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Preface to the Second Edition 

After the appearance of the first edition of this book there have been numerous 
developments in the field that urged me to update the book. On the mathematical 
side, new concepts, techniques and results have been found during the last few years, 
which are now included in our treatment. This includes the perturbation semigroup 
and cyclic cocycles in the Taylor expansion of the spectral action. On the particle 
physics side, the step to go Beyond the Standard Model with Pati–Salam unification 
now forms a prominent part of our book, while the first attempts towards quantization 
of the theory are included in the final chapter. 

I have also revised the introductory part I, aiming for a more complete treatment 
of noncommutative differential geometry. There are more details on the analytical 
properties of the Dirac operator on a compact Riemannian spinc manifold, and also 
more noncommutative examples to better illustrate the concept of a spectral triple. 
For example, the noncommutative torus that formed one of the first examples of a 
noncommutative Riemannian spin manifold now makes its appearance in Sect. 5.3.1. 
It re-appears for illustrative examples of even and odd cyclic cocycles in Sect. 6.2.1. 

I would like to further thank Calum Beck, Rui Dong, Eva-Maria Hekkelman, 
Teije Kuijper, Malte Leimbach, Teun van Nuland, Leo Polak and Berend Visser for 
sending me numerous typos in the first edition and in a draft version of the second 
edition. 

I thank Leonora, Joris, Daniël and Mathilde for their continuing patience and love. 

Nijmegen, The Netherlands 
December 2023 

Walter D. van Suijlekom
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Preface to the First Edition 

The seeds of this book have been planted in the far east, where I wrote lecture notes 
for international schools in Tianjin, China in 2007 and in Bangkok, Thailand in 2011. 
I then realized that an up-to-date text for beginning noncommutative geometers on 
the applications of this rather new mathematical field to particle physics was missing 
in the literature. 

This made me decide to transform my notes into the form of a book. Besides the 
given challenge inherent in such a project, this was not made easy because of recent, 
rapid developments in the field, making it difficult to choose what to include and to 
decide where to stop in my treatment. The current state of affairs is at least touched 
upon in the final chapter of this book, where I discuss the latest particle physics models 
in noncommutative geometry, and compare them to the latest experimental findings. 
With this, I hope to have provided a path that starts with the basic principles of 
noncommutative geometry and leads to the forefront of research in noncommutative 
geometry and particle physics. 

The intended audience consists of mathematicians with some knowledge of 
particle physics, and of theoretical physicists with some mathematical background. 
Concerning the level of this textbook, for mathematicians I assume prerequisites on 
gauge theories at the level of e.g. [1, 2], and recommend to first read the book [3] to 
really appreciate the last few chapters of this book on particle physics/the Standard 
Model. For physicists, I assume knowledge of some basic algebra, Hilbert space and 
operator theory (e.g. [4, Chapter 2]), and Riemannian geometry (e.g. [5, 6]). This 
makes the book particularly suitable for a starting PhD student, after a master degree 
in mathematical/theoretical physics including the above background. 

I would like to thank the organizers and participants of the aforementioned schools 
for their involvement and their feedback. This also applies to the MRI-Masterclass 
in Utrecht in 2010 and the Conference on index theory in Bogotá in 2008, where 
Chapter 6 finds its roots. Much feedback on previous drafts was gratefully received 
from students in my class on noncommutative geometry in Nijmegen: Bas Jordans, 
Joey van der Leer and Sander Uijlen. I thank my students and co-authors Jord Boei-
jink, Thijs van den Broek and Koen van den Dungen for allowing me to transcribe 
part of our results in the present book form. Simon Brain, Alan Carey and Adam
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viii Preface to the First Edition

Rennie are gratefully acknowledged for their feedback and suggested corrections. 
Strong motivation to writing this book was given to me by my co-author Matilde 
Marcolli. I thank Gerard Bäuerle, Gianni Landi and Klaas Landsman for having been 
my main tutors in writing, and Klaas in particular for a careful final proofreading. 
I also thank Aldo Rampioni at Springer for his help and guidance. I thank Alain 
Connes for his inspiration and enthousiasm for the field, without whose work this 
book could of course not have been written. 

I am thankful to my family and friends for their continuous love and support. My 
deepest gratitude goes to Mathilde for being my companion in life, and to Daniël for 
making sure that the final stages of writing were frequently, and happily, interrupted. 

April 2014 Walter D. van Suijlekom 
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Chapter 1 
Introduction 

Ever since the early days of noncommutative geometry it has become clear that this 
field of mathematics has close ties with physics, and with gauge theories in particular. 
In fact, non-abelian gauge theories, and even more prominently, the Standard Model 
of particle physics, were a guiding principle in the formulation of noncommutative 
manifolds in [ 1, 2]. 

For one thing, noncommuting operators appear naturally in quantum mechanics. 
As a matter of fact, there is a rather direct path from experimentally measured atomic 
spectra to Heisenberg’s matrix mechanics which is one of the motivating examples 
of noncommutative geometry [ 3, Sect. I.1]. 

In the other direction, it turns out that the main technical device in noncommutative 
geometry, a spectral triple, naturally gives rise to a gauge theory. This holds in 
full generality, but the great potential of the noncommutative approach, at least in 
particle physics, becomes really visible when specific examples are considered that 
in fact correspond to familiar gauge theories arising in physics. This is crowned by 
the derivation [ 4] of the full Standard Model of particle physics together with all its 
subtleties, including the Higgs field, the spontaneous symmetry breaking mechanism, 
neutrino mixing, see-saw mechanism, et cetera. 

It is the goal of this book to explore this path, and, starting with the basics, to work 
towards applications in particle physics, notably to the Standard Model of elementary 
particles. 

The first ingredient of a spectral triple is an involutive or.∗-algebra . A of operators 
in a Hilbert space. H, with the involution given by the hermitian adjoint of an operator. 
This immediately gives rise to a gauge group .G determined by the unitary elements 
in . A. In general, if .A is noncommutative, then this group is non-abelian. 

The gauge fields arise from a second, purely spectral data, in the guise of a self-
adjoint operator .D in . H, satisfying suitable conditions (cf. Definition 5.9 below). 
The operator .D is modeled on the Dirac operator on a Riemannian spin manifold 
. M , an elliptic first-order differential operator whose square coincides, up to a scalar 
term, with the Laplacian. 
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A key role will be played by the spectrum of . D, assumed discrete; we will list 
its eigenvalues (with multiplicities) as .{λn}n∈Z. The gauge group .G acts on .D by 
conjugation with a unitary operator, .D �→ UDU ∗. Unitarity guarantees invariance 
of the spectrum under such a gauge transformation. 

Hence a spectral invariant is in particular gauge invariant, and it is natural to 
define the so-called spectral action as [ 5, 6] 

. 

∑

n∈Z
f

(
λn

�

)
.

Here the function . f is a suitable cutoff function that makes the outcome of the 
sum finite, and .� is a real cutoff parameter. The spectral action is interpreted as an 
action functional that describes the dynamics and interactions of the gauge fields 
constituting . D. 

The fermionic fields that are associated to a spectral triple are simply vectors . ψ
in the given Hilbert space, and their natural invariant is the fermionic action: 

. (ψ, Dψ) .

The previous paragraphs sketch the derivation of a generalized gauge theory from 
any spectral triple. When one restrict to a particular class of spectral triples, this leads 
to ordinary gauge theory defined on a manifold .M in terms of vector bundles and 
connections. The idea is very simple, essentially dating back to [ 7]: one considers the 
noncommutative space.M × F given by the product of .M with a finite, noncommu-
tative space . F . The space .F gives rise to the internal, gauge degrees of freedom. In 
fact, it is described by a finite-dimensional algebra of matrices, for which the gauge 
group becomes a matrix Lie group, such as .SU (N ). The self-adjoint operator . DF

is given by a hermitian matrix. Combined with the background manifold . M , these 
objects are turned into global ones: .A consists of the sections of a bundle of matrix 
algebras, and .D is a combination of .DF and the Dirac operator on .M (assumed 
to be a Riemannian spin manifold). The operator .D is found to be parametrized 
by gauge fields and scalar fields in suitable representations of the gauge group . G. 
The fermionic fields .ψ are sections of a spinor bundle on which .D acts as a linear 
differential operator, minimally coupled to the gauge fields. 

As we already said, the spectral action is manifestly gauge invariant, and for this 
latter class of examples it describes a scalar gauge theory for the group. G. As a bonus, 
it is minimally coupled to (Euclidean) gravity, in that the gravitational degrees of 
freedom are present as a background field in the Dirac operator on. M . Moreover, the 
fermionic action then gives the usual coupling of the fermionic fields to the gauge, 
scalar and gravitational fields. 

In this respect, one of the great achievements of noncommutative geometry is the 
derivation of the full Standard Model of particle physics from a noncommutative 
space .M × FSM [ 4]. In fact, from this geometric Ansatz one obtains the Standard 
Model gauge fields, the scalar Higgs field, and the full fermionic content of the 
Standard Model. Moreover, the spectral and fermionic action on .M × FSM give the
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full Lagrangian of the Standard Model, including (amongst other benefits) both the 
Higgs spontaneous symmetry breaking mechanism and minimal coupling to gravity. 
In addition, the spectral action introduces relations between the coupling constants 
and the masses of the Standard Model. This allows one to derive physical predictions 
such as the Higgs mass, and also indicates how to go beyond the Standard Model, 
finally bringing us back to experiment. 

This book is divided into two parts. Part 1 presents the mathematical basics of 
noncommutative geometry and discusses the local index formula as a mathematical 
application. As a stand alone, it may be used as a first introduction to noncommutative 
geometry. 

The second part starts in the same mathematical style, where in the first two 
chapters we analyze the structure of a gauge theory associated to any spectral triple. 
Comparable to a kaleidoscope, we then focus on a specific class of examples, and 
within this class select the physically relevant models. In the last two chapters this 
culminates in the derivation of the full Standard Model of particle physics. All these 
examples heavily exploit the results from Part 1. Hence the reader who is already 
somewhat familiar with noncommutative geometry, but is interested in the gauge-
theoretical aspects, may want to skip Part 1 and jump immediately to the second 
part. 

Let us quickly go through the contents of each of the chapters. Chapters 2 and 3 
present a ‘light’ version of noncommutative geometry, restricting ourselves to finite 
noncommutative spaces. In other words, we here only consider finite-dimensional 
spectral triples and avoid technical complications that arise in the general case. 
Besides the pedagogical advantage, these finite spaces will in fact turn out to be 
crucial to the physical applications of the later chapters, where they describe the 
aforementioned internal space . F . 

Thus, in Chap. 2 we start with finite discrete topological spaces and replace them 
by matrix algebras. The question whether this procedure can be reversed leads nat-
urally to the notion of Morita equivalence between matrix algebras. The next step is 
the translation of a metric structure into a symmetric matrix, motivating the defini-
tion of a finite spectral triple. We discuss Morita equivalence for spectral triples and 
conclude with a diagrammatic classification of finite spectral triples. 

In Chap. 3 we enrich finite spectral triples with a real structure and discuss Morita 
equivalences in this context. We give a classification of finite real spectral triples 
based on Krajewski diagrams [ 8] and relate this to the classification of irreducible 
geometries in [ 9]. 

Chapter 4 starts with a concise background on Riemannian spin geometry, leading 
to a treatment of the Dirac operator, including its analytical aspects. 

Chapter 5 then introduces noncommutative Riemannian spin manifolds (aka spec-
tral triples) in full generality, exemplified by toric noncommutative manifolds. 

As a first application of spectral triples, we present a proof of the local index 
formula of Connes and Moscovici [ 10] in Chap. 6, following Higson’s proof [ 11]. 

In the second part of this book we start to build gauge theories from (real) spectral 
triples. Chapter 7 takes a very general approach and associates a gauge group and a 
semigroup of gauge fields to any real spectral triple. An intriguing localization result
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can be formulated (Chap. 8) in terms of a bundle of .C∗-algebras on a background 
topological space. The gauge group acts fiberwise on this bundle and the gauge fields 
appear as sections thereof. 

Maintaining the same level of generality, we introduce gauge invariant quantities 
in Chap. 9, to wit the spectral action, the topological spectral action (which is closely 
related to the above index), and the fermionic action [ 5, 6]. We discuss two possible 
ways to expand the spectral action, either asymptotically in terms of the cutoff. �, or  
perturbatively in terms of the gauge fields parametrizing . D. 

In Chap. 10 we introduce the important class of examples alluded to before, i.e., 
noncommutative spaces of the form .M × F with .F finite. Here, Chaps. 2 and 3 
prove their value in the description of . F . Following [ 12] we analyze the structure of 
the gauge group .GF for this class of examples, and determine the gauge fields and 
scalar fields as well as the corresponding gauge transformations. Using heat kernel 
methods, we obtain an asymptotic expansion for the spectral action on .M × F in 
terms of local formulas (on . M). We conclude that the spectral action describes 
the dynamics and interactions of a scalar gauge theory for the group.GF , minimally 
coupled to gravity. This general form of the spectral action on.M × F will be heavily 
used in the remainder of this book. 

As a first simple example we treat abelian gauge theory in Chap. 11, for which the 
gauge group.GF � U (1). Following [ 13] we describe how to obtain the Lagrangian 
of electrodynamics from the spectral action. 

The next step is the derivation of non-abelian Yang–Mills gauge theory from 
noncommutative geometry, which we discuss in Chap. 12. We obtain topologically 
non-trivial gauge configurations by working with algebra bundles, essentially replac-
ing the above direct product .M × F by a fibered product [ 14]. 

Chapter 13 contains the derivation of the Standard Model of particle physics from 
a noncommutative manifold .M × FSM , first obtained in [ 4]. We apply our results 
from Chap. 10 to obtain the Standard Model gauge group and gauge fields, and the 
scalar Higgs field. Moreover, the computation of the spectral action can be applied to 
this example and yields the full Lagrangian of the Standard Model, including Higgs 
spontaneous symmetry breaking and minimally coupled to gravity. We also give a 
detailed discussion on the fermionic action. 

The phenomenology of the noncommutative Standard Model is discussed in 
Chap. 14. Indeed, the spectral action yields relations between the coupling constants 
and masses of the Standard Model, from which physical predictions can be derived. 
Here, we adopt the well-known renormalization group equations of the Standard 
Model to run the couplings to the relevant energy scale. This gives the notorious 
prediction for the Higgs mass at the order of 170 GeV. As this is at odds with the 
experiments at the Large Hadron Collider at CERN, we give a careful analysis of the 
hypotheses used in the derivation of the Standard Model Lagrangian from noncom-
mutative geometry. 

In Chap. 15 we use these observations to go beyond the Standard Model with non-
commutative geometry. In particular, we will discuss a Pati–Salam model [ 15– 18] 
that enlarges the particle content of the Standard Model. We show that this noncom-
mutative model is compatible with the experimentally measured Higgs mass.
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We end this book in Chap. 16 with an overview of recent and ongoing work search-
ing for a quantum theory for noncommutative geometry. Indeed, as we realize the 
applications of conventional quantum field theory methods to the noncommutative 
models of Chaps. 14 and 15 cannot be the end of the story. Indeed, a more intrinsi-
cally defined quantum theory should be developed, and we indicate the first steps in 
this direction. 

In order not to interrupt the text too much, I have chosen to collect background 
information and references to the literature as ‘Notes’ at the end of each chapter. 
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Noncommutative Geometric Spaces



Chapter 2 
Finite Noncommutative Spaces 

In this chapter (and the next) we consider finite discrete topological spaces. However, 
we will stretch their usual definition, which is perhaps geometrically not so inter-
esting, to include the more intriguing finite noncommutative spaces. Intuitively, this 
means that each point has some internal structure, described by a particular noncom-
mutative algebra. With such a notion of finite noncommutative spaces, we search for 
the appropriate notion of maps between, and (geo)metric structure on such spaces, 
and arrive at a diagrammatic classification of such finite noncommutative geometric 
spaces. Our exposition of the finite case already gives a good first impression of what 
noncommutative geometry has in store, whilst having the advantage that it avoids 
technical complications that might obscure such a first tour through noncommutative 
geometry. The general case is subsequently treated in Chap. 5. 

2.1 Finite Spaces and Matrix Algebras 

Consider a finite topological space .X consisting of .N points (equipped with the 
discrete topology): 

. 1• 2• · · · · · · N•

The first step towards a noncommutative geometrical description is to trade spaces 
for their corresponding function algebras. 

Definition 2.1 A (complex, unital) algebra is a vector space. A (over. C) with a bilin-
ear associative product.A × A → A denoted by.(a, b) �→ ab (and a unit. 1 satisfying 
.1a = a1 = a for all .a ∈ A). 

A .∗-algebra (or, involutive algebra) is an algebra .A together with a conjugate-
linear map (the involution) .∗ : A → A such that .(ab)∗ = b∗a∗ and.(a∗)∗ = a for all 
.a, b ∈ A. 
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10 2 Finite Noncommutative Spaces

In this book, we restrict to unital algebras, and simply refer to them as algebras. 
In the present case, we consider the.∗-algebra.C(X) of.C-valued functions on the 

above finite space . X . It is equipped with a pointwise linear structure, 

. ( f + g)(x) = f (x) + g(x), (λ f )(x) = λ( f (x)),

for any . f, g ∈ C(X), λ ∈ C and for any point .x ∈ X , and with pointwise 
multiplication 

. f g(x) = f (x)g(x).

There is an involution given by complex conjugation at each point: 

. f ∗(x) = f (x).

The. C in .C(X) stands for continuous and, indeed, any.C-valued function on a finite 
space .X with the discrete topology is automatically continuous. 

The.∗-algebra.C(X) has a rather simple structure: it is isomorphic to the.∗-algebra 
.C

N with each complex entry labeling the value the function takes at the corresponding 
point, with the involution given by complex conjugation of each entry. A convenient 
way to encode the algebra .C(X) � C

N is in terms of diagonal .N × N matrices, 
representing a function . f : X → C as 

. f �

⎛
⎜⎜⎜⎝

f (1) 0 · · · 0
0 f (2) · · · 0
...

...
. . .

...

0 0 . . . f (N )

⎞
⎟⎟⎟⎠ .

Hence, pointwise multiplication then simply becomes matrix multiplication, and the 
involution is given by hermitian conjugation. 

If .φ : X1 → X2 is a map of finite discrete spaces, then there is a corresponding 
map from.C(X2) → C(X1) given by pullback: 

. φ∗ f = f ◦ φ ∈ C(X1); ( f ∈ C(X2)).

Note that the pullback .φ∗ is a .∗-homomorphism (or, .∗-algebra map) under the 
pointwise product, in that 

. φ∗( f g) = φ∗( f )φ∗(g), φ∗( f ) = φ∗( f ), φ∗(λ f + g) = λφ∗( f ) + φ∗(g).

For example, let .X1 be the space consisting of three points, and .X2 the space 
consisting of two points. If a map.φ : X1 → X2 is defined according to the following 
diagram,
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. X1 : • • •

X2 : • •

then 

. φ∗ : C2 � C(X2) → C
3 � C(X1)

is given by 

. (λ1, λ2) �→ (λ1, λ2, λ2).

Exercise 2.1 Show that.φ : X1 → X2 is an injective (surjective) map of finite spaces 
if and only if .φ∗ : C(X2) → C(X1) is surjective (injective). 

Definition 2.2 A (complex) matrix algebra . A is a direct sum 

. A =
N⊕
i=1

Mni (C),

for some positive integers .ni and . N . The involution on .A is given by hermitian 
conjugation, and we simply refer to the .∗-algebra . A with this involution as a matrix 
algebra. 

Hence, we have associated a matrix algebra .C(X) to the finite space . X , which 
behaves naturally with respect to maps between topological spaces and .∗-algebras. 
A natural question is whether this procedure can be inverted. In other words, given a 
matrix algebra. A, can we obtain a finite discrete space. X such that.A � C(X)? Since 
.C(X) is always commutative but matrix algebras need not be, we quickly arrive at 
the conclusion that the answer is negative. This can be resolved in two ways: 

(1) Restrict to commutative matrix algebras. 
(2) Allow for more morphisms (and consequently, more isomorphisms) between 

matrix algebras, e.g., by generalizing .∗-homomorphisms. 

Before explaining each of these options, let us introduce some useful definitions 
concerning representations of finite-dimensional.∗-algebras (which are not necessar-
ily commutative) which moreover extend in a straightforward manner to the infinite-
dimensional case (cf. Definitions 5.5 and 5.6). We first need the prototypical example 
of a .∗-algebra. 
Example 2.3 Let.H be an (finite-dimensional) inner product space, with inner prod-
uct .(·, ·) → C. We denote by .L(H) the .∗ -algebra of operators on .H with product
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given by composition and the involution is given by mapping an operator .T to its 
adjoint .T ∗. 

Note that .L(H) is a normed vector space: for .T ∈ L(H) we set 

. ‖T ‖2 = sup
h∈H

{(Th, Th) : (h, h) ≤ 1}.

Equivalently, .‖T ‖ is given by the square root of the largest eigenvalue of .T ∗T . 

Definition 2.4 A representation of a finite-dimensional.∗-algebra. A is a pair. (H, π)

where.H is a (finite-dimensional, complex) inner product space and. π is a.∗-algebra 
map 

. π : A → L(H).

A representation .(H, π) is called irreducible if .H 
= 0 and the only subspaces in . H
that are left invariant under the action of . A are .{0} or . H . 

We will also refer to a finite-dimensional inner product space as a finite-
dimensional Hilbert space. 

Example 2.5 Consider .A = Mn(C). The defining representation is given by . H =
C

n on which. A acts by left matrix multiplication; hence it is irreducible. An example 
of a reducible representation is.H = C

n ⊕ C
n , with.a ∈ Mn(C) acting in block-form: 

. a ∈ Mn(C) �→
(
a 0
0 a

)
∈ L(Cn ⊕ C

n) � M2n(C)

which therefore decomposes as the direct sum of two copies of the defining repre-
sentation. See also Lemma 2.15 below. 

Exercise 2.2 Given a representation.(H, π) of a.∗-algebra. A, the  commutant. π(A)′
of .π(A) is defined as 

. π(A)′ = {T ∈ L(H) : π(a)T = Tπ(a) for all a ∈ A}.

(1) Show that .π(A)′ is also a .∗-algebra. 
(2) Show that a representation.(H, π) of. A is irreducible if and only if the commutant 

.π(A)′ of .π(A) consists of multiples of the identity. 

Definition 2.6 Two representations.(H1, π1) and.(H2, π2) of a .∗-algebra. A are uni-
tarily equivalent if there exists a unitary map .U : H1 → H2 such that 

. π1(a) = U ∗π2(a)U.

Definition 2.7 The structure space. Â of. A is the set of all unitary equivalence classes 
of irreducible representations of . A.
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We end this subsection with an illustrative exercise on passing from representa-
tions of a .∗-algebra to matrices over that .∗-algebra. 
Exercise 2.3 (1) If .A is a unital .∗-algebra, show that the .n × n-matrices . Mn(A)

with entries in . A form a unital .∗-algebra. 
(2) Let .π : A → L(H) be a representation of a .∗-algebra .A and set . Hn =

H ⊕ · · · ⊕ H (.n copies). Show that the following defines a representation 
.π̃ : Mn(A) → L(Hn) of .Mn(A): 

. ̃π
(
(ai j )

) = (
π(ai j )

) ; ((ai j ) ∈ Mn(A)).

(3) Let .π̃ : Mn(A) → L(Hn) be a representation of the .∗-algebra .Mn(A). Show 
that the following defines a representation .π : A → L(Hn) of the .∗-algebra . A: 

. π(a) = π̃ (aIn)

where .In is the identity in .Mn(A). 

2.1.1 Commutative Matrix Algebras 

We now explain how option (1) on Sect. 2.1 above resolves the question raised by 
constructing a space from a commutative matrix algebra . A. A natural candidate for 
such a space is, of course, the structure space. Â, which we now determine. Note that 
any commutative matrix algebra is of the form.A � C

N , for  which by Exercise  2.2(2) 
any irreducible representation is given by a map of the form 

. πi : (λ1, . . . , λN ) ∈ C
N �→ λi ∈ C

for some .i = 1, . . . , N . We conclude that . Â � {1, . . . , N }. 
We conclude that there is a duality between finite spaces and commutative matrix 

algebras. This is nothing but a finite-dimensional version of Gelfand duality (see 
Theorem 5.7 below) between compact Hausdorff topological spaces and unital com-
mutative .C∗-algebras. In fact, we will see later (Proposition 5.4) that any finite-
dimensional .C∗-algebra is a matrix algebra, which reduces Gelfand duality to the 
present finite-dimensional duality. 

2.1.2 Finite Spaces and Matrix Algebras 

The above trade of finite discrete spaces for finite-dimensional commutative 
.∗-algebras does not really make them any more interesting, for the .∗-algebra is 
always of the form .CN . A more interesting perspective is given by the noncommu-
tative alternative, viz. option (2) below Definition 2.2 in Sect. 2.1. We thus aim for
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a duality between finite spaces and equivalence classes of matrix algebras. These 
equivalence classes are described by a generalized notion of isomorphisms between 
matrix algebras, also known as Morita equivalence. 

Let us first recall the notion of an algebra (bi)module. 

Definition 2.8 Let .A, B be algebras (not necessarily matrix algebras). A left 
.A-module is a vector space .E that carries a left representation of . A, i.e., there is 
a bilinear map .A × E  (a, e) �→ a · e ∈ E such that 

. (a1a2) · e = a1 · (a2 · e); (a1, a2 ∈ A, e ∈ E).

Similarly, a right .B-module is a vector space. F that carries a right representation of 
. B, i.e., there is a bilinear map .F × B  ( f, b) �→ f · b ∈ F such that 

. f · (b1b2) = ( f · b1) · b2; (b1, b2 ∈ B, f ∈ F).

Finally, an .A − B-bimodule .E is both a left .A-module and a right .B-module, with 
mutually commuting actions: 

. a · (e · b) = (a · e) · b; (a ∈ A, b ∈ B, e ∈ E).

When no confusion can arise, we will also write .ae instead of .a · e to denote the 
left module action, and similarly for the right action. 

There is a natural notion of (left) .A-module homomorphism as a linear map 
.φ : E → F that respect the representation of . A: 

. φ(a · e) = a · φ(e); (a ∈ A, e ∈ E).

Similarly for right modules and bimodules. 
We introduce the following notation: 

• .AE for a left .A-module . E ; 
• .FB for a right .B-module . F ; 
• .AEB for an .A − B-bimodule . E . 

Exercise 2.4 Check that a representation .π : A → L(H) of a .∗-algebra . A
(cf. Definition 2.4) turns .H into a left .A-module .AH . 

Exercise 2.5 Show that .A is itself an .A − A-bimodule .A AA, with left and right 
actions given by the product in . A. 

If .E is a right .A-module, and .F is a left .A-module, we can form the balanced 
tensor product: 

.E ⊗A F := E ⊗ F/

{∑
i

ei ai ⊗ fi − ei ⊗ ai fi : ai ∈ A, ei ∈ E, fi ∈ F

}
.
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In other words, the quotient imposes.A-linearity of the tensor product, i.e., in. E ⊗A F
we have 

. ea ⊗A f = e ⊗A a f ; (a ∈ A, e ∈ E, f ∈ F).

Definition 2.9 Let.A, B be matrix algebras. A Hilbert bimodule for the pair . (A, B)

is given by an .A − B-bimodule .E together with a .B-valued inner product . 〈·, ·〉E :
E × E → B satisfying 

. 〈e1, a · e2〉E = 〈a∗ · e1, e2〉E ; (e1, e2 ∈ E, a ∈ A),

〈e1, e2 · b〉E = 〈e1, e2〉Eb; 〈e1, e2〉∗E = 〈e2, e1〉E ; (e1, e2 ∈ E, b ∈ B),

〈e, e〉E ≥ 0 with equality if and only if e = 0; (e ∈ E).

The set of Hilbert bimodules for .(A, B) will be denoted by .KK f (A, B). 

In the following, we will also write.〈·, ·〉 instead of.〈·, ·〉E , unless confusion might 
arise. 

Exercise 2.6 Check that a representation .π : A → L(H) (cf. Definition 2.4 and 
Exercise 2.4) of a matrix algebra . A turns .H into a Hilbert bimodule for .(A,C). 

Exercise 2.7 Show that the .A − A-bimodule given by .A itself (cf. Exercise 2.5) 
is an element in .KK f (A, A) by establishing that the following formula defines an 
.A-valued inner product .〈·, ·〉A : A × A → A: 

. 〈a, a′〉A = a∗a′; (a, a′ ∈ A).

Example 2.10 More generally, let .φ : A → B be a .∗-algebra homomorphism 
between matrix algebras .A and . B. From it, we can construct a Hilbert bimodule 
.Eφ in .KK f (A, B) as follows. Let .Eφ be .B as a vector space with the natural right 
.B-module structure and inner product (cf. Exercise 2.7), but with. A acting on the left 
via the homomorphism. φ: 

. a · b = φ(a)b; (a ∈ A, b ∈ Eφ).

Definition 2.11 The Kasparov product .F ◦ E between Hilbert bimodules . E ∈
KK f (A, B) and .F ∈ KK f (B,C) is given by the balanced tensor product 

. F ◦ E := E ⊗B F; (E ∈ KK f (A, B), F ∈ KK f (B,C)),

so that .F ◦ E ∈ KK f (A,C), with .C-valued inner product given on elementary ten-
sors by 

.〈e1 ⊗ f1, e2 ⊗ f2〉E⊗B F = 〈 f1, 〈e1, e2〉E f2〉F , (2.1.1) 

and extended linearly to all of .E ⊗ F . 

Note that this product is associative up to isomorphism.
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Exercise 2.8 Show that the association .φ � Eφ from Example 2.10 is natural in 
the sense that 

(1) .EidA � A ∈ KK f (A, A), 
(2) for.∗-algebra homomorphisms.φ : A → B and.ψ : B → C we have an isomor-

phism 
. Eψ ◦ Eφ ≡ Eφ ⊗B Eψ � Eψ◦φ ∈ KK f (A,C),

that is, as .A − C-bimodules. 

Exercise 2.9 In the above definition: 

(1) Check that .E ⊗B F is an .A − C-bimodule. 
(2) Check that .〈·, ·〉E⊗B F defines a .C-valued inner product. 
(3) Check that . 〈a∗(e1 ⊗ f1), e2 ⊗ f2〉E⊗B F = 〈e1 ⊗ f1, a(e2 ⊗ f2)〉E⊗B F .

Conclude that .F ◦ E is indeed an element of .KK f (A,C). 

Let us consider the Kasparov product with the Hilbert bimodule for.(A, A) given 
by .A itself (cf. Exercise 2.7). Then, since for .E ∈ KK f (A, B) we have . E ◦ A =
A ⊗A E � E , the bimodule.A AA is the identity element with respect to the Kasparov 
product (up to isomorphism). This motivates the following definition. 

Definition 2.12 Two matrix algebras . A and . B are called Morita equivalent if there 
exist elements .E ∈ KK f (A, B) and .F ∈ KK f (B, A) such that 

. E ⊗B F � A, F ⊗A E � B,

where .� denotes isomorphism as Hilbert bimodules. 

If . A and . B are Morita equivalent, then the representation theories of both matrix 
algebras are equivalent. More precisely, if. A and. B are Morita equivalent, then a right 
.A-module is sent to a right .B-module by tensoring with .− ⊗A E for an invertible 
element .E in .KK f (A, B). 

Example 2.13 As seen in Exercises 2.4 and 2.6, the vector space .E = C
n is an 

.Mn(C) − C-bimodule; with the standard.C-valued inner product it becomes a Hilbert 
module for .(Mn(C),C). Similarly, the vector space .F = C

n is a .C − Mn(C)-
bimodule by right matrix multiplication. An.Mn(C)-valued inner product is given by 

. 〈v1, v2〉 = v1v
t
2 ∈ Mn(C).

We determine the Kasparov products of these Hilbert bimodules as 

. E ⊗C F � Mn(C); F ⊗Mn(C) E � C.

In other words, .E ∈ KK f (Mn(C),C) and .F ∈ KK f (C, Mn(C)) are each other’s 
inverse with respect to the Kasparov product. We conclude that .Mn(C) and .C are 
Morita equivalent.
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This observation leads us to our first little result. 

Theorem 2.14 Two matrix algebras are Morita equivalent if and only if their struc-
ture spaces are isomorphic as finite discrete spaces, i.e., have the same cardinality. 

Proof Let . A and . B be Morita equivalent. Thus there exists Hilbert bimodules . AEB

and .B FA such that 
. E ⊗B F � A, F ⊗A E � B.

If .[(πB, H)] ∈ B̂ then we can define a representation .πA by setting 

.πA : A → L(E ⊗B H); πA(a)(e ⊗ v) = ae ⊗ v. (2.1.2) 

Vice versa, we construct .πB : B → L(F ⊗A W ) from .[(πA,W )] ∈ Â by setting 
.πB(b)( f ⊗ w) = b f ⊗ w and these two maps are one another’s inverse. Thus, 
. Â � B̂ (see Exercise 2.10 below). 

For the converse, we start with a basic result on irreducible representations of 
.Mn(C). 

Lemma 2.15 The matrix algebra .Mn(C) has a unique irreducible representation 
(up to isomorphism) given by the defining representation on .C

n. 

Proof It is clear from Exercise 2.2 that .Cn is an irreducible representation of . A =
Mn(C). Suppose .H is irreducible and of dimension . K , and define a linear map 

. φ : A ⊕ · · · ⊕ A︸ ︷︷ ︸
K copies

→ H∗; φ(a1, . . . , aK ) → e1 ◦ at1 + · · · + eK ◦ atK

in terms of a basis .{e1, . . . eK } of the dual vector space .H∗. Here  .v ◦ a denotes 
pre-composition of.v ∈ H∗ with.a ∈ A, acting on. H . This is a morphism of.Mn(C)-
modules, provided a matrix . a acts on the dual vector space .H∗ by sending . v �→
v ◦ at . It is also surjective, so that the dual map.φ∗ : H → (AK )∗ is injective. Upon 
identifying .(AK )∗ with .AK as .A-modules, and noting that .A = Mn(C) � ⊕n

C
n as 

.A-modules, it follows that .H is a submodule of .AK � ⊕nK
C

n . By irreducibility 
.H � C

n . �

Now, if .A, B are matrix algebras of the following form 

. A =
N⊕
i=1

Mni (C), B =
M⊕
j=1

Mm j (C),

then . Â � B̂ implies that .N = M . Then, define 

.E :=
N⊕
i=1

C
ni ⊗ C

mi ,
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with. A acting by block-diagonal matrices on the first tensor and. B acting in a similar 
way by right matrix multiplication on the second leg of the tensor product. Also, set 

. F :=
N⊕
i=1

C
mi ⊗ C

ni ,

with . B now acting on the left and . A on the right. Then, as above, 

. E ⊗B F �
N⊕
i=1

(Cni ⊗ C
mi ) ⊗Mmi (C) (Cmi ⊗ C

ni )

�
N⊕
i=1

C
ni ⊗ (

C
mi ⊗Mmi (C) C

mi
) ⊗ C

ni

�
N⊕
i=1

C
ni ⊗ C

ni � A,

and similarly we obtain .F ⊗A E � B, as required. �

Exercise 2.10 Fill in the gaps in the above proof: 

(a) Show that the representation .πA defined by (2.1.2) is irreducible if and only if 
.πB is. 

(b) Show that the association of the class.[πA] to.[πB] through (2.1.2) is independent 
of the choice of representatives .πA and .πB . 

We conclude that there is a duality between finite spaces and Morita equiva-
lence classes of matrix algebras. By replacing.∗-homomorphisms.A → B by Hilbert 
bimodules for.(A, B), we introduce a much richer structure at the level of morphisms 
between matrix algebras. For example, any finite-dimensional inner product space 
defines an element in .KK f (C,C), whereas there is only one map from the cor-
responding structure space consisting of one point to itself. When combined with 
Exercise 2.10 we conclude that Hilbert bimodules form a proper extension of the 
.∗-morphisms between matrix algebras. 

2.2 Noncommutative Geometric Finite Spaces 

Consider again a finite space. X , described as the structure space of a matrix algebra 
. A. We would like to introduce some geometry on .X and, in particular, a notion of a 
metric on . X . 

Thus, the question we want to address is how we can (algebraically) describe 
distances between the points in . X , say, as embedded in a metric space. Recall that a 
metric on a finite discrete space. X is given by an array.{di j }i, j∈X of real non-negative
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entries, indexed by a pair of elements in .X and requiring that .di j = d ji , . di j ≤ dik +
dkj , and .di j = 0 if and only if .i = j : 

. 
1• d13

d12

•3

d23

•2

Example 2.16 If .X is embedded in a metric space (e.g., Euclidean space), it can be 
equipped with the induced metric. 

Example 2.17 The discrete metric on the discrete space .X is given by: 

. di j =
{
1 if i 
= j
0 if i = j.

In the commutative case, we have the following remarkable result, which com-
pletely characterizes the metric on .X in terms of linear algebraic data. It is the key 
result towards a spectral description of finite geometric spaces. 

Theorem 2.18 Let .di j be a metric on the space .X of .N points, and set .A = C
N with 

elements .a = (a(i))Ni=1, so that . Â � X. Then there exists a representation . π of . A on 
a finite-dimensional inner product space .H and a symmetric operator .D on .H such 
that 

.di j = sup
a∈A

{|a(i) − a( j)| : ‖[D, π(a)]‖ ≤ 1} . (2.2.1) 

Proof We claim that this would follow from the equality 

.‖[D, π(a)]‖ = max
k 
=l

{
1

dkl
|a(k) − a(l)|

}
. (∗) 

Indeed, if this holds, then 

. sup
a

{|a(i) − a( j)| : ‖[D, a]‖ ≤ 1} ≤ di j .

The reverse inequality follows by taking.a ∈ A for fixed.i, j to be.a(k) = dik . Then, 
we find .|a(i) − a( j)| = di j , while .‖[D, π(a)]‖ ≤ 1 for this . a follows from the 
reverse triangle inequality for .di j : 

. 
1

dkl
|a(k) − a(l)| = 1

dkl
|dik − dil | ≤ 1.

We prove (*) by induction on . N . If  .N = 2, then on .H = C
2 we define a repre-

sentation .π : A → L(H) and a hermitian matrix .D by



20 2 Finite Noncommutative Spaces

. π(a) =
(
a(1) 0
0 a(2)

)
, D =

(
0 (d12)−1

(d12)−1 0

)
.

It follows that .‖[D, a]‖ = (d12)−1|a(1) − a(2)|. 
Suppose then that (*) holds for . N , with representation .πN of .CN on an inner 

product space .HN and symmetric operator .DN ; we will show that it also holds for 
.N + 1. We define 

. HN+1 = HN ⊕
N⊕
i=1

Hi
N

with .Hi
N := C

2. Imitating the above construction in the case .N = 2, we define the 
representation .πN+1 by 

. πN+1(a(1), . . . , a(N + 1)) = πN (a(1), . . . , a(N ))

⊕
(
a(1) 0
0 a(N + 1)

)
⊕ · · · ⊕

(
a(N ) 0
0 a(N + 1)

)
,

and define the operator .DN+1 by 

. DN+1 = DN ⊕
(

0 (d1(N+1))
−1

(d1(N+1))
−1 0

)

⊕ · · · ⊕
(

0 (dN (N+1))
−1

(dN (N+1))
−1 0

)
.

It follows by the induction hypothesis that (*) holds for .N + 1. �

Exercise 2.11 Make the above proof explicit for the case .N = 3. In other words, 
compute the metric of (2.2.1) on the space of three points from the set of data.A = C

3, 
.H = (C2)⊕3 with representation .π : A → L(H) given by 

. π(a(1), a(2), a(3)) =
(
a(1) 0
0 a(2)

)
⊕

(
a(1)

a(3)

)
⊕

(
a(2)

a(3)

)
,

and hermitian matrix 

. D =
(
0 x1
x1 0

)
⊕

(
0 x2
x2 0

)
⊕

(
0 x3
x3 0

)
,

with .x1, x2, x3 ∈ R. 

Exercise 2.12 Compute the metric on the space of three points given by formula 
(2.2.1) for the set of data.A = C

3 acting in the defining representation on.H = C
3, and
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. D =
⎛
⎝

0 d−1 0
d−1 0 0
0 0 0

⎞
⎠ ,

for some non-zero .d ∈ R. 

Even though the above translation of the metric on.X into algebraic data assumes 
commutativity of . A, the distance formula itself can be extended to the case of a 
noncommutative matrix algebra . A. In fact, suppose we are given a .∗-algebra repre-
sentation of . A on an inner product space, together with a symmetric operator .D on 
. H . Then we can define a metric on the structure space . Â by 

.di j = sup
a∈A

{|Tr a(i) − Tr a( j)| : ‖[D, a]‖ ≤ 1}, (2.2.2) 

where . i labels the matrix algebra .Mni (C) in the decomposition of . A. This distance 
formula is a special case of Connes’ distance formula (see Note 5 on Chap. 5) on the  
structure space of . A. 

Exercise 2.13 Show that the.di j in (2.2.2) is a metric (actually, an extended metric, 
taking values in .[0,∞]) on . Â by establishing that 

. di j = 0 ⇐⇒ i = j, di j = d ji , di j ≤ dik + dkj .

This suggests that the above structure consisting of a matrix algebra . A, a finite-
dimensional representation space . H , and a hermitian matrix .D provides the data 
needed to capture a metric structure on the finite space .X = Â. In fact, in the case 
that .A is commutative, the above argument combined with our finite-dimensional 
Gelfand duality of Sect. 2.1.1 is a reconstruction theorem. Indeed, we reconstruct a 
given metric space .(X, d) from the data .(A, H, D) associated to it. 

We arrive at the following definition , adapted to our finite-dimensional setting. 

Definition 2.19 A finite spectral triple is a triple .(A, H, D) consisting of a unital 
.∗-algebra. A represented faithfully on a finite-dimensional Hilbert space. H , together 
with a symmetric operator .D : H → H . 

We do not demand that. A is a matrix algebra, since this turns out to be automatic: 

Lemma 2.20 If .A is a unital .∗-algebra that acts faithfully on a finite-dimensional 
Hilbert space, then . A is a matrix algebra of the form 

. A �
N⊕
i=1

Mni (C).

Proof Since .A acts faithfully on a Hilbert space it is a .∗-subalgebra of a matrix 
algebra .L(H) = Mdim(H)(C); the only such subalgebras are themselves matrix 
algebras. �
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Unless we want to distinguish different representations of .A on . H , the above 
representation will usually be implicitly assumed, thus considering elements . a ∈ A
as operators on . H . 

Example 2.21 Let .A = Mn(C) act on .H = C
n by matrix multiplication, with the 

standard inner product. A symmetric operator on .H is represented by a hermitian 
.n × n matrix. 

We will loosely refer to .D as a finite Dirac operator, as its infinite-dimensional 
analogue on Riemannian spin manifolds is the usual Dirac operator (see Chap. 5). In 
the present case, we can use it to introduce a ‘differential geometric structure’ on the 
finite space .X that is related to the notion of divided difference. The latter is given, 
for each pair of points .i, j ∈ X , by  

. 
a(i) − a( j)

di j
.

Indeed, these divided differences appear precisely as the entries of the commutator 
.[D, a] for the operator .D as in Theorem 2.18. 

Exercise 2.14 Use the explicit form of .D in Theorem 2.18 to confirm that the com-
mutator of .D with.a ∈ C(X) is expressed in terms of the above divided differences. 

We will see later that in the continuum case, the commutator .[D, ·] corresponds 
to taking derivatives of functions on a manifold. 

Definition 2.22 Let.(A, H, D)be a finite spectral triple. The.A-bimodule of Connes’ 
differential one-forms is given by 

. �1
D(A) :=

{∑
k

ak[D, bk] : ak, bk ∈ A

}
.

Consequently, there is a map .d : A → �1
D(A), given by .d(·) = [D, ·]. 

Exercise 2.15 Verify that . d is a derivation of a .∗-algebra, in that: 

. d(ab) = d(a)b + ad(b); d(a∗) = −d(a)∗.

Exercise 2.16 Verify that .�1
D(A) is an .A-bimodule by rewriting the operator 

.
∑

k a(ak[D, bk])b (.a, b, ak, bk ∈ A) as .
∑

k a
′
k[D, b′

k] for some .a′
k, b

′
k ∈ A. 

As a first little result—though with an actual application to matrix models in 
physics—we compute Connes’ differential one-forms for the above Example 2.21. 

Lemma 2.23 Let .(A, H, D) = (Mn(C),Cn, D) be the finite spectral triple of 
Example 2.21 with .D a hermitian .n × n matrix. If .D is not a multiple of the identity, 
then .�1

D(A) � Mn(C).
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Proof We may assume that .D is a diagonal matrix: .D = ∑
i λi eii in terms of real 

numbers.λi (not all equal) and the standard basis.{ei j } of.Mn(C). For fixed.i, j choose 
. k such that .λk 
= λ j . Then 

. 

(
1

λk − λ j
eik

)
[D, ek j ] = ei j .

Hence, since .eik, ek j ∈ Mn(C), any basis vector .ei j ∈ �1
D(A). Since also . �1

D(A) ⊂
L(Cn) � Mn(C), the result follows. �

Exercise 2.17 Consider the following finite spectral triple: 

. 

(
A = C

2, H = C
2, D =

(
0 λ

λ 0

))
,

with .λ 
= 0. Show that the corresponding space of differential one-forms .�1
D(A) is 

isomorphic to the vector space of all off-diagonal .2 × 2 matrices. 

2.2.1 Morphisms Between Finite Spectral Triples 

In a spectral triple .(A, H, D) both the .∗-algebra . A and a finite Dirac operator .D act 
on the inner product space. H . Hence, the most natural notion of equivalence between 
spectral triples is that of unitary equivalence. 

Definition 2.24 Two finite spectral triples.(A1, H1, D1) and.(A2, H2, D2) are called 
unitarily equivalent if .A1 = A2 and if there exists a unitary operator . U : H1 → H2

such that 

. Uπ1(a)U ∗ = π2(a); (a ∈ A1),

UD1U
∗ = D2.

Exercise 2.18 Show that unitary equivalence of spectral triples is an equivalence 
relation. 

Remark 2.25 A special type of unitary equivalence is given by the unitaries in the 
matrix algebra .A itself. Indeed, for any such unitary element . u the spectral triples 
.(A, H, D) and.(A, H, uDu∗) are unitarily equivalent. Another way of writing. uDu∗
is.D + u[D, u∗], so that this type of unitary equivalence effectively adds a differential 
one-form to . D. 

Following the spirit of our extended notion of morphisms between algebras, we 
might also deduce a notion of “equivalence” coming from Morita equivalence of the 
corresponding matrix algebras. Namely, given a Hilbert bimodule .E in .KK f (B, A), 
we can try to construct a finite spectral triple on. B starting from a finite spectral triple
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on. A. This transfer of metric structure is accomplished as follows. Let .(A, H, D) be 
a spectral triple; we construct a new spectral triple .(B, H ′, D′). First, we define a 
vector space 

. H ′ = E ⊗A H,

which inherits a left action of .B from the .B-module structure of . E . Also, it is an 
inner product space, with .C-valued inner product given as in (2.1.1). 

The naive choice of a symmetric operator .D′ given by .D′(e ⊗ ξ) = e ⊗ Dξ will 
not do, because it does not respect the ideal defining the balanced tensor product 
over . A, being generated by elements of the form 

. ea ⊗ ξ − e ⊗ aξ ; (e ∈ E, a ∈ A, ξ ∈ H).

A better definition is 
.D′(e ⊗ ξ) = e ⊗ Dξ + ∇(e)ξ, (2.2.3) 

where .∇ : E → E ⊗A �1
D(A) is some map that satisfies the Leibniz rule 

.∇(ea) = ∇(e)a + e ⊗ [D, a]; (e ∈ E, a ∈ A). (2.2.4) 

Indeed, this is precisely the property that is needed to make.D′ a well-defined operator 
on the balanced tensor product .E ⊗A H : 

. D′(ea ⊗ ξ − e ⊗ aξ) = ea ⊗ Dξ + ∇(ea)ξ − e ⊗ D(aξ) − ∇(e)aξ = 0.

Amap.∇ : E → E ⊗A �1
D(A) that satisfies Eq. (2.2.4) is called a connection on the 

right .A-module .E associated to the derivation .d : a �→ [D, a] .(a ∈ A). 

Theorem 2.26 If .(A, H, D) is a finite spectral triple and .E ∈ KK f (B, A), then 
(in the above notation) .(B, E ⊗A H, D′) is a finite spectral triple, provided that . ∇
satisfies the compatibility condition 

.〈e1,∇e2〉E − 〈∇e1, e2〉E = d〈e1, e2〉E ; (e1, e2 ∈ E). (2.2.5) 

Proof We only need to show that.D′ is a symmetric operator. Indeed, for. e1, e2 ∈ E
and .ξ1, ξ2 ∈ H we compute 

. 〈e1 ⊗ ξ1, D
′(e2 ⊗ ξ2)〉E⊗AH = 〈ξ1, 〈e1,∇e2〉Eξ2〉H + 〈ξ1, 〈e1, e2〉E Dξ2〉H

= 〈ξ1, 〈∇e1, e2〉Eξ2〉H + 〈ξ1, d〈e1, e2〉Eξ2〉H
+ 〈Dξ1, 〈e1, e2〉Eξ2〉H − 〈ξ1, [D, 〈e1, e2〉E ]ξ2〉H

= 〈D′(e1 ⊗ ξ1), e2 ⊗ ξ2〉E⊗AH ,

using the stated compatibility condition and the fact that .D is symmetric. �
Theorem 2.26 is our finite-dimensional analogue of Theorem 7.15, to be obtained 

below.
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Exercise 2.19 Let .∇ and.∇′ be two connections on a right .A-module . E . Show that 
their difference .∇ − ∇′ is a right .A-linear map .E → E ⊗A �1

D(A). 

Exercise 2.20 In this exercise, we consider the case that .B = A and also .E = A. 
Let .(A, H, D) be a spectral triple, we determine .(A, H ′, D′). 

(1) Show that the derivation.d(·) = [D, ·] : A → A ⊗A �1
D(A) = �1

D(A) is a con-
nection on . A considered a right .A-module. 

(2) Upon identifying.A ⊗A H � H , what is the operator.D′ of Eq. (2.2.3) when the 
connection .∇ on . A is given by . d as in (1)? 

(3) Use (1) and (2) of this exercise to show that any connection . ∇ : A → A ⊗A

�1
D(A) is given by 

. ∇ = d + ω,

with .ω ∈ �1
D(A). 

(4) Upon identifying .A ⊗A H � H , what is the operator .D′ of Eq. (2.2.3) with the 
connection on . A given as .∇ = d + ω. 

If we combine the above Exercise 2.20 with Lemma 2.23, we see that. ∇ = d − D
is an example of a connection on .MN (C) (as a module over itself and with . ω =
−D), since .�1

D(A) � MN (C). Hence, for this choice of connection the new finite 
spectral triple as constructed in Theorem 2.26 is given by .(MN (C),CN , D′ = 0). 
So, Morita equivalence of algebras does not carry over to an equivalence relation on 
spectral triples. Indeed, we now have .�1

D′(MN (C)) = 0, so that no non-zero .D can 
be generated from this spectral triple and the symmetry of this relation fails. 

2.3 Classification of Finite Spectral Triples 

Here we classify finite spectral triples on. A modulo unitary equivalence, in terms of 
so-called decorated graphs. 

Definition 2.27 A graph is an ordered pair .(	(0), 	(1)) consisting of a set .	(0) of 
vertices and a set .	(1) of pairs of vertices (called edges). 

We allow edges of the form.e = (v, v) for any vertex. v, that is, we allow loops at 
any vertex. 

Consider then a finite spectral triple .(A, H, D); let us determine the structure of 
all three ingredients and construct a graph from it. 

The algebra: We have already seen in Lemma 2.20 that 

.A �
N⊕
i=1

Mni (C),
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for some .n1, . . . , nN . The structure space of .A is given by . Â � {1, . . . , N } with 
each integer .i ∈ Â corresponding to the equivalence classes of the representation 
of .A on .Cni . If we label the latter equivalence class by .ni we can also identify 
. Â � {n1, . . . ,nN }. 
The Hilbert space: Any finite-dimensional faithful representation.H of such a matrix 
algebra . A is completely reducible (i.e., a direct sum of irreducible representations). 

Exercise 2.21 Prove this result for any .∗-algebra by establishing that the comple-
ment .W⊥ of an .A-submodule .W ⊂ H is also an .A-submodule of . H . 

Combining this with the proof of Lemma 2.15, we conclude that the finite-
dimensional Hilbert space representation.H of. A has a decomposition into irreducible 
representations, which we write as 

. H �
N⊕
i=1

C
ni ⊗ Vi ,

with each.Vi a vector space; we will refer to the dimension of .Vi as the multiplicity 
of the representation labeled by .ni and to .Vi itself as the multiplicity space. The  
above isomorphism is given by a unitary map. 

To begin the construction of our decorated graph, we indicate the presence of a 
summand .ni in .H by drawing a node at position .ni ∈ Â in a diagram based on the 
structure space . Â of the matrix algebra .A (see Fig. 2.1 for an example). Multiple 
nodes at the same position represent multiplicities of the representations in . H . 

The finite Dirac operator: Corresponding to the above decomposition of.H we can 
write .D as a sum of matrices 

. Di j : Cni ⊗ Vi → C
n j ⊗ Vj ,

restricted to these subspaces. The condition that .D is symmetric implies that . Di j =
D∗

j i . In terms of the above diagrammatic representation of. H , we express a non-zero 
.Di j and .Dji as a (multiple) edge between the nodes .ni and .n j (see Fig. 2.2 for an 
example). 

Another way of putting this is as follows, in terms of decorated graphs. 

Definition 2.28 A.
 -decorated graph is given by an ordered pair.(	,
) of a finite 
graph . 	 and a finite set .
 of positive integers, with a labeling: 

Fig. 2.1 A node at.ni indicates the presence of the summand.Cni ; the double node at.n j indicates 
the presence of the summand.Cn j ⊕ C

n j in.H
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Fig. 2.2 The edges between the nodes .ni and .n j , and  .ni and .nN represent non-zero operators 
.Di j : Cni → C

n j ⊗ C
2 (multiplicity 2) and .DiN : Cni → C

nN , respectively. Their adjoints give 
the operators.Dji and. DNi

• of the vertices .v ∈ 	(0) by elements .n(v) ∈ 
; 
• of the edges .e = (v1, v2) ∈ 	(1) by operators .De : Cn(v1) → C

n(v2) and its 
conjugate-transpose .D∗

e : Cn(v2) → C
n(v1), 

so that .n(	(0)) = 
. 

The operators.De between vertices that are labeled by.ni and. n j , respectively, add 
up to the above .Di j . Explicitly, 

. Di j =
∑

e=(v1,v2)
n(v1)=ni
n(v2)=n j

De,

so that also .D∗
i j = Dji . Thus we have proved the following result. 

Theorem 2.29 There is a one-to-one correspondence between finite spectral triples 
modulo unitary equivalence and .
-decorated graphs, given by associating a finite 
spectral triple .(A, H, D) to a .
-decorated graph .(	,
) in the following way: 

. A =
⊕
n∈


Mn(C), H =
⊕
v∈	(0)

C
n(v), D =

∑
e∈	(1)

De + D∗
e .

Example 2.30 The following .
-decorated graph 

. 

De

n

corresponds to the spectral triple .(Mn(C),Cn, D = De + D∗
e ) of Example 2.21. 

Exercise 2.22 Draw the .
-decorated graph corresponding to the spectral triple 

. 

⎛
⎝A = C

3, H = C
3, D =

⎛
⎝
0 λ 0
λ 0 0
0 0 0

⎞
⎠

⎞
⎠ ; (λ 
= 0).

Exercise 2.23 Use.
-decorated graphs to classify all finite spectral triples (modulo 
unitary equivalence) on the matrix algebra .A = C ⊕ M2(C).
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Exercise 2.24 Suppose that .(A1, H1, D1) and .(A2, H2, D2) are two finite spectral 
triples. We consider their direct sum and tensor product and give the corresponding 
.
-decorated graphs. 

(1) Show that .(A1 ⊕ A2, H1 ⊕ H2, (D1, D2)) is a finite spectral triple. 
(2) Describe the.
-decorated graph of this direct sum spectral triple in terms of the 

.
-decorated graphs of the original spectral triples. 
(3) Show that .(A1 ⊗ A2, H1 ⊗ H2, D1 ⊗ 1 + 1 ⊗ D2) is a finite spectral triple. 
(4) Describe the .
-decorated graph of this tensor product spectral triple in terms 

of the .
-decorated graphs of the original spectral triples. 

Notes 

Section 2.1. Finite Spaces and Matrix Algebras 

1. The notation .KK f in Definition 2.9 is chosen to suggest a close connection to Kasparov’s 
bivariant KK-theory [ 1], here restricted to the finite-dimensional case. In fact, in the case of 
matrix algebras the notion of a Kasparov module for a pair of.C∗-algebras.(A, B) (cf. [ 2, Sect. 
17.1] for a definition) coincides (up to homotopy) with that of a Hilbert bimodule for . (A, B)

(cf. [ 3, Sect. IV.2.1] for a definition). 
2. Definition 2.12 agrees with the notion of equivalence between arbitrary rings introduced by 

Morita [ 4]. Moreover, it is a special case of strong Morita equivalence between.C∗-algebras as 
introduced by Rieffel [ 5]. 

3. Theorem 2.14 is a special case of a more general result on the structure spaces of Morita 
equivalent.C∗-algebras (see e.g., [ 6, Sect. 3.3]). 

Section 2.2. Noncommutative Geometric Finite Spaces 

4. Theorem 2.18 can be found in [ 7]. 
5. The reconstruction theorem mentioned in the text before Definition 2.19 is a special case, to wit 

the finite-dimensional case, of a result by Connes [ 8] on a reconstruction of Riemannian (spin) 
manifolds from so-called spectral triples (cf. Definition 5.9 and Note 6 on Chap. 5 below). 

6. A complete proof of Lemma 2.20 can be found in [ 9, Theorem 3.5.4]. 
7. For a complete exposition on differential algebras, connections on modules, et cetera, we refer 

to [ 10, Chap. 8] and [ 11] and references therein. 
8. The failure of Morita equivalence to induce an equivalence between spectral triples was noted 

in [ 12, Remark 1.143] (see also [ 13, Remark 5.1.2]). This suggests that it is better to consider 
Hilbert bimodules as correspondences rather than equivalences, as was already suggested by 
Connes and Skandalis in [ 14] and also appeared in the applications of noncommutative geometry 
to number theory (cf. [ 12, Chap. 4.3]) and quantization [ 15]. This forms the starting point for a 
categorical description of (finite) spectral triples themselves. As objects the category has finite 
spectral triples .(A, H, D), and as morphisms it has pairs .(E,∇) as above. This category is 
the topic of for instance [ 16– 21], working in the more general setting of spectral triples, hence 
requiring much more analysis as compared to our finite-dimensional case. The category of finite 
spectral triples plays a crucial role in the noncommutative generalization of spin networks in [ 22].
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Chapter 3 
Finite Real Noncommutative Spaces 

In this chapter, we will enrich the finite noncommutative spaces as analyzed in the 
previous chapter with a real structure. For one thing, this makes the definition of 
a finite spectral triple more symmetric by demanding the inner product space . H
be an .A − A-bimodule, rather than just a left .A-module. The implementation of 
this bimodule structure by an anti-unitary operator has close ties with the Tomita– 
Takesaki theory of Von Neumann algebras, as well as with physics through charge 
conjugation, as will become clear in the applications in the later chapters of this book. 
Our exposition includes a diagrammatic classification of finite real spectral triples 
for all so-called KO-dimensions, and also identifies the irreducible finite geometries 
among them. 

3.1 Finite Real Spectral Triples 

First, the structure of a finite spectral triple can be enriched by introducing a .Z2-
grading . γ on . H , i.e., .γ ∗ = γ, γ 2 = 1, demanding that . A is even and .D is odd with 
respect to this grading: 

. γ D = −Dγ, γ a = aγ ; (a ∈ A).

Next, there is a more symmetric refinement of the notion of finite spectral triple 
in which .H is an .A − A-bimodule, rather than just a left .A-module. Recall that an 
anti-unitary operator is an invertible operator.J : H → H that satisfies. 〈Jξ1, Jξ2〉 =
〈ξ2, ξ1〉 for all .ξ1, ξ2 ∈ H . 

Definition 3.1 A finite real spectral triple is given by a finite spectral triple 
.(A, H, D) and an anti-unitary operator .J : H → H called real structure, such that 
.a◦ := Ja∗ J−1 is a right representation of. A on. H , i.e.,.(ab)◦ = b◦a◦. We also require 
that 

.[a, b◦] = 0, [[D, a], b◦] = 0, (3.1.1) 
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Table 3.1 The KO-dimension . k of a real spectral triple is determined by the signs . {ε, ε′, ε′′}
appearing in.J 2 = ε, J D = ε′DJ and. Jγ = ε′′γ J

k 0 1 2 3 4 5 6 7 

.ε 1 1 . −1 . −1 . −1 . −1 1 1 

.ε′ 1 . −1 1 1 1 . −1 1 1 

.ε′′ 1 . −1 1 . −1 

for all .a, b ∈ A. Moreover, we demand that. J , .D and (in the even case). γ satisfy the 
commutation relations: 

. J 2 = ε, J D = ε′DJ, Jγ = ε′′γ J.

for numbers.ε, ε′, ε′′ ∈ {−1, 1}. These signs determine the KO-dimension . k (modulo 
8) of the finite real spectral triple .(A, H, D; J, γ ) defined according to Table 3.1. 

The signs in Table 3.1 are motivated by the classification of Clifford algebras, see 
Sect. 4.1 below. The two conditions in (3.1.1) are called the commutant property, 
and the first-order or order one condition, respectively. They imply that the left 
action of an element in . A and .�1

D(A) commutes with the right action of . A. This is  
equivalent to the commutation between the right action of .A and .�1

D(A) with the 
left action of . A. 

Remark 3.2 The so-called opposite algebra .A◦ is defined to be equal to .A as a 
vector space but with opposite product . ◦: 

.. a ◦ b := ba.

Thus, .a◦ = Ja∗ J−1 defines a left representation of .A◦ on . H : .(a ◦ b)◦ = a◦b◦. 

Example 3.3 Consider the matrix algebra.MN (C), acting on the inner product space 
.H = MN (C) by left matrix multiplication, and with inner product given by the 
Hilbert–Schmidt inner product: 

. 〈a, b〉 = Tr a∗b.

Define 
. γ (a) = a, J (a) = a∗; (a ∈ H).

Since .D must be odd with respect to the grading . γ , it vanishes identically. 

Exercise 3.1 In the previous example, show that the right action of .MN (C) on 
.H = MN (C) as defined by .a 	→ a◦ is given by right matrix multiplication. 

The following exercises are inspired by Tomita–Takesaki theory of Von Neumann 
algebras.
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Exercise 3.2 Let .A = ⊕
i Mni (C) be a matrix algebra, which is represented on a 

vector space .H = ⊕
i C

ni ⊗ C
mi , i.e., is such that the irreducible representation . ni

has multiplicity .mi . 

(1) Show that the commutant .A′ of .A is isomorphic to .
⊕

i Mmi (C). As a conse-
quence, the double commutant coincides with . A, that is to say .A′′ � A. 

We say that .ξ ∈ H is a cyclic vector for . A if 

. Aξ := {aξ : a ∈ A} = H.

We call .ξ ∈ H a separating vector for . A if 

. aξ = 0 =⇒ a = 0; (a ∈ A).

(2) Show that if . ξ is a separating vector for the action of. A, it is cyclic for the action 
of . A′. (Hint: Assume . ξ is not cyclic for the action of .A′ and try to derive a 
contradiction). 

Exercise 3.3 Suppose that .(A, H, D = 0) is a finite spectral triple such that . H
possesses a cyclic and separating vector . ξ for . A. 

(1) Show that the formula.S(aξ) = a∗ξ defines an anti-linear operator.S : H → H . 
(2) Show that . S is invertible. 
(3) Let .J : H → H be the operator appearing in the polar decomposition . S =

J�1/2 of . S with .� = S∗S. Show that . J is an anti-unitary operator. 

Conclude that .(A, H, D = 0; J ) is a finite real spectral triple. Can you find such an 
operator . J in the case of Exercise 3.2? 

3.1.1 Morphisms Between Finite Real Spectral Triples 

We are now going to extend the notion of unitary equivalence (cf. Definition 2.24) 
to finite real spectral triples. 

Definition 3.4 We call two finite real spectral triples .(A1, H1, D1; J1, γ1) and 
.(A2, H2, D2; J2, γ2) unitarily equivalent if .A1 = A2 and if there exists a unitary 
operator .U : H1 → H2 such that 

. Uπ1(a)U ∗ = π2(a); (a ∈ A1),

UD1U
∗ = D2, Uγ1U

∗ = γ2, U J1U
∗ = J2.

Building on our discussion in Sect. 2.2.1, we can also extend Morita equivalence 
to finite real spectral triples. Namely, given a Hilbert bimodule. E for.(B, A), we will 
construct a finite real spectral triple .(B, H ′, D′; J ′, γ ′) on . B, starting from a finite 
real spectral triple .(A, H, D; J, γ ) on . A.
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Definition 3.5 Let .E be a .B − A-bimodule. The conjugate module .E◦ is given by 
the .A − B-bimodule 

. E◦ = {e : e ∈ E},

with .a · e · b = b∗ · e · a∗ for any .a ∈ A, b ∈ B. 

This implies for any.λ ∈ C that.λe = λe, which explains the suggestive notation. e
for the elements of .E◦. The bimodule.E◦ is not quite a Hilbert bimodule for .(A, B), 
since we do not have a natural.B-valued inner product. However, there is a.A-valued 
inner product on the left .A-module .E◦ given by 

. 〈e1, e2〉 = 〈e2, e1〉; (e1, e2 ∈ E).

As opposed to the inner product in Definition 2.9, this inner product is left .A-linear: 
.〈e1, ae2〉 = a〈e1, e2〉 for all .a ∈ A, as can be easily checked. 

Exercise 3.4 Show that .E◦ is a Hilbert bimodule for .(B◦, A◦). 

Let us then start the construction of a finite real spectral triple on . B by setting 

. H ′ := E ⊗A H ⊗A E◦.

There is a (.C-valued) inner product on .H ′ given by combining the .A-valued inner 
products on . E , .E◦ with the .C-valued inner product on . H , much as in (2.1.1). The 
action of . B on .H ′ is given by 

.b(e1 ⊗ ξ ⊗ e2) = (be1) ⊗ ξ ⊗ e2, (3.1.2) 

using just the.B − A-bimodule structure of. E . In addition, there is a right action of. B
on.H ′ defined by acting on the right on the component.E◦. In fact, it is implemented 
by the following anti-unitary, 

. J ′(e1 ⊗ ξ ⊗ e2) = e2 ⊗ Jξ ⊗ e1,

i.e., .b◦ = J ′b∗(J ′)−1 with .b∗ ∈ B acting on .H ′ according to (3.1.2). 
Moreover, there is a finite Dirac operator given in terms of the connection. ∇ : E →

E ⊗A �1
D(A) as in Sect. 2.2.1. First, we need the result of the following exercise. 

Exercise 3.5 Let .∇ : E → E ⊗A �1
D(A) be a right connection on .E and consider 

the following anti-linear map 

. τ : E ⊗A �1
D(A) → �1

D(A) ⊗A E◦;
e ⊗ ω 	→ −ω∗ ⊗ e.

Show that the map .∇ : E◦ → �1
D(A) ⊗A E◦ defined by .∇(e) = τ ◦ ∇(e) is a left 

connection, i.e., show that it satisfies the left Leibniz rule:
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. ∇(ae) = [D, a] ⊗ e + a∇(e).

The connections .∇ and .∇ give rise to a Dirac operator on .E ⊗A H ⊗A E◦: 

. D′(e1 ⊗ ξ ⊗ e2) = (∇e1)ξ ⊗ e2 + e1 ⊗ Dξ ⊗ e2 + e1 ⊗ ξ(∇e2).

The right action of .ω ∈ �1
D(A) on .ξ ∈ H is then defined by .ξ 	→ ε′ Jω∗ J−1ξ . 

Finally, for even spectral triples one defines a grading on .E ⊗A H ⊗A E◦ by 
.γ ′ = 1 ⊗ γ ⊗ 1. 

Theorem 3.6 Suppose .(A, H, D; J, γ ) is a finite real spectral triple of KO-
dimension . k, and let .∇ : E → E ⊗A �1

D(A) be a compatible connection (cf. 
Eq. (2.2.5)). Then.(B, H ′, D′; J ′, γ ′) is a finite real spectral triple of KO-dimension. k. 

Proof The only non-trivial thing to check is that the KO-dimension is preserved. In 
fact, one readily checks that .(J ′)2 = 1 ⊗ J 2 ⊗ 1 = ε and .J ′γ ′ = ε′′γ ′ J ′. Also,  

. J ′D′(e1 ⊗ ξ ⊗ e2) = J ′ ((∇e1)ξ ⊗ e2 + e1 ⊗ Dξ ⊗ e2 + e1 ⊗ ξ(τ∇e2))

= ε′D′(e2 ⊗ Jξ ⊗ e1) ≡ ε′D′ J ′(e1 ⊗ ξ ⊗ e2),

where we have used .J ′(e1 ⊗ JωJ−1ξ ⊗ e2) = e2 ⊗ ωJξ ⊗ e1. �

3.2 Classification of Finite Real Spectral Triples 

In this section, we classify all finite real spectral triples.(A, H, D; J, γ )modulo uni-
tary equivalence using Krajewski diagrams. These play a similar role for finite real 
spectral triples as Dynkin diagrams do for simple Lie algebras. Moreover, they extend 
our .�-decorated graphs of the previous chapter to the case of real spectral triples. 

The algebra: First, we already know from our classification of finite spectral triples 
in Sect. 2.3 that 

. A �
N⊕

i=1

Mni (C),

for some .n1, . . . , nN . Thus, the structure space of .A is again given by . Â =
{n1, . . . ,nN } where .ni denotes the irreducible representation of . A on .C

ni . 

The Hilbert space: As before, the irreducible, faithful representations of . A =⊕N
i=1 Mni (C) are given by corresponding direct sums: 

. 

N⊕

i=1

C
ni

on which . A acts by left block-diagonal matrix multiplication. 
Now, besides the representation of. A, there should also be a representation of.A◦ on 

.H which commutes with that of. A. In other words, we are looking for the irreducible
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representations of .A ⊗ A◦. If we denote the unique irreducible representation of 
.Mn(C)◦ by .Cn◦, this implies that any irreducible representation of .A ⊗ A◦ is given 
by a summand in 

. 

N⊕

i, j=1

C
ni ⊗ C

n j◦.

Consequently, any finite-dimensional Hilbert space representation of. A has a decom-
position into irreducible representations 

. H =
N⊕

i, j=1

C
ni ⊗ C

n j◦ ⊗ Vi j ,

with .Vi j a vector space; we will refer to the dimension of .Vi j as the multiplicity of 
the representation .C

ni ⊗ C
n j◦. 

The integers .ni and .n◦
j form the grid of a diagram (cf. Fig. 3.1 for an example). 

Whenever there is a node at the coordinates.(ni ,n◦
j ), the representation.C

ni ⊗ C
n j◦ is 

present in the direct sum decomposition of. H . Multiplicities are indicated by multiple 
nodes. 

Example 3.7 Consider the algebra .A = C ⊕ M2(C). The irreducible representa-
tions of . A are given by . 1 and . 2. The two diagrams 

1 2  

1◦ 

2◦ 

1 2  

1◦ 

2◦ 

Fig. 3.1 A node at. (ni ,n◦
j )

indicates the presence of the 
summand.Cni ⊗ C

n j ◦ in. H ; 
the double node indicates the 
presence of. (Cni ⊗ C

ni ◦) ⊕
(Cni ⊗ C

ni ◦) in.H
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correspond to .H1 = C ⊕ M2(C) and .H2 = C ⊕ C
2, respectively. We have used the 

fact that .C2 ⊗ C
2◦ � M2(C). The left action of . A on .H1 is given by the matrix 

. 

(
λ 0
0 a

)

,

with.a ∈ M2(C) acting on.M2(C) ⊂ H1 by left matrix multiplication. The right action 
of . A on .H1 corresponds to the same matrix acting by right matrix multiplication. 

On.H2, the left action of . A is given by matrix multiplication by the above matrix 
on vectors in .C ⊕ C

2. However, the right action of .(λ, a) ∈ A is given by scalar 
multiplication with . λ on all of .H2. 

The real structure: Before turning to the finite Dirac operator . D, we exploit the 
presence of a real structure.J : H → H in the diagrammatic approach started above. 

Exercise 3.6 Let. J be an anti-unitary operator on a finite-dimensional Hilbert space. 
Show that .J 2 is a unitary operator. 

Lemma 3.8 Let. J be an anti-unitary operator on a finite-dimensional Hilbert space 
.H with .J 2 = ±1. 

(1) If .J 2 = 1 then there is an orthonormal basis .{ek} of .H such that .Jek = ek. 
(2) If .J 2 = −1 then there is an orthonormal basis .{ek, fk} of .H such that . Jek = fk

(and, consequently, .J fk = −ek). 

Proof (1) Take any .v ∈ H and set 

. e1 :=
{
c(v + Jv) if Jv �= −v

iv if Jv = −v,

with .c a normalization constant. Then .J (v + Jv) = Jv + J 2v = v + Jv and 
.J (iv) = −i Jv = iv in the two respective cases, so that .Je1 = e1. 

Next, take a vector .v′ that is orthogonal to . e1. Then 

. (e1, Jv′) = (J 2v′, Je1) = (v′, Je1) = (v′, e1) = 0,

so that also .Jv′ ⊥ e1. As before, we set 

. e2 :=
{
c(v′ + Jv′) if Jv′ �= −v′
iv′ if Jv′ = −v′,

which by the above is orthogonal to . e1. Continuing in this way gives a basis .{ek} for 
.H with .Jek = ek . 

(2) Take any.v ∈ H and set.e1 = cv with. c a normalization constant. Then. f1 = Je1
is orthogonal to . e1, since 

.( f1, e1) = (Je1, e1) = −(Je1, J
2e1) = −(Je1, e1) = −( f1, e1).
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Fig. 3.2 The presence of the 
real structure. J implies a 
symmetry in the diagram 
along the diagonal 

Next, take another .v′ ⊥ e1, f1 and set .e2 = c′v′. As before, . f2 := Je2 is orthogonal 
to . e2, and also to .e1 and . f1: 

. (e1, f2) = (e1, Je2) = −(J 2e1, Je2) = −(e2, Je1) = −(e2, f1) = 0,

( f1, f2) = (Je1, Je2) = (e2, e1) = 0.

Continuing in this way gives a basis .{ek, fk} for .H with .Jek = fk . �

We will now apply these results to the anti-unitary operator given by a real structure 
on a spectral triple. Recall that in this case, .J : H → H implements a right action 
of . A on . H , via  

. a◦ = Ja∗ J−1

satisfying .[a, b◦] = 0. Together with the block-form of . A, this implies that 

. J (a∗
1 ⊕ · · · ⊕ a∗

N ) = (a◦
1 ⊕ · · · ⊕ a◦

N )J.

We conclude that the Krajewski diagram for a real spectral triple must be symmetric 
along the diagonal,. J mapping each subspace.C

ni ⊗ C
n j◦ ⊗ Vi j bijectively to. C

n j ⊗
C

ni◦ ⊗ Vji . 

Proposition 3.9 Let. J be a real structure on a finite real spectral triple.(A, H, D; J ). 

(1) If .J 2 = 1 (KO-dimension 0, 1, 6, 7) then there is an orthonormal basis . {e(i j)
k }

(.i, j = 1, . . . , N , k = 1, . . . , dim Vi j ) with .e(i j)
k ∈ C

ni ⊗ C
n j◦ ⊗ Vi j such that 

.Je(i j)
k = e( j i)

k ; (i, j = 1, . . . , N ; k = 1, . . . , dim Vi j ).
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(2) If .J 2 = −1 (KO-dimension 2, 3, 4, 5) then there is an orthonormal basis . {e(i j)
k ,

f ( j i)
k } (.i ≤ j = 1, . . . , N , k = 1, . . . , dim Vi j ) with . e

(i j)
k ∈ C

ni ⊗ C
n j◦ ⊗ Vi j ,

f ( j i)
k ∈ C

n j ⊗ C
ni◦ ⊗ Vji and such that 

. Je(i j)
k = f ( j i)

k ; (i ≤ j = 1, . . . , N ; k = 1, . . . , dim Vi j ).

Proof We imitate the proof Lemma 3.8. 

(1) If.i �= j , take.v ∈ C
ni ⊗ C

n j◦ ⊗ Vi j and set.e
(i j)
1 = cv. Then, by the above obser-

vation, .e( j i)
1 = Je(i j)

1 is an element in .Cn j ⊗ C
ni◦ ⊗ Vji . Next, take . v′ ∈ C

ni ⊗
C

n j◦ ⊗ Vi j with .v′ ⊥ v and apply the same procedure to obtain .e(i j)
2 and .e( j i)

2 . 
Continuing in this way gives an orthonormal basis .{e(i j)

k } for .Cni ⊗ C
n j◦ ⊗ Vi j , 

and an orthonormal basis .{e( j i)
k } for .Cn j ⊗ C

ni◦ ⊗ Vji which satisfy . Je
(i j)
k =

e( j i)
k . 
If .i = j , then Lemma 3.8(1) applies directly to the anti-unitary operator given 
by . J restricted to .C

ni ⊗ C
ni◦ ⊗ Vii . 

(2) can be proved along the same lines. �

Note that this result implies that in the case of KO-dimension .2, 3, 4 and . 5, the  
diagonal .Cni ⊗ C

ni◦ ⊗ Vii needs to have even multiplicity. 

The finite Dirac operator: Corresponding to the above decomposition of.H we can 
write .D as a sum of matrices 

. Di j,kl : Cni ⊗ C
n j◦ ⊗ Vi j → C

nk ⊗ C
nl◦ ⊗ Vkl ,

restricted to these subspaces. The condition .D∗ = D implies that .Dkl,i j = D∗
i j,kl . In  

terms of the above diagrammatic representation of . H , we express a non-zero . Di j,kl

as a line between the nodes .(ni ,n◦
j ) and .(nk,n◦

l ). Instead of drawing directed lines, 
we draw a single undirected line, capturing both .Di j,kl and its adjoint .Dkl,i j . 

Lemma 3.10 The condition .J D = ±DJ and the order one condition given by 
.[[D, a], b◦] = 0 forces the lines in the diagram to run only vertically or horizontally 
(or between the same node), thereby maintaining the diagonal symmetry between 
the nodes in the diagram. 

Proof The condition .J D = ±DJ easily translates into a commuting diagram: 

. C
ni ⊗ C

n j◦ ⊗ Vi j D

J

C
nk ⊗ C

nl◦ ⊗ Vkl

J

C
n j ⊗ C

ni◦ ⊗ Vji ±D
C

nl ⊗ C
nk◦ ⊗ Vlk

thus relating .Di j,kl to .Dji,lk , maintaining the diagonal symmetry (Fig. 3.3).
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Fig. 3.3 The lines between 
two nodes represent a 
non-zero. Dii, j i :
C
ni ⊗ C

n◦
i → C

n j ⊗ C
n◦
i , as  

well as its adjoint. Dji,i i :
C
n j ⊗ C

n◦
i → C

ni ⊗ C
n◦
i . 

The non-zero components 
.Dii,i j and.Di j,i i are related 
to.±Dii, j i and.±Dji,i i , 
respectively, according to 
. J D = ±DJ

If we write the order one condition .[[D, a], b◦] = 0 for diagonal elements . a =
λ1In1 ⊕ · · · ⊕ λN InN ∈ A and .b = μ1In1 ⊕ · · · ⊕ μN InN ∈ A with .λi , μi ∈ C, we  
compute 

. Di j,kl(λi − λk)(μ j − μl) = 0,

for all .λi , μ j ∈ C. As a consequence, .Di j,kl = 0 whenever .i �= k or . j �= l. �

Grading: Finally, if there is a grading .γ : H → H , then each node in the diagram 
gets labeled by a plus or minus sign. The rules are that: 

• .D connects nodes with different signs; 
• If the node .(ni ,n◦

j ) has sign . ±, then the node .(n j ,n◦
i ) has sign .±ε′′, according to 

.Jγ = ε′′γ J . 

Finally, we arrive at a diagrammatic classification of finite real spectral triples of 
any KO-dimension. 

Definition 3.11 A Krajewski diagram of KO-dimension . k is given by an ordered 
pair .(,�) of a finite graph.  and a finite set .� of positive integers with a labeling: 

• of the vertices.v ∈ (0) by elements.ι(v) = (n(v),m(v)) ∈ � × �, where the exis-
tence of an edge from . v to .v′ implies that either .n(v) = n(v′), .m(v) = m(v′), or  
both; 

• of the edges .e = (v1, v2) ∈ (1) by non-zero operators: 

. De : Cn(v1) → C
n(v2) if m(v1) = m(v2);

De : Cm(v1) → C
m(v2) if n(v1) = n(v2),

and their adjoints .D∗
e , 

together with an involutive graph automorphism . j :  →  so that the following 
conditions hold:
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(1) every row or column in .� × � has non-empty intersection with .ι(); 
(2) for each vertex . v we have .(n( j (v))) = m(v); 
(3) for each edge . e we have .De = ε′Dj (e); 
(4) if the KO-dimension . k is even, then the vertices are additionally labeled by . ±1

and the edges only connect opposite signs. The signs at . v and . j (v) differ by a 
factor . ε, according to the table of Definition 3.1; 

(5) if the .KO-dimension is 2, 3, 4, 5 then the inverse image under . ι of the diagonal 
elements in .� × � contains an even number of vertices of . . 

Note that this definition allows for different vertices of . to be labeled by the 
same element in .� × �; this accounts for the multiplicities appearing in .Vi j that we 
have encountered before. 

This indeed gives rise to a diagram of the above type, by putting a node at position 
.(ni ,n◦

j ) for each vertex carrying the label.(ni ,n j ) ∈ � × �. The notation.n◦
j instead 

of .n j is just for a convenient diagrammatic exposition. The operators .De between 
vertices that are labeled by .(ni ,n j ) and .(nk,nl), respectively, add up to the above 
.Di j,kl . Explicitly, 

. Di j,kl =
∑

e=(v1,v2)∈(1)

ι(v1)=(ni ,n j )

ι(v2)=(nk ,nl )

De,

so that indeed.D∗
i j,kl = Dkl,i j . Moreover, the only non-zero entries.Di j,kl will appear 

when .i = k, or . j = l, or both. Thus, we have shown 

Theorem 3.12 There is a one-to-one correspondence between finite real spectral 
triples of .KO-dimension . k modulo unitary equivalence and Krajewski diagrams of 
KO-dimension . k. Specifically, one associates a real spectral triple . (A, H, D; J, γ )

to a Krajewski diagram in the following way: 

. A =
⊕

n∈�

Mn(C);

H =
⊕

v∈(0)

C
n(v) ⊗ C

m(v)◦;

D =
∑

e∈(1)

De + D∗
e .

Moreover, the real structure.J : H → H is given as in Proposition 3.9, with the basis 
dictated by the graph automorphism. j :  → . Finally, a grading. γ on.H is defined 
by setting . γ to be .±1 on .C

n(v) ⊗ C
m(v)◦ ⊂ H according to the labeling by .±1 of the 

vertex . v. 

Example 3.13 Consider the case .A = C ⊕ C. There are ten possible Krajewski 
diagrams in KO-dimension 0 with multiplicities less than or equal to 1: in terms of 
. Â = {11, 12}, we have
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where the diagonal vertices are labeled with a plus sign, and the off-diagonal vertices 
with a minus sign. 

Let us consider the last diagram in the top row in more detail and give the corre-
sponding spectral triple: 

11 12 

1◦
1 

1◦
2 

First, the inner product space is .H = C
3, where we choose the middle copy of . C

to correspond to the node on the diagonal. The edges indicate that there are non-zero 
components of .D that map between the first two copies of . C in .H and between the 
second and third copy of . C. In other words, 

. D =
⎛

⎝
0 λ 0
λ 0 μ

0 μ 0

⎞

⎠

for some .λ,μ ∈ Hom(C,C) � C that are the given labels on the two edges. In this 
basis, 

. γ =
⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ .

Finally,. J is given by the matrix.K composed with complex conjugation on. H , where 

. K =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ .

From this it is clear that we indeed have 

.Dγ = −γ D; DJ = J D; Jγ = γ J.
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Exercise 3.7 Use the ten Krajewski diagrams of the previous example to show that 
on.A = C ⊕ C a finite real spectral triple of.KO-dimension 6 with.dim H ≤ 4 must 
have vanishing finite Dirac operator. 

Example 3.14 Consider .A = Mn(C) so that . Â = {n}. We then have a Krajewski 
diagram 

n 
n◦ 

The node can be labeled only by either plus or minus one, the choice being 
irrelevant. This means that .H = C

n ⊗ C
n◦ � Mn(C) with. γ the trivial grading. The 

operator .J is a combination of complex conjugation and the flip on .n ⊗ n◦: this  
translates to.Mn(C) as taking the matrix adjoint. Moreover, since the single node has 
label .±1, there are no non-zero Dirac operators. Hence, the finite real spectral triple 
of this diagram corresponds to 

. (A = Mn(C), H = Mn(C), D = 0; J = (·)∗, γ = 1),

and was encountered already in Exercise 3.3. 

3.3 Real Algebras and Krajewski Diagrams 

Thus far, we have considered finite spectral triples on complex algebras. In practice, 
it is useful to allow real .∗-algebras in Definition 2.19 as well. 
Definition 3.15 A real algebra is a vector space. A over. Rwith a bilinear associative 
product .A × A → A denoted by .(a, b) 	→ ab and a unit . 1 satisfying . 1a = a1 = a
for all .a ∈ A. 

A real .∗ -algebra (or, involutive algebra) is a real algebra . A together with a real 
linear map (the involution) .∗ : A → A such that .(ab)∗ = b∗a∗ and.(a∗)∗ = a for all 
.a, b ∈ A. 

Example 3.16 A particularly interesting example in this context is given by . H, the  
real .∗-algebra of quaternions, defined as a real subalgebra of .M2(C): 

. H =
{(

α β

−β α

)

: α, β ∈ C

}

.

This is indeed closed under multiplication. As a matter of fact, .H consists of those 
matrices in .M2(C) that commute with the operator . I defined by 

.I

(
v1
v2

)

=
(−v2

v1

)

.
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The involution is inherited from.M2(C) and is given by hermitian conjugation. 

Exercise 3.8 (1) Show that .H is a real .∗-algebra which contains a real subalgebra 
isomorphic to . C. 

(2) Show that .H ⊗R C � M2(C) as complex .∗-algebras. 
(3) Show that .Mk(H) is a real .∗-algebra for any integer . k. 
(4) Show that .Mk(H) ⊗R C � M2k(C) as complex .∗-algebras. 

When considering Hilbert space representations of a real .∗-algebra, one must be 
careful, because the Hilbert space will be assumed to be a complex space. 

Definition 3.17 A representation of a finite-dimensional real .∗-algebra .A is a pair 
.(H, π)where.H is a (finite-dimensional, complex) Hilbert space and. π is a real-linear 
.∗-algebra map 

. π : A → L(H).

Also, although there is a great deal of similarity, we stress that the definition of 
the real structure . J in Definition 2.19 is not related to the algebra .A being real or 
complex. 

Exercise 3.9 Show that there is a one-to-one correspondence between Hilbert space 
representations of a real .∗-algebra . A and complex representations of its complexifi-
cation .A ⊗R C. Conclude that the unique irreducible (Hilbert space) representation 
of .Mk(H) is given by .C

2k . 

Lemma 3.18 Suppose that a real .∗-algebra .A is represented faithfully on a finite-
dimensional Hilbert space .H through a real-linear .∗-algebra map .π : A → L(H). 
Then . A is a matrix algebra: 

. A �
N⊕

i=1

Mni (Fi ),

where .Fi = R,C or . H, depending on . i . 

Proof The representation. π allows to consider. A as a real.∗-subalgebra of.Mdim H (C), 
hence.A + i A can be considered a complex.∗-subalgebra of.Mdim H (C). Thus. A + i A
is a matrix algebra, and we may restrict to the case.A + i A = Mk(C) for some.k ≥ 1. 
Note that .A ∩ i A is a two-sided .∗-ideal in .Mk(C). As such, it must be either the 
whole of .Mk(C), or zero. In the first case, .A + i A = A ∩ i A so that .A = Mk(C). 
If .A ∩ i A = {0}, then we can uniquely write any element in .Mk(C) as .a + ib with 
.a, b ∈ A. Moreover, . A is the fixed point algebra of the anti-linear automorphism . α
of.Mk(C) given by.α(a + ib) = a − ib (.a, b ∈ A). We can implement. α by an anti-
linear isometry . I on .Ck such that .α(x) = I x I−1 for all .x ∈ Mk(C). Since .α2 = 1, 
the operator .I 2 commutes with .Mk(C) and is therefore proportional to a complex 
scalar. Together with .I 2 being an isometry, this implies that .I 2 = ±1 and that .A is 
precisely the commutant of . I . We now once again use Lemma 3.8 to conclude that
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• If .I 2 = 1, then there is a basis .{ei } of .Ck such that .I ei = ei . Since a matrix in 
.Mk(C) that commutes with . I must have real entries, this gives 

. A = Mk(R).

• If .I 2 = −1, then there is a basis .{ei , fi } of .Ck such that .I ei = fi (and thus . k is 
even). Since a matrix in.Mk(C) that commutes with. I must be a.k/2 × k/2-matrix 
with quaternionic entries, we obtain 

.A = Mk/2(H). �

We now reconsider the diagrammatic classification of finite spectral triples, with 
real.∗-algebras represented faithfully on a Hilbert space. In fact, as far as the decom-
position of .H into irreducible representations is concerned, we can replace. A by the 
complex .∗-algebra 

. A + i A �
N⊕

i=1

Mni (C).

Thus, the Krajewski diagrams in Definition 3.11 classify such finite real spectral 
triples as well as long as we take the .Fi for each . i into account. That is, we enhance 
the set .� to be 

. � = {n1F1, . . . ,nNFN },

reducing to the previously defined .� when all .Fi = C. 

3.4 Classification of Irreducible Geometries 

We now classify irreducible finite real spectral triples of KO-dimension 6. This 
leads to a remarkably concise list of spectral triples, based on the matrix algebras 
.MN (C) ⊕ MN (C) for some . N . 

Definition 3.19 A finite real spectral triple .(A, H, D; J, γ ) is called irreducible if 
the triple .(A, H, J ) is irreducible. More precisely, we demand that: 

(1) The representations of . A and . J in .H are irreducible; 
(2) The action of . A on .H has a separating vector (cf. Exercise 3.2). 

Theorem 3.20 Let .(A, H, D; J, γ ) be an irreducible finite real spectral triple of 
KO-dimension 6. Then there exists a positive integer .N such that . A � MN (C) ⊕
MN (C).
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Proof Let .(A, H, D; J, γ ) be an arbitrary finite real spectral triple, corresponding 
to e.g., the Krajewski diagram of Fig. 3.2. Thus, as in Sect. 2.3 we have 

. A =
N⊕

i=1

Mni (C), H =
N⊕

i, j=1

C
ni ⊗ C

n j◦ ⊗ Vi j ,

with .Vi j corresponding to the multiplicities as before. Now each .Cni ⊗ C
n j is an 

irreducible representation of . A, but in order for .H to support a real structure . J :
H → H we need both .Cni ⊗ C

n j and .Cn j ⊗ C
ni to be present in . H . Moreover, 

Lemma 3.8 with .J 2 = 1 assures that already with multiplicities .dim Vi j = 1 there 
exists such a real structure. Hence, the irreducibility condition (1) above yields 

. H = C
ni ⊗ C

n j◦ ⊕ C
n j ⊗ C

ni◦,

for some .i, j ∈ {1, . . . , N }. Or, as a Krajewski diagram: 

ni n j 

n◦ 
i 

n◦ 
j 

Then, let us consider condition (2) on the existence of a separating vector. Note 
first that the representation of .A in .H is faithful only if .A = Mni (C) ⊕ Mn j (C). 
Second, the stronger condition of a separating vector . ξ then implies .ni = n j , as it is  
equivalent to .A′ξ = H for the commutant .A′ of . A in .H (see Exercise 3.2). Namely, 
since .A′ = Mn j (C) ⊕ Mni (C) with .dim A′ = n2i + n2j , and .dim H = 2nin j we find 
the desired equality .ni = n j . �

With the complex finite-dimensional algebras . A given by .MN (C) ⊕ MN (C), the  
additional demand that.H carries a symplectic structure.I 2 = −1 yields real algebras 
of which .A is the complexification (as in the proof of Lemma 3.18). In view of 
Exercise 3.8(4) we see that this requires.N = 2k so that one naturally considers triples 
.(A, H, J ) for which .A = Mk(H) ⊕ M2k(C) and .H = C

2(2k)2 . The case .k = 2 will 
come back in the final Chap. 13 as the relevant one to consider in particle physics 
applications that go beyond the Standard Model. 

Notes 

Section 3.1. Finite Real Spectral Triples 

1. The operator.D in Definition 3.1 is a first-order differential operator on the bimodule.H in the 
sense of [ 1].
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2. Exercises 3.2 and 3.3 develop Tomita–Takesaki theory for matrix algebras, considered as finite-
dimensional Von Neumann algebras. For a complete treatment of this theory for general Von 
Neumann algebras, we refer to e.g., [ 2]. 

Section 3.2. Classification of Finite Real Spectral Triples 

3. Krajewski’s work on the classification of all finite real spectral triples . (A, H, D;
J, γ ) modulo unitary equivalence (based on a suggestion in [ 3]) is published in [ 4]. Simi-
lar results were obtained independently in [ 5]. We have extended Krajewski’s work—which is 
in KO-dimension. 0—to any KO-dimension. The classification of finite real spectral triples (but 
without Krajewski diagrams) is also the subject of [ 6]. The KO-dimension. 6 case—which is of 
direct physical interest as we will see below in Chap. 13—was also handled in [ 7]. 

4. Lemma 3.8 is based on [ 8], where Wigner showed that anti-unitary operators on finite-
dimensional Hilbert spaces can be written in a normal form. His crucial observation is that 
.J 2 is unitary, allowing for a systematic study of a normal form of. J for each of the eigenvalues 
of.J 2 (these eigenvalues form a discrete subset of the complex numbers of modulus one). In our 
case of interest,. J is a real structure on a spectral triple (as in Definition 3.1), so that.J 2 = ±1. 

5. In the labelling of the nodes in a Krajewski diagram with.±-signs, it is important whether or not 
we adopt the so-called orientation axiom [ 3]. In the finite-dimensional case, this axiom demands 
that the grading. γ can be implemented by elements.xi , yi ∈ A as.γ = ∑

i xi y
◦
i . Hence, this is 

completely dictated by the operator . J and the representation of . A. In terms of our diagrams, 
this translates to the fact that the grading of a node only depends on the label .(ni ,n◦

j ). In this  
book, we will not assume the orientation axiom. 

Section 3.4. Classification of Irreducible Geometries 

6. Finite irreducible geometries have been classified by Chamseddine and Connes in [ 9], using 
different methods. We here confront their result with the above approach to finite spectral triples 
using Krajewski diagrams and find that they are compatible. 
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Chapter 4 
Riemannian Spin Manifolds 

We now extend our treatment of noncommutative geometric spaces from the finite 
case to the continuum. This generalizes spin manifolds to the noncommutative world. 
The resulting spectral triples (Chap. 5) form the key technical device in noncommu-
tative geometry, and in the physical applications of Part 2 of this book in particular. 

We start with a treatment of Clifford algebras, as a preparation for the definition 
of a spin structure on a Riemannian manifold, and end with the analytical aspects of 
the Dirac operator. 

4.1 Clifford Algebras 

Let. V be a vector space over a field. F (.= R,C or. H), equipped with a quadratic form 
.Q : V → F, i.e. 

. Q(λv) = λ2Q(v); (λ ∈ F, v ∈ V ),

Q(v + w) + Q(v − w) = 2Q(v) + 2Q(w); (v,w ∈ V ).

Definition 4.1 For a quadratic form .Q on . V , the  Clifford algebra .Cl(V, Q) is the 
algebra generated (over. F) by the vectors.v ∈ V and with unit. 1 subject to the relation 

.v2 = Q(v)1. (4.1.1) 

Note that the Clifford algebra .Cl(V, Q) is .Z2-graded, with grading . χ given by 

. χ(v1 · · · vk) = (−1)kv1 · · · vk,

which is indeed compatible with relation (4.1.1). Accordingly, we decompose 

. Cl(V, Q) =: Cl0(V, Q) ⊕ Cl1(V, Q)

into an even and odd part. 

© The Author(s) 2025 
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Exercise 4.1 Show that in .Cl(V, Q) we have 

. vw + wv = 2gQ(v,w),

where .gQ is the pairing .V × V → F associated to . Q, given by 

. gQ(v,w) = 1

2
(Q(v + w) − Q(v) − Q(w)) .

We also introduce the following convenient notation for the Clifford alge-
bras for the vector spaces .Rn and .Cn equipped with the standard quadratic form 
.Qn(x1, . . . , xn) = x2

1 + · · · x2
n : 

. Cl+n := Cl(Rn, Qn);
Cl−n := Cl(Rn,−Qn);
Cln := Cl(Cn, Qn).

Both .Cl+n and .Cl−n are algebras over . R generated by .e1, . . . , en with relations 

.ei e j + e j ei = ±2δi j , (4.1.2) 

for all .i, j = 1, . . . , n. Moreover, the even part .(Cl±n )0 of .Cl±n consists of products 
of an even number of . ei ’s, and the odd part .(Cl±n )1 of products of an odd number of 
. ei ’s. 

The Clifford algebra .Cln is the complexification of both .Cl+n and .Cl−n , and is 
therefore generated over . C by the same .e1, . . . , en satisfying (4.1.2). 

Exercise 4.2 (1) Check that Eq. (4.1.2) indeed corresponds to the defining relations 
in .Cl±n . 

(2) Show that the elements .ei1 · · · eir with .1 ≤ i1 < i2 < · · · < ir ≤ n form a basis 
for .Cl±n . 

(3) Conclude that .dimR Cl±n = 2n and, accordingly, .dimC Cln = 2n . 
(4) Find an isomorphism.Cl(Cn, Qn) � Cl(Cn,−Qn) as Clifford algebras. 

Proposition 4.2 The even part .(Cl−n+1)
0 of .Cl−n+1 is isomorphic to .Cl−n . 

Proof We construct a map .� : Cl−n �→ (Cl−n+1)
0 given on generators by 

.�(ei ) = en+1ei . (4.1.3) 

Indeed, for .i, j = 1, . . . , n we have 

. �(ei )�(e j ) + �(e j )�(ei ) = ei e j + e j ei = −2δi j = �(−2δi j ),

using .ei en+1 = −en+1ei and .en+1en+1 = −1. Thus, .� extends to a homomorphism 
.Cl−n �→ (Cl−n+1)

0. Moreover, since .� sends basis vectors in .Cl−n to basis vectors in 
.(Cl−n+1)

0 and the dimensions of .Cl−n and .(Cl−n+1)
0 coincide, it is an isomorphism. �
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Exercise 4.3 Show that the same expression (4.1.3) induces an isomorphism from 
.Cl−n to the even part .(Cl+n+1)

0 and conclude that .(Cl+n+1)
0 � (Cl−n+1)

0. 

Next, we compute the Clifford algebras .Cl±n and .Cln . We start with a recursion 
relation: 

Proposition 4.3 For any .k ≥ 1 we have 

. Cl+k ⊗R Cl−2 � Cl−k+2,

Cl−k ⊗R Cl+2 � Cl+k+2 .

Proof The map .� : Cl−k+2 → Cl+k ⊗R Cl−2 given on generators by 

. �(ei ) =
{
1 ⊗ ei i = 1, 2
ei−2 ⊗ e1e2 i = 3, . . . , n

extends to the desired isomorphism. �

Let us compute some of the Clifford algebras in lowest dimensions. 

Proposition 4.4 

. Cl+1 � R ⊕ R, Cl−1 � C,

Cl+2 � M2(R), Cl−2 � H.

Proof The Clifford algebra .Cl+1 is generated (over . R) by  . 1 and .e1 with relation 
.e21 = 1. We map.Cl+1 linearly to the algebra .R ⊕ R by sending 

. 1 �→ (1, 1), e1 �→ (1,−1).

A dimension count shows that this map is a bijection. 
The Clifford algebra .Cl+2 is generated by .1, e1, e2 with relations 

. e21 = 1, e22 = 1, e1e2 = −e2e1.

A bijective map .Cl+2
∼→ M2(R) is given on generators by 

. 1 �→
(
1 0
0 1

)
, e1 �→

(
1 0
0 −1

)
, e2 �→

(
0 1
1 0

)
.

We leave the remaining .Cl−1 and .Cl+2 as an illustrative exercise to the reader. �

Exercise 4.4 Show that .Cl−1 � C and .Cl−2 � H.
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Table 4.1 Clifford algebras.Cl±n and their complexifications.Cln for. n = 1, . . . , 8

.n .Cl+n .Cl−n . Cln

1 .R ⊕ R .C . C ⊕ C

2 .M2(R) .H . M2(C)

3 .M2(C) .H ⊕ H . M2(C) ⊕ M2(C)

4 .M2(H) .M2(H) . M4(C)

5 .M2(H) ⊕ M2(H) .M4(C) . M4(C) ⊕ M4(C)

6 .M4(H) .M8(R) . M8(C)

7 .M8(C) .M8(R) ⊕ M8(R) . M8(C) ⊕ M8(C)

8 .M16(R) .M16(R) . M16(C)

Combining the above two Propositions, we derive Table 4.1 for the Clifford alge-
bras .Cl±n and .Cln for .n = 1, . . . , 8. For instance, 

. Cl+3 � Cl−1 ⊗R Cl+2 � C ⊗R M2(R) � M2(C)

and 
. Cl+4 � Cl−2 ⊗R Cl+2 � H ⊗R M2(R) � M2(H)

and so on. In particular, we have 

. Cl+n ⊗Cl+4 � Cl+n+4

and 
. Cl+n+8 � Cl+n ⊗Cl+8 . 

With .Cl+8 � M16(R) we conclude that .Cl+k+8 is Morita equivalent to . Cl+k
(cf. Theorem 2.14). Similarly, .Cl−k+8 is Morita equivalent to .Cl−k . Thus, in this sense 
Table 4.1 has periodicity eight and we have determined .Cl±n for all . n. 

For the complex Clifford algebras, there is a periodicity of two: 

. Cln ⊗C Cl2 � Cln+2,

so that with .Cl2 � M2(C) we find that .Cln is Morita equivalent to .Cln+2. 
The (semi)simple structure of .Cln is further clarified by 

Definition 4.5 The chirality operator .γn+1 in .Cln is defined as the element 

. γn+1 = (−i)me1 · · · en,

where .n = 2m or .n = 2m + 1, depending on whether . n is even or odd.
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Exercise 4.5 Show that 

(1) if .n = 2m is even, then .γn+1 generates the center of .Cl
0
n = Cln−1, 

(2) if .n = 2m + 1 is odd, then .γn+1 lies in the odd part .Cl
1
2m+1, and the center of 

.Cln is spanned by . 1 and .γn+1. 

4.1.1 Representation Theory of Clifford Algebras 

We determine the irreducible representations of the Clifford algebras .Cl±n and .Cln . 
Let us start with the complex Clifford algebras. 

Proposition 4.6 The irreducible representations of .Cln are given as 

. C
2m ; (n = 2m),

C
2m

,C2m ; (n = 2m + 1).

Proof Since the .Cln are matrix algebras we can invoke Lemma 2.15 to conclude 
that in the even-dimensional case the irreducible representation of . Cl2m � M2m (C)

is given by the defining representation .C
2m
. In the odd-dimensional case we have 

. Cl2m+1 � M2m (C) ⊕ M2m (C),

so that the irreducible representations are given by two copies of.C2m
, corresponding 

to the two summands in this matrix algebra. �
For the real Clifford algebras .Cl±n we would like to obtain the irreducible rep-

resentations from those just obtained for the complexification .Cln � Cl±n ⊗RC. As  
.Cl±n are matrix algebras over . R and . H, this leads us to the following possibilities: 

(1) Restrict an (irreducible) representation of .Cln to a real subspace, stable under 
.Cl±n ; 

(2) Extend an (irreducible) representation of .Cln to a quaternionic space, carrying 
a representation of .Cl±n . 

This is very similar to our approach to real algebras in Sect. 3.3. In fact, we will use an 
anti-linear map.J±

n on the representation space, furnishing it with a real (.(J±
n )2 = 1) 

or quaternionic structure (.(J±
n )2 = −1) to select the real subalgebra.Cl±n ⊂ Cln . For  

the even-dimensional case we search for operators .J±
2m such that on the irreducible 

.Cl2m-representations .C2m
we have 

. Cl±2m � {
a ∈ Cl2m : [J±

2m, a] = 0
}
. (4.1.4) 

The odd case is slightly more subtle, as only the even part .(Cl±n )0 of .Cl±n can be 
recovered in this way: 

.(Cl±2m+1)
0 � {

a ∈ Cl02m+1 : [J±
2m+1, a] = 0

}
. (4.1.5)
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Proposition 4.7 For any .m ≥ 1 there exist anti-linear operators . J±
2m : C2m → C

2m

and .J±
2m+1 : C2m → C

2m
such that the Eqs. (4.1.4) and (4.1.5) hold. 

Proof From Proposition 4.2 and Exercise 4.3 we see that .(Cl±2m+1)
0 � Cl−2m and 

.(Cl2m+1)
0 � Cl2m so that the odd case follows from the even case. 

By periodicity we can further restrict to construct only.J±
2m for.m = 1, 2, 3, 4. For  

.m = 1 we select the real form .Cl+2 � M2(R) in .Cl2 � M2(C) as the commutant of 

.J+
2 with 

. J+
2 : C2 → C

2;(
v1
v2

)
�→

(
v̄1
v̄2

)
.

Instead, as in Example 3.16, .Cl−2 � H can be identified as a real subalgebra . Cl2 �
M2(C) with the commutant of .J−

2 , where 

. J−
2 : C2 → C

2;(
v1
v2

)
�→

(−v̄2
v̄1

)
.

For .m = 2 the sought-for operator .J+
4 ≡ J−

4 on .C
4 is given by .J−

2 ⊕ J−
2 . 

For .m = 3 we set .J+
6 = (J−

2 )⊕4 to select .Cl+6 � M4(H) inside .Cl6, and . J
−
6 =

(J+
2 )⊕4 to select .Cl−6 � M8(R). 
Finally, for .m = 4 the operator .J+

8 ≡ J−
8 := (J+

2 )⊕8 selects the two isomorphic 
real forms .Cl±8 ⊂ Cl8. �

The signs for the squares.(J±
n )2 are listed in Table 4.2. The isomorphisms between 

the odd- and even-dimensional cases are illustrated by the fact that 

. (J±
2m+1)

2 = (J−
2m)2.

with periodicity eight. We also indicated the commutation between .J±
n and odd 

elements in .Cl±n and between .J±
n and the chirality operator .γn+1. For the derivation 

Table 4.2 The real and quaternionic structures on the irreducible representations of.Cln that select 
.Cl±n via (4.1.4) for. n even and.(Cl±n )0 via (4.1.5) for. n odd. For later reference, we also indicated the 
commutation or anti-commutation of.J−

n with the chirality operator.γn+1 defined in Definition 4.5 
and odd elements in. (Cl±n )1 ⊂ Cl±n
.n 1 2 3 4 5 6 7 8 

.(J+
n )2 = ±1 1 1 . −1 . −1 . −1 . −1 1 1 

.(J−
n )2 = ±1 1 . −1 . −1 . −1 . −1 1 1 1 

.J−
n x = (±1)x J−

n , x odd . −1 1 1 1 . −1 1 1 1 

.J−
n γn+1 = (±1)γn+1 J−

n . −1 1 . −1 1
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of the former note that for . n even .J±
n commutes with all elements in .Cl±n , whereas 

for . n odd we follow the proof of Proposition 4.7: 

• .n = 1: .J−
1 is equal to .J−

0 , which is given by .J−
0 (z) = z̄ for .z ∈ C, and (4.1.5) 

selects.(Cl−1 )0 � R in.Cl−1 � C. Thus, the remaining part.(Cl−1 )1 � iR so that odd 
elements .x ∈ (Cl−1 )1 anti-commute with .J−

1 . 
• .n = 3: .J−

3 is equal to .J−
2 , which is given by the standard quaternionic structure 

on .C
2. It then follows that all of .Cl−3 � H ⊕ H commutes with .J−

3 . 
• .n = 5: in this case .J−

5 is equal to .J−
4 , which is two copies of .J−

2 . This selects 
.(Cl−5 )0 � M2(H) in .Cl−5 � M4(C). Again, the remaining part . (Cl−5 )1 � i M2(H)

so that odd elements .x ∈ (Cl−5 )0 anti-commute with .J−
5 . 

• .n = 7:.J−
7 is equal to.J−

6 , which is given by component-wise complex conjugation 
of vectors in.C

8. It follows that all of.Cl−7 � M8(R) ⊕ M8(R) commutes with.J−
6 . 

Finally, in the even case.n = 2m the (anti)-commutation between the chirality oper-
ator .γn+1 and the anti-linear operator .J−

n depends only on the power of the factor 
. im . Indeed, the even product of . ei ’s in Definition 4.5 already commutes with .J−

n , so  
that the signs .(−1)m for .n = 2m follow from 

. J−
n im = (−i)m J−

n .

The last three rows of Table 4.2 give precisely the sign table that appears for real 
spectral triples below, where. n is the corresponding KO-dimension, and hence coin-
cide with Table 3.1 of Definition 3.1. We will now slowly move to the spin manifold 
case, tracing KO-dimension back to its historical roots. 

4.2 Riemannian Spin Geometry 

We here give a concise introduction to Riemannian spin manifolds and work towards 
a Dirac operator. For convenience, we restrict to compact manifolds. 

4.2.1 Spin Manifolds 

The definition of Clifford algebras can be extended to Riemannian manifolds, as we 
will now explain. First, for completeness we recall the definition of a Riemannian 
metric on a manifold. 

Definition 4.8 A Riemannian metric on a manifold.M is a symmetric bilinear form 
on (smooth) vector fields . �∞(T M)

.g : �∞(T M) × �∞(T M) → C∞(M)
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such that 

(1) .g(X, Y ) is a real function if .X and . Y are real vector fields; 
(2) . g is .C∞(M)-bilinear: 

. g( f X, Y ) = g(X, f Y ) = f g(X, Y ); ( f ∈ C∞(M));

(3) .g(X, X) ≥ 0 for all real vector fields .X and .g(X, X) = 0 if and only if .X = 0. 

The non-degeneracy condition (3) allows us to identify.�∞(T M)with. �1
dR(M) =

�∞(T ∗M). 
A Riemannian metric . g on .M gives rise to a distance function on . M , given as 

an infimum of path lengths 

.dg(x, y) = inf
γ

{∫ 1

0

√
g(γ̇ (t), γ̇ (t))dt : γ (0) = x, γ (1) = y

}
. (4.2.1) 

Moreover, the inner product that . g defines on the fibers .Tx M of the tangent 
bundle allows us to define Clifford algebras at each point in .M as follows. With 
the inner product at.x ∈ M given explicitly by.gx(Xx , Yx ) := g(X, Y )|x we consider 
the quadratic form on .Tx M defined by 

. Qg(Xx ) = gx(Xx , Xx ).

We can then apply the construction of the Clifford algebra of the previous section to 
each fiber of the tangent bundle. At each point.x ∈ M this gives rise to. Cl(Tx M, Qg)

and its complexification.Cl(Tx M, Qg). When. x varies, these Clifford algebras com-
bine to give a bundle of algebras. 

Definition 4.9 The Clifford algebra bundle .Cl+(T M) is the bundle of algebras 
.Cl(Tx M, Qg), with the transition functions inherited from .T M . Namely, transition 
functions on the tangent bundle are given for open .U, V ⊂ M by . tU V : U ∩ V →
SO(n) where .n = dim M . Their action on each fiber .Tx M can be extended to 
.Cl(Tx M, Qg) by 

. v1v2 · · · vk �→ tU V (v1) · · · tU V (vk); (v1, . . . , vk ∈ Tx M).

The algebra of smooth real-valued sections of .Cl+(T M) will be denoted by 
.Cliff+(M) = �∞(Cl+(T M)). 

Similarly, replacing.Qg by.−Qg , we define.Cliff−(M) as the space of sections of 
.Cl−(T M). 

Finally, we define the complexified algebra 

. Cliff(M) := Cliff+(M) ⊗R C,

consisting of smooth sections of the bundle of complexified algebras.Cl(T M), which 
is defined in a similar manner.
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Let us determine local expressions for the algebra.Cliff+(M). If.{xμ}n
μ=1 are local 

coordinates on a chart .U of . M , the algebra of sections of .Cliff+(M)|U is generated 
by .γμ with relations 

.γμγν + γνγμ = 2gμν, (4.2.2) 

with .gμν = g(∂μ, ∂ν). After choosing an orthonormal frame for .�∞(T M)|U with 
respect to the metric . g, at a point of .U this relation reduces precisely to the relation 
(4.1.2). 

Let us see if we can import more of the structure for Clifford algebras explored 
so far to the setting of a Riemannian manifold. First, recall that 

. Cl2m
∼= M2m (C), Cl02m+1

∼= M2m (C).

Another way of phrasing this is to say that the (even parts of the) Clifford algebras 
.Cln are endomorphism algebras .End(C2m

). The natural question that arises in the 
setting of Riemannian manifolds is whether or not this holds for all fibers of the 
Clifford algebra bundle, in which case it would extend to a global isomorphism of 
algebra bundles. 

Definition 4.10 A Riemannian manifold is called spin. c if there exists a vector bundle 
.S → M such that there is an algebra bundle isomorphism 

. Cl(T M) � End(S) (M even-dimensional),

Cl(T M)0 � End(S) (M odd-dimensional).

The pair .(M, S) is called a spin. cstructure on . M . 

If a spin. c structure .(M, S) exists we refer to . S as the spinor bundle and the 
sections in .�∞(S) as spinors. Using the metric and the action of .Cliff+(M) by 
endomorphisms on .�∞(S) we introduce the following notion. 

Definition 4.11 Let .(M, S) be a spin. c structure on . M . Clifford multiplication is 
defined by the linear map 

. c : �1
dR(M) × �∞(S) → �∞(S);

(ω,ψ) �→ ω# · ψ,

where.ω# is the vector field in.�∞(T M) corresponding to the one-form. ω ∈ �1
dR(M)

via the metric. g. This vector field acts as an endomorphism on.�∞(S) via the embed-
ding .�∞(T M) ↪→ Cliff+(M) ⊂ �∞ End(S). 

In local coordinates on .U ⊂ M , we can write .ω|U = ωμdxμ with . ωμ ∈ C∞(U )

so that Clifford multiplication can be written as 

.c(ω)ψ |U ≡ c(ω,ψ)|U = ωμ(γ μψ)|U ; (ψ ∈ �∞(S)),
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with.γ μ = gμνγν and.γν as in (4.2.2) but now represented as endomorphisms on the 
fibers of. S. The appearance of.γ μ comes from the identification of the basis covector 
.dxμ ∈ �1

dR(M)|U with the basis vector .∂μ ∈ �∞(T M)|U using the metric, which is 
then embedded in .Cliff+(M). That is, we have 

. dxμ
p = g(∂μ, ·)p

as (non-degenerate) maps from.Tp M to . C with .p ∈ U ⊂ M . 
Recall that if .M is compact, then any vector bundle carries a smoothly varying 

inner product on its fibers, 

. 〈·, ·〉 : �∞(S) × �∞(S) → C∞(M).

Exercise 4.6 Use a partition of unity argument to show that any vector bundle on a 
compact manifold .M admits a smoothly varying inner product on its fibers. 

Definition 4.12 The Hilbert space of square-integrable spinors .L2(S) is defined as 
the completion of .�∞(S) in the norm corresponding to the inner product 

. (ψ1, ψ2) =
∫

M
〈ψ1, ψ2〉(x)

√
det gdx,

where .
√
det gdx is the Riemannian volume form. 

Recall that in the previous subsection we selected the real Clifford algebras.Cl±n as 
subalgebras in .Cln that commute with a certain anti-linear operator .J±

n . We now  try  
to select .Cliff±(M) ⊂ Cliff(M), considered as endomorphisms on .�∞(S), through 
a globally-defined operator .JM : �∞(S) → �∞(S), so that 

. (JMψ)(x) = J±
n (ψ(x)),

for any section .ψ ∈ �∞(S), where .n = dim M . Such a global operator does not 
always exist: this gives rise to the notion of a spin manifold. It is conventional to 
work with .J−

n to select .Cliff−(M) ⊂ Cliff(M), making our sign Table 4.2 fit with 
the usual definition of KO-dimension in noncommutative geometry. 

Definition 4.13 A Riemannian spin. c manifold is called spin if there exists an anti-
unitary operator .JM : �∞(S) → �∞(S) such that: 

(1) .JM commutes with the action of real-valued smooth functions on .�∞(S); 
(2) .JM commutes with .Cliff−(M) (or with .Cliff−(M)0 in the odd case). 

We call the pair .(S, JM ) a spin structure on .M and refer to the operator .JM as the 
charge conjugation. 

If the manifold .M is even dimensional, we can define a grading 

.(γMψ)(x) = γn+1(ψ(x)); (ψ ∈ �∞(S)).
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Then, the sign rules of Table 4.2 for the square of .J−
n and the (anti)-commutation of 

.J−
n with .γn+1 and odd elements in .Cl−n hold in each fiber of .�∞(S). Hence, we find 

that also globally 

. J 2
M = ε, JM x = ε′x JM ; (x ∈ (Cliff−(M))1, JMγM = ε′′γM JM ,

with .ε, ε′, ε′′ ∈ {±1} being the signs in Table 4.2 with .n = dim M modulo eight. 
This will be crucial for our definition of a real spectral triple in the next section, 
where these signs determine the KO-dimension of a noncommutative Riemannian 
spin manifold. 

4.2.2 Clifford Connections, Spin Connections and the Dirac 
Operator 

The presence of a spin structure on a Riemannian manifold allows for the construction 
of a first-order differential operator that up to a scalar term squares to the Laplacian 
associated to. g. This is the same operator that Dirac searched for (with success) in his 
attempt to replace the Schrödinger equation by a more general covariant differential 
equation in Minkowski space. The Dirac operator that we will describe below is 
the analogue for Riemannian spin manifolds of Dirac’s operator on flat Minkowski 
space. 

Definition 4.14 A connection on a vector bundle .E → M is given by a .C-linear 
map on the space of smooth sections: 

. ∇ : �∞(E) → �1
dR(M) ⊗C∞(M) �∞(E)

that satisfies the Leibniz rule 

. ∇( f η) = f ∇(η) + d f ⊗ η; ( f ∈ C∞(M), η ∈ �∞(E)).

The curvature .�E of .∇ is defined by the .C∞(M)-linear map 

. �E := ∇2 : �∞(E) → �2(M) ⊗C∞(M) �∞(E).

Finally, if.〈·, ·〉 is a smoothly varying (i.e.,.C∞(M)-valued) inner product on.�∞(E), 
a connection is said to be hermitian, or  compatible if 

. − 〈∇η, η′〉 + 〈η,∇η′〉 = d〈η, η′〉; (η, η′ ∈ �∞(E)).

Equivalently, when evaluated on a vector field .X ∈ �∞(T M) a connection gives 
rise  to a map  

.∇X : �∞(E) → �∞(E).
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More precisely, the relation with the above definition is given by 

. ∇X (η) := ∇(η)(X),

for all .X ∈ �∞(T M) and .η ∈ �∞(E). The corresponding curvature then becomes 

.�E (X, Y ) = [∇X ,∇Y ] − ∇[X,Y ]; (X, Y ∈ �∞(T M)), (4.2.3) 

i.e., it is a measure of the defect of .∇ to be a Lie algebra map. 

Example 4.15 Consider the tangent bundle .T M → M on a Riemannian manifold 
.(M, g). A classical result is that there is a unique connection on.T M that is compatible 
with the inner product . g on .�(T M), i.e. 

. 〈∇X Y, Z〉 + 〈Y,∇X Z〉 = X (〈Y, Z〉)

and that is torsion-free, i.e. 

. ∇X Y − ∇Y X = [X, Y ]; (X, Y ∈ �∞(T M)).

This connection is called the Levi–Civita connection and can be written in local 
coordinates .{xμ}n

μ=1 on a chart .U ⊂ M as .∇(∂ν) = �κ
μνdxμ ⊗ ∂κ , or  

. ∇∂μ
(∂ν) = �κ

μν∂κ .

The.C∞(U )-valued coefficients.�κ
μν are the so-called Christoffel symbols and torsion-

freeness corresponds to the symmetry .�κ
μν = �κ

νμ. 
Recall also the definition of the Riemannian curvature tensor on .(M, g) as the 

curvature of the Levi–Civita connection, i.e. 

. R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ] ∈ �(End T M),

which is indeed a .C∞(M)-linear map. Locally, we have for its components 

. Rμνκλ := g(∂μ, R(∂κ , ∂λ)∂ν).

The contraction .Rνλ := gμκ Rμνκλ is called the Ricci tensor, and the subsequent 
contraction .s := gνλ Rνλ ∈ C∞(M) is the scalar curvature. 

Similar results hold for the cotangent bundle, with the unique, compatible, torsion-
free connection thereon related to the above via the metric . g. 

Definition 4.16 If.∇E is a connection on a vector bundle. E , theLaplacian associated 
to .∇E is the second order differential operator on .E defined by 

.�E := −Trg(∇ ⊗ 1 + 1 ⊗ ∇E ) ◦ ∇E : �∞(E) → �∞(E),
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where 

. ∇ ⊗ 1 + 1 ⊗ ∇E : �1
dR(M) ⊗C∞(M) �∞(E)

→ �1
dR(M) ⊗C∞(M) �1

dR(M) ⊗C∞(M) �∞(E)

is the combination of the Levi–Civita connection on the cotangent bundle with 
the connection .∇E and .Trg is the trace associated to . g mapping . �1

dR(M) ⊗C∞(M)

�1
dR(M) → C∞(M). 

Locally, we find 
. �E = −gμν(∇E

μ ∇E
ν − �κ

μν∇E
κ ).

If .M is a Riemannian spin. c manifold, then the above Levi–Civita connection can be 
lifted to the spinor bundle. First, choose a local orthonormal frame for .T M |U : 

. {E1, . . . , En} for �(T M)|U : g(Ea, Eb) = δab.

The corresponding dual orthonormal frame of.T ∗M |U is denoted by. θa . We can then 
write the Christoffel symbols in this basis, namely by 

. ∇Ea =: �̃b
μadxμ ⊗ Eb

on vector fields, and on one-forms by 

. ∇θb = −�̃b
μadxμ ⊗ θa .

The compatibility of .∇ with the inner product . g implies the skew-symmetry of . �̃b
μa

under the exchange of . a and . b. 
Also note that the local orthonormal frame for .T M |U allows us to write Clifford 

relations for (globally) fixed matrices .γ a : 

.γ aγ b + γ bγ a = 2δab; (a, b = 1, . . . , n). (4.2.4) 

We now come to lift this structure from the tangent bundle to the spinor bundle. 
More precisely, one requires the following compatibility between the Levi–Civita 
connection, Clifford multiplication, and the connection on the spinor bundle. 

Definition 4.17 Let.M be a spin. c manifold. A Clifford connection .∇ S on the spinor 
bundle.S → M is a hermitian connection.∇ S on the spinor bundle.S → M such that 

.∇ S
X (c(ω)ψ) = c(∇X (ω))ψ + c(ω)∇ S

X (ψ); (4.2.5) 

for any.X ∈ X(M), ω ∈ �1
dR(M), ψ ∈ �∞(S). Here. ∇ is the Levi–Civita connection 

on the cotangent bundle. 

We also have the following concrete formula.
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Lemma 4.18 Let . M be a spin. c manifold. Then the following local formula defines 
a Clifford connection on the spinor bundle: 

. ∇ S
μψ(x) =

(
∂μ − 1

4
�̃b

μaγ
aγb

)
ψ(x).

Any other Clifford connection on . S is of the form .∇ S + α where .α = −α∗ is a purely 
imaginary one-form. 

Proof Take .X = ∂μ in local coordinates .{xμ} on .U and take .ω = θ c with respect 
to an orthonormal frame .{θ c} for .T ∗M |U . Then .c(ω) = γ c and we find for any 
.ψ ∈ �∞(S) that 

. ∇ S
∂μ

(γ cψ) − γ c∇ S
∂μ

ψ = −1

4
�̃b

μaγ
aγbγ

cψ + 1

4
�̃b

μaγ
cγ aγbψ

= −1

4
�̃b

μaγ
aγbγ

cψ + 1

4
�̃b

μa

(
2δcaγb − 2δc

bγ
a + γ aγbγ

c
)
ψ

=
(
1

2
�̃b

μc − 1

2
�̃c

μaγ
a

)
ψ

= −�̃c
μaγ

aψ

using the relations (4.2.4) and skew-symmetry of .�̃b
μc under the exchange of . b and 

. c. By definition of the Christoffel symbols .�̃ we also have that . c(∇∂μ
(θ c))ψ =

−�̃c
μaγ

aψ so that the compatibility (4.2.5) is satisfied. The skew-symmetric property 

of.�̃b
μc combines with hermiticity of.γ a to yield hermiticity of.∇ S and this completes 

the proof of the first statement. 
If .∇̃ is another connection on . S we can always write .∇̃ = ∇ + α where . α ∈

EndC∞(M)(�
∞(S)) ⊗C∞(M) �1

dR(M). For this connection to be Clifford we need 
.α(∂μ) ∈ EndC∞(M)(�

∞(S)) to commute with all .c(ω). Since .M is spin. c we have 
.EndC∞(M)(�

∞(S)) ∼= Cliff(M)(0). From this we derive that at each point .x ∈ M the 
linear map .α(∂μ)x should be a scalar multiple of the identity. Hermiticity of .∇̃ then 
implies that .α(∂μ) ∈ C∞(M, iR). �

We will call the above Clifford connection .∇ S on . S the spin connection. 

Proposition 4.19 If . M is a spin manifold and . JM is the corresponding anti-unitary 
operator on .�(S), then the spin connection . ∇ S is the unique Clifford connection that 
commutes with . JM . 

Proof Observe that the product.γ aγ b = −(iγ a)(iγ b) is in the even part of the Clif-
ford algebra .Cl−n , since 

. (iγ a)(iγ b) + (iγ b)(iγ a) = −2δab.

Since by definition the operator .J−
n commutes with the even elements in .Cl−n acting 

fiberwise on the spinor bundle, it follows that .∇ S commutes with .JM .
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Since any other Clifford connection differs from .∇ S by the addition of a purely 
imaginary one-form. α, commutation with .JM implies that .α = 0. �

All of the above structure culminates in the following definition 

Definition 4.20 Let .M be a spin manifold, with spin structure .(S, JM ). The  Dirac 
operator .DM is the composition of the spin connection on . S with Clifford multipli-
cation of Definition 4.11: 

. DM : �∞(S)
∇S−→ �1

dR(M) ⊗C∞(M) �∞(S)
−ic−→ �∞(S).

In local coordinates, we have 

. DMψ(x) = −iγ μ

(
∂μ − 1

4
�̃b

μaγ
aγb

)
ψ(x).

4.2.3 Lichnerowicz Formula 

Let us come back to the original motivation of Dirac, which was to find an operator 
whose square is the Laplacian. Up to a scalar this continues to hold for the Dirac 
operator on a Riemannian spin manifold, a result that will turn out to be very useful 
later on in our physical applications. For this reason we include it here with proof. 

Theorem 4.21 Let .(M, g) be a Riemannian spin manifold with Dirac operator.DM . 
Then 

. D2
M = �S + 1

4
s,

in terms of the Laplacian .�S associated to the spin connection .∇ S and the scalar 
curvature . s. 

Proof We exploit the local expressions for .DM , .�S and . s, as the above formula is 
supposed to hold in each chart that trivializes . S. With .DM = −iγ μ∇ S

μ we compute 

. D2
M = −γ μ∇ S

μγ ν∇ S
ν = −γ μγ ν∇ S

μ∇ S
ν − γ μc(∇μdxκ)∇ S

κ

= −γ μγ ν(∇ S
μ∇ S

ν − �κ
μν∇ S

κ ).

We then use the Clifford relations (4.2.2) to write .γ μγ ν = 1
2 [γ μ, γ ν] + gμν , and 

combine this with torsion freedom.�κ
μν = �κ

νμ to obtain 

.D2
M = −gμν(∇ S

μ∇ S
ν − �κ

μν∇ S
κ ) − 1

2
[γ μ, γ ν]∇ S

μ∇ S
ν ≡ �S − 1

2
γ μγ ν RS(∂μ, ∂ν),
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in terms of the Laplacian for .∇ S on . S and the curvature .RS thereof. The latter is 
given by .− 1

4 Rκλμνγ
κγ λ, as one can easily compute from the explicit local form of 

.∇ S in Definition 4.17. Thus, 

. D2
M = �S − 1

8
Rμνκλγ

μγ νγ κγ λ.

Using the cyclic symmetry of the Riemann curvature tensor in the last three 
indices, and the Clifford relations (4.2.2) we find that the second term on the right-
hand side is equal to . 14 Rνλgνλ = 1

4 s, in terms of the scalar curvature defined in 
Example 4.15. �

4.3 The Dirac Operator: Analytical Aspects 

In this section we will establish a series of key results that forms the starting point for 
an operator-algebraic formulation of noncommutative Riemannian spin manifolds. 

Theorem 4.22 Let . M be a compact Riemannian spin manifold (without boundary). 
The Dirac operator .DM is essentially self-adjoint on .�∞(S) ⊂ L2(S) with compact 
resolvent .(i + DM)−1, and has bounded commutators with elements in .C∞(M). In  
fact 

. [DM , f ] = −ic(d f ),

so that .‖[DM , f ]‖ = ‖ f ‖Lip is the Lipschitz (semi)-norm of . f : 

. ‖ f ‖Lip = sup
x �=y

{
f (x) − f (y)

dg(x, y)

}
.

We divide the proof of this Theorem into three parts which we treat in the sub-
sequent subsections: bounded commutators, essential self-adjointness, and compact 
resolvent. 

4.3.1 Bounded Commutators 

Proposition 4.23 The commutator.[DM , f ] defined on.�∞(S) extends to a bounded 
operator on .L2(S). More precisely, we have .[DM , f ] = −ic(d f ) and . ‖[DM , f ]‖ =
‖ f ‖Lip. 

Proof It follows from the Leibniz rule that 

.[DM , f ](ψ) = −ic(dxμ)[∇ S
μ, f ]ψ = −ic(dxμ)(∂μ f ) · ψ = −ic(d f )ψ
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where we have assumed that.supp(ψ) is contained in a chart that trivializes the spinor 
bundle .S → M so we can use the local formula for .DM . 

For the norm of the commutator we compute 

. ‖[DM , f ]‖2 = ‖c(d f ∗)c(d f )‖ = sup
x∈M

|g−1(d f ∗, d f )(x)|.

We may write this as .‖grad f ‖2∞ := supx∈M ‖g(gradx f ∗, gradx f )‖ in terms of the 
gradient vector field defined by.grad f := (d f )�. We claim that.‖grad f ‖∞ = ‖ f ‖Lip. 

First, consider a smooth path.γ : [0, 1] → M such that.γ (0) = x, γ (1) = y. Then 

. f (x) − f (y) =
∫ 1

0

d

dt
f (γ (t))dt

=
∫ 1

0

(
dγ (t) f

)
(γ̇ (t)) dt.

=
∫ 1

0
gγ (t)

(
gradγ (t) f, γ̇ (t)

)
dt.

By Cauchy–Schwartz inequality we then have 

. | f (x) − f (y)| ≤ ‖grad f ‖∞l(γ )

in terms of the Riemannian length .l(γ ) of the path . γ . If we take an infimum over 
all such paths . γ we find that .| f (x) − f (y)| ≤ ‖grad f ‖∞dg(x, y) so that . ‖ f ‖Lip ≤
‖grad f ‖∞. 

For the other inequality, suppose instead that there exists .x ∈ M so that 
.‖gradx f ‖ > ‖ f ‖Lip + ε for some.ε > 0. Consider again a smooth path. γ : [0, 1] →
M such that .γ (0) = x . Then there exists .δ > 0 such that for all .0 < t < δ we have 

. 

∣∣∣∣1t ( f (γ (t)) − f (γ (0))) − gx(gradx f, γ̇ (0))

∣∣∣∣ <
ε

2

which implies that 

. 

∣∣∣∣1t ( f (γ (t)) − f (γ (0)))

∣∣∣∣ >
∣∣gx(gradx f, γ̇ (0))

∣∣ − ε

2

Now take a normalized.γ̇ (0) = gradx f
‖gradx f ‖ and parametrize. γ naturally so that. l(γ (0) →

γ (t)) = t . Then the above inequality yields
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. | f (γ (t)) − f (γ (0))| >
(
‖gradx f ‖ − ε

2

)
t

>
(
‖ f ‖Lip + ε

2

)
l(γ (0) → γ (t))

>
(
‖ f ‖Lip + ε

2

)
dg(γ (0), γ (t))

But this implies that .‖ f ‖Lip > ‖ f ‖Lip + ε
2 which is a contradiction. �

4.3.2 Essential Self-adjointness 

We first show that .DM is a symmetric operator on .�∞(S) and then apply a general 
result on essential self-adjointness for symmetric differential operators on compact 
manifolds without boundary. 

Proposition 4.24 For all .ψ1, ψ2 ∈ �∞(S) we have 

. (DM(ψ1), ψ2) = (ψ1, DM(ψ2)) .

Proof First, an application of the hermiticity of the spinor connection yields 

. (DM (ψ1), ψ2) = +i
∫

M
〈c(dxμ)∇S

μ(ψ1), ψ2〉
√
det g · dx1 ∧ · · · ∧ dxn

= (ψ1, DM (ψ2)) − i
∫

M
〈ψ1, c(∇μ(dxμ))ψ2〉

√
det g · dx1 ∧ · · · ∧ dxn

+ i
∫

M
∂μ

(〈ψ1, c(dxμ)ψ2〉
) √

det g · dx1 ∧ · · · ∧ dxn

An argument based on integration by parts shows that it is now sufficient to establish 
the following expression 

.∇μ(dxμ)
√
det g = −∂μ(

√
det g)dxμ (4.3.1) 

For the right-hand side we use the det/log relationship: 

. ∂μ(
√
det g) = 1

2
Tr

(
(∂μg)g−1

)√
det g

which follows from basic linear algebra and the chain rule. We compute for the 
left-hand side of (4.3.1) that 

. ∇μ(dxμ) = −�μ
μκdxκ

where the Christoffel symbols are given locally by 

.�κ
μν = 1

2
gκλ

(
∂μgνλ + ∂νgμλ − ∂λgμν

)
.
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In other words, we have 

. �μ
μκ = 1

2
gμλ∂κ(gμλ) = 1

2
Tr(g−1∂κ g),

from which it follows that 

. ∇μ(dxμ) = −1

2
Tr(g−1∂μg)dxμ

so that validity of Eq. (4.3.1) follows. �

We proceed with the following well-known result (see Note 7 of this chapter 
below), which is valid for any closable operator .T on a Hilbert space .H (and so in 
particular to the symmetric operator .DM ). 

Lemma 4.25 Let . T be a closable operator on a Hilbert space . H. Then . u ∈ H
belongs to the domain of the closure . T of . T if and only if there exists a sequence 
.{u j } in the domain of . T such that .u j → u and .‖T u j‖ is bounded. 

Proof Let .ξ ∈ Dom(T ∗). Then 

. |(u, T ∗ξ)| = lim
n→∞ |(un, T ∗ξ)| = lim

n→∞ |(T un, ξ)| ≤ lim
n→∞ ‖T un‖‖ξ‖.

using Cauchy–Schwartz inequality. Since .‖T un‖ is bounded, it follows that . ξ →
(u, T ∗ξ) is a bounded functional on .Dom(T ∗). �

We now apply this to symmetric first-order differential operators on compact 
manifolds without boundary. Recall that a first-order differential operator .D on a 
vector bundle .E → M has the following local expression: 

. D =
∑

μ

Aμ(x)
∂

∂xμ
+ B(x)

where .Aμ(x), B(x) : Ex → Ex are endomorphisms acting on the fibers of . E . We  
will always act with .D on smooth sections .�∞(E) of the bundle .E → M and we 
furthermore fix an inner product on .�∞(E). 

Proposition 4.26 Every symmetric first-order differential operator . D on a vector 
bundle . E over a compact manifold without boundary is essentially self-adjoint. 

Proof The proof uses so-called Friedrichs’ mollifiers on. M . For all sufficiently small 
.t > 0 there exist (cf. Exercise below) self-adjoint operators . Ft : L2(E) → L2(E)

such that 

(i) .‖Ft‖ ≤ 1; 
(ii) for each .u ∈ L2(E), .Ft u → u in .L2(E) as .t → 0; 
(iii) for each .u ∈ L2(E), .Ft u is smooth;
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(iv) the commutator.[D, Ft ] extends to a bounded operator on.L2(E), whose norm 
is bounded independent of . t . 

Then, let.u ∈ Dom(D∗). In order to conclude that.D is essentially self-adjoint we will 
show that.u ∈ Dom(D). Note that.Ft u is smooth and tends to. u as.t → 0. Moreover, 

. D(Ft u) = Ft D∗u + [D∗, Ft ]u

On.Dom(D∗)we have.[D∗, Ft ] = [Ft , D]∗, which is the adjoint of a bounded opera-
tor (with norm bound independent of . t). Thus, .D(Ft u) is uniformly bounded so that 
.u ∈ Dom(D) by the previous Lemma. �

Corollary 4.27 The Dirac operator .DM on a compact Riemannian spin. c manifold 
without boundary is essentially self-adjoint. 

Exercise 4.7 Let.ϕ : Rn → R be a smooth, positive function with compact support 
and with total mass 1. Define an operator .Ft on .L2(Rn) by 

. (Ft u)(x) = t−n
∫
Rn

ϕ

(
x − y

t

)
u(y)dy.

Show that.{Ft } is a family of Friedrichs’ mollifiers on.L2(Rn), i.e., a family satisfying 
(i)–(iv) in the Proof of Proposition 4.26. Using local coordinates and partitions of 
unity, graft this family onto an arbitrary compact manifold .M to construct a family 
of Friedrichs’ mollifiers on . M . 

4.3.3 Compact Resolvent 

Here we will rely on a crucial embedding result on Sobolev spaces, namely the 
Rellich Lemma, which we state without proof. 

To start, recall the definition of the first Sobolev space.H 1(Rn) on Euclidean space 
.R

n: it is the completion of the compactly supported smooth functions.C∞
c (Rn) in the 

norm coming from the inner product 

. ( f1, f2)H 1(Rn) = ( f1, f2)L2 +
n∑

μ=1

(∂μ f1, ∂μ f2)L2; ( f1, f2 ∈ C∞(Rn)).

More generally, for a compact manifold .M we can use partition of unity to extend 
this definition to give .H 1(M). So, let .χα be a partition of unity subordinate to an 
atlas.(Uα, φα) of. M . We define.H 1(M) to be the completion of.C∞(M) with respect 
to the inner product 

.( f1, f2)H 1(M) =
∑

α

((χα · f1) ◦ φ−1
α , (χα · f2) ◦ φ−1

α )H 1(Rn)
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This definition turns out to be independent of the choice of an atlas (see Note 9 of 
this chapter below). Moreover, by using trivializing charts it can easily be extended 
to give rise to the Sobolev spaces .H 1(M, E) of sections of a bundle .E → M . 

Lemma 4.28 (Rellich) Let . M be a compact manifold. Then the inclusion map 
.H 1(M, E) into .L2(M, E) is a compact map. 

We will not prove it in full generality here (see Note 10 of this chapter below), 
but give a proof for the case of the circle in Exercise 4.8 below. 

This result can be used to show the compact resolvent property for the Dirac 
operator .DM in the following way. First of all, the norm coming from the inner 
product on .H 1(M, E) is equivalent to the graph norm of .DM (see Note 9 of this 
chapter below), so that Rellich Lemma then implies that the inclusion map 

. ı : Dom(DM) → L2(S)

is a compact map. 

Proposition 4.29 The adjoint .ı∗ : L2(S) → Dom(DM) ⊆ L2(S) is given by . ı∗ =
(1 + DM

2
)−1. 

Proof For .ψ1 ∈ L2(S) and .ψ2 ∈ Dom(DM) we have in terms of the inner product 
on the graph .G(DM) of .DM : 

.

(
(1 + DM

2
)−1(ψ1), ψ2

)
G(DM )

=
(
(1 + DM

2
)−1ψ1, ψ2

)
L2

+
(

DM(1 + DM
2
)−1ψ1, DMψ2

)
L2

= (ψ1, ψ2)L2 = (ψ1, ı(ψ2))L2 .

�
Corollary 4.30 The resolvent .(i + DM)−1 of the Dirac operator on a compact Rie-
mannian spin. c manifold without boundary is a compact operator. 

Proof We start by writing 

. (i + DM)−1 = ((i + DM)−1(1 + DM
2
)1/2(1 + DM

2
)−1/2.

The operator .(i + DM)−1(1 + DM
2
)1/2 is a bounded operator. In fact, using the 

functional calculus on self-adjoint operators we find that 

. ‖(i + DM)−1(1 + DM
2
)1/2‖ ≤ sup

t∈R

{√
1 + t2

|i + t |

}
= 1.

Also, observe that .(1 + DM
2
)−1/2 is a square root of the positive operator . (1 +

DM
2
)−1. When we consider the latter as an operator on .L2(S) it is compact by the 

above Proposition. This is enough to conclude that .(i + DM)−1 is compact. �
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In the following exercise we consider Rellich Lemma on the circle. 

Exercise 4.8 Write a function . f ∈ L2(S1) as a Fourier series: 

. f =
∑
n∈Z

fnen

where .en(t) = e2π int and the sequence .{ fn} is in .l2(Z). The Sobolev space . H 1(S1)

consists of those .L2-functions for which 

. ‖ f ‖2H 1 =
∑
n∈Z

(1 + n2)| fn|2

is finite. 

(1) Establish the following estimate 

. sup
t

∣∣∣∣∣∣
∑

|n|≤N

fnen

∣∣∣∣∣∣ ≤
⎛
⎝ ∑

|n|≤N

| fn|2(1 + n2)

⎞
⎠

1/2 ⎛
⎝ ∑

|n|≤N

1

1 + n2

⎞
⎠

1/2

and derive from this that .H 1(S1) ⊂ C(S1). 
(2) Show that the inclusion .H 1(S1) → L2(S1) is given by the norm limit of the 

sequence .PN of finite-rank operators that send a function . f to the . N ’th partial 
sum 

. PN f =
∑

|n|≤N

fnen

In some cases one can derive the above analytical properties (such as essen-
tial self-adjointness and compact resolvent) from the knowledge of the spectrum of 
eigenvalues, as the following exercise shows. 

Exercise 4.9 Let .{λn}n∈Z be a sequence of real numbers, possibly with degenera-
cies but ordered such that .λn ≤ λn+1. Furthermore, assume that .±∞ are the only 
accumulation points and that .λ±n → ±∞ as .n → ∞. We define a dense subspace 
in .l2(Z) by 

. Dom(D) = span
C
{en : n ∈ Z}

and introduce an unbounded linear operator .D on .Dom(D) ⊂ l2(Z) by setting 

. Den = λnen .

(1) Show that .D is an essentially self-adjoint operator. 
(2) Show that the resolvent .(i + D)−1 is a compact operator on .l2(Z).
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Notes 

Section 4.1. Clifford Algebras 

1. In our treatment of Clifford algebras, we stay close to the seminal paper by Atiyah, Bott and 
Shapiro [ 1], but also refer to the standard textbook [ 2] and the book [ 3, Chap. 5]. We also take 
inspiration from the lecture notes [ 4, 5]. 

2. The definition of a quadratic form given here is equivalent with the usual definition, which 
states that .Q is a quadratic form if .Q(v) = S(v, v) for some symmetric bilinear form . S (cf. 
Exercise 4.1). This is shown by Jordan and von Neumann in [ 6]. 

3. The periodicity eight encountered for the real Clifford algebras .Cl±k is closely related to the 
eightfold periodicity of KO-theory [ 7]. The periodicity two encountered for the complex Clif-
ford algebras.Cln is closely related to Bott periodicity in K-theory [ 8]. 

Section 4.2 . Riemannian Spin Geomtry 

4. A standard textbook on Riemannian geometry is [ 9]. For a complete treatment of Riemannian 
spin manifolds we refer to e.g., [ 2, 10]. The noncommutative approach to (commutative) spin 
geometry that we adopt here can also be found in [ 3, Chap. 9] or [ 4, 11]. 

5. In Definition 4.10 a Riemannian manifold is said to be spin. c if.Cl(T M) � End(S) (even case). 
Glancing back at Chap. 2 we see that.Cln is Morita equivalent to. C (. n even). With Definition 7.9 
of the next Chapter, we conclude that a manifold is spin. c precisely if (the.C∗-completion of) 
.Cliff(M) is Morita equivalent to.C(M). This is the algebraic approach to spin. c manifolds laid 
out in [ 3, Sect. 9.2]. 

6. A first reference to Theorem 4.22 is [ 12, Sect. VI.1].  
7. Lemma 4.25 can be found as [ 13, Lemma 1.8.1]) 
8. The proof of Proposition 4.26 is  based on [  13, Lemma 10.2.5] 
9. The fact that the definition of the inner product for.H1(M) is independent of the choice of an 

atlas is shown in for instance [ 14, Sect. 1.3.4]. The relation of this inner product to the graph 
norm of .DM is a deep result which is a consequence of ellipticity of the Dirac operator, see 
for instance [ 14, Lemma 1.3.6]. 

10. A proof of the Rellich Lemma 4.28 can be found in [ 15, Corollary II.1.2] and in [ 16, Lemma 
1.7]. 
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Chapter 5 
Noncommutative Riemannian Spin 
Manifolds 

This chapter introduces the main technical device—spectral triples—that generalizes 
Riemannian spin geometry to the noncommutative world. We exemplify this by 
means of toric noncommutative manifolds; this includes the noncommutative torus. 

5.1 Gelfand Duality 

The first step towards noncommutative manifolds is to arrive at an algebraic char-
acterization of topological spaces. This is accomplished by Gelfand duality, giving  
a one-to-one correspondence between compact Hausdorff topological spaces and 
commutative .C∗-algebras. Let us recall some definitions. 

Definition 5.1 A .C∗-algebra .A is a (complex) .∗-algebra (Definition 2.1) that is 
complete with respect to a multiplicative norm (i.e..‖ab‖ ≤ ‖a‖‖b‖ for all.a, b ∈ A) 
that satisfies the .C∗-property: 

. ‖a∗a‖ = ‖a‖2.
Example 5.2 The key example of a commutative .C∗-algebra is the algebra . C(X)

for a compact topological space . X . Indeed, uniform continuity is captured by the 
norm 

. ‖ f ‖ = sup{| f (x)| : x ∈ X}

and involution defined by . f ∗(x) = f (x̄). This indeed satisfies .‖ f ∗ f ‖ = ‖ f ‖2. 
Example 5.3 Another key example where .A is noncommutative is given by the 
.∗-algebra of bounded operators.B(H) on a Hilbert space. H, equipped with the oper-
ator norm. 

The following result connects with the matrix algebras of Chap. 2. 
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Proposition 5.4 If .A is a finite-dimensional .C∗-algebra, then it is isomorphic to a 
matrix algebra: 

. A �
N⊕

i=1

Mni (C).

Proof See Note 2 in this chapter. �

In Chap. 2 we defined the structure space of a.∗-algebra. A to consist of (equivalence 
classes of) irreducible representations of . A. Let us extend this definition to .C∗-
algebras. 

Definition 5.5 A representation of a .C∗-algebra .A is a pair .(H, π) where .H is a 
Hilbert space and . π is a .∗-algebra map 

. π : A → B(H).

A representation .(H, π) is irreducible if .H �= 0 and the only closed subspaces in . H
that are left invariant under the action of . A are .{0} and . H. 

Two representations.(H1, π1) and.(H2, π2) of a.C∗-algebra. A are unitarily equiv-
alent if there exists a unitary map .U : H1 → H2 such that 

. π1(a) = U ∗π2(a)U.

Definition 5.6 The structure space . Â of a .C∗-algebra .A is the set of all unitary 
equivalence classes of irreducible representations of . A. 

In Chap. 2 we considered the commutative matrix algebra .CN whose structure 
space was the finite topological space consisting of .N points. Let us sketch the 
generalization to compact Hausdorff topological spaces, building towards Gelfand 
duality. As a motivating example, we consider the .C∗-algebra.C(X) for a compact 
Hausdorff topological space. X (cf. Example 5.2). As this.C∗-algebra is commutative, 
a standard argument shows that any irreducible representation .π of .C(X) is one-
dimensional. In fact, any such .π is equivalent to the evaluation map .evx at some 
point . x of . X , given by 

. evx : C(X) → C;
f 	→ f (x).

Being a one-dimensional representation, .evx is automatically an irreducible repre-
sentation. It follows that the structure space of.C(X) is given by the set of points of. X . 
But more is true, as the topology of. X is also captured by the structure space. Namely, 
since in the commutative case the irreducible representations are one-dimensional 
.π : A → C the structure space can be equipped with the weak .∗-topology. That is 
to say, for a sequence.{πn}n in. Â, .πn converges weakly to. π if .πn(a) → π(a) for all 
.a ∈ A.
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We state the main result, generalizing our finite-dimensional version of Sect. 2.1.1 
to the infinite-dimensional setting. 

Theorem 5.7 (Gelfand duality) The structure space . Â of a commutative unital .C∗-
algebra . A is a compact Hausdorff topological space, and .A � C( Â) via the Gelfand 
transform 

. a ∈ A 	→ â ∈ Â; â(π) = π(a).

Moreover, for any compact Hausdorff topological space .X we have 

. Ĉ(X) � X.

Proof See Note 3 in this chapter. �

5.2 Spectral Triples 

The next milestone which we need to reach noncommutative Riemannian spin geom-
etry is the translation of the Riemannian distance (4.2.1) on a compact Riemannian 
spin manifold into functional analytic data. Indeed, we will give an alternative for-
mula as a supremum over functions in .C∞(M). The translation from points in . M
to functions on .M is accomplished by imposing that the gradient of the functions is 
less than 1 (see Fig. 5.1). This is the continuum analogue of Theorem 2.18. 

Proposition 5.8 Let .M be a Riemannian spin.c-manifold with Dirac operator .DM. 
The following formula defines a distance between points in .Ĉ(M) � M: 

. d(x, y) = sup
f ∈C∞(M)

{| f (x) − f (y)| : ‖[DM , f ]‖ ≤ 1} .

Moreover, this distance function . d coincides with the Riemannian distance func-
tion . dg. 

x y 

f 

x y 

Fig. 5.1 The translation of the distance between points .x, y in .M to a formulation in terms of 
functions of slope.≤ 1
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Proof First, note that the relation .‖ f ‖Lip = ‖[DM , f ]‖ ≤ 1 (cf. Theorem 4.20) 
already ensures that .d(x, y) ≤ dg(x, y). For the opposite inequality we fix . y ∈ M
and consider the function . fg,y(z) = dg(z, y). Then .‖ fg,y‖Lip ≤ 1 and 

. d(x, y) ≥ | fg,y(x) − fg,y(y)| = dg(x, y),

as required. �

Thus, we have reconstructed the Riemannian distance on .M from the algebra 
.C∞(M)of functions on.M and the Dirac operator.DM , both acting in the Hilbert space 
.L2(S) of square-integrable operators. Note that the triple.(C∞(M), L2(S), DM) con-
sists of mere functional analytical, or ‘spectral’ objects, instead of geometrical. Upon 
allowing for noncommutative algebras as well, we arrive at the following spectral 
data required to describe a noncommutative Riemannian spin manifold. 

Definition 5.9 A spectral triple .(A,H, D) is given by a unital .∗-algebra .A repre-
sented as bounded operators on a Hilbert space .H and a self-adjoint operator .D in 
.H such that the resolvent .(i + D)−1 is a compact operator and .[D, a] extends to a 
bounded operator for each .a ∈ A. 

A spectral triple is even if the Hilbert space .H is endowed with a .Z2-grading . γ
such that .γ a = aγ and .γ D = −Dγ . 

A real structure of KO-dimension .n ∈ Z/8Z on a spectral triple is an anti-linear 
isometry .J : H → H such that 

. J 2 = ε, J D = ε′DJ, Jγ = ε′′γ J (even case),

where the numbers.ε, ε′, ε′′ ∈ {−1, 1} are given as a function of . n modulo. 8, as they  
appear in Table 5.1. 

Moreover, with .b0 = Jb∗ J−1 we impose the commutant property and the order 
one condition: 

.[a, b0] = 0, [[D, a], b0] = 0; (a, b ∈ A). (5.2.1) 

A spectral triple with a real structure is called a real spectral triple. 

Table 5.1 The KO-dimension . n of a real spectral triple is determined by the signs . {ε, ε′, ε′′}
appearing in.J 2 = ε, J D = ε′DJ and. Jγ = ε′′γ J

.n 0 1 2 3 4 5 6 7 

.ε 1 1 . −1 . −1 . −1 . −1 1 1 

.ε′ 1 . −1 1 1 1 . −1 1 1 

.ε′′ 1 . −1 1 . −1
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Remark 5.10 The notation .(A,H, D) is chosen to distinguish a general spectral 
triple from the finite spectral triples considered in Chaps. 2 and 3, which were denoted 
as .(A, H, D). 

The basic example of a spectral triple is the canonical triple associated to a 
compact Riemannian spin manifold: 

• .A = C∞(M), the algebra of smooth functions on . M ; 
• .H = L2(S), the Hilbert space of square integrable sections of a spinor bundle 

.S → M ; 
• .D = DM , the Dirac operator associated to the Levi–Civita connection lifted to the 
spinor bundle. 

The real structure . J is given by the charge conjugation .JM of Definition 4.13. If  
the manifold is even dimensional then there is a grading on . H, defined just below 
Definition 4.13. Since the signs in the above table coincide with those in Table 4.2, 
the KO-dimension of the canonical triple coincides with the dimension of . M . 

Example 5.11 The tangent bundle of the circle.S1 is trivial and has one-dimensional 
fibers, so that spinors are given by ordinary functions on . S1. Moreover, the Dirac 
operator.DS1 is given by.−id/dt where.t ∈ [0, 2π), acting on.C∞(S1) (which is a core 
for.DS1 ). The eigenfunction of.DS1 are the exponential function.eint with eigenvalues 
.n ∈ Z. As such, .(i + DS1)−1 is a compact operator. Moreover . [DS1 , f ] = −id f/dt
is bounded. Summarizing, we have the following spectral triple: 

. 

(
C∞(S1), L2(S1),−i

d

dt

)
.

Note that the supremum norm of a function. f ∈ C∞(S1) coincides with the operator 
norm of. f considered as multiplication operator on.L2(S1). A real structure is given 
by complex conjugation on .L2(S1), making the above a real spectral triple of KO-
dimension 1. 

Example 5.12 Since the tangent bundle of the torus.T2 is trivial, we have. Cliff(T2) �
C(T2) ⊗ Cl2. As a consequence, the spinor bundle is trivial, .S = T

2 × C
2, and 

.L2(S) = L2(T2) ⊗ C
2. The generators .γ 1 and .γ 2 are given by 

. γ 1 =
(
0 −i
i 0

)
, γ 2 =

(
0 1
1 0

)
,

which satisfy (4.2.4). The chirality operator is then given by 

.γT2 = −iγ 1γ 2 =
(−1 0

0 1

)
,
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and the real structure .JT2 that selects .Cl−2 ⊂ Cl2 is 

. JT2

(
v1
v2

)
=

(−v̄2
v̄1

)
.

Finally, the Dirac operator on .T
2 is 

. DT2 = −iγ μ∂μ =
(

0 −∂1 − i∂2
∂1 − i∂2 0

)
.

The eigenspinors of .DT2 are given by the vectors 

. φ±
n1,n2(t1, t2) := 1√

2

(
ei(n1t1+n2t2)

± in1+n2√
n21+n22

ei(n1t1+n2t2)

)
; (n1, n2 ∈ Z),

with eigenvalues .±
√
n21 + n22. Again, this ensures that .(i + DT2)−1 is a compact 

operator. For the commutator with a function . f ∈ C∞(T2) we compute 

. [DT2 , f ] =
(

0 −∂1 f − i∂2 f
∂1 f − i∂2 f 0

)
,

which is bounded because .∂1 f and .∂2 f are bounded. The signs in the commutation 
between.JT2 , DT2 and .γT2 makes the following a spectral triple of KO-dimension 2: 

. 
(
C∞(T2), L2(T2) ⊗ C

2, DT2; JT2 , γT2

)
.

Other examples are given by finite spectral triples, discussed at length—and 
classified—in Chap. 2. Indeed, the compact resolvent condition is automatic in finite-
dimensional Hilbert spaces; similarly, any operator such as .[D, a] is bounded as in 
this case also .D is a bounded operator. More serious noncommutative examples are 
presented below in Sect. 5.3. 

Corresponding to the direct product of manifolds, one can take the product of 
spectral triples as follows (see also Exercise 2.24). Suppose that. (A1,H1, D1; γ1, J1)
and .(A2,H2, D2; γ2, J2) are even real spectral triples, then we define the product 
spectral triple by 

.A = A1 ⊗ A2;
H = H1 ⊗ H2;
D = D1 ⊗ 1 + γ1 ⊗ D2;
γ = γ1 ⊗ γ2;
J = J1 ⊗ J2.
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If .(A2,H2, D2; J2) is odd, then we can still form the product when we leave out . γ . 
Note that .D2 = D2

1 ⊗ 1 + 1 ⊗ D2
2 , since the cross-terms vanish due to the fact that 

.γ1D1 = −D1γ1. 

Example 5.13 In the physical applications later in this book (Chap. 10 and after-
wards) we are mainly interested in almost-commutative manifolds which are defined 
as products of a Riemannian spin manifold .M with a finite noncommutative space 
. F . More precisely, we will consider 

. M × F := (C∞(M), L2(S),D; JM , γM) ⊗ (AF , HF , DF ; JF , γF ),

with .(AF , HF , DF ; JF , γF ) as in Definition 2.19. Note that this can be identified 
with: 

. M × F = (C∞(M, AF ), L2(S ⊗ (M × HF )),D ⊗ 1 + γM ⊗ DF ; JM ⊗ JF , γM ⊗ γF ),

in terms of the trivial vector bundle .M × HF on . M . 

Returning to the general case, Definition 2.24 encountered before in the context 
of finite spectral triples can be translated verbatim to the general case: 

Definition 5.14 Two spectral triples.(A1,H1, D1) and.(A2,H2, D2) are called uni-
tarily equivalent if .A1 = A2 and if there exists a unitary operator . U : H1 → H2

such that 

. Uπ1(a)U ∗ = π2(a); (a ∈ A1),

UD1U
∗ = D2,

where we have explicitly indicated the representations .πi of .Ai on .Hi (.i = 1, 2). 

Moreover, any spectral triple gives rise to a differential calculus. This generalizes 
our previous Definition 2.22 for the finite-dimensional case. Again, we focus only 
on differential one-forms, as this is sufficient for our applications to gauge theory 
later on. 

Definition 5.15 The .A-bimodule of Connes’ differential one-forms is given by 

. �1
D(A) :=

{
∑

k

ak[D, bk] : ak, bk ∈ A
}

,

and the corresponding derivation .d : A → �1(A) is given by .d = [D, ·]. 
Exercise 5.1 (1) In the case of a Riemannian spin manifold . M , verify that we can 

identify .�1
D(C∞(M)) � �1

dR(M), the usual De Rham differential one-forms. 
(2) In the case of an almost-commutative manifold .M × F , verify that we have 

.�1
D⊗1+γM⊗DF

(C∞(M, AF )) � �1
dR(M, AF ) ⊕ C∞(M,�1

DF
(AF )).
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5.3 Examples of Noncommutative Manifolds 

5.3.1 The Noncommutative Torus 

We now give a detailed exposition of a noncommutative example of a real spectral 
triple, namely, we describe the noncommutative torus. Let us start with the noncom-
mutative topological, i.e. the .C∗-algebraic aspects. 

Definition 5.16 Let . θ be a real number. We define the noncommutative torus .C∗-
algebra .Aθ to be the unital .C∗-algebra generated by .u, v subject to the relations 

. u∗u = uu∗ = 1; v∗v = vv∗ = 1; vu = λuv; (λ = e2π iθ )

The smooth noncommutative torus algebra is then given by 

. Aθ := {a =
∑

r,s

arsu
rvs : (ars) ∈ S(Z2)}

where the space of Schwartz sequences is defined as 

. S(Z2) := {(ars) : sup
r,s∈Z

(1 + r2 + s2)k |ars |2 < ∞ for any k ≥ 0}

Note that for the .∗-algebra structure in .Aθ we have for .a, b ∈ Aθ : 

.ab =
∑

r,s,n,m

λmnar−n,mbn,s−mu
rvs; a∗ =

∑

r,s

λrsa−r,−su
rvs . (5.3.1) 

Also, if .θ = 0 we may identify .u, v with multiplication operators by .z1, z2 ∈ S
1, so  

that.A0
∼= C∞(T2) identifying the series.

∑
r,s arsu

rvs as a Fourier series in two vari-
ables. This should explain the terminology noncommutative torus whenever .θ �= 0. 

Next, consider the normalized faithful trace .τ : Aθ → C given by 

. τ(a) = a00,

so that .τ(a∗a) = ∑
r,s |ars |2 > 0 for .a �= 0. Also  .τ(1) = 1 and .τ(ab) = τ(ba) as 

follows readily from Eq. (5.3.1). 

Lemma 5.17 The trace . τ extends to a continuous trace .τ : Aθ → C and in fact 
.|τ(a)| ≤ ‖a‖. 
Proof Continuity of .τ : Aθ → C follows since we may write on polynomials . a ∈
C〈u, v〉: 

.τ(a) · 1 =
∫

T2
αt1,t2(a)dt
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where .αt1,t2(u
rvs) = ei(r t1+st2) defines an action of .T2 on .Aθ . It thus follows that 

.|τ(a)| ≤ ‖a‖. �

Using this faithful trace we may apply the GNS-construction. This gives a Hilbert 
space 

. Hτ := L2(Aθ , τ )

which—since. τ is faithful—is given by the closure of .Aθ with respect to the Hilbert 
space norm.‖a‖2 = √

τ(a∗a). The representaton .πτ : Aθ → B(Hτ ) is given by 

. πτ (a)b = ab.

As in Exercise 3.2 there is a Tomita involution with respect to the cyclic and separating 
vector .1 ∈ Hτ . It is given explicitly by 

. Jτ (a) = a∗.

This anti-unitary operator can be used to define a right representation of .Aθ on . Hτ

by setting .π◦
τ (a) = Jτπ(a∗)J−1

τ . In fact, we then have 

. π◦
τ (a)b = Jτa

∗b∗ = ba

for all .a, b ∈ Aθ . It then follows that .[π◦
τ (a), π(b)] = 0, so that .Hτ becomes a .Aθ -

bimodule. 
We now prepare for spinors by doubling our Hilbert space: 

. H = Hτ ⊕ Hτ .

The algebra representation of .Aθ on .H is the diagonal representation . π = πτ ⊕ π

while we set 
. J =

(
0 −Jτ

Jτ 0

)
; γ =

(
1 0
0 −1

)
.

As such, we have .J 2 = −1 and .Jγ = −γ J , suggesting the KO-dimension to be 2 
as can be read off from Table 5.1. 

The final step in the description of the noncommutative torus in terms of a real 
spectral triple is the introduction of a noncommutative analogue of a Dirac operator. 
For this, we first consider the basic derivations .δ j : Aθ → Aθ given by 

. δ1

(
∑

r,s

arsu
rvs

)
=

∑

r,s

irarsu
rvs; δ2

(
∑

r,s

arsu
rvs

)
=

∑

r,s

isarsu
rvs .

(5.3.2) 
Indeed, it follows from Eq. (5.3.1) that 

.δ j (ab) = δ j (a)b + aδ j (b); (δ j a)∗ = δ j a
∗. (5.3.3)
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One should consider the derivations .δ1, δ2 as the noncommutative analogues of the 
partial derivatives.∂/∂t j on.A0

∼= C∞(T2). Also note that there is a noncommutative 
“Stokes’ Theorem” in the sense that .τ(δ j (a)) = 0. 

Lemma 5.18 The map .a 	→ δ j a for .a ∈ Aθ extends to a closed (unbounded) skew-
adjoint operator on the Hilbert space .Hτ . 

Proof For this it is sufficient to note that 

.τ((δ j a)∗b) = τ(δ j (a
∗b)) − τ(a∗δ j (b)) = −τ(a∗δ j (b)). �

This result allows us to give the following definition, which is inspired of course 
by the commutative case of Example 5.12. 

Definition 5.19 The Dirac operator on the noncommutative torus is the symmetric 
operator .DAθ

: Aθ ⊗ C
2 → H defined by 

. DAθ
=

(
0 −δ1 − iδ2

δ1 − iδ2 0

)

One computes (as in Example 5.12) that an orthonormal eigenbasis of .DAθ
is 

given by 

. ψrs = 1√
2

(
urvs

± ir+s√
r2+s2

urvs

)
; (r, s ∈ Z),

with eigenvalues.±√
r2 + s2. Since this coincides with the classical spectrum of. DT2

on .L2(T2) ⊗ C
2 we may conclude that the resolvent of .DAθ

is compact. Note that 
this would also follow from Exercise 4.9. Finally, we compute for any .a ∈ Aθ that 

. [DAθ
, π(a)] =

(
0 π(−δ1(a) − iδ2(a))

π(δ1(a) − iδ2(a))

)

which extends to a bounded operator on. H. We have thus proven the following result. 

Proposition 5.20 The data .(Aθ ,H, DAθ
; J, γ ) defined above is a real spectral 

triple of KO-dimension . 2. 

5.3.2 Generalization to Toric Manifolds 

Let .M be an .m dimensional compact Riemannian manifold equipped with an iso-
metric smooth action of an .n-torus .Tn , .n ≥ 2. We denote by . σ the corresponding 
action of .Tn by automorphisms—obtained by pull-backs—on the algebra . C∞(M)

of smooth functions on . M .
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The algebra .C∞(M) may be decomposed into spectral subspaces which are 
indexed by the dual group .Z

n = T̂
n . Now, with .s = (s1, . . . , sn) ∈ T

n , each . r ∈ Z
n

yields a character of .Tn , .s 	→ e2π ir ·s , with the scalar product . r · s := r1s1 + · · · +
rnsn . The  . r th spectral subspace for the action . σ of .Tn on .C∞(M) consists of those 
smooth functions . fr for which 

.σs( fr ) = e2π ir ·s fr , (5.3.4) 

and each. f ∈ C∞(M) is the sum of a unique series . f = ∑
r∈Zn fr , which is rapidly 

convergent in the Fréchet topology of .C∞(M) (see reference in Note 12 below for 
more details). 

Let now .θ = (θ jk = −θk j ) be a real antisymmetric .n × n matrix. The 
.θ -deformation of .C∞(M) may be defined by replacing the ordinary product by a 
deformed product, given on spectral subspaces by 

. fr ×θ gr ′ := fr σ 1
2 r ·θ (gr ′) = eπ ir ·θ ·r ′

fr gr ′, (5.3.5) 

where .r · θ is the element in .Rn with components .(r · θ)k = ∑
r jθ jk for . k =

1, . . . , n. The product in (5.3.5) is then extended linearly to all functions in.C∞(M). 
We denote the space.C∞(M) endowed with the product.×θ by.C∞(Mθ ). The action 
. σ of .Tn on .C∞(M) extends to an action on .C∞(Mθ ) given again by (5.3.4) on the  
homogeneous elements. 

Next, let us take.M to be a spin manifold with.L2(S) the Hilbert space of spinors 
and.DM the usual Dirac operator of the metric of. M . Smooth functions act on spinors 
by pointwise multiplication thus giving a representation .π : C∞(M) → B(L2(S)). 

We assume that there is a double cover .c : T̃
n → T

n and a representation of . T̃n

on .L2(S) by unitary operators .U (s), s ∈ T̃
n , so that 

.U (s)DMU (s)−1 = DM , (5.3.6) 

since the torus action is assumed to be isometric, and such that for all . f ∈ C∞(M), 

.U (s)π( f )U (s)−1 = π(σc(s)( f )). (5.3.7) 

We say that an element .T ∈ B(L2(S)) is called smooth for the action of .T̃n if the 
map 

. T̃
n � s 	→ αs(T ) := U (s)TU (s)−1,

is smooth for the norm topology. From its very definition, .αs coincides on 
.π(C∞(M)) ⊂ B(L2(S)) with the automorphism .σc(s). Moreover, much as it was 
done before for the smooth functions, we shall use the torus action to give a spec-
tral decomposition of smooth elements of .B(L2(S)). Any such a smooth element 
.T is written as a (rapidly convergent) series .T = ∑

Tr with .r ∈ Z
n and each .Tr is 

homogeneous of degree . r under the action of .T̃n , i.e.
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.αs(Tr ) = e2π ir ·sTr , ∀ s ∈ T̃
n. (5.3.8) 

Let (.P1, P2, . . . , Pn) be the infinitesimal generators of the action of .T̃n so that we 
can write .U (s) = exp 2π is · P . Now, with . θ a real .n × n anti-symmetric matrix as 
above, one defines a twisted representation of the smooth elements of .B(L2(S)) on 
.L2(S) by 

.Lθ (T ) :=
∑

r

TrU ( 12r · θ) =
∑

r

Tr exp
{
π i r jθ jk Pk

}
, (5.3.9) 

Taking smooth functions on .M as elements of .B(L2(S)), via the representation . π , 
the previous definition gives an algebra .Lθ (C∞(M)) which we may think of as a 
representation of the algebra .C∞(Mθ ). Indeed, by the very definition of the product 
.×θ in (5.3.5) one establishes that 

.Lθ ( f ×θ g) = Lθ ( f )Lθ (g), (5.3.10) 

proving that the algebra .C∞(Mθ ) (i.e. .C∞(M) equipped with the product .×θ ) is  
isomorphic to the algebra .Lθ (C∞(M)). 

Theorem 5.21 The datum .(C∞(Mθ ), L2(S), DM) is a spectral triple. 

Proof The resolvent of.DM is compact by assumption. The boundedness of the com-
mutators .[DM , Lθ ( f )] for . f ∈ C∞(M) follows from the relation . [DM , Lθ ( f )] =
Lθ ([DM , f ]), .DM being of degree . 0 since .Tn acts by isometries, so that each . Pk
commutes with .DM . See also Note 13 in this chapter. �

This noncommutative Riemannian spin manifold is a so-called isospectral defor-
mation of the classical Riemannian geometry of . M , in that the spectrum of the 
operator .DM coincides with that of the classical Dirac operator on . M . Moreover, 
if .M is even and spin then there is a grading .γM and operator .JM that make 
.(C∞(Mθ ), L2(S), DM ; JM , γM) a real spectral triple. 

Notes 

Section 5.1. Gelfand Duality 

1. A complete treatment of .C∗-algebras, their representation theory and Gelfand duality can be 
found in [ 1, Sect. II.2.2] or [ 2, Sect. I.4]. 

2. A proof of Proposition 5.4 can be found in [ 2, Theorem 11.2]. 
3. A proof of Theorem 5.7 can be found in e.g. [ 1, Theorem II.2.2.4] or [ 2, Theorem 3.11]. 
4. Spectral triples were introduced by Connes in the early 1980s. See [ 3, Sect. IV.2.. δ] (where they  

were called unbounded.K -cycles) and [ 4]. 
5. The distance formula appearing in Proposition 5.8, as well as the proof of this Proposition 

can be found in [ 3, Sect. VI.1]. Moreover, it extends to a distance formula on the state space 
.S(A) of a .C∗-algebra .A as follows. Recall that a linear functional .ω : A → C is a state if it
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is positive .ω(a∗a) > 0 for all non-zero .a ∈ A, and such that .ω(1) = 1. One then defines a 
distance function on.S(A) by [ 4] 

. d(ω1, ω2) = sup
a∈A

{|ω1(a) − ω2(a)| : ‖[D, a]‖ ≤ 1} .

It is noted in [ 5, 6] that this distance formula, in the case of locally compact complete manifolds, 
is in fact a reformulation of the Wasserstein distance in the theory of optimal transport. We 
also refer to [ 7– 9]. 

6. Proposition 5.8 establishes that from the canonical triple on a Riemannian spin manifold . M
one can reconstruct the Riemannian distance on. M . As a matter of fact, there is a reconstruction 
theorem for the smooth manifold structure of.M as well [ 10]. It states that if . (A,H, D; J, γ )

is a real spectral triple with .A commutative, then under suitable conditions [ 11] there  is  a  
Riemannian spin manifold .(M, g) with spin structure .(S, JM ) such that .(A,H, D; J, γ ) is 
given by.(C∞(M), L2(S),D; JM , γM ) (see also the discussion in [ 12, Sect. 11.4]). 

7. Real spectral triples as defined in Definition 5.9 are noncommutative generalization of Rieman-
nian spin manifolds. An immediate question that arises is whether noncommutative general-
izations of Riemannian spin. c manifolds, or even just Riemannian manifolds can be defined. In 
fact, building on the algebraic approach to defining spin. c manifolds as in [ 12] (as also adopted 
above) the authors [ 13] introduce such noncommutative analogues. For earlier attempts, refer 
to [ 14]. 

8. Products of spectral triples are described in detail in [ 15], and generalized to include the odd 
case as well in [ 16]. 

9. The differential calculi that are associated to any spectral triple are explained in [ 3, Sect. VI.1] 
(see also [ 17, Chap. 7]). 

Section 5.3. Examples of Noncommutative Manifolds 

10. The noncommutative torus formed the guiding example for noncommutative manifolds in the 
early days of noncommutative geometry, and already appears in [ 18]. The deformation quan-
tization aspects of the noncommutative torus were analyzed early on as well, by Rieffel in [ 19]. 

The .C∗-algebra .Aθ is also called the rotation algebra. This is because of the following real-
ization as operators on.L2(S1). We consider for.ψ ∈ L2(S1): 

. Uψ(z) = zψ(z); Vψ(z) = ψ(λz).

Thus,.U generated the.C∗-algebras.C(S1) and conjugation by.V gives an automorphism. α of 
.C(S1) by rotation with the angle. θ . The association.u 	→ U, v 	→ V is a representation of the 
.C∗-algebra.Aθ on.L2(S1), which in fact implements an isomorphism.Aθ

∼= C(S1) �α Z with 
a crossed product algebra associated to the rotation. α. 

11. The Gelfand–Naimark–Segal (or, GNS) construction is a general procedure that constructs a 
Hilbert space representation of a.C∗-algebra, starting with a given state on it. More details can 
be found e.g. in [ 1, Sect. II.6.4]. 

12. It is shown in [ 20] that there is a natural completion of the algebra .C∞(Mθ ) to a .C∗-algebra 
.C(Mθ ) whose smooth subalgebra—under the extended action of .Tn—is precisely .C∞(Mθ ). 
Thus, we can understand.Lθ as a quantization map from 

.Lθ : C∞(M) → C∞(Mθ ), (5.3.11)
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which provides a strict deformation quantization in the sense of Rieffel. More generally, he 
considers a (not necessarily commutative).C∗-algebra. A carrying an action of.Rn . For an anti-
symmetric.n × n matrix. θ , one defines a star product .×θ between elements in. A much as we 
did before. The algebra. A equipped with the product.×θ gives rise to a.C∗-algebra denoted by 
.Aθ . Then the collection.{A�θ }�∈[0,1] is a continuous family of .C∗-algebras providing a strict 
deformation quantization in the direction of the Poisson structure on. A defined by the matrix 
. θ . 

13. Theorem 5.21 was obtained in [ 21]; see also [ 22]. 
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Chapter 6 
The Local Index Formula 
in Noncommutative Geometry 

In this chapter we present a proof of the Connes–Moscovici index formula, expressing 
the index of a (twisted) operator.D in a spectral triple.(A,H, D) by a local formula. 
First, we illustrate the contents of this chapter in the context of two examples in the 
odd and even case: the index on the circle and on the torus. 

6.1 Local Index Formula on the Circle and on the Torus 

6.1.1 The Winding Number on the Circle 

Consider the canonical triple on the circle (Example 5.11): 

. 

(
C∞(S1), L2(S1), DS1 = −i d

dt

)
.

The eigenfunctions of.DS1 are given for any.n ∈ Z by.en(t) = eint , where.t ∈ [0, 2π). 
Indeed,.DS1en = nen and.{en}n∈Z forms an orthonormal basis for.L2(S1). We denote 
the projection onto the non-negative eigenspace of .DS1 by . P , i.e. 

. Pen =
{
en if n ≥ 0
0 otherwise

This is equivalent to defining .P = (1+ F)/2, where .F = DS1 |DS1 |−1 (defined to 
be .+1 on .ker DS1 ). Concretely, .F is the Hilbert transform: 

. F

(∑
n∈Z

ψnen(t)

)
= −

∑
n<0

ψnen +
∑
n≥0

ψnen,

with complex coefficients .ψn (.n ∈ Z). 
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Let . u be a unitary in .C∞(S1), say  .u = em for some .m ∈ Z. The index we are 
interested in is given by the difference between the dimensions of the kernel and 
cokernel of .PuP : PL2(S1) → PL2(S1): 

. index PuP = dim ker PuP − dim ker Pu∗P.

Indeed, .Im T⊥ = ker T ∗ for any bounded operator. We wish to write this index as a 
local, integral expression. First, we check that the index is well defined by noting that 
.PuP has finite-dimensional kernel and cokernel. In fact, the kernel of .PuP (with 
.u = em) consists of .ψ = ∑

n≥0 ψnen ∈ PL2(S1) such that 

. P

(∑
n≥0

ψnem+n

)
= 0.

In other words, the kernel of .PuP consists of linear combinations of the vectors 
.e0, . . . , e−m−1 for.m < 0. We conclude that.dim ker PuP = −m if .m < 0. If. m > 0
then this dimension is zero, but in that case .dim ker Pu∗P = m. In both cases, and 
also in the remaining case .m = 0, for .u = em we find that 

. index PuP = −m.

Exercise 6.1 In this exercise we show that.index PuP is well defined for any unitary 
.u ∈ C∞(S1). 

1. Show that .[F, em] is a compact operator for any .m ∈ Z. 
2. Show that.[F, f ] is a compact operator for any function. f = ∑

n fnen ∈ C∞(S1)

(convergence is in sup-norm). 
3. Atkinson’s Theorem states that an operator is Fredholm (i.e. has finite kernel and 

cokernel) if it is invertible modulo compact operators. Use this to show that. PuP
is a Fredholm operator. 

On the other hand, we can compute the following zeta function given by the trace 
(taken for simplicity over the complement of .ker DS1 ): 

. Tr
(
u∗[DS1 , u]|DS1 |−2z−1

) = m Tr |DS1 |−2z−1 = 2mζ(1+ 2z),

since.[DS1 , u] = mu for.u = em . Here.ζ(s) is the well-known Riemann zeta function. 
Since .ζ(s) has a pole at .s = 1, we conclude that 

. index PuP = −resz=0 Tr
(
u∗[DS1 , u]|DS1 |−2z−1

)
.
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Fig. 6.1 The map 
. em : t ∈ [0, 2π) �→ eimt

winds.m times around the 
circle; this winding number 
is (minus) the index of the 
operator. Pem P

This is a manifestation of the noncommutative index formula in the simple case of 
the circle, expressing the winding number .m (cf. Fig. 6.1) of the unitary .u = em as a 
‘local’ expression. In fact, 

. resz=0 Tr
(
u∗[DS1 , u]|DS1 |−2z−1

) = 1

2πi

∫
S1
u∗du,

as one can easily check. The right-hand side is indeed a local integral expression for 
the (global) index of .PuP . 

In this chapter, we generalize this formula to any (odd) spectral triple, translating 
this locality to the appropriate algebraic notion, namely, in terms of cyclic cocycles. 

Exercise 6.2 Prove the following index formula, for a unitary .u = em , say, with  
.m < 0: 

. index PuP = −1

4
Tr F[F, u∗][F, u].

6.1.2 The Winding Number on the Torus 

The same winding number—now in one of the two circle directions—can also be 
obtained as an index on the two-dimensional torus, as we will now explain. 

Consider the even canonical triple on the 2-dimensional torus (Example 5.12): 

.

(
C∞(T2), L2(T2)⊗ C

2, DT2 =
(

0 −∂1 − i∂2

∂1 − i∂2 0

))
.
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The eigenspinors of .DT2 are given by the vectors 

. φ±n1,n2(t1, t2) :=
1√
2

(
ei(n1t1+n2t2)

± in1+n2√
n21+n22

ei(n1t1+n2t2)

)
; (n1, n2 ∈ Z),

with eigenvalues .±
√
n21 + n22. 

Instead of unitaries, we now consider orthogonal projections .p ∈ C∞(T2) or 
rather, projections in matrix algebras with entries in .C∞(T2). Indeed, there are no 
non-trivial projections. p in.C(T2): a continuous function with the property.p2 = p is 
automatically. 0 or. 1. Thus, we consider the following class of orthogonal projections 
in .M2(C∞(T2)): 

.p =
(

f g + hU ∗
g + hU 1− f

)
, (6.1.1) 

where . f, g, h are real-valued (periodic) functions of the first variable . t1, and .U is a 
unitary depending only on the second variable. t2, say.U (t2) = em(t2). The projection 
property .p2 = p translates into the two conditions 

. gh = 0, g2 + h2 = f − f 2.

A possible solution of these relations is given by 

. 0 ≤ f ≤ 1 such that f (0) = 1, f (π) = 0,

and then .g = χ[0,π]
√

f − f 2 and .h = χ[π,2π]
√

f − f 2, where .χX is the indicator 
function for the set .X (see Fig. 6.2). 

The Fredholm operator we would like to compute the index of is .p(DT2 ⊗ I2)p, 
acting on the doubled spinor Hilbert space .L2(S)⊗ C

2 � L2(T2)⊗ C
2 ⊗ C

2. This  
doubling is due to the fact that we take a.2× 2matricial projection. To avoid notation 
cluttery, we will simply write .DT2 for .DT2 ⊗ I2. 

The local index formula which we would like to illustrate on the torus is 

. index pDT2 p = −resz=0 Tr
(
γ

(
p − 1

2

) [DT2 , p][DT2 , p]|DT2 |−2−2z) ,

where the trace is both over the matrix indices of . p and over the spinor indices. 

Proposition 6.1 With .U (t2) = em(t2) and . p of the above form, we have 

. resz=0 Tr
(
γ

(
p − 1

2

) [DT2 , p][DT2 , p]|DT2 |−2−2z) = m.

Proof We use the following formula from Exercise 6.3, which holds for any . F ∈
C∞(T2): 

. Tr F |DT2 |−2 s = ζE (s)

π

∫
T2

F, (6.1.2)
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Fig. 6.2 Functions. f, g, h that ensure that. p in (6.1.1) is a projection 

where the trace is over spinor indices, and where .ζE is the Epstein zeta function, 
defined by 

. ζE (s) =
∑

n1,n2∈Z
(n21 + n22)

−s .

Since .ζE has a pole at .s = 1 with residue . π, we conclude that 

. resz=0 Tr F |D|−2−2z =
∫
T2

F.

Returning to the claimed equality, we compute the trace over spinor indices: 

. Tr γ
(
p − 1

2

) [DT2 , p]2 = Tr
(
p − 1

2

) (
0 −∂1 p − i∂2 p

∂1 p − i∂2 p 0

)2

= 2i
(
p − 1

2

)
(∂1 p∂2 p − ∂2 p∂1 p) .

Since . g and . h in (6.1.1) have disjoint support, .g′h = 0, we have  

. ∂1 p∂2 p = −∂2 p∂1 p = −im
(−hh′ f ′hU ∗
f ′hU hh′

)
.

Hence, taking the remaining trace over the indices of the projection, we find 

. Tr 2i
(
p − 1

2

)
(∂1 p∂2 p − ∂2 p∂1 p) = 4m

(−2 f hh′ + hh′ + 2 f ′h2
)
.



94 6 The Local Index Formula in Noncommutative Geometry

Inserting this back in (6.1.2) we see that we have to integrate the right-hand side over 
the circle. A series of partial integrations yields 

. 
1

2π

∫
−2 f hh′ + hh′ + 2 f ′h2 = 1

2π

∫
3 f ′h2.

Inserting the explicit expression of . h, we easily determine 

. 

∫
f ′h2 =

∫ 2π

π

( f − f 2) f ′ =
∫ 1

0
(x − x2)dx = 1

6
.

Combining all coefficients, including the residue of Epstein’s zeta function, we finally 
find 

. resz=0 Tr
(
γ

(
p − 1

2

) [DT2 , p]2|DT2 |−2−2z) = 4m
3

2π

1

6
π = m,

as required. . �

Thus, we recover the winding number of the unitary . U , winding .m times around 
one of the circle directions in .T

2, just as in the previous subsection. The case. m = 2
is depicted in Fig. 6.3; it shows the winding of the range of. p in.C

2 at.t1 = 3π/4 and 
with . t2 varying from. 0 to .2π. 

The fact that the index of .pDT2 p is also equal to (minus) this winding number is 
highly non-trivial and much more difficult to prove. Therefore, already this simple 
example illustrates the power of the Connes–Moscovici index formula, expressing 
the index by a local formula. We will now proceed and give a proof of the local index 
formula for any spectral triple. 

Fig. 6.3 Winding twice around one of the circle directions on the torus. Let the range of the 
projection . p be .v(t1, t2)s with .s ∈ C and .v(t1, t2) ∈ C

2 varies with .(t1, t2) ∈ T
2. We have drawn 

the real and imaginary parts of the first component.v1(t1 = 3π/4, t2)s with.0 ≤ t2 ≤ 2π and. −1 ≤
s ≤ 1. The other component.v2(t1 = 3π/4, t2) is constant
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Exercise 6.3 Prove Eq. (6.1.2), i.e. show that for any function.F ∈ C∞(T2)we have 

. Tr F |DT2 |−2 s = ζE (s)

π

∫
T2

F.

6.2 Hochschild and Cyclic Cohomology 

We introduce cyclic cohomology, which can be seen as a noncommutative general-
ization of De Rham homology. 

Definition 6.2 If .A is an algebra, we define the space of .n-cochains, denoted by 
.Cn(A), as the space of.(n + 1)-linear functionals on. Awith the property that if. a j = 1
for some . j ≥ 1, then .φ(a0, . . . , an) = 0. Define operators . b : Cn(A) → Cn+1(A)

and .B : Cn+1(A) → Cn(A) by 

. bφ(a0, a1, . . . , an+1) :=
n∑
j=0

(−1) jφ(a0, . . . , a ja j+1, . . . , an+1)

+ (−1)n+1φ(an+1a0, a1, . . . , an),

Bφ(a0, a1, . . . , an) :=
n∑
j=0

(−1)njφ(1, a j , a j+1, . . . , a j−1).

Exercise 6.4 Show that .b2 = 0, .B2 = 0, and .bB + Bb = 0. 

This means that a cochain which is in the image of . b is also in the kernel of . b, 
and similarly for . B. We say that . b and . B define complexes of cochains 

. · · · b
Cn(A)

b
Cn+1(A)

b · · ·
· · · Cn(A)

B
Cn+1(A)

B · · ·B
,

where the maps have the (complex) defining property that composing them gives 
zero: .b ◦ b = 0 = B ◦ B. This property of . b and .B being a differential is a crucial 
ingredient in cohomology, where so-called cohomology groups are defined as the 
quotients of the kernel by the image of the differential. In our case, we have 

Definition 6.3 The Hochschild cohomology of .A is given by the quotients 

. HHn(A) = ker b : Cn(A) → Cn+1(A)

Im b : Cn−1(A) → Cn(A)
; (n ≥ 0).

Elements in .ker b : Cn(A) → Cn+1(A) are called Hochschild .n-cocycles, and ele-
ments in .Im b : Cn−1(A) → Cn(A) are called Hochschild .n-coboundaries.
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Exercise 6.5 (1) Characterize the cohomology group.HH 0(A) for any algebra . A. 
(2) Compute .HHn(C) for any .n ≥ 0. 
(3) Establish the following functorial property of.HHn: if.ψ : A→ B is an algebra 

map, then there is a homomorphism of groups .ψ∗ : HHn(B) → HHn(A). 

Example 6.4 Let .M be a compact .n-dimensional manifold without boundary. The 
following expression defines an .n-cochain on .A = C∞(M): 

. φ( f0, f1, . . . , fn) =
∫
M

f0d f1 · · · d fn.

In fact, one can compute that .bφ = 0 so that this is an .n-cocycle which defines a 
class in the Hochschild cohomology group .HHn(C∞(M)). 

Exercise 6.6 Check that .bφ = 0 in the above example. 

Next, we turn our attention to the differential . B, and its compatibility with . b. 
Namely, . b and . B define a so-called double complex: 

. 
...

...
...

...

· · · B
C3(A)

B

b

C2(A)
B

b

C1(A)
B

b

C0(A)

b

· · · B
C2(A)

B

b

C1(A)
B

b

C0(A)

b

· · · B C1(A)
B

b

C0(A)

b

· · · B
C0(A)

b

The totalization of this double complex by definition consists of the even and odd 
cochains: 

. Cev(A) =
⊕
k

C2k(A);

Codd(A) =
⊕
k

C2k+1(A),

and these also form a complex, now with differential .b + B: 

. · · · b+B
Cev(A)

b+B
Codd(A)

b+B
Cev(A)

b+B · · ·
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Definition 6.5 The periodic cyclic cohomology of. A is the cohomology of the total-
ization of this complex. That is, the even and odd cyclic cohomology groups are 
given by 

. HCPev(A) = ker b + B : Cev(A) → Codd(A)

Im b + B : Codd(A) → Cev(A)
,

HCPodd(A) = ker b + B : Codd(A) → Cev(A)

Im b + B : Cev(A) → Codd(A)
.

Elements in .ker b + B are called (even or odd) .(b, B)-cocycles, and elements in 
.Im b + B are called (even or odd) .(b, B)-coboundaries. 

Explicitly, an even .(b, B)-cocycle is given by a sequence 

. (φ0,φ2,φ4, . . .),

where .φ2k ∈ C2k(A), and 
. bφ2k + Bφ2k+2 = 0,

for all .k ≥ 0. Note that only finitely many .φ2k are non-zero. 
Similarly, an odd .(b, B)-cocycle is given by a sequence 

. (φ1,φ3,φ5, . . .),

where .φ2k+1 ∈ C2k+1(A) and 

. bφ2k+1 + Bφ2k+3 = 0,

for all .k ≥ 0, and also .Bφ1 = 0. Again, only finitely many .φ2k+1 are non-zero. 
The following result allows us to evaluate an even (odd) .(b, B)-cocycle on a 

projection (unitary) in a given .∗-algebra . A. 

Proposition 6.6 Let .A be a unital .∗-algebra. 
• If .φ = (φ1,φ3, . . .) is an odd .(b, B)-cocycle for . A, and . u is an unitary in . A, then 
the quantity 

. 〈φ, u〉 := 1√
π

∞∑
k=0

(−1)k+1k!φ2k+1(u∗, u, . . . , u∗, u)

only depends on the class of . φ in .HCPodd(A). 
• If .φ = (φ0,φ2, . . .) is an even .(b, B)-cocycle for . A, and . p is an projection in . A, 
then the quantity
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. 〈φ, p〉 := φ0(p)+
∞∑
k=1

(−1)k (2k)!
k! φ2k(p − 1

2 , p, p, . . . , p)

only depends on the class of . φ in .HCPev(A). 

Proof We show that.〈(b + B)�, u〉 = 0 for any even cochain.(�0,�2, . . .) and that 
.〈(b + B)�, e〉 = 0 for any odd cochain .(�1,�3, . . .). 

The former equation would follow from 

. (−1)k+1k!b�2k(u
∗, u, . . . , u∗, u)+ (−1)k(k − 1)!B�2k(u

∗, u, . . . , u∗, u) = 0,

for any .k ≥ 0. Using the definition of . b and . B, we compute that indeed: 

. (−1)k+1k! [�2k(1, u
∗, u, . . . , u∗, u)+ (−1)2k+1�2k(1, u, u∗, . . . , u, u∗)

]
+ (−1)k(k − 1)! [k�2k(1, u

∗, u, . . . , u∗, u)− k�2k(1, u, u∗, . . . , u, u∗)
] = 0.

The second claim would follow from 

. (−1)k+1 (2k + 2)!
(k + 1)! b�2k+1(p − 1

2 , p, . . . , p)+ (−1)k (2k)!
k! B�2k+1(p − 1

2 , p, . . . , p) = 0,

for any .k ≥ 1, and indeed 

. − 2b�1(p − 1
2 , p, p)+ B�1(p) = 0.

Let us start with the latter, for which we compute 

. − 2
[
2�1(p − 1

2 p, p)−�1(p − 1
2 , p)

]+�1(1, p) =
−2�1(p, p)+ 2�1(p, p)−�1(1, p)+�1(1, p) = 0.

The same trick applies also to the first expression, for any .k ≥ 1: 

. (−1)k+1 (2k + 2)!
(k + 1)!

[
2�2k+1(p − 1

2 p, p, . . . , p)−�2k+1(p − 1
2 , p, . . . , p)

]

+ (−1)k (2k)!
k!

[
(2k + 1)�2k+1(1, p, . . . , p)

] = 0,

which follows directly from the identity 

. 
1

2

(2k + 2)!
(k + 1)! − (2k + 1)

(2k)!
k! = 0. �

Exercise 6.7 Let .φ ∈ Ck(A) be a .b-cocycle (i.e. .bφ = 0) that also satisfies the fol-
lowing condition of being cyclic:
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. φ(a0, a1, . . . ak) = (−1)kφ(ak, a0, a1, . . . ak−1),

for all.a0, a1, . . . ak ∈ A. Show that.(0, . . . , 0,φ, 0, . . .) (with. φ at the. k’th position) 
is a .(b, B)-cocycle. 

Exercise 6.8 In the example of the circle, show that the odd cochain.(φ1, 0, . . .) on 
.C∞(S1) with (cf. Exc. (6.2)) 

. φ1( f 0, f 1) = Tr F[F, f 0][F, f 1]; ( f 0, f 1 ∈ C∞(S1)),

is an odd .(b, B)-cocycle. 

6.2.1 Cyclic Cocycles for the Noncommutative Torus 

We will illustrate the above periodic cyclic cohomology and the evaluation on pro-
jections and unitaries with the noncommutative torus. Recall its structure from 
Sect. 5.3.1. 

In view of Exercise 6.5(1) it is immediate that . τ defines a Hochschild cocycle: 
.bτ = 0. In other words, . τ defines an element in.HH 0(Aθ). In fact, it also defines an 
element in.HCPev(Aθ), to wit,.(τ , 0, . . .). Let us check that it does not represent the 
zero class by exploiting the evaluation from Proposition 6.6 on the trivial projection 
.p = 1. Indeed, since.〈τ , 1〉 = τ (1) = 1 and since the evaluation does not depend on 
the representative of . τ (as is shown in Proposition 6.6), we find that . τ cannot be 
cohomologous to zero. 

In order to construct odd cyclic cocycles we need the derivations. δ1, δ2 : Aθ → Aθ

from Eq. (5.3.2). We then define two 1-cochains .ψ1,ψ2 ∈ C1(Aθ) by 

. ψ1(a
0, a1) = τ (a0δ1(a

1)); ψ2(a
0, a1) = τ (a0δ2(a

1)).

Let us check that they are Hochschild cocycles: 

. bψ1(a
0, a1, a2) = ψ1(a

0a1, a2)− ψ1(a
0, a1a2)+ ψ1(a

2a0, a1)

= τ (a0a1δ1(a
2))− τ (a0δ1(a

1a2))+ τ (a2a0δ1(a
1)) = 0,

by using the Leibniz property (5.3.3) for  . δ1. The same argument also shows that 
.bψ2 = 0. 

Using Stokes theorem we may also show that 

. Bψ1(a
0) = τ (δ1(a

0)) = 0, Bψ2(a
0) = 0.

Hence, .(0,ψ1, 0, . . .) and .(0,ψ2, 0, . . .) are odd .(b, B)-cocycles and define class in 
odd periodic cyclic cohomology .HCPodd(Aθ). Again by exploiting the evaluation



100 6 The Local Index Formula in Noncommutative Geometry

on unitaries we may check that .ψ1 and .ψ2 define non-trivial and different classes in 
.HCPodd(Aθ). Indeed, 

. 〈ψ1, u〉 = − 1√
π

ψ1(u
∗, u) = − i√

π
; 〈ψ1, v〉 = 0

while 

. 〈ψ2, u〉 = 0; 〈ψ2, v〉 = − i√
π

.

Finally, there is a two-cochain defined by 

. φ(a0, a1, a2) = τ (a0(δ1(a
1)δ2(a

2)− δ2(a
1)δ1(a

2)))

Exercise 6.9 Show that .bφ = 0 and that .Bφ = 0. 

We conclude that .φ defines a class in even periodic cyclic cohomology 
.HCPev(Aθ). Since the evaluation of . φ on the projection . 1 vanishes, we already 
know that . φ defines a different class in .HCPev(Aθ) than . τ . Moreover, one may 
evaluate . φ non-trivially on a projection . p. This will be worked out in Exercise 6.10 
below (cf. Note 10 in this chapter). 

It turns out that the above four .(b, B)-cocycles fully describe the periodic cyclic 
cohomology of .Aθ in the sense that 

. HCPev(Aθ) = C[τ ] ⊕ C[φ]; HCPodd(Aθ) = C[ψ1] ⊕ C[ψ2].

This should be considered as the noncommutative analogue of the cell decomposition 
of the torus: one 0-cell (a point), two 1-cells (two circles) and one 2-cell (the torus). 

Exercise 6.10 We consider the pairing between the .(b, B)-cocycle . φ and a class of 
projections on the noncommutative torus. Consider the following element .p ∈ Aθ: 

.p =
(∑

n∈Z
anv

n

)
u +

(∑
n∈Z

bnv
n

)
+ u∗

(∑
n∈Z

cnv
n

)
(6.2.1) 

for some Schwartz sequences .(an), (bn), (cn) (cf. Definition 5.16). We also write 
.g, f, h for the corresponding functions on . S

1: 

. g(t) =
∑
n∈Z

ane
int ; f (t) =

∑
n∈Z

bne
int ; h(t) =

∑
n∈Z

cne
int .

(1) Show that . p is an orthogonal projection, i.e. .p2 = p = p∗ if and only if . h = g∗
while . f and . g satisfy (.∀t ∈ S

1):
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Fig. 6.4 Functions. f and.g = h∗ that ensure that. p defined in (6.2.1) is a projection in. Aθ

• .g(t)g(t − 2πθ) = 0; 
• .( f (t)+ f (t − 2πθ))g(t) = g(t); 
• . f (t)− f (t2) = |g(t)|2 + |g(t + 2πθ)|2.

(2) Verify that a class of examples of functions . f, g that satisfy the above three 
conditions can be given as follows. Take any. ε such that.ε < 2πθ and. 2πθ + ε <

π. On  .[0, ε] let . f be any smooth function with values between 0 and 1 such 
that. f (0) = 0 and. f (ε) = 1. On.[2πθ, 2πθ + ε] define. f (t) = 1− f (t − 2πθ), 
while on .[ε, 2πθ] and .[2πθ + ε, 2π] let . f take values . 1 and . 0, respectively. 
Finally, let . g be defined on .[2πθ, 2πθ + ε] by .g(t) = √

f (t)(1− f (t)) and 
equal to zero elsewhere on .[0, 2π] (see Fig. 6.4). 

(3) Returning to the general case of functions . f, g satisfying the conditions in .(1), 
show that .τ (p) = 1

2π

∫
S1

f (t)dt . 
(4) Compute .δ1 pδ2 p, δ2 pδ1 p and show that 

. τ (pδ1 pδ2 p − pδ2 pδ1 p) = 3i

2π

∫
S1
|g(t)|2 (

f ′(t − 2πθ)− f ′(t)
)
dt

(5) Show that for the explicit choice of . f, g from (2) this reduces to 

. τ (pδ1 pδ2 p − pδ2 pδ1 p) = 3i

2π

∫ 2πθ+ε

2πθ

f (t)(1− f (t))(−2 f ′(t))dt = i

2π
.

Hint: Here one may want to take inspiration from the proof of Proposition 6.1. 
(6) Deduce from this that the evaluation .〈φ, p〉 = −i/π for these projections. 

6.3 Abstract Differential Calculus 

We return to the general case. Starting with a spectral triple, we now introduce a 
differential calculus. In the case of the canonical triple of a spin manifold . M , this  
will agree with the usual differential calculus on . M .
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Let .(A,H, D) be a spectral triple; we assume that .D is invertible. We introduce 
Sobolev spaces .Hs as follows: 

. Hs := Dom |D|s; (s ∈ R).

These spaces are naturally normed by 

. ‖ξ‖2s = ‖|D|sξ‖2,

and are complete in this norm. Moreover, for .s > t the inclusion .Hs → Ht is con-
tinuous. 

Exercise 6.11 Prove this last statement. 

Obviously .H0 = H, while at the other extreme we have the intersection 

. H∞ :=
⋂
s≥0

Hs .

Definition 6.7 For each.r ∈ Rwe define operators of analytic order .≤ r to be oper-
ators in .H∞ that extend to bounded operators from .Hs to .Hs−r for all .s ∈ R. We  
denote the space of such operators by .opr . 

In order to find interesting differential operators coming from our spectral triple, 
we introduce some smoothness conditions. The first is that the spectral triple is 
finitely summable, i.e. there exists . p so that .|D|−p is a trace class operator. 

Definition 6.8 A spectral triple .(A,H, D) is called regular if .A and . [D,A] =
{[D, a] : a ∈ A} belong to the smooth domain of .δ(·) = [|D|, ·]. That is, for each 
.k ≥ 0 the operators .δk(a) and .δk([D, a]) are bounded. 

We will denote by. B the algebra generated by.δk(a), .δk([D, a]) for all .a ∈ A and 
.k ≥ 0. 

Definition 6.9 Let .(A,H, D) be a finitely-summable regular spectral triple. The 
dimension spectrum .Sd is the subset of .{z ∈ C : �(z) ≥ 0} of singularities of the 
analytic functions 

. ζb(z) = Tr b|D|−z; (b ∈ B).

We say the the dimension spectrum is simple when the functions .ζb have at most 
simple poles. 

In our treatment we restrict to finitely-summable, regular spectral triples with 
simple dimension spectrum and for which there is a finite number of poles in .Sd. 

Lemma 6.10 The algebra . B maps .H∞ to itself.
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Proof This follows by induction from the identity 

. ‖T ξ‖2s = ‖T ξ‖2 + ‖|D|sT ξ‖2
= ‖T ‖2‖ξ‖2 + (‖|D|s−1δ(T )ξ‖ + ‖|D|s−1T |D|ξ‖)2 ,

for any operator . T in the smooth domain of . δ and any .s ≥ 0. . �

We will regard the elements in. B as pseudodifferential operators of order. 0, accord-
ing to the following definition. 

Definition 6.11 A pseudodifferential operator of order.k ∈ Z associated to a regular 
spectral triple .(A,H, D) is given by a finite sum: 

. bk |D|k + bk−1|D|k−1 + · · · ,

where.bk, bk−1, · · · ∈ B. We denote the space of pseudodifferential operators of order 
. k by .�k(A,H, D), or simply .�k(A). 

Lemma 6.12 The subspaces .�k(A) (.k ∈ Z) furnish a .Z-filtration on the algebra 
.�(A) of pseudodifferential operators. 

Proof This follows directly from the expression: 

. b1|D|k1 · b2|D|k2 =
k1∑
j=0

(
k1
j

)
b1δ

j (b2)|D|k1+k2− j . ��

On this algebra, the map.δ(·) = [|D|, ·] acts as a derivation, preserving the filtra-
tion. For any operator . T in .H we also define the following (iterated) derivation, 

. ∇(T ) = [D2, T ]; T (k) := ∇k(T ).

Exercise 6.12 Prove that for any .P ∈ �(A) we have 

. ∇(P) = 2δ(P)|D| + δ2(P).

Conclude that .∇ : �k(A) → �k+1(A). 

Proposition 6.13 Let .P ∈ �k(A). Then .P : Hs+k → Hs is a continuous map. 
Hence, such a .P has analytic order .≤ k and we have .�k(A) ⊂ opk . 

Using this abstract pseudodifferential calculus, we now introduce the functionals 
of relevance for the index formula.
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Definition 6.14 Let.(A,H, D; γ) be a regular spectral triple. For pseudodifferential 
operators .X0, X1, . . . X p ∈ �(A) and .�(z) � 0 define 

. 〈X0, X1, . . . , X p〉z =
(−1)p �(z)

2πi
Tr

(∫
λ−zγX0(λ− D2)−1X1(λ− D2)−1 · · · X p(λ− D2)−1dλ

)
.

Let us show that this expression is well defined, i.e. that the integral is actually 
trace class. We first practice with this expression in a special case. 

Exercise 6.13 Assume that .X j ∈ �k j (A) commutes with .D for all . j = 0, . . . , p. 

(1) Use Cauchy’s integral formula to show that 

. 〈X0, X1, . . . , X p〉z = �(z + p)

p! Tr(γX0 · · · X p|D|−2z−2p).

(2) Show that this expression extends to a meromorphic function on . C. 

This exercise suggests that, in the general case, we move all terms . (λ− D2)−1
in .〈X0, X1, . . . , X p〉z to the right. This we will do in the remainder of this section. 
First, we need the following result. 

Lemma 6.15 Let .X ∈ �q(A) and let .n > 0. Then for any positive integer . k, we  
have 

. (λ− D2)−n X =X (λ− D2)−n + nX (1)(λ− D2)−(n+1)

+ n(n + 1)

2
X (2)(λ− D2)−(n+2) + · · ·

+ n(n + 1) · · · (n + k)

k! X (k)(λ− D2)−(n+k) + Rk,

where the remainder .Rk is of analytic order .q − 2n − k − 1 or less. 

Proof This follows by repeatedly applying the formula 

. (λ− D2)−1X = X (λ− D2)−1 + [(λ− D2)−1, X ]
= X (λ− D2)−1 + (λ− D2)−1[D2, X ](λ− D2)−1.

This yields an asymptotic expansion 

. (λ− D2)−1X ∼
∑
i≥0

X (i)(λ− D2)−1−i ,

so that for each .m � 0 every sufficiently large finite partial sum agrees with the 
left-hand side up to an operator of analytic order .m or less. Indeed, truncating the 
above sum at .i = k, we find that the remainder is
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. (λ− D2)−1X (k+1)(λ− D2)−1−k,

which is of analytic order .−2+ (q + k + 1)− 2(k + 1) = q − k − 3 or less. 
More generally for any positive integer . n one has: 

. (λ− D2)−n X ∼
∑
k≥0

(−1)k
(−n

k

)
X (k)(λ− D2)−n−k .

Estimates similar to those above show that the remainder has the claimed analytic 
order. . �

We now arrive at the final result of this section which will form the main ingredient 
in the next section, where we will introduce the.(b, B)-cocycles relevant for the index 
formula. 

Proposition 6.16 The expression .〈X0, . . . , X p〉z in Definition 6.14 seen as a func-
tion of . z extends meromorphically to . C. 

Proof We use Lemma 6.15 to bring all .(λ− D2)−1 to the right. We first introduce 
the combinatorial quantities: 

. c(k1, . . . , k j ) = (k1 + · · · + k j + j)!
k1! · · · k j !(k1 + 1) · · · (k1 + · · · k j + j)

,

for non-negative integers .k1, . . . , k j . These satisfy 

. c(k1, . . . , k j ) = c(k1, . . . , k j−1)
(k1 + · · · + k j−1 + j) · · · (k1 + · · · + k j + j − 1)

k j ! ,

while .c(k1) = 1 for all . k1. 
From Lemma 6.15 we know that there is the following asymptotic expansion: 

. (λ− D2)−1X1 ∼
∑
k1≥0

c(k1)X
1(k1)

(λ− D2)−k1 .

Then, in the subsequent step we find 

.(λ− D2)−1X1(λ− D2)−1X2 ∼
∑
k1≥0

c(k1)X
1(k1)

(λ− D2)−(k1+2)X2

∼
∑

k1,k2≥0
c(k1, k2)X

1(k1)X2(k2)
(λ− D2)−(k1+k2+2),
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and finally 

. (λ− D2)−1X1 · · · (λ− D2)−1X p ∼
∑
k≥0

c(k)X1(k1) · · · X p(kp)(λ− D2)−(|k|+p),

where .k = (k1, . . . , kp) is a multi-index and .|k| = k1 + . . .+ kp. 
Multiplying this with .γX0 and integrating as in Definition 6.14, this yields 

. (−1)p �(z)

2πi

∫
λ−zγX0(λ− D2)−1X1 · · · (λ− D2)−1X p(λ− D2)−1dλ

∼
∑
k≥0

c(k)γX0X1(k1) · · · X p(kp)(−1)p �(z)

2πi

∫
λ−z(λ− D2)−(|k|+p+1)dλ

=
∑
k≥0

c(k)γX0X1(k1) · · · X p(kp)(−1)p�(z)

( −z
|k| + p

)
|D|−2(z+|k|+p),

where we have used the integral formula, valid for real . λ0: 

.
1

2πi

∫
λ−z

(λ− λ0)N+1
dλ =

(−z
N

)
λ−(N+z)
0 . (6.3.1) 

Finally, using the functional equation for the gamma function, 

. (−1)p�(z)

( −z
|k| + p

)
= (−1)|k|�(z + p + |k|)

(|k| + p)! ,

we obtain an asymptotic expansion 

.〈X0, . . . , X p〉z ∼
∑
k≥0

(−1)|k|�(z + p + |k|)
(|k| + p)! c(k) (6.3.2) 

×Tr
(
γ X0 X1(k1) · · ·  X p(kp)|D|−2(z+|k|+p)

)
. 

As.|k| becomes large the remainder in the truncated expansion on the right-hand side 
becomes trace class. . �

Exercise 6.14 Use Cauchy’s integral formula to prove Eq. (6.3.1). 

6.4 Residues and the Local .(b, B)-Cocycle 

In this section we derive even and odd .(b, B)-cocycles on a given algebra .A from 
the functionals .〈X0, X1, . . . , X p〉z defined in the previous section. First, we derive 
some useful relations between them. We denote the .Z2-grading of an operator .X
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by .(−1)X , according to the grading . γ on . H. Moreover, for such an operator .X we 
denote the graded commutator by.[D, X ] = DX − (−1)X XD. Note that with these 
conventions we have 

. [D, [D, T ]] = [D2, T ] ≡ ∇(T ),

for any even operator . T . 

Lemma 6.17 The meromorphic functions .〈X0, . . . , X p〉z satisfy the following func-
tional equations: 

.〈X0, . . . , X p〉z = (−1)X p 〈X p, X0, . . . , X p−1〉z; (a)

〈X0 , . . . ,  X p〉z+1 = 
p∑

j=0
〈X0 , . . . ,  X j−1 , 1, X j , . . . ,  X p〉z; (b)

〈X0 , . . . ,  [D2 , X j ], . . . ,  X p〉z = 〈X0 , . . . ,  X j−1 X j , . . . ,  X p〉z (c) 

− 〈X0 , . . . ,  X j X j+1 , . . . ,  X p〉z; 
p∑

j=0 
(−1)X0···X j−1〈X0 , . . . ,  [D, X j ], . . . ,  X p〉z = 0. (d) 

Proof (a) follows directly from the property of the trace in .〈X0, . . . , X p〉z , taking 
into account the commutation of.X p with the grading. γ. For (b), note that the integral 
of the following expression vanishes: 

. 
d

dλ

(
λ−z X0(λ− D2)−1 · · · X p(λ− D2)−1

)
= −zλ−z−1X0(λ− D2)−1 · · · X p(λ− D2)−1

−
p∑

j=0
λ−z X0(λ− D2)−1 · · · (λ− D2)−1X j (λ− D2)−1 · · · X p(λ− D2)−1.

Equation (c) follows from 

. (λ− D2)−1[D2, X j ](λ− D2)−1 = −(λ− D2)−1X j + X j (λ− D2)−1.

Finally, (d) is equivalent to 

. Tr γ

[
D,

∫
λ−z X0(λ− D2)−1 · · · X p(λ− D2)−1dλ

]
= 0,

which is the supertrace of a (graded) commutator. . �
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Definition 6.18 For any.p ≥ 0, define a.(p + 1)-linear functional on.A with values 
in the meromorphic functions on . C by 

. �p(a
0, . . . , a p) = 〈a0, [D, a1], . . . , [D, a p]〉s− p

2
.

Proposition 6.19 The even.(b, B)-cochain.� = (�0, �2, . . .) is an (improper) even 
.(b, B)-cocycle in the sense that 

. b�2k + B�2k+2 = 0.

Similarly, the odd .(b, B)-cochain .� = (�1, �3, . . .) is an (improper) odd .(b, B)-
cocycle. 

Proof It follows from the definition of. B and a subsequent application of (a) and (b) 
of Lemma 6.17 that 

. B�2k+2(a0, . . . , a2k+1) =
2k+1∑
j=0

(−1) j 〈1, [D, a j ], . . . , [D, a j−1]〉s−(k+1)

=
2k+1∑
j=0
〈[D, a0], . . . , [D, a j−1], 1, [D, a j ], . . . [D, a2k+1]〉s−(k+1)

= 〈[D, a0], . . . , [D, a2k+1]〉s−k .

Also, from the definition of . b and the Leibniz rule 

. [D, a ja j+1] = a j [D, a j+1] + [D, a j ]a j+1

it follows that 

. b�2k(a
0, . . . , a2k+1) = 〈a0a1, [D, a2], . . . [D, a2k+1]〉s−k

− 〈a0, a1[D, a2], . . . [D, a2k+1]〉s−k
− 〈a0, [D, a1]a2, . . . [D, a2k+1]〉s−k
+ 〈a0, [D, a1], a2[D, a3], . . . [D, a2k+1]〉s−k
+ 〈a0, [D, a1], [D, a2]a3, . . . [D, a2k+1]〉s−k
− · · ·
− 〈a2k+1a0, [D, a1], . . . [D, a2k]〉s−k,

which, by Lemma 6.17(c), becomes 

.

2k+1∑
j=0

(−1) j−1〈a0, [D, a1], . . . , [D2, a j ], . . . , [D, a2k+1]〉s−k .
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Combining these expressions for.B�2k+2 and.b�2k and writing.X0 = a0, and. X j =
[D, a j ] for . j ≥ 1, we obtain 

. B�2k+2(a0, . . . , a2k+1)+b�2k(a
0, . . . , a2k+1)

=
2k+1∑
j=0

(−1)X0···X j 〈X0, . . . , [D, X j ], . . . , X2k+1〉s−k,

which vanishes because of Lemma 6.17(d). 
In the odd case, a similar argument shows that .b�2k−1 + B�2k+1 = 0. . �

The above cocycles have been termed improper because all .�p might be non-
zero, on top of which (rather than in . C) they take values in the field of meromorphic 
functions on . C. By taking residues of the meromorphic functions .�p we obtain a 
proper even or odd .(b, B)-cocycle. This is the residue cocycle that was introduced 
by Connes and Moscovici. 

Theorem 6.20 For any.p ≥ 0 and all.a0, . . . , a p ∈ A the following formulas define 
an even or odd .(b, B)-cocycle: 

. ress=0�0(a
0) = Tr γa0|D|−2 s |s=0,

and 

. ress=0�p(a
0, . . . , a p)

=
∑
k≥0

cp,kress=0 Tr
(
γa0[D, a1](k1) · · · [D, a p](kp)|D|−p−2|k|−2 s) ,

for .p ≥ 1, where the constants .cp,k are given in terms of the (non-negative) multi-
indices .(k1, . . . , kp) by 

. cp,k := (−1)|k|
k!

�
(|k| + p

2

)
(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · kp + p)

.

Proof We use the asymptotic expansion (a). Indeed, setting.z = s − p
2 in that expres-

sion and taking residues at .s = 0 gives the desired expansion, with the coefficients 
.cp,k appearing because 

. cp,k ≡ (−1)|k|�
(
|k| + p

2

) c(k)

(p + |k|)! .

. �
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6.5 The Local Index Formula 

Let.(A,H, D)be a regular spectral triple, as above. The local index formula expresses 
the index of twisted Dirac operators in terms of cocycles in the .(b, B) bicomplex, 
which are easier to compute. We are interested in the indices of the following two 
Fredholm operators. 

Suppose that .(A,H, D) is even. If .p ∈ A is a projection, then .Dp = pDp is 
a Fredholm operator on the Hilbert space . H. This follows from the fact that . Dp

is essentially a finite-dimensional extension of the Fredholm operator . D. We are  
interested in the index of this so-called twisted Dirac operator .Dp. 

In case that.(A,H, D) is an odd spectral triple, we take a unitary.u ∈ A and define 
.Du = PuP , where.P = 1

2 (1+ Sign D). Again,.Du is a Fredholm operator on.H and 
we are interested in the index of .Du . 

Theorem 6.21 Let .(A,H, D) be a regular spectral triple with simple and finite 
dimension spectrum .Sd and let .ress=0� be the (even or odd) .(b, B)-cocycle derived 
previously. 

• If .(A,H, D) is even and . p is a projection in . A, then 

. index Dp = 〈ress=0�, p〉.

• If .(A,H, D) is odd and . u is a unitary in . A, then 

. index Du = 〈ress=0�, u〉.

Remark 6.22 Sometimes a projection or a unitary is given in.MN (A) instead of . A. 
The above result can be extended easily to this case, namely by constructing a spectral 
triple on.MN (A) and doing the index computation there. Indeed, it would follow from 
Theorem 7.15 that if.(A,H, D) is a spectral triple, then so is. (MN (A),H⊗ C

N , D ⊗
IN ). 

Proof of Theorem 6.21. We will prove the even case in two steps (for the odd case 
see Note 15 in this chapter), 

(1) the Atiyah–Bott formula for the index: 

. index Dp = ress=0�(s)Tr γ|Dp|−2 s .

(2) Change the representative of the class .ress=0� in .HCPev(A) to reduce to the 
case that .D commutes with . p, so that 

. 〈ress=0�, p〉 = ress=0�(s)Tr γ p|D|−2 s .

For (1) let us first prove another well-known formula.
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Lemma 6.23 (McKean–Singer formula) Let .(A,H, D) be an even spectral triple. 
Then 

. index D = Tr γe−t D
2
.

Proof Since.D is odd with respect to . γ, its spectrum lies symmetrically around. 0 in 
. R, including multiplicities. If we denote the .λ-eigenspace in .H by .Hλ we therefore 
have .dimHλ = dimH−λ for any non-zero eigenvalue . λ. Including also the kernel 
of . D, we have  

. Tr γe−t D
2 =

∑
λ>0

(dimHλ − dimH−λ) e
−tλ2 + TrH0 γ = Trker D γ,

which is nothing but the index of . D. . �
Note that the McKean–Singer formula tells us in particular that .Tr γe−t D2

does 
not depend on . t . Using the integral formula of the gamma function, we can write: 

. Tr γ|D|−2 s = 1

�(s)

∫ ∞

0
Tr γe−t D

2
t s−1dt. (6.5.1) 

We analyze the behaviour of the right-hand side as .s → 0. For this, we use 

. 
1

�(s)
∼ s, s → 0.

Thus, only the pole part of the above integral contributes to the zeta function evaluated 
at .s = 0. This is given by 

. 

∫ 1

0
Tr γe−t D

2
t s−1dt = 1

s
index D,

where we have used the McKean–Singer formula. The remaining integral from. 1 to 
.∞ gives an entire function of . s, because by finite summability the eigenvalues of . D
grow as . j1/p for some .p > 0. In other words, 

. index D = Tr γ|D|−2 s |s=0,

which proves (1). 
Let us then continue with (2). Consider the family of operators 

. Dt = D + t[p, [D, p]]; (t ∈ [0, 1]).

We have .D0 = D and .D1 = pDp + (1− p)D(1− p) so that .[D1, p] = 0. More-
over, .index Dt depends continuously on . t , and (being an integer) it is therefore 
constant in . t . 

Next, we consider a family of improper cocycles.� t which are defined by replacing 
.D by .Dt in Definition 6.18.



112 6 The Local Index Formula in Noncommutative Geometry

Lemma 6.24 The derivative of .� t is an (improper) even cyclic coboundary, i.e. 
there exists a cochain .�t such that 

. 
d

dt
� t

p + B�t
p+1 + b�t

p−1 = 0,

which is explicitly given by 

. �t
p(a

0, . . . , a p) =
p∑

j=0
(−1) j−1〈a0, . . . [D, a j ], Ḋ, [D, a j+1], . . . [D, a p]〉s− p+1

2
,

with .Ḋ = d
dt Dt ≡ [p, [D, p]]. 

Proof Imitating the proof of Proposition 6.19 one can show the following identity 
(see also Note 17 in this chapter). 

. B�t
2k+1(a

0, . . . , a2k)+ b�t
2k−1(a

0, . . . , a2k)

= −
2k∑
j=0
〈a0, [D, a1], . . . [D, a j ], [D, Ḋ], . . . , [D, a2k]〉s−k

−
2k∑
j=1
〈a0, [D, a1], . . . [Ḋ, a j ], , . . . , [D, a2k]〉s−k .

The fact that . ddt �
t coincides with the right-hand side follows from 

. 
d

dt
(λ− D2

t )
−1 = (λ− D2

t )
−1 (

DḊ + ḊD
)
(λ− D2

t )
−1. �

Continuing the proof of the theorem, we integrate the resulting coboundary to 
obtain 

. B
∫ 1

0
�t

2k+1dt + b
∫ 1

0
�t

2k−1dt = �0
2k −�1

2k .

In other words,.ress=0�0 and.ress=0�1 define the same class in even cyclic cohomol-
ogy.HCPev(A). So, with the help of Proposition 6.6, we can compute. 〈ress=0�, p〉
using.�1 instead of .�0 ≡ �, with the advantage that .D1 commutes with . p. Indeed, 
this implies that 

. �1
2k(p − 1

2 , p, . . . , p) = 0,

for all .k ≥ 1, so that
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. 〈ress=0�1, p〉 ≡ ress=0�1
0 (p)+

∑
k≥1

(−1)k (2k)!
k! ress=0�1

2k(p − 1
2 , p, . . . , p)

= ress=0�1
0 (p)

= ress=0�(s)Tr γ p|D1|−2 s .

This completes the proof of Theorem 6.21, as by the Atiyah–Bott formula the latter 
expression is the index of .Dp. . �

6.6 The Local Index Formula for Toric Noncommutative 
Manifolds 

We here illustrate the local index formula for the class of toric noncommutative 
manifolds .Mθ that were described in Sect. 5.3.2. It turns out that the index formula 
simplifies drastically in this case. 

Theorem 6.25 For a projection .p ∈ MN (C∞(Mθ)), we have 

. index Dp = Tr γ p|D|−2 s |s=0 +
∑
k≥1

ckress=0 Tr
(

γ
(
p − 1

2

)[D, p]2k |D|−2(k+s)
)

where .ck = (k − 1)!/(2k)!. 
Proof First of all, note that the twist .Lθ commutes with the action .αs of .̃Tn on an 
operator . T . Indeed, if . T is homogeneous of degree . r , then .Lθ(T ) is of degree . r , 

. αs(Lθ(T )) = U(s) TU(r ′) U(s)−1 = U(s) T U(s)−1U(r ′) = e2πisμrμLθ(T ).

with .r ′ν = rμθμν so that .r ′ ∈ T̃
n . 

We write the cocycles .ress=0�2k appearing in the local index formula in terms of 
the twist .Lθ as 

.ress=0�2k
(
Lθ( f

0), Lθ( f
1), . . . , Lθ( f

2k)
) = (6.6.1) 

ress=0 Tr
(
γLθ( f 0 ×θ [DM , f 1](α1) ×θ · · ·  ×θ [DM , f 2k](α2k ) )|DM |−2(|α|+k+s)

)
, 

where we extended the.×θ-product to.C∞(Mθ)
⋃[DM ,C∞(Mθ)]which can be done 

unambiguously since .DM is of degree 0. Suppose now that . f 0, . . . , f 2k ∈ C∞(M)

are homogeneous of degree .r0, . . . , r2k , respectively, under the action of .Tn , so  
that the operator . f 0 ×θ [DM , f 1] ×θ · · · ×θ [DM , f 2k] is a homogeneous element 
of degree . r (a simple expression in terms of the . r i ). By working out the .×θ-product 
one finds a multiple of . f 0[DM , f 1] · · · [DM , f 2k], with a factor which is a power of 
the deformation parameter. λ. Forgetting about this factor we obtain from (5.3.9) that
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. Lθ( f
0[DM , f 1] · · · [DM , f 2k]) = f 0[DM , f 1] · · · [DM , f 2k]U (rμθμ1, . . . , rμθμn).

After applying a Mellin transform (6.5.1) one finds that each term in the local index 
formula for .(C∞(Mθ),H, DM) then takes the form 

. ress=0 Tr
(
γ f 0[DM , f 1](α1) · · · [DM , f 2k](α2k )|DM |−2(|α|+k+s)U (s)

)
(6.6.2) 

= �(|α| +  k) lim 
t→0 

t |α|+k Tr
(
γ f 0[DM , f 1](α1) · · · [DM , f 2k](α2k ) e−t D

2 
M U (s)

)
, 

for every .s ∈ T
n . It turns out that this limit vanishes when .|α| �= 0 (see Note 20 

below) and this completes the proof. . �

Notes 

1. The local index formula was obtained by Connes and Moscovici in [ 1]. In our proof of 
the local index formula, we closely follow Higson [ 2]. More general proofs have been 
obtained in [ 3– 5], see Note 14 in this chapter. 

Section 6.1. Local Index Formula on the Circle and on the Torus 

2. The Theorem of Atkinson that appears in Exercise 6.1 can be found in [ 6, Proposition 
3.3.11]. 

3. The index formula on the circle of Exercise 6.2 is a special case of [ 7, Theorem 5]. 
4. In Sect. 6.1.2 we follow [ 8], where a class of projections on the torus was constructed, 

much inspired by the so-called Powers–Rieffel projections on the noncommutative torus 
[ 9]. 

5. The zeta function.ζE that appears in (6.1.2) is a special case of an Epstein zeta function, 
introduced and analyzed in [ 10]. It turns out that .ζE has a pole at .s = 1 with residue . π. 
That (6.1.2) holds also follows from the general result [ 1, Theorem I.2]. 

Section 6.2. Hochschild and cyclic cohomology 

6. In [ 7] Connes introduced cyclic cohomology as a noncommutative generalization of De 
Rham homology, and showed that for the algebra .C∞(M) cyclic cohomology indeed 
reduces to De Rham homology. Besides the original article there are many texts in which 
this is worked out in full detail (e.g. [ 11– 14]). 

7. Example 6.4 is a special case of the fact that.HHk(C∞(M)) � �k(M), the  space of De  
Rham.k-currents. The latter are by definition continuous linear forms on the space of De 
Rham differential .k-forms.�k

dR(M). This isomorphism is proved in [ 7]. 
8. Proposition 6.6 was established in [  11]. The statement can be slightly enhanced. Namely, 

the quantities in Proposition 6.6 also only depend on the classes of . u and . p in the (odd 
and even) K-theory of . A. We refer to [ 11, Sect. IV.1.. γ] for more details. 

9. Originally, Connes introduced cyclic cohomology by means of cocycles satisfying such 
a cyclic condition, explaining the terminology. It turns out that this is equivalent to taking 
an even/odd cocycle in the .(b, B)-bicomplex. For more details we refer to [ 7, Theorem 
II.40] (or [ 11, Theorem III.1.29]).
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10. The non-trivial evaluation of. φ on a projection in the noncommutative torus algebra plays 
a crucial role in the noncommutative geometric description of the integer quantum Hall 
effect. More details can be found in [ 15] and  [  11, Sect. IV.6.. γ]. Exercise 6.10 gives an 
alternative way to show that. φ is non-trivial, and is very close to the computation that led 
to Proposition 6.1 dealing with the commutative case. It is based on the Powers–Rieffel 
projections introduced in [ 9]. 

Section 6.3. Abstract differential calculus 

11. In our development of an abstract differential calculus we closely follow Connes and 
Moscovici [ 1]. In the case of the canonical triple of a spin manifold. M , this will reproduce 
(part of) the usual differential calculus on. M . We refer to [ 2] for a more detailed treatment. 
Note that the hypothesis that.D is invertible can be removed, as described in [ 2, Sect. 6.1]. 

12. The Sobolev spaces.Hs have appeared in the literature (including the first edition of this 
book) with a defining norm.‖ξ‖2 + ‖|D|sξ‖2, while then operators of analytic order. ≤ r
were defined as operators that extend to bounded maps from.Hs to .Hs−r for all .s ≥ 0. 
However, then one runs into the problem that .|D| itself does not extend to a bounded 
operator from.H0 → H−1. This has been corrected in the current version, according to 
[ 16– 18]. 

13. The notion of finite summability for spectral triples was introduced in [ 11, Sect. IV.2.. γ] 
(see also [ 12, Definition 10.8]). 

14. Even though we restrict to finitely-summable, regular spectral triples with simple dimen-
sion spectrum and for which there is a finite number of poles in .Sd, the index formula 
can be proved in the presence of essential and infinitely many singularities as well [ 3– 5]. 

Section 6.5. The local index formula 

15. In our proof of Theorem 6.21 we follow Higson [ 2]. For the odd case, we refer to the 
original paper by Connes and Moscovici [ 1] (see also the more general [ 3]). 

16. The McKean–Singer formula is due to [ 19]. 
17. For more details on the ‘transgression formula’ that is essential in the proof of Lemma 

6.24 we refer to the discussion resulting in [ 12, Eq. 10.40]. 
18. It is noted in [ 1, Remark II.1] that if .(A,H, D) is the canonical triple associated to a 

Riemannian spin manifold . M , then the local index formula of Connes and Moscovici 
reduces to the celebrated Atiyah–Singer index theorem for the Dirac operator [ 20, 21]. 
Namely, the operator .Dp is then the Dirac operator with coefficients in a vector bundle 
.E → M . The latter is defined as a subbundle of the trivial bundle .M × C

N using the 
projection.p ∈ MN (C(M)): one sets the fiber to be.Ex = p(x)CN at each point.x ∈ M . 
We then have 

. index Dp = (2πi)− n
2

∫
M

Â(R) ∧ ch(E),

where . Â(R) is the . Â-form of the Riemannian curvature of .M and .ch(E) is the Chern 
character of the vector bundle.E (cf. [ 22]). The proof exploits Getzler’s symbol calculus 
[ 23– 25], as in [ 26]. See also [ 27].



116 6 The Local Index Formula in Noncommutative Geometry

Section 6.6. The local index formula for toric noncommutative manifolds 

19. Sect. 6.6 is based on [ 28, 29]. 
20. The appearance of.U (s) in the proof of Theorem 6.25 is a consequence of the close relation 

with the index formula for a.Tn-equivariant Dirac spectral triple on. M . In [  30] Chern  and  
Hu considered an even dimensional compact spin manifold .M on which a (connected 
compact) Lie group .G acts by isometries. The equivariant Chern character was defined 
as an equivariant version of the JLO-cocycle, the latter being an element in equivariant 
entire cyclic cohomology. The essential point is that they obtained an explicit formula 
for the above residues. Moreover, the vanishing of the term in Eq. (6.6.2) for .|α| �= 0 is 
[ 30, Theorem 2]. 
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Part II 
Noncommutative Geometry and Gauge 

Theories



Chapter 7 
Gauge Theories from Noncommutative 
Manifolds 

In this chapter we demonstrate how every noncommutative (Riemannian spin) 
manifold, viz. every spectral triple, gives rise to a gauge theory in a generalized 
sense. We derive so-called inner fluctuations via Morita equivalences and interpret 
these as generalized gauge fields. This is quite similar to the construction in the finite 
case in Chaps. 2 and 3. 

7.1 ‘Inner’ Unitary Equivalences as the Gauge Group 

In Chap. 2 we already noticed the special role played by the unitary elements in 
the matrix algebras, and how they give rise to equivalences of finite noncommuta-
tive spaces (cf. Remark 2.25). We now extend this to general real spectral triples 
.(A,H, D; J, γ ). 

Definition 7.1 A .∗-automorphism of a .∗-algebra .A is a linear invertible map . α :
A → A that satisfies 

. α(ab) = α(a)α(b), α(a∗) = α(a)∗.

We denote the group of automorphisms of the .∗-algebra .A by .Aut(A). 
An automorphism . α is called inner if it is of the form .α(a) = uau∗ for some 

element .u ∈ U(A) where 

. U(A) = {u ∈ A : uu∗ = u∗u = 1}

is the group of unitary elements in . A. The group of inner automorphisms is denoted 
by .Inn(A). 

The group of outer automorphisms of .A is defined by the quotient 

. Out(A) := Aut(A)/ Inn(A).
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Note that .Inn(A) is indeed a normal subgroup of .Aut(A) since 

. β ◦ αu ◦ β−1(a) = β
(
uβ−1(a)u∗) = β(u)aβ(u)∗ = αβ(u)(a),

for any .β ∈ Aut(A). 
An inner automorphism.αu is completely determined by the unitary element . u ∈

U(A), but not in a unique manner. In other words, the map . φ : U(A) → Inn(A)

given by .u �→ αu is surjective, but not injective. The kernel is given by . ker(φ) =
{u ∈ U(A) | uau∗ = a, a ∈ A}. In other words, .ker φ = U(Z(A)) where .Z(A) is 
the center of . A. We conclude that the group of inner automorphisms is given by the 
quotient 

. Inn(A) � U(A)/U(Z(A)). (7.1.1) 

This can be summarized by the following exact sequences: 

. 1 Inn(A) Aut(A) Out(A) 1,

1 U(Z(A)) U(A) Inn(A) 1.

Example 7.2 If .A is a commutative .∗-algebra, then there are no non-trivial inner 
automorphisms since .Z(A) = A. Moreover, if .A = C∞(X) with .X a smooth com-
pact manifold, then.Aut(A) � Diff(X), the group of diffeomorphisms of. X . Explic-
itly, a diffeomorphism.φ : X → X yields an automorphisms by pullback of a function 
. f : 

. φ∗( f )(x) = f (φ(x)); (x ∈ X).

Compare this with the discussion in the case of finite discrete topological spaces 
in Sect. 2.1. More generally, there is a continuous version of the above group iso-
morphism, relating .Aut(C(X)) one-to-one to homeomorphisms of . X . This fol-
lows from functoriality of Gelfand duality. Namely, the Gelfand transform in 
Theorem 5.7 naturally extends to homomorphisms between commutative unital 
.C∗-algebras, mapping these to homeomorphism between the corresponding structure 
spaces. 

The fact that all automorphisms of.C∞(X) come from a diffeomorphism of. X can 
be seen as follows. Consider a smooth family.{αt }t∈[0,1] of automorphisms of. C∞(X)

from.αt=0 = id to.αt=1 = α. The derivative at .t = 0 of this family, .α̇ := dαt/dt |t=0, 
is a .∗-algebra derivation, since 

. α̇( f1 f2) = d

dt
αt ( f1 f2)|t=0 = d

dt
αt ( f1)αt ( f2)|t=0 = α̇( f1) f2 + f1α̇( f2).

As such, . α̇ corresponds to a smooth vector field on .X and the end point .φt=1 of the 
flow.φt of this vector field is the sought-for diffeomorphism of . X . Its pullback . φ∗

t=1
on smooth functions coincides with the automorphism.αt=1 = α.
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Example 7.3 At the other extreme, we consider an example where all automor-
phisms are inner. Let .A = MN (C) and let . u be an element in the unitary group 
.U (N ). Then . u acts as an automorphism on .a ∈ MN (C) by sending .a �→ uau∗. If  
.u = λIN is a multiple of the identity with .λ ∈ U (1), this action is trivial, hence the 
group of automorphisms of. A is the projective unitary group.PU (N ) = U (N )/U (1), 
in concordance with (7.1.1). 

The fact that all automorphisms are inner follows from the following observation. 
First, any .∗-algebra map .α : MN (C) → MN (C) can be considered a representation 
of .A on .CN . As the unique irreducible representation space of .MN (C) is given by 
the defining representation (Lemma 2.15) we conclude that the representation . α is 
unitarily equivalent to the defining representation on.C

N . Hence, .α(a) = uau∗ with 
.u ∈ U (N ). 

Exercise 7.1 Show that.Aut(MN (C) ⊕ MN (C)) � (PU (N ) × PU (N )) � S2 with 
the symmetric group .S2 acting by permutation on the two copies of .PU (N ). 

Inner automorphisms .αu not only act on the .∗-algebra . A, via the representation 
.π : A → B(H) they also act on the Hilbert space.H present in the spectral triple. In 
fact, with .U = π(u)Jπ(u)J−1, the unitary . u induces a unitary equivalence of real 
spectral triples in the sense of Definition 3.4, as the following exercise shows. 

Exercise 7.2 Use Definition 5.9 to establish the following transformation rules for 
a unitary .U = π(u)Jπ(u)J−1 with .u ∈ U(A): 

.Uπ(a)U ∗ = π ◦ αu(a); (7.1.2) 

U γ = γ U ; 
U JU ∗ = J. 

We conclude that an inner automorphism .αu of .A induces a unitary equivalent 
spectral triple.(A,H,UDU ∗; J, γ ), where the action of the.∗-algebra is given by. π ◦
αu . Note that the grading and the real structure are left unchanged under these ‘inner’ 
unitary equivalences; only the operator .D is affected by the unitary transformation. 
For the latter, we compute, using (5.2.1), 

.D �→ UDU ∗ = D + u[D, u∗] + ε′ Ju[D, u∗]J−1, (7.1.3) 

where as before we have suppressed the representation . π . We recognize the extra 
terms as pure gauge fields.udu∗ in the space of Connes’ differential one-forms. 	1

D(A)

of Definition 5.15. This motivates the following definition 

Definition 7.4 The gauge group .G(A,H; J ) of the spectral triple is 

.G(A,H; J ) := {
U = u Ju J−1 | u ∈ U(A)

}
.
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Recall (from Sect. 8.1) the construction of a complex subalgebra.AJ in the center 
of .A from a real spectral triple .(A,H, D; J ), given by 

. AJ := {a ∈ A : aJ = Ja∗}.
Proposition 7.5 There is a short exact sequence of groups 

. 1 → U(AJ ) → U(A) → G(A,H; J ) → 1.

Moreover, there is a surjective map .G(A,H; J ) → Inn(A). 

Proof Consider the map .Ad : U(A) → G(A,H; J ) given by .u �→ u Ju J−1. This  
map.Ad is a group homomorphism, since the commutation relation. [u, Jv J−1] = 0
of (5.2.1) implies that 

. Ad(v)Ad(u) = v Jv J−1u Ju J−1 = vu Jvu J−1 = Ad(vu).

By definition.Ad is surjective, and.ker(Ad) = {u ∈ U(A) | u Ju J−1 = 1}. The  rela-
tion .u Ju J−1 = 1 is equivalent to .u J = Ju∗ which is the defining relation of 
the commutative subalgebra .AJ . This proves that .ker(Ad) = U(AJ ). The  map  
.G(A,H; J ) → Inn(A) is given by (7.1.2), from which surjectivity readily follows. 
. ��
Corollary 7.6 If .U(AJ ) = U(Z(A)), then .G(A,H; J ) � Inn(A). 

Proof This is immediate from the above Proposition and (7.1.1). . ��
We summarize this by the following sequence, which is exact in the horizontal 

direction: 

. 1 U(AJ ) U(A) G(A,H; J ) 1

1 U(Z(A)) U(A) Inn(A) 1

7.1.1 The Gauge Algebra 

A completely analogous discussion applies to the definition of a gauge Lie algebra, 
where instead of automorphisms we now take (inner and outer) derivations of . A. 
The following definition essentially gives the infinitesimal version of .G(A,H; J ). 

Definition 7.7 The gauge Lie algebra .g(A,H; J ) of the spectral triple is 

. g(A,H; J ) := {
T = X + J X J−1 | X ∈ u(A)

}
,

where .u(A) consists of the skew-hermitian elements in . A.
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One easily checks using the commutant property, 

. [T, T ′] = [X, X ′] + J [X, X ′]J−1,

so that .g(A,H; J ) is indeed a Lie algebra. 

Proposition 7.8 There is a short exact sequence of Lie algebras 

. 0 → u(AJ ) → u(A) → g(A,H; J ) → 0.

There are also inner derivations of .A that are of the form .a → [X, a]; these 
form a Lie subalgebra .DerInn(A) of the Lie algebra of all derivations .Der(A). If  
.u(AJ ) = u(Z(A)) then 

. g(A,H; J ) � DerInn(A),

which essentially is the infinitesimal version of Corollary 7.6. 

Exercise 7.3 Show that .Der(MN (C)) � su(N ) as Lie algebras. 

7.2 Morita Self-equivalences as Gauge Fields 

We have seen that a non-abelian gauge group appears naturally when the unital 
.∗-algebra.A in a real spectral triple is noncommutative. Moreover, noncommutative 
algebras allow for a more general—and in fact more natural—notion of equivalence 
than automorphic equivalence, namely Morita equivalence. We have already seen 
this in Chap. 2. Indeed, let us imitate the construction in Theorem 2.26 and 3.6 and 
see if we can lift Morita equivalence to the level of spectral triples in this more general 
setting. 

Let us first recall some of the basic definitions. We keep working in the setting of 
unital algebras, which greatly simplifies matters (See Note 4 in this chapter). 

7.2.1 Morita Equivalence 

Recall Definition 2.8 of algebra modules. For two right .A-modules . E and .F we 
denote the space of right .A-module homomorphisms by .HomA(E,F), i.e. 

.HomA(E,F) := {φ : E → F : φ(ηa) = φ(η)a for all η ∈ E, a ∈ A} . (7.2.1) 

We also write .EndA(E) := HomA(E, E) for the algebra of right .A-module endo-
morphisms of . E .
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Definition 7.9 Two unital algebras .A and .B are called Morita equivalent if there 
exists a .B − A-bimodule . E and an .A − B-bimodule .F such that 

. E ⊗A F � B, F ⊗B E � A,

as . B and .A-bimodules, respectively. 

Exercise 7.4 Taking inspiration from Exercise 2.9, show that Morita equivalence is 
an equivalence relation. 

Exercise 7.5 Define .AN = A ⊕ · · · ⊕ A (.N copies) as an .A − MN (A)-bimodule. 

1. Show that .AN ⊗A AN � MN (A), as .MN (A) − MN (A)-bimodules. 
2. Show that .AN ⊗MN (A) AN � A, so that .MN (A) is Morita equivalent to . A. 

A convenient characterisation of Morita equivalent algebras is given by the con-
cept of endomorphism algebras of so-called finitely generated projective modules, 
as we now explain. 

Definition 7.10 A right.A-module is called finitely generated projective (or, briefly, 
finite projective) if there is an idempotent .p = p2 in .MN (A) for some .N such that 
.E � pAN . 

Lemma 7.11 A right .A-module is finitely generated projective if and only if 

. EndA(E) � E ⊗A HomA(E,A).

Proof First note that the right-hand side can be considered to be a two-sided ideal 
in .EndA(E). Namely, we consider an element .η ⊗A φ in .E ⊗A HomA(E,A) as an 
element in .EndA(E) by mapping 

. ξ �→ ηφ(ξ); (ξ ∈ E).

That this map is injective and that its image forms an ideal in .EndA(E) is readily 
checked. Hence, the above isomorphism is equivalent to the existence of an element 
in .E ⊗A HomA(E,A) that acts as the identity map .idE on . E . 

Suppose that . E is finite projective, .E � pAN for some idempotent .p ∈ MN (A). 
We identify two maps 

. λ : E → AN ,

ρ : AN → E,

which are injective and surjective, respectively. These maps are related to the iden-
tification of . E with a direct summand of .AN , via the obvious direct sum decomposi-
tion.AN = pAN ⊕ (1 − p)AN . Namely,. λ identifies. E with.pAN ⊂ AN , whereas. ρ
projects.AN onto the direct summand.pAN and then identifies it with. E . Let us write 
.λk for the . kth component of . λ mapping. E to .AN ; thus, .λk : E → A is right .A-linear
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for any.k = 1, . . . , N . We write.ρk := ρ(ek) ∈ E , where.{ek}Nk=1 is the standard basis 
of .AN . The composition .

∑N
k=1 ρk ⊗ λk then acts as the identity operator on . E . 

Conversely, suppose .idE can be written as a finite sum 

.

N∑

k=1

ρk ⊗ λk ∈ E ⊗A HomA(E,A). (7.2.2) 

Reversing the construction in the previous paragraph, we are now going to define an 
idempotent .p ∈ MN (A) such that .E � pAN . Thus, we define maps 

. λ : E → AN ; η �→ (λ1(η), . . . , λN (η)) ,

ρ : AN → E; (a1, . . . , aN ) �→ ρ1a1 + · · · + ρNaN .

From their very definition, these maps satisfy .ρ ◦ λ = idE , so that .p = λ ◦ ρ is the 
sought-for idempotent in .MN (A). . ��
Exercise 7.6 In this exercise we are going to analyze the ambiguity due to the 
balanced tensor product that appears in the decomposition (7.2.2) of .idE . 

1. If .E = A then .idE = 1 ⊗ 1 ⊂ E ⊗A HomA(E,A) but also 

. idE = 1 ⊗ 1 + a ⊗ 1 + 1 ⊗ (−a),

for any.a ∈ A. Show that the projection corresponding to the latter decomposition 
of .idE is 

. p =
⎛

⎝
1 1 −a
a a −a2

1 1 −a

⎞

⎠ .

2. Show that there is a similarity transformation . S such that 

. SpS−1 =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ .

Therefore, the projection corresponding to .idE = 1 ⊗ 1 appears as the first diag-
onal entry, and we can conclude that both decompositions give isomorphic pro-
jective modules .pA3 � A. 

3. Extend this argument to any finite projective. E to show that the construction of a 
projection . p from (7.2.2) is well defined. 

Proposition 7.12 Two unital algebras .A and . B are Morita equivalent if and only if 
.B � EndA(E), with . E a finite projective .A-module.
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Proof If .B � EndA(E) for some finite projective . E , then .F = HomA(E,A) is 
the required .A − B-bimodule implementing the desired Morita equivalence, with 
bimodule structure given by 

.(a · φ · b)(η) = aφ(b · η); (φ ∈ HomA(E,A)). (7.2.3) 

The property .E ⊗A F � B follows from Lemma 7.11, and the isomorphism . F ⊗B
E � A is implemented by the evaluation map, that is, 

. (φ ⊗ η) ∈ HomA(E,A) ⊗B E �→ φ(η) ∈ A.

Conversely, suppose .A and .B are Morita equivalent. If .B � E ⊗A F , then . B �
EndB(B) � EndB(E ⊗A F), and there is an algebra map 

. EndA(E) → EndB(E ⊗A F);
φ �→ φ ⊗ 1F .

On the other hand, .EndA(B ⊗B E) � EndA(E), and there is an algebra map 

. EndB(B) → EndA(B ⊗B E);
φ′ �→ φ′ ⊗ 1E .

Identifying.E ⊗A F � B and.F ⊗B E � A, one readily checks that these two maps 
are each other’s inverses. This shows that .B � EndA(E). 

Finally, the fact that the right .A-module . E is finitely generated and projective 
follows mutatis mutandis from the proof of Lemma 7.11, after realizing that the 
isomorphism.F ⊗B E � A associates an element in.HomA(E,A) to any element in 
. F . . ��
Exercise 7.7 Show that (7.2.3) is a well-defined .A − B-bimodule structure on 
.HomA(E,A), i.e. show that it respects the right .A-linearity of the map .φ : E → A. 

We conclude this subsection by specializing from algebras to .∗-algebras. The 
above results on Morita equivalence still hold, with the additional requirement that 
in the definition of finite projectivity the idempotent .p ∈ MN (C) needs to be self-
adjoint: .p∗ = p. That is to say, . p is an orthogonal projection. 

As in Definition 3.5, we define the conjugate module .E◦ to a right .A-module . E
as 

. E◦ = {ξ : ξ ∈ E},

equipped with a left .A action defined by .aξ = ξa∗ for any .a ∈ A. 

Proposition 7.13 If .A is a .∗-algebra and . E is a finite projective right .A-module, 
then we can identify .HomA(E,A) as a left .A-module with the conjugate module .E◦,
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Proof If .E � pAN then .EndA(E) � pMN (A)p, as one can easily show using 
the maps . λ and . ρ from the first part of the proof of Lemma 7.11. Hence . E ⊗A
HomA(E,A) � pMN (A)p. But also .pAN ⊗A AN p � pMN (A)p (cf. Exercise 
7.5), so .HomA(E,A) � AN p as left .A-modules. We now show that . E◦ � AN p
as well. 

For that, write .ξ ∈ E � pAN as a column vector: 

. ξ =
⎛

⎜
⎝

∑N
j=1 p1 j a j

...∑N
j=1 pN ja j

⎞

⎟
⎠ .

The corresponding element . ξ in .E◦ is identified with 

. 

(∑N
j=1 a

∗
j p j1 · · · ∑N

j=1 a
∗
j p j N

)
,

written as a row vector in.AN p. Note that the relation between. ξ and this row vector 
is essentially given by the involution on .AN , exploiting the self-adjointness of . p, 
that is, .p∗

j i = pi j . Consequently, the element .aξ = ξa∗ is mapped to 

. a
(∑N

j=1 a
∗
j p j1 · · · ∑N

j=1 a
∗
j p j N

)
,

as required. . ��
Proposition 7.14 Let .A be a .∗-algebra and . E a finite projective right .A-module. 
Then there exists a hermitian structure on . E , that is to say, there is a pairing . 〈·, ·〉E :
E × E → A on . E that satisfies (as in Definition 2.9) 

. 〈η1, η2 · a〉E = 〈η1, η2〉Ea; (η1, η2 ∈ E, a ∈ A),

〈η1, η2〉∗E = 〈η2, η1〉E ; (η1, η2 ∈ E),

〈η, η〉E ≥ 0, with equality if and only if η = 0; (η ∈ E).

Proof On.AN we have a hermitian structure given by 

. 〈η, ξ 〉 =
N∑

j=1

η∗
jξ j ,

which satisfies the above properties. By restriction to.pAN we then obtain a hermitian 
structure on .E � pAN . . ��
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7.2.2 Morita Equivalence and Spectral Triples 

For a given spectral triple.(A,H, D) and for a given finite projective right.A-module 
. E , we try to construct another spectral triple .(B,H′, D′) where .B = EndA(E). This  
generalizes the finite-dimensional constructions of Chaps. 2 and 3. Naturally, 

. H′ := E ⊗A H

carries an action of .φ ∈ B: 

. φ(η ⊗ ψ) = φ(η) ⊗ ψ; (η ∈ E, ψ ∈ H).

Moreover, by finite projectivity of . E , .H′ is a Hilbert space. Indeed, we have 

. H′ � pAN ⊗A H � pHN ,

and since . p is an orthogonal projection it has closed range. 
However, the naive choice of an operator .D′ by .D′(η ⊗ ψ) = η ⊗ Dψ will not 

do, because it does not respect the ideal defining the tensor product over . A, which 
is generated by elements of the form 

. ηa ⊗ ψ − η ⊗ aψ; (η ∈ E, a ∈ A, ψ ∈ H).

A better definition is 

. (1 ⊗∇ D)(η ⊗ ψ) = η ⊗ Dψ + ∇(η)ψ.

where .∇ : E → E ⊗A 	1
D(A) is a connection associated to the derivation . d : a �→

[D, a] .(a ∈ A). This means that .∇ is a linear map that satisfies the Leibniz rule: 

. ∇(ηa) = (∇η)a + η ⊗A da; (η ∈ E, a ∈ A).

Exercise 7.8 (1) Let .∇ and .∇′ be two connections on a right .A-module . E . Show 
that their difference .∇ − ∇′ is a right .A-linear map .E → E ⊗A 	1

D(A). 
(2) Show that the following map defines a connection on .E = pAN : 

. ∇ = p ◦ d,

with . d acting on each copy of .A as the commutator .[D, ·]. This connection is 
referred to as the Grassmann connection on . E . 

Theorem 7.15 If .(A,H, D) is a spectral triple and .∇ is a connection on a finite 
projective right .A-module . E , then .(B,H′, 1 ⊗∇ D) is a spectral triple, provided that 
.∇ is a hermitian connection, i.e. provided that 

.〈η1,∇η2〉E − 〈∇η1, η2〉E = d〈η1, η2〉E ; (η1, η2 ∈ E). (7.2.4)
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Proof Suppose .E = pAN , so that .B = EndA(E) � pMN (A)p and . E ⊗A H �
pHN . The boundedness of the action of. B on.E ⊗A H then follows directly from the 
boundedness of the action of .A on . H. Similarly, for .φ ∈ B the commutator . [D, φ]
can be regarded as a matrix with entries of the form.[D, a] with .a ∈ A. These com-
mutators are all bounded, so that.[D, φ] is bounded. Let us prove compactness of the 
resolvent. By Exercise 7.8 any connection can be written as .∇ = p ◦ [D, ·] + ω for 
a right .A-linear map .ω : E → E ⊗A 	1

D(A). Hence, after making the above iden-
tifications we see that the operator .∇ ⊗ 1 + 1 ⊗ D coincides with .pDp + ω. The  
action of . ω is as a bounded operator, which by (7.2.4) is self-adjoint. Moreover, it is 
given by a matrix acting on .pHN with entries in .	1

D(A). Since for any self-adjoint 
operator . T we have 

. (i + T + ω)−1 = (i + T )−1
(
1 − ω(i + T + ω)−1

)
,

with .
(
1 − ω(i + T + ω)−1

)
bounded, compactness of the resolvent of . pDp + ω

would follow from compactness of .(i p + pDp)−1 (note that . p is the identity on the 
Hilbert space .pHN ). The required compactness property is a consequence of the 
identity 

. (i p + pDp)p(i + D)−1 p = p[i + D, p](i + D)−1 p + p.

Indeed, when multiplied on the left with .(i p + pDp)−1 we find that on .pHN : 

. (i p + pDp)−1 = p(i + D)−1 p − (i p + pDp)−1 p[D, p](i + D)−1 p,

which is compact since .(i + D)−1 is compact by definition of a spectral triple. . ��
Analogously, for a given real spectral triple .(A,H, D, J ) we define another real 

spectral triple .(B,H′, D′ = (1 ⊗∇ D) ⊗∇ 1; J ′) by setting 

. H′ := E ⊗A H ⊗A E◦.

Then, .φ ∈ B acts on .H′ by 

. φ(η ⊗ ψ ⊗ ξ) = φ(η) ⊗ ψ ⊗ ξ,

and the operator .D′ may be defined to be .(1 ⊗∇ D) ⊗∇ 1, i.e. 

. D′(η ⊗ ψ ⊗ ξ) = (∇η)ψ ⊗ ξ + η ⊗ Dψ ⊗ ξ + η ⊗ ψ(∇ξ),

while for .J ′ we set 

.J ′(η ⊗ ψ ⊗ ξ) = ξ ⊗ Jψ ⊗ η.
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Finally, for even spectral triples one defines a grading .γ ′ on .E ⊗A H ⊗A E◦ by 
.γ ′ = 1 ⊗ γ ⊗ 1. We have therefore proved: 

Theorem 7.16 If .(A,H, D; J, γ ) is a real spectral triple and .∇ is a hermitian 
connection, then .(B,H′, D′; J ′, γ ′) is a real spectral triple. 

We now focus on Morita self-equivalences, for  which.B = A and.E = A so that 
.EndA(E) � A. Let us look at connections 

. ∇ : A → 	1
D(A).

Clearly, by the Leibniz rule we must have.∇ = d + ω (see also Exercise 7.8), where 
.ω = ∇(1) = ∑

j a j [D, b j ] is a generic element in.	1
D(A) acting as a bounded oper-

ator on. H. Similarly,.ψ∇a = (ε′ JdaJ−1 + ε′ JωaJ−1)ψ . Since.H′ � H, under this 
identification we have, 

. D′(ψ) ≡ D′(1 ⊗ ψ ⊗ 1) = ∇(1)ψ + ψ∇(1) + Dψ = Dψ + ωψ + ε′ JωJ−1ψ.

In other words, .D is ‘innerly perturbed’ by the given Morita self-equivalence to 

.Dω := D + ω + ε′ JωJ−1, (7.2.5) 

where .ω∗ = ω ∈ 	1
D(A) is called a gauge field, alternatively called an inner fluc-

tuation of the operator . D, since it is the algebra .A that—through Morita self-
equivalences—generates the field . ω. 

Proposition 7.17 A unitary equivalence of a real spectral triple .(A,H, D; J ) as 
implemented by .U = u Ju J−1 with .u ∈ U(A) (discussed before Definition 7.4) is a  
special case of a Morita self-equivalence, arising by taking .ω = u[D, u∗]. 
Proof This follows upon inserting.ω = u[D, u∗] in the above formula for.Dω, yield-
ing (7.1.3). . ��

In the same way there is an action of the unitary group.U(A) on the new spectral 
triple .(A,H, Dω) by unitary equivalences. Recall that .U = u Ju J−1 acts on .Dω by 
conjugation: 

.Dω �→ UDωU
∗. (7.2.6) 

This is equivalent to 

. ω �→ uωu∗ + u[D, u∗],

which is the usual rule for a gauge transformation on a gauge field.
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7.3 Inner Fluctuations Without the First-Order Condition 

We now generalize inner fluctuations to real spectral triples that fail on the first-
order condition. This will be used in the applications to particle physics beyond the 
Standard Model in Chap. 15. 

Let us start with the following general result on Morita equivalence for spectral 
triples .(A,H, D; J ) that possibly do not satisfy the first-order condition. It turns 
out to be necessary to work with the.A-bimodule of universal differential one-forms 
.	1(A), instead of the Connes’ differential one-forms .	1

D(A), see Note 7 in this 
chapter for a quick review on universal differential forms. 

Just as in Theorem 7.16 of the previous section we now consider the operators 
induced on .E ⊗A H by the operator .D on .H and a (universal) connection .∇ on . E . 
We still exploit the same notation .1 ⊗∇ D: 

. (1 ⊗∇ D)(η ⊗ ψ) = (∇η)ψ + η ⊗ Dψ,

with the universal one-form in the first term on the right-hand side acting via the 
representation .δa �→ da = [D, a] on . H. 

Proposition 7.18 Let .(A,H, D; J ) be a real spectral triple, possibly not fulfilling 
the first-order condition. Let . E be a finitely generated projective right .A-module, 
equipped with a universal connection .∇ : E → E ⊗A 	1(A). Then 

.(1 ⊗∇ D) ⊗∇ 1 = 1 ⊗∇ (D ⊗∇ 1) (7.3.1) 

Moreover, the triple.(EndA(E), E ⊗A H ⊗A E, D′; J ′) is a real spectral triple where 
.D′ = (1 ⊗∇ D) ⊗∇ 1 and the real structure is given by 

. J ′(v1 ⊗ ξ ⊗ v2) = (v2 ⊗ Jξ ⊗ v1); (v1, v2 ∈ E, ξ ∈ H).

Proof See Note 8 in this chapter. . ��
Corollary 7.19 If .(A,H, D; J ) satisfies the first-order condition, then so does 
.(EndA(E), E ⊗A H ⊗A E, D′; J ′) and in that case the above inner fluctuation 
reduces to the usual one, given in terms of a connection . ∇ : E → E ⊗A 	1

D(A)

(i.e. representing all universal connections using .δ �→ [D, ·]). 

7.3.1 Special Case .E = A and Inner Fluctuations 

As a special case we take.E = A and.∇ = δ + A where.A ∈ 	1(A) is a self-adjoint, 
universal one-form 

.A =
∑

j

a jδ(b j ); (a j , b j ∈ A). (7.3.2)
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Under the respective identifications .H = A ⊗A H and .H = H ⊗A A, we have  

. 1 ⊗∇ D � D +
∑

j

a j [D, b j ],

D ⊗∇ 1 � D +
∑

j

â j [D, b̂ j ].

This then gives rise to the following Dirac operator 

. D′ = D +
∑

j

a j [D, b j ] +
∑

j

â j [D, b̂ j ] +
∑

j

â j [ω(1), b̂ j ]

=: D + ω(1) + ω̃(1) + ω(2) (7.3.3) 

where we have defined 

. ω(1) :=
∑

j

a j [D, b j ];

ω̃(1) :=
∑

j

â j [D, b̂ j ];

ω(2) :=
∑

j

â j [ω(1), b̂ j ]

=
∑

j,k

â j ak[[D, bk], b̂ j ]

The commutant property (5.2.1) shows that 

. 

∑

j

â j [ω(1), b̂ j ] =
∑

j,k

â j ak[[D, bk], b̂ j ] =
∑

j,k

akâ j [[D, b̂ j ], bk] =
∑

k

ak[ω̃(1), bk]

which checks (7.3.1). Note that, with .ε = ±1 such that .J DJ−1 = εD one has 

. ̃ω(1) = ε Jω(1) J
−1, ω(2) = ε Jω(2) J

−1

which follows from the commutant property (5.2.1). 
It is clear from these formulas that .ω(2) vanishes if .(A,H, D; J ) satisfies the 

first-order condition, thus reducing to formula (7.2.5) above. We will interpret the 
terms .ω(2) as non-linear corrections to the first-order, linear inner fluctuations . ω(1)

of .(A,H, D; J ). It is clear that the first order condition is equivalent to the linearity 
of the map from.1-forms to fluctuations. Let us check that the gauge transformations 
operate in the correct manner thanks to the quadratic correction term.ω(2). We shall 
understand this direct computation in a more conceptual manner in Sect. 7.3.2.
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Lemma 7.20 Let .A ∈ 	1(A) be a universal one form as in (7.3.2), and . D′ = D(A)

be given by (7.3.3). Let .u ∈ U(A) and .U = u Ju J−1. Then one has 

.UD(A)U ∗ = D(γu(A)), γu(A) = uδ(u∗) + uAu∗ ∈ 	1(A) (7.3.4) 

Proof Let .A = ∑n
1 a jδ(b j ) ∈ 	1(A), one has 

. γu(A) = u(1 −
n∑

1

a jb j )δ(u
∗) +

n∑

1

ua jδ(b ju
∗) =

n∑

0

a′
jδ(b

′
j )

where.a′
0 = u(1 − ∑n

1 a jb j ) and.b′
0 = u∗, while.a′

j = ua j and.b′
j = b ju∗ for. j > 0. 

What matters is the following, valid for any inclusion .A ⊂ B, and . T ∈ B

.

n∑

0

a′
j [T, b′

j ] = u[T, u∗] + u

(
n∑

1

a j [T, b j ]
)

u∗ (7.3.5) 

We use the notation .T̂ = JT J−1 for any operator . T in . H, so that 

. ω(1) :=
∑

j

a j [D, b j ];

ω(2) :=
∑

j

â j [ω(1), b̂ j ]

=
∑

j,k

â j [ak[D, bk], b̂ j ]

We now apply these formulas using .γu(A) = ∑n
0 a

′
jδ(b

′
j ) and obtain using (7.3.5), 

.ω′
(1) = u[D, u∗] + u

(
n∑

1

a j [D, b j ]
)

u∗ = u[D, u∗] + uω(1)u
∗ (7.3.6) 

and 

.ω′
(2) =

∑

j

â′
j [ω′

(1), b̂
′
j ] = û[ω′

(1), û
∗] + û

⎛

⎝
∑

j

â j [ω′
(1), b̂ j ]

⎞

⎠ û∗ (7.3.7) 

So, using (7.3.6), we get (assuming to simplify that .ε = 1 so .D̂ = D) 

. 

∑

j

â j [ω′
(1), b̂ j ] =

∑

j

â j [u[D, u∗], b̂ j ] +
∑

j

â j [uω(1)u
∗, b̂ j ]

and the commutation of the . x̂ with the . y, for .x, y ∈ A gives



136 7 Gauge Theories from Noncommutative Manifolds

. 

∑

j

â j [uω(1)u
∗, b̂ j ] = u

⎛

⎝
∑

j

â j [ω(1), b̂ j ]
⎞

⎠ u∗ = uω(2)u
∗

and using .u[D, u∗] = uDu∗ − D, 

. 

∑

j

â j [u[D, u∗], b̂ j ] = u

⎛

⎝
∑

j

â j [D, b̂ j ]
⎞

⎠ u∗ −
∑

j

â j [D, b̂ j ] = uω̂(1)u
∗ − ω̂(1)

so that we get: 

.û

⎛

⎝
∑

j

â j [ω′
(1), b̂ j ]

⎞

⎠ û∗ = ûuω̂(1)u
∗û∗ − ûω̂(1)û

∗ + ûuω(2)u
∗û∗ (7.3.8) 

Next one has 

. û[ω′
(1), û

∗] = û[u[D, u∗], û∗] + û[uω(1)u
∗, û∗]

= û[u[D, u∗], û∗] + ûuω(1)u
∗û∗ − uω(1)u

∗

so that, using (7.3.7) we obtain 

. ω′
(2) = û[u[D, u∗], û∗] +Uω(1)U

∗ − uω(1)u
∗ +U ω̂(1)U

∗ − ûω̂(1)û
∗ +Uω(2)U

∗
(7.3.9) 

We then obtain 

. ω′
(1) + ω̂′

(1) + ω′
(2) = u[D, u∗] + û[D, û∗] + û[u[D, u∗], û∗]

+Uω(1)U
∗ +U ω̂(1)U

∗ +Uω(2)U
∗

and the result follows using 

. UDU ∗ = D + u[D, u∗] + û[D, û∗] + û[u[D, u∗], û∗]. �

7.3.2 The Semi-group of Inner Perturbations 

We show that inner fluctuations come from the action on operators in Hilbert space 
of a semi-group.Pert(A) of inner perturbations which only depends on the involutive 
algebra .A and extends the unitary group of . A. This covers both cases of ordinary 
spectral triples and real spectral triples (i.e. those which are equipped with the oper-
ator. J ). In the latter case one simply uses the natural homomorphism of semi-groups 
.μ : Pert(A) → Pert(A ⊗ Â) given by.μ(A) = A ⊗ Â. This implies in particular that
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inner fluctuations of inner fluctuations are still inner fluctuations and that the corre-
sponding algebraic rules are unchanged by passing from ordinary spectral triples to 
real spectral triples. 

We first show that the formulas of the previous sections can be greatly simplified 
by representing the universal .1-forms as follows, where .A◦ denotes the opposite 
algebra of .A and .x �→ x◦ the canonical anti-isomorphism.A �→ A◦, 

Lemma 7.21 .(i) The following map . η is a surjection 

. η : {
∑

a j ⊗ b◦
j ∈ A ⊗ A◦ |

∑
a j b j = 1} → 	1(A), η(

∑
a j ⊗ b◦

j ) =
∑

a j δ(b j ).

.(i i) One has 

. η
(∑

b∗
j ⊗ a∗◦

j

)
=

(
η

(∑
a j ⊗ b◦

j

))∗

.(i i i) One has, for any unitary .u ∈ A, 

. η
(∑

ua j ⊗ (b ju
∗)◦

)
= γu

(
η

(∑
a j ⊗ b◦

j

))

where .γu is the gauge transformation of potentials. 

Proof .(i)Let us start from an element.ω = ∑
xiδ(yi ) ∈ 	1(A). Then since. δ(1) = 0

it is the same as 
. (1 −

∑
xi yi )δ(1) +

∑
xiδ(yi )

and one checks that the normalization condition is now fulfilled. 
.(i i) The normalization condition is fulfilled by .

∑
b∗
j ⊗ a∗◦

j since . 
∑

b∗
j a

∗
j =

(
∑

a jb j )
∗. Thus one gets the equality using .δ(x)∗ = −δ(x∗) and 

. 

∑
b∗
jδ(a

∗
j ) = −

(∑
δ(a j )b j

)∗ =
(∑

a jδ(b j )
)∗

.(i i i) The normalization condition is fulfilled by .
∑

ua j ⊗ (b ju∗)∗◦ since 
.
∑

ua jb ju∗ = 1. Moreover one has, using . δ(b ju∗) = δ(b j )u∗ + b jδ(u∗)

. 

∑
ua jδ(b ju

∗) = u
(∑

a jδ(b j )
)
u∗ + uδ(u∗)

. ��
Proposition 7.22 .(i) Let .A = ∑

a j ⊗ b◦
j ∈ A ⊗ A◦ normalized by the condition 

.
∑

a jb j = 1. Then the operator .D′ = D(η(A)) is equal to the inner fluctuation of 
.D with respect to the algebra .A ⊗ Â and the .1-form .η(A ⊗ Â), that is 

.D′ = D +
∑

ai â j [D, bi b̂ j ]



138 7 Gauge Theories from Noncommutative Manifolds

.(i i) An inner fluctuation of an inner fluctuation of .D is still an inner fluctuation of 

. D, and more precisely one has, with .A and .A′ normalized elements of .A ⊗ A◦ as 
above, 

. (D(η(A))) (η(A′)) = D(η(A′A))

where the product .A′A is taken in the tensor product algebra .A ⊗ A◦. 

Proof .(i) One has, in . 	1(A ⊗ Â)

. [δ(bi ), b̂ j ] = δ(bi b̂ j ) − biδ(b̂ j ) − b̂ jδ(bi )

and thus, using the normalization condition and the commutation of .A with . Â, 

. 

∑
ai â j [δ(bi ), b̂ j ] =

∑
ai â jδ(bi b̂ j ) −

∑
aiδ(bi ) −

∑
â jδ(b̂ j )

Applying this with the derivation.[D, .] instead of . δ one sees that, in the formula for 
.D′, the  terms in .ω(1) and .ω̂(1) combine with .ω(2) to give the required result. 

.(i i) We let .A = ∑
a j ⊗ b◦

j and .A′ = ∑
xs ⊗ y◦

s , both being normalized. We let 

. ai j = ai â j , bi j = bi b̂ j , xst = xs x̂t , yst = ys ŷt

and we have 
. D′ = D(η(A)) = D +

∑
ai j [D, bi j ]

and similarly 

. D′′ = D′(η(A′)) = (D(η(A))) (η(A′)) = D(η(A)) +
∑

xst [D(η(A)), yst ]

which gives 

. D′′ = D +
∑

ai j [D, bi j ] +
∑

xst [D, yst ] +
∑ ∑

xst [ai j [D, bi j ], yst ]

Now one has 

. xst [ai j [D, bi j ], yst ] = xst
(
ai j [D, bi j ]yst − ystai j [D, bi j ]

)

and the terms on the right sum up to 

. −
∑∑

xst ystai j [D, bi j ] = −
∑

ai j [D, bi j ]

Moreover one has 

.xstai j [D, bi j ]yst = xstai j [D, bi j yst ] − xstai j bi j [D, yst ]
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and the terms on the right sum up to 

. −
∑∑

xstai j bi j [D, yst ] = −
∑

xst [D, yst ]

Thus we have shown that 

. D′′ = D +
∑

xstai j [D, bi j yst ]

which gives the required result using 

. xstai j = xs x̂tai â j = xsai x̂t â j = xsai (̂xta j )

. bi j yst = bi b̂ j ys ŷt = bi ys b̂ j ŷt = bi ys (̂b j yt )

and 
. 

(∑
xs ⊗ y◦

s

) (∑
ai ⊗ b◦

i

)
=

∑
xsai ⊗ (bi ys)

◦

taking place in the algebra .A ⊗ A◦. . ��
Note that the normalization and self-adjointness conditions are preserved by the 

product of normalized elements in .A ⊗ A◦, since 

. 

∑
xsaibi ys =

∑
xs ys = 1

and moreover the following operation is an antilinear automorphism of . A ⊗ A◦

. 

∑
a j ⊗ b◦

j �→
∑

b∗
j ⊗ a∗◦

j

while the self-adjointness condition means to be in the fixed points of this automor-
phism. It is thus natural to introduce the following semi-group: 

Proposition 7.23 .(i) The self-adjoint normalized elements of .A ⊗ A◦ form a semi-
group .Pert(A) under multiplication. 

.(i i) The transitivity of inner fluctuations (i.e. the fact that inner fluctuations of 
inner fluctuations are inner fluctuations) corresponds to the semi-group law in the 
semi-group .Pert(A). 

.(i i i) The semi-group .Pert(A) acts on real spectral triples through the homomor-
phism .μ : Pert(A) → Pert(A ⊗ Â) given by 

.A ∈ A ⊗ A◦ �→ μ(A) = A ⊗ Â ∈
(
A ⊗ Â

)
⊗

(
A ⊗ Â

)◦
(7.3.10)
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Proof We have shown above that.Pert(A) is a semi-group. Using its action on oper-
ators in .H by.T �→ ∑

ai T bi one gets .(i i). Proposition 7.22 gives .(i i i). One checks 
the multiplicativity of the map . μ as follows. Let .A = ∑

a j ⊗ b◦
j , .A

′ = ∑
xs ⊗ y◦

s , 

.ai j = ai â j , bi j = bi b̂ j , xst = xs x̂t , yst = ys ŷt so that 

. μ(A) =
∑

ai j ⊗ b◦
i j , μ(A′) =

∑
xst ⊗ y◦

st

Then one has .A′A = ∑
xsai ⊗ (bi ys)◦ and 

. μ(A′A) =
∑

xsai (̂xta j ) ⊗
(
bi ys (̂b j yt )

)◦ =
∑

xstai j ⊗ (bi j yst )
◦ = μ(A′)μ(A)

which completes the proof of .(i i i).. ��
Note that as a subset of .A ⊗ A◦ the subset .Pert(A) is stable under affine combi-

nations .αA + βA′ for .α, β ∈ R and .α + β = 1. The  map . μ is quadratic. 
To summarize the above discussion we see that the inner fluctuations come from 

the action of the semi-group .Pert(A) in a way which parallels the action of inner 
automorphisms and which, for real spectral triples, combines .A with . Â. Passing 
from the ordinary formalism of inner fluctuations for spectral triples to the case of 
real spectral triples is given by the homomorphism.μ : Pert(A) → Pert(A ⊗ Â) on 
the semi-groups of inner perturbations. The unitary group .U(A) maps to the semi-
group .Pert(A) by the homomorphism .u ∈ U(A) �→ u ⊗ (u∗)◦ ∈ Pert(A), and this 
homomorphism is compatible with . μ. 

We end this section by determining the perturbation semi-group of the direct sum 
of .∗-algebras. 
Proposition 7.24 Let .A,B be .∗-algebras, then 

. Pert(A ⊕ B) ∼= Pert(A) × Pert(B) × (A ⊗ B◦ ⊕ B ⊗ A◦)sa (7.3.11) 

where.sa stands for self-adjoint elements, i.e. those of the form.
∑

ai ⊗ b◦
i + b∗

i ⊗ a∗◦
i . 

Proof We start with the following isomorphism of .∗-algebras: 

. (A ⊕ B) ⊗ (A ⊕ B)◦ ∼= A ⊗ A◦ ⊕ B ⊗ B◦ ⊕ A ⊗ B◦ ⊕ B ⊗ A◦.

Imposing the normalization and self-adjointness condition to obtain . Pert(A ⊕ B)

on the left-hand side translates on the right-hand side to give . Pert(A) × Pert(B) ×
(A ⊗ B◦ ⊕ B ⊗ A◦)sa. Indeed, normalization only affects the first two terms . A ⊗
A◦ ⊕ B ⊗ B◦ where, together with the self-adjointness condition it gives rise to 
.Pert(A) × Pert(B). The self-adjointness condition on .A ⊗ B◦ ⊕ B ⊗ A◦ gives rise 
to elements of the form stated above.
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7.3.2.1 Examples of the Perturbation Semi-group 

For commutative matrix algebras we have 

Proposition 7.25 For any .N ≥ 1 we have 

. Pert(CN ) ∼= C
N (N−1)/2

with the semi-group structure given by componentwise multiplication. 

Proof Since .Pert(C) = {1}, Proposition 7.24 implies that 

. Pert(CN ) ∼= Pert(CN−1) × C
N−1,

from which the proof follows. . ��
As a next example we determine the perturbation semi-group of .M2(C). 
Note that we have four basis elements for which the normalization condition 

becomes 

. (C11,11 + C12,21)e11 + (C11,12 + C12,22)e12
+ (C21,11 + C22,21)e21 + (C21,12 + C22,22)e22 = e11 + e22.

This amounts to the conditions 

. C11,11 + C12,21 = 1, C21,12 + C22,22 = 1,

C11,12 + C12,22 = 0, C21,11 + C22,21 = 0.

The self-adjointness condition reads .Ci j,kl = Clk, j i . 
Using the transpose map we may identify 

. M2(C) ⊗ M2(C)◦ → M4(C), ei j ⊗ e◦
kl �→ ei j ⊗ elk,

The normalization and self-adjointness conditions on .Ci j,kl translate to .4 × 4-
matrices to arrive at the following general form for an element .A ∈ Pert(M2(C)): 

.A =

⎛

⎜⎜
⎝

x1 z3 z3 1 − x1
z1 z2 z5 −z1
z1 z5 z2 −z1
x2 z4 z4 1 − x2

⎞

⎟⎟
⎠ , z1, . . . z5 ∈ C, x1, x2 ∈ R. (7.3.12) 

The semi-group law ensures that the product of two such matrices again has this 
general form, something which is not immediately clear. Let us make this point 
more transparent and establish conditions on .4 × 4 matrices that give rise to the 
above form.
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For an element .A ∈ M4(C) to be of the form (7.3.12) is equivalent to demanding 
that 

. A( f1 + f4) = ( f1 + f4),

. 	̂A = A	̂, where 	̂ =

⎛

⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟
⎠

in terms of the standard basis.{ fi } for.C4. Equivalently, the matrix. 	̂ can be rewritten 
as a block matrix 

. 	̂ =
(
e11 e21
e12 e22

)
=

(
eT11 eT12
eT21 eT22

)

=
∑

i, j

ei j ⊗ e ji .

Especially the last identity is useful, since we see that the eigenvectors of. 	̂ are given 
by .e1 ⊗ e1 ± e2 ⊗ e2, with eigenvalue . 1, and .e1 ⊗ e2 ± e2 ⊗ e1, with eigenvalue . 1
and .−1 depending on the .+ or .− sign. Hence, upon changing to the basis 

. {e1 ⊗ e1 + e2 ⊗ e2, e1 ⊗ e1 − e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1, e1 ⊗ e2 − e2 ⊗ e1}
(7.3.13) 

of eigenvectors we will get 

.	 =
(
I3 0
0 −1

)
. (7.3.14) 

Moreover, the vector. f1 + f4 which is left invariant by. A is given by. e1 ⊗ e1 + e2 ⊗
e2 ∈ C

2 ⊗ C
2, which is also an eigenvector of . 	̂. Hence with respect to the basis 

(7.3.13) we arrive at the following characterization of .Pert(M2(C)): 

Proposition 7.26 

. Pert(M2(C)) ∼=
{
A ∈ M4(C) | Aω = ω, 	A = A	

}
,

with 

. ω =

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ , 	 =

(
I3 0
0 −1

)
.

This analysis extends to arbitrary matrix algebras, see Note 9 in this chapter.
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Notes 

Section 7.1. ‘Inner’ unitary equivalences as the gauge group 

1. The interpretation of the inner automorphism group as the gauge group is presented in [ 1]. 
2. For a precise proof of the isomorphism between.Aut(C(X)) and the group of homeomorphisms 

of . X , we refer to [ 2, Theorem II.2.2.6]. For a more detailed treatment of the smooth analogue, 
we refer to [ 3, Sect. 1.3]. 

Section 7.2. Morita self-equivalences as gauge fields 

3. The gauge group.G(A,H; J ) introduced in Definition 7.4 (following [ 1, 4, 5]) is a natural lift 
of the group of inner automorphisms of the algebra. A, as is proved in Proposition 7.5. Another 
approach to lifting.Inn(A) to be represented on.H is by central extensions; this is described in 
[ 6]. 

4. For unital algebras algebraic Morita equivalence [ 7] coincides with Rieffel’s notion of strong 
Morita equivalence for .C∗-algebras [ 8]. This is proved in [ 9] and explains why we can safely 
work with algebraic tensor products. We also refer for a more general treatment to e.g. [ 3, 
Sect. 4.5] and [ 10, Sects. A.3 and A.4]. 

5. Besides Morita equivalence, also the more general notion of KK-equivalence can be lifted to 
spectral triples, but this requires much more analysis [ 11– 13]. 

6. Theorem 7.15 and Theorem 7.16 are due to Connes in [ 1]. 

Section 7.3. Inner fluctuations without the first-order condition 

7. Universal differential forms are defined in terms of the graded differential algebra .	•(A) that 
is freely generated by. a and.δb for any.a, b ∈ A. In other words, a universal differential.n-form 
. η is given by an expression of the form 

. η =
∑

j

a j
0 δa j

1 · · · δa j
n ,

and its differential is 

. δη =
∑

j

δa j
0 δa j

1 · · · δa j
n .

There will be no commutation relations imposed between the .a0, δa0 and the .δa j ’s, but we do 
have the Leibniz rule stating that 

. δ(ab) = δ(a)b + aδb

for any.a, b ∈ A. For an overview on universal differential forms, we refer to [ 10, Sect. 7.1]. 
8. Sect. 7.3 is based on [ 14]. That paper also contains a proof of Proposition 7.18. 
9. Sect. 7.3.2.1 is based on [ 15]. This contains a description of the perturbation semi-group for all 

(real and complex) matrix algebras.
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Chapter 8 
Localization of Gauge Theories 
from Noncommutative Geometry 

We ‘localize’ the generalized gauge theory derived from any spectral triple by con-
structing a .C∗-bundle on which the gauge group acts by vertical automorphisms. 
This will be exemplified for toric noncommutative manifolds. 

8.1 Commutative Subalgebra and .C∗-Bundles 

Given a real spectral triple .(A,H, D; J ) we can construct a spectral triple on some 
commutative subalgebra of . A, derived from this data. Indeed, set 

. AJ := {
a ∈ A : aJ = Ja∗} .

As we will see shortly, this is a complex subalgebra, contained in the center of . A
(and hence commutative). Later, in Chap. 10, this subalgebra will turn out to be very 
useful in the description of the gauge group associated to any real spectral triple. 

Proposition 8.1 Let .(A,H, D; J ) be a real spectral triple. Then 

(1) .AJ defines an involutive commutative complex subalgebra of the center of . A. 
(2) .(AJ ,H, D; J ) is a real spectral triple. 
(3) Any .a ∈ AJ commutes with the algebra generated by the sums . 

∑
j a j [D, b j ] ∈

�1
D(A) with .a j , b j ∈ A. 

Proof (1) If .a ∈ AJ then also .Ja∗ J−1 = (Ja J−1)∗ = a, since .J is isometric. 
Hence, .AJ is involutive. Moreover, for all .a ∈ AJ and .b ∈ A we have . [a, b] =
[Ja∗ J−1, b] = 0 by the commutant property (5.2.1). Thus, .AJ is in the center of . A. 

(2) Since.AJ is a subalgebra of. A, all conditions for a spectral triple are automat-
ically satisfied. 
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(3) This follows from the order-one condition (5.2.1): 

. [a, [D, b]] = [Ja∗ J−1, [D, b]] = 0,

for .a ∈ AJ and .b ∈ A. �
Example 8.2 In the case of a Riemannian spin manifold .M with real structure . JM
given by charge conjugation, one checks that 

. C∞(M)JM = C∞(M,R).

More generally, under suitable conditions on the triple .(A,H, D; J ) the spec-
tral triple .(AJ ,H, D) is a so-called commutative spin geometry. Then, Connes’ 
Reconstruction Theorem (cf. Note 6 on Chap. 5) establishes the existence of a com-
pact Riemannian spin manifold.M such that there is an isomorphism. (AJ ,H, D) �
(C∞(M), L2(S ⊗ E), DE ). The spinor bundle .S → M is twisted by a vector bun-
dle .E → M and the twisted Dirac operator is of the form .DE = D + ρ with 
.ρ ∈ �∞(End(S ⊗ E)). 

In any case, as.AJ is commutative, Gelfand duality (Theorem 5.7) ensures the exis-
tence of a compact Hausdorff space such that .AJ ⊂ C(X) as a dense .∗-subalgebra. 
Indeed, the .C∗-completion of .AJ in .B(H) is commutative and hence isomorphic 
to such a .C(X). We consider this space .X to be the ‘background space’ on which 
.(A,H, D; J, γ ) describes a gauge theory, as we now work out in detail. 

Heuristically speaking, the gauge group .G(A,H; J ) introduced in 
Definition 7.4 considers only transformations that are ‘vertical’, or ‘purely non-
commutative’ with respect to . X , quotienting out the unitary transformations of the 
commutative subalgebra.AJ . In this chapter we will make this more precise by iden-
tifying a bundle .B → X of .C∗-algebras such that: 

• the space of continuous sections .�(X,B) forms a .C∗-algebra isomorphic to 
.A = A, the .C∗-completion of . A; 

• the gauge group acts as bundle automorphisms covering the identity. 

Moreover, we search for a bundle of .C∗-algebras of which the gauge fields . ω ∈
�1

D(A) are sections and on which the gauge group again acts by bundle automor-
phisms. 

We avoid technical complications that might arise from working with dense sub-
algebras of .C∗-algebras, and work with the .C∗-algebras .AJ and .A themselves, as 
completions of .AJ and . A, respectively. First, note that there is an inclusion map 
.C(X) � AJ ↪→ A. This means that . A is a so-called.C(X)-algebra, which by defini-
tion is a .C∗-algebra . A with a map  from .C(X) to the center of . A. Indeed, it follows 
from Proposition 8.1 that .AJ is contained in the center of . A. 

In such a case .A is the .C∗-algebra of continuous sections of an upper semi-
continuous .C∗-bundle over . X . We will briefly sketch the setup (see Note 3 in this 
chapter). Recall that a function . f : A → C is upper semi-continuous at .a0 ∈ A if 
.lim supa→a0 ‖ f (a)‖ ≤ ‖ f (a0)‖.
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Definition 8.3 An upper semi-continuous .C∗-bundle over a compact topological 
space .X is a continuous, open, surjection .π : B → X together with operations and 
norms that turn each fiber .Bx = π−1(x) into a .C∗-algebra, such that (1) the map 
.a �→ ‖a‖ is upper semi-continuous, (2) all algebraic operations are continuous on 
. B, (3)  if .{ai } is a net in .B such that .‖ai‖ → 0 and .π(ai ) → x in . X , then .ai → 0x , 
where .0x is the zero element in .Bx . 

A (continuous) section of .B is a (continuous) map .s : X → B such that 
.π(s(x)) = x . 

A base for the topology on .B is given by the following collection of open sets: 

.W (s,O, ε) := {b ∈ B : π(b) ∈ O and ‖b − s(π(b))‖ < ε}, (8.1.1) 

indexed by continuous sections .s ∈ �(X,B), open subsets .O ⊂ X and .ε > 0. 

Proposition 8.4 The space .�(X,B) of continuous sections forms a .C∗-algebra 
when it is equipped with the norm 

. ‖s‖ := sup
x∈X

‖s(x)‖Bx .

Proof See Note 3 in this chapter. �

In our case, after identifying .C(X) with .AJ , we can define a closed two-sided 
ideal in . A by 

.Ix := { f a : a ∈ A, f ∈ C(X), f (x) = 0}− . (8.1.2) 

We think of the quotient .C∗-algebra .Bx := A/Ix as the fiber of . A over . x and set 

.B :=
∐

x∈X
Bx , (8.1.3) 

with an obvious surjective map .π : B → X . If  .a ∈ A, then we write .a(x) for the 
image .a + Ix of . a in .Bx , and we think of . a as a section of . B. The fact that all 
these sections are continuous and that elements in . A can be obtained in this way is 
guaranteed by the following result. 

Theorem 8.5 The above map .π : B → X with .B as in (8.1.3) defines an upper 
semi-continuous .C∗-bundle over . X. Moreover, there is a .C(X)-linear isomorphism 
of . A onto .�(X,B). 

Proof See Note 3 in this chapter. �

Having obtained the .C∗-algebra .A as the space of sections of a .C∗-bundle, we 
are ready to analyze the action of the gauge group on. A. Staying at the.C∗-algebraic 
level, we consider the continuous gauge group 

.G(A,H; J ) � U(A)

U(AJ )
.
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This contains the gauge group.G(A,H; J ) of Definition 7.4 as a dense subgroup in 
the topology induced by the.C∗-norm on. A. The next result realizes the gauge group 
as a group of vertical bundle automorphisms of . B. 

Proposition 8.6 The action . α of .G(A,H; J ) on .A by inner .C∗-algebra automor-
phisms induces an action . α̃ of .G(A,H; J ) on .B by continuous bundle automor-
phisms that cover the identity. In other words, for .g ∈ G(A,H; J ) we have 

. π(α̃g(b)) = π(b); (b ∈ B).

Moreover, under the identification of Theorem 8.5 the induced action .α̃∗ on . �(X,B)

given by 
. α̃∗

g(s)(x) = α̃g(s(x))

coincides with the action . α on . A. 

Proof The action . α induces an action on .A/Ix = π−1(x), since .αg(Ix ) ⊂ Ix for all 
.g ∈ G(A,H; J ). We denote the corresponding action of .G(A,H; J ) on.B by. α̃, so  
that, indeed, 

. π(α̃g(b)) = π(b); (b ∈ π−1(x)).

Let us also check continuity of this action. In terms of the base.W (s,O, ε) of (8.1.1), 
we find that 

. α̃g(W (s,O, ε)) = W (α̃∗
g(s),O, ε),

mapping open subsets one-to-one and onto open subsets. 
For the second claim, it is enough to check that the action .α̃∗ on the section 

.s : x �→ a + Ix ∈ Bx , defined by an element .a ∈ A, corresponds to the action . α on 
that . a. In fact, 

. α̃∗
g(s)(x) = α̃g(s(x)) = αg(a + Ix ) = αg(a) + Ix ,

which completes the proof. �

At the infinitesimal level, the derivations in the gauge algebra .g(A,H; J ) also 
act vertically on the .C∗-bundle .B defined in (8.1.3), and the induced action on the 
sections .�(X,B) agrees with the action of .g(A,H; J ) on . A. 

8.2 Localization of the Gauge Group 

We now investigate whether or when.G(A,H; J ) can be considered as the group of 
continuous sections of a group bundle on the same base space . X . Set-theoretically, 
one expects the group bundle that corresponds to .�(X,B) to be given by
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. GB :=
∐

x∈X

U(Bx)

U(C)
.

We define a topology on .GB as follows. First, the group bundle 

. UB :=
∐

x∈X
U(Bx)

is equipped with the induced topology from . B. Since each .Bx is a complex unital 
algebra, we have .U(C) ⊂ U(Bx ) so that we have a group subbundle . 

∐
x∈X U(C) ⊂

UB. We write.UC for this group subbundle. The topology of.GB is then the quotient 
topology of the bundle .UB by the fiberwise action of the group bundle .UC. 

Before stating our main result on the structure of the gauge group, we consider 
the spaces of continuous sections of the group bundles .UC and .UB. 
Proposition 8.7 We have the following group isomorphisms: 

. �(X,UC) ∼= U(AJ ),

�(X,UB) ∼= U(A).

Proof Firstly, a continuous map from .X to .U(C) is simply given by a unitary con-
tinuous function on . X . Secondly, since .�(X,B) ∼= A, unitarity translates from the 
product in . A to the fiberwise product in . B, hence proving the result. �

We also need the following well-known result on covering spaces: 

Proposition 8.8 Suppose given a covering space .p : (Ỹ , ỹ0) → (Y, y0) and a map 
. f : (X, x0) → (Y, y0) with .X path-connected and locally path-connected. Then a 
lift . f̃ : (X, x0) → (Ỹ , ỹ0) of . f exists if and only if . f∗(π1(X, x0)) ⊂ p∗(π1(Ỹ , ỹ0)). 

Theorem 8.9 If .X is simply connected and if there exists a subbundle . G̃B ⊂ UB
that is a covering space of .GB (via the quotient map .UB → GB), then there is the 
following short exact sequence of groups 

. 1 �(X,UC) �(X,UB) �(X,GB) 1. (8.2.1) 

Consequently, in this case the gauge group is given as the space of continuous sections 
of the group bundle .GB, i.e. 

. G(A,H; J ) ∼= �(X,GB).

Proof Exactness of (8.2.1) is clear from the very definition of the group bundle.GB, 
except perhaps for the claim of surjectivity of the map .�(X,UB) → �(X,GB). 
This follows from Proposition 8.8, applied to a continuous section .g ∈ �(X,GB). 
Indeed, since .π1(X) is trivial, there always exists a lift .g̃ : X → G̃B ⊂ UB, thus 
proving surjectivity.
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For the second statement, exactness of the sequence implies that 

. �(X,GB) ∼= �(X,UB)

�(X,UC)
∼= U(A)

U(AJ )

using Proposition 8.7. But this is precisely the definition of the group 
.G(A,H; J ). �

This result allows for the following refinement of Proposition 8.6. 

Corollary 8.10 Under the same conditions as in Theorem 8.9, the action of the gauge 
group .G(A,H; J ) on . A is induced by the action of the fibers . GBx := U(Bx )/U(C)

on the fibers .Bx of .B by inner automorphisms. 

Proof Let .g ∈ G(A,H; J ) with pre-image .u ∈ U(A), i.e. so that .αg(a) = uau∗. 
Then .g, u and . a can be considered as continuous sections of bundles .GB,UB and 
. B on . X , respectively. At a point .x ∈ X we have .g(x) ∈ GBx = U(Bx )/U(C) with 
pre-image .u(x) ∈ U(Bx ) and we compute as sections of .B → X : 

. 
(
αg(a)

)
(x) = u(x)a(x)u(x)∗,

thus establishing the result. �

Note that Theorem 8.5 also gives a bundle description of .Inn(A) if .Z(A) = AJ . 
Indeed, in combination with Corollary 8.10 we find that then .Inn(A) ∼= �(X,GB), 
realizing the group of inner automorphisms of. A as the space of continuous sections 
of a group bundle. 

8.3 Localization of Gauge Fields 

Also the gauge fields . ω that enter as inner fluctuations of .D can be parametrized by 
sections of some bundle of .C∗-algebras. In order for this to be compatible with the 
vertical action of the gauge group found above, we will write any connection in the 
form, 

. ∇ = d + ω0 + ω,

where .d = [D, ·] and .ω0, ω ∈ �1
D(A). The action of a gauge transformation on . ∇

then induces the following transformation: 

. ω0 �→ uω0u
∗ + u[D, u∗]; ω �→ uωu∗.

The.C∗-algebra generated by. A and.[D,A] is a.C(X)-algebra, since.C(X) � AJ , 
which according to Proposition 8.1 commutes with both .A and .[D,A]. Thus, a 
similar construction as in the previous subsection establishes the existence of an 
upper semi-continuous .C∗-bundle .B� over . X , explicitly given by
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. B� =
∏

x∈X
C∗(A, [D,A])/I ′

x ,

where.C∗(A, [D,A]) is the.C∗-algebra generated by. a and.[D, b] for.a, b ∈ A, and 
.I ′
x is the two-sided ideal in .C∗(A, [D,A]) generated by .Ix that has been defined 
before (see Equation (8.1.2)). Again, one can show that .�(X,B�) is isomorphic to 
this .C∗-algebra and establish the following result. 

Proposition 8.11 Let .π : B� → X be as above. 

(1) The gauge field . ω defines a continuous section of .B�. 
(2) The gauge group .G(A,H; J ) acts fiberwise on this bundle, and the induced 

action on .�(X,B�) agrees with the action on .C∗(A, [D,A]). 
Consequently, if we regard .ω ∈ �1

D(A) as a continuous section .ω(x) of .B�, an  
element .u Ju J−1 ∈ G(A,H; J ) acts as 

. ω(x) �→ (uωu∗)(x) ≡ uω(x)u∗.

8.4 Localization of Toric Noncommutative Manifolds 

In Chap. 12 we will see a concrete example of the above localization for Yang– 
Mills gauge theories, phrased in the language of principal bundles. We will here give 
another illustrative example, given by toric noncommutative manifolds introduced 
in Sect. 5.3.2. 

Thus, we consider an arbitrary compact Riemannian spin manifold.M that carries 
a (smooth) action of a .2-torus by isometries. We then have a real spectral triple 
.(C∞(Mθ ),H, DM ; JM) so let us determine the gauge theory corresponding to it. We 
distinguish two cases corresponding to. θ being rational or irrational. These two cases 
require completely different techniques and yield entirely different results. 

For . θ rational we have the following result. If .p, q are coprime and.θ = p/q, we  
set .�θ = Z/qZ. 

Theorem 8.12 We have the following equivalence of spectral triples: 

. (C∞(Mθ ), L
2(M,S), D) ∼= �∞(M/�θ , B), L2(M/�θ , π∗S ⊗ B), π∗D)

in terms of the projection map.π : M → M/�θ and a.∗-algebra bundle. B := M ×�θ

Mq(C) with base space .M/�θ , for a suitable action of .�θ on . Mq(C)

Proof See Note 7 in this chapter. �

Let us relate this to our gauge theory description using the commutative subalgebra 
.C(Mθ )JM in .C(M).
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Proposition 8.13 For the real spectral triple .(C∞(Mθ ),H, D; JM ) we have for . θ
rational that 

. C(Mθ )JM = Z(C(Mθ )).

Moreover, in this case .C(Mθ )JM
∼= C(M/�θ). 

Proof First, .C(Mθ )JM ⊂ Z(C(Mθ )) by Proposition 8.1. The converse inclusion is 
obtained as follows. We have .Z(C(Mθ )) ∼= C(M/�θ) because .Z(Mq(C)) = C for 
all fibers. Moreover, .C(M/�θ) = C(M)�θ is a subalgebra of .C(M), all of whose 
elements satisfy the commutation relation .aJM = JMa∗ (cf. Example 8.2). �

Hence, the bundle.B = M ×�θ
Mq(C) → M/�θ is the sought-for .C∗-bundle on 

which to define our gauge theory. Theorem 8.12 tells us that the .C∗-algebra . C(Mθ )

is isomorphic to the space of continuous sections of .B —in concordance with our 
Theorem 8.5— and for the gauge group we actually have the following result: 

. G(C(Mθ ),H; JM) ∼= �(M/�θ , M ×�θ
PU (q)),

if .M/�θ is simply connected. In other words, we are considering a .PU (q)-gauge 
theory, in the usual sense. This Lie group acts on the fiber.Mq(C) of. B in the adjoint 
representation. 

Let us now proceed with the case that . θ is irrational. 

Proposition 8.14 For the real spectral triple .(C∞(Mθ ),H, D; JM ) we have for . θ
irrational 

. C(Mθ )JM = Z(C(Mθ )).

Moreover, in this case .C(Mθ )JM
∼= C(M/T2). 

Proof First note that.Z(C(Mθ )) = C(Mθ )
T
2
, essentially because the center of.Aθ is 

trivial if . θ is irrational (see Note 9 below). Moreover, since .C(M)T
2
is unchanged 

under the deformation, as well as.JM , we find that .C(Mθ )
T
2 ∼= C(M)T

2
is contained 

in .C(Mθ )JM which also proves the second statement. �

This allows us to conclude with Theorem 8.5 that .C(Mθ ) is isomorphic to the 
.C∗-algebra.�(M/T2,BMθ ) of continuous sections of an upper semi-continuous.C∗-
bundle .BMθ → M/T2 and that .G(C(Mθ ),H; JM) acts by vertical automorphisms 
on .BMθ . In fact, even more can be said in this case. 

Theorem 8.15 The above .C∗-bundle .BMθ → M/T2 is a continuous .C∗-bundle. 
Moreover, its fibers are given by the following .C∗-algebras: 

. BMθ

x
∼= C(T2/T2

x , Aθ )
T
2
,

for .x ∈ M/T2 having isotropy group .T
2
x ⊆ T

2.



8.4 Localization of Toric Noncommutative Manifolds 153

Proof See Note 11 in this chapter. �

Hence, the spectral triple .(C(Mθ ),H, D; JM ) yields a gauge theory defined 
in terms of a .C∗-bundle .BMθ → M/T2. The gauge group .G(C(Mθ ),H; JM) is 
parametrized by unitaries in .C(Mθ ) and acts vertically on the bundle .BMθ . We  
now determine the bundle structure of the gauge group, thereby making use of 
Theorem 8.9 above. 

Proposition 8.16 There exists a subbundle . ˜GBMθ ⊂ UBMθ that is a covering space 
of .GBMθ for the quotient map .UBMθ → GBMθ . Consequently, if .M/T2 is simply 
connected we have 

. G(C(Mθ ),H; JM) ∼= �(M/T2,GBMθ ),

where the fibers of .GBMθ are given by 

. GBMθ

x
∼= U(C(T2/T2

x , Aθ )
T
2
)

U(C)
; (x ∈ M/T2).

Proof From Theorem 8.15 it follows that the fibers.UBMθ
x of.UBMθ are given by the 

topological groups .U(C(T2/T2
x , Aθ )

T
2
). We define a subbundle of .UBMθ using the 

unique tracial state . τ on.Aθ . First, consider the phase map.ϕ : Aθ → U (1) given by 

. ϕ(a) = τ(a)

|τ(a)| ; (a ∈ Aθ ).

It induces a phase map on the fibers of .BMθ by composition: 

. ϕ̃ : C(T2/T2
x , Aθ )

T
2
) → U (1),

f �→ ϕ ◦ f.

We then define a subbundle . ˜GBMθ ⊂ UBMθ by giving its fibers: 

. ˜GBMθ x = {
u ∈ UBMθ : ϕ̃(u) = 1

}
.

For . ˜GBMθ to be a covering space of .GBMθ , we determine the kernel of the quotient 
map .UBMθ → GBMθ , intersected with . ˜GBMθ . In fact, being in the kernel amounts 
to .u ∈ U(C) so that .ϕ(u) = 1 implies that then .u = 1. Hence, . ˜GBMθ is a one-fold 
covering of .GBMθ . 

If .M/T2 is simply connected, then Theorems 8.9 and 8.15 combine to prove the 
second statement. �

The above result allows for the following explicit bundle description of the group 
of inner automorphisms of .C(Mθ ). Note that .M/T2 is simply connected when.M is 
(see Note 12 below).
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Corollary 8.17 If .M/T2 is simply connected, then 

. Inn(C(Mθ )) ∼= �(M/T2,GBMθ ).

Proof In Proposition 8.13 we have already established that.Z(C(Mθ )) ∼= C(Mθ )JM . 
Hence Corollary 7.6 applies and gives the group isomorphism . Inn(C(Mθ )) ∼=
G(C(Mθ ),H; JM). Combining this with Proposition 8.16 yields the desired 
result. �

Notes 

Section 8.1. Commutative subalgebra and .C∗-bundles 
1. Chapter 8 is  based on [  1]. 
2. The definition of the commutative subalgebra .AJ in Sect. 8.1 is quite similar to the definition 

of a subalgebra of .A defined in [ 2, Proposition 3.3] (cf. [ 3, Proposition 1.125]), which is the 
real commutative subalgebra in the center of .A consisting of elements for which .aJ = Ja. 
Following [ 4] we propose a similar but different definition, since this subalgebra will turn out 
to be very useful for the description of the gauge group associated to any real spectral triple. 

3. The notion of .C(X)-algebra was introduced by Kasparov in [ 5]. Proposition 8.4 and Theorem 
8.5 are proved in [ 6, 7] (see also Appendix C in [ 8]). Note that the bundles are in general only 
upper semi-continuous, and not necessarily continuous. For a discussion of this point, see [ 7]. 

Section 8.2. Localization of the gauge group 

4. For a proof of Proposition 8.8 see [ 9, Proposition 1.33]. 
5. Theorem 8.9 generalizes a result of [ 10] on Lie group bundles to the general setting of group 

bundles. 

Section 8.3. Localization of gauge fields 

6. Later, in Chaps. 10–13 we will work towards physical applications in which the above .C∗-
bundle is a locally trivial (or, even a globally trivial) .∗-algebra bundle with finite-dimensional 
fiber. The above generalized gauge theories then become ordinary gauge theories, defined in 
terms of vector bundles and connections. It would be interesting to study the gauge theories 
corresponding to the intermediate cases, such as continuous trace .C∗-algebras (cf. [ 11] for  a  
definition), or the more general KK-fibrations that were introduced in [ 12]. 

Section 8.4. Localization of toric noncommutative manifolds 

7. Theorem 8.12 is due to Ćaćić in [  13, Theorem 4.28] 
8. The fact that the spectral triple .(C∞(Mθ ),H, D; JM ) for . θ is an example of an almost-

commutative spectral triple in the sense of [ 10, 14, 15] was already noticed in [ 13]. 
9. A proof of the fact that the center of .Aθ is trivial if . θ is irrational can be found in e.g. [ 16, 

Proposition 3]. 
10. The fact that for. θ irrational the.C∗-algebra.C(Mθ ) is isomorphic to the.C∗-algebra. �(M/T2,

BMθ ) of continuous sections of an upper semi-continuous .C∗-bundle .BMθ → M/T2. This  
also follows from the more general results of [ 17] showing that torus-covariant.C(X)-algebras 
are deformed to torus-covariant .C(X)-algebras. Here a torus-covariant algebra is a .C(X)-
algebra which carries an action of .T2 that commutes with.C(X). In particular, this applies to 
the.C(M/T2)-algebra.C(M), deforming to the.C(M/T2)-algebra.C(Mθ ).
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11. For the proof of Theorem 8.15 we may argue as follows: in addition to upper semi-continuity, in 
[ 17, Proposition 5.1] lower semi-continuity is shown to hold under some additional conditions. 
In fact, since the .T2-orbit space of .M is Hausdorff, Corollary 5.3 in loc. cit. implies that the 
Rieffel deformation .C(Mθ ) of .C(M) can be expressed as a continuous field of .C∗-algebras 
over this orbit space. In other words, it is the.C∗-algebra of sections of a continuous.C∗-bundle 
over.M/T2. The second claim follows from [ 17, Corollary 6.2]. 

12. A proof of the fact that .M/T2 is simply connected when.M is can be found in [ 18, Corollary 
6.3]. 

13. Even though we have restricted the discussion in Sect. 8.4 to an action of a 2-torus on a manifold, 
this can be generalized in a straightforward manner to actions of higher-dimensional tori. The 
appropriate notion of irrationality for the higher-dimensional noncommutative tori has been 
discussed in [ 19]. 

14. In addition to the topological factorization of toric noncommutative manifolds in a horizontal 
and vertical part obtained in Sect. 8.4, also the factorization of the geometric structure has been 
studied in [ 20– 23]. These works involve the unbounded external Kasparov product, allowing 
for a tensor-sum decomposition of the Dirac operator on .Mθ (cf. Sect. 5.3.2) into a vertical 
operator and a Dirac operator on.M/Tn . 
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Chapter 9 
Spectral Invariants 

In the previous chapter we have identified the gauge group canonically associated 
to any spectral triple and have derived the generalized gauge fields that carry an 
action of that gauge group. In this chapter we take the next step and search for gauge 
invariants of these gauge fields, to wit, the spectral action, the topological spectral 
action and the fermionic action. We derive (asymptotic) expansions of the spectral 
action. 

9.1 Spectral Action Functional 

The simplest spectral invariant associated to a spectral triple .(A,H, D) is given 
by the trace of some function of . D. We also allow for inner fluctuations, and more 
generally consider the operators .Dω = D + ω + ε′ JωJ−1 with .ω = ω∗ ∈ �1

D(A). 

Definition 9.1 Let . f be a suitable positive and even function from .R to . R. The  
spectral action is defined by 

.Sb[ω] := Tr f (Dω/�), (9.1.1) 

where .� is a real cutoff parameter. The minimal condition on the function . f is that 
it makes . f (Dω/�) a traceclass operator, requiring sufficiently rapid decay at .±∞. 

The subscript . b refers to bosonic since in the later physical applications . ω will 
describe bosonic fields. 

There is also a topological spectral action, which is defined in terms of the grading 
. γ by 

.Stop[ω] = Tr γ f (Dω/�). (9.1.2) 

The term ‘topological’ will be justified below. First, we prove gauge invariance of 
these functionals. 
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Theorem 9.2 The spectral action and the topological spectral action are gauge 
invariant functionals of the gauge field .ω ∈ �1

D(A), assumed to transform under 
.Ad u = u Ju J−1 ∈ G(A,H; J ) as 

. ω �→ uωu∗ + u[D, u∗].
Proof By (7.2.6) this is equivalent to.Dω �→ UDωU ∗ with.U = u Ju J−1. Since the 
eigenvalues of .UDωU ∗ coincide with those of .Dω and the (topological) spectral 
action is defined on the spectrum of .Dω, the result follows. �

Another gauge invariant one can naturally associate to a spectral triple is of a 
fermionic nature, as opposed to the above bosonic spectral action functional. This 
invariant is given by combining the operator .Dω with a Grassmann vector in the 
Hilbert space (cf. Appendix 11.3), as follows. 

Definition 9.3 The fermionic action is defined by 

. S f [ω,ψ] = (J ψ̃, Dωψ̃)

with .ψ̃ ∈ H+
cl where 

. H+
cl =

{
ψ̃ : ψ ∈ H+

}

is the set of Grassmann variables in .H in the .+1-eigenspace of the grading . γ . 

Theorem 9.4 The fermionic action is a gauge invariant functional of the gauge field 
. ω and the fermion field . ψ , the latter transforming under .Ad u ∈ G(A,H; J ) as 

. ψ �→ u Ju J−1ψ.

Moreover, if the KO-dimension of .(A,H, D; γ, J ) is . 2 modulo . 8, then . (ψ,ψ ′) �→
〈Jψ, Dωψ ′〉 defines a skew-symmetric form on the .+1-eigenspace of . γ in . H. 

Proof Again,.Dω �→ UDωU ∗ with.U = u Ju J−1, whilst.ψ �→ Uψ . The claim then 
follows from the observation .U J = JU . 

Skew-symmetry follows from a small computation: 

. 〈Jψ, Dψ ′〉 = −〈Jψ, J 2Dψ ′〉 = −〈J Dψ ′, ψ〉 = −〈DJψ ′, ψ〉 = −〈Jψ ′, Dψ〉.

where we used Table 4.2 for .DJ = J D in KO-dimension . 2 modulo . 8. �

The above skew-symmetry is in concordance with the Grassmann nature of 
fermionic fields . ψ̃ , guaranteeing that .S f as defined above is in fact non-zero.
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9.2 Asymptotic Expansion of the Spectral Action 

The first type of expansion of the spectral action is an asymptotic series in powers 
of . �; the perturbative expansion in powers of the gauge field . ω will be considered 
in the next section. 

We assume that . f is given by a Laplace–Stieltjes transform: 

. f (x) =
∫

t>0
e−t x2dμ(t),

with . μ a suitable measure on .R+. This assumption allows us to find the following 
expression for the topological spectral action. 

Proposition 9.5 Suppose . f is of the above form. Then, 

. Stop[ω] = f (0) index Dω.

Proof This follows from the McKean-Singer formula (Lemma 6.23): 

. index Dω = Tr γ e−t D2
ω/�2

.

Since this expression is independent of .� and . t , an integration over . t yields 

.

∫

t>0
dμ(t) = f (0).

�

The asymptotic expansion of. S can be derived from the existence of a heat kernel 
expansion of the form 

. Tr e−t D2 =
∑

α

tαcα, (9.2.1) 

as .t → 0. Note that this is written down here for the unperturbed operator . D, but  
similar expressions hold for any bounded perturbation of . D, such as .Dω. 

Lemma 9.6 If.(A,H, D) is a regular spectral triple with simple dimension spectrum 
(see Definition 6.9), then the heat kernel expansion (9.2.1) is valid as an asymptotic 
expansion as .t → 0. Moreover, for .α < 0 we have 

. resz=−2αζ1(z) = 2cα


(−α)
,

with .ζb(z) = Tr b|D|−z .
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Proof This follows from the Mellin transform: 

.|D|−z = 1


(z/2)

∫ ∞

0
e−t D2

t z/2−1 dt, (9.2.2) 

or, after inserting the heat kernel expansion, 

. Tr |D|−z = 1


(z/2)

∑
α

∫ ∞

0
cαt

α+z/2−1 dt

= 1


(z/2)

∑
α

∫ 1

0
cαt

α+z/2−1 dt + holomorphic

=
∑

α

cα


(z/2)(α + z/2)
+ holomorphic.

Taking residues at .z = −2α on both sides gives the desired result. �
Using the Laplace–Stieltjes transform, we now derive an asymptotic expansion 

of the spectral action in terms of the heat coefficients . cα . 

Proposition 9.7 Under the above conditions, the spectral action is given asymptot-
ically (as .� → ∞) by  

. Tr f (D/�) =
∑
β∈Sd

fβ�β 2


(β/2)
c− 1

2 β
+ f (0)c0 + O(�−1), (9.2.3) 

where . fβ := ∫
f (v)vβ−1dv and .Sd is the dimension spectrum of .(A,H, D). 

Proof This follows directly after inserting the heat expansion in the Laplace–Stieltjes 
transform: 

. Tr f (D/�) =
∑

α

∫

t>0
tα�αcα dμ(t). (9.2.4) 

The terms with .α > 0 are of order .�−1; if .α < 0, then 

. tα = 1


(−α)

∫

v>0
e−tvv−α−1 dv.

Applying this to the integral (9.2.4) gives  

.�−2αcα

∫

t>0
tα dμ(t) = �−2αcα

∫

t>0

∫

v>0
e−tvv−α−1 dvdμ(t)

= 2�−2αcα

∫

t>0

∫

v>0
e−tv2v−2α−1 dvdμ(t)

= 2�−2αcα

∫

v>0
f (v)v−2α−1 dv ≡ 2�−2αcα f−2α,
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substituting.v �→ v2 in going to the second line. Since .cα = 0 unless .−2α ∈ Sd, we  
substitute .β = −2α to obtain (9.2.3). �
Corollary 9.8 For the perturbed operator .Dω we have 

. Sb[ω] =
∑
β∈Sd

fβ�βresz=β Tr |Dω|−z + f (0)Tr |Dω|−z
∣∣
z=0 + O(�−1).

9.3 Perturbative Expansion in the Gauge Field 

Another approach to analyze .Sb is given by expanding as a Taylor series in powers 
of . ω, rather than in . �. We first take a closer look at the heat operator .e−t D2

and its 
perturbations. 

Lemma 9.9 Let . ω be a bounded operator and denote .Dω = D + ω. Then 

. e−t (Dω)2 = e−t D2 − t
∫ 1

0
ds e−st (Dω)2 P(ω)e−(1−s)t D2

,

with .P(ω) = Dω + ωD + ω2. 

Proof Note that .e−t D2
ω is the unique solution of the Cauchy problem 

. 

{
(dt + Dω) u(t) = 0

u(0) = 1,

with .dt = d/dt . Using the fundamental theorem of calculus, we find 

. dt

[
e−t D2 −

∫ t

0
dt ′e−(t−t ′)D2

ω P(ω)e−t ′D2

]

= −D2
ω

(
e−t D2 −

∫ t

0
dt ′e−(t−t ′)D2

ω P(ω)e−t ′D2

)
,

showing that the bounded operator .e−t D2 − ∫ t
0 dt

′e−(t−t ′)D2
ω P(ω)e−t ′D2

also solves 
the above Cauchy problem. �

In what follows, we will repeatedly apply this Lemma to obtain a perturbative 
expansion for.e−t (Dω)2 in powers of. ω in terms of multiple integrals of heat operators. 
We introduce the following convenient notation, valid for operators .X0, . . . Xn: 

. 〈X0, . . . , Xn〉t,n := tn Tr
∫

�n

X0e
−s0t D2

X1e
−s1t D2 · · · Xne

−sn t D2
dns.

Here, the standard .n-simplex .�n is the set of all .n-tuples .(t1, . . . , tn) satisfying 
.0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Equivalently, .�n can be given as the set of .n + 1-tuples
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.(s0, s1, . . . , sn) such that .s0 + · · · + sn = 1 and .0 ≤ si ≤ 1 for any .i = 0, . . . , n. 
Indeed, we have .s0 = t1, .si = ti+1 − ti and .sn = 1 − tn and, vice versa, . tk = s0 +
s1 + · · · sk−1. 

We recall the notion of Gâteaux derivatives. 

Definition 9.10 The Gâteaux derivative of a map.F : X → Y (between locally con-
vex topological vector spaces) at .x ∈ X is defined for .h ∈ X by 

. F ′(x)(h) = lim
u→0

F(x + uh) − F(x)

u
.

In general, the map .F ′(x)(·) is not linear, in contrast with the Fréchet derivative. 
However, if. X and. Y are Fréchet spaces, then the Gâteaux derivatives actually defines 
a linear map.F ′(x)(·) for any.x ∈ X . In this case, higher order derivatives are denoted 
as .F ′′, F ′′′, et cetera, or more conveniently as .F (k) for the . k ′th order derivative. The 
latter will be understood as a bounded operator from.X × · · · × X (.k + 1 copies) to 
. Y , which is linear in the . k last variables. 

Theorem 9.11 (Taylor’s formula with integral remainder) For a Gâteaux .k +
1-differentiable map .F : X → Y between Fréchet spaces .X and . Y , 

. F(x) = F(a) + F ′(a)(x − a) + 1

2! F
′′(a)(x − a, x − a) + · · ·

+ 1

n! F
(k)(a)(x − a, . . . , x − a) + Rk(x),

for .x, a ∈ X, with remainder given by 

. Rk(x) = 1

k!
∫ 1

0
F (k+1)(a + t (x − a))((1 − t)h, . . . , (1 − t)h, h)dt.

In view of this Theorem, we have the following asymptotic Taylor expansion 
(around 0) in .ω ∈ �1

D(A) for the spectral action .Sb[ω]: 

.Sb[ω] =
∞∑
n=0

1

n! S
(n)
b (0)(ω, . . . , ω), (9.3.1) 

provided we make the following 

Assumption 1 For all .α > 0, β > 0, γ > 0 and .0 ≤ ε < 1, there exist constants 
.Cαβγ ε such that 

.

∫

t>0
Tr tα|D|βe−t (εD2−β) |dμ(t)| < Cαβγ ε.
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Proposition 9.12 If .n = 0, 1, . . . and .ω ∈ �1
D(A), then .S(n)

b (0)(ω, . . . , ω) exists, 
and 

. S(n)
b (0)(ω, . . . , ω) = n!

n∑
k=0

(−1)k
∑

ε1,...,εk

〈1, (1 − ε1){D, ω} + ε1ω
2, . . . ,

(1 − εk){D, ω} + εkω
2〉t,k dμ(t),

where the sum is over multi-indices .(ε1, . . . , εk) ∈ {0, 1}k such that . 
∑k

i=1(1 + εi )

= n. 

Proof We prove this by induction on . n, the case .n = 0 being trivial. By definition 
of the Gâteaux derivative and using Lemma 9.9, 

. S(n+1)
b (0)(ω, . . . , ω) = n!

n∑
k=0

∑
ε1,...,εk

[ k∑
i=1

(−1)k+1〈1, (1 − ε1){D, ω} + ε1ω
2,

. . . , {D, ω}
i

, . . . , (1 − εk){D, ω} + εkω
2〉t,k+1

+
k∑

i=1

(−1)k〈1, (1 − ε1){D, ω} + ε1ω
2, . . . , 2(1 − εi )ω

2,

. . . , (1 − εk){D, ω} + εkω
2〉t,k

]
dμ(t).

The first sum corresponds to a multi-index.�ε′ = (ε1, . . . , εi−1, 0, εi , . . . , εk), the sec-
ond corresponds to .�ε′ = (ε1, . . . , εi + 1, . . . , εk) if .εi = 0, counted with a factor of 
. 2. In both cases, we compute that.

∑
j (1 + ε′

j ) = n + 1. In other words, the induction 
step from . n to .n + 1 corresponds to inserting in a sequence of . 0’s and . 1’s (of, say, 
length. k) either a zero at any of the.k + 1 places, or replacing a. 0 by a. 1 (with the latter 
counted twice). In order to arrive at the right combinatorial coefficient .(n + 1)!, we  
have to show that any .�ε′ satisfying .

∑
i (1 + ε′

i ) = n + 1 appears in precisely . n + 1
ways from . �ε that satisfy .

∑
i (1 + εi ) = n. If  .�ε′ has length . k, it contains . n + 1 − k

times . 1 as an entry and, consequently, .2k − n − 1 a . 0. This gives (with the double 
counting for the . 1’s) for the number of possible . �ε: 

. 2(n + 1 − k) + 2k − n − 1 = n + 1,

as claimed. This completes the proof. �
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Example 9.13 

. S(1)
b (0)(ω) =

∫ (
− 〈1, {D, ω}〉t,1

)
dμ(t),

S(2)
b (0)(ω, ω) = 2

∫ (
− 〈1, ω2〉t,1 + 〈1, {D, ω}, {D, ω}〉t,2

)
dμ(t),

S(3)
b (0)(ω, ω, ω) = 3!

∫ (
〈1, ω2, {D, ω}〉t,2 + 〈1, {D, ω}, ω2〉t,2

− 〈1, {D, ω}, {D, ω}, {D, ω}〉t,3
)
dμ(t).

9.3.1 Taylor Expansion of the Spectral Action 

We fix a complete set of eigenvectors .{ψ j } j of .D with eigenvalues .λ j ∈ R, respec-
tively, forming an orthonormal basis for . H. We also write .ωi j := (ψi , ωψ j ) for the 
matrix coefficients of. ωwith respect to this orthonormal basis. Recall from Appendix 
9.A the notion of divided difference . f [x0, x1, . . . , xn] of a function . f : R → R. 

Theorem 9.14 If . f satisfies Assumption 1 and .ω ∈ �1
D(A), then 

. S(n)
b (0)(ω, . . . , ω) = n!

∑
i1,...,in

ωin i1ωi1i2 · · · ωin−1in f [λi p , λi1 , . . . , λin ].

Proof Proposition 9.12 gives us an expression for.S(n)
b in terms of the brackets.〈· · · 〉t . 

For these we compute: 

. (−1)k〈1, (1 − ε1){D, ω} + ε1ω
2, . . . , (1 − εk){D, ω} + εkω

2〉t,k dμ(t)

= (−1)k
∑

i0=ik ,i1,...,ik

∫

�k

⎛
⎝

k∏
j=1

(
(1 − ε j )(λi j−1 − λi j )ω + ε jω

2)
i j−1i j

⎞
⎠

× e−(s0tλ2
i0

+···+sk tλ2
ik

)dksdμ(t)

=
∑

i0=ik ,i1,...,ik

⎛
⎝

k∏
j=1

(
(1 − ε j )(λi j−1 − λi j )ω + ε jω

2
)
i j−1i j

⎞
⎠ g[λ2

i0 , . . . , λ
2
ik ].

Glancing back at Proposition 9.27, we are finished if we establish a one-to-one 
relation between the order index sets .I = {0 = i0 < i1 < · · · < ik = n} such that 
.i j−1 − i j ≤ 2 for all .1 ≤ j ≤ k and the multi-indices .(ε1, . . . , εk) ∈ {0, 1}k such 
that .

∑k
i=1(1 + εi ) = n. If . I is such an index set, we define a multi-index
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. ε j =
{
0 if {i j − 1, i j } ⊂ I,
1 otherwise.

Indeed, .i j = i j−1 + 1 + ε j , so that 

. 

k∑
i=1

(1 + εi ) = i0 +
k∑

i=1

(1 + εi ) = ik = n.

It is now clear that, vice-versa, if . ε is as above, we define 

. I = {0 = i0 < i1 < · · · < ik = n}

by .i j = i j−1 + 1 + ε j , and starting with .i0 = 0. �

Corollary 9.15 If .n ≥ 0 and .ω ∈ �1
D(A), then 

. S(n)
b (0)(ω, . . . , ω) = (n − 1)!

∑
i1,...,in

ωi1i2 · · · ωin i1 f
′[λi1, . . . , λin ].

Consequently, 

. Sb[ω] = Sb[0] +
∞∑
n=1

1

n

∑
i1,...,in

ωi1i2 · · ·ωin i1 f
′[λi1 , . . . , λin ].

An interesting consequence is the following. 

Corollary 9.16 If .n ≥ 0 and .ω ∈ �1
D(A) and if . f ′ has compact support, then 

. S(n)
b (0)(ω, . . . , ω) = (n − 1)!

2π i
Tr

∮
f ′(z)ω(z − D)−1 · · · ω(z − D)−1,

where the contour integral encloses the intersection of the spectrum of.Dwith.supp f ′. 

Proof This follows directly from Cauchy’s formula for divided differences (see Note 
16 on this chapter): 

. g[x0, . . . xn] = 1

2π i

∮
g(z)

(z − x0) · · · (z − xn)
dz,

with the contour enclosing the points . xi . �
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9.3.2 Cyclic Cocycles Underlying the Spectral Action 

We now come to analyze in more details the structure of the terms in the Taylor 
expansion (9.3.1). We will write it as 

.Sb[ω] − Sb[0] =
∑
n

1

n
〈ω, . . . , ω︸ ︷︷ ︸

n

〉 f (9.3.2) 

where we have introduced brackets .〈·〉 f as the following multilinear functionals 
.〈·〉 f : (�1

D(A))×n → C: 

.〈ω1, . . . , ωn〉 f :=
∑
i1,...,in

(ω1)i1i2 · · · (ωn)in i1 f
′[λi1, . . . , λin ] (9.3.3) 

For our algebraic results we only need two simple properties of the bracket .〈·〉 f , 
stated in the following lemma. After proving this lemma, all analytical subtleties are 
taken care of, and we can focus on the algebra that ensues from these simple rules. 

Lemma 9.17 For .ω1, . . . , ωn ∈ �1(A) and .a ∈ A we have 

.〈ω1, . . . , ωn〉 f = 〈ωn, ω1, . . . , ωn−1〉 f , (I) 

.〈ω1, . . . , aω j , . . . , ωn〉 f − 〈ω1, . . . , ω j−1a, . . . , ωn〉 f (II) 

= 〈ω1, . . . , ω  j−1, [D, a], ω  j , . . . , ωn〉 f 
where it is understood that for the edge case . j = 1 we need to substitute . n for . j − 1
on the left-hand side. 

Proof Property I follows immediately from definition (9.3.3) and it also reduces II 
to the edge case . j = 1. For that case we compute 

. 〈aω1, . . . , ωn〉 f − 〈ω1, . . . , ωna〉 f
=

∑
i0,...,in

ai0i1(ω1)i1i2 · · · (ωn)in i0
(
f ′[λi0 , λi2 , . . . , λin ] − f ′[λi1, λi2 , . . . , λin ]

)

=
∑
i0,...,in

ai0i1(λi0 − λi1)(ω1)i1i2 · · · (ωn)in i0 f
′[λi0 , λi1 , λi2 , . . . , λin ]

= 〈[D, a], ω1, ω2, . . . , ωn〉 f
where in the second equality we used the recursive definition of the divided difference 
(see Definition 9.25 below). �



9.3 Perturbative Expansion in the Gauge Field 167

9.3.2.1 Hochschild and Cyclic Cocycles 

When the above brackets .〈·〉 f are evaluated at one-forms .a[D, b] associated to a 
spectral triple, the relations found in Lemma 9.17 can be translated nicely in terms 
of the coboundary operators . b and .B appearing in the definition of periodic cyclic 
cohomology (cf. Sect. 6.2). Let us write .B = AB0 where .A is the operator of full 
anti-symmetrization while .B0 : Cn(A) → Cn+1(A) is defined as 

. B0φ(a0, a1, . . . , an) := φ(1, a0, . . . , an)

We define the following .n-cochain: 

.φn(a0, . . . , an) := 〈a0[D, a1], [D, a2], . . . , [D, an]〉 f (9.3.4) 

We easily see that.B0φn is invariant under cyclic permutations, so that. Bφn = nB0φn

for odd . n and.Bφn = 0 for even . n. Also, .φn(a0, . . . , an) = 0 when.a j = 1 for some 
. j ≥ 1. We put .φ0 := 0. 

Lemma 9.18 We have .bφn = φn+1 for odd . n and .bφn = 0 for even . n. 

Proof As.bφ0 = 0 by definition, and .b2 = 0, we need only check the case in which 
. n is odd. 

We find, by splitting up the sum, and shifting the second appearing sum by one, 
that 

. bφn(a0, . . . , an+1)

= 〈a0a1[D, a1], [D, a2], . . . , [D, an+1]〉 f − 〈a0a1[D, a1], [D, a2], . . . , [D, an+1]〉 f

+
n∑
j=2

(−1) j 〈a0[D, a1], [D, a2], . . . , a j [D, a j+1], . . . , [D, an+1]〉 f

−
n+1∑
j=2

(−1) j 〈a0[D, a1], [D, a2], . . . , [D, a j−1]a j , . . . , [D, an+1]〉 f

+ 〈an+1a0[D, a1], [D, a2], . . . , [D, an]〉 f

=
n∑
j=2

(−1) j 〈a0[D, a1], [D, a2], . . . , [D, an+1]〉 f

− 〈a0[D, a1], [D, a2], . . . , [D, an]an+1〉 f + 〈an+1a0[D, a1], . . . , [D, an]〉 f
= 〈[D, an+1], a0[D, a1], [D, a2], . . . , [D, an]〉 f
= φn+1(a0, . . . , an+1),

by I and II of Lemma 9.17. �

Lemma 9.19 Let . n be even. We have .bB0φn = 2φn − B0φn+1. 

Proof Splitting the sum in two, and shifting the index of the second sum, we find
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. bB0φn(a0, . . . , an)

=
n−1∑
j=0

(−1) j 〈[D, a0], . . . , a j [D, a j+1], . . . , [D, an]〉 f

−
n∑
j=1

(−1) j 〈[D, a0], . . . , [D, a j−1]a j , . . . , [D, an]〉 f + 〈[D, ana0], . . . , [D, an−1]〉 f

= 〈a0[D, a1], [D, a2], . . . , [D, an]〉 f +
n−1∑
j=1

(−1) j 〈[D, a0], . . . , [D, an]〉 f

− 〈[D, a0], . . . , [D, an−2], [D, an−1]an〉 f + 〈[D, ana0], . . . , [D, an−1]〉 f
= φn(a0, . . . , an) − 〈[D, a0], . . . , [D, an]〉 f + 〈[D, an], [D, a0], . . . , [D, an−1]〉 f

+ 〈[D, an]a0, [D, a1], . . . , [D, an−1]〉 f
= 2φn(a0, . . . , an) − B0φn+1(a0, . . . , an),

by using both properties of the bracket .〈·〉 f in the last step. �
Motivated by this we define 

.ψ2k−1 := φ2k−1 − 1
2 B0φ2k, (9.3.5) 

so that 
. Bψ2k+1 = 2(2k + 1)bψ2k−1.

We can rephrase this property in terms of the .(b, B)-complex as follows. 

Proposition 9.20 Let .φn and .ψ2k−1 be as defined above and set . ψ̃2k−1 :=
(−1)k−1 (k−1)!

(2k−1)!ψ2k−1. 

(1) The sequence .(φ2k) is a .(b, B)-cocycle and each .φ2k defines an even Hochschild 
cocycle: .bφ2k = 0. 

(2) The sequence .(ψ̃2k−1) is an odd .(b, B)-cocycle. 

We use an noncommutative integral notation that is defined by linear extension 
of 

. 

∫

φ

a0δa1 · · · δan :=
∫

φn

a0δa1 · · · δan := φ(a0, a1, . . . , an),

and similarly for. ψ . The expression.a0δa1 . . . δan is a so-called universal differential 
.n-form in .�n(A), see  Note  7 on Chap. 7 for more details. 

9.3.3 Brackets and Noncommutative Integrals 
Over Universal Forms 

In this section we will express the derivatives of the fluctuated spectral action (occur-
ring in the Taylor series (9.3.1)) in terms of universal forms that are integrated along



9.3 Perturbative Expansion in the Gauge Field 169

. φ. We thus make the jump from an expression in terms of . ω = πD(A) ∈ �1
D(A)sa

to an expression in terms of .A ∈ �1(A). As  .ω decomposes as a finite sum . ω =∑
a j [D, b j ], our task is to express .〈a j1 [D, b j1 ], . . . , a jn [D, b jn ]〉 f in terms of uni-

versal forms.a0δa1 · · · δan integrated along. φ. This will turn out to be possible by just 
using II and the Leibniz rule .[D, a1a2] = a1[D, a2] + [D, a1]a2. To find the exact 
expression we need to work in the algebra .M2(�

•
D(A)) = M2(C) ⊗ �•

D(A). 

Proposition 9.21 Let.n ∈ N. For.a1, . . . , an, b1, . . . , bn ∈ A, denoting.A j := a jδb j , 
we have 

. 〈a1[D, b1], . . . , an[D, bn]〉 f =
∫

φ

(
A1 0

) n∏
j=2

(
A j + δA j −A j

δA j −A j

) (
1
0

)
.

Proof If we combine, for every.n ∈ N0, the.n-multilinear function.〈·〉 f from (9.3.3), 
we obtain a linear function 

. 〈·〉 f : T�1
D(A) → C

on the tensor algebra.T�1
D(A). For any.μ, ν ∈ T�1

D(A), a straightforward calcula-
tion using the commutation rule II from Lemma 9.17 shows that 

.〈μ ⊗ a j−1[D, b j−1] ⊗ (
a j a jb j

)
ν〉 f = 〈μ ⊗ (

a j−1 a j−1b j−1
)
Mj ⊗ ν〉 f , (9.3.6) 

where .Mj ∈ M2(T�1(A)) is defined by 

. Mj :=
([D, b j−1a j ] + [D, b j−1] ⊗ [D, a j ] [D, b j−1a j b j ] + [D, b j−1] ⊗ [D, a j b j ]

−[D, a j ] −[D, a j b j ]
)

.

(9.3.7) 

Repeating (9.3.6), and subsequently using (9.3.4), it follows that 

. 〈a1[D, b1], . . . , an[D, bn]〉 f = 〈a1[D, b1] ⊗ . . . ⊗ an−1[D, bn−1] ⊗ (
an anbn

) ([D, bn]
0

)
〉 f

= 〈(a1 a1b1
) ( n∏

j=2

Mj

) ([D, bn]
0

)
〉 f

=
∫

φ

(
a1 a1b1

) ( n∏
j=2

N j

) (
δbn
0

)
,

where from (9.3.7) we obtain 

.N j =
(

δ(b j−1a j ) + δb j−1δa j δ(b j−1a jb j ) + δb j−1δ(a jb j )

−δa j −δ(a jb j )

)

=
(

δb j−1 b j−1

0 −1

) (
a j + δa j a jb j + δa jb j + a jδb j

δa j δa jb j + a jδb j

)
.
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By also writing .

(
δbn
0

)
=

(
δbn bn
0 −1

) (
1
0

)
, we find that 

. 〈a1[D, b1], . . . an[D, bn]〉 f

=
∫

φ

(
a1 a1b1

) (
δb1 b1
0 −1

) ⎛
⎝

n∏
j=2

(
a j + δa j a j b j + δa j b j + a j δb j

δa j δa j b j + a j δb j

) (
δb j b j

0 −1

)⎞
⎠

(
1
0

)

=
∫

φ

(
A1 0

)
⎛
⎝

n∏
j=2

(
A j + δA j −A j

δA j −A j

)⎞
⎠

(
1
0

)
,

which concludes the proof. �

Corollary 9.22 If .n ∈ N, .A ∈ �1(A) and .ω := πD(A) ∈ �1
D(A), then 

.〈ω, . . . , ω〉 f =
∫

φ

(
A 0

) (
A + δA −A

δA −A

)n−1 (
1
0

)
. (9.3.8) 

Using (9.3.8), we obtain in particular 

. 〈ω〉 f =
∫

φ1

A,

〈ω,ω〉 f =
∫

φ2

A2 +
∫

φ3

AδA,

〈ω,ω,ω〉 f =
∫

φ3

A3 +
∫

φ4

AδAA +
∫

φ5

AδAδA,

〈ω,ω,ω, ω〉 f =
∫

φ4

A4 +
∫

φ5

(A3δA + AδAA2) +
∫

φ6

AδAδAA +
∫

φ7

AδAδAδA.

With (9.3.2) this implies that 

. 

Sb[ω] − Sb[0] =
∫

φ1

A + 1

2

∫

φ2

A2 +
∫

φ3

(1
2
AδA + 1

3
A3

)

+
∫

φ4

(1
3
AδAA + 1

4
A4

)
+ . . . ,

where the dots indicate terms of form degree 5 and higher. Using . φ2k−1 = ψ2k−1 +
1
2 B0φ2k , this becomes 

.Sb[ω] − Sb[0] =
∫

ψ1

A + 1

2

∫

φ2

(δA + A2) +
∫

ψ3

(1
2
AδA + 1

3
A3

)

+ 1

4

∫

φ4

(
δAδA + 2

3
(δAA2 + AδAA + A2δA) + A4

)
+ . . . .
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Notice that, if .φ4 would be tracial, we would be able to identify the terms .δAA2, 
.AδAA and.A2δA, and thus obtain the Yang–Mills form.F2 = (δA + A2)2, under the 
fourth integral. In the general case, however, cyclic permutations under .

∫
φ
produce 

correction terms, of which we will need to keep track. Even though the corresponding 
analysis is rather involved, it is only based on the properties I and II of the bracket 
(cf. Lemma 9.17); see Note 13 on this chapter. We then have the following 

Theorem 9.23 The spectral action fluctuated by .ω = πD(A) ∈ �1
D(A)sa with cor-

responding .A ∈ �1(A) and .F = δA + A2 ∈ �2(A) can be expanded as 

. Sb[ω] − Sb[0] ∼
∞∑
k=1

(∫

ψ2k−1

cs2k−1(A) + 1

2k

∫

φ2k

Fk

)
.

where the Chern–Simons forms of degree .2k − 1 are defined by 

.cs2k−1(A) :=
∫ 1

0
A(Ft )

k−1dt, (9.3.9) 

where.Ft = tδA + t2A2 is the curvature two-form of the (connection) one-form. At =
t A. 

Proof See Note 13 on this chapter. �

Example 9.24 For the first three Chern–Simons forms one easily derives the fol-
lowing explicit expressions: 

. cs1(A) = A; cs3(A) = 1

2

(
AδA + 2

3
A3

)
;

cs5(A) = 1

3

(
A(δA)2 + 3

4
AδAA2 + 3

4
A3δA + 3

5
A5

)
.

9.A Divided Differences 

We recall the definition of and some basic results on divided differences. 

Definition 9.25 Let . f : R → R and let .x0, x1, . . . xn be distinct points in . R. The  
divided difference of order . n is defined by the recursive relations 

. f [x0] = f (x0),

f [x0, x1, . . . xn] = f [x1, . . . xn] − f [x0, x1, . . . xn−1]
xn − x0

.
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On coinciding points we extend this definition as the usual derivative: 

. f [x0, . . . , x . . . , x . . . xn] := lim
u→0

f [x0, . . . , x + u . . . , x . . . xn].

Finally, as a shorthand notation, for an index set .I = {i1, . . . , in} we write 

. f [xI ] = f [xi1 , . . . , xin ].

Also note the following useful representation: 

Proposition 9.26 For any .x0, . . . , xn ∈ R, 

. f [x0, x1, . . . , xn] =
∫

�n

f (n) (s0x0 + s1x1 + · · · + snxn) d
ns.

Proof See Note 15 on this chapter. �
Exercise 9.1 Prove Proposition 9.26 and show that it implies 

. 

n∑
i=0

f [x0, . . . , xi , xi , . . . , xn] = f ′[x0, x1, . . . , xn].

Proposition 9.27 For any .x1, . . . xn ∈ R for . f (x) = g(x2) we have, 

. f [x0, · · · , xn] =
∑
I

⎛
⎝ ∏

{i−1,i}⊂I

(xi + xi+1)

⎞
⎠ g[x2I ],

where the sum is over all ordered index sets .I = {0 = i0 < i1 < · · · < ik = n} such 
that .i j − i j−1 ≤ 2 for all .1 ≤ j ≤ k (i.e. there are no gaps in . I of length greater 
than 1). 

Proof This follows from the chain rule for divided differences (see Note 16 on this 
chapter): if . f = g ◦ φ, then 

. f [x0, . . . xn] =
n∑

k=1

∑
0=i0<i1<...<ik=n

g[φ(xi0), . . . , φ(xik )]
k−1∏
j=0

φ[xi j , . . . , xi j+1 ].

For .φ(x) = x2 we have .φ[x, y] = x + y, .φ[x, y, z] = 1 and all higher divided dif-
ferences are zero. Thus, if.i j+1 − i j > 2 then.φ[xi j , . . . , xi j+1 ] = 0. In the remaining 
cases one has 

. φ[xi j , . . . , xi j+1 ] =
{
xi j + xi j+1 if i j+1 − i j = 1
1 if i j+1 − i j = 2,

and in the above summation this selects precisely the index sets . I . �
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Example 9.28 For the first few terms, we have 

. f [x0, x1] = (x0 + x1)g[x20 , x21 ],
f [x0, x1, x2] = (x0 + x1)(x1 + x2)g[x20 , x21 , x22 ] + g[x20 , x22 ],

f [x0, x1, x2, x3] = (x0 + x1)(x1 + x2)(x2 + x3)g[x20 , x21 , x22 , x23 ]
+ (x2 + x3)g[x20 , x22 , x23 ] + (x0 + x1)g[x20 , x21 , x23 ].

Notes 

Section 9.1 Spectral action functional 

1. The spectral action principle was introduced by Chamseddine and Connes in [ 1, 2]. 
2. The spectral action has also been computed for spectral triples that are not the product of . M

with a finite space . F , and which are further off the ‘commutative shore’. These include the 
noncommutative torus [ 3], the Moyal plane [ 4, 5], the quantum group .SUq (2) [ 6] and  the  
Podleś sphere.S2q [ 7]. We also refer to the book [ 8]. 

3. Note that we have put two restrictions on the fermions in the fermionic action.S f of Definition 
9.3. The first is that we restrict ourselves to even vectors in .H+, instead of considering all 
vectors in. H. The second restriction is that we do not consider the inner product. 〈J ψ̃ ′, Dωψ̃〉
for two independent vectors .ψ and .ψ ′, but instead use the same vector .ψ on both sides of 
the inner product. Each of these restrictions reduces the number of degrees of freedom in the 
fermionic action by a factor of . 2, yielding a factor of . 4 in total. It is precisely this approach 
that solves the problem of fermion doubling pointed out in [ 9] (see also the discussion in 
[ 10, Chap. 1, Sect. 16.3]). We shall discuss this in more detail in Chaps. 11 and 13, where  we  
calculate the fermionic action for electrodynamics and the Standard Model, respectively. 

Section 9.2 Asymptotic expansion of the spectral action 

4. For a complete treatment of the Laplace–Stieltjes transform, see [ 11]. 
5. Lemma 9.6 appeared as [ 10, Lemma 1.144]. 
6. Corollary 9.8 is [ 10, Theorem 1.145]. An analysis of the term.Tr |Dω|−z

∣∣
z=0 therein, including 

a perturbative expansion in powers of. ω has been obtained in [ 12]. 

Section 9.3 Perturbative expansion in the gauge field 

7. Section. 9.3 is  based on [  13, 14]. 
8. The notation .〈X0, . . . , Xn〉t,n should not be confused with the zeta functions . 〈X0, . . . , Xn〉z

introduced in Chap. 6. However, they are related through the formula 

. 〈X0, . . . , Xn〉t,n = (−1)p

2π i
Tr

∫
e−tλX0(λ − D2)−1X1 · · · An(λ − D2)−1dλ.

Multiplying this expression by .t z−1 and integrating over . t eventually yields .〈X0, . . . , Xn〉z . 
For details, we refer to [ 15, Appendix A].
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9. For more details on Gâteaux derivatives, we refer to [ 16]. For instance, that the Gâteaux 
derivative of a linear map.F between Fréchet spaces is a linear map.F ′(x)(·) for any.x ∈ X is 
shown in [ 16, Theorem 3.2.5]. 

10. The expansion in Eq. 9.3.1 is asymptotic in the sense that the partial sums . 
∑N

n=0
1
n! S

(n)
b (0)

(ω, . . . , ω) can be estimated to differ from.Sb[ω] by.O(‖ω‖N+1). This is made precise in [ 13] 
and further improved upon in [ 14, 17]. 

11. Theorem 9.14 was proved in [ 13]. A similar result was obtained in finite dimensions in [ 18] and  
in a different setting in [ 17]. Corollary 9.16 was obtained at first order for bounded operators 
[ 19]. 

12. There is a close connection between the spectral action, the Krein spectral shift function [ 20, 
21], as well as the spectral flow of Atiyah and Lusztig [ 22– 24]. One way to see this is from 
Theorem 9.11, where we can control the asymptotic expansion of the spectral action using the 
remainder terms .Rk . In [  17] these terms are analyzed and related to a spectral shift formula 
[ 20, 21] (see also the book [ 25] and the review [ 26], and references therein). In fact, under the 
assumption that. f has compact support, the first rest term.Sb[ω] − S(0)

b (0) becomes 

. Tr f (D + ω) − Tr f (D) =
∫

R

f (x)d(Tr ED+ω(x)) −
∫

R

f (x)d(Tr ED(x)),

where.ED+ω and.ED are the spectral projections of.D + ω and. D, respectively. After a partial 
integration, we then obtain [ 17, Theorem 3.9] 

. Tr f (D + ω) − Tr f (D) =
∫

R

f ′(x)ξ(x)dx, (∗) 

where 
. ξ(x) = Tr (ED+ω(x) − ED(x))

is the so-called spectral shift function. Moreover, it turns out that the higher-order rest terms 
are related to higher-order spectral shift functions [ 27, 28]. 
Let us also briefly describe the intriguing connection between the spectral shift function and 
the local index formula of Chap. 6. In fact, [ 29] (using a result from [ 30, Appendix B]) 
relates the index of.PuP which appears in the odd local index formula (Theorem 6.21) to the  
spectral flow.sf({Dt }) of the family.Dt = (1 − t)D + tuDu∗ = D + tu[D, u∗] for.0 ≤ t ≤ 1. 
Roughly speaking, the spectral flow of such a family of operators is given by the net number 
of eigenvalues of.Dt that pass through. 0 in the positive direction when. t runs from. 0 to. 1. One  
then has 

. index PuP = sf({Dt }t∈[0,1]).

The connection between spectral flow and the spectral shift function was first hinted at in [ 31] 
and has been worked out in [ 32, 33]. Essentially, these latter papers build on the observation 
that the spectral flow from .D0 − x to .D1 − x for any real number . x is equal to the spectral 
shift function.ξ(x) defined above in terms of the spectral projections of.D0 and.D1. Note that 
for a path connecting.D and the unitarily equivalent operator.uDu∗ the spectral shift function 
is a constant. In fact, since .D and .uDu∗ have identical spectrum, the left-hand side of (*) 
vanishes. Integration by parts on the right-hand side then ensures that. ξ is constant (and in fact 
equal to the above index). 
Eventually, a careful analysis of the spectral flow [ 34] (and [  35] for the even case) allows one 
to prove the local index formula in the much more general setting of semi-finite spectral triples 
[ 29, 36– 38].
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Another encounter of spectral shift and spectral flow is in the computation of the index of 
the operator .d/dt + A(t) with .A(t) a suitable family of perturbations .(t ∈ R). In fact, they 
were the operators studied by Atiyah, Patodi and Singer in [ 22– 24]. The index of. d/dt + A(t)
can be expressed in terms of the spectral flow of .A(t) under the assumptions that .A(±∞) is 
boundedly invertible, and that .A(t) has discrete spectrum for all .t ∈ R. We refer to [ 39] for  a  
careful historical account, and the extension of this result to relatively trace class perturbations 
.A(t). 

13. For full details on the proof of Theorem 9.23, including its convergence aspects, we refer to 
the original work [ 14]. 

14. The Chern–Simons terms defined in Theorem 9.23 have been studied in [ 40] and also appear 
in the physics literature, see [ 41, pp. 391ff] and [ 42, . ω bis 10]. Usually, they are evaluated 
using a trace on.�•, which is defined as a continuous degree zero map from.�• to a complex. ω
such that.δτ = τδ and. τ vanishes on graded commutators.(adX)(Y ) = XY − (−1)odd(Y )Y X . 
Given a connection one-form. A with curvature.F = δA + A2 we may define the Chern char-
acter form as 

. ch2n = τ(Fn).

By the Bianchi identity.(δ + adA)F = δF + [A, F] = 0 we have: 

. δτ(Fn) = τ(δFn) = τ(−[A, Fn]) = 0,

and one may wonder whether we can write .ch2n as an exact form. This is where the Chern– 
Simons form enters, since one may derive the following transgression formula: 

. δ(τ (cs2n−1(A))) = 1

n
τ(Fn).

It follows directly by integrating the homotopy formula for a family of connection one-forms 
.At = t A: 

.
1

n
∂t (τ (Fn

t )) = δ(τ ( Ȧt F
n−1
t )) (∗) 

Let us for completeness prove Eq. (. ∗) for a family of connection one-forms.At with curvature 
.Ft = δAt + A2

t . Since  

. ∂t (Ft ) = δ Ȧt + Ȧt At + At Ȧt = (δ + adAt )( Ȧt ),

we find indeed that 

.
1

n
∂tτ(Fn

t ) = τ((δ + adAt )( Ȧt )F
n−1
t )

= τ((δ + adAt )( Ȧt F
n−1
t )) (Bianchi identity)

= τ(δ( Ȧt F
n−1
t )) (trace on commutator)

= δτ( Ȧt F
n−1
t ).
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Section 9.A Divided differences 

15. Proposition 9.26 is due to Hermite [ 43]. 
16. The chain rule for divided differences is proved in [ 44]. For Cauchy’s formula 

for divided differences, we refer to [ 45, Chap. I.1]. 
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Chapter 10 
Almost-Commutative Manifolds 
and Gauge Theories 

In this chapter we analyze the gauge theories corresponding (in the sense of Chap. 7) 
to a special class of noncommutative manifolds, to wit almost-commutative, or AC  
manifolds. We will see that this class leads to the usual gauge theories in physics. 
After identifying the gauge group, the gauge fields and the scalar fields, we compute 
the spectral action that yields the Lagrangian of physical interest. 

10.1 Gauge Symmetries of AC Manifolds 

We consider almost-commutative manifolds .M × F that are the products of a Rie-
mannian spin manifold .M with a finite noncommutative space . F . 

As such, these are reminiscent of the original Kaluza–Klein theories where one 
considers the product .M × S

1. The crucial difference is that the space .F is finite 
so that no extra dimensions appear, while it can have non-trivial (noncommutative) 
structure. 

Definition 10.1 Let .M be a Riemannian spin manifold with canonical triple 
.(C∞(M), L2(S), DM ; JM , γM), and let .(AF , HF , DF ; JF , γF ) be a finite real spec-
tral triple. The almost-commutative manifold .M × F is given by the real spectral 
triple: 

. M × F = (C∞(M, AF ), L2(S ⊗ (M × HF )), DM ⊗ 1 + γM ⊗ DF ; JM ⊗ JF , γM ⊗ γF ).

Recall the definition of the gauge group of a real spectral triple (cf. Definition 7.4). 
In the case of AC manifolds, it is given by 

. G(M × F) := {
u Ju J−1 : u ∈ C∞(M,U(AF ))

}
,
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with .J = JM ⊗ JF . Here we have identified .U(C∞(M, AF )) = C∞(M,U(AF )). 
For the Lie algebra of the gauge group we have 

. g(M × F) := {
X + J X J−1 : X ∈ C∞(M, u(AF ))

}
.

In the same way, we also obtain the groups .G(M) and .G(F). For the canonical 
triple on the spin manifold . M , we have seen in Example 8.2 that . C∞(M)JM =
C∞(M), which means that the group .G(M) is just the trivial group. For the finite 
space . F , we obtain the local gauge group .G(F). Let us have a closer look at the 
structure of this local gauge group. We define two subsets of .AF by 

.H(F) := U(
(AF )JF

)
, (10.1.1a) 

.h(F) := u
(
(AF )JF

)
. (10.1.1b) 

Note that the group.H(F) is the counterpart for the finite space. F of the group. U(AJ )

in Proposition 7.5, and .h(F) is its Lie algebra. 

Proposition 10.2 Let .M be simply connected. Then the gauge group . G(M × F)

of an almost-commutative manifold is given by .C∞(M,G(F)), where . G(F) =
U(AF )/H(F) is the gauge group of the finite space. Consequently, the gauge Lie 
algebra .g(M × F) is given by .C∞(M, g(F)), where .g(F) = u(AF )/h(F). 

Proof This follows from Propositions 7.5 and 7.8, combined with the fact that for 
the algebra .A = C∞(M, AF ) we have .U(A) � C∞(M,U(AF )), while . U(AJ ) =
C∞(M,H(F)). The quotient of the latter two groups is isomorphic to. C∞(M,G(F))

if the following homomorphism 

. C∞(M,U(AF )) → C∞(M,U(AF )/H(F))

is surjective. This happens when .M is simply connected, as in that case there exists 
a global lift from.U(AF )/H(F) to .U(AF ) (see Note 4 of this chapter below). . �

This is in concordance with the picture derived in Chap. 8, where the gauge 
group acts fiberwise on a .C∗-bundle. Namely, in the case of an almost-commutative 
manifold we have a globally trivial.C∗-bundle.M × AF for which. A are the (smooth) 
sections. Since .G(M × F) � C∞(M,G(F)), the gauge group is given by sections 
of the group bundle.M × G(F), which then naturally acts fiberwise on the.C∗-bundle 
.M × AF . 

Combined with the outer automorphisms on .C∞(M), we arrive at the full sym-
metry group of an almost-commutative manifold .M × F as a semi-direct product, 
where the ‘internal symmetries’ are given by the gauge group .G(M × F). Further-
more, we also still have invariance under the group of diffeomorphisms.Diff(M), as in  
Example 7.2. There exists a group homomorphism. θ : Diff(M) → Aut

(
G(M × F)

)

given by 

.θ(φ)U := U ◦ φ−1,
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for .φ ∈ Diff(M) and .U ∈ G(M × F). Hence, we can describe the full symmetry 
group by the semi-direct product 

. G(M × F) � Diff(M).

10.1.1 Unimodularity 

Suppose that.AF is a complex unital.∗-algebra, conform Definition 2.1. This algebra 
has a unit . 1, and by complex linearity we see that .C1 ⊂ (AF )JF . Restricting to 
unitary elements, we then find that .U (1) is a subgroup of .H(F). Because .H(F) is 
commutative, .U (1) is then automatically a normal subgroup of .H(F). 

If, on the other hand, .AF is a real algebra, we can only say that .R1 ⊂ (AF )JF . 
Restricting to unitary (i.e. in this case orthogonal) elements, we then only obtain the 
insight that .{1,−1} is a normal subgroup of .H(F). 

Proposition 10.3 If .AF is a complex algebra, the gauge group is isomorphic to 

. G(F) � SU(AF )/SH(F),

where 

. SU(AF ) := {g ∈ U(AF ) | det HF g = 1},
SH(F) := SU(AF ) ∩ H(F).

In this case the gauge algebra is 

. g(F) � su(AF )/sh(F),

with 

. su(AF ) := {X ∈ u(AF ) | TrHF X = 0},
sh(F) := su(AF ) ∩ hF .

Proof Elements of the quotient.G(F) = U(AF )/H(F) are given by the equivalence 
classes .[u] for .u ∈ U(AF ), subject to the equivalence relation .[u] = [uh] for all 
.h ∈ H(F). Similarly, the quotient .SU(AF )/SH(F) consists of classes .[v] for . v ∈
SU(AF ), with the equivalence relation .[v] = [vg] for all .g ∈ SH(F). We first show  
that this quotient is well defined, i.e. that.SH(F) is a normal subgroup of.SU(AF ). For  
this we need to check that .vgv−1 ∈ SH(F) for all .v ∈ SU(AF ) and.g ∈ SH(F). We  
already know that.vgv−1 ∈ H(F), because.H(F) is a normal subgroup of.U(AF ). We  
then also see that.detHF (vgv

−1) = detHF g = 1, so.vgv−1 ∈ SH(F), and the quotient 
.SU(AF )/SH(F) is indeed well defined.
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As to for the claimed isomorphism, consider the map . ϕ : U(AF ) →
SU(AF )/SH(F) given by 

. ϕ(u) = [λu
−1u],

where .λu ∈ U (1) is an element in .U (1) such that .λu
N = det u, where .N is the 

dimension of the finite-dimensional Hilbert space .HF . 
Since .U (1) is a subgroup of .U(AF ) (because we assume .AF to be a complex 

algebra), we see that indeed .λu
−1u ∈ SU(AF ). Let us also check that . ϕ does not 

depend on the choice of the . N ’th root .λu of .det u we take. Suppose .λ′
u is such that 

.λ′
u
N = det u. We then must have.λu

−1λ′
u ∈ μN , where.μN is the multiplicative group 

of the . N ’th roots of unity. Since .U (1) is a subgroup of .H(F), we see that .μN is a 
subgroup of .SH(F), so  .[λu

−1u] = [λ′
u
−1u], and hence the image of .ϕ is indeed 

independent of the choice of .λu . 
Next, since .SU(AF ) ⊂ U(AF ), the homomorphism . ϕ is clearly surjective. We 

determine its kernel: 

. ker ϕ = {
u ∈ U(AF ) : λ−1

u u ∈ H(F)
} � {u ∈ U(AF ) : u ∈ H(F)} ≡ H(F),

since .λu ∈ H(F). . �

The significance of Proposition 10.3 is that in the case of a complex algebra with a 
complex representation, equivalence classes of the quotient . G(F) = U(AF )/H(F)

can always be represented (though not uniquely) by elements of .SU(AF ). In that 
sense, all elements .g ∈ G(F) naturally satisfy the so-called unimodularity condi-
tion, i.e. they satisfy 

. det HF g = 1.

In the case of an algebra with a real representation, this is not true and it is natural 
to impose the unimodularity condition for such representations by hand. We will 
see later in Chap. 13 how this works in the derivation of the Standard Model from 
noncommutative geometry. 

Example 10.4 Define the so-called Yang–Mills finite spectral triple (cf. Example 
3.14) 

. FYM = (MN (C), MN (C), D = 0; JF = (·)∗, γF = 1).

One easily checks that the commutative subalgebra .(AF )JF is given by .CIN . The  
group.H(F) of unitary elements of this subalgebra is then equal to the group.U (1)IN . 
Note that in this case .H(F) is equal to the subgroup .U(Z(AF )) of .U (N ) that com-
mutes with the algebra .MN (C). We thus obtain that the gauge group is given by the 
quotient .G(FYM) = U (N )/U (1) =: PU (N ), which by Example 7.3 is equal to the 
group of inner automorphisms of.MN (C). As in Proposition 10.3, this group can also 
be written as.SU (N )/μN , where the multiplicative group.μN of. N ’th roots of unity is 
the center of.SU (N ). The Lie algebra.g(FYM) consists of the traceless anti-hermitian 
matrices, i.e. it is .su(N ).
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The almost-commutative manifold.M × FYM will be referred to as the Yang–Mills 
manifold. By Proposition 10.2, in the simply connected case the global gauge group 
.G(M × FYM) is given by maps .C∞(M, PU (N )), or, equivalently, by the space of 
smooth sections of the trivial group bundle .M × PU (N ). 

Exercise 10.1 In the context of the above example, check that indeed: 

(1) the commutative subalgebra .MN (C)JF � CIN , 
(2) .SH(F) = μN , the multiplicative group of . N ’th roots of unity. 

Explain the difference with the case of .MN (R). 

10.2 Gauge Fields and Scalar Fields 

Let us apply the discussion in Sect. 7.2 on Morita self-equivalences to the almost-
commutative manifold .M × F and see what the corresponding gauge fields look 
like. For convenience, we restrict ourselves to simply connected manifolds .M of 
dimension.dim M = 4 and. F of even KO-dimension so that.ε′

F = 1 in Table 3.1; this  
is sufficient for the physical applications later on. 

Thus, we determine .�1
D(A) for almost-commutative manifolds, much as in 

Exercise 5.1. The Dirac operator .D = DM ⊗ 1 + γM ⊗ DF consists of two terms, 
and hence we can also split the inner fluctuation .ω = a[D, b] into two terms. The 
first term is given by 

.a[DM ⊗ 1, b] = −iγμ ⊗ a∂μb =: γμ ⊗ Aμ, (10.2.1) 

where .Aμ := −ia∂μb ∈ iA must be hermitian. 1 The second term yields 

.a[γM ⊗ DF , b] = γM ⊗ a[DF , b] =: γM ⊗ φ, (10.2.2) 

for hermitian .φ := a[DF , b]. Thus, the inner fluctuations of an even 
almost-commutative manifold .M × F take the form 

.ω = γμ ⊗ Aμ + γM ⊗ φ, (10.2.3) 

for certain hermitian operators.Aμ ∈ iA and.φ ∈ �
(
End(V )

)
, where.V is the trivial 

vector bundle .V = M × HF . 
The ‘fluctuated’ Dirac operator is given by .Dω = D + ω + ε′ JωJ−1 (cf. Sect. 

7.2.2 above), for which we calculate 

.γμ ⊗ Aμ + ε′ Jγμ ⊗ Aμ J
−1 = γμ ⊗ (

Aμ − JF Aμ J
−1
F

) =: γμ ⊗ Bμ, (10.2.4)

1 Note that.iA = A for complex algebras only. 
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which defines .Bμ ∈ �
(
End(V )

)
, and where we have used that .JMγμ J−1

M = −γμ in 
dimension 4. Note that if .∇E denotes the twisted connection on the tensor product 
bundle .E := S ⊗ V , i.e. 

. ∇E
μ = ∇ S

μ ⊗ 1 + i1 ⊗ Bμ,

we see that we can rewrite 

. DM ⊗ 1 + γμ ⊗ Bμ = −iγμ∇E
μ .

For the remainder of the fluctuated Dirac operator, we define .� ∈ �
(
End(E)

)
by 

.� := DF + φ + JFφJ−1
F . (10.2.5) 

The fluctuated Dirac operator of a real even AC-manifold then takes the form 

.Dω = DM ⊗ 1 + γμ ⊗ Bμ + γM ⊗ � = −iγμ∇E
μ + γM ⊗ �. (10.2.6) 

In Sect. 10.1 we obtained the local gauge group .G(F) with Lie algebra .g(F). 
For consistency we should now check that the gauge field .Aμ arising from the inner 
fluctuation indeed corresponds to this same gauge group. 

The requirement that .Aμ is hermitian is equivalent to .(i Aμ)
∗ = −i Aμ. Since . Aμ

is of the form .−ia∂μb for .a, b ∈ A (see (10.2.1)), we see that .i Aμ is an element of 
the algebra .A (also if .A is only a real algebra). Thus we have .Aμ(x) ∈ i u(AF ). 

The only way in which.Aμ appears in.Dω is through the action of.Aμ − JF Aμ J
−1
F . 

If we take .A′
μ = Aμ − aμ for some .aμ ∈ ih(F) = i u

(
(AF )JF

)
(which commutes 

with.JF ), we see that.A′
μ − JF A′

μ J
−1
F = Aμ − JF Aμ J

−1
F . Therefore we may without 

any loss of generality assume that .Aμ(x) is an element of the quotient . ig(F) =
i(u(AF )/h(F)

)
). Since .g(F) is the Lie algebra of the gauge group .G(F), we have  

therefore confirmed that 

.Aμ ∈ C∞(M, ig(F)) (10.2.7) 

is indeed a gauge field for the local gauge group .G(F). For the field .Bμ found in 
(10.2.6), we can also write 

. Bμ = ad(Aμ) := Aμ − JF Aμ J
−1
F .

So, we conclude that .Bμ is given by the adjoint action of a gauge field .Aμ for the 
gauge group .G(F) with Lie algebra .g(F). 

If the finite noncommutative space. F has a grading.γF , the field. φ satisfies. φγF =
−γFφ and the field .� satisfies .�γF = −γF� and .�JF = JF�. These relations 
follow directly from the definitions of . φ and .� and the commutation relations for 
.DF according to Definition 3.1.
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Using the cyclic property of the trace, it is easy to see that the traces of the fields 
.Bμ, . φ and.� over the finite-dimensional Hilbert space.HF vanish identically: for . Bμ

we find 

. TrHF

(
Bμ

) = TrHF

(
Aμ − JF Aμ J

−1
F

) = TrHF

(
Aμ − Aμ J

−1
F JF

) = 0,

whereas for the field . φ we find 

. TrHF

(
φ
) = TrHF

(
a[DF , b]) = TrHF

([b, a]DF
)
.

Since the grading commutes with the elements in the algebra and anti-commutes with 
the Dirac operator, it follows that this latter trace also vanishes. It then automatically 
follows that .� = DF + φ + JFφJ−1

F is traceless too. 

Example 10.5 For the Yang–Mills manifold .M × FYM of Example 10.4 the inner 
fluctuations take the form .ω = γμ ⊗ Aμ for some traceless hermitian field . Aμ =
A∗

μ ∈ C∞(M, isu(N )). Since .JF Aμ J
−1
F m = mAμ for .m ∈ MN (C), we see that for 

the field .Bμ = Aμ − JF Aμ J
−1
F we obtain the action 

. m �→ Bμm = Aμm − mAμ = [Aμ,m] = (ad Aμ)m.

Thus .Aμ is a .PU (N ) gauge field which acts on the fermions in .L2(S) ⊗ MN (C) in 
the adjoint representation. 

10.2.1 Gauge Transformations 

Recall from Sect. 7.2 that an element.U ∈ G(A,H; J ) acts on the inner fluctuations 
as a gauge transformation. In fact, the rule .Dω �→ UDωU ∗ with .U = u Ju J−1 can 
be implemented by 

.u : ω �→ ωu := uωu∗ + u[D, u∗], (10.2.8) 

so that .UDωU ∗ = Dωu . In physics, the resulting transformation on the inner fluctu-
ation .ω �→ ωu will be interpreted as a gauge transformation of the gauge field. 

Note that for an element .U = u Ju J−1 in the gauge group .G(M × F), there is 
an ambiguity in the corresponding transformation of . ω. Namely, for .u ∈ U(A) and 
.h ∈ U(AJ ), we can also write .U = uh Juh J−1. Replacing . u with .uh using (5.2.1) 
we then obtain 

. ωuh = uωu∗ + u[D, u∗] + h[D, h∗].

However, when considering the total inner fluctuation .ωuh + Jωuh J−1, the  extra  
term.h[D, h∗] cancels out:
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. h[D, h∗] + Jh[D, h∗]J−1 = h[D, h∗] + [D, h]h∗ = [D, hh∗] = 0.

Hence the transformation of .Dω = D + ω + JωJ−1 is well defined. 
For an AC-manifold .M × F , by  (10.2.3) we have  .ω = γμ ⊗ Aμ + γM ⊗ φ and 

.D = −iγμ∇ S
μ ⊗ 1 + γM ⊗ DF , and, using .[∇ S

μ , u∗] = ∂μu∗, we thus obtain 

. Aμ → uAμu
∗ − iu∂μu

∗,
φ → uφu∗ + u[DF , u∗]. (10.2.9) 

The first equation is precisely the gauge transformation for a gauge field . Aμ ∈
C∞(M, ig(F)), as desired. However, the transformation property of the field . φ is a 
bit surprising. In the Standard Model, the Higgs field is in the defining representation 
of the gauge group. The transformation for . φ derived above, on the other hand, is in 
the adjoint representation. From the framework of noncommutative geometry this is 
no surprise, since both bosonic fields .Aμ and . φ are obtained from the inner fluctua-
tions of the Dirac operator, and are thereby expected to transform in a similar manner. 
Fortunately, for particular choices of the finite space . F , the adjoint transformation 
property of . φ reduces to that of the defining representation. The key example of this 
will be discussed in Chap. 13, where we present the derivation of the Standard Model 
from an almost-commutative manifold. 

10.3 The Heat Expansion of the Spectral Action 

In the remainder of this chapter we shall derive an explicit formula for the bosonic 
Lagrangian of an almost-commutative manifold .M × F from the spectral action of 
Definition 9.1. We start by calculating a generalized Lichnerowicz formula for the 
square of the fluctuated Dirac operator. Subsequently, we show how we can use this 
formula to obtain an asymptotic expansion of the spectral action in the form of (9.2.1). 
We explicitly calculate the coefficients in this heat kernel expansion, allowing for a 
derivation of the general form of the Lagrangian for an almost-commutative manifold. 

10.3.1 A Generalized Lichnerowicz Formula 

Suppose we have a vector bundle .E → M . We say that a second-order differential 
operator .H is a generalized Laplacian if it is of the form .H = �E − F , where . �E

is a Laplacian in the sense of Definition 4.16 and .F ∈ �(End(E)). 
Our first task is to show that the fluctuated Dirac operator .Dω on an almost-

commutative manifold squares to a generalized Laplacian, .D2
ω = �E − F , and then 

determine . F . Before we prove this, let us first have a closer look at some explicit
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formulas for the fluctuated Dirac operator. Recall from (10.2.6) that we can write 

. Dω = −iγμ∇E
μ + γM ⊗ �

for the connection .∇E
μ = ∇ S

μ ⊗ 1 + 1 ⊗ (∂μ + i Bμ) on .E = S ⊗ V , and the scalar 
field .� ∈ �(End(E)). Let us evaluate the relations between the connection, its cur-
vature and their adjoint actions. We define the operator .Dμ as the adjoint action of 
the connection .∇E

μ , i.e. .Dμ = ad
(∇E

μ

)
. In other words, we have 

.Dμ� = [∇E
μ ,�] = ∂μ� + i[Bμ,�]. (10.3.1) 

We define the curvature .Fμν of the gauge field .Bμ as usual by 

.Fμν := ∂μBν − ∂νBμ + i[Bμ, Bν]. (10.3.2) 

Recall the curvature of the connection.∇E from (4.2.3). Since in local coordinates 
we have .[∂μ, ∂ν] = 0, we find 

. �E
μν = ∇E

μ ∇E
ν − ∇E

ν ∇E
μ

= (∇ S
μ ⊗ 1 + i1 ⊗ Bμ)(∇ S

ν ⊗ 1 + i1 ⊗ Bν)

− (∇ S
ν ⊗ 1 + i1 ⊗ Bν)(∇ S

μ ⊗ 1 + i1 ⊗ Bμ)

= �S
μν ⊗ 1 + i1 ⊗ ∂μBν − i1 ⊗ ∂νBμ − 1 ⊗ [Bμ, Bν].

Inserting (10.3.2), we obtain the formula 

.�E
μν = [∇E

μ ,∇E
ν

] = �S
μν ⊗ 1 + i1 ⊗ Fμν . (10.3.3) 

Next, let us have a look at the commutator .
[
Dμ, Dν

]
. Using the definition of . Dμ

and the Jacobi identity, we obtain 

. [Dμ, Dν]� = ad
(∇E

μ

)
ad

(∇E
ν

)
� − ad

(∇E
ν

)
ad

(∇E
μ

)
�

= [∇E
μ , [∇E

ν ,�]] − [∇E
ν , [∇E

μ ,�]]

= [[∇E
μ ,∇E

ν ],�]] = [
�E

μν,�
] = ad

(
�E

μν

)
�.

Since .�S
μν commutes with . �, we obtain the relation 

. 
[
Dμ, Dν

] = i ad
(
Fμν

)
.

Note that this relation simply reflects the fact that .ad : g → End(g) is a Lie algebra 
homomorphism.
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In local coordinates, the Laplacian is given by 

. �E = −gμν
(∇E

μ ∇E
ν − �ρ

μν∇E
ρ

)
.

We can then calculate the explicit formula 

. �E = −gμν
(∇E

μ ∇E
ν − �ρ

μν∇E
ρ

)

= �S ⊗ 1 − gμν
(
i(∇ S

μ ⊗ 1)(1 ⊗ Bν) + i(1 ⊗ Bμ)(∇ S
ν ⊗ 1)

− 1 ⊗ BμBν − i�ρ
μν ⊗ Bρ

)

= �S ⊗ 1 − 2i(1 ⊗ Bμ)(∇ S
μ ⊗ 1) − igμν(1 ⊗ ∂μBν)

+ 1 ⊗ BμB
μ + igμν�ρ

μν ⊗ Bρ. (10.3.4) 

We are now ready to prove that the fluctuated Dirac operator .Dω of an almost-
commutative manifold satisfies the following generalized Lichnerowicz formula or 
Weitzenböck formula. First, for the canonical Dirac operator .DM on a compact Rie-
mannian spin manifold . M , recall the Lichnerowicz formula of Theorem 4.21: 

.D2
M = �S + 1

4
s, (10.3.5) 

where .�S is the Laplacian of the spin connection .∇ S , and . s is the scalar curvature 
of . M . 

Proposition 10.6 The square of the fluctuated Dirac operator on an 
almost-commutative manifold is a generalized Laplacian of the form 

. Dω
2 = �E − F,

where the endomorphism .F is given by 

.F = −1

4
s ⊗ 1 − 1 ⊗ �2 + 1

2
iγμγν ⊗ Fμν − iγMγμ ⊗ Dμ�, (10.3.6) 

in which .Dμ and .Fμν are defined in (10.3.1) and (10.3.2), respectively. 

Proof Rewriting the formula for .Dω , we have  

.Dω
2 = (

DM ⊗ 1 + γμ ⊗ Bμ + γM ⊗ �
)2

= D2
M ⊗ 1 + γμγν ⊗ BμBν + 1 ⊗ �2 + (DMγμ ⊗ 1)(1 ⊗ Bμ)

+ (1 ⊗ Bμ)(γ
μDM ⊗ 1) + (DM ⊗ 1)(γM ⊗ �) + (γM ⊗ �)(DM ⊗ 1)

+ (γμ ⊗ Bμ)(γM ⊗ �) + (γM ⊗ �)(γμ ⊗ Bμ).
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For the first term we use the Lichnerowicz formula of (10.3.5). We rewrite the second 
term into 

. γμγν ⊗ BμBν = 1

2
γμγν ⊗ (

BμBν + BνBμ + [Bμ, Bν]
)

= 1 ⊗ BμB
μ + 1

2
γμγν ⊗ [Bμ, Bν],

where we have used the Clifford relation (4.2.2) to obtain the second equality. For 
the fourth and fifth terms we use the local formula .DM = −iγν∇ S

ν to obtain 

. (DMγμ ⊗ 1)(1 ⊗ Bμ) + (1 ⊗ Bμ)(γ
μDM ⊗ 1)

= −(iγν∇ S
ν γμ ⊗ 1)(1 ⊗ Bμ) − (1 ⊗ Bμ)(γ

μiγν∇ S
ν ⊗ 1).

Using the identity .[∇ S
ν , c(α)] = c(∇να) for the spin connection, we find . [∇ S

ν ⊗
1, (γμ ⊗ 1)(1 ⊗ Bμ)] = c

(∇ν(dxμ ⊗ Bμ)
)
. We thus obtain 

. (DMγμ ⊗ 1)(1 ⊗ Bμ) + (1 ⊗ Bμ)(γ
μDM ⊗ 1)

= −i(γν ⊗ 1)c
(∇ν(dx

μ ⊗ Bμ)
)

− i(γνγμ ⊗ 1)(1 ⊗ Bμ)(∇ S
ν ⊗ 1) − i(1 ⊗ Bμ)(γ

μγν∇ S
ν ⊗ 1)

= −i(γν ⊗ 1)c
(
dxμ ⊗ (∂νBμ) − �ρ

μνdx
μ ⊗ Bρ

) − 2i(1 ⊗ Bν)(∇ S
ν ⊗ 1)

= −i(γνγμ ⊗ 1)
(
1 ⊗ ∂νBμ − �ρ

μν ⊗ Bρ

)
− 2i(1 ⊗ Bν)(∇ S

ν ⊗ 1)

= −i(γνγμ ⊗ 1)(1 ⊗ ∂νBμ) + igμν�ρ
μν ⊗ Bρ − 2i(1 ⊗ Bν)(∇ S

ν ⊗ 1).

The sixth and seventh terms are rewritten into 

. (DM ⊗ 1)(γM ⊗ �) + (γM ⊗ �)(DM ⊗ 1) = −(γM ⊗ 1)
[
DM ⊗ 1, 1 ⊗ �

]

= (γM ⊗ 1)(iγμ ⊗ ∂μ�) = iγMγμ ⊗ ∂μ�.

The eighth and ninth terms are rewritten as 

. (γμ ⊗ Bμ)(γM ⊗ �) + (γM ⊗ �)(γμ ⊗ Bμ) = −γMγμ ⊗ [Bμ,�].

Summing all these terms then yields the formula 

.Dω
2 =

(
�S + 1

4
s

)
⊗ 1 + (1 ⊗ BμB

μ) + 1

2
γμγν ⊗ [Bμ, Bν]

+ 1 ⊗ �2 − i(γνγμ ⊗ 1)(1 ⊗ ∂νBμ) + igμν�ρ
μν ⊗ Bρ

− 2i(1 ⊗ Bν)(∇ S
ν ⊗ 1) + iγMγμ ⊗ ∂μ� − γMγμ ⊗ [Bμ,�].
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Inserting the formula for .�E from (10.3.4), we obtain 

. Dω
2 = �E + 1

4
s ⊗ 1 + 1

2
γμγν ⊗ [Bμ, Bν]

+ 1 ⊗ �2 − i(γνγμ ⊗ 1)(1 ⊗ ∂νBμ) + igμν(1 ⊗ ∂μBν)

+ iγMγμ ⊗ ∂μ� − γMγμ ⊗ [Bμ,�].

Using (10.3.2), we rewrite 

. − i(γνγμ ⊗ 1)(1 ⊗ ∂νBμ) + igμν(1 ⊗ ∂μBν)

= −i(γνγμ ⊗ 1)(1 ⊗ ∂νBμ) + 1

2
i(γμγν + γνγμ) ⊗ (∂μBν)

= −1

2
iγμγν ⊗ (∂μBν) + 1

2
iγνγμ ⊗ (∂μBν)

= −1

2
iγμγν ⊗ Fμν − 1

2
γμγν ⊗ [Bμ, Bν].

Using (10.3.1), we finally obtain 

. Dω
2 = �E + 1

4
s ⊗ 1 + 1 ⊗ �2 − 1

2
iγμγν ⊗ Fμν + iγMγμ ⊗ Dμ�,

from which we can read off formula (10.3.6) for . F . . �

10.3.2 The Heat Expansion 

Below, we present two important theorems (without proof) which we will need to 
calculate the spectral action of almost-commutative manifolds. The first of these 
theorems states that there exists a heat expansion for a generalized Laplacian. The 
second theorem gives explicit formulas for the first three non-zero coefficients of 
this expansion. Next, we will show how these theorems can be applied to obtain a 
perturbative expansion of the spectral action for an almost-commutative manifold, 
just as in Proposition 9.7. 

Theorem 10.7 For a generalized Laplacian .H = �E − F on .E we have the fol-
lowing asymptotic expansion as .t → 0, known as the heat expansion: 

. Tr
(
e−t H

) ∼
∑

k≥0

t
k−n
2 ak(H), (10.3.7) 

where . n is the dimension of the manifold, the trace is taken over the Hilbert space 
.L2(E) and the coefficients of the expansion are given by
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.ak(H) :=
∫

M
ak(x, H)

√
gd4x, (10.3.8) 

where .
√
gd4x denotes the Riemannian volume form. The coefficients .ak(x, H) are 

called the Seeley-DeWitt coefficients. 

Proof See Note 6 of this chapter below. . �

Theorem 10.8 For a generalized Laplacian .H = �E − F (as in Theorem 10.7), 
the Seeley-DeWitt coefficients are given by 

. a0(x, H) = (4π)−
n
2 Tr(id),

a2(x, H) = (4π)−
n
2 Tr

( s
6

+ F
)

,

a4(x, H) = (4π)−
n
2

1

360
Tr

( − 12�s + 5s2 − 2RμνR
μν + 2RμνρσR

μνρσ

+ 60sF + 180F2 − 60�F + 30�E
μν(�

E )μν
)
,

where this time the traces are taken over the fibre .Ex . Here . s is the scalar curvature 
of the Levi-Civita connection . ∇, .� is the scalar Laplacian, and .�E is the curvature 
of the connection .∇E corresponding to .�E . All .ak(x, H) with odd . k vanish. 

Proof See Note 6 of this chapter below. . �

We saw in Proposition 10.6 that the square of the fluctuated Dirac operator of an 
almost-commutative manifold is a generalized Laplacian. Applying Theorem 10.7 
to .Dω

2 in dimension .n = 4 then yields the heat expansion: 

. Tr
(
e−t Dω

2
)

∼
∑

k≥0

t
k−4
2 ak(Dω

2), (10.3.9) 

where the Seeley-DeWitt coefficients are given by Theorem 10.8. In the following 
proposition, we use this heat expansion for.Dω

2 to obtain an expansion of the spectral 
action. 

Proposition 10.9 For an almost-commutative manifold .M × F with .M of dimen-
sion 4, the spectral action given by (9.1.1) can be expanded asymptotically (as 
.� → ∞) as  

. Tr

(
f
(Dω

�

))
∼ a4(Dω

2) f (0) + 2
∑

0≤k<4
k even

f4−k�
4−kak(Dω

2)
1

�
(
4−k
2

) + O(�−1),

where . f j = ∫ ∞
0 f (v)v j−1dv are the moments of the function . f , . j > 0.
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Proof Our proof is based on Proposition 9.7. Let  . g be the function .g(u2) = f (u), 
so that its Laplace–Stieltjes transform 

. g(v) =
∫ ∞

0
e−svdμ(s).

We can then formally write 

. g(t Dω
2) =

∫ ∞

0
e−st Dω

2
dμ(s).

We now take the trace and use the heat expansion of .Dω
2 to obtain 

. Tr
(
g(t Dω

2)
) =

∫ ∞

0
Tr

(
e−st Dω

2)
dμ(s) ∼

∫ ∞

0

∑

k≥0

(st)
k−4
2 ak(Dω

2)dμ(s)

=
∑

k≥0

t
k−4
2 ak(Dω

2)

∫ ∞

0
s

k−4
2 dμ(s). (10.3.10) 

The parameter. t is considered to be a formal expansion parameter. From here on, we 
will drop the terms with .k > 4. The term with .k = 4 equals 

. a4(Dω
2)

∫ ∞

0
s0dμ(s) = a4(Dω

2)g(0).

We can rewrite the terms with .k < 4 using the definition of the .�-function as the 
analytic continuation of 

.�(z) =
∫ ∞

0
r z−1e−r dr, (10.3.11) 

for .z ∈ C with .�(z) > 0, and by inserting .r = sv, we see that (for .k < 4) we have  

. �
(4 − k

2

)
=

∫ ∞

0
(sv)

4−k
2 −1e−svd(sv) = s

4−k
2

∫ ∞

0
v

4−k
2 −1e−svdv.

From this, we obtain an expression for .s
k−4
2 , which we insert into Eq. (10.3.10), and 

then we perform the integration over . s to obtain 

. Tr
(
g(t Dω

2)
) ∼ a4(Dω

2) f (0)

+
∑

0≤k<4

t
k−4
2 ak(Dω

2)
1

�
(
4−k
2

)
∫ ∞

0
v

4−k
2 −1g(v)dv + O(�−1).

Now we choose the function . g such that .g(u2) = f (u). We rewrite the integration 
over . v by substituting .v = u2 and obtain



10.4 The Spectral Action on AC Manifolds 193

. 

∫ ∞

0
v

4−k
2 −1g(v)dv =

∫ ∞

0
u4−k−2g(u2)d(u2) = 2

∫ ∞

0
u4−k−1 f (u)du,

which by definition equals .2 f4−k . Upon writing .t = �−2, we have modulo .�−1, 

. Tr

(
f
(Dω

�

))
= Tr

(
g(�−2Dω

2)
)

∼ a4(Dω
2) f (0) + 2

∑

0≤k<4

f4−k�
4−kak(Dω

2)
1

�
(
4−k
2

) + O(�−1).

Using .ak(Dω
2) = 0 for odd . k, the claim follows. . �

10.4 The Spectral Action on AC Manifolds 

In the previous section we obtained a perturbative expansion of the spectral action for 
an almost-commutative manifold. We now explicitly calculate the coefficients in this 
expansion, first for the canonical triple (yielding the (Euclidean) Einstein–Hilbert 
action of General Relativity) for a four-dimensional Riemannian spin manifold . M
and then for a general almost-commutative manifold .M × F . 

By Proposition 10.9 we have an asymptotic expansion as .� → ∞: 

. Tr

(
f
(Dω

�

))
∼ 2 f4�

4a0(Dω
2) + 2 f2�

2a2(Dω
2) + f (0)a4(Dω

2) + O(�−1).

(10.4.1) 

Proposition 10.10 For the canonical triple .(C∞(M), L2(S), DM), the spectral 
action is given by: 

. Tr

(
f
(DM

�

))
∼

∫

M
LM(gμν)

√
gd4x + O(�−1), (10.4.2) 

where the Lagrangian is defined by 

. LM(gμν) := f4�4

2π2
− f2�2

24π2
s + f (0)

16π2

( 1

30
�s − 1

20
CμνρσC

μνρσ + 11

360
R∗R∗

)
.

Here the Weyl tensor .Cμνρσ is given by the traceless part of the Riemann curvature 
tensor, so that 

.CμνρσC
μνρσ = RμνρσR

μνρσ − 2RνσR
νσ + 1

3
s2, (10.4.3)
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and .R∗ is related to the Pontryagin class: 

.R∗R∗ = s2 − 4RμνR
μν + RμνρσR

μνρσ. (10.4.4) 

Proof We have .n = 4, and .Tr(id) = dim Sx = 4 where .Sx is the fiber of . S at some 
.x ∈ M . Inserting this into Theorem 10.8 gives 

. a0(D
2
M) = 1

4π2

∫

M

√
gd4x .

From the Lichnerowicz formula (10.3.5) we see that .F = − 1
4 s id, so  

. a2(D
2
M) = − 1

48π2

∫

M
s
√
gd4x .

Moreover, 

. 5s2id + 60sF + 180F2 = 5

4
s2id.

Inserting this into .a4(D2
M) gives 

. a4(D
2
M) = 1

16π2

1

360

∫

M
Tr

(
3�s id + 5

4
s2id − 2RμνR

μν id

+2RμνρσR
μνρσid + 30�S

μν�
Sμν)√

gd4x .

The curvature.�S of the spin connection is defined as in (4.2.3), and its components 
are.�S

μν = �S(∂μ, ∂ν). The spin curvature.�S is related to the Riemannian curvature 
tensor by (see Note 8 of this chapter below), 

.�S
μν = 1

4
Rμνρσγργσ. (10.4.5) 

We use this as well as the trace identity 

. Tr(γμγνγργσ) = 4(gμνgρσ − gμρgνσ + gμσgνρ)

to calculate the last term of .a4(D2
M): 

. Tr(�S
μν�

Sμν
) = 1

16
RμνρσR

μν
λκ Tr(γργσγλγκ)

= 1

4
RμνρσR

μν
λκ (gρσgλκ − gρλgσκ + gρκgσλ) = −1

2
RμνρσR

μνρσ,

(10.4.6)
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where the first term in the second line vanishes because of the antisymmetry of. Rμνρσ

in . ρ and . σ, and the other two terms contribute equally. We thus obtain 

. a4(D
2
M) = 1

16π2

1

360

∫

M

(
12�s + 5s2 − 8RμνR

μν − 7RμνρσR
μνρσ

)√
gd4x .

(10.4.7) 

We rewrite this into a more convenient form, using (10.4.3) and (10.4.4), which 
together yield: 

. − 1

20
CμνρσC

μνρσ + 11

360
R∗R∗

= − 1

20
RμνρσR

μνρσ + 1

10
RνσR

νσ − 1

60
s2

+ 11

360
RμνρσR

μνρσ − 44

360
RνσR

νσ + 11

360
s2

= 1

360

( − 7RμνρσR
μνρσ − 8RνσR

νσ + 5s2
)
.

Therefore, we may rewrite (10.4.7) so as to obtain 

. a4(D
2
M) = 1

16π2

∫

M

( 1

30
�s − 1

20
CμνρσC

μνρσ + 11

360
R∗R∗

)√
gd4x .

Inserting the obtained formulas for.a0(D2
M),.a2(D2

M) and.a4(D2
M) into (10.4.1) proves 

the proposition. 

Remark 10.11 In general, an expression of the form 

. as2 + bRνσR
νσ + cRμνρσR

μνρσ,

for certain constants .a, b, c ∈ R, can always be rewritten in the form 
.αs2 + βCμνρσCμνρσ + γR∗R∗, for new constants.α,β, γ ∈ R. One should note here 
that the term .s2 is not present in the spectral action of the canonical triple as calcu-
lated in Proposition 10.10. The only higher-order gravitational term that arises is the 
conformal gravity term.CμνρσCμνρσ . 

Note that alternatively, using only (10.4.4), we could also have written 

. a4(D
2
M) = 1

16π2

1

30

∫

M

(
�s + s2 − 3RμνR

μν − 7

12
R∗R∗)√gd4x .

The integral over .�s only yields a boundary term, so if the manifold .M is compact 
without boundary, we can discard the term with.�s. Furthermore, for a.4-dimensional 
compact orientable manifold .M without boundary, we have the formula
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. 

∫

M
R∗R∗√gdx = 8π2χ(M),

where .χ(M) is Euler characteristic. Hence the term with .R∗R∗ only yields a topo-
logical contribution to the action, which we will also disregard. From here on, we 
will therefore consider the Lagrangian 

.LM(gμν) = f4�4

2π2
− f2�2

24π2
s − f (0)

320π2
CμνρσC

μνρσ, (10.4.8) 

or, which is the same, 

.LM(gμν) = f4�4

2π2
− f2�2

24π2
s + f (0)

480π2

(
s2 − 3RμνR

μν
)
. (10.4.9) 

Proposition 10.12 The spectral action of the fluctuated Dirac operator of an almost-
commutative manifold with .dim M = 4 is given by 

. Tr

(
f
(Dω

�

))
∼

∫

M
L(gμν, Bμ,�)

√
gd4x + O(�−1),

where 

. L(gμν, Bμ,�) := NLM(gμν) + LB(Bμ) + Lφ(gμν, Bμ,�).

Here .LM(gμν) is defined in Proposition 10.10, .N is the dimension of the finite-
dimensional Hilbert space .HF, and .LB gives the kinetic term of the gauge field 
as 

. LB(Bμ) := f (0)

24π2
Tr(FμνF

μν),

and .Lφ gives a scalar-field Lagrangian including its interactions plus a boundary 
term as 

.Lφ(gμν , Bμ, �) := −2 f2�2

4π2
Tr(�2) + f (0)

8π2
Tr(�4) + f (0)

24π2
�

(
Tr(�2)

)
(10.4.10) 

+ 
f (0) 
48π2 

s Tr(�2) + 
f (0) 
8π2 

Tr
(
(Dμ�)(Dμ�)

)
. 

Proof The proof is very similar to Proposition 10.10, but we now use the formula 
for .Dω

2 given by Proposition 10.6. The trace over the Hilbert space .HF yields an 
overall factor .N := Tr(1HF ), so we have  

.a0(Dω
2) = Na0(D

2
M).
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The square of the Dirac operator now contains three extra terms. The trace of . γMγμ

vanishes, which follows from cyclicity of the trace and the fact that.γMγμ = −γμγM . 
Since .Tr(γμγν) = 4gμν and .Fμν is anti-symmetric, the trace of .γμγνFμν also van-
ishes. Thus we find that 

. a2(Dω
2) = Na2(D

2
M) − 1

4π2

∫

M
Tr(�2)

√
gd4x .

Furthermore we obtain several new terms from the formula for .a4(Dω
2). First, we 

calculate 

. 
1

360
Tr(60sF) = −1

6
s
(
Ns + 4 Tr(�2)

)
.

The next contribution arises from the trace over .F2, which equals 

. F2 = 1

16
s2 ⊗ 1 + 1 ⊗ �4 − 1

4
γμγνγργσ ⊗ FμνFρσ

+γμγν ⊗ (Dμ�)(Dν�) + 1

2
s ⊗ �2 + traceless terms.

Taking the trace then yields 

. 
1

360
Tr(180F2) = N

8
s2 + 2 Tr(�4) + Tr(FμνF

μν)

+ 2 Tr
(
(Dμ�)(Dμ�)

) + s Tr(�2).

Another contribution arises from .−�F . Again, we can simply ignore the traceless 
terms and obtain 

. 
1

360
Tr(−60�F) = 1

6
�

(
Ns + 4 Tr(�2)

)
.

The final contribution comes from the term .�E
μν�

Eμν
, where the curvature .�E is 

given by (10.3.3); we obtain 

. �E
μν�

Eμν = �S
μν�

Sμν ⊗ 1 − 1 ⊗ FμνF
μν + 2i�S

μν ⊗ Fμν .

Using (10.4.5), by the anti-symmetry of .Rρσμν we find 

. Tr(�S
μν) = 1

4
Rρσμν Tr(γ

ργσ) = 1

4
Rρσμνg

ρσ = 0,

so the trace over the cross-terms in.�E
μν�

Eμν
vanishes. From (10.4.6) we then obtain
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. 
1

360
Tr(30�E

μν�
Eμν

) = 1

12

(
−N

2
RμνρσR

μνρσ − 4 Tr(FμνF
μν)

)
.

Gathering all terms, we obtain 

. a4(x, Dω
2) = 1

(4π)2

1

360

(
− 48N�s + 20Ns2 − 8N RμνR

μν

+ 8N RμνρσR
μνρσ − 60s

(
Ns + 4 Tr(�2)

)

+ 360

(
N

8
s2 + 2 Tr(�4) + Tr(FμνF

μν)

+ 2 Tr
(
(Dμ�)(Dμ�)

) + s Tr(�2)

)

+ 60�
(
Ns + 4 Tr(�2)

)

− 30

(
N

2
RμνρσR

μνρσ + 4 Tr(FμνF
μν)

))

= 1

(4π)2

1

360

(
12N�s + 5Ns2 − 8N RμνR

μν

− 7N RμνρσR
μνρσ + 120s Tr(�2)

+ 360

(
2 Tr(�4) + 2 Tr

(
(Dμ�)(Dμ�)

))

+ 240�
(
Tr(�2)

) + 240 Tr(FμνF
μν)

)
.

Comparing the first line of the second equality to (10.4.7), we see that 

. a4(x, Dω
2) =Na4(x, D

2
M) + 1

4π2

(
1

12
s Tr(�2) + 1

2
Tr(�4)

+ 1

2
Tr

(
(Dμ�)(Dμ�)

) + 1

6
�

(
Tr(�2)

) + 1

6
Tr(FμνF

μν)

)
.

Inserting these Seeley-DeWitt coefficients into (10.4.1) proves the proposition. . �
Note that the above Lagrangian is indeed gauge invariant. This is of course a 

consequence of the manifest gauge invariance of the spectral action, which follows 
from the invariance of the spectrum under unitary transformations. 

Example 10.13 Let us return to the Yang–Mills manifold .M × FYM of Examples 
10.4 and 10.5. We have already seen that the inner fluctuations are parametrized by a 
.PU (N ) gauge field .Aμ, which acts in the adjoint representation .Bμ = ad Aμ on the 
fermions. There is no scalar field. φ and.� = DF = 0. We can insert these fields into 
the result of Proposition 10.12. The dimension of the Hilbert space.HF = MN (C) is 
.N 2. We then find that the Lagrangian of the Yang–Mills manifold is given by
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. L(gμν, Bμ) := N 2LM(gμν) + f (0)

24π2
LYM(Bμ).

Here .LYM is the Yang–Mills Lagrangian given by 

. LYM(Bμ) := Tr(FμνF
μν),

where .Fμν denotes the curvature of .Bμ. 

Notes 

Section 10.1. Gauge Symmetries of AC Manifolds 

1. Kaluza–Klein theories date back to [ 1, 2]. 
2. The name almost-commutative manifolds was coined in [ 3], suggesting that the noncommuta-

tivity is mild since it is simply given by the matrix product in .AF , pointwise on . M . Almost-
commutative manifolds essentially already appeared in [ 4], and somewhat later in the work of 
Connes and Lott [ 5]. Around the same time, a similar structure appeared in a series of papers 
by Dubois-Violette, Kerner and Madore [ 6– 9], who studied the noncommutative differential 
geometry for the algebra of functions tensored with a matrix algebra, and its relevance to the 
description of gauge and scalar Higgs fields. Almost-commutative manifolds were later used 
by Chamseddine and Connes [ 10, 11], and by Chamseddine, Connes and Marcolli in [ 12] to  
geometrically describe Yang–Mills theories and the Standard Model of elementary particles, as 
we will see in the next chapters. We here base our treatment on [ 13]. 

3. We can regard.C∞(M, AF ) as the space of smooth sections of a globally trivial.∗-algebra bundle 
.M × AF . The natural question whether the above definition can be extended to the topologically 
non-trivial case is addressed in [ 14– 16]. The special case of topologically non-trivial Yang–Mills 
theories is treated in [ 17] and in the next Chapter. 

4. In the proof of Proposition 10.2 we have exploited a lift of group bundles, which exists if the 
manifold is simply connected. We refer to [ 16] for a careful discussion on this point. 

Section 10.3. The Heat Expansion of the Spectral Action 

5. For more details on generalized Laplacians we refer to [ 18, Sect. 2.1].  
6. Theorem 10.7 is proved by Gilkey in [ 19, Sect. 1.7]. Theorem 10.8 can be found as [ 19, Theorem 

4.8.16]. For a more physicist-friendly approach, we refer to [ 20]. Note that the conventions used 
by Gilkey for the Riemannian curvature. R are such that.gμρgνσRμνρσ is negative for a sphere, 
in contrast to our own conventions. Therefore we have replaced.s = −R. 

Section 10.4. The Spectral Action on AC Manifolds 

7. The bosonic Lagrangian derived from the spectral action for AC manifolds was interpreted in 
[ 10] à la Wilson [ 21] as the bare Lagrangian at the cutoff scale . �. A perturbative expansion 
of the full spectral action was obtained in [ 22– 24], leading to unexpected and an intriguing 
behaviour for the propagation of particles at energies larger than the cutoff. �. Alternatively, the 
interpretation of.� as a regularization parameter has been worked out in [ 25– 28], including the 
derivation of renormalizability conditions on the Krajewski diagrams. 

8. The relation (10.4.5) is derived in [ 29, p. 395]. 
9. The derivation of Yang–Mills gauge theory from a noncommutative spin manifold as in Example 

10.13 is due to Chamseddine and Connes in [ 10, 11].
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Chapter 11 
The Noncommutative Geometry 
of Electrodynamics 

In the previous chapters we have described the general framework for the descrip-
tion of gauge theories in terms of noncommutative manifolds. The present chapter 
serves two purposes. First, we describe abelian gauge theories within the framework 
of noncommutative geometry, which at first sight appears to be a contradictio in ter-
minis. Second, in Sect. 11.2 we show how this example can be modified to provide 
a description of one of the simplest examples of a field theory in physics, namely 
electrodynamics. Because of its simplicity, it helps in gaining an understanding of 
the formulation of gauge theories in terms of almost-commutative manifolds, and as 
such it provides a first stepping stone towards the derivation of the Standard Model 
from noncommutative geometry in Chap. 13. 

11.1 The Two-Point Space 

In this section we discuss one of the simplest finite noncommutative spaces, namely 
the two-point space .X = {x, y}. Recall from Chaps. 2 and 3 that such a space can 
be described by an even finite real spectral triple: 

.FX := (
C(X) = C

2, HF , DF ; JF , γF
)
. (11.1.1) 

As we require the action of .C(X) on the finite-dimensional Hilbert space .HF to 
be faithful, .HF must at least be .2-dimensional. For now we restrict ourselves to 
the simplest case, taking .HF = C

2. We use the .Z2-grading .γF to decompose . HF =
H+

F ⊕ H−
F = C ⊕ C into the two eigenspaces .H±

F = {ψ ∈ HF | γFψ = ±ψ}. The  
action of .C(X) on .HF respects this decomposition, whereas .DF interchanges the 
two subspaces .H±

F , say

© The Author(s) 2025 
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. DF =
(
0 t
t̄ 0

)
,

for some.t ∈ C. 

Proposition 11.1 The finite space .FX of (11.1.1) can only have a real structure . JF
if .DF = 0. In that case, its KO-dimension is 0,2 or 6. 

Proof The diagonal representation of the algebra.C ⊕ C on.C ⊕ C gives rise to one 
of the following two Krajewski diagrams (cf. Example 3.13): 

1 1  
1◦ 

1◦ 

1 1  
1◦ 

1◦ 

As a Dirac operator .DF that fulfills the first-order condition 3.1.1 (for arbitrary 
.JF ) should connect nodes either vertically or horizontally, we find that .DF = 0. 

The diagram on the left corresponds to KO-dimension 2 and 6, while the diagram 
on the right corresponds to KO-dimension 0 and 4. KO-dimension 4 is ruled out 
because of Lemma 3.8, combined with the fact that .dim H±

F = 1, which does not 
allow for a .JF with .J 2

F = −1. �

11.1.1 The Product Space 

Let .M be a compact .4-dimensional Riemannian spin manifold. We now consider 
the almost-commutative manifold .M × FX given by the product of .M with the even 
finite space .FX corresponding to the two-point space (11.1.1). Thus we consider the 
almost-commutative manifold given by the data 

. M × FX :=
(
C∞(M,C2), L2(S) ⊗ C

2, DM ⊗ 1; JM ⊗ JF , γM ⊗ γF

)
,

where we still need to make a choice for.JF . The algebra of this almost-commutative 
manifold is given by .C∞(M,C2) � C∞(M) ⊕ C∞(M). By Gelfand duality 
(Theorem 5.7) this algebra corresponds to the space 

. N := M × X � M � M,

which consists of the disjoint union of two copies of the space . M , so we can write 
.C∞(N ) = C∞(M) ⊕ C∞(M). We can also decompose the total Hilbert space as 
.H = L2(S) ⊕ L2(S). For  .a, b ∈ C∞(M) and .ψ, φ ∈ L2(S), an element . (a, b) ∈
C∞(N ) then simply acts on .(ψ, φ) ∈ H as .(a, b)(ψ, φ) = (aψ, bφ). 

Remark 11.2 Let us consider Connes’ distance formula (cf. Note 5 of this chapter 
below) on.M × FX . First, as in (2.2.2), on the structure space.X of.AF we may write 
a metric by:
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. dDF (x, y) = sup {|a(x) − a(y)| : a ∈ AF , ‖[DF , a]‖ ≤ 1} .

Note that now we only have two distinct points . x and . y in the space . X , and we are 
going calculate the distance between these points. An element .a ∈ C

2 = C(X) is 
specified by two complex numbers .a(x) and .a(y), so a small computation of the 
commutator with .DF gives 

. [DF , a] = (
a(y) − a(x)

) (
0 t
−t̄ 0

)
.

The norm of this commutator is given by.|a(y) − a(x)| |t |, so.‖[DF , a]‖ ≤ 1 implies 
.|a(y) − a(x)| ≤ 1

|t | . We therefore obtain that the distance between the two points . x
and . y is given by 

. dDF (x, y) = 1

|t | .

If there is a real structure .JF , we have .t = 0 by Proposition 11.1, so in that case the 
distance between the two points becomes infinite. 

Let. p be a point in. M , and write.(p, x) and.(p, y) for the two corresponding points 
in.N = M × X . A function.a ∈ C∞(N ) is then determined by two functions. ax , ay ∈
C∞(M), given by.ax (p) := a(p, x) and.ay(p) := a(p, y). Now the distance function 
on .N is given by 

. dDM⊗1(n1, n2) = sup {|a(n1) − a(n2)| : a ∈ A, ‖[DM ⊗ 1, a]‖ ≤ 1} .

If .n1 and.n2 are points in the same copy of . M , for instance, if .n1 = (p, x) and. n2 =
(q, x) for points .p, q ∈ M , then their distance is determined by .|ax (p) − ax (q)|, 
for functions .ax ∈ C∞(M) for which .‖[DM , ax ]‖ ≤ 1. Therefore, in this case we 
recover the geodesic distance on . M , i.e. 

. dDM⊗1(n1, n2) = dg(p, q).

However, if.n1 and.n2 lie in different copies of. M , for instance if,.n1 = (p, x) and 
.n2 = (q, y), then their distance is determined by .|ax (p) − ay(q)| for two functions 
.ax , ay ∈ C∞(M), such that .‖[DM , ax ]‖ ≤ 1 and .‖[DM , ay]‖ ≤ 1. However, these 
requirements yield no restriction on .|ax (p) − ay(q)|, so in this case the distance 
between.n1 and.n2 is infinite. We find that the space.N is given by two disjoint copies 
of .M that are separated by an infinite distance. 

It should be noted that the only way in which the distance between the two copies 
of .M could have been finite, is when the commutator .[DF , a] would be nonzero. 
This same commutator generates the scalar field . φ of (10.2.2), hence finiteness of 
the distance is related to the existence of scalar fields.
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11.1.2 .U(1) Gauge Theory 

We determine the gauge theory that corresponds to the almost-commutative manifold 
.M × FX . The gauge group .G(A,H; J ) from Definition 7.4 is given by the quotient 
.U(A)/U(AJ ), so if we wish to obtain a nontrivial gauge group, we need to choose 
.J such that .U(AJ ) �= U(A). Or, which in view of Example 8.2 is the same, we 
need to choose .JF so that .U((AF )JF ) �= U(AF ). Looking at the form of .JF for the 
different (even) KO-dimensions (see the proof of Proposition 11.1), we conclude that 
we need KO-dimension . 2 or . 6. As we will see in the noncommutative description 
of the Standard Model in Chap. 13, the correct signature for the internal space is 
KO-dimension 6. Therefore, we choose to work in KO-dimension 6 as well. The 
almost-commutative manifold .M × FX then has KO-dimension .6 + 4 mod 8 = 2. 
This also means that we can use Definition 9.3 to calculate the fermionic action. 

Summarizing, we will consider the finite space .FX given by the data 

. FX :=
(
C

2,C2, DF =
(
0 0
0 0

)
; JF =

(
0 C
C 0

)
, γF =

(
1 0
0 −1

))
,

with .C denoting complex conjugation, defining a real even finite space of KO-
dimension . 6. In the classification of irreducible geometries of Theorem 3.20, this  
space corresponds to the first case. 

Proposition 11.3 The gauge group .G(F) of the two-point space is given by .U (1). 

Proof First, note that .U(AF ) = U (1) ×U (1). We now show that . U((AF )JF ) ≡
U(AF ) ∩ (AF )JF � U (1) so that the quotient .G(F) � U (1) as claimed. Indeed, for 
.a ∈ C

2 to be in .(AF )JF it has to satisfy .JFa∗ JF = a. Since 

. JFa
∗ J−1

F =
(
0 C
C 0

) (
ā1 0
0 ā2

) (
0 C
C 0

)
=

(
a2 0
0 a1

)
,

this is the case if and only if .a1 = a2. Thus, .(AF )JF � C, whose unitary elements 
form the group .U (1), contained in .U(AF ) as the diagonal subgroup. �

In Proposition 10.12 we calculated the spectral action of an almost-commutative 
manifold. Before we can apply this to the two-point space, we need to find the exact 
form of the field.Bμ. Since we have.(AF )JF � C, we find.h(F) = u

(
(AF )JF

) � iR. 
From Proposition 10.3 and (10.2.7) we then see that the gauge field 

. Aμ(x) ∈ igF = i
(
u(AF )/(iR)

) = i su(AF ) � R

becomes traceless. 
Let us also explicitly derive this .U (1) gauge field. An arbitrary hermitian field 

of the form .Aμ = −ia∂μb would be given by two .U (1) gauge fields . X1
μ, X2

μ ∈
C∞(M,R). However, because.Aμ only appears in the combination.Aμ − JF Aμ J

−1
F , 

we obtain
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. Bμ = Aμ − JF Aμ J
−1
F =

(
X1

μ 0
0 X2

μ

)
−

(
X2

μ 0
0 X1

μ

)
=:

(
Yμ 0
0 −Yμ

)
= Yμ ⊗ γF ,

where we have defined the .U (1) gauge field 

. Yμ := X1
μ − X2

μ ∈ C∞(M,R) = C∞(M, i u(1)).

Thus, the fact that we only have the combination.Aμ − JF Aμ J
−1
F effectively identi-

fies the .U (1) gauge fields on the two copies of . M , so that .Aμ is determined by only 
one .U (1) gauge field. This ensures that we can take the quotient of the Lie algebra 
.u(AF ) with .h(F). We can then write 

. Aμ = 1

2

(
Yμ 0
0 −Yμ

)
= 1

2
Yμ ⊗ γF ,

which yields the same result: 

.Bμ = Aμ − JF Aμ J
−1
F = 2Aμ = Yμ ⊗ γF . (11.1.2) 

We summarize: 

Proposition 11.4 The inner fluctuations of the almost-commutative manifold . M ×
FX described above are parametrized by a .U (1)-gauge field .Yμ as 

. D �→ D′ = D + γ μYμ ⊗ γF .

The action of the gauge group .G(M × FX ) � C∞(M,U (1)) on .D′, as in (10.2.8), 
is implemented by 

. Yμ �→ Yμ − iu∂μu
∗; (u ∈ G(M × FX )).

11.2 Electrodynamics 

Inspired by the previous section, which shows that one can use the framework of 
noncommutative geometry to describe a gauge theory with abelian gauge group 
.U (1), we proceed and try to describe the full theory of electrodynamics by an almost-
commutative manifold. Our approach provides a unified description of gravity and 
electromagnetism, albeit at the classical level. 

We have seen that the almost-commutative manifold .M × FX describes a gauge 
theory with local gauge group .U (1), where the inner fluctuations of the Dirac oper-
ator provide the .U (1) gauge field .Yμ. There appear to be two problems if one 
wishes to use this model for a description of (classical) electrodynamics. First, by
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Proposition 11.1, the finite Dirac operator .DF must vanish. However, we want our 
electrons to be massive, and for this purpose we need a finite Dirac operator that is 
non-zero. 

Second, the Euclidean action for a free Dirac field is of the form 

.S = −
∫

iψ̄(γ μ∂μ − m)ψd4x, (11.2.1) 

where the fields. ψ and. ψ̄ must be considered independent variables. Thus, we require 
that the fermionic action .S f should also yield two independent Dirac spinors. Let 
us write .{e, ē} for the set of orthonormal basis vectors of .HF , where . e is the basis 
element of .H+

F and . ē of .H−
F . Note that on this basis, we have .JFe = ē, .JF ē = e, 

.γFe = e and .γF ē = −ē. The total Hilbert space .H is given by .L2(S) ⊗ HF . Since 
by means of .γM we can also decompose.L2(S) = L2(S)+ ⊕ L2(S)−, we obtain that 
the positive eigenspace .H+ of .γ = γM ⊗ γF is given by 

. H+ = L2(S)+ ⊗ H+
F ⊕ L2(S)− ⊗ H−

F .

Consequently, an arbitrary vector .ξ ∈ H+ can uniquely be written as 

. ξ = ψL ⊗ e + ψR ⊗ ē,

for two Weyl spinors .ψL ∈ L2(S)+ and .ψR ∈ L2(S)−. One should note here that . ξ
is completely determined by only one Dirac spinor .ψ := ψL + ψR , instead of the 
required two independent spinors. Thus, the restrictions that are incorporated into 
the fermionic action of Definition 9.3 in fact constrain the finite space.FX too much. 

11.2.1 The Finite Space 

It turns out that both problems sketched above can be simply solved by doubling 
our finite-dimensional Hilbert space. Essentially, we introduce multiplicities in the 
Krajewski diagram that appeared in the proof of Proposition 11.1. 

Thus, we start with the same algebra .C∞(M,C2) that corresponds to the space 
.N = M × X � M � M . The finite-dimensional Hilbert space will now be used to 
describe four particles, namely both the left-handed and the right-handed electrons 
and positrons. We choose the orthonormal basis .{eR, eL , eR, eL} for .HF = C

4, with 
respect to the standard inner product. The subscript . L denotes left-handed particles, 
and the subscript .R denotes right-handed particles, and we have .γFeL = eL and 
.γFeR = −eR . 

We choose.JF such that it interchanges particles with their antiparticles, so. JFeR =
eR and.JFeL = eL . We again choose the real structure such that it has KO-dimension 
. 6, so we have.J 2

F = 1 and.JFγF = −γF JF . This last relation implies that the element 
.eR is left-handed, whereas .eL is right-handed.
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The grading .γF decomposes the Hilbert space .HF into .H+
F ⊕ H−

F , where the 
bases of .H+

F and.H−
F are given by .{eL , eR} and.{eR, eL}, respectively. Alternatively, 

we can decompose the Hilbert space into .He ⊕ Hē, where .He contains the electrons 
.{eR, eL}, and .Hē contains the positrons .{eR, eL}. 

The elements .a ∈ AF = C
2 now act as the following matrix with respect to the 

basis .{eR, eL , eR, eL}: 

.a =
(
a1
a2

)
→

⎛

⎜
⎜
⎝

a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2

⎞

⎟
⎟
⎠ . (11.2.2) 

Note that this action commutes with the grading, as it should. We can also easily 
check that.[a, b0] = 0 for.b0 := JFb∗ J−1

F , since both the left and the right action are 
given by diagonal matrices. For now, we still take .DF = 0, and hence the order one 
condition is trivially satisfied. We have therefore obtained the following result: 

Proposition 11.5 The data 

.. 

(
C

2,C2, DF =
(
0 0
0 0

)
; JF =

(
0 C
C 0

)
, γF =

(
1 0
0 −1

))

define a real even spectral triple of KO-dimension . 6. 

This can be summarized by the following Krajewski diagram, with two nodes (of 
opposite grading) of multiplicity two: 

1 1  
1◦ 

1◦ 

11.2.2 A Non-trivial Finite Dirac Operator 

Let us now consider the possibilities for adding a non-zero Dirac operator to the 
finite space .FED. From the above Krajewski diagram, it can be easily seen that the 
only possible edges exist between the multiple vertices. That is, the only possible 
Dirac operator depends on one complex parameter and is given by 

.DF =

⎛

⎜⎜
⎝

0 d 0 0
d̄ 0 0 0
0 0 0 d̄
0 0 d 0

⎞

⎟⎟
⎠ . (11.2.3)



210 11 The Noncommutative Geometry of Electrodynamics

From here on, we will consider the finite space .FED given by 

. FED := (C2,C4, DF ; JF , γF ).

11.2.3 The Almost-Commutative Manifold 

Taking the product with the canonical triple, the almost-commutative manifold. M ×
FED (of KO-dimension . 2) under consideration is given by the spectral triple 

. M × FED :=
(
C∞(M,C2), L2(S) ⊗ C

4, DM ⊗ 1 + γM ⊗ DF ; JM ⊗ JF , γM ⊗ γF
)
. (11.2.4) 

As in Sect. 11.1, the algebra decomposes as 

. C∞(M,C2) = C∞(M) ⊕ C∞(M),

and we now decompose the Hilbert space as 

. H = (L2(S) ⊗ He) ⊕ (L2(S) ⊗ Hē).

The action of the algebra on . H, given by (11.2.2), is then such that one component 
of the algebra acts on the electron fields .L2(S) ⊗ He, and the other component acts 
on the positron fields .L2(S) ⊗ Hē. 

The derivation of the gauge group for .FED is exactly the same as in 
Proposition 11.3, so again we have the finite gauge group .G(F) � U (1). The field 
.Bμ := Aμ − JF Aμ J

−1
F now takes the form 

.Bμ =

⎛

⎜⎜
⎝

Yμ 0 0 0
0 Yμ 0 0
0 0 −Yμ 0
0 0 0 −Yμ

⎞

⎟⎟
⎠ for Yμ(x) ∈ R. (11.2.5) 

Thus, we again obtain a single .U (1) gauge field .Yμ, carrying an action of the gauge 
group .G(M × FED) � C∞(M,U (1)) (as in Proposition 11.4). 

As mentioned before, our space .N consists of two copies of .M and if . DF = 0
the distance between these two copies is infinite (see Remark 11.2). This time we 
have introduced a non-zero Dirac operator, but it commutes with the algebra, i.e. 
.[DF , a] = 0 for all .a ∈ A. Therefore, the distance between the two copies of .M is 
still infinite. 

To summarize, the.U (1) gauge theory arises from the geometric space. N = M �
M as follows. On one copy of . M , we have the vector bundle .S ⊗ (M × He), and on 
the other copy we have the vector bundle .S ⊗ (M × Hē). The gauge fields on each 
copy of.M are identified with each other. The electrons. e and positrons. ē are then both
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coupled to the same gauge field, and as such the gauge field provides an interaction 
between electrons and positrons. For comparison with Kaluza–Klein theories, note 
the different role that is played by the internal space. 

11.2.4 The Spectral Action 

We are now ready to explicitly calculate the Lagrangian that corresponds to the 
almost-commutative manifold .M × FED, and we will show that this yields the usual 
Lagrangian for electrodynamics (on a curved background manifold), as well as a 
purely gravitational Lagrangian. It consists of the spectral action.Sb of Definition 9.1 
and the fermionic action .S f of Definition 9.3, which we calculate separately (here 
and in the next section). 

The spectral action for an almost-commutative manifold has been calculated in 
Proposition 10.12, and we only need to insert the fields .Bμ (given by (11.2.5)) and 
.� = DF . We obtain the following result: 

Proposition 11.6 The spectral action of the almost-commutative manifold. M × FED

defined in (11.2.4) is given by 

. Tr

(
f
(Dω

	

))
∼

∫

M
L(gμν, Yμ)

√
gd4x + O(	−1),

with Lagrangian 

. L(gμν, Yμ) := 4LM(gμν) + LY (Yμ) + Lφ(gμν, d).

Here .LM(gμν) is defined in Proposition 10.10; the  term .LY gives the kinetic term of 
the .U (1) gauge field .Yμ as 

. LY (Yμ) := f (0)

6π2
YμνY

μν,

where the curvature .Yμν of the field .Yμ is given by 

. Yμν := ∂μYν − ∂νYμ.

The scalar potential.Lφ (ignoring the boundary term) gives two constant terms which 
add to the cosmological constant, plus an extra contribution to the Einstein–Hilbert 
action: 

. Lφ(gμν) := −2 f2	2

π2
|d|2 + f (0)

2π2
|d|4 + f (0)

12π2
s|d|2,

where the constant . d originates from (11.2.3).
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Proof The trace over the Hilbert space .C
4 yields an overall factor .N = 4. The field 

.Bμ is given by (11.2.5), and we obtain .Tr(FμνFμν) = 4YμνYμν . Inserting this into 
Proposition 10.12 provides the Lagrangian .LY . In addition, we have . �2 = DF

2 =
|d|2, and the scalar-field Lagrangian.Lφ only yields extra numerical contributions to 
the cosmological constant and the Einstein–Hilbert action. �

11.2.5 The Fermionic Action 

We have written the set of basis vectors of.HF as.{eR, eL , eR, eL}, and the subspaces 
.H+

F and .H−
F are spanned by .{eL , eR} and .{eR, eL}, respectively. The total Hilbert 

space .H is given by .L2(S) ⊗ HF . Since we can also decompose 

. L2(S) = L2(S)+ ⊕ L2(S)−

by means of .γM , we obtain for the .+1-eigenspace of .γM ⊗ γF : 

. H+ = L2(S)+ ⊗ H+
F ⊕ L2(S)− ⊗ H−

F .

A spinor .ψ ∈ L2(S) can be decomposed as .ψ = ψL + ψR . Each subspace .H
±
F is 

now spanned by two basis vectors. A generic element of the tensor product of two 
spaces consists of sums of tensor products, so an arbitrary vector .ξ ∈ H+ can be 
uniquely written as 

.ξ = χR ⊗ eR + χL ⊗ eL + ψL ⊗ eR + ψR ⊗ eL , (11.2.6) 

for Weyl spinors .χL , ψL ∈ L2(S)+ and.χR, ψR ∈ L2(S)−. Note that this vector . ξ ∈
H+ is now completely determined by two Dirac spinors .χ := χL + χR and . ψ :=
ψL + ψR . 

Proposition 11.7 The fermionic action of the almost-commutative manifold . M ×
FED defined in (11.2.4), is given by 

. S f = −i
(
JM χ̃ , γ μ(∇ S

μ − iYμ)ψ̃
) + (JM χ̃L , d̄ψ̃L) − (JM χ̃R, dψ̃R).

Proof The fluctuated Dirac operator is given by 

. Dω = DM ⊗ 1 + γ μ ⊗ Bμ + γM ⊗ DF.

An arbitrary .ξ ∈ H+ has the form of (11.2.6), from which we obtain the following 
expressions:
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. Jξ = JMχR ⊗ eR + JMχL ⊗ eL + JMψL ⊗ eR + JMψR ⊗ eL ,

(DM ⊗ 1)ξ = DMχR ⊗ eR + DMχL ⊗ eL + DMψL ⊗ eR + DMψR ⊗ eL ,

(γ μ ⊗ Bμ)ξ = γ μχR ⊗ YμeR + γ μχL ⊗ YμeL − γ μψL ⊗ YμeR − γ μψR ⊗ YμeL ,

(γM ⊗ DF )ξ = γMχL ⊗ deR + γMχR ⊗ deL + γMψR ⊗ deR + γMψL ⊗ d̄eL .

We decompose the fermionic action into the three terms 

. 
1

2
(J ξ̃ , Dωξ̃ ) = 1

2
(J ξ̃ , (DM ⊗ 1)ξ̃ ) + 1

2
(J ξ̃ , (γ μ ⊗ Bμ)ξ̃ ) + 1

2
(J ξ̃ , (γM ⊗ DF )ξ̃ ),

and then continue to calculate each term separately. The first term is given by 

. 
1

2
(J ξ̃ , (DM ⊗ 1)ξ̃ ) = 1

2
(JM χ̃R, DM ψ̃L) + 1

2
(JM χ̃L , DM ψ̃R)

+ 1

2
(JM ψ̃L , DM χ̃R) + 1

2
(JM ψ̃R, DM χ̃L).

Using the facts that.DM changes the chirality of a Weyl spinor, and that the subspaces 
.L2(S)+ and .L2(S)− are orthogonal, we can rewrite this term as 

. 
1

2
(J ξ̃ , (DM ⊗ 1)ξ̃ ) = 1

2
(JM χ̃ , DM ψ̃) + 1

2
(JM ψ̃, DM χ̃).

Using the symmetry of the form.(JM χ̃ , DM ψ̃), we obtain 

. 
1

2
(J ξ̃ , (DM ⊗ 1)ξ̃ ) = (JM χ̃ , DM ψ̃) = −i(JM χ̃ , γ μ∇ S

μψ̃).

Note that the factor . 12 has now disappeared from the result, which is the reason why 
this factor had to be included in the definition of the fermionic action. The second 
term is given by 

. 
1

2
(J ξ̃ , (γ μ ⊗ Bμ)ξ̃ ) = − 1

2
(JM χ̃R, γ μYμψ̃L) − 1

2
(JM χ̃L , γ

μYμψ̃R)

+ 1

2
(JM ψ̃L , γ

μYμχ̃R) + 1

2
(JM ψ̃R, γ μYμχ̃L).

In a similar manner, we obtain 

.
1

2
(J ξ̃ , (γ μ ⊗ Bμ)ξ̃ ) = −(JM χ̃ , γ μYμψ̃),
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where we have used the anti-symmetry of the form .(JM χ̃ , γ μYμψ̃). The third term 
is given by 

. 
1

2
(J ξ̃ , (γM ⊗ DF )ξ̃ ) =1

2
(JM χ̃R, dγM ψ̃R) + 1

2
(JM χ̃L , d̄γM ψ̃L)

+ 1

2
(JM ψ̃L , d̄γM χ̃L) + 1

2
(JM ψ̃R, dγM χ̃R).

The bilinear form.(JM χ̃ , γM ψ̃) is again symmetric in the Grassmann variables. χ̃ and 
. ψ̃ , but we now face the extra complication that two terms contain the parameter . d, 
while the other two terms contain . d̄ . Therefore we are left with two distinct terms: 

.
1

2
(J ξ̃ , (γM ⊗ DF )ξ̃ ) = (JM χ̃L , d̄ψ̃L) − (JM χ̃R, dψ̃R). �

Remark 11.8 It is interesting to note that the fermions acquire mass terms without 
being coupled to a scalar field. However, it seems that we obtain a complex mass 
parameter . d, where we would desire a real parameter . m. Simply requiring that our 
result should reproduce (11.2.1), we will therefore choose .d := −im, so that 

. (JM χ̃L , d̄ψ̃L) − (JM χ̃R, dψ̃R) = i
(
JM χ̃ ,mψ̃

)
.

The results obtained in this section can now be summarized into the following 
theorem. 

Theorem 11.9 The full Lagrangian of the almost-commutative manifold . M × FED

as defined in Eq. (11.2.4), can be written as the sum of a purely gravitational 
Lagrangian, 

. Lgrav(gμν) = 4LM(gμν) + Lφ(gμν),

and a Lagrangian for electrodynamics, 

. LED = −i
〈
JM χ̃ , (γ μ(∇ S

μ − iYμ) − m)ψ̃
〉
+ f (0)

6π2
YμνY

μν.

Proof The spectral action .Sb and the fermionic action .S f are given by 
Propositions 11.6 and 11.7. This immediately yields .Lgrav. To obtain.LED, we need to 
rewrite the fermionic action.S f as the integral over a Lagrangian. The inner product 
.(·, ·) on the Hilbert space .L2(S) is given by 

.(ξ, ψ) =
∫

M
〈ξ, ψ〉√gd4x,
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where the hermitian pairing.〈·, ·〉 is given by the pointwise inner product on the fibres. 
Choosing.d = −im as in Remark 11.8, we can then rewrite the fermionic action into 

.S f = −
∫

M
i
〈
JM χ̃ ,

(
γ μ(∇ S

μ − iYμ) − m
)
ψ̃

〉√
gd4x . �

11.2.6 Fermionic Degrees of Freedom 

To conclude this chapter, let us make a final remark on the fermionic degrees of 
freedom in the Lagrangian derived above. We refer the reader to Appendix 11.3 for 
a short introduction to Grassmann variables and Grassmann integration. 

As mentioned in Note 3 of this chapter below, the number of degrees of freedom 
of the fermion fields in the fermionic action is related to the restrictions that are 
incorporated into the definition of the fermionic action. These restrictions make sure 
that in this case we obtain two independent Dirac spinors in the fermionic action. 

In fact, in quantum field theory one would consider the functional integral of . eS

over the fields. We hence consider the case that. A is the antisymmetric bilinear form 
on .H+ given by 

. A(ξ, ζ ) := (Jξ, Dωζ ), for ξ, ζ ∈ H+,

and .A′ is the bilinear form on .L2(S) given by 

. A′(χ,ψ) := −i
(
JMχ,

(
γ μ(∇ S

μ − iYμ) − m
)
ψ

)
, for χ,ψ ∈ L2(S).

We have shown in Proposition 11.7 that for . ξ = χL ⊗ eL + χR ⊗ eR + ψR ⊗ eL +
ψL ⊗ eR , where we can define two Dirac spinors by .χ := χL + χR and. ψ := ψL +
ψR , we obtain 

. 
1

2
A(ξ, ξ) = A′(χ,ψ).

Using the Grassmann integrals of (11.3.1) and (11.3.2), we then obtain for the bilinear 
forms . A and .A′ the equality 

. Pf(A) =
∫

e
1
2A(ξ̃ ,ξ̃ )D[ξ̃ ] =

∫
eA

′(χ̃ ,ψ̃)D[ψ̃, χ̃ ] = det(A′).
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11.3 Grassmann Variables, Grassmann Integration 
and Pfaffians 

We will give a short introduction to Grassmann variables, and use those to find the 
relation between the Pfaffian and the determinant of an antisymmetric matrix. 

For a set of anti-commuting Grassmann variables . θi , we have .θiθ j = −θ jθi , and 
in particular, .θ2

i = 0. On these Grassmann variables . θ j , we define an integral by 

. 

∫
1dθ j = 0,

∫
θ j dθ j = 1.

If we have a Grassmann vector. θ consisting of.N components, we define the integral 
over.D[θ ] as the integral over.dθ1 · · · dθN . Suppose we have two Grassmann vectors 
. η and . θ of .N components. We then define the integration element as . D[η, θ ] =
dη1dθ1 · · · dηNdθN . 

Consider the Grassmann integral over a function of the form.eθTAη for Grassmann 
vectors . θ and . η of .N components. The .N × N -matrix .A can be considered as a 
bilinear form on these Grassmann vectors. In the case where. θ and. η are independent 
variables, we find 

.

∫
eθTAηD[η, θ ] = detA, (11.3.1) 

where the determinant of . A is given by the formula 

. det(A) = 1

N !
∑

σ,τ∈SN
(−1)|σ |+|τ |Aσ(1)τ (1) · · ·Aσ(N )τ (N ),

in which.SN denotes the set of all permutations of .{1, 2, . . . , N }. Now let us assume 
that . A is an antisymmetric .N × N -matrix . A for .N = 2l. If we then take .θ = η, we  
find 

.

∫
e

1
2 ηTAηD[η] = Pf(A), (11.3.2) 

where the Pfaffian of . A is given by 

. Pf(A) = (−1)l

2l l!
∑

σ∈S2l
(−1)|σ |Aσ(1)σ (2) · · ·Aσ(2l−1)σ (2l).

Finally, using these Grassmann integrals, one can show that the determinant of a 
.2l × 2l skew-symmetric matrix . A is the square of the Pfaffian: 

. detA = Pf(A)2.
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So, by simply considering one instead of two independent Grassmann variables 
in the Grassmann integral of .eθTAη, we are in effect taking the square root of a 
determinant. 

Notes 

Section 11.1. The Two-Point Space 

1. The two-point space was first studied in [ 1, 2]. 
2. The need for KO-dimension . 6 for the noncommutative description of the Standard Model has 

been observed independently by Barrett [ 3] and Connes [ 4]. 
3. In [ 5, Chap. 9] a proof is given for the claim that the inner fluctuation.ω + JωJ−1 vanishes for 

commutative algebras. The proof is based on the assumption that the left and right action can be 
identified, i.e..a = a0, for a commutative algebra. Though this holds in the case of the canonical 
triple describing a spin manifold, it need not be true for arbitrary commutative algebras. Indeed, 
the almost-commutative manifold.M × FX provides a counter-example. 
What we can say about a commutative algebra, is that there exist no non-trivial inner automor-
phisms. Thus, it is an important insight that the gauge group.G(A,H; J ) from Definition 7.4 is 
larger than the group of inner automorphisms, so that a commutative algebra may still lead to a 
non-trivial (necessarily abelian) gauge group. 

4. It is shown in [ 6] that one can also obtain abelian gauge theories from a one-point space when 
one works with real algebras (cf. Sect. 3.3). 

Section 11.2. Electrodynamics 

5. Earlier attempts at a unified description of gravity and electromagnetism originate from the work 
of Kaluza [ 7] and  Klein [  8] in the 1920s. In their approach, a new (compact) fifth dimension 
is added to the .4-dimensional spacetime . M . The additional components in the .5-dimensional 
metric tensor are then identified with the electromagnetic gauge potential. Subsequently, it can 
be shown that the Einstein equations of the .5-dimensional spacetime can be reduced to the 
Einstein equations plus the Maxwell equations on.4-dimensional spacetime. 

6. An interesting question that appears in the context of this Chapter is whether it is possible 
to describe the abelian Higgs mechanism (see e.g. [ 9, Sect. 8.3]) by an almost-commutative 
manifold. As already noticed, for.M × FED no scalar fields. � are generated since.AF commutes 
with.DF . In terms of the Krajewski diagram for.M × FED , 

1 1  

1◦ 

1◦ 

it follows that a component that runs counterdiagonally fails on the first-order condition (cf. 
Lemma 3.10). One is therefore tempted to look at the generalization of inner fluctuations to real 
spectral triples that do not necessarily satisfy the first-order condition, as was proposed in [ 10]. 
This generalization is crucial in the applications to Pati–Salam unification (see Chap. 15 below) 
but also in the present case one can show that non-zero off-diagonal components in (11.2.3) 
then generate a scalar field for which the spectral action yields a spontaneous breaking of the 
abelian gauge symmetry.
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Section 11.3. Grassmann Variables, Grassmann Integration and Pfaffians 

7. For more details we refer the reader to [ 11]. 
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Chapter 12 
The Noncommutative Geometry 
of Yang–Mills Fields 

In this chapter we generalize the noncommutative description of Yang–Mills theory 
to topologically non-trivial gauge configurations. 

12.1 Spectral Triple Obtained from an Algebra Bundle 

Recall from Examples 10.4 and 10.5 that topologically trivial Yang–Mills gauge 
theory can be described by the almost-commutative manifold 

. M × FY M = (
C∞(M) ⊗ MN (C), L2(S) ⊗ MN (C), DM ⊗ 1; JM ⊗ (·)∗, γM ⊗ 1

)
.

In fact, the tensor product of.C∞(M)with the matrix algebra.MN (C) appearing here 
is equivalent to restricting the gauge theory to be defined on a trivial vector bundle. 
Indeed, .C∞(M) ⊗ MN (C) is the algebra of smooth sections of the trivial algebra 
bundle.M × MN (C) on. M . For the topologically non-trivial case, this suggests con-
sidering an arbitrary.∗-algebra bundle with fiber.MN (C). We work in a slightly  more  
general setting more general .∗-algebras are allowed. 

Thus, let .B be some locally trivial .∗-algebra bundle whose fibers are copies of a 
fixed (finite-dimensional) .∗-algebra . A. Furthermore, we require that for each . x the 
fiber.Bx is endowed with a faithful tracial state. τx , such that for each.s ∈ �∞(B) the 
function .x �→ τx s(x) is smooth. The corresponding Hilbert–Schmidt inner product 
in the fiber.Bx that is induced by.τx is denoted by.(·, ·)Bx . Consequently, the.C

∞(M)-
valued form 

. 〈·, ·〉B : �∞(B) × �∞(B) → C∞(M); 〈s, t〉B(x) = (s(x), t (x))Bx

is a hermitian structure on the .C∞(M)-module .�∞(B), satisfying the conditions of 
Proposition 7.14.
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As in the previous chapters, we assume that .M is a compact Riemannian spin 
manifold on which .S → M is a spinor bundle and .DM = −ic ◦ ∇ S is the Dirac 
operator. Combining the inner product on spinors with the above hermitian structure 
naturally induces the following inner product on .�∞(B ⊗ S): 

.(ξ1, ξ2) :=
∫

M
(ξ1(x), ξ2(x))Bx ⊗Sx

; (ξ1, ξ2 ∈ �∞(B ⊗ S)), (12.1.1) 

turning it into a pre-Hilbert space. Its completion with respect to the norm induced by 
this inner product consists of all square-integrable sections of.B ⊗ S, and is denoted 
by .L2(B ⊗ S). 

Remark 12.1 Note that we can identify .�∞(B) ⊗C∞(M) �∞(S) with . �∞(B ⊗ S)

as .C∞(M)-modules. In what follows, we will use this identification without further 
notice. The above inner product (12.1.1) can then be written as 

. (s1 ⊗ ψ1, s2 ⊗ ψ2) = (ψ1, 〈s1, s2〉Bψ2),

where .〈s1, s2〉B ∈ C∞(M) acts on .�∞(S) by pointwise multiplication. 

Theorem 12.2 In the above notation, let.∇B be a hermitian connection (with respect 
to the Hilbert–Schmidt inner product) on the .∗-algebra bundle . B and let . DB =
−iγ μ(∇B

μ ⊗ 1 + 1 ⊗ ∇ S
μ) be the twisted Dirac operator on .B ⊗ S. Then 

. (�∞(B), L2(B ⊗ S), DB)

is a spectral triple. 

Proof First, it is obvious that fiberwise multiplication of.a ∈ �∞(B) on. �∞(B ⊗ S)

extends to a bounded operator on .L2(B ⊗ S), since 

. ‖as ⊗ ψ‖2 =
∫

M

(
ψ(x), (a(x)s(x), a(x)s(x))Bx

ψ(x)
)

Sx
dx

≤ sup
x∈M

{‖a(x)‖2x }‖s ⊗ ψ‖2.

Here.‖ · ‖x denotes the fiberwise operator.C∗-norm. Since.M is a compact manifold, 
the compactness of the resolvent follows from ellipticity of the twisted Dirac operator 
.DB. Moreover, the commutator .[DB, a] is bounded for .a ∈ �∞(B) since .DB is a 
first-order differential operator. More precisely, in local coordinates one computes 

. [DB, a](s ⊗ ψ) = −i
(
∂μa + [ωB

μ , a]) s ⊗ γ μψ,

where .∇B
μ = ∂μ + ωB

μ . This operator is bounded on .L2(B ⊗ S), provided . a is dif-
ferentiable and .ωB

μ is smooth. �
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Next, we would like to extend our construction to arrive at a real spectral triple. 
For this, we introduce an anti-linear operator on .L2(B ⊗ S) of the form 

. J (s ⊗ ψ) = s∗ ⊗ JMψ,

with .JM charge conjugation on .M as in Definition 4.13. For this operator to be a 
real structure on our spectral triple .(�∞(B), L2(B ⊗ S), DB), we need some extra 
conditions on the connection .∇B on . B. 

Definition 12.3 Let .B be a .∗-algebra bundle over a manifold . M . A.∗-algebra con-
nection .∇ on .B is a connection on .B that satisfies 

. ∇(st) = s∇t + (∇s)t, (∇s)∗ = ∇s∗; (s, t ∈ �∞(B)).

If .B is a hermitian.∗-algebra bundle and. ∇ is also a hermitian connection, then.∇ is 
called a hermitian .∗-algebra connection. 
Lemma 12.4 Every locally trivial hermitian .∗-algebra bundle . B defined over a 
compact space . M admits a hermitian .∗-algebra connection. 

Proof Let .{Ui } be a finite open covering of .M such that .B is trivialized over .Ui for 
each. i . Then on each.Ui there exists a hermitian.∗-algebra connection.∇i , for instance 
the trivial connection. d on.Ui . Now, let.{ fi } be a partition of unity subordinate to the 
open covering .{Ui } (note that all . fi are real-valued). Then the linear map .∇ defined 
by 

. (∇s)(x) =
∑

i

fi (x)(∇i s)(x); (x ∈ M)

is a hermitian .∗-algebra connection on .�∞(B). �
Remark 12.5 The fact that locally, i.e. on some trivializing neighborhood, the exte-
rior derivative. d is a hermitian.∗-algebra connection shows that on such a local chart 
every hermitian .∗-algebra connection is of the form 

. d + ωB,

where .ωB is a real connection one-form with values in the real Lie algebra of .∗-
derivations of the fiber that are anti-hermitian with respect to the inner product on 
the fiber. For instance, when the fiber is the .∗-algebra .MN (C) endowed with the 
Hilbert–Schmidt inner product, this Lie algebra is precisely .ad(u(N )) ∼= su(N ). 

Theorem 12.6 In addition to the conditions of Theorem 12.2, suppose that .∇B is 
a hermitian .∗-algebra connection and set .γ = 1 ⊗ γM as a self-adjoint operator on 
.L2(B ⊗ S). Then 

. (�∞(B), L2(B ⊗ S), DB; J, γ )

is a real and even spectral triple whose .KO-dimension is equal to the dimension 
of . M.
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Proof First of all, we check that . J is anti-unitary: 

. (J (s ⊗ ψ), J (t ⊗ η)) = (
JMψ, 〈s∗, t∗〉JMη

) = (
JMψ, JM 〈s∗, t∗〉η)

= (〈s∗, t∗〉η,ψ
) = (〈s, t〉η,ψ) = (t ⊗ η, s ⊗ ψ) ,

where we used in the second step that .JM f = f̄ JM for every . f ∈ C∞(M), in the  
third step that .JM is anti-unitary, and in the fourth step that .〈s, t〉 = 〈t∗, s∗〉 (by 
definition of the hermitian structure as a fiberwise trace). Moreover, if .J 2

M = ε it 
follows that .J 2 = ε. 

We next establish .D J = ε′ J D by a local calculation: 

. (J D − ε′ D J )(s ⊗ ψ) = J
(∇B

μ s ⊗ (−iγ μψ) + s ⊗ DMψ
) − ε′ DB

(
s∗ ⊗ JMψ

)

= (∇B
μ s)∗ ⊗ i JMγ μψ + s∗ ⊗ JM DMψ

− ε′∇B
μ s∗ ⊗ (−iγ μ JMψ) − ε′s∗ ⊗ DM JMψ

= i
(
(∇B

μ s)∗ − ∇B
μ s∗) ⊗ JMγ μψ = 0,

since.JMγ μ = −ε′γ μ JM , and the last step follows from the definition of a.∗-algebra 
connection, i.e. .(∇s)∗ = ∇s∗ for all .s ∈ �∞(B). 

The commutant property follows easily: 

. [a, b0](s ⊗ ψ) = a Jb∗ J−1(s ⊗ ψ) − Jb∗ J−1a(s ⊗ ψ)

= a J (b∗s∗ ⊗ J ∗
Mψ) − Jb∗(s∗a∗ ⊗ J ∗

Mψ)

= asb ⊗ ψ − asb ⊗ ψ = 0,

where .a, b ∈ �∞(B) and .s ⊗ ψ ∈ �∞(B) ⊗C∞(M) �∞(S). Since .[a, b0] = 0 on 
.�∞(B) ⊗C∞(M) �∞(S) ∼= �∞(B ⊗ S), it is zero on the entire Hilbert space. L2(B ⊗
S). It remains to check the order one condition for the Dirac operator. First note that 

. [[D, a], b0](s ⊗ ψ) = −iγ μ([[∇μ, a], b0](s ⊗ ψ)); (a, b, s ∈ �∞(B)).

This is zero because .[[∇, a], b0](s ⊗ ψ) is zero: 

. ([∇μ, a]sb) ⊗ ψ − Jb∗ J−1([∇μ, a]s ⊗ ψ)

= ∇μ(asb) ⊗ ψ − a∇μ(sb) ⊗ ψ − ∇μ(as)b ⊗ ψ + a(∇μs)b ⊗ ψ

= (
(∇μa)sb + a(∇μs)b + as(∇μb) − a(∇μs)b

− as(∇μb) − (∇μa)sb − a(∇μs)b + a(∇μs)b
) ⊗ ψ,

= 0

using the defining property for .∇B to be a .∗-algebra connection. Thus, . J fulfills 
all of the necessary conditions for a real structure on the spectral triple
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.(�∞(B), L2(B ⊗ S), DB). The conditions on . γ to be a grading operator for this 
spectral triple are easily checked too. �

12.2 Yang–Mills Theory as a Noncommutative Manifold 

The real spectral triple .(�∞(B), L2(B ⊗ S), DB; J, γ ) that we obtained in 
Theorem 12.6 will turn out to be the correct triple to describe a topologically non-
trivial .PU (N )-gauge theory on the spin manifold .M if the fibers of .B are taken to 
be isomorphic to the .∗-algebra .MN (C). Moreover, this triple not only describes a 
non-trivial.PU (N )-gauge theory: every.PU (N )-gauge theory on.M is described by 
such a triple. In this section we prove these claims by first showing how a principal 
.PU (N )-bundle can be constructed from this spectral triple. As in the topologically 
trivial case (cf. Remark 10.13) the spectral action applied to this triple will give 
the Einstein–Yang–Mills action, but now the gauge potential can be interpreted as a 
connection one-form on the .PU (N )-bundle . P . In fact, the original algebra bundle 
.B will turn out to be an associated bundle of the principal bundle . P . From now on, 
then, the fibers of .B are assumed to be .MN (C). 

12.2.1 From Algebra Bundles to Principal Bundles 

In order to construct a principal.PU (N )-bundle. P out of. B, first of all note that since 
all .∗-automorphisms of .MN (C) are obtained by conjugation with a unitary element 
.u ∈ MN (C) (see Example 7.3), the transition functions of the bundle .�∞(B) take 
their values in 

. Ad U (N ) ∼= U (N )/Z(U (N )) ∼= PU (N ).

Thus the bundle.B provides us with an open covering.{Ui } of.M as well as transition 
functions.{gi j }with values in.PU (N ). Using the reconstruction theorem for principal 
bundles, we can then construct a principal .PU (N )-bundle. By construction, the 
bundle .B is an associated bundle to . P . 

Furthermore, for the real spectral triple 

. (�∞(B), L2(B ⊗ S), DB; J, γ )

of Theorem 12.6, the hermitian connection .∇B on the bundle .B can locally be 
written as.∇B = d + ωB, where.ωB is a.su(N )-valued one-form, (cf. Remark 12.5). 
Moreover, the transformation rule for.ωB is.ωB

i = g−1
i j dgi j + g−1

i j ωB
j gi j , with.gi j the 

.PU (N )-valued transition function of . B. Comparing this expression with the usual 
transformation property of a connection one-form, one concludes that the hermitian 
.∗-algebra connection .∇B on .B induces a connection one-form on the principal 
bundle .P constructed in the previous paragraph.
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Conversely, given a.PU (N )-gauge theory.(P, ωP) on some compact Riemannian 
spin manifold, we can construct the locally trivial hermitian .∗-algebra bundle . B :=
P ×PU (N ) MN (C), where .PU (N ) acts on .MN (C) in the usual way. Moreover, the 
connection .ωP on.P induces a hermitian .∗-algebra connection on . B. Following the 
steps described in the previous paragraph, it is not difficult to see that the principal 
bundle and connection obtained from the ensuing spectral triple, 

. (�∞(B), L2(B ⊗ S),−iγ μ(∇B
μ ⊗ 1 + 1 ⊗ ∇ S

μ); J, γ ),

coincide with .(P, ωP). 

Proposition 12.7 Let .(�∞(B), L2(B ⊗ S), DB; J, γ ) be as before with . M simply 
connected and . B a locally trivial .∗-algebra bundle with fiber .MN (C) and a faithful 
smoothly-varying tracial state. Then: 

(1) there exists a principal .PU (N )-bundle . P such that . B is an associated bundle 
of . P, as well as a connection one-form .ωP on . P corresponding to .∇B; 

(2) the gauge group .G(�∞(B), L2(B ⊗ S); J ) of this spectral triple (as in Defini-
tion 7.4) is isomorphic to the space of smooth sections of the associated group 
bundle .Ad P := P ×PU (N ) PU (N ). 

Every .PU (N )-gauge theory .(P, ωP) on . M is determined by such a spectral triple. 

Proof The only statement left to prove is (2). If .B = P ×PU (N ) MN (C), then 
.U(�∞(B)) = �∞(P ×PU (N ) U (N )). As a consequence, 

. G(�∞(B), L2(B ⊗ S); J ) � {u Ju J−1 : u ∈ �∞(P ×PU (N ) U (N )}
� �∞(P ×PU (N ) PU (N )),

where we argue as in the proof of Proposition 10.2 (see also Note 4 on 
Chap. 10). �

12.2.2 Inner Fluctuations and Spectral Action 

In this section, we calculate the spectral action for the real spectral triple of 
Theorem 12.6 in the case that .dim M = 4. We show that the spectral action applied 
to the spectral triple .(�∞(B), L2(B ⊗ S), DB; J, γ ) produces the Einstein–Yang– 
Mills action for a connection one-form on the .PU (N )-bundle . P . If  .B is a trivial 
algebra bundle, this reduces to Example 10.13. In fact, most of these local com-
putations can be adopted in this case as well, since locally the bundle .B is trivial. 
Nevertheless, for completeness we include the computations in the case at hand. 

First of all, in Remark 12.5 we noticed that locally, i.e. on some local trivialization 
. U , the connection .∇B is expressed as .d + ωB, where .ωB is an .su(N )-valued one-
form that acts in the adjoint representation on.�∞(B). Therefore,.ωB already induces
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a connection one-form on . P . To get the full gauge potential we need to take the 
fluctuations of the Dirac operator into account as well. 

Recall from Sect. 7.2 that inner fluctuations of the Dirac operator are given by a 
perturbation term of the form 

.ω =
∑

j

a j [D, b j ]; (a j , b j ∈ �(B)), (12.2.1) 

with the additional condition that.
∑

j a j [D, b j ] is a self-adjoint operator. Explicitly, 
we have 

. ω =
∑

j

−iγ μ ◦ (a j [∇μ, b j ] ⊗ 1).

Locally, on some trivializing neighborhood . U , the expression in (12.2.1) can be 
written as 

. ω = γ μ Aμ,

where.Aμ are the components of the one-form.
∑

j a j [∇, b j ] with values in.�∞(B). 
Since . ω is self-adjoint, the one-form .Aμ can be considered a real one-form taking 
values in the hermitian elements of .�∞(B). 

Similarly, the expression .ω + JωJ−1 is locally written as 

. γ μ Aμ − γ μ J Aμ J−1,

since in 4 dimensions.γ μ anti-commutes with. J . Writing out the second term gives: 

. (γ μ J Aμ J−1)(s ⊗ ψ) = s Aμ ⊗ γ μψ; (s ⊗ ψ ∈ �∞(B ⊗ S)),

so that on this local patch, .ω + JωJ−1 can be written as 

. γ μ ad Aμ.

Consequently, .ω + JωJ−1 eliminates the .iu(1)-part of . ω, so that . ω effectively sat-
isfies the unimodularity condition 

. Tr ω = 0.

Thus,.i ad Aμ is a one-form on.M with values in.�∞(ad P)where. ad P = P ×PU (N )

su(N ). 
The expression for .D + ω + JωJ−1 on a local chart .U is then given by 

.Dω = −iγ μ(∇B
μ ⊗ 1 + 1 ⊗ ∇S

μ + i ad Aμ ⊗ 1),
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where the connection.∇B can be expressed on.U as.d + ωB for some unique.su(N )-
valued one-form.ωB on. U . Thus, on.U the fluctuated Dirac operator can be rewritten 
as 

. Dω = −iγ μ(1 ⊗ ∇ S
μ + (∂μ + ωB

μ + i ad Aμ) ⊗ 1).

We interpret .(ωB
μ + i ad Aμ) as the full gauge potential on . U , acting in the adjoint 

representation on the spinors. The natural action of an element . g in the group 
.G(�∞(B), L2(B ⊗ S); J ) � �∞(Ad P) by conjugation on .Dω then induces the 
familiar gauge transformation: 

. ωB
μ + i ad Aμ �→ (g−1ωB

μ g + g−1(dg)) + g−1(i ad Aμ)g,

where the first two terms on the right-hand side are the transformation of .ωB under 
a change of local trivialization, and the last term is the transformation of .i ad Aμ. 
Therefore, since.B is an associated bundle of. P , it follows  that.ωB

μ + i ad Aμ induces 
a.su(N )-valued connection one-form on the principal.PU (N )-bundle. P that acts on 
.�∞(B) in the adjoint representation. 

Let us summarize what we have obtained so far. 

Proposition 12.8 Let .(�∞(B), L2(B ⊗ S), DB; J, γ ) and let . P be as before, so 
that .P ×PU (N ) MN (C) � B. Then, the inner fluctuations of .DB are parametrized 
by sections of .�∞(T ∗M ⊗ ad P) where .ad P = P ×PU (N ) su(N ). Moreover, the 
action of .G(�∞(B), L2(B ⊗ S); J ) on the inner fluctuations of .DB by conjugation 
coincides with the adjoint action of .�∞(Ad P) on .�∞(ad P). 

Let us now proceed to compute the spectral action for these inner fluctuations. 
We apply the results of Sect. 10.3, using the following result. 

Lemma 12.9 For the spectral triple .(�∞(B), L2(B ⊗ S), DB; J, γ ), the square 
of the fluctuated Dirac operator is a generalized Laplacian of the form .�E − F, 
with .E = B ⊗ S (notation as in Theorem 10.7), and we have the following local 
expressions for the corresponding curvature .�E

μν and the bundle endomorphism . F: 

. F = −1

4
s ⊗ IN 2 + 1

2
iγ μγ ν ⊗ Fμν;

�E
μν = �S

μν ⊗ IN 2 + iI4 ⊗ Fμν,

where .Fμν is the curvature of the connection .∇B
μ + i ad Aμ. 

As before, this result allows us to compute the bosonic spectral action for the 
fluctuated Dirac operator .Dω, essentially reducing the computation in terms of a 
local trivialization to the trivial case (cf. Example 10.13), with the following result. 

Theorem 12.10 For the spectral triple .(�∞(B), L2(B ⊗ S), DB; J, γ ), the spec-
tral action yields the Yang–Mills action for .∇B + i ad Aμ minimally coupled to 
gravity:
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. Tr ( f (Dω/�)) ∼ f (0)

24π2

∫

M
Tr Fμν Fμν√gdx + N 2

∫

M
LM(gμν)

√
gdx,

asymptotically as .� → ∞ and up to terms .∝ �−2. The Lagrangian .LM(gμν) is 
given by (10.4.8). 

12.2.3 Topological Spectral Action 

A natural invariant in this topologically non-trivial context is the topological spectral 
action, given in Eq. (9.1.2). With Proposition 9.5 we find that, in general, 

. Stop[ω] = f (0) index Dω.

Hence, in the setting of Theorem 12.10, using the Atiyah–Singer index theorem (cf. 
Note 18 on Chap. 6), we find an extra contribution of the form 

. Stop[ω] = f (0)

(2π i)n/2

∫

M
Â(M) ch(B),

in terms of the . Â-form of .M and the Chern character of the algebra bundle . B. 

Notes 

1. For an exposition of Yang–Mills theory in terms of principal bundle and connections, we refer 
to [ 1, Sect. 2,3] and [ 2]. 

2. This chapter extends the noncommutative description of Yang–Mills gauge theory of [ 3, 4] to the  
topologically non-trivial case; it is based on [ 5]. For a more general treatment of topologically 
non-trivial almost-commutative geometries we refer to [ 6– 8]. 

Section 12.1 Spectral triple obtained from an algebra bundle 

3. Our approach to locally trivial.∗-algebra bundles gains in substance with the Serre–Swan The-
orem, establishing a duality between vector bundles over a topological space .X and finite 
projective modules over .C(X) [ 9, 10]. A smooth version was obtained in [ 11] (see also [  12, 
Proposition 4.2.1] or [ 13, Sect. 2.3]). The fiberwise inner product gives rise to the hermitian 
structure found in Proposition 7.14. A version of the Serre–Swan Theorem for .∗-algebra bun-
dles has been obtained in [ 5]. 

Section 12.2 Yang–Mills theory as a noncommutative manifold 

4. A special case of Proposition 12.7 occurs when.B is an endomorphism bundle. It follows from 
a result by Dixmier and Douady in [ 14] (cf. [  15]) that a bundle .B with continuously varying
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trace is an endomorphism bundle if and only if the Dixmier–Douady class . δ(�(B)) ∈ H3(Z)

of the .C∗-algebra of continuous sections .�(B) of this bundle is equal to zero. Because the 
Dixmier–Douady class of the bundle .B vanishes one can lift the .PU (N )-valued transition 
functions.gi j to.U (N )-valued functions.μi j such that.gi j = Ad μi j , and.μi j μ jk = μik (see for 
instance [ 15], Theorem 4.85). One may therefore construct a principal.U (N )-bundle instead of 
a .PU (N )-bundle, to which.B is associated if and only if .B is an endomorphism bundle. 
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Chapter 13 
The Noncommutative Geometry 
of the Standard Model 

One of the major applications of noncommutative geometry to physics has been 
the derivation of the Standard Model of particle physics from a suitable almost-
commutative manifold. In this Chapter we present this derivation, using the results 
of Chap. 10. 

13.1 The Finite Space 

Our starting point is the classification of irreducible finite geometries of KO-
dimension 6 from Sect. 3.4, based on the matrix algebra.MN (C) ⊕ MN (C) for.N ≥ 1. 
We have already seen in Chap. 11 that .N = 1 is the finite geometry corresponding 
to electrodynamics. We now proceed and aim for the full Standard Model of particle 
physics. Let us make the following two additional requirements on the irreducible 
finite geometry .(A, HF , DF ; JF , γF ): 

(1) The finite-dimensional Hilbert space.HF carries a symplectic structure.I 2 = −1; 
(2) the grading .γF induces a non-trivial grading on . A, by mapping 

. a �→ γFaγF ,

and selects an even subalgebra .Aev ⊂ A consisting of elements that commute 
with .γF . 

We have already seen in Sect. 3.4 that the first demand sets .A = Mk(H) ⊕ M2k(C), 
represented on the Hilbert space.C

2(2k)2 . The second requirement sets.k ≥ 2; we will 
take the simplest .k = 2 so that .HF = C

32. Indeed, this allows for a .γF such that 

. Aev = HR ⊕ HL ⊕ M4(C),

where .HR and .HL are two copies (referred to as right and left) of the quaternions; 
they are the diagonal of .M2(H) ⊂ A. The Hilbert space can then be decomposed
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Fig. 13.1 The Krajewski diagram for the finite real spectral triple . (Aev = HR ⊕ HL ⊕
M4(C), HF , DF ; JF , γF ). The dashed line corresponds to an ‘off-diagonal’ component of the 
Dirac operator, thus failing on the first-order condition. The labels.+ and.− represent the value of 
the grading.γF on the corresponding summands of. HF

according to the defining representations of .Aev, 

.HF = (C2
R ⊕ C

2
L) ⊗ C

4◦ ⊕ C
4 ⊗ (C2◦

R ⊕ C
2◦
L ). (13.1.1) 

According to this direct sum decomposition, we write 

.DF =
(
S T ∗

T S

)
(13.1.2) 

where 

. S : (C2
R ⊕ C

2
L) ⊗ C

4◦ → (C2
R ⊕ C

2
L) ⊗ C

4◦,

T : (C2
R ⊕ C

2
L) ⊗ C

4◦ → C
4 ⊗ (C2◦

R ⊕ C
2◦
L ).

This gives rise to the Krajewski diagram of Fig. 13.1. We now make an additional 
assumption, 

(3) The off-diagonal components .T and .T ∗ of the Dirac operator in (13.1.2) are  
non-zero. 

In Fig. 13.1 such an off-diagonal component corresponds to the dashed line. As 
this line runs neither vertically, horizontally, or between the same vertex, it follows 
from Lemma 3.10 that the corresponding component of .DF breaks the first-order 
condition. 

Proposition 13.1 Up to .∗-automorphisms of .Aev, there is a unique .∗-subalgebra 
.AF ⊂ Aev of maximal dimension that allows .T 
= 0 in (13.1.2). It is given by 

.AF =
{(

qλ, q,

(
q 0
0 m

))
: λ ∈ C, q ∈ HL ,m ∈ M3(C)

}
⊂ HR ⊕ HL ⊕ M4(C),
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Fig. 13.2 The Krajewski 
diagram of the space. FSM

describing the Standard 
Model 

where .λ �→ qλ is the embedding of .C ↪→ H, with 

. qλ =
(

λ 0
0 λ

)
.

Consequently, .AF � C ⊕ H ⊕ M3(C). 

Proof We give a diagrammatic proof. From Fig. 13.1, we see that in order to fulfill the 
first-order condition, we should bring the dashed line to run horizontally or vertically, 
or to begin and start at the same node on the diagonal. We do so by considering the 
Krajewski diagrams for subalgebras .AF ⊂ Aev which are induced by Fig. 13.1. If . T
is of rank . 1, the only possibility is to bring the dashed line to the diagonal. In other 
words, the subalgebra we are looking for should have a component that is embedded 
diagonally in .HR and .M4(C). Such a component can only be . C, and the resulting 
subalgebra is embedded as 

. C ⊕ M3(C) → HR ⊕ M4(C);
(λ,m) �→

((
λ 0
0 λ

)
,

(
λ 0
0 m

))
.

This breaks the Krajewski diagram to the diagram of Fig. 13.2, where the dashed line 
now connects the two vertices labeled by .(1, 1◦). The other edges of Fig. 13.1 are 
now torn apart to the resulting edges in Fig. 13.2. 

If .T has rank greater than . 1, then a similar argument shows that one obtains a 
subalgebra of smaller dimension than .AF . . �

In order to connect to the physics of the Standard Model, let us introduce an 
orthonormal basis for .HF that can be recognized as the fermionic particle content 
of the Standard Model, and subsequently write the representation of .AF in terms 
of this basis. Starting with the Krajewski diagram of Fig. 13.2, we let the first three 
nodes in the top row be represented by basis vectors .{νR, eR, (νL , eL)} of the so-
called lepton space .Hl , while the three nodes in the bottom row represent the basis 
vectors .{uR, dR, (uL , dL)} of the quark space .Hq . Their reflections with respect to 
the diagonal represent are the anti-lepton space .Hl and the anti-quark space .Hq ,
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spanned by .{νR, eR, (νL , eL)} and .{uR, dR, (uL , dL)}, respectively. The three colors 
of the quarks are given by a tensor factor .C3 and when we take into account three 
generations of fermions and anti-fermions by tripling the above finite-dimensional 
Hilbert space we obtain 

. HF := (
Hl ⊕ Hl ⊕ Hq ⊕ Hq

)⊕3
.

Note that .Hl = C
4, .Hq = C

4 ⊗ C
3, .Hl = C

4, and .Hq = C
4 ⊗ C

3. An element . a =
(λ, q,m) ∈ AF acts on the space of leptons .Hl as .qλ ⊕ q, and acts on the space of 
quarks .Hq as .(qλ ⊕ q) ⊗ I3. That is, 

. a = (λ, q,m)
Hl−→

⎛
⎜⎜⎝

λ 0 0 0
0 λ 0 0
0 0 α β

0 0 −β α

⎞
⎟⎟⎠ ,

a = (λ, q,m)
Hq−→

⎛
⎜⎜⎝

λ 0 0 0
0 λ 0 0
0 0 α β

0 0 −β α

⎞
⎟⎟⎠ ⊗ I3.

For the action of. a on an anti-lepton.l ∈ Hl we have.al = λI4l, and on an anti-quark 
.q ∈ Hq we have .aq = (I4 ⊗ m)q . 

The .Z2-grading .γF is such that left-handed particles have eigenvalue .+1 and 
right-handed particles have eigenvalue.−1. The anti-linear operator.JF interchanges 
particles with their anti-particles, so .JF f = f and .JF f = f , with . f a lepton or 
quark. 

Finally, we write the Dirac operator of (13.1.2) in terms of the decomposition of 
.HF in particle (.H⊕3

l ⊕ H⊕3
q ) and anti-particles (.H⊕3

l
⊕ H⊕3

q ). The operator . S will 
be chosen to be 

. Sl := S|H⊕3
l

=

⎛
⎜⎜⎝

0 0 Y ∗
ν 0

0 0 0 Y ∗
e

Yν 0 0 0
0 Ye 0 0

⎞
⎟⎟⎠ ,

Sq ⊗ I3 := S|H⊕3
q

=

⎛
⎜⎜⎝

0 0 Y ∗
u 0

0 0 0 Y ∗
d

Yu 0 0 0
0 Yd 0 0

⎞
⎟⎟⎠ ⊗ I3,

where . Yν , . Ye, .Yu and .Yd are .3 × 3 Yukawa mass matrices acting on the three 
generations, and.I3 acting on the three colors of the quarks. The symmetric operator 
.T only acts on the right-handed (anti)neutrinos, so it is given by .T νR = YRνR , for  
a certain .3 × 3 symmetric Majorana mass matrix .YR , and .T f = 0 for all other
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fermions . f 
= νR . Note that .νR here stands for a vector with . 3 components for the 
number of generations. 

Let us summarize what we have obtained so far. 

Proposition 13.2 The data 

. FSM := (AF , HF , DF ; JF , γF )

as given above define a finite real even spectral triple of KO-dimension . 6. 

13.2 The Gauge Theory 

13.2.1 The Gauge Group 

We shall now describe the gauge theory corresponding to the almost-commutative 
manifold.M × FSM . In order to determine the gauge group.G(FSM) of Definition 7.4, 
let us start by examining the subalgebra .(AF )JF of the algebra .AF of Proposition 
13.1, as defined in Sect. 8.1. For an element .a = (λ, q,m) ∈ C ⊕ H ⊕ M3(C), the  
relation .aJF = JFa∗ now yields .λ = λ = α = α and .β = 0, as well as  .m = λI3. 
So, .a ∈ (AF )JF if and only if .a = (x, x, x) for .x ∈ R. Hence we find 

. (AF )JF � R.

Next, let us consider the Lie algebra .h(F) = u
(
(AF )JF

)
of (10.1.1b). Since . u(AF )

consists of the anti-hermitian elements of.AF , we obtain that the. h(F) = u
(
(AF )JF

)
is given by the trivial subalgebra .{0}. 
Proposition 13.3 The local gauge group .G(FSM) of the finite space .FSM is given by 

. G(FSM) � (
U (1) × SU (2) ×U (3)

)
/{1,−1},

where .{1,−1} is the diagonal normal subgroup in .U (1) × SU (2) ×U (3). 

Proof The unitary elements of the algebra form the group. U(AF ) � U (1) × U(H) ×
U (3). Now, a quaternion .q = q0I + iq1σ1 + iq2σ2 + iq3σ3 is unitary if and only 
if .|q|2 = q02 + q12 + q22 + q32 = 1. Using the embedding of .H in .M2(C), we  
find .|q|2 = det(q) = 1, and this yields the isomorphism .U(H) � SU (2). Hence, 
the unitary group .U(AF ) is given by .U (1) × SU (2) ×U (3). By Proposition 10.2, 
the gauge group is given by the quotient of the unitary group with the subgroup 
.H(F) = U(

(AF )JF
)
, which is the diagonal normal subgroup 

. {±(1, I2, I3)} ⊂ U (1) × SU (2) ×U (3).
. .�
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The gauge group that we obtain here is not the gauge group of the Standard 
Model, because (even ignoring the quotient with the finite group.{1,−1}) we have a  
factor .U (3) instead of .SU (3). As mentioned in Proposition 10.3, the unimodularity 
condition is only satisfied for complex algebras, but in our case, the algebra . C ⊕
H ⊕ M3(C) is only a real algebra. Therefore, the unimodularity condition is not 
automatically satisfied. Instead, we shall require that the unimodularity condition is 
satisfied, so for .u = (λ, q,m) ∈ U (1) × SU (2) ×U (3) we impose 

. det|HF
(u) = 1 =⇒ (

λ detm
)12 = 1.

For.u ∈ U (1) × SU (2) ×U (3), we denote the corresponding element in.G(FSM) by 
.U = u Ju J−1. We shall then consider the subgroup 

. SG(FSM) =
{
U = u Ju J−1 ∈ G(FSM) | u = (λ, q,m),

(
λ detm

)12 = 1
}

.

The effect of the unimodularity condition is that the determinant of .m ∈ U (3) is 
identified (modulo the multiplicative group.μ12 of.12’th roots of unity) with. λ. In other 
words, imposing the unimodularity condition provides us, modulo some finite abelian 
group, with the gauge group.U (1) × SU (2) × SU (3). This agrees with the Standard 
Model, as even the group.U (1) × SU (2) × SU (3) is actually not the true gauge group 
of the Standard Model. Indeed, it contains a finite abelian subgroup (isomorphic to) 
.μ6 which acts trivially on all bosonic and fermionic particles in the Standard Model. 
The group.μ6 is embedded in.U (1) × SU (2) × SU (3) by.λ �→ (λ,λ3,λ2). The true 
gauge group of the Standard Model is therefore given by 

. GSM := U (1) × SU (2) × SU (3)/μ6.

Proposition 13.4 The unimodular gauge group .SG(FSM) is isomorphic to 

. SG(FSM) � GSM � μ12.

Proof Proposition 13.3 shows that .SG(FSM) � SU(AF )/μ2, so we determine 
.SU(AF ). We do so in two  steps:  

.SU(AF ) � G × SU (2) × SU (3)/μ3, (I) 

where .G = {
(λ,μ) ∈ U (1) ×U (1) : (λμ3)12 = 1

}
, containing .μ3 as the subgroup 

.{e} × μ3, and 

.G � μ12 ×U (1). (II) 

For (I), consider the map 

.(λ,μ, q,m) ∈ G × SU (2) × SU (3) �→ (λ, q,μm) ∈ SU (AF ).
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We claim that this map is surjective and has kernel . μ3. If .(λ, q,m) ∈ SU (AF ), then 
there exists .μ ∈ U (1) such that .μ3 = detm ∈ U (1). Since. (λμ3)12 = (λ detm)12 =
1, the element.(λ,μ, q,m) lies in the pre-image of.(λ, q,m). The kernel of the above 
map consists of pairs .(λ,μ, q,m) ∈ G × SU (2) × SU (3) such that .λ = 1, . q = 1
and .m = μ−1

I3. Since .m ∈ SU (3), this  . μ satisfies .μ3 = 1. So we have established 
(I). 

For (II) we show that the following sequence is split-exact: 

. 1 → U (1) → G → μ12 → 1,

where the group homomorphisms are given by .λ ∈ U (1) �→ (λ3,λ−1) ∈ G and 
.(λ,μ) ∈ G → λμ3 ∈ μa . Exactness can be easily checked, and the splitting map 
is given by .λ ∈ μ12 → (λ, 1) ∈ G. In this abelian case, the corresponding action of 
.μ12 on .U (1) is trivial so that the resulting semi-direct product is 

. G � U (1) � μ12 � U (1) × μ12.
. . �

A similar argument shows that the gauge algebra of Definition 7.4 is 

. g(FSM) � u(1) ⊕ su(2) ⊕ u(3),

and the restriction to traceless matrices gives the gauge algebra of the Standard 
Model: 

. sg(FSM) � u(1) ⊕ su(2) ⊕ su(3).

13.2.2 The Gauge and Scalar Fields 

As we have seen in more generality in (10.2.7), the gauge field corresponding to. FSM

takes values in.g(FSM). We here confirm this result and derive the precise form of the 
gauge field .Aμ of (10.2.1), and also of the scalar field . φ of (10.2.2). 

Take two elements.a = (λ, q,m) and.b = (λ′, q ′,m ′)of the algebra. A = C∞(C ⊕
H ⊕ M3(C)). According to the representation of .AF on .HF , the inner fluctuations 
.Aμ = −ia∂μb decompose as 

. �μ := −iλ∂μλ
′

on .νR , 

.�′
μ := −iλ∂μλ

′
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on .eR , 

. Qμ := −iq∂μq
′

on .(νl , eL), and 

. V ′
μ := −im∂μm

′

acting on.Hq ; on all other components of.HF the gauge field.Aμ acts as zero. Imposing 
the hermiticity.�μ = �∗

μ implies.�μ ∈ R, and also automatically yields.�′
μ = −�μ. 

Furthermore, .Qμ = Q∗
μ implies that .Qμ is a real-linear combination of the Pauli 

matrices, which span.i su(2). Finally, the condition that.V ′
μ be hermitian yields. V ′

μ ∈
i u(3), so  .V ′

μ is a .U (3) gauge field. As mentioned above, we need to impose the 
unimodularity condition to obtain an .SU (3) gauge field. Hence, we require that the 
trace of the gauge field .Aμ over .HF vanishes, and we obtain 

. Tr|Hl

(
�μI4

) + Tr|Hq

(
I4 ⊗ V ′

μ

) = 0 =⇒ Tr(V ′
μ) = −�μ.

Therefore, we can define a traceless .SU (3) gauge field .Vμ by .V μ := −V ′
μ − 1

3�μ. 
The gauge field .Aμ is given by 

. Aμ

∣∣
Hl

=
⎛
⎝�μ 0

0 −�μ

Qμ

⎞
⎠ , Aμ

∣∣
Hq

=
⎛
⎝�μ 0

0 −�μ

Qμ

⎞
⎠ ⊗ I3,

Aμ

∣∣
Hl

= �μI4, Aμ

∣∣
Hq

= −I4 ⊗
(
V μ + 1

3
�μ

)
,

for some .U (1) gauge field .�μ, an .SU (2) gauge field .Qμ and an .SU (3) gauge field 
.Vμ. The action of the field .Bμ = Aμ − JF Aμ J

−1
F on the fermions is then given by 

. Bμ

∣∣
Hl

=
⎛
⎝0 0
0 −2�μ

Qμ − �μI2

⎞
⎠ ,

Bμ

∣∣
Hq

=
⎛
⎝

4
3�μI3 + Vμ 0

0 − 2
3�μI3 + Vμ

(Qμ + 1
3�μI2) ⊗ I3 + I2 ⊗ Vμ

⎞
⎠ .

(13.2.1) 

Note that the coefficients in front of .�μ in the above formulas are precisely the 
well-known hypercharges of the corresponding particles, as given by the following 
table:
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. 
Particle νR eR νL eL uR dR uL dL
Hypercharge 0 −2 −1 −1 4

3 − 2
3

1
3

1
3

Next, let us turn to the scalar field . φ, which is given by 

. φ|Hl
=

(
0 Y ∗
Y 0

)
, φ|Hq

=
(
0 X∗
X 0

)
⊗ I3, φ|Hl

= 0, φ|Hq
= 0, (13.2.2) 

where we now have, for complex fields .φ1,φ2, 

. Y =
(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
, X =

(
Yuφ1 −Ydφ2

Yuφ2 Ydφ1

)
.

The scalar field .� is then given by 

.� = DF +
(

φ 0
0 0

)
+ JF

(
φ 0
0 0

)
J ∗
F =

(
S + φ T ∗

T (S + φ)

)
. (13.2.3) 

Proposition 13.5 The action of the gauge group .SG(M × FSM) on the fluctuated 
Dirac operator 

. Dω = DM ⊗ I + γμ ⊗ Bμ + γM ⊗ �

is implemented by 

. �μ �→ �μ − iλ∂μλ, Qμ �→ qQμq
∗ − iq∂μq

∗, V μ �→ mV μm
∗ − im∂μm

∗,(
φ1 + 1

φ2

)
�→ λ q

(
φ1 + 1

φ2

)
,

for .λ ∈ C∞(
M,U (1)

)
, .q ∈ C∞(

M, SU (2)
)
and .m ∈ C∞(

M, SU (3)
)
. 

Proof We simply insert the formulas for the fields obtained in (13.2.1) into the 
transformations given by (10.2.9). Let us write 

. u = (λ, q,m) ∈ C∞(
M,U (1) × SU (2) × SU (3)

)
.

The term .uωu∗ replaces .Qμ by .qQμq∗, and .V μ by .mV μm∗, respectively. We also 
see that the term.−iu∂μu∗ is given by .−iλ∂μλ on.νR , .uR and .Hl , by the expression 
.−iλ∂μλ = iλ∂μλ on.eR and.dR , by .−iq∂μq∗ on.(νL , eL) and.(uL , dL), and, finally, 
by .−im∂μm∗ on .Hq . We thus obtain the desired transformation rules for .�μ, .Qμ, 
and .V μ. 

For the transformation of . φ, we separately calculate .uφu∗ and .u[DF , u∗]. Since 
.φ = 0 on .Hl and .Hq , we may restrict our calculation of .uφu∗ to .Hl and .Hq . On . Hl

we find
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. uφu∗ =
(
qλ 0
0 q

)(
0 Y ∗
Y 0

) (
q∗

λ 0
0 q∗

)
=

(
0 qλY ∗q∗

qYq∗
λ 0

)
,

which is still hermitian. We then calculate 

. qYq∗
λ =

(
α β

−β α

) (
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

) (
λ 0
0 λ

)

=
(

λYν(αφ1 + βφ2) λYe(βφ1 − αφ2)

λYν(−βφ1 + αφ2) λYe(αφ1 + βφ2)

)
.

A similar computation on .Hq gives the same transformation for the .φ1 and . φ2. 
Next, let us calculate the second term.u[DF , u∗]. The operator . T in.DF only acts 

on .νR , and therefore commutes with the algebra. Upon restricting to .Hl and .Hq , 
the operator . S commutes with the algebra. Hence, once again we may restrict our 
calculation to .Hl and .Hq . The  term.u[S, u∗] is .uSu∗ − S and we compute 

. uSu∗ =
(

0 qλY ∗
0 q

∗
qY0q∗

λ 0

)
,

where .Y0 = ( Yν 0
0 Ye

)
on .Hl and .Y0 = ( Yu 0

0 Yd

)
on .Hq . We find that on .Hl , 

. qY0q
∗
λ =

(
α β

−β α

) (
Yν 0
0 Ye

) (
λ 0
0 λ

)
=

(
λYνα λYeβ

−λYνβ λYeα

)
,

and a similar expression holds on.Hq after replacing.Yν and.Ye by.Yu and.Yd , respec-
tively. 

Combining the two contributions to the transformation, we find that the transfor-
mation .uφu∗ + u[S, u∗] maps 

. Y =
(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
�→ Y ′ =

(
Yνφ

′
1 −Yeφ

′
2

Yνφ
′
2 Yeφ

′
1

)
,

where we defined 

. φ′
1 := λ(αφ1 + βφ2 + α) − 1, φ′

2 := λ(−βφ1 + αφ2 − β).

Rewriting this in terms of . q completes the proof. . �

Summarizing, the gauge fields derived from .FSM take values in the Lie algebra 
.u(1) ⊕ su(2) ⊕ su(3) and transform according to the usual Standard Model gauge 
transformations. The scalar field . φ transforms as the Standard Model Higgs field in 
the defining representation of .SU (2), with hypercharge .−1.
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13.3 The Spectral Action 

In this section we calculate the spectral action for the almost-commutative manifold 
.M × FSM and derive the bosonic part of the Lagrangian of the Standard Model. The 
general form of this Lagrangian has already been calculated for almost-commutative 
manifolds in Sect. 10.12, so we only need to insert the expressions (13.2.1) and 
(13.2.3) for the fields .� and .Bμ. We start with a few lemmas that capture the rather 
tedious calculations that are needed to obtain the traces of .FμνFμν , .�2, .�4 and 
.(Dμ�)(Dμ�). 

We denote the curvatures of the .U (1), SU (2) and .SU (3) gauge fields by 

. �μν := ∂μ�ν − ∂ν�μ,

Qμν := ∂μQν − ∂νQμ + i[Qμ, Qν], (13.3.1) 

Vμν := ∂μVν − ∂ν Vμ + i[Vμ, Vν]. 
Lemma 13.6 The trace of the square of the curvature of .Bμ is given by 

. TrHF (FμνF
μν) = 24

(10
3

�μν�
μν + Tr(QμνQ

μν) + Tr(VμνV
μν)

)
.

Proof Let us first consider the trace over the lepton sector. Using (13.2.1), we find 
that the curvature .Fμν of .Bμ can be written as 

. Fμν

∣∣∣
Hl

=
⎛
⎝ 0 0
0 −2�μν

Qμν − �μνI2

⎞
⎠ ,

Fμν

∣∣∣
Hl

=
⎛
⎝ 0 0
0 2�μν

�μνI2 − (Q)μν

⎞
⎠ ,

where .(Q)μν is the curvature of .Qμ. The square of the curvature therefore becomes 

. FμνF
μν

∣∣∣
Hl

=
⎛
⎝0 0
0 4�μν�

μν

QμνQμν + �μν�
μν

I2 − 2�μνQμν

⎞
⎠ ,

FμνF
μν

∣∣∣
Hl

=
⎛
⎝0 0
0 4�μν�

μν

(Q)μν(Q)μν + �μν�
μν

I2 − 2�μν(Q)μν

⎞
⎠ .

Since .Qμν is traceless, the cross-term .−2�μνQμν drops out after taking the trace. 
Note that since.Qμ is hermitian we have.Qμ = QT

μ , and this also holds for.Qμν . This  
implies that 

. Tr
(
(Qμν)(Qμν)

) = Tr
(
(Qμν)

T (Qμν)T
) = Tr

(
QμνQ

μν
)
.
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Thus, with three generations we obtain 

. TrHl⊕Hl
(FμνF

μν) = 36�μν�
μν + 6Tr(QμνQ

μν).

For the quark sector, on .Hq , we obtain the curvature 

. Fμν

∣∣
Hq

=
⎛
⎝

4
3�μνI3 + Vμν 0

0 − 2
3�μνI3 + Vμν

(Qμν + 1
3�μνI2) ⊗ I3 + I2 ⊗ Vμν

⎞
⎠ ,

where we have defined the curvature of the .SU (3) gauge field by 

. Vμν := ∂μVν − ∂νVμ + i[Vμ, Vν].

A similar expression can be derived on .Hq . 
If we calculate the trace of the square of the curvature .Fμν , the cross-terms again 

vanish, so we obtain 

. Tr|Hq
(FμνF

μν) =
(
16

3
+ 4

3
+ 1

3
+ 1

3

)
�μν�

μν

+ 3Tr(QμνQ
μν) + 4 Tr(VμνV

μν).

We multiply this by a factor of . 2 to include the trace over the anti-quarks, and by 
a factor of . 3 for the number of generations. Adding the result to the trace over the 
lepton sector, we finally obtain 

. Tr(FμνF
μν) = 80�μν�

μν + 24 Tr(QμνQ
μν) + 24 Tr(VμνV

μν).
. . �

Lemma 13.7 The traces of .�2 and .�4 are given by 

. Tr
(
�2

) = 4a|H |2 + 2c,

Tr
(
�4

) = 4b|H |4 + 8e|H |2 + 2d,

where .H denotes the complex doublet .(φ1 + 1,φ2) and 

. a = Tr
(
Y ∗

ν Yν + Y ∗
e Ye + 3Y ∗

u Yu + 3Y ∗
d Yd

)
,

b = Tr
(
(Y ∗

ν Yν)
2 + (Y ∗

e Ye)
2 + 3(Y ∗

u Yu)
2 + 3(Y ∗

d Yd)
2
)
,

c = Tr
(
Y ∗
RYR

)
, (13.3.2) 

d = Tr
(
(Y ∗ 

RYR)2
)
, 

e = Tr
(
Y ∗ 
RYRY 

∗ 
ν Yν

)
.
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Proof The field .� is given by (13.2.3), and its square equals 

. �2 =
(

(S + φ)2 + T ∗T (S + φ)T ∗ + T ∗(S + φ)

T (S + φ) + (S + φ)T (S + φ)
2 + T T ∗

)
.

The square of the off-diagonal part yields .T ∗T = T T ∗ = |YR|2 on .νR and .νR , and 
zero on .l 
= νR, νR . On the lepton sector of the Hilbert space, the component . S + φ
is given by 

. S + φ|Hl =
(

0 Y ∗ + Y ∗
0

Y + Y0 0

)
.

We then calculate 

. X := (Y + Y0)
∗(Y + Y0) = |H |2

( |Yν |2 0
0 |Ye|2

)
,

where we defined the complex doublet.H := (φ1 + 1,φ2). Similarly, we define. X′ :=
(Y + Y0)(Y + Y0)∗, and note that.Tr(X) = Tr(X′) by the cyclic property of the trace. 
Since .X = X∗ and .Tr(X) = Tr(XT ), we also have  .Tr(X) = Tr(X). Thus, on the 
lepton sector we obtain 

. TrHl⊕Hl

(
�2) = Tr(X + X′ + X + X

′
) + 2|YR|2

= 4 Tr(X) + 2|YR|2 = 4(|Yν |2 + |Ye|2)|H |2 + 2|YR|2.

On the quark sector we similarly find 

. TrHq⊕Hq

(
�2) = 4 · 3(|Yν |2 + |Ye|2)|H |2,

leading to the stated formula for .Tr(�2). 
In order to find the trace of .�4, we calculate 

. (X + T ∗T )2 = |H |4
( |Yν |4 0

0 |Ye|4
)

+ 2 H |2
( |YR|2|Yν |2 0

0 0

)
+

( |YR|4 0
0 0

)
.

We hence obtain 

. TrHl⊕Hl

(
�4

) = Tr
(
4X2 + 4XT ∗T + 2(T ∗T )2

) + 4|H |2|YR|2|Yν |2
= 4|H |4(|Yν |4 + |Ye|4

) + 8|H |2|YR|2|Yν |2 + 2|YR|4.

On the quark sector, we obtain a similar result with .Yν replaced by .Yu and.Ye by.Yd , 
leaving out the .YR , and including a factor of . 3 for the trace in colour space. . �

Lemma 13.8 The trace of .(Dμ�)(Dμ�) is given by
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. Tr
(
(Dμ�)(Dμ�)

) = 4a|DμH |2,

where .H denotes the complex doublet .(φ1 + 1,φ2), and the covariant derivative . Dμ

on .H is defined as 

. DμH = ∂μH + i Qa
μσ

aH − i�μH.

Proof We need to calculate the commutator .[Bμ,�]. We note that .Bμ commutes 
with the off-diagonal part of .DF . It is therefore sufficient to calculate the commu-
tator .[Bμ, S + φ] on .Hl . We shall write  .Qμ = Q1

μσ
1 + Q2

μσ
2 + Q3

μσ
3 as a linear 

combination of Pauli matrices with real coefficients.Qa
μ. By direct calculation on the 

lepton sector, we then obtain 

. [Bμ, S + φ]|Hl =

⎛
⎜⎜⎝

0 0 −Y νχ1 −Y νχ2

0 0 −Y eχ2 Y eχ1

Yνχ1 Yeχ2 0 0
Yνχ2 −Yeχ1 0 0

⎞
⎟⎟⎠ ,

where we defined the new doublet .χ = (χ1,χ2) by 

. χ1 := (φ1 + 1)(Q3
μ − �μ) + φ2(Q

1
μ − i Q2

μ),

χ2 := (φ1 + 1)(Q1
μ + i Q2

μ) + φ2(−Q3
μ − �μ).

We then obtain 

. Dμ(S + φ)|Hl = ∂μφ + i[Bμ, S + φ]

=

⎛
⎜⎜⎝

0 0 Y ν(∂μφ1 − iχ1) Y ν(∂μφ2 − iχ2)

0 0 −Y e(∂μφ2 + iχ2) Y e(∂μφ1 + iχ1)

Yν(∂μφ1 + iχ1) −Ye(∂μφ2 − iχ2) 0 0
Yν(∂μφ2 + iχ2) Ye(∂μφ1 − iχ1) 0 0

⎞
⎟⎟⎠ .

As . φ commutes with the gauge field .Vμ, the corresponding formula for . Dμ(S + φ)

on the quark sector is identical (after having tensored with .I3 in colour space). 
Since we want to calculate the trace of the square of .Dμ�, it is sufficient to 

determine only the terms on the diagonal of .(Dμ�)(Dμ�). We find 

. TrHl⊕Hq

(
(Dμ(S + φ))(Dμ(S + φ))

)
= 2a

(
|∂μφ1 + iχ1|2 + |∂μφ2 + iχ2|2

)
,

where we have used 

. a = Tr
(
Y ∗

ν Yν + Y ∗
e Ye + 3Y ∗

u Yu + 3Y ∗
d Yd

)

as in (13.3.2). The column vector .H is given by the complex doublet .(φ1 + 1,φ2). 
We then note that .∂μφ + iχ is equal to the covariant derivative .DμH , so that
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. TrHl⊕Hq

(
(Dμ(S + φ))(Dμ(S + φ))

)
= 2a|DμH |2.

The trace over.Hl ⊕ Hq yields exactly the same contribution, so we need to multiply 
this by . 2, which gives the desired result. . �

Proposition 13.9 The spectral action of the almost-commutative manifold. M × FSM

is given by 

. Tr

(
f
(Dω

�

))
∼

∫
M
L(gμν,�μ, Qμ, Vμ, H)

√
gd4x + O(�−1),

for the Lagrangian 

. L(gμν,�μ, Qμ, Vμ, H) := 96LM(gμν) + LA(�μ, Qμ, Vμ) + LH (gμν,�μ, Qμ, H),

where .LM(gμν) is defined in Proposition 10.10, .LA gives the kinetic terms of the 
gauge fields as 

. LA(�μ, Qμ, Vμ) := f (0)

π2

(10
3

�μν�
μν + Tr(QμνQ

μν) + Tr(VμνV
μν)

)
,

and the Higgs potential .LH (ignoring the boundary term) equals 

. LH (gμν,�μ, Qμ, H) :=b f (0)

2π2
|H |4 + −2a f2�2 + e f (0)

π2
|H |2

−c f2�2

π2
+d f (0)

4π2
+ a f (0)

12π2
s|H |2 + c f (0)

24π2
s + a f (0)

2π2
|DμH |2.

Proof We use the general form of the spectral action of an almost-commutative man-
ifold as calculated in Proposition 10.12, and combine it with the previous Lemmas. 
The gravitational Lagrangian .LM obtains a factor .96 from the trace over .HF . From  
Lemma 13.6 we immediately find the term.LA. Combining the formulas of . Tr

(
�2

)
and .Tr

(
�4

)
obtained in Lemma 13.7, we find the Higgs potential 

. − f2�2

2π2
Tr(�2)+ f (0)

8π2
Tr(�4)

=b f (0)

2π2
|H |4 + −2a f2�2 + e f (0)

π2
|H |2 − c f2�2

π2
+ d f (0)

4π2
.

The coupling of the Higgs field to the scalar curvature . s is given by 

.
f (0)

48π2
s Tr(�2) = a f (0)

12π2
s|H |2 + c f (0)

24π2
s,
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where the second term yields a contribution to the Einstein-Hilbert term .− f2�2

3π2 s of 
.LM . Finally, the kinetic term of the Higgs field including minimal coupling to the 
gauge fields is obtained from Lemma 13.8 as 

. 
f (0)

8π2
Tr

(
(Dμ�)(Dμ�)

) = a f (0)

2π2
|DμH |2.

. . �

13.3.1 Coupling Constants and Unification 

In Proposition 13.9 we calculated the bosonic Lagrangian from the spectral action. 
We now rescale the Higgs and gauge fields .�μ, Qμ, Vμ in such a way that their 
kinetic terms are properly normalized. 

We start with the Higgs field, and require that its kinetic term is normalized as 
usual, i.e., 

. 

∫
M

1

2
|DμH |2√gd4x .

This normalization is evidently achieved by rescaling the Higgs field as 

.H �→
√

π2

a f (0)
H. (13.3.3) 

Next, write the non-abelian gauge fields as.Qμ = Qa
μσ

a and.Vμ = V i
μλi , for the Gell-

Mann matrices .λi and real coefficients .V i
μ. We introduce coupling constants . g1, g2

and .g3 into the model by rescaling the gauge fields as 

. �μ = 1

2
g1Yμ, Qa

μ = 1

2
g2W

a
μ , V i

μ = 1

2
g3G

i
μ.

Using the relations .Tr(σaσb) = 2δab and .Tr(λiλ j ) = 2δi j , we now find that the 
Lagrangian .LA of Proposition 13.9 can be written as 

. LA(Yμ,Wμ,Gμ) = f (0)

2π2

(5
3
g1

2YμνY
μν + g2

2WμνW
μν + g3

2GμνG
μν

)
.

It is natural to require that these kinetic terms are properly normalized, and this 
imposes the relations 

.
f (0)

2π2
g3

2 = f (0)

2π2
g2

2 = 5 f (0)

6π2
g1

2 = 1

4
. (13.3.4)
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The coupling constants are then related by 

.g3
2 = g2

2 = 5

3
g1

2, (13.3.5) 

which is precisely the relation between the coupling constants at unification, common 
to grand unified theories (GUT). We shall further discuss this in Sect. 14.2. 

In terms of the rescaled fields, we obtain the following result: 

Theorem 13.10 The spectral action (ignoring topological and boundary terms) of 
the almost-commutative manifold .M × FSM is given by 

. SB =
∫
M

(
48 f4�4

π2
− c f2�2

π2
+ d f (0)

4π2
+

(
c f (0)

24π2
− 4 f2�2

π2

)
s − 3 f (0)

10π2
(Cμνρσ)

2

+ 1

4
YμνY

μν + 1

4
Wa

μνW
μν,a + 1

4
Gi

μνG
μν,i + bπ2

2a2 f (0)
|H |4

− 2a f2�2 − e f (0)

a f (0)
|H |2 + 1

12
s|H |2 + 1

2
|DμH |2

)√
gd4x,

where the covariant derivative .DμH is given by 

.DμH = ∂μH + 1

2
ig2W

a
μσaH − 1

2
ig1YμH. (13.3.6) 

13.3.2 The Higgs Mechanism 

Writing down a gauge theory with massive gauge bosons, one encounters the noto-
rious difficulty that the mass terms of these gauge bosons are not gauge invariant. 
The Higgs field plays a central role in obtaining these mass terms within a gauge 
theory. The celebrated Higgs mechanism provides a spontaneous breaking of the 
gauge symmetry and thus generates mass terms. In this section we describe how the 
Higgs mechanism breaks the .U (1) × SU (2) symmetry and introduces mass terms 
for some of the gauge bosons of the Standard Model. 

In Theorem 13.10 we obtained the Higgs Lagrangian.LH . If we drop all  the terms  
that are independent of the Higgs field. H , and also ignore the coupling of the Higgs 
to the gravitational field, we obtain the Lagrangian 

. L(gμν,Yμ,W
a
μ , H) := bπ2

2a2 f (0)
|H |4 − 2a f2�2 − e f (0)

a f (0)
|H |2 + 1

2
|DμH |2.

(13.3.7) 

We wish to find the value of.H for which this Lagrangian obtains its minimum value. 
Hence, we consider the Higgs potential
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Fig. 13.3 The potential.Lpot (H) of (13.3.8) with. 2a f2�2 > e f (0)

.Lpot(H) := bπ2

2a2 f (0)
|H |4 − 2a f2�2 − e f (0)

a f (0)
|H |2. (13.3.8) 

If .2a f2�2 < e f (0), the minimum of this potential is obtained at .H = 0, and in this 
case there will be no symmetry breaking. Indeed, the minimum.H = 0 is symmetric 
under the full symmetry group .U (1) × SU (2). 

We now assume that .2a f2�2 > e f (0), so that the potential has the form depicted 
in Fig. 13.3. The minimum of the Higgs potential is then reached if the field . H
satisfies 

.|H |2 = 2a2 f2�2 − ae f (0)

bπ2
, (13.3.9) 

and none such minimum is invariant any more under .U (1) × SU (2). The fields that 
satisfy this relation are called the vacuum states of the Higgs field. We choose a 
vacuum state .(v, 0), where the vacuum expectation value . v is a real parameter such 
that .v2 is given by the right-hand side of (13.3.9). From the transformation rule 
of Proposition 13.5, we see that the vacuum state .(v, 0) is still invariant under a 
subgroup of .U (1) × SU (2). This subgroup is isomorphic to .U (1) and is given by 

.

{(
λ, qλ =

(
λ 0
0 λ

))
: λ ∈ U (1)

}
⊂ U (1) × SU (2).
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Let us simplify the expression for the Higgs potential. First, we note that the 
potential only depends on the absolute value .|H |. A transformation of the doublet 
.H by an element .(λ, q) ∈ U (1) × SU (2) is written as .H �→ uH with .u = λq a 
unitary matrix. Since a unitary transformation preserves absolute values, we see that 
.Lpot(uH) = Lpot(H) for any.u ∈ U (1) × SU (2). We can use this gauge freedom to 
transform the Higgs field into a simpler form. Consider elements of .SU (2) of the 
form 

. 

(
α −β
β α

)

such that .|α|2 + |β|2 = 1. The doublet .H can in general be written as .(h1, h2), for  
some .h1, h2 ∈ C. We then see that we may write 

. 

(
h1
h2

)
=

(
α −β
β α

)( |H |
0

)
, α = h1

|H | , β = h2
|H | ,

which means that we may always use the gauge freedom to write the doublet . H
in terms of one real parameter. Let us define a new real-valued field . h by setting 
.h(x) := |H(x)| − v. We then obtain 

.H = u(x)

(
v + h(x)

0

)
, u(x) :=

(
α(x) −β(x)
β(x) α(x)

)
. (13.3.10) 

Inserting this transformed Higgs field into the Higgs potential, we obtain the follow-
ing expression in terms of the real parameter . v and the real field .h(x): 

. Lpot(h) = b f (0)

2π2
(v + h)4 − 2a f2�2 − e f (0)

π2
(v + h)2

= bπ2

2a2 f (0)
(h4 + 4vh3 + 6v2h2 + 4v3h + v4)

− 2a f2�2 − e f (0)

a f (0)
(h2 + 2vh + v2).

Using (13.3.9), the value of .v2 is given by 

. v2 = 2a2 f2�2 − ae f (0)

bπ2
.

We then see that in.Lpot the terms linear in. h cancel out. This is of course no surprise, 
since the change of variables .|H(x)| �→ v + h(x) means that at .h(x) = 0 we are at 
the minimum of the potential, where the first order derivative of the potential with 
respect to . h must vanish. We thus obtain the simplified expression
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.Lpot(h) = bπ2

2a2 f (0)

(
h4 + 4vh3 + 4v2h2 − v4

)
. (13.3.11) 

We now observe that the field .h(x) has acquired a mass term and has two self-
interactions given by.h3 and. h4. We also have another contribution to the cosmological 
constant, given by .−v4. 

13.3.2.1 Massive Gauge Bosons 

Next, let us consider what this procedure entails for the remainder of the Higgs 
Lagrangian .LH . We first consider the kinetic term of . H , including its minimal cou-
pling to the gauge fields, given by 

. Lmin(Yμ,W
a
μ , H) := 1

2
|DμH |2.

The transformation of (13.3.10) is a gauge transformation, and to make sure that. Lmin

is invariant under this transformation, we also need to transform the gauge fields. The 
field .Yμ is unaffected by the local .SU (2)-transformation .u(x). The transformation 
of .Wμ = Wa

μσa is obtained from Proposition 13.5 and is given by 

. Wμ → uWμu
∗ − 2i

g2
u∂μu

∗.

One then easily checks that we obtain the transformation .DμH �→ uDμH , so that 
.|DμH |2 is invariant under such transformations. So we can just insert the doublet 
.(v + h, 0) into (13.3.6) and obtain 

. DμH = ∂μ

(
v + h
0

)
+ 1

2
ig2W

a
μσa

(
v + h
0

)
− 1

2
ig1Yμ

(
v + h
0

)

= ∂μ

(
h
0

)
+ 1

2
ig2W

1
μ

(
0

v + h

)
+ 1

2
ig2W

2
μ

(
0

i(v + h)

)

+ 1

2
ig2W

3
μ

(
v + h
0

)
− 1

2
ig1Yμ

(
v + h
0

)
.

We can then calculate its square as 

.|DμH |2 = (DμH)∗(DμH)

= (∂μh)(∂μh) + 1

4
g2

2(v + h)2(W μ,1W 1
μ + W μ,2W 2

μ + W μ,3W 3
μ)

+ 1

4
g1

2(v + h)2B
′μYμ − 1

2
g1g2(v + h)2B

′μW 3
μ .
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Note that the last term yields a mixing of the gauge fields .Yμ and .W 3
μ , parametrized 

by the electroweak mixing angle .θw defined by 

. cw := cos θw = g2√
g12 + g22

, sw := sin θw = g1√
g12 + g22

.

Note that the relation .g22 = 3g12 for the coupling constants implies that we obtain 
the values.cos2 θw = 1

4 and.sin2 θw = 3
4 at the electroweak unification scale.�EW . Let  

us now define new gauge fields by 

. Wμ := 1√
2
(W 1

μ + iW 2
μ), W ∗

μ := 1√
2
(W 1

μ − iW 2
μ),

Zμ := cwW
3
μ − swYμ, A′

μ := swW
3
μ + cwYμ, (13.3.12) 

where we have added a prime to.Aμ to distinguish the (photon) field from the general 
form of the inner fluctuations in Eq. (10.2.1). We now show that the new fields.Zμ and 
.A′

μ become mass eigenstates. The fields .W 1
μ and.W 2

μ were already mass eigenstates, 
but the fields .Wμ and .W ∗

μ are chosen so that they obtain a definite charge. We can 
write 

. W 1
μ = 1√

2
(Wμ + W ∗

μ ), W 2
μ = −i√

2
(Wμ − W ∗

μ ),

W 3
μ = swA′

μ + cwZμ, Yμ = cwA′
μ − swZμ,

and inserting this into the expression for .|DμH |2 yields 

. 
1

2
|DμH |2 = 1

2
(∂μh)(∂μh) + 1

4
g2

2(v + h)2 W μ∗Wμ + 1

8

g22

cw
2
(v + h)2ZμZμ.

(13.3.13) 

Thus, we see that the fields .Wμ, .W ∗
μ and .Zμ acquire a mass term (where .Zμ has a 

larger mass than.Wμ,W ∗
μ ) and that the fields.A

′
μ are massless. The (tree-level) masses 

of the .W -boson and .Z -boson are evidently given by 

.MW = 1

2
vg2, MZ = 1

2
v
g2
cw

. (13.3.14) 

13.4 The Fermionic Action 

In order to obtain the full Lagrangian for the Standard Model, we also need to 
calculate the fermionic action.S f of Definition 9.3. First, let us have a closer look at 
the fermionic particle fields and their interactions.
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By an abuse of notation, let us write .νλ, νλ, eλ, eλ, uλc, uλc, dλc, d
λc

for a set of 
independent Dirac spinors. We then write a generic Grassmann vector .ξ̃ ∈ H+

cl as 
follows: 

. ̃ξ = νλ
L ⊗ νλ

L + νλ
R ⊗ νλ

R + νλ
R ⊗ νλ

L + νλ
L ⊗ νλ

R

+ eλ
L ⊗ eλ

L + eλ
R ⊗ eλ

R + eλ
R ⊗ eλ

L + eλ
L ⊗ eλ

R

+ uλc
L ⊗ uλc

L + uλc
R ⊗ uλc

R + uλc
R ⊗ uλc

L + uλc
L ⊗ uλc

R

+ dλc
L ⊗ dλc

L + dλc
R ⊗ dλc

R + d
λc
R ⊗ dλc

L + d
λc
L ⊗ dλc

R ,

where in each tensor product it should be clear that the first component is a Weyl 
spinor, and the second component is a basis element of .HF . Here .λ = 1, 2, 3 labels 
the generation of the fermions, and .c = r, g, b labels the color index of the quarks. 

Let us have a closer look at the gauge fields of the electroweak sector. For the 
physical gauge fields of (13.3.12) we can write 

. 

Q1
μ + i Q2

μ = 1√
2
g2Wμ, Q1

μ − i Q2
μ = 1√

2
g2W

∗
μ ,

Q3
μ − �μ = g2

2cw

Zμ, �μ = 1

2
swg2A

′
μ − 1

2

sw2g2
cw

Zμ,

−Q3
μ − �μ = −swg2A

′
μ + g2

2cw

(1 − 2cw
2)Zμ,

Q3
μ + 1

3
�μ = 2

3
swg2A

′
μ − g2

6cw

(1 − 4cw
2)Zμ,

−Q3
μ + 1

3
�μ = −1

3
swg2A

′
μ − g2

6cw

(1 + 2cw
2)Zμ.

(13.4.1) 

Here we have rescaled the Higgs field in (13.3.3), so we can write . H =√
a f (0)
π

(φ1 + 1,φ2). We parametrize the Higgs field as 

. H = (v + h + iφ0, i
√
2φ−),

where .φ0 is real and .φ− is complex. We write .φ+ for the complex conjugate of .φ−. 
Thus, we can write 

.(φ1 + 1,φ2) = π√
a f (0)

(v + h + iφ0, i
√
2φ−). (13.4.2) 

As in Remark 11.8, we will need to impose a further restriction on the mass 
matrices in.DF , in order to obtain physical mass terms in the fermionic action. From 
here on, we will require that the matrices .Yx are anti-hermitian, for .x = ν, e, u, d. 
We then define the hermitian mass matrices .mx by writing
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.Yx =: −i

√
a f (0)

πv
mx . (13.4.3) 

Similarly, we also take .YR to be anti-hermitian, and we introduce a hermitian (and 
symmetric) Majorana mass matrix .mR by writing 

.YR = −i mR . (13.4.4) 

Theorem 13.11 The fermionic action of the almost-commutative manifold. M × FSM

is given by 

. SF =
∫
M

(Lkin + Lg f + LH f + LR
)√

gd4x,

where, suppressing all generation and color indices, the kinetic terms of the fermions 
are given by 

. Lkin := −i〈JMν, γμ∇ S
μν〉 − i〈JMe, γμ∇ S

μe〉
− i〈JMu, γμ∇ S

μu〉 − i〈JMd, γμ∇ S
μd〉,

the minimal coupling of the gauge fields to the fermions is given by 

. Lg f := swg2A
′
μ

(
− 〈JMe, γμe〉 + 2

3 〈JMu, γμu〉 − 1
3 〈JMd, γμd〉

)

+ g2
4cw

Zμ

(
〈JMν, γμ(1 + γM)ν〉 + 〈JMe, γμ(4sw

2 − 1 − γM)e〉
+ 〈JMu, γμ(− 8

3 sw
2 + 1 + γM)u〉

+ 〈JMd, γμ( 43 sw
2 − 1 − γM)d〉

)

+ g2

2
√
2
Wμ

(
〈JMe, γμ(1 + γM)ν〉 + 〈JMd, γμ(1 + γM)u〉

)

+ g2

2
√
2
W ∗

μ

(
〈JMν, γμ(1 + γM)e〉 + 〈JMu, γμ(1 + γM)d〉

)

+ g3
2
Gi

μ

(
〈JMu, γμλi u〉 + 〈JMd, γμλi d〉

)
,

the Yukawa couplings of the Higgs field to the fermions are given by 

.LH f := i

(
1 + h

v

) (
〈JMν,mνν〉 + 〈JMe,mee〉

+ 〈JMu,muu〉 + 〈JMd,mdd〉
)

+ φ0

v

(
〈JMν, γMmνν〉 − 〈JMe, γMmee〉

+ 〈JMu, γMmuu〉 − 〈JMd, γMmdd〉
)
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+ 
φ− 

√
2v

(
〈JMe, me(1 + γM )ν〉 − 〈JMe, mν (1 − γM )ν〉

)

+ 
φ+ 

√
2v

(
〈JM ν, mν (1 + γM )e〉 − 〈JM ν, me(1 − γM )e〉

)

+ 
φ− 

√
2v

(
〈JMd, md (1 + γM )u〉 − 〈JMd, mu(1 − γM )u〉

)

+ 
φ+ 

√
2v

(
〈JMu, mu(1 + γM )d〉 − 〈JMu, md (1 − γM )d〉

)
, 

and, finally, the Majorana masses of the right-handed neutrinos (and left-handed 
anti-neutrinos) are given by 

. LR := i〈JMνR,mRνR〉 + i〈JMνL ,mRνL〉.
Proof The proof is similar to Proposition 11.7, though the calculations are now a 
little more complicated. From Definition 9.3 we know that the fermionic action is 
given by .SF = 1

2 (J ξ̃, Dωξ̃), where the fluctuated Dirac operator is given by 

. Dω = DM ⊗ 1 + γμ ⊗ Bμ + γM ⊗ �.

We rewrite the inner product on .H as .(ξ,ψ) = ∫
M 〈ξ,ψ〉√gd4x . As in Proposition 

11.7, the expressions for .J ξ̃ = (JM ⊗ JF )ξ̃ and .(DM ⊗ 1)ξ̃ are obtained straight-
forwardly. Using the symmetry of the form .(JM χ̃, DM ψ̃), and then we obtain the 
kinetic terms as 

. 
1

2
〈J ξ̃, (DM ⊗ 1)ξ̃〉 = 〈JMνλ, DMνλ〉 + 〈JMeλ, DMe

λ〉
+ 〈JMuλc, DMu

λc〉 + 〈JMdλc
, DMd

λc〉.

The other two terms in the fluctuated Dirac operator yield more complicated expres-
sions. For the calculation of .(γμ ⊗ Bμ)ξ̃, we use  (13.2.1) for the gauge field.Bμ, and 
insert the expressions of (13.4.1). As in Proposition 11.7, we then use the antisym-
metry of the form.(JM χ̃, γμψ̃). For the coupling of the fermions to the gauge fields, 
a direct calculation then yields 

.
1

2
〈J ξ̃, (γμ ⊗ Bμ)ξ̃〉 =
swg2A

′
μ

(
− 〈JMeλ, γμeλ〉 + 2

3 〈JMuλc, γμuλc〉 − 1
3 〈JMd

λc
, γμdλc〉

)

+ g2
4cw

Zμ

(
〈JMνλ, γμ(1 + γM)νλ〉 + 〈JMeλ, γμ(4sw

2 − 1 − γM)eλ〉
+ 〈JMuλc, γμ(− 8

3 sw
2 + 1 + γM)uλc〉

+ 〈JMdλc
, γμ( 43 sw

2 − 1 − γM)dλc〉
)
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+ 
g2 

2
√
2 
Wμ

(
〈JMeλ , γμ (1 + γM )ν

λ〉 + 〈JMd λc , γμ (1 + γM )u
λc〉

)

+ 
g2 

2
√
2 
W ∗ 

μ

(
〈JM ν

λ , γμ (1 + γM )e
λ〉 + 〈JMuλc , γμ (1 + γM )d

λc〉
)

+ 
g3 
2 
Gi 

μλ
dc  
i

(
〈JMuλd , γμ uλc〉 + 〈JMd λd , γμ dλc〉

)
, 

where in the weak interactions the projection operator . 12 (1 + γM) is used to select 
only the left-handed spinors. 

Next, we need to calculate . 12 (J ξ̃, (γM ⊗ �)ξ̃). The Higgs field is given by . � =
DF + φ + JFφJ ∗

F , where . φ is given by (13.2.2). Let us first focus on the four terms 
involving only the Yukawa couplings for the neutrinos. Using the symmetry of the 
form.(JM χ̃, γM ψ̃), we obtain 

. 
1

2
〈JMνκ

R, γMY
κλ
ν (φ1 + 1)νλ

R〉 + 1

2
〈JMνκ

R, γMY
λκ
ν (φ1 + 1)νλ

R〉

+1

2
〈JMνκ

L , γMY
λκ

ν (φ1 + 1)νλ
L〉 + 1

2
〈JMνκ

L , γMY
κλ

ν (φ1 + 1)νλ
L〉

= 〈JMνκ
R, γMY

κλ
ν (φ1 + 1)νλ

R〉 + 〈JMνκ
L , γMY

λκ

ν (φ1 + 1)νλ
L〉.

Using (13.4.2) and (13.4.3), and dropping the generation labels, we can now rewrite 

. 〈JMνR, γMYν(φ1 + 1)νR〉 + 〈JMνL , γMY ν(φ1 + 1)νL〉
= i

(
1 + h

v

)
〈JMν,mνν〉 − φ0

v
〈JMν, γMmνν〉.

For .e, u, d we obtain similar terms, the only difference being that for . e and . d the 
sign for .φ0 is changed. We also find terms that mix neutrino’s and electrons; by the 
symmetry of the form.(JM χ̃, γM ψ̃), these are given by the four terms 

. 

√
2

v

(
φ−〈JMeL ,meνL〉 + φ+〈JMνL ,mνeL〉

−φ−〈JMeR,mννR〉 − φ+〈JMνR,meeR〉
)
.

There are four similar terms with . ν and . e replaced by . u and . d, respectively. We 
can use the projection operators . 12 (1 ± γM) to select left- or right-handed spinors. 
Lastly, the off-diagonal part .T in the finite Dirac operator .DF yields the Majorana 
mass terms for the right-handed neutrinos (and left-handed anti-neutrinos). Using 
(13.4.4), these Majorana mass terms are given by 

.〈JMνR, γMYRνR〉 + 〈JMνL , γMY RνL〉 = i〈JMνR,mRνR〉 + i〈JMνL ,mRνL〉.
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Thus, we find that the mass terms of the fermions and their couplings to the Higgs 
field are given by 

. 
1

2
〈J ξ̃, (γM ⊗ �)ξ̃〉 =

i

(
1 + h

v

) (
〈JMν,mνν〉 + 〈JMe,mee〉 + 〈JMu,muu〉 + 〈JMd,mdd〉

)

+ φ0

v

(
〈JMν, γMmνν〉 − 〈JMe, γMmee〉 + 〈JMu, γMmuu〉 − 〈JMd, γMmdd〉

)

+ φ−
√
2v

(
〈JMe,me(1 + γM)ν〉 − 〈JMe,mν(1 − γM)ν〉

)

+ φ+
√
2v

(
〈JMν,mν(1 + γM)e〉 − 〈JMν,me(1 − γM)e〉

)

+ φ−
√
2v

(
〈JMd,md(1 + γM)u〉 − 〈JMd,mu(1 − γM)u〉

)

+ φ+
√
2v

(
〈JMu,mu(1 + γM)d〉 − 〈JMu,md(1 − γM)d〉

)

+ i〈JMνR,mRνR〉 + i〈JMνL ,mRνL〉,

where we have suppressed all indices. . �

In Theorems 13.10 and 13.11 we have calculated the action functional of 
Definitions 9.1 and 9.3 for the almost-commutative manifold .M × FSM defined in 
this Chapter. To summarize, we have geometrically derived: 

(1) The full particle contents of the Standard Model, to wit, 

• the. W ,. Z bosons, photons, and gluons, corresponding to the. U (1) × SU (2) ×
SU (3) Standard Model gauge group. 

• the Higgs boson. 
• three generations of left and right-handed leptons and quarks. 

(2) The dynamics and all interactions of the Standard Model, including 

• self-interactions of the gauge bosons, and coupling to fermions 
• masses for the fermions, including masses for the neutrinos, and coupling to 
the Higgs field 

• Higgs spontaneous symmetry breaking mechanism, giving masses to the . W
and . Z boson, and also to the Higgs boson itself. 

(3) Minimal coupling to gravity. 

In addition to the usual Standard Model, there are relations between the coupling 
constants in the Lagrangian of Theorem 13.10. In the next Chapter, we will analyze 
this in more detail and derive physical predictions from these relations.
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Notes 

1. For an exposition of the Standard Model of particle physics, we refer to [ 1, 2]. 

Section 13.1. The Finite Space 

2. The first description of the finite space.FSM yielding the Standard Model (without right-handed 
neutrinos though) was given by Connes in [ 3],  based on [  4, 5] (see also the review [ 6]). As 
already mentioned in the Notes to Chap. 9, the spectral action principle was formulated in [ 7, 
8] where it was also applied to the Standard Model. Extensive computations on this model can 
be found in [ 9]. 
In [ 10] the noncommutative geometric formulation of the Standard Model got in good shape, 
mainly because of the choice for the finite space to be of KO-dimension. 6 [ 11, 12]. This solved 
the problem of fermion doubling pointed out in [ 13] (see also the discussion in [ 14, Chap. 1, 
Sect. 16.3]), and at the same time allowed for the introduction of Majorana masses for right-
handed neutrinos, along with the seesaw mechanism. Here, we follow [ 15]. 
The derivation of the Standard Model algebra.AF from the list of finite irreducible geometries 
of Sect. 3.4 was first obtained in [ 16], This includes Proposition 13.1 of  which we here give an  
alternative, diagrammatic proof. 
The moduli space of Dirac operators .DF of the form (13.1.2) was analyzed in [ 10, Sect. 2.7] 
(cf. [ 14, Sect. 1.13.5]) and in [ 17]. 

Section 13.2. The Gauge Theory 

3. The condition of unimodularity was imposed in the context of the Standard Model in [ 10, 
Sect. 2.5] (see also [ 14, Chap. 1, Sect. 13.3]). The derivation of the hypercharges from the uni-
modularity condition is closely related to the equivalence between unimodularity in the almost-
commutative Standard Model and anomaly cancellation for the usual Standard Model [ 18]. 

4. Proposition 13.4 agrees with [ 10, Proposition 2.16] (see also [ 14, Proposition 1.185]). For the 
derivation of the Standard Model gauge group.GSM , we refer to [ 19]. 

Section 13.3. The Spectral Action 

5. The coefficients .a, b, c, d and . e in Lemma 13.7 agree with those appearing in [ 10] (see also 
[ 14, Chap. 1, Sect. 15.2]). 

6. The Higgs mechanism is attributed to Englert, Brout and Higgs [ 20, 21]. 
7. The form of the Higgs field in (13.3.10) that is obtained after a suitable change of basis is called 

unitary gauge and was introduced by Weinberg in [ 22, 23] (see also [  24, Chap. 21]). 
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Chapter 14 
Phenomenology of the Noncommutative 
Standard Model 

In Theorems 13.10 and 13.11, we have derived the full Lagrangian for the Standard 
Model from the almost-commutative manifold .M × FSM . The coefficients in this 
Lagrangian are given in terms of: 

• the value. f (0) and the moments. f2 and. f4 of the function. f in the spectral action; 
• the cut-off scale .� in the spectral action; 
• the vacuum expectation value . v of the Higgs field; 
• the coefficients .a, b, c, d, e of (13.3.2) that are determined by the mass matrices 
in the finite Dirac operator .DF . 

One can find several relations among these coefficients in the Lagrangian, which 
we shall derive in the following section. Inspired by the relation . g32 = g22 = 5

3g1
2

obtained from (13.3.4), we will assume that these relations hold at the unification 
scale. Subsequently, we use the renormalization group equations to obtain predictions 
for the Standard Model at ‘lower’ (i.e. particle accelerator) energies. 

14.1 Mass Relations 

14.1.1 Fermion Masses 

Recall from (13.4.3) that we defined the mass matrices.mx of the fermions by rewrit-
ing the matrices.Yx in the finite Dirac operator.DF . Inserting the formula (13.4.3) for  
.Yx into the expression for . a given by (13.3.2), we obtain 

.a = a f (0)

π2v2
Tr

(
m∗

νmν + m∗
eme + 3m∗

umu + 3m∗
dmd

)
,
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which yields 

. Tr
(
m∗

νmν + m∗
eme + 3m∗

umu + 3m∗
dmd

) = π2v2

f (0)
.

From (13.3.14) we know that the mass of the .W -boson is given by .MW = 1
2vg2. 

Using the normalization (13.3.4), expressing .g2 in terms of . f (0), we can then write 

. f (0) = π2v2

8MW
2 . (14.1.1) 

Inserting this into the expression above, we obtain a relation between the fermion 
mass matrices .mx and the .W -boson mass .MW , viz. 

. Tr
(
m∗

νmν + m∗
eme + 3m∗

umu + 3m∗
dmd

) = 2g2
2v2 = 8MW

2. (14.1.2) 

If we assume that the mass of the top quark is much larger than all other fermion 
masses, we may neglect the other fermion masses. In that case, the above relation 
would yield the constraint 

.m top �
√
8

3
MW . (14.1.3) 

14.1.2 The Higgs Mass 

We obtain a mass .mh for the Higgs boson . h by writing the term proportional to . h2

in (13.3.11) in the  form  

. 
bπ2

2a2 f (0)
4v2 h2 = 1

2
mh

2 h2.

Thus, the Higgs mass is given by 

.mh = 2π
√
bv

a
√

f (0)
. (14.1.4) 

Inserting (14.1.1) into this expression for the Higgs mass, we see that .MW and . mh

are related by 

.mh
2 = 32

b

a2
MW

2.
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Next, we introduce the quartic Higgs coupling constant . λ by writing 

. 
bπ2

2a2 f (0)
h4 =: 1

24
λh4.

From (13.3.4) we then find 

.λ = 24
b

a2
g2

2, (14.1.5) 

so that the (tree-level) Higgs mass can be expressed in terms of the mass .MW of the 
.W -boson, the coupling constant .g2 and the quartic Higgs coupling . λ as 

.mh
2 = 4λMW

2

3g22
. (14.1.6) 

14.1.3 The Seesaw Mechanism 

Let us consider the mass terms for the neutrinos. The matrix .DF described in 
Sect. 13.1 provides the Dirac masses as well as the Majorana masses of the fermions. 
After a rescaling as in (13.4.3), the mass matrix restricted to the subspace of.HF with 
basis .{νL , νR, νL , νR} is given by 

. 

⎛

⎜⎜
⎝

0 m∗
ν m

∗
R 0

mν 0 0 0
mR 0 0 m∗

ν

0 0 mν 0

⎞

⎟⎟
⎠ .

Suppose we consider only one generation, so that .mν and .mR are just scalars. The 
eigenvalues of the above mass matrix are then given by 

. ± 1

2
mR ± 1

2

√
mR

2 + 4mν
2.

If we assume that .mν � mR , then these eigenvalues are approximated by .±mR and 
.±mν

2

mR
. This means that there is a heavy neutrino, for which the Dirac mass .mν may 

be neglected, so that its mass is given by the Majorana mass .mR . However, there 
is also a light neutrino, for which the Dirac and Majorana terms conspire to yield a 
mass .mν

2

mR
, which is in fact much smaller than the Dirac mass .mν . This is called the 

seesaw mechanism. Thus, even though the observed masses for these neutrinos may 
be very small, they might still have large Dirac masses (or Yukawa couplings). 

From (14.1.2) we obtained a relation between the masses of the top quark and the 
.W -boson by neglecting all other fermion masses. However, because of the seesaw 
mechanism it might be that one of the neutrinos has a Dirac mass of the same order
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of magnitude as the top quark. In that case, it would not be justified to neglect all 
other fermion masses, but instead we need to correct for such massive neutrinos. 

Let us introduce a new parameter . ρ (typically taken to be of order . 1) for the ratio 
between the Dirac mass .mν for the tau-neutrino and the mass .m top of the top quark 
at unification scale, so we write .mν = ρm top. Instead of (14.1.3), we then obtain the 
restriction 

.m top �
√

8

3 + ρ2
MW . (14.1.7) 

14.2 Renormalization Group Flow 

In this section we evaluate the renormalization group equations (RGEs) for the Stan-
dard Model from ordinary energies up to the unification scale. For the validity of these 
RGEs we need to assume the existence of a ‘big desert’ up to the grand unification 
scale. This means that one assumes that: 

• there exist no new particles (besides the known Standard Model particles) with a 
mass below the unification scale; 

• perturbative quantum field theory remains valid throughout the big desert. 

Furthermore, we also ignore any gravitational contributions to the renormalization 
group flow. 

14.2.1 Coupling Constants 

In (13.3.1) we introduced the coupling constants for the gauge fields, and we obtained 
the relation .g32 = g22 = 5

3g1
2. This is precisely the relation between the coupling 

constants at (grand) unification, common to grand unified theories (GUT). Thus, it 
would be natural to assume that our model is defined at the scale .�GUT . However, it 
turns out that there is no scale at which the relation.g32 = g22 = 5

3g1
2 holds exactly, 

as we show below. 
The renormalization group .β-functions of the (minimal) standard model read 

. 
dgi
dt

= − 1

16π2
bi g

3
i ; (b1, b2, b3) =

(
−41

6
,
19

6
, 7

)
,

where.t = logμ. At first order, these equations are uncoupled from all other param-
eters of the Standard Model, and the solutions for the running coupling constants 
.gi (μ) at the energy scale . μ are easily seen to satisfy



14.2 Renormalization Group Flow 261

.gi (μ)−2 = gi (MZ )−2 + bi
8π2

log
μ

MZ
, (14.2.1) 

where .MZ is the experimental mass of the Z-boson: 

. MZ = 91.1876 ± 0.0021 GeV.

For later convenience, we also recall that the experimental mass of the .W -boson is 

.MW = 80.399 ± 0.023 GeV. (14.2.2) 

The experimental values of the coupling constants at the energy scale.MZ are known 
too, and are given by 

.g1(MZ ) = 0.3575 ± 0.0001, (14.2.3) 

.g2(MZ ) = 0.6519 ± 0.0002, (14.2.4) 

.g3(MZ ) = 1.220 ± 0.004. (14.2.5) 

Using these experimental values, we obtain the running of the coupling constants in 
Fig. 14.1. As can be seen in this figure, the running coupling constants do not meet at 
any single point, and hence they do not determine a unique unification scale.�GUT . In  
other words, the relation.g32 = g22 = 5

3g1
2 cannot hold exactly at any energy scale, 

unless we drop the big desert hypothesis. Nevertheless, in the remainder of this 
section we assume that this relation holds at least approximately and we will come 
back to this point in the next section. We consider the range for .�GUT determined

Fig. 14.1 The running of the gauge coupling constants
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by the triangle of the running coupling constants in Fig. 14.1. The scale .�12 at the 

intersection of .
√

5
3g1 and .g2 determines the lowest value for .�GUT , given by

.�12 = MZ exp

(
8π2( 35g1(MZ )−2 − g2(MZ )−2)

b2 − 3
5b1

)

= 1.03 × 1013 GeV. (14.2.6) 

The highest value .�23 is given by the solution of .g2 = g3, which yields 

.�23 = MZ exp

(
8π2(g3(MZ )−2 − g2(MZ )−2)

b2 − b3

)
= 9.92 × 1016 GeV. (14.2.7) 

We assume that the Lagrangian we have derived from the almost-commutative man-
ifold .M × FSM is valid at some scale .�GUT , which we take to be between .�12 and 
.�23. All relations obtained in Fig. 14.1 are assumed to hold approximately at this 
scale, and all predictions that will follow from these relations are therefore also only 
approximate. 

14.2.2 Renormalization Group Equations 

The running of the neutrino masses has been studied in a general setting for non-
degenerate seesaw scales. In what follows we consider the case where only the 
tau-neutrino has a large Dirac mass .mν , which cannot be neglected with respect to 
the mass of the top-quark. In the remainder of this section we calculate the running of 
the Yukawa couplings for the top-quark and the tau-neutrino, as well as the running 
of the quartic Higgs coupling. Let us write .ytop and .yν for the Yukawa couplings of 
the top quark and the tau-neutrino, defined by 

.m top = 1

2

√
2ytopv, mν = 1

2

√
2yνv, (14.2.8) 

where . v is the vacuum expectation value of the Higgs field. 
Let .mR be the Majorana mass for the right-handed tau-neutrino. By the 

Appelquist–Carazzone decoupling theorem (cf. Note 5 on Sect. 14.2.4) we can dis-
tinguish two energy domains: .μ > mR and .μ < mR . We again neglect all fermion 
masses except for the top quark and the tau neutrino. For high energies.μ > mR , the  
renormalization group equations are given by
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. 
dytop
dt

= 1

16π2

(
9

2
y2top + y2ν − 17

12
g21 − 9

4
g22 − 8g23

)
ytop,

dyν

dt
= 1

16π2

(
3y2top + 5

2
y2ν − 3

4
g21 − 9

4
g22

)
yν,

dλ

dt
= 1

16π2

(
4λ2 − (3g1

2 + 9g2
2)λ + 9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 4(3y2top + yν
2)λ − 12(3y4top + yν

4)

)
.

(14.2.9) 

Below the threshold .μ = mR , the Yukawa coupling of the tau-neutrino drops out of 
the RG equations and is replaced by an effective coupling 

. κ = 2
yν

2

mR
,

which provides an effective mass .ml = 1
4κv2 for the light tau-neutrino. The renor-

malization group equations of .ytop and . λ for .μ < mR are then given by 

. 
dytop
dt

= 1

16π2

(
9

2
y2top − 17

12
g21 − 9

4
g22 − 8g23

)
ytop,

dλ

dt
= 1

16π2

(
4λ2 − (3g1

2 + 9g2
2)λ + 9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 12y2topλ − 36y4top

)
.

(14.2.10) 

Finally, the equation for .yν is replaced by an equation for the effective coupling . κ
given by 

.
dκ

dt
= 1

16π2

(
6y2top − 3g2

2 + λ

6

)
κ. (14.2.11) 

14.2.3 Running Masses 

The numerical solutions to the coupled differential equations of (14.2.9) (14.2.10) 
and (14.2.11) for .ytop, .yν and . λ depend on the choice of three input parameters: 

• the scale .�GUT at which our model is defined; 
• the ratio . ρ between the masses .mν and .m top; 
• the Majorana mass .mR that produces the threshold in the renormalization group 
flow. 

The scale .�GUT is  taken to be either  .�12 = 1.03 × 1013 GeV or . �23 =
9.92 × 1016 GeV, as given by (14.2.6) and (14.2.7), respectively. We now deter-
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mine the numerical solution to (14.2.9), (14.2.10) and (14.2.11) for a range of values 
for. ρ and.mR . First, we need to start with the initial conditions of the running parame-
ters at the scale.�GUT . Inserting the top-quark mass.m top = 1

2

√
2ytopv, the tau-neutrino 

mass .mν = ρm top, and the .W -boson mass .MW = 1
2g2v into (14.1.7), we obtain the 

constraints 

. ytop(�GUT ) � 2
√
3 + ρ2

g2(�GUT ), yν(�GUT ) � 2ρ
√
3 + ρ2

g2(�GUT ),

where (14.2.1) yields the values .g2(�12) = 0.5444 and .g2(�23) = 0.5170. 
Furthermore, from (14.1.5) we obtain an expression for the quartic coupling . λ at 

.�GUT . Approximating the coefficients. a and. b from (13.3.2) by.a ≈ (3 + ρ2)m2
top and 

.b ≈ (3 + ρ4)m4
top, we obtain the boundary condition 

. λ(�GUT ) ≈ 24
3 + ρ4

(3 + ρ2)2
g2(�GUT )

2.

Using these boundary conditions, we can now numerically solve the RG equations of 
(14.2.9) from.�GUT down to.mR , which provides us with values for.ytop(mR), . yν(mR)

and.λ(mR). At this point, the Yukawa coupling.yν is replaced by the effective coupling 
. κ with boundary condition 

. κ(mR) = 2
yν(mR)2

mR
.

Next, we numerically solve the RG equations of (14.2.10) and (14.2.11) down to. MZ

to obtain the values for .ytop, . κ and . λ at ‘low’ energy scales. 
The running mass of the top quark at these energies is given by (14.2.8). We find 

the running Higgs mass by inserting. λ into (14.1.6). We shall evaluate these running 
masses at their own energy scale. For instance, our predicted mass for the Higgs 
boson is the solution for . μ of the equation .μ = √

λ(μ)/3v, in which we ignore the 
running of the vacuum expectation value . v. 

The effective mass of the light neutrino is determined by the effective coupling. κ , 
and we choose to evaluate this mass at scale .MZ . Thus, we calculate the masses by 

. m top(m top) = 1

2

√
2ytop(m top)v,

ml(MZ ) = 1

4
κ(MZ )v2,

mh(mh) =
√

λ(mh)

3
v,

where, from the.W -boson mass (14.2.2) we can insert the value.v = 246.66 ± 0.15. 
The results of this procedure for.m top,.ml and.mh are given in Table 14.1. In this table,
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Table 14.1 Numerical results for the masses .m top of the top-quark, .ml of the light tau-neutrino, 
and.mh of the Higgs boson, as a function of.�GUT , . ρ, and. mR

.�GUT (1013 GeV) 1.03 1.03 1.03 1.03 1.03 1.03 1.03 

.ρ 0 0.90 0.90 1.00 1.00 1.10 1.10 

.mR (1013 GeV) – 0.25 1.03 0.30 1.03 0.35 1.03 

.mtop (GeV) 183.2 173.9 174.1 171.9 172.1 169.9 170.1 

.ml (eV) 0 2.084 0.5037 2.076 0.6030 2.080 0.7058 

.mh (GeV) 188.3 175.5 175.7 173.4 173.7 171.5 171.8 

.�GUT (1016 GeV) 9.92 9.92 9.92 9.92 9.92 

.ρ 0 1.10 1.10 1.20 1.20 

.mR (1013 GeV) – 0.30 2.0 0.35 9900 

.mtop (GeV) 186.0 173.9 174.2 171.9 173.5 

.ml (eV) 0 1.939 0.2917 1.897 6.889. ×10−5

.mh (GeV) 188.1 171.3 171.6 169.1 171.2 

.�GUT (1016 GeV) 9.92 9.92 9.92 9.92 

.ρ 1.30 1.30 1.35 1.35 

.mR (1013 GeV) 0.40 9900 100 9900 

.mtop (GeV) 169.9 171.6 169.8 170.6 

.ml (eV) 1.866 7.818.×10−5 8.056.×10−3 8.286. ×10−5

.mh (GeV) 167.1 169.3 167.4 168.4 

we have chosen the range of values for. ρ and.mR such that the mass of the top-quark 
and the light tau-neutrino are in agreement with their experimental values 

. m top = 172.0 ± 0.9 ± 1.3 GeV, ml ≤ 2 eV.

For comparison, we have also included the simple case where we ignore the Yukawa 
coupling of the tau-neutrino (by setting .ρ = 0), in which case there is no threshold 
at the Majorana mass scale either. As an example, we have plotted the running of 
. λ, .ytop, .yν and . κ for the values of .�GUT = �23 = 9.92 × 1016 GeV, .ρ = 1.2, and 
.mR = 3 × 1012 GeV in Figs. 14.2, 14.3, 14.4 and 14.5. 

For the allowed range of values for . ρ and .mR that yield plausible results for . m top

and .ml , we see that the mass .mh of the Higgs boson takes its value within the range 

. 167 GeV ≤ mh ≤ 176 GeV.

The errors in this prediction, which result from the initial conditions (other than. m top

and .ml) taken from experiment, as well as from ignoring higher-loop corrections to 
the RGEs, are smaller than this range of possible values for the Higgs mass, and 
therefore we may ignore these errors.
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Fig. 14.2 The running of the quartic Higgs coupling . λ for .�GUT = 9.92 × 1016 GeV, .ρ = 1.2, 
and. mR = 3 × 1012 GeV

Fig. 14.3 The running of the top-quark Yukawa coupling.ytop for.�GUT = 9.92 × 1016 GeV,. ρ =
1.2, and.mR = 3 × 1012 GeV
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Fig. 14.4 The running of the tau-neutrino Yukawa coupling .yν for .�GUT = 9.92 × 1016 GeV, 
.ρ = 1.2, and. mR = 3 × 1012 GeV

Fig. 14.5 The running of the effective coupling . κ for .�GUT = 9.92 × 1016 GeV, .ρ = 1.2, and  
. mR = 3 × 1012 GeV

14.2.4 Higgs Mass: Comparison to Experimental Results 

Since the discovery of the Higgs boson at the ATLAS and CMS experiments at the 
Large Hadron Collider at CERN in 2012 we also know with increasing accuracy that



268 14 Phenomenology of the Noncommutative Standard Model

Fig. 14.6 Observed and 
expected exclusion limits for 
a Standard Model Higgs 
boson at the 95-percent 
confidence level for the 
combined CDF and DZero 
analyses. (Fermilab) 

the experimental value for the Higgs mass is around.mh � 125.5GeV. Strictly speak-
ing, this is a falsification of the noncommutative Standard Model since it evidently 
lies outside of the above predicted range. In fact, ironically enough, the above range 
was among the first to be excluded by Fermilab’s D0 experiment (see Fig. 14.6). 

As usual, in the derivation of the model and the renormalization group equa-
tion several assumptions were made and simplifications were applied, so that it is 
important to look back at them. And indeed, lifting the curtain slightly for what is 
to come, in the next Chapter we will see that the reduction in Proposition 13.1 from 
the irreducible finite geometry of KO-dimension 6 based on.M2(H) ⊕ M4(C) to the 
Standard Model based on .C ⊕ H ⊕ M3(C) may not be necessary nor desired. As 
we will see, the irreducible geometry describes a Pati–Salam gauge model that goes 
Beyond the Standard Model and allows for a Higgs mass that is compatible with 
the observed value. Moreover, this will solve the incompatibility between the grand 
unification of the gauge couplings suggested by the spectral model in Eq. (13.3.5) 
and the existence of a GUT-triangle in Fig. 14.2.1. 

Notes 

1. In the first part of this Chapter, we mainly follow [ 1, Sect. 5] (see also [ 2, Chap. 1, Sect. 17]). In 
Sect. 14.2 we have also incorporated the running of the neutrino masses as in [ 3] (see also [  4]). 

Section 14.1. Mass Relations 

2. Further details on the see-saw mechanism can be found in e.g. [ 5]. 

Section 14.2. Renormalization Group Flow 

3. The renormalization group .β-functions of the (minimal) standard model are taken from [ 6– 
9]. We simplify the expressions by ignoring the .2-loop contributions, and instead consider 
only the.1-loop approximation. The renormalization group.β-functions are [ 6, Eq. (B.2)] or [ 9, 
Eq. (A.1)]).
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Section 14.2.1. Coupling Constants 

4. The experimental masses of the. Z and.W -boson and the top quark, as well as the experimental 
values of the coupling constants at the energy scale.MZ are found in [ 10]. 

5. In arriving at (14.2.9) we have followed the approach of [ 3] where two energy domains are 
considered:.μ > mR and.μ < mR . The Appelquist–Carazzone decoupling theorem is found in 
[ 11]. For the renormalization group equations, we refer to [ 7, Eq. (B.4)], [ 12, Eq. (14) and (15)] 
and [ 8, Eq. (B.3)]. 

6. The discovery of the Higgs boson at the ATLAS and CMS experiments is published in [ 13, 14]. 
7. In this chapter and Chap. 15 we exploit renormalization group techniques to run couplings and 

masses down from the GUT-scale to ordinary energies. The renormalization group equations 
were derived in a perturbative approach to quantum field theory, which was supposed to be 
valid at all scales. Moreover, we have adopted the one-loop beta-functions, something which 
can definitely be improved. Even though this might lead to more accurate predictions, it is not 
expected to resolve the incompatibility between the predicted range for.mh and the experimen-
tally measured value. In our analysis we have discarded all possible gravitational effects on the 
running of the couplings constants. It might very well be that gravitational correction terms alter 
the predicted values to a more realistic value. A possible approach to incorporate gravitational 
effects in the running of the coupling constants is discussed in [ 15]. 
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Chapter 15 
Beyond the Standard Model: Pati–Salam 
Unification 

One of the pressing questions at this point is whether noncommutative geometry 
may point to new physics beyond the Standard Model. The success of the spectral 
construction of the Standard Model, predicting its particle content, including gauge 
fields, Higgs fields as well as a singlet whose vev gives Majorana mass to the right 
handed neutrino, is a strong signal that we are on the right track. However, the 
mismatch between the predicted range of the Higgs mass and the experimentally 
observed value suggests that we should reconsider the path we took. 

15.1 The Finite Noncommutative Space of the Pati–Salam 
Model 

Recall from Sect. 13.1 that the route that led to the above conclusion starts with the 
simplest irreducible geometry that allows for a symplectic constraint (condition 1 on 
Page 1). It was based on the algebra 

.A := M2(H) ⊕ M4(C). (15.1.1) 

The existence of the chirality operator . γ that commutes with the algebra breaks 
the quaternionic matrices.M2(H) to the diagonal subalgebra and leads us to consider 
the finite algebra 

.APS := HR ⊕ HL ⊕ M4(C). (15.1.2) 

In view of this structure, a convenient tensorial representation of our Hilbert space 
vectors .� in .HF (cf. Eq. (13.1.1)) is given by 

.� =
(

ψA

ψA′

)
, ψA′ = ψc

A (15.1.3)
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where .ψc
A is the conjugate vector to .ψA. Thus all primed indices .A′ correspond to 

the Hilbert space of conjugate vectors. It is acted on by both the left algebra . M2 (H)

and the right algebra .M4 (C). Therefore the index .A can take .16 values and is rep-
resented by 

.A = α I (15.1.4) 

where the index . α is acted on by quaternionic matrices and the index .I by . M4 (C)

matrices. Moreover, when the grading breaks .M2 (H) into .HR ⊕ HL the index . α is 
decomposed to.α = .

a, a where.
.
a = .

1,
.

2 (dotted index) is acted on by the first quater-
nionic algebra. HR and.a = 1, 2 is acted on by the second quaternionic algebra. HL . 
When.M4 (C) breaks into.C ⊕ M3 (C) (due to symmetry breaking or through the use 
of the order one condition as in Proposition 13.1) the index . I is decomposed into 
.I = 1, i and thus distinguishing leptons and quarks, where the . 1 is acted on by the 
. C and the . i by .M3 (C) . Therefore the various components of the spinor .ψA are 

.ψα I =
(

νR ui R νL uiL
eR di R eL diL

)
, i = 1, 2, 3 (15.1.5) 

= (
ψ . a1, ψ  . ai , ψa1, ψai

)
, a = 1, 2, . 

a = 
. 
1, 

. 
2 

The (finite) Dirac operator can be written in matrix form 

.DF =
(

DB
A DB

′
A

DB
A′ DB

′

A′

)
, (15.1.6) 

and must satisfy the properties 

.γF DF = −DFγF JF DF = DF JF (15.1.7) 

where .J 2
F = 1. A matrix realization of .γF and .JF are given by 

.γF =
(
GF 0
0 −GF

)
, GF =

(
12 0
0 −12

)
, JF =

(
04 14
14 04

)
◦ cc (15.1.8) 

where .cc stands for complex conjugation. 

Proposition 15.1 (1) The data 

. FPS := (APS, HF , DF ; JF , γF )

as defined above is a finite real even spectral triple of KO-dimension 6 that fulfills 
the first-order condition on a subalgebra .ASM = C ⊕ HL ⊕ M3(C) ⊂ APS. 

(2) The unimodular gauge group .SG(FPS) is isomorphic to the Pati–Salam gauge 
group .SU (2)R × SU (2)L × SU (4).
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Proof (1) follows from Proposition 13.1 while (2) is a straightforward computation, 
using that .U(H) ∼= SU (2) (see the proof of Proposition 13.3). 

15.2 The Gauge and Scalar Field Contents 

Since we are dealing with a real spectral triple that does not fulfill the first-order 
condition, we have to apply the general framework of inner fluctuations developed 
in Sect. 7.3. More precisely, the initial operator for the almost-commutative manifold 
.M × FPS is given by 

. D = DM ⊗ 1 + γM ⊗ DF

for which the inner fluctuations are given by

. Dω = D + ω(1) + Jω(1) J
−1 + ω(2)

. ω(1) =
∑

a [D, b] ; ω(2) =
∑

a
[
Jω(1) J

−1, b
]
.

The computation is rather involved due to the second-order term, see Note 3 on 
Sect. 15.4. One finds that the different components of the operator .Dω are given by 

. (Dω)
.

bJ
.
aI = γ μ

(
∇ S

μδ
.

b
.
aδ

J
I − i

2
gRW

α
μR (σ α)

.

b
.
a δ J

I − δ
.

b
.
a

(
i

2
gVm

μ

(
λm

)J

I
+ i

2
gVμδ J

I

))

(Dω)bJaI = γ μ

(
∇ S

μδbaδ
J
I − i

2
gLW

α
μL (σ α)

b
a δ J

I − δba

(
i

2
gVm

μ

(
λm

)J

I + i

2
gVμδ J

I

))

where the fifteen .4 × 4 matrices .(λm)
J

I are traceless and generate the group . SU (4)
and .W α

μR, .W α
μL , .V

m
μ are the gauge fields of .SU (2)R , .SU (2)L , and . SU (4) .

In addition we have 

. (Dω)bJ.
aI = γM

((
Yνφ

b
.
a + Yeφ̃

b
.
a

)
� J

I + (
Yuφ

b
.
a + Yd φ̃

b
.
a

) (
δ J
I − � J

I

)) ≡ γM�bJ
.
aI

(Dω)
.

b
′
J ′

.
aI = γMY

∗
R.

aJ
.

bI ≡ γMH .
aI

.

bJ

where the Higgs field.φb
.
a
is in the.

(
2R, 2L , 1

)
of the product gauge group. SU (2)R ×

SU (2)L × SU (4), and ..
a J is in the .

(
2R,, 1L , 4

)
representation while .� J

I is in 
the .(1R, 1L , 1 + 15) representation. The field .φ̃b

.
a
is not an independent field and is 

given by 

.φ̃b
.
a = σ2φ

b
.
aσ2.
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Table 15.1 Pati–Salam scalar particle content and their representations for a first-order Dirac 
operator. The field.� I

J in the last row is decoupled if there is quark-lepton coupling unification 

Particle .SU (2)R .SU (2)L SU(4) 

.φb
ȧ 2 2 1 

.ȧ I 2 1 4 

.� I
J 1 1 15 

Note that the field .� J
I decouples (and set to .δ1I δ

J
1 ) in the special case when there is 

lepton and quark unification of the couplings 

. Yν = Yu, Ye = Yd .

This is summarized in Table 15.1. 

Proposition 15.2 The spectral action (ignoring topological and boundary terms) of 
the almost-commutative manifold .M × FPS is given by 

. SB =
∫
M

48 f4
π2

�4 − 2 f2�2

π2

(
R + 1

4

(
H .
aI

.
cK H

.
cK

.
aI + 2�cK

.
aI �

.
aI
cK

))

+ f (0)

2π2

[
1

30

(−18C2
μνρσ + 11R∗R∗) + g2L

(
W α

μνL

)2 + g2R
(
W α

μνR

)2 + g2
(
Vm

μν

)2

+ Dμ�
.
cK
aI D

μ�aI
.
cK + 1

2
DμH .

aI
.

bJ D
μH

.
aI

.

bJ + 1

12
R

(
H .
aI

.
cK H

.
cK

.
aI + 2�cK

.
aI �

.
aI
cK

)

+1

2

∣∣∣H .
aI

.
cK H

.
cK

.

bJ
∣∣∣2 + 2H .

aI
.
cK�

.
cK
bJ H

.
aI

.

dL�bJ
.

dL
+ �

.
cK
aI �bJ

.
cK�

.

dL
bJ �aI

.

dL

] √
gd4x .

Proof We proceed using the same notation and formulas as in Sect. 10.4. The first 
Seeley-de Witt coefficient is 

. a0 = 1

16π2
Tr (1)

= 1

16π2
(4) (32) (3)

∫ √
gd4x

= 24

π2

∫
M

√
gd4x

where the numerical factors come, respectively, from the traces on the Clifford alge-
bra, the dimensions of the Hilbert space and number of generations. The second
coefficient is

.a2 = 1

16π2

∫
M
Tr

(
E + 1

6
R

) √
gd4x
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where .E is a .384 × 384 matrix over Hilbert space of three generations of spinors, 
whose components are derived and listed in the appendix. Taking the various traces 
we get 

. a2 = 1

16π2

∫
M

(
(R(−96 + 64) − 8

(
H .
aI

.
cK H

.
cK

.
aI + 2�cK

.
aI �

.
aI
cK

)) √
gd4x

= − 2

π2

∫
M

(
R + 1

4

(
H .
aI

.
cK H

.
cK

.
aI + 2�cK

.
aI �

.
aI
cK

))√
gd4x .

It should be understood in the above formula and in what follows, that whenever 
the matrices .Yν,Yu,Ye,Yd and .YR appear in an action, one must take the trace over 
generation space. The mass terms can be expressed in terms of the fundamental 
Higgs field to give 

. H .
aI

.
cK H

.
cK

.
aI = |YR|2

(
.

aK
.
aK

)2

and

. 2�cK
.
aI �

.
aI
cK = 2

((
(Yν − Yu) φc

.
a + (Ye − Yd) φ̃c

.
a

)
�K

I + (
Yuφ

c
.
a + Yd φ̃

c
.
a

)
δKI

)
(((

Y∗ν − Y ∗
u

)
φ

.
a
c + (Y∗e − Y∗d) φ̃

.
a
c

)
� I

K +
(
Y ∗
u φ

.
a
c + Y∗d φ̃

.
a
c

)
δ IK

)
.

The next coefficient is 

. a4 = 1

16π2

∫
M

Tr

(
1

360

(
5R2 − 2R2

μν + 2R2
μνρσ

)
1 + 1

2

(
E2 + 1

3
RE + 1

6
�2

μν

))√
gd4x

where.�μν is the.384 × 384 curvature matrix of the connection.ωμ. Using the expres-
sions for the matrices. E and.�μν derived in the appendix, and taking the traces, we get 

. a4 = 1

2π2

∫
M

[
− 3

5
C2

μνρσ + 11

30
R∗R∗ + g2L

(
Wα

μνL

)2 + g2R

(
Wα

μνR

)2 + g2
(
Vm

μν

)2

+ ∇μ�
.
cK
aI ∇μ�aI

.
cK

+ 1

2
∇μH .

aI
.
bJ

∇μH
.
aI

.
bJ + 1

12
R

(
H .
aI

.
cK H

.
cK

.
aI + 2�cK

.
aI

�
.
aI
cK

)

+ 1

2

∣∣∣∣H .
aI

.
cK H

.
cK

.
bJ

∣∣∣∣
2

+ 2H .
aI

.
cK�

.
cK
bJ H

.
aI

.
dL�bJ

.
dL

+ �
.
cK
aI �bJ

.
cK

�

.
dL
bJ �aI

.
dL

]
√
gd4x

where .Cμνρσ is the Weyl tensor. The stated result now follows from 
Eq. (10.4.1). �

The physical content of this action is a cosmological constant term, the Ein-
stein Hilbert term .R, a Weyl tensor square term .C2

μνρσ , kinetic terms for the 
.SU (2)R × SU (2)L × SU (4) gauge fields, kinetic terms for the composite Higgs 
fields .H .

aI
.

bJ and .�
.
cK
bJ as well as mass terms and quartic terms for the Higgs fields. 

We also notice that this action gives the gauge coupling unification 

.gR = gL = g. (15.2.1)
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Having determined the full Dirac operators, including fluctuations, we can write 
all the fermionic interactions including the ones with the gauge vectors and Higgs 
scalars. We write the fermionic action using our tensorial notation: 

. ψ∗
AD

B
A ψB + ψ∗

A′ D B
A′ ψB + ψ∗

AD
B

′
A ψB ′ + ψ∗

A′ D B ′
A′ ψB ′

= ψ∗
AD

B
A ψB + ψACDABψB + h.c

where .C is the charge conjugation matrix, and we have denoted .D B
A′ = DAB . We 

then find 

. 

∫
M

[
ψ∗

.
aI

γ μ

(
∇S

μδ

.
b
.
a
δ JI − i

2
gRW

α
μR

(
σα

) .
b
.
a δ JI − δ

.
b
.
a

(
i

2
gVm

μ

(
λm

)J
I + i

2
gVμδ JI

))
ψ.
bJ

+ ψ∗
aI γ

μ

(
∇S

μδbaδ JI − i

2
gLW

α
μL

(
σα

)b
a δ JI − δba

(
i

2
gVm

μ

(
λm

)J
I + i

2
gVμδ JI

))
ψbJ

+ ψ∗
.
aI

γ5

((
Yνφb

.
a

+ Yeφ̃
b
.
a

)
� J
I +

(
Yuφb

.
a

+ Yd φ̃b
.
a

) (
δ JI − � J

I

))
ψbJ

+ ψ∗
aI γ5

((
Y ∗
ν φ

.
b
a + Y ∗

e φ̃

.
b
a

)
� J
I +

(
Y ∗
u φ

.
b
a + Y ∗

d φ̃

.
b
a

) (
δ JI − � J

I

))
ψ.
bJ

+Cψ.
aI γ5YR

.
aJ



.
bI

ψ.
bJ

+ h.c

] √
gd4x

15.3 Truncation to the Standard Model 

In this section we show that the above grand unified Pati-Salam type model can break 
to the .U (1) × SU (2) × SU (3) symmetry of the SM. 

First of all, the scalar field.φb
.
a
.= (2R, 2L , 1)must be truncated to the Higgs doublet 

.H by writing 

. φb
.
a = δ

.

1
.
aε

bcHc.

The other scalar field ..
aI = (2R, 1, 4) is truncated to a real singlet scalar field 

. .
aI = δ

.

1
.
aδ

1
I

√
σ .

These then imply the relations

.�bJ
.
aI =

(
δ

.

1
.
aYνε

bcHc + δ
.

2
.
a H

b
Ye

)
δ1I δ

J
1 +

(
δ

.

1
.
aYuε

bcHc + δ
.

2
.
aYd H

b
)

δiI δ
J
j δ

j
i

H .
aI

.

bJ = δ
.

1
.
aδ

.

1
.

b
YRδ1I δ

J
1 σ

gRW
3
μR = g1Bμ, W±

μR = 0√
3

2
gV 15

μ = −g1Bμ

(
Vμ

)i
1 = 0
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where .V 15
μ is the .SU (4) gauge field corresponding to the generator 

. λ15 = 1√
6
diag (3,−1,−1,−1)

which could be identified with the .B − L generator. In particular the components 

.(DA)
.

11
.

11
and .(DA)

.

21
.

21
of the Dirac operator simplify to 

. (DA)
.

11
.

11
= γ μ

(
∇ S

μ − i

2
gRW

α
μR (σ α)

.

1
.

1
−

(
i

2
gVm

μ

(
λm

)1

1

))

= γ μ

(
∇ S

μ − i

2
gRW

3
μR −

(
i

2
gV 15

μ

√
3

2

))

= γ μ∇ S
μ

. (DA)
.

21
.

21
= γ μ

(
∇ S

μ − i

2
gRW

α
μR (σ α)

.

2
.

2
−

(
i

2
gVm

μ

(
λm

)1

1

))

= γ μ

(
∇ S

μ + i

2
gRW

3
μR −

(
i

2
gV 15

μ

√
3

2

))

= γ μ
(∇ S

μ + ig1Bμ

)

which are identified with the Dirac operators acting on the right-handed neutrino and 
right-handed electron. Similar substitutions give the action of the Dirac operators on 
the remaining fermions and give the expected results. We now compute the various 
terms in the spectral action. First for the mass terms we have 

. 
1

4
H .
aI

.
bJ

H
.
bJ

.
aI = 1

4

(
δ1.
a
δ1.
b
YRδ1I δ

J
1 σ

) (
δ

.
a
1 δ

.
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1δ I1 δ J1 Y

∗
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4
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4
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�cK
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YνεbcHc + δ

.
2
.
a
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J
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(
δ

.
1
.
a
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.
2
.
a
Yd H

b
)
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J
j δ

j
i
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2

= 1

2
aHH

where 

. a = tr
(
Y ∗

ν Yν + Y ∗
e Ye + 3

(
Y ∗
u Yu + Y ∗

d Yd
))

c = tr
(
Y ∗
RYR

)

Next for the .a4 term, starting with the gauge kinetic energies we have 

.g2L
(
W α

μνL

)2 + g2R
(
W α

μνR

)2 + g2
(
Vm

μν

)2 → g2L
(
W α
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3
g21B

2
μν + g23

(
Vm

μν

)2
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where.m = 1, . . . , 8 for.Vm
μν restricted to the.SU (3) gauge group. Next for the scalar 

kinetic and quartic terms we have 

. ∇μ�
.
cK
aI ∇μ�aI

.
cK → a∇μH∇μH

1

2
∇μH .

aI
.

bJ∇μH
.
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.
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)
.2

Collecting all terms we end up with the bosonic action for the Standard Model:

. SB =
∫
M

(
48 f4�4
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− 2 f2

π2
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2
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4
cσ 2

)

+ f (0)
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d σ 4 + 1

12
cRσ 2 + 1

2
c
(
∂μσ

)2])√
gd4x (15.3.1) 

where 

. b = tr
((
Y ∗

ν Yν

)2 + (
Y ∗
e Ye

)2 + 3
((
Y ∗
u Yu

)2 + (
Y ∗
d Yd

)2))

d = tr
((
Y ∗
RYR

)2)

e = tr
(
Y ∗

ν YνY
∗
RYR

)
.

This action completely agrees with the Standard Model Lagrangian obtained in 
Theorem 13.10, under the replacement .YR → YRσ . 

15.4 Phenomenology of the Noncommutative Pati–Salam 
Model 

An important test of the above Pati–Salam model is to check whether the gauge 
coupling unification (15.2.1) when run using RG equations would give values con-
sistent with the values in Eq. (14.2.3) of the gauge couplings for electromagnetic,
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weak and strong interactions at the scale of the.Z -boson mass. Moreover, in view of 
the observations at the end of Chap. 14 it is important to make sure that the model is 
compatible with the relatively low observed mass of the Higgs boson. 

15.4.1 Grand Unification of the Gauge Couplings 

We have already computed the inner perturbations of the finite Dirac operator for 
the Pati–Salam model in Sect. 15.2. Recall in particular the scalar content from 
Table 15.1. We will assume that there is lepton quark unification, so that the . � J

I
is decoupled. 

The boundary conditions between the couplings are taken at the intermediate mass 
scale .μ = mR to be the usual 

.
1

g21
= 2

3

1

g2
+ 1

g2R
,

1

g22
= 1

g2L
,

1

g23
= 1

g2
, (15.4.1) 

in terms of the Standard Model gauge couplings .g1, g2, g3. At the mass scale . mR

the Pati–Salam symmetry is broken to that of the Standard Model, and we take it to 
be the same scale that is present in the see-saw mechanism. It should thus be of the 
order .1011 − 1013 GeV. 

Before turning to the computation of the .β-functions of the Pati–Salam gauge 
couplings for the composite model, let us discuss the scalar sector that remains 
after spontaneous symmetry breaking to the Standard Model gauge group. A quick 
analysis leads to the scalar fields listed in Table 15.2. Note that this includes the SM 
Higgs and a real scalar singlet. 

The presence of the above scalar fields of course also have an influence on the 
running of the Standard Model gauge couplings (at one loop). We compute that 
instead of the usual.β-functions.(b1, b2, b3) = (− 41

6 , 19
6 , 7

)
(cf. Sect. 14.2.1) we have

. (b1, b2, b3) =
(

−64

9
, 3,

41

6

)
.

Table 15.2 Scalar particle content induced by the Pati–Salam model with SM-representations 

.U (1)Y .SU (2)L SU(3) 

.

(
φ0
1

φ+
1

)
=

(
φ1
1̇

φ2
1̇

)
1 2 1 

.

(
φ−
2

φ0
2

)
=

(
φ1
2̇

φ2
2̇

)
. −1 2 1 

.σ 0 1 1 

.η .− 2
3 1 3



280 15 Beyond the Standard Model: Pati-Salam Unification

One observes that this difference is relatively small (less than.5%). In fact, the scalar 
fields that appear in addition to the SM Higgs have a negligible effect in our study 
of the running of the gauge couplings below.

Next, we compute the .β-functions for the Pati–Salam couplings .gR, gL , g in the 
presence of the above composite particle content (cf. Table 15.1): 

.(bR, bL , b) =
(
7

3
, 3,

31

3

)
. (15.4.2) 

The solutions of the RG-equations are easily found to be 

.gR(μ)−2 = gR(mR)−2 + 1

8π2

7

3
log

μ

mR
, (15.4.3) 

.gL(μ)−2 = gL(mR)−2 + 1

8π2
3 log

μ

mR
, (15.4.4) 

.g(μ)−2 = g(mR)−2 + 1

8π2

31

3
log

μ

mR
, (15.4.5) 

We impose the boundary conditions (15.4.1) at the mass scale .μ = mR . 
Our approach for finding a unification scale is as follows. We search for an energy 

scale where the couplings .gR, gL and . g are equal by varying the scale .mR at which 
the boundary conditions (15.4.1) are imposed. With the running of the Pati–Salam 
couplings governed by the coefficients (15.4.2) there is a unique value of .mR for 
which the three lines meet. The unification scale is .� ≈ 2.5 × 1015 GeV and the 
value found for the intermediate scale is .mR = 4.25 × 1013 GeV (Fig. 15.1). 

Fig. 15.1 Running of coupling constants for the spectral Pati–Salam model with composite Higgs 
fields:.g1, g2, g3 for.μ < mR and.gR, gL , g for.μ > mR with unification scale. � ≈ 2.5 × 1015 GeV
for.mR = 4.25 × 1013 GeV
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If the scalar field .� J
I is not decoupled—in other words, if there is no lepton-

quark coupling unification—then there is an additional scalar.(1R, 1L , 15) irreducible 
representation contributing to the.β-function, giving a slightly different. (bR, bL , b) =(
7
3 , 3, 9

)
. This in turn gives a unification scale.� ≈ 6.3 × 1015 GeV for. mR = 4.1 ×

1013 GeV. 

15.4.2 Running of the Higgs Mass 

Let us analyze the additional terms in the spectral action displayed in Eq. (15.3.1), 
focusing on the scalar part: 

. L′
H (gμν,�μ, Qμ, H, σ ) := b f (0)

2π2
|H |4 − 2a f2�2

π2
|H |2 + e f (0)

π2
σ 2|H |2

−c f2�2

π2
σ 2 + d f (0)

4π2
σ 4 + a f (0)

2π2
|DμH |2 + 1

4π2
f (0)c(∂μσ )2,

where we ignored the coupling to the scalar curvature. 
As in Chap. 14, we exploit the approximation that .mtop, .mν and.mR are the domi-

nant mass terms. Moreover, as before we write .mν = ρmtop. That is, the expressions 
for .a, b, c, d and . e in (13.3.2) now become 

. a ≈ m2
top(ρ

2 + 3),

b ≈ m4
top(ρ

4 + 3),

c ≈ m2
R,

d ≈ m4
R,

e ≈ ρ2m2
R m

2
top.

In a unitary gauge, where .H =
(
h
0

)
, we arrive at the following potential: 

. Lpot(h, σ ) = 1

24
λhh

4 + 1

2
λhσh

2σ 2 + 1

4
λσσ 4 − 4g22

π2
f2�

2(h2 + σ 2),

where we have defined coupling constants 

.λh = 24
ρ4 + 3

(ρ2 + 3)2
g22, λhσ = 8ρ2

ρ2 + 3
g22, λσ = 8g22 . (15.4.6) 

This potential can be minimized, and if we replace . h by .v + h and .σ by .w + σ , 
respectively, expanding around a minimum for the terms quadratic in the fields, we 
obtain:
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. Lpot(v + h, w + σ)|quadratic = 1

6
v2λhv

2 + 2vwλhσ σh + w2λσσ 2

= 1

2

(
h σ

)
M2

(
h
σ

)
,

where we have defined the mass matrix .M by 

. M2 = 2

(
1
6λhv

2 λhσ vw

λhσ vw λσw2

)
.

This mass matrix can be easily diagonalized, and if we make the natural assumption 
that .w is of the order of .mR , while . v is of the order of .MW , so that .v � w, we find 
that the two eigenvalues are 

. m2
+ ∼ 2λσw2 + 2

λ2
hσ

λσ

v2,

m2
− ∼ 2λhv

2

(
1

6
− λ2

hσ

λhλσ

)
.

We can now determine the value of these two masses by running the scalar coupling 
constants.λh, λhσ and.λσ down to ordinary energy scalar. The renormalization group 
equations for these couplings are given by 

. 
dλh

dt
= 1

16π2

(
4λ2

h + 12λ2
hσ − (3g1

2 + 9g2
2)λh + 9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 4(3y2top + yν
2)λh − 12(3y4top + yν

4)

)
,

dλhσ

dt
= 1

16π2

(
8λ2

hσ + 6λhσ λσ + 2λhσ λh

− 3

2

(
g21 + 3g22

)
λhσ + 2(3y2top + yν

2)λhσ

)
,

dλσ

dt
= 1

16π2

(
8λ2

hσ + 18λ2
σ

)
.

As before, at lower energy the coupling .yν drops out of the RG equations and is 
replaced by an effective coupling. 

At one-loop, the other couplings obey the renormalization group equations of 
the Standard Model, that is, they satisfy (14.2.9) and (14.2.10). As before, we can 
solve these differential equations, with boundary conditions at .�GUT given for the 
scalar couplings by (15.4.6). The result varies with the chosen value for.�GUT and the 
parameter . ρ. The mass of . σ is essentially given by the largest eigenvalue .m+ which 
is of the order .1012 GeV for all values of .�GUT and the parameter . ρ. The allowed 
mass range for the Higgs, i.e. for .m−, is depicted in Fig. 15.2. The expected value
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Fig. 15.2 A contour plot of the Higgs mass .mh as a function of .ρ2 and.t = log(�GUT /MZ ). The  
red line corresponds to. mh = 125.5 GeV

.mh = 125.5 GeV is therefore compatible with the above noncommutative model, 
while the scalar field. σ stabilizes the Higgs vacuum at higher energies. Furthermore, 
this calculation implies that there is a relation (given by the red line in the Figure) 
between the ratio .mν/mtop and the unification scale .�GUT . 

We conclude that with noncommutative geometry we can proceed beyond the 
Standard Model, enlarging the field content of the Standard Model by a real scalar 
field with a mass of the order of .1012 GeV. At the time of writing of the second 
edition of this book (Summer 2021), this is completely compatible with experiment 
and also guarantees stability of the Higgs vacuum at higher energy scales. Of course, 
the final word is to experiment in the years to come. What we can say at this point 
is that noncommutative geometry provides a fascinating dialogue between abstract 
mathematics and concrete measurements in experimental high-energy physics.
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Notes 

Section 15.1. The Finite Noncommutative Space of the Pati–Salam Model 

1. The Pati-Salam model was introduced in [ 1]. The particle content that we find is very similar 
to the one considered by Marshak and Mohapatra [ 2]. 

2. Coincidentally the algebra.M2(H) ⊕ M4(C) comes out as a solution of the two-sided Heisen-
berg quantization relation between the Dirac operator .D and the two maps from the four 
spin-manifold and the two four spheres.S4 × S4 [ 3, 4]. This removes the arbitrary symplectic 
constraint and replaces it with a relation that quantize the four-volume in terms of two quanta 
of geometry. 

Section 15.2. The Gauge and Scalar Field Contents 

3. We refer to [ 5, Appendix A] for all details on the derivation of the inner fluctuations for the 
Pati–Salam model; see also [ 6]. 

4. The important point to notice in the derivation of the inner fluctuations for the Pati–Salam 
model is the novel phenomena of the appearance of composite Higgs field as is apparent in 
the above formulas where the Higgs field .�bJ

.
aI

is formed out of the products of the fields . φb
.
a

and .� J
I while the Higgs field .H .

aI
.
bJ

is made from the product of ..
a J

.
bI

. This composite 
structure is a result of the quadratic dependence of the gauge fields .ω(2) on those appearing 
in .ω(1). The importance of this point should not be underestimated. The reason is that the 
main disadvantage of grand unified theories is the need for complicated Higgs representations 
with arbitrary potentials. In the noncommutative geometric setting, this problem is now solved 
by having minimal representations of the Higgs fields allowing for (quadratic) products of 
these representations. We also note that a very close model to the one deduced here is the one 
considered by Marshak and Mohapatra where the .U (1) of the left-right model is identified 
with the .B − L symmetry. They proposed the same Higgs fields .(2R, 2L , 1) , .(2R, 1, 4) and 
.(1, 1, 15) we have, but also in addition the field .(1, 2L , 4). However, they assumed that this 
Higgs fields does not get a vev, and thus does not effect the symmetry breaking. Although the 
broken generators of the .SU (4) gauge fields can mediate lepto-quark interactions leading to 
proton decay, it was shown that in all such types of models with partial unification, the proton 
is stable. In addition this type of model arises in the first phase of breaking of .SO (10) to 
.SU (2)R × SU (2)L × SU (4) and these have been extensively studied [ 7]. The recent work in 
[ 8] considers noncommutative grand unification based on the.k = 8 algebra. M4 (H) ⊕ M8 (C)

keeping the first order condition. 
5. The obstruction to allow for lower .mh (see Sect. 15.4.2) in the spectral Standard Model was 

overcome in [ 9] simply by taking into account the scalar field. σ which was already present in 
the full model that was computed previously in [ 10]. 

Section 15.4. Phenomenology of the Noncommutative Pati–Salam Model 

6. This section is based on [ 5, 11]. For a recent overview, we also refer to [ 6]. 
7. The boundary condition (15.4.1) can be found in [ 12, Eq. (5.8.3)]. 
8. The field. σ played a key role in [ 10] in lowering the Higgs mass prediction to a realistic value 

[ 9]. A qualitative study of the form of the scalar potential that we have done for the present 
Pati–Salam composite model indicates that this result continues to hold here. However, being 
interested mainly in the running of the gauge couplings, we leave a full study of the potential 
and its physical implications for future work. 

9. Note that in our analysis we have disregarded the non-renormalizable, order eight terms that 
appear in the expansion of the spectral action for the composite model [ 5, Sect. 8], so let us argue
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why they can be ignored. In fact, since we consider only the running of the gauge couplings 
at the one loop level, we can safely ignore these non-renormalizable terms. Moreover, their 
contribution to the running of other (scalar) couplings will be suppressed by negative powers 
of.mR , at least at the one loop level. 

10. In view of the assumptions made in our analysis, we trust the values for.mr only as indicative 
of the corresponding orders of magnitudes. Other possible Pati–Salam models (for different 
initial.DF were considered in [ 11]. 

11. The renormalization group equations for the couplings.λh, λhσ , λσ have been derived in [ 13]. 
12. For stability bounds on the Higgs mass, we refer to [ 14]. 
13. The small correction to the space.M × FSM was realized in [ 9] (and already tacitly present in 

[ 10]) and the results of Sect. 15.4.2 confirm their conclusions. 
14. Other noncommutative geometric models that go beyond the Standard Model include [ 15– 19], 

adopting a slightly different approach to almost-commutative manifolds as we do (cf. Note 3 
on Sect. 7.2). The intersection between supersymmetry and almost-commutative manifolds is 
analyzed in [ 20– 22]. 
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Chapter 16 
Towards a Quantum Theory 

In the final Chapter of this book we present an overview of recent and ongoing 
work, taking the first steps towards a quantum theory for noncommutative geome-
try. Indeed, in the applications to particle physics phenomenology one applies the 
usual, physicist’ textbook renormalization group methods to the spectral action, in 
order to arrive at couplings and mass parameters at lower energy. And even though 
the appearance of such experimentally testable results from a geometrical frame-
work valid at high-energies is very intriguing, this step remains a weak point of the 
noncommutative approach to particle physics. In other words, it means that in the 
passage to the quantum theory one looses the elegant spectral and unifying picture 
that one started with. 

We indicate two paths that could lead to a quantum theory for noncommuta-
tive manifolds. Working in the general context of spectral triples, the first approach 
quantizes the fermionic content by applying the procedure of second quantization 
to .(A,H, D), while the second computes one-loop corrections to the perturbative 
expansion of the spectral action, given in its general form as in Sect. 9.3. 

16.1 Second Quantization of Spectral Triples 

We use the operator algebra formalism of.C∗-dynamical systems and KMS condition 
to pass from the first-quantized or “one-particle” level of spectral triples . (A,H, D)

to the second-quantized level. The Hilbert space.H is used to construct the complex-
ified Clifford algebra.C := CliffC(HR) of its underlying real Hilbert space.HR when 
considered as a Euclidean space. The operator .D is used as the generator of a one-
parameter group.σt ∈ Aut(C) of automorphisms of the Clifford algebra. The algebra 
.Amanifests itself through the inner fluctuations (cf. Eq. (7.2.5)) deforming the oper-
ator.D to.D′. These inner fluctuations continue to make sense at the second-quantized 
level and give rise to deformations .σ ′

t ∈ Aut(C) of the above one-parameter group 
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of automorphisms. We concentrate here on the meaning of the spectral action, and 
thus take the.C∗-dynamical system.(C, σt ) as our starting point, keeping in mind that 
the results will automatically apply to the deformations .(C, σ ′

t ). 

16.1.1 KMS and a Dynamical System 

We first briefly recall the KMS condition for .C∗-dynamical systems, that is, a .C∗-
algebra. C together with a one-parameter group of automorphisms.σt ∈ Aut(C),.t ∈ R. 

Definition 16.1 Let .(C, σt ) be a .C∗-dynamical system. For a given .0 < β < ∞, a  
state. ϕ on the unital.C∗-algebra. C satisfies the KMS condition at inverse temperature 
. β if for all.a, b ∈ C, there exists a function.Fa,b(z) which is holomorphic on the strip 

.Iβ = {z ∈ C | 0 < �(z) < β}, (16.1.1) 

continuous on the boundary .∂ Iβ and bounded, with the property that for all . t ∈ R

.Fa,b(t) = ϕ(aσt (b)) and Fa,b(t + iβ) = ϕ(σt (b)a). (16.1.2) 

In short the KMS condition at inverse temperature. β means that one has the formal 
equality 

.ϕ(aσt (b))|t=iβ = ϕ(ba) , ∀a, b ∈ C. (16.1.3) 

What matters in the context of the present paper is the existence and uniqueness of 
KMS states on a matrix algebra.Mn(C) and we give the short proof for convenience. 
A one-parameter group of automorphisms.σt ∈ Aut(Mn(C)) is always associated to 
a self-adjoint .H = H∗ ∈ Mn(C) by 

. σt (A) = eit H Ae−i t H , ∀t ∈ R, A ∈ Mn(C).

Given a state .ψ on the matrix algebra .Mn(C) there exists a unique density matrix 
.ρ ≥ 0 such that 

. ψ(T ) = Tr(ρT ) , ∀T ∈ Mn(C).

By uniqueness of the trace it follows that 

. ψ(AB) = ψ(BA) , ∀A, B ⇒ ρ = 1

n
id.

A state which is KMS. β for .σt ∈ Aut(Mn(C)) is invariant. In fact 

.ψ(e−βH BeβH ) = ψ(B) , ∀B ⇒ eβHρe−βH = ρ ⇒ ρeβH = eβHρ.
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It follows using (16.1.3) that if .ψ is KMS. β then, with . B ′ = e−βH B

. ψ(BA) = ψ(Ae−βH BeβH ) ⇒ Tr(ρeβH B ′A) = Tr(ρAB ′eβH )

so that.ρeβH = eβHρ defines a trace and hence is a scalar multiple of. id. This shows 
that .ρ = Ze−βH for .Z = 1/Tr(e−βH ) and gives the uniqueness of the KMS. β state. 
The same formula gives the existence. For completeness, we include a proof of the 
following result on KMS-states on Clifford algebras 

Proposition 16.2 Let .H be a complex Hilbert space, .D a self-adjoint operator in . H
with compact resolvent. Let.C := CliffC(HR) be the complexified Clifford algebra of 
the underlying real Hilbert space .HR and .σt ∈ Aut(C) be the one-parameter group 
of automorphisms associated to .exp(i t D) ∈ Aut(HR). Then for any .β > 0 there 
exists a unique KMS. β state .ψβ on the .C∗-dynamical system .(C, σt ). 

Proof One applies the existence and uniqueness of KMS states on a matrix algebra 
to the subalgebra of .C = CliffC(HR) associated to the subspace corresponding to a 
finite dimensional spectral projection of . D. This is enough to prove the uniqueness 
of the KMS. β state. The existence also follows since the existence part for matrix 
algebras gives a coherent system of states which define a state on the inductive limit 
of the .C∗-algebras. �

Proposition 16.3 Let. H,. D,.C := CliffC(HR),.σt ∈ Aut(C) and.ψβ be as in Propo-
sition 16.2. Then if the operator .exp(−β|D|) is of trace class, the state .ψβ is of type 
I and the associated irreducible representation is given by the fermionic second 
quantization associated to the complex structure .I := i sign D on .HR. 

The proof of this proposition will be given in Sect. 16.1.2, Proposition 16.5 after 
recalling some terminology. 

16.1.2 Fermionic Second Quantization 

In this section we recall the procedure of (fermionic) second quantization. 
Consider the real Euclidean vector space .V := HR that underlies the complex 

Hilbert space . H. Our first goal is to find irreducible representations of the Clifford 
algebra associated to the real Euclidean vector space.HR underlying.H and for this it 
turns out that a crucial role is played by complex structures. We let. I be an orthogonal 
complex structure on . V , which is not necessarily the one coming from. H. Then we 
may regard .V as a complex vector space when we define. i to act as . I . The resulting 
complex Hilbert space will be denoted by .VI . 

A representation of the complexified Clifford algebra .CliffC(V ) is given on the 
Fock space .

∧
VI that is built on .VI by the usual formula 

.γI : CliffC(V ) → L(
∧

VI )

v �→ a∗
I (v) + aI (v); (v ∈ V ).
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Here the creation operators .a∗
I (v) depend .C-linearly on .v ∈ VI and are given by 

exterior multiplication by . v while the annihilation operator .aI (v) is its adjoint. We 
choose a unit vector .	I ∈ ∧0 VI and call it the vacuum vector. It is annihilated by 
.aI (v) for all .v ∈ V . The following is well-known. 

Lemma 16.4 The above representation .γI of the complexified Clifford algebra 
.CliffC(V ) on Fock space .

∧
VI is irreducible. 

Proof We may assume that .V is a inductive limit of finite-dimensional Hilbert 
spaces, and, accordingly, that.CliffC(V ) is the.C∗-algebraic inductive limit of finite-
dimensional Clifford algebras. Without loss of generality we may thus assume that 
.dim V < ∞ so that.CliffC(V ) are simple matrix algebras. We invoke Schur’s Lemma 
to conclude that.γI is irreducible if and only if every operator.T : V → V commuting 
with all .γI (v) (.v ∈ V C) is a scalar. 

For any . v, one has, using the .C-linearity of .a∗
I (v) and .C-anti-linearity of . aI (v)

. a∗
I (v) = 1

2
(γI (v) − iγI (Iv)) , aI (v) = 1

2
(γI (v) + iγI (Iv)) .

Hence any .T that commutes with .γI (v) for all . v commutes with .a∗
I (v) and .aI (v). 

From this it follows that 

. aI (v)(T	I ) = T (aI (v)	I ) = 0

so that .T	I ∈ 
0(VI ). In other words, .T	I = t	I for some .t ∈ C. Moreover, 

. T (v1 ∧ · · · ∧ vk) = T
(
a∗
I (v1) · · · a∗

I (vk)	
) = (

a∗
I (v1) · · · a∗

I (vk)
)
(T	) = t (v1 ∧ · · · ∧ vk) ,

so that .T = t · id. �

Any orthogonal operator .T : V → V induces an automorphism of .CliffC(V ) by 
sending.γI (v) → γI (T v). In some cases this automorphism can be lifted to the Fock 
space.

∧
VI , for instance, if.U is a unitary operator on.VI . Then, if.

∧
U is the unitary 

operator in the Fock space such that on simple tensors 

. 

∧
U (v1 ∧ · · · ∧ vn) := U (v1) ∧ · · · ∧U (vn),

one has the covariance 

. 

∧
U ◦ a∗

I (v) ◦
∧

U ∗ = a∗
I (Uv).

We thus get the equality 

.(
∧

U )γI (v)(
∧

U ∗) = γI (Uv).
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Suppose now that we are given a (complex) Hilbert space .H and a self-adjoint 
operator .D in .H with compact resolvent. Again, let .V = HR denote the underlying 
real vector space. Suppose that we take the natural complex structure on .V so that 
.VI = H. Then the above construction gives us an irreducible representation. γ of the 
canonical anti-commutation relations (CAR) algebra on .

∧H but, from a physical 
point of view this representation is not the right one to consider. In fact, one needs 
to choose another irreducible representation, corresponding to a different complex 
structure on . H. Let us describe it in some detail. 

If .E± are the spectral projections of.D corresponding to the positive and negative 
eigenspaces of .D in . H, let us define the following complex structure: 

. I = i(E+ − E−).

In other words,.I = i F where.F = D|D|−1 is the sign 1 of. D. In view of the previous 
section, this gives rise to another irreducible representation .γI of .CliffC(V ) in Fock 
space, where the key difference with respect to the original Fock space representation 
. γ is that . i acts as .−i on .E−(H). In other words, the operator .D can be considered 
to act as .|D| which now only has positive eigenvalues. More precisely, 

Proposition 16.5 .(i) The one-parameter group .σt ∈ Aut(C) is implemented in 
the (physical) Fock representation by the one-parameter unitary group . W (t) =∧

exp(i t |D|), i.e. one has 

.γI (σt (A)) =
∧

(eit |D|)γI (A)
∧

(e−i t |D|) , ∀A ∈ CliffC(V ). (16.1.4) 

.(i i) If .exp(−β|D|) is of trace class the state .ψβ is of type I and is given by 

.ψβ(A) = 1

Z
Tr

(∧
exp(−β|D|)γI (A)

)
, ∀A ∈ CliffC(V ) (16.1.5) 

where the normalization factor . Z is finite. 

Proof The associated KMS. β state is obtained after normalization from the density 
matrix .W (iβ) obtained by analytic continuation. Thus it coincides here with the 
operator 

. ρ =
∧

exp(−β|D|).

Since .T = exp(−β|D|) is positive and of trace class we get that .ρ = ∧
T is also 

positive and of trace class (with trace given by the determinant of .1 + T ). Thus. Z <

∞. The state.ψβ is implemented by a density matrix in an irreducible representation 
and is thus of type I. �

1 We take the convention that the sign of. 0 is. 1. 
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16.1.3 von Neumann Information Theoretic Entropy 

We start by briefly recalling von Neumann’s notion of entropy. Consider a density 
matrix . ρ on a Hilbert space . H, i.e. a positive trace-class operator with normalized 
trace. It induces a state . φ on any .C∗-subalgebra of .L(H) by setting .φ(·) = Tr(ρ·). 
The entropy of this state . φ is then defined to be 

. S(φ) := −Tr(ρ log ρ).

For composite systems.φ1 ⊗ φ2 on.H1 ⊗ H2 one finds the following important addi-
tivity property for entropy 

. S(φ1 ⊗ φ2) = S(φ1) + S(φ2).

Let us start with a basic example of entropy that will play a crucial role in what 
follows. 

Lemma 16.6 Let .x > 0, the entropy of the partition of the unit interval in two 
intervals with ratio of size . x, is given by 

. E(x) := log(x + 1) − x log(x)

x + 1
.

Proof The sizes of the intervals are .
1

x+1 and .
x

x+1 . One has 

. − log
(

1
x+1

)

x + 1
− x log

(
x

x+1

)

x + 1
= x + 1

x + 1
log(x + 1) − x log(x)

x + 1
= E(x).

�

Corollary 16.7 One has .E(x) = E(1/x) for any .x > 0. 

Proof The obtained partitions are isomorphic. �

The following result gives an expression for the entropy of density matrices that 
arise as a second-quantized operator. 

Lemma 16.8 Let .T ∈ L1(H)+ be a positive trace class operator and . φ the state 
associated to .

∧
T then 

.S(φ) = Tr(E(T )). (16.1.6) 

Proof Let first .T = T1 ⊕ T2 be an orthogonal decomposition. Let us show that the 
associated states fulfill.φ = φ1 ⊗ φ2. One has with.ρI = ∧

TI the equality. ρ = ρ1 ⊗
ρ2 by the compatibility of the wedge functor with direct sums. Then 

. Tr(ρ1 ⊗ ρ2) = Tr(ρ1)Tr(ρ2) ⇒ φ = φ1 ⊗ φ2.
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Next the entropy functional fulfills 

. S(φ1 ⊗ φ2) = S(φ1) + S(φ2).

This shows that the functional.S(φ) is additive for direct sum decompositions. It also 
applies to infinite sums and one can thus consider only the one dimensional case. In 
this case the state associated to the operator . T of multiplication by. x corresponds to 
.
∧

T whose spectrum is .{1, x} and hence has entropy given by the function .E(x) of 
Lemma 16.6. �
Theorem 16.9 Let . H, . D, .C := CliffC(HR), .σt ∈ Aut(C) and .ψβ be as in Proposi-
tion 16.2. Then if the operator .exp(−β|D|) is of trace class, the state .ψβ is of type 
I and its von Neumann entropy is equal to the spectral action .Tr(h(βD)) for the 
spectral function .h(x) := E(e−x ). 

Proof The first statement follows from Proposition 16.5. The statement about the 
entropy follows from Lemma 16.8 together with the fact that.x �→ E(e−x ) is an even 
function (cf. Corollary 16.7). �

16.2 One-Loop Corrections to the Spectral Action 

We start with the expansion of the spectral action derived in Eq. 9.3.2: 

. Sb[ω] − Sb[0] =
∑

n

1

n
〈ω, . . . , ω
︸ ︷︷ ︸

n

〉 f

We thus work under the same assumptions as those stated in Sect. 9.3. 
The bracket will be represented as the following Feynman diagram: 

(16.2.1) 

The loop diagram nicely reflects the cyclicity of the bracket: . 〈ω1, . . . , ωn〉 f =
〈ωn, ω1, . . . , ωn−1〉 f . The second crucial property is that 

.〈aω1, . . . , , ωn〉 f − 〈ω1, . . . , ωna〉 f = 〈[D, a], ω1, . . . , ωn〉 f (16.2.2)
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In fact, this identity boils down to a Ward identity, represented diagrammatically as 

(16.2.3) 

In order to analyze the quantum theory corresponding to the above classical action 
functional .Sb[ω] we adopt the background field method. We take the background 
fields to be the usual gauge fields of the form.ω = ∑

j a j [D, b j ] ∈ 	1
D(A) but allow 

the path integral to integrate over all finite-size hermitian complex-valued matrices 
. Q. We consider the dimension, say . N , of these matrices as a regularizing cutoff of 
our model, which should eventually be sent to .∞. 

For such matrices.Q = (Qkl), the brackets can be conveniently expressed in terms 
of divided differences of . f ′. Indeed, as in Eq. (9.3.3) we have:  

. 
1

2
〈Q, Q〉 = 1

2

∑

k,l

Qkl Qlk f
′[λk, λl]

1

3
〈Q, Q, Q〉 = 1

3

∑

k,l,m

Qkl QlmQmk f
′[λk, λl , λm]

et cetera, where .λk are the eigenvalues of . D. 

(a) (b) 

Fig. 16.1 The inverse gauge propagator. f ′[λk , λl ] for the.N = 61 smallest eigenvalues of the Dirac 
operator on the circle (i.e. .λk , λl = −30,−29, . . . , 30
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We now make the assumption that the first divided difference of . f ′ is strictly 
positive on the.N relevant eigenvalues of .D (see Fig. 16.1 for an example of such an 
. f ). We may then perform the Gaussian integration to get for the propagator: 

.. Qkl Qmn =
∫
Qkl Qmne− 1

2 〈Q,Q〉 f dQ
∫
e− 1

2 〈Q,Q〉 f dQ
= δknδlmGkl

in terms of .Gkl := 1
f ′[λk ,λl ] . Notice that the inverse propagator is bounded, which is 

in stark contrast to the usual unbounded nature of inverse propagators in ordinary 
local quantum field theory. 

In any case, we are now in a position to consider higher-loop contributions to 
the spectral action, and, in particular, all one-particle irreducible .n-point Feynman 
graphs. Their (possibly divergent) amplitudes form the starting point of the renor-
malization process of the spectral action. 

16.2.1 Ward Identity for the Gauge Propagator 

In addition to the Ward identity (16.2.3) for the fermion propagator, we claim that 
we also have the following Ward identity for the gauge propagator: 

(16.2.4) 

where every fermion loop adds a minus sign. Indeed, the left-hand side is 

. QikQlmamn − aimQmkQln

= Gikδimδklamn − Glnδmnδklaim
= (Gik − Gnk)δklain

while for the right-hand side we use the defining property of the divided differences 
to find:
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Table 16.1 The two-point graphs at one-loop 

. − QikQrpapq(λp − λq)Qqr Qln f
′[λp, λq , λr ]

= −Gikδi pδkrGqrδqnδrlapq(λp − λq) f
′[λp, λq , λr ]

= GikGnk
(
f ′[λk, λn] − f ′[λi , λk]

)
δklain.

The two expressions coincide because of the very fact that the free propagator is the 
inverse of the divided difference. 

16.2.2 Two-Point Functions at One-Loop 

The two-point graphs at one-loop are given in Table 16.1. The external fields . ω1, ω2

should be assigned to the external legs in all different cyclical manners. 
The amplitude for the first graph is given by 

(16.2.5) 

In particular, there is no running loop index in this expression and so this diagram 
remains finite even when the size .N of the matrices is sent to .∞. We conclude that 
the amplitude of this graph is not relevant for renormalization purposes. 

We then turn to the second graph in Table 16.1, and compute 

(16.2.6)
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(a) (b) 

(c) (d) 

Fig. 16.2 The behaviour of the summands (indexed by.λk running from.−30 to.30) for the vertex 
contribution in (16.2.6) and (16.2.7) for the Dirac operator on the circle and function . f as in 
Fig. 16.2a 

We find that this amplitude has a potential divergence in the limit that . N → ∞
(see Fig. 16.2 for the behaviour of the summands). As such it should be subtracted 
from the effective action in order to render the theory finite after removal of the 
regulator. 

For the final diagram with two external lines we compute its amplitude to be: 

(16.2.7) 

Again, this graph amplitude is potentially divergent in the limit .N → ∞ and 
should thus be subtracted. The same applies to the same graph but with .ω1 and . ω2

exchanged.
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16.2.3 One-Loop Counterterms to the Spectral Action 

The computations of the graph amplitudes in the previous section show that the 
second two graphs in Table 16.1 are the relevant ones to consider as counterterms for 
the spectral action. However, since the spectral action is in particular a gauge theory, 
it is crucial that such counterterms are of the same form as the terms appearing in 
the spectral action. 

As may be expected, a crucial role will be played by so-called quantum Ward 
identities. They form the analogue of (16.2.3) for the divergent component of the 1PI 
.n-point functions at one loop. Let us denote by.〈〈ω1, . . . , ωn〉〉1L all one-loop.n-point 
graphs whose amplitudes involve a sum over a loop index. The skeletons for such 
graphs are depicted in Table 16.2, for which all external lines are written outside the 
graph diagram, and labelled in cyclical order. Indeed, if an external line would be in 
the interior of the diagram, it is surrounded by the loop in the diagram, and will thus 
prevent the loop index from running (as in Eq. 16.2.5). 

The quantum Ward identities are now given by 

. 〈〈ω1, . . . , aω j , . . . , ωn〉〉1L − 〈〈ω1, . . . , ω j−1a, . . . , ωn〉〉1L
= 〈〈ω1, . . . , ω j−1, [D, a], ω j , . . . , ωn〉〉1L .

It is this identity, in combination with cyclicity of the bracket . 〈〈ω1, . . . , ωn〉〉 =
〈〈ωn, ω1, . . . , ωn−1〉〉, which allows us to follow line-by-line the derivation of the 
Chern–Simons and Yang–Mills terms in Theorem 9.23. 

Theorem 16.10 The divergent part of the one-loop quantum effective spectral action 
can be expanded as 

. 

∑

n

1

n
〈〈ω, . . . , ω〉〉1L∞ =

∞∑

k=1

(∫

ψ̃2k−1

cs2k−1(A) + 1

2k

∫

φ̃2k

Fk

)

.

Here . φ̃ and .ψ̃ are the analogues of . φ and .ψ as defined in (9.3.4) and (9.3.5) but now 
using the double bracket. 

Proof All divergent one-loop diagrams have skeletons as depicted in Table 16.2, 
with the external lines labelled cyclically from. 1 to. n. The decoration of the external 
legs of our graphs with the external fields.ω1, . . . , ωn then proceeds according to this 
labelling .1, . . . , n and, upon summing over all such decorated graphs . G, we get 

.. 〈〈ω1, . . . , ωn〉〉1L =
∑

G

Gω1,...ωn .

The left-hand side of the quantum Ward identity essentially comes down to con-
necting external edges to the graphs . G. We will write .Gi for the graph .G with an 
insertion of an external gauge edge at a point . i in between . n and . 1: this insertion
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Table 16.2 Skeletons for divergent one-loop.n-point functions with increasing number of vertices. 
The fermion loops that define the vertices are all oriented as clockwise 

point . i can be either an outer fermion line in .G (as in (16.2.3)) or, if . 1 and . n are not 
attached to the same vertex in . G, a gauge propagator (as in 16.2.4). We then find 

. 〈〈aω1, . . . , ωn〉〉1L − 〈〈ω1, . . . , ωna〉〉1L =
∑

G,i

(Gi )[D,a],ω1,...,ωn ,

where the decoration .[D, a] is attached to the external gauge edge inserted at the 
point . i of .Gi . 

It is clear that the sum over .G and . i yield all decorated .n + 1-point graphs, and, 
moreover, that any.n + 1-point graph with labels.[D, a], ω1, . . . , ωn is obtained in a 
unique manner from an insertion of an external edge in an.n-point graph, as described 
above. We are thus left with .〈〈[D, a], ω1, . . . , ωn〉〉1L , as desired. �

We conclude that the passage to the one-loop renormalized spectral action can be 
realized by a transformation in the space of noncommutative integrals, sending. φ �→
φ + φ̃ and .ψ �→ ψ + ψ̃ , thus rendering the theory (one-loop) renormalizable as a 
gauge theory. Of course, a general “power-counting” procedure and diagrammatics 
beyond the one-loop order is of great importance, but at the moment of writing still 
waiting to be developed.
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Notes 

Section 16.1. Second Quantization of Spectral Triples 

1. Section 16.1 is  based on [  1]. 
2. A proof of Proposition 16.2 can be found in [ 2, Proposition 5.2.23]. 
3. We refer to [ 3, 4] and  [  5, Sect. 5.3 and 6.1] for excellent expositions on fermionic second 

quantization. 
4. The lift of the unitary operator.U to the Fock space is a special case of the Shale–Stinespring 

Theorem [ 6]. It states that the automorphism on.CliffC(V ) defined by an orthogonal operator 
.T : V → V is implementable by a unitary operator on Fock space.

∧
VI if and only if. T + I T I

is Hilbert–Schmidt. 
5. The discussion of the representation .γI for the different complex structure . I on .H derives 

from the work of Dirac who realized in [ 7] that in order to avoid unwanted negative energy 
solutions to his Dirac equation, one has to fill up (what is now called) the Dirac sea. 

6. There is an intriguing relation between the function . h that appears in Theorem 16.9 and the 

Riemann zeta function. All details can be found in [ 1]. See also the more general treatment in 

[ 8], including the chemical potential for both the bosonic and fermionic case. 

Section 16.2. One-loop Corrections to the Spectral Action 

7. Section 16.2 is  based on [  9]. 
8. The boundesness of the inverse propagator is another manifestation of the regularizing proper-

ties of the spectral action, in line with [ 10– 13]. It is an interesting problem to analyze the form 
of the propagator for more general. f , including a possible gauge fixing, for instance along the 
lines of [ 14, 15] or by means of orthogonal polynomials as in [ 16]. 

9. Note that due to the cyclic symmetry of the vertices, an equivalent representation of the 
Feynman diagrams may be given by ribbon graphs as in [ 17], identifying 

= 

We however stick with the original fermion cycle vertices, as they are especially convenient 
to capture the Ward identities (16.2.3) and (16.2.4). 

10. The type of one-loop graphs derived from the spectral action are familiar in the context of 

matrix models. In fact, it is interesting to confront this to the proof of renormalizability for 

noncommutative scalar field theories [ 17]. One of the main differences is that they consider 

so-called non-local matrix models [ 18] with a quartic vertex, while instead we have a local 

matrix model but with vertices of arbitrary valence. 
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Appendix 
Alphabetic Index, and Notation Index 

.(·, ·) Inner product (with values in . C) 

.〈·, ·〉 Hermitian structure/algebra valued inner product 

.〈·, ·〉 f Multi-linear functionals on differential forms 

.〈·, ·〉z Zeta functions defining the improper cocycles 

.〈〈·, ·〉〉 Loop corrections to spectral action 

.‖ · ‖Lip Lipschitz (semi)-norm 

.‖ · ‖s Sobolev norm 

.‖ · ‖ Operator/.C∗-norm 

.A .∗-algebra 

.Aθ Smooth noncommutative torus algebra 

.A .C∗-algebra 

.Aθ Noncommutative torus .C∗-algebra 

.A◦ or .A◦ Opposite algebra 

.̂A Structure space of . A

.(A, H, D) Finite spectral triple 

.(A, H, D; J, γ) Finite real spectral triple 

.(A,H, D) Spectral triple 

.(A,H, D; J, γ) Real spectral triple 

.AJ Commutative subalgebra of . A

.AN Direct sum of .N copies of . A

.̂A(R) .̂A-form of Riemannian curvature 

.α Algebra automorphism 

.Aut(A) Group of algebra automorphisms 

.Aμ Gauge field 

.ad Aμ Gauge field in adjoint representation 

.Ad Adjoint action 

.ak Seeley-DeWitt coefficient 

.B(H) .C∗-algebra of bounded operators on Hilbert space . H
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.B .C∗-bundle 

.b, B Boundary operators on cochains 

.Bμ Gauge field in adjoint representation 

.Fμν Field strength (curvature) of . Bμ

.C(X) .C∗-algebra of continuous functions on compact topological space 
. X

.C∞(M) .∗-algebra of smooth functions on compact smooth manifold . M

.C∞(Mθ) .∗-algebra of the toric noncommutative manifold . Mθ

.C
n◦ Defining representation of . Mn(C)◦

.Cl(V, Q) Clifford algebra 

.χ .Z2-grading on Clifford algebra 

.Cl0(V, Q) Even part of Clifford algebra 

.Cl1(V, Q) Odd part of Clifford algebra 

.Cl±n Clifford algebra . Cl(Rn,±Qn)

.Cln Clifford algebra . Cl(Cn, Qn)

.Cl0n Even part of Clifford algebra . Cln

.Cl1n Ddd part of Clifford algebra . Cln

.(Cl±n )0 Even part of Clifford algebra . Cl±n

.(Cl±n )1 Odd part of Clifford algebra . Cl±n

.Cl±(T M) Clifford algebra bundle 

.Cliff±(M) Space of sections of Clifford algebra bundle 

.Cl(T M) Complexified Clifford algebra bundle 

.Cliff(M) Space of sections of complexified Clifford algebra bundle 

.CliffC(V ) Complexified Clifford algebra of vector space . V

.c Clifford multiplication 

.Cn(A) .n-cochains on algebra . A

.Cev(A) Even cocains 

.Codd(A) Odd cochains 

.cp,k Combinatorial coefficients in residue cocycle 

.c(k1, . . . , k j ) Combinatorial coefficients in residue cocycle 

.ch(E) Chern character of vector bundle . E

.Cμνρσ Weyl curvature 

.χ(M) Euler characteristic 

.D Self-adjoint operator 

.DF Finite Dirac operator 

.di j Metric on finite discrete space 

.Di j Components of Dirac operator in finite spectral triple 

.Di j,kl Components of Dirac operator in finite real spectral triple 

.De Component of finite Dirac operator labeling the edge . e

.DM Dirac operator on Riemannian spin manifold 

.DAθ
Dirac operator on the noncommutative torus 

.�E Laplacian on vector bundle 

.�S Laplacian on spinor bundle



Appendix: Alphabetic Index, and Notation Index 305

.dg Riemannian distance function 

.d(x, y) Distance function 

.d Derivation given by . [D, ·]

.δ Derivation given by . [|D|, ·]

.Dp . pDp

.Du .PuP with . P = 1
2 (1 + Sign D)

.Der(A) Lie algebra of algebra derivations 

.Dω Operator .D in the presence of inner fluctuation . ω

.dR Right-handed down quark 

.dL Left-handed down quark 

. E or .E Algebra module 

.E◦ or .E◦ Conjugate module 

.EA Right .A-module 

.AE Left .A-module 

.AEB .A − B-bimodule 

.E ⊗A F Balanced tensor product 

.EndA(E) Algebra of module endomorphisms 

.End(S) Endomorphism bundle of . S

.eR Right-handed electron 

.eL Left-handed electron 

.F Field (.R,C or . H) 

.FB Right .B-module 

.FB ◦ B E Kasparov product 

.φn .(b, B)-cocycle 

.〈φ, p〉 Pairing between even .(b, B)-cocycle and projection 

.〈φ, u〉 Pairing between odd .(b, B)-cocycle and unitary 

. f [x0, . . . , xn] Divided difference of . f of order . n

. fk Moments of function . f

.FX Two-point space 

.F Finite noncommutative space/finite real spectral triple 

.FED Finite real spectral triple for electrodynamics 

.FYM Finite real spectral triple for Yang–Mills theory 

.FSM Finite real spectral triple for the Standard Model 

.φ,� Scalar field 

.� = (�(0), �(1)) Graph 

.(�,�) .�-decorated graph/Krajewski diagram 

.�(E) Space of continuous sections of a vector bundle . E

.�∞(E) Space of smooth sections of a vector bundle . E

.�κ
μν Christoffel symbols 

.˜�b
μa Christoffel symbols in orthonormal basis 

.γn+1 Chirality operator 

.γμ Dirac gamma matrices, generators of .Cliff+(M)
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.γa Generators of .Cliff+(M) in orthonormal basis 

.γM .Z2-grading on spinors 

.γ .Z2-grading 

.g Riemannian metric 

.G(A,H; J ) Gauge group 

.G(M × F) Gauge group of almost-commutative manifold 

.G(F) Gauge group of finite noncommutative space 

.g(A,H; J ) Gauge Lie algebra 

.g(M × F) Gauge Lie algebra of almost-commutative manifold 

.g(F) Gauge Lie algebra of finite noncommutative space 

.Gμ .SU (3) Standard Model gauge field 

.Gμν Field strength (curvature) of . Gμ

.g1 .U (1) coupling constant 

.g2 .SU (2) coupling constant 

.g3 .SU (3) coupling constant 

.H Quaternions 

.H (. H ) Hilbert space (finite-dimensional Hilbert space) 

.H+ Positive eigenspace of grading . γ

.Hs Sobolev space 

.Hcl Set of Grassmann variables in . H

.Hl Hilbert space of leptons 

.Hq Hilbert space of quarks 

.HHn(A) Hochschild cohomology 

.HCPev(A) Even cyclic cohomology 

.HCPodd(A) Odd cyclic cohomology 

.HomA(E,F) Space of module endomorphisms 

.H(F) Group of unitary elements in commutative subalgebra 

.h(F) Lie algebra of skew-hermitian elements in commutative subalge-
bra 

.H Higgs field 

.h Higgs field (unitary gauge) 

.IN .N × N identity matrix 

.Inn(A) Group of inner automorphisms 

.J Anti-unitary operator/real structure 

. j : � → � Involutive graph automorphism 

.J±
n Anti-linear map 

.JM Charge conjugation 

.KK f (A, B) Set of Kasparov modules for . (A, B)

.κ Effective Yukawa coupling for tau-neutrino 

.L Lagrangian 

.�μ .U (1) Standard Model gauge field
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.�μν Field strength (curvature) of . �μ

.λ Higgs quartic coupling 

.�12 Electroweak unification scale 

.�23 Weak-strong unification scale 

.�GUT Grand unification scale 

.Mn(F) .∗-algebra of .n × n matrices with entries in . F

.Mn(A) .∗-algebra of .n × n matrices with entries in . A

.M Manifold 

.M × F Almost-commutative manifold 

.μN Group of . N ’th roots of unity 

.MW Mass of .W -boson 

.MZ Mass of .Z -boson 

.mtop Mass of top quark 

.mh Higgs mass 

.mν Neutrino mass 

.mR Majorana mass matrix 

.ml Effective mass of tau-neutrino 

.n Defining representation .C
n of . Mn(C)

.∇ Connection on module/vector bundle 

.∇B
.∗-algebra connection 

.∇ S Spin connection 

.νR Right-handed neutrino 

.νL Left-handed neutrino 

.ω Connection one-form/inner fluctuation 

.ω# Vector field corresponding to one-form. ω

.�E Curvature of connection on bundle . E

.�k
dR(M) De Rham differential k-forms 

.�k
dR(M, A) De Rham differential k-forms with values in algebra . A

.�k(M) De Rham.k-currents on . M

.�1
D(A) Connes’ differential one-forms associated to a spectral triple 

.opr Space of operators of analytic order . ≤ r

.Out(A) Group of outer automorphisms 

.π Algebra representation 

.π(A)′ Commutant of . π(A)

.�p(a0, . . . , a p) Improper .(b, B)-cocycle 

.�(A) Pseudodifferential operators 

.�k(A) Pseudodifferential operators of order . k

.p Projection 

.PU (N ) Projective unitary group 

.q Quaternion 

.qλ Embedding of . C in .H
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.Q Quadratic form 

.Qn Standard quadratic form on .R
n or . Cn

.Qμ .SU (2) Standard Model gauge field 

.Qμν Field strength (curvature) of . Qμ

.R(X,Y ) Riemannian curvature tensor 

.Rμνκλ Riemannian curvature tensor 

.Rνλ Ricci tensor 

.R∗R∗ Pontryagin class 

.ress=0�p Residue cocycle 

.ρ Ratio between mass of tau-neutrino and top quark 

.s Scalar curvature 

.S Spinor bundle 

.Sd Dimension spectrum 

.Sb[ω] Spectral action 

.S(n)
b . n’th Gâteaux derivative of spectral action 

.Stop[ω] Topological spectral action 

.S f [ω,ψ] Fermionic action 

.SU(AF ) Group of elements in .U(AF ) with determinant . 1

.SH(F) Group of elements in .H(F) with determinant . 1

.su(AF ) Lie algebra of traceless elements in . u(AF )

.sh(F) Lie algebra of traceless elements in . h(F)

.SN Group of permutations on .N elements 

.SO(N ) Group of special orthogonal transformations of . RN

.SU (N ) Group of special unitary transformations of . CN

.su(N ) Lie algebra of traceless skew-hermitian transformations of . CN

.σ Real scalar field 

.σt One-parameter group of isomorphism of .C∗-algebra 

.T M Tangent bundle 

.T ∗M Cotangent bundle 

.T (k)
. k’th iteration of derivation . T → [D2, T ]

.u Unitary algebra element 

.U Unitary operator 

.U(A) Group of unitary elements in .∗-algebra . A

.u(A) Lie algebra of skew-hermitian algebra elements 

.U (N ) Group of unitary transformations of . CN

.u(N ) Lie algebra of skew-hermitian transformations of . CN

.uR Right-handed up quark 

.uL Left-handed up quark 

.Vμ .SU (3) Standard Model gauge field 

.Vμν Field strength (curvature) of . Vμ

.v Higgs vacuum expectation value
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.Wμ .SU (2) Standard Model gauge field 

.Wμν Field strength (curvature) of . Wμ

.Yν,Ye,Yu,Yd Yukawa mass matrices 

.YR Majorana mass matrix 

.Yμ .U (1) Standard Model gauge field 

.Yμν Field strength (curvature) of . Yμ

.yν Yukawa coupling of tau-neutrino 

.ytop Yukawa coupling of top quark 

.Z(A) Center of . A

.ζ(z) Riemann zeta function 

.ζE (z) Epstein zeta function 

.ζb(z) Zeta function.
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Abelian gauge theory, 4 
Algebra, 1–4, 9–17, 21, 23, 25, 26, 28, 31– 

33, 35, 36, 43–47, 49–52, 56–58, 60, 
62, 66, 71, 73, 74, 76, 77, 80–86, 95–97, 
102, 103, 106, 114, 115, 121–129, 132, 
136–143, 145–152, 154, 155, 166, 169, 
180–185, 187, 199, 204, 207, 208, 210, 
217, 219–224, 227–229, 231, 233–235, 
238, 255, 271, 272, 284, 287–292 

Algebra bundle, 4, 57, 151, 154, 199, 219– 
221, 223, 224, 227 

Algebra connection, 221–224 
Algebra of module homomorphisms, 125 
Almost-commutative manifold, 79, 179, 

180, 183, 186, 188, 190, 191, 193, 196, 
199, 203, 204, 206, 207, 210–212, 214, 
217, 219, 229, 233, 239, 243, 245, 251, 
254, 257, 262, 273, 274, 285 

Analytic order, 102–105, 115 
Anti-unitary operator, 31, 33, 37–39, 47, 58, 

62, 81 
Asymptotic expansion, 4, 104–106, 109, 

159, 160, 173, 174, 186, 190, 193 
Atiyah–Bott formula, 110, 113 
Atiyah–Singer index theorem, 227 
Automorphism, 40, 41, 44, 82, 83, 85, 121– 

124, 139, 140, 143, 145, 146, 148, 150, 
152, 153, 180, 182, 217, 223, 230, 287– 
290, 300 

B 
Background field, 2, 294 
.(b, B)-coboundaries, 97 

.(b, B)-cocycle, 97, 99, 100, 105, 106, 108– 
110, 168 

b (differential), 95, 96 
B (differential), 95, 96 
Big desert, 260 
Big desert, 260 
Bimodule, 14, 16, 31, 33, 34, 46, 128 

C 
Canonical triple, 77, 85, 89, 91, 101, 115, 

179, 180, 193, 195, 210, 217 
Center, 53, 122, 124, 145, 146, 152, 154, 182 

Chern character, 115, 116, 175, 227 
Chirality operator, 52, 54, 55, 77, 271 
Christoffel symbols, 60–62, 66 
Classification of finite real spectral triples, 3, 

31, 35, 40, 47 
Classification of finite spectral triples, 3, 25, 

35, 45 
Classification of irreducible geometries, 3, 

45, 206 
Clifford algebra, 32, 49–53, 55–58, 62, 71, 

274, 287, 289, 290 
Clifford algebra bundle, 56, 57 
Clifford multiplication, 57, 61, 63 
Cochain, 95, 96, 98–100, 108, 112, 167 
Cohomology, 95, 97 
Cohomology groups, 95–97 
Commutant, 12, 33, 44, 46, 54 
Commutant property, 32, 76, 125, 134, 145, 

222 
Commutative subalgebra, 124, 145, 146, 

151, 154, 182 
Compatible connection, 35 
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Complex algebra, 43, 181–183, 234 
Complex involutive algebra, 145 
Conjugate module, 34, 128 
Connection, 2, 24, 25, 28, 34, 35, 59–62, 

130–133, 150, 154, 171, 174, 184, 187, 
191, 221, 224, 226, 227, 275 

Connection one-form, 175, 221, 223–226 
Coupling constant, 3, 4, 244, 245, 249, 254, 

259–261, 269, 280–282 
.C∗-algebra, 4, 13, 28, 73–75, 80, 84–86, 122, 

143, 228 
.C∗-bundle, 145–148, 150, 152–155, 180 
.C∗-dynamical system, 287–289 
.C(X)-algebra, 146, 150, 154 
Cyclic cocycles, 91, 99, 166, 167 
Cyclic cohomology, 95, 97, 99, 112, 114, 

116 
Cyclic vector, 33 

D 
Defining representation, 12, 17, 20, 53, 123, 

186, 230, 238 
De Rham current, 114 
De Rham differential form, 79 
Derivation, 1–4, 22, 24, 25, 54, 79, 81, 82, 

99, 103, 124, 125, 130, 138, 148, 182, 
186, 199, 203, 210, 229, 255, 268, 284, 
298 

Determinant, 216, 217, 234, 291 
Differential one-form, 22, 23, 79, 123, 133 
Dimension spectrum, 102, 110, 115, 159, 

160 
Dirac operator, 1–3, 22, 23, 26, 34, 35, 37, 

39, 43, 49, 55, 59, 63, 64, 68, 69, 71, 
75–78, 81–84, 110, 115, 134, 146, 155, 
183–188, 191, 196, 197, 204, 207–210, 
212, 220, 222, 225, 226, 230, 232, 237, 
252, 253, 255, 257, 272, 274, 276, 277, 
279, 284, 294, 297 

Discrete metric, 19 
Distance function, 56, 75, 85, 205 
Divided difference, 22, 164–166, 171, 172, 

176, 294–296 
Dixmier–Douady class, 228 

E 
Effective action, 297 
Electrodynamics, 4, 173, 203, 207, 211, 214, 

229 
Entropy, 292, 293 
Epstein zeta function, 93, 114 
Euler characteristic, 196 

Even cochain, 98 
Even cyclic cohomology, 112 

F 
Fermion doubling, 173, 255 
Fermionic action, 2, 4, 157, 158, 173, 206, 

208, 211–215, 249–252, 276 
Finitely generated projective module, 126 
Finite noncommutative space, 9, 31, 79, 121, 

179, 184, 203, 284 
Finite projective module, 227 
Finite real noncommutative space, 31 
Finite real spectral triple, 3, 31–35, 38, 40, 

41, 43, 45–47, 179, 203, 230 
Finite spectral triple, 3, 21–25, 27, 28, 31, 

33, 35, 43, 45, 47, 174 
Finite summability, 111, 115 
First-order condition, 133, 134, 204, 217, 

230, 231, 272, 273 
Fredholm operator, 90, 92, 110 

G 
Gâteaux derivative, 162, 163, 174 
Gauge bosons of the Standard Model, 245 
Gauge field, 1–4, 121, 125, 132, 146, 150, 

151, 157–159, 161, 179, 183–187, 196, 
198, 206, 207, 210, 211, 260, 271, 273, 
275, 277, 284, 294 

Gauge fields on almost-commutative mani-
folds, 183 

Gauge fields of the Standard Model, 4, 238, 
239, 260, 277, 284, 306, 308, 309 

Gauge group, 224 
Gauge group of the Standard Model, 234 
Gauge group on almost-commutative man-

ifolds, 179, 180, 183, 186, 188, 190, 
191, 199, 203, 206, 233, 306 

Gauge invariant, 2, 4, 157, 158, 198, 245 
Gauge Lie algebra, 124, 180 
Gauge theory, 1–4, 79, 121, 145, 146, 151– 

153, 199, 206, 207, 210, 219, 223, 224, 
227, 233, 245, 298, 299 

Gauge transformation, 2, 4, 132, 134, 137, 
150, 185, 186, 226, 238, 248 

Gelfand duality, 73–75, 84 
Generalized Laplacian, 186, 188, 190, 191, 

199, 226 
Generations, 232, 233, 240, 250, 251, 253, 

254, 259, 274, 275 
Grand unified theories, 260, 284 
Graph, 25–28, 35, 40, 41, 69, 71, 293, 295– 

300
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Grassmann connection, 130 
Grassmann integral, 215–217 
Grassmann variables, 158, 214–217 

H 
Heat kernel expansion, 159, 160, 186 
Hermitian .∗-algebra connection, 221, 223, 

224 
Hermitian structure, 129, 219, 220, 222, 227 

Higgs field, 1, 2, 4, 186, 199, 238, 243–247, 
250, 251, 253–255, 257, 262, 271, 273, 
275, 280, 284 

Higgs mass, 3, 4, 258, 259, 264, 265, 268, 
269, 271, 281, 282, 284, 285 

Higgs mechanism, 217, 245, 255 
Higgs potential, 243, 245–247 
Hilbert bimodule, 15–18, 23, 28, 33, 34 
Hilbert–Schmidt inner product, 32, 219–221 

Hilbert transform, 89 
Hochschild coboundary, 95 
Hochschild cocycle, 99, 167, 168 
Hochschild cohomology, 95, 96, 167 
Hypercharge, 236–238, 255 

I 
Idempotent, 126–128 
Improper cocycle, 111 
Inner automorphism, 121–123, 140, 143 
Inner derivation, 125 
Inner fluctuation, 121 
Inner unitary equivalence, 119, 141 
Involutive algebra, 9, 43, 136 
Irreducible geometry, 3, 45, 47, 206, 255, 

268, 271 
Irreducible representation, 12, 13, 17, 26, 33, 

35, 36, 45, 46, 53, 54, 74, 123, 281, 289, 
291 

K 
Kaluza–Klein theory, 179, 199, 211 
Kasparov product, 15, 16, 155 
KMS, 287–289, 291, 293, 299 
KO-dimension, 31, 32, 35, 38–41, 45, 47, 55, 

58, 59, 76–78, 81, 82, 158, 183, 204, 
206, 208–210, 217, 229, 233, 255, 268, 
272 

Krajewski diagram, 3, 35, 38, 40, 41, 43, 45– 
47, 199, 204, 208, 209, 217, 230, 231 

L 
.�-decorated graph, 35 
Laplace–Stieltjes transform, 159, 160, 173, 

192 
Laplacian, 1, 59, 60, 63, 64, 186, 188, 190, 

191, 199, 226 
Leibniz rule, 24, 34, 59, 64, 108, 130, 132, 

143, 169 
Leptons of the Standard Model, 231, 254 
Levi–Civita connection, 60, 61, 77, 191 
Lichnerowicz formula, 63, 186, 188, 189, 

194 
Local index formula, 3, 89, 92, 94, 110, 113– 

115, 174 
Localization, 3, 145, 148, 150, 151 

M 
Majorana mass, 252, 253, 255, 259, 262, 

263, 265, 271 
Majorana mass matrix, 232, 251 
Mass matrix, 232, 251, 259, 282 
Mass relations, 257 
Matrix algebra, 2, 3, 9, 11, 13–18, 21, 23, 

26–28, 32, 33, 44, 45, 47, 53, 73, 74, 
92, 121, 141–143, 199, 219, 229, 288– 
290 

McKean–Singer formula, 111, 115 
Metric, 3, 18–21, 24, 57, 58, 60, 83, 204, 217 

Module, 14, 16, 17, 24–26, 28, 31, 34, 125– 
130, 133 

Module homomorphism, 125 
Morita equivalence, 3, 14, 18, 23, 25, 28, 33, 

121, 125, 126, 128, 130, 133, 143 
Morita self-equivalence, 125, 132, 183 
Multiplicity, 26, 27, 33, 36, 39, 41, 46, 208, 

209 

N 
Noncommutative Riemannian spin mani-

folds, 3, 59, 64, 73, 76, 84 
Noncommutative torus, 73, 80–82, 85, 99, 

100, 114, 115, 173 

O 
Odd cochain, 96, 98, 99 
Odd cyclic cohomology, 97 
One-loop correction, 287, 300 
Opposite algebra, 32, 137 
Order one condition, 32, 39, 40, 76, 209, 222, 

272
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Orientation axiom, 47 
Outer automorphism, 121 

Q 
Quarks of the Standard Model, 231, 254 

P 
Pati-Salam model, 284 
Periodic cyclic cohomology, 97, 99, 100, 167 

Perturbative expansion, 159, 161, 173, 190, 
193, 199, 287 

Pfaffian, 216 
Pontryagin class, 194 
Powers–Rieffel projection, 114, 115 
Product spectral triple, 28, 78 
Projection, 89, 92, 93, 97, 99–101, 110, 113– 

115, 127, 128, 130, 151, 174, 253, 289, 
291 

Pseudodifferential operator, 103, 104 

Q 
Quaternions, 43, 229, 233 

R 
Real algebra, 43, 46, 53, 184, 217, 234 
Real involutive algebra, 43 
Real spectral triple, 3, 31–35, 38, 40, 41, 43, 

45–47, 55, 59, 76–78, 80–82, 84, 85, 
121, 123, 125, 131–133, 136, 137, 139, 
140, 145, 151, 152, 154, 179, 203, 217, 
221, 223, 224, 230, 273 

Real structure, 3, 41, 44, 46, 76–78, 123, 133, 
146, 221, 222 

Real subalgebra, 43, 44, 53, 54 
Reconstruction theorem, 21, 28, 85, 146, 223 

Regular spectral triple, 102–104, 110, 115, 
159 

Renormalization group equation, 4, 257, 
260, 262, 263, 268, 269, 282, 285 

Renormalization group flow, 260, 263 
Representation, 2, 11–22, 26, 31–33, 35, 36, 

39, 44–47, 53, 54, 74, 79, 81, 83–85, 
123, 133, 152, 172, 182, 185, 186, 198, 
204, 224, 226, 230, 231, 235, 238, 271, 
273, 274, 279, 281, 284, 289–291, 300 

Residue cocycle, 109 
Ricci tensor, 60 

Riemannian curvature tensor, 60, 194 
Riemannian metric, 55, 56 
Riemannian spin geometry, 3, 55, 73, 75 
Riemannian spin manifold, 1, 2, 22, 49, 55, 

59, 63, 64, 71, 73, 75, 77, 79, 84, 85, 
115, 146, 151, 179, 188, 193, 204, 220, 
224 

Riemann zeta function, 90, 300 

S 
Scalar curvature, 63, 64, 188, 191, 243, 281 
Scalar field, 2, 4, 179, 183, 187, 198, 205, 

214, 217, 235, 237, 238, 273, 276, 279– 
281, 283, 284, 300 

Scalar fields on almost-commutative mani-
folds, 183 

Scalar fields of the Standard Model, 276 
Second quantization, 287, 289, 299 
Seeley–De Witt coefficients, 191, 198 
Seesaw mechanism, 255, 259 
Self-adjoint, 1, 2, 128, 131, 133, 139, 140, 

288, 289, 291 
Separating vector, 33, 45, 46 
Serre–Swan Theorem, 227 
Simple dimension spectrum, 102, 115, 159 
Sobolev space, 102, 115 
Spectral action, 2–4, 157–160, 162, 164, 

166, 168, 171, 173, 174, 179, 186, 190, 
191, 193, 195, 196, 198, 199, 206, 211, 
214, 217, 223, 224, 226, 227, 239, 243– 
245, 255, 257, 274, 277, 281, 284, 287, 
288, 293, 295, 298–300 

Spectral action of the Standard Model, 3, 
173, 239, 255, 257, 274, 277, 281, 284 

Spectral action on almost-commutative man-
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