Line Interface) is a unified command-line tool that can be used to
download such neuroimaging datasets.

First, you need to install AWS CLI on your system (https://
aws.amazon.com/cli/).

In Ubuntu:

# Install awscli

sudo apt-get install awscli

Then, you can use AWS CLI to download the AOMIC dataset:

# Download the entire AOMIC dataset

aws s3 sync --no-sign-request s3://openneuro.org/ds003097

ds003097

# Download one subfolder (one subject’s raw data)

aws s3 cp --no-sign-request s3://openneuro.org/ds003097/sub-

0053 sub-0053 --recursive

# Select and download several subfolders (the raw data for the

first subjects)

aws s3 ls --no-sign-request s3://openneuro.org/ds003097/ --

recursive | \

awk ’$NF ~ /^ds003097\/sub-000/ { print $NF }’ | \

xargs -I {} aws s3 sync --no-sign-request s3://openneuro.org/

ds003097/{} {}

# the first aws command lists the files

# the awk command filters the lines that matches the pattern

# the xargs command passes the output to the second aws command

for download

Alternatively, S3 storage can also be downloaded from using a
Python package, Boto[see Resources]. This can be useful when you
want to selectively download parts of a large dataset such as from
the HCP.

5 wget and curl (Unix, macOS)

wget is a command-line utility for downloading files from the web.
It stands for “web get”. wget allows you to retrieve files from
remote servers using various protocols such as HTTP, HTTPS,
and FTP. It is a versatile tool that supports recursive downloading,
resuming interrupted downloads, following links on web pages,
and downloading multiple files simultaneously.
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curl is a command-line tool and a library for transferring data to
or from a server using various protocols, including HTTP, HTTPS,
FTP, SFTP, and more. The name “curl” stands for “client URL”.
With curl, you can send requests to a server and retrieve responses,
making it a versatile tool for interacting with web services, down-
loading files, and performing various network-related tasks.

Tools such as wget and curl offer the advantage of being readily
available on Unix-like operating systems without the need for
additional installation. If you wish to download files from the
AOMIC dataset on your system using these command lines, you
can follow the instructions below:

# with wget

wget https://s3.amazonaws.com/openneuro.org/ds003097/sub-

0001/anat/sub-0001_run-1_T1w.nii.gz

# with curl

curl -O https://s3.amazonaws.com/openneuro.org/ds003097/sub-

0001/anat/sub-0001_run-1_T1w.nii.gz

# -O: saves the downloaded file with the same name as the

original file.

The method described above only allows for downloading one
file at a time, which is not convenient when attempting to down-
load an entire dataset. However, the OpenNeuro website offers a
script specifically designed for downloading the complete AOMIC
dataset (https://openneuro.org/datasets/ds003097/vers
ions/1.2.1/download). This script navigates through all the files
using the curl command.

If you have direct access to the remote directory [see Glossary],
an alternative option is to employ the wget command for recursive
downloads (i.e., to download everything in a folder, including files
in subfolders), as curl does not support this functionality.

# with wget

wget -r -np http://WEBSITE/DIRECTORY

# -r: enabled recursive retrieval

# -np: avoids ascending to the parent directory when down-

loading recursively.

Note
OpenNeuro does not allow recursive access.
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6 Conclusion

As demonstrated in this chapter, there are various options available
for downloading your dataset to your local machine. It is recom-
mended to choose the method that aligns with your operating
system and personal experience with either graphical user interfaces
(GUIs) or command-line interfaces. It is worth noting that while
GUIs generally provide a more user-friendly experience, command-
line interfaces offer greater automation potential through scripting.
This aspect becomes particularly significant if you intend to
re-download the same dataset and document the complete analysis
process for your research.

Annexes

Using Datalad, the subsequent instructions facilitate the retrieval of
data for the following chapters to which they are applicable:

Chapter 4: Establishing

a Reproducible and

Sustainable Analysis

Workflow

# Install the AOMIC dataset

datalad install https://github.com/OpenNeuroDatasets/

ds002790.git

# Download the necessary files

cd ds002790

datalad get sub-0001 sub-0002

Chapter 5: Optimizing

Your Reproducible

Neuroimaging

Workflow with Git

# Install the AOMIC dataset

datalad install https://github.com/OpenNeuroDatasets/

ds002790.git

# Download the necessary filescd ds002790datalad get deriva-

tives/fs_stats/data-cortical_type-aparc_measure-area_hemi-lh.

tsv

Chapter 6: End-to-End

Processing of M/EEG

Data with BIDS, HED,

and EEGLAB

# Install the osf extension for datalad

pip install datalad-osf

# setting up OSF credential as a token (https://osf.io/

settings/tokens)

datalad osf-credentials

# Install the OSF repository

datalad install osf://p43rq/

# Download the necessary files

cd p43rq

datalad get *
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Chapter 7: Actionable

Event Annotation and

Analysis in fMRI: A

Practical Guide to

Event Handling

# Install the osf extension for datalad

pip install datalad-osf

# setting up OSF credential as a token (https://osf.io/

settings/tokens)

datalad osf-credentials

# Install the OSF repository

datalad install osf://u5w4j/

# Download the necessary files

cd u5w4j

datalad get *

Chapter 8:

Standardized

Preprocessing in

Neuroimaging:

Enhancing Reliability

and Reproducibility

# Install the AOMIC dataset

datalad install https://github.com/OpenNeuroDatasets/

ds002790.git

# Download the necessary files

cd ds002790

datalad get sub-0021

Chapter 9: Structural

MRI and

Computational

Anatomy

# Clone the AOMIC dataset

datalad clone https://github.com/OpenNeuroDatasets/ds002790.

git AOMIC-PIOP2

# Download the necessary files

datalad get -d AOMIC-PIOP2 AOMIC-PIOP2/sub-0111/anat/sub-

0111_T1w.nii.gz

# Create an outputs directory and copy the T1w file there

mkdir -p CAT12_derivatives/TEST_sub-0111

cp AOMIC-PIOP2/sub-0111/anat/sub-0111_T1w.nii.gz CAT12_deri-

vatives/TEST_sub-0111/

# delete/drop the local version of the file as we can get it

back anytime

datalad drop --what filecontent --reckless kill -d AOMIC-PIOP2

AOMIC-PIOP2/sub-0111

Chapter 10: Diffusion

MRI Data Processing

and Analysis: A

Practical Guide with

ExploreDTI

# Install the AOMIC dataset

datalad install https://github.com/OpenNeuroDatasets/

ds002790.git

# Download the necessary files

cd ds002790

datalad get sub-*/dwi/

# NICAP data are only accessible through their website
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Chapter 13: NBS-

Predict: An Easy-to-

Use Toolbox for

Connectome-Based

Machine Learning

# Install the AOMIC dataset

datalad install https://github.com/eminSerin/NBSPredict_-

SpringerNature.git

# Download the necessary files

cd NBSPredict_SpringerNature

datalad get *

Chapter 14: Normative

Modeling with the

Predictive Clinical

Neuroscience Toolkit

(PCNtoolkit)

# Install the braincharts data

datalad install https://github.com/predictive-clinical-neu-

roscience/braincharts.git

# Download the necessary files

cd braincharts

datalad get *

Chapter 15: Studying

the Connectome at a

Large Scale

# Install the AOMIC dataset

datalad install https://github.com/eminSerin/NBSPredict_-

SpringerNature.git

# Download the necessary files

cd NBSPredict_SpringerNature

datalad get *

Chapter 16: Deep

Learning Classification

Based on Raw MRI

Images

# Install the AOMIC dataset

datalad install https://github.com/OpenNeuroDatasets/

ds003097.git

# Download the necessary files

cd ds003097

datalad get participants.tvs

datalad get sub-*/anat/
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Chapter 3

Neuroimaging Workflows in the Cloud

Tara Madhyastha

Abstract

Analysis of large neuroimaging datasets requires scalable computing power and storage, plus methods for
secure collaboration and for reproducibility. The application of cloud computing can address many of these
requirements, providing a very flexible model that is generally far less expensive than a lab trying to purchase
the most computer equipment they would ever need. This chapter describes how researchers can change the
way that they traditionally run neuroimaging workflows in order to leverage cloud-computing capabilities.
It describes various considerations and options related to cloud-based neuroimaging analyses, including
cost models and architectures. Next, using data from the AOMIC-PIOP2 project hosted on Open-
NEURO, it shows how to use Nextflow to create a very simple skull stripping and tissue segmentation
workflow using FSL’s bet and fast programs installed on a local computer. Nextflow allows scalability from a
laptop to a cluster to cloud-native services with no code changes.

Key words Neuroimaging, Cloud computing, Parallelization, Virtual machines, Containers

1 Introduction

Several drivers of modern neuroimaging research demand more
scalable computing power, more storage, secure collaboration,
and reproducibility. Recent papers have highlighted problems
with small sample sizes and the need for greater numbers of subjects
in studies [1]. At the same time, the Human Connectome Project
has demonstrated the importance of higher resolution data both for
structural and functional analysis, through gains in alignment and
in more precise connectivity analysis [2]. Because it is often difficult
to recruit sufficient subjects from specialized populations at a single
site, and scanner throughput is limited, these forces necessitate
multisite studies and sharing of data among researchers. Finally,
reproducibility is of critical importance to the field, as workflows are
incredibly complex, affected by subtle differences in operating
systems and software package versions, and in our ongoing learn-
ings about how different preprocessing steps may change or bias
results [3].
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Cloud computing has several characteristics that directly
address these drivers. Cloud computing offers virtually unlimited
resources on-demand. Using cloud computing makes it possible to
address statistical problems not only by scaling to analyze a larger
number of subjects and higher resolution data, but by enabling
more accurate statistical methods that are infeasible on a desktop or
small cluster (such as permutation-based methods for correction of
multiple comparisons). Further, cloud computing makes available a
wide range of processor types and system architectures. This
enables algorithms that can be accelerated through commodity
Graphics Processing Units (GPU) [see Glossary] or perhaps
through Field-Programmable Gate Arrays (FPGAs) [see Glossary]
to take advantage of this hardware just for the duration of execu-
tion, without capital investment.

Storage is also scalable. Object-based storage [see Glossary] is
an excellent fit for secure storage of raw and preprocessed images
with fine-grained access control and auditing capabilities and a
global footprint; these capabilities are a foundation for any large-
scale data repository.

Finally, a fundamental characteristic of cloud computing is the
ability to save computing infrastructure as code. This allows
researchers to relaunch not just software pipelines on a new
machine, but entire computational environments together with
the operating system(s) and application libraries as code. This
makes it easy to reproduce computations at scale with relatively
low effort and technical knowledge.

These characteristics not only meet the demands of modern
neuroimaging research, but they create new possibilities to develop
massively parallel algorithms and analytical tools that leverage
specialized hardware. However, cloud computing has very different
cost models and architectures than the traditional on-premise com-
puting resources that have been shaping the development of neu-
roimaging workflows. To leverage these cloud capabilities,
researchers must change the way that they traditionally run neuro-
imaging workflows. This chapter describes these differences, and
strategies for how researchers can leverage them.

2 Cloud Fundamentals

All cloud computing providers (e.g., Google Cloud Platform, Ama-
zon Web Services, Microsoft Azure, Oracle Cloud Infrastructure,
Alibaba Cloud) share some common characteristics and infrastruc-
ture services. All of the platforms provide “infrastructure as a
service”, which means that you can purchase virtual computers,
disks, storage, and networking and assemble them to create com-
puting architectures that are similar to computers you can build
on-premises (e.g., workstations, high-performance clusters) but
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with the added benefit that because these are virtual components,
you can create and manipulate them programmatically. This is
called “infrastructure as code”. We describe some features of infra-
structure as a service that are generally common across providers,
and their implications. However, when working with any specific
provider, it is important to understand how the details of their
implementation and the features of any cloud software that you
use can impact how you work.

2.1 Pay-as-You-Go A key characteristic of cloud providers is that you pay for the time
that you use the infrastructure, rather than purchasing hardware
upfront as you would in an on-premise lab (although there are
often ways to pay in advance or reserve computing infrastructure
to accommodate the bursty nature of grant funding). There are
benefits and risks to this payment model. The strongest benefit is
that it means that researchers have access to vast or specialized
computing resources for short durations of time. This is a very
flexible model and is generally far less expensive than a lab trying
to purchase the most computer equipment they would ever need.
Researchers can use the computers they need as their demands
change and problems take them in new directions. The risk is that
there is often no link between computing and research funding, so
it is easy to run out of money if you cannot easily track and bound
your spend. An e-commerce website that scales up to meet holiday
demand spends more money on infrastructure in proportion to
additional sales; however, a researcher who is able to obtain results
faster on a large cluster does not necessarily obtain proportionately
more funding. Thus, a critical implication of the pay-as-you-go cost
model is that it rewards efficiency, a point we will discuss in terms of
implications to neuroimaging workflows.

2.2 Computing

(Virtual Machines)

Computing time is available in many forms from cloud providers. A
basic characteristic is that it is possible to provision many different
configurations of virtual computers, with different memory, CPU
(Central Processing Unit) architectures and cores, and local storage
footprints. The cost of virtual computers is closely related to the
memory, storage, and compute resources that they have. Therefore,
while there is no penalty to running a code on a dedicated
on-premise workstation that only uses one core out of 32, to do
so on a virtual cloud computer would be a waste of money. On the
cloud, one selects a virtual computer with just enough resources to
run an application efficiently. This can be a difficult optimization
problem because it means selecting a virtual computer that can
complete a job (perhaps with varying data) at the lowest cost in a
reasonable time. A corollary of this is that when designing work-
flows, from the start, one should separate out components that
have significantly different computational demands. Common
workflows within popular neuroimaging packages such as Analysis
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of Functional Neuroimages (AFNI), FreeSurfer, FMRIB Software
Library (FSL), and Statistical Parametric Mapping (SPM) are usu-
ally scripts that run different programs for specific processes. Some,
such as probabilistic tractography, may be highly parallelizable and
benefit from GPU acceleration. Others, such as an independent
components analysis, may require a large amount of memory.
Finally, simple image mathematical or transformational operations
may be I/O bound (input/output bound; i.e., the time constraint
in the workflow is the time taken to request the data, rather than
the time needed to actually process the data). When these types of
processes are run in a single script on a virtual computer, the
computer will need to have sufficient resources to accommodate
the highest demands from any process. From a cloud cost perspec-
tive, this is wasteful, because you are (for example) paying for a
GPU when it is sitting idle, or paying for additional memory when
it is not being used.

Another important concept across cloud providers is that of the
“spot” or “preemptable” market. This is when extra cloud capacity
is provided at a substantial discount, with some caveat that it can be
reclaimed if needed, or after a specific amount of time (depending
on provider). When a computer is reclaimed, it shuts down and any
work that has not been saved to disk is lost. This is an excellent
opportunity to obtain cloud computing resources at a fraction of
the regular costs, but to take advantage of this, workflows must be
written to save their state periodically (or when given a reclamation
warning, if available) and restart from where they have left off.

2.3 Services,

Serverless, and

Containers

Cloud providers also offer services that are built on top of their
infrastructure platform. For example, many business applications
require a database, which is relatively complicated to manage.
Offering a database as a managed service means that you can take
care of such things as replicating and backing up the database and
patching the underlying operating system on which it runs. These
services incur an additional cost over the actual infrastructure costs
but save on human time (from personnel that are often hard to hire)
to manage the virtual servers. It is easier to create services that
represent common IT or business functions than it is to create
services for researchers; many services that seem appropriate for
neuroimaging workflows such as Artificial Intelligence (AI),
Machine-Learning (ML) services lock one into a particular cloud
vendor, may leverage proprietary algorithms, andmay not be repro-
ducible. These concepts are not as important to a business analyst
who is applying a machine-learning algorithm to their sales data to
predict the impact of a specific marketing campaign. The analyst
does not worry about sharing or reproducing the code, and if the
results are easier to get from a service, that saves time and effort.
However, taken to the limit, arbitrary services can run on comput-
ing infrastructure without the user having to actually start a virtual
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machine, secure the operating system, and perpetually make sure it
is up to date. This abstraction is called “serverless computing”, and
it is another important cloud abstraction that also has implications
for how one designs neuroimaging workflows.

Containers [see Glossary] are an important information tech-
nology development that have made strong inroads into neuroim-
aging, and simultaneously spurred the popularity of serverless
computing. A container consists of an entire runtime environment:
an application, plus all its dependencies, libraries and other binaries,
and configuration files needed to run it, bundled into one package.
A container is similar to a virtual machine but is lighter weight—
multiple containers can run on a machine and share the underlying
operating system. This allows multiple packages to be run effi-
ciently within containers on the same underlying machine, without
worrying about differences in operating system distributions or
dependencies. Because the details of the underlying compute infra-
structure are not critical, one does not need to manage a server
simply to run a container. It is sufficient merely to specify what
resources (GPU, memory, cores) a container needs to execute and
what broad platform (Linux, Windows) and a cloud service can run
it without requiring you to provision and maintain the underlying
infrastructure. An additional advantage of containers is that—
unlike virtual machines—files describing their contents can be writ-
ten and kept under version control [see Glossary]. This makes it
possible to recreate an environment from scratch to reproduce it,
rather than merely interrogating it to find out what is in it.

Containers share a key characteristic with virtual machines: the
ability to package up code and dependencies into a self-contained
unit. For this reason, containers have been adopted by neuroimag-
ing researchers [4] to encapsulate entire complex workflows bound
together using Python code (e.g. Nipype [5]). Two popular con-
tainers are FMRIPrep [6] and MRIQC [7] (see Chapter 8). The
idea of using Python both to connect workflow components that
may be different applications and to program novel algorithms or
in-line transformations within the same piece of code is appealing
and simple. However, a major problem with this design is that
different stages in such workflows require different computing
resources, and so cannot take advantage of highly efficient cloud-
based container services to execute them. In contrast, bioinformat-
ics workflows often consist of smaller discrete containerized appli-
cations that are bound together with a dedicated workflow
description language. Each step of the workflow can be accompa-
nied by a specification of what resources are needed to run it. These
workflow characteristics make it possible to cost-efficiently use
many cloud services as well as on-premise resources, and this
cross-discipline experience is starting to have an impact on neuro-
imaging workflows.
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2.4 Security and

Collaboration

An area where cloud architectures excel is in enabling global col-
laboration. Instead of copying data from one site to another, it is
possible to architect secure research environments where research-
ers can come to access data and compute on it. Cloud providers can
certify that their services adhere to compliance standards (such as
Federal Risk and Authorization Management Program, General
Data Protection Regulation) and architectures built on these ser-
vices inherit these controls.

Depending on the sensitivity of the data, it can be controlled in
many ways, ranging from restricting or enforcing access and main-
taining an audit trail, to limiting exactly what flows in and out of a
secure environment. The ability to protect data while maintaining
environments where researchers anywhere can collaborate as
though they were in the same lab is an enormous strength of
cloud computing. Large datasets remain and are secured in one
place while researchers come to the data to work on it. In particular,
cloud computing enables large-scale collaborative studies and fine-
grained control over dissemination of data with different levels of
protected health information.

In most infrastructure-as-service platforms, security of data and
the infrastructure is up to the user to configure. In a research
context, this configuration would typically be designed and
provided by research IT staff, leveraging third party products to
avoid reinventing infrastructure where sensible.

2.5 Architectural

Considerations

Cloud abstractions have been developed to serve business applica-
tions, which have different characteristics than research applica-
tions. For example, business applications are often critical; if an
e-commerce website failed it could result in huge loss of revenue
and damage to the company reputation. In contrast, if a research
pipeline fails sporadically, it can generally be restarted without
serious repercussions. Designing for high availability means creat-
ing architectures that build in failover (i.e., switching to a redun-
dant system) to multiple independent data centers. They must also
be elastic, so that if a single compute element becomes over-
whelmed, it can be replicated to accommodate the bursty load.
Often these characteristics are not important in a neuroimaging
research context.

Cloud infrastructure components have specific service level
agreements: availability (can you get to them), reliability
(do they work correctly), and durability (is your data intact).
These are normally much higher than what can be provided by
on-premise components. For example, the default S3 object stor-
age on AWS will maintain several copies of your data in distinct data
centers that are unlikely to fail for the same cause unless there is a
large geographic disaster. This will probably be safer than network
attached storage in a lab machine room, so your backup plan may
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look different. It is important to reassess strategies for maintaining
availability and durability of your workflows and data in the context
of the cloud.

3 Where Traditional Neuroimaging Workflows Fall Short

There are a variety of packages commonly used in neuroimaging,
such as AFNI, FSL, FreeSurfer, SPM, Advanced Normalization
Tools (ANTs) [8], HCP Informatics Infrastructure [9], that con-
tain programs and graphical user interfaces (GUI) [see Glossary] to
make it possible to process neuroimaging data. There are many
steps involved in taking structural or functional imaging data
from raw DICOM (digital imaging and communications in medi-
cine) format to processed images and group results; the details of
these steps are not the topic of this paper. However, our main focus
in the context of cloud computing is how they are connected
together.

There are different schools of thought on the flexibility one
should have to “mix and match” different algorithms (embodied in
programs) from different packages. Some neuroimaging research-
ers prefer to stick to workflows created within a package, to make
sure that subtle differences in how individual programs work do not
cause errors. In this case, the different programs are typically
connected using scripts provided by the packages that govern
their execution. Another school of thought suggests that some
packages are better at some capabilities than others, so they mix
and match programs from different packages in a single workflow.

Regardless of which approach is used, one characteristic of
neuroimaging workflows is that they can take advantage of parallel-
ism, often at multiple levels. Different brains can be preprocessed at
the same time (for example, on different cores within a cluster).
This is called coarse-grained parallelism [see Glossary]. Often analy-
sis of a single image can be parallelized (for example, probabilistic
tractography lends itself well to fine-grain parallelism). At the level
of course-grained parallelism, several approaches have been used to
take advantage of multiple cores or a cluster where available. Several
workflows (e.g., many scripts involving multiple tools in FSL, Free-
Surfer) can automatically submit independent jobs to a cluster
where available. Some tools can readily take advantage of multiple
cores where available. Although parallelism may exist under the
hood, the general approach is to abstract that from users within a
single package so that they do not need to worry about how their
code is being parallelized. Figure 1 shows an illustration of how this
may be accomplished. To the user, processing appears to be con-
ducted by a single tool that executes on a traditional computer
architecture (a single node, or a cluster).
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Another approach to take advantage of parallelism is used more
in the “mix and match” scenario. It is common to express the
course-grained parallelism of a workflow as a directed acyclic
graph (DAG) [see Glossary], with dependencies clearly spelled
out. This tells an execution engine which programs need to be
run before others. Where dependencies do not exist between pro-
grams, they can all be run simultaneously. A dependency graph can
also provide information about conditions for successful step com-
pletion, so if the workflow is interrupted, it can be restarted without
replication of work. A typical sequential programming script does
not express this dependency information, and so is an inefficient
way to structure a workflow from a performance perspective. Fig-
ure 2 shows an example of a “mix and match” workflow. Each tool
has different software and hardware requirements, and some steps

Fig. 1 A single tool approach to cloud-based workflow

Fig. 2 An example of “mix and match” workflow
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take minutes and some take hours. However, the dependencies
between tools and their requirements (even if they are all from
the same neuroimaging package and designed to work together)
is articulated so that they can automatically be parallelized.

Two programs that have been used to describe parallel work-
flows are GNU Make [10] and Nipype [5] [see Resources]. GNU
Make has the advantage that it is a robust and relatively simple tool
and can be used to connect scripts written in multiple different
languages. Its main disadvantage is that it is well grounded in
traditional UNIX conventions (such as files, standard input and
output), and has its own unique syntax. For this reason, it is
difficult to describe dependencies on very complex output directory
structures, and researchers need to learn Make syntax. Nipype has
gained a lot of traction in the neuroimaging community as a
Python-based library that can be used to express dependencies
among neuroimaging workflows, and is used by several other
packages. It has the strong advantage that researchers can work
exclusively in Python, and the Nipype wrappers handle the com-
plexity of neuroimaging outputs. The disadvantage is that compo-
nents need to be wrapped and as an open-source project, changes
can cause problems with backward compatibility.

Both GNUMake and Nipype approaches fail to leverage mod-
ern aspects of cloud computing. To take full advantage of serverless
and elastic computing, we would want to be able to separate the
compute needs of each component that makes up a workflow, and
express dependencies among them. We would want to be able to
execute containers as well as code. To take advantage of cloud
storage we would want to be able to natively indicate that our
input and output data live on object storage in the cloud. And to
avoid lock-in to a specific cloud platform or architecture, we would
want to be able to run the same workflow on on-premise architec-
tures and multiple cloud platforms.

4 Futureproofing Neuroimaging Workflows

To leverage the capabilities of cloud computing in neuroimaging
workflows, enabling scaling to larger, more compute-intensive
datasets, we need to rethink how to write workflows. Below are
some basic principles and how to implement them.

4.1 Portability and

Reproducibility

Researchers will have access to different computing resources at
different points in their careers, and so must not be locked into a
specific cloud platform or architecture. Moreover, their colleagues,
who may need to be able to reproduce their work, cannot be
expected to have access to the same platforms or architectures.
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Note
To improve portability and reliability of neuroimaging work-
flows. First, avoid using proprietary algorithms embedded in
cloud services (e.g., AI/ML services) that impact research
results. At best, these can lock researchers into a specific
vendor that they or their colleagues lose access to in the
future. At worst, services can change or be retired, making it
impossible to reproduce results. Second, stick to the “lowest
common denominator” of services when using cloud com-
puting for running workflows. For example, virtual machines,
object storage, and container execution platforms are available
on all platforms and have on-premise analogs. Failure to do so
makes it difficult or impossible to change platforms.

4.2 Workflow and

Serverless

To take advantage of serverless cloud computing and spot market
offerings, it is critical to structure your applications from the start to
be parallelizable, architecture-aware, and fault tolerant.

1. Separate time-consuming and resource-intensive components
from other parts of the workflow. Distribute these components
as containers so that they can be run unmodified on cloud
services.

2. Create workflows from components within the same package
or across packages by using a cloud-native workflow descrip-
tion language that can be easily ported to on-premises clusters
and cloud-native architectures across multiple platforms. As
cloud computing grows more prevalent, more software for
workflows (e.g., Nextflow, snakemake [see Resources]) is writ-
ten to make code portable across platforms.

3. Avoid loops to process multiple subjects, and instead use a
workflow description language, parallel job submission, or
multiple cores (e.g., via GNU parallel [11]) to run them.

4. Write long-running applications so that they checkpoint their
work and can resume upon interruption. Choose a workflow
description language that permits resuming a workflow after it
has been interrupted or when a step needs to be modified.

4.3 Data

Management

Storage options in the cloud are incredibly powerful but form a
model that is more complex than most on-premises storage systems
and cost models. Cloud object storage is scalable and highly reli-
able. However, pricing for object storage is typically based on the
size of the data stored, the storage tier (how readily accessible
and/or available is the data), and access charges. There are also
potentially charges for data egress from the cloud or between
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regions. Entire machines can be saved along with everything neces-
sary to create an analysis. Finally, object storage is not suitable as a
file system; to use data on object storage one needs to stage it to a
file system. To use these features cost-effectively requires thinking
about data management at the start of an analysis.

1. Save virtual machines, containers, code and data together at the
end of a completed analysis so that you can reproduce the
analysis.

2. Use directory and file naming conventions consistently so that
you can create automatic rules for creating versions of objects
for backup, deleting versions of objects, moving objects to less
expensive tiers of storage, or archiving objects.

3. Automatically migrate important objects to lower-cost archival
storage when appropriate.

4. Save data products for completed analyses when the cost to
store them for an appropriate timeframe is less than the cost to
reproduce them, and delete them otherwise.

5. Write workflows to copy data from object storage to file system
storage and write back results to minimize the size of a
working disk.

5 Step-by-Step Example: Nextflow and AWS

Nextflow is a workflow description language that has these char-
acteristics and is the basis of Tractoflow [12] and several other
workflows from the Sherbrooke Connectivity Imaging lab
(https://scil.usherbrooke.ca). Nextflow is well-established in bio-
informatics workflows, which share a lot in common with neuro-
imaging workflows, but because of larger data sizes and sharing
requirements have migrated to the cloud earlier. Key characteristics
of Nextflow are the ability to take advantage of cloud native storage
and batch computing services to execute containers, an extremely
flexible language to describe expected inputs and outputs, and the
ability to configure multiple engines. A language such as Nextflow
allows scalability from a laptop to a cluster to cloud native services
with no code changes. Other bioinformatics workflow systems such
as snakemake [13] and WDL/CWL [14] share similar character-
istics with Nextflow, and there is some effort to introduce these into
the neuroimaging community. AWS is a major cloud provider, and
may be familiar to neuroimagers because data from the Human
Connectome Project and OpenNeuro are stored on AWS S3 object
storage.

In this example, we use data from the AOMIC-PIOP2 project
[15] hosted on OpenNEURO (https://openneuro.org/datasets/
ds002790) and Nextflow to create a very simple skull stripping and
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tissue segmentation workflow using FSL’s bet and fast programs
installed on a local computer. We will stage data from where it is
stored on AWS S3 object storage.

To follow along with this example, you will need a Linux or
MacOS terminal environment (commands assume bash), and you
will need to have FSL installed (if you do not use FSL, feel free to
substitute any other simple neuroimaging commands that you
prefer).

5.1 Installing

Nextflow

Installation of Nextflow is very simple (see directions for most
recent information). You must have a recent version of Java
installed, which you can check by typing:

java -version

If you do not have Java installed then click here (https://www.
java.com/en/download/help/download_options.html) for more
installation instructions.

Then, install the Nextflow software:

curl -s https://get.nextflow.io | bash

This will create the executable program called nextflow in your
current working directory. You can test that this program works by
running a canned workflow.

./nextflow run hello

If everything works, move the nextflow program to your ~/bin
directory and add this directory to your path in your .bashrc so it
will be there every time you log in:

mkdir -p ~/bin

mv nextflow ~/bin

cat << EOF >> ~/.bashrc

export PATH=$PATH:~/bin/nextflow

EOF

source ~/.bashrc

Note
Create a configuration file. The files in the AOMIC-PIOP2
repository are on S3, and require no specific permissions, but
if you have not configured your environment with valid AWS
credentials, you will obtain an error when Nextflow attempts

(continued)
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to stage the S3 files locally. To get around this, you can create
a file called nextflow.config with the following contents.

aws {

client {

anonymous=’true’

}

}

This tells Nextflow that the request will not be authenti-
cated, so you do not need any credentials.

5.2 Create a Small

Workflow

Add the following code in a text file: script.nf.

#!/usr/bin/env nextflow

nextflow.enable.dsl=1

t1 = Channel.of(["0001_bet.nii.gz", "s3://openneuro.org/

ds002790/sub-0001/anat/sub-0001_T1w.nii.gz"], ["0002_bet.nii.

gz", "s3://openneuro.org/ds002790/sub-0002/anat/sub-0002_T1w.

nii.gz"])

/* perform skull stripping */

process skull_strip {

input:

tuple val(bet), path(t1) from t1

output:

path(bet) into betout

"""

/home/ubuntu/fsl/bin/bet $t1 $bet

"""

}

process fast {

input:

path bet from betout

output:

path ’*_bet_*’ into fastout

"""
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/home/ubuntu/fsl/bin/fast $bet

"""

}

fastout

.flatMap()

.subscribe{ println "File: ${it.name}" }

This workflow has two processes. The first, skull_strip executes
the bet skull stripping command, and the second executes the fast
tissue segmentation command. The execution order is determined
by the inputs and outputs. The skull_strip process takes inputs from
a set of tuples (anatomical T1-weighted files on S3, and the friendly
name we would like to give to the skull stripped images). The
second, fast, executes the fast tissue parcellation command using
the output from skull_strip.

We have specified multiple files as input. Unlike a script, each
process runs independently and in a separate working directory.
This enables us to run all the processes as quickly as possible—as
soon as prerequisites have completed—without worrying about
files with the same name being overwritten. Nevertheless, here we
show how we can pass in friendly file names to help keep our
outputs straight.

5.3 Run the

Workflow

To run the workflow, type:

nextflow run script.nf

This command will run the workflow locally, which is great for
testing, and publish the output in the directory work. Note that
each process is stored separately, so file names do not conflict with
each other. There are many settings you can use to move output to
other directories.

5.4 To Infinity: Going

Cloud Native

A workflow system such as Nextflow covers the basics of portable
neuroimaging workflow that can scale. By defining processes sepa-
rately from each other and clearly specifying the parallel structure of
the steps and the input data, you now have the capability to run at
scale and use scalable object storage effectively. This is the most
important precursor to neuroimaging in the cloud. When resources
are limited, there is little to be gained by structuring your workflow
in this way; a script that cannot exploit parallel computing will be
slow if there is no extra capacity to be had. This will allow you to
effectively use even an autoscaling cluster in the cloud, or a multi-
core server. To leverage serverless computing and optimize your
use of resources further, you will need to replace each process with a
container and describe the compute resources necessary to run each
step. With this work done, you can move to a serverless container-
based platform.
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13. Mölder F, Jablonski KP, Letcher B, Hall MB,
Tomkins-Tinch CH, Sochat V, Forster J, Lee S,
Twardziok SO, Kanitz A, Wilm A,
Holtgrewe M, Rahmann S, Nahnsen S, Köster
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Chapter 4

Establishing a Reproducible and Sustainable Analysis
Workflow

Jivesh Ramduny, Mélanie Garcia, and Clare Kelly

Abstract

Getting started on any project is often the hardest thing—and when it comes to starting your career in
research, just figuring out where and how to start can seem like an insurmountable challenge. This is
particularly true at this moment—when there are so many programming languages, programs, and systems
that are freely available to neuroimaging researchers, and evenmore guides, tutorials, and courses on how to
use them. This chapter is intended to set you off on the right foot as you get stuck into the task of learning
to work with large neuroimaging data. We will cover a number of processes, systems, and practices that you
should adopt to help ensure that your work is efficient, your processing steps traceable and repeatable, your
analyses and findings reproducible, and your data and processing scripts amenable to sharing and open
science. While this chapter is aimed at those getting started, it will also be of use to established researchers
who want to streamline their processes and maximize robustness and reproducibility of their neuroimaging
analyses. Finally, this chapter is also intended to help make neuroimaging work practices and processes more
environmentally sustainable by reducing demands on computational resources through better planning,
efficiency, and awareness of resource use.

Key words Reproducibility, BIDS, Docker, Python, Sustainability

1 Why Establish a Reproducible Workflow?

In the wake of the “replication crisis” in science [1, 2] reproduc-
ibility has become a cornerstone of neuroimaging research. The
term reproducibility [see Glossary] refers to the ability to obtain the
same results as a prior study, using procedures that are closely
matched with those used in the original research [3]. As a result
of this increased emphasis on reproducibility, a whole set of disci-
plinary norms have been instituted. It is now routinely expected
that researchers will share not only their data and derivatives (to the
extent that data protection regulations permit) but also their analy-
sis code, so that others may reproduce their findings with the same

Robert Whelan and Hervé Lemaı̂tre (eds.), Methods for Analyzing Large Neuroimaging Datasets, Neuromethods, vol. 218,
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data, or attempt to replicate findings using different data. Disorga-
nized or idiosyncratically named data and esoterically written and
uncommented code are of little use to anyone, including yourself,
when you inevitably return to a project after a break (e.g., to
address peer reviewers’ comments). Putting a reproducible work-
flow in place from the outset will help ensure that your data and
code are both reproducible and useful to yourself and to other
researchers.

The practices we outline in this chapter may seem like a consid-
erable investment at first—particularly when students are also just
beginning to learn about their research topic itself. There can be an
understandable urge to “just get stuck in”, but, we can confirm—
from personal experience—that investments made now will reap
many benefits in the future. In contrast, cutting corners now may
lead to heartache (and extra work) down the line. Not only will
other researchers thank you for adopting these practices—but
future “you” will also appreciate it!

Note
Time invested now in learning reproducible research practices
will reap benefits throughout your career. Believe it or not,
you’ll never have more time to learn than as a PhD student!

1.1 FAIR Principles Based on the recognition that data reuse is central not only to
reproducibility but also to maximizing the value of research, a set
of best-practice guidelines have been developed to maximize the
usability of such data. These are known as the FAIR principles [see
Resources]. The FAIR principles [see Glossary] prescribe character-
istics of data and digital objects to maximize their reuse by the
scientific community—that is, to maximize data sharing, explora-
tion, reuse and deposition by parties other than the original
researcher [4]. The application of the FAIR principles for neuroim-
aging data has been extensively and accessibly documented by
ReproNIM [see Resources]—we recommend that you take time
to explore their excellent module on Data and FAIR Principles.
In brief, the FAIR principles require that data are:

• Findable: Data and supplementary materials have sufficiently
rich metadata [see Glossary] and a unique and persistent identi-
fier (PID).

• Accessible: Data are deposited in a trusted and accessible reposi-
tory [see Glossary]. Both the data and metadata are accessible
and downloadable via platforms such as OpenNeuro, Open
Science Framework, github, amongst others [see Resources].
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• Interoperable: Data and metadata use a formal, agreed-upon
and shared language or format such as the BIDS standard
(explained in more detail below).

• Reusable: Data are described with clear and understandable
attributes, and there should be a clear and acceptable license
for reuse (e.g., CC0 public domain).

In the rest of this chapter, we outline how you can build
reproducibility into your workflow. Our guide is intended to get
you started, rather than to be exhaustive, so we also recommend
that you also build on these basics by exploring other guides [5, 6]
and resources (e.g., ReproNIM).Much of what we outline is simply
good practice for keeping your data organized and maximally reus-
able for yourself and your collaborators, but it will become very
important when you reach the point of publishing your study. If
you wish to share your data using a public platform such as Open-
Neuro (increasingly the norm for the field), then you must curate
your dataset to comply with the FAIR principles and the BIDS
standard. Next, we’ll take a look at what this means.

2 Working with the BIDS Ecosystem

BIDS stands for Brain Imaging Data Structure [seeGlossary]. It is a
standard for the organization of neuroimaging datasets that follows
FAIR principles and facilitates both data reuse and automated
processing by open science data analysis pipelines [5]. The BIDS
standard specifies machine-readable directory structure, filenames,
file formats, and metadata for various neuroimaging modalities.
The need for these standards arose as a result of increasing demand
for data sharing in the field, and the difficulties created when such
data are idiosyncratically named, organized, and formatted. The
BIDS specifications, initially developed by those working with the
OpenfMRI (now OpenNeuro) data repository [see Resources], are
consensus-based and community-driven, and leverage existing con-
ventions in the neuroimaging community (Fig. 1). They emphasize
simplicity, readability, and accessibility. BIDS is now widely
accepted as the standard for the field and includes specifications
for modalities beyond MRI, including EEG and MEG [see
Chapter 6]. There is an active BIDS community that welcomes
involvement [see Resources]. Databases such as OpenNeuro.org,
LORIS, COINS, XNAT, SciTran, and others will accept and export
datasets organized according to BIDS, and some open-source soft-
ware such as fMRIPrep, C-PAC, and MRIQC, works only or
optimally with BIDS data [see Resources]. Making the BIDS stan-
dard a key feature of your reproducible workflow is therefore a very
important first step!
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Let’s take a more detailed look at how to build a BIDS dataset,
and how to create and run compatible applications called BIDS
apps [see Glossary]. From the outset, we should say that BIDS is
extremely well documented (e.g., https://bids.neuroimaging.io/;
https://github.com/bids-standard). Here, we highlight some of
the most important features and resources for further information.

2.1 BIDS-

Structured Data

BIDS datasets are hierarchically organized to contain both
modality-agnostic and modality-specific files. The directory organi-
zation follows four main levels of hierarchy, shown in Fig. 2.

The main directory “project” contains all of the project files
while sub-directories contain subject-level data, which is further
organized according to session (if data were collected over multiple
sessions) and modality (e.g., anatomical, diffusion-weighted, func-
tional, etc.). The session folder is not necessary when the study
contains only one session of data per participant.

Let’s illustrate BIDS in more detail using an example: the
AOMIC-PIOP2 dataset [7], which can be downloaded from the
OpenNeuro database [see Chapter 2].

The AOMIC-PIOP2 dataset is already BIDS-structured. Once
you have downloaded the data, if you look inside the main folder
(see Fig. 3), you will find:

• README: The first file to open in order to quickly understand
what the dataset contains; for instance, we can learn about the
data types/modalities, and whether the dataset contains raw,
preprocessed or processed data.

Fig. 2 BIDS dataset hierarchical organization

Fig. 1 BIDS
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• dataset_description.json: A json format text file [see Glossary]
containing metadata on the dataset, including details such as the
name, the authors, the version, a reference to a paper describing
the data, etc.

• participants.tsv: A tab-delimited file (.tsv format—column
separators are tabulations) that contains at least one column
labelled “participant_id”, which provides a unique identifier
for each subject (i.e., person or animal) in the dataset. Further
columns may contain other relevant information on each partic-
ipant (e.g., s, gender, age, clinical status etc.). The first row of
the file provides the column names.

• participants.json: A json text file that provides a legend for each
column of participants.tsv. In the “Tree” section, the “Root
Property” list can be expanded. Clicking on an item in the list
(e.g., “Age” will expand the label to provide a Description and
Units etc.). See Fig. 4.

• CHANGES: A timeline of all the updates/changes to the
dataset.

Fig. 3 Files and folders in the main folder of the AOMIC-PIOP2 dataset
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• There are also several modality-specific files:

– dwi.json: Metadata on the diffusion-weighted MRI data,

– T1w.json: Metadata on the T1-weighted MRI data.

– There are several metadata files providing information on the
fMRI, scans labelled according to experimental condition
(emomatching, restingstate, stopsignal, etc.). Some of these
(. . ._bold.json) provide information on the MRI scanning
parameters themselves, such as slice timing information. For
task-based fMRI there json files (and the experimental task
events, such as response accuracy type (“correct”, “incor-
rect”, “miss”) (. . ._events.json):

• task-emomatching_acq-seq_bold.json,

• task-emomatching_acq-seq_events.json,

• task-restingstate_acq-seq_bold.json,

• task-stopsignal_acq-seq_bold.json,

• task-stopsignal_acq-seq_events.json,

• task-workingmemory_acq-seq_bold.json,

• task-workingmemory_acq-seq_events.json,

• sub-X folders: There is one folder per participant, containing
raw data (and potentially participant metadata in json files) (see
Fig. 5).

• a derivatives directory [see Glossary]: This contains processed
data. For each type of processing, the organization of the
corresponding subdirectory mirrors that of the main folder:
there is a group.tsv file containing information on the partici-
pants whose files were processed, and participants’ folders simi-
larly named sub-X (see Fig. 6). The organization of each subject’s
folder and of the folder derivatives is specific to each study.

Fig. 4 Screenshot of an expanded Participants.json list
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Fig. 5 The contents of each participant’s folder “sub-X” of the AOMIC-PIOP2 dataset: (a) on the top panel,
there are different subdirectories for every data modality (e.g., anat—anatomical; dwi—diffusion weighted
imaging; func—functional); (b) the bottom panel shows the contents of the anat subdirectory

Fig. 6 Contents of the “derivatives” folder of the AOMIC-PIOP2 dataset: (a) as the top-panel shows,
preprocessed data derivatives are organized according to the process/program applied (e.g., dwipreproc);
(b) the bottom panel shows the contents of one subdirectory of data processed using dwipreproc

Establishing a Reproducible and Sustainable Analysis Workflow 45



2.2 Implementing

BIDS

If you are working with Open Science data, obtained from a plat-
form such as OpenNeuro, it is likely to already have a BIDS orga-
nization. However, if you are working with newly acquired data, or
preexisting data in your lab, you may have to implement BIDS
organization yourself.

This is easiest to do with new data. For MRI data, converting
from DICOM (typical scanner output) to BIDS is relatively
straightforward as there are BIDS converters [see Glossary]. The
BIDS website provides a full list of conversion software for a variety
of data modalities.

Note
Implement BIDS organization for your data from the begin-
ning (ideally, when extracted/imported from the scanner).
This is best practice and will save the harder work of having
to convert your data later, when you want to share it.

If you have preexisting data in, for example, NIFTI format,
complying with BIDS specifications is likely to be a matter of data
organization/structure, relabelling, and the creation of the
required .json files, tasks that can all be scripted (e.g., with python).
A complete list of BIDS specifications for how a dataset should be
organized are provided on the BIDS website. In addition, the BIDS
Starter Kit [see Resources] provides a very good explanation of the
folder and file names and formats, as well as pieces of code to create
your own .tsv [see Glossary] or .json files [see Glossary] in Matlab,
Python and R. The starter kit also includes a general template for a
BIDS-dataset, and examples of BIDS-organized data.

Finally, once you have created your dataset, you should verify
that it fully complies with BIDS structure, using the online BIDS-
validator tool [see Resources]. To use the tool (which currently
only supports Google Chrome andMozilla Firefox), you browse to
your data folders—the tool will check whether your file organiza-
tion meets BIDS criteria. If you do not have a supported browser
on your machine, you can use the command line version working
with Node.js, the bids_validator Python package or the bids/vali-
dator Docker image. All these methods are described in detail on
the BIDS-validator github pages.

2.3 Using BIDS Apps

to Work with Data

Standardizing the organization of neuroimaging datasets has
greatly accelerated the development of open-source data analysis
packages and tools. A variety of tools have been developed to
facilitate procedures from data handling and manipulation (e.g.,
PyBIDS and BIDS-Matlab) to fMRI data analysis (e.g., fMRIprep).
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A particularly useful template of reproducible apps—called
BIDS apps [see Resources]—has been developed by the BIDS com-
munity [8]. A BIDS App “is an analysis pipeline that takes a BIDS
formatted dataset as input and has all of its dependencies packaged
within a container [see Glossary] (Docker or Singularity)”. This
feature—the capture of all the dependencies of an app within a
container—means that the app is not dependent on any software
outside the container [see Chapter 3]. This removes what was
traditionally a huge headache for users: the requirement to ensure
that all dependencies were installed, that the version (i.e., release/
revision number) installed was the correct one, etc.). Containers
dramatically increase the reproducibility of studies by enabling
users—and therefore reusers—to record and fix the version of an
app (and all its dependencies) used in an analysis [see Chapter 3].

Before we dig in, let’s quickly review someDocker usage. If you
are not familiar with Docker, the BIDS community recommends
that you view this tutorial (https://neurohackweek.github.io/
docker-for-scientists/) and this video (https://www.slideshare.
net/chrisfilo1/docker-for-scientists) on Docker and Singularity.
The official “get started” Docker tutorial may help you too [see
Resources]. You will need to install Docker or Singularity
before getting started with BIDS Apps.

When you download an app using Docker (known as a Docker
image), the entrypoint for interaction with that BIDS app is set to a
preset script called /run.py. This script defines the required para-
meters for the BIDS app, which will vary by app but will include:

– bids_dir: The directory (full path) on your computer containing
the input dataset organized according to BIDS standard.

– output_dir: The directory (full path) on your computer where
the output files should be stored. If you are running a group
level analysis, this folder should be prepopulated with the results
of the participant-level analysis.

– analysis_level: Level of the analysis that will be performed (e.g.,
participant, group). Multiple participant level analyses can be
run independently (in parallel).

– --participant_label: The label(s) of the participant(s) that
should be analyzed. The label corresponds to sub-<participan-
t_label> from the BIDS spec (so you should not include the
“sub-” prefix). If this parameter is not provided, all the partici-
pants in the dataset will be analyzed. Multiple participants can be
specified with a space-separated list.

In addition to these required parameters, you may add as many
optional parameters as needed and appropriate to the app you are
running. These parameters are visible in the script run.py of the
BIDS app.
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2.3.1 Worked Example Let’s illustrate how to run such a BIDS app with an example. In this
example, we want to run fMRIPrep, which is a BIDS app that runs
a customizable preprocessing pipeline for structural and functional
MRI data analysis (see: https://fmriprep.org/en/stable/
workflows.html). Here, we will run it on participants 0001 and
0002 of the AOMIC-PIOP2 dataset (which we downloaded in the
previous example, Subheading 2.1).

Step 1 Get the fMRIPrep BIDS app.

In a shell on your laptop, computer, or server, run:

docker pull nipreps/fmriprep:latest

Here we call Docker’s action pull, which finds the latest

version of the Docker image nipreps/fmriprep on the DockerHub
platform [see Resources] and copies it to your machine (this may
take several minutes). The Docker image nipreps/fmriprep con-
tains the scripts and installations for all the dependencies (specified
in the Dockerfile) to be able to run the fMRIPrep pipeline under
various conditions. For this reason, Docker images can be quite
large (several GB).

If you want to use a specific version of a BIDS app (e.g., to
reproduce analyses reported in a paper and performed with an older
version of the BIDS app), you will find it on the DockerHub
platform. For instance, if we want to use the version 1.5.10 of
fMRIPrep, we can check if it is still openly shared in https://hub.
docker.com/r/nipreps/fmriprep/tags. We can then adapt our
docker command to pull this version instead of the latest: docker

pull nipreps/fmriprep:1.5.10.

Step 2 Run fMRIPrep on specific participants.

The generic command line to run fMRIprep is as follows:

docker run -it --rm -v <freesurfer_licenses>:/opt/freesurfer/

license.txt -v <bids_dir>:/data:ro -v <output_dir>:/out -v

<temporary_dir>:/tmpnipreps/fmriprep:latest /data /out <ana-

lysis_level> -w /tmp --participant_label <label1 label2 la-

bel3>

Here, we are calling Docker’s run action, which launches a
container as a new instance of the nipreps/fmriprep:latest image.
All fMRIPrep’s dependencies are installed in the container.

Following docker run, we see several options are passed to the
command:
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-it is the combination of two options, -i and -t, that are the single
character versions of --interactive (which keeps STDIN open
even if not attached—here STDIN is the terminal window you
are using to input the commands) and --tty (which allocates a
pseudo-TTY connected to the container’s STDIN). These two
options are often passed when running docker run because most
programs need to be run in -it mode.

--rm is another optional parameter that specifies that after the
container exits (for instance, after the fMRIPrep pipeline is
completed), the container will be automatically removed from
your machine.

-v makes it possible for the container to interact with your machine
filesystem. This is required because while a container uses
computational and memory resources on your machine, it
runs independently of the machine filesystem (it has its own
filesystem which is defined in the Dockerfile). If we want the
BIDS app to run on a BIDS dataset located on our machine,
then we need to create “volumes” or “bind mounts” between
the filesystems of our machine and of the container. In the
command above, we use -v to specify three volumes:

• We link <bids_dir> on our machine with the directory /data
in the container, specifying the mode :ro for read-only, to
avoid saving files inside the BIDS directory. So everything in
<bids_dir> will be accessible for reading from the container,
in its directory /data.

• We link <output_dir> on our machine (a directory where the
outputs will be saved) with the directory /out of the con-
tainer. No mode is specified, so the default read-and-write
mode is applied.

• We link <temporary_dir> on our machine (a directory where
we want intermediate outputs of the pipeline to be stored)
with the directory /tmp of the container. No mode is speci-
fied, so the default read-and-write mode is applied.

Note
To know what parameters you should specify when calling
“docker run”, check the documentation of the BIDS app you
are using, or ask the creator!

For example, fmriprep uses freeSurfer tools, which
require a license to run. To obtain a freeSurfer license, simply
register for free at https://surfer.nmr.mgh.harvard.edu/
registration.html.

Like all the BIDS apps, nipreps/fmriprep also takes parameters
specific to the fMRIPrep pipeline like -w, a single character version
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of the parameter —work-dir, which specifies the directory where
intermediate outputs should be stored. Here, we are passing /tmp as
a value for -w, which will save the intermediate results locally on our
machine in <temporary_dir> thanks to the volume specified with
the -v option.

A full list of the parameters you can pass to the BIDS app
nipreps/fmriprep is given here: https://fmriprep.org/en/stable/
usage.html#execution-and-the-bids-format.

Now we understand the basic ingredients of a call to a Docker
container, let’s look at a fully specified example, working with the
AOMIC-PIOP2 dataset. In our case, the AOMIC-PIOP2 data is
locally stored in /home/melanie/, so we replace the directory
placeholders such as <bids_dir> with our specific directories, we
specify “participant” for the analysis_level and provide our partici-
pant list. This gives us the command:

docker run -it --rm -v /home/melanie/AOMIC-PIOP2:/data:ro -v

-v $HOME/.licenses/freesurfer/license.txt:/opt/freesurfer/li-

cense.txt

/home/melanie/AOMIC-PIOP2/derivatives/fmriprep_test:/out -v /

home/melanie/AOMIC-PIOP2/derivatives/fmriprep_test/tmp:/tmp

nipreps/fmriprep:latest /data /out participant -w /tmp --

participant_label 0001 0002

Running this command will launch fMRIPrep on participants
0001 and 0002, store the intermediate results locally in the folder /
home/melanie/AOMIC-PIOP2/derivatives/fmriprep_test/tmp and the
final results in /home/melanie/AOMIC-PIOP2/derivatives/

fmriprep_test.
If you do not specify participants using the option—participan-

t_label, the program will process all the subjects in the BIDS
dataset.

Step 3 Run a group level analysis.

Once the participant-level analysis is completed for all partici-
pants (or the ones selected) in your dataset, you may need to run
the analysis at the group-level:

docker run -it --rm -v /home/melanie/AOMIC-PIOP2:/data:ro -v /

home/melanie/AOMIC-PIOP2/derivatives/fmriprep_test:/out -v /

home/melanie/AOMIC-PIOP2/derivatives/fmriprep_test/tmp:/tmp

nipreps/fmriprep:latest /data /out group -w /tmp

Notice that the command is identical, apart from the specifica-
tion of analysis_level. Here, we omit a participant list, because we
want all participants to be included.
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This example shows how easy it is to work with your BIDS data
using BIDS apps. There are many different BIDS apps [see
Resources]. Once you have established your own analysis pipeline,
you may even consider creating your own BIDS app. A template is
provided here: https://github.com/BIDS-Apps/example.

More information on how to run BIDS apps, especially on
HPC clusters, is provided (http://bids-apps.neuroimaging.io/
tutorial/) and there is a very helpful FAQ (https://bids-standard.
github.io/bids-starter-kit/apps.html). Don’t forget to join the
BIDS community (https://bids.neuroimaging.io/get_involved.
html)!

3 Getting Started with Python Notebooks

If you have followed the steps above, you will now have some
familiarity with the BIDS ecosystem, you’ll have implemented
BIDS structure for your data, and you’ll have run your first analysis
using a BIDS app. Now it’s time to work with your data!

When performing reproducible research, one key recommen-
dation is to use open-source tools, software, and programming
languages, where possible. By using open-source tools, we remove
the barrier of access to expensive, proprietary tools, and maximize
the opportunity for any researcher to repeat our analyses, regardless
of their resources. Python is an open-source programming lan-
guage that has recently gained popularity across a broad spectrum
of disciplines including neuroscience, psychology, biomedical sci-
ence, and beyond, due to its intuitive platform and substantial
computational capability for basic and complex analyses. While
python can be used in traditional scripts, like other programming
languages, Python notebooks offer a particularly useful way to
write reproducible and portable code. Python notebooks make use
of Markdown—a markup language that allows easy plain-text
formatting (e.g., for adding comments, headings, bold, italics,
hyperlinks, etc.). Notebooks are also commonly used with another
open-source program for statistical analysis, R.

Python can be installed either alone or using a platform like
Anaconda. Installing Jupyter Notebook will enable notebook use
on your own local computer, but, alternatively, Google Colabora-
tory offers an easy web-based platform for creating and running
Python notebooks, for which no local installation of Python is
required. Google Colab also offers free access to (carbon neutral)
GPUs and facilitates the storage and sharing of code using Google
Drive. For large projects or analyses of large neuroimaging
volumes, however, it is preferable to have your own local installa-
tion of Python, since Google Colab has resource limitations (12GB
RAM) and may not be scalable for very large datasets. For analysis
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of smaller datasets, or less resource-demanding analyses of time
series or behavioral data, this resource limitation should not be a
problem. The example notebook included with this book chapter
has been written using Jupyter Notebook (installed locally), but it
can also easily be used in Google Colab.

Before we take a look at our example, there are several Python
packages that you are likely to use frequently for reproducible
neuroimaging and behavioral analyses. These are very well docu-
mented and supported by tutorials that are easily found online.
These include [see Resources]:

• numpy: Numerical package for scientific and arithmetic
computing,

• pandas: Supports data manipulation and analysis, particularly
useful for reading data in csv/xls format,

• nilearn: Package supporting neuroimaging analyses of structural
and functional volumetric data. Includes tools for voxelwise
statistical analyses, multi-voxel pattern analysis (MVPA),
GLMs, clustering and parcellation, etc.

• scikit-learn: Tools for machine learning, including classification,
model selection, and dimensionality reduction,

• https://nltools.org: Neuroimaging package for fMRI data ana-
lyses (e.g., resting-state, task-based, movie-watching) that incor-
porates code from nilearn and scikit-learn,

• statsmodels: Package to build statistical models and perform
statistical tests,

• pingouin: Simple statistical functions and graphics,

• matplotlib and seaborn: Tools for data visualization.

3.1 Writing and

Sharing Code

As you begin your analysis, it is important to think about future
code reuse and sharing—so that other researchers (including
“future you”) can reproduce your analyses and findings. Because
neuroimaging analyses are often complex in nature, with many
different parameters, each with a number of possible settings, it
can be very difficult to reproduce a workflow or set of results if
code/scripts are not provided with the published paper. For this
reason, when writing code, one of the most important things to
think about is whether someone else will be able to look at your
code, understand what is being done, and reproduce or adapt the
analyses themselves.

The idea of code sharing can be anxiety-inducing—researchers
often fear that their code will contain errors that may be identified
by more experienced researchers and programmers. While this is an
understandable and common fear, practice helps. Learning to write
reproducible code is just like learning a second language or a
musical instrument—if you don’t practice regularly, you will not
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master the ability to speak fluently or play coherently. If you have
never written Python code before, it can be daunting to start. We
are not going to cover the basics and mechanics here, since there are
many excellent resources available online. If you are completely new
to Python, you might want to consider some of the beginner’s
tutorials and guides (https://wiki.python.org/moin/
BeginnersGuide/Programmers) linked to on the Python wiki
(https://wiki.python.org/moin/), or one of the MOOCS offered
by Coursera, edX, Udemy, and others. In what follows, we’re going
to highlight some of the most important things you should know.
We have also created an example notebook (https://osf.io/fye48)
to accompany this chapter, which illustrates some of the concepts
and practices we outline below.

First, there are some basic good practices that all programmers
can follow to ensure their code is well-structured and clean (avoid
“spaghetti code”), clear (without ambiguous or confusing variable
names), and concise (avoiding unnecessary loops). You should
check out this excellent guide from the Alan Turing Institute
(https://the-turing-way.netlify.app/reproducible-research/repro
ducible-research.html), python best practices (https://
towardsdatascience.com/5-python-best-practices-every-python-
programmer-should-follow-3c92971ed370), and, although very
detailed, you should also familiarize yourself with the official
Python Style Guide (https://peps.python.org/pep-0008/),
including best practice naming conventions (https://peps.python.
org/pep-0008/#naming-conventions).

Beyond following best practices for programming style, the
best way to ensure usability of your code is to #comment
it. Commenting means adding short (one-line) explanatory notes
to your code, preceded by a designated comment symbol—the #
symbol is used for this purpose in many coding languages, includ-
ing Python. The comment notes explain the intent of the code, or
summarize what the code does or refers to. Any time you write
code, you should try to comment it as much as possible—not just
for others but for “future you”. We are all susceptible to the myth
that we will successfully recall the “what” and “why” of our code at
a later date, but the unfortunate truth is that even highly experi-
enced programmers return to uncommented code after a period of
time and can’t decipher it. To save heartache down the line, you
should carefully comment your code as you write it. One useful
recommendation from Kirstie Whitaker of The Alan Turing Insti-
tute is that comments should represent about 40% of your code. In
our example notebook (https://osf.io/fye48), we provide lots of
examples of how to comment code. Because notebooks offer an
easy means for separation of code and mark-up (plain-text format-
ting), they allow for detailed annotation of your analyses, which will
maximize reproducibility and reuse.
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Note Always comment your code, to make it accessible to your
(future) self and others! By allowing for markdown plain-text sec-
tions as well as code, notebooks have made this easier and tidier
than ever.

Another important coding skill is debugging—figuring out
why your code is not working or is producing the wrong output.
As with code-writing in general, debugging is a skill that develops
over time and involves a lot of trial-and-error (trying something,
seeing if it works, trying something else), combined with some
intrepid Googling skills. Believe it or not, the default way for even
quite experienced programmers to understand errors in their code
is to copy/paste the error message into Google! This works because
it is very likely that your error has been encountered and posted
about before—a quick Google search often reveals the solution, on
platforms such as Stack Overflow [see Resources].

Note
Even the best programmers use Google to help debug and
find solutions to errors!

3.2 Planning and

Implementing Your

Analysis

When it comes to implementing a reproducible and sustainable
analysis pipeline, it is important to carefully consider and select
the preprocessing steps for your raw imaging data, so that this
step can be run only once. This is because it is data preprocessing—
steps such as motion correction and normalization to standard
space—that consume the majority of computational resources and
therefore energy consumption. Thankfully, the development of
standardized preprocessing pipelines such as fMRIPrep [9],
C-PAC [10]), and NiPreps, amongst others [see Resources], has
the promise of not only harmonizing analyses and increasing their
reproducibility, but also increasing the attractiveness of sharing and
using preprocessed rather than raw data—a crucial next step in
reducing the carbon footprint of neuroimaging.

Our example notebook (https://osf.io/fye48) works with data
preprocessed using fMRIPrep, described above. The example
works with time series extracted using a standard functional parcel-
lation of the brain into Regions of Interest (ROIs). Working with
ROI time series, rather than voxelwise data, saves both time and
computational resources, because the dimensionality of the data is
considerably reduced—from ~200,000 voxels × n_timepoints to
268 (ROIs) × n_timepoints. One drawback of this approach is the
fine detail offered by high resolution data may be lost—the specific
approach adopted and level of dimensionality required should be
selected based on the goals of your analysis.
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Here, we highlight some of the features of the notebook.

1. Notebook basics: For those who are completely new to Python
notebooks, we introduce and demonstrate Markdown and
code cells (Fig. 7).

2. Examples of good coding practice—commenting, variable
names, and style (Fig. 8).

3. Using neuroimaging packages to work with voxelwise and time
series data (Fig. 9).

4. An example functional connectivity analysis with data from the
AOMIC-PIOP2 dataset (Fig. 10).

Fig. 7 Code and markdown cells in a Python notebook

Fig. 8 Some examples of good and bad coding practices
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Fig. 9 Working with neuroimaging packages and data

Fig. 10 Performing an analysis with the AOMIC-PIOP2 dataset
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4 Thinking About Sustainability for Your Workflow

The twin climate and biodiversity crises constitute the greatest
challenge that we and our planet have ever faced. It is a challenge
of our ownmaking—the unprecedented changes in our climate and
devastating destruction of ecosystems are a direct result of human
behavior and the social, political, and economic systems and struc-
tures we have created. Addressing the planetary crisis—by mitigat-
ing our changing climate, stalling biodiversity loss, restoring
nature, and learning to thrive within planetary boundaries—
requires urgent and collective action at all levels of society.

The trouble is that most of us don’t know where or how to
start. As neuroimagers, neuroscientists, psychologists, researchers,
academics, we doubt what contribution we could possibly make in
our professional lives to addressing our planetary crisis. We worry
that we don’t have the right expertize, that we need to change too
much about what we do, or that any small changes we make won’t
have an impact on such a huge problem. But in reality, there’s lots
we can do—as recent papers from Aron et al. [11], and Rae et al.
[12] have compellingly outlined. The actions range from reducing
air travel (e.g., for conferences), teaching or doing research on the
crisis, being aware of the environmental impact and sustainability of
helium extraction, engaging in advocacy and activism, including
nonviolent direct action, to simply talking about the planetary crisis
with your colleagues, friends, and family. Relevant to the goals of
this chapter, one of the simplest and most immediate things we can
all do is to reduce the energy usage and associated environmental
impact of our data analyses. Another important action neuroima-
gers at all career stages can take is to better inform themselves about
the origins and consequences of the planetary crisis, as well as
potential solutions. In addition to the papers by Aron et al. [11],
and Rae et al. [12], which review environmental issues in neuroim-
aging and neuroscience research, scientific computing, and our
field’s conferences, and propose practical steps towards sustainabil-
ity, we recommend recent articles by Keifer & Summers [13] and
Zak et al. [14]. Looking beyond our field to the broader picture, we
strongly recommend Naomi Klein’s This Changes Everything [15],
Jason Hickel’s Less is More—How Degrowth Will Save the World
[16], and the podcasts Drilled (https://www.drilledpodcast.com/
drilled-podcast/), Scene on Radio (fifth season—The Repair:
http://www.sceneonradio.org/the-repair/), and Upstream
(https://www.upstreampodcast.org/).

The advice contained in this chapter is intended to set you off
on the right foot in terms of implementing an efficient and effective
workflow that minimizes unnecessary resource use. In the next
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chapter, we cover Git, which can also help with this. You might also
want to actively monitor your and your lab’s energy use. Just a few
years ago, the task of measuring the resource demands and carbon
footprint of neuroimaging processing pipelines would have been
exceedingly difficult. Luckily, in 2020, the Organization for
Human Brain Mapping Sustainability and Environmental Action
Special Interest Group (SEA-SIG, https://ohbm-environment.
org/) was launched, in recognition of the need to reduce the
environmental impact of the organization, its conference, and its
members. As one of its first actions, the SEA-SIG established a
working group focused on assessing the environmental impact of
neuroimaging processing pipelines. The group has developed sev-
eral carbon tracker toolboxes, based on existing utilities (Code
Carbon, EIT) that monitor CPU and GPU resource use during
data processing [see Resources]. For example, you can monitor the
carbon footprint of your BIDS app by following this excellent
tutorial (https://github.com/sebastientourbier/tutorial_car
bonfootprint_neuropipelines). There are also guidelines (https://
github.com/nikhil153/fmriprep/blob/carbon-trackers/singular
ity/carbon_trackers_readme.md) for measuring the impact of the
way you use fMIPrep, and if you use Deep Learning models, this
carbon tracker (https://github.com/lfwa/carbontracker/) can
help you perform energy-optimized model training and selection
procedures. Facing up to the planetary crisis is a challenging task
that is made easier when you are part of a community. Finding like-
minded folks to meet, talk, and take action with is one of the best
things you can do to support yourself. Whether it’s in your univer-
sity, local community, you’ll find that climate action is easier when
you can draw inspiration, motivation, solidarity, support, informa-
tion and resources from others, and give back in return. For neu-
roimagers, a global community like the SEA-SIG is particularly
relevant. The SEA-SIG Neuroimaging Research Pipeline WG
have shared their work on quantifying the carbon footprint of
neuroimaging tools and their vision for making our processing
pipelines greener by improving their reproducibility and sustain-
ability (https://neuropipelines.github.io/)—a vision we support,
share, and express throughout this chapter.

Note
We can all make concern for the climate and biodiversity crisis
part of who we are and how we work. All actions matter, and
those that scale to collective action and social norms are the
most powerful.
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Chapter 5

Optimizing Your Reproducible Neuroimaging Workflow
with Git

Mélanie Garcia and Clare Kelly

Abstract

As a neuroimager working with open-source software and tools, you will quickly become familiar with the
website GitHub, which is a (for profit) platform for storing, managing, and sharing code, software, and
projects. Many of the open-source tools discussed in this book are hosted on GitHub. Although people are
generally very familiar with GitHub (or GitLab), they are often less familiar with its foundation—Git. Better
understanding Git will help you better manage your own projects and will also help you to better
understand GitHub and how to use it optimally. In this chapter, we will first explain Git and how to use
it, then we will turn to GitHub. A worked example—a clustering analysis—with open access neuroimaging
data is provided, demonstrating utilities such as version control, branching, and conflict resolution.

Key words Neuroimaging, Git, GitHub, Version control, Reproducibility

1 What Is Git?

“Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and effi-
ciency.” (https://git-scm.com/)

To understand what Git [see Resources] is, we first need to
understand the concept of version control [see Glossary]. At its
most basic, version control means tracking and managing changes
to your code (scripts) and projects. Git will help you to do this in a
structured and systematic way, which helps you to manage and
share your code with others. The Git version control system
means that parts of your project can be developed or edited, while
your work is also protected from unwise or undesirable changes
through the possibility of reverting to an earlier version. These
features of Git facilitate the collaborative development of tools.
Git is widely used in academia but also in most business environ-

Robert Whelan and Hervé Lemaı̂tre (eds.), Methods for Analyzing Large Neuroimaging Datasets, Neuromethods, vol. 218,
https://doi.org/10.1007/978-1-0716-4260-3_5, © The Author(s) 2025
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ments that involve IT programming. While using Git may seem
cumbersome or complicated at first, the habits that it establishes,
the version control system it implements, and the ease of collabo-
ration it enables will, in the long run, make the investment worth it.

2 Version Control with Git

Git and version control are best explained through an example. As a
prerequisite, you need to install Git (https://git-scm.com/book/
en/v2/Getting-Started-Installing-Git) on your machine. Below,
we work through one example, providing command lines you can
type into a terminal on your machine. In this example, we will
perform a clustering analysis on a file from the derivatives folder
in the AOMIC-PIOP2 dataset (https://openneuro.org/datasets/
ds002790/versions/2.0.0), using Python. To follow the tutorial,
you will need to download the file derivatives/fs_stats/data-corti-
cal_type-aparc_measure-area_hemi-lh.tsv from the Open Neuro
repository [see Chapter 2].

2.1 Create a Git

Repository for Your

Project

If you want to version control a project, you will need to create a
repository [see Glossary] (which is simply a directory or folder;
often called a “repo”) that will contain all the code related to the
project.

Let’s call this folder “my-analysis”. Note that when using the
command line, it is best to avoid spaces or special characters when
naming folders.

mkdir my-analysis

Next, change directory into this folder.

cd my-analysis

Now, initialize a Git repository associated with this folder, by
running the command:

git init

This creates a .git directory inside the folder “my-analysis”. The
.git directory is the only difference between a Git repository and an
ordinary folder.
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Note
Be very careful! Deleting the .git folder will mean that all the
files in the folder “my-analysis” become unversioned—you will
lose the history of all changes to those files.

2.2 Basic

Configuration of the

Git Repository

First, configure Git by telling it who you are:

git config --global user.name "Your Name"

git config --global user.email your.email@example.com

Note
In the first command, the inverted commas are required. For
the second command, you should use the same email address
used to set up your github account (this will be explained
later). These steps have a very practical benefit in that they
allow you to track who coded each part of a collaborative
project.

2.3 Check the Status

of the Git Repository

You should check the status of the Git repository frequently, using
the command:

git status

In this example, this command should return:

On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)
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The first line indicates that you are on the branch “master”. We
will explain the notion of a branch later in this tutorial. The second
line tells us that we have not yet begun to track (“commit”) any
files. The final line tells us that we do not yet have any files in the
repository that we can track—there is “nothing to commit”.

Users often prefer to rename the “master” branch as “main”, in
recognition of the fact that technology terminology such as “mas-
ter” has its origins in slavery and colonialism. GitHub recently
made the same change across its platform (https://github.com/
github/renaming). This change cannot be done until you have
made your first commit, however, so we will return to this below.

2.4 Create a File Let’s create a notebook to visualize the data, called visualization.
ipynb. The notebook is available here for download (https://
github.com/garciaml/my-analysis). Download the whole folder as
a zipped folder (see Fig. 1)—then unzip it and move the file visuali-
zation.ipynb into the “my-analysis” folder. To run this notebook,
you will need to have installed python and the libraries pandas,
matplotlib and seaborn [see Resources].

You also need to move the data downloaded from the AOMIC-
PIOP2 (“derivatives fs_stats data-cortical_type-aparc_measure-
area_hemi-lh.tsv”) into your “my-analysis” folder.

Next, verify the status of the Git repository again:

git status

Fig. 1 Repository containing the files needed for this tutorial. You can download these files as a zipped folder
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This command should return:

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

.ipynb_checkpoints/

derivatives fs_stats data-cortical_type-aparc_measure-area_hemi-lh.tsv

visualization.ipynb

nothing added to commit but untracked files present (use "git add" to track)

Now that you have some files inside your my-analysis folder,
the git status command returns a lot more information. It now has a
section, “Untracked files”, which lists two files:

derivatives fs_stats data-cortical_type-aparc_measure-area_hemi-lh.
tsv

and visualization.ipynb. These files are untracked, which means that
no versioning has yet been applied to these files. The directory
“.ipynb_checkpoints/” is a hidden folder containing cache
memory related to the notebook. It should not be tracked.

2.5 Staging Files The first step in versioning files is called staging—which involves
letting Git know which files we intend to version. Stage the files
“derivatives fs_stats data-cortical_type-aparc_measure-area_hemi-
lh.tsv” and “visualization.ipynb” using the following command:

git add derivatives fs_stats data-cortical_type-aparc_measure-
area_hemi-lh.tsv visualization.ipynb
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This operation means that you intend to track these files, but
have not yet started to save versions of them. If needed, you can go
back and remove these files from being staged/tracked with no
impact on the Git repository, using the command git restore --staged
<file>.

You can verify the status with:

git status

The outcome should have changed now, and you should see
the two stage files now included in the list of files to be committed.

2.6 Committing Files In Git, a “commit” is a snapshot of the staged changes to the
project. Each time you perform a “commit”, you create a version
of your project. Git keeps these versions safe, so we can always
return to an earlier version of our project if needed.

Let’s create your first commit. First, check the history of com-
mits of the project.

git log

Because this is a new project and no commits have yet been
made, it should return:

fatal: your current branch 'main' does not have any commits yet

One way to commit is to run:

git commit

This command will lead to a window where you can type a brief
message related to the commit. The message should capture what
the commit does—what changes the commit makes to your reposi-
tory (here’s a guide to writing Git commit messages: https://cbea.
ms/git-commit/). Next, save the changes and exit. This will have
created a new commit in the history of our Git repository.

Another way to commit is to use the command-line:

git commit -m "Data and initial visualization"
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The part inside the inverted commas (quotes) is the commit
message.

We can visualize this commit and obtain its identifier by
running:

git log

Now that you have made your first commit, you can rename the
“master” branch as “main” using the command:

git branch -m master main

2.7 Create and Track

a New File in Your

Project

Let’s create a notebook that will contain our clustering analysis,
called “clustering_analysis.ipynb”. You’ll find this notebook in the
folder you previously downloaded from the repository. Move it into
the “my-analysis” folder.

Stage and commit it:

git add clustering_analysis.ipynb

git commit clustering_analysis.ipynb -m "First clustering: PCA + k-Means"

Note
Your commit command is different this time, in that you
specified the name of the file you wanted to commit. This
may be necessary when you have several files that are staged
but you only want to commit one of these.

Now you can make changes and edits to your project files,
staging and committing those changes as often as needed (see
Fig. 2).

2.8 Remove

Modifications in a File

Before Committing

Sometimes you will want to undo changes you have made to a file.
For example, let’s modify the file “visualization.ipynb” by adding a
cell and writing some code inside. Save the changes. Next, run:

git status
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The name of the file should be in the section “Changes not
staged for commit”:

Now, let’s say you regret the change you made—they didn’t
produce the output expected and you want to revert to an earlier
version of your notebook.

To do this, run:

git restore visualization.ipynb

Open the notebook in Jupyter or another interface. You should
find that you have restored the last version of the file before you
made those modifications—the changes you made to the file have
disappeared.

2.9 Check a Specific

Old Version of a File in

the Git Repository

Let’s say you have developed a project quite a bit, but you’d like to
look at a specific version of one of your files—for example, the first
version of the file “visualization.ipynb”. You can do this by:

• Finding the ID of the commit corresponding to the version of
the project you want to check, by running: git log --oneline.

• The need for informative commit messages should now be clear!
You need to be able to identify the commit containing the
version of the project that you want. Here, you want the first
commit, “Data and initial visualization”, which the log indicates
is commit 62901c0.

• To access this version, use the command git checkout 62901c0.

• You can now open the notebook “visualization.ipynb” in Jupy-
ter or another editor. This is the old version of your file. Now,
things can get complicated if you want to modify this version of
the file. In that case, it is recommended that you start a new
branch of your project, and commit any new changes within this

Fig. 2 Visualizing the staging and committing process
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new branch. Otherwise you will run into trouble when you
return to the most recent version of the project in the branch
main. We will look at how to build a new branch in the next
section.

• Finally, to return to the most recent version of your project in
the branch main, run the command line: git checkout main.

• You can check that all the recent changes in “visualization.
ipynb” are still there by opening that notebook.

2.10 Developing in

Branches

Let’s say you want to add a new type of algorithm to our analysis
but are not sure it will work. One way to do this safely is to create a
new “branch” of your project where you can develop this new
analysis feature, and make commits, but without modifying the
stable version of your project (which is by default on a branch
named “main”).

First, let’s see what branches there currently are in your project:

git branch

Since we have not yet created any branches, we should see just
one listed:

* main

You will now create a new branch named “dbscan” because this
is the new feature to add to the notebook “clustering_analysis.
ipynb”.

git branch dbscan

Now, you need to go to this branch, so the work you do is
staged and committed to the dbscan branch and not the main:

git checkout dbscan

You can verify that you are in the dbscan branch by running git
branch (you will see an asterisk in front of the current branch).

* dbscan main
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Modify the file clustering_analysis.ipynb. You can add a cell
with these lines of code:

# Perform a k-Median

clustering = cluster.DBSCAN(eps=10000, min_samples=3).fit(X)

print(clustering.labels_)

# Let's visualize the clusters

plt.figure(figsize=(16,9))

plt.scatter(X[:, 0], X[:, 1], c=clustering.labels_)

plt.figure()

Save your changes in the Git repository within the current
branch:

git add clustering_analysis.ipynb

git commit -m "Adding DBSCAN algorithm"

By working within a branch, you can make sure that the
changes you make are what you want. Once you have a version of
a new feature that works and that you are fully satisfied with, you
canmerge the branch with the branch main to integrate our feature
in the stable version of our project.

First, go back to the branch master:

git checkout main

Next, merge the branch dbscan:

git merge dbscan

Finally, in order to keep our Git repository clean and refined,
you should delete the branch dbscan since we will not use it later in
the project:

git branch -d dbscan
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Sometimes you will need to manage conflicts while merging
branches. Conflicts arise due to the line-by-line differences between
two versions of the same file. To resolve conflicts, you can edit files
in their respective branches and make the different versions com-
patible. Git will help in this task by showing us the conflicting parts
of the files. For example:

<<<<<<< HEAD What is written in the version in the
branch you want to merge files into.

=======
What is written in the version in the branch where you

want to get the version from.
>>>>>>> dbscan

Branches (see Fig. 3) are particularly useful when you want to
work in a collaborative way. Every contributor can create new
branches where they can develop new features, and, when agreed,
can later merge their branches with the stable version of the project.
When you code alone, it is also a safe way to add new features to
your projects, without breaking the stable version.

2.11 Link Your

Project with a GitHub

Repository

GitHub is a platform for storing projects in public or private
repositories. It is widely used within the scientific community and
uses Git as backbone. It makes it possible to access your projects
from anywhere, and to share your projects in an open-source way,
thanks to the “public repository” mode.

To work remotely on your laptop on a project that is stored in
GitHub, and to keep the state of the project synchronized between
your laptop and GitHub, you will need to perform several steps.

First, you’ll need a GitHub account. Next, create an ssh con-
nection that will serve as your secure authentication when synchro-
nizing your project with your GitHub repository. You can follow
this GitHub tutorial: https://docs.github.com/en/authentica
tion/connecting-to-github-with-ssh/about-ssh

Fig. 3 Branches in Git projects
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Next, you can create a new GitHub repository, for instance
with the same name: my-analysis (see Fig. 4).

To be able to connect your GitHub repository via ssh, select the
ssh button. This will display the commands you’ll need to launch
(see Fig. 5).

Once you have run those setup commands, from the
my-analysis folder, run:

Fig. 4 Creating a GitHub repository

Fig. 5 Quick setup after creating your new repository on GitHub
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git remote add origin git@github.com:garciaml/my-analysis.
git git branch -M main

Note
Be sure to change git@github.com:garciaml/my-analysis.git
to the name of your own GitHub repository!

Next, you can push everything you have coded and tracked in
your Git repository to the GitHub repository by running:

git push -u origin main

If you update your GitHub webpage, you will see your files
uploaded on the platform (see Fig. 6).

It is very important to regularly push your commits so that you
keep an updated version of your project in your GitHub repository.

When you develop a project with other people or when you
develop alone but using different machines, you will need to syn-
chronize the version of the project on your machine with the one in

Fig. 6 GitHub repository after git push
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the GitHub repository each time you connect to your machine to
keep on working on the project. Do this using the command:

git pull

2.12 Collaborating

with Git and GitHub

Part of what makes Git and GitHub so popular is that they are
important tools for collaborative projects. In GitHub, you can add
collaborators to your project. These collaborators will then be
allowed to directly push their changes to the GitHub repository
and to pull the project regularly to stay synchronized with changes
committed by others.

Generally, collaborators develop on their own branches before
merging with the main branch which is usually the branch of the
“deployed” project (i.e., the code on the main branch should run
well and correspond to a stable version of the project).

Note
It is useful to have a “develop” branch (see Fig. 2) that will
allow the collaborators to develop new features of a project
until the next stable version that will be merged with the main
branch. It also prevents anyone from breaking a stable version
of a project with a bad merge (because the stable version
remains on the main branch!).

Each collaborator can contribute to developing new features in
a project or solving issues, using separate branches. This can make
the division of tasks amongst collaborators structured and clear.

It is important to commit often (code that runs well) and push
these changes to the GitHub repository to make the evolution of
the project visible for all and to avoid overlap or duplication of
effort between contributors. There are many ways to establish a
productive and efficient work environment. For instance, GitHub
Flow [see Resources] can help with setting up “a lightweight,
branch-based workflow” for collaborative projects in neuroscience.
Trunk-based-development [see Resources] is another type of work-
flow that can help teams of developers to build a project or a
software in an efficient way.

What we have just described is known as the “shared repository
model”, when team members directly share and collaborate on the
source repository with others. Another way to contribute to pro-
jects is through the “Fork and pull model”. Here, you can create a
“fork” from any repository you have access to (e.g., public
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repositories, the authors of which you might not know or formally
collaborate with). The “fork” is a copy of that repository, which
exists on your own GitHub. Now you can develop and push your
changes on the fork, without the permission of the owner of the source
repository. If you want to suggest your changes to the owner of the
source repository, you can create a “pull request” and the owner
will be able to accept or decline your suggestions for changes to the
source repository. The “fork and pull model” is often used for big
collaborative projects, when the code is made public and open to be
developed by the wider community. You can learn more about
collaborative development models from the GitHub documenta-
tion (https://docs.github.com/en/pull-requests/collaborating-
with-pull-requests/getting-started/about-collaborative-develop
ment-models).

2.13 Some Other

Practical Tips for Git

and GitHub Users

• You can tag specific versions of your project (i.e., commits) with
tag names using the command git tag -a <tag-name> -m
"<description>".

• You can create a .gitignore file that will contain the names of the
untracked files or folders that Git should ignore.

• You can easily clone a GitHub project on your machine by using
git clone.

• You can undo committed changes with the command git revert.

• Using the GitHub CLI might be useful (https://cli.github.
com/).

• Our example used command-lines directly typed into a terminal.
Another option is to use a Graphical User Interface like Source-
tree or GitHub Desktop [see Resources]. Here’s a list of good
Git GUIs (https://dev.to/theme_selection/best-git-gui-cli
ents-for-developers-5023).

2.14 Tutorials to

Further Develop Your

Git Skills

Kirstie Whitaker’s intro: https://kirstiejane.github.io/friendly-
github-intro/

The GitHub quickstart: https://docs.github.com/en/get-
started/quickstart/hello-world

The official Git tutorial: https://git-scm.com/docs/gittutorial

Videos: https://git-scm.com/videos; https://johnmathews.is/rys-
git-tutorial.html

Git Cheat Sheets: https://training.github.com/

2.15 Ten Simple

Rules for Taking

Advantage of Git and

GitHub

Reproduced verbatim here from [1]:

Rule 1: Use GitHub to Track Your Projects

Rule 2: GitHub for Single Users, Teams, and Organizations
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Rule 3: Developing and Collaborating onNew Features: Branching
and Forking

Rule 4: Naming Branches and Commits: Tags and Semantic
Versions

Rule 5: Let GitHub Do Some Tasks for You: Integrate

Rule 6: Let GitHub Do More Tasks for You: Automate

Rule 7: Use GitHub to Openly and Collaboratively Discuss,
Address, and Close Issues

Rule 8: Make Your Code Easily Citable, and Cite Source Code!

Rule 9: Promote and Discuss Your Projects: Web Page and More

Rule 10: Use GitHub to Be Social: Follow and Watch
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Chapter 6

End-to-End Processing of M/EEG Data with BIDS, HED,
and EEGLAB

Dung Truong, Kay Robbins, Arnaud Delorme, and Scott Makeig

Abstract

Reliable and reproducible machine-learning enabled neuroscience research requires large-scale data sharing
and analysis. Essential for the effective and efficient analysis of shared datasets are standardized data and
metadata organization and formatting, a well-documented, automated analysis pipeline, a comprehensive
software framework, and a compute environment that can adequately support the analysis process. In this
chapter, we introduce the combined Brain Imaging Data Structure (BIDS) and Hierarchical Event
Descriptors (HED) frameworks and illustrate their example use through the organization and time course
annotation of a publicly shared EEG (electroencephalography) dataset. We show how the open-source
software EEGLAB can operate on data formatted using these standards to perform EEG analysis using a
variety of techniques including group-based statistical analysis. Finally, we present a way to exploit freely
available high-performance computing resources that allows the application of computationally intensive
learning methods to ever larger and more diverse data collections.

Key words EEG, Neuroinformatics, BIDS, HED, EEGLAB

1 Introduction

As demonstrated in a recent study [1], the complex and varied
landscape of individual and phenotypic brain differences may
require studies of thousands of individuals to establish reliable
and reproducible associations between brain dynamics and func-
tion, and personal experience and behavior. Machine-learning
approaches can now facilitate these discoveries but typically require
large collections of diverse input training data, including well-
labelled data, to create generalizable models. Public data archives
that use common data formatting standards are thus critical infra-
structure for enabling large-scale neuroimaging data analysis (and
“meta=” or “mega-analysis” [see Glossary]) applied within and
across individual studies and data recordings. Standardized data
formats enable tool interoperability [see Glossary]. Machine-
actionable [see Glossary] metadata [see Glossary] supports the

Robert Whelan and Hervé Lemaı̂tre (eds.), Methods for Analyzing Large Neuroimaging Datasets, Neuromethods, vol. 218,
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interpretation of the results [see Chapter 4]. Finally, complete spec-
ification and accurate documentation of the applied computational
pipelines promote reproducibility and testing.

This chapter presents an end-to-end overview of an electroen-
cephalography (EEG) data analysis process based on open commu-
nity standards, beginning with the identification of suitable raw
data and ending with the presentation of results suitable for discus-
sion and publication. The process begins with the conversion of raw
data (here, collected EEG plus sensory and behavioral
event descriptions and timings) to standard BIDS (Brain Imaging
Data Structure [see Glossary]) archival format [2]. The BIDS proj-
ect, which initially focused on specification of file organization for
functional magnetic resonance imaging (fMRI) datasets, is evolving
into a widely adopted, community-driven set of data format speci-
fications for a variety of imaging modalities including fMRI, posi-
tron emission tomography (PET), diffusion-weighted imaging
(DWI), EEG, magnetoencephalography (MEG), intracranial EEG
(iEEG), and microscopy data [3–5] [see Chapter 4]. Further BIDS
specifications are under development for body motion capture,
eye-tracking data, and multiple modality data. The in-common
BIDS formatting and metadata annotation standards allow tools
to be built using standard APIs (application program interfaces)
enabling automated ingestion and processing of datasets represent-
ing either one or more than one study and experimental paradigm.

While initial BIDS efforts focused on raw data formats and
layouts, recent efforts are also underway to standardize derivative
datasets (i.e., containing results of computations performed on the
raw data) for different imaging modalities including structural and
functional fMRI, electrophysiology, MEG, and PET. Also under-
way is an initiative to develop a framework for statistical models
(BIDS Stats Models) allowing computations to be specified using a
JSON file [see Glossary] so that they can be more easily documen-
ted and reproduced. Finally, a BIDS-mega specification is being
proposed to standardize the way that multiple BIDS datasets can be
integrated for large-scale computations. (A full listing of BIDS
extensions proposals under development can be found at https://
bids.neuroimaging.io/get_involved.html.)

A second requirement for interpretable large-scale, cross-study
analyses is a standardized metadata specification. While the BIDS
conventions include specifications for basic metadata (who, what,
when, where, etc.), one important annotation category has
remained nearly unstandardized and very often underspecified—
the nature of the events recorded during or later discovered to have
occurred during time series recordings. That is, the answer to the
question, "What exactly did the participant(s) experience and do
during this recording?

The Hierarchical Event Descriptors (HED or ‘H-E-D’ system
is a standardized method of capturing information about events in
dataset in a common metadata format to produce event annotation
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ready for machine analysis [see Resources]. HED, first proposed by
Nima Bigdely-Shamlo over a decade ago [6] and now in its third
major version, has many tools and features that facilitate produc-
tion and validation of standardized annotations that can be
searched and used in analyses [7, 8]. HED was formally accepted
as part of all BIDS modality standards in 2019 (BIDS v1.2.1-).
Current and in-progress HED tools support data annotation, vali-
dation, search, summary, and analysis [https://www.hed-resources.
org]. The HED framework includes a base standardized vocabulary
and a tool suite supporting annotation, validation, and analysis in a
combination of online tools, Python-based command line scripts
and notebooks, and MATLAB scripts and plug-in tools for
EEGLAB [see Resources]. See https://osf.io/8brgv/ for links to
HED and other resources discussed in this chapter.

HED metadata can enable intelligent combining of event-
related data from different recordings and studies in sophisticated
analyses including those using machine learning. Because EEG,
MEG, and iEEG data, in particular, have very fine time resolution
(much quicker than our thoughts and actions), event-related anal-
ysis is crucial in processing of neuroelectromagnetic data. The
dominant EEG analysis approaches including event-related poten-
tial (ERP), time/frequency, and dynamic connectivity averaging
rely on event descriptions and time markers to isolate sets of similar
data excerpts (or epochs) for meaningful comparison. HED anno-
tation is equally applicable to any other time series data, including
fMRI [see Chapter 7].

HED also now supports a ‘library’ mechanism using which
specialized research communities can develop additional HED
“library schemas” to specify HED term vocabularies for event
description of neuroimaging research subfields including language,
body movement control, clinical neurophysiology, and others.
HED’s first library schema, a library of terms used in interpretation
of clinical EEG recordings (now available at https://www.hedtags.
org/display_hed.html), incorporates the standardized SCORE
(Standardized Computer-based Organized Reporting of EEG) for
annotation of clinical EEG [9].

The past (and still most current) conception of experiment
events conflates event processes (unfolding over time) with event-
phase markers that point (typically) to the onsets or to other time
points of interest in event processes on the experiment timeline.
HED distinguishes in principle between event processes (having
duration) and event-phase markers (pointing to a single moment
on the experiment timeline). For many experiment events, the
second most important event phase to mark is its offset. BIDS allows
(but does not demand) that event onset markers include a measure
(in seconds) of the duration of the event, from which the event
offset moment can be calculated. HED allows other (inset) event
phases to be annotated as well, facilitating detailed analysis of
complex events.
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A further pillar supporting reproducible data analysis is the use
of well-documented and automated analysis pipelines. This process
is highly dependent on the tools and tool platform used in the
analysis. In this chapter, we demonstrate an approach to such an
analysis using tools from the EEGLAB environment [10], a widely
used processing platform for M/EEG data that fully supports both
BIDS and HED. Here, we provide practical guides on the input/
output (I/O) workflow between BIDS, HED, and the EEGLAB
environment, and show how researchers using EEGLAB can create
and/or import BIDS-formatted, HED-annotated datasets. We also
provide practical comments on event-related processing pipelines
that can be applied within or across datasets, including those using
different task paradigms.

Figure 1 gives a compact overview of the topics covered in this
chapter. After reviewing some background material, we demon-
strate how to import a BIDS dataset as an EEGLAB Study. We
introduce tools available for reviewing and correcting HED anno-
tation and other BIDS metadata, and perform re-annotation as
necessary. Independent of metadata review, we demonstrate pre-
processing the data including ICA decomposition [11], and as an
example show how to test a simple hypothesis concerning source-
resolved event-related potentials (ERPs) to sensory presentations of
different classes of letters in a demonstration experiment.

Fig. 1 Chapter overview of the end-to-end process of analyzing EEG data
incorporating HED annotation

80 Dung Truong et al.



2 Methods

2.1 Starting Point:

Obtaining the Data

This chapter discusses end-to-end processing of shared or newly
collected M/EEG data, from raw data to end results. We assume
that the raw data have been made available in BIDS format from an
open repository using BIDS formats such as OpenNeuro or its
neuroelectromagnetic data portal NEMAR (https://nemar.org/).
We also demonstrate tools for importing new or unannotated raw
data into BIDS using EEGLAB tools.

2.2 Data Storage and

Computing

We use data from one participant in the 24-participant Sternberg
Modified Memory Task [12], available in BIDS format with HED
annotation in OpenNeuro and NEMAR under accession number
ds004117. Its paradigm has recently been chosen for replication as
part of the EEGManyLabs reproducibility study [13]. The single-
participant (~380 MB) demo dataset used here is available at
https://osf.io/8brgv/ [see Chapter 2].

We assume for demonstration purposes that users will down-
load the demo data on their local computer to experiment with
using the tools we describe. Users should have at least 16 GB of
memory on their local machine to comfortably run even the single-
participant analysis. The Neuroscience Gateway (NSG, https://
www.nsgportal.org) at the San Diego Supercomputer Center is a
world neuroscience community resource that supports free use of
high-performance computing resources to run user-defined ana-
lyses built on any of multiple analysis environments (e.g.,
MATLAB, python, R) and toolsets (EEGLAB, Freesurfer, Open
Brain, TensorFlow, PyTorch, NEURON, etc.). NSG enables users
to submit analysis scripts of their own design to process either their
own or publicly shared (on NEMAR.org) data using either the
nsgportal EEGLAB plug-in or the NSG web-browser interface.
Data shared via the NEMAR resource (www.nemar.org) are imme-
diately available for analysis via NSG without data download and
re-upload. EEGLAB users can also use EEGLAB nsgportal plug-in
tools to submit jobs to NSG directly from an EEGLAB MATLAB
session, as discussed later in this chapter.

2.3 Software and

Coding

Although some basic understanding of analysis scripting may be
needed, the tools discussed here focus on those providing support
for the use of GUIs (graphical user interface) based analysis pipe-
lines. The demonstration analyses use EEGLAB running on
MATLAB (The Mathworks, Inc.). To run the demos, users must
have MATLAB installed and must download and install EEGLAB
as described in https://eeglab.org/download/. An extensive
EEGLAB tutorial is available at https://eeglab.org/tutorials/. Pre-
liminary assessment of event structure and annotation using
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Hierarchical Event Descriptors (HED) can be done entirely using
online HED tools at https://hedtools.org/hed, with no coding or
software installation required. We discuss two paths for running an
EEGLAB analysis pipeline, one using EEGLAB GUI windows
and/or command line scripts that run locally, and another using
online high-performance computational resources freely available
to neuroscience researchers via the Neuroscience Gateway (NSG).

2.4 Computational

Requirements

Computational requirements for importing and annotating the
data, as shown here, are minimal. In general, analysis time per
data recording depends on the complexity of the analysis, while
processing time on the entire dataset grows linearly with the num-
ber of processed recordings. When processing time is a limiting
factor (making some analyses extend beyond the practical compute
horizon), processing large bodies of data via NSG can take advan-
tage of parallel processing across 128 or more cores, with GPU
resources also available.

2.5 Background In this section we review some useful background material about
the demo data, BIDS data organization, EEG data formats, and
some HED basics. If you are already familiar with these topics, you
may skip this section or skip to Subheading 3.

2.5.1 Sternberg Working

Memory Dataset

The example data recordings used here are from the Modified
Sternberg Working Memory dataset [12], which can be examined
on NEMAR (https://nemar.org) and downloaded from NEMAR
(or from OpenNeuro.org) as dataset ds004117. The single-
participant demonstration dataset used here is available separately
at https://osf.io/8brgv/. Figure 2 shows a schematic timeline of
each experiment task trial. Under BIDS, onset markers for each
event are stored in an events.tsv file for each recording, as well as,
here, in the EEG data itself in EEGLAB format. In both cases
the event record has a tabular structure with each row representing
an event onset marker and columns recording event aspects. One
column always records the time of the event marker relative to the
experiment timeline.

Fig. 2 Schematic timeline of the sequence of sensory presentation and participant action events in each trial of
the Modified Sternberg Working Memory experiment. See the text for details including the meanings of the
letter colors
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In this experiment, each task trial begins with the display of a
central fixation cross for 5 s followed by a sequence of 8 centered sin-
gle letter presentations, each displayed for 306 ms, followed by a
1.4-s empty-screen delay. Each 8-letter sequence includes between
3 and 7 black letters “to be remembered” as well as (5 to 1) green
letters “to be ignored”. A central dash is then displayed for between
2 s and 4 s (the “memory maintenance” period). A red probe letter
then appears, prompting the participant to click either a right-hand
controller button (using their dominant hand index finger) if the
probe letter was presented in the preceding sequence as a black
(to be remembered) letter, or otherwise a left button (with their
thumb). All participants were right-handed. The participant
response was followed by a feedback sound—a “beep” for “cor-
rect” or a “buzz” for “incorrect”. Thereafter the participant
pressed either controller button to indicate their readiness to pro-
ceed to the next trial.

Note
As in nearly all actual experiment datasets, participants were
not always able to perform each pair of required trial button
press actions appropriately. Across the dataset, there were a
few trials in which the participant pressed a button multiple
times prior to receiving the trial feedback sound, a few trials in
which they did not press a response button, and one session in
which for some reason the nature and timing of the auditory
feedback was not recorded. The raw dataset also included
event marker sequences indicating incomplete trial presenta-
tions (e.g., trials in which no letters were presented).

Trial irregularities make it more difficult to perform auto-
mated analysis without building specialized programs to han-
dle such irregularities. To help downstream users minimize
required special handling, we recommend that, where appro-
priate, a trial-number column be included in the events.tsv file
to allow analysis scripts to identify and then efficiently pro-
cess valid trial events in the data.

If you are annotating a dataset new to you, it is useful to study
the experimental event sequence and check, for each participant,
whether all its recording segments (runs) and run elements (trials, if
any) conform to the expected syntax. The Modified Sternberg
Working Memory dataset paradigm is well-structured, producing
a well-defined sequence of event onsets that should be present and
accounted for in each data trial, making it easy to check for and
exclude “bad” (non-standard) trials. If an experiment paradigm is
not trial-structured or does not have an easily defined trial
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sequence, this may require custom coding. The chapter by
Denissen et al. introduces some tools that support event file
restructuring without programming.

2.5.2 BIDS Dataset

Format

BIDS specifications specify data and metadata formats and dataset
disk file organization. Dataset metadata are stored in a variety of
JSON (.json) and tab-separated value (.tsv) ASCII files. The
top-level file organization for the Modified Sternberg Working
Memory demo dataset is shown in the upper left of Fig. 3. Contents
of two important top-level metadata files, dataset_description.json
and task-WorkingMemory_events.json, are shown in the upper right
and bottom center respectively.

BIDS datasets are organized by participant (subject), with each
participant’s data organized in a unique folder (named ‘sub-xxx’).
The Dataset EEG data are stored in a participant eeg/ subdirectory.
Optionally, intervening sub-folders may provide organization of
the participant’s data into session subfolders, as in our example.
Several excellent tutorials in the BIDS Starter Kit explain this file
organization and its implications in more detail (see https://bids-
standard.github.io/bids-starter-kit/).

Fig. 3 The Sternberg Working Memory Demo dataset in BIDS format. Top left: the top-level file organization.
Top right: The dataset_description.json file providing basic dataset identification. Lower: The task-Work-
ingMemory_events.json file giving event-related metadata for the dataset. In particular, it gives text descrip-
tions and HED strings for events whose event types (here using any convenient titles) are indicated in a column
of the event list file
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The required top-level files (by name dataset_description.json,
participants.tsv, and README) contain some overall information
about the data. Of immediate interest in the dataset_description.
json are the versions of BIDS and HED formatting used in building
this dataset. A list of relevant reports describing the experiment and
its goals and interpretation may also be included (though perhaps
unfortunately BIDS does not require them).

Note
The top-level BIDS dataset_description.json file does not con-
tain a text description of the experiment. A full experiment
description and a description of the original experiment goals,
written in plain language, should instead be contained in the
top-level README file.

A BIDS file of particular interest for this chapter is the task-
WorkingMemory_events.json file, which contains metadata about the
types of events recorded in the data, including HED annotations
that enable machine-actionable event analysis. This file will be
discussed in more detail later.

2.5.3 EEG Data Formats EEG datasets include continuous recordings of multi-channel
EEG. Associated with these continuous recordings are event mar-
kers (in common practice, event onset markers), typically first
recorded in log files produced by the experiment control software.
BIDS allows EEG data themselves to be stored in any of four widely
used formats: EEGLAB (.set, or .set plus .fdt), European Data
Format (.edf), Biosemi (.bdf), and BrainVision (.vhdr + .vmrk + .
eeg). EEGLAB has tools for converting each of these formats to its
internal .set file format.

Note
European and Biosemi data formats store event and channel
information within their respective .edf or .bdf files, while
BrainVision data format stores event markers separately
(in an .vmrk file).

An EEGLAB-based BIDS dataset can store data for a partici-
pant session either in a single, continuous .set file or in a combina-
tion of an .fdt file (containing the binary data) and a .set file
(containing metadata). The latter format allows metadata for a
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large number of .set files to be gathered and stored in computer
memory into an EEGLAB Study (equivalent to a BIDS dataset) and
then manipulated, without needing to actually load the much larger
.fdt data files.

Once loaded, either by calling the EEGLAB pop_loadset func-
tion or using the EEGLAB GUI, the data is stored in a MATLAB
(EEG) data structure. Dataset event onset markers are stored in the
EEG.event field of this structure, while channel electrode location
and other information are stored in the EEG.chanlocs field. The
EEG data itself are stored in EEG.data as a two-dimensional array,
scalp channels by time samples.

Note
BIDS requires that event and channel information be stored
separately from the data, in events.tsv and channels.tsv files,
respectively. In any of the four supported EEG data formats,
data event and channel information are also stored in the EEG
data itself. There is, however, no guarantee (and BIDS does
not check) that this internally stored information is consistent
with the BIDS .tsv files. Hopefully, the BIDS formatted .tsv
file data will be at least as complete and hopefully more
complete than that stored in the raw datafiles. EEGLAB
allows users to choose which information to import from
the .tsv files and which to use from the stored data record
itself.

2.5.4 HED Quickstart As mentioned in the introduction, the HED system consists of a
standardized term vocabulary of terms organized hierarchically to
in the HED standard schema), as well as an extensive tool base
supporting HED annotation, validation, and analysis. Figure 4
gives an overview of the standard HED term schema.

The HED schema is organized around six top-level HED tag
subcategories (Event, Action, Agent, Item, Property, and Relation).
Users create “HED string” event marker annotations as comma-
separated lists of (“HED tag”) terms from the schema. Because
each term can appear in only one place in the schema, during the
annotation process users can specify only the end tags (leaves) in the
typically shallow tag hierarchies (subtrees) [see Appendix], leaving
HED machine tools to fill out their full schema tag paths.

A second important point about the HED schema design is
that terms lower in the hierarchy are subcategories of superven-
ing terms (i.e., child nodes that satisfy an is-a relationship). This is
important for search generalization. For example, a search for
annotations containing the term Event will also return annotations
containing Sensory-event or Agent-action.
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The HED official vocabulary is stored on GitHub in the hed-
schemas repository of the hed-standard organization (https://
github.com/hed-standard/hed-schemas). The official HED speci-
fication document is available at https://hed-specification.
readthedocs.io/en/latest/. The vocabulary is versioned using
semantic versioning; HED tools and tools that use HED tools
(including the BIDS validator, https://github.com/bids-stan
dard/bids-validator) retrieve a copy of the schema (in XML format
[see Glossary]) during processing.

A HED schema is needed to perform validation because users
usually give a HED annotation as a list of single terms and the
software validator must verify that these terms are in the allowed
vocabulary and that the term usage is consistent with its properties.
For example, terms that take values must have consistent value type
and units. Fetching of the schema and processing are done behind
the scene by HED tools. These tools (and pertinent tutorials) are
described below.

2.5.5 HED in BIDS As mentioned in the introduction, the HED system is integrated
into BIDS [see Chapter 4] and is the only BIDS-endorsed mecha-
nism for documenting events using dataset-independent, machine-
actionable metadata. However, HED is new to many BIDS users.
Thus, (e.g.) a large number of time series datasets on OpenNeuro
do not yet have HED tags.

Fig. 4 The standard HED (Hierarchical Event Descriptor) term schema. Left: Partial view of the top-level HED
standard schema. See https://www.hedtags.org/display_hed.html to explore the full schema using an expand-
able accordion view. Arrows point to top-level tag sub-categories. Right: Some key points are noted
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As illustrated schematically in Fig. 3, HED annotation for most
BIDS datasets consists of providing a single JSON file containing a
dictionary associating values in the columns of the dataset event
files with HED annotations. Once this dictionary is provided, tools
can automatically take advantage of this metadata during event
processing. This means that users can contribute HED annotations
post hoc, and that re-annotation focused on enabling further anal-
ysis only involves modifying a single text file.

Figure 5 shows the mechanism by which this single top-level
events.json file is used in conjunction with the dataset events files to
produce HED annotations for each event. The top left of Fig. 5
shows an excerpt from the task-WorkingMemory_events.json file
located in the dataset root directory. This JSON file is a text file
containing a dictionary whose keys are the column names of the
events.tsv files (as in the excerpt on the right in Fig. 5). For example,
the event_type column has a small number of discrete code values
(show_cross, show_letter, right_click, etc.). The JSON file associates a
HED annotation with each value in the event_type column. Here,
for example, the term show_cross is associated with the HED anno-
tation “Sensory-event, Visual-presentation, (Cross, Center-of, Com-
puter-screen)”. The code-value names are arbitrary, but should best
be informative.

Fig. 5 The assembly of HED annotations for a BIDS events.tsv file. Each column value in the events file (here,
“show_letter”, “to_ignore”, etc.) is defined using a list of HED tags keyed to its name in the JSON events.json
dictionary. The HED tags for each column value in a row of the .tsv events table are assembled to form the HED
annotation for the event
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Additional HED tags might be added to these event type
definitions—here, for example, to record the color and/or size of
the displayed cross. HED tags for such details might be added later
by researchers to the archived and shared data to allow them to
investigate questions about brain activity different from those of
the original data authors—if these experiment details were pre-
served in some other way, for example in stimulus images, screen-
shots or recordings, or were specified in the preserved experiment
control script. In general, data authors cannot be expected to
anticipate all possible research interests of future data users—par-
ticularly when stimuli and/or tasks involved are more complex than
in this experiment. Thus, there may thus often be some tension
between the aim of data authors to document the exact nature of
experiment events and the level of effort and imagination required
of them to fully accomplish this.

The events.tsv files are columnar text tables with tab characters
separating columns. Each row in an events.tsv file represents an
event-time marker—currently nearly always a marker of its onset.
BIDS requires that event files have an onset column giving the time
in seconds of the event marker relative to the start of the associated
data recording. HED also supports event offset tags and inset tags
marking any intervening event phase transitions (for example, the
moment of maximum amplitude of a musical sound or the maxi-
mum velocity of a movement arc).

BIDS has strict naming conventions for determining which
JSON files are associated with each event file [see Chapter 4]. A
discussion of these conventions is beyond the scope of this chapter,
but suffice it to say that the JSON file named task-XXX_events.json
applies to all events.tsv files that have task-XXX in their file names.
So a single JSON file can be (and typically is) used to hold HED
annotations of all the event types in an entire dataset. (See https://
bids-specification.readthedocs.io/en/stable/02-common-
principles.html#the-inheritance-principle in the BIDS specification
document for details.)

Some columns in events.tsv such as, here, letter and trial can
have many different numeric or text values. Rather than provide an
HED annotation for each value separately, HED allows a single
annotation with placeholder (#) to apply to every value in the
column. The specific column value for each event marker is sub-
stituted for the # when the annotation is assembled.

The bottom of Fig. 5 shows the result of final assembled HED
annotation. For each row (event marker) in the events.tsv file, HED
annotations for the individual row column values are assembled
from the JSON dictionary. If an annotation exists, it is included; if
no annotation is present, the column value is omitted from the final
assembled annotation.
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Note
During event annotation the annotator should carefully check
that all terms used in the events.tsv table are either values that
will replace a # placeholder or are separately defined in the
corresponding events.json file. Otherwise, the table term will
not contribute to the assembled HED annotations.

HED has a full suite of online tools (https://hedtools.org/
hed) to support HED annotation and processing. We encourage
readers to download the Sternberg Working Memory demo dataset
(available at https://osf.io/8brgv/) to explore these options.
Figure 6 shows a screenshot of the operation to assemble HED
annotations for the event file corresponding to the first recording
(run 1) of participant (subject) sub-001. Fill in the options as
indicated for the downloaded demo data and then press Process to
see the output event file containing the assembled HED string
event descriptions.

Fig. 6 An example of using the online HED tools to assemble HED annotations for a BIDS events file
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The standard process for creating HED annotations in BIDS is
to create a JSON template file from a representative events.tsv file
using the online tool Generate sidecar template and then edit the
resulting JSON text file directly or using the Ctagger tool GUI for
assistance in selecting the appropriate HED tags to annotate
the data.

A step-by-step process for annotation in BIDS is provided in
the following quickstart tutorial:

h t t p s : // www. h e d - r e s o u r c e s . o r g / e n / l a t e s t /
BidsAnnotationQuickstart.html.

CTagger, the HED annotation tool, can be run standalone or
EEGLAB plug-in. A step-by-step guide to installing and using
CTagger is available in the Tagging with CTagger tutorial:

h t t p s : // www. h e d - r e s o u r c e s . o r g / e n / l a t e s t /
CTaggerGuiTaggingTool.html.

All of the tools provided by the HED Online Tools are also
available as web REST services. A tutorial on how to use these
services within MATLAB is available at:

https://www.hed-resources.org/en/latest/HedMatlabTools.
html.

Sample code for calling these services from MATLAB can be
found at:

https://github.com/hed-standard/hed-matlab/tree/main/
hedmat/web_services_demos.

The most challenging part of learning to perform HED anno-
tation is getting started making annotations. The HED annotation
quickstart tutorial:

h t t p s : // www. h e d - r e s o u r c e s . o r g / e n / l a t e s t /
HedAnnotationQuickstart.html

provides a step-by-step recipe for performing basic HED
annotations.

A number of annotated sample datasets are available in GitHub
hed-examples repository of hed-standard: https://github.com/hed-
standard/hed-examples/tree/main/datasets.

Note
HED annotations vary in their complexity and completeness,
and many datasets currently on OpenNeuro do not yet
include HED annotations. However, basic HED annotations
can now be added quite easily to a BIDS dataset using the
methods we describe. As suggested earlier in this chapter,
HED annotations (as well as event logs and files themselves)
can be enhanced and/or modified at any later time to support
analysis goals. This may become particularly important
for research using novel objectives, or investigations across
studies.
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3 Methods

3.1 Setup

3.1.1 Software

Installation

The remainder of this tutorial assumes that you are working with
EEGLAB in MATLAB. If you do not already have EEGLAB
loaded, download and install it by following the instructions avail-
able at https://eeglab.org/tutorials/01_Install/Install.html. You
should also install the bids-matlab-tools and the HEDTools
EEGLAB plug-ins. To download and install these plug-ins, go to
the Manage EEGLAB extensions submenu of the File menu on the
main EEGLAB, then search for and install these plug-ins directly
through this menu.

3.1.2 Downloading Data The demos in this chapter use the Sternberg Working Memory
demo dataset, which is available for download at https://osf.io/
8brgv/. This single-participant dataset is part of a 24-participant
dataset from an experiment performed by Onton et al. (2005) [12]
that is available on OpenNeuro (https://openneuro.org/datasets/
ds004117).

3.1.3 Importing the BIDS

Dataset

The analysis in this chapter assumes that the dataset is in EEGLAB
Study format. The EEGLAB bids-matlab-tools [14] allow easy
import and conversion through the BIDS tools submenu item of
the File menu item in the main EEGLAB GUI. Figure 7 shows the
BIDS import tool menu when the demo dataset is imported.

The EEGLAB BIDS import tool does not check the consis-
tency of the BIDS files, but it does allow users to select which
external information related to channels and events will overwrite
the internal data. MATLAB scripts for checking the consistency
between the BIDS external representation of events and of channels
are available at:

https://github.com/hed-standard/hed-matlab/tree/main/
hedmat/utilities.

3.2 Preprocessing

and ICADataDecompo-

sition

For this demonstration, our preprocessing of the single-participant
data began with high pass filtering the data with a cutoff at 1.5 Hz,
as this is useful for subsequent ICA decomposition. The data were
then re-referenced to common average and excessively noisy por-
tions of the data were removed by running the pop_clean_rawdata
EEGLAB plug-in [15, 16] without using data interpolation. Here,
no excessively noisy (“bad”) channels were detected or removed in
this process. The data were then decomposed using Adaptive Mix-
ture ICA (AMICA) [17] with its automated data rejection option
engaged using default parameters. AMICA uses data rejection only
during training, to learn an ‘unmixing’ matrix linearly transforming
the data from the input channels to a set of independent compo-
nent (IC) processes that, when back-projected through the
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‘mixing’ matrix (the inverse of the unmixing matrix), will reconsti-
tute the original data. ICA decomposition of EEG data finds ICs
whose time courses are maximally temporally independent.

ICA decomposition is a powerful source separation method
used to isolate both brain and non-brain source contributions in
EEG data and data measures including ERPs [18]. The brain
generated ICs that ICA discovers in the data may be better called
“effective brain sources”, as considered at either the neuronal or
larger spatial scales the whole cortex is always active. However,
local-scale activity in cortex, projected through the brain tissues,
skull, and scalp and then summed at the scalp electrodes, is very
largely canceled out by phase cancellation (positive voltage projec-
tions canceling negative projections). What dominates the “far
field” scalp EEG signals are projections from larger areas of local
field potential coherence that arise spontaneously by mechanisms
that have not yet been well studied or understood. These projected
potentials sum to contribute appreciable voltages (positive or neg-
ative) at the scalp channels, thereby constituting “effective brain
sources” of EEG signals. ICA decomposition separates out the

Fig. 7 The BIDS tools import tool for EEGLAB for the demo dataset

End-to-End Processing of M/EEG Data with BIDS, HED, and EEGLAB 93



appreciable effective sources from spatially and functionally distinct
non-brain sources (potentials contributing to the scalp channels
from eye movements, line noise, scalp and neck muscle activities,
etc.). We have shown, using mutual information reduction criteria,
that AMICA is the most effective ICA decomposition approach,
though also the most computationally complex. Other, less com-
putationally complex algorithms approach AMICA in effectiveness
[19]. Recently, a very efficient version of AMICA has been com-
piled for use on high-performance computer resources supported
by and made freely available through the Neuroscience Gateway
(NSG).

Another advantage of AMICA is that it performs its own data
rejection internally, so as to not be misled by atypical noisy data
patterns that appear in the data with unique (non-stereotyped)
spatial nature incompatible with the assumption of spatial source
stationarity used in ICA derivation. However, by default AMICA
does not return the data after rejection, and work is just beginning
to apply its rejection decisions to the data for subsequent proces-
sing. Thus, here we applied pop_clean_raw_data for this purpose
prior to ICA decomposition. This cleaning appropriately adjusted
the set file’s EEG.events table to reflect the new locations of event
markers remaining in the clean data, while in the EEG.urevents
subfield storing pointers to the retained events in their original
sequence and timing.

The EEGLAB plug-in zapline-plus [20] was then used to
remove line noise from the IC timecourses (‘activations’). This is
a recently introduced approach to line noise removal; another is the
cleanline plug-in [21]. Removing line noise contamination without
losing contributions of other brain sources at the line frequency can
be difficult since head movements, moment-to-moment changes in
the electrical environment, or the possible presence of electrical line
frequency sources with phase differences, together create spatial
instability in the line noise contamination pattern throughout the
data. Thus, although (as here) ICA decomposition typically gathers
much of the line noise contamination in one or a few (here two)
ICs, substantial line noise contamination was still present in other,
by scalp map and power spectrum clearly effective brain source ICs.

This was supported by applying ICLabel [22], a neural network
classifier trained on a large body of expert-labeled IC data, to
automatically classify components as representing brain sources or
as any of several classes of non-brain sources (see discussion below).
Applying ICLabel before removing line noise correctly identified
two strong line noise ICs but also caused ICLabel to classify effec-
tive brain sources still containing substantial noise as most likely
representing line noise rather than brain source activity. After run-
ning zapline-plus on the scalp data and then applying the AMICA
weights to the cleaned data to obtain the IC time courses (activa-
tions), ICLabel, now applied to the IC scalp maps and line-noise
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cleaned activations, confidently classified the ICs in question as
representing brain sources, while classifying the two near-wholly
line noise ICs only as “Other” (e.g., non-brain).

Figure 8 shows a MATLAB script containing the entire pre-
processing pipeline used here. The script can be run on a single
participant (as in Fig. 8) or can be applied in a loop or as part of an
automated pipeline executed on remote compute resources, as
discussed later in this chapter.

Figure 9 shows results of the AMICA decomposition of the
71-channel data in the form of the scalp maps of the largest
35 (of 71) IC processes. All 71 IC scalp maps and activations
were then input to the ICLabel EEGLAB plug-in for component
identification. IC7 and IC15 accounted for much, but not all, of
the line noise contamination in the data; the associated scalp maps
are quite incompatible with local field activity projecting from a
single (or even strongly-connected dual) cortical source area.

Fig. 8 Preprocessing pipeline script for the examples used in this chapter. The data are first high pass filtered
above 1.5 Hz (using the pop_eegfiltnew function). Then the data (recorded to a common reference electrode
placed behind the right ear) are transformed to average reference. Next we use the clean_rawdata plug-in of
EEGLAB to remove artifacts, here using conservative parameters (no channel rejection, data-portion rejection
with default parameters, no channel interpolation). AMICA decomposition of the data is performed, then 60-Hz
line noise is removed, here by zapline-plus. The independent component (IC) activations are recomputed
following line noise removal, and the ICs are again categorized by ICLabel
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Before removing line noise, ICLabelmis-classified brain source ICs
such as IC8 as “Line noise” because of remaining line noise con-
tamination. After removing line noise from the IC activations,
ICLabel here correctly classified ICs such as IC8 as effective brain
sources (with high likelihood), while the two major line noise
sources (ICs 7 and 19) are now classified simply as Other. Several
ICs classified as Muscle (ICs 13, 17, 29, 30, 33, 35) are compatible
with effective sources of surface-recorded electromyographic
(EMG) activity, which projects most strongly to the skin from the
ends of individual scalp/neck muscles (i.e., from the muscle/ten-
don interface).

In recent years, several EEG data preprocessing pipelines have
been developed and published by different laboratories. To our
knowledge, there has been no systematic review of these, nor is it

Fig. 9 Output of ICLabel after removing (60-Hz) line noise using zapline-plus. Here, ICA decomposition was
performed before removing the line noise. The returned ICs accounting for most line noise in the data (here,
ICs 7 and 19) are thus here labelled by ICLabel as ‘Other’ rather than as ‘Line Noise’
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quite clear what measures should best be used for fair comparison.
It is best that EEG researchers acquaint themselves with the pro-
blems involved in adequate data preprocessing and test for them-
selves the particular pipeline they use or construct for this purpose.
Because there is no agreed-upon standard [23], we hesitate to
promote a particular approach (see https://osf.io/8brgv/ for an
example of an automated pipeline). We prefer to involve ICA
decomposition in this process as it is shown to perform well in
identifying and separating out several classes of non-brain source
signals typically mixed in the scalp data (eye movements, scalp
muscle activities), as well as identifying major, spatially localizable
effective brain sources that together account for much of the brain’s
(largely cortical) contribution to the scalp data.

3.3 Epoching with

Event Codes and HED

Onton et al. (2005) analyzed the dynamics of frontal midline theta
in this modified Sternberg dataset during presentations of three
different letter types. The mean trends in this study replicated
previous findings (i.e., stronger frontal midline theta during letter
presentations corresponded to more letters being held in memory).
Yet these results accounted for relatively little of the trial-to-trial
variation in theta power in the frontal sources. Therefore, theta
dynamics were compared across working memory loads and then
further decomposed into event-related spectral perturbations
(ERSPs) across single trials to obtain additional insight. For
researchers who are new to the dataset and interested in replicating
or extending the analysis results, an integral step after running a
preprocessing pipeline is to identify experimental events to use for
epoch extraction.

“Epoching” of EEG data refers to extracting sections (epochs)
of the data of equal duration time locked to particular classes of
experiment events of interest, in order to compute data measures
and perform statistical comparison on these and/or the epoched
data. The standard method of data epoch extraction in EEGLAB is
to use the pop_epoch function, specifying specific values in a partic-
ular column of the EEGLAB EEG.event structure, typically using
the EEG.event.type field to select the desired class(es) of events. This
requires studying the event type terms used by the original investi-
gators, which may likely be idiosyncratic and are often opaque (e.g.,
“type 17”)—and often fail to record distinctions that might in
future prove fruitful to analyze.

EEGLAB now also supports epoching using (more detailed
and informative) HED tag information. HED tags are stored in
the EEG structure under EEG.etc. HED, as search terms using the
pop_epochhed function. Using HED tags allows researchers to query
events of interest in a more semantically meaningful way, such as
“Green, Letter” and “Press, Push-button” instead of having to work
with the originally-assigned cryptic alphanumeric codes (e.g., event
types “17” and “256”).
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Figure 10 shows the graphic interface for the pop_epochhed.
Tags can be specified in various ways including in combinations
including AND and OR. More complicated search options are also
available. The example shows looking for events that have the Def/
Target-letter tag. Here Def indicates a user-defined term Target-
letter. The definition of this user-defined term, as well as all HED
annotations of the dataset can be found in the events.json file that
accompanies the BIDS dataset (see the excerpt in Fig. 11) and is
imported into the EEG.etc. HED field when the BIDS dataset is
imported. HED tools look up the tags based on the annotations
provided in the JSON sidecar and associate these annotations with
the information in EEG.event.

Figure 10 shows a search for events containing the user-defined
term Target-letter. TheDef/ prefix indicates that this term was user-
defined using HED tags rather than being drawn directly from the
base schema. The epoch start and end times are indicated relative to
the position of the specified events.

Figure 11 shows that Target-letter is defined, using terms in the
base schema, as:

"(Condition-variable/Letter-type, (Target, Memorize), (Letter, Black)))"

This definition includes the Condition-variable/Letter-type tag,
as do the definitions for Non-target-letter and Probe-letter. By asso-
ciating these three terms (Target-letter, Non-target-letter, and
Probe-letter) with a common condition variable, the annotator
indicates that these terms are three aspects of the same concept.

Most commonly, Condition-variable tags are used to group
levels of an experiment stimulus or action condition associated
with an experimental design. This mechanism allows data authors

Fig. 10 The pop_epochhed function accessed through the Tools menu in EEGLAB
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to encode the experiment design matrix in a standardized format
that is consistent with the event structure. HED tools can automat-
ically extract design matrices and also factor vectors associated with
the Condition-variable tags. For additional information see the
tutorial on HED Conditions and Design Matrices at:

h t t p s : //www.hed - r e s ou r c e s . o r g/en/ l a t e s t/Hed
ConditionsAndDesignMatrices.html.

Note also that the Target-letter definition above might easily be
extended to note that the letters presented were in upper_case,
non_serif font in the Roman alphabet, and their displayed width
(in approximate degrees of viewing angle). These details might be
of little or no interest for the analyses planned by the data authors
themselves, but after the data were shared publicly might prove to
be of real interest to some future studies, for example a study of
reading of different character sets. However, when that interest

Fig. 11 An excerpt of the top-level events.json sidecar for the Sternberg dataset
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arose, information about the size and case of the letters presented in
this study might no longer be available.

Such considerations might provide data author annotators
some incentive to fill in such additional details during initial anno-
tation. In fact, however, the current base HED schema does not
contain terms for letter case, font, and alphabet. Therefore, the
annotator wishing to record these details would need to either
introduce off-schema terms into the annotation or else wait for
them to be introduced into HED, most likely in the newly released
HED LANG (language) library schema for linguistic terms (now in
its first release). However, less extensive HED descriptions (such as
those in Fig. 11) do indeed represent a real advance beyond the
long practice of recording event onset markers only as “type, 17”
and the like.

3.4 ERP Analysis

Using HED-Based

Epoch Extraction

The ICA decomposition by AMICA described in Fig. 9 was used to
identify the effective brain source components in the data for
source-resolved analysis. Using the HED-based epoch extraction
demonstrated above, we here extracted epochs time locked to letter
presentation onsets of the three types of stimulus conditions used in
the experiment (Def/Target-letter, Def/Non-target-letter, and Def/
Probe-letter). ERP trial averaging was then performed on the result-
ing epochs, with the results shown in Fig. 12 as visualized by
EEGLAB function envtopo. These plots use a pair of thick black
traces to plot the outer envelope of the bundle of 71 individual scalp
channel ERP traces (i.e., the respective maximum and minimum
channel values at each ERP trial latency).

The six independent component (IC) scalp maps show the
scalp projection patterns learned by ICA decomposition for the
six brain-source ICs making the largest contributions to the ERPs
(across the 71 scalp channels) within the ERP trial latency window
(50–400 ms) indicated by the dotted vertical lines. The top and
bottom edges of the blue shaded areas show the envelope (again,
the max and min channel values at each latency) of the joint (i.e.,
summed) projections of these six IC processes. Colored trace pairs
show the envelope of the respective IC projections in the ERP data
(again, the max- and min-value IC channel projections at each
latency).

Plotting the data and channel envelopes in this way allows
inspection of the time courses of multiple ICs in the ERP data
period in comparison to the whole scalp ERP data. Note that
most IC brain sources contribute to more than one ERP peak.
Note also that the seeming much larger negative ERP peak near
120 ms (N1) following probe letter presentation onsets (bottom
panel) is predominantly accounted for by larger peaks in the projec-
tions of the lateral occipital IC6 (with left posterior scalp projec-
tion, red traces) and IC9 (projecting predominantly to right
posterior scalp, blue traces).
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3.5 Computing

Statistics for an

EEGLAB Study

EEGLAB Studies (the EEGLAB equivalent of BIDS datasets) and
EEGLAB Study designs provide a convenient way to compute
single-participant and group level statistics for various EEG mea-
sures. For each design, users can define its independent variables by
selecting the column of the event structure as the variable and the
column’s values as the variable’s levels. Once the Study design is
specified, EEG measures, including ERP, ERSP, power spectrum,
and Intertrial coherence can be computed automatically. These
measures apply to both the channel space and the independent
component source space. Figure 13 shows sample menus for selec-
tion of statistics within an EEGLAB Study.

Once EEG measures are computed, users can choose to per-
form statistical analysis to compare measure values across levels of
the specified independent variables. The LIMO-EEG plug-in
extends EEGLAB statistical capability by allowing for an arbitrary

Fig. 12 Brain source resolved ERP trial averages, after removing large IC projections from eye movements,
scalp muscle noise, plus small contributions to the data from other non-brain source ICs. The first two ERP
peaks are conventionally referred to as P1 and N1. The three averages are time locked to onsets letter
presentations of three types: (black) to be memorized letters (n= 491), (green) to be ignored letters (n= 296),
and (red) probe query letters (n = 99). See text for further details
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number of categorical and continuous variables in trial averages to
be contrasted statistically by comparisons at the single-trial
level [24].

Work is now underway to integrate HEDTools facilities for
automated extraction of the experiment design matrix more tightly
into the EEGLAB Study infrastructure. These facilities will allow
users who import a HED-annotated BIDS dataset to run a chosen
preprocessing pipeline and automatically compute all measures
needed for statistical comparisons based on the Study design
extracted from HED condition variable annotations themselves.
Thus for a well-formatted HED-annotated BIDS dataset, the
steps from importing those datasets into EEGLAB to reproducing
statistical results as intended by the original data authors can be
made automated. Of course, the primary uses for HED annotation
lie in making possible more flexible (as well as larger scale) comput-
ing on neuroimaging data. It will create and fit new, more informa-
tive models of event-related brain dynamics occurring within a wide
array of contexts and purposes (e.g., for basic understanding of
brain function, neurological and psychiatric diagnosis, cognitive
monitoring).

Many other functions are available within the EEGLAB plat-
form and its associated plug-ins. While executing an analysis
through the GUI is useful for exploratory work, it becomes tedious
for large-scale analysis. After executing commands using the
EEGLAB GUI during exploratory analysis, researchers can create
a script for automating the process by editing the ALLCOM struc-
ture that accumulates the underlying EEGLAB commands that

Fig. 13 (Left) The EEGLAB GUI to specify the Study design and its independent variable(s). (Right) The EEGLAB
GUI to select the independent component measures to compute for subsequent statistical comparison
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were executed at each step. This script can then be used for auto-
mated analysis exploiting cloud resources as described in the next
section.

Figure 14 plots the projections of the six ICs contributing most
strongly to the ERPs in the three analysis conditions. Here, each
trace represents the trial-averaged IC activations in units of rms
microvolts per scalp channel across all channels. (The projection of
each IC to each channel ERP is the product of the averaged IC
activation time course with the 71 IC scalp map values.)

To perform statistical testing of these results, we made a single-
participant EEGLAB Study including the three sets of epoched trial
data. We then tested for statistical difference between the three
conditions at each ERP latency using methods from the LIMO
toolbox [25]. Figure 14 highlights the three IC sources that exhibit
a significant condition difference at the “N1” ERP peak (near
120 ms). For two of these ICs (6 and 9), the N1 peak projection
is stronger in response to probe letter onsets (magenta). For IC21,
the response to target (memorize) letter onsets is weaker than in

Fig. 14 Independent component (IC) ERPs in the three conditions, with regions of statistical significance for
condition differences shown below ( p < 0.01). Three IC ERPs in the top row (ICs 6, 9, and 21) exhibit
pronounced N1 peaks. However, their condition differences differ: for medial occipital IC21 (top right), the N1
peak for letters to be memorized (green traces) is smaller than for the other two letter types, while for the
lateral occipital ICs 6 and 9 (top left), the N1 peak in the ERP time locked to probe letters (magenta trace) is
stronger than in responses to either the memorize or ignore letters
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the other two conditions. The other three ICs contributing most
strongly to the ERPs do not exhibit a peak projection at the N1
peak latency, nor a projection condition effect at that latency.

3.6 Source-Resolved

Time/Frequency

Analysis

Although ERP measures of event-related brain dynamics domi-
nated EEG research in cognitive psychology and psychiatry for
more than 40 years, ERPs alone do not reveal and cannot be used
to model every important aspect of event-related EEG brain
dynamics. Another set of measures based on time/frequency
analysis—measuring mean changes in EEG power and phase spec-
tra time locked to events of interest—reveal information comple-
mentary to that revealed by ERPs. Figure 15 shows the trial-mean
event-related spectral perturbation (ERSP) [26] and inter-trial
coherence (ITC) for IC2 (compatible with a bilateral occipital
pole brain source) time locked to probe letter presentation onsets.

The upper panel (ERSP) shows that the upper part (~13 Hz) of
the (~10 Hz) alpha peak in the baseline log power spectrum (the
end of the memory maintenance period; top panel, left box) is
profoundly suppressed (top panel, lower box) during probe stimu-
lus presentation—a nearly 20 dB decrease from the pre-probe
baseline period.

Fig. 15 (Upper panel) Event-related spectral perturbation (ERSP), and (lower panel) Inter-trial coherence (ITC)
plots for IC2 epochs time locked to probe letter onsets (at time 0). Figure produced by EEGLAB function
pop_timef, with later text enhancement for publication. The trial ERP is shown below the ITC plot. See text for
further details
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The lower panel Fig. 15 shows that while in the pre-stimulus
baseline period trial phase with respect to the upcoming stimulus
onset is random (green background), phase of remaining activity
near 13 Hz (and less strongly so at 7–9 Hz) becomes regularized
(blue/red line segments representing negative and positive phase)
with respect to stimulus onset. This causes partial failure of phase
cancellation across trials, thus producing the trial-mean ERP (bot-
tom panel, lower box) that resembles a ~13-Hz oscillation in the
trial-average ERP for this effective brain source component.

The strong low-beta band activity suppression in lateral occipi-
tal cortices (cf. Fig. 16) might be tentatively interpreted as ending
during and after Probe letter presentations, the suppression of
activity in object recognition centers that was encouraged by
“alpha flooding” of these areas during task Memory maintenance
periods—possibly to enhance object memory retrieval involving
these same areas.

3.7 Localizing

Sources

The many effective brain sources separated from EEG data by ICA
decomposition have a common feature not anticipated nor pro-
moted by the decomposition algorithm itself. They have highly
“dipolar” scalp maps, meaning that their scalp maps, learned from
the data during decomposition almost exactly resemble the projec-
tion of single oriented equivalent dipoles—an imaginary infinitesi-
mal battery located somewhere in the brain volume [19]. In some
instances, these “brain IC” scalps may require a dual equivalent
dipole model, most often the locations of the two equivalent
dipoles (though not their orientations) being nearly bilaterally

Fig. 16 Equivalent dipole models of source locations for the six sources making largest contributions to the
letter presentation ERPs. Here “RV” refers to residual variance in the IC scalp map not explained by the
indicated single or bilaterally symmetric dual equivalent dipole model projection to the scalp (Fig. 14). See text
for details
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symmetric. This is a remarkable observation, given that the ICA
algorithm itself is given no information about the locations of the
electrode channels on the scalp or about the nature of current
propagation from the cortex to the scalp through the intervening
brain, skull, and skin media. One might put it this way: “ICA
algorithms don’t know there is a head”. Yet many of the “most
independent” component sources separated by ICA decomposition
are strongly “dipolar”.

This can only arise from the neurophysiology of cortical coher-
ence in local field potentials, which can only spread through direct
physiological connections in cortical neuropile, which in turn are
strongly weighted toward local (<0.1 mm) connections between
neurons, in particular inhibitory neurons that play a major role in
supporting field dynamics at EEG frequencies. The physiological
fact means that synchrony (or near synchrony) in cortical tissue
must typically spread out from an origination point (Walter Free-
man likened these to “pond ripples”). When field synchrony
spreads out from a central field oscillation, its phase near-uniformity
across a cortical area gives it far stronger contribution to the elec-
trically distant scalp electrodes than the same area when it is out of
synchrony. This is most likely the reason that the projection pat-
terns of effective brain source ICs so often closely resemble the
projection patterns of a single equivalent model dipole, e.g., one
located at or near the origin of the cortical spreading field pattern
and oriented near perpendicularly to the local cortical surface. The
origin of the dual-symmetrical dipole models required to fit the
scalp maps of other effective brain ICs then likely arises from
synchronous field activity patterns arising in two cortical patches
that are bidirectionally coupled, either directly by white matter
tracts such as corpus callosum or possibly indirectly by being driven
by strong common input.

Residual variance (RV) in the IC scalp maps learned by ICA
decomposition from the data is computed by regressing out the
projection of the (best-fitting) equivalent dipole in a (here, tem-
plate) electrical head model, across all 71 scalp channels and mea-
suring the variance of the residual map values. The ratio of the
residual map to the orignal IC scalp map variance is the residual
variance (RV). The RVs in Fig. 16 range from 0.94% to 2.27%,
values likely no larger than those expected based only on the
expected rough fit of the template head model to the participant’s
actual head (i.e., their exact head geometry and tissue conductance
values).

Note that the model equivalent dipole location for IC12 (lower
left) is in cortical white matter rather than gray matter. The fore-
most error in EEG source localization is that created by using a
uniform template value for skull conductance, which in fact varies
widely across individuals, even across adult individuals. Using an
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inaccurate value for skull conductance in the electrical head model
used in for source localization will typically drive the implied source
location deeper into the head (or less deep) than actual. The
SCALE algorithm for using ICA decomposition to estimate the
largest source of error in EEG source localization, namely skull
conductivity [27], requires an individual MR head image, so
could not be used here. The equivalent dipoles for IC9 (top mid-
dle) are in the cerebellum; this is likely not their actual locations, as
effective sources in the cerebellum of sufficient strength to be
captured as an (larger) effective source IC have not so far been
demonstrated. Rather, the mislocalization more likely arose here
through the projection of the basal posterior bilateral effective
source being at the lower edge of the scalp electrode montage
and therefore not well enough represented in the IC scalp map,
and/or through the use of an incorrect (here) template value in the
electrical head model used to compute the equivalent dipole
locations.

Note that the equivalent dipole (or dual-symmetric
dipole) modeling used here does not rest on an assumption that
the true sources are infinitesimally small patches of cortex—this
would clearly be physiologically impossible. Rather, the attraction
of a single (or symmetry-constrained dual) equivalent dipole model
is the oft demonstrated fact that the current projecting from an
equivalent dipole located in the brain AND of one (or two) cortical
patches surrounding the equivalent dipole(s) will be nearly identi-
cal. That is, an equivalent dipole is the model dipole whose scalp
projection should nearly equal the projection of a cortical patch
covering it. EEGLAB now includes a plug-in, the “Neuroelectro-
magnetic Forward problem head modeling Toolbox” (NFT) [28]
to estimate the mean location and cortical surface extent of cortical
effective sources learned from the data by ICA decomposition,
though these tools could not be applied to these data as they also
require availability of an individual MR head image for the
participant.

3.8 Processing EEG

Data Using High-

Performance

Computing

We have demonstrated an end-to-end EEGLAB workflow for a
BIDS dataset with HED annotation from importing to statistical
analysis. Such workflows can be performed locally on a user’s own
workstation. However, as public sharing of datasets becomes more
prevalent and analysis dataset sizes grow, and/or as computational
processing applied in EEG brain imaging becomes more intensive,
researchers may find their local compute resources too limited for
the desired data analyses. Fortunately, online data portals and cloud
computing resources are being made publicly available for research-
ers. The “NeuroElectroMagnetic Archive and compute Resource”
(NEMAR) and the Neuroscience Gateway (NSG) are two such
facilities being developed and made to function cooperatively to
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support the analysis and meta-analysis of human electrophysiology
data using publicly available data, tools, and compute resources [see
Resources].

The joint OpenNeuro/NEMAR/NSG resource recently
brought online by a collaboration between the developers of
NEMAR, EEGLAB, the Neuroscience Gateway (NSG, http://
www.nsgportal.org) [29], and the OpenNeuro neuroimaging data
archive (https://openneuro.org) represents, we believe, a new cat-
egory of open data science facility, a publicly available integrated
data, tools, and compute resource (i.e., datacor). The NSG compute
resource is openly and freely available to researchers working on
not-for-profit projects, providing neuroscience community access
to multiple software environments that are widely used by neuro-
science researchers such as analysis environments (e.g., MATLAB,
python, R), and toolsets (e.g., EEGLAB, Open Brain, Freesurfer,
TensorFlow). NSG enables users to submit custom analysis scripts
running in any of these environments, and making use of users’
own – or any NEMAR-hosted toolsets – to direct processing on
NSF-supported high-performance computing (aka supercom-
puter) resources.

Furthermore, NSG provides an easy-to-use web portal-based
user environment as well as programmatic access via a REST soft-
ware interface. Users of the EEGLAB software environment, in
particular, may use a set of REST-based EEGLAB tools (nsgportal)
to launch, monitor, and examine results of NSG jobs directly from
the EEGLAB menu window. Using NSG, neuroscientists can thus
process and model data, run simulations, and train AI/ML net-
works on internationally supported high-performance supercom-
puter networks.

The NEMAR/NSG/OpenNeuro collaboration allows users to
bypass the slow and computationally and energywise costly pro-
cesses of downloading NEMAR datasets of interest, then
re-uploading to NSG or elsewhere for analysis. Instead, NSG anal-
ysis scripts can directly access data hosted on the NEMAR server,
encouraging intensive exploration of NEM datasets that have been
made public by their authors on OpenNeuro. NEM data in Open-
Neuro are copied to NEMAR where they are further curated and
their quality is assessed. These datasets are then made available for
user inspection, and visualization within NEMAR and for open-
ended analysis via NSG.

The process for users to analyze an NEMAR dataset using NSG
is simple: (1) Use the NEMAR.org website data search and visuali-
zation tools to identify one or more BIDS-formatted NEMdatasets
of interest. Then, (2) include the identified dataset control number
(s) (example, ds000123) in an NSG data processing script. The NSG
processing script may use any environment and software tools that
NSG supports. (3) When processing is complete, the user will be
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informed by email that the results specified in the processing script
are available by NSG for download. More detailed information can
be found at https://nemar.org/nsg_for_nemar.

EEGLAB users can use the nsgportal plug-in to directly submit
NSG jobs processing NEMAR datasets from their local MATLAB
environment [30]. Users place their analysis script in a directory
then zip the directory for upload. They can then use the pop_nsg
GUI shown in Fig. 17 to submit the job zip file, monitor job status
in the processing queue, and when completed download results to
display or further process locally.

To use the portal, first create a “job directory” containing at
least one MATLAB script (the job) and the EEGLAB Study on
which the script should be run. In the Submit new NSG job section
of the GUI browse to that directory. A pull-down menu with the
list of potential MATLAB scripts to be run then becomes visible
(preprocessing.m is shown in Fig. 17). After selecting the script to
run and filling in a job name and any desired options, push Run job
on NSG to submit the job. EEGLAB zips the directory (which can
be quite big) if not already zipped and uploads to NSG for execu-
tion. The status of the job on NSG is displayed in the top window.

Clearly, uploading an entire BIDS dataset as an EEGLAB Study
to run a job is not ideal. The integration of NEMAR with NSG
responds to this problem by allowing users, via NSG, to process
data originally stored on OpenNeuro and staged on NEMAR, and

Fig. 17 The nsgportal plug-in GUI in EEGLAB
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to receive and work with results of the processing using local
computer resources. When working in MATLAB with a dataset
made available on NEMAR, users only need to provide the dataset
accession number (an 8-character string beginning with “ds”
returned by NEMAR data search tools) and call getenv(“NEMAR-
PATH”) to run their NSG job. The job directory needs only to
contain the MATLAB script(s). Figure 18 shows an excerpt of an
example of a MATLAB script based on this approach:

Note
The temptation for beginning users of remote resources is to
write a processing script and launch a job using it without
testing it first on a small dataset. Running scripts by remote
execution makes script debugging more difficult than running
the same script on the desktop. The MATLAB desktop has
excellent facilities for single-stepping through a script or func-
tion and observing the data as execution proceeds. It is impor-
tant to test a script thoroughly on less data before consuming
NSG resources to apply it to more data.

Fig. 18 Example script for submission to NSG from the EEGLAB nsgportal plug-in to process a BIDS dataset
available in NEMAR
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4 Conclusions

This chapter covered end-to-end processing of EEG data using
standardized BIDS and HED format to organize and describe
information about the dataset. We believe that HED will have a
crucial role in the use of public data and will be an essential enabler
of cross-study and large-scale analysis. It should be emphasized that
although BIDS enforces strict formatting standards, which enable
tools to run automatically, it currently does not enforce standards
for data quality and curation, and also allows some metadata fields
to be left empty or with insufficient information. Thus, the
researcher using the data must carefully check for inconsistencies
and missing data. In the future, we suspect that more investment in
careful curation of data to be shared publicly will be required, to
better enable automated discovery.

This chapter is supported by extensive online tutorials and
documentation. See https://osf.io/8brgv/ for links to the sup-
porting materials and downloadable demo datasets.
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Appendix: List of Terms Used in This Chapter

AMICA Adaptive Mixture Independent Component Analysis, a powerful ICA
algorithm

BIDS Brain Imaging Data Structure—a set of formatting specifications for storing
and sharing of neuroimaging data (bids.neuroimaging.io)
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EEGLAB A software environment for analysis of electrophysiological data running on
MATLAB (The Mathworks, Inc.) (eeglab.org)

ERP Event-Related Potential, mean of electrophysiological data trials time locked
to events of a specified type

ERSP Event-Related Spectral Perturbation, mean data trial spectrograms, trials time
locked to events of a specified type

Event A process unfolding through time during neuroimaging time series
recording, especially any occurring process that may affect the experience
and/or behavior of a participant. Also called an event process

Event context The set of ongoing event processes at the time point of any event marker

Event marker A pointer from a specified event process to a time point on the experiment
timeline that marks a critical point, phase transition, or time point of
interest within the event process, e.g., marking the event onset or offset.
Also called an event phase marker

HED Hierarchical Event Descriptors—a system for specifying the nature of events
occurring during neuroimaging time series recordings (hedtags.org)

HED Schema A dictionary of terms for use inHED tags, also indicating their allowed syntax

HED Base Schema The common root HED schema of terms in common use across HED
annotations (https://www.hedtags.org/display_hed.html)

HED Library Schema AHED schema supplementing theHED base schema, adding terms needed to
specify the nature of events in some neuroimaging research subfield (for
example, language, movement, or clinical diagnosis)

HED String A comma-separated list of HED tags specifying the nature of an event
occurring during a neuroimaging experiment

HED Tag A formatted list of HED schema terms giving some fact about the tagged
event

IC Independent Component process, identified in data by ICA decomposition

ICA Independent Component Analysis

ITC Inter-Trial Coherence—a measure of the phase angle coherence of a set of
trials

NEMAR NeuroElectroMagnetic data Archive and compute Resource (nemar.org)

NSG The Neuroscience Gateway, enabling free research use of a high-performance
computing network in neuroimaging research (nsgportal.org)

OpenNeuro An open neuroimaging data archive using BIDS data formatting (openneuro.
org)

RV Residual Variance (percent) variance remaining in data following the removal
of some other data

Trial A task event process recurring during a recording, typically encompassing a
unit of task performance during which a participant performs some action
following one or more sensory and/or action events
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Chapter 7

Actionable Event Annotation and Analysis in fMRI:
A Practical Guide to Event Handling

Monique J. M. Denissen, Fabio Richlan, Jürgen Birklbauer,
Mateusz Pawlik, Anna N. Ravenschlag, Nicole A. Himmelstoß,
Florian Hutzler, and Kay Robbins

Abstract

Many common analysis methods for task-based functional MRI rely on detailed information about experi-
ment design and events. Event recording and representation during cognitive experiments deserves more
attention, as it forms an essential link between neuroimaging data and the cognition we wish to understand.
The use of standardized data structures enables tools to directly use event-based metadata for preprocessing
and analysis, allowing for more efficient processing and more standardized results. However, the complex
paradigms utilized by cognitive neuroscience often have different requirements for event representation.
The process of generating event files from experimental logs and to iteratively restructuring these event files
is a time-intensive process. Careful planning and effective tools can reduce the burden on the researcher and
create better documented and more shareable datasets. This chapter discusses event representation within
the BIDS (Brain Imaging Data Structure) framework. We discuss some of the common pitfalls in event
representation and introduce tools to easily transform event files to meet specific analysis requirements.
We demonstrate these tools and the corresponding analysis by comparing two BIDS datasets in which
participants performed a stop-signal task. We work through the required event restructuring, and use
Fitlins to calculate several comparable contrasts across the two datasets.

Key words fMRI, BIDS, Events, Event annotation, HED

1 Introduction

In task-based fMRI, the most common type of analysis models
BOLD signal response under different conditions to identify
brain areas associated with those conditions. In such analyses, con-
ditions are usually defined by aspects of experimental events that are
relevant to human experience, cognition and behavior; the neural
correlates of which we wish to understand. Thus, experimental
events provide an essential link between the neural activity captured
in the BOLD signal and the human experience and/or behavior we
are trying to understand. Experimental events are direct drivers of
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this experience. Because so much of the primary analysis for fMRI is
directly based on comparison of conditions—encoded in the data-
set events—the accuracy, completeness, and structure of the
reported events can dramatically affect the usability of the data
and the correctness of the final results. Unfortunately, there is no
generally accepted standard for how events should be encoded,
reported, and documented.

When an experiment is conducted, information about the sen-
sory presentations, participant responses, and other control infor-
mation is usually orchestrated by stimulus presentation software
such as Presentation® (Neurobehavioral Systems, Inc., Berkeley,
CA, www.neurobs.com), E-Prime [1], or PsychoPy [2]. Logged
information is often user-controlled, and different software
packages generate log files containing different structures and
data types. The experimental logs, along with the fMRI recordings
and auxiliary data such additional anatomical MRI recordings com-
prise the raw data of an experiment, which then must be converted
into a standardized format for uploading to repositories or for
input to analysis tools.

The Brain Imaging Data Structure (BIDS) [see Chapter 4]
provides a standard for organizing and storing neuroimaging data
along with event information, the focus of this chapter [3]. Event
files in BIDS are tab-separated value (.tsv) files. Each row in an event
file represents an event, and each column represents a different
aspect of the event. BIDS only requires onset and duration columns
in event files. The onset gives the time of the event marker in
seconds relative to the start of the file’s associated data recording,
and the duration gives the duration of the event in seconds.
Researchers may describe other properties of events by including
additional columns in the event files. These additional columns and
the values contained in them may be described in accompanying
JSON files [see Glossary] (sidecars), but these sidecars are not
required.

BIDS also supports Hierarchical Event Descriptors (HED) [see
Chapter 6] for creating machine-actionable annotation
[4, 5]. HED is a vocabulary designed to describe experiment events
in a structured human-readable and machine-actionable way. This
means events annotated with HED can be searched across datasets
and understood outside of the context of any specific study. A HED
annotation is a string of HED terms that is associated with an event
in a BIDS event file. Terms are organized hierarchically to allow for
search on broad categories as well as specific terms. However, the
addition of HED is optional in BIDS, and so a BIDS-compliant
dataset does not necessarily contain any documentation of events.

BIDS is now a well-established standard for storing neuroim-
aging data. Neuroimaging repositories such as OpenNeuro [6] [see
Resources] expect datasets to be in BIDS. BIDSApps provide data
management and analysis tools for BIDS datasets, leading to more
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standardized data processing and more reproducible neuroscience
[7]. These apps are powerful because they can utilize standardized
APIs (application program interfaces) to automatically access meta-
data such as scanning parameters or event data as necessary. By
having a single software tool format, analyses stay flexible while
also becoming more accessible, open, and reproducible. For the use
of these tools, however, the quality of the data stored in BIDS is
essential. This book chapter focuses on how to manage events and
prepare event files for analysis in the context of requirements for
downstream automated analysis.

To illustrate the process of generating extensive and analysis-
ready event files, we demonstrate a simple analysis of two datasets:
AOMIC-PIOP2 available on OpenNeuro (ds002790) [see
Chapter 2] and SOCCER [https://osf.io/93km8/]. Both of
these employed a stop signal task. In order to process both datasets
and make them comparable, we carefully consider the event files,
their structure, and the potential pitfalls that occur during setup.

Figure 1 illustrates a typical lifecycle of data from a neuroimag-
ing experiment. To start, researchers use a combination of the data
recordings and the experimental log files to convert their datasets to
BIDS. The log files from the presentation software packages are

Fig. 1 The lifecycle of data from a neuroimaging experiment. The yellow box is the focus of this chapter.
FMRIPrep and FitLins, which are the widely used open-source preprocessing and analysis tools used in this
chapter, are placeholders for preprocessing and analysis, respectively
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used to generate the experimental event files. When obtaining a
BIDS dataset from an external source this process will have already
been completed. The two example datasets demonstrate these
respective use cases.

The AOMIC-PIOP2 dataset is part of a large set of data col-
lected at the University of Amsterdam andmade available onOpen-
Neuro. For this dataset, the analysis must rely only on the event
data available on OpenNeuro plus any published descriptions of the
dataset available in related publications [8]. This is the typical
situation for researchers using open repositories to obtain data for
analysis.

The second dataset, SOCCER, contains data collected at the
University of Salzburg and provides a more typical use case for
researchers working with their own data. Here we start directly
from the experimental log files, allowing revision and clarification
of the event encodings taken from experiment logs as would be the
situation for the original experimenter who is working on initial
publications and release of the data. After generating a fully BIDS
compliant dataset that has been adequately preprocessed, we can
start the linear modeling using FitLins. However, as we will show,
effective linear modeling often requires event files to be restruc-
tured while executing the desired models and checking the results.

Preprocessing is by far the most computationally intensive
aspect of the life-cycle. For preprocessing, we have chosen to use
FMRIPrep [9] [see Chapter 8], a standard package for fMRI pre-
processing. FMRIPrep, which is available as a BIDSApp [7] [see
Glossary], relies only on the BIDS imaging data and does not use
the event files. Thus, it can be run once for the dataset indepen-
dently of the event processing and downstream analysis. For linear
modeling we have chosen FitLins [10], which is also available as a
BIDSApp and performs basic multilevel linear modeling. We have
chosen FitLins because of its suitability for large-scale deployment
and analysis and because of its close integration with the newly
emerging BIDS Stats Models [11]. The BIDS Stats Model allows
specification and validation of the modeling process using a JSON
file specification. We believe this type of model specification is
important for the documentation and reproducibility of analyses.
Note that although we have chosen to use specific BIDSApps,
instructions on handling of event files are not specific to the use
of these analysis tools, or even to the use of BIDSApps in general.

As indicated in Fig. 1, the linear modeling process (FitLins) is
closely integrated with event processing in a feedback loop. The
fMRI modeling often relies on using discrete values in an event file
column as contrasts [see Glossary] in a linear model. For a modeler
wanting to ask the exact question envisioned by the person who
created the dataset, using these discrete values might be possible,
but in most cases it is unlikely to be sufficient. Hence, modelers will
need to rework their event files, either through their own coding or
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through the emerging pybids-transforms [see Resources] mecha-
nism [12], in order to perform significant analysis.

Thus, a feedback cycle emerges in which a model is developed,
results are reviewed, and potentially additional reorganization of
event files is done to enable additional analysis. While preprocessing
of the imaging data is computationally intensive, it can be auto-
mated. In contrast, the event restructuring andmodel development
is researcher-time intensive and challenging; however, it can be
made more effective by better community guidelines and more
tools for user-friendly changes and updates to event files. Here we
present some guidelines on what to consider when building event
files. We also discuss some open-source tools that we have devel-
oped to help to fix issues when they are encountered.

It is possible to follow along with the demo data. In the
following section we will first go over the requirements for working
along with the tutorial. We will describe the datasets used in the
tutorial and highlight the differences that we will later compare in
the example analysis. Next, we will discuss the layout of the initial
event files for both datasets and issues we encountered as a conse-
quence of this layout, along with general recommendations for the
event file structure. We then briefly discuss the BIDS Stats Model
and explain how it bridges between BIDS data and linear analysis of
this data. Based on the issues we encountered in the event files, we
present a series of tools that can be used to restructure event files for
analysis. We illustrate the use of these tools, the BIDS Stats Model,
and FitLins on our example data. The demo data and supporting
material for this chapter are available at [https://osf.io/93km8/
]. This chapter emphasizes event processing from the perspective of
fMRI analysis, but the general concepts also apply to other imaging
modalities such as EEG and MEG.

2 Methods

2.1 Starting Point for

Data

The analysis requires a dataset in BIDS format as would be down-
loaded from OpenNeuro [https://openneuro.org] [see Chapter 2],
or transformed directly from collected data. At least two subjects
are required, since multilevel analysis is discussed. Clearly, using a
larger number of subjects is essential to obtain adequate statistical
power for reproducible group level results, but statistical power is
not the focus of this chapter. One should also be aware—as we shall
demonstrate—that getting processing to work with a small number
of subjects does not guarantee that this processing will work with
many subjects due to variances in the runs and missing or bad data.

We assume that the data is preprocessed using fMRIPrep,
which produces files in a BIDS-derivative compliant format that
can be automatically ingested by FitLins without intervention (see
the supplementary material for additional information on
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usage [https://osf.io/93km8/]). Issues such as inconsistency or
missing values in the events are part of the event restructuring
process addressed in this chapter.

2.2 Data Storage and

Computing

fMRIPrep and FitLins are—in theory—platform-independent.
Because our demos involve small datasets, the computations can
be done on a desktop computer (although FMRIprep may take
several hours per subject depending on the processing power of
the desktop computer being used). FitLins for a small number of
subjects usually takes less than an hour on a moderately powered
desktop computer.

The three-subject AOMIC-PIOP2 dataset that we have
provided as a demo [https://osf.io/93km8/] has raw data of
approximately 220MB and processed data derived from FMRIPrep
of approximately 1.12 GB. The processed results from FitLins for
this dataset are about 50 MB for each model. The computing time
and storage required for event processing and restructuring is
negligible.

2.3 Software and

Coding

Some coding experience is necessary. Running of fMRIprep can be
done by typing a single command, which does not require coding
skills but does require an understanding of command-line argu-
ments and their meaning. FMRIprep is available as a Docker image,
but it can also be installed as a python package to run without
Docker.

In theory, FitLins only requires knowledge of command-line
arguments and their meaning as well as access to a Docker-enabled
system. FitLins also requires a model file in JSON format, which
can be created using an ordinary text editor. The construction of
the JSON file requires knowledge of how the models are encoded
using the BIDS Stats Model. The interaction between these model
files and the event files is the focus of this book chapter.

The tools that we have developed for event structuring and
re-coding are written in Python and assume at least Python version
3.7. These tools are available for support of event processing with
minimal programming. These tools are being integrated in the
Hierarchical Event Descriptors (HED) tool suite [https://www.
hed-resources.org/] for support of event handling and annotation
[see Chapter 6]. These tools will soon be available via a command-
line interface in a Docker container and will also be available as web
services and through online tools with no coding or software
installation [https://hedtools.ucsd.edu/hed].

2.4 Framing the

Problem

This chapter uses the problem of comparing results from two
datasets (AOMIC-PIOP2 and SOCCER) on a particular task
(stop-signal) as a motivation and a focus for discussing event
restructuring with an end goal of comparing results across these
experiments.
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2.4.1 The Task The stop-signal task is a well-studied test for understanding
response initiation and inhibition [13, 14]. In a series of trials [see
Glossary], participants are asked to respond to frequent “Go”
stimuli but to cancel their response when a particular stop signal
is presented at an interval (the “stop signal delay”) after the Go
stimulus is presented. The selection of the Go stimulus is the
primary discrimination task, with the stop-task as a secondary
detection task. Although the task structure and instructions adhere
to a strict format, there can be considerable variation possible in
stimuli used and the selection criteria for the primary task as illu-
strated by the two datasets (AOMIC-PIOP2 and SOCCER) dis-
cussed in this chapter.

AOMIC-PIOP2 In AOMIC-PIOP2, participants performed four different tasks
during each of four functional runs in a single session. Participants
also completed several demographic and psychometric question-
naires, either before or after scanning, on the same day. Scanning
lasted about 60 min, and the entire stop-signal run lasted around
7 min.

The primary discrimination task was a gender decision task
using face images. The stop signal was an auditory stimulus, pre-
sented with a delay starting from 250 ms but shortened stepwise if
the average number of failed stop trials was higher than 50% and
lengthened if the average number of failed trials was lower than
50%. Participants performed a total of 100 trials, as well as approxi-
mately 10 additional null trials in which no stimuli were presented
for an average trial duration of 4 s.

SOCCER In SOCCER, the stop-signal task was the only task participants
performed in the MRI scanner. Scanning lasted around 45 min
during which the stop-signal task was performed during a single
12-min run. This run was organized into six experimental blocks of
64 trials each, with 16 s of rest between each block. At the end of
the six blocks, participants completed a survey in which they
described the strategy they used during the task by indicating
agreement on a 1–100 scale to several questions. The same control-
ler buttons were used to record responses during the survey portion
as during the task.

The primary selection task consisted of selecting between left
and right pointing arrows, and pressing a left or right button
accordingly. The stop signal was a color change in the presented
arrow. The delay was updated constantly, based on a thresholding
procedure designed to keep stop-signal performance around 50%.
Note that although this is similar to the aim in the AOMIC-PIOP2,
the exact rules to get to a 50% average were different. Also in
contrast to the AOMIC-PIOP2 study, which had a broader focus,
participants in SOCCER were familiarized with the task extensively
by practicing at home as well as one additional time inside the
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scanner. The practice block in the scanner had trial-by-trial
feedback.

2.4.2 Dataset Acquisition The two datasets represent the two most common use cases in
analyses of neuroimaging—downloaded versus locally acquired
data. The AOMIC-PIOP2 dataset is a public dataset, and the
information about the events is restricted to that available from
the dataset itself and the referenced papers. There is limited oppor-
tunity to ask for clarification or correction. SOCCER is an ongoing
experiment at the time of this writing, so the experimental logs and
control scripts are available, as is access to the experimenter.

AOMIC-PIOP2 AOMIC-PIOP2 is part of a large open collection from the Univer-
sity of Amsterdam which has been deposited on OpenNeuro
(ds002790) [see Chapter 2]. The collection includes diffusion-
weighted images and fMRI runs from four different tasks, but this
chapter only considers fMRI data from the stop-signal task. Exten-
sive details on scanning parameters, demographic and other partic-
ipant characteristics are provided in Snoek et al. (2021) [8], and
some information at the participant level has been distributed with
the dataset. All participants of the AOMIC-PIOP2 were students,
aged between 18 and 26 years old.

SOCCER SOCCER is part of an ongoing experiment from the University of
Salzburg. In this experiment male adolescent (16–17 years old)
amateur soccer players are invited to participate in a study on the
link between performance, development, and low-level response
and inhibition processes. Participants are scanned during a single
session. Functional and structural neuroimaging data were col-
lected with a Siemens Magnetom Trio 3 T Scanner (Siemens AG,
Erlangen, Germany) using a 64-channel head-coil. Functional
images consisted of a T2*-weighted gradient echo EPI sequence
(TR 1050 ms, TE 32 ms, matrix 80 × 80, FOV 192 mm, flip angle
45°). Within the TR 56 slices with a slice thickness of 2.4 mm were
acquired. In addition to the functional images, a gradient echo field
map (TR 623 ms, TE 1= 4.92 ms, TE 2 = 7.38 ms, flip angle 60°)
and a high resolution (0.8 × 0.8 × 0.8 mm) structural scan with a
T1-weighted MPRAGE sequence were acquired from each partici-
pant. Additional structural files were collected but have not been
shared for the purposes of this demo. Participants spent around
60 min in the MRI scanner for the entire session. Of this time, the
functional run containing the stop-signal task lasted around
12 min.

2.4.3 A Side-by-Side

Comparison

Although both datasets use the stop-signal task paradigm, the
experiments differ significantly. Table 1 shows a side-by-side com-
parison of various implementation aspects of the two experiments.
The similarities and dissimilarities between the tasks determine the
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Table 1
An overview comparison of the two datasets used for this chapter

Aspect AOMIC-PIOP2 SOCCER

Participant pool University students Amateur soccer players

Number of
participants

(Demo/Total)

Demo: 3 5
Total: 226

Participant age
(Demo/Total)

Demo: 20–24, mean: 22.67 16–17, mean 16.4
Total: 18–25, mean: 21.96

Participant
gender

(Demo/Total)

Demo: 66% female, 33% male 100% male
Total: 57% female, 42% male

Choice images Female (right) and male (left) faces Left and right white
arrows

Choice image
duration

0.5 s Up to 1.25 s depending on
button press

Discrimination
task

Gender Direction

No go indicator Auditory tone 450 Hz for 0.5 s Color change (white to
red)

Initial No-go
delay

0.25 s 0.2 s

Go response time
average

1.0243 s 0.371 s

Button press
configuration

Index fingers of left and right hands Index and ring finger of
right hand

Trials per run 100 trials 384 in 6 blocks of 64 trials
each

Approx trial time 2.5 s 0.57 s

Total trials 15,119 go trials
4370 successful stop and 3111 unsuccessful stop trials

1452 go trials
233 successful stops and
232 unsuccessful stop
trials

% of stop trials 33% 25%

% successful versus
unsuccessful
stop

~58% successful stops with large variation
Three subjects had no successful stops, and one subject
had no unsuccessful stops. In all, 61 subjects had a
low number of successful or unsuccessful stops

~50% successful stops
Evenly distributed across
participants

Spacing Has 10% null trials Rest blocks
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questions we can ask about either dataset or the types of compar-
isons we can make to contrast the two datasets.

As Table 1 states, AOMIC-PIOP2 is a large published study
with a mix of participant genders, while SOCCER is an ongoing
study of all male participants tightly grouped by age. SOCCER will
ultimately collect data for 55 participants.

The task implementation also varied in several respects. While
the AOMIC-PIOP2 study used face discrimination as a primary
decision task, SOCCER uses a simpler direction discrimination
task, which is expected to exert a lower cognitive load. Face dis-
crimination has significant social correlates, and we expect to see
activations related to face processing. In contrast, the identification
of left versus right arrows is unlikely to be related to specific brain
areas. The stop signal modalities also differed for the two datasets:
AOMIC-PIOP2 used an auditory signal, while SOCCER used a
visual color cue.

Reaction times vary strongly between datasets. This can be
explained by differences in other aspects of the implementation:
the complexity of the discrimination task, the relative athletic cap-
abilities of the participant pool, and the amount of practice on the
stop-signal task (see also below). The response hand usage was also
different in the two experiments, with the AOMIC-PIOP2 partici-
pants using index fingers on right and left hands for right and left
responses, possibly inducing strong hemispheric differentials. On
the other hand, participants in the SOCCER experiment use two
fingers on the right hand so little hemispheric differential is
expected. The distribution of trial types within the files also dif-
fered, with AOMIC-PIOP2 having several participants with an
imbalance between stop and go trials, while SOCCER aggressively
maintained a balance between stop and go trials in each run.

2.4.4 The Impact of

Event Encoding

Within a BIDS dataset, the event files fulfill multiple functions
including documenting the experiment and providing direct input
to the analysis. Different analyses can put their own requirements
on the organization of the event file and careful consideration of the
organization of the event files is necessary. FitLins, for example,
extracts the onsets and durations for modeling BOLD responses
directly from the event files.

Foundational to building models for functional MRI data anal-
ysis is the convolution of event-based boxcar functions with the
hemodynamic response function (HRF) [see Glossary]. The rela-
tionship between neural activity and brain hemodynamics is a well-
studied topic [15]. FitLins uses the canonical HRF based on the
one used by SPM [see Resources] as a standard, although there are
other options available [16]. For short events in event-related
experimental designs [see Glossary] the HRF is convolved with an
impulse function. For longer events that are analyzed in a block
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design [see Glossary] the HRF is convolved with a boxcar function.
For this, as well as for analysis of individual HRFs, modeling event
durations precisely is important.

For the purpose of creating optimal event files, we focus on the
accurate and precise reflection of event onsets and durations. In the
following sections, differences in how onsets and durations are
represented in event files across datasets are emphasized, and we
discuss different options for representation.

While the events in the AOMIC-PIOP2 were already encoded
in a BIDS event file, the starting point for the SOCCER events is a
log file generated by NeuroObs presentation software. The first
step here is to read out this log file and transform it into BIDS event
format. Creating a minimally valid BIDS file from a log file is easy,
but in order to prepare for analysis, additional details and context
information must be added.

With well curated, finalized event files, there can still be many
hurdles for a researcher who wants to reanalyze the data, necessitat-
ing additional time be spent on restructuring the event file and
recategorizing the events.

2.4.5 Trial-Level Versus

Event-Level Encoding

Trial-level encoding represents a trial by a single line in the event file
with the onset column value marking the time of a particular anchor
event (often the primary stimulus presentation) within the trial.
Other trial events are either omitted or represented in other col-
umns as offsets (or a combination of offsets) from the event onset
time. Correctly analyzing the timing of any event except the anchor
event can be quite complicated and require a careful reading of the
documentation and accompanying literature. Automated proces-
sing can easily fail or incorrectly interpret these offsets. The practice
of trial-level encoding also encourages the skipping of the extra
events that occur within the trial, which can limit the scope of the
data use.

The alternative is to split the trial into multiple events. While
this event-level encoding results in additional rows in the event files,
it allows more flexibility in downstream analysis for contrasts
anchored on different internal events in the trial. Further, durations
of the events within a trial can be correctly distinguished for con-
volution with the hemodynamic response function (HRF), an
essential step in building a model for fMRI data. However, context
that relates to an entire trial can be lost.

In a hybrid approach, each individual event is represented as a
row as with event-level encoding. Additional events are added
before the first event in each trial with a duration representing the
extent of the entire trial. This trial event can be associated with
information that should be modeled on a trial level. Additional
events representing the start of experimental blocks may also be
included.
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The two datasets considered in this chapter initially used differ-
ent encoding strategies, and both had to be restructured in order to
perform comparative analyses. Figure 2 compares an excerpt from
an event file for each dataset. The two event files represent the same
number of trials, but are shaped differently because of their differ-
ent encoding. The trial-level encoding used in the AOMIC-PIOP2
dataset contains information about the events in additional col-
umns, but onsets anchored to neural data recording are missing
for the stop signal and the response. In the SOCCER data, individ-
ual events are represented with onsets anchored to the neural data
recording, but context information about trials is missing. In either
case, restructuring the events so all information is adequately cap-
tured in the event files normally requires a programmer to manually
code transformations of the event files. Later in this chapter we
introduce tools that allow researchers to list the transformations
needed in a JSON text file and run remodeling tools to automati-
cally perform the transformations without additional
programming.

Fig. 2 Comparison of AOMIC-PIOP2 and SOCCER event file structure. Event rows in AOMIC-PIOP2 (in orange)
represent entire trials with additional columns reflecting offsets of various trial events relative to trial onset. As
a result, the event file onset information for stop signals and responses is implicit, as reflected in the missing
information box (right box). Event rows in SOCCER (in blue) represent individual events, but information on
context of the overall trial is implicit
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AOMIC-PIOP2 As shown in Fig. 2, AOMIC-PIOP2 uses trial-level encoding,
representing an entire trial by a single row with eight event file
columns: onset, duration, trial_type, stop_signal_delay, response_-
time, response_accuracy, response_hand, and sex. The onset column
corresponds to the presentation of the face for 0.5083 s and also
marks the start of the trial. Other key events in a trial: the stop signal
presentation and the participant response, are encoded implicitly
using the stop_signal_delay and response_time as times offset from
the row’s onset column value. If there was no stop signal or no
participant response in a trial, these columns are filled with n/a,
following BIDS convention.

Trial-level encodings present two difficulties for downstream
analysis. The first is that unusual events such as extra button presses
cannot be represented although they elicit motor responses. The
second difficulty is that these relative onsets may need to be
unfolded into event markers before certain analyses (e.g., analysis
linked to participant response onsets) because this information is
hidden in additional columns. In some datasets, multiple offsets
must be combined to get the correct time of a relative event.
Without a very careful reading of the available documentation for
each experiment, it may not be possible to correctly compute the
position of these markers.

For example, the documentation for AOMIC-PIOP2 states
that the stop_signal_delay and the response_time are both given in
seconds relative to the go image presentation onset. However, the
original experiment on which AOMIC-PIOP2 is based (Fig. 1a
[17]) shows a stop_signal_onset (also of 250 ms) relative to the
end of the face image presentation rather than the start of the
presentation. Figure 1 of the Jahfari paper further indicates that
participants were not allowed to respond until after the go image
disappeared (500 ms). If the stop_signal_onset were actually at
750 ms rather than at 250 ms relative to the start of the trial,
then the large differential in participant response times between
the AOMIC-PIOP2 and SOCCERwould be essentially eliminated,
resulting in little potential effects of participant skill and discrimi-
nation task complexity on response time. Another possibility is that
stop signals occurred 250 ms after the face image onset, but that
participants were instructed not to respond until after the face
image offset, since almost all response times were greater than
500 ms. While the most likely explanation for the difference in
response times is the complexity of the discrimination task, the
other possibilities cannot be completely eliminated since the origi-
nal experimental logs are not available.

SOCCER The SOCCER events are read out directly from the log files and
distinguished by basic codes as illustrated in Table 2. Common
events, such as the presentation of left and right arrows, the fixation
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dot or a blank screen, are associated with unique numerical codes.
Other codes, particularly those associated with participant
responses, have different meanings depending on the phase of the
experiment (i.e., the experimental context) during which the
corresponding event occurred. Unambiguous coding, so impor-
tant for downstream analysis, can be achieved either by reassigning
ambiguous codes or by providing context marker events in the data.

In general, the log files generated by experiment control soft-
ware contain markers for individual events, not for entire trials. If
trial-level event encoding (as in AOMIC-PIOP2) is desired, code
must be written to identify sequences of event markers in the
experimental log and generate the appropriate trial events. Figure 3
shows some examples of the sequences that must be identified and
collapsed.

For example, the first boxed sequence of events on the left in
Fig. 3 contains the event marker sequence 30, 11, 1 starting at onset
340.9269 s. This sequence contains a fixation dot, followed by a
left go arrow, followed by a left button press and indicates a go trial.
The corresponding box on the right of Fig. 3 shows the insertion of
an event marker representing the start of this go trial. The onset of
this structure marker is the same as the onset of the earliest event
marker in the sequence. The duration is the difference between its
onset and the end of the last event marker in the sequence.

Once these trial event markers are inserted and the trial type is
identified, it is much easier to transform to trial-level coding or to

Table 2
Overview of common event codes used in the original SOCCER log

Code Event description Context string for the log

40 Blank screen Experiment block

30 Fixation dot

11 Left go arrow Go trial

12 Right go arrow Go trial

211 Left go arrow Stop trial

221 Left stop arrow Stop trial

212 Right go arrow Stop trial

222 Right stop arrow Stop trial

1 Left button

2 Right button

70 Block feedback

80 Blank screen Rest block
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disambiguate event marker codes. The tools introduced later in this
chapter allow users to specify in a JSON text file how to insert
various structure markers into the event files and to subsequently
disambiguate codes or to transform between event-level and trial-
level encoding with no or little additional programming.

2.4.6 Missing Events and

Event Values

Events that are not encoded will only contribute to implicit baseline
for the signal but cannot be modeled explicitly. Visual or auditory
cues indicating that participants should get ready for the trial start,
as well as feedback events and other sensory cues that occur during
a trial or at the beginning and ending of a block, are often omitted.
Often these omitted events are seen as trivial, or they are simply not
the object of inquiry for the curating researchers, yet their inclusion
could result in a better fitting model.

Another problem with missing information is that values repre-
senting expected conditions can be missing entirely from a dataset
because they were not recorded—or more frequently because the
experimental participant failed to follow the protocol. This can
cause serious problems for downstream analysis. Sometimes these
types of omissions make it difficult to determine exactly where a
trial or block ends when translating individual log entries to a single
event marker representing the whole trial. For event-level encod-
ings including a trial number column can be very helpful for

Fig. 3 Events in original SOCCER events. Events are represented with simple code, but specific sequences
represent structural elements of the experiments such as trials. Based on the sequence of events within a trial,
we can determine what the trial type is. To appropriately associate context with entire trials, instead of only
the events within, one can add trial events. (This Figure has been designed using resources from Flaticon.com)
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downstream analyses, so that specific code to check for all the
potential omissions does not have to be written.

AOMIC-PIOP2 The reference paper for AOMIC-POIP2 mentions an additional
feedback trial of 2000 ms if the participant responded too slowly.
Figure 2 of Snoek et al. (2021) [8] shows these feedback trials as
the presentation of the words “Too slow!” on the screen, but these
trials did not appear in the data. The paper indicates regular trials
lasted 4000 ms and that trials were preceded by a jitter interval of
0, 500, 1000 or 1500 ms. The experiment on which this is based
[17] stated that a fixation cross was presented during this interval,
but no mention was made in Snoek et al. (2021) [8] about whether
this was the case for AOMIC-PIOP2, and no fixation markers
appeared in the event file. Without access to the experimental
logs, users of the data cannot tell whether these markers were
omitted as unimportant or not included at all in the experimental
protocol.

Another issue arises when the data file is missing expected trials
of a particular type or has an unexpected distribution of trials in a
particular condition. For example, some event files in AOMIC-
PIOP2 contained no successful stops, and some event files
contained no unsuccessful stops, although the experimental goal
was to adjust the stop_signal_delay to achieve a 50% balance
between successful and unsuccessful stops. This missing data caused
crashes downstream in the FitLins processing when the trial_type
column was converted to factors for modeling and a factor value
previously encountered during processing other files (e.g., a suc-
cessful stop or an unsuccessful stop) was found to be missing from
an event file. While a large number of runs in this dataset achieved a
reasonable balance of successful versus unsuccessful stop trials, the
burden is on the analyst to check the event file contents and only
use runs and trials appropriate for the analysis.

SOCCER The coding of events in the SOCCER presentation log was not
complete. Because the user controls which events created are
pushed to the log file, it is possible to present stimuli or acquire
responses without logging any information. In this case, there was a
short “get ready” message before the start of each experimental
block that was not pushed into the log file. Often, events are
unreported because they are not the object of inquiry in the
study. In this case the event may be viewed as trivial, but the
event is the first after a 16-s period of rest and meant to prepare
the participants for a new period of activity. Based on the experi-
ment coding we can make a reasonable estimate of these event
onsets and add them to the event file.

Another situation in the SOCCER study requiring special
handling were rest blocks of 16 s between the experimental blocks.
During these rest blocks an empty white screen was presented
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continuously. In the presentation software logs, this presentation
was coded as 8 repeat events, each lasting 2 s. If these rest events
were factored for the model, there would be 8 onsets and dura-
tions. In case of an event-related analysis all these onsets would be
modeled with impulse function individually. Note that HRFs inter-
act nonlinearly when events quickly succeed each other [18]. Mod-
eling multiple quick successive events where there are none creates
an inappropriate model for the BOLD response and will likely
negatively affect the results. If there are no new onsets there should
be no new events, even if the experiment software internally
refreshes the presentation of such an event. To analyze resting
blocks a researcher would have to fold in these events with appro-
priate duration before analyzing based on the event file.

2.4.7 Ambiguous

Encoding

Event meanings are encoded in event files using custom labels.
Many downstream analyses are predicated on using these labels to
define factors or contrasts for analysis. If labels (e.g., values in a
trial_type or code column) are ambiguously encoded, downstream
analysts will need to disambiguate them before starting analysis,
usually by writing special-purpose code. Events can be ambiguous
in multiple ways. Often, ambiguous encoding comes down to a lack
of contextual information. The event itself could be a simple button
press, but the events occurring before generally determine whether
this button press was appropriate or a correct solution to the task
given to the participant. Another common case is multiple button
presses due to participant errors. Here, we go over some of the
ambiguous codes in the example datasets.

AOMIC-PIOP2 The three trial_type values were: go, succesful_stop (sic), and unsuc-
cesful_stop (sic). However, this did not completely encode all possi-
ble trial types, because in some cases the participant missed pressing
a button entirely during a go trial. Because this case wasn’t encoded
as a separate trial_type, analysts downstream must write code to
exclude these trials from comparisons of the go condition with stop
condition. In addition to missed go trials, there were trials in which
the participant pressed the wrong button during discrimination.

SOCCER The SOCCER study consisted of multiple blocks, including one
survey block at the end of the experiment in which the participants
responded to statements on their task strategies. Throughout the
entire run participants used a single button box. During experi-
mental blocks participants used the left and right button to indicate
whether there was a left or right arrow. During the survey blocks
these same buttons were used to move a slider left and right. To
analyze the neural correlates of button presses during experimental
trials, button presses during experimental trials must be made
distinct from button presses during the survey block.
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Notes
1. Ideally a trial type (or event code) should have unique codes for

each possible type of trial (or event). Unambiguous encoding
enables correct downstream splitting of type into factors for
modeling without specialized programming.

2. Careful summarization of values and combinations of values
in event files should be done before setting up statistical models.
Appropriate rows should be dropped and missing or unusual
column values handled.

3. All the events in a trial should be reported, ideally using event-
level rather than trial-level encoding to facilitate correct auto-
mated downstream processing.

4. Context should be actively associated with all events to allow
differentiate between identical events that have different
implications for participant cognition.

As shown in Fig. 1 on the lifecycle of data and further illu-
strated by the event encoding issues discussed in this section,
analysis and modeling are iterative processes. No data curator, no
matter how conscientious or proficient, can anticipate all of the
possible questions that might be pursued by downstream analysts.
Further, even when the representation of events in a data set is
relatively complete, these encodings are likely to be incompatible
when organized for larger analyses across multiple datasets. In the
next section we discuss the modeling infrastructure represented by
BIDS Stats Models and introduce tools for restructuring events
without re-coding.

3 Modeling and Event Structure

In this section we give an overview of the BIDS Stats Model format
and discuss the relationship of models to the event structure. We
then introduce event file restructuring tools designed to help
researchers restructure their event files to address particular
questions.

3.1 The BIDS Stats

Model Framework

Our example analyses use the FitLins linear modeling package to
illustrate the interaction between modeling and event organization.
FitLins is designed for large-scale automated processing using con-
tainers. Installation and examples of running FitLins for the exam-
ples discussed in this paper are contained in the supplementary
materials at https://osf.io/93km8/. An important aspect of
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FitLins for reproducibility is its use of model specifications, which
are then included with the output to fully document the computa-
tion and the results. The FitLinsmodel specifications use the newly-
standardized BIDS Stats Model format, an example is shown in
Fig. 4.

A BIDS Stats Model encodes a multilevel hierarchical statistical
model, where statistics for individual runs are combined at higher
levels to obtain group statistics representative of the entire dataset
or across multiple datasets. The purpose of these models is to
provide a complete, re-executable record of the computations.

BIDS Stats Models have only recently been incorporated into
BIDS, and while currently focused mainly on fMRI and hierarchical
modeling, will likely be extended in the future to support other
imaging modalities and analysis techniques. A nice introduction to
BIDS Stats Models is available at [https://bids-standard.github.io/
stats-models/index.html].

3.2 BIDS Stats Model

Graphs

A BIDS Stats Model is represented by a JSON file (Fig. 4, left)
specifying the nodes (computations) and edges (input/output rela-
tionships between nodes) of a computational graph. The graph in
Fig. 4 indicates that after the computational block Subject-level is
executed, its output is fed into two additional computational
blocks, F-test-left-right and T-test-contrasts. These latter blocks
pool results from individual runs across the entire dataset, as indi-
cated by the Level parameters of the respective blocks. The input
data to the run level computational block depends on the tool, but
in this case it is the fMRI imaging files. BIDS Stats Models currently
focus on general linear models (GLMs), and the event files asso-
ciated with the individual imaging files provide critical input for the
models as shown by the expansion of the Subject-level node of Fig. 4
shown in Fig. 5.

The model indicates that the BOLD signal of each imaging file
should be convolved at specific timemarkers in the data, as specified

Fig. 4 An example of a BIDS Stats Model for comparing responses between left and right hands. On the left:
the JSON model file used as input for FitLins. On the right: the execution graph for the computational model

Actionable Event Annotation and Analysis in fMRI: A Practical Guide to. . . 135

https://bids-standard.github.io/stats-models/index.html
https://bids-standard.github.io/stats-models/index.html


by go_right and go_left, using anHRFmodel based on the canonical
HRF as provided in spm [16]. Here go_right and go_left are factor
vectors of the same length as the events.tsv file associated with the
imaging file being processed. These factor vectors have 1’s in posi-
tions for events that satisfy the go_right and go_left conditions,
respectively. The remaining positions are 0.

3.3 BIDS

Transformations

If go_right and go_left were values in a column of the events.tsv files,
the computation could proceed directly, but since they were not,
the events file must undergo some transformations prior to the
application of the statistical model. BIDS Transformations, which
are under development for incorporation into the BIDS specifica-
tion, perform logical, selection, and other operations on columns
of an events file to generate factor vectors that can be used as input
to the models.

The BIDS Transformations can be specified directly in the
BIDS Stats model and Fitlins runs these internally without a
requirement for additional coding. BIDS Transformations consist
of a list of dictionaries, each specifying an operation. The operations
are performed in succession. For the transformations in the exam-
ple of Fig. 5, the input consists of column names from the internal
representation of the events file, and the outputs are also names of
derived columns computed from the same internal event file.

Figure 6 shows how this process works for the transformations
specified in Fig. 5. To obtain the factor columns go_right and
go_left, the Factor Transformation creates new factor columns
from the unique values in the input columns trial_type and respon-
se_hand. These newly created columns follow the naming

Fig. 5 An expansion of the Subject-level node of Fig. 4
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convention column_name.column_value, so the factor column
representing go trials is called trial_type.go. Since we only want to
analyze go trials, we apply the And transformation to the factor
vectors for trial_type.go and response_hand.right to create a new
column, we have chosen to call go_right. A similar operation is
specified for the left hand responses. These factors, which never
actually appear in the events file itself, are used as input for
subsequent computations.

The BIDS Transformations are necessary because the event file
columns often do not directly correspond to the needed factors.
They promote reproducibility because they are incorporated as part
of the model itself. However, there are a limited number of trans-
formations available, and the results are sometimes hard to debug
since the actual event file that goes into the computation is not
directly visible (though it is possible to include something to dump
the internal event files as part of the computation). For further
information BIDS Stats Models (BIDS Extension Proposal 2) see:

h t t p s : // d o c s . g o o g l e . c o m / d o c u m e n t / d / 1
bq5eNDHTb6Nkx3WUiOBgKvLNnaa5OMcGtD0AZ9yms2M/
edit and on the BIDS Transformations specification:

h t t p s : // d o c s . g o o g l e . c o m / d o c u m e n t / d / 1
uxN6vPWbC7ciAx2XWtT5Y-lBrdckZKpPdNUNpwRxHoU/
edit#heading=h.kuzdziksbkpm).

Fig. 6 The process of using BIDS Transformations to create factor vectors out of event file columns
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The next section introduces an alternative approach that can be
used instead of or in addition to BIDS Transformations.

3.4 Event File

Transformations

Previous subsections presented an overview of the modeling pro-
cess and showed that, at least for linear modeling, the initial analysis
relies on the specification of factor vectors reflecting the aspects of
the data to be modeled. In most cases, the original event files will
not have those factors directly present, and they must be derived
from the information available depending on the requirements of
the particular model. BIDS Transformations play an important role
in deriving suitable factor vectors, but the results of these transfor-
mations are kept internally, and data is often not perfectly aligned
with the required structure.

We have developed an external event transformation mecha-
nism (event remodeling), which is also based on specifying trans-
formations using JSON files for reproducibility. This section
introduces these transformations and demonstrates their usage.
These transformations can be used during analysis, but also can
be used for permanently restructuring event files during the cura-
tion of files. The transformations are not currently part of the BIDS
Transformations specification, but we hope some of the event
remodeling operations will eventually become part of this
specification.

The event transformation strategy relies on creating backup
event files as shown in Fig. 7.

The process begins by creating a backup copy of the original
events files. This backup remains the same throughout the process.
When a transformation is to be done, remodeling always makes a
clean copy of the events file from the backup. Thus, the remodeling
should always assume that it is starting with the original events file.
This assures a consistent state of the data throughout the process.
Remodeling takes the newly copied events.tsv file and the JSON
specification file, performs the specified transformations, and then
rewrites the events.tsv file.

Fig. 7 The process of event file remodeling
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Note
After transformation, users can review their files and use the
summary tools to make sure that the transformations have the
expected results. This review is particularly important in prac-
tice as most data has some unexpected quirks such as missing
data, missing events as described above. Once satisfied with
the results, researchers can perform analyses using tools such
as FitLins as though the event files were the originals.

3.5 Tools for

Restructuring Events

We have developed some event file restructuring tools patterned
after the BIDS Transformations. Like BIDS Transformations and
BIDS Stats Models, these event remapping tools use a JSON speci-
fication file to list the transformations to be performed in succes-
sion on the rows and/or columns of every events.tsv file in a BIDS
dataset. Unlike the BIDS Transformations, however, these opera-
tions save the transformed files, so that they can be verified manu-
ally and by summarization tools.

The top-level structure of the remodeling file is a list of trans-
formations rather than a dictionary, because a transformation of a
particular type may occur at multiple stages during the remapping
process. The transformations are performed in order.

Each transformation is represented as a dictionary with keys:
operation, description, and parameters. Table 3 summarizes the
transformations that are currently available. The toolbox is part of
a larger toolset that supports event handling and annotation using
the HED (Hierarchical Event Descriptors) framework. A more
detailed listing of the event file remodeling operations and their
parameters along with tutorials can be found at the File Remodel-
ing Quickstart tutorial [https://www.hed-resources.org/en/lat
est/HedRemodelingQuickstart.html] and the File Remodeling
Tools documentation [https://www.hed-resources.org/en/lat
est/HedRemodelingTools.html].

Figure 8 shows a simple example of an event restructuring
specification that deletes the sample and value columns and then
reorders the columns so the onset, duration, event_type, and
task_role columns are the first four columns. Since keep_others is
true, other columns are placed at the end.

When restructuring is performed using the HED remodeling
tools with this file and the BIDS root directory as input, these
operations will be performed on every events.tsv file in the BIDS
dataset.
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Table 3
Some standard event transformations available in the HED remodeling tools

Operation Purpose

factor_column Produce factor columns based on presence or absence of specified values in a
column.

factor_hed_tags Produce factor columns based on a HED tag search string.

factor_hed_type Produce factor columns from HED type (e.g., condition-variable creates factor
columns based on the annotated experimental design).

merge_consecutive Merges several consecutive events of the same type into one event with duration
being the span of the merged events.

remap_columns Map the values of n columns into new values in m columns using a dictionary
lookup.

remove_columns Remove the specified columns if present.

remove_rows Remove rows where specified columns take particular values.

rename_columns Rename columns by providing old names and new names.

reorder_columns Reorder the columns in the specified order. Columns not included are discarded or
placed at the end.

split_rows Split specified rows into multiple rows in the event file and adjust the meanings of
the columns—Usually for unfolding trials into individual events.

Fig. 8 A JSON specification for event file restructuring using the HED remodeling tools
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4 Example Data Analysis

In this section we present the results of two contrasts on the
AOMIC-PIOP2 and SOCCER data: successful stop (sic) versus
unsuccessful stop (sic) and left versus right. Before we are able to
run these contrasts we must resolve some of the problems we
described earlier, mainly this considers the issue of trial-level encod-
ing versus event-level encoding. We consider simple t-statistic maps
[see Glossary] as outcomes.

A few notes should be given on the interpretation of these
maps, which are created by applying statistical tests to individual
voxels in the fMRI images. The process of deriving whole brain
fMRI results is strongly influenced by thresholding procedures.
Many strategies have been developed to deal with the massive
multiple comparison problem, without applying the most conser-
vative Bonferroni approaches, such as calculating the Family Wise
Error, or the False Discovery Rate [19]. Often these approaches are
combined with some cluster thresholding, meaning we require a
specified number of voxels to pass the threshold before we accept
the result as significant. When looking at the basic t-statistic maps
we cannot say definitively whether higher values are a reflection of
true differences between conditions. Here we broadly view patterns
across datasets to showcase which differences could be points of
interest.

The Nilearn python library [https://nistats.github.io/] [see
Resources] has several functions for applying statistical thresholds
to data, including FDR and cluster thresholds. We have included a
simple niistats script that can be used to load in the unthresholded
statistical maps created by FitLins and apply some basic thresholds
in the supplementary material. More information on this process
can be found here: [https://nilearn.github.io/stable/auto_
examples/05_glm_second_level/plot_thresholding.html].

All files necessary to run the FitLins analysis for both datasets,
as well as all FitLins results can be found in the supplementary
materials [https://osf.io/93km8/]. In the case of the AOMIC-
PIOP2 dataset, the remapping and model files can be applied to
the entire dataset as found on OpenNeuro, to obtain results for the
full 200 participants if desired.

4.1 Successful

Versus Unsuccessful

Stops

The primary focus of stop-signal tasks is to study the interaction of
response and inhibition. Because the task load and task type were
very different in the two datasets, one would expect some differ-
ences in the interplay of response and inhibition in the two cases.
However, there might be some overlap in regions related to inhibi-
tion processes themselves. As an example comparison, we choose
successful stop versus unsuccessful stop trials for the two datasets.
We use the onset of the go signal as the marker for these events in
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both datasets. We use the encoding of successful and unsuccessful
stop trials from the AOMIC dataset without event remodeling. The
models for this example are available in the supplemental materials
[https://osf.io/93km8/].

Figure 9 shows results for the contrast of successful versus
unsuccessful stops in the two datasets. As expected the results
from this smaller sample (top two graphs) show limited conver-
gence of regional activation across participants. Interpretation here
is difficult because of the small sample size. However, the larger
AOMIC-PIOP2 dataset shows distinctive patterns which require
additional thresholding.

Fig. 9 T-test comparison of regions where response for successful stop trials was greater than for
unsuccessful stop trials. Top graph: SOCCER for the five-subject demo data. Middle graph: AOMIC-PIOP2
for the three-subject demo data. Bottom graph: AOMIC-PIOP2 for 165 subjects. Note: three subjects in AOMIC-
PIOP2 had no successful stops and one subject had no unsuccessful stops. In all, 61 subjects had fewer than
ten trials of one of the types and were removed. Color scales represent t-values
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Based on the t-statistic maps of the all participants we see a
larger difference to the successful versus unsuccessful trials in fron-
tal cortex, cingulate gyrus, as well as inferior parietal gyrus and
regions around the supramarginal gyrus. Some of these regions
have been found previously in studies related to response inhibi-
tion. A meta-analysis into different inhibition tasks found peak
activations across several stop signal tasks in the right middle cin-
gulate gyrus, bilateral supramarginal gyrus, and right inferior pari-
etal gyrus, as well as several other regions that do not show a clear
difference here [20]. By comparing results with other types of
inhibition tasks they found response inhibition was most likely
controlled by a fronto-parietal network and ventral network,
which is congruent with the pattern we see.

4.2 Left Versus Right

Responses

Both datasets had participants press left versus right buttons to
indicate their responses in the experiment’s discrimination task.
While AOMIC-PIOP2 experimental setup used separate fiber-
optic response pads with four buttons for each hand, SOCCER
only used a single response pad, located at the participant’s right
hand. Participants in the SOCCER dataset were instructed to use
their right index finger and ring finger for responses, while partici-
pants in the AOMIC-PIOP2 study used their left and right hand
index fingers to press buttons on the left and right response pads.
Based on this configuration, we expect a large difference in neural
activation between left and right motor cortex for left and right
button presses in the AOMIC-PIOP2 results, while we expect no
such differences for the SOCCER data.

Because SOCCER uses event-level encoding, the button
presses occupy their own rows in the event tables with onsets
corresponding to the times of the button presses. In contrast,
AOMIC-PIOP2 uses trial-level encoding, and the onset of the
trial is the presentation of the face image, not the time of the button
press. One possible model for the AOMIC-PIOP2 left versus right
comparison was introduced in Figs. 5 and 6 using the BIDS Trans-
formations. The difficulty with using this model for comparison of
left-right responses with SOCCER is that SOCCER encodes the
response events individually and the times of these events are
recorded as the times of the button presses rather than the times
of the image presentations. The AOMIC-PIOP2 response times
average 1.02 s, but there is significant variability among subjects
and trials. An alternative is to recode the AOMIC-PIOP2 event files
to more closely match the response events of SOCCER. In the next
section we show how to do this re-coding using the remodeling
tools.

4.2.1 AOMIC-PIOP2

Event Preparation

Figure 10 shows the remodeling steps required. The goal is to
produce a new event file where the rows represent the times of
the button presses in response to the face images. Since the new
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response times will be the original onset plus the response_time, we
first remove any rows where the response_time is not defined.

The next step is to create new events from the original trial
event. Since remove_trial_parent is true, the original trial event will
not appear in the remodeled file. Any number of new events can be
created during a split_event, but the example only shows creation of
response events. The new_column parameter designates the column
in which the “codes” representing these new events are recorded.
Here the only code is response. The onset_source designates a list of
values (and/or column names from which to extract the values for
each event) that are added to the onset value to produce the onset
of the new event. Some values in the list could be negative. The
created events don’t have to be created in order of their onsets as
the onsets are resorted at the end of the split_event process.

Figure 11 shows the remodeling transformation JSON file that
performs these operations. The file consists of a list of four diction-
aries corresponding to the three steps in transforming the event file.
The first two transformations focus on go trials and make sure that
all response times are defined. The next transformation creates a
new event for each go trial with onset at the time of button press.
The final transformation reorders the columns as required. Addi-
tional information and tutorials on using the remodeling facilities
can be found in the File Remodeling tools documentation:
[ h t t p s : // w w w. h e d - r e s o u r c e s . o r g / e n / l a t e s t /
HedRemodelingTools.html].

Fig. 10 Remodeling AOMIC-PIOP2 response events. The response_time events are transformed into new
events rows, with the original events being removed
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The script of Fig. 11 includes remove_rows operations for both
response_time equal to n/a and for trial_type values of either succes-
ful_stop or unsuccesful_stop to assure that only successful go trials
with response_time defined are included. For simplicity of explana-
tion, we did not also include a remove_rows operation for respon-
se_accuracy values of incorrect, as there were relatively few trials
where this occurred. However, it is a good idea to consider all
unusual cases in developing a remodeling script.

4.2.2 SOCCER Event

Preparation

To run a comparable contrast on the SOCCER data, two issues
needed to be addressed: resolution of ambiguity in the button press
codes and detection of invalid trials. The first issue illustrates insert-
ing block markers, the second issue illustrates insertion of trial
structure.

As described earlier (Subheading “SOCCER”), the SOCCER
data contained mainly event level information. Left and right but-
ton presses were coded as either code 1 or code 2 in the log file. But
these same buttons were used to answer questions during the
survey block, as well as to perform the experiment task. Because
of this, button presses during experimental trials must be distin-
guished from button presses in the survey trials. To address this
ambiguity, we select all events between code “40” and “80” and

Fig. 11 JSON file with instructions for restructuring AOMIC-PIOP2 event files for Model 2 above
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define them as part of the experiment block group. Once blocks
have been distinguished, the unique codes for the survey blocks
may be substituted to distinguish from the experimental blocks.

The invalid trial problem illustrates the use of the second
approach based on labeling specific event sequences. We are inter-
ested in the left versus right responses during go trials. Go trials can
be identified based on specific sequences within trial groups. Once
we have identified the trial groups, we provide individual labels for
each sequence in the group.

Table 4 shows an overview of all the sequences found in trial
groups labeled as go trials, successful stop trials, or unsuccessful
stop trials. These labeled sequences can be used not only for label-
ing trial types, but also for providing detailed summaries of the
trials that occurred in the dataset.

Some sequences in the table are more difficult to label such as
trial groups only containing a single participant button press event.
We consider these trials invalid. These responses were either correc-
tions from incorrectly solved go trials, or double responses. The
participant pressed the button before the stop signal was presented
in some trials. In some cases, the button presses were so early that
the stop signal was never even presented. We classified these latter
trials as go trials as this is what it would be perceived from the
participant perspective.

Table 4
Trial sequences in SOCCER dataset along with appropriate trial labels

Sequence Trial category

30, 11, 1 Go

30, 12, 2 Go

30, 12, 1 Go

30, 211, 221 Successful stop

30, 212, 222 Successful stop

30, 211, 221, 1 Unsuccessful stop

30, 212, 222, 2 Unsuccessful stop

30, 211, 221, 2 Unsuccessful stop

30, 211, 1 Go

30, 212, 2 Go

30, 211, 2 Go

30, 211, 1, 221 Premature signal response

1 Invalid

2 Invalid
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The details of these transformations are complex and are
beyond the scope of this chapter. For more information, see

[ h t t p s : //www. h e d - r e s o u r c e s . o r g / e n / l a t e s t /
HedRemodelingTools.html].

4.2.3 Left Versus Right

Results

Figure 12 shows a comparison of the unthresholded FitLins statis-
tical maps for the T-test for go trials where activation for the left
button press is greater than for the right button press. As expected,
the SOCCER demo data (top graph) does not show an obvious
difference across hemispheres.

On the other hand, even in a dataset as small as the three-
subject demo dataset, AOMIC-PIOP2 does show a visual

Fig. 12 T-test comparison of regions where response for left button press is greater than for right button
presses in go trials. Top graph: SOCCER for the five-subject demo data. Middle graph: AOMIC-PIOP2 for the
three-subject demo data. Bottom graph: AOMIC-PIOP2 for 221 subjects. Note: three subjects in AOMIC-PIOP2
had no go trial left button presses and two had no go trial right button presses and were excluded. Color scales
represent t-values
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difference between hemispheres for left larger than right button
presses (middle graph). The distinction is much more clearly
demonstrated in the 221-subject AOMIC-PIOP2 dataset (bottom
graph). Unfortunately, the difference is in the opposite direction of
our expectations—with left hand actions associated with higher t-
values in the left hemisphere. We also see the contralateral (nor-
mally ipsilateral) activation in the cerebellum. This discrepancy
could be a mistake in the model, a reversal of designations in the
event files, or even be a reversal of the hemispheres during image
processing. Since the original log files are not available we have not
been able to rule out any of these possibilities. However, this result
demonstrates the usefulness of running even relatively trivial com-
parisons to cross-check the consistency of the data and results. All
of the model files and results are available in the supplementary
materials.

5 Discussion and Conclusion

The stop signal task used as an example throughout this chapter is a
well-established paradigm for studying the mental processes
response initiation and inhibition. We have used two datasets to
showcase the process of event restructuring and annotation for
comparable analysis. Our two demo datasets illustrate two common
use cases: downloading datasets available on open repositories
(AOMIC-PIOP2) and structuring local data in standardized for-
mats (SOCCER). Based on the limited sample sizes of the demo
datasets, we cannot draw conclusions about regions related to
response inhibition across studies, rather our purpose was to illus-
trate event restructuring issues and approaches.

We illustrated the issues using two comparison problems: suc-
cessful versus unsuccessful stops and left versus right responses. In
the first example, there are comparable events in the two datasets,
and the standard BIDS Transformation mechanisms are sufficient
for modeling. The left versus right comparison is more complicated
because the event encoding of the two datasets prevents direct
comparison of these events. We use this example as an illustration
of the process of event remodeling to transform the event files of
AOMIC-PIOP2 for a better comparison with SOCCER.

Events play an essential role in neuroimaging data manage-
ment, from initial preparation using the experimental logs to
advanced task-based analysis. Creating appropriate event represen-
tations for a given application often requires considerable time
investment, and the problem is compounded when the analysis
includes datasets from different experiments and laboratories as
demonstrated by the comparison of the AOMIC-PIOP2 and SOC-
CER datasets presented in this chapter.
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Event files also play an important role in reproducible and
transparent analyses. Transparency requires thorough documenta-
tion of events and use of standardized terms for describing cogni-
tive tasks and their implied role in cognition. Careful
documentation of control variables and specific targeting of mental
concepts is an important part of the practice of cognitive science.
More recent incorporations of naturalistic paradigms such as movie
watching also depend on careful structuring and flexible annotation
of events occurring during the experiment.

To address these issues, we have developed a framework and
event restructuring tools (remodeler) that allow users to modify a
dataset’s event files by specifying a series of operations in a JSON
text file. Using such a file not only allows researchers to avoid
writing one-off code for each analysis, but also results in a file that
clearly documents the operations performed on the events files so
that they can be easily reproduced. These restructuring tools are
well-integrated with BIDS and augment the BIDS Stats Model and
BIDS Transformations. The tools are also integrated with HED
(Hierarchical Event Descriptors) [5] for more advanced analysis
and standardized annotation of events. Event restructuring, as
well as the role of HED in restructuring, is discussed in [https://
www.hed-resources.org/en/latest/HedRemodelingQuickstart.
html] and [https://www.hed-resources.org/en/latest/
HedRemodelingTools.html].

Aggregating neuroimaging data is an important aspect of ver-
ifying neuroimaging results from often small sample sizes, and
establishing consistent results across studies with often variable
designs and participant groups. Besides questions about the gener-
alizable results, however, there are also questions in neuroscience
about the effect of variations in experimental design on neural
activation. In order to learn more about this, it is important to
compare experiments on an event level. Data sharing has also
proven useful for method testing and validation as well as for the
development and testing of software [6].

Event representation for documentation and analysis rarely
receives the attention it deserves, given its complexity and how
essential it is to a valid analysis. We have shown that synchronization
of multiple datasets to allow for comparable analysis results requires
a significant investment of time and resources, even for relatively
straightforward stimulus-response paradigms. A deep understand-
ing of the executed paradigms and the events remains essential.
However, with better guidelines and more tools for event handling,
event processing can be made less time intensive for users of shared
data as well as for those collecting new data.
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Chapter 8

Standardized Preprocessing in Neuroimaging: Enhancing
Reliability and Reproducibility

Oscar Esteban

Abstract

This chapter critically examines the standardization of preprocessing in neuroimaging, exploring the field’s
evolution, the necessity of methodological consistency, and the future directions shaped by artificial
intelligence (AI). It begins with an overview of the technical advancements and the emergence of software
tools with standardized neuroimaging processes. It also emphasizes the importance of the Brain Imaging
Data Structure (BIDS) and data sharing to improve reproducibility. The chapter then discusses the impact
of methodological choices on research reliability, advocating for standardization to mitigate analytical
variability.
The multifaceted approach to standardization is explored, including workflow architecture, quality

control, and community involvement in open-source projects. Challenges such as method selection,
resource optimization, and the integration of AI are addressed, highlighting the role of openly available
data and the potential of AI-assisted code writing in enhancing productivity.
In conclusion, the chapter underscores NiPreps’ contribution to providing reliable and reproducible

preprocessing solutions, inviting community engagement to advance neuroimaging research. The chapter
envisions a collaborative and robust scientific culture in neuroimaging by promoting standardized practices.

Key words Computational neuroscience, fMRIPrep, MRIQC, Neuroimaging, Reliability, Reproduc-
ibility, Python, Open-source

1 Introduction

Neuroimaging has seen remarkable technical developments over
the past three decades, reflecting its singular adequacy for probing
the brain’s structure and its intricate workings in vivo. The contin-
uous innovation in image formation technologies has bolstered the
development of domain software tools and applications. Corre-
spondingly, new theories of the brain and new experimental
approaches have also stimulated progress with the demand for
new hardware and software instruments [1]. Consequently, the
field has produced a multiplicity of software instruments over
time, developed with high engineering standards and readily
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available to neuroimagers. Among many others, AFNI [2], Free-
Surfer [3], FSL [4], and SPM [5] have achieved remarkable adop-
tion. For transparency, most neuroimaging packages enable
researchers to independently scrutinize the implementations they
add to their tool belts by making the source code accessible—if not
fully open-source.1

With the advancement of imaging techniques, these toolboxes
have been substantially expanded to support ever-growing spatial,
and temporal resolutions, as well as new modalities and acquisition
approaches. Moreover, neuroimaging research has also seeded con-
vergent efforts toward multimodal fusion, where features are
extracted from several measurement types. These two drivers
prompted the establishment of neuroimaging “pipelines” that
stage processing steps and encompass data management opera-
tions. Traditionally, these steps are drawn from a single toolbox of
choice for a particular application or analysis, as compatibility
between tools poses substantial problems. Tools such as Nibabel
[6] and Nipype [7] have enabled “mixing-and-matching” from
available neuroimaging tools to select the best-in-class implemen-
tations across them by standardizing access to data (Nibabel) and
the user interface to tools (Nipype).

While the redundancy of implementations for a given task is
positive from a knowledge formalization and accessibility perspec-
tive, it has gradually become apparent that methodological varia-
bility is an obstacle to obtaining reliable results and interpretations,
a problem only exacerbated by inaccurate or insufficient reporting
[8]. Indeed, variations in processing methods across different mod-
alities, research groups, studies, and even individual researchers
have contributed to inconsistencies and discrepancies in reported
findings [9–11]. This problem was more recently surfaced with the
Neuroimaging Analysis Replication and Prediction Study (NARPS;
[12]), where 70 teams of functional MRI (fMRI) experts were
provided with the same dataset and tasked with testing a closed
set of nine hypotheses. The results highlighted an overall poor
agreement in conclusions across teams. Considering that no two
teams fully coincided in the design of their analysis pipelines, the
NARPS authors interpreted that methodological variability was at
the core of the divergent results. As potential counter-measures,
Botvinik-Nezer and colleagues discussed the value of preregistra-
tion to avoid methodological variability introduced post-hoc, that is,
fine-tuning the processing pipeline until the results align with
expectations. Additionally, they also envisioned multiverse analyses
where many combinations of different implementations of a pro-

1A source code may be made accessible (e.g., shared over a private email) while open-source implies a license
stating unambiguous terms for reuse and redistribution.
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cessing and analysis pipeline are explored, and results are either
interpreted as a range of possibilities or aggregated statistically
[13], e.g., by means of active learning [14]. Both—preregistration
and multiverse analyses—are powerful tools for reproducibility that
operate in the domain of methodologies, either limiting the
researcher’s degrees of freedom and incentives to workaround
nonnegative findings (preregistration; [15, 16]) or embracing the
exploration of the breadth of methodological alternatives and com-
binations thereof (multiverse; [17]). Because shallow reporting
bears great responsibility for how analytical variability may under-
mine the reliability, best practices in reporting such as checklists (for
instance, the Organization for the Human Brain Mapping’s COBI-
DAS; Committee on Best Practice in Data Analysis and Sharing;
[18]) have been proposed to solve the problem. Nonetheless, it is
worth noting that all the teams involved in NARPS completed the
COBIDAS checklist. That alone did not guarantee that the
reported methods could be adequately replicated. Taylor and col-
leagues showed evidence that the NARPS results are more conver-
gent than initially interpreted when outputs are examined without
standardly applied simplifications such as thresholding of statistical
maps [19]. Nonetheless, analytical variability remains a concerning
issue that undermines the reliability of neuroimaging research.

Over the last decade, researchers have harnessed their neuro-
imaging workflows targeting reliability. The Brain Imaging Data
Structure (BIDS; [20, 21]) has proven to be a hallmark example of
how standard dataset organization is critical to implement repro-
ducible neuroimaging research (see Chapter 4 for a detailed guide
to BIDS). Not only has BIDS deeply transformed the neuroimaging
landscape by establishing a consistent agreement on how data and
metadata must be organized, maximizing the shareability of data-
sets and ensuring proper data archiving, it has also spurred a body
of research addressing aforementioned challenges to reproducibil-
ity. Indeed, data sharing has been recognized as a powerful repro-
ducibility tool, and outstanding resources such as OpenNeuro [22]
have contributed to solidifying the development of neuroimaging
workflows with a clear and standardized interface for input—
BIDS— and output—BIDS-Derivatives—data. Leveraging BIDS
and following the BIDS Apps principles [23], our fMRIPrep appli-
cation [24] has shaped the development of standardized neuroim-
aging workflows and given rise to the NeuroImaging
PREProcessing toolS (NiPreps; [25]). Using the NiPreps develop-
ment experience as a foundation, this chapter explores the ratio-
nale, benefits, and potential trade-offs of standardizing the
preprocessing stage as a way to account for analytical variability in
a significant stage of every neuroimaging pipeline.
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2 Standardizing Preprocessing: What and Why?

Generally, neuroimaging analyses cannot be carried out directly
with “unprocessed” data, that is data after reconstruction from
the “raw” recordings collected by an imaging device (c.f.,
Chapter 15). While BIDS helps organize unprocessed data and
provides a reliable ingress interface into subsequent processing,
data needs preprocessing before it can be analyzed [25, 26]. Prepro-
cessing involves a series of essential operations, including data
cleaning, spatiotemporal normalization and alignment, artifact
removal, and other steps required by statistical modeling [24]. Ana-
lytical variability quickly emerges in the design of such pipelines as
each processing step with its associated parameters involves
methodological choices. These choices will likely undermine the
reliability of the outcomes unless the pipeline abides by strict self-
consistency and transparent implementation and reporting. The
variability introduced by preprocessing compounds with the varia-
bility of the data collection and subsequent steps, such as image
reconstruction, exacerbating the overall pipeline’s unreliability.

When looking through the lens of classical test theory [27–29],
the neuroimaging “scores” that are statistically modeled in the final
analysis step are indeed “preprocessed” data. For example, a mor-
phometry analysis quantifying T1-weighted MRI properties such as
cortical thickness—that is, a neuroimaging “score”,— requires pre-
processing steps involving brain extraction or reconstruction of
brain surfaces. The classical theory posits two approaches to
improve the reliability of scores, such as the cortical thickness in
the example: aggregation and standardization. Please note that
although “reliability”, “reproducibility”, “repeatability”, and “rep-
lication” are different terms understood in many ways across dis-
ciplines [30], here we will define reliability as the property that the
score or measurement is consistently correlated with the true value
of it [29].

The aggregation approach follows the “Spearman-Brown
prophecy formula” [31, 32], and supports that random error com-
ponents cancel out by aggregating items of the same true score,
thereby providing more reliable measurements. This aggregation
approach is at the core of recent dense and “personalized” imaging
data collection efforts [33]. These approaches repeat the same
experiment on reduced numbers of individuals to analyze them
independently and focus only on within-subject variability, thereby
improving the within-individual reliability. Within the example of
cortical thickness analysis, aggregation could be implemented by
collecting several images for every subject and extracting surfaces
and the feature of interest from each individual’s single, average
template. The approach is an excellent tool to characterize the
reliability of the measurements (see ref. [34], for an example of

156 Oscar Esteban



our efforts in this direction). On the other hand, standardization
reduces sources of variability relating to the measurement instru-
mentation, including methodological variability of preprocessing,
by strictly predetermining all the experimental choices and estab-
lishing a unique workflow. This chapter focuses on standardization
to reduce the domain of coexisting analytical alternatives, hence
reducing the multiverse that must be traversed in mapping the
variability of the results. Standardizing the preprocessing offers
numerous benefits for enhancing the reliability and reproducibility
of the research workflow, albeit the paradigm is not free of trade-
offs and challenges. First, a reliable measure is not necessarily
“valid” [35]. Standardization may enforce specific assumptions
about the data and introduce biases that could void the measure-
ment validity. For instance, a brain extraction algorithm within a
brain morphometry application that systematically includes dura in
smaller brains and excludes it in larger ones could lead to the wrong
conclusion about gender differences in cortical thickness at the
population level. Other challenges and trade-offs of standardization
involve the robustness to data diversity, the flexibility versus experi-
mental degrees-of-freedom trade-off, and computational optimiza-
tion. The following section explores several of these aspects along
different dimensions through which standardization may be
implemented.

3 Dimensions of Standardization

3.1 The Brain

Imaging Data

Structure (BIDS)

Although initially conceived as an exchange format to maximize
data shareability and archival, BIDS provides a consistent frame-
work for structuring data directories, naming conventions, and
metadata specifications. Building on the clear interface that BIDS
affords for the input, our BIDS Apps framework [23] describes
several formal aspects to enable the standardization of pipelines.
The widespread adoption of BIDS has greatly facilitated the uptake
of BIDS Apps, such as fMRIPrep, which leverages BIDS-compliant
datasets to automate the preprocessing of fMRI and exchange
(through BIDS-Derivatives) downstream processing and analysis.
BIDS-Derivatives provides a standardized format for representing
processed and derived data, ensuring consistency and compatibility
across different studies and analyses. Researchers can easily share
and disseminate their preprocessed data by employing BIDS-Deri-
vatives, enabling reproducibility and promoting collaboration
within the neuroimaging community. The BIDS specification has
permitted the development of tooling such as the PyBIDS library
[36] to query and retrieve data and metadata from the input dataset
and generate the names and structure of the final derivatives at the
output (see Note and Chapter 2).
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Note
PyBIDS is a Python package that makes it easier to work
with BIDS datasets.At present, its core andmost widely used
module supports simple and flexible querying and manipula-
tion of BIDS datasets. PyBIDS makes it easy for researchers
and developers working in Python to search for BIDS files by
keywords and/or metadata; to consolidate and retrieve file-
associated metadata spread out across multiple levels of a
BIDS hierarchy; to construct BIDS-valid path names for new
files; and to validate projects against the BIDS specification,
among other applications. For further details on its core
indexing module and other additional utilities it provides, see
ref. [36].

First, we show how to pre-index the dataset. This will
speed up later querying and is especially time-saving when the
dataset is sizeable. Once PyBIDS is installed (see its documen-
tation website for instructions, https://bids-standard.github.
io/pybids/; see Resources), issue the following command
from within the directory in which data are available (e.g.,
installed with DataLad):

cd /data/ds002790

mkdir -p .bids-index/

pybids layout --reset-db --no-validate --index-metadata .

.bids-index/

Once the dataset is indexed, we can open a Jupyter note-
book or an IPython console and explore the dataset. We first
import PyBIDS (with the package name “bids” within the
Python distribution) and create a dataset layout object called
ds002790. We make sure to point it to the right folder and to
use the index database created above:

>>> import bids

>>> ds002790 = bids.BIDSLayout(

... "/data/ds002790",

... database_path="/data/ds002790/.bids-index/",

... )

We now use the dataset layout to query the dataset. In
general, PyBIDS enables querying for metadata using
get_<metadata-name> calls. For instance, we can check
the total number of subjects:

>>> len(ds002790.get_subjects())

226
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We can also investigate the data and metadata types by
querying the available BIDS’ suffixes:

>>> ds002790.get_suffixes()

[“T1w”, “description”, “dwi”, “participants”, “magni-

tude1”, “phasediff”, “bold”, “physio”, “events”]

We can also query for metadata entries, and filtering by a
given suffix (“bold”) discover that all BOLD images have a
repetition time of 2.0 s:

>>> ds002790.get_RepetitionTime(suffix="bold")

[2]

Now we list the four BOLD fMRI tasks in the dataset:

>>> ds002790.get_tasks(suffix="bold")

[“restingstate”, “stopsignal”, “workingmemory”, “emo-

matching”]

or get the path to allNIfTI files corresponding to the resting-
state BOLD runs for only the first subject (here only one file):

>>> ds002790.get(

... subject=ds002790.get_subjects()[0],

... task="restingstate",

... suffix="bold",

... extension=[".nii", ".nii.gz"],

... )

[<BIDSImageFile filename=’/data/datasets/ds002790/sub-

0001/func/sub-0001_task-restingstate_acq-seq_bold.nii.

gz’>]

Notably, the BIDS and BIDS-Derivatives specifications allow
BIDS Apps, such asMRIQC [37] and fMRIPrep, to follow a simple
pattern for their invocation from the command line (see Note).

Note
Standardized command line of BIDS Apps. A BIDS App is a
container image capturing a neuroimaging pipeline that takes
a BIDS-formatted dataset as input. Since the input is a whole
dataset, apps are able to combine multiple modalities, ses-
sions, and/or subjects, but at the same time, need to imple-
ment ways to query input datasets. Each BIDS App has the

(continued)
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same core set of command-line arguments, making them easy
to run and integrate into automated platforms. BIDS Apps are
constructed in a way that does not depend on any software
outside of the container image other than the container
engine. Further documentation about BIDS Apps and their
execution with containers is found at the NiPreps website
(https://www.nipreps.org/apps/framework/; see also
Resources). An index of BIDS Apps is maintained at https://
bids-apps.neuroimaging.io/apps/ (see Resources).

All BIDS Apps share a common command line interface
that enables their automated concatenation and execution.
The command line follows the structure runscript
input_dataset output_folder analysis_level
<optional named arguments>, where runscript is typi-
cally the name of the BIDS App (e.g., mriqc), input_data-
set points at the path of the input BIDS or BIDS-Derivatives
dataset, output_folder points at the path where results will
be stored, and analysis_level can be either partici-
pant or group depending on what type of analysis will be
executed, as introduced in Fig. 1. Therefore, the general
structure of the command line is particularized for executing
MRIQC as follows:

mriqc /data/ds002790 /data/ds002790/derivatives/

mriqc_24.0.0 participant

Following the BIDS-Derivatives specifications developed
after the BIDS Apps framework, the output directory is set to
/data/ds002790/derivatives/mriqc_24.0.0, which
can naturally be managed as a DataLad “subdataset” and
indicates that the choice of MRIQC’s release is 24.0.0 (see
Subheading 3.4 for standardization of versioning). We will
leverage PyBIDS’ index cache by adding one named argument
to the baseline command line:

mriqc /data/ds002790 /data/ds002790/derivatives/

mriqc_24.0.0 participant \

--bids-database-dir /data/ds002790/.bids-index/

where --bids-database-dir /data/ds002790/.bids-
index/ is an optional argumentMRIQC accepts to employ a
pre-indexed database. The command line naturally gener-
alizes to fMRIPrep as follows:

fmriprep /data/ds002790 /data/ds002790/derivatives/fmri-

prep_24.0.0 participant \

--bids-database-dir /data/ds002790/.bids-index/
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3.2 Standardization

of Design

Workflow architecture BIDS Apps also promoted the standardi-
zation of workflow design. Gorgolewski and colleagues [23]
described two typical execution patterns in neuroimaging analyses
(Fig. 1). First, some workflows like fMRIPrep focus on individual
subjects, where subjects’ processing can be “embarrassingly paral-
lel” thanks to the independence between execution processes.
Generally, data from individual subjects (participant level) are
then aggregated and compared depending on the study design
(group level). In group-level analyses, inter-dependencies in the
compute graph disallow embarrassingly parallel approaches. There-
fore, parallelization must be implemented either at the level of task,
either within a computing node (e.g., threading, multiprocessing,
GPU, etc.) or across computing nodes (e.g., with message passing
interface). By focusing only on the participant level, fMRIPrep,
MRIQC, or any other NiPreps can optimize the workflow for the
specific execution mode.

Building from the BIDS Apps standard, fMRIPrep, and MRIQC
continued developing standardizations of design that would evolve
into the NiPreps framework. Beyond sharing the same infrastruc-
ture to handle BIDS, the modularity of workflows, or the use of
NiPype as the workflow engine, an alpha release of fMRIPrep now
adopts a “fit and transform” paradigm, inspired by Scikit-Learn’s
influential interface in machine learning [38]. Under this paradigm,
fMRIPrep generates only a minimal set of results from which the
“traditional” outputs of fMRIPrep can deterministically be gener-
ated. The minimal set of results includes linear and nonlinear spatial
mappings between coordinate systems of interest (anatomical

Fig. 1 BIDS Apps made strides toward standardization of design. In particular, our manuscript elaborated that
most neuroimaging applications could be modularized in a first step (“mapper”), where independent
processes are executed, followed by a second step (“reducer”), where results from the previous stage are
aggregated

Standardized Neuroimaging Preprocessing 161



image, functional images, standard space defined by templates,
etc.), temporal mappings (e.g., slice-time information), and estima-
tion of spatiotemporal artifacts (e.g., susceptibility distortion,
head-motion, etc.), associated with the processing steps of Fig. 2.
This division of the workload benefits researchers and data stewards
to maximize the value of the shared data as downstream users can
generate the desired fMRIPrep results in the spatial frame they need
while minimizing data transfer and storage. Indeed, we evaluated
that the new approach resulted in 25–52%, 43–54%, and 72–87%
reductions in runtime, data volume, and file counts, respectively, in
comparison to the previous version of fMRIPrep [39]. The para-
digm also facilitates the generalizability of software implementa-
tion, as only the fit step requires adaptation across modalities (e.g.,
dMRIPrep to preprocess diffusion MRI, dMRI), populations (e.g.,
fMRIPrep-infants; [40]), and species (e.g., fMRIPrep-rodents)
while the transform step can have a single approach thereby reduc-
ing maintenance and technical debt.

Building blocks and modularity Based on the success story of
fMRIPrep, we initiated a focus on the generalization of the work-
flow, first within blood-oxygen-level-dependent (BOLD) fMRI for
its application on infants ( fMRIPrep-infants) and rodents
(MRIQC-rodents; [43]; and fMRIPrep-rodents). Similarly, the
development of “-Preps” for other modalities was initiated. Indeed,
dMRIPrep is the counterpart of fMRIPrep for dMRI data [44],
ASLPrep covers arterial-spin-labeling (ASL; [45]) fMRI, and

Fig. 2 fMRIPrep underwent a “deconstruction” effort, giving rise to NiPreps. We identified several preproces-
sing steps that required further standardization beyond fMRI. In particular, modularizing fMRIPrep derived in
two relevant NiPreps—TemplateFlow [41], for the standardization of templates and atlases; and SDCFlows
[42], which contains workflows and tools for the estimation and correction of susceptibility-derived distortions
of echo-planar images (EPI) that are commonly employed to acquire fMRI and dMRI data
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PETPrep targets positron emission tomography (PET) imaging.
These generalizations were soon denominated as NeuroImaging
PREProcessing toolS (NiPreps), with the overarching goal of stan-
dardizing preprocessing components shared across modalities,
populations, and even species.NiPreps adopts a modular and exten-
sible architecture, allowing researchers to combine and configure
different preprocessing modules to suit their specific needs (Fig-
ure 3). Modularity enables fMRIPrep and dMRIPrep to share the
preprocessing of structural imaging (T1-weighted and
T2-weighted) through sMRIPrep, and susceptibility distortion
mapping through SDCFlows [42]. Therefore, the results of multi-
modal (f/dMRI) studies are referred to a single version of the
anatomy obtained with a single run of sMRIPrep and distortions

Fig. 3 The NeuroImaging PREProcessing toolS (NiPreps) framework. The NiPreps framework encompasses
modular neuroimaging software projects. A number of projects provide the infrastructure over which more
elaborate or abstract features are implemented. Leveraging that base, end-user applications such as
fMRIPrep, dMRIPrep, or MRIQC can be developed. Projects outside the brain edge (Nipype, Nibabel, and
BIDS/PyBIDS) are not part of the framework but receive upstream contributions and are essential software
foundations for the whole vision. Finally, foundational packages support the most basic algorithmic imple-
mentation of methods
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of the echo-planar imaging (typically employed to acquire diffusion
and functional MRI) are addressed consistently. While this example
showcases modularization at the highest level of the software stack
shown in Fig. 3, the principle applies to the smaller components at
lower levels of abstraction.

Quality assessment and control (QA/QC) Deploying a
QA/QC strategy is critical for the reproducibility of the neuroim-
aging workflow [26]. In addition to increasing the workflow’s and
results’ reliability, standardizing QA/QC is critical to ensure qual-
ity issues do not propagate unidentified along studies. Robust
QA/QC implies setting up several QA/QC checkpoints along
the neuroimaging pipeline to ensure that data meeting exclusion
criteria are dismissed before reaching analysis [46]. Under such a
definition, QC checkpoints are analogous to the layers of the
so-called “Swiss cheese security model” [47], with the goal that
data of insufficient quality which may bias the results does not reach
the analysis.NiPreps such asMRIQC and fMRIPrep generate visual
reports to implement standardized QA/QC protocols. InMRIQC,
visual reports enable one mechanism for assessing the quality of
outcomes of an experimental session, that is, the “original” unpro-
cessed data. In the case of downstream pipelines such as s/d/fMRI-
Prep, the objective of the checkpoint is to ensure the preprocessing
is fit to the study requirements. We standardized report generation
in NiPreps by outsourcing NiReports (NeuroImaging Reports) as a
standalone library independent of fMRIPrep’s codebase.NiReports
comprises two basic components: unitary visual elements or
“reportlets” and the “assembler”. Reportlets support the visual
assessment of intermediate preprocessing steps and final prepro-
cessed outcomes, enabling researchers to evaluate the acceptability
of the results efficiently. The assembler combines reportlets into a
comprehensive document (a final visual report), providing a coher-
ent and interpretable overview of the preprocessing workflow and
the outcomes. NiReports not only provides the infrastructure to
establish QA/QC protocols. By shedding light on the workflow
operation itself, the visual reports provide “a scaffold for knowl-
edge” that helps researchers better understand the why and the
how of the particular operations in the workflow. This “educa-
tional” or transparency component supports the training and
development of researchers, ultimately fostering a more knowl-
edgeable and skilled community engaged in standardized prepro-
cessing practices. Although NiReports offers some interactivity,
standardization of QA/QC requires that the screening experience
during assessments is homogenous across raters, regardless of their
expertise or attrition or the actual visualization settings. In other
words, NiPreps’ reports disallow exploring data freely such that
structured differences between raters may emerge depending on
their strategy for the assessment. For instance, the reports do not
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offer interactive ortho-viewers that permit two experts to navigate
the same image differently. Standardizing QA/QC through NiRe-
ports ensures that preprocessing outcomes can be thoroughly and
consistently assessed, providing researchers with confidence in the
acceptability and quality of their results.

3.3 “Semantic”

Standardization:

Spatially Referencing

Group Inferences

Standard spaces provide stereotaxy, a reference frame for research-
ers to align and compare data across different subjects and studies.
Moreover, these spaces are ubiquitously employed in neuroimaging
to incorporate prior knowledge into the processing as they typically
are annotated. Standard spaces contain one or more templates,
which are aggregated maps of neuroimaging features, and atlases—
annotations corresponding to features encoded by templates in the
frame of reference these engender. TemplateFlow [41] provides a
curated collection of common standard templates and atlases,
enabling self-adaptable workflows that employ the template or
atlas most appropriate for the particular dataset. For instance,
fMRIPrep-infants uses different templates depending on the age
months of the participant. Although initially developed in response
to increased flexibility requirements by fMRIPrep, we identified
remarkable issues concerning the use and reporting of templates
in neuroimaging as described in our TemplateFlowmanuscript [41]
and further analyzed in our feature about that paper [48]. Some of
these issues relate to the distribution of templates and atlases under
FAIR (Findability, Accessibility, Interoperability, and Reusability;
[49]) guiding principles, to data management, as well as to ensur-
ing best practices in reporting analyses. Therefore, not only does
TemplateFlow offer a programmatic interface to templates and
atlases and a community registry and archive, but it also addresses
the challenge of template versioning and management (Fig. 4). By
providing a centralized repository, researchers can access different
versions of templates, allowing for consistent analyses across time
and ensuring the reproducibility of preprocessing results.

3.4 Containerization With growing requirements, it is harder for inexperienced users to
adopt new tools because installation becomes a high barrier. These
entry barriers increase with security policies and limitations of the
target system. While installation on a Personal Computer (PC) may
be straightforward, deployment on a multi-tenant HPC cluster can
be challenging. To resolve this problem, BIDS Apps emphasized the
adoption of containers (see Chapter 3). Indeed, when fMRIPrep
started to ramp up in the number of users, most of the problems
reported in the source code repository and the specialized forum
NeuroStars (https://neurostars.org; seeResources) related to instal-
lation. As maintainers of fMRIPrep, we decided to discourage
“bare-metal” installations where users must install all the depen-
dencies (e.g., AFNI, ANTs, FSL, FreeSurfer, etc.) and prepare a
workable Python environment themselves. Instead, we promoted
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the deployment of Apptainer (called Singularity at the time; [50]).
We also successfully prompted the adoption of Singularity by our
local cluster Sherlock (SCRR, Stanford University, CA, USA), and
several systems at TACC (Texas Advanced Computing Center,
University of Texas at Austin, TX, USA). The promotion of con-
tainers quickly translated into a shift of support activities toward
more “scientific” topics about fMRIPrep, failure conditions, and
feature requests, instead of installation and deployment (see Note).

Note: Running fMRIPrep with Docker
We build on top of the standard command line interface of
BIDS Apps to demonstrate the containerized execution of
fMRIPrep on the AOMIC-PIOP2 dataset [51].

docker run -ti --rm -u $( id -u ):$( id -g ) \

-v /data/ds002790:/data:ro \

-v /data/ds002790/derivatives:/derivatives \

(continued)

Fig. 4 Standardization of templates and atlases with TemplateFlow. The TemplateFlow Archive can be
accessed at a “low” level with DataLad, or at a “high” level with the TemplateFlow Client. New resources
can be added through the TemplateFlow Manager command-line interface, which initiates a peer-review
process before acceptance in the Archive
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nipreps/fmriprep:23.2.0 \

/data /derivatives/fmriprep_23.2.0 participant \

--participant-label 0021 \

--omp-nthreads 8 --nprocs 16 \

-vv --bids-database-dir /data/.bids-index/

Execution with Docker requires pre-pending the con-
tainer system’s arguments before fMRIPrep’s. First, a
docker run sub-command indicates that a container will be
executed from a Docker image. The specific Docker image and
tag marks the separation betweenDocker arguments and those
of fMRIPrep. In this case, the fourth line indicates nipreps/
fmriprep:23.2.0, thereby instructing Docker to find the
corresponding image at the indicated version (23.2.0) and
download it if not cached locally.

Arguments preceding the container image configure the
terminal mode (-ti), instruct Docker to clear up the con-
tainer when execution finishes (--rm), and, importantly, map
the current user and group into the container (-u$(id-u):
$(id-g)) to ensure new folders and files are not assigned to
root, which is the default. Execution will also require file
system communication with the container, and therefore, we
“mount” the data folder in read-only mode (-v /data/
ds002790:/data:ro), and a folder to store the output in
read-write mode (-v /data/ds002790/derivatives: /
derivatives).

Arguments to the right of the container name and tag
correspond to fMRIPrep. First, we encounter the standard
BIDS Apps mandatory arguments (/data /derivatives/
fmriprep_23.2.0participant), followed by one specific
participant label (--participant-label 0021), as recom-
mended in fMRIPrep’s usage guidelines. Next, parallelization
is configured, with 8 CPUs per process and a maximum of
16 processes being executed simultaneously (--omp-
nthreads 8 --nprocs 16). The verbosity of fMRIPrep can
be tuned with the repetition of the “v” letter as a flag (here we
have -vv, which can be decreased by writing just one “v”, -v,
or increased, e.g., -vvvv). This verbosity parameter should
not be confused with Docker’s file system mounting flag -v.
Finally, we set PyBIDS’ cache by typing --bids-database-
dir /data/.bids-index/ (note how the directory is now
relative to /data, the mount point inside the container where
the dataset root will be available).

When starting with fMRIPrep, it is common to require
several iterations to test configurations and arguments. If we

(continued)
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are interested in keeping the intermediate results to speed up
later executions of the pipeline, we need also to mount some
(preferably fast) filesystem where these interim results are
stored:

docker run -ti --rm -u $( id -u ):$( id -g ) \

-v /data/ds002790:/data:ro \

-v /data/ds002790/derivatives:/derivatives \

-v /scratch/ds002790/sub-0021:/work \

nipreps/fmriprep:23.2.0 \

/data /derivatives/fmriprep_23.2.0 participant \

--participant-label 0021 \

--omp-nthreads 8 --nprocs 16 \

-vv --bids-database-dir /data/.bids-index/ \

--work /work

where /scratch/ds002790/sub-0021 is a folder under a
fast file system accessible at /scratch, and made accessible
by the container as /work.

3.5 Telemetry Telemetry enables the collection and analysis of data on the execu-
tion of processing pipelines, providing valuable insights into failure
conditions and usage patterns (Figure 5 presents fMRIPrep’s
telemetry). By incorporating telemetry, the NiPreps maintainers

Fig. 5 fMRIPrep is executed an average of 11,200 times a week. By inserting telemetry instrumentation within
fMRIPrep, we collect information to identify failure modes of the software and performance analytics. Over the
past 1.9 years, fMRIPrep averages about 68% success rate
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monitor their workflows’ performance, identify potential bottle-
necks and error modes, and optimize the pipeline accordingly. This
information becomes invaluable in improving the reliability and
efficiency of the pipeline process as it enables a deeper understand-
ing of usage patterns by different users and provides unique insight
into tracking actual software utilization [52]. Software impact
metrics are a challenge to evaluate for open-source projects in
general; however, these metrics are becoming relevant to funding
bodies who value code as a scientific outcome. Initially, we imple-
mented telemetry within fMRIPrep employing Sentry (https://
sentry.io; see Resources). In order to generalize the analytics easily
over the remainder of the NiPreps framework, we then developed
Migas (“breadcrumbs” in Spanish) as an in-house solution for
performance monitoring. Migas comprises a lightweight Python
client that adds the necessary instrumentation to probe the applica-
tion and submits (except when the user opts out by using the
prescribed command line flag) the collected data to an Internet
service running on the cloud.

3.6 Software

Versioning and

Release Cycle

Version control, code quality checking, testing, and continuous
integration Version control and other software engineering best
practices are crucial in achieving reliable and maintainable standar-
dized workflows. Incorporating these practices is an onerous invest-
ment that will prevent scientific projects from incurring
unsustainable technical debt quickly. Version control of scientific
code is fundamental for reproducibility and traceability. By utilizing
version control systems such as Git, researchers can track and
manage changes to the workflow implementation over time (see
Chapter 5 for Git use). It supports the management of different
branches targeting specific features or release maintenance. By
layering services over Git, research code developers can easily
deploy quality checks (e.g., peer-review of code, use of “linters”
to normalize the style of code and maximize collaboration, etc.),
unit testing (at least, of clerical tasks such as filtering the input data
structure, testing the accessibility of data and metadata, etc.), and
continuous integration and continuous delivery (CI/CD). The
NiPreps’ documentation website2 describes these techniques in
further detail. UsingDataLad (see Chapter 2 for a detailed descrip-
tion), NiPreps integrates “benchmarking” data in their CI/CD
builds, automating the process of evaluating the acceptability of
code changes and new features.

Versioned releases One early success driver for fMRIPrep was
adopting a “release early, release often” or “RERO” release cycle,
in which we would roll out new features and bug fixes rapidly
(sometimes several times a week). This allowed fMRIPrep to stress

2 https://www.nipreps.org/
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test the implementation of new features and fixes in a federated
fashion without the maintainers having access to the data. RERO
was also appreciated by users, who identified the fMRIPrep devel-
opers as a responsive and supportive team, increasing the confi-
dence that the tool would add reliability to their neuroimaging
workflow. However, RERO requires that every new release is effec-
tively identified by users, typically with a version label. We initially
adopted semantic versioning [53] to assign these release identifiers,
in which three numbers separated by periods (e.g., 2.1.10) contrib-
ute to the version interpretation. The first number or “major”
differentiates hallmark iterations of the product. A “2.1.10” version
indicates that a 1.x series of versions exists, and the technical gap of
going from 1.x to 2.x is remarkable (e.g., outputs are incompatible,
fundamental new features have been added, etc.). An example of
such a large change was Python’s shift from 2.x into the current 3.x
series. The second number, or “minor”, signals large changes that
are consistent enough to be considered under the same major (e.g.,
from Python 3.10 to 3.11). The last number, or “patch release”,
indicates small changes to address bugs or improve performance in
a limited way. Starting in 2020, fMRIPrep and other NiPreps
adopted a slightly different convention called calendar versioning,3

which is fundamentally similar, but the major version number is
replaced by the year of release. As a result, versions can be easier to
place in the lifecycle of the software (see Fig. 6). For example, the
current fMRIPrep’s last release is 23.2.0.

Fig. 6 Versioning and telemetry allow tracking the adoption of fMRIPrep. Adopting a strict versioning scheme
for release permits monitoring the lifecycle of releases. With the riverplot below, we can identify many users
who keep running the LTS (long-term support) version 20.2. Version 21.0 maintains many users, while later
releases (22.1 and 23.0) progressively seem absorbed by the latest official release 23.1. This riverplot
suggests users employing 21.0 series resist either falling back to the LTS or updating to the latest release

3 https://www.nipreps.org/devs/releases/
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Long-term support programs In addition to assigning meaning-
ful version strings to every release, some of fMRIPrep’s power users
expressed their concerns about our RERO approach in the context
of longitudinal studies where data acquired during lengthy project
spans require consistent processing throughout. As a solution, we
established a “long-term support” (LTS) program4,5 inspired by
the Ubuntu Linux LTS program. Starting with version 20.2.0
(released on September 28, 2020), fMRIPrep 20.2.x is the active
LTS series. LTS involves maintaining the software for a much
longer window (preferably supported by researchers other than
active maintainers and developers of fMRIPrep6), ensuring the
continuity of the results over time, and resolving bugs discovered
as the series are used. fMRIPrep’s LTS has seen seven “patch”
updates; the last release is 20.2.7 on January 24, 2022 (please
note how the major and minor numbers are pinned to the 20.2
series).

3.7 Community

Involvement

Open scientific code is likely to egress the walls of the laboratory or
research infrastructure that conceived it when the original authors
and a community of researchers share the need and an ethos.
Creating a community potentially ensures the project’s longevity
if it successfully engages researchers who follow up on the develop-
ment of the tool and eventually contribute to it. “Contribution”
here takes a broader meaning, as it comprehends not just code but
also participation in discussions, the definition of roadmaps,
providing support, writing documentation, etc. Second, nurturing
a community helps access a more diverse pool of researchers reach-
ing underrepresented and underserved minorities, which in the
long term ensures the project does not decline due to monolithic
thinking. For instance, the lack of researchers outside a given
laboratory or consortium likely results in an inability to adapt to
transformative advances elsewhere in the globe. Establishing stan-
dard procedures to make decisions and to keep communications
fluent is necessary to ensure that the previous dimensions of stan-
dardization operate properly. For example, fMRIPrep and the new-
born NiPreps initiated a process of creating a community around
the framework in 2020. As a result, in April 2023, the NiPreps
Governance (https://github.com/nipreps/GOVERNANCE) was
passed by the community, and in September 2023, the first new
“NiPreps Steering Committee” was selected. This process is not
distinctive of the NiPreps Community, and indeed, our charter
derives from a GitHub resource called “the minimally viable gover-
nance” or MVG.7

4 https://www.nipreps.org/devs/releases/#long-term-support-series
5 https://reproducibility.stanford.edu/fmriprep-lts/
6We thank Prof. Pierre Bellec and Dr. Basile Pinsard (CRIUGM, Psychology, University of Montreal) for the
maintenance of fMRIPrep 20.2.x LTS.
7 https://github.com/github/MVG
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4 Challenges and Outlook

4.1 Challenges and

Their Impact on

Reproducibility

Probably, the number one question by neuroimaging experts that
fMRIPrep elicited in its early days was, “What are the criteria for
choosing one method over the alternatives at any given step?”
Indeed, this query identifies a ubiquitous challenge due to limited
objective evidence to compare the alternatives for each individual
step and further the lack of combinatorial evidence when exploring
the multiverse of tools. fMRIPrep’s choices have often relied on a
combination of empirical findings, theoretical considerations, and
expert opinions. The lack of programmatic, unambiguous, and
comprehensive evidence for each preprocessing step makes the
decision-making process challenging. It requires careful consider-
ation of the trade-offs between different approaches, such as speed
versus accuracy, robustness versus sensitivity, and generalizability
versus specificity. Moreover, even if there was clear evidence to drive
these choices, it is likely that different objective functions will yield
different “best” options. Indeed, we compared several fMRI pre-
processing workflows [54] by implementing them within the Con-
figurable Pipeline for the Analysis of Connectomes (C-PAC; [55]).
Although these implementations did not replicate the exact work-
flows, the results highlighted significant variations across different
preprocessing approaches. While some convergences in functional
connectivity results were observed, the overall variability demon-
strated the challenges of obtaining consistent outcomes across
different implementations.

Relatedly, the development of fMRIPrep has often generated
discussions about the balance between enabling many options for
the user and how that extra analytical flexibility may undermine the
reproducibility of the analyses. Standardization removes a research-
er’s degrees of freedom by making choices (e.g., selecting a brain
extraction algorithm that fails in one image per million but is less
accurate than an alternative approach with a failure rate of ten
images per million and extremely precise otherwise), and by adding
friction points (e.g., conversion into BIDS) that require the
researcher to be aware of, and explicit about, all the experimental
details.

Since analytical variability is only one factor in the overall
reliability, it is critical to understand and account for the variability
introduced by each specific step in the preprocessing pipeline. In
collaboration with the CRIUGM team at the University of Mon-
treal, we tested the reliability of fMRIPrep by introducing small
random numerical variabilities at some anatomical preprocessing
steps with libmath [56]. This approach allowed for the assessment
of how uncertainties propagate throughout the pipeline. The paper
proposed a method to identify large discontinuities between differ-
ent versions in the development cycle. Indeed we identified
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implementation changes between two consecutive “patch” releases
(20.2.4 to 20.2.5) that introduced large changes—hence violating
the principle that patch version increments should be backward
compatible. Therefore, the approach provides valuable insights
into the stability and reproducibility of the pipeline over different
versions, aiding in detecting potential sources of variability (see
Fig. 7 in ref. [56]).

Establishing QC criteria with reference to the specific applica-
tion requires the definition standards such as quality metrics appli-
cable to pipeline outcomes. For example, in Fig. 3A of ref. [24], we
compare the outputs fMRIPrep and FSL FEAT in terms of data
smoothness. Smoothness is likely a quality metric of interest to
high-resolution BOLD data acquired with 7 Tesla devices, as they
often showcase excessive smoothing after processing due to, e.g.,
multiple resamplings.

Further challenges relate to resource utilization and their opti-
mization. Optimizing resource utilization for specific solutions is
markedly easier than with standardized alternatives. As a quick
example, while PyBIDS takes a few seconds to index a BIDS direc-
tory for a small-sized dataset (15 subjects including one session
each with minimal anatomical data and some diffusion or func-
tional MRI), it may take one hour on the same computer for a
dataset of 1500 subjects and similar imaging contents per subject.
Further, a custom workflow developed for a specific sample of
100 neurotypical subjects of a narrow age range, collected on a
single scanner and with a single imaging protocol, will be uniform
in imaging parameters (e.g., size, resolution, contrast, artifacts,
etc.). Therefore, all subjects will have similar demands from the
compute resource regarding memory. However, anticipating mem-
ory requirements for an equivalent standard workflow that is
expected to perform properly on diverse samples in terms of both
phenotypes and imaging parameters is challenging, as images may
come in many different sizes (e.g., some have very large acquisition
matrices) and other fundamental properties (e.g.,
anisotropic vs. isotropic voxels, healthy vs. lesioned brains, etc.).
Resource utilization challenges are further constrained by the need
for and responsibility of reducing the carbon footprint of executing
these pipelines [57].

4.2 The Need for

Openly Available and

Reusable Data

The availability of diverse fMRI data, accessible under FAIR prin-
ciples [49] and readily reusable thanks to BIDS, was critical to
developing fMRIPrep and MRIQC. To develop fMRIPrep, we
leveraged a long list of datasets available at the time through Open-
fMRI [58] and OpenNeuro [22]. In the case of MRIQC, we
employed two specific datasets: ABIDE [59] and the Consortium
for Neuropsychiatric Phenomics dataset [60]. Open data will
remain essential to any methodological development endeavor to
address the question, “Does this software work on a substantial
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number of diverse studies?” In [24], we visually assessed perfor-
mance on 54 datasets using the standard reports. Further, new
datasets tailored to methodological development, such as our
“Human Connectome Phantom” (HCPh; [34]), will be necessary
to face the need to explore the multiverse of methodological
choices. More importantly, open data will be necessary to face the
new challenges derived from adopting artificial intelligence (Sub-
heading 4.3). While deep learning algorithms often exhibit great
performance, they largely operate as “opaque boxes”, which
impedes checking how inference was made. This lack of interpret-
ability limits our understanding of the underlying factors driving
the model’s outputs. Open data is fundamental to validate findings
and compare results across different datasets.

4.3 Future Directions The advent of artificial intelligence (AI) and deep learning The
introduction of emerging deep learning models into standardized
processing pipelines faces friction, as the “classical” computer
vision techniques have been more thoroughly tested and have
engendered trust in their performance. Conversely, the complexity
of deep learning models raises concerns about transparency and
interpretability. Nonetheless, deep-learning applications have
demonstrated great reliability on diverse data and remarkably better
performance, drastically reducing inference times while improving
robustness. One example of such a transition currently being tested
within NiPreps is SynthStrip [61], a multi-modal human brain
extraction tool. The FreeSurfer team is at the forefront of lever-
aging deep learning in the processing pipeline and has introduced a
range of relevant tools, including SynthStrip, SynthSeg [62], or
SynthSR [63]. These particular tools have the common denomina-
tor of being designed to achieve great reliability independently of
the image modality, a requirement perfectly aligned with the cross-
modality standardization goals of NiPreps.

Fully differentiable pipelines We have also demonstrated the
potential of a fully differentiable software stack in the domain of
functional connectomics [64]. We argue that differentiable pro-
gramming does not resolve the problem of workflow design but
rather is a tool to free workflow design from the analytical choices
and convert it in a hyperparameter search process. Hence, the
challenge of methodological choices is resolved by data-driven
optimization. Ciric’s hypercoil software (https://hypercoil.
github.io) is based on PyTorch and enables end-to-end differentia-
bility throughout the entire preprocessing pipeline. In connection
with the challenge of making decisions about the particular imple-
mentation of each processing step, a fully differentiable pipeline
resolves the problem in a data-driven way with an objective func-
tion built in. As a result, the user is, in principle, not offered knobs
(degrees of freedom) to tune the processing.
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AI-assisted code writing As Poldrack and colleagues contend
[65], code assisting is one of the tasks where large language models
particularly shine. Even if the aid is limited to “only revising” a
given code, they encountered substantial improvement in the code
by several metrics. However, they found some limitations in gen-
erating tests, suggesting that humans are still necessary to ensure
the validity and accuracy of the results. Nonetheless, their findings
point to AI as the key to multiplying the productivity of humans by
perfecting many of the “almost-clerical” tasks that standardization
requires.

5 Conclusion

This chapter discusses the rationale, benefits, and challenges of
standardizing preprocessing in neuroimaging. We have presented
NiPreps, a modular and adaptable workflow framework that aims to
provide reliable and reproducible preprocessing solutions for dif-
ferent modalities, populations, and species. We have also described
some of the best practices and tools NiPreps employs to ensure the
preprocessing results’ quality, consistency, and transparency, such as
BIDS, TemplateFlow, NiReports, Migas, containerization, and ver-
sion control. We have highlighted some of the current and future
directions of NiPreps, such as incorporating deep learning models,
enabling end-to-end differentiability, and leveraging AI-assisted
code writing. We have also emphasized the importance of open
and reusable data for validating and comparing different preproces-
sing approaches and enhancing the interpretability and generaliz-
ability of the outcomes.

We hope that this chapter has provided a comprehensive over-
view of the state of the art and challenges of standardizing prepro-
cessing in neuroimaging. We believe NiPreps offers a valuable
resource for researchers seeking to optimize their preprocessing
pipelines and obtain high-quality and robust results. We invite the
readers to join the NiPreps community and contribute to the
development and improvement of the framework. By adopting
and promoting standardized preprocessing practices, we can
advance the field of neuroimaging and foster a more collaborative
and reproducible scientific culture.
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Chapter 9

Structural MRI and Computational Anatomy

Felix Hoffstaedter, Georgios Antonopoulos, and Christian Gaser

Abstract

Structural magnetic resonance imaging can yield highly detailed images of the human brain. In order to
quantify the variability in shape and size across different brains, methods developed in the field of
computational anatomy have proved exceptionally useful. For example, voxel-based morphometry is a
popular method that involves segmenting magnetic resonance imaging scans into gray matter, white matter,
and cerebrospinal fluid, and transforming individual brain shapes to a standard template space for compar-
ative analysis. However, computational anatomy—when applied to brain data at scale—can be complex and
computationally expensive. Furthermore, there are many possible pipelines that can be applied to structural
brain data and for this reason it is important to follow best practices for reproducible neuroimaging
analyses. This chapter demonstrates reproducible processing using the CAT12 (Computational Anatomy
Toolbox) extension to SPM12 that focuses on voxel- and region-based morphometry. Through worked
examples, we demonstrate three approaches to reproducible image analysis: “minimal”, “intermediate”,
and a “comprehensive” protocol using the FAIRly big workflow based on DataLad. The comprehensive
approach automatically facilitates parallel execution of whole dataset processing using container technology
and also produces re-executable run records of each processing step to enable fully automatic
reproducibility.

Key words Structural neuroimaging, Computational anatomy, Voxel-based morphometry, Repro-
ducibility, FAIRly big workflow

1 Introduction

Since the growing availability of magnetic resonance imaging
(MRI) machines in research facilities and hospitals more than two
decades ago, robust noninvasive analysis of brain anatomy has
become common practice in neuroscience research. Two funda-
mental use cases can be distinguished. First, anatomical brain
mapping in relation to basic phenotypes, such as age and sex/gen-
der. Second, the investigations of cognitive functioning and clinical
conditions, which are associated with variations in brain morphol-
ogy. Voxel-based morphometry (VBM) is one of the first and most
commonly used method for quantification of brain tissue types
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(specifically gray matter volume; GMV) in humans [1] and
animals [2].

VBM is based on the identification of specific brain tissue
types—commonly gray and white matter (GM, WM) as well as
CerebroSpinal Fluid (CSF), during a process called segmentation.
In whole-brain MRI scans, tissue classification is performed by
expressing every point/voxel in the brain as a probability or volume
fraction of GM, WM, and CSF. Subsequently, individual brain
shapes are transformed to match a standard template, often in
MNI space [3], allowing a point-to-point comparison of
corresponding regions across different brains. Furthermore, the
local amount of deformation in every voxel—expressed by the
Jacobian determinant—is utilized to modulate tissue probability/
fraction to represent a proxy for local GMV. General comparability
over studies is made possible by using the MNI space as a standard
coordinate system combined with the use of common brain tem-
plates and brain parcellations. There are several widely used and
well-tested publicly available software packages that, in principle,
allow researchers of different experience levels to carry out struc-
tural MRI analysis without first becoming experts in programming
or brain anatomy.

Recent studies have shown marked differences among VBM
pipelines [4, 5]; however, robust effects of age or sex were detected
by all evaluated software solutions. Similarly, coordinate-based
meta-analysis of VBM studies each using different analysis software
has shown consistent brain changes associated with neurodegener-
ative diseases. For example, a neuroimaging meta-analysis on fron-
totemporal dementia found consistent effects of neural atrophy
over studies using different analysis software and brain templates
[6]. Neuroscience, along with other natural sciences such as biol-
ogy and psychology, faces the challenge of poor replicability in
many studies due to small sample sizes and analytic flexibility (see
also Chapter 4 for best practices in reproducible neuroimaging).
Indeed, it has been shown that VBM analyses on moderately sized
samples (n ~ 300) tend to overestimate effect sizes and significant
effects are often not replicable [7]. Together with other evidence,
this makes a strong case for conducting large-scale replication
analyses even for well-known effects such as brain maturation [8],
asymmetry [9] and aging [10].

In this chapter, we demonstrate the automatic structural pro-
cessing of MRI images, using the AOMIC datasets [11] as an
example. We describe a fully reproducible workflow [12] based on
DataLad [13]. DataLad (see Chapter 2) is a powerful, open-source
research data management software based on git (git-scm.com) and
git-annex (git-annex.branchable.com); see also Chapter 5 (Garcia &
Kelly) for git use. We utilize the robust and easy-to-use CAT12
(Computational Anatomy Toolbox, https://neuro-jena.github.
io/cat) extension to SPM12 (www.fil.ion.ucl.ac.uk/spm) in
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Matlab, also available without license costs as a standalone version
(https://neuro-jena.github.io/enigma-cat12/#standalone) or as
a Singularity container (https://github.com/inm7-sysmed/
ENIGMA-cat12-container). CAT12 covers diverse morphometric
analysis methods such as VBM, surface-based morphometry
(SBM), deformation-based morphometry (DBM), and label- or
region-based morphometry (RBM). For a brief description of
CAT12, see https://neuro-jena.github.io/cat12-help/#basic_
vbm); for a detailed description of CAT12, see https://neuro-jena.
github.io/cat12-help/#process_details. As the focus of this chap-
ter is the reproducible processing of large cohorts, the analysis is
limited to showcases of preprocessing for VBM and RBM analysis.

2 Methods Overview

2.1 Starting Point of

the Data
Note
CAT12 will produce many different output images (e.g., local
tissue estimates at voxel level of 1.5 mm3 by default), as well as
atlas based regional volume estimates. Users should be aware
that many VBM pipelines—including CAT12—can output
files into one or multiple folders, which creates complexity
for larger datasets.

The starting point for volumetric analyses of brain tissues typically
uses a T1-weighted contrast MRI sequence, which highlights cor-
tical gray and white matter. Additionally, the T2-weighted contrast
is essential for brain lesion mapping in clinical analysis. Even in
smaller samples (n < 50 subjects), disease-related effects (e.g.,
neurodegeneration) can be reliably detected if the effect size is
large. However, in order to improve generalization, larger samples
(n> 300) should be used [7]. As described in other chapters in this
book, the importance of standardized data structures and formats
should not be underestimated. It is strongly recommended to
adhere to the BIDS standard for input data and carefully plan the
output structure especially for very large datasets (see Chapter 4).

2.2 Data Storage and

Computing

CAT12 is based on Statistical Parametric Mapping (SPM) software,
originally running on Matlab, however there is an Octave (7.3)
version and a compiled standalone version available which runs
without a Matlab License via Matlab Runtime (MCR, Matlab
Compiler Runtime, see Resources). To enhance reproducibility,
we also provide a recipe for fully automatic creation of a Singularity
container (https://apptainer.org/; see Glossary). As MCR cannot
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be publicly shared, CAT12 Singularity containers are privately
available upon reasonable and unreasonable requests. We provide
example setups for Linux and macOS without container environ-
ments for local data processing, as well as a Linux-based setup
deploying Singularity with template scripts for the optional use of
a job scheduler. CAT12 can run even on older laptops with four
CPUs and 8 GB RAM, requiring up to 20 min of compute time per
T1-weighted image, including cortical surface extraction. The ideal
compute environment for full scalability is a compute cluster run-
ning a flavor of Linux providing recent versions of DataLad
(≥0.17), Singularity (≥2.5) and a workload scheduling system like
HTCondor or SLURM. Regarding data storage, the amount of
data generated during CAT12 preprocessing varies based on the
input data. For instance, with a standard T1-weighted MRI scan of
6.5 MB, the output generated by CAT12 will be approximately
60 MB per scan.

2.3 Coding

Knowledge

The example setup in this chapter should be executable for begin-
ners with basic command line experience given the correct platform
setup (see above).

2.4 Computational

Expense

Standard preprocessing of data from 100 subjects (×0.3h) takes
30 core hours and parallelized on a standard desktop computer
with four cores, will take only 7.5 h. Parallelization (seeGlossary) of
individual jobs running independently at the same time can be done
directly by CAT12 standalone or automatically by the example
workflow locally using GNU-parallel or a given scheduler software
on a compute cluster.

3 Worked Example

The following demonstration of structural image analysis starts
with a simple approach to reproducible image processing, using a
two-step protocol to improve result tracking and automatic process
documentation. Initially, DataLad is used as a download tool to
provide access to the input data and analysis code (as described in
Chapter 2). Secondly, the results of processing are periodically
captured by saving snapshots of the outcome of each processing
step. We also described a way to automatically track the whole
image analysis pipeline by using the “FAIRly big workflow” [12].

As with most standard data processing workflows, we need:

(A) Input Data

(B) Processing Software/ Pipeline

(C) Code to execute B on A
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3.1. A minimal approach to reproducible image analysis consists in
(A) providing the Input Data, here MR images and added
metadata about how they were acquired (B) documenting
the software versions used in the Processing Pipeline or pro-
vide precise instructions to build the used software environ-
ment (C) best practice is to share the analysis Code as a Git
repository or as download on a public hosting site like
Zenodo or GitHub, together with Results Images and Statis-
tics (see Chapter 4). The following commands work on any
Linux OS and macOS system.

With DataLad installed, Users are able to access the input
data (A)—here the AOMIC-PIOP2 dataset—by simply clon-
ing it from OpenNeuro to their compute environment using
one command. It is recommended to clone the data into a
dedicated project folder.

datalad clone https://github.com/OpenNeuroDatasets/ds002790.

git AOMIC-PIOP2

The dataset comprises the raw data in BIDS format and many
processed derivatives, but one should be aware that only the meta-
data is directly available via this clone. The user will also have to
download the file content for the actual CAT12 processing, using
DataLad commands. The following lines of code describe how to
download one subject’s T1w data, then copy it to a CAT12_der-
ivatives folder for processing and finally drop the file content from
the input dataset after use to minimize the storage footprint.

# download the data

datalad get -d AOMIC-PIOP2 AOMIC-PIOP2/sub-0111/anat/sub-

0111_T1w.nii.gz

# create an output directory and copy the T1w file there

mkdir -p CAT12_derivatives/TEST_sub-0111

cp AOMIC-PIOP2/sub-0111/anat/sub-0111_T1w.nii.gz CAT12_deri-

vatives/TEST_sub-0111/

# delete/drop the local version of the file as we can get it

back anytime

datalad drop --what filecontent --reckless kill -d AOMIC-

PIOP2 AOMIC-PIOP2/sub-0111

Now, the software environment is setup (B) for CAT12 stan-
dalone with Matlab Compiler Runtime (MCR). CAT12 (e.g.,
CAT12.8.1_r2042_R2017b_MCR) is downloaded as described
here and unpacked to the working directory. Then the matching
MCR (version R2017b 9.3) is downloaded and installed from here.
The software setup should be tested by starting the now available
standalone version of SPM12 including CAT12. In the CAT12
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folder, the “run_spm12.sh” script runs by adding the full path to
the MCR installation as argument. With the following command,
the standard SPM12 graphical user interface is initiated and under
the Toolbox button “cat12” will be started already in expert mode,
again without a full Matlab license. The command needs the full
path to MCR, but in reproducible scripts it is generally recom-
mended to use relative paths from the dataset or code folder instead
of full paths as the latter is machine- and user-specific.

# start SPM12 graphical user interface in PET/VBM mode

./run_spm12.sh </FULLPATH/MCR/v93>

A test subject can reproducibly be run via the command line
interface, using the CAT12 standalone syntax, which is well
described on the CAT12 website. The location of the MCR setup
and the CAT12 version of choice can be provided via environmental
variables with full paths as follows:

# provide full paths to pipeline setup and make it available

MCRROOT=<//FULLPATH/MCR/v93>

SPMROOT=<//FULLPATH/CAT12.8.1_r2042_R2017b_MCR_Linux>

export MCRROOT SPMROOT

Now, the first test processing is run by executing the cat_stan-
dalone.sh script together with a batch file (-b) that describes the
settings of how the target T1w scan will be segmented:

# start CAT12 standalone with simple segment batch for example

subject

./CAT12.8.1_r2042_R2017b_MCR_Linux/standalone/cat_standa-

lone.sh \

-b ./CAT12.8.1_r2042_R2017b_MCR_Linux/standalone/cat_standa-

lone_segment.m \

CAT12_derivatives/TEST_sub-0111/sub-0111_T1w.nii.gz

CAT12 segmentation takes <20 min per subject and produces
~60 MB of data in the following output structure:

CAT12_derivatives

└── TEST_sub-0111

├── label

│ ├── catROI_sub-0111_T1w.mat

│ └── catROI_sub-0111_T1w.xml

├── mri

│ ├── mwp1sub-0111_T1w.nii

│ ├── mwp2sub-0111_T1w.nii

│ ├── p0sub-0111_T1w.nii

│ ├── wmsub-0111_T1w.nii
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│ └── y_sub-0111_T1w.nii

├── report

│ ├── catlog_sub-0111_T1w.txt

│ ├── catreportj_sub-0111_T1w.jpg

│ ├── catreport_sub-0111_T1w.pdf

│ ├── cat_sub-0111_T1w.mat

│ └── cat_sub-0111_T1w.xml

└── sub-0111_T1w.nii.gz

The report folder contains full processing logs in different file
formats and a pdf/jpg report sheet for quick quality assessment.
For VBM analyses in the mri folder, modulated gray (mwp1) and
white matter (mwp2) images are provided in template space. Also
available are a partial volume image (p0) in native subject space, a
denoised normalized brain image (wm) in template space and the
transformation/warp field (y_) from native to template space.
Regional volume estimates of several brain parcellations are found
in the label folder.

For convenience, bootstrap scripts are provided to be cloned
from here for Linux (and macOS) that will do all of the above
reproducibly from scratch. The following commands will download
those to our workspace directory and run them.

# clone Computational Anatomy Tutorial from OSF

datalad clone https://osf.io/ydxw7/ ca_tutorial

The script ca_minimal.sh will set up the environment in the
current working directory and run the test subject as described. It is
recommended to have a close look at the script to follow what is
happening.

./ca_tutorial/ca_minimal.sh

After carefully checking the output of the test subject, paralle-
lization can then be tested by executing the prepared script, which
will process nine subjects with three in parallel in the background.

./run_3x3catjobs.sh

3.2. An intermediate approach to reproducible image analysis is to
share not only the list of ingredients but access to (A) Input
Data, (B) Processing Pipeline setup, and (C) Code. An
emerging standard is the publication of intermediate proces-
sing results for re-execution of statistical analysis and figure
creation, which is particularly useful in genetic or big data
modeling analysis [14]. Here, scripts for automatic execution
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of all processing steps are provided. The main difference to
the minimal approach consists in the creation of a DataLad
dataset to capture the ingredients A/B/C and intermediate
results, which is extensively and clearly described in the
DataLad handbook. DataLad uses Git under the hood (see
Chapter 5) to track not only code but also arbitrarily sized
data providing a re-executable framework to reproduce the
exact succession of computations captured in the git history.
To avoid redundancies in this tutorial, only additional com-
mands are documented. Of note, the MCR setup cannot be
shared due to the license conditions and must be installed
individually, so it is not part of the DataLad dataset.

# define CAT12 version

CAT12_version="CAT12.8.1_r2042_R2017b_MCR_Linux"

# create Datalad yoda dataset for intermediate cat12 pipeline

and enter

datalad create -c yoda intermed_cat12

cd intermed_cat12

# add input dataset as subdataset (!) from OpenNeuro AOMIC-

PIOP2

datalad clone -d . https://github.com/OpenNeuroDatasets/

ds002790.git inputs/AOMIC-PIOP2

# setup CAT12 standalone pipeline in code/ folder

wget "https://www.neuro.uni-jena.de/cat12/${CAT12_version}.

zip"

unzip ${CAT12_version}.zip -d code

rm -f ${CAT12_version}.zip

# register the CAT12.8.1 standalone pipeline in the dataset

datalad save -m "add CAT12.8.1 r2042 pipeline with git" code/

After providing the location of both CAT12 and MCR setup
and preparing the T1w image in a derivatives folder, execute the
example subject and capture result with DataLad:

# provide full paths to pipeline setup and make it available

MCRROOT=<//FULLPATH/MCR/v93>

SPMROOT=<//FULLPATH/CAT12.8.1_r2042_R2017b_MCR_Linux>

export MCRROOT SPMROOT

# download the data

datalad get inputs/AOMIC-PIOP2/sub-0111/anat/sub-0111_T1w.

nii.gz

# create an outputs directory and copy the T1w file there

mkdir -p CAT12_derivatives/TEST_sub-0111

cp inputs/AOMIC-PIOP2/sub-0111/anat/*T1w.nii.gz CAT12_deri-
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vatives/TEST_sub-0111/

# delete/drop the local version of the file as we can get it

back anytime

datalad drop --what filecontent --reckless kill inputs/AOMIC-

PIOP2/sub-0111

# execute CAT12 standalone with MCR

./code/${CAT12_version}/standalone/cat_standalone.sh \

-b ./code/${CAT12_version}/standalone/cat_standalone_seg-

ment.m \

-a "matlabbatch{1}.spm.tools.cat.estwrite.output.surface =

0" \

CAT12_derivatives/TEST_sub-0111/sub-0111_T1w.nii.gz

# track CAT12 derivatives and standalone setup in datalad

dataset

datalad save -m "save test subject & standalone setup"

CAT12_derivatives code

Now, the dataset contains all necessary parts ABC (and MCR
outside) to conduct reproducible, full-scale VBM processing of the
AOMIC PIOP2 dataset and registering all results. CAT12 also
includes a feature to locally parallelize processing over subjects,
wrapping the former command in another script. All T1w images
have to be prepared and copied into the CAT12_derivatives folder
before running CAT12:

# download first 9 subjects to process 3x in parallel

(sub-0001..9; 3x3jobs)

datalad get inputs/AOMIC-PIOP2/sub-000*/anat/*T1w.nii.gz

# copy T1w images of 9 subjects to CAT_derivatives folder

for sub in inputs/AOMIC-PIOP2/sub-000*; do

sub=$(basename $sub); mkdir -p CAT12_derivatives/${sub};

cp inputs/AOMIC-PIOP2/${sub}/anat/*T1w.nii.gz CAT12_deriva-

tives/${sub};

done

# run CAT12 3x in parallel (-p 3) writing logs to folder (-l)

./code/${CAT12_version}/standalone/cat_parallelize.sh -p 3 -l

. -c "

./code/${CAT12_version}/standalone/cat_standalone.sh \

-b ./code/${CAT12_version}/standalone/cat_standalone_seg-

ment.m" \

CAT12_derivatives/sub-*/*T1w.nii.gz

# track CAT12 derivatives in datalad dataset after processing

datalad save -m "save CAT12 derivatives for 9 subjects"

CAT12_derivatives
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This whole procedure is written and described in the following
bootstrap script.

./ca_tutorial/ca_intermed.sh

After carefully checking the output of the test subject, paralle-
lization can be tested be executing the prepared script from within
the dataset, which will process nine subjects with three in parallel in
the background and capture the outcome in the DataLad dataset.

cd intermed_cat12

./code/run_3x3catjobs.sh

3.3. Finally, a comprehensive approach to reproducible image anal-
ysis is the FAIRly big workflow [11], which consists of an
automatic setup procedure via a bootstrap script, which tracks
all ingredients ABC as well as the results of each processing
step. Additionally, the workflow contains automatic means
for parallel execution of whole dataset processing using con-
tainer technology and produces re-executable run records of
each processing step to enable fully automatic reproducibil-
ity. Of note, for building the Singularity container sudo rights
are needed. For this more complex workflow the following
additional dependencies are needed:

GNU-parallel

datalad-container extension: pip install datalad-container

Singularity container

To properly introduce the workflow, a few essential concepts
are presented below, which are directly taken from the original
publication: “FAIRly big: A framework for computationally repro-
ducible processing of large-scale data” [12], with permission of the
authors.

DataLad Dataset
DataLad’s core data structure is the dataset. On a technical level, it
is a joint Git/git-annex (REF) repository. Conceptually, it is an
overlay data structure that is particularly suited to address data
integration challenges. It enables users to version control files of
any size or type, track and transport files in a distributed network of
dataset clones, as well as record and re-execute actionable process
provenance on the genesis of file content. DataLad datasets have
the ability to retrieve or drop registered, remote file content on
demand with single file granularity. This is possible based on a lean
record of file identity and file availability (via checksum and URLs)
irrespective of the true file size. A user does not need to be aware of
the actual download source of a file’s content, as precise file identity
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is automatically verified regardless of a particular retrieval method,
and the specification of redundant sources is supported. These
technical features enable the implementation of infrastructure-
agnostic data retrieval and deposition logic in user code.

A Clone (Git concept) is a copy of a DataLad dataset that is linked
to its origin dataset and its history. The clones are lightweight and
can typically be obtained within seconds, as they are primarily
comprised of file identity and availability records. DataLad enables
synchronization of content between clones and, hence, the propa-
gation of updates.

A Branch (Git concept) is an independent segment of a DataLad
dataset’s history. It enables the separation of parallel developments
based on a common starting point. Branches can encompass arbi-
trarily different modifications of a dataset. In a typical collaborative
development or parallel processing routine, changes are initially
introduced in branches and are later consolidated by merging
them into a mainline branch.

Nesting A DataLad dataset can also contain other DataLad data-
sets. Analog to file content, this linkage is implemented using a
lightweight dataset identity and availability record (based on Git’s
submodules). This nesting enables flexible (re-)use of datasets in a
different context. For example, it allows for the composition of a
project directory from precisely versioned, modular units that
unambiguously link all inputs of a project to its outcomes. Nesting
offers actionable dataset linkage at virtually no disk space cost, while
providing the same on-demand retrieval and deposition conve-
nience as for file content operations because DataLad can work
with a hierarchy of nested datasets as if they are a single monolithic
repository. When a DataLad dataset B is nested inside DataLad
dataset A, we also refer to A as the superdataset and to B as a
subdataset. A superdataset can link any number of subdatasets,
and datasets can simultaneously be both super- and subdataset.

RIA Store A file system-based store for DataLad datasets with
minimal server-side software requirements (in particular no Data-
Lad, no git-annex, and Git only for specific optional features)
(REF). These stores offer inode minimization (using indexed
7-zip archives). A dataset of arbitrary size and number of files can
be hosted while consuming fewer than 25 inodes, while neverthe-
less offering random read access to individual files at a low and
constant latency independent of the actual archive size. Combined
with optional file content encryption and compression, RIA
(“Remote Indexed Archive”) stores are particularly suited for
staging large-scale, sensitive data to process on HPC resources.

The following script automatically sets up the FAIRly Big
workflow for fully reproducible processing of large-scale structural
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MRI data tracking results and execution with DataLad enabling
automatic re-execution of CAT12 processing with “datalad run”:

./ca_tutorial/ca_FAIRlyBig.sh

The main differences to the other approaches in 3.1 and 3.2 are
the use of a Singularity container as pipeline and directly tracking
each compute job with DataLad in separate ephemeral clones of the
entire workflow setup. This is made possible by pushing the work-
flow setup as DataLad dataset to local repositories called RIA store
(see Above). The workflow dataset contains all Code (C) and refer-
ences both the Input Data (A) and the containerized Processing
Pipeline (B) as nested subdatasets ready to be cloned. Two identical
repositories are created for the workflow dataset, with an inputRIA
store to clone from and an output RIA store to push processing
results to. For each compute job, an independent clone of the
workflow from the input RIA is created in a separate, temporal
location (e.g., tmp/), where the compute job automatically down-
loads the specific input data needed, and runs CAT12 in an individ-
ual container instance. Processing results are tracked in a
job-specific branch and pushed to the output RIA before the
temporal clone is deleted, which makes sure that no partial results
will be saved in the final DataLad dataset. This full separation of
individual compute jobs enables a full parallelization of the work-
flow, while tracking input, pipeline, code and all results in one place.
Template submission scripts have been built for HTCondor and
SLURM job scheduling systems, which can be tailored to any
compute cluster setup available to the User. With the setup of the
AOMIC-PIOP2_cna_cat12.8.1 analysis dataset, instructions for
running a test subject are printed in the terminal. Here we use the
ENIGMACAT12 processing batch, which conducts more compre-
hensive data processing and produces more output.

# enter into fully setup Datalad dataset:

cd AOMIC-PIOP2_cna_cat12.8.1

# run test subject in the FAIRly Big workflow

./code/process.sub sub-0222

After successful processing, the results dataset has to be con-
solidated by running the available results.merger script, which
merges all individual job branches into the main branch by
performing an octopus merge. The FAIRly big workflow saves/
pushed all processing output directly in the output RIA, of which
the dataset is a mere clone. The consolidation script updates the
local dataset by pulling the full git history from the output RIA,
collecting all subjects and checking their file availability in the RIA.

./code/results.merger
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This consolidation step reveals that “No known copies exist” of
a few files like denoised input images and in particular of the spatial
transformations from subject to template space (y_*) and the
inverse (iy_*). This was an explicit decision setting up the workflow
for a large dataset, as those files are comparably big in size and rarely
used, as all images for standard analyses are available in template
space. CAT12 processing was tracked with DataLad containers-run
including a comprehensive run record in the git history necessary
for datalad rerun to fully automatically re-execute the workflow
creating the missing files. The following command will rerun the
last subject/job and make all files available:

# rerun CAT12 job by using the latest commit hash

datalad rerun $(git rev-parse HEAD)

Data of the test subject should be inspected by downloading
the data from the output RIA:

datalad get sub-0222

The CAT12 ENIGMA pipeline creates many more files, which
are documented in the comprehensive CAT12-help including sur-
face projection and cortical thickness estimations of different sur-
face atlases.

When the results of the test subject are satisfactory, again nine
subjects with three in parallel can be started in the background
using the following command.

parallel -j3 ./code/process.sub sub-000{} ::: {1..9}

The whole dataset can be submitted for local processing with
four subjects in parallel (-j4) using GNU-parallel, which takes care
that of all 200 subjects only four will run at any given moment.

parallel -j4 ./code/process.sub {/} ::: inputs/AOMIC-PIOP2/

sub*

The output RIA is locally hosted in this example but can also be
stored anywhere on a file system or the web using OSF or other
web hosting services. In this example the RIA looks as follows:

dataladstore

├── 954

│ └── 6b411-702b-4839-8773-50101d8f2cd9

├── alias

│ ├── AOMIC-PIOP2_ca_cat12.8.1 -> ../954/6b411-702b-4839-

8773-50101d8f2cd9

│ └── cat12.8_container -> ../e64/188f5-1330-4729-90a6-

7dd4ba71d529
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├── e64

│ └── 188f5-1330-4729-90a6-7dd4ba71d529

├── error_logs

├── inputstore

│ ├── 954

│ ├── alias

│ ├── error_logs

│ └── ria-layout-version

└── ria-layout-version

The datasets can be cloned from RIA by using the alias in the
following commands:

datalad clone “ria+file://<FULLPATH>/dataladstore#~AOMIC-

PIOP2_ca_cat12.8.1”

datalad clone “ria+file://<FULLPATH>/dataladstore#~cat12.8_-

container”

To push the whole dataset to OSF the datalad-osf extension is
needed and after setting up the credentials any dataset can be
published on OSF with the data present in the local clone:

datalad create-sibling-osf --title AOMIC-PIOP2_ca_cat12.8.1

-s osf \

--mode export --category data --tag reproducibility --public

datalad get .

datalad push --to osf

For comparison the fully processed dataset can be cloned using
the following command:

datalad clone https://osf.io/9gtsf/ AOMIC-PIOP2_ca_cat12.8.1

Statistical data analyses are described well in the CAT12 help
including detailed instructions about how to use the CAT12 graph-
ical user interface. For very large datasets, the amount of RAM and
compute time needed for estimating large GLMs can increase
immensely, but the model setup is largely identical to smaller
dataset.

4 Conclusion

Here, we have demonstrated how to use CAT12 to produce repro-
ducible computational anatomy pipelines. We have shown how
analyses can be scaled up to, in theory, analyze thousands of MRI
images in parallel while keeping tracking of input files and main-
taining the pipeline, code and all results in one place.
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Boardman JP, Borzage M, Bosch-Bayard JF,
Bourke N, Calhoun VD, Chakravarty MM,
Chen C, Chertavian C, Chetelat G, Chong
YS, Cole JH, Corvin A, Costantino M,
Courchesne E, Crivello F, Cropley VL,
Crosbie J, Crossley N, Delarue M,
Delorme R, Desrivieres S, Devenyi GA, Di
Biase MA, Dolan R, Donald KA, Donohoe G,
Dunlop K, Edwards AD, Elison JT, Ellis CT,
Elman JA, Eyler L, Fair DA, Feczko E, Fletcher
PC, Fonagy P, Franz CE, Galan-Garcia L,
Gholipour A, Giedd J, Gilmore JH, Glahn
DC, Goodyer IM, Grant PE, Groenewold
NA, Gunning FM, Gur RE, Gur RC, Hammill
CF, Hansson O, Hedden T, Heinz A, Henson
RN, Heuer K, Hoare J, Holla B, Holmes AJ,
Holt R, Huang H, Im K, Ipser J, Jack CR,

Structural MRI and Computational Anatomy 195

https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1016/j.ymeth.2009.10.003
https://doi.org/10.1016/j.ymeth.2009.10.003
https://doi.org/10.1016/j.neuroimage.2023.120292
https://doi.org/10.1016/j.neuroimage.2023.120292
https://doi.org/10.1038/s42003-022-03880-1
https://doi.org/10.1038/s42003-022-03880-1
https://doi.org/10.1002/dad2.12318
https://doi.org/10.1002/dad2.12318
https://doi.org/10.7554/eLife.43464
https://doi.org/10.7554/eLife.43464
https://doi.org/10.1002/hbm.20218
https://doi.org/10.1002/hbm.20218
https://doi.org/10.1016/j.neuroimage.2004.01.032
https://doi.org/10.1016/j.neuroimage.2004.01.032
https://doi.org/10.1006/nimg.2001.0786
https://doi.org/10.1006/nimg.2001.0786
https://doi.org/10.1038/s41597-021-00870-6
https://doi.org/10.1038/s41597-021-00870-6
https://doi.org/10.1038/s41597-022-01163-2
https://doi.org/10.1038/s41597-022-01163-2
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262


Jackowski AP, Jia T, Johnson KA, Jones PB,
Jones DT, Kahn RS, Karlsson H, Karlsson L,
Kawashima R, Kelley EA, Kern S, Kim KW,
Kitzbichler MG, Kremen WS, Lalonde F,
Landeau B, Lee S, Lerch J, Lewis JD, Li J,
Liao W, Liston C, Lombardo MV, Lv J,
Lynch C, Mallard TT, Marcelis M, Markello
RD, Mathias SR, Mazoyer B, McGuire P,
Meaney MJ, Mechelli A, Medic N, Misic B,
Morgan SE, Mothersill D, Nigg J, Ong
MQW, Ortinau C, Ossenkoppele R,
Ouyang M, Palaniyappan L, Paly L, Pan PM,
Pantelis C, Park MM, Paus T, Pausova Z,
Paz-Linares D, Pichet Binette A, Pierce K,
Qian X, Qiu J, Qiu A, Raznahan A,
Rittman T, Rodrigue A, Rollins CK, Romero-
Garcia R, Ronan L, Rosenberg MD, Rowitch
DH, Salum GA, Satterthwaite TD, Schaare
HL, Schachar RJ, Schultz AP, Schumann G,
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Chapter 10

Diffusion MRI Data Processing and Analysis: A Practical
Guide with ExploreDTI

Michael Connaughton, Alexander Leemans, Erik O’Hanlon,
and Jane McGrath

Abstract

This chapter introduces neuroimaging researchers to the concepts and techniques of diffusion magnetic
resonance imaging data processing. Using the freely available ExploreDTI software, we provide a step-by-
step guide for processing multi-shell High Angular Resolution Diffusion Imaging data and generating
tractography based on constrained deconvolution. Brief explanations of the rationale behind each proces-
sing step are provided to aid the researcher in understanding the concepts and principles involved. Potential
processing pitfalls will be discussed, and tips for troubleshooting common issues will be provided. An
additional step-by-step guide for processing DTI data using the open-access AOMIC data set is also
provided, demonstrating command-line that can also be applied to process other large neuroimaging
datasets.

Key words Diffusion, Tractography, DTI, Multi-shell, HARDI

1 Introduction

White matter refers to the nerve fibers, also known as axons, that
interconnect regions of the brain [1]. Healthy development of
white matter is essential for neurotypical brain function and cogni-
tion [2]. This complex developmental process involves several
mechanisms such as axonal growth, myelination, and synaptic
pruning [3]. The intricate interplay between these processes is key
for the establishment of neural networks for the efficient transmis-
sion of information within the brain [2]. Abnormalities in white
matter development have been linked to a range of cognitive func-
tions [4] and psychiatric impairments, including autism [5],
ADHD [6], and schizophrenia [7].
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Diffusion-weighted magnetic resonance imaging (dMRI) [see
Glossary] is a powerful neuroimaging technique that allows for the
investigation of white matter microstructure through the diffusion
measurement of water molecules within biological tissue [8]. In
white matter, the diffusion of water molecules is affected by cellular
membranes (i.e., myelin sheaths), defining the diffusion-weighted
contrast. This diffusion-weighted signal can then bemathematically
modeled to estimate the underlying microstructure and reconstruct
the organization of white matter tracts [9]. In the early 2000s, the
most common dMRI modeling technique was Diffusion Tensor
Imaging (DTI) [see Glossary] [10, 11]. While DTI remains a key
tool for researchers in understanding the impact of white matter
microstructure [12–14], DTI has some limitations, such as its
inability to accurately model areas in which crossing white matter
fibers are present [15–17].

In recent years, advances in dMRI acquisition parameters have
enabled higher-order diffusion modeling techniques that increase
reconstruction accuracy and can overcome some of the limitations
of DTI. With High Angular Resolution Diffusion Imaging
(HARDI), an increased number of diffusion direction gradients is
acquired, which allows for the estimation of microstructural prop-
erties along multiple fiber populations within a single voxel and
provides improved reconstruction accuracy of white matter tracts
compared to the traditional DTI framework [18]. Another advance
in dMRI for tractography is the integration of multiple b-values
[19, 20]. Briefly, b-values are a summary measure of the strength,
duration, and amplitude of the diffusion-weighting applied during
the scan. Different strength b-values elicit altered tissue responses
which can be used to increase the reconstruction accuracy of vari-
ous neurocellular environments. Higher b-values are more sensitive
to detecting diffusion of water molecules within brain tissues [21]
but are also more susceptible to noise and artifacts compared to
lower b-values [22]. As such, multi-shell dMRI data leverages the
increased signal of high b-value images with the reduced noise of
low b-value images to provide increased anatomical accuracy [19].

In the context of higher-order diffusion modelling, techniques
have been developed, such as constrained deconvolution (CSD),
Q-ball, and neurite orientation and dispersion density imaging
(NODDI) among many others [17, 23–26]. These techniques
can describe the distribution of water diffusion within a voxel
more accurately compared to DTI (e.g., the fiber orientation distri-
bution function for CSD and diffusion orientation distribution
function for DSI and Q-ball) and can be used to model voxels
containing crossing white matter fibers. Thus, metrics derived
from these higher-order models have increased accuracy, yielding
clinically more relevant information that cannot be obtained from
the DTI model [9]. Higher-order diffusion models provide more
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detailed information about the microstructure and organization of
white matter tracts, which can provide important insights into the
pathophysiology of neurological and psychiatric disorders.

The aim of this chapter is to introduce neuroimaging research-
ers to the concepts and techniques of dMRI data processing used in
the field, with a focus on providing a practical step-by-step guide for
processing multi-shell HARDI data and generating CSD-based
tractography using the ExploreDTI software [see Resources]
[27]. Brief explanations of the rationale behind each processing
step will be provided to aid the researcher in understanding the
concepts and principles involved. Potential processing pitfalls will
be discussed, and tips for troubleshooting common issues will be
provided. Overall, this guide aims to provide a comprehensive
resource for researchers to gain the skills and knowledge necessary
to process dMRI data effectively and efficiently.

2 Methods

2.1 Starting Point for

the Data

Advanced fiber orientation distribution modeling techniques, such
as CSD, require specific diffusion parameters. Typically for multi-
shell HARDI, a minimum of two b-values images
(b = 2500–3000 s/mm2) and 45 diffusion-weighted directions
[9, 28] are required for CSD modeling for white matter tractogra-
phy purposes. The Neuroimaging of the Children’s Attention Proj-
ect (NICAP) [29] study diffusion parameters were used for the
processing step-by-step guide provided below. Data from the
NICAP cohort are available via Lifecourse (https://lifecourse.
melbournechildrens.com/cohorts/cap-and-nicap/).

2.2 Data Storage and

Computational

Expense

The step-by-step guide provided here was run on a Linux system
with an Intel Core i7 processor and 32 GB RAM using MATLAB
R2016b. A standalone version of ExploreDTI is also available.
Details of the ExploreDTI instalment are provided below. It is
recommended to run Steps 9 and 10 using high-performance
computers, given the large processing time of these steps. Table 1
shows the estimated processing times per participant for each step,
with MATLAB parallel processing enabled.

2.3 Step-by-Step

Guide

In this section, we will provide a step-by-step guide for processing
multi-shell HARDI data (in BIDS format [see Chapter 4]) and
generating CSD-based tractography using the ExploreDTI soft-
ware. As this guide is for those relatively new to neuroimaging,
the ExploreDTI graphic user interface (GUI) is used. A step-by-
step guide to installing and using ExploreDTI is provided in the
user manual. As we are using BIDS format, each subject folder
containing the diffusion files should have .json, .bval, .bvec, and .
nii files (see Table 2). Although advanced diffusion modeling is not
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feasible with the AOMIC datasets (https://nilab-uva.github.io/
AOMIC.github.io/), we have also included step-by-step command
lines to demonstrate the possibility to preprocess several subjects all
at once (Appendix 5.2) [see Chapter 2].

2.3.1 Convert Bval and

Bvec Files into Text Files

(Step 1)

The first processing step is to generate .txt file(s) from the .bval and
.bvec files for the images you are processing. The .txt file is a
summary file of the b-values and diffusion-weighting directions
used during image acquisition and is required for image processing.

In ExploreDTI:

1. Plugins → Convert → *.bval/*.bvec to B-matrix *.txt files
(s) (see Fig. 1)

(a) Select folder containing *.bval and *.bval file(s)

(b) Select output folder for *.txt file(s)

2. The output folder now includes the converted .txt file(s)

Table 1
Approximate processing times for each per participant are provided below (Steps 7 and 8 are optional
if multiple b-value data sets were acquired separately)

Processing step Name of section Approximate processing time

1 Convert Bval and Bvec files into text files < 1 min

2 Signal drift < 1 min

3 Sort Bvals < 1 min

4 Gibbs ringing < 1 min

5 Flip permute < 1 min

6 Generate Mat File 5 min

7 Concatenate all b-value .mat files 2 min

8 Generate Mat File of concatenated .nii files 20 min

9 SM/EC/EPI distortion corrections 360 min

10 Whole brain tractography 70 min

Table 2
Description of dMRI files in BIDS format

File name Comment

.json File containing a description of scan acquisition details

.bval File containing a summary of diffusion-weightings applied during scanning

.bvec Files containing details on the diffusion gradient vectors of the scan

.nii The raw diffusion scan in NIfTI format
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2.3.2 Signal Drift

Correction (Step 2)

Signal drift is a phenomenon caused by scanner imperfections,
which leads to an adverse alteration of the acquired signal and a
bias in the estimation of diffusion measures if not corrected [30].

Note
We recommend the use of “quadratic fit,” but a signal drift
fitting guide is provided in the Appendix 5.1 for users who
want to investigate the impact of different fitting approaches
(see Fig. A1).

In ExploreDTI:

1. Plugins → Correct for DWI signal drift (see Fig. 2).

(a) Single or multiple data sets: multiple.

(b) Select the folder of .nii file(s).

(c) Select output folder.

Fig. 1 Step 1 using the ExploreDTI GUI

Diffusion MRI Data Processing and Analysis: A Practical Guide with ExploreDTI 201



2. The output folder now includes:

(a) *_sdc.txt file(s)

(b) *_sdc.nii file(s)

(c) *_sdc.png file(s)

Note
As the signal drift correction uses the non-diffusion weighted
(b-0) files acquired to correct for signal drift, it is crucial that
signal drift correction is completed before sorting b values,
which may change the order of the acquired dMRI volumes
(step 3).

2.3.3 Sort B-Values,

Organize and Remove

Excess b-0 Files (Step 3)

For the remaining processing steps ExploreDTI requires that all
b-0 files are sorted to the beginning of the diffusion files. This step
quickly organizes the files to have all the b-0 files at the beginning
of the .nii and .txt files.

In ExploreDTI:

1. Plugins → Sort DWI *.nii file(s) wrt b-values (see Fig. 3)

(a) File name suffix: *_sorted.nii.

(b) Single or multiple data sets: multiple.

(c) Select the folder of *.nii file(s) and *.txt file(s).

(d) Select output folder.

2. The output folder now includes:

(a) *_sdc_sorted.txt file(s)

(b) *_sdc_sorted.nii file(s)

Fig. 2 Step 2 using the ExploreDTI GUI
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Note
Rarely, additional b-0 files are collected during scanning. To
investigate if extra b-0 files are present, open the newly sorted
.txt file and investigate (see Fig. 4). If excess b-0 files are
present (see red box in Fig. 4), these can be removed in
ExploreDTI.

2.3.4 Gibbs Ringing

Correction (Step 4)

A phenomenon known as Gibbs ringing may occur due to the
shortening/truncation of Fourier transforms to reconstruct the
MRI signal. If uncorrected, Gibbs ringing leads to artifacts that
appear as multiple fine parallel lines in the image.

In ExploreDTI:

1. Plugins → TV for Gibbs ringing in non-DWI’s (4D *.nii) (see
Fig. 5)

(a) Select Gibbs Ringing Correction settings (see Table 3).

(b) Single or multiple data sets: Multiple.

(c) Select the folder of *.nii files.

(d) Select output folder.

2. The output folder now includes:

(a) *_sdc_sorted_GR_TV.nii files.

3. Create and move *_sdc_sorted_GR_TV.nii files into a new
folder.

Fig. 3 Step 3 using the ExploreDTI GUI
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2.3.5 Flip Permute (Step

5)

Permutations and flips in spatial configuration and/or mismatches
between spatial and diffusion coordinate systems can accidentally
occur during processing and analyses across different software
packages, potentially resulting in errors. The “flip/permute” tool
in ExploreDTI can reorientate images and also avoid further unex-
pected axis flips and permutations in any following image proces-
sing step. Use default ExploreDTI settings as orientations will be
inspected at the next step.

In ExploreDTI:

1. Plugins→ Flip/permute dimension(s) of 3D/4D *.nii files (see
Fig. 6)

(a) Use default setting:

File name suffix: _FP

Permute dimensions: 1 2 3

Flip dimensions: 0 0 0.

Force voxel size: leave empty

(b) Single or multiple data sets: multiple.

(c) Select the folder of *.nii file(s).

(d) Select output folder.

The output folder now includes *_sdc_sorted_GR_TV_FP.nii
files.

Fig. 4 Example of a sorted .txt file containing 6 b-0 images
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Fig. 5 Step 4 using the ExploreDTI GUI

Fig. 6 Step 5 using the ExploreDTI GUI
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The next processing step requires each individual image to have
matching .nii and .txt file names. Thus, rename *_sdc_sorted.txt files
in the previous folder to match the current .nii file
(e.g. *_sdc_sorted_GR_TV_FP.txt) and create a new folder contain-
ing matching .txt and .nii files (see Appendix 5.2, steps 3–7 for an
example of how to batch rename files).

2.3.6 Generate .mat File

(Step 6)

It is required to generate a .mat file from the processed .nii and
corresponding .txt files before tractography or other analysis tools
can be applied. The DTI .mat file is a MATLAB format file and can
be loaded into ExploreDTI for further processing and analysis.

Table 3
Setting Gibbs ringing parameters

Parameter Comment

Number of non-DWIs This information is provided in the *.txt file

Lambda ([1 200]) Lambda is a parameter that can be used to control the degree of Gibbs
ringing in image reconstruction algorithms. A higher value of lambda
will suppress Gibbs ringing more. However, it should be noted that a
high value of lambda will also reduce the level of high-frequency
information in the processed image, and therefore it is important to
find a balance between reducing Gibbs ringing and preserving image
quality

Recommendation: 100 (Default setting)

Number of iterations
([1200])

The number of iterations is another parameter that controls the degree
of Gibbs ringing correction

Recommendation: 100 (Default setting)

Step size ([0.001–0.1]) The step size determines the magnitude of the update applied to the
image estimate at each iteration of the algorithm. A smaller step size
will result in a slower convergence of the algorithm and less Gibbs
ringing, while a larger step size will result in a faster convergence but
more Gibbs ringing. The optimal value is a desired trade-off between
Gibbs ringing reduction and computational time

Recommendation: 0.01 (Default setting)

Imaging plane (coronal:1,
sagittal:2, axial:3)

The Gibbs ringing correction algorithm takes into account the imaging
plane in which the image was acquired. This information is found in
the subject specific *.json file,

Phase Encoding Directions
i left-right (sagittal)
i- right-left (sagittal)
j anterior–posterior (axial)
j- posterior–anterior (axial)
k inferior-superior (coronal)
k- superior–inferior (coronal)
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In ExploreDTI:

1. Calculate DTI *.mat file → Convert raw data to ‘DTI
*.mat’ (see Fig. 7)

(a) Select settings (see Table 4).

(b) Select the folder of *.nii.

(c) Select folder .txt files: Press cancel if each .nii has its
associated .txt file.

(d) Select output folder.

The output folder now includes *_sdc_sorted_GR_TV_FP.mat
files.

Note
A common pitfall of dMRI processing is orientation issues.
During the .mat generation step you should investigate the
flip/permutations to ensure appropriate orientations were
selected. It is advised that you first use the default settings as
ExploreDTI is able to automatically provide the correct ori-
entation settings [31]. ExploreDTI deploys the widely used
color convention to ensure the orientations (“Permute gradi-
ent components”) are correct (left-right: Red, top-bottom:
Blue, and front-back: Green). Good tracts to investigate when
checking orientations are the corpus callosum—a white mat-
ter tract that is orientated left-right (Red) and the corticosp-
inal tracts—white matter tracts that are orientated
top-bottom (Blue). To see an example of orientation checks
see Figs. 8 and 9.

Before-and-after correct flipping of the “Permute gradient
components.” As you can see in Fig. 8a, while the corticospinal
tract is the correct orientation (blue arrow) the corpus callosum
(red arrow)—a white matter tract that is orientated left-right—is

Fig. 7 Step 6 using the ExploreDTI GUI
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green. This indicates that the x and y axis need to be flipped. To do
so, change the “Permute gradient components” from x y z → y x z
and generate a new correctly orientated .mat file (Fig. 8b).

Figure 9 illustrates an investigation into the flip sign gradients.
While the orientations of the images of both images are correct, the
gradient sign may be flipped. Use Glyphs [see Glossary]

Table 4
Selecting .mat generation parameters

Parameter Comment

Format diffusion
weighted data

4D Nifti (*.nii)

Permute spatial
dimensions

This allows you to flip spatial dimensions of image.
Recommendation: Use default settings (AP RL IS) if there are no issues with

spatial dimensions

Flip spatial orientations This step allows you flip the direction of the dimensions. This is important if
your data was collected in Neurological dimensions rather than Radiological
conventions[seeGlossary]. In this instance, you may need to flip dimensions
from Right—Left to Left—Right. To flip, change the parameter from “AP
RL IS” to “AP LR IS.”

If your data were collected in radiological dimensions the default setting of
“AP RL IS” should be appropriate

Perform visual data
check

This allows you to quickly visualize the orientation of the image

Diffusion tensor
estimation

The robust tensor estimation algorithms aim to minimize the impact of
outliers on the final diffusion tensor estimate, leading to more reliable
results

Recommendation: Robust (exclude outliers)

Format diffusion
information

Text file (*.txt)

Background masking
approach

Automatic

Permute gradient
components

Permute gradient components should correspond to data and may require
some investigation (see Note below this table)

Flip sign of gradient
components

The sign of gradient components should correspond to data and may require
some investigation (see Note below this table)

Data processing mode Single or multiple data sets

b-value in units s/mm2 E.g., 1000

Voxel size [AP RL IS]
(in mm)

E.g., 2 2 2

Number of non-DW
images

E.g., 3

Number of DW images E.g., 30

Matrix size [AP RL IS] E.g., 128 128 60
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(in ExploreDTI: Draw ROI → Draw Glyphs) to inspect the signs
and investigate the “Flip sign of gradient components.” Figure 9a
shows an incorrect flip sign gradient as the glyphs are not following
the curvature of the Corpus Callosum. To fix this, the z component
must be flipped. To do so, change the “flip sign gradients” from x y
z → x y -z and generate the correct .mat file (Fig. 9b).

Fig. 8 Checking Permute Gradient Components

Fig. 9 Checking Flip Sign Components
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2.3.7 Concatenate All b-

Value .mat Files (Step 7)

This step concatenates all the single b-values (shells) .mat files
together to create a multi-shell .nii file. This enables a major benefit
of multi-shell imaging; namely, leveraging the increased signal of
high b-value images with the reduced noise of low b-value images
to produce an image with increased anatomical accuracy.

Firstly, you should organize all your b-value .mat files into scan-
specific folders (see Fig. 10).

In ExploreDTI:

1. Plugins → Concatenate DTI *.mat files (to *.nii) (see Fig. 11)

(a) Select folder of folders: select the folder containing all the
scan-specific folders.

2. The output folder now includes:

(a) *_concatenated.txt file(s).

(b) *_concatenated.nii file(s).

2.3.8 Generate

Concatenated .mat File

(Step 8)

It is now required that you convert the concatenated .nii files into .
mat files. As any orientation issues should have been resolved at
step 5 (see Subheading 2.3.5), default orientation settings will be
used. For processing efficiency, it is advised that you move *_con-
catenated.nii and *_concatenated.txt files into a folder.

In ExploreDTI:

1. Calculate DTI *.mat file → Convert raw data to ‘DTI *.mat’
(see Fig. 7)

(a) Select settings (see Table 5).

(b) Select the folder of *_concatenated.nii files.

(c) Select folder *_concatenated.txt files: Press cancel.

(d) Select output folder.

2. The output folder now includes:

(a) *_concatenated.mat file(s).

Fig. 10 b-value folders
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2.3.9 Correcting Subject

Motion, Eddy Currents, and

EPI-Induced Distortions

(Step 9)

This step corrects subject motion (SM), eddy currents (EC), and
EPI-induced distortions (EPI). This is a crucial processing step, as
such distortions can lead to significant changes in diffusion metric
estimates. Additionally, you can use “undistorted” structural MRI
(T1 or T2) images to unwrap the deformations in the diffusion data
(For more details see ExploreDTI manual). If you do not have a
structural MRI, this step can be conducted in native space. To
process this step in ExploreDTI without a structural MRI file
ensure the following setting is selected, Settings → SM/EC/EPI
correction → Also register to other data → No thanks (stay in native
space). Before beginning this step move *_concatenated.mat files
(and *_nu.nii and *_mask.nii files if necessary) to a folder.

Note
Due to the large computational demand of step 9, it is
recommended to use multi-core computing support for this
tool with a minimum of 32 GB RAM for dMRI data if you
have more than 100 DW images.

Fig. 11 Step 7 using the ExploreDTI GUI
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Table 5
Selecting .mat generation parameters

Parameter Comment

Format diffusion
weighted data

4D Nifti (*.nii)

Permute spatial
dimensions

AP RL IS

Flip spatial orientations AP RL IS

Perform visual data
check

No.

Diffusion tensor
estimation

Robust (exclude outliers)

Format diffusion
information

Text file (*.txt)

Background masking
approach

Automatic

Permute gradient
components

x y z

Flip sign of gradient
components

x y z

Data processing mode Multiple data sets

b-value in units s/mm2 NaN (for multi-shell data) or any integer for DTI

Voxel size [AP RL IS]
(in mm)

E.g., 2 2 2

Number of non-DW
images

The total number of b-0 images in the concatenated images (using the
parameters in NICAP study, e.g., number of non-DW images = 16)

Number of DW images The total number of b-value images in the concatenated images (using the
parameters in NICAP study, e.g., number of DW images = 130)

Matrix size [AP RL IS] E.g., 128 128 60

Fig. 12 Step 9 using the ExploreDTI GUI
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In ExploreDTI:

1. Select settings (see Table 6).

2. Start MATLAB parallel pooling.

3. Plugins → Correct for subject motion & EC/EP distortions
(see Fig. 12)

(a) Single or multiple data sets: Multiple.

(b) Select the folder of *_concatenated.mat files.

Include *_nu.nii and *_mask.nii for using structural MRI
files for registration.

(c) Select output folder.

The output folder now includes *_concatenated_trafo.mat
files.

2.3.10 Whole Brain

Tractography (Step 10)

Whole brain tractography in ExploreDTI generates white matter
tracts using a deterministic approach. Other software packages,
such as FSL and MRtrix are available if you would like to do
probabilistic tractography. It is recommended that you complete
whole brain tractography before reconstructing specific white mat-
ter tracts for analysis.

Table 6
Selecting SM/EC/EPI distortion parameters

Parameter Comment

Settings → SM/EC/EPI correction → masking stuff This setting allows you to use a mask generated
from a structural MRI scan. If you do not have a
structural MRI mask, do not select the “masking
stuff” setting

Settings→ SM/EC/EPI correction→ also register to
other data → yes, to do EPI correction (non-rigid)

This setting allows you to register your diffusion
image to a structural MRI image during the EPI
correction, enabling increased distortion
correction.

Recommendation: select “orig_nu” from Freesurfer
processed structural MRI files

Settings→ SM/EC/EPI correction→ also register to
other data → registration details → Deformation
axes

By default, the non-linear deformations are allowed
along any orientation.

Recommendation: correction will likely improve if
the registration is constrained to model
deformations only along the phase encoding
direction. To do this (example A-P orientation),
change “Deformation axes” to [1 0 0]

Settings → SM/EC/EPI correction → registration
details for SM/EC corrections → interpolation
method

Recommendation: Linear or cubic spline
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In ExploreDTI:

1. Plugins → whole brain tractography → CSD (see Fig. 13)

(a) Select settings (see Table 7).

(b) Single or multiple data sets: multiple.

(c) Select the folder of *_trafo.mat files.

Fig. 13 Step 10 using the ExploreDTI GUI

Table 7
Whole brain tractography parameters

Parameter Comment

Seedpoint resolution
(mm)

Seed point resolution is a measure of how close together the seed points are
placed in the brain. A higher seed point resolution will result in a higher
number of seed points used in the tractography algorithm, and therefore a
higher number of the reconstructed tracts. However, this also increases the
computation time.

Recommendation: 2 2 2

Step size (mm) The step size is a parameter that determines the distance between each point
in the reconstructed tracts. A smaller step size will result in a higher
accuracy of the reconstructed tracts, but it will also increase the
computation time.

Recommendation: 1

Angle threshold The angle threshold is a parameter that controls the angular deviation of
consecutive steps during pathway reconstruction. A higher angular
threshold will result in more or longer tracts, but it will also increase the
risk of false positive tracts. If you are planning to exact tracts with high
curvature (such as the fornix) it is advised to set this threshold higher
(e.g., 60°)

Fiber length range This step allows you to set the upper and lower bound of the length of the
reconstructed fibers. Change this setting if you are investigating
particularly long or short white matter tracts. If you are investigating both
long and short fiber, it is recommended to set this setting to, 10–500

Random permutations of
seed points

0 = no/1 = yes (setting to get rid of rectilinear grid-pattern artifacts)
Recommendation: 0
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(d) Select output folder.

(e) The output folder now includes the *_trafo_Tracts_CSD.
mat files (see Fig. 14).

2.3.11 Extracting

Diffusion MRI Metrics (Step

11)

At this step, you should have already extracted the white matter
tracts you want to analyze. A step-by-step guide of conducting
manual tractography is provided in the ExploreDTI manual. This
step allows you to export diffusion metrics for the analyzed tract
pathway of interest (see Supplementary Material Table 2). If you
wish to also obtain kurtosis measures, please see Appendix 5.3.

In ExploreDTI:

1. Plugins → convert → info. of tract *.mat file(s) to .txt. (see
Fig. 15)

(a) Select the folder of .nii.

(b) Select output folder.

2. The output folder now includes:

(a) *.txt files.

3. Export *.txt file to Excel.

3 Conclusion

This chapter offers a comprehensive resource that equips research-
ers with the necessary skills and knowledge to effectively and effi-
ciently process large diffusionMRI data sets. By providing practical,
step-by-step guides, researchers can process both DTI and multi-
shell HARDI data using the ExploreDTI software. When choosing
a diffusionMRImodeling technique, it is important to consider the

Fig. 14 Complete CSD tractography (subsampled: 50)
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pros and cons of both DTI and multi-shell HARDI approaches.
Multi-shell HARDI offers several advantages over DTI, including
increased anatomical accuracy and the ability to model crossing
fibers. However, it also comes with certain disadvantages compared
to DTI that warrant careful evaluation. A significant drawback of
multi-shell HARDI is that it is a highly computationally expensive
technique, which results in significantly longer processing times
compared to DTI. Nevertheless, steps can be taken to reduce
processing time through resource optimization. Researchers can
optimize the utilization of computational resources by fine-tuning
the processing parameters described in this book chapter. When
processing large data sets, it is advised to experiment with different
settings parameters to find the optimal balance between reconstruc-
tion accuracy and processing time. Overall, it is crucial to assess the
accessible resources, both available time and computational
resources, before deciding which diffusion MRI modeling tech-
nique to employ.

Fig. 15 Step 11 using the ExploreDTI GUI
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Appendix

4.1 Checking the

Impact of Different

Signal Drift Fit

Approaches

The primary parameter to be considered during this step is the
signal drift fit approach (Linear, Quadratic, or Cubic). The Explor-
eDTI default setting is “Quadratic” however, all three approaches
should be investigated to find the best fit for your data set. The
signal drift fit approach can be changed by in ExploreDTI, Settings
→ Signal drift correction → Fit Approach (1. Linear, 2. Quadratic,
or 3. Cubic). Initially it is advised to run all three approaches (using
the instructions below). After you have run all three different signal
drift approaches, the .png files you be used to evaluate their perfor-
mance. The approach that is most appropriate for your data set is
the one with the least amount of signal loss (see Appendix Figure).

4.2 Data Storage and

Computational

Expense: Open Neuro

Diffusion Data

The code provided here can be run on a single computer using
MATLAB. The code was written using MATLAB version R2020a.
While earlier versions of MATLAB may also execute the code
successfully on a MacBook Pro with an Intel Core i7 processor
and 16 GB RAM, it takes 10 min to execute the code for 10 parti-
cipants with MATLAB parallel processing enabled (see Table 1).

4.2.1 Step-by-step Guide

of DTI Processing the Open

Neuro Data

Step 1: Convert Bval and Bvec Files into Text Files

d = pwd;

dic_folder = 

'/Users/michaelconnaughton/Desktop/Neuroimaging_Book_Chapter/OpenN

euro/ds002790-master/dwi_files/';

if ~ischar(dic_folder)

return;

end
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files = E_DTI_Get_files_from_folder(dic_folder, '.bval');

if isempty(files)

uiwait(my_msgbox('No *.bval files found...','Converting 

*.bval/*.bvec file(s) B-matrix *.txt file(s)','modal'));

return;

end

Step 3–7: Signal Drift, Gibbs Ringing, Flip Permute, and Generate
Mat File

h_w = my_waitbar(0,'Converting *.bval/*.bvec file(s) B-matrix 

*.txt file(s)');pause(0.01)

for i=1:length(files)

E_DTI_convert_nii_dic_2_txt_exe(files{i});

my_waitbar(i/length(files))

end

close(h_w);
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d = pwd;

dic_folder = 

'/Users/michaelconnaughton/Desktop/Neuroimaging_Book_Chapter/OpenN

euro/ds002790-master/dwi_files/';

if ~ischar(dic_folder)

return;

end

files = E_DTI_Get_files_from_folder(dic_folder, '.bval');

if isempty(files)

uiwait(my_msgbox('No *.bval files found...','Converting 

*.bval/*.bvec file(s) B-matrix *.txt file(s)','modal'));

return;

end

h_w = my_waitbar(0,'Converting *.bval/*.bvec file(s) B-matrix 

*.txt file(s)');pause(0.01)
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for i=1:length(files)

E_DTI_convert_nii_dic_2_txt_exe(files{i});

my_waitbar(i/length(files))

end

d = pwd;

folder_in = 

'/Users/michaelconnaughton/Desktop/Neuroimaging_Book_Chapter/OpenN

euro/ds002790-master/dwi_files/';

if ~ischar(folder_in)

return;

end

files_in = E_DTI_Get_files_from_folder(folder_in, '.nii');

if isempty(files_in)

uiwait(my_msgbox('No DWI nii files found...','Signal drift 

correction','modal'));

return;

end
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folder_out_nii = [folder_in filesep 'sdc'];

if ~isdir(folder_out_nii),mkdir(folder_out_nii);end

folder_out_txt = [folder_in filesep 'sdc'];

if ~isdir(folder_out_txt),mkdir(folder_out_txt);end

h_w = my_waitbar(0,'Processing');pause(0.01)

for i=1:length(files_in)

[~,n,~] = fileparts(files_in{i});

par.f_in_nii = files_in{i};

par.f_in_txt = [folder_in filesep n '.txt'];

par.f_out_nii = [folder_out_nii filesep n '_sdc.nii'];

par.f_out_txt = [folder_out_txt filesep n '_sdc_GR_FP.txt'];

par.bvalC = 1000;

par.bv_thresh = 10; 

par.method = 2;  

par.masking.do_it = 0; 

par.masking.p1 = 5; 

par.masking.p2 = 1; 

par.show_summ_plot = 1; 

E_DTI_signal_drift_correction(par);

my_waitbar(i/length(files_in))
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% Apply Gibbs ringing correction

f_in = [folder_out_nii filesep n '_sdc.nii'];

f_out = [folder_out_nii filesep n '_sdc_GR.nii'];

p.NrB0 = 1;

p.lambda = 100;

p.iter = 100;

p.ss = 0.01;

p.ip = 3;

E_DTI_Gibbs_Ringing_removal_with_TV_exe(f_in,f_out,p);

% Apply flip/permute correction

File_name_of_DWIs_input = [folder_out_nii filesep n 

'_sdc_GR.nii'];

File_name_of_permuted_flipped_DWIs = [folder_out_nii filesep n 

'_sdc_GR_FP.nii'];

p = [];

p.suff = '_FP';

p.permute = [1 2 3];

p.flip = [0 0 0];

p.force_voxel_size = [];

E_DTI_flip_permute_nii_file_exe(File_name_of_DWIs_input, p, 

File_name_of_permuted_flipped_DWIs);

% Generate Mat File

f_DWI= [folder_out_nii filesep n '_sdc_GR_FP.nii']; %file name 
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of the DWIs

f_BM= [folder_out_txt filesep n '_sdc_GR_FP.txt']; %name of 

the B-matrix

f_mat= [folder_out_nii filesep n '_sdc_GR_FP.mat']; %file name 

of the DTI output

Mask_par.tune_NDWI = 0.7; % (rough range: [0.3 1.5])

Mask_par.tune_DWI = 0.7; % (rough range: [0.3 1.5])

Mask_par.mfs = 5; % (uneven integer)

NrB0= 1;

perm = 2;

flip = 4;

E_DTI_quick_and_dirty_DTI_convert_from_nii_txt_to_mat(f_DWI, 

f_BM, f_mat, Mask_par, NrB0, perm, flip)

end

my_waitbar(1);close(h_w);pause(0.01);

% As per the main manuscript, it is recommended to run a quality 

check on the orientation of the mat files. 
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Step 7: SM/EC/EPI Distortion

% Download Parameters_SM_EC_EPI.txt on OpenNeuro

% Note: edit path folder_in and foulder_out of 

Parameters_SM_EC_EPI.txt

% Name of the text file containing the parameters for the 

SM/EC/EPI correction. The file is as saved in the GUI using 

Settings > SM/EC/EPI correction > Export parameter file.

parameter_filename = 

'/Users/michaelconnaughton/Desktop/Neuroimaging_Book_Chapter/OpenN

euro/ds002790-master/dwi_files/sdc/Parameters_SM_EC_EPI.txt';

E_DTI_SMECEPI_Main(parameter_filename);

Step 8: Tractography
folder_in = 

'/Users/michaelconnaughton/Desktop/Neuroimaging_Book_Chapter/OpenN

euro/ds002790-master/dwi_files/sdc/epi';

folder_out = 

'/Users/michaelconnaughton/Desktop/Neuroimaging_Book_Chapter/OpenN

euro/ds002790-master/dwi_files/sdc/epi/wbt';
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% Get a list of all files in the folder

file_list = dir(fullfile(folder_in, '*.mat'));

% Loop through each file and apply the code block

for i = 1:numel(file_list)

n = file_list(i).name(1:end-10);

filename_in = [folder_in filesep n 'native.mat'];

filename_out = [folder_out filesep n '.mat'];

parameters.SeedPointRes = [3 3 3];

parameters.StepSize = 1;

parameters.FAThresh = 0.2000;

parameters.AngleThresh = 45;

parameters.FiberLengthRange = [50 500];

WholeBrainTrackingDTI_fast(filename_in, filename_out, 

parameters);

end
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4.3 Extracting

Diffusion Kurtosis

Metrics

% Define the path to the DTI and tract files

path_dMRI = 'path to diffusion file';

path_tract = 'path to tract file';

path_tract_new = 'Path to new output file';

% Get a list of all the dMRI files in the folder

dMRI_files = dir(fullfile(path_dti, '*_trafo.mat'));

% Loop through the dMRI files

for i = 1:length(dti_files)

% Get the subject name from the file name

subject = dti_files(i).name(1:end-8);

% Define the input and output file names for the current 

subject

f_in_1 = [path_dMRI, dMRI_files(i).name];

f_in_2 = [path_tract, subject,'_old_tract.mat'];

f_out = [path_tract_new, subject,'_new_tract.mat'];

% Call the script

E_DTI_Add_DKI_metrics_to_tract_file(f_in_1, f_in_2, f_out);

end
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Chapter 11

A Pipeline for Large-Scale Assessments of Dementia EEG
Connectivity Across Multicentric Settings

Agustı́n Sainz-Ballesteros, Jhony Alejandro Mejı́a Perez,
Sebastian Moguilner, Agustı́n Ibáñez, and Pavel Prado

Abstract

Multicentric initiatives based on high-density electroencephalography (hd-EEG) are urgently needed for
the classification and characterization of disease subtypes in diverse and low-resource settings. These
initiatives are challenging, with sources of variability arising from differing data acquisition and harmoniza-
tion methods, multiple preprocessing pipelines, and different theoretical modes and methods to compute
source space/scalp functional connectivity. Our team developed a novel pipeline aimed at the harmoniza-
tion of hd-EEG datasets and dementia classification. This pipeline handles data from recording to machine
learning classification based on multi-metric measures of source space connectivity. A user interface is
provided for those with limited background in MATLAB. Here, we present our pipeline and provide
a detailed a comprehensive step-by-step example for analysts to review the five main stages of the pipeline:
data preprocessing, normalization, source transformation, connectivity metrics, and dementia classification.
This detailed step-by-step pipeline may improve the assessment of heterogenous, multicentric, and multi-
method approaches to functional connectivity in aging and dementia.

Key words Electroencephalography, Harmonization, Connectivity, Multicentric studies, EEG-BIDS

1 Introduction

Biomarkers assessed with brain functional connectivity [see Glos-
sary] can provide relevant information for disease subtyping and
progression [1, 2]. In addition to the traditional magnetic reso-
nance images (MRI) approach, high-density electroencephalogra-
phy (hd-EEG) has demonstrated great promise in recent years
[3]. High-density EEG is a particularly useful tool for the assess-
ment of brain function interactions due to its cost-effectiveness,
portability, scalability, and availability. For example, the study of
dementia biomarkers derived from hd-EEG functional connectivity
can be boosted by large-scale multicentric studies that can account
for heterogeneities and pathologic complexities of dementia.
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However, EEGmulticentric studies are not without challenges,
as they present acquisition and harmonization issues across centers
[4]. Additional sources of variability arise from differing conceptual
frameworks (e.g., dissimilar connectivity metrics and methodologi-
cal procedures) for quantifying EEG connectivity. These sources of
variability are reflected in the fact that different functional connec-
tivity metrics yield different results, even when applied to the same
EEG scalp distribution [5]. The outcome of any analysis is
impacted by the choice of artifact removal, filtering, and averaging
methods [6, 7]. Likewise, choice-related methodological biases are
reflected in the effect of EEG spatial transformations on functional
connectivity analyses at both sensor [8] and source spaces [5].

To help overcomemethodological issues in multicentric studies
on neurodegeneration, our team developed a pipeline for the har-
monization of EEG datasets and the classification of dementia
based on hd-EEG connectivity [5]. The pipeline was purposefully
built with several primary goals: data security and organization,
code availability and automatism, and flexibility. Data security and
organization are obtained by code input and output being neces-
sarily arranged according to the EEG-BIDS format [9]. Code avail-
ability is achieved by open-access sharing of the code needed to run
the pipeline, and detailed user documentation with a step-by-step
companion on the pipeline. The pipeline is mainly automatic but
can be changed according to users criteria and necessities.

The pipeline consists of five stages: (1) Preprocessing; (2) Data
normalization (Spatial and Patient-Control normalizations);
(3) EEG source space transformation; (4) Estimation of functional
connectivity; and (5) Dementia classification (Fig. 1).

2 Starting Point for the Data

The pipeline is designed for large-scale multicentric hd-EEG analy-
sis and classification of dementia subtypes. It primarily relies on
resting-state (rs-EEG) data analysis, while it can also be adapted to
run task-related EEG data and heartbeat-evoked potentials (HEP).
The HEP label has been chosen by default, given that it can be
extracted from both resting- and task-related recordings.

All input data must be first converted into the EEG-BIDS
format [9] to act as a suitable input for the pipeline. The EEG-
BIDS format is an extension of the brain imaging data structure
(BIDS [see Chapter 4]) for EEG that ensures data organization by
following the core FAIR principles: findability, accessibility, inter-
operability, and reusability. Code and guidance on converting raw
EEG data into the EEGBIDS format are further detailed and
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provided in the user guide. Currently, the pipeline cannot handle
missing data.

2.1 Data Storage and

Computing

The pipeline can be executed on a single computer via MATLAB. It
was written on theMATLAB r2016b version. It has yet to be tested
on other versions, although no issues should be expected. Data
storage is dependent on the experimental set and paradigm.
For example, 810 GB are required for complete data analysis of
100 files if users run the source transformation module with the
Fieldtrip method when analyzing rs-EEG (which accounts for
665 GB). As such, users are recommended to work with the Bayes-
ian model averaging (BMA) method for the source transformation
module while working with RS data.

2.2 Software and

Coding

Users with limited or basic coding knowledge can execute the
pipeline. A user interface (UI) is provided for those with limited
background in MATLAB. Users must enter an input folder for data
processing and ensure all data has been transformed to BIDS
format. All analysis stages are mainly automatic. Manual input
primarily relies on changing specific code parameters for each step
by simply inserting them in a customized analysis by changing the
string. The only manual processing consists of identifying noisy
channels, according to the bad channel identification step of the
preprocessing stage. All further user input and coding are optional.

Fig. 1 Flowchart of the pipeline for dementia classification based on multi-metric analyses of EEG source space
connectivity. From left to right, the figure presents the fivemodules of the pipeline. Traditional preprocessing steps
are indicated in Module 1. This is followed by the normalization stage, where spatial harmonization and data
rescaling are conducted (Module 2). Source reconstruction (Module 3) assessing the inverse problem in EEG is
implemented for joint analyses of whole-brain functional connectivity in Alzheimer’s disease (AD) and behavioral
variant frontotemporal dementia patients (bvFTD) (Module 4), alongside parameters describing the performance of
machine learning classification of each dementia subtype (Module 5)
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3 Methods

3.1 Brief Overview As shown in Fig. 1, there are five main stages of data analysis. These
include:

1. Preprocessing (Fig. 1, step 1): The preprocessing stage consists
of data filtering (default cut-off of 0.5 and 40 Hz), and resam-
pling (default frequency of 512 Hz), and is executed automati-
cally once the code is run via MATLAB. Then, a visual built-in
manual inspection of noisy channels incorporates a graphical
user interface (GUI). A data re-reference step follows, using the
average reference of all channels, or computed via REST
[10]. An artifact removal step follows, comprising three meth-
ods (chosen by the user): ICLabel [11], EyeCatch [12], or
BLINKER [13]. Finally, noisy channels are replaced by spheri-
cal interpolation of neighbor channels.

2. Normalization (Fig. 1, step 2): Normalization is computed by
both Spatial and Patient-Control normalization and includes:

1. Spatial normalization: to control variability from different
electrode layouts. Common scalp coordinates are assigned
to EEG acquired with different electrode layouts (i.e.: Bio-
semi 64/128 channels).

2. Patient-control normalization: To reduce cross-site variabil-
ity. A weighting factor is assigned to healthy controls (HCs)
from each center. The EEG of all individuals is then rescaled
with the same weighting factor, across seven options: robust
standard deviation of all data, robust standard deviation per
channel, Huber mean of robust standard deviation per
channel, mean of robust standard deviation per subject, or
L-2 norm of the robust standard deviation per subject.

3. Source transformation (Fig. 1, step 3): Accounting for the
inverse-solution in EEG data, source transformation to the
scalp level can be computed by three methods signaled by
the user: BMA [14] eLoreta [15] and Minimum Norm Esti-
mate (MNE) [16]. The BMA method assesses anatomical con-
straints to account for model uncertainty, the eLORETA
method is a distributed, linear weighted minimum norm
inverse solution that provides exact localizations; the MNE
method provides the inverse solution which best fits the sen-
sory data with a minimum amplitude of brain activity.
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Note
Bayesian model averaging is the recommended method for
resting-state EEG data, as it solves space and time
constraints. Neither eLoreta nor Minimum Norm Estimates
are recommended for resting-state EEG, as they can take up
to more than 600 GB of space in a dataset of 100 subjects
(see Table 1)

4. Connectivity metrics (Fig. 1, step 4): Up to 101 connectivity
metrics can be computed, based on 82 anatomic compart-
ments of the Automated Labeling Atlas (AAL90 atlas)
[17]. The set of metrics comprise five time-domain connectiv-
ity metrics and four frequency-domain metrics. Metrics in the
frequency-domain include instantaneous, lagged, and total
connectivity in eight EEG frequency bands: delta (δ:
1.5–4 Hz), theta (θ: 4–8 Hz), alpha1 (α1: 8–10 Hz), alpha2
(α2: 10–13 Hz), beta1 (β1: 13–18 Hz), beta2 (β2: 18–21 Hz),
beta3 (β3: 21–30 Hz), and gamma (γ: 30–40 Hz), making up
for a total of 96 frequency-domain metrics, which, adding the
five time-domain connectivity metrics, account for a total of
101 types of functional interactions.

5. Classifier (Fig. 1, step 5): The classifier is computed in three
steps:

1:. Feature selection: As a first step, a relevant subset of features
(functional connections) is obtained by statistically compar-
ing the connectivity maps of the HCs with each dementia

Table 1
Data storage

File File type
Provided/User-
dependent

Size
(GB)

ConneEEGtome code .m Provided 1.51

Input data *.set (100 files) .set User-dependent 20.4

Module 1. Preprocessing output data .set; .tsv; .fig; .
mat

User-dependent 102

Module 2. Normalization output data .mat; .txt User-dependent 16.8

Module 3. Source transformation output data
(Fieldtrip methods)

.set; .csv; .mat User-dependent 665

Module 4. Connectivity metrics output data .mat User-dependent 3.76

Module 5. Classifier output data (based on
6 classifications)

.mat; .csv; .jpg User-dependent 0.053
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subtype, via two-tailed nonparametric permutation tests
(α = 0.05; 5000 randomizations) [18] while controlling
for the multiple comparisons problem using the Benjamini
and Hochberg FDR method [19].

2:. Machine learning algorithm: Following feature selection,
the statistically different significant connections are used as
input features of a machine learning classifier that discrimi-
nates dementia subtypes from HCs, based on Moguilner
et al. [2]. To this end, we employ the XGBoost classifier
[20], a Gradient Boosting Machines (GBM) implementa-
tion that provides parallel computation tree boosting,
enabling fast and accurate predictions, and advanced regu-
larization techniques to avoid overfitting [21]. GBMs are
based on the gradient boosting technique, in which ensem-
bles of decision trees iteratively attempt to correct the
classification errors of their predecessors by minimizing a
loss function. The XGBoost has several hyperparameters
[see Glossary], such as the learning rate, the minimum
loss reduction required to make a further partition of a
leaf node, the maximum depth of a tree, the maximum
number of leaves, and the regularization weights. In order
to choose the best parameters for the classification in this
high dimensional hyperparameter space, we used stratified
k-fold (k = 5) cross validation.

3:. Classification performance report: Finally, classification per-
formance metrics are reported, along with the receiver
operating characteristic (ROC) curves [see Glossary]. To
capture feature relevance, we use Shapley Additive Explana-
tions (SHAP) [see Glossary] [22] to generate a feature
importance list. Shapley values represent estimates of fea-
ture importance (magnitude of the contribution) as well as
the direction (sign). Features with a positive sign contribute
to predictive accuracy, whereas features with negative sign
hinders model performance.

3.2 Interpreting and

Reporting Results

If the entire pipeline has been run through to the classification
stage, three outputs are obtained: A sequential forward selection,
a ROC curve with the most important features and a graphical
display of the features importance. We will proceed to describe
how to interpret each of these results.

3.2.1 Sequential Forward

Selection

Sequential forward selection is a method used to identify which set
of features better discriminates between two conditions by using a
bottom-up approach. The algorithm starts by identifying one single
feature (e.g., one connectivity metric in one particular ROI) that
better discriminates between the given two conditions (e.g.,
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dementia vs. control groups). Then, a second feature is added
that—in combination with the previously selected feature—can
better discriminate between two conditions.

After the sequential forward selection is complete, we proceed
to select the optimum set of features after stabilization [23] using a
five-fold cross-validation scheme. In this process, we use the Gini
scores [see Glossary] to remove features with the lowest importance
at each iteration and check for the robustness of our results based
on the final number of features after stabilization [24]. Afterward,
we keep the N first features in the ranking, where N was the optimal
number of features such that using more than N features fails to
improve classifier’s performance. Following best practices in
Machine-Learning [25], we employ a k-fold validation approach
(k= 5) using 80% of the sample for training and validation and 20%
as an out-of-fold sample for testing. This process is repeated until
all features are used. Figure 2 shows the performance of the algo-
rithm in terms of F1-score in the y-axis. The higher the value, the
better the ability of the algorithm to distinguish between two given
conditions. The x-axis displays the number of features that were
used to train the model. Additionally, a text box shows the best
F1-score obtained using only set of best features. Finally, a list of
the features that obtained the best performance is shown in a text
box.

3.2.2 ROC Curve with the

Most Important Features

A graph showing an ROC curve plots the sensitivity against speci-
ficity (see Fig. 3). The curve is created by evaluating different
models (5 by default, but which can be modify by the user—see
user guide) in terms of specificity and sensitivity. Ideally, the results
obtained should be in the upper left part of the graph. The Area
Under the Curve (AUC) score is calculated by finding the area of
the curve that is created when joining the dots of the cross-
validated models.

Fig. 2 Graphical display of the sequential forward selection as seen by the user
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The higher the AUC, the better the discriminatory ability of
the algorithm between two conditions. The dashed line represents
the performance of an model performing at a chance level.

3.2.3 Feature Importance

(Fig. 4)

The SHapley Additive exPlanations (SHAP) finds the importance
of each feature on the model built. Users can find the names of
features being compared on the y axis, while mean of the impact of
the model is found on the x-axis. The larger the value, the higher
the feature importance to predict an outcome.

4 Potential Pitfalls

The pipeline is not without its limitations. First, there is currently
no correction for the presence of potentially confounding demo-
graphic covariates such as age, sex, or years of formal education
[28]. Second, the source-space analysis of functional connectivity is
limited, as it does not include directed connectivity metrics
[26]. Moreover, distortions in connectivity may arise due to the

Fig. 3 Graphical display of the ROC curve with the most important features

Fig. 4 Graphical display of the feature importance
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leakage effect [27]. These limitations may be solved in future ver-
sions of the pipeline, or by performing additional analysis and
controls.

5 Summary

We present a flexible, largely automatic, tool for large-scale charac-
terization of functional connectivity in dementia with multicentric
data. Users have the option to run a full dataset throughout one or
all of its main stages (i.e., preprocessing, normalization, source
transformation, connectivity metrics, and dementia classification).
The classification stage is boosted by an initial selection of relevant
sub-features, which are then imputed into the machine learning
algorithm that discriminates between dementia subtypes and
healthy controls with the xGBoost classifier. Finally, classification
performance metrics, along with their ROC curves, are reported.
Users can visually inspect their results by means of the graphical
display of the sequential forward selection, of the ROC curve
signaling the most important features, and of the most relevant
features.

6 Step-by-Step Example

We hereby provide a step-by-step example that we hope will aid
future users of the pipeline into easily adapting the code to their
best interests, while hoping for it to be an open-source tool that will
foster much needed inter-regional cooperation for the uncovering
of dementia biomarkers.

6.1 Getting Started:

How to Input General

Parameters (Fig. 5)

To execute the code, the user is required to specify:

• A database path specifying where their data will be picked up and
subsequently stored. Data must be necessarily arranged accord-
ing to the BIDS format in order to be picked up by the code.
This is specified at the databasePath variable and is to be input as
a string.

Fig. 5 Example of the header of the code environment as displayed on MATLAB
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• The step of the connEEGtome pipeline the user wished to
execute. Users can signal one specific step (i.e: [1]) or a series
of consecutive sequential steps (i.e: [1:3]), or all (i.e: ‘all’). This
is specified at the preproSteps variable and is to be specified by an
integer (in case users require specific(s) step(s)) or string (for
execution of all steps).

• The type of signal (‘HEP’ for heartbeat evoked potential data,
‘rs’ for resting state data, and ‘task’ for task-dependent data) of
users hd-EEG data that will be processed by the connEEGtome
pipeline. This is specified at the signalType variable, and is to be
input as a string.

6.1.1 Getting Started

(How to Input Optional

Parameters) (Fig. 6)

There is a grand range of optional parameters that users can modify
according to their best interests. The optional parameters must be
necessarily entered as a ‘key,’ ‘value’ pair after the databasePath.
Said parameters will be described within each step in the user guide.

Fig. 6 Screenshot illustrating how users can input optional parameters as ‘key’
‘value’ pairs. In this case, users (a) can specify the type of task in which files will
be saved as, specifying it under the ‘BIDStask’ key, while they can then specify
this ‘value,’ in this case ‘task-restHEP.’ (b) The BIDStask parameter shown in
subject files after being modified
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6.2 How Data Are

Stored (Fig. 7)
Note
If users need to re-run a particular file through a certain step,
they may do so by simply deleting that subject’s saved file
from the BIDS directory. For example, if they wish to re-run
Step 2 for one subject, they may go to such subjects’ saved
folder on Step 2, delete it, go back to the main code and
re-run Step 2. The code will run only for just-deleted file
again, considering that the other files have already been pre-
processed. The same is true for multiple files and multiple
steps.

Files will be automatically saved in a new folder, called ‘analy-
sis_RS,’ ‘analysis_HEP,’ or ‘analysis_task’ by default, depending
on whether users are working with RS, HEP, or task-related
hd-EEG signals, respectively. Users may change this folder by
entering a new name under the ‘newFolder’ variable. New files
will be automatically saved on newly created subfolders of each
given step.

6.3 Preprocessing As a default, the code will automatically execute the six steps of the
preprocessing stage (i.e., identification of bad channels, average
referencing of scalp EEG channels, artifact correction, independent
component analysis, components rejection, bad channel inspec-
tion) in an orderly fashion without requiring extra input from the
user when calling the main function.

Once the code is run, it verifies that the following files exist:
. . .README.txt,’ ‘participants.tsv,’ ‘task_modality.json,’ and
folders that start with ‘sub-’ on the established BIDS folder before
running the main code. If one of these files is missing, the code will
issue a warning on the command prompt with this error, and the
user can trace back to the BIDS scripts or documentation for
correction.

Fig. 7 Files will be saved in the ‘analysis_RS’ folder (by default). Files will be stored consecutively for each
preprocessing step, as seen above for a file stored after preprocessing of step 0
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6.3.1 Optional

Parameters of the

Preprocessing Stage

• ‘filterAndResample’: Users can indicate if they want to execute
the code that applies filtering and resampling to their raw data
before continuing with the preprocessing. Users can indicate so
as a Boolean, by signaling ‘1’ (‘yes’).

• ‘newSR’: Users can signal a new sampling rate for their data
resampling (default is 512 Hz.) Users can specify their desired
new sampling rate as an integer value (e.g., 128).

• ‘freqRange’: Users can indicate their desired window for filtering
raw data. Users can indicate so as a vector (e.g., [1, 35]).

6.3.2 Visual Bad Channel

Identification (Fig. 8)

Unlike other steps, which are largely automatic, this step requires
visual and manual identification from users on the bad channels in
each file which will be stored for elimination. Once the user runs
the code, .set files from the directory tree (or .set files from Sub-
heading 6.3.1, if users ran the optional filtering and resampling) are
picked up automatically and individually with the pop_loadset func-
tion. The command prompt asks the user whether to eliminate
non-EEG channels using information from the .tsv files containing
channel information. Users can answer this prompt by pressing
either the ‘y’ (yes) or ‘n’ (no) keys on the command window. Bad
channels are thus checked automatically from the .tsv file. Users
may inspect bad channels on the figure, which stems from a built-in
function allowing bad channel identification via a Graphical User
Interface (GUI).

Fig. 8 The GUI that showcases time-series signal data of each channel. Channel names are signaled in the left
panel. Bad channels should be marked as those with a consistently dark blue or light yellow color(s), selected
by the user by simply clicking over them. Users can then click once again to cancel their selections. Users
must simply close the GUI window when they are ready to advance with the following file for bad channel
inspection
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Note
A warning message will appear on the command window if
the users did not select any bad channel. Users will be asked
whether they are sure to still continue with the preprocessing
of data.

The code will store the last run file in the directory tree. As
such, users can feel free to pause the visual inspection and continue
at any other given time by pressing the ‘n’ key and continue at
another given time by running the code, which will check for the
last saved file.

6.3.3 Average

Referencing

Optional Parameters in Average Referencing:
• ‘reref_REST’: Users can indicate if they want to execute the

REST function that applies filtering and resampling to their
raw data before continuing with the preprocessing. Users can
indicate so as a string, by typing ‘yes.’

The step is purely automatic. Each file is individually picked
from the previous step in iteration.

The re-reference is computed with the pop_reref function of
EEGLAB.

Note
If the labels of the bad channel arrays do not correspond to
those on the original .set files, a warning message is issued on
the command prompt, urging the user to check they are
indeed saving the correct files, while recommending to run
the script to avoid this error.

If the .set files were already re-referenced to the average
according to the BIDStask_eeg.json file, a warning message is
issued on the command prompt asking the user whether they
want to re-reference it again or assume it was already
referenced.

6.3.4 Artifact Correction

(Only for Resting State

Signals)

Optional Parameters in Artifact Correction (Only for RS Signals):
• ‘burstCriterion’: Users can signal the variance for the burst

criterion, only in RS analysis. This criterion is used to identify
outliers that surpass a threshold set up by the user. Default is
marked at 5, and users can indicate a new criterion but inputting
them as an integer (i.e, ‘3’). The lower the value, the stricter the
criterion becomes.
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• ‘windowCriterion’: Users can also signal the maximum propor-
tion of noisy channels to be left after the Artifact Subspace
Reconstruction (ASR) [see Glossary] correction by inputting
them as an integer (i.e: [0.10]). Default is set at 0.25, and
common ranges vary between 0.05 and 0.3. The lower the
value, the stricter the window becomes.

This step consists of a correction of artifacts in time by exclu-
sion of the bad channels identified on Subheading 6.3.2 and it is
done automatically with the clean_artifacts function, based upon
ASR. It is entirely automatic. Once the script excludes noisy chan-
nels from artifact correction over time, the time window rejection
thresholds are determined, and followed by boundary events which
are added with the eeg_insertbound function. Calibration statistics
and pre-component thresholds are then computed and the data is
cleaned. This is a relatively computationally expensive step.

Users can then check the percentage of data that is being kept,
which is shown on the command window, and a plot appears
showing the signal before and after artifact correction.

6.3.5 Independent

Component Analysis (ICA)

The step is entirely automatic. Once run, the .set files from the
previous step along with the selected bad channel indexes and label,
are iteratively loaded.

As a precaution, the code makes sure the labels exist in a given
dataset. If they do not correspond with the EEG’s channel labels
from the .set files, a warning message is issued. Assuming no errors,
the code excludes the selected bad channels before running ICA,
and finally computes ICA with the pop_runica EEGLAB function.
The code may take its time computing ICA for each .set file, and the
user may interrupt each individual ICA analysis by pressing the
interrupt button on the EEGLAB GUI.

Epoch Definition (Only for Task and HEP Datasets)

Optional Parameters for Epoch Definition:
• ‘epochRange’: Users can specify the time range of their epoch

windows of interest by inserting them as a vector (e.g., [1, 2]).

• ‘eventName’: Users can specify the name of an event by either
inserting them as a string, vector, cell, or integer.

This automatic step is exclusive to task or HEP datasets.
Epochs are defined and selected according to the input given by
the user in the optional parameters. If users did not signal this
window, a prompt will appear on the command window requiring
the user to input it. Epochs are then defined for each .set file in
iteration.
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Rejecting Epochs (Only for Task and HEP Datasets)

Optional Parameters for Rejecting Epochs:
• ‘jointProbSD’: Users can specify the threshold of the standard

deviation to consider something as an outlier in terms of joint
probability, which is set at 2.5 as a default. Users can insert the
time window as an integer (e.g., [1.5]) or simply leave empty
(i.e., []) if they do not wish to eliminate epochs based on joint
probability.

• ‘kurtosisSD’: Users can specify the threshold of the standard
deviation of kurtosis to consider something as an outlier,
which is set at 2.5 as default. Users can also insert a time window
as an integer (e.g., [1.5]) or simply leave empty (i.e., []) if they
do not want to eliminate epochs based on kurtosis.

This automatic step is exclusive to task or HEP datasets. After
epochs are defined in time windows according to the previous step,
they are discarded according to two possible methods: joint proba-
bility or kurtosis. Users can choose one or both methods, as well as
changing the criteria for rejecting epochs, according to each
method.

6.3.6 Component

Rejection

Optional Parameters for Component Rejection:
• ‘onlyBlinks’: Users can signal that they only want the BLINKER

method of noisy component rejection, in order to eliminate
blink components. Users must input it as a Boolean, by entering
‘1.’

The step is entirely automatic and picks up the noisy and ICA
components of the dataset files. Users can select upon three possi-
ble methods for noisy component rejection: IClabel, EyeCatch,
and/or BLINKER. IClabel identifies ocular and cardiac artifacts,
Eye catch identifies ocular artifacts, and BLINKER identifies blink
artifacts. The code executes both IClabel and EyeCatchmethods by
default. The preprocessed .set files are then saved iteratively, and the
rejected components are stored in a .mat file.

Optional Parameters for Removing Baseline
• ‘baselineRange’: Users can signal the time (start, end) in seconds

to be considered as baseline. Users must input it as a vector (e.g.,
[-1,1]).

The datasets from the previous step are loaded iteratively. If
users did not signal a baseline range as an optional parameter, the
code will automatically try to define it as the most negative point,
up to 0. If not, the code removes the baseline provided by the user.

A Pipeline for Large-Scale Assessments of Dementia EEG Connectivity Across. . . 243



Grand Average
In this optional automatic step, users can opt to perform a grand
average of the already preprocessed data, which is then stored
iteratively.

6.3.7 Bad Channel

Interpolation

The step is entirely automatic, and once run, the .set files with the
noisy components eliminated, and the .mat files with the selected
bad channel indexes and labels are picked up iteratively.

First, the code identifies non-EEG channels from the .mat file
and removes them from the corresponding .set file prior to com-
puting the interpolation. Then, bad channels are identified and
selected. Finally, the bad channels indices are identified and the
interpolation is run. If the bad channels were all non-EEG chan-
nels, a warning message is issued on the command prompt. In all
other cases, bad channels are interpolated with the pop_interp
function with a spherical approach. If a .set file did not have any
corresponding.mat structure with their bad channels, a warning is
issued on the command prompt.

The code is then finished for the preprocessing stage. A mes-
sage on the command window tells the user the number of files that
have been successfully preprocessed and asks the users to press any
key to continue through the normalization stage.

6.4 Normalization A message is issued on the command window showing where the
path where files were stored in the final preprocessing step and
which are going to be selected for normalization.

Users are then asked whether they wish to continue with a
normalization analysis over those files, by simply pressing either
‘y’ (yes) or ‘n’ (no). If users press ‘y,’ a message shows how many
files are ready to undergo normalization. Users are asked whether
that was the expected number of files by pressing any given key. If
not, they can press ‘q’ to exit.

Optional Parameters for Patient-Control Transformation:
• ‘controlLabel’: Users can indicate a label for their control sub-

jects (as seen in their participants.txt file) as a string (i.e: ‘CON’)
which is otherwise set as ‘CN’ as default.

• ‘minDurations’: Users can indicate the minimum duration
(in seconds) to consider a .set file by indicating it as an integer
(e.g., ‘120’ for 2 min). It is set as 240 s (4 min) as default.

• ‘normFactor’: Users can input the normalization factor desired
as a string value (i.e: ‘Z-Score’ (set as default), ‘UN-ALL,’
‘PER_CH,’ ‘UN_CH_HB,’ ‘RSTD_EP_Mean,’ ‘RSTD_E-
P_Huber,’ ‘RSTD_EP_L2’).

The first step of Normalization consists of a patient-control
normalization (labeled currently in the code as ‘Step 2,’ with a
previous source transformation step under construction).
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The code first stratifies the subjects per nationality/site (e.g.,
Argentina and Chile) and condition (Controls and remaining sub-
jects). The code immediately stratifies control subjects as those
being labeled as ‘CN’ in the participants.txt file. If no ‘CN’ files
are found, a message is issued on the command window in which
users can specify the words denoting their control subjects.

Users may also give said value as an optional parameter of
‘ControlLabel,’ signaling it as a String. Otherwise, if no warning
messages are issued, the code proceeds to compute normalization
tests for a given nationality, based on subjects’ condition. Thus, .set
files corresponding to each subject are loaded with the pop_loadset
function, as seen on the command Window. Once all control sub-
jects of one nationality are loaded, the remaining subjects are then
loaded.

Note
A warning message is issued on the command window when
subjects do not have a minimum duration of 240 s (4 min)—
This can be specified at the ‘minDurations’ optional parame-
ter, being considered too short for normalization. As such,
those files are not considered normalization for not having the
minimum number of points required. The user can also define
its own minimum duration required as an optional parameter.

Once all subjects have been picked up and the subjects that did
not comply with the minimum required of time points are
removed, normalization tests are computed for each channel. This
exact process is then repeated for subjects of the remaining nation-
alities until all nationalities in the given data set are analyzed. The
total number of files that have undergone normalization is dis-
played on screen, excluding the discarded files that had a short
time period.

6.5 Source

Transformation

Optional Parameters for Source Transformation:
• ‘BIDSmodality’: Users can input a string of the modality of the

data that will be analyzed. It is set as ‘eeg’ as default.

• ‘BIDStask’: Users can input a string for the type of task to be
analyzed. It is ‘rs’ by default.

• ‘newPath’: Users can input a string for the path in which the new
folders will be stored at. It is set at ‘databasePath/analysis_RS’
by default.

• ‘selectSourceTime’: Users can input a time window to transform
to a source level, by inputting it as a vector (e.g., [1, 2]). It is
empty by default.
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• ‘avgSourceTime’: Users can signal if they want to average the
selected time window by inputting it as a Boolean (‘1’). It is set
as ‘0’ by default.

• ‘sourceTransfMethod’: Users can indicate the method they want
to use to calculate a source transformation, by inputting it a
string (i.e: ‘BMA’, ‘FT_MNE,’ or ‘FT_eLORETA’). It is set as
‘BMA’ as default.

• ‘sourceROIatlas’: Users can indicate the atlas they wish to use, by
inputting it as a string. It is set at ‘AAL-116’ by default.

The Source Transformation Stage performs a source transfor-
mation from electrodes to source level using an average brain.

Users may opt between different methods to calculate source
transformation (by inserting it at the optional parameter of ‘source-
TransfMethod’): Bayesian Model Averaging (BMA) or otherwise
the eLORETA or Minimum Norm Estimate (MNE) methods,
both computed via the FieldTrip toolbox.

Note
We strongly recommend running the BMA method for HEP
or task signals, considering its potential to account for the
uncertainty of the other methods in tackling the inverse solu-
tion to source analysis, as well as counting with greater topo-
graphic power. The method can however, be costly for resting
state signals, taking time and space tolls to compute each file,
as well as consuming a big amount of space (around 600Gb
for 100 files- see Table 1). The eLoreta and MNEmethods are
considered less effective than BMA, but they do solve time
and space constraints for resting state signals, and we urge to
use them when performing analysis based on these methods.

6.5.1 Optional Time

Selection and Averaging

This step is optional and identical for all three methods. Users may
opt for a specific time window (in seconds) to compute analysis,
simply by specifying it into the ‘selectSourceTime’ optional parame-
ter. Additionally, the user can average the data within that time
window (or the whole record if no time window is given), using the
key ‘avgSourceTime’ parameter.

We hereby proceed to describe each possible method: BMA,
eLORETA, and MNE taking into account a single time point as an
illustrative example. The methods utilizing Fieldtrip (eLORETA
and MNE) are grouped together as user experience for both is
identical.
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BMA Method Optional Parameters for the BMA Method:
• ‘BMA_MCwarming’: Users can input the warming length of the

Markov Chain, by inputting it as an integer (i.e: ‘3000’). It is set
at 4000 as default.

• ‘BMA_MCsamples’: Users can input the number of samples
from the Monte Carlo Markov CHain sampler for source trans-
formation, by inputting it as an integer (i.e: ‘2000’). It is set at
3000 by default.

• ‘BMA_MET’: Users can indicate a method of preference for
exploring the models’ space by inputting it as a stringer. If
users signal ‘If MET == ‘OW,’ the Occam’s Window algorithm
is used. If users signal ‘If MET == ‘MC,’ the MC3 method is
used (this is set as default).

• ‘BMA_OWL’: Users can indicate an integer for the Occam’s
window lower bounds. ‘3’ indicated a very strong window,
‘20’ is a strong window, ‘150’ is a positive window, and ‘200’
is a weak window. It is set at 3 as default.

Step 1: Transforming Channels to Source (BMA)

A transformation of channels to source is first computed. A
warning message is displayed on the command window for resting
state signals, whereby users are recommended to run the Field Trip
method instead of the BMA method, in order to solve time and
space constraints. Users may then press the ‘y’ key to switch to the
eLORETA method or otherwise press any other key to continue
with BMA instead, whereby the .set files from step 0 with the
pop_loadset function are loaded.

For BMA, the field matrix (Ke) and the Laplacian matrix
(Le) are loaded, depending on the number of channels. As a note,
the code currently only supports files with 128 and 64 Biosemi
channel layouts. The function that performs transformation from
electrodes to source level is then executed. The function creates a .
txt file with source points and time, data is then reshaped according
to those values. An EEG-like structure is then created, where the
results of the source transformation will be stored. The results are
stored in a .mat file (and an image showing the Markov ChainEvo-
lution is also stored.

Step 2: Averaging Source to ROI (BMA).

Step 2 consists of an averaging of the source level by regions
defined by ROI, by means of the AAL-116 atlas. First, .mat files
with information from the previous step are loaded into the work-
space, the atlas is loaded and labels for each source point are created
by region. The step is entirely automatic and does not require any
user input, while users can check the command window for any
changes. As such, the .mat files from the previous step are loaded
into the workspace, and each source point is labeled by region, and
the ROInames are defined.
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FieldTrip Methods: MNE

and eLORETA

Optional Parameters:
• ‘FT_sourcePoints’: Users can indicate the desired number of

source points by indicating it as an integer (5124 or 8196).
5124 is defined as default, as it takes less memory.

• ‘FT_plotTimePoints’: Users can indicate if they wish to plot
anything at the source level on determined time points. It can
be an integer with a single time point in seconds to be visualized
(e.g., [5]) or a vector with a time window (e.g., [1.5]) that will
be averaged and visualized.

The code is computed in the same fashion for both FieldTrip
methods. The only difference relies on how they both use their
respective methods (MNE or eLORETA). User experience and
general code execution are identical and thus presented together.

Step 1: Transforming Channels to Source (FieldTrip)

Step 1 of source transformation consists of an automatic trans-
formation of channels to source. First, it picks up the files from the
previous step with the pop_loadset function. The code then checks
for coordinates of the electrodes in an .xyz file for a Biosemi of
128 channels. The code will thus look for said file in the given
dataset or otherwise create it if it doesn’t yet exist. The code then
performs surface source estimation. As such, it first transforms the
EEG structured data into Fieldtrip-readable data. It computes a
small preprocessing of data as a test case.

The code then defines the data that will enter the source
estimation by means of covariance of trials, in case data has multiple
trials. In a single-trial case, it doesn’t compute anything and just
assigns the data. Source transformation is then performed accord-
ing to the number of source points in the given file. Source com-
ponents are thus determined and electrodes are projected on the
brain surface. The results for each time point are then saved in a .txt
file, and also in a .mat file.

Step 2: Averaging Source by ROI (FieldTrip)

Step 2 of source transformation consists of an averaging of the
source by ROI. It is entirely automatic and computes an averaging
source by ROI using the ‘AAL-116’ atlas by default.

Users may otherwise indicate another atlas by inserting it as an
optional parameter in the ‘SourceROIatlas’ variable, as a key value.
The regions of the ROI atlas are loaded, while the 82 labels
corresponding to cortical regions are looked upon the atlas. The
new ROI data is then saved, taking into account times and names.
As an output, the average ROI data and names of regions are stored
in .txt files.
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Final Steps Source Transformation is completed once Step 2 is finished. The
command window will issue the number of subjects run at this
point for every step of source transformation, thus users are able
to check any errors or subjects that were not computed. The total
number of subjects after source transformation are then indicated,
and users can press any key to continue onto the next step, or
otherwise press ‘q’ to exit.

Connectivity Metrics

Optional Parameters for Connectivity Metrics:
• ‘BIDSmodality’: Users can input a string of the modality of the

data that will be analyzed. It is set as ‘eeg’ as default.

• ‘BIDStask’: Users can input a string for the type of task to be
analyzed. It is ‘rs’ by default.

• ‘newPath’: Users can input a string for the path in which the new
folders will be stored at. It is set at ‘databasePath/analysis_RS’
by default.

• ‘runConnectivity’: Users can indicate whether they wish to skip
this step by signaling it as ‘false,’ while it is set as ‘true’ as default.

• ‘connIgnoreWSM’: Users can indicate whether they want to run
or ignore the Weighted Symbolic Metrics (WSM) by signaling it
as ‘true.’ It is set as ‘false’ as default.

The step is entirely automatic, with no inputs needed from
users.

The code will first look for the .mat files containing the source
averaged by ROI from the previous step and load them into the
environment. Otherwise, if the code is loading files from a step
previous to source transformation, it will automatically look and
load the last run .set files.

Four connectivity metrics are calculated by default (with an
option to expand to 7 if the user wants to calculate computationally
expensive metrics traditionally used in fMRI—Weighted Symbolic
Metrics. Users can signal to include the WSM or ignore it by
inserting it at the optional parameter of ‘connIgnoreWSM’). The
calculation of connectivity metrics takes just a few seconds, after
which users are told the analysis is finished in the command win-
dow, and the same process repeats for the following files.

6.6 Classifier Optional Parameters for Connectivity Metrics:
• ‘BIDSmodality’: Users can input a string of the modality of the

data that will be analyzed. It is set as ‘eeg’ as default.

• ‘BIDStask’: Users can input a string for the type of task to be
analyzed. It is ‘rs’ by default.
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• ‘newPath’: Users can input a string for the path in which the new
folders will be stored at. It is set at ‘databasePath/analysis_RS’
by default.

• ‘runClassifier’: Users can indicate whether they want to run this
step by signaling ‘true’ or otherwise ignore it by signaling it
‘false.’ It is set as ‘true’ as default.

• ‘runFeatureSelection’: Users can opt to run a feature selection
with FDR correction prior to creating the model, by signaling it
as ‘true.’

• ‘classDXcomparison’: Users must indicate the diagnostics they
wish to compare by signaling it as a cell of 2 × 1.

• ‘classNumPermutations’: Users can indicate the number of per-
mutations they desire for statistical tests, by inserting it as an
integer. It is set at 5000 by default.

• ‘classSignificance’: Users can indicate a desired level of signifi-
cance by inserting it as an integer. It is set at 0.05 as default.

• ‘classCrossValsFolds’: Users can indicate the number of cross-
validation folds to use for the ROC curves, by setting it as an
integer. It is set as 5 as default.

The code is automatic. Before running the classifier, a feature
selection of the desired diagnostics to compare, is executed. The
feature selection is done on these diagnoses based upon permuta-
tions and false discovery rate (FDR) correction. As such, the code
will look for possible diagnoses in the dataset and show them on
screen for users to signal the diagnoses that they want to compare.
For example, users may want to compare a disease group (‘FTD’)
against controls (‘CN’). Users may indicate so by simply typing
each diagnosis, individually, in the command window. A message is
then issued on the command window, in which users are notified of
the analysis that will take place, indicating each condition and the
number of subjects present in each condition. Users can also indi-
cate the diagnoses to compare by inserting them in the optional
parameter of ‘classDXcomparison.’

Once the feature selection is performed, and the desired diag-
nostics are saved in a .csv file, the classifier is trained. The classifier is
implemented in Python, and called from Matlab. In the current
version, a XGBoost model is created using the XGBoost Python
package. Additionally, feature importance is determined using algo-
rithms such as SequentialFeatureSelector from the mlxtend Python
package, and SHapley Additive exPlanations (SHAP) from the
SHAP Python package. Additionally, ROC curves are created
using the sklearn Python package.

This step is potentially the only one that might require pro-
gramming knowledge from the user.
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Note
The code will designate 80% of files in a given condition as the
training set and 20% of files as the testing set. For that reason,
users are required to have at least 25 subject files per condition
in order to perform cross-validation. If fewer than 25 subjects
per diagnostic condition are given, users are instructed to
change the train/test split and the number of folders in the .
Ipynb python code if they want to continue (as the code is
constructed in Python and called from Matlab). For example,
if the user had 46 control files and 16 files of a diagnostic
condition (FTD), the user would be warned and advised to
change the criteria of cross-validation training and testing split
on the Python code. Here, the user can manually change said
parameters on the Python code to 70% (training) and 30%
(testing) to allow the analysis to proceed. Users are then
indicated to press the ‘y’ key in order to continue.

The classifier is then executed. First, a machine learning algo-
rithm is run, which differentiates between conditions/diagnosis
(e.g., FTD vs. Control). Note, it usually takes quite some time to
finish execution, lasting between 5 days to 1 week for a hundred
features if run on a standard desktop computer. The execution is
entirely automatic: The code will first look for a .csv file in which the
conditions to run are stored (e.g., FTD and control), with warning
messages being issued in the command window for the user if no
.csv files are found or multiple .csv files are located. After finishing,
users will be able to see the number of subjects run.

As an output from the classifier, users will be able to see three
figures, which will be readily displayed and stored on the directory
tree under the steps folder (‘classification’), denoting the sequential
forward selection, the ROC curve with the most important features
and the graphical display of features importance (see Subheading
3.2 for the interpretation and significance of the outputs).
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Chapter 12

Brain Predictability Toolbox

Sage Hahn, Nicholas Allgaier, and Hugh Garavan

Abstract

The Brain Predictability toolbox (BPt) is a Python-based library with a unified framework of machine
learning (ML) tools designed to work with both tabulated data (e.g., brain-derived, psychiatric, behavioral,
and physiological variables) and neuroimaging specific data (e.g., brain volumes and surfaces). The toolbox
is designed primarily for ‘population’-based predictive neuroimaging; that is to say, machine learning
performed across data from multiple participants rather than many data points from a single or small set
of participants. The BPt package is suitable for investigating a wide range of neuroimaging-based ML
questions. This chapter is a brief introduction to general principles of the toolbox, followed by a specific
example of usage.

Key words Machine learning, Python, Neuroimaging, Data science, Data visualization

1 Introduction

In general, the use of a toolbox such as Brain Predictability toolbox
(BPt) imposes a practical trade-off between flexibility and ease of
use. In the case of working with BPt, once the dataset and desired
type of analysis are supported, then a number of analysis steps can
be handled automatically, thus reducing opportunities for users to
make careless errors. Alternatively, if a specific analysis isn’t sup-
ported (e.g., deep learning classifiers), then BPt will be a poor
choice (see Chapter 16 for an example of deep learning).

BPt is designed to be generalizable to different storage and
computing requirements. In practice, data storage and computing
requirements will depend on both the dataset of interest as well as
predictive questions of interest. For example, performing machine
learning on surface-projected data directly may require relatively
large computational resources, but if the question or ML model of
interest is simple, it could be run on a personal computer in a few
hours. In general, BPt has been designed with single personal or
workstation computing in mind and the vast majority of situations
support this use case. However, this is not to say that BPt cannot be
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used by a more advanced user for more complex questions on large
cloud-based computing clusters. Most functions within BPt allow
for easy integration of multi-core processing to speed up potentially
time-intensive ML modeling tasks, which tends to allow
performing a greater range of analyses locally. Likewise, data stor-
age requirements will obviously vary when dealing with a single csv
file of a few hundred megabytes versus the raw fMRI files from a
study with 10,000 participants (20 TB+).

2 Software and Coding

BPt is a Python 3.7+ based package that is tested regularly across all
common operating systems (Windows, Mac, and Linux). Use of
this package will therefore at the minimum require some profi-
ciency and experience with Python and in setting up Python
libraries. Prior experience with the standard data science Python
libraries (e.g., pandas, numpy, scikit-learn) [see Resources] is
encouraged but not strictly required. Likewise, some prior back-
ground knowledge on both neuroimaging and machine learning is
expected as BPt tutorial material is not designed to be a user’s first
exposure to these topics. For new users, it is recommended that the
library be used within a computation notebook (e.g., Jupyter note-
book or Google Colab). These environments allow for an interac-
tive and iterative approach to coding which is highly recommended
when learning and exploring a new library or toolbox. Likewise,
most available tutorial material is provided in this base format.

3 General Method

3.1 Inputs Input data for the toolbox can take a wide range of forms, but
generally speaking include outputs from a typical neuroimaging
preprocessing pipeline (e.g., the example dataset used for this
chapter), plus target and nuisance variables. The easiest data to
work with are data already in tabular form (e.g., calculated mean
values per region of interest). That said, the toolbox is capable of
working with volumetric or surface projected structural or func-
tional MRI (sMRI and fMRI, respectively) data as well. Other
modalities, like EEG (electroencephalography), could also be ana-
lyzed using the toolbox, but in these cases, it may require additional
formatting (as EEG requires quite different preprocessing steps).

There are no specific guidelines in terms of choice of prepro-
cessing pipeline, or choice of parcellation size, atlas, voxel vs. vertex
with respect to working with BPt. Instead, as BPt is a general utility
toolbox, best practices with respect to all of these choices should be
taken in consideration to the broader prediction-based
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neuroimaging literature. For the most part, these decisions will
depend on the specific modalities employed as well as the predictive
target(s) of interest. That said, there are a number of benchmark
papers that address these questions empirically, including for
surface-based sMRI [1] and functional connectome [2].

A good way of conceptualizing the ‘readiness’ level of data for
machine learning is to consider any transformations that can be
computed based solely on a single data point (e.g., a participant’s
data) versus transformations that utilize information across the
entire dataset. That is, in most cases, any participant-level analysis
or transformations should be already applied prior to machine
learning. Importantly, the BPt toolbox provides support for some
of these common data preparation/processing steps, which
include: organization of the data, utilities for exploratory data
visualization, common transformations such as k-binning and
binarization, automatic outlier detection, information on missing
data, and other summary measures. This chapter describes use of
the interface to access common operations. Additional, more spe-
cific features exist as well (e.g., a built-in function to save a whole
table of descriptive variables straight to a .docx file and built-in
smart merging of index names; see Fig. 1).

3.1.1 Sample Size No specific minimum number of participants are required, but
when performing machine learning based experiments larger sam-
ple sizes are highly preferred (for a more detailed discussion on why
[3]).

3.1.2 Missing Data Missing data within predictive-based neuroimaging is a common
occurrence given the ‘messiness’ of real-world data. BPt includes
utilities both to identify (see Fig. 2) and purge existing datasets of
missing data or alternatively if necessary to impute values properly
within a machine learning pipeline (see Fig. 3). Supported strategies

Fig. 1 Example showing build in dataset function for visualizing input data as a collage of plots
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for imputation within a pipeline include mean and median imputa-
tion in addition to more complex strategies such as multiple rounds
of iterative imputation.

3.2 Data Structure BPt guides the user in how to structure and answer a question of
interest within a predictive framework. Given the inherent vastness
of this topic, it is important to note that there is no single ‘right’
way of doing things, and instead what we present here is a set of
general recommendations in which the underlying library has been
designed to follow.

3.2.1 Frame a Question The very first step is to frame a research question of interest in terms
of a prediction. For example, if our question of interest is to
investigate age-related changes in cortical thickness, then a simple
predictive re-framing could be: “how well can cortical thickness
predict a participant’s age?”. What if we had longitudinal data per
participant? Then maybe we could ask, how well does cortical
thickness predict age at time point 1, what about time point
2, and so on?

Fig. 2 Example of built-in function for providing information on patterns of loading missing data

Fig. 3 Screenshot of Imputer pipeline piece documentation
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Note
The key pieces of information to identify after composing a
question of interest are: What are the input variables to the
prediction? What variable(s) are being predicted? Further-
more, are there any other variables which might influence
this prediction in an undesirable way (i.e., potential con-
founding variables).

3.2.2 Prepare Data in

BPt

Once a question of interest has been identified, we load it into a
Dataset object (see Fig. 4), which is a Python class based on the
popular Pandas DataFrame. The key point here is that the Dataset
object is inherently designed to enforce an explicit organization
structure based on the question of interest. The idea is that each
column of the Dataset class—where data points within the column
are either single values or external references to (e.g., to a saved
sMRI file)—are given a role: ‘data’, ‘target’ or ‘non input’. These
roles correspond to the variables used as input to a machine
learning algorithm (‘data’), the target variables that are predicted
(‘target’) and everything else, including the potential confounding
variables (‘non input’).

There are some pre-modelling steps that, depending on the
dataset and the question, might also be explored at this stage, and
can be performed using the Dataset object directly. For example,
users may want to: generate exploratory plots of the different
features in the dataset, remove any data based on status as an
outlier, decide if missing data should be kept and imputed, or
dropped, apply any pre-requisite transformations that should be
applied to the data? (e.g., conversion from strings ‘Male’, ‘Female’
to 0 and 1’s).

Fig. 4 Example of how data saved in a csv can be quickly loaded, and
information around which columns are input data and which are target
variables quickly set. Likewise, this example shows how columns can be
easily transformed, in this case the variable ‘sex’ is binarized
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3.2.3 Define a ML

Pipeline

Amachine learning pipeline is not just the choice of MLmodel, it is
the full set of transformations to the data prior to input to an ML
algorithm. This is, in a lot of ways, the area with the most researcher
degrees of freedom, as we can think of both the presence or absence
of a transformation, as well as the choice of model and that model’s
parameters as all ‘hyper-parameters’ of the broader ML pipeline.
These could be choices like what brain parcellation to use, to
z-score each feature or not, which type of fMRI connectivity metric
to use, the type of ML estimator, the parameters associated with
that estimator, etc. The number of permutations grows quite rap-
idly, so in practice how should the researcher decide? We recom-
mend treating each possible ‘hyper-parameter’ according to the
following set of options.

Note
If a parameter is important to the research question, test and
report the results by each possible value or a reasonable set of
values of interest that this parameter might take. For example,
let’s say we want to know how our prediction varies by choice
of parcellation, so we repeat our full ML experiment with
three different parcellations, and report the results of each.
Otherwise, if not directly important or related to the question
of interest the researcher can either: (1) fix the value ahead of
time based on a priori knowledge or best estimate or (2) assign
the value through some nested validation strategy (e.g., train-
validation/test split or nested K-fold). In general, option 1 is
preferable, as it is simpler to both implement and conceptual-
ize fixing a value ahead of time. That said, setting values
through nested validation can be useful in certain cases, for
example, it is often used for setting hyper-parameters specific
to an ML estimator. In other words, option 2 is used as a way
to try and improve down-stream performance, with an
emphasis on ‘try,’ as it is difficult in practice to correctly
identify the choices which will benefit from this approach.

While designing an ML pipeline can be daunting and introduce
lots of researcher degrees of freedom, it is also the area most
amenable to creativity. As long as proper validation, as discussed
in the next section, is kept in mind, testing and trying new/differ-
ent pipelines can be an important piece of ML modeling. This
becomes especially important when the researcher starts to consider
ML modeling in the context of potential confounds, where poten-
tial corrections for confounds are themselves steps within the pipe-
line. That said, especially as a newer researcher, it may be a good
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idea to start by replicating previous strategies from the literature
that have been found to work well. Default pipelines can be easily
specified within BPt (see Fig. 5) or alternatively, we can easily
customize the creation of pipelines (see Fig. 6).

3.2.4 Select and Evaluate

According to a Validation

Strategy

In order for the results from a ML-based predictive experiment to
be valid, some sort of cross or external validation is essential. So
how do we decide between say a training-test split between two
matched samples and K-fold cross validation on the whole sample?
In short, it depends. There is no silver bullet that works for every
scenario, but the good news is that for the most part it really
shouldn’t matter! The most important element to properly using
an external validation strategy isn’t between threefolds versus ten-
folds, but instead is in how the chosen strategy is used. That is to
say, the validation data should only be used in answering the main
predictive question of interest. If instead the current experiment
isn’t related to the primary research question, that is to say, the
result will not be reported, then the validation data should not be
used in any way. Let’s consider an explicit example of what not
to do: Let’s say we decide to use a threefold cross validation
strategy, predicting age from cortical thickness, and we start by
evaluating a simple linear regression model, but it doesn’t do very
well. Next, we try a random forest model, which does a little better,
but still not great, so we try changing a few of its parameters, run
the threefold cross validation again, change a few more parameters,
and after a little tweaking eventually get a score we are satisfied
with. We then report just this result: “a random forest model
predicted age, R2=XXX.” The issue with the example above is,
namely, one of over-using the validation data. By repeatedly testing
different models with the same set of validation data, be it through
K-fold or a left-aside testing set, we have increased our chances of
obtaining an artificially high performance metric through chance
alone (i.e., this is a phenomenon pretty similar in nature to
p-hacking in classical statistics). Now in this example the fix is fairly

Fig. 5 Screenshot showing how a default pipeline can be easily selected when defining a pipeline within an
evaluation loop, in this case a default pipeline based on a regularized ridge regression

Fig. 6 Customized creation of pipelines
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easy. If we want to perform model selection and model hyper-
parameter tuning, we can, but as long as both the model selection
and hyper-parameter tuning are conducted with nested validation
(e.g., on a set-aside training dataset). Fundamentally, it depends on
what our ultimate question of interest is. For example, if we are
explicitly interested in the difference in performance between dif-
ferent ML models, then it is reasonable to evaluate all of the
different models of interest on the validation data, as long as all of
their respective performances are reported.

There are of course other potential pitfalls in selecting and
employing validation strategies that may vary depending on the
underlying complexity of the problem of interest. For example, if
using multi-site data, there is a difference between a model general-
izing to other participants from the same site (random split k-fold
validation) versus generalizing to new participants from unseen
sites (group k-fold validation where site is preserved within fold).
While choice of optimal strategy will vary, BPt provides an easy
interface for employing varied and potentially complex validation
strategies, such as internal cross-validation (see Fig. 7) or leave-site-
out (see Fig. 8).

4 Interpreting and Reporting Results

Results from every machine learning based evaluation in BPt return
a special results object called ‘EvalResults’ (see Fig. 9). This object
stores by default key information related to the conducted experi-
ment, which allows the user to then easily access or additionally
compute a range of useful measures. Listed below are some of the
available options.

Base common machine learning metrics are provided, across
regression, binary, and multi-class predictions, for example R2,
negative mean squared error, ROC AUC (Receiver Operating
Characteristic Area Under Curve) [see Glossary], balanced accu-
racy, and others. In the case of employing a cross-validation strategy
like K-fold, these metrics can be accessed either per fold, or aver-
aged across multiple folds (or even the weighted average across
folds of different sizes).

Fig. 7 Example of defining a cross-validation strategy where a three-fold
validation is performed, and further the ratio of ‘Males’ and ‘Females’ as
defined in variable ‘sex’ are preserved within every training and validation set

Fig. 8 Example showing how a validation strategy for performing leave-site-out
cross validation can be easily defined
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Raw predictions made per participant in the validation set
(s) can be accessed in multiple formats (see Fig. 10 for an example)
and can be useful in performing further analysis beyond those
implemented in the base library (e.g., computing new metrics or
feature importances).

In the case that the underlying machine learning model natively
supports a measure of feature importance (e.g., beta weights in a
linear model), then these importances can be directly accessed (see
Fig. 11). Additionally, feature importances can be estimated
regardless of underlying pipeline through a built-in permutation-
based feature importance method. When working with neuroim-
aging objects directly (e.g., volumetric or surface representations of
the data), users can back-project feature importances into their
original space.

Fig. 9 Example showing a string representation of an EvalResults object, with information on saved attributes
and methods

Fig. 10 Example showing how predictions can be accessed from the results
object
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The results of a single evaluation, regardless of cross-validation
method, can be investigated further in order to ask questions
around the statistical significance of results and/or the potential
influence of confounds on results. One of the most powerful tools
for this type of analysis is a permutation test, wherein the analysis is
repeated but with the target labels shuffled. An important extension
to this base method is the ability to restrain the shuffling of target
labels according to an underlying group or nested group structure
(see Fig. 12 for an example).

Another available method related to probing the significance of
results, is the ability to statistically compare between two and more
similar results objects, that perhaps vary on choice of a meaningful
hyper-parameter. It can also be useful in some instances to visualize
the predictions made in other ways, for example, through ROC
plots from a binary or multi-class analysis, or plots showing the
residuals from regression prediction. Feature importances from BPt
are further designed to be easily visualized through the related
python package, from the same maintainers as BPt, bp-neurotools
(see Fig. 13). This package contains one-line automatic plotting
functions that handle a number of different cases (e.g., plotting
ROIs, brain surfaces, brain volumes, or collages of different
combinations).

Fig. 11 Example showing how averaged feature importances can be quickly
accessed

Fig. 12 Example showing how a constrained permutation test can be performed, where target labels are only
permuted for participants with the same sex label

Fig. 13 Example code, for plotting feature importances from ROIs automatically
onto a set of brain surfaces
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When working with neuroimaging data files directly (e.g.,
performing machine learning on surfaces), BPt includes utilities
that allow the user to back-project feature importances back into
the original native space. This can be useful, along with the already
mentioned neuroimaging specific plotting utilities, for visualizing
results.

Note
When it comes to presenting a final set of results within a
manuscript or project write up, there is no one-size fits all
solution. Instead, how one reports results will depend funda-
mentally on the question(s) of interest. In practice, the typical
advice is that all metrics from experiments related to questions
should be reported. Likewise, all related experimental config-
urations tested should also be reported, the key point being
that the user should do their best to accurately and fairly
present their results. As tempting or desirable as publishing a
very accurate classifier may be, authors should take care not to
overstate their findings. This principle holds in the context of
null findings as well, where it is valuable to highlight the areas
where predictive models fail.

5 General Pitfalls

There are of course general pitfalls to be aware of when performing
any type of analyses on observational data, which are not specific to
this library itself but are prudent to keep in mind. Perhaps the most
general is that despite machine learning, deep learning, or other
variations, results will typically be correlational, not causal, in
nature.

While machine learning can be a useful tool for identifying null
findings, for example when a model is not predictive, the nature of
predictive modeling means we cannot ever be fully confident. In
other words, just because one model (or full pipeline/set of steps)
isn’t predictive does not mean that another one may produce a
positive result. In practice, it is typically sufficient in the case of null
findings to show that a representative range of pipelines all fail to
predict the outcome.

The over-use of cross-validation or ‘double-dipping’ is a par-
ticularly insidious and sometimes hard to detect issue within
machine learning and the broader literature [4]. These types of
mistakes are often responsible for overly optimistic or inflated
accuracy. Further, the conceptual difficulties with employing
cross-validation correctly can multiply in the case of nested cross-
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validation, so potential users should be very careful if attempting to
implement a custom-designed cross validation scheme. The cleverly
titled “I tried a bunch of things: The dangers of unexpected over-
fitting in classification of brain data” provides a good, expanded
description on this issue more broadly [5].

Be wary of results that look ‘too’ good. There are many differ-
ent mistakes in machine learning which can lead to over-confident
results, including problems with the data, mis-using cross-valida-
tion, and a whole host of other tricky issues. When encountering a
situation like this, the best course of action is typically to perform
small checks (building them into analysis code, whenever possible).
These include little things such as printing the shape of a dataset, or
maybe performing some assertion on the expected distribution of
variables (e.g., confirm values for age in years are greater than 0 and
less than 100). These types of checks are generally low effort and in
the long run can be helpful in detecting small but disastrous bugs.

Interpreting, and in some cases overinterpreting, feature
importances is a common problem. In practice, different measures
of feature importance may have different drawbacks and con-
straints, and it is therefore a good idea to make sure one first
understands a given importance’s potential limitations. For exam-
ple, in the case of multivariate linear models we refer readers to the
excellent tutorial made available by scikit-learn. Hooker et al. [6]
outline well other potential issues in interpreting some other com-
mon formulations of feature importance [6]. A more general dis-
cussion around interpretability in machine learning by Kaur et al.
[7] may also be of interest [7].

6 Step-by-Step Example https://colab.research.google.com/drive/1vFGw8HtpDeLCb
DmYUiLKwa5JQwsiiUnF?usp=sharing

Intro/Setup
Within this example notebook, we will investigate as our test
question of interest: Can cortical thickness ROIs predict
participant age?

First though, let’s download the brain predictability tool-
box and additional neurotools package to this collab instance.

Note running this cell this first time will install and then
crash the instance, after this we can just run it as normal.

try:

import BPt as bp

except ImportError:

!pip install brain-pred-toolbox

(continued)
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!pip install bp-neurotools

# We need to force a restart of the runtime/kernel

# because of the version of matplotlib we are using

exit()

This example is designed to be run from the already
prepared quick_start file, which went through a few simple
steps to combine separately saved thickness ROIs into a single
file, as well as to add age and sex columns. We will download
this file to this instance directly, now.

!wget https://raw.githubusercontent.com/sahahn/methods_-

series/master/ds002790/quick_start.csv

--2022-10-31 17:01:10--https://raw.githubusercontent.

com/sahahn/methods_series/master/ds002790/quick_start.

csv

Resolving raw.githubusercontent.com (raw.githubusercon-

tent.com)... 185.199.108.133, 185.199.109.133,

185.199.110.133, ...

Connecting to raw.githubusercontent.com (raw.githubuser-

content.com)|185.199.108.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 304024 (297K) [text/plain]

Saving to: ‘quick_start.csv.1’

quick_start.csv.1 0%[ ] 0 --.-KB/s quick_start.csv.1

100%[===================>] 296.90K --.-KB/s in

0.02s

2022-10-31 17:01:10 (13.8 MB/s) - ‘quick_start.csv.1’

saved [304024/304024]

Preparing Our Dataset
As a first step, we will prepare our data into a BPt Dataset

object. If you are already familiar with the python library
pandas, then you might notice that this object looks awfully
similar to the pandas DataFrame object – and you would be
right! The Dataset class is built directly on top of the Data-
Frame class, just adding some extra functionality/special
behavior for working with the BPt.

In this minimal example, this step will be rather simple.
There are 3 different ‘roles’ that columns within our Dataset
can take. The first is called ‘data,’ which by default every
loaded column will be specified as, these are going to be our
features that are used to predict some variable of interest (The
X variable in a scikit-learn style setup). The second key role is

(continued)
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‘target,’ which is going to be any of our feature(s) which we
want to predict (using the columns as input variables). The
last is ‘non input’ which as the name suggests are any variables
which we do not want to ever use directly as an input/data
variable. In this example, we will treat both age and sex as
targets, and not use the ‘non input’ role.

Here we load data directly from a prepared csv, which
gives us a BPt Dataset object. In loading the csv, we also
specify a series of additional arguments, these are the file
paths of the csv, which column we want to be treated as the
index, then also which columns we want in different roles
(where remember that by default every loaded variable is of
role ‘data’ unless otherwise specified).

import BPt as bp

# Load

data = bp.read_csv(’quick_start.csv’,

index_col=’participant_id’,

targets=[’age’, ’sex’])

# Set sex as a binary variable

data = data.to_binary(’sex’)

# Show the first five rows of our Dataset

data.head()

lh_G&S_frontomargin_thickness lh_G&S_occipital_inf_th-

ickness \

participant_id

sub-0001 1.925 2.517

sub-0002 2.405 2.340

sub-0003 2.477 2.041

sub-0004 2.179 2.137

sub-0005 2.483 2.438

lh_G&S_paracentral_thickness lh_G&S_subcentral_thick-

ness \

participant_id

sub-0001 2.266 2.636

sub-0002 2.400 2.849

sub-0003 2.255 2.648

sub-0004 2.366 2.885

sub-0005 2.219 2.832

(continued)
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lh_G&S_transv_frontopol_thickness \

participant_id

sub-0001 2.600

sub-0002 2.724

sub-0003 2.616

sub-0004 2.736

sub-0005 2.686

lh_G&S_cingul-Ant_thickness lh_G&S_cingul-Mid-An-

t_thickness \

participant_id

sub-0001 2.777 2.606

sub-0002 2.888 2.658

sub-0003 2.855 2.924

sub-0004 2.968 2.576

sub-0005 3.397 2.985

lh_G&S_cingul-Mid-Post_thickness \

participant_id

sub-0001 2.736

sub-0002 2.493

sub-0003 2.632

sub-0004 2.593

sub-0005 2.585

lh_G_cingul-Post-dorsal_thickness \

participant_id

sub-0001 2.956

sub-0002 3.202

sub-0003 2.984

sub-0004 3.211

sub-0005 3.028

lh_G_cingul-Post-ventral_thickness ... \

participant_id ...

sub-0001 2.925 ...

sub-0002 2.868 ...

sub-0003 2.972 ...

sub-0004 2.428 ...

sub-0005 3.361 ...

(continued)
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rh_S_postcentral_thickness \

participant_id

sub-0001 2.038

sub-0002 1.882

sub-0003 2.066

sub-0004 1.930

sub-0005 1.938

rh_S_precentral-inf-part_thickness \

participant_id

sub-0001 2.425

sub-0002 2.513

sub-0003 2.410

sub-0004 2.241

sub-0005 2.445

rh_S_precentral-sup-part_thickness rh_S_suborbi-

tal_thickness \

participant_id

sub-0001 2.324 2.273

sub-0002 2.429 2.664

sub-0003 2.579 3.494

sub-0004 2.296 3.092

sub-0005 2.218 3.712

rh_S_subparietal_thickness rh_S_temporal_inf_thickness \

participant_id

sub-0001 2.588 2.548

sub-0002 2.676 2.220

sub-0003 2.375 2.625

sub-0004 2.641 2.622

sub-0005 2.360 2.402

rh_S_temporal_sup_thickness \

participant_id

sub-0001 2.465

sub-0002 2.291

sub-0003 2.497

sub-0004 2.487

sub-0005 2.442
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rh_S_temporal_transverse_thickness age sex

participant_id

sub-0001 2.675 25.50 1

sub-0002 2.714 23.25 0

sub-0003 2.674 25.00 0

sub-0004 2.556 20.00 0

sub-0005 1.864 24.75 1

[5 rows × 150 columns]
There are other steps we could potentially perform here as

well, e.g., let’s look to see if there are any extreme outliers.
Like you can find other available options for different com-
mon encodings or filtering.

data = data.filter_outliers_by_std(scope=’float’,

n_std=10)

data.shape

(224, 150)

We can see that no data was dropped with a strict filter of
10 standard deviations. We can also confirm before moving on
that there is no missing data in this prepared dataset.

# If there were any missing data, this would print
something

data.nan_info()
Visualize Features
BPt includes a few different utilities for easy visualizations,

in particular, our Dataset class has some built in plotting
functions. In the example below, we specify what variables/
columns we want to plot with a special scope argument. We
can see the distributions of variables with plotting methods
plot and plots.

# Show the targets and a random ROI

ex_roi = list(data)[0]

data.plots(scope=[’target’, ex_roi])

(continued)
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Another built in plotting option we can use is for visualiz-
ing bi-variate relationships between variables, with plot_bivar.
Note that internally these plotting functions make use the
library seaborn which is addition to matplotlib for creating
more complex out of the box plots.

# Plot age vs sex and the roi

data.plot_bivar(scope1=’age’, scope2=[’sex’, ex_roi])
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Machine Learning

Next, we will jump in directly to a minimal machine
learning example. In this case, our question of interest is can
our thickness ROIs predict age, which we have already setup
within our dataset by virtue of specifying all cortical thickness
ROI’s as role=‘data’ and age with role=‘target,’ though since
we have two loaded targets, we could also optionally make
sure that age is predicted by passing target=‘age.’

To run the experiment itself, we are going to use the
evaluate method from BPt. This method allows us to perform
a number of different ML evaluations and can be customized
according to a large number of different parameters. In this
case though, we are going to provide the bare minimum input
needed, and let the default settings take care of
everything else.

In particular, we specify that we want to use a default ML
pipeline from BPt called ‘ridge_pipe’ which is a pre-defined
pipeline based on a regularized ridge regressor w/nested
hyper-parameter search, and also we let the function know
our dataset.

results = bp.evaluate(pipeline=’ridge_pipe’, dataset=da-

ta, target=’age’)

Predicting target = age

Using problem_type = regression

(continued)
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Using scope = all (defining a total of 148 features).

Evaluating 224 total data points.

{"version_major":2,"version_minor":0,"model_i-

d":"66a13cc8677948f583ebc060aec166c4"}

Training Set: (179, 148)

Validation Set: (45, 148)

Fit fold in 1.8 seconds.

r2: 0.1416

neg_mean_squared_error: -3.27

Training Set: (179, 148)

Validation Set: (45, 148)

Fit fold in 1.8 seconds.

r2: 0.1444

neg_mean_squared_error: -2.19

Training Set: (179, 148)

Validation Set: (45, 148)

Fit fold in 1.7 seconds.

r2: 0.1131

neg_mean_squared_error: -3.44

Training Set: (179, 148)

Validation Set: (45, 148)

Fit fold in 1.8 seconds.

r2: 0.0944

neg_mean_squared_error: -2.66

Training Set: (180, 148)

Validation Set: (44, 148)

Fit fold in 5.6 seconds.

r2: 0.0198

neg_mean_squared_error: -2.59

We can see from the verbose output above that five differ-
ent training and validation sets was evaluated. This is because
the default cross-validation behavior is to run a K-Fold cross
validation with 5 folds.

(continued)
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In essence that brief example was designed to be as
implicit as possible or mostly rely on default values. That
said, we could run the same exact evaluation, but this time
explicitly providing a number of the default arguments as:

bp.evaluate(pipeline=’ridge_pipe’, dataset=data

target=’age’, scorer=[’r2’, ’neg_mean_squared_error’],

scope=’all’, subjects=’all’,

problem_type=’regression’,

n_jobs=1, random_state=1, cv=5,

progress_bar=True, eval_verbose=1)

Next, let’s look at the returned results object, an instance
of EvalResults which we saved in variable results.

results
EvalResults
------------
r2: 0.1027 ± 0.0454
neg_mean_squared_error: -2.83 ± 0.4594
Saved Attributes: [’estimators’, ’preds’, ’timing’, ’estima-

tor’, ’train_subjects’, ’val_subjects’, ’feat_names’, ’ps’,
’mean_scores’, ’std_scores’, ’weighted_mean_scores’,
’scores’, ’fis_’, ’coef_’, ’cv’]

Available Methods: [’to_pickle’, ’compare’, ’get_X_trans-
form_df’, ’get_inverse_fis’, ’run_permutation_test’, ’get_-
preds_dfs’, ’subset_by’, ’get_fis’, ’get_coef_’,
’permutation_importance’]

Evaluated With:
target: age
problem_type: regression
scope: all
subjects: all
random_state: 1
This object saves by default a large amount of potentially

useful information from the experiment. This includes the
mean evaluation metrics, actual estimator objects, predictions
made, information on feature importance, and more.

For example, we can look at the more ‘raw’ object of what
exactly we just ran.

results.estimator

BPtPipeline(steps=[(’mean float’,

ScopeTransformer(estimator=SimpleImputer(), inds=Ellip-

sis)),

(’median category’,
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ScopeTransformer(estimator=SimpleImputer(strategy=’me-

dian’), inds=[])),

(’robust float’,

ScopeTransformer(estimator=RobustScaler(quantile_range=

(5, 95)), inds=Ellipsis)),

(’one hot encoder category’,

BPtTransformer(estimator=OneHotEncoder(handle_unknow...

BPtModel(estimator=NevergradSearchCV(estimator=-
Ridge(max_iter=100, random_state=1, solver=’lsqr’), para-
m_distributions={’alpha’: Log(lower=0.001,
upper=100000.0)}, ps={’cv’: BPtCV(cv_strategy=CVStrat-
egy(), n_repeats=1, splits=3, splits_vals=None),
’cv__cv_strategy’: CVStrategy(), ’cv__cv_strategy__groups’:
None, ’cv__cv_strategy__stratify’: None, ’cv__cv_strategy__-
train_only_subjects’: None, ’cv__n_repeats’: 1, ’cv__only_-
fold’: None, ’cv__random_state’: ’context’, ’cv__splits’:
3, ’dask_ip’: None, ’memmap_X’: False, ’mp_context’:
’loky’, ’n_iter’: 60, ’n_jobs’: 1, ’progress_loc’: None, ’ran-
dom_state’: 1, ’scorer’: make_scorer(r2_score), ’search_on-
ly_params’: {}, ’search_type’: ’RandomSearch’, ’verbose’:
0, ’weight_scorer’: False}, random_state=1),
inds=Ellipsis))])

Yikes, that’s a handful... another way of looking at the
pipeline we ran is to look at it in the BPt pipeline object syntax
rather than the raw scikit-learn style.

Essentially when we pass ‘ridge_pipe’ as our pipeline, it
will grab some default code from BPt.default.pipelines, we
can also import it directly.

from BPt.default.pipelines import ridge_pipe

ridge_pipe

Pipeline(steps=[Imputer(obj=’mean’, scope=’float’),

Imputer(obj=’median’, scope=’category’), Scaler(obj=’-

robust’),

Transformer(obj=’one hot encoder’, scope=’category’),

Model(obj=’ridge’,

param_search=ParamSearch(cv=CV(cv_strategy=CVStrategy

()),

n_iter=60),

params=1)])

As a careful user might note that in this case a number of
these steps are actually redundant, e.g., we have no missing
data, so no need for imputation and we have no categorical
data, so no need for one hot encoding. The beauty here is that
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if not needed, or if out of scope given a certain input, these
pipeline steps are just skipped. This is helpful for designing
re-usable pipelines, that are robust to different types of inputs
(e.g., includes categorical variables or not).

We can also look at some other options available when
working with a result’s object, for example, viewing the raw
predictions.

results.get_preds_dfs()[0]

predict y_true

participant_id

sub-0001 21.909845 25.50

sub-0005 22.126259 24.75

sub-0012 21.909031 22.75

sub-0017 21.716770 20.50

sub-0019 22.436428 21.25

sub-0020 22.145191 20.00

sub-0029 22.262978 21.75

sub-0030 21.805216 20.50

sub-0032 22.008379 20.50

sub-0034 22.045389 24.75

sub-0035 22.154486 23.25

sub-0036 22.001040 24.00

sub-0039 22.097433 22.25

sub-0040 21.570295 19.75

sub-0045 22.572697 25.00

sub-0052 21.528109 19.00

sub-0059 21.977768 23.25

sub-0063 22.722687 25.25

sub-0068 21.829220 22.25

sub-0070 22.035213 18.75

sub-0074 21.457249 20.25

sub-0079 22.089703 20.25

sub-0085 21.702505 23.00

sub-0086 21.735174 21.00

sub-0092 22.166224 21.50

sub-0100 22.488585 23.75

sub-0103 21.614632 21.50

sub-0107 21.745026 19.25

sub-0108 21.288305 21.25

sub-0120 22.015606 22.75

sub-0121 21.495790 21.75

sub-0125 22.300081 23.00

sub-0152 22.030699 23.75

sub-0153 21.711060 19.00

sub-0156 21.993868 20.75
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sub-0161 21.311602 23.50

sub-0163 22.200386 22.25

sub-0167 21.918657 24.75

sub-0169 21.757229 25.00

sub-0188 22.429842 23.75

sub-0189 21.426121 20.50

sub-0192 21.896299 22.25

sub-0196 21.228672 19.25

sub-0198 22.514311 25.00

sub-0204 21.584047 19.75

Visualizing Results
Let’s say we want to look at feature importances. Because

the model we ran was a regularized ridge regression, the
importances we are going to be looking at are the beta
weights from the model. Further, because we ran a 5-fold
CV, we want to look at the beta weights as averaged across
each of our 5 models:

fis = results.get_fis().mean()

fis

lh_G&S_cingul-Ant_thickness 0.041987

lh_G&S_cingul-Mid-Ant_thickness -0.107472

lh_G&S_cingul-Mid-Post_thickness -0.115151

lh_G&S_frontomargin_thickness 0.022932

lh_G&S_occipital_inf_thickness -0.003825

...

rh_S_suborbital_thickness -0.033135

rh_S_subparietal_thickness -0.026897

rh_S_temporal_inf_thickness 0.008185

rh_S_temporal_sup_thickness -0.004152

rh_S_temporal_transverse_thickness -0.080884

Length: 148, dtype: float32
Next, let’s plot our results. For this, we will use an ‘auto-

magical’ plotting function, plot, from the library neurotools
(a library designed to complement BPt, but with a less ML
focus).

from neurotools.plotting import plot

plot(fis)

Downloading latest neurotools_data to/root/neurotools_da-

ta

Downloaded data version = 1.2.5 complete!

Current version saved at: /root/neurotools_data/neuro-

tools_data-1.2.5/data
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If you move this directory, make sure to update saved

location in data ref at /usr/local/lib/python3.7/dist-

packages/neurotools/data_ref.txt.

This plotting function tries to basically automate every-
thing. This includes, as an important caveat, an automatic
conversion from ROI names to their associated parcellation –
which for now only supports a small number of underlying
parcellations, including of course our current freesurfer based
destr. parcellation.

Next, we will plot the same feature importances again, but
this time go a little further to add some customization. We
will customize here by adding a user-defined threshold in
which to not show results under and also go a little deeper
and add it as a part of a collage of plots. We will also save the
figure with matplotlib.

import matplotlib.pyplot as plt
from neurotools.plotting import plot_bars

# Initialize two subplots on the same row

fig, axes = plt.subplots(nrows=1, ncols=2,

figsize=(18, 6),

gridspec_kw={’wspace’: 0})

# Share threshold
threshold = .1
# Make a bar plot, with fi values before each fold
plot_bars(results.get_fis(), threshold=threshold, ax=axes

[0])
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# Use the same plot as before, but with some extra
arguments

plot(fis,

threshold=.1,

space=’fsaverage5’, # Note could change to fsaverage for

higher resolution

ax=axes[1]

)

# Add a title to the whole figure

plt.suptitle(’Predict Age - Avg. Beta Weights’, font-

size=22)

plt.savefig(’example.png’, dpi=100)

Permutation Test

There are of course other useful things we can do with this
result’s object. One useful one is to be able to easily run
permutation tests as a way of estimating the significance of
our results. In the context of results generated from cross-
validation and if significance tests are desired, than permuta-
tion based methods are preferred.

While this is useful, we can also easily extend this idea with
a powerful extension, that is, constraining the permutations in
a meaningful way. For example, we will run 10 permutations,
but with the added specification that values within the target
only be allowed to be swapped with other participants of the
same sex. Now what we are testing is a more specific null
model, one where any potential sex-age effects will be pre-
served within our null distribution. In this version, we are
essentially testing to see if sex effects are driving our observed
R2. If the null dist mean is still the same as before, it is likely
not, but if it is higher, than to some degree it might be. This
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type of constrained permutation test is especially useful with
multi-site data, where a variable representing site is passed.

p_values, null_values = results.run_permutation_test

(n_perm=10,

blocks=data[’sex’], within_grp=True,

plot=True)

Other ML Models

There are plenty of other choices for MLmodels we could
have used besides the regularized linear ridge regression, even
while staying within the default pipelines made available by
BPt. That said . . .

Testing a bunch of different models is a common area
where essentially too many researcher degrees of freedom are
often introduced. In order for the results from a ML-based
predictive experiment to be valid, some sort of cross or exter-
nal validation is essential. In this example, we have used a
5-fold cross-validation on the entire available dataset. What
that means in practice is that the only ML experiments we
want to run this full 5-fold cross validation on, are those
which are directly related to our main question of interest –
or in other words – we should be reporting any results which
we test using this full 5-fold cross validation.

So let’s say we do test multiple models using this full
5-fold CV. Let’s test additionally the default elastic-net
based pipeline and the default gradient boosting based pipe-
line. To do this, we will use an object from BPt called
Compare which allows the same evaluate function from earlier
to perform a comparison between a few different options.

compare_pipes = bp.Compare([’ridge_pipe’, ’elastic_-

pipe’, ’gb_pipe’])
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all_results = bp.evaluate(pipeline=compare_pipes,

dataset=data, eval_verbose=-2, n_jobs=1)

all_results.summary()

In this case, now that we have run and tested three
different models, we have a perfect example of what not to
do, which is, just reporting the ridge regression results. Or
more broadly speaking, just reporting the best performing
results. Instead, if we were reporting this result in a paper or
write-up, we NEED to include information related to all of
the experiments we ran, if those experiments made use of our
main validation strategy! Not reporting this information is
similar to p-hacking.

Let’s say though we don’t want to have choice of ML
model fill up our results, but we still want to find a high
performing model. One common strategy for this is done
with nested cross-validation, the easiest being a front-end
global train-test split. I’ll show a quick example of that
below (again under the assumption that this was done
INSTEAD of what we already did in this notebook).

# Make a copy of our dataset

data_tr_test = data.copy()

# Split it into train and test sets

data_tr_test = data_tr_test.set_test_split(size=.2, ran-

dom_state=4)

data_tr_test

Re-run the same compare style analysis from before, but
now with subjects = ‘train.’ So, explicitly, in this alternate
analysis we are performing 5-fold CV, but only on the subset
of subjects we labelled as part of the training set.

all_results = bp.evaluate(compare_pipes, dataset=da-

ta_tr_test,

subjects=’train’, eval_verbose=-2)

all_results.summary()

Then, the next step of this work-flow would be once the
correct pipeline is identified, our new validation test is training
on the full training set, and testing on the set of subjects that

(continued)

282 Sage Hahn et al.



we said was the test set. And we do it with just our best
identified ‘ridge pipe.’

results = bp.evaluate(’ridge_pipe’, dataset=data_tr_t-

est, subjects=’all’, cv=’test’)

results

Now, we could report just these ridge regression results,
with our checks between different pipelines conducted safely
on a training set. That said, in this particular example – given
the small sample sizes involved, a train-test approach, where
our test set only has 45 subjects is likely a pretty bad idea... or
rather, we should expect large error bars. We can formalize
this intuition by returning to working with the full dataset and
essentially as our CV strategy is simulating a repeated train and
test split of 20%.

# This is a custom CV object that sats, use a random test
split of 20% 10 times.

cv = bp.CV(splits=.2, n_repeats=10)
results = bp.evaluate(’ridge_pipe’, dataset=data, cv=cv,

eval_verbose=0)
# Plot the distribution of scores with library seaborn
import seaborn as sns
sns.displot(results.scores[’r2’], kde=True)
Seriously don’t double dip
I want to make sure this point is very clear, so next we will

look at an ever more extreme example than just trying a few
models and just reporting the best one. In this case we will be
repeating a 3-fold CV, but with a bunch of different random
splits.

for random_state in range(10):

score = bp.evaluate(’ridge_pipe’, data, cv=3, random_-

state=random_state,

eval_verbose=0, progress_bar=False).score

print(random_state, score)

First thing to notice is that cross-validation, especially
with small-ish sample sizes is not perfect. Depending on just
luck of different random split, we can observe some variability
in mean explained variance.

The second, is that a dishonest person could use a strategy
like the one above and run and just report the following:

bp.evaluate(’ridge_pipe’, data, cv=3, random_state=0,

eval_verbose=0, progress_bar=False)
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The ‘cheating’ part here, is that we essentially tried 10 dif-
ferent things using our full dataset, then chose a result from
those 10, didn’t report the others. That is to say, running
10 repeats of different 3-fold CV is actually not a bad thing –
as long as you report all of them (well, the average).

Well, this example is obvious, it can be easy to accidently
end up doing something similar. Say for example you try one
model, and then another, and then with slightly different
features, then maybe you go back to a different model, etc...

Predict Sex
The other thing to note is that all of the BPt style objects

when possible are generic to problem type also. So that
means, even if we switch to a binary prediction, we can still
use the same code from the ridge pipe. Let’s try that now:

from BPt.default.pipelines import ridge_pipe
# We can pass either the default str, or the object itself for

pipeline
# Also note that now that we have two targets, we need to

specify which one we want to predict
# Let’s also add one more parameter, n_jobs, which let’s

use multi-process our evaluation

results = bp.evaluate(pipeline=ridge_pipe,

dataset=data,

target=’sex’,

n_jobs=2)

results

Now if we look at the fully composed scikit-learn style
estimator again:

results.estimator
We see that there are some changes from before, e.g., now

our base model is a LogisticRegression and the set of para-
meters it searches over are different

p a r a m _ d i s t r i b u t i o n s= { ’ C ’ : L o g ( l o w e r= 1 e - 0 5 ,

upper=1000.0), ’class_weight’: TransitionChoice([None,

’balanced’])}

Where before the default hyper-parameter search
parameters were:

param_distributions={’alpha’: Log(lower=0.001,

upper=100000.0)}
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On the end of the user, specifying these hyper-parameter
distributions is done when building the model as just: Model
(obj=‘ridge,’ params=1, ...)

Where 1 refers which default distribution to select (see all
choices for all supported models here: https://sahahn.github.
io/BPt/options/pipeline_options/models.html).

A more advanced used could also manually specify this
choice as well, for example:

# Make a copy of the default ridge pipeline

our_ridge_pipe = ridge_pipe.copy()

# Look in our pipeline at where the param distribution is

saved

our_ridge_pipe.steps[-1].params

# Replace it with one of our choosing

our_ridge_pipe.steps[-1].params = {’C’: bp.p.Log(low-

er=1, upper=1000)}

# Then re-run

results = bp.evaluate(pipeline=our_ridge_pipe,

dataset=data,

target=’sex’,

n_jobs=2)

results

Something to keep in mind of course when performing
custom hyper-parameter tuning like this is not to abuse it,
re-running different choices until by chance you get a high
performing results. This of course is another area like with
what we discussed before, and is why a lot of time in practice it
can be helpful to just use default settings, either defaults from
BPt, or defaults from other libraries as we will see in the next
example:

We can also just as easily use custom sklearn objects as
either a step in the pipeline – or instead of the pipeline.

from sklearn.linear_model import LogisticRegressionCV
# We just need to wrap it in a Model object, so BPt
# knows how to handle it correctly
sk_model = bp.Model(LogisticRegressionCV())

results = bp.evaluate(pipeline=sk_model,

dataset=data,

target=’sex’,
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mute_warnings=True # Mute ConvergenceWarning’s

)

results

Conclusion
BPt as a library is still a work in progress, and may not be

as polished as some other available libraries, but I hope it still
may be useful for some people.

If you are interested, I encourage you to check out the
User Guide on the documentation page, which includes a
number of other Full Examples. Likewise, the github reposi-
tory method_series contains a work in progress larger tutorial,
which will feature the use of BPt and neurotools in analyzing
the three AOIMIC datasets, across a number of different
analysis.

I also encourage anyone interested in contributing code,
ideas, bugs, etc... to check out the project github and/or
open an issue with your question or comment.

7 Sustainability

The software is currently hosted on github at https://github.com/
sahahn/BPt as well as through the python PIP repository under
‘brain-pred-toolbox.’ Users are welcome to submit any code/
improvements to the library. Users are also welcome to comment
with any suggestions or features they would like to see
implemented.

8 Conclusions

Frameworks like BPt can be helpful for some projects, but require a
tradeoff between flexibility to usefulness. That said, we hope this
library can be as useful a tool as possible moving forward and
welcome any suggestions, feedback, or bug reports on the library’s
github page (https://github.com/sahahn/BPt).
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Chapter 13

NBS-Predict: An Easy-to-Use Toolbox
for Connectome-Based Machine Learning

Emin Serin, Nilakshi Vaidya, Henrik Walter, and Johann D. Kruschwitz

Abstract

NBS-Predict is a prediction-based extension of the Network-based Statistic (NBS) approach, which aims to
alleviate the curse of dimensionality, lack of interpretability, and problem of generalizability when analyzing
brain connectivity. NBS-Predict provides an easy and quick way to identify highly generalizable
neuroimaging-based biomarkers by combining machine learning (ML) with NBS in a cross-validation
structure. Compared with generic ML algorithms (e.g., support vector machines, elastic net, etc.), the
results fromNBS-Predict are more straightforward to interpret. Additionally, NBS-Predict does not require
any expertise in programming as it comes with a well-organized graphical user interface (GUI) with a good
selection ofML algorithms and additional functionalities. The toolbox also provides an interactive viewer to
visualize the results. This chapter gives a practical overview of the NBS-Predict’s core concepts with regard
to building and evaluating connectome-based predictive models with two real-world examples using
publicly available neuroimaging data. We showed that, using resting-state functional connectomes,
NBS-Predict: (i) predicted fluid intelligence scores with a prediction performance of r = 0.243; (ii) distin-
guished subjects’ biological sexes with an average accuracy of 65.9%, as well as identified large-scale brain
networks associated with fluid intelligence and biological sex.

Key words Network-based statistic, Machine learning, Graph theory, Biomarkers, Connectome-
based prediction, Sex prediction, Fluid intelligence, Tutorial

1 Introduction

The increasing interest in structural and functional connectivity
networks of the human brain has given rise to a need for models
that unveil their secrets [1, 2]. Graph models [see Glossary] that
define brain networks as a set of nodes (i.e., brain regions) and
edges (i.e., connections between brain regions) are among the most
powerful representations of brain networks that can be used to
investigate effect-associated connections and sub-networks
[1, 3]. In this context, mass-univariate [see Glossary] testing of
hypotheses is a popular method for unraveling sub-networks of
interest, in which a statistical model is fit at each edge in the
graph, and a corresponding p-value is then computed. However,

Robert Whelan and Hervé Lemaı̂tre (eds.), Methods for Analyzing Large Neuroimaging Datasets, Neuromethods, vol. 218,
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this standard approach is limited due to the multiple comparisons
problem [4]. Specifically, the high number of simultaneous statisti-
cal tests across all edges in the graph leads to an accumulation of a
high statistical error rate (“alpha inflation”). Correction methods
for alpha inflation such as Bonferroni correction [see Glossary] or
the False Discovery Rate [see Glossary] correction (FDR) are com-
mon practices. However, they have been repeatedly criticized as
being too conservative, particularly when a great number of statis-
tical tests are performed.

One well-known method to mitigate the issue of multiple
comparisons is Network-based Statistic (NBS) [see Glossary]
[3]. NBS is a statistical method that controls the family-wise error
rate, in a weak sense, by combining the concept of connected
components and cluster-based thresholding. Although NBS pro-
vides more power than traditional methods used to correct for
multiple comparisons (e.g., Bonferroni or FDR) by resulting in
lower false-negative errors [3, 5], it has limitations related to the
traditional statistical method that is utilized in its framework: the
general linear model (GLM). Statistical inference methods such as
the GLM have repeatedly faced criticism with respect to reproduc-
ibility and generalizability [6, 7]. While generalizability is a hard-to-
meet criterion with traditional statistical approaches, it is essential in
developing neuroimaging-based biomarkers, which are critical in
the realm of precision medicine, where erroneous results can lead to
misdiagnosis. Generalizability can be quantified by applying out-of-
sample estimation techniques (e.g., cross-validation (CV) [see
Glossary] [8].

Machine learning (ML) has become extensively popular among
neuroimaging researchers since computing power, and the avail-
ability of open-access large-scale neuroimaging datasets has expo-
nentially increased over the last decade. A critical advantage of ML
algorithms over classical statistical inference models is that they aim
to extract latent factors as functions of observed data, thereby
attempting to reverse the data generating process [9], thereby
harnessing the multivariate nature of input data. As such, ML
models are a great tool for predicting behavioral or clinical vari-
ables, especially when working with enormous feature sets such as
those present in brain networks, because underlying associations
between dependent and independent variables are not obvious.
Unfortunately, ML models commonly suffer from two methodo-
logical drawbacks when applied to brain networks: the “curse of
dimensionality” and the “lack of interpretability.” The curse of
dimensionality refers to the fact that ML models tend to overfit
[see Glossary] when the ratio of dimensions (i.e., the number of
features) is high, relative to the sample size. In such cases, overly
complex models are formed in the training data that do not gener-
alize to the test data [10]. To avoid overfitting, several feature
selection [see Glossary] methods have been proposed, including
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filter-based, wrapper-based, and embedded methods [11]. The sec-
ond issue is the lack of interpretability when one is interested in
explaining which features contributed to the prediction. This is
because interpretation of the coefficients derived from machine
learning models (even from the linear ones) is not straightforward
[12, 13].

To alleviate the lack of generalizability, the curse of dimension-
ality, and the lack of interpretability, Serin et al. (2021) proposed
NBS-Predict, a novel connectome-based prediction method
[14]. This new approach provides a fast way to identify highly
generalizable neuroimaging-based biomarkers by combining ML
with NBS in a cross-validation structure. NBS-Predict holds several
advantages over existing MLmethods. Compared with generic ML
algorithms (e.g., support vector machines, elastic net, etc.), the
results from NBS-Predict are more straightforward to interpret:
NBS-Predict outputs a weighted network [see Glossary] indicating
the extent to which input features contributed to the model. On
the contrary, results derived from other generic ML algorithms are
often difficult to interpret, regardless of the linearity of the algo-
rithms [12, 13].

A ML method that is closely comparable to NBS-Predict is the
Connectome-based Prediction (CPM) [15, 16]. CPM is a
connectome-based machine learning method for structural or
functional brain networks to predict neurobiological-related indi-
vidual differences in behavior. Although NBS-Predict and CPM are
both connectome-based machine learning methods, they are nota-
bly different in many ways. The most fundamental difference is that
CPM was designed for regression problems (but cf. [see
Chapter 15] for an extension of CPM to classification), which
means it can only predict continuous values such as individuals’
scale scores. In contrast, NBS-Predict can handle both discrete and
continuous variables. Also, while CPM selects individual and spa-
tially dispersed features based on a linear association to the target
variable, NBS-Predict takes the topological structure of features
into account by selecting a subnetwork of suprathreshold features
(i.e., NBS-Predict uses connected graph components as features).
Furthermore, unlike CPM, NBS-Predict does not require any
expertise in programming as it comes with a well-organized graph-
ical user interface (GUI) with a good selection of machine learning
algorithms and additional functionalities.

This chapter serves as a practical guide for applying
NBS-Predict on real-world functional MRI (fMRI) data to predict
clinical and cognitive outcome variables. Specifically, this chapter
briefly introduces the rationale underpinning the NBS-Predict
methodology, which has been presented in detail in Serin et al.
(2021) [14]. This chapter provides a practical overview of the
NBS-Predict core concepts with regard to building and evaluating
connectome-based predictive models with two real-world examples
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using publicly available neuroimaging data [17]. We demonstrate
the usage of NBS-Predict, for (1) predicting fluid intelligence and
(2) classifying sex from task-based functional connectivity matrices.
The version of the NBS-Predict toolbox used in both applications is
v1.0.0-beta.9.

2 NBS-Predict

2.1 General

Algorithm

NBS-Predict operates in a repeated cross-validation (CV) structure
(nested if hyperparameter optimization is desired), where the algo-
rithm comprises several stages, in which suprathreshold edge selec-
tion (i.e., feature selection), model training, hyperparameter
optimization (optional), ML algorithm optimization (optional),
and model evaluation are employed. A full description of the
NBS-Predict algorithm is given in Serin et al. (2021) [14].The
general workflow of the NBS-Predict algorithm is depicted in
Fig. 1.

2.1.1 Suprathreshold

Edge Selection

To select relevant edges, NBS-Predict performs suprathreshold
edge selection, which is an in-house developed feature selection
algorithm inside the CV procedure (and also in the inner-most CV
loop if hyperparameter optimization is desired). This feature selec-
tion algorithm combines univariate feature selection algorithms
with the graph-theoretical concept of connected components.
Briefly, a GLM model based on a given contrast is fitted to each
edge (i.e., feature) in the brain connectome, and the corresponding
p-value is then computed. The largest connected component,
which is formed by a subset of connected edges that are determined
as significant based on their GLM derived p-values (e.g., lower than
0.01), is then selected as a multivariate feature for subsequent
training of the ML model. Figure 2 demonstrates the workflow of
the suprathreshold edge selection algorithm.

2.1.2 Model Evaluation After selecting the component of relevant edges, model evaluation
(training and testing) is performed. Trained and tested prediction
performance (e.g., balanced accuracy) of the applied ML model is
then assigned to the edges present in the selected component

Fig. 1 Workflow of NBS-Predict [14]
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(0, otherwise, is set to unselected edges). This component-wise
assignment is performed to quantify the predictive power of
component-specific edges across CV folds. For instance, in a par-
ticular CV fold, it could be the case that the connected component
of selected features predicts the target variable with relatively low
prediction performance, whereas another connected component
may achieve a high prediction performance in the subsequent CV
iteration. To take the varying contribution of these two sets of
edges to the overall model into account, they are assigned with
the prediction performance of the corresponding CV fold. In this
way, the weight for each edge in the weighted output matrix does
not only represent the frequency of being present in a selected
connected component but also the selected components’ out-of-
sample performance, thereby providing an easy way to assess the
contribution of each edge to the overall model.

Fig. 2 Suprathreshold edge selection workflow
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The suprathreshold edge selection and model evaluation steps
are repeated r x K times, where r represents the number of CV
repetitions and K is the number of folds. By generating averaged
estimates of K-fold CV, repeating K-fold CV r times reduces the
variation in the model performance estimates [18–20]. Thus,
repeated CV provides a more generalizable and accurate estimation
of the trained model on a given data set. It should be noted that
repeating CV is not necessary for the leave-one-out method as all
possible training models are generated in each run.

Optionally, hyperparameters for machine learning algorithms
can be optimized in the inner CV loop. Also, NBS-Predict allows
for performing repeated CV using various machine learning algo-
rithms suitable for the given ML problem
(regression vs. classification) to find the best performing algorithm
on a given dataset. This is important because the optimal model
with respect to the underlying data structure cannot be known
beforehand [21].

2.1.3 Prediction on Hold-

Out Data

One of the main advantages of NBS-Predict over the original NBS
method [3] is the ability to make predictions about novel and
previously unseen data. This way, NBS-Predict aims to close the
gap between group-level analysis and interpretable subject-level
prediction, thereby contributing to the field of precision psychiatry.
To this end, following the model evaluation process within the
repeated CV structure, NBS-Predict automatically trains an addi-
tional model with all available input data to generate a portable
model. With this portable model, users can make predictions about
unseen or hold-out data turning their analyses into practically
useful tools. The technical details for model exporting are given
in Subheading 8.2.

2.2 Software and

Coding

An important advantage of NBS-Predict is its user-friendly GUI
allowing users to perform complex connectome-based ML tasks.
Therefore, coding knowledge is not required to run the toolbox.
Since NBS-Predict is an extension of the NBS toolbox [3] (https://
www.nitrc.org/projects/nbs), it has a similar interface design with
addition of several advanced functionalities. The GUI allows users
to easily make predictions for a given set of connectome data by
providing nothing more than individual connectivity matrices, a
spreadsheet with brain regions of the network, a design matrix, and
a contrast vector. A specific machine learning algorithm can simply
be selected by a drop-down window. Additionally, the GUI allows
users to perform hyperparameter optimization and permutation
testing. Further, parameters such as the number of CV folds or
p-value thresholds can be defined via text input boxes. Following
the analysis, users may visualize obtained results in a heatmap as a
weighted network, on a circular network, or as a 3D brain surface
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generated by the BrainNet Viewer [22]. The GUI of the
NBS-Predict toolbox is shown in Fig. 3.

3 Setup and Data

3.1 NBS-Predict

Installation

NBS-Predict requires MATLAB (The MathWorks, Inc.) version
r2016b or newer and the Statistics and Machine Learning Toolbox
to run properly. Additionally, the Parallel Computing Toolbox is
required if parallel processing is desired to quicken the analyses—
this is recommended for the analysis of big data sets. NBS-Predict,
unfortunately, does not work on Octave (GNU) due to incompat-
ibilities in the functions and GUI libraries. We strongly recommend
users to install the latest version of NBS-Predict since the toolbox is
regularly updated and expanded with new features and more intui-
tive GUI elements. The most recent version of the toolbox can be

Fig. 3 Screenshots of the NBS-Predict GUI
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downloaded from https://github.com/eminSerin/NBS-Predict/
releases and https://www.nitrc.org/projects/nbspredict/.

3.2 Data In this section, we demonstrate the practical application of
NBS-Predict on task-fMRI connectivity data. We use the movie-
watching fMRI task as entailed in the ID1000 dataset from the
AmsterdamOpenMRI Collection (AOMIC) [17]. AOMIC is a set
of large-scale multimodal MRI dataset including ID1000
(N = 928), PIOP1 (N = 216), and PIOP2 (N = 226). Each
dataset contains multimodal MRI data (structural, functional, and
diffusion MRI), demographics, physiological and psychometric
measures. AOMIC can be accessed via https://nilab-uva.github.
io/AOMIC.github.io/ without any restrictions [see Chapter 2].

NBS-Predict requires brain connectome input data that has
already been preprocessed. Since the MRI data contains a great
amount of noise and confounds, the choice of preprocessing steps
is critical as it can significantly determine the generalizability of the
results [23, 24]. Particularly, head motion should be meticulously
cleaned as it significantly introduces spurious activity patterns in
brain images [25, 26]. Despite the lack of a gold standard for
choosing preprocessing steps, we urge users to preprocess their
MRI data with standardized and established preprocessing pipe-
lines: HALFpipe [27], fMRIPrep [28] [see Chapter 8]. These pipe-
lines not only preprocess MRI data automatically using the most
commonly applied preprocessing steps, but also provide a wide
variety of methods to remove head motion such as CompCor
[29] and ICA-AROMA [30].

One advantage of using the AOMIC data set is that it provides
preprocessed fMRI data (with fMRIPrep), with details of the scan-
ner, scanning protocol, and preprocessing given in Snoek et al.
(2021) [17]. For further use of this data, we applied the following
two noise correction procedures on the preprocessed fMRI data:
(1) removing tCompcor components [29] which explain 50% of
the variance in the data and 24 motion parameters [31], and
(2) high-pass filter of 1/128 Hz. Temporal filtering and removal
of motion-related covariates were performed simultaneously using
a single linear regression since the application of these preproces-
sing steps in isolation can be the cause for undesired and problem-
atic artifacts [32]. Furthermore, we performed spatial smoothing
using a Gaussian kernel of 6 mm FWHM. Brain images were then
parcellated into 268 functionally coherent regions using the Shen
atlas [15, 33] and functional connectivity between each pair of
brain regions was computed using Pearson’s correlation coefficient,
yielding a 268 × 268 correlation matrix for each subject. Proce-
dures as given above were performed with Nilearn [34]. Further,
subjects with excessive head motion (i.e., average frame-wise dis-
placement rate above 0.5 mm) were subsequently excluded, leaving

296 Emin Serin et al.

https://github.com/eminSerin/NBS-Predict/releases
https://github.com/eminSerin/NBS-Predict/releases
https://www.nitrc.org/projects/nbspredict/
https://nilab-uva.github.io/AOMIC.github.io/
https://nilab-uva.github.io/AOMIC.github.io/


a total of 861 subjects. The final dataset can be found in https://
github.com/eminSerin/NBSPredict_SpringerNature.

4 Model Construction and Validation

The subsequent Subheadings (4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9,
4.10, 4.11, 5.1, 5.2, 6.1, and 6.2) provide a practical overview of
the application of the NBS-Predict GUI to predict individuals’ fluid
IQ scores from ID1000 fMRI connectome data [17] and highlight
associated analysis choices. In these sections, we discuss general
concepts (e.g., design matrix, contrast, etc.). Wherever suitable,
we discuss implications for regression and classification problems
in conjunction. Starting Subheading 7, we specifically demonstrate
the usage of NBS-Predict for the classification of sex and discuss
related analysis decisions.

4.1 Input Data NBS-Predict requires the following input data to perform ML
analysis (Fig. 4): (1) individual connectivity matrices, (2) a spread-
sheet with brain regions of the network, (3) a design matrix, and
(4) a contrast vector.

Fig. 4 Screenshot the analysis setup window of NBS-Predict
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4.1.1 Connectivity

Matrices

Similar to NBS [3], users must provide symmetricalN ×N connec-
tivity matrices as feature sets (one matrix per subject), where N is
the total number of nodes (i.e., brain regions). In symmetrical fully
connected connectivity matrices (i.e., where all possible pairs of
nodes are connected), the total number of edges between nodes
is N × (N-1)/2. The number of edges is determined by the parcel-
lation atlas used to define brain regions. For example, as the Shen
atlas [15, 33] consists of 268 brain regions, one could have a
maximum number of 35,778 pairwise edges. In contrast, the
Harvard-Oxford atlas [35] provides 69 brain regions (69 × 69
connectivity matrix) with up to 2346 edges. Therefore, we recom-
mend to choose a parcellation that is consistent with prior hypoth-
eses of brain function since various atlases provide different levels of
resolution [36]. Notably, although NBS-Predict was designed and
developed for analyzing functional connectomes, connectome data
from other imaging modalities such as DTI derived white-mater
networks can also be used.

4.1.2 Brain Parcellation

Spreadsheet

NBS-Predict requires a brain parcellation file containing x, y, z
coordinates for brain regions, and labels. This file must contain
only four columns (x, y, z coordinates and node labels) without
any column names (i.e., entries start at the first row).

4.1.3 Design Matrix Since NBS-Predict performs suprathreshold edge selection,
extending simple GLM-based feature selection with the graph-
theoretical concept of connected components, it requires a tradi-
tional design matrix. NBS-Predict requires a similar structure for
the design matrix as those required by the GLMs in NBS [3]. By
creating the design matrix for the analysis, users already specify the
nature of the prediction problem (classification vs. regression), the
target variable, and nuisance variables along with the contrast
vector.

Note
For regression problems, the first column in the design matrix
should be the intercept term (i.e., the column of ones),
whereas the second column should contain the target variable
for prediction, which is fluid intelligence in this analysis. For
classification problems, these first two columns should con-
tain one-hot encoded data labels (e.g., 0 for the control group
and 1 for the contrast group). The additional columns should
represent the confound variables.

298 Emin Serin et al.



It should be noted that multilabel classification (i.e., distin-
guishing more than three groups) is not supported in the current
version of NBS-Predict. In this application, we will regress out age
and sex, which are the most common confounding variables that
need to be controlled within neuroimaging studies. Similar to the
brain parcellation spreadsheet, the design matrix should not con-
tain any column names. Examples of the design matrices for regres-
sion and classification problems are given in Fig. 5.

4.1.4 Contrast Along with the design matrix, users must specify a contrast vector
(Fig. 5) for the GLM used in the suprathreshold edge selection
algorithm. NBS-Predict uses the standard structure for the contrast
vector as implemented in the FSL guideline for GLM (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/GLM; [37]). In our analysis, we specify
the contrast vector as [0, 1, 0, 0], representing fluid IQ scores as the
effect of interest (i.e., target variable) and age and sex variables as
nuisance covariates. We strongly recommend users carefully create
and double-check the desired contrast vectors as ill-constructed
contrast vectors would return incorrect results.

4.2 Machine

Learning Models

As shown in Table 1, NBS-Predict can apply several popular ML
algorithms. The user can select between classification or regression
ML algorithms, which of course, depends on the target variable as
defined in the design matrix (i.e., only if the second column is
binary, classification algorithms may be selected). Note that we
refrained from offering more complexMLmodels such as ensemble
algorithms or artificial neural networks. Such models have lower
interpretability and are more vulnerable to overfitting, thereby
requiring significantly more observations than relatively simpler

Fig. 5 Example design matrices (upper) and contrast vectors (lower) for regression (A) and classification
(B) problems
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models. Importantly, the main aim of NBS-Predict is not to maxi-
mize the prediction performance but instead to provide highly
generalizable and interpretable models with an overall good predic-
tion performance. If only maximizing prediction performance is
the sole aim of the analysis and not interpretability, we suggest
running pipelines with more complex ML algorithms.

Notably, we removed the decision tree algorithm from the
current version of the toolbox due to incompatibility issues with
confound regression. Specifically, as discussed in Subheading 4.4,
the cross-validated confound regression used in the toolbox only
removes the linear association between the feature set and con-
founding variables. However, as the decision tree algorithm is a
non-linear ML algorithm, it still may pick up the non-linear effects
of confounding variables, complicating the interpretation of the
results.

As mentioned in Subheading 2.1, NBS-Predict also allows
users to automatically consecutively run all applicable machine
learning algorithms for given input data (by selecting the “Auto
(optimize models)” option). We recommend this option in the
exploratory stage of analyses if prior knowledge about the most
suitable ML algorithm for a given dataset is not present. In our
application, we left NBS-Predict to run all the ML algorithms
suitable for our dataset to detect the best-performing algorithm.

Note
In general, it is good practice to hold out a subset of the data
(i.e., not to load this data into NBS-predict) and subsequently
apply the final NBS-predict model to this never-touched data
(see Subheading 8.2 for how to apply NBS-predict models to
previously unseen data).

Table 1
List of available machine learning algorithms in NBS-Predict and their hyperparameters with
corresponding spacing scales and possible ranges

ML algorithm Hyperparameter Scale Range

Regression Linear regression Lambda (L2) Logarithmic 10-2—103

Linear support vector regression Lambda (L2) Logarithmic 10-2—103

Classification Logistic regression Lambda (L2) Logarithmic 10-2—103

Linear support vector classification Lambda (L2) Logarithmic 10-2—103

Linear discriminant analysis (LDA) Gamma Linear 0–1
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All implemented ML algorithms available in NBS-Predict were
initially developed for the Statistics and Machine Learning Toolbox
(The MathWorks, Inc.).

4.3 Cross-Validation To test prediction performance and generalizability, the trained
model needs to be evaluated on novel data. One common way to
do this is to separate the input dataset into two subsets: a training
set and a test set. This way, the model can be trained on the training
set and evaluated on the test set, where the latter was not used in
any training processes. However, as the prediction performance
may strongly depend on the pseudo-random choice for dividing
training and test sets, cross-validation is commonly used to over-
come this potential drawback. Briefly, in cross-validation, the input
data (e.g., features and target) is divided into K subsets, and in
K times, one subset is selected as a test set, and other K-1 subsets
are used as a training set. Importantly, it has been shown that
optimizing and evaluating a learning model on the same CV-splits
can result in an overly-optimistic estimate of model performance
[38, 39]. Therefore, to overcome this limitation of the traditional
“flat CV design” [see Glossary], Cawley and Talbot, 2010 [38]
suggested use of a “nested cross-validation” approach, in which
model tuning and model evaluation are performed independently
by generating a series of train/test splits within the same original
CV-split. Specifically, the nested-CV structure consists of at least
two folds: outer and inner folds. In the outer fold, the whole
dataset is divided into train and test sets as discussed for “flat CV
design.” In the inner fold, the train set from the outer fold is then
further divided into another combination of train and test sets used
to tune the hyperparameters of the model. Once the model is tuned
inside the inner fold, it is carried over to the outer fold to be
evaluated. In this way, the nested CV structure can prevent an
information “leak” and thus overfitting. Further, as the estimate
of the trained model can slightly differ across various K-fold CV
repetitions due to the stochastic nature of randomly creating train
and test splits, it has been suggested to repeat the entire procedure
multiple times (e.g., 100 times) and to report the average of its
repetitions. Such a procedure, called “repeated cross-validation”
has been suggested to reduce the variability of model performance
estimation [18–20].

As indicated in Subheading 2.1 and Fig. 1, NBS-Predict
employs repeated cross-validation (nested if hyperparameter tuning
is desired) to estimate the out-of-sample prediction performance of
the trained model. Through the GUI, the user can easily define the
number of CV folds and repetitions. The choice of the number of
CV-folds is quite arbitrary, however, five-fold CVor ten-fold CVare
the most commonly used procedures. Although five-fold CV and
ten-fold CV hold different advantages over each other, in practice,
both structures yield similar model estimates if the dataset is large
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enough (e.g., ID1000). With respect to the number of repetitions
of the entire CV procedure, it can be said that higher numbers of
repetitions provide lower variance in model estimates, especially if
the sample size is small. We suggest users to repeat the CV as many
times as possible, considering their computation power. Further-
more, the distribution of the edge weights in the outcome
weighted network is determined by the number of CV folds and
repetitions [14]. That is, the weight of each edge in the weighted
output matrix represents not only the prediction performance of
these selected components but also how frequently the edge is
present across selected components. Therefore, higher number of
CV repetitions will result in more fine-grained results (refer to
Discussion in [14] for more detail). Alternative and more specific
CV structures such as group-based K-fold CV will be implemented
in the following versions of NBS-Predict. In this chapter, we use
50-repeated five-fold cross-validation to evaluate the prediction
performance of the trained models.

4.4 Confound

Regression

The relationship between target and features may be confounded
with several subject-related variables such as age, sex, comorbid
pathology, and head movement. Confound regression is the most
common way to control confounds in the data [40]. This usually
involves regressing out the variance in the target that can be
described by the confounds.

Note
Confound regression should be performed in a fold-wise
manner (i.e., separately in each CV fold). If confounds are
regressed out from the entire data set at once, it might create
dependence between subsets, thereby violating the CV
assumption of independent subsets [41].

It is important to understand that the effect of cross-validated
confound regression depends on the method used to regress out
influencing variables. If linear models such as the GLM are utilized
in confound regression, only linear associations between confound-
ing variables and feature sets are eliminated. Thus, potential
non-linear relationships between these variables might remain
after deconfounding [41, 42]. In NBS-Predict, confound regres-
sion is performed with a GLM before feature selection along with
scaling (if desired, see Subheading 4.9 for feature scaling). In our
example, we regressed out age and sex confound using the con-
found regression in our analysis.
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4.5 Feature Selection

Parameter

As described under Subheading 2.1, for suprathreshold edge selec-
tion, in NBS-Predict, a GLM model is fitted to each edge (i.e.,
feature) in the brain connectome, and a corresponding p-value is
computed. The largest connected component formed by a subset of
connected edges that are determined as significant based on their
GLM derived p-values (e.g., lower than 0.01) is then used as a
feature set for model training. Based on this procedure, the p-value
parameter can be tuned manually to define the conservativeness of
the suprathreshold edge selection process. The number of edges
selected in each CV-fold, and thus the weighted outcome network,
is directly determined by this p-value. Therefore, users should
consider the size of the input network when defining this parame-
ter. For instance, if the input connectome network is very sparse,
using very conservative p-value thresholds can be a bad option as no
adjacent edges might survive and no connected components can be
created. In such a case, theML algorithm would fail to converge. In
our experience and most cases, the default parameter of 0.01 is a
sufficient choice. In this application, we used the default p-value
suggestion.

4.6 Hyperparameter

Optimization

Hyperparameters are parameters that control the learning process
of ML algorithms. They are predefined and can be tuned using
hyperparameter optimization. Hyperparameter optimization is a
technique to determine the optimal hyperparameters for the
corresponding ML algorithm on a specific dataset using different
searching algorithms such as grid search, random search, and other
algorithms [43]. Table 1 depicts the hyperparameters for the avail-
able ML algorithms in NBS-Predict and their corresponding
spacing scales and possible ranges. Notably, NBS-Predict only opti-
mizes the regularization term strength (i.e., lambda) for the L2
regularization method (not L1) for SVM and regression algo-
rithms. The reason for using L2 regularization instead of L1 is
that the latter inherently promotes sparsity and performs feature
selection by potentially shrinking less relevant features’ coefficients
to zero. This might complicate the interpretation of the weighted
outcome network since features present in the selected connected
component may not be fully utilized by the ML algorithm but
instead removed due to the L1 penalty.

NBS-Predict allows users to perform hyperparameter optimi-
zation using grid search, random search, and Bayesian optimization
algorithms [see Glossary] [44, 45].

Note
The number of optimization steps directly determines the
exhaustiveness of the optimization algorithms such that a

(continued)

NBS-Predict: An Easy-to-Use Toolbox for Connectome-Based Machine Learning 303



higher number of steps results in higher dimensions of the
parameter space. Therefore, increasing the number of optimi-
zation steps is more computationally expensive. Thus, we
recommend random search or Bayesian optimization over
simple grid search in such cases as they provide similar or
better model performance with a significantly smaller number
of iterations.

It should be noted that the choice of the number of optimiza-
tion steps itself is arbitrary and that higher numbers may not always
yield better performance. Therefore, users should decide on the
number of optimizations by mainly considering their computation
power. Note that the current version of NBS-Predict does not allow
manual set up of hyperparameters to be optimized. In this chapter,
we set the optimization steps to 10 and the searching algorithm to
“grid search.”

4.7 Permutation

Testing

Permutation testing [see Glossary] is used to evaluate the statistical
validity of the model’s prediction performance and is generally
required when reporting the final model. Permutation testing pro-
cedure generates an input data-specific empirical null distribution
that is used to estimate how likely the model’s prediction perfor-
mance could be achieved by chance [46]. To establish the empirical
null distribution, labels (i.e., target variable) are permuted n times,
and significance is computed as the fraction of iterations where the
model trained on the permuted dataset but performed similar or
better than the groundmodel (i.e., model trained using the original
data). In NBS-Predict, the number of permutations is customizable
and should be defined based on sample size and computation
power. Notably, the statistical power of permutation testing
increases with sample size, yet an even lower number of permuta-
tions (e.g., ~100) might be enough for datasets with a moderate-
large sample size. The reader should keep in mind that the sample
size for lower numbers of permutations may also be influenced by
factors such as the true effect size in the data or the number of
features and other determinants [46]. Consequently, although we
set the default number of permutations to 500 in NBS-Predict,
users may choose to perform fewer or more permutations based on
their sample size and desired significance level. Importantly, run-
ning repeated CV and permutation testing multiple times on the
same data, one might observe results with slightly different esti-
mates of model performance. This is because the ground model is
evaluated only once in the permutation testing (i.e., 1-repeated
CV), while performance estimates obtained from the repeated CV
represent the average of a given number of CV estimates (e.g.,
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50-repeated CV). Taking computation time into account, here we
used 1000 permutations in the default model and 100 permutations
in the optimized model (i.e., with hyperparameter optimization),
to evaluate model significance respectively.

4.8 Performance

Metrics

NBS-Predict offers a wide variety of predictive performance metrics
(Fig. 6) suitable for different prediction problems
(classification vs. regression) and datasets (e.g.,
balanced vs. imbalanced). Although the GUI helps by presenting
suitable performance metrics for a given target, a further in-depth
decision should be made considering the nature of the input data.
For instance, despite its popularity in machine learning, accuracy
often fails to estimate the true performance of the trained model if
group labels are imbalanced [47]. In such a case, it has been
suggested to use balanced accuracy and F1 scores instead of simple
accuracy alone [48]. Also, mean squared error (MSE) is a wide-
spread performance metric for regression problems, but it does not
allow for a straightforward interpretation. In contrast, Pearson’s
coefficient or R2 scores can be more straightforwardly interpreted.
Therefore, we strongly suggest that researchers may select perfor-
mance metrics based on the needs of their data and report various
performance metrics in their manuscripts. In this application, we
used Pearson’s correlation as the primary performance metric,
where R2 is also reported.

4.9 Feature Scaling Feature scaling is a technique to scale the range of features to ensure
each feature is distributed within the same range.

Fig. 6 Available model performance metrics in NBS-Predict
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Note
Feature scaling is critical for some machine learning algo-
rithms (e.g., linear regression, SVM), particularly if the fea-
tures in the dataset have different ranges. If features are not
scaled, objective functions used in these ML algorithms might
take a very long time to converge or may not converge at
all [49].

NBS-Predict offers different scaling options. In most cases, the
difference among these feature scaling methods in prediction per-
formance is minimal on datasets without a considerable number of
outliers. Additionally, correlation methods (e.g., Pearson’s correla-
tion or partial correlation) used to construct connectivity matrices
initially scale the data into the range between -1 and 1. Thus, the
choice of feature scaling methods will not meaningfully change
results. Therefore, we recommend users to select one of the com-
monly used scaling methods implemented in the toolbox. We used
“MinMaxScaler” in this analysis, which scales the features between
0 and 1.

4.10 Computational

Expense

We ran the analyses on a computer with 32-core Xeon CPU
(E5–2630 v3) and 128GB RAM. However, depending on the
size of the dataset, researchers can analyze their connectome data
also on a standard desktop computer (i.e., with an 8-core CPU and
16GB or 32GB RAM). Running our analysis pipeline without
hyperparameter optimization (1000 permutations, 50-repeated
five-fold CV, Fig. 7) and with hyperparameter optimization
(100 permutations, 50-repeated five-fold CV, Fig. 7) took approx-
imately 2 hours and 5 hours respectively. Since running permuta-
tions and CV procedures are linear processes, on a personal
computer with an 8-core CPU and at least 16GB RAM, these
pipelines would take around 7–9 hours and 19–21 hours. The
RAM usage is strongly dependent on the size of the dataset. For
datasets with a similar sample size as the ID1000, we recommend at
least 16GB RAM.

4.11 Data Analysis

Practices

An important goal in machine learning is to train a generalizable
and interpretable ML model, ideally without consuming large
amounts of time and energy. To ensure that the trained ML
model is generalizable, researchers must avoid actions that can
result in overfitting as much as possible. For example, in the current
version of the NBS-Predict toolbox, the p-value threshold is a
hyperparameter that is not tuned in a CV procedure. To prevent
overfitting, users should only set a statistically sound value (e.g.,
0.01, 0.05, 0.001) and not optimize this value based on the final
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overall model performance. As mentioned in Subheading 4.5, the
p-value threshold of 0.01 is a good choice in most cases, but it can
still be tweaked based on the density of the input network.
NBS-Predict offers various feature scaling methods. As mentioned
in Subheading 4.9, the selection of feature scaling methods is
mostly trivial. However, due to several reasons (e.g., the topology
of input network, distribution of connectivity values, the scale of
confounding variables, etc.), the selected scaling method might
yield unexpected problematic results, especially in the suprathres-
hold edge selection algorithm (e.g., almost all—or zero—edges are
selected). In such cases, users should switch to other feature scaling
methods or consider not scaling the features at all. Of note, the
scaling methods should not be optimized based on the model
performance as that could lead to overfitting.

Machine learning algorithms require a significant amount of
CPU power, further, machine learning-based analyses are com-
monly exploratory in nature, requiring exploring different setups
and tweaks, thereby making ML even more computationally costly.
Since, in most cases, computation power is limited and the available
power might not be sufficient for all the exploration possible,
researchers should determine an analysis plan taking their available
computation power into account to finish their analyses as quickly
as possible. One strategy might be taking a stepwise approach for
running ML methods instead of running all at once.

Fig. 7 The analysis setup window of NBS-Predict for the two presented prediction procedures after loading
data and setting parameters (left: pipeline without hyperparameter optimization, 1000 permutations,
50-repeated five-fold CV; right: with hyperparameter optimization, 100 permutations, 50-repeated five-fold
CV)
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Note
We recommend using permutation testing only for the best-
performing algorithm or a set of algorithms of interest to save
time and energy.

5 Visualization and Interpretation

The “Result Viewer” automatically pops up after NBS-Predict
finishes the data analysis. Figure 8 depicts available options to
visualize the results. Users can choose between a fully weighted
network and thresholded subnetworks in the form of a heatmap, or
visualization as a circular network, or rendering results on a 3D
brain surface generated by the BrainNet Viewer [22]. Detailed
information regarding nodes and edges is present on these plots,
such as node label and nodal degree. Edge weights are shown by
clicking on the corresponding node or edge.

In addition to these plots, for classification, the user can visua-
lize a confusion matrix, summarizing the model’s predictive perfor-
mance over all CV folds. Specifically, true negatives, false negatives,
true positives, and false positives are displayed in the confusion
matrix along with percentage values, allowing users to explore
model +-performance in detail.

A table depicting node labels and the corresponding nodal
degrees is displayed on the right side of the “Result Viewer” of
NBS-Predict. In this table, the nodes are sorted based on their
degrees. That is because the degree of nodes (i.e., brain region) in
the weighted network represents the number of connections
between the corresponding node and the rest of the nodes in the
network, which are associated with the target variable

Fig. 8 The screenshots of the three main visualization methods (the heatmap, circular graph, and the 3D brain
generated by the BrainNet Viewer [22]) available in the NBS-Predict’s “Results Viewer” window
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[50]. Therefore, the degree of a node can directly reflect its rele-
vance since it has a considerable number of informative connections
with other brain regions, thereby being the central region in the
network. Hence, we recommend users to report the nodes with
high nodal degrees. Also, if functional network atlases are used
[33, 51], researchers can sum the nodal degree of brain regions
from each brain network to evaluate the overall importance of the
brain network to the trained model (see Subheading 6.1 for an
example).

5.1 Weight Threshold An important criterion that can guide visualization is to consider
the weight threshold of the network. Although the main outcome
of NBS-Predict is the weighted network and corresponding predic-
tion performance of the model, users may visualize the most rele-
vant set of features by weight-thresholding the network. The
weight threshold is a cut-off for the contribution of edges to the
performance of the overall model. Thresholding the weighted net-
work allows for a straightforward interpretation of the results and
provides information on the contribution of the edges to the overall
model. Thus, by thresholding the network, researchers can evaluate
the robustness and importance of an edge or subnetwork (i.e.,
biomarker) in a neuroimaging-based prediction. Users should
keep in mind that this weight threshold is arbitrary by its nature,
and various strategies can be used to identify a plausible threshold
[14, 16]. Although a very conservative approach, users may set the
weight threshold to 1 to visualize the subnetwork comprising only
the most relevant edges. If this approach results in too few or no
nodes, more lenient thresholds (e.g., 0.9–0.8) might be used.

Note
Connectome density and the p-value used in the suprathres-
hold edge selection should be considered when setting the
weight threshold. For instance, smaller weight thresholds
might be used if the p-value is very strict (e.g., 0.0001) or
the input connectome is sparse. We suggest that users report
subnetworks obtained from conservative and more lenient
thresholding along with the weighted outcome network to
provide more detailed information on the distribution of edge
weights and the underlying structure of the predictive brain
network.

In this chapter, we used threshold values of 1 and 0.9 to
visualize the subnetwork of features that highly contributed to
the final model performance.

NBS-Predict: An Easy-to-Use Toolbox for Connectome-Based Machine Learning 309



5.2 Subnetwork

Evaluation

The prediction performance of subnetworks obtained after thresh-
olding the weighted outcome network will be different from the
prediction performance of the overall model comprising all data.
That is, weight thresholding necessarily leads to a smaller set of
features in comparison to those used for the model’s overall evalu-
ation. Therefore, NBS-Predict optionally allows users to evaluate
the out-of-sample prediction performance of the suprathreshold
subnetwork. The main aim of this feature is to provide a general
idea of how the subnetwork would perform independently. To this
end, the current version of NBS-Predict optionally evaluates the
subnetworks’ prediction performance within a 10-repeated ten--
fold CV scheme (without hyperparameter optimization). Of note,
this feature should not be used to choose an optimal weight thresh-
old as this could result in an overfitting issue.

6 Application: Fluid Intelligence Prediction

6.1 Results Table 2 indicates the prediction performance of the two presented
pipelines in NBS-Predict (i.e., with and without hyperparameter
optimization) to predict fluid intelligence. Specifically, NBS-Predict
with hyperparameter optimization yielded a prediction perfor-
mance with a Pearson’s coefficient of r = 0.243 (95% CI:
0.238–0.249; permutation: 0.268, p < 0.01; R2 = 0.012). The
prediction performance of the pipeline without hyperparameter
optimization was slightly lower with r = 0.241 (95% CI:
235–247, permutation: 0.246, p < 0.001, R2 = -0.041) than
the pipeline with model tuning. In both pipelines, linear regression
outperformed the support vector regressor.

Figure 9 depicts the weighted outcome network for the predic-
tion of fluid intelligence scores in a heatmap and a circular graph.
Out of 35,778 possible connections present in the input network,

Table 2
Prediction performance of ML algorithms used to predict fluid intelligence

Pipeline Algorithms

Repeated CV Permutation test

μr σr r p

With model tuning Linear regression 0.243 0.020 0.268 0.00**
Linear support vector Regressor 0.182 0.021 0.201 0.00**

Without model tuning Linear regression 0.241 0.022 0.246 0.000*
Linear support vector Regressor 0.194 0.019 0.197 0.000*

Note: Pearson’s correlation coefficient was used as a performance metric. The statistical validity of the pipeline with and

without model tuning (i.e., hyperparameter optimization) was evaluated using the total number of 100 and 1000
permutations. * p < 0.001, ** p < 0.01
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only 9072 edges (i.e., 25.36%) connecting 268 regions were
selected at least once in all CV iterations. With a weight threshold
of 1, the subnetwork of the most relevant features was reduced to
54 edges connecting 44 nodes (r = 0.299) from several functional
networks such as frontal network, default mode network, visual
network as well as subcortical-cerebellar networks (Fig. 10). In
this subnetwork, regions from the frontoparietal network were
found to be associated with fluid intelligence to the greatest extent
(nodal degree = 39), followed by areas in medial-frontal
(degree = 35) and default mode networks (degree = 14).

A more lenient threshold of 0.9 yielded a larger-scale subnet-
work comprising a total number of 245 connections between
124 brain regions (r = 0.397) from a wide range of brain networks
(e.g., frontal, DMN, visual, motor, and subcortical-cerebellar;
Fig. 11). In this network, again, the fronto-parietal network
(degree = 144) was found to be the most contributing network
for the overall model performance, followed by the medial-frontal
(degree = 101) network and DMN (degree = 71).

6.2 Discussion of

Fluid Intelligence

Prediction

In this application, we aimed to predict fluid intelligence scores
based on functional brain networks as measured during movie
watching. To this end, we ran NBS-Predict on task-based (movie
watching) fMRI data from the ID1000 dataset [17]. NBS-Predict
yielded a prediction performance of r = 0.243, which is broadly

Fig. 9 Main result of NBS-Predict: a weighted network (no threshold applied) plotted on a circular graph and in
a heatmap showing network connections associated with fluid intelligence. Edge and node colors depict
weights and nodal degrees
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comparable with previously reported results despite few perfor-
mance dissimilarities due to differences in some of the data analyses
settings (e.g., different datasets, MRI modalities, parcellation
atlases, ML models, etc.) [52–54]. In line with previous work, we
observed a variety of brain regions from many different brain net-
works contributing to the prediction of intelligence when applying
the presented post-hoc thresholding of the weighted outcome

Fig. 11 Subnetwork (weight threshold = 0.9) visualized on a 3D brain surface generated by BrainNet Viewer
[22]. The size and color of the nodes and edges are depicted based on nodal degree and edge weight. The
subnetwork consists of 245 edges between 124 brain regions associated with fluid intelligence

Fig. 10 Subnetwork (weight threshold = 1.0) visualized on a 3D brain surface generated by BrainNet Viewer
[22]. The size and color of the nodes and edges are depicted based on nodal degree and edge weight. The
subnetwork comprises 54 edges connecting 44 brain regions from several functional networks associated
with fluid intelligence
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network. Specifically, the thresholded subnetwork comprised
regions of the default mode network, fronto-parietal, and medial-
frontal networks, which were also previously found to exhibit the
strongest association with fluid intelligence [15, 55]. Overall, our
results support the idea that human intelligence is realized through
the large-scale interaction of many brain regions [56–58]. Of note,
in Serin et al. (2021) [14], we also employed NBS-Predict to
predict intelligence from data of the Human Connectome Project
1200-subject release [59] but achieved a relatively poor prediction
performance. This performance difference could be attributed to
various non-trivial factors. For example, in our previous study, we
used resting-state (not task fMRI connectome data) as feature set
and predicted general intelligence [60] instead of fluid intelligence
measured with the Intelligence Structure Test [61]. Further, we
used the Power atlas [51] to parcellate the brain images and not the
Shen atlas [33]. As such, the reader should be aware that these can
be critical factors contributing to variations in prediction perfor-
mance in real-life data sets.

7 Application: Sex Classification

NBS-Predict can also be applied to classification problems. This is
one of the main advantages of NBS-Predict over the most compa-
rable method, the Connectome-based Predictive Modeling [16],
which can only perform regression (cf. [see Chapter 15]). In this
section, we demonstrate an application of NBS-Predict in a generic
classification setting in neuroscience, which is the prediction of sex
from brain readouts.

7.1 Data In this analysis, we used the same task-based functional connec-
tomes of the ID1000 dataset that were used in the regression
setting. Detailed information about preprocessing and data clean-
ing is given in Subheading 3.2.

7.2 Data Analysis

7.2.1 Target and

Confounds

We predict sex from task-based fMRI connectomes in this applica-
tion (here, we consider just two categories, male and female). As it
has been previously shown that brain size is significantly associated
with sex [62, 63], we regressed out this confound along with the
individuals’ age using cross-validated confound regression imple-
mented in NBS-Predict. Brain size was computed using the total
intracranial volume (TIV) estimated with FreeSurfer (v6.0.1) using
the Destrieux2009 atlas [64]. TIV information is provided within
the ID1000 dataset [17].

7.2.2 Design Matrix and

Contrast Vector

Sex was one-hot encoded (i.e., 0: male, 1: female). As shown in the
example depicted in Fig. 5, the design matrix needs to be con-
structed differently than the one depicted in the application for
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regression problems. Specifically, the first two columns should
contain binary-coded vectors representing female and male sub-
jects, while the subsequent two columns represent the subjects’
TIV and age values. Related to the design matrix, the contrast
vector is also specified differently. Of note, the construction of a
contrast vector in classification problems is quite important because
features are selected based on the contrast vector in the suprathres-
hold edge selection. For example, in this application, we run
NBS-Predict twice using two sets of contrast vectors: [-1, 1, 0,
0] and [1, -1, 0, 0]. The first contrast vector tells NBS-Predict to
select a set of edges whose mean values (i.e., task functional con-
nectivity in this application) are higher in males than females while
controlling the confounding effect of TIV and age, whereas the
second vector tells NBS-Predict the exact opposite. Thus, analyses
using these two sets of contrast vectors return completely different
weighted output networks representing the contribution of edges,
which are greater in males or females, to the overall model distin-
guishing sex. Thus, we suggest that users run their analyses in both
directions (i.e., G1 > G2, and G1 < G2) unless they have a
particular hypothesis regarding the direction of the effect.

7.2.3 Scaling Unlike the first application in the chapter, here we scaled the
features using “StandardScaler,” which is a z-score transformation,
transforming the distribution of features to the Gaussian distribu-
tion of μ = 0 and σ = 1. This is because we identified that the
suprathreshold feature selection did not run properly (i.e., all the
features were selected in most CV folds) with the “MinMaxScaler”
method for this particular problem, so we decided to use “Stan-
dardScaler” instead.

Besides the change of settings mentioned above, the remaining
analysis settings are the same as in the first regression application
(i.e., the number of CV folds, the number of permutations, the
hyperparameter tuning steps, etc.). The analysis setup window of
NBS-Predict after loading data and setting parameters for sex clas-
sification is depicted in Fig. 12.

7.3 Results Here, we report results from the application of NBS-Predict for sex
classification using two different contrast vectors (see Subheading
7.2 for details).

7.3.1 Females > Males NBS-Predict with and without hyperparameter optimization dis-
tinguished sex with the classification accuracy of 0.637 (CI:
0.634–0.640, Permutation: 0.631, p < 0.01, AUC: 0.637) and
0.613 (CI: 0.608–0.618, Permutation: 0.638, p < 0.001, AUC:
0.613), respectively. Linear Discriminant Analysis (LDA) was
found to be the best performing algorithm when hyperparameters
were tuned. In contrast, the logistic regression outperformed the
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LDA in the pipeline without hyperparameter optimization while
performing similarly to the SVM (Table 3).

The weighted networks comprising a set of selected edges with
greater values in females than males are depicted in Fig. 13. The
most conservative threshold of 1 yielded a subnetwork comprising
49 brain regions, connected by 70 connections (accuracy = 0.617,
Fig. 14). The subcortical-cerebellum had the highest nodal degree,
followed by the motor, fronto-parietal, visual association networks,
medial-frontal, and visual networks.

The threshold of 0.9 returned a large-scale subnetwork con-
sisting of 111 nodes and 282 edges (accuracy = 0.611, Fig. 15).
This subnetwork associated with sex comprised, again, brain
regions mostly from the subcortical-cerebellum, motor, visual asso-
ciation, and fronto-parietal areas as well as regions from the visual,
medial frontal, and default mode networks.

7.3.2 Males > Females By using the edges that were greater in males than females,
NBS-Predict with and without hyperparameter optimization dis-
tinguished sex with a classification accuracy of 0.680 (CI:
0.677–0.683, Permutation: 0.688, p < 0.01, AUC: 0.680) and
0.647 (CI: 0.643–0.651, Permutation: 0.646, p < 0.001, AUC:
0.646), respectively. Like the female > male condition, LDA and
logistic regression (slightly better than the SVM) were found to be
the best performing ML algorithms in the pipeline with and with-
out hyperparameter tuning (Table 3).

The size of the weighted network and threshold subnetworks
were significantly greater in the male > female condition than the
female > male condition. The most conservative threshold of
1 yielded a large-scale subnetwork comprising 161 brain regions

Fig. 12 The analysis setup window of NBS-Predict after loading data and setting parameters for sex
classification. Two sets of contrast vectors were used to select sets of edges that showed stronger
connectivity in the group of males as compared to females or vice versa
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Table 3
Classification accuracy of ML algorithms used to predict sex

Pipeline Contrast Algorithms

Repeated CV
Permutation
test

μacc. σacc. Acc. p

With model tuning Female > male Logistic regression 0.615 0.012 0.599 0.000**
Linear support vector
classifier

0.606 0.014 0.599 0.000**

Linear discriminant analysis 0.637 0.011 0.631 0.000**
Male > female Logistic regression 0.650 0.014 0.659 0.000**

Linear support vector
classifier

0.647 0.016 0.650 0.000**

Linear discriminant analysis 0.680 0.011 0.688 0.000**

Without model
tuning

Female > male Logistic regression 0.613 0.016 0.638 0.00*
Linear support vector
classifier

0.606 0.017 0.611 0.00*

Linear discriminant analysis 0.583 0.006 0.571 0.00*
Male > female Logistic regression 0.647 0.014 0.646 0.00*

Linear support vector
classifier

0.640 0.018 0.654 0.00*

Linear discriminant analysis 0.591 0.006 0.590 0.00*

Note: Classification accuracy was used as a performance metric. The statistical validity of the pipeline with and without
hyperparameter optimization was evaluated using the total number of 100 and 1000 permutations

* p < 0.001, ** p < 0.01

Fig. 13 Weighted network (no threshold applied) on a circular graph associated with sex. The color of edges
and nodes depicts weights and nodal degrees. Females> Males on the left and Males> Females on the right
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connected by 425 connections (accuracy = 0.630, Fig. 16). Like-
wise, the subcortical-cerebellum network had the highest sum of
nodal degree among functional networks. This network was fol-
lowed by the motor, medial-frontal, fronto-parietal, default mode,
visual, and visual association networks.

The threshold of 0.9, however, returned a significantly denser
subnetwork consisting of 225 nodes and 1219 edges (accu-
racy = 0.624, Fig. 17). The subnetwork relevant to sex classifica-
tion was comprised of similar functional networks as identified
above.

Fig. 14 Females>Males subnetwork (weight threshold= 1.0) visualized on a 3D brain surface generated by
BrainNet Viewer [22]. The size and color of the nodes and edges are depicted based on nodal degree and edge
weight. The subnetwork consists of 49 brain regions connected by 70 edges whose values were greater in
females than males

Fig. 15 Females>Males subnetwork (weight threshold= 0.9) visualized on a 3D brain surface generated by
BrainNet Viewer [22]. The size and color of the nodes and edges are depicted based on nodal degree and edge
weight. The subnetwork consists of 111 brain regions connected by 282 edges (female > male)
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7.4 Discussion of

Sex Difference

Classification

In this application, we aimed to classify sex from functional brain
networks. To this end, similar to the first application, we employed
NBS-Predict using the task-based (movie watching) fMRI data
from the ID1000 dataset [17]. Using the connected component
of edges selected in the female > male and male > female condi-
tions, NBS-Predict distinguished sex groups with a classification
accuracy of 63.7% and 68%, respectively.

Fig. 16 Males > Females subnetwork (weight threshold = 1.0) visualized on a 3D brain surface generated by
BrainNet Viewer [22]. The size and color of the nodes and edges are depicted based on nodal degree and edge
weight. The subnetwork consists of 161 brain regions connected by 425 edges with greater connectivity in
males than females

Fig. 17 Males > Females subnetwork (weight threshold = 0.9) visualized on a 3D brain surface generated by
BrainNet Viewer [22]. The size and color of the nodes and edges are depicted based on nodal degree and edge
weight. The subnetwork consists of 225 brain regions connected by 1219 edges (male > female)
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The magnitude of the classification accuracy is significantly
smaller than some previous studies, which reported very high clas-
sification accuracies (>85%) using structural [65, 66] and func-
tional [67, 68] multimodal MRI data [69]. The primary reason
for the significant discrepancy between previous results and our
findings is that the confounding effect of brain size was not con-
trolled for in these prior studies. As mentioned in Subheading 7.2,
brain size has a substantial confounding effect when sex-related
neurobiological differences are investigated. Various studies have
shown that males have higher brain volumes (cortical and subcorti-
cal) than females [62, 63, 70]. Given the strong correlation
between brain size and sex, disregarding this dimorphic difference
could thus jeopardize the statistical validity and the generalizability
of the findings. Therefore, without adequately controlling the con-
founding effects of brain size, true contribution of brain measures
to sex classification can never be fully understood. In line with our
results, studies that controlled for brain size [68, 71–74] yielded
significantly lower classification accuracies than those without
deconfounding (with deconfounding: 50% to ~76%; without:
>85%). Therefore, as we considered these confounding effects
and accordingly regressed out age and brain size, the classification
performance of NBS-Predict is clearly comparable.

In both female > male and male > female conditions, regions
from the subcortical-cerebellum network had the highest nodal
degree. As regions with a high degree have various connections
with other brain regions within or between networks, our results
corroborate with previous findings that suggested that sex differ-
ences are related to cerebellar hemispheric asymmetry [75], mor-
phology [76], and functional connectivity density [77]. Recent
studies have also highlighted the importance of the cerebellum in
sex classification [68, 78]. Importantly, Tiemeier et al. (2010) [76]
showed that the morphological difference between females and
males remained even after covarying total brain volume, which
might also affect the functional connectivity of the cerebellum. As
such, the cerebellum appears to be a significant feature for sex
classification. Some subcortical areas (e.g., thalamus) have also
been reported to be associated with sex [68, 73]. The importance
of other functional brain networks in sex classification has been
reported elsewhere [68, 69, 74, 79].

8 Advanced Features

A detailed description of advanced features in NBS-Predict is given
in the user manual document provided within the toolbox.
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8.1 Command Line Although the NBS-Predict toolbox was primarily designed for GUI
usage, it partly allows researchers to run their analyses through the
MATLAB command window. Specifically, the toolbox requires a
MATLAB structure (i.e., NBSPredict, Table 4) to save and load
parameters and input data to run the analysis properly. For running
analyses through the command line, we suggest that users load an
“NBSPredict.mat” file saved immediately after starting the analysis
and use this file as a template. Users can change the parameters or
directories for the input file in this template. This edited structure
will then serve as an input structure for the subsequent analyses.
Users may load this edited structure file to MATLAB and run the
“run_NBSPredict(NBSPredict)” command to perform the analy-
sis. Alternatively, the edited and saved structure can directly be run
using the “run_NBSPredict(‘filename.mat’)” command. Users can
also access input and output data stored in the “NBSPredict”
structure and experimental metrics can be accessed inside the struc-
ture. For instance, within-sample feature stability [80] can be
accessed via “NBSPredict.results.model_name.stability,” where
“model_name” represents the name of the ML model (e.g., Log-
Reg, svmC). Of note, as these experimental metrics are not yet
made available in the GUI, they might be subject to change, and
somemay not be fully validated within the NBS-Predict framework.

8.2 Making

Predictions Using

Novel Data

As mentioned in Subheading 2.1, users can further use their trained
models to predict outcomes using novel data. This is quite impor-
tant and one of the most useful advantages of machine learning
over traditional inference statistics methods.

The portable model (i.e., the model trained using the whole
input set) is automatically trained and saved under the subdirectory
of “NBSPredict.results.ML_name.model,” where “ML_name” is
the name of the ML algorithm employed. To make predictions

Table 4
MATLAB structure to store several important information regarding analysis including parameters,
input data, and the results

Structure
Substructure
1

Substructure
2 Description

NBS-
predict

Parameter Analysis parameters (e.g., K-fold, p-value, etc.)
Info General information about the toolbox and the analysis (e.g.,

toolbox version, analysis date, etc.)
Data Input data and directories for it
searchHandle Function handler for the searching algorithm (e.g., grid

search)
Results LinReg Results derived from linear regression

svmR Results derived from SVM regressor
bestEstimator The best performing estimator (if ML algorithm

optimization selected)
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about unseen individuals, users should employ the “NBSPredict_-
predict” function available within the toolbox. The function only
requires connectome data of unseen individuals (e.g., holdout
dataset), the portable model, and the confound matrix if confound
regression had been performed. A key feature of this function is
that it estimates the performance of the trained portable model on a
“never seen” holdout dataset. As the holdout set has never been
used in any model training, the models’ performance on the hold-
out set represents its generalizability in the “real world.” A sample
code to estimate the models’ holdout performance is depicted in
Fig. 18.

9 Limitations and Caveats

A detailed discussion about the limitations of the NBS-Predict
method is given elsewhere [14]. Briefly, NBS-Predict requires
thresholds in the suprathreshold edge selection algorithms and for

Fig. 18 An exemplary code for estimating the holdout set performance of the trained model. The image for the
exemplary code was generated on carbon.now.sh
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visualization purposes. As the choice of these thresholds can be
arbitrary, some best practice strategies for thresholding are
provided in Subheading 4.11 and Serin et al. (2021) [14]. Further,
the distribution of weights in the weighted outcome network is
strictly determined by the number of CV folds and repetitions. A
higher number of CV folds or repetitions provides a more fine-
grained edge weight distribution. In contrast, a lower number
would result in coarse-grained weight distributions. Therefore, we
strongly suggest that users perform more repetitions if the input
connectome is dense. Critically, since connected components (i.e.,
features for the ML models) are based on significant edges selected
by the suprathreshold edge selection algorithm, the method of
NBS-Predict is only beneficial if the selected edges form a network
(i.e., are connected). In cases of very sparse connectome data, we
suggest using alternative methods such as CPM (Shen et al., 2017).
Of note, NBS-Predict does not aim to necessarily maximize the
prediction performance but instead strives to provide a clearly
interpretable model that can predict the target of interest with a
good predictive performance. Therefore, NBS-Predict relies on
linear techniques. However, on some datasets, non-linear solutions
such as ensemble algorithms (e.g., Gradient Boosting, Random
Forest) or advanced deep neural network architectures might per-
form significantly better than NBS-Predict in exchange for inter-
pretability. Therefore, if maximizing the predictive power is the sole
aim of the analysis, we recommend using more complex non-linear
ML algorithms.

Additionally, there are several limitations of the current version
of NBS-Predict, which will be mitigated with continuous updates.
First, since the toolbox is mainly designed and developed for GUI
usage, it is not fully available for command-line use (see Subheading
8.1). Second, the hyperparameter optimization is limited in the
current version of the toolbox (v1.0.0-beta.9), such that only one
hyperparameter is tuned for each ML algorithm (Table 1). Thus,
other critical hyperparameters such as “solvers” will be implemen-
ted in the following versions. Furthermore, hyperparameters of
underlying ML algorithms as implemented in NBS-Predict are
predefined. Therefore, in the current version of the toolbox, users
cannot enter manual hyperparameters to tune. Third, the model
performance is evaluated using only K-fold CV and leave-one-out
CV (LOOCV) procedures. More advanced CV procedures (e.g.,
“Group K-Fold” that takes a group membership such as family
membership into account) and other out-of-sample evaluation
techniques such as the 0.632 bootstrapping technique [81] will
be provided with future updates. AlthoughNBS-Predict is an open-
source toolbox, it requires the paid MATLAB platform (The Math-
Works, Inc.), thereby making it not completely free-to-use. A
completely free-to-use version of NBS-Predict developed in Python
will be released in the future.
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NBS-Predict is an open-source toolbox mainly stored in GitHub
(https://github.com/eminSerin/NBS-Predict). Released versions
of the toolbox can be downloaded from GitHub and NITRC
(https://www.nitrc.org/projects/nbspredict/). Pre-release ver-
sions of the toolbox comprising experimental features can be down-
loaded from its GitHub repository.

We highly appreciate any form of contribution, such as bring-
ing new features to NBS-Predict, reporting bugs, and improving
readability of the code and the documentation. In case of any bugs,
users should create an issue in the GitHub repository (https://
github.com/eminSerin/NBS-Predict/issues) with a clear descrip-
tion. Developers should use the “dev” branch to pull the most
recent version of the toolbox and push their new features or bug
fixes.

11 Conclusion

This chapter provides an example-based walkthrough for the novel
connectome-based predictive method of NBS-Predict. We present
two application scenarios with freely available data covering two
main prediction problems in machine learning: regression and
classification. For regression, we employed NBS-Predict to infer
individuals’ fluid intelligence scores from their brain connectomes
generated using task-based fMRI data from the ID1000 dataset. In
the classification application, we inferred individuals’ sex using the
same data as in the regression scenario. NBS-Predict predicted fluid
intelligence scores with r = 0.243 and identified a contributing
subnetwork that spanned regions from various large-scale brain
networks. With respect to sex classification, NBS-Predict achieved
a classification accuracy of 63.7% (female >male) and 68% (male >
female) and identified connectome wide coupled cerebellar and
frontal regions as a driving factor for classification success.

We anticipate that this novel toolbox will make machine-
learning approaches more accessible to a broader audience of
researchers thanks to its easy-to-use GUI and thus encourage the
exploration of highly generalizable neuroimaging-based
biomarkers.
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ger MS, Rosa PG, Zanetti MV, Busatto GF,
Crespo-Facorro B, McGorry PD,
Velakoulis D, Pantelis C, Wood SJ, Kahn RS,
Mourao-Miranda J, Dazzan P (2017) Multi-
center MRI prediction models: predicting sex
and illness course in first episode psychosis
patients. NeuroImage 145:246–253. https://
doi.org/10.1016/j.neuroimage.2016.07.027

66. Peng H, Gong W, Beckmann CF, Vedaldi A,
Smith SM (2021) Accurate brain age predic-
tion with lightweight deep neural networks.
Med Image Anal 68:101871. https://doi.
org/10.1016/j.media.2020.101871

67. Al Zoubi O, Misaki M, Tsuchiyagaito A,
Zotev V, White E, Paulus M, Bodurka J
(2022) Machine learning evidence for sex dif-
ferences consistently influences resting-state
functional magnetic resonance imaging fluc-
tuations across multiple independently
acquired data sets. Brain Connect 12:348–
361. https://doi.org/10.1089/brain.2020.
0878

68. Zhang C, Dougherty CC, Baum SA, White T,
Michael AM (2018) Functional connectivity
predicts gender: evidence for gender differ-
ences in resting brain connectivity. Hum Brain
Mapp 39:1765–1776. https://doi.org/10.
1002/hbm.23950

69. Zhang X, Liang M, Qin W, Wan B, Yu C, Ming
D (2020) Gender differences are encoded dif-
ferently in the structure and function of the
human brain revealed by multimodal MRI.
Front Hum Neurosci 14:244. https://doi.
org/10.3389/fnhum.2020.00244

70. Ruigrok ANV, Salimi-Khorshidi G, Lai M-C,
Baron-Cohen S, Lombardo MV, Tait RJ, Suck-
ling J (2014) A meta-analysis of sex differences
in human brain structure. Neurosci Biobehav
Rev 39:34–50. https://doi.org/10.1016/j.
neubiorev.2013.12.004

71. Chekroud AM, Ward EJ, Rosenberg MD,
Holmes AJ (2016) Patterns in the human
brain mosaic discriminate males from females.
Proc Natl Acad Sci USA 113:E1968. https://
doi.org/10.1073/pnas.1523888113

72. More S, Eickhoff SB, Caspers J, Patil KR
(2021) Confound removal and normalization

in practice: a neuroimaging based sex predic-
tion case study. In: Dong Y, Ifrim G,
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Chapter 14

Normative Modeling with the Predictive Clinical
Neuroscience Toolkit (PCNtoolkit)

Saige Rutherford and Andre F. Marquand

Abstract

In this chapter, we introduce normative modeling as a tool for mapping variation across large neuroimaging
datasets. We provide practical guidance to illustrate how normative models can be used to map diverse
patterns of individual differences found within the large datasets used to train the models. In other words,
while normative modeling is a method often applied to big datasets containing thousands of subjects, it
provides single subject inference and prediction. We use an open-source Python package, Predictive Clinical
Neuroscience Toolkit (PCNtoolkit) and showcase several helpful tools (including an interface that does not
require coding) to run a normative modeling analysis, evaluate the model fit, and visualize the results.

Key words Neuroimaging, normative modeling, PCNtoolkit, individual differences

1 Introduction

Normative modeling in neuroimaging refers to the statistical anal-
ysis of brain imaging data from a large sample of individuals in order
to establish typical patterns of brain structure and function [2–
7]. The overarching aim is to define a reference range for the
given brain measurement (structure or function) in a certain sample
and to create a reference standard against which to compare indi-
viduals, often with neurological or psychiatric conditions [8–
17]. This is typically achieved by fitting flexible probabilistic regres-
sion models [See Glossary] to map centiles of variation in the
population, akin to the use of growth charts in pediatric medicine
(see example in Fig. 1). Owing to their ability to make predictions
at the level of the individual participants, normative models can be
used to detect subtle changes in brain structure or function that
may indicate the early stages of a disease or to evaluate the effects of
a certain treatment or intervention. These models can also be used
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in clinical settings to evaluate brain function of individuals with
suspected neurological or psychiatric disorders and to monitor the
progression of the disorder over time.

2 Predictive Clinical Neuroscience Toolkit (PCNToolkit)

The Predictive Clinical Neuroscience (PCN) toolkit [18] is a
Python package designed for multi-purpose tasks in clinical neuro-
imaging, including normative modelling, trend surface modelling
in addition to providing implementations of a number of funda-
mental machine learning algorithms [See Glossary].

Normative modelling essentially aims to predict centiles of
variance in a response variable (e.g., a region of interest or other
neuroimaging-derived measure) on the basis of a set of covariates
(e.g., age, clinical scores, diagnosis). In this paper, we take an
applied perspective and provide guidance about how to perform

Fig. 1 Big data (N= ~58,000 subjects) normative model of amygdala volume across the human lifespan (ages
two to 100) [1]
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normative modelling in practice. We refer the reader to other
review and protocol papers where in-depth conceptual and theo-
retical overviews of the approach can be found [19–21]. For exam-
ple, the image below shows an example of a normative model that
aims to predict vertex-wise cortical thickness data, essentially fitting
a separate model for each vertex (Fig. 2).

In practice, normative modelling is done by regressing the
biological response variables against a set of clinical or demographic
covariates. In the instructions that follow, it is helpful to think of
these as being stored in matrices as shown below (Fig. 3).

There are many options for this, but techniques that provide a
distributional form for the centiles are appealing, since they help to
estimate extreme centiles (where data are sparsest) more efficiently
and can help to avoid centile crossings [22]. Bayesian methods are
also beneficial in this regard because they also allow separation of
modelling uncertainty from variation in the data. Many applications
of normative modelling use Gaussian Process Regression [See Glos-
sary], which is the default method in this toolkit. However, other

Fig. 2 Normative modeling example

Fig. 3 Matrix representation of biological response variables and covariates
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algorithms are available and scale better to estimating normative
models on large datasets. These algorithms include Bayesian Linear
Regression (BLR) and Hierarchical Bayesian Linear Regression
(HBR). In the code tutorials included with this chapter, we imple-
ment normative models using BLR. Typically, each response vari-
able (brain region) is estimated independently. In the sections that
follow, we provide code tutorials for running a normative modeling
analysis, with specific explanations of the modeling choices (these
explanations are embedded in the relevant tutorials, which are
available online via the links summarized in Table 1 and Fig. 4).

3 Code Tutorial 1: Transferring Pre-trained Big Data Normative Models

This code shows how to apply the coefficients from pre-estimated
normative models to new data, such as regional cortical thickness
from Freesurfer preprocessing. This can be done in two
different ways: (1) using a new set of data derived from the same
sites used to estimate the model and (2) on a completely different
set of sites. In the latter case, we also need to estimate the site effect,
which requires some calibration/adaptation data. As an illustrative
example, we use a dataset derived from several OpenNeuro datasets
and adapt the learned model to make predictions on these data [see
Chapter 2]. This code can be run in your web browser using
Google Colab here.

Table 1
Overview of available open-source resources for normative modeling

Resource Description Link

PCNportal No code required interface for accessing
pre-trained normative models

https://pcnportal.dccn.nl/

Gitter Website for communication with PCNtoolkit
developers

https://gitter.im/predictive-clinical-
neuroscience/community

Read The
Docs

Wiki resource page for the PCNtoolkit https://pcntoolkit.readthedocs.io/
en/latest/

GitHub Code base for the PCNtoolkit. Contributions
welcome!

https://github.com/amarquand/
PCNtoolkit

Google
Colab

Run python notebooks in a web browser without
setup of python environment

Bayesian Linear Regression
Hierarchical Bayesian regression
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3.1 Using Lifespan

Models to Make

Predictions on New

Data

3.1.1 The First Step Is to

Install PCNtoolkit

#!/usr/bin/env python

get_ipython().system(' pip install pcntoolkit==0.28')

get_ipython().system(' git clone https://github.com/predictive-clinical-

neuroscience/braincharts.git')

Fig. 4 Overview of the (no code required) PCNportal website for running normative modeling analysis
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3.1.2 Import Necessary

Python Libraries

Next, the necessary libraries need to be imported. You need to be in
the scripts folder when you import the libraries in the code block
below, because there is a function specific to normative modeling—
called nm_utils—that is in the scripts folder that we need to import.

import os

os.chdir('/content/braincharts/scripts/') # this path is setup for running on Google Colab. 

Change it to match your local path if running locally

# Now we import the required libraries

import numpy as np

import pandas as pd

import pickle

from matplotlib import pyplot as plt

import seaborn as sns

from pcntoolkit.normative import estimate, predict, evaluate

from pcntoolkit.util.utils import compute_MSLL, create_design_matrix

from nm_utils import remove_bad_subjects, load_2d

3.1.3 Select and Unzip

Model Folder

In this step, you will first unzip the models. You start by changing
the directory. In this example, you will use the biggest sample as
your training set (approx. N = 58,000 subjects from 82 sites). For
more info on the other pre-trained models available in this reposi-
tory, please refer to the accompanying paper [1].

# change the directory 

os.chdir('/content/braincharts/models/')

#unzip the data

get_ipython().system(' unzip lifespan_57K_82sites.zip')
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3.1.4 Set Paths and

Directory Names

Next, you need to configure some basic variables, like where we
want the analysis to be done (e.g., in a particular folder on your
computer) and which lifespan model you want to use.

Note
We maintain a list of site IDs for each dataset, which describe
the site names in the training and test data (‘site_ids_tr‘ and
‘site_ids_te‘), plus also the adaptation data. The training site
IDs are provided as a text file in the distribution and the test
IDs are extracted automatically from the pandas dataframe
(see below). If you use additional data from the sites (e.g.,
later waves from ABCD), it may be necessary to adjust the site
names to match the names in the training set. See Rutherford
et al. [1] for more details.

# Which model do we wish to use?

model_name = 'lifespan_57K_82sites'

site_names = 'site_ids_ct_82sites.txt'

# Where the analysis takes place

root_dir = '/content/braincharts'

# Where the data files live

data_dir = '/content/braincharts/docs'

# Where the models live

out_dir = os.path.join(root_dir, 'models', model_name)

# Load a set of site IDs from this model. This must match the training data

with open(os.path.join(root_dir,'docs', site_names)) as f:

site_ids_tr = f.read().splitlines()
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3.2 Loading Data

3.2.1 Test Data

First, you need to load the test data. For the purposes of this
tutorial, you will make predictions for a multi-site transfer dataset,
derived from OpenNeuro.

test_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_te.csv')

df_te = pd.read_csv(test_data)

# Extract a list of unique site ids from the test set

site_ids_te =  sorted(set(df_te['site'].to_list()))

3.2.2 Adaption Data Next, you need to load the adaptation data. If the data you wish to
make predictions for are not derived from the same scanning sites as
those in the training set, it is necessary to learn the site effect so that
it can be accounted for it in the predictions. In order to do this in an
unbiased way, it is necessary to use a separate dataset, which is
referred to as ‘adaptation data. This must contain data for all the
same sites as in the test dataset (if not, a warning is displayed) and
we assume these are coded in the same way, based on a the ‘site-
num’ column in the dataframe.

adaptation_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_ad.csv')

df_ad = pd.read_csv(adaptation_data)

# Extract a list of unique site ids from the test set

site_ids_ad =  sorted(set(df_ad['site'].to_list()))

if not all(elem in site_ids_ad for elem in site_ids_te):

print('Warning: some of the testing sites are not in the adaptation data')
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3.3 Configure the

Models to Fit

3.3.1 Select Brain

Phenotypes

Now, you configure which imaging derived phenotypes (IDPs) you
would like to process. This is just a list of column names in the
dataframe you have loaded above. You can either load the whole set
(i.e., all phenotypes for which you have models for) or you can
specify a subset.

# Load the list of idps for left and right hemispheres, plus subcortical regions

with open(os.path.join(data_dir, 'phenotypes_ct_lh.txt')) as f:

idp_ids_lh = f.read().splitlines()

with open(os.path.join(data_dir, 'phenotypes_ct_rh.txt')) as f:

idp_ids_rh = f.read().splitlines()

with open(os.path.join(data_dir, 'phenotypes_sc.txt')) as f:

idp_ids_sc = f.read().splitlines()

# We choose here to process all idps

idp_ids = idp_ids_lh + idp_ids_rh + idp_ids_sc

# ... or alternatively, we could just specify a list

idp_ids = [ 'Left-Thalamus-Proper', 'Left-Lateral-Ventricle', 'rh_MeanThickness_thickness']

3.3.2 Configure Model

Parameters

Now, you should configure some parameters to fit the model. First,
choose which columns of the pandas dataframe contain the covari-
ates (age and sex). The site parameters are configured automatically
later on by the ‘configure_design_matrix()’ function when looping
through the IDPs in the list. The supplied coefficients are derived
from a ‘warped’ Bayesian linear regression model, which uses a
nonlinear warping function to model non-Gaussianity (‘sinarc-
sinh’) plus a non-linear basis expansion (a cubic b-spline basis set
with 5 knot points, which is the default value in the PCNtoolkit
package). For further details about the likelihood warping
approach, see Rutherford et al. (2022) [1] and Fraza et al. (2022)
[23]. Since you are sticking with the default value, you do not need
to specify any parameters for this, but you do need to specify the
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limits. Below, you choose to pad the input by a few years either side
of the input range and set a couple of options that control the
estimation of the model.

# Which data columns do we wish to use as covariates? 

cols_cov = ['age','sex']

# Limits for cubic B-spline basis 

xmin = -5

xmax = 110

# Absolute Z threshold above which a sample is considered to be an outlier (without fitting any 

model)

outlier_thresh = 7

3.4 Making

Predictions

The next step is to make predictions. The code below will make
predictions for each IDP separately. This is done by extracting a
column from the dataframe (i.e., specifying the IDP as the response
variable) and saving it as a numpy array. Next, configure the covari-
ates, which is a numpy data array having the number of rows equal
to the number of datapoints in the test set. The columns are
specified as follows:

• The covariate columns (here age and sex, coded as 0 = female/
1 = male).

• Dummy coded columns for the sites in the training set (one
column per site).

• Columns for the basis expansion (seven columns for the default
parameterization).

338 Saige Rutherford and Andre F. Marquand



Once these are saved as numpy arrays in ascii format (as here) or
(alternatively) in pickle format, these are passed as inputs to the
‘predict()’ method in the PCNtoolkit normative modelling frame-
work. These are written in the same format to the location specified
by ‘idp_dir.’ At the end of this step, you will have a set of predic-
tions and Z-statistics for the test dataset that you can take forward
to further analysis.

Note
When you need to make predictions on new data, the proce-
dure is more involved, since we need to prepare, process and
store covariates, response variables, and site ids for the
adaptation data.

for idp_num, idp in enumerate(idp_ids): 

print('Running IDP', idp_num, idp, ':')

idp_dir = os.path.join(out_dir, idp)

os.chdir(idp_dir)

# Extract and save the response variables for the test set

y_te = df_te[idp].to_numpy()
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# Save the variables

resp_file_te = os.path.join(idp_dir, 'resp_te.txt') 

np.savetxt(resp_file_te, y_te)

# Configure and save the design matrix

cov_file_te = os.path.join(idp_dir, 'cov_bspline_te.txt')

X_te = create_design_matrix(df_te[cols_cov], 

site_ids = df_te['site'],

all_sites = site_ids_tr,

basis = 'bspline', 

xmin = xmin, 

xmax = xmax)

np.savetxt(cov_file_te, X_te)

# Check whether all sites in the test set are represented in the training set

if all(elem in site_ids_tr for elem in site_ids_te):

print('All sites are present in the training data')

# Just make predictions

yhat_te, s2_te, Z = predict(cov_file_te, 

alg='blr', 

respfile=resp_file_te, 
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model_path=os.path.join(idp_dir,'Models'))

else:

print('Some sites missing from the training data. Adapting model')

# Save the covariates for the adaptation data

X_ad = create_design_matrix(df_ad[cols_cov], 

site_ids = df_ad['site'],

all_sites = site_ids_tr,

basis = 'bspline', 

xmin = xmin, 

xmax = xmax)

cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt')          

np.savetxt(cov_file_ad, X_ad)

# Save the responses for the adaptation data

resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt') 

y_ad = df_ad[idp].to_numpy()

np.savetxt(resp_file_ad, y_ad)

# Save the site ids for the adaptation data

sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt') 

site_num_ad = df_ad['sitenum'].to_numpy(dtype=int)

np.savetxt(sitenum_file_ad, site_num_ad)
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# Save the site ids for the test data 

sitenum_file_te = os.path.join(idp_dir, 'sitenum_te.txt')

site_num_te = df_te['sitenum'].to_numpy(dtype=int)

np.savetxt(sitenum_file_te, site_num_te)

yhat_te, s2_te, Z = predict(cov_file_te, 

alg = 'blr', 

respfile = resp_file_te, 

model_path = os.path.join(idp_dir,'Models'),

adaptrespfile = resp_file_ad,

adaptcovfile = cov_file_ad,

adaptvargroupfile = sitenum_file_ad,

testvargroupfile = sitenum_file_te)

3.5 Plotting

3.5.1 Configure Age

Range of Plots - Dummy

Data

In this step, you plot the centiles of variation estimated by the
normative model. You do this by making use of a set of dummy
covariates that span the whole range of the input space (for age) for
a fixed value of the other covariates (e.g., sex) so that we can make
predictions for these dummy data points, then plot them. We
configure these dummy predictions using the same procedure as
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we used for the real data. We can use the same dummy data for all
the IDPs we wish to plot.

# Which sex do we want to plot? 

sex = 1 # 1 = male 0 = female

if sex == 1: 

clr = 'blue';

else:

clr = 'red'

# Create dummy data for visualization

print('configuring dummy data ...')

xx = np.arange(xmin, xmax, 0.5)

X0_dummy = np.zeros((len(xx), 2))

X0_dummy[:,0] = xx

X0_dummy[:,1] = sex

# Create the design matrix

X_dummy = create_design_matrix(X0_dummy, xmin=xmin, xmax=xmax, site_ids=None, 

all_sites=site_ids_tr)

# Save the dummy covariates

cov_file_dummy = os.path.join(out_dir,'cov_bspline_dummy_mean.txt')

np.savetxt(cov_file_dummy, X_dummy)
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3.5.2 Plot Real Data Here, you will plot the normative models. First, we loop through
the IDPs, plotting each one separately. The outputs of this step are
a set of quantitative regression metrics for each IDP and a set of
centile curves which we plot the test data against. This part of the
code is relatively complex because we need to keep track of many
quantities for the plotting. We also need to remember whether the
data need to be warped or not. By default, in PCNtoolkit, predic-
tions in the form of ‘yhat,’ ‘s2’ are always in the warped (Gaussian)
space. If we want predictions in the input (non-Gaussian) space,
then we need to warp them with the inverse of the estimated
warping function. This can be done using the function ‘nm.blr.
warp.warp_predictions(),’

Note
It is necessary to update the intercept for each of the sites. For
purposes of visualization, here we do this by adjusting the
median of the data to match the dummy predictions but note
that all the quantitative metrics are estimated using the pre-
dictions that are adjusted properly using a learned offset
(or adjusted using a hold-out adaptation set, as above).

Note For the calibration data we require at least two data points of
the same sex in each site to be able to estimate the variance. Of
course, in a real example, you would want many more than just two
since we need to get a reliable estimate of the variance for each site.

sns.set(style='whitegrid')

for idp_num, idp in enumerate(idp_ids): 
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print('Running IDP', idp_num, idp, ':')

idp_dir = os.path.join(out_dir, idp)

os.chdir(idp_dir)

# Load the true data points

yhat_te = load_2d(os.path.join(idp_dir, 'yhat_predict.txt'))

s2_te = load_2d(os.path.join(idp_dir, 'ys2_predict.txt'))

y_te = load_2d(os.path.join(idp_dir, 'resp_te.txt'))

# Set up the covariates for the dummy data

print('Making predictions with dummy covariates (for visualisation)')

yhat, s2 = predict(cov_file_dummy, 

alg = 'blr', 

respfile = None, 

model_path = os.path.join(idp_dir,'Models'), 

outputsuffix = '_dummy')

# Load the normative model

with open(os.path.join(idp_dir,'Models', 'NM_0_0_estimate.pkl'), 'rb') as handle:

nm = pickle.load(handle) 

# Get the warp and warp parameters

W = nm.blr.warp
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warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] 

# First, we warp predictions for the true data and compute evaluation metrics

med_te = W.warp_predictions(np.squeeze(yhat_te), np.squeeze(s2_te), warp_param)[0]

med_te = med_te[:, np.newaxis]

print('metrics:', evaluate(y_te, med_te))

# Then, we warp dummy predictions to create the plots

med, pr_int = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param)

# Extract the different variance components to visualise

beta, junk1, junk2 = nm.blr._parse_hyps(nm.blr.hyp, X_dummy)

s2n = 1/beta # variation (aleatoric uncertainty)

s2s = s2-s2n # modelling uncertainty (epistemic uncertainty)

# Plot the data points

y_te_rescaled_all = np.zeros_like(y_te)

for sid, site in enumerate(site_ids_te):

# Plot the true test data points 

if all(elem in site_ids_tr for elem in site_ids_te):

# All data in the test set are present in the training set

# First, we select the data points belonging to this particular site
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idx = np.where(np.bitwise_and(X_te[:,2] == sex, X_te[:,sid+len(cols_cov)+1] !=0))[0]

if len(idx) == 0:

print('No data for site', sid, site, 'skipping...')

continue

# Then directly adjust the data

idx_dummy = np.bitwise_and(X_dummy[:,1] > X_te[idx,1].min(), X_dummy[:,1] < 

X_te[idx,1].max())

y_te_rescaled = y_te[idx] - np.median(y_te[idx]) + np.median(med[idx_dummy])

else:

# We need to adjust the data based on the adaptation dataset 

# First, select the data point belonging to this particular site

idx = np.where(np.bitwise_and(X_te[:,2] == sex, (df_te['site'] == site).to_numpy()))[0]

# Load the adaptation data

y_ad = load_2d(os.path.join(idp_dir, 'resp_ad.txt'))

X_ad = load_2d(os.path.join(idp_dir, 'cov_bspline_ad.txt'))

idx_a = np.where(np.bitwise_and(X_ad[:,2] == sex, (df_ad['site'] == 

site).to_numpy()))[0]

if len(idx) < 2 or len(idx_a) < 2:

print('Insufficent data for site', sid, site, 'skipping...')

continue
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# Adjust and rescale the data

y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp, 

X_ad[idx_a,:], 

np.squeeze(y_ad[idx_a]), 

Xs=None, 

ys=np.squeeze(y_te[idx]))

# Plot the (adjusted) data points

plt.scatter(X_te[idx,1], y_te_rescaled, s=4, color=clr, alpha = 0.1)

# Plot the median of the dummy data

plt.plot(xx, med, clr)

# Fill the gaps in between the centiles

junk, pr_int25 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, 

percentiles=[0.25,0.75])

junk, pr_int95 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, 

percentiles=[0.05,0.95])

junk, pr_int99 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, 

percentiles=[0.01,0.99])

plt.fill_between(xx, pr_int25[:,0], pr_int25[:,1], alpha = 0.1,color=clr)

plt.fill_between(xx, pr_int95[:,0], pr_int95[:,1], alpha = 0.1,color=clr)

plt.fill_between(xx, pr_int99[:,0], pr_int99[:,1], alpha = 0.1,color=clr)
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# Make the width of each centile proportional to the epistemic uncertainty

junk, pr_int25l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), 

warp_param, percentiles=[0.25,0.75])

junk, pr_int95l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), 

warp_param, percentiles=[0.05,0.95])

junk, pr_int99l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), 

warp_param, percentiles=[0.01,0.99])

junk, pr_int25u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), 

warp_param, percentiles=[0.25,0.75])

junk, pr_int95u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), 

warp_param, percentiles=[0.05,0.95])

junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), 

warp_param, percentiles=[0.01,0.99])    

plt.fill_between(xx, pr_int25l[:,0], pr_int25u[:,0], alpha = 0.3,color=clr)

plt.fill_between(xx, pr_int95l[:,0], pr_int95u[:,0], alpha = 0.3,color=clr)

plt.fill_between(xx, pr_int99l[:,0], pr_int99u[:,0], alpha = 0.3,color=clr)

plt.fill_between(xx, pr_int25l[:,1], pr_int25u[:,1], alpha = 0.3,color=clr)

plt.fill_between(xx, pr_int95l[:,1], pr_int95u[:,1], alpha = 0.3,color=clr)

plt.fill_between(xx, pr_int99l[:,1], pr_int99u[:,1], alpha = 0.3,color=clr)

# Plot actual centile lines

plt.plot(xx, pr_int25[:,0],color=clr, linewidth=0.5)
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plt.plot(xx, pr_int25[:,1],color=clr, linewidth=0.5)

plt.plot(xx, pr_int95[:,0],color=clr, linewidth=0.5)

plt.plot(xx, pr_int95[:,1],color=clr, linewidth=0.5)

plt.plot(xx, pr_int99[:,0],color=clr, linewidth=0.5)

plt.plot(xx, pr_int99[:,1],color=clr, linewidth=0.5)

plt.xlabel('Age')

plt.ylabel(idp) 

plt.title(idp)

plt.xlim((0,90))

plt.savefig(os.path.join(idp_dir, 'centiles_' + str(sex)),  bbox_inches='tight')

plt.show()

os.chdir(out_dir)
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3.6 Organize the

Output Files into a

Single CSV File

Here, you will explore an example output folder of a single model
(one ROI). It is useful to understand what each of these output files
represents. Look at the variable names and comments in the code
block above:

# folder contents

get_ipython().system(' ls rh_MeanThickness_thickness/')

You should check that the number of deviation scores matches
the number of subjects in the test set. There should be one devia-
tion score per subject (one line per subject), which you can verify by
counting the line numbers in the Z_predict.txt file:

# lines count

get_ipython().system(' cat rh_MeanThickness_thickness/Z_predict.txt | wc')
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The deviation scores are output as a text file in separate folders.
You will want to summarize the deviation scores across all models
estimates so you organize them into a single file and merge the
deviation scores into the original data file.

get_ipython().system(' mkdir deviation_scores')

get_ipython().system(' for i in *; do if [[ -e ${i}/Z_predict.txt ]]; then cp ${i}/Z_predict.txt 

deviation_scores/${i}_Z_predict.txt; fi; done')

z_dir = '/content/braincharts/models/' + model_name + '/deviation_scores/'

filelist = [name for name in os.listdir(z_dir)]

os.chdir(z_dir)

Z_df = pd.concat([pd.read_csv(item, names=[item[:-4]]) for item in filelist], axis=1)

df_te.reset_index(inplace=True)

Z_df['sub_id'] = df_te['sub_id']

df_te_Z = pd.merge(df_te, Z_df, on='sub_id', how='inner')

df_te_Z.to_csv('OpenNeuroTransfer_deviation_scores.csv', index=False)
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4 Code Tutorial 2: Visualizing the Results

This tutorial walks through several examples that visualize the out-
puts created by the normative modeling analysis that was run in
tutorial 1. Again, this code can be run in your web browser using
Google Colab here.

4.1 Brain Space

Visualization of

Extreme Deviations

First, we count the number of extreme (positive and negative)
deviations at each brain region and visualize the count for each
hemisphere. You can click around in 3D space on the visualizations
(Scroll in/out, move the brain around, etc.)

#!/usr/bin/env python

get_ipython().system(' git clone https://github.com/predictive-clinical-

neuroscience/PCNtoolkit-demo.git')

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
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from nilearn import plotting

import nibabel as nib

from nilearn import datasets

os.chdir('/content/PCNtoolkit-demo')

Z_df = pd.read_csv('data/Z_long_format.csv')

# Change this threshold to view more or less extreme deviations.

# Discuss what you think is an appropriate threshold and adjust the below variables 

accordingly.

Z_positive = Z_df.query('value > 2')

Z_negative = Z_df.query('value < -2')

positive_left_z = Z_positive.query('hemi == "left"')

positive_right_z = Z_positive.query('hemi == "right"')

positive_sc_z = Z_positive.query('hemi == "subcortical"')

negative_left_z = Z_negative.query('hemi == "left"')

negative_right_z = Z_negative.query('hemi == "right"')

negative_sc_z = Z_negative.query('hemi == "subcortical"')

positive_left_z2 = 

positive_left_z['ROI_name'].value_counts().rename_axis('ROI').reset_index(name='counts')
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positive_right_z2 = 

positive_right_z['ROI_name'].value_counts().rename_axis('ROI').reset_index(name='counts')

positive_sc_z2 = 

positive_sc_z['ROI_name'].value_counts().rename_axis('ROI').reset_index(name='counts')

negative_left_z2 = 

negative_left_z['ROI_name'].value_counts().rename_axis('ROI').reset_index(name='counts')

negative_right_z2 = 

negative_right_z['ROI_name'].value_counts().rename_axis('ROI').reset_index(name='counts')

negative_sc_z2 = 

negative_sc_z['ROI_name'].value_counts().rename_axis('ROI').reset_index(name='counts')

destrieux_atlas = datasets.fetch_atlas_surf_destrieux()

fsaverage = datasets.fetch_surf_fsaverage()

# The parcellation is already loaded into memory

parcellation_l = destrieux_atlas['map_left']

parcellation_r = destrieux_atlas['map_right']

nl = pd.read_csv('data/nilearn_order.csv')

atlas_r = destrieux_atlas['map_right']

atlas_l = destrieux_atlas['map_left']
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nl_ROI = nl['ROI'].to_list()

nl_positive_left = pd.merge(nl, positive_left_z2, on='ROI', how='left')

nl_positive_right = pd.merge(nl, positive_right_z2, on='ROI', how='left')

nl_positive_left['counts'] = nl_positive_right['counts'].fillna(0)

nl_positive_right['counts'] = nl_positive_right['counts'].fillna(0)

nl_positive_left = nl_positive_left['counts'].to_numpy()

nl_positive_right = nl_positive_right['counts'].to_numpy()

a_list = list(range(1, 76))

parcellation_positive_l = atlas_l

for i, j in enumerate(a_list):

parcellation_positive_l = np.where(parcellation_positive_l == j, nl_positive_left[i], 

parcellation_positive_l)

a_list = list(range(1, 76))

parcellation_positive_r = atlas_r

for i, j in enumerate(a_list):

parcellation_positive_r = np.where(parcellation_positive_r == j, nl_positive_right[i], 

parcellation_positive_r)
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view_pos_r = plotting.view_surf(fsaverage.infl_right, parcellation_positive_r, 

threshold=None, symmetric_cmap=False, cmap='plasma', bg_map=fsaverage.sulc_right)

view_pos_l = plotting.view_surf(fsaverage.infl_left, parcellation_positive_l, threshold=None, 

symmetric_cmap=False, cmap='plasma', bg_map=fsaverage.sulc_left)

nl_negative_left = pd.merge(nl, negative_left_z2, on='ROI', how='left')

nl_negative_right = pd.merge(nl, negative_right_z2, on='ROI', how='left')

nl_negative_left['counts'] = nl_negative_left['counts'].fillna(0)

nl_negative_right['counts'] = nl_negative_right['counts'].fillna(0)

nl_negative_left = nl_negative_left['counts'].to_numpy()

nl_negative_right = nl_negative_right['counts'].to_numpy()
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a_list = list(range(1, 76))

parcellation_negative_l = atlas_l

for i, j in enumerate(a_list):

parcellation_negative_l = np.where(parcellation_negative_l == j, nl_negative_left[i], 

parcellation_negative_l)

a_list = list(range(1, 76))

parcellation_negative_r = atlas_r

for i, j in enumerate(a_list):

parcellation_negative_r = np.where(parcellation_negative_r == j, nl_negative_right[i], 

parcellation_negative_r)

view_neg_r = plotting.view_surf(fsaverage.infl_right, parcellation_negative_r, 

threshold=None, symmetric_cmap=False, cmap='plasma', bg_map=fsaverage.sulc_right)

view_neg_l = plotting.view_surf(fsaverage.infl_left, parcellation_negative_l, threshold=None, 

symmetric_cmap=False, cmap='plasma', bg_map=fsaverage.sulc_left)
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4.2 Violin Plots of the

Extreme Deviations

Here, you can count the number of ‘extreme’ deviations that each
person has (both positive and negative) and summarize the distri-
bution of extreme deviations for healthy controls and patients with
schizophrenia.

Z_df = pd.read_csv('data/fcon1000_te_Z.csv')

deviation_counts = Z_df.loc[:, Z_df.columns.str.contains('Z_predict')]

deviation_counts['positive_count'] = deviation_counts[deviation_counts >= 2].count(axis=1)

deviation_counts['negative_count'] = deviation_counts[deviation_counts <= -2].count(axis=1)

deviation_counts['participant_id'] = Z_df['sub_id']

deviation_counts['group_ID'] = Z_df['group']

deviation_counts['site_ID'] = Z_df['site']
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deviation_counts['all_counts'] = deviation_counts['positive_count'] + 

deviation_counts['negative_count']

fig, ax = plt.subplots(figsize=(6,6))

sns.violinplot(data=deviation_counts, y="all_counts", x="group_ID", inner='box', ax=ax);

plt.legend=False

5 Conclusion

5.1 Evaluation There are multiple results created from the normative model analy-
sis. First, the evaluation metrics for each model (brain region) are
saved to a CSV file in Subheading 3. The evaluation metrics can be
visualized in numerous formats, such as histograms/density plots,
scatter plots with fitted centiles, or brain-space visualizations. Sev-
eral examples of these visualizations were shown in Subheading
4 on visualization. Quality checking the normative model evalua-
tion metrics should be done to ensure proper model estimation. If a
model fits well to the data, the evaluation metrics should follow a
Gaussian distribution. Beyond the summary metrics, there are
individual metrics that can be helpful for interpretation because
they quantify the uncertainty of each individual’s predicted value
(for every brain region).

5.2 Limitations As datasets grow in size, there is a need to use automated quality
metrics. This means there could unintentionally be poor quality
data included in the training set. Whenever possible, users should
consider manually quality checking their own data. If the dataset is
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too large to check every subject, consider randomly checking a
portion of the dataset and using the automated quality metrics to
inform a threshold for which subjects should be manually visually
inspected.

Another consideration, when training big data normative mod-
els, is that there are going to be differences in the available data
modalities collected across studies and sites. The commonly avail-
able data needs to be considered when deciding which studies to
include and which covariates to use in modeling. If the goal is to
share the model, using uncommon covariates or brain measures will
affect the utility and accessibility of the model.

It is also important to consider that normative modeling may
not always be the best approach in all settings, as it is dependent on
the chosen reference population (usually but not necessarily taken
to be population of healthy controls), and it might not be appro-
priate in certain cases, for example, if there are substantial differ-
ences in the target cohort that are unrelated to the clinical
condition of interest. In some situations, such as when studying
rare diseases, there may not be enough data available to establish a
normative model, or the population of healthy controls may not be
representative of the population being studied. However, we
acknowledge that we are not obliged to fit the normative model
only using healthy data. It is equally valid to fit a normative model
using patient and control data, just note that changing the refer-
ence cohort (training set) demographics changes the interpretation
of the centiles. If you are modeling ‘healthy’ lifespan populations,
the sample size will likely be large (on the order of thousands)
because of the availability of publicly shared data from healthy
controls. In contrast, if you want to model a specific clinical popu-
lation, the sample size will be smaller due to availability of data. A
smaller dataset that appropriately addresses the given research ques-
tion is suitable. There is no ‘one size fits all’ approach to normative
modeling.

5.3 Post-hoc

Analysis

There are multiple possible downstream analyses that can be per-
formed after a normative model has been fit, evaluated, and visua-
lized. While there are too many diverging paths to cover them all
within this chapter, we highlight recent work on post-hoc norma-
tive modeling possibilities. These include sub-typing using cluster-
ing algorithms [17] and stratification [8]. For example, such
approaches applied to autism spectrum disorder (ASD) have
shown particular promise for parsing the biological heterogeneity
underlying this condition. For example Zabihi et al. [17] showed
that a subset of individuals with autism have widespread patterns of
increased cortical thickness relative to population norms, whereas
others have widespread patterns of decreased cortical thickness. We
refer to Rutherford et al. [24] for a detailed overview of the
possibilities of downstream analyses that can be conducted using
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normative models and an in-depth comparison between normative
modeling outputs (deviation scores) and raw data using different
data modalities (structural and functional MRI) across several tasks
(multivariate prediction (regression and classification) and case-
control group different testing). Owing to this flexibility, and the
ability to move beyond group level inferences to individual predic-
tion, we consider that normative modeling is a promising method
for understanding variation in large datasets.
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Chapter 15

Studying the Connectome at a Large Scale

Rory Boyle and Yihe Weng

Abstract

This chapter outlines a flexible connectome-based predictive modeling method that is optimised for large
neuroimaging datasets via the use of parallel computing and by adding the capability to account for possible
site- and scanner-related heterogeneity in multi-site neuroimaging datasets. We present the decision points
that need to be made when conducting a connectome-based predictive modeling analysis and we provide
full code to conduct an analysis on public data. To date, connectome-based predictive modeling has been
applied to predict different cognitive and behavioral phenotypes with many studies reporting accurate
predictions that generalized to external datasets.

Key words Magnetic resonance imaging, Connectomic predictive modeling, Neuroimaging

1 Introduction

Connectome-based predictive modeling (CPM) is a data-driven
approach that enables the prediction of behavioural and cognitive
phenotypes from functional MRI (fMRI) connectivity data
[1, 2]. CPM has been applied to successfully predict individual
differences in various cognitive phenotypes including global cogni-
tion [3], attention [4, 5], executive function [6], fluid intelligence
[1, 7, 8], processing speed [7], cognitive reserve [9], and creative
ability [10]. CPM has also enabled accurate prediction of individual
differences in behavioural phenotypes such as anxiety [11], depres-
sion [12], feelings of loneliness [13] and stress [14], childhood
aggression I [15] and social impairments [16], and abstinence from
use of substances including opioids [17] and cocaine [18]. For a
comprehensive overview, see the original protocol paper which
outlines the method and explains the benefits of the approach
[2]. This chapter will outline a flexible CPM method which is
optimised for large neuroimaging datasets via the use of parallel
computing [see Glossary] and that enables researchers to account
for possible site and scanner-related heterogeneity in multi-site
neuroimaging datasets [19, 20] by controlling for site and/or

Robert Whelan and Hervé Lemaı̂tre (eds.), Methods for Analyzing Large Neuroimaging Datasets, Neuromethods, vol. 218,
https://doi.org/10.1007/978-1-0716-4260-3_15, © The Author(s) 2025

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4260-3_15&domain=pdf
https://doi.org/10.1007/978-1-0716-4260-3_15#DOI


scanner type as a covariate or by using leave-site-out cross-
validation [see Glossary]. To date, CPM has been used for the
prediction of continuous variables but classification
(i.e. prediction of binary variables) is also possible with modifica-
tion of the code presented here.

In short, CPM identifies the most relevant functional connec-
tions (‘edges’) for a phenotype of interest across the whole brain
(see Fig. 1). Within a cross-validation framework, edges are thre-
sholded based on their correlation with the phenotype such that
only edges where connectivity is significantly associated with the
phenotype are retained. Connectivity can be either positively or
negatively associated with the phenotype (positive and negative
edges, respectively). Summary network strength values (single sca-
lar values) are created by summing connectivity strength from all
suprathreshold positive edges (positive network strength) and neg-
ative edges (negative network strength) separately. These values
represent the connectivity strength of edges where stronger con-
nectivity is associated with higher and lower values of the pheno-
type, respectively. Combined network strength, reflecting the
overall connectivity strength across all edges associated with the
phenotype, is calculated by subtracting negative network strength
from positive network strength.

CPM is a promising strategy for objective measurement of
behavioural and cognitive phenotypes for a number of reasons.
First, CPM provides scalar values that summarise the strength of
connectivity in phenotype-related networks and that, given suffi-
cient accuracy, could be used as an objective measure to track
changes in a phenotype over time. Second, CPM uses whole-
brain functional connectivity in a data-driven manner and is there-
fore not constrained by a priori hypothesised regions or networks of
interest. This may improve predictive accuracy of phenotypes, as
individual differences in cognition are better predicted by whole-
brain data versus data from specific regions of interest [21]. Third,
CPM enables useful neurobiological insights through data visuali-
sation and computational methods. Circle plots and/or glass brain
plots can highlight specific brain regions critical for the phenotype.
Computational lesions, where specific regions or networks are
removed from the connectivity matrix prior to running CPM (see
Subheading 7), can be applied to quantify the importance of spe-
cific brain regions or networks for a given phenotype
[11, 22]. Finally, CPM has been widely shown to create measures
of cognitive and behavioural phenotypes that generalise across
datasets [5, 7, 18, 23] and from task-based fMRI to resting-state
fMRI [5] and vice-versa [8]. That is, the CPM edges identified in
one dataset can be used to make an accurate prediction in an
independent dataset or on different types of data. This is a highly
favourable feature of the approach as it may enable the measure to
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Fig. 1 Schematic of CPM with leave-one-out cross-validation. ComboNet combined network, PosNet positive
network, NegNet negative network. (Image created with BioRender.com. BioRender license number:
XZ23CG3Q4W)
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be developed in one dataset and then shared with other researchers
for use on their own data, even if their data is different from the
data used in the development of the model.

2 Starting Point for Data

CPM requires pre-processed functional MRI data in the form of
connectivity matrices which contain the Fisher z-transformed cor-
relation between the time courses of each node pair. Task-based or
resting-state functional connectivity can be used. While CPM is
most commonly applied to fMRI data, connectivity matrices from
other modalities can be used, as demonstrated in recent studies
using EEG [24, 25].

As a rule of thumb, larger sample sizes (i.e., with several
hundred observations) are desirable in models using internal
cross-validation because small sample sizes can lead to variable
and overoptimistic estimates of accuracy [26, 27]. However,
CPM with training set samples sizes as small as n = 25 have
developed accurate predictions in external test sets [23, 28]. It
should be noted that both of these studies predicted a sustained
attention variable, sensitivity (d’), obtained from the gradual-onset
continuous performance task [29, 30] which has very strong reli-
ability [5, 31]. When datasets are small, external validation of the
model on an independent dataset may be necessary to provide a
reasonable estimate of accuracy and generalisability.

Generally, researchers using the CPM with fMRI data have
followed standard preprocessing pipelines. For instance, Rosenberg
et al. (2016) [5] used a “36P” nuisance regression [32, 33] in
MATLAB and SPM whereby 6 motion parameters, the mean
WM, CSF and global signals, their derivatives, quadratic terms,
and squares of derivatives were regressed from the data.

Note
While global signal regression [see Glossary] is a much
debated topic in neuroimaging [34], it has been shown to
improve the predictive accuracy of CPM and is therefore
recommended [8].

Data are generally temporally smoothed with a zero-mean unit-
variance Gaussian filter [4, 5, 12, 18, 23, 28]. However, data have
also been band-pass filtered (0.01–0.1 Hz, 0.008–0.09 Hz) and
smoothed with 4–8 mm FWHM Gaussian kernels [3, 4, 6, 11, 13,
35]. Other studies have applied a high-pass filter and 8 mm FWHM
Gaussian kernel to the data [10] or a low-pass filter [8].
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The 268-node Shen atlas [36] is the standard parcellation
scheme used for CPM and this atlas enables easy visualisation of
the resulting connectomes using the BioImageSuite Web Connec-
tivity Viewer. However, parcellation schemes have not been shown
to affect the predictive accuracy of CPM as Greene et al. [8] found
that accuracy did not substantially change when using 600- or
250-node parcellations.

Standard CPM does not have a method for handling missing
data. However, techniques have been described to handle cases
with missing behavioural data (i.e. missing data for the target
variable) using imputation [37]. The code outlined in this chapter
can handle two scenarios where there is missing data: (1) missing
nodes in time series across all participants and (2) participants with
missing connectivity matrices, target variable, or covariates. In the
former scenario, restricted (or lesioned) connectivity matrices can
be used (see Subheading 7) in place of the full connectivity matrices.
In the second scenario, the code will remove any participants with
missing data in any form (i.e. connectivity matrix, target variable, or
covariates).

3 Data Storage and Computing

The code provided here can be run on a single computer using
MATLAB. The code was written using MATLAB version R2020a.
While earlier versions of MATLAB may also execute the code suc-
cessfully, it has not been tested on earlier versions and minor mod-
ifications may be required where newer functions are not available in
older MATLAB versions. The Parallel Computing Toolbox is
required for parallelised functions. For data visualisation, a web
browser is required. For 100 participants using leave-one-out cross-
validation (LOOCV) and 1000 iterations of a random permutation
test, 181.55 MB is required (see Table 1).

4 Software and Coding

A beginner level of coding knowledge is needed to run this code. A
generalized analysis script is provided. The user is only required to
modify the file paths so that the input data can be loaded and to
provide an output directory and the number of participants with
connectivity matrices. Specific options/decision points can be
modified by changing the strings/flags of the relevant variables
and each decision point is accompanied by clearly commented
code to aid the user in making such modifications. No further
user input or coding knowledge is needed to execute the remainder
of the code. Modification of the CPM method requires intermedi-
ate or advanced coding knowledge (e.g., using a robust regression
instead of a linear regression).
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5 Computational Expense

On a Dell OptiPlex 5060 with an Intel Core i7 processor and
32 GB RAM, it takes 3 h 7.5 min to execute the code for CPM
with 100 participants using leave-one-out cross-validation with
adjustment for 2 covariates at the edge selection step, a p-value
feature selection threshold of 0.01, and 1000 iterations of a random
permutation test (see Table 2).

For repeated ten-fold cross-validation, CPM runtime scales
proportionally with an approximate 1:0.8 ratio (increase in partici-
pants: increase in runtime) as an average increase of 830.5% in the
number of participants corresponds to an average increase in run-
time of 676.25% (see Table 3). Using the more computationally
expensive LOOCV [38], CPM runtime scales less efficiently with
an approximate 1:9 ratio as an average of 830.5% increase in the
number of participants corresponds to a 7245.22% increase in
runtime (see Table 3).

6 Method

Brief Overview
As shown in Fig. 1, there are eight steps in a CPM analysis. Follow-
ing completion of the CPM, there are up to three further steps
required depending on a researcher’s aims (i.e., visualisation, per-
mutation testing, and external validation). There are eight different
decision points to be made when applying CPM (see Fig. 2). Taking

Table 1
File size for run_flexible_CPM for 100 participants

File File type Provided/Created Size

Connectivity matrices .csv Provided 127 MB

Target variable .csv .csv Provided 1 KB

Covariates .csv .csv Provided 2 KB

Input data .mat .mat Created 52.2 MB

Target variable .mat .mat Created 1 KB

Output data .mat .mat Created 168 KB

Positive mask .txt Created 1.09 MB

Negative mask .txt Created 1.09 MB

Note: CPM with 100 participants using LOOCV and 1000 iterations of a random
permutation test. If k-fold cross-validation with multiple iterations is used, additional

data will be saved in the output data .mat file but this also will require relatively little

additional data storage
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the example of CPM with LOOCV, with adjustment for two cov-
ariates at edge selection, a p-value feature selection threshold of
0.01 and 1000 iterations of a random permutation test, a brief
overview of the method is as follows:

6.1 Cross-Validation (see Fig. 1, step 1). The dataset is split up
into a ‘train’ and ‘test’ set. In the case of LOOCV, a single
participant is used as the test set whereas in ten-fold cross-
validation, 10 equally sized subsets of the data are created
and a single subset is used as the test set.

6.2 Edge Selection: Relate Edges to Behavior (see Fig. 1, step 2).
Each edge in the connectivity matrix is correlated with the
target variable. Pearson’s correlation is typically used. If cov-
ariates are being adjusted for at edge selection, then a partial

Table 2
Time taken per step of CPM_Neuromethods_analysis_script.m for 100 participants

Code section Name of section Total seconds

1 Load data and prepare variables 13.6626

2 Specify inputs 0.0018

3 Preallocation of arrays 0.0004

4 Run and evaluate CPM, and extract parameters 24.6629

5 Extract selected edges 0.2561

6 Store and save parameters, predictions, selected edges, and model results 0.4676

7 Create masks for visualisation 0.3945

8 Run permutation test 11,206

Note: CPM with 100 participants using leave-one-out cross-validation with adjustment for 2 covariates at the edge
selection step, a p-value feature selection threshold of 0.01 and 1000 iterations of a random permutation test

Table 3
Increase in runtime of CPM in proportion to increase in participants using LOOCV vs. repeated
ten-fold cross-validation (with 100 iterations)

N

LOOCV Repeated ten-fold CV

Total secs Increase in runtime (%) Total secs Increase in runtime (%)

10 146 – 195 –

100 11,245 7613 1241 537

861 784,593 6877 9854 694

Note: Both LOOCVand repeated 10-fold cross-validation analyses use CPMwith adjustment for 2 covariates at the edge

selection step, a p-value feature selection threshold of 0.01 and 1000 iterations of a random permutation test. CPM with

LOOCV is not parallelized whereas CPM with repeated k-fold cross-validation is parallelized (requires MATLAB’s
Parallel Computing Toolbox)
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Pearson’s correlation is used, controlling for the covariates in
the relationship between connectivity in each edge and the
target variable. Spearman’s correlation may also be used at
this point if the target variable values are not normally
distributed [2, 39]. Robust regression could also be used to
attenuate outlier effects [2].

6.3 Edge Selection: Threshold Edges (see Fig. 1, step 3). Edges are
separated into a positive network (edges where connectivity is
positively associated with the target variable) and a negative
network (edges where connectivity is negatively associated
with the target variable). Edges are then thresholded so that
only the most strongly correlated edges are retained for the
model. A typical threshold is to retain edges with a p-value
<0.01 for the correlation between connectivity and the tar-
get variable [5]. Another option is to use a sparsity threshold,
where the x% most strongly correlated edges are retained in
each network [8]. The indices of the selected edges are
retained.

6.4 Network Strength Calculation (see Fig. 1, step 4). In both
networks, the connectivity strength of all edges is summed to
calculate positive and negative network strength. Combined
network strength is calculated by subtracting negative net-
work strength from positive network strength.

6.5 Fit Linear Model (see Fig. 1, step 5). In three linear regres-
sions (a separate regression for each network strength value),
the network strength values are regressed on the target vari-
able. Other regression methods have also been used, includ-
ing partial least squares regression which can account for

Fig. 2 Decision tree for CPM analysis. (Image created with BioRender.com. BioRender license number:
LW23CG3FI3)
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multicollinearity [23] and support vector regression with a
radial basis function which can account for non-linear rela-
tionships [6]. If covariates are being adjusted for model
fitting, then the covariates are included in each regression.
The model parameters (i.e. model intercept, network
strength slope, and slopes for covariates if included) are
extracted and retained for step 7.

6.6 Network Strength Calculation in Left Out Participant (see
Fig. 1, step 6). The thresholded edges from step 3 are
extracted from the left-out participant’s connectivity matrix.
The positive, negative, and combined network strength
values are then calculated using these edges as described in
step 4.

6.7 Apply Fitted Model to Left Out Participant (see Fig. 1, step 7).
For each of the three networks, the network strength values,
along with the model parameters fitted in step 5, are then
used in the linear regression equation:

Y = a þ bX

where Y= network strength predicted value, a= fitted inter-
cept, b = fitted slope, X = network strength value.

If covariates are being adjusted for at model fitting, then
the covariates are also included in the regression equation
along with the fitted model parameters:

Y = a þ bX þ c1Z 1 þ c2Z 2 þ c3Z 3

where Y= network strength predicted value, a= fitted inter-
cept, b = fitted slope for network strength, X = network
strength value, c1= fitted slope for covariate 1, Z1= covariate
1, c2= fitted slope for covariate 2, Z2= covariate 2, c3= fitted
slope for covariate 3, Z3 = covariate 3.

The predicted values are retained for each of the three
networks.

6.8 Repeat for Each Participant (see Fig. 1, step 8). The next
participant is left out and steps 2–7 are repeated until each
participant is left out once.

6.9 Store Edges, Parameters, and Predicted Values. The edges
selected in each iteration are stored as a binary mask where
1 = selected, 0 = not selected in an m*m*N array (where
m = number of nodes, e.g. 268, N = number of partici-
pants). The fitted parameters are averaged such that the mean
fitted intercept and mean slopes for network strength values
are obtained and then stored. If covariates are adjusted for at
model fitting, then the mean slopes for covariates are also
calculated and stored. The predicted values for each network
are stored.
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6.10 Data Visualization. Edges selected in a particular % of folds
are extracted from the m*m*N array. For LOOCV, the
standard is to use 100% of folds (i.e. only retain edges that
were selected in every fold [2, 5, 35, 39]. However, for other
cross-validation schemes (e.g. ten-fold cross-validation), less
conservative thresholds could be used. Two .txt files are
created containing a positive network mask and negative
network mask, each containing 1 in the location where an
edge was selected and 0 where it was not. These .txt files can
then be loaded into BioImageSuite Web Connectivity
Viewer to display the underlying connectomes.

Note
To visualise all connections in both networks, in your web
browser, go to https://bioimagesuiteweb.github.io/
webapp/connviewer.html and apply the following steps:

(i) Parcellations > Use the Shen 268 Atlas (assuming this
parcellation was used)

(ii) Parcellations > Use Yale Network definitions

(iii) File > Load Positive Matrix > Select positive network
mask .txt file.

(iv) File> LoadNegative Matrix> Select negative network
mask .txt file.

In Connectivity Control on right hand side, ensure
All is selected for Mode and Both is selected for Lines to
Draw > Mode > All

6.11 Permutation Testing. An empirical null distribution for the
correlation between the predicted values and the target vari-
able values is created by randomly shuffling the target vari-
able and repeating CPM p times. The standard is to use
p = 1000, such that 1000 iterations of random permutation
testing are conducted [5, 8, 35], although 5000 iterations
have also been used [39]. Permuted p-values are obtained for
each network strength prediction as the proportion of per-
muted correlations that are greater than or equal to the true
correlation for that network strength model.

6.12 External Validation. The trained model can then be applied
to independent data to firmly test generalizability, using the
edges and parameters stored in step 9. For a model that used
LOOCV, only the edges that were selected in all folds are
used. Using these edges, network strength values are calcu-
lated in the test set (i.e., repeat step 6). Then, using the
stored model parameters, the fitted model is applied to net-
work strength values in the test set (i.e., repeat step 7).
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7 Application of Computational Lesions

After running CPM and generating predictions of a phenotype,
researchers might be further interested in estimating the relative
importance of specific region(s) of interest or functional networks
within the positive and negative connectomes for the phenotype of
interest. BioImageSuite Web Connectivity Viewer (see above: 6.10.
Data visualization) provides some neurobiological insight via the
degree of each node or network. Simulating computational lesions
is another method for estimating the relative importance of
regions/networks to a given phenotype [11, 22]. This method
involves removing nodes within a specific region of interest or
functional network from the connectivity matrix (i.e., simulating a
computational lesion) before running CPM with the ‘lesioned’
connectivity matrix. The predictive accuracy for the “lesioned”
connectivity matrix can then be compared to the full connectivity
matrix. Code is available here for applying computational lesions to
functional networks and here for applying computational lesions to
specific region(s) of interest.

Steiger’s Z test [40] can be used to statistically compare the
predictive power of the full connectivity matrix versus the ‘lesioned’
matrix to establish the statistical significance of the lesioned
region/network’s contribution to the prediction of the phenotype
[11, 22]. Furthermore, for a set of theoretically relevant regions or
networks, researchers could repeat CPM for each region/network
in the set, test their statistical significance, and rank the regions/
networks in terms of the loss in predictive accuracy. This may help
to identify the most theoretically important region/network for a
given phenotype.

Note: Missing Data
Computational lesions could also be applied to nodes within
specific region(s) which may have missing data across partici-
pants. For example consider the case where there is poor
scanner coverage of the cerebellum for a large number of
participants. In this scenario, a researcher may decide to
remove nodes from the cerebellum. This can be done after
preprocessing by applying a computational lesion to nodes
from the cerebellum and then using the resulting connectivity
matrices for the main CPM analysis.
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8 Extension of CPM to Model Non-linear Brain-Phenotype Associations

A limitation to the method outlined thus far is that it will detect
only linear relationships between functional connectivity and the
phenotype of interest. Spearman’s correlation can be used in place
of Pearson’s correlation at the edge selection step, to account for
nonlinear but monotonic relationships between connectivity and
the target variable [2]. For instance, in a modified CPM, a partial
Spearman’s correlation was used in the edge selection step to relate
functional connectivity to an ordinal variable (a thirty-two item
Frailty Index) [41]. Henneghan et al. (2020) [6] have previously
adapted CPM replacing linear regression with a support vector
regression with a radial basis function kernel, which account for
non-linear relationships [42]. The adapted model outperformed a
standard linear CPM for the prediction of self-reported memory
and executive function ability, although performance was only
slightly numerically better for executive function [6]. As such,
while the standard CPM described here may be limited to linear
relationships, modified versions of CPM can be used to model
nonlinear relationships between connectivity and the target
variable.

9 Imaging-Specific Issues (Head Motion)

Head motion is a major issue in functional connectivity [43] and
must be carefully considered when using CPM. Preprocessing
pipelines should include nuisance regression of motion parameters
and global signal regression (as described in Starting point for
data). Careful quality control should be implemented whereby,
ideally, images are visually inspected for motion-related artefacts
and excluded if artefacts are detected.

Participants with excessive head motion should be excluded
from CPM analyses. There are different metrics with different
thresholds used. Average head motion can be calculated with
mean framewise displacement (FWD) [see Glossary] and conserva-
tive thresholds ofmeanFWD< 0.1mm[8],mean FWD<0.15mm
[23], to mean FWD < 0.2 mm [39], have been used. In certain
populations such as clinical [44, 45], child [46], or older adult
populations [4, 47], more liberal thresholds may be necessary to
prevent excessive data loss due to greater head motion [48]. Exces-
sive head motion in a single run can be calculated using maximum
FWD where a conservative threshold of max FWD < 0.15 mm
[8, 23] has been used. Excessive head motion can also be measured
by large movements in translation and rotation axes, were partici-
pants with a single run with >2 mm translation or >3° translation
can be excluded [5].
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Following these motion controls, researchers should assess the
correlation between FWD and the target variable. If this correlation
is statistically significant, exclusion of further high-motion partici-
pants may be necessary [2] using more conservative thresholds.
Additional checks include verifying that mean FWD is not asso-
ciated with the functional connectivity matrices [49] nor the con-
nectomes and predicted values obtained from CPM [8, 39]. If
significant associations are identified, options include excluding
edges that are correlated with mean FWD across participants
[23, 49]; including mean FWD as a covariate in CPM (i.e. in step
2: edge selection and/or step 5: fit linear model); including mean
FWD as a covariate when evaluating model performance [49]; and
regressing out mean FWD from both the target variable and the
connectivity matrices within the CPM with cross-validation.

10 Decision Points

In the step-by-step example below, there are eight different deci-
sion points (see Fig. 2).

Here, we briefly discuss additional decision points that arise
during preprocessing and if alternative or more advancedmodelling
techniques are used (as discussed in Potential pitfalls/problems).
Indeed, a potential challenge with CPM—common to many neu-
roimaging methods—is the considerable amount of analytical flexi-
bility involved. In addition to the step-by-step example given here,
there are further possible decision points that are not included in
this code. These decision points occur at different stages of the
analysis. In preprocessing, there are many different pipelines, con-
found removal, and motion correction strategies that could be
used. There are also different options for filtering, smoothing,
and functional parcellation. Although the standard measure of
functional connectivity, the Fisher-z transformed Pearson’s corre-
lation between time courses in each pair of nodes, is used for CPM,
different measures have also been used, including accordance, dis-
cordance, and information flow [23, 28]. At edge selection, Spear-
man’s correlation or robust regression could be used instead of
Pearson’s correlation to relate connectivity strength in each edge to
the target variable [2, 39]. At model fitting, alternative methods
such as partial least squares regression [23] and support vector
regression with a radial basis function kernel could also be used
instead of linear regression [6]. Finally, when evaluating model
performance, Spearman’s correlation could be used instead of
Pearson’s correlation to assess the association between predicted
and observed values [8].

This number of decisions inherent in CPM provides researchers
with several additional “researcher degrees of freedom” [50]
whereby many different models and parameters (e.g. p-value

Studying the Connectome at a Large Scale 377



thresholds) could be tested but only significant models are
reported. On the other hand, this degree of analytical flexibility
may enable CPM to cater for different use cases (e.g. different data
types, regression models, and populations of interest) and therefore
may ensure wide usability of the model. Thorough and honest
reporting of the analytical decisions and analyses will enable other
researchers to account for the analytical flexibility associated with a
given model when considering results from that model.
Pre-registration of the analysis plan is another solution to this
problem [26]. External validation can also ensure that analytical
flexibility is not enabling ‘false positive’ models which can accu-
rately predict some outcomes despite there being no true associa-
tion in the underlying data [26].

In addition to numerous decision points, there are some arbi-
trary decisions involved in specifying the model. For instance, if a
model using multiple iterations of k-fold cross-validation and per-
mutation testing is specified, then the researcher must select the
number of iterations of k-fold cross-validation, the p-value or spar-
sity threshold [see Glossary] for edge selection, and the number of
iterations of permutation testing. While a reasonable option is to
use previously used parameters for these decisions, these parameters
may not be optimal for a given dataset and it is unclear if the
selection of these parameters was empirically driven or based on
heuristics/rules of thumb. For some decisions, data-driven meth-
ods can be used to select the parameter. For instance, researchers
have attempted to obtain optimal thresholds by testing CPM with
different p-values and selecting the model with the higher r value
[8, 35]. However, data-driven methods to optimise the selection
threshold in LOOCV may result in a lower p-value that optimises
the model for the training set by selecting only the most strongly
correlated edges. However, very few edges might be retained and as
such generalisability to external datasets may be impaired. To bal-
ance the accuracy and generalisability, an additional validation data-
set may be required. This would enable the generalisability of the
model to be assessed without using the test set and thereby ‘double
dipping’.

11 Interpreting and Reporting Results

For each network, the code in the step-by-step example provides
three performance metrics and a p-value for assessing statistical
significance:

• r: Pearson’s correlation between the predicted values and the
actual values.
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• R2: Proportion of variance explained in the actual values by the
predicted values. This is the coefficient of determination, calcu-
lated using an ordinary least squares regression, as recom-
mended by Poldrack et al. (2020) [26].

• MAE: Mean absolute error between the predicted values and the
actual values.

• p: Permuted p-value obtained via random permutation testing.

Researchers should, at a minimum, report the r and p-value and
display a scatterplot of predicted values (x-axis) vs. actual values of
the target variable (y-axis) for each network (see Fig. 3). Where
possible, researchers should externally validate their model by
applying the trained CPM to an independent dataset and report
the r and p-value for the correlation between the predicted and
actual values in that dataset. This provides a true and rigorous
assessment of model generalizability and this is especially important
given that external validation on held-out data results in lower
estimates of predictive accuracy [51].

Most, if not all, CPM papers have reported external validation
performance to-date. Ideally, researchers should also reportR2 as it
provides an easily interpretable metric of performance with respect
to the actual outcome (i.e., the amount of variance explained in the
target variable). Reporting MAE is also useful for comparing dif-
ferent machine learning models.

Note
Occasionally, models can result in negative correlations
between the network strength predicted values and the target
variable. However, this is not a meaningful association as all
network strength predicted values should be positively asso-
ciated with the target variable. Therefore, negative

(continued)

Fig. 3 Fluid IQ values versus positive-, negative-, and combined-network strength predicted IQ values
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correlations should be interpreted as a failure to successfully
predict the target variable [8] even if the prediction is statisti-
cally significant [35]. For instance, Ren et al. [35] applied
CPM to predict creativity anxiety and reported significant
predictions in the positive, negative, and combined networks
in the training set. When this model was externally validated,
the negative and combined networks successfully predicted
creativity anxiety. In contrast, the positive network did not as
positive network strength predicted creativity anxiety scores
were negatively correlated with observed creativity anxiety
scores.

12 Step-by-Step Example

Download Code, Data, and Analysis Scripts

1. The user should first download the flexible_CPM code from
the GitHub repository using this link.

2. The user should add this code to their MATLAB path.

3. The user can download the AOMIC data from this link [see
Chapter 2].

4. When the AOMIC data is downloaded, the user can prepare
the data by downloading and running the Neuromethods_pre-
pare_csv_CPM.m script from this link.

5. The user should then download and openNeuromethods_mai-
n_analysis_CPM.m script using this link.

Note: Two additional scripts are provided for this book chapter
in the GitHub repository

• Leave-site-out cross-validation script.

– This script is explained in the final section of the chapter.

• Computational lesion analysis script.

– This is a fully commented script which users can download
and execute if they would like to apply CPM with computa-
tional lesions to obtain further neurobiological insights.

– This is typically only useful if CPM provides accurate results
with the full whole-brain connectivity data.
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12.1 Load Data and

Prepare Variables

(Subheading 1)

%% 1) Load data and prepare variables

% Specify file paths

target_path = 'W:\AOMIC\doc\behav_data.csv';

covars_path = 'W:\AOMIC\doc\covariates.csv';

conn_mx_dir = 'W:\AOMIC\connectivity_matrices';

output_path = 'W:\AOMIC\output\kfold_10';

% Specify target variable (ensure string is same as listed in .csv file)

target_var_name = 'IQ';

% Specify name of model for saving output

model_name = 'IQ_CPM';

% Prepare input data

nsubs = 861;  % list number of participants

[cpm_predictors, file_order] = prep_predictors_CPM(conn_mx_dir, nsubs,...

output_path);

% Load predictor variables (i.e. connectivity matrices)

all_mats = cpm_predictors;

% Prepare target variable

[cpm_target, final_ppts, ix_ppts_to_keep] = prep_target_CPM(target_path,...

file_order, output_path);

% Load target variable and covariates to be included

data = readtable(covars_path);

% Get ppts with connectivity matrices, covariates, and target variable

subids=table2array(data(:,1));

log_ix = ismember(subids, final_ppts);

data = data(log_ix,:);  % drop ppts w/o conn mx/covariates/target variable

% Specify target variable

all_behav = cpm_target;

% Prep covariates - age, sex, fwd: covar_names = {'age', 'sex', 'mean_FWD'};

% if no covars to be included, use: covar_names = {}

% covariates must be named here as listed in .csv file

covar_names = {'age', 'sex'};

all_covars = table2array(data(:, covar_names));

% convert covar_names to string for saving

covar_str = "";

for i = 1:length(covar_names)

if i == 1

covar_str = append(covar_str, covar_names(i));

else
covar_str = append(covar_str, ' ', covar_names(i));

end

end
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1. To execute the code in Subheading 1, the user is required to
have the following:

– A .csv file of size (1 + N) * 2, where N = number of
participants. The first column must contain participant IDs
(participant IDs must be the same as named in connectivity
matrix file) and the second column must contain target
variable, e.g. fluid intelligence scores. The first row (header
row) should contain variable names (e.g. subid and flui-
dIQ). This is specified by target_path.

– A .csv file of size (1 + N) * m, where m = number of
covariates. The first column must contain participant IDs
(participant IDs must be the same as named in connectivity
matrix file) and m columns should contain covariates. The
first row (header row) should contain variable names
(e.g. subid, age, sex). This is specified by covars_path.

– A directory containing only .csv files with each participants
268*268 connectivity matrix. The .csv files should be
named ParticipantID.csv (e.g. for participant ID = 112, .
csv file should be named 112.csv). This is specified by
conn_mx_dir.

– An empty directory for storing output of the model. Create
this directory prior to executing the code. This is specified
by output_path.

2. The user is required to provide the following input:

– target_var_name: string specifying the name of a target
variable.

– model_name: string specifying a name for saving output files.

– nsubs: double containing the number of participants with
connectivity matrices.

– covar_names: cell array of strings containing names of cov-
ariates (covariate names must be the same as in the header
row of the .csv file specified by covars_path. If no covariates
are to be used, then provide an empty cell array).

3. This section will prepare the input data and target variable for
CPM using the following functions:

– prep_target_CPM( ):

– prep_predictors_CPM( ):
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12.2 Specify Inputs

(Subheading 2)
%% 2) Specify model inputs

% Specify method for dealing with confounds. adjust_stage = 'relate'

% adjusts for confounds via partial correlation during feature selection.

% adjust_stage = 'fit' adjusts for confounds via multiple regression during

% model fitting. adjust_stage = 'both' adjusts for confounds at both above

% steps. adjust_stage = '' does not adjust for confounds.

adjust_stage = 'relate';

% Specify cross-validation scheme - LOOCV: k=n, 10-fold CV: k=10, etc.

% for LOOCV: k = length(all_behav);

k = 10;

% Specify iterations (may want to run multiple iterations of k-fold CV)

% for LOOCV: iterations = 1

iterations=100;  

% Specify feature selection type. 'p-value' will threshold edges based on

% p-value of correlation between edges and target variable. 'sparsity' will

% threshold edges by selecting the X % most strongly correlated edges to

% target variable.

thresh_type = 'p-value';

% Specify feature selection threshold. If 'p-value', enter p-value for
% correlations between edges and target variable. If 'sparsity', enter % of

% most highly correlated edges to be retained.

% Note: % should be in decimal (i.e. between 0 and 1, 5% = 0.05)

thresh = 0.01;

% Specify edge frequency threshold (i.e. how many folds edge must be

% significantly correlated (i.e. below thresh) with target variable in
% order to be selected for application to the test set)

% Note: % should be in decimal (i.e. between 0 and 1, 100% = 1)

freq_thresh = 1;

% Specify if permutation test to be conducted (will greatly increase

% runtime of code); run_permutation = 'yes' or 'no'

run_permutation = 'yes';

% if yes, specify number of iterations of random permutation

% (e.g. perm_iterations = 1000;). if no, save as []

perm_iterations = 1000;

% Save info describing model inputs

model_info = struct('target_path',target_path,'covars_path',covars_path, ...

'target_variable', target_var_name, 'N', length(all_behav),'covars',...

covar_str, 'adjust_stage', {adjust_stage}', 'k', k, 'iterations',...

iterations, 'fs_thresh_type',thresh_type,'fs_thresh',thresh,'freq_thresh',...

freq_thresh,'permutation_test', run_permutation, 'perm_iterations',...

perm_iterations, 'output_path', output_path, 'model_name', model_name);

clearvars -except all_behav all_mats all_covars k thresh thresh_type freq_thresh...

adjust_stage iterations model_info perm_iterations run_permutation
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• Subheading 2 requires user to specify the following options
(as outlined in Fig. 2):

– adjust_stage: string specifying a method for dealing with
confounds.

– k: double specifying number of cross-validation folds.

– iterations: double specifying number of iterations of cross-
validation (1 when LOOCV is used).

– thresh_type: string specifying a method for feature selection
thresholding.

– thresh: double specifying feature selection threshold.

– freq_thresh: double specifying edge frequency threshold for
visualisation and external validation.

– run_permutation: string specifying option to run permuta-
tion test for statistical significance.

– perm_iterations: double specifying number of random per-
mutation iterations to run.

• This section will prepare the model inputs and save them in a
structure array.

12.3 Preallocation of

Arrays (Subheading 3)
%% 3) Preallocate arrays for storing results and parameters

% Preallocate arrays for storing CPM predicted values and results

[behav_pred_pos_all, behav_pred_neg_all, behav_pred_combined_all, ...

R_pos, P_pos, R_neg, P_neg, R_combined, P_combined,...

rsq_pos, rsq_neg, rsq_combined, mae_pos, mae_neg, mae_combined] = ...

prep_results_arrays_CPM(all_mats, iterations);

% Preallocate arrays for storing CPM parameters

if strcmp(adjust_stage, 'relate')

[~, ~, int_pos_ntwrk, int_neg_ntwrk,...

int_combined_ntwrk, slope_pos_ntwrk, slope_neg_ntwrk, ...

slope_combined_ntwrk, ~, ~, ~] = prep_parameters_arrays_CPM(all_mats,...

all_covars, k, iterations);   

else
[~, ~, int_pos_ntwrk, int_neg_ntwrk,...

int_combined_ntwrk, slope_pos_ntwrk, slope_neg_ntwrk, ...

slope_combined_ntwrk, slope_pos_covars, slope_neg_covars,...

slope_combined_covars] = prep_parameters_arrays_CPM(all_mats,...

all_covars, k, iterations);   

end

• This section preallocates arrays for computational efficiency with
the functions:

– prep_results_arrays_CPM( ): preallocates arrays for storing
CPM predicted values and results

– prep_parameters_arrays_CPM( ): preallocates arrays for
storing model parameters
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12.4 Run CPM

(Subheading 4)
%% 4) Run CPM, evaluate model performance, extract selected edges + model parameters

parfor i = 1:iterations

fprintf('\n Running iteration # %6.3f\n',i);

% Run CPM

[behav_pred_pos_all(:,i), behav_pred_neg_all(:,i), ...

behav_pred_combined_all(:,i), parameters_pos, parameters_neg,...

parameters_combined, pos_mask, neg_mask, no_node, no_covars] = ...

run_flexible_CPM(all_behav, all_mats, all_covars, k, ...

thresh_type, thresh, adjust_stage);  %#ok<ASGLU>

% Evaluate model performance

[R_pos(i), P_pos(i), R_neg(i), P_neg(i), R_combined(i), P_combined(i),...

rsq_pos(i), rsq_neg(i), rsq_combined(i), mae_pos(i), mae_neg(i),...

mae_combined(i)] = evaluate_CPM(all_behav, behav_pred_pos_all(:,i),...

behav_pred_neg_all(:,i), behav_pred_combined_all(:,i));

% Extract model parameters

if strcmp(adjust_stage, 'relate')

[int_pos_ntwrk(i), int_neg_ntwrk(i), int_combined_ntwrk(i),...

slope_pos_ntwrk(i), slope_neg_ntwrk(i), slope_combined_ntwrk(i),...

~, ~, ~] = extract_parameters_CPM(parameters_pos, parameters_neg,...

parameters_combined, adjust_stage, no_covars);

else
[int_pos_ntwrk(i), int_neg_ntwrk(i), int_combined_ntwrk(i),...

slope_pos_ntwrk(i), slope_neg_ntwrk(i), slope_combined_ntwrk(i),...

slope_pos_covars(i,:), slope_neg_covars(i,:), ...

slope_combined_covars(i,:)] = ...

extract_parameters_CPM(parameters_pos, parameters_neg,...

parameters_combined,adjust_stage, no_covars);

end

% Store positive and negative edges masks - accounting for parallel loop

c_pos_mask_all{i,1} = pos_mask;

c_neg_mask_all{i,1} = neg_mask;  

end

% Add positive and negative edge masks

pos_mask_all = [];

neg_mask_all = [];

for j = 1:iterations

pos_mask_all = cat(3, c_pos_mask_all{j,1}, pos_mask_all);

neg_mask_all = cat(3, c_neg_mask_all{j,1}, neg_mask_all);

end
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• Subheading 4 performs the CPM using the following functions:

– run_flexible_CPM( ): executes the CPM

– evaluate_CPM( ): evaluates model performance

– extract_parameters_CPM( ): extracts model parameters

• If multiple iterations are specified (e.g. if running 100 iterations
of k-fold cross-validation), then this section is looped over and
the CPM is conducted separately within each iteration.

12.5 Extract Selected

Edges (Subheading 5)
%% 5) Extract selected edges

% set number of folds across all iterations of model

k_all = k*iterations;

% no_node not available after parfor loop so call again here

no_node = size(all_mats,1);

% get indices of edges in each network that are correlated with the

% target variable in >= number of total folds specified by freq_thresh

[pos_edges_all, neg_edges_all, pos_edges_thresh, neg_edges_thresh] = ...

extract_edges_CPM(pos_mask_all, neg_mask_all, no_node, k_all, freq_thresh);

• This section extracts the selected edges using the function:

– extract_edges_CPM( ): extracts indices of edges within the
positive and negative edge masks.

12.6 Store and Save

Parameters,

Predictions, Selected

Edges, and Model

Results (Subheading

6)

%% 6) Store parameters, predicted values, edges, and results in structs and save data

if strcmp(adjust_stage, 'relate')

parameters = struct('int_pos_ntwrk', int_pos_ntwrk, 'int_neg_ntwrk', ...

int_neg_ntwrk, 'int_combined_ntwrk', int_combined_ntwrk,...

'slope_pos_ntwrk', slope_pos_ntwrk, 'slope_neg_ntwrk', slope_neg_ntwrk,...

'slope_combined_ntwrk', slope_combined_ntwrk,...

'pos_mask_all', pos_mask_all, 'neg_mask_all', neg_mask_all);

else
parameters = struct('int_pos_ntwrk', int_pos_ntwrk, 'int_neg_ntwrk', ...

int_neg_ntwrk, 'int_combined_ntwrk', int_combined_ntwrk,...

'slope_pos_ntwrk', slope_pos_ntwrk, 'slope_neg_ntwrk', slope_neg_ntwrk,...

'slope_combined_ntwrk', slope_combined_ntwrk, 'slope_pos_covars',...

slope_pos_covars, 'slope_neg_covars', slope_neg_covars,...

'slope_combined_covars', slope_combined_covars,...

'pos_mask_all', pos_mask_all, 'neg_mask_all', neg_mask_all);

end

predictions = struct('pos_preds_all_folds', behav_pred_pos_all, ...

'neg_preds_all_folds', behav_pred_neg_all, 'combined_preds_all_folds',...

behav_pred_combined_all);
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edges = struct('pos_edges_all', pos_edges_all, 'neg_edges_all', neg_edges_all,...

'pos_edges_thresh', pos_edges_thresh, 'neg_edges_thresh', neg_edges_thresh);

results = struct('R_pos', R_pos, 'R_neg', R_neg, 'R_combined', R_combined,...

'rsq_pos', rsq_pos, 'rsq_neg', rsq_neg, 'rsq_combined', rsq_combined,...

'mae_pos', mae_pos, 'mae_neg', mae_neg, 'mae_combined', mae_combined);

% Get mean parameters, predicted values, and results across iterations

if iterations > 1

mean_parameters = structfun(@mean, parameters, 'UniformOutput', false);

mean_predictions = structfun(@(x) mean(x, 2), predictions, 'UniformOutput', false);

mean_results = structfun(@mean, results, 'UniformOutput', false);

end

% save data

variable_list = {'model_info', 'parameters', 'predictions', 'results', 'edges', ....

'mean_parameters', 'mean_predictions', 'mean_results'};

save_file = [model_info.output_path filesep model_info.model_name '.mat'];

for variable_ix = 1:length(variable_list)

if exist(variable_list{variable_ix})

if exist(save_file)

save(save_file, variable_list{variable_ix}, '-append');

else
save(save_file, variable_list{variable_ix});

end

end

end

• Subheading 6 creates four structures which are then saved in the
pre-specified output folder:

– Parameters: stores model parameters for external validation.

– Predictions: stores predicted values of each network for visua-
lisation and further analysis (i.e. association between pre-
dicted values and other variables of interest).

– Edges: stores selected edges for external validation and
visualisation.

– Results: stores results of model performance.

– Where multiple iterations of cross-validation were performed
(e.g. 100 iterations of ten-fold cross-validation), this section
calculates the mean of each value across all iterations for the
structs parameters, predictions, results and saves them as:

mean_parameters

mean_predictions

mean_results
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12.7 Create Masks

for Visualisation

(Subheading 7)

%% 7) Create masks for visualisation

% Check if restricted or computationally lesioned connectivity matrix used

% and get indices of selected edges in full (i.e. 268 * 268 connectivity

% matrix).

% NOTE: THIS CODE ASSUMES SHEN ATLAS PARCELLATION USED.

if no_node < 268

% Read in csv file mapping node indices in restricted/lesioned

% connectivity matrix to node indices in original connectivity matrix

% 1st column is original index, 2nd column is new index

node_indices = 

csvread('Y:\cogReserve\CPM_info\restricted_timeseries_node_indices.csv',1, 1);

% map edge indices back to indices in full connectivity matrix

[pos_edges_orig, neg_edges_orig] = get_original_edge_indices_CPM(...

pos_edges_thresh, neg_edges_thresh, node_indices);

% create binary edge masks (in 268*268 connectivity matrix)

[pos_edge_mask, neg_edge_mask] = ...

create_masks_CPM(pos_edges_orig, neg_edges_orig, 268);

else % if using a full timeseries

pos_edges_orig = pos_edges_thresh(:, [1 3 4]);

neg_edges_orig = neg_edges_thresh(:, [1 3 4]);

[pos_edge_mask, neg_edge_mask] = ...

create_masks_CPM(pos_edges_orig, neg_edges_orig, 268);

end

% save binary edge masks for visualisation in bioimagesuite

pos_mask_file = [model_info.output_path filesep model_info.model_name 

'_pos_mask.txt'];

neg_mask_file = [model_info.output_path filesep model_info.model_name 

'_neg_mask.txt'];

save(pos_mask_file, 'pos_edge_mask', '-ascii');

save(neg_mask_file, 'neg_edge_mask', '-ascii');

% save info on edges wrt to their position in the original 268*268

% connectivity matrix

orig_edge_ix = [model_info.output_path filesep model_info.model_name 

'_orig_edge_ix.mat'];

save(orig_edge_ix, 'pos_edges_orig', 'pos_edge_mask', 'neg_edges_orig', 

'neg_edge_mask');

• Subheading 7 creates binary masks for the positive and negative
networks for visualisation in BioImageSuiteWeb. This section
assumes the Shen atlas parcellation is used. If fewer than
268 nodes are used for each participant (e.g. only
non-cerebellar and brainstem nodes were used due to poor
coverage of the cerebellum and brainstem or a computational
lesion was applied to the connectivity matrix), then this section
will create masks and then insert them back into a full Shen atlas
mask (i.e. including empty cerebellar & brainstem nodes or
including the lesioned nodes).
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12.8 Run

Permutation Test

(Subheading 8)

%% 8) Run permutation test and save

if strcmp(run_permutation, 'yes')

if iterations > 1

[perm_p_pos, perm_p_neg, perm_p_combined] = ...

CPM_permutation_test_parallelised(all_behav, all_mats, ...

all_covars, k, thresh_type,thresh, adjust_stage,...

mean_results.R_pos, mean_results.R_neg, mean_results.R_combined,...

perm_iterations);

else
[perm_p_pos, perm_p_neg, perm_p_combined] = ...

CPM_permutation_test_parallelised(all_behav, all_mats, ...

all_covars, k, thresh_type, thresh, adjust_stage, ...

R_pos, R_neg, R_combined, perm_iterations);

end

% save permutation test results

perm_results = struct('perm_p_pos', perm_p_pos, 'perm_p_neg', ...

perm_p_neg, 'perm_p_combined', perm_p_combined);

save(save_file, 'perm_results', '-append');

end

• This section runs a permutation test (if specified) and saves the
output to the pre-specified output directory, using the function:

– CPM_permutation_test_parallelised( ):

13 Reporting Results

The CPM outlined here generated statistically significant predic-
tions of fluid intelligence on unseen participants from the same
dataset (see Fig. 3 and Table 4). The combined connectome
explained the most variance (3.2%) in fluid intelligence. The posi-
tive connectome generated relatively more accurate predictions of
fluid intelligence versus the negative connectome. In line with this,
the positive connectome consisted of a much denser set of connec-
tions that were significantly related to fluid IQ than the negative
network (see Fig. 4). The positive connectome consisted of a rela-
tively large number of connections within the fronto-parietal net-
work and between the fronto-parietal and medial-frontal networks
(see Fig. 5).

Table 4
CPM performance for prediction of fluid IQ

Positive network strength Negative network strength Combined network strength

r R2 MAE r R2 MAE r R2 MAE

.149** .022 20.571 .118* .014 20.981 .177** .032 20.583

Note: * < 0.01, ** < 0.001 (permutated p-value)
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14 Leave-Site-Out Cross-Validation Example

This example follows the same steps as outlined above but imple-
ments CPM with leave-site-out cross-validation for multi-site data.
The steps are identical except that some additional inputs that are
required (i.e. site information) and some CPM functions are
replaced with functions adapted for leave-site-out cross-validation.
The relevant differences are highlighted below so the user can
implement leave-site-out cross-validation.

Fig. 4 Circle plots illustrating the positive (left; red) and negative (right; cyan) fluid IQ connectomes. These
circle plots are inverted such that the right side of each plot corresponds to the left hemisphere and the left
side to the right hemisphere

Fig. 5 Connectivity matrices summarising patterns of functional connectivity within and between different
canonical networks in the positive (left; red) and negative (right; blue) connectomes. Note: MF Medial Frontal
Network, FP Frontoparietal Network, DMN Default Mode Network, Mot Motor Network, Vis I Visual I Network,
Vis II Visual II Network, VAs Visual Association Network, SAL Salience Network, SC Subcortical Network, CBL
Cerebellar Network
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1. As the AOMIC data is from a single site, the user will need to
assign different sites to the AOMIC data to simulate a multi-
site dataset. This can be done by creating a .csv file as
outlined here:

• Create a .csv file of size (1 + N) * 2, where N = number of
participants. The first column must contain participant IDs
(participant IDs must be the same as named in connectivity
matrix file) and the second column must contain the site
numbers, e.g. 1–5. The first row (header row) should con-
tain variable names (e.g. subid and sites). Participant IDs
must be the same as named in the connectivity matrices.

2. The user should then download and open the Neuromethod-
s_leaveSiteOut_CPM.m script using this link.

3. To execute the code, the user is required to provide the .csv file
created in the previous step (in addition to the files outlined in
the ‘Specify inputs’ step in the main example):

• The .csv file is specified by sites_path.
4. This script will then run, as outlined in the above example, but

with two new functions:

• run_flexible_CPM_leaveSiteOut( ): replaces run_flexi-
ble_CPM( )

• CPM_permutation_test_leaveSiteOut_parallelised( )
replaces CPM_permutation_test_parallelised( )

15 Computational Lesion Example

Users can also download and execute the Neuromethods_compu-
tational_lesion_analysis.m script from this link if they would like to
apply computation lesions to CPM to obtain further neurobiologi-
cal insights. This script is fully commented with instructions.
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Chapter 16

Deep Learning Classification Based on Raw MRI Images

Sebastian Moguilner and Agustin Ibañez

Abstract

In this chapter, we describe a step-by-step implementation of an automated anatomical MRI feature
extractor based on artificial intelligence machine learning for classification. We applied the DenseNet—a
state-of-the-art convolutional neural network producing more robust results than previous deep learning
network architectures—to data from male (n = 400) and female (n = 400), age-, and education- matched
healthy adult subjects. Moreover, we illustrate how an occlusion sensitivity analysis provides meaningful
insights about the relevant information that the neural network used to make accurate classifications. This
addresses the “black-box” limitations inherent in many deep learning implementations. The use of this
approach with a specific dataset demonstrates how future implementations can use rawMRI scans to study a
range of outcome measures, including neurological and psychiatric disorders.

Key words Deep Learning, MRI, Artificial intelligence, Convolutional neural network, Occlusion
sensitivity analysis

1 Introduction

Medical imaging computer-aided diagnosis has been a field of
intense research over the last decades. Its primary motivation is to
reduce diagnostic errors, automatize procedures with large data-
sets, and provide additional insights to better interpret the images.
However, research translation from the lab to the real world (i.e.,
from “bench to bedside”) has often been limited by a failure to
generalize to novel datasets. In particular, rule-based algorithms
lack the flexibility needed to handle heterogeneous samples. Cur-
rent developments in computer vision, stemming from the field of
artificial intelligence [see Glossary], provide an innovative solution
to create flexible decision-making pipelines automatically. More-
over, thanks to recent improvements in dedicated computing hard-
ware, it is now possible to handle large neuroimaging datasets.

Deep learning [see Glossary] computer vision methods, based
on convolutional neural networks (CNN) [see Glossary], are char-
acterized by their flexibility in evaluating images without prior
orientation, metric, or shape conventions that are usually set prior
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image processing [1]. In this way, possible biases in the preproces-
sing steps such as image filtering, segmentation, rotation, and
smoothing are eliminated because the input consists of unprocessed
(raw) data, from which the most relevant image features are auto-
matically extracted [2]. This approach has already proven successful
in image recognition in general [3], in medical radiology [4], and
neuroradiological domains such as in dementia characterization
[5, 6]. However, open procedures with step-by-step detailed exam-
ples on how to implement a Deep Learning neural network on
open access data with interpretable results are scarce.

This chapter will describe the implementation of a state-of-the-
art deep learning algorithm called the DenseNet [7]. We show a
step-by-step example to use the DenseNet on brain anatomical
MRI images to classify male (n = 400) and female (n-400), age-
and education- matched healthy adult subjects. Sex differences in
the human brain are of great interest for studies of neuropsycho-
logical traits [8] and the differential prevalence of psychiatric [9]
and neurological disorders such as Alzheimer’s disease
[10]. Despite its high relevance in epidemiological research,
biological sex differences have been defined as an under-explored
and often controversial subject in the neuroscientific literature
[11, 12]. Crucially, previous studies looking at sex-related brain
differences suffered from low statistical power due to small sample
sizes, having a mean sample size of 130 participants [13]. This
context calls for new and unbiased approaches able to handle
more extensive databases, in which computer-vision algorithms
with automatic feature extraction [see Glossary] on big-data con-
texts may help to gain further insights on brain differences that are
undetectable by the human eye and/or by traditional machine
learning [see Glossary] approaches.

2 Methods

2.1 The DenseNet

Deep Learning

Algorithm

The DenseNet is a state-of-the-art deep learning CNN employed in
computer vision tasks aided by artificial intelligence. In this net-
work architecture, each layer is connected to every other layer in a
feed-forward [see Glossary] fashion, producing networks that are
substantially deeper, more accurate, and more efficient to train (see
Fig. 1c for the DenseNet diagram).

Consider a[0] as the input volume passed through a CNN, with
L as the number of layers in the network, and g the non-linear
transformation of lth layer. Traditional feed-forward convolutional
networks connect the output of the lth layer as input to the (l + 1)th
layer, giving the following transition layer: a[l] = g(a[l-1]). Other
CNN architectures such as the ResNet [3] bypasses the non-linear
transformations with an identity function:
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Fig. 1 Step-by-step pipeline. (a) Number of raw MRI datasets employed in the analysis (before data
augmentation) for male and female groups and related demographic matching. (b) Data preparation and
augmentation pipeline consisting of random volume rotations, flipping, zooms and an image size scaling. The
random augmentation process increased the sample size by a factor of 10. (c) 3D DenseNet network
architecture consisting of a sequence of Dense Blocks and transition layers consisting of a Batch Normaliza-
tion (BN), a rectified linear unit (ReLU), and a convolution transformation, ending in a prediction layer to
produce the output. (d) Model evaluation interpretation, with the performance metrics consisting of the ROC
[see Glossary] curve and an AUC [see Glossary] report, a radar plot showing the accuracy, sensitivity,
specificity, precision, recall, and F1 metrics. An occlusion sensitivity analysis [see Glossary] was developed
to obtain the most relevant image information used for the classification
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a l½ � = g a l -1½ � þ a l -1½ � ð1Þ

In this way, the gradient can flow directly through the identity
function, from early layers to the subsequent layers. Unlike the
ResNet, the DenseNet does not sum the output feature maps
from preceding layers, but concatenates them instead in the follow-
ing way for the lth layer:

a l½ � = g a 0½ �, a 1½ �, a 2½ �, . . . , a l -1½ � ð2Þ

where ([a[0], a[1], a[2],. . ., a[l-1]]) is the concatenation of output
feature maps of the preceding layers. Since this feature map group-
ing requires the feature maps to have equal dimensions, the Den-
seNet is divided into Dense Blocks, in which the dimensions of the
feature maps remain constant within a block, but the number of
filters change in the transition layers between them. For each
transition layer, a Batch Normalization (BN), a rectified linear
unit (ReLU), and a convolution followed by average pooling is
applied. Another important feature of DenseNet is the growth
rate, defined for the

lth feature map as k0 þ k × l -1ð Þ,
with k0 the number of feature maps at the input layer, and k the
growth rate. Compared to traditional CNNs, the DenseNet has
several advantages: It further reduces the vanishing-gradient prob-
lem, strengthens feature propagation, encourages feature reuse,
and substantially reduces the number parameters when compared
to other neural networks, thus reducing overfitting and producing
more robust results [14].

2.2 Software and

Coding

To run the code of this chapter, several library dependencies should
be installed. However, all of them are contained in the MONAI
PyTorch-based API (https://github.com/Project-MONAI). Proj-
ect Medical Open Network for AI (MONAI) is an initiative to share
and develop best practices for AI in healthcare imaging across
academia and enterprise researchers. This collaboration has
expanded to include academic and industry leaders throughout
the medical imaging field. Project MONAI has released multiple
open-source PyTorch-based frameworks for annotating, building,
training, deploying, and optimizing AI workflows in healthcare.
These standardization frameworks provide high-quality, user-
friendly software that facilitates reproducibility and easy integra-
tion. The suite of libraries, tools, and SDKs within MONAI pro-
vides a robust and common foundation that covers the end-to-end
medical AI life cycle, from annotation through deployment.
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2.3 Requirements

and Setup

The current example requires the installation of the matplotlib
library and the Jupyter Notebook GUI. These can be installed with:

python -m pip install -U pip

python -m pip install -U matplotlib

python -m pip install -U notebook

Note
To run the notebook from Google Colab, a GPU setup is
needed. To use GPU resources through Colab, please remem-
ber to change the runtime type to GPU:

1. From the Runtime menu select Change runtime type

2. Choose GPU from the drop-down menu

Click SAVE This will reset the notebook and may ask you
if you are a robot (these instructions assume you are not).

Running:

nvidia-smi

in a cell, it will verify this has worked and show you what kind of
hardware you have access to.

To install the current MONAI milestone release:

pip install monai

To install the weekly preview release:

pip install monai-weekly

The packages installed using pip install could be removed by:

pip uninstall -y monai

pip uninstall -y monai-weekly

From conda-forge, to install the current milestone release:

conda install -c conda-forge monai

You can verify the installation by:

python -c ‘import monai; monai.config.print_config()’

If the installation is successful, this command will print out the
MONAI version information.

2.4 Dataset The open dataset included in this example comprises of healthy
subjects’ (Males n = 400, Females n = 400) T1-weighted data,
compliant with the Brain Imaging Data Structure (BIDS), was

Deep Learning Classification Based on Raw MRI images 399

https://matplotlib.org/
https://jupyter.org/


downloaded from the Amsterdam Open MRI Collection
(AOMIC) (https://openneuro.org/datasets/ds003097/vers
ions/1.2.1) [see Chapter 2]. The samples were matched on age
and education level (Table 1). This dataset was collected between
2010 and 2012. The faculty’s ethical committee of the University
of Amsterdam approved this study before data collection started
(EC number: 2010-BC-1345). Prior to the experiment, subjects
were informed about the goal and scope of the research, the MRI
procedure, safety measures, general experimental procedures, pri-
vacy and data sharing concerns, and voluntary nature of the project.
Before the start of the experiment, subjects signed an informed
consent form and were screened for MRI safety.

All MRI structural data was obtained on the same Philips 3 T
Intera scanner. At the start of each scan session, a low-resolution
survey scan was made, which was used to determine the location of
the field-of-view. For all structural (T1-weighted) the slice stack was
not angulated, and the following parameters were used: FOV
(RL/AP/FH;mm)=160× 256×256, Voxel size (mm)=1× 1× 1,
TR/TE (ms) = 8.1/3.7, Flip angle (deg.) = 8, Acquisition direc-
tion = Sagittal, Duration = 5 min 58 s.

3 Step-by-Step Code Script

3.1 Load Libraries

and Dependencies

In this section, we begin installing MONAI via the pip package
management system and importing the necessary libraries and
dependencies. Some of them may not be installed on your system
so you should proceed with installing them via the pip command.

Table 1
Demographic statistical results for the database

Female
n = 400

Male
n = 400 Statistics

Age (years) 22.86 (1.72) 22.85 (1.67) F = 0.08
p = 0.92a,
d = 0.006

Education level (low/medium/high) 40:184:176 42:176:182 χ2 = 0.32,
p = 0.84b

Results are presented as mean (SD). Age data was assessed through independent two-sample t test. Level of education

analyzed via Pearson’s chi-squared (χ2) test. Effects sizes were calculated through Cohen’s d (d)
ap-values calculated via independent two-sample t-test
bp-values calculated via chi-squared test (χ2)
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Script 1. Installation of packages and importing libraries

!python -c "import monai" || pip install -q "monai-weekly[nibabel, tqdm]"

import logging

import os

import sys

import tempfile

import shutil

import matplotlib.pyplot as plt

import torch

from torch.utils.tensorboard import SummaryWriter

import numpy as np

import glob

import pandas as pd

import monai

from monai.apps import download_and_extract

from monai.config import print_config

from monai.data import CacheDataset, DataLoader, ImageDataset

from monai.data.meta_obj import MetaObj

from monai.data.utils import decollate_batch

from monai.transforms import EnsureChannelFirst, Compose, RandRotate, Resize, 

ScaleIntensity, RandFlip, EnsureType, RandZoom, Activations, AsDiscrete, ToNumpy

from monai.metrics import ROCAUCMetric

from sklearn.metrics import classification_report, confusion_matrix

import matplotlib.tri as tri

from scipy import ndimage

import sklearn.metrics as metrics

from matplotlib.pyplot import figure

import matplotlib.pyplot as plt

import random

from random import sample

logging.basicConfig(stream=sys.stdout, level=logging.INFO)

print_config()

3.2 Load the

T1-Weighted Images

from the Downloaded

Database and Extract

Labels

Now we begin building a list of the nii.gz anatomical files using the
glob library. The path should point to the folder where you down-
loaded the files. Then we load the demographic information table
using Pandas. Finally, we extract only the labels (Male/Female) of
the files that have matched demographic variables using a for loop.
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Script 2. Data loading

### Load MRI data and demographic variables

images = glob.glob('/content/drive/MyDrive/DL/**/*1_T1w.nii.gz', recursive=True)

images.sort()

df = pd.read_csv('behavioral_data_matched.csv')

shortlist = []

labels = []

for i in range(len(images)):

if images[i][29:37] in df['ID'].values:

shortlist.append(images[i])

labels = df['sex'].values

3.3 Split the

Training, Validation,

and Testing Files

Having the matched image and labels dataset, we proceed to split
the dataset into separate training, validation, and testing subsets.
This process ensures that we are able to test the generalization of
the results by using an independent test dataset. Then we define the
data transformations to get a bigger training set. For this purpose,
we apply random brain volume rotations (minimum degree = 0°,
maximum = 180°), brain volume flipping (inverse mirror-like
image), and image zoom (1× to 1.5×) to focus on different brain
areas each time.

Script 3. Data split and augmentation settings

### Split the dataset into training, validation, and testing sets

imtrain = images[:300]

labtrain = labels[:300]

imval = images[300:400]

labval = labels[300:400]

imtest = images[400:800]

labtest = labels[400:800]

# Define transforms
train_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((50, 100, 100))])

val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((50, 100, 100))])

train_ds = ImageDataset(image_files=imtrain, labels=labtrain, transform=train_transforms)
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############  DATA AUGMENTATION
aug_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((50, 100, 

100)), RandRotate(), RandFlip(), RandZoom()])

aug_ds = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds2 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds3 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds4 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds5 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds6 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds7 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds10 = ImageDataset(

image_files=imtrain, labels=labtrain, transform=aug_transforms)

train_ds = torch.utils.data.ConcatDataset([train_ds, aug_ds, aug_ds2, aug_ds3, aug_ds4, 

aug_ds5, aug_ds6, aug_ds7, aug_ds8, aug_ds9, aug_ds10])

############
# create a training data loader
train_loader = DataLoader(train_ds, batch_size=5, shuffle=True, num_workers=2, 

pin_memory=torch.cuda.is_available())

# create a validation data loader
val_ds = ImageDataset(image_files=imval, labels=labval, transform=val_transforms)

val_loader = DataLoader(val_ds, batch_size=2, num_workers=2, 

pin_memory=torch.cuda.is_available())

# create a test data loader
test_ds = ImageDataset(image_files=imtest, labels=labtest, transform=val_transforms)

test_loader = DataLoader(test_ds, batch_size=1, num_workers=2, 

pin_memory=torch.cuda.is_available())

aug_ds8 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

aug_ds9 = ImageDataset(image_files=imtrain, labels=labtrain, transform=aug_transforms)

3.4 Create the

DenseNet Model

In this setup, we will setup the DenseNet model 121 (seeTable 2 for
network architecture details). We set the initial learning to 1e-5, the
batch size parameter was set to 50 samples, and the maximum
number of epochs to 10. The Adam optimizer [see Glossary] will
be used to minimize the Cross Entropy loss of the 3D-DenseNet
during training process [15].
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Script 4. DenseNet model definition

# Create DenseNet121, CrossEntropyLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = monai.networks.nets.DenseNet121(

spatial_dims=3, in_channels=1, out_channels=2).to(device)

loss_function = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), 1e-5)

# start training
val_interval = 2

best_metric = -1

best_metric_epoch = -1

epoch_loss_values = []

metric_values = []

writer = SummaryWriter()

max_epochs = 10

for epoch in range(max_epochs):

print("-" * 10)

print(f"epoch {epoch + 1}/{max_epochs}")

model.train()

epoch_loss = 0

step = 0

Table 2
DenseNet 121 architecture details

Layers Output size Transformation

Convolution 112 × 112 × 112 7 × 7 × 7 convolution, stride 2

Pooling 56 × 56 × 56 3 × 3 × 3 max pooling, stride 2

Dense block 1 56 × 56 × 56 Input concatenation

Transition layer 1 56 × 56 × 56 1 × 1 × 1 convolution
28 × 28 × 28 2 × 2 × 2 average pooling, stride 2

Dense block 2 28 × 28 × 28 Input concatenation

Transition layer 2 28 × 28 × 28 2 × 2 × 2 average pooling, stride 2
14 × 14 × 14 1 × 1 × 1 convolution

Dense block 3 14 × 14 × 14 Input concatenation

Transition layer 3 14 × 14 × 14 2 × 2 × 2 average pooling, stride 2
7 × 7 × 7 1 × 1 × 1 convolution

Dense block 4 7 × 7 × 7 Input concatenation

Classification layer 1 × 1 × 1 7 × 7 × 7 global average pooling
Fully connected softmax
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for batch_data in train_loader:

step += 1

inputs, labels = batch_data[0].to(device), batch_data[1].to(device)

optimizer.zero_grad()

outputs = model(inputs)

loss = loss_function(outputs, labels)

loss.backward()

optimizer.step()

epoch_loss += loss.item()

epoch_len = len(train_ds) // train_loader.batch_size

print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")

writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)

epoch_loss /= step

epoch_loss_values.append(epoch_loss)

print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

if (epoch + 1) % val_interval == 0:

model.eval()

with torch.no_grad():

num_correct = 0.0

metric_count = 0

for val_data in val_loader:

# val_images, val_labels = val_data["img"].to(
#     device), val_data["label"].to(device)
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)

val_outputs = model(val_images)

value = torch.eq(val_outputs.argmax(dim=1), val_labels)

metric_count += len(value)

num_correct += value.sum().item()

metric = num_correct / metric_count

metric_values.append(metric)

if metric > best_metric:

best_metric = metric

best_metric_epoch = epoch + 1

torch.save(model.state_dict(),

"best_metric_model_classification3d_array.pth")

print("saved new best metric model")

print(

"current epoch: {} current accuracy: {:.4f} "

"best accuracy: {:.4f} at epoch {}".format(

epoch + 1, metric, best_metric, best_metric_epoch

)

)

writer.add_scalar("val_accuracy", metric, epoch + 1)

print(

f"train completed, best_metric: {best_metric:.4f} "

f"at epoch: {best_metric_epoch}")

writer.close()
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3.5 Plot the Average

Loss and Validation

Accuracy During

Training Epochs

Now that training has ended, the next step consists in studying how
the DenseNet network is learning to classify the input files correctly.
To this end, we will plot the average loss, reflecting classification
error during validation across epochs and the validation accuracy
(Fig. 2).

Script 5. Plotting average loss and validation accuracy

### Plot loss and accuracy curves during training

plt.figure("train", (12, 6))

plt.subplot(1, 2, 1)

plt.title("Epoch Average Loss")

x = [i + 1 for i in range(len(epoch_loss_values))]

y = epoch_loss_values

plt.xlabel("epoch")

plt.plot(x, y)

plt.subplot(1, 2, 2)

plt.title("Val Accuracy")

x = [val_interval * (i + 1) for i in range(len(metric_values))]

y = metric_values

plt.xlabel("epoch")

plt.plot(x, y)

plt.show()

Fig. 2 Epoch average loss, indicating the error across validation runs and validation accuracy plot to check if
the network is learning from the input data
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3.6 Plot the Test-Set

ROC Curve and Get the

Area Under the Curve

To have a broader insight regarding the network generalization on
a testing dataset, we will plot the receiver operating characteristic
(ROC) curve (Fig. 3), representing the diagnostic ability when a
discrimination threshold is varied.

Script 6. ROC curve plot

### Plot ROC

auc_metric = ROCAUCMetric()

y_pred_trans = Compose([EnsureType(), Activations(softmax=True)])

num_class = 2

y_trans = Compose([EnsureType(), AsDiscrete(to_onehot=num_class)])

for i in range(2):

test_ds = ImageDataset(image_files = imtest, labels = labtest, transform=val_transforms)

test_loader = DataLoader(test_ds, batch_size=1, num_workers=2, 

pin_memory=torch.cuda.is_available())

with torch.no_grad():

y_pred = torch.tensor([], dtype=torch.float32, device=device)

y = torch.tensor([], dtype=torch.long, device=device)

for test_data in test_loader:

test_images, test_labels = (

test_data[0].to(device),

test_data[0].to(device),

)

Fig. 3 ROC curve indicating the classification performance of male vs. female
discrimination in the testing datasets at various thresholds of sensitivity (true
positive rate) and 1-specificity (false positive rate)
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y_pred = torch.cat([y_pred, model(test_images)], dim=0)

y = torch.cat([y, test_labels], dim=0)

y_onehot = [y_trans(i) for i in decollate_batch(y)]

y_pred_act = [y_pred_trans(i) for i in decollate_batch(y_pred)]

auc_metric(y_pred_act, y_onehot)

numps = Compose([EnsureType(),ToNumpy()])

preds = numps(y_pred_act)

yver = numps(y_true)

a = np.array(preds)

pred = a[:,1]

figure(figsize=(3, 2), dpi=300)

fpr, tpr, threshold = metrics.roc_curve(y_true, pred)

roc_auc = metrics.auc(fpr, tpr)

plt.title('ROC')

plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)

plt.legend(loc = 'lower right')

plt.plot([0, 1], [0, 1],'r--')

plt.xlim([0, 1])

plt.ylim([0, 1])

plt.ylabel('True Positive Rate')

plt.xlabel('False Positive Rate')

plt.show()

3.7 Plot the

Classification Report

in a Radar Chart

Now we will get detailed classification report with multiple metrics
(Fig. 4): accuracy, sensitivity, specificity, precision, recall, and F1. The
last three are particularly important to deal with imbalanced datasets
between classes as they provide unbiased performance results.

Script 7. Classification report

### Get performance report

y_true = []

y_pred = []

with torch.no_grad():

for test_data in test_loader:

test_images, test_labels = (

test_data[0].to(device),

test_data[1].to(device),

)

pred = model(test_images).argmax(dim=1)

for i in range(len(pred)):

y_true.append(test_labels[i].item())

y_pred.append(pred[i].item())

class_names = ['Female', 'Male']

rep = classification_report(

y_true, y_pred, target_names=class_names, digits=4, output_dict=True)

### Get radar chart

tp, fn, fp, tn = confusion_matrix(y_true, y_pred).ravel()

acc = (tp+tn)/(tp+tn+fp+fn)

sen = (tp)/(tp+fn)

sp = (tn)/(tn+fp)

408 Sebastian Moguilner and Agustin Ibañez



markers = [0, 0.2, 0.4, 0.6, 0.8, 1.0]

proportions = [acc, sp, rep['weighted avg'].get('recall'), rep['weighted avg'].get('f1-score'), 

rep['weighted avg'].get('precision'), sen]

labels = ['Accuracy', 'Specificity', 'Recall', 'F1', 'Precision', 'Sensitivity']

def make_radar_chart(name, stats, attribute_labels=labels,

plot_markers=markers):

labels = np.array(attribute_labels)

angles = np.linspace(0, 2*np.pi, len(labels), endpoint=False)

stats = np.concatenate((stats,[stats[0]]))

angles = np.concatenate((angles,[angles[0]]))

fig = plt.figure()

ax = fig.add_subplot(111, polar=True)

ax.plot(angles, stats, 'o-', linewidth=2)

ax.fill(angles, stats, alpha=0.25)

ax.set_thetagrids(angles * 180/np.pi, labels, fontsize = 18)

plt.yticks(markers, fontsize = 18)

ax.set_title(name, fontsize = 18)

ax.grid(True)

fig.set_size_inches(10,10, forward = False)

return plt.show()

make_radar_chart("Model Performance", proportions)

Fig. 4 The radar chart depicts the classification reports, providing a detailed
profile of classification performance including accuracy, sensitivity, specificity,
precision, recall and F1
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3.8 Obtain the

Occlusion Sensitivity

Map

Finally, we are able to gain insights on what features the DenseNet
has been utilizing when classifying subjects. This step is particularly
important because we need to be sure that the classification is based
on brain anatomy, and not other possible confounding factors such
as skull bone structure. Furthermore, information about specific
anatomical differences would provide insights regarding biological
underpinnings of sex. To this end, we ran occlusion sensitivity
analyses [16]. The occlusion sensitivity analysis is a technique in
convolutional neural networks that is employed to understand what
parts of an image are more relevant for deciding a classification
output. During this process, small image areas are perturbed by
superimposing an occluding mask composed of a gray square. This
mask is moved across the image, and the change in probability score
for a given class is measured as a function of mask position. When an
important part of the image is occluded, the probability score for
the predicted class will fall sharply, producing a map of classification
relevance.

Script 8. Occlusion sensitivity output interpretation

### Run occlusion sensitivity analysis in the sagittal plane (other planes are available, 
commented below)

msk = 3

stride = 3

for i in range(10):

# Get a random image and its corresponding label
img, label = get_next_im()

print(label)

# Get the occlusion sensitivity map
occ_sens = monai.visualize.OcclusionSensitivity(nn_module=model, mask_size=msk, 

n_batch=10, stride=stride)

# Only get a single slice to save time.
# For the other dimensions (channel, width, height), use
# -1 to use 0 and img.shape[x]-1 for min and max, respectively
depth_slice = img.shape[2] // 2

# Sagital
occ_sens_b_box = [depth_slice-1, depth_slice, -1, -1, -1, -1]

occ_result, _ = occ_sens(x=img, b_box=occ_sens_b_box)

occ_result = occ_result[0, label.argmax().item()][None]

fig = plt.figure(figsize=(15,15))

plt.xlim([0, 100])

plt.ylim([0, 100])  

ax = fig.add_subplot(111)

im = occ_result

img2 = plt.imshow(ndimage.rotate(img[0, 0, depth_slice, ...].detach().cpu(),-90), 

interpolation='nearest', cmap='gray', origin='lower')

img3 = plt.imshow(ndimage.rotate(np.squeeze(im[0][0].detach().cpu()),-90), 

interpolation='nearest', cmap='gist_heat', origin='lower', alpha = 0.4)

fig.colorbar(img3)

plt.show()
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4 Discussion on Model Example Interpretation

The example displayed in Fig. 5 shows an occlusion sensitivity
cluster located in the orbitofrontal cortex. This area seems to be
relevant for sex differences. A recent study in more than 2000 MRI
scans [17] showed that females, on average, had relatively greater
volume in the orbitofrontal cortex when compared to male sub-
jects. This result has been also replicated using state-of-the-art
techniques applied to GMV in a large sample (n = 2838) and in
two independent cohorts, with a large age range, with all data
acquired from the same MRI scanner [18]. Importantly, the orbi-
tofrontal cortex is relevant to sex differences in geriatric depression
[19], tau deposition in heterozygotes [20], leftward functional
connectivity asymmetry [21], and even microsatellite polymorph-
isms of steroid hormone receptors [22]. Future studies may inves-
tigate if these brain anatomical differences are influenced by
different factors, including biological heterogeneity or by social
conventions generating plastic brain changes through the lifespan.

Fig. 5 Sagittal plane T1-weighted MRI image overlaid with the output of the occlusion sensitivity map

Deep Learning Classification Based on Raw MRI images 411



5 Conclusions

In this chapter, we described a step-by-step implementation exam-
ple of a deep learning pipeline based on raw data. After increasing
the sample using augmentation, we trained the DenseNet to accu-
rately classify male and female subjects in the test set. In addition,
via the occlusion sensitivity analysis, anatomical insights were
gained, plus evidence that the classifier was using brain tissue
sources and not possible confounding factors. We hope this frame-
work will guide future implementations of different protocols that
use neuroimaging data for classification.
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List of Resources

• Amazon Web Services (AWS): https://aws.amazon.com

• BIDS: https://bids.neuroimaging.io/

• BIDS apps: An index of BIDS applications. https://bids-apps.
neuroimaging.io/apps/

• BIDS converters: https://bids.neuroimaging.io/benefits.
html#mri-and-pet-converters

• BIDS starter kit: https://bids-standard.github.io/bids-starter-
kit/index.html

• BIDS validators: https://bids-standard.github.io/bids-
validator/

• BioImageSuite Web Connectivity Viewer: https://bio
imagesuiteweb.github.io/webapp/connviewer.html

• Boto: https://boto3.amazonaws.com/v1/documentation/
api/latest/index.html

• Carbon tracker toolboxes: https://ohbm-environment.org/
carbon-tracker-toolboxes/

• CAT12 (Computational Anatomy Toolbox, https://neuro-jena.
github.io/cat); here applied without license costs as a standa-
lone version (https://neuro-jena.github.io/enigma-cat12/
#standalone) or as a Singularity container (https://github.
com/inm7-sysmed/ENIGMA-cat12-container).

• Code Carbon: https://mlco2.github.io/codecarbon/index.
html

• Collaborative Informatics and Neuroimaging Suite(COINS):
https://coins.trendscenter.org

• Coinstac: https://coinstac.org

• C-PAC https://fcp-indi.github.io/

• Cyberduck: https://cyberduck.io/

• Datalad: https://www.datalad.org/
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• Docker: https://docs.docker.com/get-started/

• Docker hub: https://hub.docker.com/

• EEGLAB: https://sccn.ucsd.edu/eeglab/index.php

• Experiment Impact Tracker (EIT): https://github.com/
Breakend/experiment-impact-tracker

• ExploreDTI: https://www.exploredti.com/

• FAIR: https://www.go-fair.org/fair-principles/

• fMRIPrep: https://fmriprep.org/en/stable/

• Git: https://git-scm.com/

• Github desktop: https://desktop.github.com/

• Github flow: https://githubflow.github.io/

• GNU make: https://www.gnu.org/software/make/

• HED resources: https://www.hed-resources.org/en/latest/
index.html

• Longitudinal Online Research and Imaging System (LORIS):
http://www.loris.ca

• Matplotlib: tools for data visualization: https://matplotlib.org

• Matlab Compiler Runtime: https://www.mathworks.com/
products/compiler/matlab-runtime.html

• MONAI: https://monai.io/about.html

• MRIQC: https://mriqc.readthedocs.io/en/stable/

• Nextflow: https://www.nextflow.io/

• NeuroElectroMagnetic Archive and compute Resource
(NEMAR): https://nemar.org/

• Neuroscience Gateway (NSG): https://www.nsgportal.org/

• NeuroStars Forum: https://neurostars.org/

• Neurovault: https://neurovault.org

• Nilearn: package supporting neuroimaging analyses of structural
and functional volumetric data. Includes tools for voxelwise
statistical analyses, multi-voxel pattern analysis (MVPA),
GLMs, clustering and parcellation, etc. https://nilearn.github.
io/stable/index.html

• NiPreps: https://www.nipreps.org/

• Nipype: https://nipype.readthedocs.io/en/latest/

• Nltools: neuroimaging package for fMRI data analyses (e.g.,
resting-state, task-based, movie-watching) that incorporates
code from nilearn and scikit-learn. https://nltools.org

• Numpy (numerical package for scientific and arithmetic com-
puting): https://numpy.org/

• OpenNeuro: OpenNeuro.org
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• Open Science Framework (OSF): http://osf.io

• Panda: supports data manipulation and analysis, particularly
useful for reading in data in csv/xls format. https://pandas.
pydata.org/

• Pingouin: simple statistical functions and graphics.in Python.
https://pingouin-stats.org

• Pybids: https://bids-standard.github.io/pybids/analysis/
index.html

• Repronim: https://www.repronim.org/

• Seaborn: tools for data visualization. https://seaborn.pydata.
org

• Statsmodels: package in python to build statistical models and
perform statistical tests. https://www.statsmodels.org/stable/
index.html

• Scikit-learn: tools for machine learning, including classification,
model selection, and dimensionality reduction. https://scikit-
learn.org/stable/

• Scitran: https://scitran.github.io/

• Snakemake: https://snakemake.readthedocs.io/en/stable/

• Sourcetree: https://www.sourcetreeapp.com/

• Stackoverflow: https://stackoverflow.com

• Statsmodels: package in Python to build statistical models and
perform statistical tests. https://www.statsmodels.org/stable/
index.html

• Statistical Parametric Mapping (SPM): https://www.fil.ion.ucl.
ac.uk/spm/

• Trunk based development: https://trunkbaseddevelopment.
com/

• XNAT: https://central.xnat.org/
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Glossary

Artificial Intelligence (AI) A branch of computer science that
deals with the creation of intelligent
machines that can simulate human
intelligence, including the ability to
think, reason, and make decisions.

Artifact Subspace
Reconstruction (ASR)

A technique used in signal processing
and image processing to remove
unwanted artifacts or noise from data
by reconstructing a subspace that
represents the signal of interest while
suppressing the artifacts or noise.

Area under the Receiver
Operating Characteristic
(AROC; often abbreviated
as AUC)

A metric that evaluates the overall per-
formance of a binary classification
model by comparing the True Positive
Rate against the False Positive Rate
across various thresholds. A value of
1 indicates perfect discrimination,
while 0.5 suggests no better perfor-
mance than random guessing.

BIDS (Brain Imaging
Data Structure)

A standardized format for organizing
and sharing neuroimaging data,
including data from structural and
functional MRI, EEG, and MEG
studies.

BIDSApp (Brain Imaging
Data Structure App)

A software tool that automates the
analysis of neuroimaging data in the
BIDS format. BIDSApp is built on
the BIDS specification and provides a
standardized way to run a range of
neuroimaging analysis pipelines in a
consistent and reproducible manner.

Bind mounts A feature that allows a directory or file
on a host system to be mounted into a
different location within the same
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filesystem or a container. This provides
direct access to the mounted directory
or file, ensuring changes in either loca-
tion are immediately reflected in the
other.

Block design
(cf. event-related
design)

A type of experimental design used in
functional magnetic resonance imag-
ing studies to investigate brain activity
during a specific cognitive condition.
In block design experiments, the task
is repeated in a series of discrete time
intervals or “blocks,” each separated
by a brief rest period.

BOLD (Blood Oxygen
Level Dependent)

The change in the magnetic properties
of hemoglobin in the blood as it deli-
vers oxygen to active neurons in the
brain.

Bonferroni correction A statistical adjustment applied to con-
trol for the increased risk of Type I
errors in multiple comparisons by
dividing the desired significance level
by the number of comparisons.

Circle plots A method often used in network anal-
ysis of visualizing data where nodes are
arranged in a circle.

Coarse-grained parallelism See Granularity.
Confusion matrix A table used to assess the performance

of a classification model by comparing
actual vs. predicted labels. It includes
True Positives (correctly predicted
positives), True Negatives (correctly
predicted negatives), False Positives
(incorrectly predicted positives), and
False Negatives (incorrectly predicted
negatives).

Connectome A map of functional or structural con-
nections in the brain.

Container A standardized unit of software that
encapsulates code, runtime, system
tools, and libraries, enabling consistent
and portable deployment across differ-
ent computing environments.

Convolutional Neural
Networks (CNNs)

A type of deep learning model com-
monly used for image and video analy-
sis. CNNs are structured to
automatically and adaptively learn spa-
tial hierarchies of features through
multiple layers of convolutional filters.
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Connectome-based
Predictive
Modeling (CPM)

A method that involves constructing
predictive models that relate patterns
of connectivity within the brain to spe-
cific variables of interest (e.g., cogni-
tive abilities, personality traits, or
patient status).

Central Processing
Unit (CPU)

The main processing component in a
computer that performs the majority
of the tasks required to run the com-
puter’s software and hardware.

Cross-validation (CV) A technique used in machine learning
and statistical modeling to evaluate the
performance of a predictive model by
testing it on separate data. The goal of
cross-validation is to assess how well a
model can generalize to new data
rather than just fit to the training data.

Curse of dimensionality A set of issues encountered when deal-
ing with data that contains too many
variables, factors, or features. For
example, the presence of more vari-
ables than data points may lead to a
poorly fitting model with a bad predic-
tive value outside the sample dataset.

Data leakage This occurs when information from
the test dataset is inadvertently used
to create a model, leading to overly
optimistic performance metrics.

Deep learning A subfield of machine learning that
involves building and training artificial
neural networks with many layers.
These neural networks are designed
to learn and recognize patterns in
large datasets and are inspired by the
structure and function of the human
brain.

Derivatives Derived data or processed versions of
original data, often involving transfor-
mations, pre-processing, or feature
extraction, aimed at enhancing or facil-
itating analysis while maintaining
traceability to the source data.

Digital Imaging and
Communications
in Medicine (DICOM)

A standard for handling, storing, print-
ing, and transmitting medical images
and associated information.

Directed acyclic graph
(DAG)

A finite graph that consists of vertices
connected by edges, where each edge
has a direction, and there are no cycles,
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meaning you cannot start at any vertex
and return to it by following a
directed path.

Differential programming A group of techniques that leverage
automatic differentiation to efficiently
and accurately compute derivatives,
facilitating optimization tasks.

Diffusion-weighted
Magnetic Resonance
Imaging (dMRI)

A medical imaging technique that pro-
vides information about the movement
of water molecules in tissues.

Diffusion tensor imaging
(DTI)

A particular magnetic resonance imag-
ing analysis technique that provides
information about the direction, ori-
entation, and magnitude of water dif-
fusion in tissues, particularly in white
matter tracts of the brain.

Dummy coding
(cf. one-hot encoding)

Representing categorical variables with
numerical values (0 or 1) to facilitate
their inclusion in regression models.
Each category of the categorical vari-
able is assigned a binary variable
(dummy variable), where 0 indicates
the absence of the category and 1 indi-
cates its presence.

Event-related design
(cf. block design)

A type of experimental design used in
functional magnetic resonance imag-
ing to investigate brain activity in
response to discrete events, such as a
visual stimulus, a sound, or a motor
response. In event-related designs, the
cognitive task is not presented in
blocks, but instead, individual events
are presented in a random or pseudo-
random order, with a variable inter-
stimulus interval (ISI) or inter-trial
interval (ITI) between each event.

External validation Testing a predictive model on a new set
of data to quantify its predictive value.

FAIR Principles Prescribe characteristics of data and
digital objects to maximize their reuse
by the scientific community – that is, to
maximize data sharing, exploration,
reuse, and deposition by parties other
than the original researcher.

False Discovery Rate A statistical method used to control
the proportion of falsely rejected null
hypotheses among all rejected
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hypotheses in multiple hypothesis
testing.

False Positive Rate The probability of incorrectly rejecting
the null hypothesis.

Feature Selection The process of reducing the number of
predictive variables that enable you to
create the most accurate machine
learning model, to create the most par-
simonious model possible.

Field-Programmable
Gate Arrays (FPGAs)

Integrated circuits made up of config-
urable blocks that can be programmed
and re-programmed to the specific
desires of the user post-manufacture.

File Paths Specifies the location of a file in a com-
puter/website folder directory.

Flat cross-validation A method where the data is not
grouped or stratified in any specific
way before being split into training
and validation sets. This approach
treats the dataset as a single flat array,
randomly dividing it into different sub-
sets for training and testing without
considering potential imbalances or
clustering in the data.

Framewise displacement Metric quantifying the average head
motion across frames or volumes in a
time series, providing insights into the
potential impact of subject motion on
the data.

Functional connectivity Statistical correlation between the
activity of different brain regions, indi-
cating their synchronized functioning
and potential communication
pathways.

Gaussian Process
Regression

A non-parametric Bayesian approach
to regression analysis.

Generalizability The ability of a machine learning
model to accurately predict outcomes
for previously unseen data.

Gini Scores Quantifies the impurity of a set of data
by measuring the probability of mis-
classifying a randomly chosen element.

Glass brain plots A translucent image of the brain in
standardized brain space that is useful
in visualizing source localization.

Glyphs Typically, a graphical representation
used in diffusion tensor imaging to
visualize and analyze the diffusion
properties of water molecules in
biological tissues.
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General Linear Model
(GLM)

A statistical framework used to model
the relationship between a dependent
variable and one or more independent
variables.

Global Signal Regression The removal or suppression of the
overall signal intensity across all brain
regions to address potential confounds
and enhance the specificity of localized
neural activity measurements.

Graphics Processing
Unit (GPU)

A specialized processor designed to
perform tasks related to computer gra-
phics and image processing. Unlike
Central Processing Units, which are
optimized for general-purpose com-
puting tasks, GPUs excel in handling
large volumes of parallel data simulta-
neously because they contain
thousands of cores that can execute
multiple tasks concurrently.

Graphical User Interface
(GUI)

Unlike a text-based software program,
a GUI is a software program that
allows the user to interact with it by
way of manipulating visual compo-
nents like buttons, icons, menus, etc.

Graph Theory A branch of mathematics that deals
with the study of graphs, which are
mathematical structures used to
model pairwise relationships between
objects. A graph consists of nodes
(e.g., brain regions) and edges (con-
nections such as correlation between
nodes) that connect pairs of vertices.

Granularity The extent to which a system or entity
(e.g., a neuroimaging processing job)
is broken down into smaller compo-
nents (e.g., sub-tasks). Fine granularity
means that components are small and
detailed, while coarse granularity
means they are larger and less detailed.
Granularity impacts performance, scal-
ability, and complexity in system
design and management.

Grid Search A method for finding the optimal
hyperparameters of a machine learning
model that involves evaluating the
model’s performance for each combi-
nation of hyperparameters specified in
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the grid. Grid search helps determine
the best set of hyperparameters that
maximize the model’s performance
on a given dataset.

Hemodynamic Response
Function (HRF)

The physiological changes in blood
flow, volume, and oxygenation that
occur in response to neural activity in
the brain. HRF is often used as a model
to estimate the underlying neural activ-
ity from fMRI (functional magnetic
resonance imaging) signals.

Hyperparameters Configurable settings or parameters
external to the model that influence
its learning process and performance,
such as learning rate or number of
hidden layers in a neural network.

Interoperability The ability of two different software
systems, applications, data stores, etc.,
to communicate effectively with one
another.

Interpretability How easily understood the predictions
made by a machine learning model are.

JSON file A file that stores simple data structures
and objects in JavaScript Object Nota-
tion (JSON) format, which is a stan-
dard data interchange format. It is
primarily used for transmitting data
between a web application and a server.
JSON files are lightweight, text-based,
human-readable, and can be edited
using a text editor.

K-fold Cross Validation a type of cross-validation where the
data is split into k number of subsets
on which the predictive value of the
machine learning model is subse-
quently evaluated.

Leave-one-out Cross
Validation

A (computationally expensive) varia-
tion of k-fold cross-validation where k
is equal to the number of data points in
the dataset. As is suggested in the
name, each fold removes a single, dif-
ferent data point.

Machine-actionable Data that are consistently structured in
a way that allows computers/machines
to be programmed against said
structure.

Machine-interpretable Data that a computer/machine can
contextualize and understand.

Machine learning A subfield of artificial intelligence that
involves developing algorithms and

Glossary 425



statistical models that enable computer
systems to automatically improve their
performance on a specific task by
learning from data.

Machine-readable Structured data that a machine/com-
puter can automatically process. Exam-
ples of machine-readable data are
JSON, XML, or CSV files.

Markdown A lightweight markup language with
plain-text formatting syntax that is
designed to be converted to Hypertext
Markup Language (HTML) and is
often used for formatting readme
files, writing messages in online discus-
sion forums, and creating rich text
using a plain text editor.

Mass-univariate testing This involves conducting statistical
tests, typically at each individual voxel
or region separately. Typically, the
large number of statistical tests is sub-
sequently corrected for multiple com-
parisons (e.g., using the False
Discovery Rate).

Mega-analysis The analysis of a large quantity of raw
data which have been aggregated
across a number of different studies/
sources.

Meta-analysis The analysis of summary data from a
number of different studies/sources. It
involves synthesizing data from indi-
vidual studies to obtain an overall
effect size or estimate of the magnitude
and direction of an effect.

Metadata Data that offers context about data
without revealing its content (e.g., a
column title in an excel spreadsheet
will give you information about what
the data in said column pertains to but
won’t reveal the exact data itself).

Massive Open Online
Course (MOOCs)

An open access online course created
and shared with the intention of high
levels of participation and engage-
ment. Examples of companies that
offer MOOCs are Coursera, edX, and
Khan Academy.

Multiverse analysis Implementation of several different
processing and analysis pipelines and
thereafter combining results (either as
a range of possibilities or by statistical
aggregation).

Naming convention
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A framework for the descriptive nam-
ing of files that allows individuals to
easily understand what information
the files contain.

Network-Based Statistic
(NBS)

A statistical method to identify signifi-
cant subnetworks or clusters of
connected brain regions that exhibit
consistent differences between experi-
mental conditions.

Nested cross-validation A form of cross-validation often for the
purpose of obtaining optimal model
hyperparameters. It involves employ-
ing an outer and an inner cross-
validation loop. The outer loop divides
the dataset into training and test sets
multiple times. Each iteration of the
outer loop creates a different partition
of the data. For each partition created
by the outer loop, there is an inner
loop in which further cross-validation
is performed (e.g., to tune the model’s
hyperparameters).

Notebook An interactive web-based computa-
tional platform.

Parallelization, parallel
computing

A type of computing where a process is
subdivided into several subprocesses to
speed it up.

Permutation testing A non-parametric method used to
quantify the significance of a hypothe-
sis by randomly shuffling observed
data points between groups or condi-
tions. Then, the observed test statistic
is compared with a distribution of per-
muted test statistics generated under
the null hypothesis.

Object-based storage A data storage architecture that man-
ages data as discrete units called
objects, each containing the data itself,
metadata, and a unique identifier,
which allows for easy retrieval and
scalability.

Orientation When viewing medical images, neuro-
logical orientation presents the left
hemisphere of the brain on the left of
the image. In contrast, radiological ori-
entation is flipped (i.e., the left hemi-
sphere of the brain will appear on the
right of the image)

Overfitting When a machine learning or statistical
model is designed with too much
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specificity in regards to the original
dataset that its usefulness on
subsequent datasets is diminished.
This is because the model captures
the underlying patterns in the training
data and also noise and random fluc-
tuations in those data.

Parallelization The division of a particular computa-
tional task into independent sub-tasks
that are executed concurrently.

Pre-registration Submitting a detailed plan of study
methods and analyses before the
research begins, which is reviewed and
registered by a third party.

Random search A method for finding the optimal
hyperparameters for your predictive
model, where a grid of hyperpara-
meters will be randomly sampled from
a specified number of times and the
best combination selected.

Regression model See General linear model.
Remote directory A folder stored on a server or another

computer that can be accessed over a
network or the internet.

Repository In the context of data science, a library
or archive where data is stored, often
for open access.

Reproducibility The ability to obtain the same results as
a prior study using procedures that are
closely matched with those used in the
original research.

SHapley Additive
exPlanations (SHAP)

Assigns each feature in a model an
importance value by quantifying the
impact of each feature’s presence on
the machine learning model using
game theory.

Shell A user interface for accessing an
operating system’s services, typically
through a command-line interface or
a graphical user interface.

Sparsity threshold A predefined level that determines the
extent to which coefficients or features
in a model or representation are set to
zero, promoting a sparse or reduced
set of non-zero elements.

Sudo rights superuser do. A command on Unix
and Linux systems that gives extra pri-
vileges (root/administrator access
rights) to regular users.

.tsv format; tab-separated
file

A text-based file for the storage of data
in tabular form.
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Tag hierarchy Ordering of Hypertext Markup Lan-
guage (HTML) tags that defines the
structure and flow of an HTML
document.

Telemetry The automated collection and trans-
mission of data measurements from
remote or inaccessible sources to an
IT system in a different location for
monitoring and analysis.

Tractography A technique used in diffusion magnetic
resonance imaging to reconstruct and
visualize the three-dimensional path-
ways of white matter tracts in the brain.

Trial A single instance or episode during
which the participant is exposed to a
specific stimulus or task condition.

True Positive Rate The probability of correctly accepting
the alternative hypothesis.

t-statistic An inferential statistic used to make a
decision on whether to reject or accept
the alternative hypothesis in a t-test.

Version Control A system that records changes to a file
or set of files over time, allowing you to
recall specific versions later.

Virtual machine A software emulation of a computer
system that runs an operating system
and applications as if they were run-
ning on physical hardware.

Weighted and unweighted
network

Types of graphs in which a weighted
network assigns numerical values to
edges, reflecting the strength of con-
nections between nodes, while an
unweighted network considers all con-
nections as equal.

XML (Extensible Markup
Language)

A flexible text format used to structure,
store, and transport data, defined by
tags and rules that are both human-
and machine-readable.
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