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Series Preface

This series will publish the books on grey system theory and various applications in
the fields of natural sciences, social sciences and engineering.

It is devoted to the international advancement of the theory and application of
grey system theory, and seeks to foster professional exchanges between scientists
and practitioners who are interested in the models, methods and applications of
grey system theory. Through the pioneering work completed over 40 years, grey
system analysis methods have become powerful tools in addressing system with
poor information.

Books published with this series will explore the models and applications of grey
system theory, in order to tackle poor information more effectively and efficiently.
The series aims to provide state-of-the-art information and case studies on new
developments and trends in grey system research and its potential application to
solve practical problems.

In the era of big data, the grey system theory based on poor information data
mining has sprung up. It has become an effective tool for people to extract valuable
information from massive data. In the past 40 years, grey system method and model
have been widely used in many fields, such as social science, natural science and
engineering technology, which has led to innovation and progress in various fields.
More and more people interested in grey system theory and a lot of new results have
been obtained in recent years. In particular, successful applications in many fields
have won the attention of the international world of learning.

Scholars from more than 100 countries and regions in the world have published
more than 300,000 documents of grey system research and applications.

On the 7th of September, 2019, Angela Dorothea Merkel, then German Chan-
cellor, praised grey system theory in her speech at Huazhong University of Science
and Technology. She said that the work of Prof. Deng Julong, the founder of grey
system theory and Prof. Liu Sifeng, the editor of this series, “have made a profound
impact on the world.”
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vi Series Preface

The Coverage of this series includes, but is not limited to:

• Foundations of grey systems theory
• Grey sequence operators
• Grey relational analysis models
• Grey clustering evaluations models
• Techniques for grey system forecasting
• Grey models for decision-making
• Combined grey models
• Grey input-output models
• Techniques for grey control
• Various applications of grey systemmodels in the fields of natural sciences, social

sciences and engineering.

If you are interested in the series on grey systems, please contact with
Ms. Emily Zhang at emily.zhang@springernature.com or Prof. Sifeng Liu at sfliu@
nwpu.edu.cn.

Xi’an, China Prof. Sifeng Liu, Ph.D.
Editor of the Book Series on Grey

System, Director of Center for Grey
Systems Studies, NPU, President

of International Association of Grey
System and Uncertain Analysis

mailto:emily.zhang@springernature.com
mailto:sfliu@nwpu.edu.cn


Preface

In this book we answer the calls of the readers of our previous publications, and
systematically present the main advances in grey system theory and applications. By
following our readers’ feedback and suggestions, this volume introduces the most
recent research results and updates on what is presented in our earlier books. In
particular, the following content, which represents the author’s recent research, is
highlighted in the book: general grey numbers and their operations, negative grey
relational analysismodels and grey relational analysismodels based on similarity and
closeness, three dimensional grey relational analysis models, grey clustering evalu-
ation models based on mixed possibility functions, original difference grey model
(ODGM), even difference grey model (EDGM), discrete grey model (DGM), frac-
tional grey models, self-memory grey models, multi-attribute weighted intelligent
grey target decision models, weight vector group with kernel and weighted compre-
hensive clustering coefficient vector. We also attach a software designed for grey
system modelling, which was developed by Bo Zeng using Visual C#, the widely
employed C/S software tool. This user-friendly software allows users to conveniently
input and/or upload data and clearly distinguishmodule functions. Also, the software
has the ability to present users with operational details, as well as periodic and partial
results. Additionally, users can adjust the levels of computational accuracy based on
their practical needs.

During the writing of this book, we prioritized theoretical simplicity and clarity to
make it easy for the reader to follow the main arguments made. With a good number
of practical applications, we intended to illustrate the methodology of grey system
theory and modelling techniques so that we could emphasize the practical applica-
bility of grey system thinking. We drew on the most recent research developments
from various research groups around the world and tried to present themost complete
picture of this new area of scientific endeavor in a concise manner.

The overall planning and organization of topics contained in this bookwere carried
out by Sifeng Liu, who also authored Chaps. 1, 2, 4, 6, 10 and 12. Yingjie Yang
produced Chaps. 3, and 11, Jeffrey Forrest composed Chaps. 7 and 8, Naiming
Xie wrote Chap. 9, and the Appendix and the attached computer software were
developed by Zeng Bo. Zhigeng Fang, Yaoguo Dang, Lirong Jian and Chunhua Su
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viii Preface

and colleagues also worked with the authors to refine some of the book’s content.
Sifeng Liu was responsible for unifying the terms used throughout the book and for
finalizing the manuscript.

Finally, we would like to encourage you to communicate with us and send us any
comments you might have about this book. After decades or more of continuous
polishing and improvement, an academic work can become increasingly perfect and
recognized as a masterpiece. Sifeng Liu can be reached at sfliu@nwpu.edu.cn.

Xi’an, China
August 2024

Sifeng Liu

mailto:sfliu@nwpu.edu.cn


Foreword by Prof. Alain Bernard

In the era of big data, the paradigm of scientific research is undergoing funda-
mental changes. The Fourth Paradigm: Data-Intensive Scientific Discovery which
proposed by Jim Gray, a Turing Award winner, is increasingly becoming the main-
stream paradigm in scientific research. The significant feature of big data is its low
information density. The characteristics and operation rules of various systems are
like gold buried in a sea of sand, deeply concealed by the big chaotic and complex
uncertain data.

In 1982, Prof. Julong Deng founded the grey system theory, which is a distinctive
method for modelling and analysing uncertain data. Grey system theory takes the
“poor data” uncertain system with “some information known and some information
unknown” as the research object. It mainly extracts valuable information through
the mining of “some” known information, and realizes the correct description of the
system operation behavior and evolution law, so that people can use mathematical
models to analyse and assess the “poor data” uncertain system, then realize high-
precision prediction, scientific decision-making and optimal control of the “poor
data” uncertain system.

Prof. Liu has been dedicated to grey system research for 40 years. The series of
concepts and models he proposed have become classics in this field. Such as kernel,
degree of greyness of grey number, simplified form of grey number, general grey
numbers and their algebraic systems; sequence operator, weakening and strength-
ening buffer operators; A series of grey relational analysis models based on a
global perspective; The grey evaluation model based on mixed possibility func-
tion of endpoints and center points, a multi-objective weighted intelligent grey target
decision-making model, and a two-stage grey decision-making model based on a
kernel weight vector group; And various original poverty information data predic-
tion models such as original difference models, mean difference models, discrete
grey models, fractional order grey models, and self memory models proposed in
collaboration with his students. These original achievements have greatly enriched
the knowledge system of grey system theory. Various editions of his seminal book
on Grey system theory have been published in different languages such as Chinese,
English, Romanian and Korean. Hundreds of universities from around the world
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x Foreword by Prof. Alain Bernard

adopted them as textbooks. There are more than one million audiences of his books,
videos and software of grey modelling. In 2024, he was selected as one of the top
0.05% Lifetime Highly Ranked Scholar in Systems Theory by Scholar GPS. His
publications have been cited 51270 times with an H-Index of 95 in Huezhi Scholar.

As a newedition of his bookofGrey SystemsAnalysis is about to be published, I am
great honored to write the foreword for this classic work. This book will undoubtedly
benefit more grey system theory learners and researchers as it has been funded by
Publishing Fund of Excellence Academic Works of NPU and will be published as
OA book. It is expected that it will be widely spread around the world, promote the
in-depth application of grey system methods and models and benefit all mankind.

Prof. Alain Bernard
Honorary Professor Centrale Nantes

Digital Sciences Laboratory of Nantes (LS2N UMR CNRS 6004)
Fellow member of the National Academy of Technologies of France

CIRP Fellow Emeritus
France



Foreword by Prof. Edmundas Kazimieras
Zavadskas

AsaneweditionofGreySystemsAnalysisbyProf. SifengLiu is about to bepublished,
I amgreat honored towrite the preface for this classicwork in the field of grey systems
research.

In the mid to late 20th century, human society began to move towards the infor-
mation age. People are beginning to deeply realize that data analysis methods have
become an indispensable skill for everyone. The characteristics and operating rules
of various systems are like gold buried in a sea of sand, deeply concealed by chaotic
and complex data information, and there is an urgent need for effective scientific
methods to explore and reveal. In response to the needs of the times, as a poverty
information data analysis method, grey system theory has emerged. Grey system
theory takes the “poor data” uncertain system with “some information known and
some information unknown” as the research object. It mainly extracts valuable infor-
mation through the mining of “some” known information and realizes the correct
description of the system operation behavior and evolution law, so that people can use
mathematical models to analyse and assess the “poor data” uncertain system, then
realize high-precision prediction, scientific decision-making and optimal control of
the “poor data” uncertain system.

Prof. Liu has been dedicated to grey system research for 40 years, and his series of
original concepts and models have become classics in the field. Such as general grey
numbers, simplified forms of grey numbers, and their algebraic systems; Construc-
tion and properties of sequence operators and practical buffer operators; A series of
grey relational analysis models based on a global perspective; The grey evaluation
model based on a mixed possibility function of endpoints and center points, a multi-
objective weighted intelligent grey target decision-making model, and a two-stage
grey decision-makingmodel based on akernelweight vector group;Andvarious orig-
inal poverty information data prediction models such as original difference models,
mean difference models, discrete grey models, fractional order grey models and self
memory models proposed in collaboration with his students.

Especially his seminal books greatly promoted the dissemination anddevelopment
of grey system theory. The Grey System Theory and Its Applications, first published
in 1991, were deeply loved by readers. In 2024, Science Press released its 10th
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xii Foreword by Prof. Edmundas Kazimieras Zavadskas

edition, which was rated as the first highly cited book in pandect of Natural Science
by China National Knowledge Infrastructure. Multiple English versions, such as
An Introduction to Grey System Theory (1998, IIGSS Academic Publisher, USA),
Grey Information (2006, Springer London Ltd., UK),Grey Systems (2011, Springer-
Verlag, DE),Grey Data Analysis (2016, Springer, SG),Grey Systems Analysis (2022,
Springer, SG), are the first choice for scholars from all over the world to understand
grey system theory and its research progress.

Currently, scholars from over 130 countries or regions around the world have
published papers on grey systems. My team has been conducting grey system theory
research for over 20 years.And starting to publish papers related to grey systems in the
early 21st century. We have successfully applied grey system methods and models
to solve problems such as construction project evaluation and supplier selection,
and proposed multiple combined grey models, such as COPRAS-G, ARAS-G and
EDAS-G.

This book will undoubtedly benefit more grey system theory learners and
researchers as it is published inOA formatwith the support of theExcellentAcademic
Works Publishing Fund of Northwestern Polytechnical University. Grey system
theory is a powerful tool for analysing uncertain data in the era of big data. I look
forward to its widespread dissemination worldwide, promoting the in-depth appli-
cation of grey system theory in the fields of natural sciences, social sciences and
engineering technology.

Prof. Edmundas Kazimieras Zavadskas, Ph.D., D.Sc., Dr h.c.mult
Founder of Journal Technological and Economic Development of Economy

Founder of Journal of Civil Engineering and Management
Member of Lithuanian Academy of Science

Honorary GSUA Fellow
Chief Researcher, Institute of Sustainable Construction

Faculty of Civil Engineering
Vilnius Gediminas Technical University

Vilnius, Lithuania



Foreword by Dr. James M. Tien

It givesme great pleasure to be introducing this 8th edition ofGrey SystemTheory and
ItsApplicationsbyProf. SifengLiu.The theoryof grey systemswasfirst introduced in
1982 by J. L. Deng (1933–2013) at HuazhongUniversity of Science and Technology;
it established a relatively new approach for addressing poorly defined problems with
a high level of greyness or uncertainty. The theory enables one to model, analyse,
monitor and control such partially defined systems by generating, excavating and
extracting useful information from what is available. It built on the work of Dr. Lotfi
A. Zadeh, who introduced the concept of fuzzy sets in the 1960s that in turn led to
breakthroughs in neural networks and soft computing.

Grey SystemTheory actually combines two critical and overarching areas. Thefirst
concerns systems which attempt to synthesize the various components or subsystems
into an overall functioning system or system of systems. Systems theory attempts to
make transparent the deep connections and interactions among objects and events,
all leading to the enrichment and progress of science and technology. Many of the
historically difficult, hard-to-solve problems in the different scientific fields have
been successfully resolved through the application of systems theory and its allied
methodologies, including information theory, cybernetics, combinatorics, genetics,
etc. The second concerns the greyness or uncertainty level that is implicit in all natural
or man-made systems. Indeed, most modelling techniques assume the existence
of uncertainty or stochasticity, as defined by either empirical evidence or assumed
distributions, including fuzzy sets.

Grey System Theory, then, provides a realistic approach to modelling, analysing,
monitoring and controlling systems. Professor Sifeng Liu has greatly extended, if
not expanded, Prof. Deng’s earlier efforts. In the 1980s, he put forward a series
of new models and concepts, including sequence operator, absolute degree of grey
incidence, grey cluster evaluationmodelwith fixedweight, and positioned coefficient
of grey matrix. In the 1990s, he proposed a buffer operator and its axiom, generalized
degree of grey incidence, grey number and measurement of its information content,
drifting and positioning solution, the grey-econometrics model GM(1,1), the grey
Cobb-Douglass model, etc. More recently, he proposed the concept of general grey
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xiv Foreword by Dr. James M. Tien

numbers, the grey algebraic system based on a kernel and degree of greyness, and
different variations of the model GM(1,1).

The widespread recognition and application of grey system theory reflect its
growing acceptance. A number of universities from around the world has adopted
Prof. Sifeng Liu’s monographs, both in Chinese and English, as their textbooks. In
2002, he won theWorld Organization of Systems and Cybernetics (WOSC) Prize. In
2008, as a preeminent Chinese scholar, he was elected an Honorary WOSC Fellow.
In 2013, after a strict review by the European Commission, he was selected to be a
Marie Curie International Fellow, thus honoring him as the first such Fellow with
grey systems expertise.

As a systems scientist and engineer, I am honored to write this foreword for
the 8th edition of Grey System Theory and Its Applications. I look forward to its
widespread dissemination and its promulgation of grey systemapplications in science
and engineering.

James M. Tien, Ph.D., DEng (h.c.), NAE
Distinguished Professor and Dean Emeritus

College of Engineering
University of Miami

Coral Gables, FL, USA

Note Professor James M. Tien prepared this note for 8th edition of Grey System
Theory and Its Applications (in Chinese) by the same authors, published in 2016.
With his permission, it is printed here as a foreword for this current book.



Foreword by Dr. Keith William Hipel

Grey Systems: Theory and Applications
Written by Sifeng Liu and Yi Lin
Springer-Verlag: Berlin, Heidelberg
2010, 379 pages, ISBN 978-3-642-16158-2 (cloth)
DOI: 10.1007/978-3-642-16158-2

Professors Sifeng Liu and Yi Lin have written another pioneering book on the
important topic of grey systems. In 2006, the same authors wrote the well-received
book entitled Grey Information: Theory and Practical Applications which was also
published by Springer-Verlag. I am pleased to say that their second book on Grey
Systems constitutes a significant expansion and improvement of their previous fine
book. Accordingly, if you already possess a copy of the 2006 book, you can make a
worthwhile academic investment by obtaining a copy of their recent book in order to
be cognizant of the latest ideas and advancements in the crucial field of grey systems.

The question that naturally arises is why grey systems are of such great import
at this point in history. The answer is quite straightforward: many challenging prob-
lems facing society consist of interconnected complex systems of systems exhibiting
high uncertainty and having few measurements. For example, in order to effectively
combat climate change, one must understand as much as possible the complex inter-
actions among natural systems such as atmospheric, oceanic, geological and hydro-
logical systems, with societal systems including energy production, industrial, agri-
cultural and city systems. The deep uncertainty involved with these interconnected
systems of systems and their potential emergent behavior, coupled with a dearth
of observations, mean that formal tools for handling this uncertainty are in high
demand. Fortunately, an arsenal of mathematically based methodologies and tech-
niques have been developed over the years: a rich variety of probabilistic-based tools,
fuzzy sets founded by Lotfi Zadeh, rough sets started by Z. Pawlak, information-gap
modelling perfected by Yakov Ben-Haim, uncertainty theory developed by Baoding
Liu, and grey systems established by Julong Deng in 1982. The foregoing and other
approaches to describing uncertainty are based upon different axioms and are thereby
highly complementary for tackling a wide variety of uncertain situations.

xv
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xvi Foreword by Dr. Keith William Hipel

Grey systems are purposefully designed for modelling uncertain systems, or
systems of systems, problems having small samples and low-quality information.
Grey systems are capable of dealingwith partially known information through gener-
ating, excavating and extracting useful information from what is available. How this
is accomplished is explained in depth in the timely grey systems book of Profs. Liu
and Lin.

In their contemporary textbook, Liu and Lin systematically present the theory and
practice of grey systems. In fact, the excellent ideas and applications contained in
their book are based upon the authors’many years of developing theoretical concepts,
applying their methods to real world applications, testing and refining their new
techniques with actual data, carrying out stimulating research with their students and
colleagues, teaching their students about their exciting work and delivering research
papers at international conferences around the globe. Their comprehensive book
contains the latest theoretical and applied advances created by the authors and other
scholars around theworld in order to place the readers at the forefront of international
research in grey systems.

The main body of their book contains ten well-explained and interconnected
chapters: Introduction to Grey Systems Theory, Basic Building Blocks, Grey Inci-
dence and Evaluation, Grey Systems Modeling, Discrete Grey Prediction Models,
Combined Grey Models, Grey Models for Decision Making, Grey Game Models,
Grey Control Systems, and Introduction to Grey SystemsModeling Software. More-
over, the book includes a computer software package developed for grey systems
modelling to permit both researchers and practitioners to use the new methodolo-
gies. Their book concludes with three appendices. The first appendix compares grey
systems theory and interval analysis while revealing the fact that interval analysis
is a part of grey mathematics. The second presents an array of different approaches
to studying uncertainties. Finally, the last appendix shows how uncertainties occur
using a general systems approach.

The book contains a wealth of mathematical results, techniques and algorithms
which are presented by the authors for the first time. These contributions include
an axiomatic system of buffer operators and a series of weakening and strength-
ening operators; axioms for measuring the greyness of grey numbers; general
grey incidences (grey absolute incidence, grey relative incidence, grey comprehen-
sive incidence, grey analogy incidence and grey nearness incidence); discrete grey
models; fixed weight grey cluster evaluation; and grey evaluation methods based
on triangular whitenization weight functions, multi-attribute intelligent grey target
decision models, applicable range of the G(1,1), grey econometrics (G-E), grey
Cobb-Douglass (G-C-D), grey input-output (G-I-O) and grey game models (G-G).

In their well-written book, Drs. Liu and Lin do a thorough job in their presentation
of many difficult technical concepts. The authors are able to convince the readers
of their book regarding the power and usefulness of their new theory by presenting
many interesting examples of practical applications to real-life problems. The chal-
lenging practical problems addressed in their book include urban economic planning,
downtown traffic design, natural disaster prediction, relative strength evaluation of a
state, investment projection of a company and employee performance evaluation.
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The depth and scope of the advancements in grey systems covered in this book,
in conjunction with clarity of explanation, make this seminal book attractive to
researchers, students, teachers and practitioners working in many different fields.
These areas of endeavor include image processing, video processing, multimedia
security, computer vision,machinery, control, agriculture,water resources,medicine,
astronomy, earth science, economics and management. I personally found grey
systems useful for accurately forecasting wastewater time series for which there
is a scarcity of data. I intend to keep a copy of this valuable book easily accessible in
my university office and purchase more copies of the book for use by my students.

Keith William Hipel
Ph.D., P.Eng., FIEEE, FINCOSE, FCAE, FEIC, FRSC, FAWRA

University Professor of Systems Design Engineering
University of Waterloo
Waterloo, ON, Canada

e-mail: kwhipel@uwaterloo.ca
Website: http://www.systems.uwaterloo/Faculty/Hipel

Senior Fellow
Centre for International Governance Innovation

Waterloo, ON, Canada

Note Professor Keith William Hipel prepared this note for one of the earlier book
by the same authors, published in 2010. It is published in Grey Systems: Theory and
Application, 2011, Vol. 1, No. 3. With his permission, it is printed here as a foreword
for this current book.

mailto:kwhipel@uwaterloo.ca
http://www.systems.uwaterloo/Faculty/Hipel


Foreword by Dr. Hermann Haken

With human knowledge maturing and scientific exploration deepening and largely
expanding in the course of time, mankind finally realizes the fundamental fact that
due to both internal and external disturbances and limitations of human and tech-
nical sensing organs, all information received or collected contains some kind of
uncertainty. Accompanying the progress of science and technology and the afore-
mentioned realization, our understanding about various kinds of uncertainties has
gradually been deepened. Attesting to this end, in the second half of the 20th century,
the continual appearance of several influential and different types of theories and
methods on unascertained systems and information has become a major aspect of the
modern world of learning. Each of these new theories was initiated and followed-up
by some of the best minds of our modern time.

In their recent book, entitled Grey Information: Theory and Practical Applica-
tions, published in its traditionally excellent way by Springer, Profs. Sifeng Liu and
Yi Lin presented in a systematic fashion the theory of grey system, which was first
proposed by J. L. Deng in early 1980s and enthusiastically supported by hundreds of
scientists and practitioners in the following years. Based on the hard work of these
scholars in the past (nearly) thirty years, scholars from many countries currently are
studying and working on the theory and various applications of this fruitful scien-
tific endeavor. With this book published by such a prestigious leading publisher of
the world, it can be expected that more scientific workers from different parts of
the world will soon join hands and together make grey system and information a
powerful theory capable of bringing forward practically beneficial impacts to the
advancement of the human society.

This book focuses on the study of such unascertained systems that are known
with small samples or “poor information.” Different of all other relevant theories on
uncertainties, this work introduces a system of many methods on how to deal with
grey information. Starting off with a brief historical introduction, this book carries
the reader through all the basics of the theory. And, each important method studied
is accompanied with a real-life project the authors were involved in during their
professional careers.

xix



xx Foreword by Dr. Hermann Haken

Many of the methods and techniques the reader will learn in this book were
originally introduced by the authors. They show how from our knowledge based
on partially and poorly known information can be obtained to accurate descriptions
and effective controls of the systems of interest. Because this book shows how the
theory of grey system and information was established and how each method could
be practically applied, this book can easily be used as a reference by scholars who
are interested in either theoretical exploration or practical applications or both. I
recommend this book highly to anyone who has either a desire or a need to learn.

Stuttgart, Germany
July 2007

Professor Dr. Dr. h.c. mult. Hermann Haken
Founder of Synergetics

Note Professor Hermann Haken prepared this note for one of the earlier book by
the same authors, published in 2006. It is published in Grey Systems: Theory and
Application, 2011, Vol. 1, No. 1.



Foreword by Dr. Robert Vallée

I am much interested and impressed by Dr. Sifeng Liu and Dr. Yi Lin’s recently
published monograph on grey information, dealing with the theory and practical
applications.

This book encompasses many aspects of mathematics under the aegis of uncertain
information. I am greatly in favour of this attitude, concerning the uncertainty of
information, which has been mine since a long time ago. Also, this book focuses on
practice and aims at explorations of new knowledge. It is a comprehensive, all-in-
one exposition, detailing not only with the theoretical foundation but also real-life
applications. Because of this characteristic of quality and usefulness, Liu and Lin’s
book possesses the value of the widest possible range of reference by the workers
and practitioners from all corners of natural and social sciences and technology.

In this book, Liu and Lin present the theory of grey information and systems
starting on such background information as the relevant history, an attempt to estab-
lish an unified information theory, the basics of grey elements, and reaching all the
most advanced topics of the theory. Complemented by many first-hand and practical
project-successes, the authors developed an organic theory and methodology of grey
information and grey system, dealing with errors. In fact, there is much more to tell
about error than about truth. Error (inexactitude) can be met everywhere and truth
(exactitude) nowhere. But inexactitude contains a part of the truth. Greyness is the
field we live in. Extremes, as whiteness and blackness, are inaccessible, but very
useful, ideal concepts.

With the publication of such a book that contains not only a theory, aspects of
magnificent real-life implications and explorations of new research, but also the
history, the theorization of various difficult concepts, and directions for future works,

xxi



xxii Foreword by Dr. Robert Vallée

there is no doubt that Drs. Liu and Lin have made a remarkable contribution to the
development and applications of systems science.

June 2007 Prof. Robert Vallée
President of the World Organisation

of Systems and Cybernetics, Université
Paris-Nord

Paris, France

Note This note is a book review written by Prof. Robert Vallée for one of the earlier
book by the same authors, published in 2006. It is published in Kybernetes: The
International Journal of Cybernetics, Systems and Management Science, 2008, Vol.
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Chapter 1
Introduction

1.1 The Background of Grey System Theory

In the late twentieth century, with the development of computer and information
technology, mankind began to enter the information age. Data and information have
become very important resources and the main driving force of social development.
The ability to acquire, transmit, analyze and process data, information and knowledge
determines the distribution of social wealth and power to a large extent, and becomes
the decisive factor of political, economic and cultural competitive advantage.

With the development of information technology and the progress of human
society, people have gradually deepened their understanding of various system uncer-
tainties, and the research on uncertain systems is also deepening day by day. Since the
1960s, a variety of uncertain system theories and methods have been proposed one
after another. Among them, Fuzzy mathematics founded by Professor L. A. Zadeh
in the 1960s (Zadeh, 1965), grey system theory advanced by Professor Julong Deng
in the 1980s (Deng, 1982), rough sets theory devoloped by Professor Z. Pawlak
in the 1980s (Pawlak, 1991), etc., are all important achievements in the study of
uncertain systems with extensive international influence. These uncertain theories
discussed the theories and methods of describing, processing and mining various
kinds of uncertain data and information from different perspectives and aspects.

Grey system theory takes the “poor information” uncertain system with “some
information known and some information unknown” as the research object. It mainly
extracts valuable information through the mining of “some” known information, and
realizes the correct description of the system operation behavior and evolution law, so
that people canusemathematicalmodels to analyze and assess the “poor information”
uncertain system, then realize high-precision prediction, scientific decision-making
and optimal control of the “poor information” uncertain system. The uncertainty
system of “poor information” in the real world provides rich research resources and
broad development space for grey system theory.
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In the era of big data, the paradigm of scientific research is undergoing funda-
mental changes. The Fourth Paradigm: Data-Intensive Scientific Discovery which
proposed by Jim Gray, a Turing Award winner, is increasingly becoming the main-
stream paradigm in scientific research. The significant feature of big data is its low
information density. The first core idea of big data is to fully utilize all available data,
not limited to random sampling; The second is to eliminate confounding factors and
gain insight into the general direction; The third is to attach importance to relevant
relationships rather than pursuing causality (Mayer-Schönberger & Cukier, 2013).
The basic principles of grey system theory is completely consistent with the core
idea of big data.

1.2 The Founder of Grey System Theory

The birth of grey system theory is an outcome of Professor Julong Deng who has
been working with perseverance for decades.

Prof. Deng was born in Lianyuan County, Hunan Province of China in 1933. He
got his degree in electrical machinery from Huazhong Institute of Technology and
then joined the same institute in 1955 as a teaching assistant. Prof. Deng used to
keep an eye on new ideas related to his field which led to his later investigation
into multi-variable system control problems. In the 1960s, he put forward a new
method – “control by removing redundant”. His paper entitled “multivariable linear
system shunt calibration device of a comprehensive approach”was published in 1965
(Deng, 1965). By the early 1970s, the method of “control by remove redundant” has
been widely recognized as a representative methodology in cybernetics.

In 1965, Prof. L. A. Zadeh proposed Fuzzy Sets (Zadeh, 1965). Prof. Deng was
involved in research of fuzzy mathematics. He published some papers in fuzzy math-
ematics. And served as a member of editorial board for several journals on fuzzy
mathematics. In the late 1970s, Prof. Deng devoted himself to the study of “pre-
diction and control problems of economic system”. In dealing with systems where
“some information is known, and some information is unknown”, the main chal-
lenge is to develop an effective method to represent such systems. Despite the diffi-
culties, Professor Deng and his colleagues have made significant progress in their
explorations. In 1982, his pioneering paper titled “The Control Problems of Grey
Systems” published by Systems and Control Letters (Deng, 1982). The publication
of this seminal article indicated that grey system theory, a new branch of research,
came into being.

Since the birth of Grey System Theory, it has received significant attention from
academic communities and industries both in China and overseas, especially in real
world applications.

So far, Prof. Deng’s works has been cited over 50 thousand times. Prof. Deng
won the award of founder of Grey System Theory at the 2007 IEEE International
Conference on Grey Systems and Intelligent Services which held in Nanjing. In
2011, he was elected as the honor fellow of the World Organisation of Systems and
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Cybernetics at the joint conference of the 15th WOSC International Congress on
Cybernetics and Systems and 2011 IEEE International Conference on Grey Systems
and Intelligent Services.

1.3 Development of Grey Systems Theory

1.3.1 Building a Basic Team

In the early 1990s, Professor Julong Deng began to recruit and train doctoral students
in the field of grey system theory in the discipline of system engineering of Huazhong
University of Science and Technology. He has recruited and trained 10 doctoral
students, most of them are young scholars who have been engaged in grey system
theory research for many years before entered Prof. Deng’s group. These scholars
naturally become the first generation of grey system theory. They actively participate
in the research of grey system theory, consciously assume the responsibility of devel-
oping and disseminating grey system theory, and unswervingly take the research and
inheritance of grey system theory as their lifelong career.

In 2000, as the first distinguished professor introduced by Nanjing University of
Aeronautics and Astronautics (NUAA), one of Prof. Deng’s PhD students, Professor
Sifeng Liu joined this university with aerospace characteristics. In the same year,
with Professor Sifeng Liu as the chief discipline leader, NUAA submitted an appli-
cation to the Academic Degrees Committee of the State Council of China for the
establishment of a doctoral degree authorization point in management science and
engineering, which was successfully approved. Therefore, grey system theory has
naturally become the characteristic and leading direction of the doctoral program of
management science and engineering of NUAA. At the same time, as the founding
director, Professor Liu established the Institute for Grey System Studies at NUAA.
IGSS-NUAA has also become the center of grey system scholars. A group of
outstanding young scholars gathered in IGSS-NUAA through talent introduction,
entering the station to carry out post-doctoral research and pursuing doctoral degree,
forming a highland of grey system research. IGSS-NUAA has 12 doctoral tutors
(including 6 full-time doctoral tutors). Over the past 20 years, it has recruited and
trained more than 200 doctoral students, post-doctors and visiting scholars at home
and abroad in the field of grey system theory.

Professor Julong Deng’s other doctoral students, such as Qishan Zhang with
Fuzhou University, Xinping Xiao with Wuhan University of technology, Wenping
Wang with Southeast University and Xuerui Tan with Shantou University, began to
cultivate high-level talents engaged in grey system theory and application research
after becoming doctoral supervisors.

Many other universities are recruiting and funding doctoral and postdoctoral
researchers in grey system theory and its application. Examples include Southeast
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University, Wuhan University of Technology, Fuzhou University, Shantou Univer-
sity, DeMontfort University, Bucharest Economics University, PoznańUniversity of
Technology, Bogazici University, Cape Town University, Central Florida University,
Nebraska-Lincoln University, University of Waterloo, Pablo de Olavide University,
Kanagawa University, National Cheng Kung University, etc.

In 2023, Professor Sifeng Liu joined Northwestern Polytechnic University, where
he established the Center for Grey System Studies (CGSS-NPU) and began to recruit
and train doctoral students and postdoctoral researchers in grey system theory.

Hundreds of doctoral graduates constitute the basic team of grey system theory
research. Each PhD graduates in grey system theory become a seed which take root
in the new institution, then enlarge and spread one’s power and influence gradually.

1.3.2 Establishment of Academic Organizations

In 1987, Wuhan Grey System Society, with members from provinces, cities and
autonomous regions all over the country of China, was approved by Wuhan
Association for Science and Technology.

In 1997, The Grey System Society in Taiwan region was established.
In 2005, the Grey System Society of China, CSOOPEM, was approved by China

Association for Science and Technology, and the Ministry of Civil Affairs of China.
At the beginning of 2008, the Technical Committee of IEEE SMC on Grey Systems
was established. In 2012, the first Workshop of European grey system research
collaboration network was held by De Montfort University, and delegates from
twelve member states of the European Union attended the event. In 2013, Professor
Sifeng Liu was selected for a Marie Curie International Incoming Fellowship (FP7-
PEOPLE- IIF-GA-2013-629051) of the 7th Research Framework Program of the
European Union. Furthermore, in 2014 an international network project entitled
“Grey Systems and Its Applications” (IN-2014-020) was funded by The Lever-
hulme Trust. Supported by this project, a series of grey system theory coopera-
tive research and academic exchange activities have been held in Europe, North
America and China. In 2015, Jointly sponsored by well-known scholars from China,
the United Kingdom, the United States, Canada, Spain, Romania and other countries,
the International Association of Grey System and Uncertainty Analysis (GSUA) was
established.

In recent years, Poland, Pakistan, Turkey and other countries have established
grey system academic organizations, and Iran, Sri Lanka and other countries have
established the Preparatory Committee of the grey system society.

The construction and development of specialized academic organizations have
played an important role in promoting the development of the new theory of grey
system.
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1.3.3 Hold a Series of Grey System Academic Conferences

FromDecember 20 to 24, 1984, with the support of Shanxi Academy of Agricultural
Sciences, the first national grey system academic conference “grey system and agri-
culture” was held in Taiyuan, Shanxi Province. Nearly 100 experts and scholars from
colleges and universities in 16 provinces, autonomous regions and cities, as well as
the Chinese Academy of Sciences, the Chinese Academy of Agricultural Sciences
and other units attended the conference. Professor Deng Julong, the founder of grey
system theory, attended the conference and delivered a keynote speech.

Since 1985, Wuhan (National) Grey System Research Association has held
six national grey system academic conferences in Wuhan. Zhejiang Agricultural
University and Henan Agricultural University have also held grey system academic
conferences respectively.

In 1996, more than 20 scholars from universities in Taiwan attended the Ninth
National grey system academic conference held at Huazhong University of science
and technology. The Grey System Society in Taiwan region held an academic
conference every year since 1997.

Since 2002, the Institute for Grey System Studies at Nanjing University of Aero-
nautics and Astronautics has taken on the responsibility of organizing grey system
academic conferences. IGSS-NUAA has held 28 (11th–38th) domestic and 18 inter-
national conferences on grey system theory and its applications so far. Since 2006, the
grey system academic conference has been funded by the China Center for Advanced
Science and Technology (Professor Tsung Dao Lee, Nobel Prize winner, as the
director of the center, and former president of the Chinese Academy of Sciences
academicians Zhou Guangzhao and LuYongxiang as deputy directors) for 15 years.
The grey system academic activities have also been supported by theNationalNatural
Science Foundation of China, the China Association for Science and Technology,
the Leverhulme trust foundation and the Jiangsu Provincial Department of Educa-
tion for many times. Nanjing University of Aeronautics and Astronautics regards the
grey system theory as the characteristic field of the University and provides contin-
uous support. Shanghai Pudong Institute of Education and Wuhan University of
Technology, Henan Agricultural University and Northwestern Polytechnic Univer-
sity have taken the initiative to undertake grey system academic activities. Such
conferences have been supported by IEEE,WOSC, GSUA, University of Macao, De
Montfort University, Stockholm University, and Huawei Technology of Thailand. A
large number of young scholars has attracted to such events.

A group of young scholars who are committed to the study of grey system
theory and have made important achievements have also spontaneously organized
and regularly held young scholars’ forums to exchange ideas and enlighten each
other.

Many special sessions and tracks on grey system theory have been organized
at significant international conferences such as International Conference on Uncer-
tain System Modeling, International Conference on System Forecast and Control,
International Conference on General System Studies, International Congress of
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World Organization of Systems and Cybernetics, IEEE International Conference
on Systems, Man and Cybernetics, etc.. The topicality of grey systems theory and
its popularity in such high-profile international conferences have certainly played an
active role in furthering understanding of, and promoting this theory among peers in
the world of systems science.

1.3.4 Journals and Book Series on Grey System Theory

In 1989, The Journal of Grey System was launched by Research Information Ltd in
the UK. In 2007, The Journal of Grey System is indexed in SCIE (Science Citation
Index Expanded) and belongs to the categories of “Mathematics” and “Mathematics,
Interdisciplinary Applications” in SCIE. Currently, Journal of Grey System with an
impact factor of 1.6. This publication is indexed by Mathematical Review of the
United States and other important indexing agencies from around the world. In
2011, Emerald launched a new journal named Grey Systems: Theory and Appli-
cation, edited by the faculty of the Institute for Grey System Studies at Nanjing
University of Aeronautics and Astronautics. In 2019, Grey Systems Theory and
Application is indexed in SCIE (Science Citation Index Expanded) and belongs to
the categories of “Mathematics”and “Mathematics, Interdisciplinary Applications”
in SCIE. At present, Emerald/ Grey Systems Theory and Application (GS) belong to
JCR Q1 with an impact factor of 3.2. This journal is indexed by EBSCO, Scopus, Ei
Compendex, Summon, ReadCube Discover and other important indexing agencies
from around the world. There are currently over one thousand different professional
journals in the world that have published papers in grey systems theory, many of
which are top journals in a variety of fields. As of this writing, many journals and
publishers such as the journal of the Association for Computing Machinery (USA),
Communications in Fuzzy Mathematics (Taiwan, China), Kybernetes: The Interna-
tional Journal of Systems&Cybernetics, Transaction of Nanjing University of Aero-
nautics and Astronautics, China Ocean Press, Chinese Agricultural Science Press,
Henan University Press, Huazhong University of Science and Technology Press
Co. Ltd, IEEE Press, Springer-Verlag have respectively published special issues or
proceedings on grey system theory.

Numerous publishing agencies such as Science Press, Defense Industries Press,
Huazhong University of Science and Technology Press Co. Ltd, Jiangsu Science
and Technology Press, Shandong People’s Press, Science and Technology Literature
Press of China, Henan University Press, China Science and Technology Book Press
of Taiwan, Gaoli Books Limited Company of Taiwan, ASE Press of Romania, Japan
PolytechnicPress, IIGSSAcademicPress,CRCofTaylor&FrancisGroup, Springer-
Verlag, Springer-Verlag London Ltd, and John Wiley & Sons, Inc. have published
hundreds of academic works on grey systems, in many different languages including
Chinese, Traditional Chinese, English, Japanese, Korean, Romanian, Turkish and
Persian.
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In 1991, In 1990, Henan University Press published the first grey system theory
work of Sifeng Liu and Tianbang Guo. The title of the book is Grey Systems Theory
and Its Applications (Liu&Guo, 1991). The book is very popular with readers. Since
then, it has been revised and republished many times and printed dozens of times.
Since the second edition, the book has been published by Science Press (Liu et al.,
1999). The third edition was supported by the science publishing fund of the Chinese
Academy of Sciences (Liu et al., 2003). The fourth edition, as a popular edition of
textbooks, was selected into the national planning textbooks for the “Eleventh Five
Year Plan” and the supporting textbooks for national top quality course of China
(Liu & Xie, 2006). In 2024, The 10th edition came out. It is a national planning
textbook and a supporting textbook for national first-class course of China (Liu,
2024).

In 1998, the first English book on grey system theory was published in the United
States (Liu & Lin, 1998), enabling interested readers around the world to systemat-
ically understand grey system theory. In 2006, Grey Information-Theory and Prac-
tical Applications published by Springer-Verlag (Liu & Lin, 2006), so that the grey
system theory can be widely spread around the world. Since then, Springer- Verlag
has launched several English versions, such as Grey Systems Theory and Applica-
tions (Liu & Lin, 2010), Advance in grey systems research (Liu & Lin edited, 2010),
Grey Data Analysis (Liu et al., 2017), and Grey Systems Analysis (Liu et al., 2022a,
2022b). This book has been funded by Publishing Fund of Excellence Academic
Works of Northwestern Polytechnical University and will be published as OA book.
It is expected that it will be widely spread around the world, promote the in-depth
application of grey system methods and models, and benefit all mankind.

Series on grey systems both in Chinese and English are published by Science
Press and Springer-Nature Group respectively. Series on grey systems in Chinese
was launched by Science Press in 2014. So far, 34 books have been published. Series
on grey systems in English was launched by Springer-Nature Group in 2021. The six
books have been published and other two books have passed the review, will come
out soon.

1.3.5 Grey System Theory Curriculums

Numerous universities around the world have set up grey system theory curriculums.
For example, in Nanjing University of Aeronautics and Astronautics (NUAA), the
curriculums of the grey system theory are found not only in Ph.D. and Master’s
programs, but also in undergraduate programs of many disciplines across the univer-
sity, as an elective module. Prof. Sifeng Liu and his team at IGSS- NUAA did a lot
of work to popularize and inherit the Grey System Theory. As a result, this course
has been selected as the National Excellence Course beginning in 2008, the National
Excellence Resource Sharing Course since 2013, the National Excellence Online
Open Course starting in 2018, and the National first class courses of online and
offline since 2020. Furthermore, Professor Sifeng Liu’s team worked with a number
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of professors from universities in Europe, the United States and Canada, including
Keith William Hipel, former president of the Royal Canadian Academy of Sciences,
Professor Yingjie Yang, the executive president of the GSUA, to complete the online
course in English, Grey Data Analysis, which became a free open learning resource
for all grey system hobbyists since 2021.

1.3.6 Researchers of Grey System Theory Are All Over
the World

Many scholars from USA, UK, Germany, France, Italy, Korea, Canada, Romania,
Poland, Turkey, South Africa, Iran, India, Pakistan, Egypt and Sri Lanka etc. have
joined IGSS-NUAA or CGSS-NPU as visiting professor, research fellow or for
joint project research. In recent years, some young scholars from different coun-
tries joining IGSS-NUAA or CGSS-NPU as PhD or Master students supported by
Chinese government scholarship. It is helpful to promotion the popularization and
international communication of grey system theory (Liu, et al., 2016; Liu, et al.,
2016a).

According to the retrieval results by the database of web of science, scholars from
more than 120 countries and regions in the world have carried out research on grey
system theory and applications and published relevant academic papers.

Hundreds of thousands of master’s and doctoral students around the world
applying grey system thinking and methods to carry out scientific research and
complete their dissertations.

Many prominent scholars have commended grey system research. Such scholars
include Professor LotfiA. Zadeh (USA), the founder of fuzzymathematics, Professor
Herman Haken (Germany), the founder of synergetics, Professor James M. Tien
(USA), former vice-president of IEEE and member of the National Academy of
Engineering, Professor Robert Vallee (France), former president of World Organi-
zation of Systems and Cybernetics, Professor Alex Andrew (UK), former secretary
General of the World Organization of Systems and Cybernetics, Professor Keith
William Hipel (CA), former president of the Canadian Royal Academy of Sciences,
Professor Edmundas K. Zavadskas, former president of Vilnius Gediminas Tech-
nicalUniversity andMember of LithuanianAcademyof Science, andProfessorAlain
Bernard, Président d’Honneur FranceAdditive andMembre de l’Académie desTech-
nologies, as well as manyAcademicians of the Chinese Academy of Sciences and the
Chinese Academy of Engineering, including Professor Qian Xuesen, famous scien-
tist and winner of the national highest science award, China, Professor Huai Jinpeng,
Minister of the Ministry of Education, China, Professor Yang Shuzi, Professor
Xiong Youlun, Professor Lin Qun, Professor Chen Da, Professor Zhao Chun-
sheng, Professor Hu Haiyan, Professor Xu Guozhi, Professor Huang Wei, Professor
Wang Zhongtuo, Professor Yang Shanlin, Professor Chen Xiaohong, Professor Shan
Zhongde, Professor Guo Baozhu, and Professor Song Zhengyu, et al.
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It attracts not only the affirmation and support from international leading scholars,
but also many early career researcher from different disciplines of social sciences,
natural sciences and engineering technology as well. Successful applications have
been found in more than 120 countries and regions. It has been established as a new
scientific branch in data analytics and uncertainty modelling.

On 7th September, 2019, during the visit to China, Angela DorotheaMerkel-then,
German Chancellor praised Chinese original grey system theory. She said that the
work of professor Julong Deng, the founder of grey system theory, and professor
Sifeng Liu and three other Alumni of HUST “profoundly affecting the world.”

1.3.7 Papers of Grey Systems Theory Are Growing Rapidly

The rapid development of grey system theory benefits from the strong promotion of
practical application needs.

In the information age, people in various fields begin to deeply realize that data
analysis method has become an indispensable skill for everyone. Just like the gold
buried in the sand sea, the laws and characteristics that people want to understand and
control are deeply covered up by the chaotic and complicated data information with
extremely low information density and value. There is an urgent need for effective
scientific methods. To meet the needs of the times, grey system theory came into
being.

Just like any new thing, the growth process of a new theory is naturally full
of hardships and twists and turns. When the grey system theory came out, it was
inevitably criticized and questioned by some people. The desire for poor information
data analysis methods in human social practice has formed a strong driving force, so
that the grey system theory can still attract the positive attention of a large number
of people of insight in various fields.

According to the retrieval results of the web of science database, scholars from
more than 120 countries and regions in the world have carried out research on
grey system theory and its application, and published a large number of academic
papers on grey system theory (Fig. 1.1) Many universities and research institutions
recruit and train doctoral students and researchers in grey system theory and applied
research. Hundreds of thousands of master and doctoral students around the world
use the thinking and method of grey system theory to carry out scientific research
and complete dissertations (Liu, et al, 2022).

According to the retrieval results of CNKI database, over the past 40 years, the
research papers on grey system model and its application have increased rapidly In
recent years, more than 15,000 papers have been published every year (Fig. 1.2).
From 1982 to 2023, more than 260,000 papers were published.

As can be seen from Fig. 1.2, the papers of grey system theory included in CNKI
database show a rapid growth trend after entering the new century. In 2001, 1856
papers were included in CNKI database. By 2004, the number of papers included
in CNKI database had reached 4151, double that of 2001. In 2007, it doubled on
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Fig. 1.1 Numbers of grey system papers included in web of science database

Fig. 1.2 Numbers of grey system papers included in CNKI database (2001–2022)

the basis of 2004, reaching 8821. Since 2008, more than 10,000 papers have been
included in CNKI database every year, and more than 15,000 papers have been
included in CNKI database since 2014.

It can be found from the literatures included in CNKI database that a large number
of the papers of grey system theory have been included inCNKI database in all double
first-class universities and double first-class discipline construction universities in
China. The top 20 universities of number of journal papers and dissertations of grey
system theory included in CNKI database can be seen in Table 1.1. The data in
Table 1.1 fully shows that the grey system theory has played an important role in the
training of high-level talents in China.
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Table 1.1 Top 20 universities of number of grey system papers included in CNKI database

Name of universities NCEPU CAU SJU WUT CSU

No. of papers 4018 2995 2970 2704 2684

Name of universities BJU NUAA JLU CQU TJU

No. of papers 2644 2531 2526 2505 2427

Name of universities HUST HNU HHU ZJU DUT

No. of papers 2016 1998 1987 1910 1857

Name of universities HUT CUMT DMU XUAT HIT

No. of papers 1782 1762 1759 1740 1697

Notes NCEPU North China Electric Power University,CNU Chang’ AnUniversity, SJU Southwest
Jiaotong University;WUT Wuhan University of Technology, CSU: Central South University; BJU
Beijing Jiaotong University, NUAA Nanjing University of Aeronautics and Astronautics, JLU Jilin
University, CQU Chongqing University, TJU Tianjin University, HUST Huazhong University of
Science and Technology, HNU Hunan University, HHU Hohai University, ZJU Zhejiang Univer-
sity, DUT Dalian University of Technology, HUT Hefei University of Technology, CUMT China
University of Mining and Technology, DMU Dialian Maritime University, XUAT Xi’an University
of Architecture and Technology, HIT Harbin Institute of Technology)

In China, the research group undertaking the national key research and develop-
ment plan, the key and major projects of the National Natural Science Foundation,
the national high tech research and development plan (863 plan), the national key
basic research and development plan (973 Plan), the national major science and
technology projects and the national science and technology support plan and other
important national science and technology projects has published a large number of
papers on the application of grey system models and methods to solve key scientific
problems (Fig. 1.3).

It can be seen from Fig. 1.3 that the grey system theory has played an important
role in promoting China’s scientific and technological progress and innovation devel-
opment. This was fully affirmed by academician Zhao Chunsheng of the Chinese
Academy of Sciences (Zhao, 2015).

In the era of big data, the grey system theory based on poor datamining has sprung
up and become an effective tool for people to extract valuable information from

Fig. 1.3 Application of key national science and technology programs in China
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massive data. In the past 40 years, the wide application of grey system methods and
models in many fields of social science, natural science and engineering technology
has led to innovation and progress in various fields.

1.4 Elementary Concepts of Grey System Theory

Many social, economic, agricultural, industrial, ecological and biological systems
are named by considering the features of classes of the research objects, while grey
systems are labeled using the color of the systems of concern.

In the theory of control, scholars often make use of colors to describe the degree
of clearness of available information. For instance, Ashby refers to objects with
unknown internal information as black boxes. This terminology has been widely
accepted in the scientific community. As another example, as a society moves toward
democracy, citizens gradually demand more information regarding policies and the
meanings of such policies. That is, citizens want to have an increased degree of
information transparency (i.e. white information). Thus, we use “black” to indicate
unknown information, “white” to indicate completely known information, and “grey”
to convey partially known and partially unknown information. Accordingly, systems
with completely known information are regarded as white, while systems with
completely unknown information are considered black, and systems with partially
known information and partially unknown information are seen as grey.

In this context, incompleteness in information is the fundamental meaning of
“grey.” However, the meaning of “grey” can be expanded or stretched from different
angles and in varied situations (see Table 1.2).

At this point, the difference between “system” and “box” Must be highlighted.
On the one hand, the term “box” is used when one does not pay much attention, or
does not attempt, to utilize information regarding the interior characteristics of an
object, while focusing mainly on the external characteristics of such an object. In
this case, the researcher generally investigates the properties and characteristics of
the object through analyzing the input–output relation. On the other hand, the term

Table 1.2 Extensions of the concept of “grey”

Situation/concept Black Grey White

Information Unknown Incomplete Completely known

Appearance Dark Blurred Clear

Processes New Changing Old

Properties Chaotic Multivariate Order

Methods Negation Change for the better Confirmation

Attitude Letting go Tolerant Rigorous

Outcomes No solution Multi-solutions Unique solution
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“system” is employed to indicate the study of the object’s structure and functions
through the analysis of existing organic connections between the object, relevant
factors, its environment, and related laws of change.

The research objects of grey systems theory consist of uncertain systems that
are known only partially through small samples and poor information. The theory
focuses on the generation and excavation of partially known information through
grey sequence operators of possibility functions to enable an accurate description
and understanding of the material world.

1.5 Fundamental Principles of Grey System Theory

In the process of developing grey systems theory, Julong Deng established six
fundamental principles containing intrinsic philosophical intensions, as discussed
below.

Axiom 5.1 The Principle of Informational Differences.
“Difference” implies the existence of information. Each piece of informationmust

carry some kind of “difference”.
When we say that object A is different from object B, we mean that there is some

special information about object A that is not true for object B. All “differences”
between natural objects and events have provided us with elementary information in
order for us to understand their nature.

If information “I” has changed our understanding or impression of a compli-
cated matter, then the piece of information “I” is definitely different from what we
initially understood the complicatedmatter to be. Great breakthroughs in science and
technology have provided us with necessary information, which we generally call
knowledge and tools, to understand and change the world around us. Such advanced
information is surely different from pre-scientific information. The more content a
piece of information “I” contains, the more the differences from an earlier version
of such information will become apparent.

Axiom 5.2 The Principle of Non-Uniqueness.
The solution to any problem with incomplete and indeterminate information is

not unique.
Because of the principle of non-uniqueness, which is a basic law of the application

of grey systems theory, one is set free to look at problems with flexibility. With
flexibility, one becomes more effective in reaching their goals.

Strategically, the principle of non-uniqueness is realized through the concept of
grey target. This concept is a unification of the concept of non-unique target and that
of non-restrainable target. For example, on the one hand, if a high school graduate
does not plan to enroll in any university except for one specific institution, then his
chance of being accepted by a university is greatly limited. On the other hand, if a
high school graduate with similar qualifications as the one in the previous example is
willing to apply for several universities other than his preferred one, he will be more
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likely to succeed in being accepted by a university because he has multiple targets,
which in turn leads to an improved chance of hitting one of the targets.

The principle of non-uniqueness can be seen as a comprehensive realization that
each target can be approached, that any available information can be supplemented,
that each plan made earlier can be further modified and improved, that each relation-
ship can be harmonized, that each thinking logic can be multi-directional, that each
understanding can be deepened, and that each path can be optimized. When faced
with the possibility of multiple solutions, one can locate one or several satisfactory
solutions through deterministic analysis and supplementation of information. There-
fore, the method of finding solutions on the basis of “non-uniqueness” is one that
combines both quantitative and qualitative analysis.

Axiom 5.3 Principle of Minimal Information.
. One characteristic of grey system theory is that it makes the most and best use

of the “minimal amount of available information.”
The “principle of minimal information” can be seen as a dialectic unification of

“a little” and “a lot.” One advantage of grey system theory is its ability to handle
such uncertain problems with “small data” and/or “poor information.” Its foundation
of study is the concept of “spaces of limited information.” “Minimal amount of
information” is the basic territory for grey system theory to show its power. The
amount of acquirable information is the dividing line between “grey” and “not grey”.
Making sufficient discovery and application of any available “minimal amount of
information” is the basic thinking logic of problem-solving used in grey system
theory.

Axiom 5.4 Principle of Recognition Base.
Information is the foundation on which people recognize and understand (nature).
This principle argues that all recognition must be based on information. Without

information, there is no way for people to know anything. With complete and deter-
ministic information, we can possibly gain firmunderstanding of nature.With incom-
plete and non-deterministic information, it is only possible to obtain incomplete and
non-deterministic grey understanding of particular phenomena.

Axiom 5.5 Principle of New Information Priority.
The function of new pieces of information is greater than that of old pieces of

information.
The “principle of new information priority” is the key idea behind information

application in grey system theory. That is, by applying additional weights to new
information, one can achieve a better result fromgreymodeling, grey prediction, grey
analysis, grey evaluation, and grey decisionmaking. The belief that “the new replaces
the old” reflects our “principle of new information priority.” With the availability of
new information, the motivation for whitening grey elements is strengthened. The
“principle of new information priority” reflects the fact that information in general
is time sensitive.

Axiom 5.6 Principle of Absolute Greyness.
“Incompleteness” of information is absolute. Incompleteness and non-

determinism of information have generality.
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Completeness of information is relative and temporary. It is the moment when the
original non-determinism has just disappeared, and new non-determinism is about
to emerge. Human recognition and understanding of the objective world have been
improved over time through continued supplementation of information.With endless
supply of information,man’s recognition and understanding of theworld also become
endless. That is, greyness of information is absolute and will never disappear.

1.5.1 Main Contents of Grey System Theory

After 40 years’ development, the grey system theory has basically established the
knowledge system of a new discipline. Its main contents include: the basic theory of
grey system such as grey number operation and grey algebraic system, grey equation,
grey matrix, etc.; Sequence operator and grey information mining method; A series
of grey relational analysis models for system diagnosis and analysis; A variety of
grey clustering evaluation models are used to solve the classification problems of
system elements and objects; Grey prediction series model and grey system predic-
tion method and technology; Grey decision models such as grey target decision
model and multi-objective weighted intelligent grey target decision model, which
are mainly used for scheme evaluation and selection, as well as grey combination
models characterized by multi-method fusion and innovation, such as grey program-
ming model, Grey Input–output Model, grey game model, and grey control model,
etc.

Grey number and its operation are the basis of grey system theory. From the
perspective of self-improvement of discipline system, there are many problems
worthy of further study, especially in the aspects of grey algebraic system, grey
equation, grey matrix and so on ( HYPERLINK "sps:refid::bib40|bib44" ).

Sequence operator and grey information mining mainly include buffer operator
(weakening buffer operator, strengthening buffer operator) ), mean operator, order
ratio operator, accumulation operator, subtraction operator and spectrum analysis of
sequence operators (Dang et al., 2004a, 2004b; Lin et al., 2021, 2022; Liu et al.,
2020; Liu, 1991).

The grey correlation analysis model includes grey correlation axiom, Deng’s grey
relational analysis model, grey absolute relational analysis model, grey relative rela-
tional analysis model, grey comprehensive relational analysis model, grey relational
analysis model based on similarity perspective, grey relational analysis model based
on proximity perspective, grey relational analysis model for inverse sequences, grey
relational analysis model for cross-sequences, and three-dimensional grey relational
analysis model and so on (Liu, 1992, 2023; Liu et al., 2011, 2024; Lu et al., 2023;
Zhang & Liu, 2009).

Thegrey clustering evaluationmodel includes grey relational clustering evaluation
model, grey variable weight clustering model, grey fixed weight clustering model,
grey clustering evaluation model based on mixed possibility function (center point
mixed possibility function, endpoint mixed possibility function) and two-stage grey



16 1 Introduction

comprehensive measure decision model.(Deng, 1985; Liu, 1993; Liu & Zhu, 1993;
Liu et al., 1998, 2015a; Liu & Xie, 2011).

The series of grey prediction models include even grey model GM (1,1), original
difference grey model GM (1,1), even difference grey model GM (1,1), discrete grey
prediction model, fractional grey prediction model, self-memory grey prediction
model, Verhulst model and grey model GM (R, H), etc. (Deng, 1984, 1985; Guo
et al., 2015; Liu et al., 2015b; Xie & Liu, 2005, 2009; Wu et al., 2013).

The grey combinationmodel includes grey Econometrics (G-E)model, greyCobb
Douglas model, grey linear regression combination model, grey periodic extension
combinationmodel, greyMarkov (G-M)model, grey artificial neural networkmodel,
grey clustering and dominance rough set combination model, etc. (Liu & Zhu, 1996;
Liu et al., 2004; Zhu et al., 2011).

Grey prediction techniques are a series of quantitative prediction technique based
on grey prediction thought, method and model. According to its function and char-
acteristics, it can be divided into sequence prediction, interval prediction, distortion
prediction, waveform prediction and system prediction (Dang & Liu, 2009; Deng,
1985; Liu et al., 2022a, 2022b).

The grey decision-making model includes grey target decision model and multi-
objective weighted intelligent grey target decision model based on uniform effect
measure functions ().

The grey programming model includes grey parameter linear programming, grey
predictive linear programming, grey drift linear programming, grey 0–1 program-
ming, grey multi-objective programming and grey nonlinear programming (Deng,
1985; Liu & Dang, 1997; Nasseri & Darvishi, 2018).

The grey input–output model includes the basic concept of grey input–output,
grey input–output optimization model, grey dynamic input–output model, etc. (Li,
2009; Li & Liu, 2008; Li et al., 2012).

The grey game model mainly studies the game model based on limited rationality
and limited knowledge and its solution (Fang & Liu, 2003; Fang et al, 2010).

Grey control model includes controllability and observability of grey system,
transfer function of grey system, robust stability of grey system and several typical
grey control models (Deng, 1982, 1985; Su & Liu, 2008, 2009; Zhou & Deng, 1986,
1989).

This book will focus on the most commonly used grey system methods and
modeling technology.

Considering all the feedbacks from the readers of our earlier monographs, Grey
Information (Liu & Lin, 2006), Grey Data Analysis (Liu et al., 2017) and Grey
Systems Analysis (Liu et al., 2022a, 2022b), we have paid special attention to orga-
nize some of the most recent new results obtained by colleagues from around the
world in this volume. Also, for the convenience of practical applications, this book is
accompanied with a computer software on grey systemsmodeling, which is designed
by Zeng Bo of our research group.
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Chapter 2
Characteristics of Grey System Theory

2.1 A Kind of Poor Data Analysis Method with Strong
Penetration

Grey system theory takes the uncertain system with poor information as the research
object. It is an interdisciplinary method with strong penetration.

At Nanjing University of Aeronautics and Astronautics, the teaching team of
management quantitative method course group led by Professor Sifeng Liu has been
committed to the construction of Chinese original grey system theory courses for a
long time.With the strong support of peer experts, the grey system theory courses has
been selected as the National Excellence Course beginning in 2008, and the National
first class courses of online and offline since 2020. The teaching resources including
textbooks, videos and modeling software are widely distributed. At the same time,
the original elements such as grey sequence operator, grey relational analysis, grey
clustering evaluation, greyprediction, greydecision-making andgrey linear program-
ming, etc. in the grey system theory and the latest achievements made by the course
team and partnerships both at home and abroad are rewritten into teaching cases
and injected into the courses of “Operations Research” “Applied Statistics” “Predic-
tion Methods and Technologies” “Theory and Methods on Decision-making” “eco-
nomic cybernetics” “system modeling and simulation”, “input–output analysis” and
“econometrics”. It enriches the connotation of these courses, and greatly improved
the overall construction level of the curriculum group. In 2010, the course team
was selected into the national excellence teaching team. In 2018, “The construction
of management quantitative method course group and teaching reform led by local
original theory” won the prize of national teaching achievement.

© The Author(s) 2025
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2.2 Characteristics of Uncertain Systems
and the Simplicity Principle in Sciences

The fundamental characteristic of uncertain systems is the incompleteness and inad-
equacy of their information. Due to the dynamics of system evolution, the biolog-
ical limitations of the human sensory system, as well as the constraints of rele-
vant economic conditions and technological availabilities, uncertain systems exist
commonly.

2.3 Incomplete Information

Incompleteness in information is one of the fundamental characteristics of uncer-
tain systems. The most common situations involving incomplete system information
include cases where:

(1) Information about system elements (parameters) is incomplete;
(2) Information on the structure of the system is incomplete;
(3) Information about the boundary of the system is incomplete; and
(4) Information on the system’s behaviors is incomplete.

Incomplete information is a common phenomenon in our social, economic, and
scientific research activities. For instance, in agricultural production, even if we have
exact information regarding plantation, seeds, fertilizers, and irrigation, uncertainties
in areas such as labor quality, natural environment characteristics, weather condi-
tions, and the commodity markets make it extremely difficult to precisely predict the
production output and consequent economic value of agricultural fields. For biolog-
ical prevention systems, even if we know the relationship between insects and their
natural enemies, it is still really difficult to achieve the expected prevention effects
due to uncertainty regarding the relationships between insects and their baits, insects’
natural enemies and their baits, and a specific kind of natural enemy with another
kind of natural enemy. As for the adjustment and reform of pricing systems, it is
often difficult for policy makers to take actions because of the lack of information
regarding price elasticity and consumer demand and how price changes on a certain
commodity would affect the prices of other commodities. In security markets, even
the brightest market analysts cannot be assured of winning constantly due to their
inability to correctly predict economic policy and interest rate changes, management
changes at various companies, the direction of political changes, investors’ behav-
ioral changes in international markets, and the effects of price changes in one block
of commodities on another. As for the general economic system, because there are
no clear relationships between the “inside” and the “outside” of the system, and
between the system itself and its environment, and because the boundaries between
the inside and the outside of the system are difficult to define, it is also difficult to
analyze the effects of economic input on economic output.



2.4 Inaccuracies in Data 23

Incompleteness in available information is absolute, while completeness in infor-
mation is relative. Humans employ their limited cognitive ability to observe the
infinite universe in order to try and obtain complete information. However, it is
impossible for us to do so. In fact, the concept of large samples in statistics repre-
sents the degree of tolerance man has to incompleteness. In theory, when a sample
contains at least 30 objects, it is considered “large.” However, in some situations,
even when a sample contains thousands or several tens of thousands of objects, the
true statistical laws of a given system still cannot be successfully uncovered.

2.4 Inaccuracies in Data

Another fundamental characteristic of uncertain systems is naturally occurring inac-
curacy in available data. In grey systems theory, the meanings of uncertain and inac-
curate are roughly the same. Both terms stand for errors or deviations from actual data
values. Based on the essence of how uncertainties are caused, inaccuracies can be
categorized into three types: the conceptual, level, and prediction type inaccuracies.

(1) The Conceptual Type

Inaccuracies of the conceptual type emanate from the expression of a certain event,
object, concept, or wish. For instance, all such frequently used concepts as “large,”
“small,” “many,” “few,” “high,” “low,” “fat,” “thin,” “good,” “bad,” “young,” and
“beautiful” are inaccurate due to lack of clear definition. It is very difficult to use
exact quantities to express these concepts. As a second example, suppose that a job
seeker with an MBA degree wishes to get an annual salary offer of no less than
¥450,000, or that a manufacturing firm plans to control its rate of defective products
to be less than 0.01%. These are all cases of conceptual type inaccuracies.

(2) The Level Type

This kind of data inaccuracy is caused by a change at the level of research or obser-
vation. This means that the available data might be accurate when seen at the level of
the system of concern, that is, the macroscopic level, or at the level of the whole, that
is, the cognitive conceptual level. However, when data are seen at a lower level, that
is, a microscopic level, or at a partial localized level of the system, they generally
become inaccurate. For example, the height of a person can be measured accurately
to the unit of centimeters or millimeters. However, if the measurement has to be
accurate to the level of one ten-thousandth micrometers, the former accurate reading
will become extremely inaccurate.

(3) The Prediction (or Estimation) Type

Because it is difficult to have complete understanding of the laws of evolution, any
prediction of the future tends to be inaccurate. For instance, it is estimated that two
years from now, the GDP of a certain country will surpass $10 billion dollars; it is
estimated that a certain bankwill attract savings from individual residents of between
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$7 billion and $9 billion for the year 2024; it is predicted that in the coming years
the temperature in Leicester, UK, during the month of June will not go beyond 30o

C, and so on. All these examples provide uncertain numbers of the prediction type.
In statistics, it is often the case that samples are collected to estimate the whole.
Therefore, much statistical data are inaccurate. As a matter of fact, no matter what
method is used, it is very difficult for anyone to obtain any absolutely accurate
(estimated) value. When we draw out plans for the future and make decisions about
what course of action to take, we in general have to rely on inaccurate predictions
and estimates.

2.5 The Scientific Principle of Simplicity

In the history of science, the achievement of simplicity has been a common goal
among most scientists. As early as the sixth century BC, natural philosophers had
a common wish to understand the material laws of nature: to build knowledge of
the material world on the basis of a few common, simple elements. The ancient
Pythagoras of Greece introduced the theory of four elements (earth, water, fire,
and gas) at around 500 BC. The Greeks believed that all material matters in the
universe were composed of these four simple elements. Around the same time,
ancient Chinese philosophers also developed a theory of five elements including
water, fire, wood, gold, and earth. These are the most primitive and elementary
thoughts about simplicity.

The scientific principle of simplicity originates from the simplicity of thinking
employed in the process of understanding nature. As the natural sciences matured
over time, simplicity became the foundation and guiding principle of scientific
research. For example, Newtonian laws of motion unify the macroscopic phenomena
of objectivemovements in their formof extreme simplicity. In hisMathematical Prin-
ciples of Natural Philosophy, Newton pointed out that nature does not do useless
work; because nature is fond of simplicity, it does not like to employ extra reasons
to flaunt itself. During the Era of relativity, Albert Einstein introduced two criteria
for testing a theory: external confirmation and internal completeness, that is, logical
simplicity. Einstein believed that a true scientific theory must comply with the prin-
ciple of simplicity in order to reflect the harmony and orderliness of nature. In the
1870s, Ampere, Weber, Maxwell, and others established theories to explain the
phenomenon of electromagnetism based on their different assumptions. Because
Maxwell’s theory is the one that best complies with the principle of simplicity, it
became well accepted. Another example is the well-known Kepler’s third law of
planetary motion: T2 = D3. This formula is very concise in form.

According to the dominant principle of synergetics (Haken, 1978), one can
transform an original high-dimensional equation into a low-dimensional evolu-
tion equation of order-parameters by eliminating the fast-relaxing variables in
the high-dimensional nonlinear equation that describes the evolution process of a
system. Because the order-parameters dominate the dynamic characteristics of the
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system near its boundary points, through dominant the evolution equation of order-
parameters one can obtain the system’s time structure, space structure or time–space
structure, so that one can materialize efficient control over the system’s behavior.

The simplicity of scientific models is actualized by employing simple expressions
and by ignoring unimportant factors of the system of concern. In economics, the
methods of usingGini coefficient to describe differences among consumers’ incomes
(Gini, 1972) and of employing Cobb-Dauglas production function to measure the
contribution of advancing technology in economic growth are all introduced on
the basis of simplifying realistic systems (Cobb & Douglas, 1928). Modigliani and
Brumbergh (1954) use the following model to describe the average propensity to
consume:

Ci

yi
= a + b

y0
yt

, a > 0, b > 0

The curve Phillips (1958) employs to describe the relationship between the rate
of inflation �p

p and the unemployment rate x is:

�p

p
= a + b

1

x

Additionally, the well-known capital asset pricing model (CAPM, Sharpe, 1964)
can be seen below:

E[Ei] = rf + βi(E[rm] − rf )

Essentially, all of these equations can be reduced to their simplest linear regression
model with a few straightforward transformations.

2.6 Precise Models Suffer from Inaccuracies

When available information is incomplete and the collected data inaccurate, any
pursuit of precise models in general becomes meaningless. This fact was well
described by Lao Tzu more than two thousand years ago (Tau, 2007). The prin-
ciple of incompatibility proposed by L. A. Zadeh, the founder of fuzzy mathematics,
also addresses this matter: when the complexity of a system increases, our ability
to precisely and meaningfully describe the characteristics of the system decreases
accordingly until such a threshold that, as soon as it is surpassed, the preciseness and
meaningfulness become two mutually excluding characteristics (Zadeh, 1994). This
mutually antagonistic principle reveals that the pursuit of preciseness can reduce
the operationality and meaningfulness of a cognitive outcome. Therefore, precise
models are not necessarily an effective means to address complex matters.
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Table 2.1 Comparison between the prediction errors of a statistical model and a grey model

Order No. Type Average error

Statistical model Grey model

1 Horizontal displacement 0.862 0.809

2 Horizontal displacement 0.446 0.232

3 Vertical displacement 1.024 1.029

4 Vertical displacement 0.465 0.449

5 Water level of pressure measurement hole 6.297 3.842

6 Water level of pressure measurement hole 0.204 0.023

In 1994, Jiangping Yue and Xisheng Hua established both theoretically delicate
statistical regression model and relatively coarse grey model based on the deforma-
tion data and leakage data of a certain large scale hydraulic dam. Their work shows
that the grey model provided a better fit than the statistical regression model. When
comparing the errors between the predictions of the two models with actual obser-
vations, it is found that the prediction accuracy of the grey model is generally better
than that of the regression model; see Table 2.1 for details (Yue & Hua, 1994).

In 2001, Dr. Haiqing Guo as well as Zhongru Wu and colleagues respectively
established a statistical regression model and a grey time series combined model
using the observational data of displacement in the vertical direction of a certain large
clay-rock filled dam of inclined walls. They compared the data fitting and predictions
of the two models against actual observations and found that the data fitting eof the
grey combined model was significantly superior to that of the statistical regression
model (Guo et al., 2001).

On the other hand, Xiaobing Li, Haiyan Sun and colleagues employed fuzzy
prediction functions (a type of uncertainty prediction) to dynamically trace and
precisely control the fuel oil feeding temperature for anode baking. The control
effect was clearly better than that obtained by utilizing the traditional PID control
method (Li et al., 2009).

Finally, Caixing Sun and his research group made use of grey relational analysis,
grey clustering, and various new types of grey prediction models to diagnose and
predict insulation-related accidents related to electric transformers. Their substantial
results indicate that these relatively coarse methods and models are operational and
provide efficient results (Li et al., 2002; Sun et al., 2002, 2003).

2.7 Comparison of Several Uncertainty Methods

Probability and statistics, fuzzymathematics, grey system theory and rough set theory
are four of the most widely used research methods in the investigation of uncertain
systems. Their research objects contain specific kinds of uncertainty, which represent
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their commonality. It is precisely the differences among the uncertainties in the
research objects that make these four theories of uncertainty distinct from each other.

Probability and statistics study the phenomena of stochastic uncertainty with
emphasis placed on revealing historical statistical laws. They investigate the chance
of each possible outcome of the stochastic uncertain phenomenon to occur. Their
starting point is the availability of large samples, which are required to satisfy a
typical form of distribution.

Fuzzy mathematics emphasizes the investigation of problems with cognitive
uncertainty, where research objects possess the characteristic of clear intension and
unclear extension. For instance, “youngman” is a fuzzy concept, because each person
knows the intension of “young man.” However, if we determine the exact age range
within which everybody is young and outside which each person is not young, then
we will have great difficulty. That is because the concept of young man does not have
a clear extension. In fuzzy mathematics, this kind of cognitive uncertainty problem
with clear intension and unclear extension is addressed by making use of experience
and the so-called membership function.

Additionally, rough set theory tries to study uncertain systems by using the accu-
racy mathematical method. The main thought of rough set theory is to describe and
address the inaccuracy or uncertain knowledge using a known knowledge library.
Professor Z. Pawlak included all the units which cannot be acknowledged to have
boundaries. He defined boundary as the difference set between upper approximate
set and lower approximate set. The boundary is then described through the upper
approximate set approaching the lower approximate set (Pawlak, 1991).

The focus of grey system theory, on the other hand, is on the uncertainty problems
of small data sets and poor information, which are different to the problems addressed
by probability, fuzzy mathematics or rough set theory. It explores and uncovers
the realistic laws of evolution, motion of events and materials through information
coverage by possibility function, and through the works of sequence operators. One
of its characteristics is construct models with small amounts of data. What is clearly
different about grey systems theory compared to fuzzy mathematics is that grey
system theory emphasizes the investigation of objects that process clear extension
and unclear intension. For example, by the year of 2035, The Per Capita GDP of
Shenzhen, China will be within the range of USD 55000 to USD 65000 billion.
This range from 55,000–65,000 is a grey concept. Its extension is definite and clear.
However, if one inquires further regarding exactly which specific number within the
said range it will be, then he will not be able to obtain any meaningful and definite
answer before 2035. It’s a grey number before 2035.

We summarize the differences among these four main uncertainty research
methods in Table 2.2.
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Table 2.2 Comparison among the four methods of uncertainty research

Uncertainty
research

Grey system Prob. statistics Fuzzy math Rough set

Research objects Poor
information

Stochastics Cognitive Boundary

Basic set Grey number set Cantor set Fuzzy set Approximate set

Describe method Possibility func Density func Membership func Upper, lower
Appr

Procedure Sequence
operator

Frequency Cut set Dividing

Data requirement Any distribution Known
distribution

Known
membership

Equivalent Rel

Emphasis Intension Intension Extension Intension

Objective Law of reality Historical law Cognitive
expression

Approx.
approaching

Characteristics Small data Large sample Depend on
experience

Information form

2.8 Deep Applications of Grey System Theory in the Fields
of Social Science, Natural Science and Engineering
Technology

2.8.1 Successful Application of Grey System Theory
in the Field of Social Sciences

The rapid development of grey system theory in the early stage of its establishment
largely benefited from its successful application in the field of economic manage-
ment, that is, the strong impetus of the urgent need to carry out agricultural zoning
and formulate economic development strategic planning all over the country of China
in the 1980s. The reform of the economic system and the adjustment of the statistical
system directly affected the integrity and continuity of economic data. The discon-
nected data posed a big problem for the planners at that time. How to complete
the tasks of system analysis and modeling based on small samples and poor infor-
mation data, so as to obtain the prediction results with high reliability and support
the scientific decision-making of governments at all levels? The grey system theory
characterized by small sample, poor information data modeling and analysis is just
right. At that time, many government departments from the central to local govern-
ments tried to use grey system methods and models to analyze economic data and
prepare development plans. Professor Deng Julong presided over and completed the
research and preparation of the development plan of Yixian County, Hebei Province
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and Laohekou City, Hubei Province. The author has also presided over and partici-
pated in the completion of a number of key bidding projects of the National Devel-
opment and Reform Commission of China, the Ministry of Science and Technology
of China and the China Association for Science and Technology, as well as the
development planning research of Henan Province, Jiangsu Province, Nanjing and
Zhongyuan District of Zhengzhou, Hubin District of Sanmenxia, Changge City and
Wuzhi county, etc. The data analysis mainly adopts the grey system method and
model (Liu & Yang, 1994)

AcademicianYangShanlin and academicianChenXiaohongofChineseAcademy
of engineering, academician Zavadskas of LithuanianAcademy of Sciences and their
team have successfully solved many major problems in management practice by
using grey systemmodel andmethod, and achieved a series of research results (Chen,
2018; Jahan & Zavadskas, 2019; Xu & Yang, 2013). Applied the grey relational
analysis models, Kose et al., studied the problem of most livable city selection in
Turkey (Kose et al., 2020). Peng, et al. analyzed the circular economy of E-commerce
market based on grey model under the background of big data (Peng et al., 2022).

Emil Scarlat and Camelia Delcea with Bucharest University of Economics of
Romania used the methods and models of grey system theory to study the control of
economic system, achieved a series of achievements (Delcea et al., 2013; Scarlat &
Delcea, 2011), and published a monograph in Romanian.

2.9 Deep Application of Grey System Theory in the Field
of Natural Science

Enter physics, chemistry, biology, geology, hydrology, crops, and medicine etc. as
subject words into CNKI database to search the literature with physics, chemistry
and other subjects and accurately containing the phrase “grey system”. The results
are shown in Table 2.3.

Grey system theory has been applied to the fields of physics, chemistry, biology,
geology, hydrology, crops, medicine and so on, a large number of valuable research
results have been obtained (Liu et al., 2022).

Table 2.3 Number of articles containing the phrase “grey system” accurately in various disciplines
of Natural Science

Discipline Physics Chemistry Biology Geology Hydrology Crops Medicine

No. of papers 2379 3127 3833 8565 3190 3010 565

Retrieval time: 26/7/2024
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For Example, in the Field of Physics
Chen Lei et al. used the grey relational analysismodel to study two sky lightmeasure-
ment methods based onASD ground object spectrometer—standard gray plate inver-
sion measurement method and direct measurement method, and defined the appli-
cable scenarios of different methods(Chen et al., 2011).WangYue and Chen Zonghai
studiedμparticles imaging of cosmic rays by using the method of grey correlation
cluster analysis, the efficiency of material differentiation is improved (Wang et al.,
2011a, 2011b).

Han Li et al. studied the geophysical characteristics of dynamic compaction fill
foundation by using the grey correlation analysis model, and evaluated the quality
and effect of dynamic compaction by analyzing the correlation between surface wave
velocity, resistivity and geophysical characteristic parameters such as soil dry density
and water content (Han et al., 2020).

Evans applied the grey system model to study the strength of British steel, and
proposed a newmethod for parameter estimation ofGeneralizedGreyVerhulstmodel
(Evans, 2014).

Shi et al. conducted reliability analysis on passive residual heat removal ofAP1000
nuclear power reactor based on grey model (Shi et al., 2017), and Wang Qin et al.
used the grey correlation analysis method to study the optimal parameters of arc
signal welding process (Wang et al., 2010a, 2010b), both have achieved important
results.

In the Field of Chemistry
Liu Yaoxin et al. studied the formation reaction of calcium sulphoaluminate in high
temperature sulfur fixation phase by using grey correlation analysis and prediction
model (Liu et al., 2007). Pornnapa Kasemsiri et al. used Taguchi method and grey
relational analysis model to optimize biodegradable foam composites made from
cassava starch, oil palm fiber, chitosan and palm oil (Kasemsiri et al., 2017).

Gupta et al. applied the grey correlation analysis method to optimize the mechan-
ical properties of hybrid filler pultruded glass fiber composites (Gupta et al.,
2019).

Jena et al. applied Taguchi grey correlation analysis to optimize parameters for
maximizing photocatalytic behaviour of Zn1-xFexO nanoparticles formethyl orange
degradation using Taguchi and Grey relational analysis Approach (Jena et al., 2019).

In the Field of Biology
Zhang Fuli et al. studied the effect of BT insect resistant cotton straw returning on
soil nutrient characteristics by using grey correlation analysis model. It is considered
that straw returning is an ideal way for harmless treatment of Bt transgenic plant
straw (Zhang et al., 2020). Yang et al. used the grey correlation analysis model to
study the pigment content and standard deviation vegetation index in rice vegetative
stage (Yang et al., 2012).

Luo Qin and others used the grey correlation analysis model to study the relation-
ship between trace element content and lead content in the seed bodyof new irradiated
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Pleurotus ostreatus, which provided a scientific basis for breeding Pleurotus ostreatus
varieties with lower lead content (Luo et al., 2015).

Guo Ruilin has conducted in-depth research on crop grey breeding and cultivated
some new crop varieties (Guo, 1995).

Based on hyperspectral data, Jin et al. used grey correlation analysis and partial
least square method to estimate the leaf water content of winter wheat (Jin et al.,
2013). Wei et al. used the grey correlation analysis method to evaluate the quality of
Tibetan highland barley (Wei & Zhang 2019), has achieved important results.

In the Field of Geology and Earth Sciences
Academician Zhao Pengda constructed the theory andmethod system of quantitative
prediction of mineral resources, and put forward “geological anomaly”, “mathemat-
ical characteristics of geological body”, “triple” quantitative metallogenic predic-
tion, research on non-traditional mineral resources, new concepts, new contents and
research methods. Two prospective metallogenic belts of copper nickel sulfide were
found in Beishan area of Xinjiang and one gold belt was found in East Junggar
(Zhao & Xia, 2009).

Research on safety analysis, evaluation, excavation and control measures design
optimization and real-time monitoring of Geotechnical Engineering (including land-
slide) byGaoWei and academician FengXiaTing (Gao&Feng et al., 2004), study on
limit displacement discrimination of stability and reliability analysis of surrounding
rock of tunnel and underground engineering by Academician Li Xiaohong et al. (Li
et al., 2005), have achieved results of great value.

Peng Fang and Wu Guoping established a new quantitative evaluation method
of caprock based on grey programming cluster analysis. They used this method to
evaluate 12 kinds of caprock objects in 4 sets of mudstone in 3 main exploration
areas of southeast basin of Hainan. The conclusion is consistent with the exploration
results (Peng et al., 2005). Liang Bing et al. optimized and ranked the exploration
and development potential of complex geological parameter characteristic areas with
evaluation index value of interval grey number by establishing a multi index grey
correlation degree optimization model (Liang et al., 2014). Chen Ronghuan and
others used the grey system theory to study logging, drilling coring, oil testing and
relevant geological data. Through matching, fitting and extracting parameters, they
studied and divided formation lithology, physical properties and oil bearing proper-
ties by statistical analysis of eigenvalues and their accuracy and resolution, which
provided a geological basis for oilfield exploration and development (Chen et al.,
2005). Wang yunyun et al. used the grey correlation analysis method to scientifically
predict the Yaojialing zinc gold polymetallic deposit (Wang et al., 2013).

Fang Xiaotong and others used the multi-dimensional grey evaluation model to
predict the risk of coal and gas outburst, which provided a basis for mine safety
production (Fang et al., 2012). Zeng et al. predicted China’s shale gas production
based on weakening buffer operator and unbiased grey model (Zeng et al., 2018).
Kose and Tasci predict geodetic deformation based on multivariable grey prediction
model and regression model (Kose & Tasci, 2019).
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In the Field of Hydrology and Water Resources
Lin Yuezhong and others established the grey prediction model of slope rock mass
deformation based on the field slope test data of the Three Gorges, and drew the
fitting and prediction curve of slope deformation, which provided a reliable guarantee
and theoretical basis for the prediction of slope rock mass deformation (Lin et al.,
2005). Academician Xia Jun’s research on grey system hydrology (Xia & Zhao,
1996), academician Wu Zhongru’s research on hydraulic structure and dam safety
monitoring (Wu et al., 2012), and research on utilization of water resources byWang
and academician Hipel (Wang & Hipel, 2011b), have achieved a series of important
results.

Hao et al. used the grey system model to analyze and predict the hydrological
process of karst basin, and obtained high accuracy. They also used the segmented
grey model to study the impact of human activities on the hydrological process of
karst basin (Hao et al., 2013).

PengYong et al. studied the optimization algorithm of cascade reservoir operation
based on the combination of grey prediction model and DDDP (Peng et al., 2018).
With limited hydrogeological data, Mahmod et al. used the modified grey model
to analyze the groundwater flow in Nubia sandstone area of Halga Oasis, Egypt
(Mahmod et al., 2014).

In the Field of Medicine
Grey system method and model technology are widely used in modern medical
fields such as disease prediction and control, health management evaluation, intel-
ligent diagnosis system construction, drug efficacy evaluation and medical image
processing, and have made gratifying achievements, forming a branch field of grey
medical research in grey system theory (Zhang et al., 2015).

Professor Tan xuerui, Dean and doctoral supervisor ofMedical College of Shantou
University, and his research team have systematically studied the grey correlation
methodology of clinical trials with the support of a number of National Natural
Science Foundation of China and Guangdong Natural Science Foundation. The new
clinical trialmethods proposed, such as ergodic grey correlation space theory, polarity
analysis theory and method of grey medical correlation factors, axiom system of
multi-level grey medical correlation, grey correlation method comparison model,
have been applied to many clinical medical disciplines, such as cardiovascular
medicine, digestive medicine, neurology, infectious diseases and so on (Tan et al.,
2011).

Wei Hang et al. Established the pattern recognition model of chromatographic
fingerprint of traditional Chinese medicine by using the grey system theory. The
results of high performance liquid chromatography analysis of 56 batches of different
varieties of tangerine showed that the recognition rate exceeded 92.85% for different
cultivated varieties of tangerine with very similar chemical composition and content
(Wei et al., 2013).

Semra Icer et al. quantitatively graded the ultrasonic images of fatty liver based
on grey correlation analysis, and obtained the scientific diagnosis results (Icer et al.,
2012). Lai Hsin Yi et al. applied the unsupervised single chain clustering method
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based on grey correlation analysis to the automatic sorting of spike waves in extracel-
lular electrophysiological records (Lai et al., 2011). Bhupendra Gupta and Mayank
Tiwari have achieved good results in breast image brightness preserving contrast
enhancement and quality segmentation based on histogrammodified grey correlation
analysis(Gupta & Tiwari, 2017).

2.10 A Large Number of Applications of Grey System
Theory in the Field of Engineering Technology

Enter the subjectwords such as transportation, power andmachinery, etc. respectively
in the CNKI database, and to search the literatures with transportation, electric power
and machinery, etc. as the subject and accurately including the phrase “grey system”.
The results are shown in Table 2.4.

Grey system theory has been applied to the fields of engineering technology such
as transportation, electric power and machinery, etc., has achieved thousands or even
tens of thousands of research results. Among them, there are more than 5000 papers
containing “grey system” in the fields of power, computer and material science.
There are more than 10,000 in the field of transportation, nearly 30,000 in the field
of information science and more than 30,000 in the field of environmental science
(Liu et al., 2022).

For Example, in the Field of Transportation
Liu Qiuyan and Zhong Zhangdui comprehensively used grey clustering and rough
set model to optimize the planning scheme of railway digital mobile communica-
tion system with limited frequency, and improved the accuracy of electrical level
and interference matrix estimation (Liu et al., 2010a, 2010b); Gao Fan and Zhang
Youpeng designed the grey number of fitness according to the train operation target,
and constructed the high-speed train speed controller model based on grey genetic
algorithm (Gao et al, 2012); Lu Xiaohong and Wang Changlin studied the modeling
and simulation of automatic train speed controller based on predictive grey control
(Lu &Wang, 2013); Based on the data of Britain and the United States, Chirwa et al.
used GM (1,1) model to estimate the accident risk (Chirwa &Mingzhi, 2006); Based
on the diagnosis results of three diagnosis methods: fuzzy fault diagnosis method,
genetic algorithm and grey system theory, Mi Gensuo et al. constructed the optimal
combination model to diagnose the fault of 25 Hz phase sensitive track circuit (Mi
et al., 2014).

After comparing the simulation results obtained by artificial neural network, clas-
sification and regression tree, k-nearest neighbor method, linear discriminant anal-
ysis method, naive Bayesian classifier, quasi optimal algorithm and support vector
machine method with the grey correlation classifier algorithm, Twala found that the
grey correlation classifier algorithm is most suitable for the modeling and analysis
of road traffic accident data in Gauteng Province, South Africa (Twala, 2014).
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In the Field of Power Engineering
Research of academician Sun Caixin’s team on the field of high voltage insulation
and Fault Diagnosis Technology (Sun, 2005; Sun et al., 2003, 2002). Academician
Li Licheng’s research group on Power Grid Engineering, DC transmission and AC/
DC parallel power grid operation technology (Huang et al., 2011).

Analysis of oil soluble gas content in power transformers by Liao et al. (Liao
et al., 2012). According to the measured data of lubricating oil temperature and iron
content of wind turbine gearbox, Yang et al. introduced multi-source information,
improved the traditional grey systemmodel, predicted the wear trend of wind turbine
gearbox, and provided a scientific basis for gearbox maintenance and replacement
decision-making (Yang et al, 2019).

Ossowski and Korzybski use grey system model to carry out analog circuit fault
diagnosis (Ossowski & Korzybski, 2013); Jiang Wei diagnosed the fault of wind
turbine drive chain based on grey rough set theory (Jiang, 2012);

Study on Modeling and prediction of non-stationary voltage fluctuations by
Dejamkhooy et al. (Dejamkhooy et al, 2017).

In the Field of Mechanical Engineering
Academician Jia Zhenyuan’s research on shape controlmachining theory, technology
and equipment of high-end equipment and high-performance parts (Jia et al., 2009).
Research on mechanical design and theory, computer aided design and graphics,
digital design and manufacturing, etc. by academician Tan Jianrong’s group (Fang
et al., 2009). Research on submarine noise reduction technology by academician He
Lin’s group (Liao et al., 2017). Czeslaw Cempel used the grey prediction model to
monitor the mechanical vibration state (Cempel, 2008).WangXuliang andNie Hong
used the grey system model to predict the fatigue life of mechanical parts, which
greatly reduces the prediction error (Wang & Nie, 2008); Zhang Xueyuan et al. used
GM (1,1) model to study the change law of robot emotional state, and realized the
emotional robot interaction system (Zhang et al., 2006); Li Tong et al. used the grey
prediction model to calculate the fatigue crack growth rate (Li et al., 2010).

Academician Zhang Jie et al. used the grey correlation analysis model to analyze
the fault of two tooth difference swing movable teeth transmission, which provided
a scientific basis for improving the reliability of two tooth difference swing movable
teeth transmission system (Zhang et al., 2012). Xia Xintao and Wang Zhongyu used
the grey correlation analysis model to study the relationship between rolling bearing
processing quality and vibration, and found that the structural dimension error param-
eter is the factor that has a great impact on bearing vibration (Xia et al, 2005). Xie
Yanmin et al. obtained the best parameters of each factor affecting the robustness of
square box by analyzing the variance of the grey correlation degree between each
factor and the target sequence (Xie et al., 2007).

Prakash et al. study on multi-objective optimization of turning stone powder rein-
forced aluminum matrix composites based on Taguchi method and grey correlation
analysis model (Prakash et al., 2020). Loganathan et al. used the grey correlation
analysis model to optimize the input parameters of progressive forming of AA6061
alloy (Loganathan et al., 2020). Pagar and Gawande (Pagar & Gawande, 2020) used
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the grey correlation analysis method to carry out parametric design analysis on the
radial deflection stress of metal expansion bellows. Sharma used Taguchi and grey
correlation analysis to study the accuracy and surface roughness of GFRP gears
(Sharma et al., 2020). Khan et al. used the grey correlation analysis method to carry
out multi-objective optimization of dry, wet and low temperature undercut titanium
base alloys (Khan et al., 2020).

In the Field of Aerospace
Wang Yanyang and Cao Yihua established a nonlinear online prediction model of
China’s civil aviation operation risk by using the method of grey neural network
(Wang et al., 2010a, 2010b); Yang et al. (2008) and Li Peihua (Yang & Li, 2011)
used the grey system model to predict spacecraft faults and achieved high accuracy.

Xie Jianxi et al. solved the optimization decision-making problem of aircraft top-
level design scheme by using the grey correlation analysis model (Xie et al., 2004);
Zhang Cheng and Ding Songbin et al. studied the aircraft customization scheme
based on the grey correlation analysismodel (Zhang et al., 2014);Xiao Jun andZhang
Weiwei comprehensively used the grey correlation analysis and fault tree method to
study the target crash fault, which provided a theoretical basis for diagnosing the
cause of the target crash fault, controlling the occurrence of the fault and improving
the system reliability (Xiao & Zhang, 2009).

Yu Fengjie and Ke Yinglin applied the grey clustering decision-making method to
the automatic docking and assembly system of aircraft large parts, which improved
the system stability, reduced the risk of equipment failure, and controlled the mainte-
nance cost (Yu et al., 2009). Zhang Feng andWang Pengwei used the grey clustering
evaluation model to evaluate the safety of Shipborne aircraft system, which played
a positive role in discovering system safety hazards in advance and preventing and
reducing accidents (Zhang et al., 2010).

In the Field of Intelligent Control
Research on intelligent control theory and robot system, image recognition theory
and machine vision application, intelligent control technology of advanced manu-
facturing equipment, and integrated automatic control system of major projects in
power and electrical industry by Academician Wang Yaonan’s team (Jia-qiang et al.,
2005). Academician Liu Yexiang of the State Key Laboratory of powder metallurgy
of Central South University have used the grey system method and model to study
the control of aluminum electrolysis process, and achieved many results (Liu & Lin,
2004).

Tian Jianyan et al. established the grey prediction model of billet temperature in
heating furnace and put forward the billet temperature control method (Tian & Lu,
2007); Wang Wei et al. proposed an improved fuzzy expert control method based
on combined grey prediction model for the temperature control of coke oven flue
with the characteristics of strong nonlinearity, large time delay and multi disturbance
(Wang et al., 2010a, 2010b). Combining the traditional feedback control method and
grey predictive control, ZhangGuangli et al. designed a self-adjusting grey predictive
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controller. The simulation results show that the new controller has better dynamic
performance and robustness (Zhang et al., 2004).

In view of the randomness, nonlinearity and time variability of the deep-sea
walking mechanism in the seabed complex operating environment, and it is diffi-
cult to establish an accurate mathematical model, Qiao Guiling et al. proposed a
grey prediction fuzzy PID control method to realize the effective control of the deep-
sea walking mechanism (Qiao et al., 2009). The research on pneumatic position
servo control system based on grey correlation compensation control proposed by
Zhu Jianmin et al. effectively improves the tracking accuracy of traditional control
methods for pneumatic position servo control system (Zhu et al., 2012).

In the Field of Weapon Equipment Development and Application
Cui Jianpeng et al. studied the selection of surface to air missile weapon system
by using multi-objective grey decision model (Cui et al., 2012); Li Xinqi et al.
constructed a grey programming model for the optimal configuration of missile
nuclearweapons,which provides a theoretical basis for the ordering, storage, position
configuration and operational application ofmissile nuclearweapons (Li et al., 2007).

Han Xiaoming et al. used the grey clustering model to comprehensively eval-
uate the development scheme of air defense and anti-missile warhead (Han et al.,
2014); Yao Junbo and Hu Weiwen applied the grey evaluation model to evaluate
the operational effectiveness of over the horizon ground wave radar according to its
characteristics and operational tasks (Yao & Hu, 2008).

Lin Jiajian used the grey relational analysis method to solve the main factors
affecting the velocity of explosively formed projectile (EFP), and obtained the results
that have important reference value for the design of EFP liner and charge structure
(Lin et al., 2009). Zhao Guogang et al. established the threat assessment model of
incoming missile in ship anti-missile operation by using the grey correlation analysis
method, which provides a decision-making basis for the ship command and control
system to judge the target threat in time (Zhao et al., 2007). And research on radar
target tracking by Liu et al. (Liu et al., 2006).
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Chapter 3
Grey Numbers and Their Operations

A grey system is described with grey numbers, grey sequences, grey equations, or
grey matrices. Here, grey numbers are the elementary “atoms” or “cells”, and their
exact values are unknown. In applications, a grey number stands for an indeterminate
number that takes its possible value within an interval or a general set of numbers.
Professor Deng proposed the concept of grey number and gave the algorithm of
interval grey number referring to the operation of interval number (Deng, 1985). As
a basis of grey system theory, the studies on grey number, operations of grey numbers
and grey algebraic systems have drawn the attention of scholars for a long time. The
author’s research on grey numbers and their operations began in the 1980s. The
definitions and properties of degree of greyness of grey number have been studied
and proposed the simplified form of grey numbers and the algorithm in 1980s, 1990s
and 2000s (Liu, 1989, 1996; Liu & Lin, 2004; Liu et al., 2010). Then, proposed the
definition of general grey number and the synthesis axiom of degree of greyness
(Liu et al., 2012). In 2017, Jiang Shiquan et al studied the distance measuring and
sortingmethod of general grey number (Jiang et al., 2017). They proposed a decision-
making model based on general grey number in 2021 (Jiang et al., 2021). In 2024,
Li proposed the concept of the generalized whiteness of interval grey number based
on the generalized greyness of interval grey number.

3.1 Grey Numbers

A grey number is generally represented using the symbol “⊗.” There are several
types of grey numbers, as discussed below.

(1) Grey numbers with only a lower bound: This kind of grey number ⊗ is repre-
sented as ⊗ ∈ [

a,∞)
or ⊗(

a
)
, where a stands for the definite, known lower

bound of the grey number⊗. The interval
[
a,∞)

is referred to as the field of⊗.
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For example, the weight of a celestial body which is far away from the Earth is a
grey number containing only a lower bound, because the weight of the celestial body
must be greater than zero. However, the exact value of the weight cannot be obtained
through normal means. If we use the symbol⊗ to represent the weight of the celestial
body, we then have that ⊗ ∈ [0, ∞).

(2) Grey numbers with only an upper bound: This kind of grey number⊗ is written
as ⊗ ∈ (−∞, a] or ⊗(a), where a stands for the definite, known upper bound
of ⊗.

A grey number containing only an upper bound is a grey number with a negative
value, but its absolute value is infinitely great. For example, the opposite number
of the weight of the celestial body mentioned above is a grey number with only an
upper bound.

(3) Interval grey numbers: This kind of grey number ⊗ has both a lower a and an
upper bound a, written ⊗ ∈ [

a, a
]
.

For example, for an investment opportunity, there always exists an upper limit repre-
senting the maximum amount of money that can be mobilized. For an electrical
equipment, there must be a maximum critical value for the equipment to function
normally. The critical value could be for a maximum voltage or for a maximum
amount of current allowed to be applied to the equipment. At the same time, the
values of investment, voltage, and current are all greater than zero. Therefore, the
amount of dollars that can be used for a specific investment opportunity, and the
voltage and the current requirements for the electrical equipment are all examples of
interval grey numbers.

(4) Continuous and discrete grey numbers: This kind of grey number takes only
a finite number or a countable number of potential values and is known as
discrete. If a grey number can potentially take any value within an interval, then
it is known as continuous.

For example, if a person’s age is between 30 and 35, his or her age could be one
of the values 30, 31, 32, 33, 34, 35. Thus, age is a discrete grey number. As for a
person’s height and weight, they are continuous grey numbers.

(5) Black and white numbers: Black numbers are represented as ⊗ ∈ (−∞,+∞);
that is, when ⊗ has neither an upper nor a lower bound, then ⊗ is known as a
black number. When ⊗ ∈ [

a, a
]
and a = a, ⊗ is known as a white number.

For the sake of parsimony, in our discussion we treat black and white numbers as
special grey numbers.

(6) Essential and non-essential grey numbers: The former stands for a grey number
that temporarily cannot be represented by a white number; the latter entails a
grey number that can be represented by a white number obtained either through
experience or through a certain method. The definite white number is referred
to as the whitenization (value) of the grey number, denoted ⊗̃. Also, we use
⊗(a) to represent grey number(s) with a as its whitenization.
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A grey number is an uncertain number with its value in a specific range. The range
can be regarded as a cover of the grey number. Therefore, an interval grey number
⊗ ∈ [

a, a
]
, a < a is very different from an interval number

[
a, a

]
, a < a. An

interval grey number ⊗ ∈ [
a, a

]
, a < a is only one value in interval

[
a, a

]
, a < a.

However, an interval number
[
a, a

]
, a < a is the whole interval

[
a, a

]
, a < a.

3.2 The Whitenization of a Grey Number and Degree
of Greyness

When a type of grey number vibrates around a certain fixed value, the whitenization
of this kind of grey number is relatively easy.One can simply use that fixed value as its
whitenization. A grey number that vibrates around a can be written as⊗(a) = a+δa
or ⊗(a) ∈ (−, a,+), where δa stands for the vibration. In this case, the whitenized
value is ⊗̃(a) = a.

For the general interval grey number ⊗ ∈ [a, b], we can take its whitenization
value ⊗̃ as indicated in (3.1), based on the possible value information:

⊗̃ = αa + (1 − α)b, α ∈ [0, 1] (3.1)

Here, α is called the positioned coefficient of the interval grey number ⊗ ∈ [a, b]
(Liu, 1989).

Definition 3.2.1 The whitenization of the form ⊗̃ = αa + (1 − α)b, α ∈ [0, 1] is
called a whitenization with positioned coefficient α.

Definition 3.2.2 Mean whitenization occurs when α = 1
2 . When the distribution of

an interval grey number is unknown, mean whitenization is often employed.

Definition 3.2.3 Take the interval grey numbers ⊗1 ∈ [a, b], ⊗2 ∈ [a, b]; let ⊗̃1 =
αa + (1 − α)b, α ∈ [0, 1]; and ⊗̃2 = βa + (1 − β)b, β ∈ [0, 1].

If α = β, we say that both ⊗1 and ⊗2 are synchronous. If α �= β, we say that the
grey numbers ⊗1 and ⊗2 are non-synchronous. When two grey numbers ⊗1 and ⊗2

have the same value range in interval [a, b], it is only when they are synchronous
that it is possible to have ⊗1 = ⊗2.

When the distribution of a grey number is known, mean whitenization is not used.
For instance, a certain person’s age is within the range of 35 to 45 years old. Thus,
⊗ ∈ [35, 45] is a grey number. It is also known that the person in question finished
him 12 years of pre-college education and entered college at the end of 1990s. Hence,
the chance of the person to be around 42 years old in 2024 is quite good. For this
grey number, it is not reasonable for us to employ mean whitenization.

When the value information of a grey number is known to a certain extent, we can
use a possibility function to describe the possibility of the grey number has taking
its potential values.



48 3 Grey Numbers and Their Operations

The possibility function is different from the membership function in fuzzy math-
ematics. The membership function describes the degree to which an object belongs
to a certain set. However, the possibility function describes the possibility that a grey
number can take a certain value, or the possibility that a certain value is the true
value of a grey number. The possibility function is similar to the density function of
probability distribution, but there are essential differences between the two concepts.
A grey number described by the possibility function is a number with incomplete
value information. Once a number with complete value information can be treated
as a random variable with a certain probability distribution, it is no longer a grey
number with poor value information:

For any conceptual type of grey number that represents wishes, its possibility
function generally increases monotonically. In Fig. 3.1, the possibility function f (x)
stands for, say, the grey number of the amount of funds for a research project (in ten
thousand dollars) and its degree of preference. A straight line stands for the “normal
desire,” that is, the degree of preference is directly proportional to the amount of
funds, with different slopes representing different intensities of desire. In particular,
f1(x) represents a relatively mild intensity of desire, where a funds in amount of
$100,000 is not enough, a funds in the amount of $200,000 will be more satisfying,
and a funds of $300,000 will be quite adequate. f2(x) stands for a desire with more
intensity, where a funds in the amount of $350,000 is only about 40% satisfactory.
The curve of f3(x) means that even for a funds in the amount of $400,000, the degree
of satisfaction is only about 20%. To be satisfied, the amount of funds has to be
somewhere around $800,000.

Generally speaking, the possibility function of a grey number is designed
according to what is known to the researcher. Therefore, it does not have a fixed
form. The start and end of the curve should have its significance. For instance, in a
trade negotiation, there is a process of changing from a grey state to a white state.
The eventual agreed upon deal will be somewhere between the ask and the bid. Thus,
the relevant possibility function should start at the level of the ask (or the bid) and
end at the level of bid (or the ask).

Fig. 3.1 Different types of possibility functions
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Fig. 3.2 Typical possibility function

The typical possibility function is a continuous function with fixed starting and
ending points so that the left-hand side increases and the right-hand side decreases,
as seen in Fig. 3.2a, where:

f1(x) =
⎧
⎨

⎩

L(x), x ∈ [a1, b1)
1, x ∈ [b1, b2]

R(x), x ∈ (b2, a2]
.

For the convenience of computer programming and computation, in practical appli-
cations the left- and right-hand functions L(x) and R(x) are generally simplified into
straight lines, as seen in Fig. 3.2b, where:

f2(x) =

⎧
⎪⎨

⎪⎩

L(x) = x−x1
x2−x1

, x ∈ [x1, x2)
1, x ∈ [x2, x3]

R(x) = x4−x
x4−x3

, x ∈ (x3, x4]
.

Definition 3.2.4 For the possibility function shown in Fig. 3.2a, the following
representation is referred to as the degree of greyness of ⊗ (Deng, 1985):

g◦ = 2|b1 − b2|
b1 + b2

+ max

{ |a1 − b1|
b1

,
|a2 − b2|

b2

}
(3.2)

The expression g◦ is a sumof two parts. The first part represents the greyness of the
grey number as affected by the size of the peak area under the curve of the possibility
function,while the second part shows the effect of the size of the area under the curves
of L(x) and R(x). Generally, the greater the peak area and the area under L(x) and

R(x), the greater the value of g◦. When max
{

|a‘1−b1|
b1

,
|a‘2−b2|

b2

}
= 0, g◦ = 2|b1−b2|

b1+b2
.

In this case, the possibility function is a horizontal line. When 2|b1−b2|
b1+b2

= 0, grey
number ⊗ is a grey number with its basic value b = b1 = b2. When g◦= 0, ⊗ is a
white number.
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3.3 Degree of Greyness Defined by Axioms

Professor Deng (1985) provided a definition of degree of greyness of a grey number
with a typical possibility function, as shown in Fig. 3.2a. In 1996, The author of this
book established an axiomatic definition of degree of greyness by using the length
l(⊗) of the grey number interval and its kernel ⊗̂ (Liu, 1996):

g◦(⊗) = l(⊗)

⊗̂ (3.3)

Such a definition is valid on the basis of the postulates of non-negativity, zero grey-
ness, infinite greyness, and scalar multiplication. However, the concept of greyness
as defined in equations (3.2) and (3.3) suffers from the following problems:

(1) When the length l(⊗) of the grey interval approaches infinity, the degree of
greyness as defined in both (3.2) and (3.3) is likely to approach infinity.

(2) Grey numbers centered at zero will not have greyness. In this case, in equation
(3.2), one has b1 = b2 = 0; and in equation (3.3), one faces ⊗̂ = 0. That is,
neither (3.2) nor (3.3) is meaningful.

A grey number is a way to express the behavioral characteristics of a specific grey
system (Deng, 1990). The greyness of grey numbers reflects the degree to which the
researcher understands the uncertainty involved in such numbers (Chen, 2001; Liu,
1989). Therefore, the magnitude of the greyness of a grey number should be closely
related to the background on which the grey number is come from, or to the field of
discourse within which the said number becomes grey. If this background, or field
of discourse, and the characteristics of a grey system are not detailed, there is no
means through which to discuss the degree of greyness of a given grey number. With
this understanding in place, let� be the field of discourse within which grey number
⊗ is come from, and μ(⊗) is the measure of the number field from which ⊗ takes
its value. Then, the degree of greyness g◦(⊗) of grey number ⊗ should satisfy the
axioms below.

Axiom 3.3.1 0 ≤ g◦(⊗) ≤ 1. That is, the degree of greyness of any grey number
has to be within the range of 0–1.

Axiom 3.3.2 Any⊗ ∈ [a, a], a ≤ a when a = a, g◦(⊗)= 0. That is, white numbers
contain no ambiguity, so their degree of greyness is 0.

Axiom 3.3.3 G◦(�) = 1. That is, because the background � within which grey
number ⊗ is come from is generally known. Therefore, � does not contain any
useful information leading to the greatest level of uncertainty.

Axiom 3.3.4 G◦(⊗) is directly proportional to μ(⊗) and inversely proportional to
μ(�).
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Definition 3.3.1 The following equation is called the degree of greyness of grey
number ⊗:

g◦(⊗) = μ(⊗)/μ(�) (3.4)

� is the field of discourse of grey number ⊗, and μ is the measure of field � (Liu
et al., 2010, 2012).

Theorem 3.3.1
The degree of greyness of grey numbers satisfies the following properties:

(1) If ⊗1 ⊂ ⊗2, then g◦(⊗1) ≤ g◦(⊗2).
(2) g◦(⊗1 ∪ ⊗2) ≥ g◦(⊗k), k = 1, 2, where ⊗1 ∪ ⊗2 = {ξ |ξ ∈ [a, b]orξ ∈ [c, d ]}

is the union of grey numbers ⊗1 ∈ [a, b], a < b and ⊗2 ∈ [c, d ], c < d .
(3) g◦(⊗1∩⊗2) ≤ g◦(⊗k), k = 1, 2, where⊗1∩⊗2 = {ξ |ξ ∈ [a, b]andξ ∈ [c, d ]}

is the interaction between grey numbers ⊗1 ∈ [a, b], a < b and ⊗2 ∈
[c, d ], c < d .

(4) If ⊗1 ⊂ ⊗2, then g◦(⊗1 ∪ ⊗2) = g◦(⊗2), g◦(⊗1 ∩ ⊗2) = g◦(⊗1).
(5) If μ(�) = 1 and the measures of ⊗1 and ⊗2 are independent of μ, then

1 ◦ g◦(⊗1 ∩ ⊗2) = g◦(⊗1)·g◦(⊗2); and
2 ◦ g◦(⊗1 ∪ ⊗2) = g◦(⊗1) + g◦(⊗2) − g◦(⊗1) · g◦(⊗2).

Proof All details of the proof of conclusions (3.1)–(3.4) are omitted because all of
them can be exported directly from Definition 3.3.1.

For 5 1 (◦), from μ(�) = 1 and the assumption that measures of ⊗1 and ⊗2 are
independent of μ, we have:

g◦(⊗1 ∩ ⊗2) = μ(⊗1 ∩ ⊗2) = μ(⊗1) · μ(⊗2) = g◦(⊗1) · g◦(⊗2).

Similarly, for 2 ◦, we have:

g◦(⊗1 ∪ ⊗2) = μ(⊗1 ∪ ⊗2) = μ(⊗1) + μ(⊗2) − μ(⊗1) · μ(⊗2)

= g◦(⊗1) + g◦(⊗2) − g◦(⊗1) · g◦(⊗2).QED.

The way in which grey numbers are combined affects the degree of greyness
and the reliability of the resultant grey number. Generally, when grey numbers
are “unioned” together, the resultant degree of greyness and reliability of the new
information increase; when grey numbers are intersected together, the resultant
degree of greyness drops and the reliability of the combined information decreases.
When solving practical problems and processing a large amount of grey numbers,
it is advisable to combine the numbers at several different levels so that useful
information can be extracted at individual levels. Additionally, in the process of
combining grey numbers, “union” and “intersection” operations should be done
at individual and other levels in order to guarantee that the extracted information
satisfies pre-determined requirements in terms of reliability and degree of greyness.
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3.4 The Operations of Interval Grey Numbers

In what follows, let us look at the operations of interval grey numbers. Given grey
numbers ⊗1 ∈ [a, b],a < b, and ⊗2 ∈ [c, d ], c < d , let us use * to represent an
operation between ⊗1 and ⊗2. If ⊗3 = ⊗1 ∗ ⊗2, then ⊗3 should also be an interval
grey number satisfying⊗3 ∈ [e, f ], e < f , and for any ⊗̃1 and ⊗̃2, ⊗̃1 ∗⊗̃2 ∈ [e, f ].
The operation rules of interval grey numbers are discussed below (Deng, 1985).

Rule 3.4.1 (Additive operation) Assume that ⊗1 ∈ [a, b],a < b;⊗2 ∈ [c, d ], c < d
then the following equation is called the sum of ⊗1 and ⊗2:

⊗1 + ⊗2 ∈ [a + c, b + d ] (3.5)

Example 3.4.1 Assume that ⊗1 ∈ [3, 4], ⊗2 ∈ [5, 8], then ⊗1 + ⊗2 ∈ [8, 12].

Rule 3.4.2 (Additive inverse) Assume that ⊗ ∈ [a, b],a < b, then the additive
inverse of ⊗ is given by:

−⊗ ∈ [−b,−a] (3.6)

Example 3.4.2 Assume that ⊗ ∈ [3, 4], then −⊗ ∈ [−4,−3].
Rule 3.4.3 (Subtraction operation). Assume that ⊗1 ∈ [a, b],a < b;⊗2 ∈
[c, d ], c < d then the following is called the deviation ⊗1 minus ⊗2:

⊗1 − ⊗2 = ⊗1 + (−⊗2) ∈ [a − d , b − c] (3.7)

Example 3.4.3 Assume that ⊗1 ∈ [3, 4], ⊗2 ∈ [1, 2], then:

⊗1 − ⊗2 ∈ [3 − 2, 4 − 1] = [1, 3],⊗2 − ⊗1 ∈ [1 − 4, 2 − 3] = [−3,−1].

Rule 3.4.4 (Multiplication operation) Assume that ⊗1 ∈ [a, b],a < b;⊗2 ∈
[c, d ], c < d then the following equation is called the product of ⊗1 and ⊗2:

⊗1 · ⊗2 ∈ [min{ac, ad , bc, bd},max{ac, ad , bc, bd}] (3.8)

Example 3.4.4 Assume that ⊗1 ∈ [3, 4],⊗2 ∈ [5, 10], then:

⊗1 · ⊗2 ∈ [min{15, 30, 20, 40},max{15, 30, 20, 40}] = [15, 40].

Rule 3.4.5 (Reciprocal) Assume that ⊗ ∈ [a, b],a < b,a �= 0, b �= 0,ab > 0, then
the following equation is called the reciprocal of ⊗:

⊗−1 ∈
[
1

b
,
1

a

]
(3.9)
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Example 3.4.5 Assume that ⊗ ∈ [2, 4], then ⊗−1 ∈ [0.25, 0.5].
Rule 3.4.6 (Division). Assume that ⊗1 ∈ [a, b],a < b;⊗2 ∈ [c, d ], c < d , and
c �= 0, d �= 0, cd > 0, then the following is called the quotient of ⊗1 division by
⊗2:

⊗1
/⊗2 = ⊗1 × ⊗−1

2 ∈
[
min

{
a

c
,
a

d
,
b

c
,
b

d

}
,max

{
a

c
,
a

d
,
b

c
,
b

d

}]
(3.10)

Example 3.4.6 Assume that ⊗1 ∈ [3, 4],⊗2 ∈ [5, 10], then:

⊗1/⊗2 ∈ [min{3
5
,
3

10
,
4

5
,
4

10
},max{3

5
,
3

10
,
4

5
,
4

10
}] = [0.3, 0.8].

Rule 3.4.7 (Scalar multiplication). Let ⊗ ∈ [a, b], a < b, and k a positive real
number, then the following is called the product of scalar k with grey number ⊗:

k · ⊗ ∈ [ka, kb] (3.11)

Example 3.4.7 Assume that ⊗ ∈ [2, 4], and k=5, then 5 × ⊗ ∈ [10, 20].
Rule 3.4.8 (Power) Let ⊗ ∈ [a, b],a < b,k k a positive real number, then the
following equation is called the kth power of the grey number ⊗:

⊗k ∈ [ak , bk ] (3.12)

Example 3.4.8 Assume that ⊗ ∈ [2, 4], and k=5, then ⊗5 ∈ [32, 1024].

3.5 General Grey Numbers and Their Operations

3.5.1 Simplified Form of Interval Grey Numbers

As the basis of grey system theory, grey numbers, grey number operations and grey
algebraic systems have received much attention from grey system scholars over the
past years. In the 1980s, we put forward the concept of mean whitenization of grey
numbers (Liu, 1989), and based on this concept we developed a new algebraic system
for grey numbers.

According to the standard definition of degree of greyness of grey numbers (Liu,
1996, 2006; Yang 2007, Yang & Liu, 2011), it is possible to address grey intervals
after the operation of grey numbers,with the help of the concept of degree of greyness.

In this section, a definition for grey “kernel” is put forward. The axioms for
operation of grey numbers and a grey algebraic system is built based on grey “kernel”
and the degree of greyness of grey numbers. Also, the properties of the operation are
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discussed with regards to how the operation of grey numbers can be transformed to
the operation of real numbers. Thus, to a certain extent the problem for setting up
the operation of grey numbers and grey algebraic systems is solved.

Definition 3.5.1 (The “kernel” of grey number)

(1) Suppose an interval grey number ⊗ ∈ [a, a], a < a. In case of a lack of
distributing information of the values of grey number⊗, ⊗̂ = 1

2 (a+a) is called
the “kernel” of grey number ⊗.

(2) If a grey number ⊗ is a discrete number and ai ∈ [a, a](i = 1, 2, · · · n) are
all the possible values for grey number ⊗, then ⊗̂ = 1

n

∑n
i=1 ai is called the

“kernel” of grey number ⊗.
(3) Suppose that grey number ⊗ ∈ [a, a], a < a is a random grey numbers with

value distribution information. Then ⊗̂ = E(⊗) is called the “kernel” of grey
number ⊗ ( Liu et al., 2010).

⊗̂, the “kernel” of grey number⊗, is the representation of grey numbers⊗, which
cannot be exchangeable in the course of transforming the operation of grey numbers
to operation of real numbers. In fact, the “kernel” of grey number⊗, as a real number,
can be completely operated by the operation of real numbers, such as plus, minus,
multiplication, division, power, extract, and so on. Also, it is reasonable to take the
operation results of the “kernels” as the “kernel” of operation results of grey numbers.

Definition 3.5.2 Let ⊗̂ and g◦ be the kernel and the degree of greyness of a grey
number ⊗, respectively. Then ⊗̂(g◦) is called the simplified form of grey number ⊗.
The simplified form ⊗̂(g◦) contains two important information, the kernel and the
degree of greyness of a grey number ⊗ ∈ [a, a], a < a.

Proposition 3.5.1 For interval grey numbers, there is an one-to-one correspondence
between the simplified form ⊗̂(g◦) and grey number ⊗ ∈ [a, a], a < a.

In fact, for any chosen grey number ⊗ ∈ [a, a], a < a, one can compute ⊗̂(g◦)
through both ⊗̂ and g◦. On the other hand, when ⊗̂(g◦) is given, one can determine
the position of ⊗ from ⊗̂. Therefore, from the definition of degree of greyness g◦,
one can compute the measure of the grey number ⊗ and consequently the upper and
lower bounds a and a, which provides detailed information for ⊗ ∈ [a, a], a < a.

Example 3.5.1 Assume that the grey numbers ⊗1 = [−2,−1], ⊗2 = [8, 18], ⊗3 =
[−2, 18] all on background � ∈ [−2, 20]. Take the length of grey interval as the
measure of grey numbers, and calculate the simplified forms of ⊗1, ⊗2, ⊗3.

Solution: The measures of�,⊗1,⊗2,⊗3 areμ(�) = 20−(−2) = 22,μ(⊗1) =
1, μ(⊗2) = 10, μ(⊗3) = 20. Then we can get to the kernels and the degree of
greyness of ⊗1, ⊗2, ⊗3 as follows:⊗̂1 = −1.5, ⊗̂2 = 13, ⊗̂3 = 8;g◦

1(⊗1) = 0.045, g◦
2(⊗2) = 0.45, g◦

3(⊗3) = 0.91.
Therefore, we obtained:

⊗1 = −1.5(0.045),⊗2 = 13(0.45),⊗3 = 8(0.91).
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3.5.2 General Grey Number and Its Simplified Form

Definition 3.5.3 (Basic element of grey number) Together, an interval grey number
and a white number are called the basic element of a grey number.

Definition 3.5.4 (General grey number) Let g± ∈  be an unknown real number
within a union set of closed or open grey intervals, where:

g± ∈ n∪
i=1

[
ai, ai

]
(3.13)

If i = 1, 2, . . . , n, n is an integer and 0 < n < ∞, ai, ai ∈  and ai−1 ≤ ai ≤ ai ≤
ai+1, for any grey interval ⊗i ∈ [ai, ai] ⊂ n∪

i=1

[
ai, ai

]
, then g± is called a general

grey number. g− = infai∈g± ai and g+ = supai∈g± ai are called the lower and upper
limits of g±( Liu, et al., 2012).

Definition 3.5.5 (The “kernel” of general grey number)

(1) For a general grey number g± ∈ n∪
i=1

[
ai, ai

]
, the following is called the “kernel”

of a general grey number:

ĝ = 1

n

n∑

i=1

âi (3.14)

(2) If the probability distribution of g± ∈ [
ai, ai

]
(i = 1, 2, …, n) is known, assume

that pi is the probability for g± ∈ [
ai, ai

]
(i = 1, 2, …, n) , âi the “kernel” of

grey interval ⊗i ∈ [ai, ai], and the following conditions hold:

pi > 0, i = 1, 2, …, n; and
n∑

i=1
pi = 1.

Then, the “kernel” ĝ of general grey number g± ∈ n∪
i=1

[
ai, ai

]
can be defined as

follows:

ĝ =
n∑

i=1

piâi (3.15)

Definition 3.5.6 (The degree of greyness of a general grey number) Suppose that the

background which makes a general grey number g± ∈ n∪
i=1

[
ai, ai

]
come into being

is Ω, μ is the measure of Ω, and ⊗i ∈ [ai, ai], i = 1, 2, . . . , n are basic elements

of general grey number g± ∈ n∪
i=1

[
ai, ai

]
. Then the following is called the degree of
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greyness of general grey number g± ∈ n∪
i=1

[
ai, ai

]
, also denoted as g◦ for short (Liu,

et al., 2012):

g◦(g±) = 1

ĝ

n∑

i=1

âiμ(⊗i)/μ(�) (3.16)

Definition 3.5.7 (The simplified form of general grey number). If ĝ is the “kernel” of

a general grey number g± ∈ n∪
i=1

[
ai, ai

]
and g◦ is the degree of greyness of this general

grey number, then, ĝ(g◦) is called the simplified form of a general grey number.
The simplified form ĝ(g◦) of a general grey number contains important information

regarding the values of general grey number g± ∈ n∪
i=1

[
ai, ai

]
. If all the âi andμ(⊗i)(

i = 1, 2, …, n) are known, then the simplified form of grey number ĝ(g◦) contains
two important information, the kernel and the degree of greyness of general grey

numbers g± ∈ n∪
i=1

[
ai, ai

]
.

Example 3.5.2 Let us take a mixed general grey number g± = ⊗1∪⊗2∪2∪⊗4∪6,
where ⊗1 ∈ [1, 3],⊗2 ∈ [2, 4],⊗4 ∈ [5, 9]. Assume that the background or field
which makes general grey number g± come into being is Ω=[0,32]. If we take the
length of the interval as the measure of these grey numbers, try and work out the
simplified forms of general grey number g±.

Solution ⊗̂1 = 2, ⊗̂2 = 3, ⊗̂4 = 7, thus, the kernel of general grey number g± is
as follows:

ĝ = 1

5
(⊗̂1 + ⊗̂2 + 2 + ⊗̂4 + 6) = 1

5
(2 + 3 + 2 + 7 + 6) = 4.

From that, μ(⊗1) = 2, μ(⊗2) = 2, μ(⊗4) = 4, μ(2) = μ(6) = 0, we have:

g◦(g±) = 1

ĝ

5∑

i=1

⊗̂iμ(⊗i)/μ(�) = 1

4
(2 × 2 + 3 × 2 + 2 × 0 + 7 × 4 + 6 × 0)/32

≈ 0.297.

Therefore, the reduced forms of general grey number g± is 4(0.297). When the
probability distribution of g± is known, assume that:

p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.3, p5 = 0.1.

Then: ĝ =
n∑

i=1
pi · ⊗̂i = (0.1 · 2 + 0.2 · 3 + 0.3 · 2 + 0.3 · 7 + 0.1 · 6) = 4.1.

Therefore, the simplified form of general grey number g± is 4.1(0.297).
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3.5.3 Synthesis of Degree of Greyness and Operations
of General Grey Numbers

Axiom 3.5.1 (The synthesis axiom of degree of greyness). When plus and minus are
operated on n general grey numbers of g±

1 ,g
±
2 ,…, g±

n , then the degree of greyness g
◦

of the operation results in g±, which can be arrived at as follows:

g◦ = 1
n∑

i=1
ĝi

n∑

i=1

g◦
i ĝi =

n∑

i=1

wig
◦
i (3.17)

where wi = ĝi
n∑

i=1
ĝi

, i = 1, 2, · · · , n, are the weights of g◦
i .

One can arrive the conclusion as following Proposition 3.5.1 throughAxiom3.5.1.

Proposition 3.5.2 When sums and subtractions are operated on n general grey
numbers of g±

1 ,g
±
2 ,…, g±

n , g
◦ is the degree of greyness of the operation result g±; if

g◦
m = min

1≤i≤n

{
g◦
i

}
, g◦

M = max
1≤i≤n

{
g◦
i

}
, then:

g◦
m ≤ g◦ ≤ g◦

M (3.18)

Axiom 3.5.2 (The unreduction axiom of degree of greyness) When divisions and
multiplications are operated on n general grey numbers, the degree of greyness g◦
of the operation result g± is not less than g◦

M , the maximum value of the degree of
greyness g◦

1 , g
◦
2 , · · · , g◦

n of n general grey numbers g±
1 ,g

±
2 ,…, g±

n .
Usually, g◦

M , the maximum number of the degree of greyness of n general grey
numbers is taken as the degree of greyness of the operation results. One can arrive
at this conclusion through Proposition 3.5.3 below.

Proposition 3.5.3 When divisions and multiplications are operated on n general
grey numbers with the same degree of greyness, then the degree of greyness of the
operation result holds the line.

Proposition 3.5.4 When divisions and multiplications are operated on a white
number and a general grey number, the degree of greyness of the result is equal
to the degree of greyness of the general grey number.

Suppose that g±
1 , g±

2 are two general grey numbers; ĝ1, ĝ2 are their kernels, respec-
tively, and g◦

1 , g
◦
2 are their degrees of greyness, respectively. Then, the following rules

come into existence according to Axioms 3.5.1 and 3.5.2:

Rule 1 ĝ1(g◦
1 )

+ ĝ2(g◦
2 )

= (ĝ1 + ĝ2)(w1g◦
1+w2g◦

2 )
(3.19)

Rule 2 − ĝ1(g◦
1 )

= (−ĝ1)(g◦
1 )

(3.20)
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Rule 3 ĝ1(g◦
1 )

− ĝ2(g◦
2 )

= (ĝ1 − ĝ2)(w1g◦
1+w2g◦

2 )
(3.21)

Rule 4 ĝ1(g◦
1 )

× ĝ2(g◦
2 )

= (ĝ1 × ĝ2)(g◦
1∨g◦

2 )
(3.22)

Rule 5 If ĝ1 �= 0, then 1/ĝ1(g◦
1 )

= (1/ĝ1)(g◦
1 )

(3.23)

Rule 6 If ĝ2 �= 0, then ĝ1(g◦
1 )

÷ ĝ2(g◦
2 )

= (ĝ1 ÷ ĝ2)(g◦
1∨g◦

2 )
(3.24)

Rule 7 If k is a real number, then k · ĝ(g◦
1 )

= (k · ĝ)(g◦
1 )

(3.25)

The operations of general grey numbers can be extended to cases where many
general grey numbers must be operated. In such cases, we can take the operation
results of the “kernels” as the “kernel” of operation results of general grey numbers.
We can then get the degree of greyness of the results according to axioms 1 or 2,
and, thus, we can arrive at the reduced forms of the results.

Example 3.5.3 Take two mixed general grey numbers g±
1 = ⊗1 ∪ ⊗2 ∪ 2 ∪ ⊗4 ∪ 6

and g±
2 = ⊗6 ∪ 20 ∪ ⊗8 ∪ ⊗9, where ⊗1 ∈ [1, 3],⊗2 ∈ [2, 4],⊗4 ∈ [5, 9],⊗6 ∈

[12, 16],⊗8 ∈ [11, 15],⊗9 ∈ [15, 19]. Assume that the background or field which
makes general grey number g±

1 come into being is Ω=[0,32], and the background
or field which makes general grey number g±

2 come into being is Ω=[10,60]. Try
and calculate the values of g±

3 = g±
1 + g±

2 , g
±
4 = g±

1 − g±
2 , g

±
5 = g±

1 × g±
2 , and

g±
6 = g±

1 ÷ g±
2 .

Solution First, calculate the simplified forms of g±
1 and g±

2 . FromExample 3.5.2, we
have g±

1 =4(0.297). From that, ⊗̂6 = 14, ⊗̂8 = 13, ⊗̂9 = 17, andμ(⊗6) = 4, μ(⊗7) =
0, μ(⊗8) = 4, μ(⊗9) = 4, we have:

ĝ2 = 1

4
(⊗̂6 + 20 + ⊗̂8 + ⊗̂9) = 1

4
(14 + 20 + 13 + 17) = 16; and

g◦
2(g±) = 1

ĝ2

4∑

i=1

⊗̂iμ(⊗i)/μ(�2) = 1

16
(14 × 4 + 20 × 0 + 13 × 4 + 17 × 4)/50 = 0.22.

Thus, the simplified formof general grey number g±
2 is 16(0.22).With the simplified

forms, as well as w1 = 4
20 = 0.2,w2 = 16

20 = 0.8, it is possible for us to get the
following results:

g±
3 = g±

1 + g±
2 = (ĝ1 + ĝ2)(w1g◦

1+w2g◦
2 )

= (4 + 16)(0.2×0.297+0.8×0.22) = 200.235
g±
4 = g±

1 − g±
2 = (ĝ1 − ĝ2)(g◦

1∨g◦
2 )

= (4 − 16)(0.2×0.297+0.8×0.22) = (−12)0.235
g±
5 = g±

1 × g±
2 = (ĝ1 × ĝ2)(g◦

1∨g◦
2 )

= (4 × 16)(0.297∨0.22) = 640.297

g±
6 = g±

1 ÷ g±
2 = (ĝ1 ÷ ĝ2)(g◦

1∨g◦
2 )

== (4 ÷ 16)(0.297∨0.22) =
(
1

4

)

0.297
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Definition 3.5.8 Assume that F(g±) is a set of general grey numbers, and that
g±
i , g±

j ∈ F(g±). If g±
i + g±

j , g
±
i − g±

j , g
±
i · g±

j , and g±
i ÷ g±

j all belong to F(g±)

(when division is considered, the conditions in rule 6 need to be satisfied), thenF(g±)

is called a field of general grey numbers.

Theorem 3.5.1
The totality of all general grey numbers constitutes a field of general grey numbers.

Definition 3.5.9 Assume that R(g±) is a set of general grey numbers. If for g±
i , g±

j

and g±
k ∈ R(g±), the following hold true:

(1) g±
i + g±

j = g±
j + g±

i ;
(2) (g±

i + g±
j ) + g±

k = g±
i + (g±

j + g±
k );

(3) There exists a zero element 0 ∈ R(g±), such that g±
i + 0 = g±

i ;
(4) For any g±

i ∈ R(g±), there exists a −g±
i ∈ R(g±), such that g±

i +(−g±
i ) = 0;

(5) (g±
i · g±

j ) · g±
k = g±

i · (g±
j · g±

k );
(6) There exists a unit element 1 ∈ R(g±), such that 1 · g±

i = g±
i · 1 = g±

i ;
(7) (g±

i + g±
j ) · g±

k = g±
i · g±

k + g±
j · g±

k ; and
(8) g±

i · (g±
j + g±

k ) = g±
i · g±

j + g±
i · g±

k .

Thus, R(g±) is called a linear space of general grey numbers.

Theorem 3.5.2 The totality of all synchronous general grey numbers constitutes a
linear space.

Agrey number is themost elementary component of grey system theory and forms
the basis for studying the quantitative relations of a grey system. The operation of
grey numbers is the starting point for grey maths, and it has much significance in
the development of grey system theory. On the basis of intensifying the effect and
significance of the “kernel” of general grey numbers, and with the degree of greyness
of general grey numbers as a link, the operation of grey numbers has been translated
into the operation of real numbers. Therefore, to a certain extent the problem of
operation of grey numbers has been solved, and a grey algebraic system based on
this operation has been constructed. The operation of grey numbers defined in this
chapter can be extended to grey algebraic equations, grey differential equations and
grey matrix operations. This is a development of great significance to the study of
grey input-output models and grey programming, which has been progressing slowly
due to the difficulty of grey number operations.

The calculation of degree of greyness of general grey numbers relates to the field
� of general grey numbers. Thus, the field�must be considered in order to translate
the reduced form of general grey number to its common form. Researchers tend to
pay attention only to the operation of general grey numbers and ignore the field of
the results, which creates difficulties in reverting general grey numbers. However,
the reduced form of a general grey number provides relevant information about the
“kernel” and degree of greyness, So that we can know what we know. This is similar
to the digital characteristics of a random variable such as mean and variance, which
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hold the distribution information of the random variable. The “kernel” and degree of
greyness arising from the reduced form are very important as they allow us to learn
the value information of a general grey number.
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Chapter 4
Sequence Operators and Grey Data
Mining

The totality of a series of operations applied to sequence data in a certain order is
called a sequence operator. The concept of sequence operator was first proposed by
the author of this book in 1991 (Liu, 1991).

The grey system theory regards the data sequence with poor information char-
acteristics as the grey data that changes in a certain amplitude range and a certain
time zone, and uses the sequence operator to eliminate the impact disturbance factors
contained in the data sequence, estimate the missing data in the sequence, reduce the
data noise, test whether the data sequence has the grey exponential law, and mine
the hidden change law in the data sequence.

The sequence operators used to eliminate the impact disturbance factors contained
in the data sequence are called buffer operators, includingweakening buffer operators
and strengthening buffer operators (Liu, 1991). The operator used to estimate the
missing data of the sequence is called the estimation operator (Liu, 2024a, 2024b),
the operator used to reduce the data noise includes the mean operator and the average
smoothing denoise operator (Li et al., 2023a, 2023b; Liu, 2024a, 2024b), the operator
used to test whether the data sequence has the grey index law is called the stepwise
operator (Deng, 1985), the sequence operator used to mine the hidden index law of
the data sequence is called the accumulation operator, and the inverse operator of
the accumulation operator is called the inverse accumulation operator (Deng, 1985),
etc.

4.1 Introduction

One of the main tasks of grey systems theory is to uncover the mathematical relation-
ships between different system variables and the laws of change of certain system
variables themselves based on the available data of characteristic behaviors of social,
economic and ecological systems, for example. Grey systems theory looks at each
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stochastic variable as a grey quantity that varies within a fixed region and within a
certain time frame, and each stochastic process as a grey process.

When investigating the behavioral characteristics of a system, what is available is
often a sequence of definitewhite numbers. There is no substantial difference between
whether we treat the sequence as a trajectory or actualization of a stochastic process,
or aswhitenized values of a grey process.However, to uncover the laws of evolution of
systems’ behavioral characteristics, different methods are developed using different
thinking logics. For instance, the theory of stochastic investigates statistical laws
on the basis of probabilities borrowed from prior knowledge. This methodology
generally requires large amounts of data. However, even with large amounts of data
there is no guarantee that any of the desired laws can be successfully uncovered. That
is because the number of basic forms of distribution considered in this methodology
is very limited. It is often extremely difficult to deal with non-typical distribution
processes. Nonetheless, grey systems theory uncovers laws of change by excavating
and organizing the available raw data, representing an approach of finding data out
of data through grey sequence operators. Grey systems theory believes that a system
possesses overall functions and properties, even if the expression of such an objective
system might be complicated, and its data chaotic.. Therefore, there must be internal
laws governing the existence of the system and its operation. The key is to choose an
appropriate method to excavate the internal laws and make use of such laws. For any
given grey sequence, its implicit pattern can always be revealed through weakening
the explicit randomness.

For example, the following sequence does not clearly show any regularity or
pattern:

X (0) = (1, 2, 1.5, 3) = (
x(0)(1), x(0)(2), x(0)(3), x(0)(4)

)
.

Now, we depict the data set with the graph in Fig. 4.1. From this graph, it can
be seen that the curve of X(0) undulates with relatively large amplitude. If we apply
the accumulating operator once to the original data set X(0), and denote the resultant
sequence as X(1), then we have:

X (1) = (1, 3, 4.5, 7.5) = (
x(1)(1), x(1)(2), x(1)(3), x(1)(4)

)
.

where for k = 1, 2, 3, 4, x(1)(k) = ∑k
i=1 x(0)(i).

Now, the processed sequence X(1) clearly shows a growing tendency (see Fig. 4.2
for more details).
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Fig. 4.1 The curve of X(0)
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Fig. 4.2 The curve of X(1)
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4.2 Systems Under Shocking Disturbances and Buffer
Operators

4.2.1 The Trap for Shocking Disturbed System Forecasting

Behavioral prediction of problems under the influence of shocking disturbances has
always been a difficult problem. For such predictions, any theory on how to choose
models would lose its validity. This is because the problem to be address here is
not about which model is the best; instead, when a system is severely impacted by
shocks, the available behavioral data of the past no long represent the current state
of the system. In this case, the available data of the system’s behavior can no longer
truthfully reflect the law of change of the system.

Definition 4.2.1 Assume that

X (0) = (
x(0)(1), x(0)(2), · · ·, x(0)(n)

)

stands for a sequence of a system’s true behaviors. If the observed behaviors of the
system are
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X = (x(1) , x(2) , . . . , x(n))

= (
x(0)(1) + ε1, x(0)(2) + ε2, . . . , x(0)(n) + εn

) = X (0) + ε

where ε = (ε1, ε2, …,εn) is a term for the shocking disturbance, then X is called a
shock-disturbed sequence (Liu, 1991).

To correctly uncover and recognize the true behavior sequence X (0) of the system
from the shock-disturbed sequence X, one first has to go over the hurdle ε. If we
directly established our model and made our predictions using the severely affected
data X without first cleaning up the disturbance, then our predictions would most
likely fail. This is because the model would not have described the true state X(0) of
change of the underlying system.

The wide spread existence of severely shocked systems often causes quantitative
predictions to disagree with the outcomes of intuitive qualitative analyses. Hence,
there is a need to seek an organic equilibrium between quantitative predictions and
qualitative analyses, by eliminating shock wave disturbances in order to recover
the true state of the systems’ behavioral data. This way the accuracy of the conse-
quent predictions can be greatly improved, which is one of the most important tasks
performed by grey systems scientists. To this end, the discussion in this section is
centered around the overall goal of reaching X (0) from X.

4.2.2 Axioms of Buffer Operators

Definition 4.2.2 Assume that X = (x(1), x(2), …, x(n)) is a system’s behavior data
sequence.

(1) If ∀ k = 2, 3, …, n, x(k) − x(k − 1) > 0, then X is referred to as a monotonic
increasing sequence;

(2) If the inequality sign in (1) is inversed, then X is referred to as a monotonic
decreasing sequence;

(3) If there are k, k ′∈{2, 3,…, n} such that x(k)−x(k − 1) > 0, x
(
k ′)−x

(
k ′ − 1

)
<

0, then X is referred to as a random vibrating or fluctuating sequence. If M =
max{x(k)|k = 1, 2, . . . , n } and m = min{x(k)|k = 1, 2, . . . , n }, then M − m is
referred to as the amplitude of sequence X.

Definition 4.2.3 Assume that X is a data sequence of a system’s behavior, D an
operator to work on X, and after being applied by the operator D, X becomes the
following sequence:

XD = (x(1)d , x(2)d , . . . , x(n)d)

where D is referred to as a sequence operator and XD the first order sequence of
operator D (Liu, 1991). If D1, D2, and D3 are all sequence operators, then D1D2 is
referred to as a second order sequence operator, and
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XD1D2 = (x(1)d1d2, x(2)d1d2, . . . , x(n)d1d2)

a second order sequence of D1D2. Similarly, D1D2D3 is referred to as a third order
sequence operator and

XD1D2D3 = (x(1)d1d2d3, x(2)d1d2d3, . . . , x(n)d1d2d3)

a third order sequence of D1D2D3.

Axiom 4.2.1 (Fixed Point) Assume that X is a data sequence of a system’s behavior
and D a sequence operator. Then D satisfies x(n)d = x(n).

This fixed point axiom means that under the effect of a sequence operator, data
point x(n) remains unchanged, and this is the last entry of the system’s behavior
data sequence. Based on the conclusions of relevant qualitative analysis, we can also
leave several of the last entries of the data unchanged by the operator D, say,

x(j)d �= x(j) andx(i)d = x(i)

for j = 1, 2, …, k − 1; i = k, k + 1, …, n.

Axiom 4.2.3 (In accordance with information) The sequence operator must be
defined in accordance with information in the data sequence X. That is, each entry
value x(k), k = 1, 2, …, n, in the data sequence X of the system’s behavior should
sufficiently participate in the entire process of application of the operator.

This axiom requires that any sequence operator be defined by using known infor-
mation of the given sequence. It cannot be produced without referencing available
raw data (Liu, 1991).

Axiom 4.2.3 (Expressed normality) Each x(k)d, k = 1, 2, …, n, is expressed by a
uniform, elementary analytic representation of x(1), x(2),…, x(n) (Liu, 1991).

This last axiom requires that the procedure of applying sequence operators
be clear, normalized, and uniform, so that it can be conveniently carried out on
computers.

Definition 4.2.4 Any sequence operator satisfying these three axioms is referred to
as a buffer operator; the first order, second order, third order, …, sequences obtained
by applying a buffer operator are referred to as the first order, second order, third
order, …, buffered sequences.

Definition 4.2.5 For a raw data sequence X and a buffer operator D, when X is
respectively an increasing, decreasing, or fluctuating sequence:

(1) If the buffered sequence XD increases, decreases, or fluctuates slower or with
smaller amplitude, respectively, than the original sequence X, then D is referred
to as a weakening operator.

(2) If the buffered operator XD increases, decreases, or fluctuates faster or with
larger amplitude, respectively, than the original sequence X, then D is referred
to as a strengthening operator (Liu, 1991).
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4.2.3 Properties of Buffer Operators

Theorem 4.2.1 Assume that X is a monotonic increasing sequence, then:

(1) If D is a weakening operator ⇔ x(k)d ≥ x(k), k = 1, 2, …, n;
(2) If D is a strengthening operator ⇔ x(k)d ≤ x(k), k = 1, 2, …, n (Liu, 1991).

Proof Assume that

r(k) = x(n) − x(k)

n − k + 1
, k = 1, 2, 3, . . .

is the average increasing rate from x(k) to x(n) in the sequence X of raw data, and

r(k)d = x(n)d − x(k)d

n − k + 1
, k = 1, 2, 3, . . . ,

is the average increasing rate from x(k)d to x(n)d in the buffered sequence XD.
Given the condition that

x(n)d = x(n)

It follows that

r(k) − r(k)d = [x(n) − x(k)] − [x(n)d − x(k)d ]

n − k + 1
= x(k)d − x(k)

n − k + 1

If D is a weakening operator, then, r(k) ≥ r(k)d , that is r(k) − r(k)d ≥ 0.
Therefore x(k)d − x(k) ≥ 0, that is, x(k)d ≥ x(k) and vice versa.

If D is a strengthening operator, then r(k) ≤ r(k)d , that is r(k) − r(k)d ≤ 0.
Therefore x(k)d − x(k) ≤ 0, that is, x(k) ≥ x(k)d and vice versa.

Theorem 4.2.2 Assume that X is a monotonic decreasing sequence, then:

(1) If D is a weakening operator ⇔ x(k)d ≤ x(k), k = 1, 2, …, n;
(2) If D is a strengthening operator ⇔ x(k)d ≥ x(k), k = 1, 2, …, n (Liu, 1991).

Theorem 4.2.3 Assume that X is a fluctuating sequence and XD a buffered sequence,
then:

(1) If D is a weakening operator, then max1≤k≤n{x(k)} ≥ max1≤k≤n{x(k)d} and
min1≤k≤n{x(k)} ≤ min1≤k≤n{x(k)d};

(2) If D is a strengthening operator, then max1≤k≤n{x(k)} ≤ max1≤k≤n{x(k)d} and
min1≤k≤n{x(k)} ≥ min1≤k≤n{x(k)d}.

For detailed proofs and relevant discussions of these theorems, please consult Liu
and Lin (2006, pp. 64–67). What theorem implies is that each monotonic increasing
sequence expands under the effect of a weakening operator and shrinks under a
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strengthening operator. What theorem indicates is that each monotonic decreasing
sequence shrinks under the effect of a weakening operator and expands under a
strengthening operator.

4.3 Construction of Practically Useful Buffer Operators

4.3.1 Weakening Buffer Operators

Theorem 4.3.1 Given a raw data sequence X = (x(1), x(2), . . . , x(n)), let XD =
(x(1)d , x(2)d , . . . , x(n)d), where

x(k)d = 1

n − k + 1
[x(k) + x(k + 1) + · · · + x(n)], k = 1, 2, . . . , n (4.1)

Then D is always a weakening operator regardless of whether X is a monotonic
increasing, decreasing, or vibrating sequence. This operator is referred to as an
average weakening buffer operator (AWBO) (Liu, 1991, 2024; Liu et al., 2022).

The weakening operator D in Theorem 4.3.1 possesses some very good properties
and has been applied widely in modeling and prediction of systems with interference
of uncontrollable shock waves.

Corollary 4.3.1 For the weakening operator D as defined in Theorem 4.3.1, let:

XD2 = XDD = (x(1)d2, x(2)d2, . . . , x(n)d2)

x(k)d2 = 1

n − k + 1
[x(k)d + x(k + 1)d + · · · + x(n)d ]; k = 1, 2, . . . , n (4.2)

Then D2 is always a second-order weakening operator for monotonic increasing,
monotonic decreasing, and fluctuating sequences.

Example 4.3.1 Let X = (36.5, 54.3, 80.1, 109.8, 143.2) and D and D2 as defined in
Theorem 4.3.1 and Corollary 4.3.1 respectively, calculate the buffered sequence XD
and XD2.

Solution Here n = 5, from formula 4.1, we have:

x(1)d = 1

n − k + 1
[x(k) + x(k + 1) + · · · + x(n)] = 1

5 − 1 + 1
[x(1) + x(2) + · · · + x(5)]

= 1

5 − 1 + 1
[36.5 + 54.3 + 80.1 + 109.8 + 143.2] = 84.78

x(2)d = 1

n − k + 1
[x(k) + x(k + 1) + · · · + x(n)] = 1

5 − 2 + 1
[x(2) + · · · + x(5)]
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= 1

4
[54.3 + 80.1 + 109.8 + 143.2] = 96.85

x(3)d = 1

5 − 3 + 1
[x(3) + x(4) + x(5)] = 1

3
[80.1 + 109.8 + 143.2] = 111.03

x(4)d = 1

5 − 4 + 1
[x(4) + x(5)] = 1

2
[109.8 + 143.2] = 126.5

x(5)d = 143.2

Therefore:

XD = (84.78, 96.85, 111.03, 126.5, 143.2).

Similarly, we can obtained the second-order buffered sequence XD2 as follows:

XD2 = (112.47, 119.4, 126.91, 134.85, 143.2).

Theorem 4.3.2 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data,
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ωi > 0, i = 1, 2, , . . . , n. Let:

XD = (x(1)d , x(2)d , . . . , x(n)d)

where

x(k)d = ωkx(k) + ωk+1x(k + 1) + · · · + ωnx(n)

ωk + ωk+1 + · · · + ωn

= 1
∑n

i=k ωi

∑n

i=k
ωix(i), (k = 1, 2, . . . , n) (4.3)

Then D is always a weakening operator regardless of whether X is a monotonic
increasing, decreasing, or vibrating sequence (Dang et al., 2004). This operator D
is called as a weighted average (or mean) weakening buffer operator (WAWBO).

Corollary 4.3.2 For the weighted average weakening operator D as defined in
Theorem 4.3.2, let:

ω = (1, 1, . . . , 1).

Then:

1
∑n

i=k ωi

∑n

i=k
ωix(i) = 1

n − k + 1

n∑

i=k

x(i)
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That is, the average weakening buffer operator (AWBO) is a special case of the
weighted average weakening buffer operator (WAWBO).

Theorem 4.3.3 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data,
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ωi > 0, i = 1, 2, , . . . , n. Let:

XD = (x(1)d , x(2)d , . . . , x(n)d)

where

x(k)d = [
x(k)ωk · x(k + 1)ωk+1 . . . x(n)ωn

] 1
ωk +ωk+1+···+ωn

=
[

n∏

i=k

x(i)ωi

] 1
n∑

i=k
ωi

,(k = 1, 2, . . . , n) (4.4)

Then D is always a weakening operator, regardless of whether X is a monotonic
increasing, decreasing, or vibrating sequence (Dang et al., 2004).

This operator D is called as a weighted geometric average weakening buffer
operator (WGAWBO).

Example 4.3.1 From1983 to 1986, the overall business revenueof private enterprises
in Changge county, located in theHenan Province of The People’s Republic of China,
was recorded as:

X = (10155, 12588, 23480, 35388).

This showed a tendency of rapid growth. The average rate of revenue growth
for these years was 51.6%, and the average rate of revenue growth from 1984 to
1986 was 67.7%. The people involved in the economic planning of the county,
including politicians, scholars, policy makers, and residents, commonly believed
that the overall revenue of private enterprises in this county would not be able to
keep up with this record speed of growth in the coming years. If relevant data had
been used to build models and make predictions, nobody would have accepted the
resultant conclusions. After numerous rigorous analyses and discussions, all parties
involved recognized that the reason for such a high growth rate between 1983 and
1986 was mainly a low baseline. Such a low baseline had been a consequence of
the fact that, in the past, policies relevant to private enterprises had been neither
existent, nor encouraged. To weaken the growth rate of the sequence of the raw
data, it was necessary to artificially add all favorable environmental factors to past
years’ data, and such environmental factors were created based on the introduction
of relevant policies for the development of private enterprise in recent years. With
this goal in mind, we introduced the second-order weakening operator, as defined in
Theorem 4.3.1, and obtained the following second-order buffered sequence:

XD2 = (27260, 29547, 32411, 35388).
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As a result, the consequent modeling based on XD2 produced credible predictions
for the county’s business revenue growth between 1987 and 2000.

4.3.2 Strengthening Buffer Operators

Theorem 4.3.4 Assume that X = (x(1), x(2), · · ·, x(n)) is a sequence of raw data,
and Di is a sequence operator defined by:

x(k)di = x(k − 1) + x(k)

2
; k = 2, 3, . . . , n; i = 1, 2 (4.5)

If x(1)d1 = αx(1), α ∈ [0, 1], x(1)d2 = (1 + α)x(1), α ∈ [0, 1], and x(n)di =
x(n), i = 1, 2, then D1 is a strengthening buffer operator for monotonic increasing
sequences, and D2 a weakening buffer operator for monotonic decreasing sequences
(Liu, 1991).

Both D1 and D2 are called even strengthening buffer operators (ESBO).

Theorem 4.3.5 For a given increasing or decreasing sequence X of raw data, the
operator D is defined as follows:

x(k)d = (n − k + 1)[x(k)]2

x(k) + x(k + 1) + · · · + x(n)
, k = 1, 2, . . . , n (4.6)

D is a strengthening buffer operator, and is called average strengthening buffer
operator (ASBO) (Liu, 2024a, 2024b).

Theorem 4.3.6 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data,
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ωi > 0, i = 1, 2, , . . . , n. Let XD =
(x(1)d , x(2)d , . . . , x(n)d), where D is defined as follows:

x(k)d = (ωk + ωk+1 + · · · + ωn)(x(k))2

ωk x(k) + ωk+1x(k + 1) + · · · + ωnx(n)
=

∑n
i=k ωi(x(k))2
∑n

i=k ωix(i)
, (k = 1, 2, . . . , n)

(4.7)

D is a strengthening buffer operator regardless of whether the raw data sequence
X is a monotonic increasing, decreasing, or vibrating sequence (Dang et al., 2005).
D is called a weighted average strengthening buffer operator (WASBO).
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4.3.3 The General Form of Buffer Operator

Theorem 4.3.6 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data,
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ωi > 0, i = 1, 2, , . . . , n. Let XD =
(x(1)d , x(2)d , . . . , x(n)d), where D is defined as follows:

x(k)d = x(k) ·
[

x(k)/
ωkx(k) + ωk+1x(k + 1) + · · · + ωnx(n)

ωk + ωk+1 + · · · + ωn

]α

= x(k) ·
[

x(k)/
1

∑n
i=k ωi

n∑

i=k

ωix(i)

]α

(4.8)

Then:

(1) When α < 0,D is a weakening operator regardless of whether X is a monotonic
increasing or decreasing sequence.

(2) When α > 0,D is a strengthening buffer operator regardless of whether the raw
data sequence X is a monotonic increasing or decreasing sequence.

(3) When α = 0,D is an identical operator (Wei et al., 2011).

D is called the general form of buffer operator (GFBO).

Corollary 4.3.3 Take α = −1 in Theorem 4.3.6, then formula (4.8) changes to (4.2).
That is, the weighted average weakening buffer operator (WAWBO) is a special case
of the general form of buffer operator (GFBO).

Corollary 4.3.4 Take α = 1 in Theorem 4.3.6, then formula (4.8) changes to (4.7).
That is, the weighted average strengthening buffer operator (WASBO) is a special
case of the general form of buffer operator (GFBO).

The buffer operator concept has been employed not only in grey systems modeling,
but also in other kinds of model building. Generally, before building a mathematical
model based on qualitative analysis and its conclusions, one applies a buffer operator
on the original data sequence. This is done to soften or eliminate the effects of shock-
disturbances on the behavior sequence of a given system. By doing so, expected
results are often obtained.

Example 4.3.2 From 1996 to 1999, the annual gross revenues produced by the
agricultural, forestry, animal husbandry, and fishery sectors in the area of Nanjing
were (in 0.1 billion yuan):

X = (91.9895, 94.2439, 96.9644, 98.9199).

The growth rate shown in X is very slow, as it represents an average of about
2.4% annually. Such a slow growth rate was not aligned with the fast advances of the
overall annual economic development of the area. If such a slow growth continued
in these economic sectors, it would have caused imbalances in the development of
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the overall economic structure of the region and sustained regional economic growth
would have been adversely affected. In 2000, Nanjing City gradually adjusted the
economic structure of the countryside to counteract slow economic growth. In order
to accurately control that economic development tendency in a timely fashion, there
was a need to produce scientifically reasonable economic forecasts. To achieve this
goal we had to address available data where slow growth was recorded. This would
allow the resultant predictions to possess practical value in the realm of economic
forecast and pro-growth government intervention. By applying the strengthening
operator in Theorem 2.12 twice on the available data sequence, we obtained the
following second order buffered data sequence:

XD2 = (79.5513, 85.5446, 93.1686, 98.9199).

A GM(1,1) model based on this buffered sequence provided:

dX (1)

dt
− 0.0720X (1) = 77.1389.

The time response function was as follows:

∧
X (1)(k + 1) = 1150.7003e0.0720k − 1071.1503.

Based on this equation, the computational simulation results, effectiveness of the
data fit, and prediction efficacy are given in Tables 4.1 and 4.2

Tables 4.1 and 4.2 show that by employing the buffered data using a strengthening
operator to establish our model, the simulated results and corresponding predictions

Table 4.1 The effectiveness of the simulation results

Year Strengthened data

x(0)(k)

Simulated data x̂(0)(k) Error
ε(k) = x̂(0)(k) − x(0)(k)

Relative error

�k = |ε(k)|
x(0)(k)

1997 85.5446 85.9245 0.3799 0.4441%

1998 93.1686 92.3407 − 0.8279 0.8886%

1999 98.9199 99.2359 0.316 0.3195%

Table 4.2 The efficacy of the predictions

Year Actual data
x(0)(k)

Predictions
x̂(0)(k)

Error
ε(k) = x̂(0)(k) − x(0)(k)

Relative error

�k = |ε(k)|
x(0)(k)

2000 106.3412 106.6460 0.3048 0.2866%

2001 113.29 114.6094 1.3194 1.1646%

2005 152.8703
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are quite good. In particular, for 2000 and 2001, predicted values reached an accuracy
rate of over 98% compared to the actual data for those years.

Over the years, research on buffer operator is pretty active and some new results
have emerged. For example, Dang, Yaoguo (Dang et al., 2004) Wu Zhengpeng (Wu
et al., 2009) Cui, Jie (Cui & Dang, 2009) Cui Lizhi (Cui et al., 2010) Guan Yeqing,
(Guan & Liu, 2008), Hu, Xiaoli (Hu et al., 2013) Gao Yan (Gao et al., 2013), Dai
Wenzhan (Dai & Su, 2012), Wang Zhengxin (Wang et al., 2009), Li Xuemei (Li
et al., 2012), Wu, Lifeng (Wu et al., 2016), Li Chong (Li et al., 2019, 2023), Wang
Yong (Wang et al., 2023), Liu Shuanghua (Liu, 2024), etc. constructed a variety of
different weaken and strengthen buffer operators based on the three buffer operator
axioms.

In 2011, Wei Yong et al. brought forth the general form of buffer operator (Wei
et al., 2011). Ye Jing proposed the forecasting effect of grey model (GM)(1,1) and
applicability evaluation criteria of weakening buffer operators based on systemic
analysis of buffer operators working process to GM(1,1) prediction (Ye et al., 2014).

Because of the abundant shock disturbed system, the thinking methods and tech-
nology that buffer operator make the qualitative analysis results expressed quantita-
tively are widely applied in practice. Such as the research on radar target tracking by
Liu et al. (2006), the research on the economic effects of meteorological disasters
by Guo et al. (2014),the research on the analysis of transformer oil dissolved gas
content by Liao et al. (2012) and the research on the grey PID forecast control by
Zhu et al. (2012), etc.

Faced with actual vibration data, how to select and construct suitable buffer oper-
ator? How to determine the weight parameters and effect index of buffer operator?
How the properties of the buffer operator are changed with the change of parameters
and index? All of these are the problems that need further research. The answers to
these questions are certainly the next step of development in this field.

4.4 Average Operator and Moving Average Denoise
Operator

Due to various obstacles that are difficult to overcome, available data sequences
may or may not contain missing entries. Nevertheless, even if data sequences are
complete without any missing entries, systems’ behaviors can change suddenly at
any point in time, and corresponding entries in data sequences can become out of
the ordinary. This can create great difficulties for the researcher. For example, if
abnormal entries are removed, blank entries are created. Hence, how to effectively
fill blanks in data sequences naturally becomes one of the first questions one has to
address when processing available data. Data generation using averages is another
frequently used method to create new data, fill a vacant entry in the available data
sequence, and construct new sequences.
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Definition 4.4.1 Assume that sequence X have missing data at k, denoted as

X = (x(1), x(2), . . . , x(k − 1), φ(k), x(k + 1), . . . , x(n))

Let

D: x(k)d = x∗(k) = αx(k − 1) + (1 − α)x(k + 1), α ∈ [0, 1] (4.9)

then D is called an estimation operator, x∗(k) is referred as a estimation value of
x(k).

Definition 4.4.2 Assume that X = (x(1), x(2), . . . , x(n)) is a the sequence operator
D is defined as:

D: x(k)d = x∗(k) = αx(k) + (1 − α)x(k + 1), α ∈ [0, 1] (4.10)

D is called a 2 items weighted moving average operator.
Especially, 2 items equally weighted moving average operator is called a mean

operator.

Definition 4.4.3 For a given sequence X = (x(1), x(2), …, x(n)), the sequence
operator D is defined as:

x(k)d = x ∗ (k) = 0.5x(k) + 0.5x(k−1) (4.11)

In this case, D is referred to as a mean operator.
The sequence worked by mean operator is referred to as a mean sequence. In

the process of modeling grey prediction models, it is usually necessary to apply the
mean operator to the sequence acted by first-order accumulation operators to further
eliminate the influence of random disturbances. Traditionally, the mean sequence is
denoted as Z (Deng, 1990).

Generally, when X = (x(1), x(2), . . . , x(n)) is a sequence of n items, then the
mean sequence Z of X is a sequence of n-1 items. That is

Z = (z(2), z(3), . . . , z(n))

Definition 4.4.4 Assume that the original sequence:
X (0) = (

x(0)(1), x(0)(2), . . . , x(0)(n)
)
, where

x(0)(k) ≥ 0, k = 1, 2, . . . , n; let: x(0)D = (
x(0)(1)d , x(0)(2)d , . . . , x(0)(n)d

)
,

where,

x(0)(k)d = x(0)(k − m) + · · · + x(0)(k − 1) + x(0)(k) + x(0)(k + 1) + · · · + x(0)(k + m)

2m + 1
(4.12)



4.5 The Quasi-Smooth Sequence and Stepwise Ratio Operator 77

then D is called a moving average denoise operator.
At the case of m = 1, 2, we have

x(0)(k)d = x(0)(k − 1) + x(0)(k) + x(0)(k + 1)

3
(4.13)

x(0)(k)d = x(0)(k − 2) + x(0)(k − 1) + x(0)(k) + x(0)(k + 1) + x(0)(k + 2)

5
(4.14)

Moving average denoise operator.is a center operator. Its characteristic is that it
can keep the corresponding relationship between x(0)(k)d and x(0)(k).

The moving average denoise operator has low-pass filtering effect. The low-
frequency part (Evolution Law) of the datawill basically remain unchanged under the
action of the moving average denoise operator, and the high-frequency part (noise)
will be compressed and suppressed (Lin et al, 2022; Liu et al., 2020)).

4.5 The Quasi-Smooth Sequence and Stepwise Ratio
Operator

Definition 4.5.1 Assume that X = (x(1), x(2), . . . , x(n)), x(k) ≥ 0, k =
1, 2, . . . , n, then the following is referred to as the smoothness ratio of the sequence
X (Deng, 1985):

ρ(k) = x(k)

k−1∑

i=1
x(i)

; k = 2, 3, . . . , n (4.15)

The concept of smoothness ratio reflects the smoothness of a sequence from a
special angle. In particular, it uses the ratio ρ(k) of the kth data value x(k) over the
sum

∑k−1
i=1 x(i) of the previous values to check whether or not the changes in the data

points of X are stable. The more stable the changes of the data points in sequence X
are, the smaller the smoothness ratio ρ(k).

Definition 4.5.2 If a sequence X = (x(1), x(2), . . . , x(n)), x(k) ≥ 0, k =
1, 2, . . . , n satisfies the following, then X is referred to as a quasi-smooth sequence:

(1) ρ(k+1)
ρ(k)

< 1; k = 2, 3, . . . , n − 1;
(2) ρ(k) ∈ [0, ε]; k = 3, 4, . . . , n; and
(3) ε < 0.5.

Quasi-smooth conditions are very important criteria, which are employed to check
whether a sequence can be used to build a grey model.
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If the first entry x(1) or the last entry x(n) of a sequence are blank, that is, x(1)
= ∅(1) or x(n) = ∅(n), we cannot fill these missing entries by using the method of
adjacent neighbor mean generation operator. In this case, the operator of stepwise
ratio is often employed.

Definition 4.5.3 Assume that a sequenceX = (x(1), x(2), . . . , x(n)), x(k) ≥ 0, k =
1, 2, . . . , n, then the following is referred to as the operator of stepwise ratios of X
(Deng, 1985):

x(k)d = σ(k) = x(k)

x(k − 1)
; k = 2, 3, · · ·, n (4.16)

The missing entry x(1) = ∅(1) can be generated by using the operator of stepwise
ratio of its right-hand side neighbors, and x(n) = ∅(n) its left-hand side neighbors.
The sequence obtained by filling all itsmissing entries using the operators of stepwise
ratio is referred to as stepwise ratio generated.

Proposition 4.5.1 Assume that a sequence X = (x(1), x(2), . . . , x(n)), x(k) ≥
0, k = 1, 2, . . . , n, and x(1) = ∅(1) or x(n) = ∅(n). If both x(1) and x(n) are generated
by operator of stepwise ratio, then:

x(1) = x(2)
/

σ(3), x(n) = x(n − 1)σ (n − 1).

Proposition 4.5.2 Stepwise ratio σ(k + 1) and smoothness ratio as defined in
formulas (4.16) and (4.15), respectively, satisfy the relation as follows:

σ(k + 1) = ρ(k + 1)

ρ(k)
(1 + ρ(k)); k = 2, 3, . . . , n (4.17)

Proposition 4.5.3 If X = (x(1), x(2), …, x(n)) is an increasing sequence, and satisfies
the following conditions:

(1) For any k = 2, 3, . . . , n, σ(k) < 2; and
(2) ρ(k+1)

ρ(k)
< 1;

then for any ε ∈ [0, 1] and k = 2, 3, . . . , n, when ρ(k) ∈ [0, ε], we have
σ(k + 1) ∈ [1, 1 + ε].

4.6 Accumulation and Inverse Accumulation Operators

Accumulation operator is a method employed to mine the law implied in a grey data
sequence. It plays an extremely important role in grey systemmodelling. Through the
accumulation operator method, one can potentially uncover a development tendency
existing in the process of accumulated grey quantities. This allows the characteristics
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and laws of integration hidden in chaotic original data to be sufficiently revealed. For
instance,when looking at the financial outflows of a family, ifwe do our computations
on a daily basis, we may not see obvious patterns. However, if our calculations are
done on a monthly basis, some patterns of spending, which are somehow related to
the monthly income of the family, will likely emerge.

The inverse accumulation operator is often employed to acquire additional insights
from a small amount of available information. It plays the role of recovery from the
acts of the accumulation operator and is its inverse operation. In particular,

Definition 4.6.1 For an original sequence X (0) = (
x(0)(1), x(0)(2), . . . , x(0)(n)

)
, D

is a sequence operator defined as follows:
X (0)D = (

x(0)(1)d , x(0)(2)d , . . . , x(0)(n)d
)
, where

x(0)(k)d =
k∑

i=1

x(0)(i); k = 1, 2, . . . , n (4.18)

Here,D is called a once accumulation generation operator ofX (0), denoted as 1-AGO.
And X (0)D, the sequence worked by accumulation operator D on X (0), is denoted as
X (1) for parsimony:

X (0)D = X (1) = (
x(0)(1)d , x(0)(2)d , . . . , x(0)(n)d

)
.

If the accumulation operator D is applied r times on X (0), we obtain:

X (0)Dr = X (r) = (
x(r)(1), x(r)(2), . . . , x(r)(n)

)

where

x(r)(k) =
k∑

i=1

x(r−1)(i); k = 1, 2, . . . n (4.19)

Dr is denoted as r-AGO (Deng, 1985). Corresponding to the accumulation
operator, the inverse accumulation operator D is defined below.

The accumulation operator has low-pass filtering effect. The noise in the
data sequence belongs to high frequency information. These information will be
suppressed in the process of the accumulation operator equivalent digital filter. The
evolution law of aperiodic system belongs to low-frequency signal, which can pass
through or be amplified in the process of the accumulation operator equivalent digital
filter. This also proves that for general non negative quasi smooth sequences, the
randomness can be reduced by the action of accumulation operator, so that they
show an approximate exponential variation law (Lin et al., 2021, 2022).

Definition 4.6.2 For an original sequence X (0) = (
x(0)(1), x(0)(2), . . . , x(0)(n)

)
, D

is a sequence operator defined as follows:
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Table 4.3 The 1-AGO, 2-AGO and 1-IAGO of X (0)

X (0) 5.3 7.6 10.4 13.8 18.1

X (1) 5.3 12.9 23.3 37.1 55.2

X (2) 5.3 18.2 41.5 78.6 133.8

α(1)X (0) 5.3 2.3 2.8 3.4 4.3

X (0)D = (
x(0)(1)d , x(0)(2)d , . . . , x(0)(n)d

)
, where

x(0)(k)d = x(0)(k) − x(0)(k − 1); k = 2, . . . , n (4.20)

D is called an inverse accumulation generation operator of X (0), denoted as 1-
IAGO. In X (0)D, the sequence works by inverse accumulation operator D on X (0),
and is denoted as α(1)X (0).

If the inverse accumulation operator D is applied r times on X (0), we write
conventionally:

X (0)Dr = α(r)X (0) = (
α(r)x(0)(1), α(r)x(0)(2), · · ·, α(r)x(0)(n)

)

where α(r)x(0)(k) = α(r−1)x(0)(k)−α(r−1)x(0)(k − 1); k = 1, 2, · · ·, n (Deng, 1985).

Proposition 4.6.1 For an original sequence X (0) = (x(0)(1), x(0)(2),…, x(0)(n)), if
both X (r) and α(r) are defined according to Definitions 4.6.1 and 4.6.2, then:

α(r)X (r) = X (0).

Example 3.6.1 If X = (5.3, 7.6, 10.4, 13.8, 18.1), calculate the 1-AGO X (1), 2-AGO
X (2) and 1-IAGO α(1)X (0).

Solution The results are shown in Table 4.3.

4.7 Exponentiality of Accumulation Sequence

After applying the accumulation operator a few times, the general non-negative
quasi-smooth sequence will show the pattern of exponential growth with decreased
randomness. The smoother the original sequence is, the more obvious an exponential
growth pattern in the first order accumulation sequence will appear.

Example 4.7.1 The sales quantity of electric cars from 2018 to 2023 in a city located
in southeast of China is as follows:

X (0) = {
x(0)(k)

}6
1 = (50810, 46110, 51177, 93775, 110574, 110524).
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Fig. 4.3 The curve of X(0)

0 

Fig. 4.4 The curve of X(1)

0 

The 1-AGO sequence of X (0) is:

X (1) = {
x(1)(k)

}6
1 = (50810, 96920, 148097, 241872, 352446, 462970).

The Figures of X (0) and X (1) are shown in Figs. 4.3 and 4.4, respectively.

For the curve shown in Fig. 4.3, it is difficult to find a simple curve as the approx-
imation of X (0). However, the curve shown in Fig. 4.4 is very close to an exponential
growth curve. X (1) can be fitted with an exponential curve.

Definition 4.7.1 Assume that X (t) = ceat + b,c, a �= 0 is a continuous exponential
function, then:

(1) X (t) is referred to as homogeneous exponential function, if b = 0;
(2) X (t) is referred to as non-homogeneous exponential function, if b �= 0.

Definition 4.7.2 If a sequence X = (x(1), x(2), …, x(n)) satisfies:

(1) x(k) = ceak , c, a �= 0, for k = 1, 2, …, n, then X is referred to as a homogeneous
exponential sequence; and

(2) x(k) = ceak + b, c, a, b �= 0, for k = 1, 2, …, n, then X is referred to as a
non-homogeneous sequence.

Theorem 4.7.1 A sequence X = (x(1), x(2), …, x(n)) is a homogeneous exponential
sequence if, and only if, for k = 1, 2, …, n, σ(k) is a constant.
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Proof

(1) (1) Assume that ∀ k = 1, 2, …, n, x(k) = ceak , c, a �= 0,then:

σ(k) = x(k)

x(k − 1)
= ceak

cea(k−1)
= ea = const

(2) Assume that ∀ k = 1, 2, …, n, σ(k) = const = ea, then:

x(k) = eax(k − 1) = e2ax(k − 2) = · · · = x(1)ea(k−1)

Definition 4.7.3 For the given sequence X = (x(1), x(2), …, x(n)),

(1) if ∀ k, σ(k)∈(0, 1), then X is referred to as satisfying the law of negative grey
exponent;

(2) if ∀ k, σ(k)∈(1, b), for some b > 1, then X is referred to as satisfying the law of
positive grey exponent;

(3) if ∀ k, σ(k)∈[a, b], b − a = δ, then X is referred to as satisfying the law of grey
exponent with the absolute degree of greyness δ; and

(4) if δ < 0.5, then X is referred to as satisfying the law of quasi-exponent.

Theorem4.7.2 Assume that X (0) is a non-negative quasi-smooth sequence. Then, the
sequence X (1), generated by applying accumulating operator once on X (0), satisfies
the law of quasi-exponent.

Proof According to the definition of quasi-smooth sequence and.

σ (1)(k) = x(1)(k)

x(1)(k − 1)
= x(0)(k) + x(1)(k − 1)

x(1)(k − 1)
= 1 + ρ(k)

We have

∀k, ρ(k) < 0.5

Therefore

σ (1)(k) ∈ [1, 1.5), δ < 0.5.

Thus, X (1) is a sequence that satisfies the law of quasi-exponent.
Theorem 4.7.2 is the theoretical foundation of grey systems modeling. In fact,

because economic, ecological and agricultural systems (among others) can be seen
as energy systems, and given that the accumulation and release of energy generally
satisfy an exponential law, this explains why exponential modeling of grey systems
theory has found an extremely wide range of applications.

Theorem 4.7.3 Assume that X (0) is a non-negative sequence. If X (r) satisfies a law
of exponent, and the stepwise ratio of X (r) is given by σ(r)(k) = σ, then according to
Deng (1985):



4.7 Exponentiality of Accumulation Sequence 83

(1) σ (r+1)(k) = 1−σ k

1−σ k−1 ;
(2) When σ ∈ (0, 1), limk→∞ σ (r+1)(k) = 1; and for each k, σ (r+1)(k)∈ (1, 1+ σ ];
(3) When σ > 1, limk→∞ σ (r+1)(k) = σ ; and for each k, σ (r+1)(k)∈ (σ, 1 + σ ].
Proof

(1) Assume that X (r) satisfies a law of exponent, and ∀ k, σ (r)(k) = x(r)(k)

x(r)(k−1) = σ ,

then ∀ k,

x(r)(k) = σx(r)(k − 1) = σ 2x(r)(k − 2) = · · · = σ (k−1)x(r)(1)

X (r) = (x(r)(1), σx(r)(1), σ 2x(r)(1), . . . , σ (n−1)x(r)(1))

X (r+1) = (x(r)(1), (1 + σ)x(r)(1), (1 + σ + σ 2)

x(r)(1), . . . , (1 + σ + · · · + σ (n−1))x(r)(1))

Therefore

σ (r+1)(k) = x(r+1)(k)

x(r+1)(k − 1)
= (1 + σ + · · · + σ k−1)x(r)(1)

(1 + σ + · · · + σ k−2)x(r)(1)
=

1−σ k

1−σ

1−σ k−1

1−σ

= 1 − σ k

1 − σ k−1

(2) When σ ∈ (0, 1),σ (r+1)(k) will decrease as k increases.

k = 2

σ (r+1)(2) = x(r+1)(2)

x(r+1)(1)
= 1 + σ

k → ∞

σ (r+1)(k) = 1 − σ k

1 − σ k−1
→ 1

Therefore ∀ k,

σ (r+1)(k) ∈ [1, 1 + σ ].

(3) When σ > 1, σ (r+1)(k) will decrease as k increases.

k = 2

σ (r+1)(2) = 1 + σ
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k → ∞

σ (r+1)(k) = 1 − σ k

1 − σ k−1
→ σ

Therefore ∀ k,

σ (r+1)(k) ∈ (σ, 1 + σ ]

The Theorem 4.7.3 says that if the rth accumulating sequence of X (0) satisfies an
obvious law of exponent, additional application of the accumulating operator will
destroy the pattern of exponent. In practical applications, if the rth accumulating
sequence of X (0) satisfies the law of quasi-exponent, we generally stop applying the
accumulating operator. To this end, Theorem 4.7.2 implies that only one application
of the accumulating operator is needed for a non-negative quasi-smooth sequence
before establishing an exponential model.
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Chapter 5
Grey Relational Analysis Models

As one of the most active branches of grey system theory, grey relation analysis
(GRA) holds the basic idea of judging the closeness between sequences depending
on the geometrical shape of their curves. The primary method is to turn the observed
values of discrete behaviors of systematic factors to piecewise continuous lines
through linear interpolation and further construct models to measure the degree
of relation according to the geometrical characteristic of the lines. On the basis of
GRA model proposed by Professor Deng (Deng, 1985), a great number of scholars
conductmeaningful explorations focusing on the construction and properties ofGRA
models and achieving many valuable results. The process of the research develops
from the early GRA models relying on relation coefficients of particular points to
the generalized models based on integral or overall perspective (Liu, 1992) and
from the GRA models which measure similarity based on nearness to the models
which consider similarity and nearness (Liu et al., 2011), respectively. Besides,
the research objects extend from the analysis of relationship among curves to that
among curved surfaces and further to the analysis of relationship in three-dimensional
space (Zhang & Liu, 2009) and even the relationship among sequences of vectors,
complex numbers, interval numbers, fuzzy numbers, general grey numbers and tensor
sequences, respectively. (Gui et al., 2004; Zhou et al., 2005; Xiong, 2000; Jiang et al.,
2019).

5.1 Introduction

Any given system, such as a social, economic, agricultural, ecological, and educa-
tional system, will encompass different kinds of factors. It is the result of the mutual
interactions of these factors that determines the development tendency and behavior
of the system. It is often the case that, among all the factors, investigators will need
to know which ones are primary and which ones are secondary. Primary factors have
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dominant effects on the development of systems. Such factors drive the develop-
ment of systems positively and must be strengthened. Conversely, secondary factors
exert less influence on the development of systems. They tend to pose obstacles for
the development of systems and, therefore, must be weakened. For instance, there
are generally many influencing factors on the overall performance of an economic
system. In order to realize the production of additional output with less input,
systems analysis must be conducted prudently and a key part of this analysis is
the identification of primary and secondary factors.

Regression analysis, variance analysis, and main component analysis are the
most commonly employedmethods for conducting systems analysis. However, these
methods suffer from the following weaknesses:

(1) Large samples are needed in order to produce reliable conclusions.
(2) Available data need to satisfy some typical types of probability distribution;

linear relationships between factors and system behaviors are assumed, while
no interactions can be found between factors. Generally, these requirements are
difficult to satisfy.

(3) The amount of computation is large and generally done by using computers.
(4) At times quantitative conclusions do not resonate with qualitative analysis

outcomes so that the laws governing system development are distorted or
misunderstood.

In fact, when available data are small it is extremely difficult to apply such tradi-
tional methods of statistics to analyze such data. This is because small data do
not satisfy the modelling conditions of traditional methods; they contain relatively
large amounts of grey information and do not follow any conventional probability
distribution.

The Grey Relational Analysis (GRA) model is a new method to analyze systems
where statistical methods do not seem appropriate. It can be applied to large or small
samples and does not have conventional distribution requirements. Additionally, the
amount of computation involved is small and can be carried out conveniently, without
issues of disagreement between quantitative and qualitative conclusions.

The basic idea of grey relational analysis is to use the degree of similarity of
the geometric curves of available data sequences to determine whether or not their
connections are close. The more similar the curves, the closer the relational between
sequences, and vice versa.

A number of scholars have conducted meaningful research focused on the
construction and properties of GRA models, and such researchers have achieved
valuable results. For example, Zhang et al. (1996) has analyzed the predominant
point trend of Deng’s (1985) GRAmodel. They has introduced grey relation entropy
to improve the traditional model, and has proposed a newmethod to calculate degree
of grey relational. Xiao and colleagues (2006) have constructed a weighted degree
of grey relational through the weighted compound of relational coefficient of each
point. Zhao and colleagues (1998a) have introduced Euclid nearness into grey rela-
tional analysis, and have established the Euclid relational degree model based on the
measurement of nearness of factor points through calculating nearness. Furthermore,
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Zhao et al. (1998b) have defined a GRAmodel according to upper and lower bound-
aries of distances between grey factor points. The authors have also demonstrated
that their GRA model as well as Deng’s (1985) GRA model through weighted rela-
tional analysis and the Euclid relational degree model are three special types of GRA
model. Shi (1995) has proposed extreme difference relation according to the differ-
ence between distance ofmaximum value and distance of sequences, complementing
Deng’s (1985) relational coefficient. Zhang et al. (2007) have integrated the method
of discrimination coefficient correction, the entropy weight method and the projec-
tion method to advance Deng’s GRA model. Zhao and colleagues () has introduced
variant coefficient to relational analysis, and improved Deng’s GRA model through
weighted values of variant coefficient and relational coefficient. Further, Zhou et al.
(2005) defined relational coefficient with the application of generalized distance in
fuzzy math to measure the difference between reference sequence and compared
sequence. Peng (2008) has extended Deng’s GRA model to second-order trend rela-
tional analysis model through second-order difference. Finally, Wang (1989) has
proposed the B-type relational degree model, Tang (1995) has developed the T-type
relational degree model, and Dang and Liu (2004) has proposed the gradient rela-
tional degree model as well as its improved version. In 2005, Olson et al. proposed
the grey incidence analysis method to solve the interval multiple attribute decision
problems. In 2006, they simulated analyzed different kinds of fuzzymultiple attribute
decision-making model using the grey incidence analysis (Olson & Wu, 2006). In
2010, Wu et al. proposed the DEA model based on the grey incidence fuzzy set to
solve the location problem. Amanna et al. (2011) used GM model and GIA model
comprehensively to study cognitive inference engine and automatic adjustment algo-
rithm inwireless communication. Liu (2013) came upwith a kind of generalized grey
interval number incidence model and clarified the calculating process and feasibility
through the examples. Among these models, the GRA model proposed by Professor
Deng (1985) is the most influential one.

In 1992, the author of this book put forward the grey relational analysis model
based on the overall perspective, including the grey absolute relational degree, grey
relative relational degree and grey comprehensive relational degree model (Liu,
1992). Then, proposed the grey relational analysis models based on visual angle of
similarity and nearness respectively after 20 years (Liu et al., 2011; Liu et al., 2013;
Liu et al., 2016). In 2022, after 40 years of unremitting exploration, the problem
of reverse sequence correlation analysis was finally solved, and a variety of nega-
tive grey correlation analysis models were proposed (Liu et al., 2022). After joining
Northwestern Polytechnic University in 2023, Liu Sifeng broke through the problem
of cross sequences relational analysis with his students (Liu et al., 2024; Lu et al.,
2023).

The grey relational analysis model has been widely used, successfully solving a
large number of scientific and practical problems in various fields, and the application
results are numerous.

For example, Xie et al. (2004) solved the aircraft top-level design scheme selec-
tion decision problems using the grey incidence analysis model. Huang (2006) put
forward the new grey incidence geological evaluation model and the principle of
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maximumentropy to evaluateApricot River oil field in ShaanxiGansuNingxia basin.
Zhang et al. (2014) studied the aircraft customized solutions using the grey incidence
analysis model. Xiao and Zhang (2009) researched drone crashed fault using grey
incidence analysis and fault tree method comprehensively, which provided a theo-
retical basis to diagnose the cause of drone crashed fault, to reduce the fault and
improving the reliability of the system.

Shi et al. (2008) researched the main influence factors of U type steel encased
concrete composite beam ductility using the grey incidence analysis model and built
up the calculation formula ofU-type steel encased concrete composite beamdisplace-
ment ductility coefficient. Tan et al. (2011) combined the grey incidence analysis
model with GM(1,1) model and put forward the effective method to predict the force
state of cablestayed bridge in cold area.

Chen et al. (2011) used the grey incidence analysis model and studied two kinds of
the sky optical measurement method based on ASD spectroradiometer and clearfied
different methods applicable scenarios. Wang et al. (2011) studied cosmic ray µ sub
imaging applying the grey incidence cluster analysismethod and improved efficiency
of material sorting.

Wang et al. (2013) predicted Zn and Au polymetallic deposit scientifically by
the grey incidence analysis method. Rajesh and Ravi (2015) solved the problem of
supplier selection in resilient supply chains using a grey relational analysis (GRA)
approach. Xie, et al optimized the soil dissolved organic matter extraction by GRA
model (Xie et al., 2020). Scarlat, et al. and Delcea, et al. analyzed the financial sector
in Europe by GRAmodel (Scarlat & Delcea, 2011; Delcea et al., 2012; Delcea et al.,
2013). Ejnioui, et al studied the prioritisation of software requirements using GRA
model. Skrinjari dynamic portfolio optimization based on GRA method (Skrinjari,
2020). Yan, et al analyzed the blood lipids and hematological parameters by GRA
method (Yan et al., 2019). Zhang, et al studied the customization model of aircraft
based on GIAmethod (Zhang et al,. 2014). Zhou and Peng studied the customization
model of aircraft using grey model (Zhou & Peng, 2008).

Lin et al. (2009) solved themain influential factors of explosively formedprojectile
(EFP) velocity using thegrey incidence analysismethod,whichgained results that has
important reference value on the EFP cover design of explosive type and explosive
charges structure design. Zhao et al., (2007a, 2007b) established the assessment
model on ship antimissile incoming missile threat, which provided the decision basis
on timely judgment of shipborne system target threat assessment.

Chen et al. (2005) studied well logging, drilling and coring, oil testing and related
geological data using the grey system theory. Then he divided lithology, physical
property, oil bearing on the statistical analysis characteristic value and its accuracy,
resolution through matching, fitting and extracting parameters, which provided the
geological basis for oil field exploration and development. Liang et al. (2014) set up
multiple index grey incidence degree optimization model.

Sarikaya and Güllü’s research on multi-response optimization of minimum quan-
tity lubrication parameters using Taguchi-based grey relational analysis in turning
of difficult-to-cut alloy Haynes (2015), Ghosh and Banerjee’s research of Iot-based
freezing of gait detection (2019), the research on harnessing heterogeneous social
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networks for better recommendations byWang et al. (2021), Optimization ofMixing
Parameters in Nanosilica Toughened Cement Mortar (Vasanthi & Selvan, 2022), the
research on Chinese medicine chromatographic fingerprint pattern recognition (Wei
et al., 2013). Research on multi-objective optimization based grey relational analysis
and investigation of using the waste animal fat biodiesel on the engine characteris-
tics (Gad et al., 2023), evaluation of healthcare service quality factors (Aydemir &
Sahin, 2019), water quality assessment (Gai & Guo, 2023), the research on portfolio
optimization and dynamic portfolio optimization (Mehlawat et al., 2023).

The research on the formation reaction of high-temperature sulfur retention phase
calcium sulphoaluminate (Liu et al., 2007) and study on the relationship between the
rolling bearings machining quality and vibration (Xia et al., 2005).

Analysis of the double tooth difference of swing movable teeth transmission
failure (Zhang et al., 2012), research on in deep drawing robust design of square
box conservatism (Xie et al., 2007), researched the formation reaction of high-
temperature sulfur retention phase calcium sulphoaluminate using the grey incidence
analysis and prediction model. Xia et al. (2005) studied the relationship between the
rolling bearings machining quality and vibration using the grey incidence analysis
and found that the structure size error parameters had a larger effect on vibration of
bearing. Zhang et al. (2012) analyzed the double tooth difference of swing movable
teeth transmission failure using the grey incidence analysis model, which provided
a scientific basis to improve the reliability of the double tooth difference of swing
movable teeth transmission system. Xie et al. (2007) obtained the optimum param-
eters of each factor square box conservatism according to the outcome of variance
analysis of the degree of grey incidence of the target sequence and every factors.

Research on state-of-health estimation for liion batteries (Li et al., 2019), study
on Tribological Properties of Al 7075 Composite Reinforced with ZrB2 (Karu-
muri et al., 2022), Wire-Electrochemical Discharge Machining of SiC Reinforced
Z-Pinned PolymerMatrix Composite (Kumar et al., 2021), Improved bag-of-features
for classification of histology images (Pal et al., 2021), study on a micromixer
with cantor fractal obstacle (Lv et al., 2022), Multi-response optimisation for
turning of magnesium alloy with untreated and cryogenic treated carbide inserts
(Ravikumar et al., 2023), optimization of electrochemical machining processes
(Das & Chakraborty, 2024), Single-Sample Retinal Vessel Segmentation Method
(Wang & Li, 2024), sucrose anaerobic hydrogen production prediction (Wang et al.,
2024), Bi-objective optimization of an EDM process with Cu-MWCNT composite
tool (Mandal et al., 2024), Parametric optimisation of 3D-printed PLA/wood dust
composite for load-bearing (Mishra et al., 2024), etc.
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5.2 Grey Relational Factors and Set of Grey Relational
Operators

When analyzing a system, one must choose the mapping variable to reflect the char-
acteristics of such a system, and determine the factors that influence the behavior of
the system. If a quantitative analysis is considered, one needs to process the chosen
mapping variable and the effective factors using sequence operators so that the avail-
able data are converted to their relevant non-dimensional values of roughly equal
magnitudes.

Definition 5.2.1 Assume that Xi is a system factor and its observation value at the
ordinal position k is xi(k), k = 1, 2, . . . , n, then Xi = (xi(1), xi(2), . . . , xi(n)) is
referred to as the behavioral sequence of factor Xi.

If k stands for the time order, then xi(k) is referred to as the observational value
of factor Xi at time moment k, and Xi = (xi(1), xi(2), . . . , xi(n)) is the behavioral
time sequence (or series) of Xi.

If k stands for an index ordinal number and xi(k) the observational value of the kth
index of factor Xi, then Xi = (xi(1), xi(2), . . . , xi(n)) is referred to as the behavioral
index sequence of factor Xi.

If k stands for the ordinal number of the observed object and xi(k) is the observed
value of the kth object of factor Xi, then Xi = (xi(1), xi(2), . . . , xi(n)) is referred to
as the horizontal sequence of factor Xi’s behavior.

For example, if Xi represents an economic factor, k time, and xi(k) the observed
value of factor Xi at time moment k, then Xi = (xi(1), xi(2), . . . , xi(n)) is a
time series of economic behaviors. If k is the ordinal number of an index, then
Xi = (xi(1), xi(2), . . . , xi(n)) is the index sequence of an economic behavior. If k
represents the ordinal number of different economic regions or departments, then
Xi = (xi(1), xi(2), . . . , xi(n)) is a horizontal sequence of an economic behavior. No
matter what kinds of sequence data are available, they can be employed in relational
analysis.

Definition 5.2.2 Let Xi = (xi(1), xi(2), . . . , xi(n)) be the behavioral
sequence of factor Xi, and D1 a sequence operator such that XiD1 =
(xi(1)d1, xi(2)d1, . . . , xi(n)d1), where:

xi(k)d1 = xi(k)/xi(1), xi(1) �= 0, k = 1, 2, . . . , n (5.1)

Then D1 is referred to as an initialing operator and XiD1 is its image, called initial
image of Xi. (Deng, 1985).

Example 5.2.1 Let X = (3.2, 3.7, 4.5, 4.9, 5.6), and calculate the initial image of
X .

Solution: From formula 5.1, we have:

x(1)d1 = x(1)/x(1) = 1, x(2)d1 = x(2)/x(1) = 3.7 ÷ 3.2 = 1.15625.
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Similarly,

x(3)d1 = 1.40625, x(4)d1 = 1.53125, x(5)d1 = 1.75.

Therefore:

XD1 = (x(1)d1, x(2)d1, x(3)d1, x(4)d1, x(5)d1) = (1, 1.15625, 1.40625, 1.53125, 1.75).

Definition 5.2.3 Let Xi = (xi(1), xi(2), . . . , xi(n)) be the behavioral sequence of
factor Xi. Sequence operator D2 satisfies XiD2 = (xi(1)d2, xi(2)d2, . . . , xi(n)d2),
and:

xi(k)d2 = xi(k)

Xi
, Xi = 1

n

n∑

k=1

xi(k), k = 1, 2, . . . , n (5.2)

Here, D2 is referred to as an averaging operator and XiD2 is its image, called the
average image of Xi. (Deng, 1985).

Example 5.2.2 Let X be the same as Example 5.2.1 and calculate the average image
of X .

Solution: From formula 5.2, we have:

X = 1

5

5∑

k=1

x(k) = 4.38, x(1)d2 = x(1)/X = 0.73, x(2)d2 = x(2)/X = 0.84.

Similarly:

x(3)d2 = 1.03, x(4)d2 = 1.12, x(5)d2 = 1.28.

Therefore:

XD2 = (x(1)d2, x(2)d2, x(3)d2, x(4)d2, x(5)d2) = (0.73, 0.84, 1.03, 1.12, 1.28).

Definition 5.2.4 Let Xi = (xi(1), xi(2), . . . , xi(n)) be the behavioral sequence of
factor Xi. Sequence operator D3 satisfies XiD3 = (xi(1)d3, xi(2)d3, . . . , xi(n)d3),
and:

xi(k)d3 =
xi(k) − min

k
xi(k)

max
k

xi(k) − min
k

xi(k)
; k = 1, 2, . . . , n (5.3)

D3 is referred to as an interval operator and XiD3 is its image, called the interval
image of Xi. (Deng, 1985).
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Example 5.2.3 Let X be the same as Example 5.2.1, and calculate the interval image
of X .

Solution: min
k

x(k) = 3.2, max
k

x(k) = 5.6. From formula 5.3, we have:

x(1)d3 = 0, x(2)d3 = 0.208

x(3)d3 = 0.542, x(4)d3 = 0.708, x(5)d3 = 1.

Therefore:

XD3 = (x(1)d3, x(2)d3, x(3)d3, x(4)d3, x(5)d3) = (0, 0.208, 0.542, 0.708, 1).

As usual, D1, D2, D3 should not be mixed or overlapped. Only one of them can
be selected according to a particular situation.

Definition 5.2.4 The set D = {Di|i = 1, 2, 3} is referred to as the set of grey
relational operators.

Definition 5.2.5 If X stands for the set of all system factors and D the set of grey
relational operators, then (X , D) is referred to as the space of grey relational factors
of a system.

5.3 Grey Relational Axioms and Deng’s Grey Relational
Analysis Model

Given the sequence X = (x(1), x(2), . . . , x(n)), we can image the corresponding
zigzagged line of the plane X = {x(k) + (t − k)(x(k + 1) − x(k))|k = 1, 2, . . . , n −
1; t ∈ [k, k + 1]}. Without causing confusion, the same symbol is used for both the
sequence and its zigzagged line. For parsimony, we will not distinguish between the
two in our discussions.

Definition 5.3.1 The given sequence X = (x(1), x(2), . . . , x(n)), α = x(s)−x(k)

s−k ,
s > k, k = 1, 2, . . . , n − 1, (5.4) is referred to as the slope of X on interval [k, s],
and α = 1

n−1 (x(n) − x(1)) (5.5) the average slope of X.

Theorem 5.3.1 Assume that Xi and Xj are non-negative increasing sequences such
that Xj = Xi + c, where c is a nonzero constant. Let D1 be an initialing operator,
Yi = XiD1 and Yj = XjD1. If αi and αj are respectively the average slopes of Xi and
Xj, and βi and βj the average slopes of Yi and Yj, then, the following must be true:
αi = αj; when c < 0, βi < βj; and when c > 0, βi > βj.

What is meant here is that when the absolute amount of increase of two increasing
sequences are the same, the sequence with the smallest initial value will increase
faster than the other. To maintain the same relative rate of increase, the absolute
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amount of increase of the sequence with the greatest initial value must be greater
than that of the sequence with the smallest initial value.

Definition 5.3.2 LetX0 = (x0(1), x0(2), . . . , x0(n)) be a data sequence of a system’s
behavioral characteristic and the following are relevant factor sequences:

X1 = (x1(1), x1(2), . . . , x1(n))

. . . . . . . . . . . .

Xi = (xi(1), xi(2), . . . , xi(n))

. . . . . . . . . . . .

Xm = (xm(1), xm(2), . . . , xm(n))

Given real numbers γ (x0(k), xi(k)), i = 1, 2, ..., m, and k = 1, 2, ..., n, if the
following satisfies conditions of normality (1) and closeness (2) below:

γ (X0, Xi) = 1

n

n∑

k=1

γ (x0(k), xi(k)).

(1) Normality: 0 < γ (X0, Xi) ≤ 1, γ (X0, Xi) = 1 ⇔ X0 = Xi; and
(2) Closeness: the smaller |x0(k) − xi(k)|, the greater γ (x0(k), xi(k)).

In this case, γ (X0, Xi) is referred to as the Deng’s grey relational degree between
Xi and X0, γ (x0(k), xi(k)) as the Deng’s grey relational coefficient of Xi and X0 at
point k (Deng, 1985).

Theorem 5.3.2 Given a system’s behavioral sequences X0 =
(x0(1), x0(2), . . . , x0(n)) and Xi = (xi(1), xi(2), . . . , xi(n)), i = 1, 2, . . . , m,
for ξ ∈ (0, 1), it is possible to define:

γ (x0(k), xi(k)) =
min

i
min

k
|x0(k) − xi(k)| + ξ max

i
max

k
|x0(k) − xi(k)|

|x0(k) − xi(k)| + ξ max
i

max
k

|x0(k) − xi(k)| (5.6)

And:

γ (X0, Xi) = 1

n

n∑

k=1

γ (x0(k), xi(k)) (5.7)

In this case, γ (X0, Xi) is the Deng’s grey relational degree between X0 and Xi,
where ξ is known as the distinguishing coefficient (Deng, 1985).

The Deng’s grey relational degree of γ (X0, Xi) is commonly written as γ0i, and
the Deng’s grey relational coefficient of γ (x0(k), xi(k)) as γ0i(k).

Based on Theorem 5.3.1, the computation steps of the Deng’s grey relational
degree between X0 and Xi can be accomplished as explained below.
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Step 1: Calculate the initial image (or average image) of X0 and Xi, i = 1, 2, ..., m,
where:

X ′
i = Xi/xi(1) = (

x′
i(1), x′

i(2), . . . , x′
i(n)

)
i = 0, 1, 2, . . . , m.

Step 2: Compute the difference sequences of X ′
0 and X ′

i ,i = 1, 2, ..., m, and write
as:

�i(k) = ∣∣x′
0(k) − x′

i(k)
∣∣, �i = (�i(1),�i(2), . . . ,�i(n))i = 1, 2, . . . , m.

Step 3: Find the maximum and minimum differences, and denote as:

M = max
i

max
k

�i(k), m = min
i

min
k

�i(k).

Step 4: Calculate the Deng’s grey relational coefficients:

γ0i(k) = m + ξM

�i(k) + ξM
, ξ ∈ (0, 1) k = 1, 2, . . . , n; i = 1, 2, . . . , m.

Step 5: Compute the Deng’s grey relational degree:

γ0i = 1

n

n∑

k=1

γ0i(k); i = 1, 2, . . . , m.

Example 5.3.1 Let.

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5)) = (12011.65, 7568.15, 3969.87, 2630.42, 2933.20)

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5)) = (127467, 73378, 47472, 28728, 24063)

X2 = (x2(1), x2(2), x2(3), x2(4), x2(5)) = (281.02, 197.78, 97.88, 55.50, 62.02)

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5)) = (2.50, 2.65, 2.50, 2.31, 2.05)

X4 = (x4(1), x4(2), x4(3), x4(4), x4(5)) = (391, 423, 262, 497, 104)

where X0 is the sequence of the regional GDP of the Suzhou, Wuxi, Changzhou,
Zhenjiang and Yangzhou in Jiangsu Province in 2012, unit: 100 million yuan. And

X1 is the sequence of the number of people engaged in R&D activities of the above
five cities, unit: number of people.

X2 is the sequence of the R&D expenditure of the above five cities, unit: 100
million yuan.

X3 is the sequence of the R&D expenditure/regional GDP of the above five cities,
unit: %.

X4 is the sequence of the number of invention patents authorized of the above five
cities, unit: number of items.

Data sources: China Statistical Yearbook 2013.
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Calculate the Deng’s grey relational degree between Xi, i = 1, 2, 3, 4 and X0.
(Liu, 2021).

Solution: Take X0 as the system’s behavioral characteristics sequence.

Step 1: Calculate the mean image of Xi, i = 0, 1, 2, 3, 4
From X ′

i = Xi/X i = (x′
i(1), x′

i(2), x′
i(3), x′

i(4), x′
i(5));i = 0, 1, 2, 3, 4,

we have:

X ′
0 = X0/X 0 = (2.0629, 1.2998, 0.6818, 0.4518, 0.5038)

X ′
1 = X1/X 1 = (2.1166, 1.2185, 0.7883, 0.4770, 0.3996)

X ′
2 = X2/X 2 = (2.0241, 1.4245, 0.7050, 0.3997, 0.4467)

X ′
3 = X3/X 3 = (1.0408, 1.1032, 1.0408, 0.9617, 0.8535)

X ′
4 = X4/X 4 = (1.1658, 1.2612, 0.7812, 1.4818, 0.3101)

Step 2: Compute the difference sequences.
From �i(k) = ∣∣x′

0(k) − x′
i(k)

∣∣;i = 1, 2, 3, 4, it follows that:

�1 = (0.0531, 0.0813, 0.1065, 0.0252, 0.1042)

�2 = (0.0388, 0.1247, 0.0232, 0.0521, 0.0571)

�3 = (1.0221, 0.1966, 0.3590, 0.5099, 0.3497)

�4 = (0.8971, 0.0386, 0.0994, 1.0300, 0.1937)

Step 3: Find the maximum and minimum differences.

M = max
i

max
k

�i(k) = 1.0300

m = min
i

min
k

�i(k) = 0.0232

Step 4: Calculate the Deng’s relational coefficients.
Let ξ = 0.5, it follows that:

γ0i(k) = m + ξM

�i(k) + ξM
= 0.5382

�i(k) + 0.5150
; i = 1, 2, 3, 4; k = 1, 2, . . . , 5

Therefore:

γ01(1) = 0.9474, γ01(2) = 0.9026, γ01(3) = 0.8660, γ01(4) = 0.9963, γ01(5) = 0.8692

γ02(1) = 0.9718, γ02(2) = 0.8413, γ02(3) = 1.0000, γ02(4) = 0.9490, γ02(5) = 0.9407

γ03(1) = 0.3501, γ03(2) = 0.7563, γ03(3) = 0.6158, γ03(4) = 0.5251, γ03(5) = 0.6224

γ04(1) = 0.3811, γ04(2) = 0.9722, γ04(3) = 0.8760, γ04(4) = 0.3483, γ04(5) = 0.7594

Step 5: Compute the Deng’s grey relational degrees.
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γ01 = 1

5

5∑

k=1

γ01(k) = 0.9163

γ02 = 1

5

5∑

k=1

γ02(k) = 0.9406

γ03 = 1

5

5∑

k=1

γ03(k) = 0.5739

γ04 = 1

5

5∑

k=1

γ04(k) = 0.6674

According to the calculation results based on the data of five cities in
Jiangsu Province, both of the R&D expenditure of X2 and the number of
people engaged in R&D activities of X1 have great impact on the regional
GDP of X0. Note that both X2 and X1 are input factors of R&D, it can be
seen that scientific and technological funds and personnel investment play
an important role in regional economic development.

5.4 Grey Absolute Relational Degree

Proposition 5.4.1 Let Xi = (xi(1), xi(2), . . . , xi(n)) be the data sequence of a
system’s behavior, Xi − xi(1) denote the zigzagged line (xi(1) − xi(1), xi(2) −
xi(1), . . . , xi(n) − xi(1)), and let.

si =
n∫

1

(Xi − xi(1))dt (5.8)

Then, when Xi increases, si ≥ 0; when Xi decreases, si ≤ 0; and when Xi vibrates,
the sign of si varies.

The results of Proposition 5.4.1 are represented in Fig. 5.1, where (a) shows the
case where the sequence increases; (b) the situation where Xi decreases; and (c) the
scenario where Xi vibrates.

Definition 5.4.1 Let Xi = (xi(1), xi(2), . . . , xi(n)) be the data sequence of
a system’s behavior and D the sequence operator which satisfies XiD =
(xi(1)d , xi(2)d , . . . , xi(n)d) and xi(k)d = xi(k) − xi(1), k = 1, 2, . . . , n. Then
D is referred to as a zero-starting point operator and XiD is the image of Xi. XiD is
often written as XiD = X 0

i = (x0i (1), x0i (2), . . . , x0i (n)).

Proposition 5.4.2 Assume that the images of the zero-starting point of two behav-
ioral sequences Xi and Xj are respectively X 0

i = (x0i (1), x0i (2), . . . , x0i (n)) and
X 0

j = (x0j (1), x0j (2), . . . , x0j (n)). Let:
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(a) (b)  (c) 

Fig. 5.1 The zigzagged line of Proposition 5.1

si − sj =
n∫

1

(X 0
i − X 0

j )dt; (5.9)

and

Si − Sj =
n∫

1

(
Xi − Xj

)
dt (5.10)

Then, when X 0
i is entirely located above X 0

j , si − sj ≥ 0; when X 0
i is entirely

underneath X 0
j , si − sj ≤ 0; and when X 0

i and X 0
j alternate their positions, the sign

of si − sj is not fixed.
As shown in Fig. 5.2, when X 0

i is entirely located above X 0
j (Fig. 5.2a), the

shaded area is positive so that si − sj ≥ 0. When X 0
i and X 0

j alternate their positions
(Fig. 5.2b), the sign of si − sj is not fixed. Similarly, We can discuss the sign of Xi as
si − sj.

Definition 5.4.2 The sum of time intervals between consecutive observation values
of a sequence rij is called the length of rij.It should be noted that two sequences with
the same length may not have the same number of data. For example:

(a) (b)  

Fig. 5.2 A description of the relationship between X 0
i and X 0

j
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X1 = (x1(1), x1(3), x1(6))

X2 = (x2(1), x2(3), x2(5), x2(6))

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), x3(6))

The lengths of X1, X2, X3 are all 6, but X1 has 3 data, X2 has 4 data, and X3 has 6
data.

Definition 5.4.3 Let Xi and Xj be two sequences of the same length, and si and sj are
defined as above. Then, the following is referred to as the grey absolute relational
degree between Xi and Xj, or absolute relational degree for short (Liu, 1992):

εij = 1 + |si| + |sj|
1 + |si| + |sj| + |si − sj| (5.11)

As for sequences of different lengths, the concept of absolute relational degree can
be defined by either shortening the longest sequence or by prolonging the shortest
sequence using appropriate methods. This procedure will ensure that the sequences
have the same length. However, by doing so, the ultimate value of the absolute
relational degree will be affected.

Proposition 5.4.3 Assume that Xi and Xj are two sequences with the same length.
Let X ′

i = Xi − a, X ′
j = Xj − b, where a, b are real numbers. Denote ε′

0i as the grey
absolute relational degree between X ′

i and X ′
j , then ε′

0i = ε0i. In fact, when Xi and
Xj have been transformed, the values of si, sj, and Si - Sj are not changed. Therefore,
the value of absolute relational degree does not change.

Definition 5.4.4 If the time intervals of any two consecutive observation values of a
sequence Xi with the same length, then Xi is called an equal- time-interval sequence.

Lemma 5.4.1 Assume that Xi is an equal-time-interval sequence. If the length of
time-interval l �= 1, then following can transformXi into an 1-time-interval sequence:

t : T → T

t 	→ t/l

Lemma 5.4.2 Assume that Xi and Xj are 1-time-interval sequences of the same
length, and the following are zero-starting point images of Xi and Xj:

X 0
i = (

x0i (1), x0i (2), . . . , x0i (n)
)

X 0
j =

(
x0j (1), x0j (2), . . . , x0j (n)

)

Then, according to Liu and Guo (1991):

|si| =
∣∣∣∣∣

n−1∑

k=2

x0i (k) + 1

2
x0i (n)

∣∣∣∣∣
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∣∣sj

∣∣ =
∣∣∣∣∣

n−1∑

k=2

x0j (k) + 1

2
x0j (n)

∣∣∣∣∣

∣∣si − sj

∣∣ =
∣∣∣∣∣

n−1∑

k=2

(
x0i (k) − x0j (k)

)
+ 1

2

(
x0i (n) − x0j (n)

)∣∣∣∣∣.

Theorem 5.4.1 Assume that Xi and Xj are two sequences with the same length, same
time distances from one moment to another, and equal time moment intervals. Then,
the grey absolute relational degree can also be computed as follows (Liu & Guo,
1991):

εij = [1 +
∣∣∣∣∣

n−1∑

k=2

x0i (k) + 1

2
x0j (n)

∣∣∣∣∣ +
∣∣∣∣∣

n−1∑

k=2

x0j (k) + 1

2
x0j (n)

∣∣∣∣∣]

× [1 +
∣∣∣∣∣

n−1∑

k=2

x0i (k) + 1

2
x0i (n)

∣∣∣∣∣ +
∣∣∣∣∣

n−1∑

k=2

x0j (k) + 1

2
x0j (n)

∣∣∣∣∣

+
∣∣∣∣∣

n−1∑

k=2

(x0i (k) − x0j (k)) + 1

2
(x0i (n) − x0j (n))

∣∣∣∣∣]
−1

Example 5.4.1 Calculate the absolute relational degree Xj of sequences X0 and X1.
Let sequences X0 and X1 be as follows:

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(7)) = (10, 9, 15, 14, 14, 16)

X1 = (x1(1), x1(3), x1(7)) = (46, 70, 98)

Solution

Step 1: Transform X1 into a sequence with the same corresponding time-intervals
as X0.

x1(2) = 1

2
(x1(1) + x1(3)) = 1

2
(46 + 70) = 58

x1(5) = 1

2
(x1(3) + x1(7)) = 1

2
(70 + 98) = 84

x1(4) = 1

2
(x1(3) + x1(5)) = 1

2
(70 + 84) = 77

Thus, we have a new sequence X1 in place of the original X1:

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(7)) = (46, 58, 70, 77, 84, 98)

Step 2: Transform X0 and X1 into equal- time-interval sequences:
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x0(6) = 1

2
(x0(5) + x0(7)) = 1

2
(14 + 16) = 15

x1(6) = 1

2
(x1(5) + x1(7)) = 1

2
(84 + 98) = 91

We have:

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(6), x0(7)) = (10, 9, 15, 14, 14, 15, 16)

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(6), x1(7)) = (46, 58, 70, 77, 84, 91, 98)

where X0 and X1 are 1- time-interval sequences.
Step 3: Compute the zero-starting point images of sequences X0 and X1.

X 0
0 =

(
x00(1), x00(2), x00(3), x00(4), x00(5), x00(6), , x00(7)

)
= (0,−1, 5, 4, 4, 5, 6)

X 0
1 =

(
x01(1), x01(2), x01(3), x01(4), x01(5), x01(6), , x01(7)

)
= (0, 12, 24, 31, 38, 45, 52)

Step 4: Calculate |s0|, |s1|, |s1 − s0||s0|, |s1|, |s1 − s0|

|s0| =
∣∣∣∣∣

6∑

k=2

x00(k) + 1

2
x00(7)

∣∣∣∣∣ = 20

|s1| =
∣∣∣∣∣

6∑

k=2

x01(k) + 1

2
x01(7)

∣∣∣∣∣ = 176

|s1 − s0| =
∣∣∣∣∣

6∑

k=2

(
x01(k) − x00(k)

) + 1

2

(
x01(7) − x00(7)

)
∣∣∣∣∣ = 156

Step 5: Compute the grey absolute relational degree ε01 of sequences X0 and X1.

ε01 = 1 + |s0| + |s1|
1 + |s0| + |s1| + |s1 − s0| = 197

353
≈ 0.5581.

Theorem 5.4.2 The grey absolute relational degree εij satisfies the following
properties:

(1) 0 < εij ≤ 1;
(2) εij is only related to the geometric shapes of Xi and Xj, and has no relationship

with the spatial positions of these sequences;
(3) Any two sequences are not absolutely unrelated. That is, εij never equals zero;
(4) The more Xi and Xj are geometrically similar, the greater εij is;
(5) If Xi and Xj are parallel or X 0

i fluctuates around X 0
j , with the area of the parts of

X 0
i located above X 0

j equal to that of the parts with X 0
i located underneath X 0

j ,
then εij = 1;
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(6) When one of the observed values of Xi and Xj change, εij also changes
accordingly;

(7) When the lengths of Xi and Xj change, εij also changes;
(8) εjj = εii = 1; and
(9) εij = εji.

5.5 Grey Relative and Synthetic Relational Degree

5.5.1 Relative Grey Relational Degree

Definition 5.5.1 Let Xi and Xj be sequences of the same length with non-zero initial
values, and X ′

i and X ′
j the initial images of Xi and Xj, respectively. The grey absolute

relational degree of X ′
i and X ′

j is referred to as the relative grey relational degree of
Xi and Xj, denoted rij (Liu, 1992). This relative relational degree is a quantitative
representation of the relationship between the rates of change of sequences Xi and
Xj, relative to their initial values. The closer the rates of change of Xi and Xj are, the
greater rij is, and vice versa.

Proposition 5.5.1 Let Xi be a sequence with a non-zero initial value. If Xj = cXi. If
c > 0 is a constant, then rij = 1.

Proof Assume that Xi = (xi(1), xi(2), . . . , xi(n)),then:

Xj = (xj(1), xj(2), . . . , xj(n)) = (cxi(1), cxi(2), . . . , cxi(n)).

The initial images of Xi and Xj are as follows:

X ′
i = Xi/xi(1) = (

xi(1)

xi(1)
,

xi(2)

xi(1)
, . . . ,

xi(n)

xi(1)
)

X ′
j = Xj/xj(1) = (

xj(1)

xj(1)
,

xj(2)

xj(1)
, . . . ,

xj(n)

xj(1)
)

= (
cxi(1)

cxi(1)
,

cxi(2)

cxi(1)
, . . . ,

cxi(n)

cxi(1)
= (

xi(1)

xi(1)
,

xi(2)

xi(1)
, . . . ,

xi(n)

xi(1)
).

Therefore, X ′
j = X ′

i , so rij = 1.

Proposition 5.5.2 Let Xi and Xj be two sequences of the same length with non-zero
initial values. Additionally, the relative grey relational degree of rij and the grey
absolute relational degree of εij do not have any connections. When εij is relatively
large, rij can be very small; when εij is very small, rij can also be very large.

Proposition 5.5.3 Let Xi and Xj be two sequences of the same length with non-zero
initial values. Then, for any non-zero constants a and b, the relative grey relational
degree r′

ij between aXi and bXj is the same as the rij of Xi and Xj..
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In fact, the initial images of a Xi and b Xj are equal to those of Xi and Xj, respec-
tively. Thus, scalar multiplication does not act in any way under the function of
initialing operators. Hence, r′

ij = rij.

Example 5.4.2 Calculate the relative grey relational degree r01 for sequences X0 and
X1 of Example 5.4.1.

Solution

Step1: Transform X1 and X0 into the same 1-time-interval sequences.

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(6), x0(7)) = (10, 9, 15, 14, 14, 15, 16)

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(6), x1(7)) = (46, 58, 70, 77, 84, 91, 98)

Step 2: Calculate the initial images of sequences X0 and X1.

X ′
0 = (1, 0.9, 1.5, 1.4, 1.4, 1.5, 1.6)

X ′
1 = (1, 1.26, 1.52, 1.67, 1.83, 1.98, 2.13)

Step 3: Compute the zero-starting point images of sequences X ′
0 and X1′.

X
′0
0 = (x

′0
0 (1), x

′0
0 (2), x

′0
0 (3), x

′0
0 (4), x

′0
0 (5), x

′0
0 (6), x

′0
0 (7)) = (0,−0.1, 0.5, 0.4, 0.4, 0.5, 0.6)

X
′0
1 = (x

′0
1 (1), x

′0
1 (2), x

′0
1 (3), x

′0
1 (4), x

′0
1 (5), x

′0
1 (6), x

′0
1 (7)) = (0, 0.26, 0.52, 0.67, 0.83, 0.98, 1.13)

Step 4: Calculate
∣∣s′

0

∣∣,
∣∣s′

1

∣∣,
∣∣s′

1 − s′
0

∣∣.

∣∣s′
0

∣∣ =
∣∣∣∣∣

6∑

k=2

x
′0
0 (k) + 1

2
x

′0
0 (7)

∣∣∣∣∣ = 2

∣∣s′
1

∣∣ =
∣∣∣∣∣

6∑

k=2

x
′0
1 (k) + 1

2
x

′0
1 (7)

∣∣∣∣∣ = 3.828

∣∣s′
1 − s′

0

∣∣ =
∣∣∣∣∣

6∑

k=2

(x
′0
1 (k) − x

′0
0 (k)) + 1

2
(x

′0
1 (7) − x

′0
0 (7))

∣∣∣∣∣ = 1.925

Step 5: Calculate the relative grey relational degree of r01.

r01 = 1 + |s′
0| + |s′

1|
1 + |s′

0| + |s′
1| + |s′

1 − s′
0|

= 6.825

8.75
≈ 0.78

Theorem 5.5.1 The relative grey relational degree of rij satisfies the following
properties:

(1) 0 < rij ≤ 1;
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(2) The value of rij relates only the rates of change of the sequences Xi and Xj with
respect to their individual initial values. It does not relate to the magnitudes of
other entries. In other words, scalar multiplication does not change the value of
relative grey relational degree;

(3) The rates of change of any two sequences are somehow related. That is, rij is
never zero;

(4) The closer the individual rates of change of Xi and Xj with respect to their initial
values, the greater the rij;

(5) If Xj = aXi, or when the images of zero initial points of the initial images of Xi

and Xj satisfy that X
′0
i fluctuates around X

′0
j , and if the area of the parts where

X
′0
i is located above X

′0
j equals that of the parts where X

′0
i is located underneath

X
′0
j , then rij = 1;

(6) When an entry in Xi or Xj is changed, rij will change accordingly;
(7) When the length of Xi or Xj is changed, rij also changes;
(8) rjj = rii = 1; and
(9) rij = rji.

5.5.2 Grey Synthetic Relational Degree

Definition 5.5.2 Let Xi and Xj be sequences of the same length with non-zero initial
entries, εij and rij be respectively the absolute and relative relational degrees between
Xi and Xj, and θ ∈ [0, 1]. Then the following is referred to as the grey synthetic
relational degree between Xi and Xj (Liu, 1992):

ρij = θεij + (1 − θ)rij. (5.12)

The concept of grey synthetic relational degree reflects the degree of similarity
between the zigzagged lines of Xi and Xj, and the closeness between the rates of
change of Xi and Xj with respect to their individual initial values. It is an index
that describes relatively completely the closeness relationship between sequences.
In general, we take θ = 0.5. If the focus of a study is the relationship between relevant
absolute quantities, θ can take a greater value than 0.5. On the other hand, if the focus
is more on comparison between rates of change, then θ can take a smaller value than
0.5.

Example 5.4.3 Calculate the synthetic grey relational degree of ρ01 for sequences
X0 and X1 of Example 5.4.1.

Solution From Examples 5.4.1 and 5.4.2, we have Xi and Xj. If ρij:

ρ01 = θε01 + (1 − θ)r01 = 0.5 × 0.5581 + 0.5 × 0.78 ≈ 0.669.

We can obtain different ρ01 values if we take θ = 0.2, 0.3, 0.4, 0.6, 0.8,
respectively (see Table 5.1).
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Table 5.1 The values of ρ01 with different θ

θ 0.2 0.3 0.4 0.6 0.8

ρ01 0.73562 0.71343 0.69124 0.64686 0.60248

Theorem 5.5.2 The grey synthetic relational degree of ρij satisfies the following
properties:

(1) 0 < ρij ≤ 1;
(2) The value of ρij relates to the individual observed values of sequences Xi and

Xj,as well as to the rates of change of these values with respect to their initial
values;

(3) ρij will never be zero;
(4) ρij changes along with the values in Xi and Xj;
(5) When the lengths of Xi and Xj change, so does ρij;
(6) With different θ value, ρij also varies;
(7) When θ = 1, Xj; when θ = 0, ρij = rij;
(8) ρjj = ρii = 1; and
(9) ρij = ρji.

5.6 Grey Similarity, Closeness and Three-Dimensional
Relational Degree

This section focuses on the newmodelswhichmeasuremutual influences and connec-
tions between sequences from two different angles: similarity and closeness. These
new models are much easier to apply to practical problems than original model.
Also, three-dimensional grey relational degree can be used to analyze the relationship
among curved surfaces in three-dimensional space and this is discussed next.

5.6.1 Grey Relational Analysis Models Based on Similarity
and Closeness

Definition 5.6.1 Let Xi and Xj be sequences of the same length, and si − sj the same
as defined in Proposition 5.4.2. Then, the following formula (5.13) is referred to as
the grey similitude relational degree between Xi and Xj (Liu et al., 2011):

εij = 1

1 + |si − sj| (5.13)



5.6 Grey Similarity, Closeness and Three-Dimensional Relational Degree 107

The concept of similitude relational degree is employed to measure the geometric
similarity of the shapes of sequences Xi and Xj. The more similar the geometric
shapes of Xi and Xj, the greater the value of εij, and vice versa.

Definition 5.6.2 Let Xi and Xj be sequences of the same length, and Si −Sj the same
as defined in Proposition 5.4.2. Then, the following formula (5.14) is referred to as
the grey closeness relational degree between Xi and Xj(Liu et al., 2011):

ρij = 1

1 + |Si − Sj| (5.14)

The concept of the grey closeness relational degree is employed to measure the
spatial closeness of sequences Xi and Xj. The closer the Xi and Xj sequences, the
greater the value of ρij, and vice versa.

Proposition 5.6.1 Let Xi and Xj be sequences of 1-time-intervals with the same
length. Then:

∣∣Si − Sj

∣∣ =
∣∣∣∣∣
1

2

[
xi(1) − xj(1)

] +
n−1∑

k=2

[
xi(k) − xj(k)

] + 1

2

[
xi(n) − xj(n)

]
∣∣∣∣∣ (5.15)

It should be noted that the concept of the grey closeness relational degree is only
meaningful when sequences Xi and Xj possess similar meanings and identical units.
Otherwise, it does not stand for any practical significance.

Theorem 5.6.1 The grey similitude relational degree of εij satisfies the following
properties:

(1) 0 < εij ≤ 1;
(2) The value of εij is determined only by the geometric shape of sequences Xi and

Xj without any relationship with their relative spatial positions. In other words,
the transform translation of Xi and Xj will not change the value of εij;

(3) The more geometrically similar the sequences Xi and Xj, the greater the value
of εij, and vice versa;

(4) If Xi and Xj are parallel, or when X 0
i fluctuates around X 0

j , and the area of the
parts where X 0

i is located above X 0
j equals that of the parts where X 0

i is located
beneath X 0

j , then εij = 1;
(5) εii = 1, εjj = 1; and
(6) εij = εji.

Theorem 5.6.2 The grey closeness relational degree of ρij satisfies the following
properties:

(1) 0 < ρij ≤ 1;
(2) The value of ρij is determined not only by the geometric shape of sequences Xi

and Xj, but also by their relative spatial positions. In other words, the transform
translation of Xi and Xj will change the value of ρij;
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(3) The closer the sequences Xi and Xj, the greater the ρij value, and vice versa;
(4) If Xi and Xj coincide, or Xi fluctuates around Xj, and the area of the parts where

Xi is located above Xj equals that of the parts where Xi is located beneath Xj,
then ρij = 1;

(5) ρii = 1, ρjj = 1; and
(6) ρij = ρji.

Example 5.6.1 Compute the grey similitude relational degrees of ε12, ε13 and the
grey closeness relational degrees of ρ12, ρ13 between X1 and X2, X3, respectively,
given the sequences below:

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(7)) = (0.91, 0.97, 0.90, 0.93, 0.91, 0.95)

X2 = (x2(1), x2(2), x2(3), x2(5), x2(7)) = (0.60, 0.68, 0.61, 0.63, 0.65)

X3 = (x3(1), x3(3), x3(7)) = (0.82, 0.90, 0.86)

Solution

Step 1: Let us translate both X2 and X3 into sequences with the same time intervals
as X1. To this end, consider the following:

x2(4) = 1

2
(x2(3) + x2(5)) = 1

2
(0.61 + 0.63) = 0.62

x3(2) = 1

2
(x3(1) + x3(3) = 1

2
(0.82 + 0.90) = 0.86

x3(5) = 1

2
(x3(3) + x3(7)) = 1

2
(0.90 + 0.86) = 0.88

x3(4) = 1

2
(x3(3) + x3(5)) = 1

2
(0.90 + 0.88) = 0.89

Thus, we have:

X2 = (x2(1), x2(2), x2(3), x2(4), x2(5), x2(7)) = (0.60, 0.68, 0.61, 0.62, 0.63, 0.65)

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), x3(7)) = (0.82, 0.86, 0.90, 0.89, 0.88, 0.86)

Step 2: Let us translate X1, X2, and X3 into sequences of equal time distance. To
this end:

x1(6) = 1

2
(x1(5) + x1(7)) = 1

2
(0.91 + 0.95) = 0.93

x2(6) = 1

2
(x2(5) + x2(7)) = 1

2
(0.63 + 0.65) = 0.64

x3(6) = 1

2
(x3(5) + x3(7)) = 1

2
(0.88 + 0.86) = 0.87
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Therefore, the following sequences are all 1-time distance, which means
that the time distances between consecutive entries are all 1.

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(7))

= (0.91, 0.97, 0.90, 0.93, 0.91, 0.93, 0.95)

X2 = (x2(1), x2(2), x2(3), x2(4), x2(5), x2(7))

= (0.60, 0.68, 0.61, 0.62, 0.63, 0.64, 0.65)

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), x3(7))

= (0.82, 0.86, 0.90, 0.89, 0.88, 0.87, 0.86)

Step 3: Compute the images of zero-starting points provided below.

X 0
1 = (x01(1), x01(2), x01(3), x01(4), x01(5), x01(6), x01(7))

= (0, 0.06,−0.01, 0.02, 0, 0.02, 0.04)

X 0
2 = (x02(1), x02(2), x02(3), x02(4), x02(5), x02(6), x02(7))

= (0, 0.08, 0.01, 0.02, 0.03, 0.04, 0.05)

X 0
3 = (x03(1), x03(2), x03(3), x03(4), x03(5), x03(6), x03(7))

= (0, 0.04, 0.08, 0.07, 0.06, 0.05, 0.04)

Step 4: Compute |s1 − s2|, |s1 − s3| and |S1 − S2|, |S1 − S3| as follows.

|s1 − s2| =
∣∣∣∣∣

6∑

k=2

(x01(k) − x02(k)) + 1

2
(x01(7) − x02(7))

∣∣∣∣∣ = 0.095

|s1 − s3| =
∣∣∣∣∣

6∑

k=2

(x01(k) − x03(k)) + 1

2
(x01(7) − x03(7))

∣∣∣∣∣ = 0.21

|S1 − S2| =
∣∣∣∣∣

6∑

k=2

(x1(k) − x2(k)) + 1

2
(x1(7) − x2(7))

∣∣∣∣∣ = 1.91

|S1 − S3| =
∣∣∣∣∣

6∑

k=2

(x1(k) − x3(k)) + 1

2
(x1(7) − x3(7))

∣∣∣∣∣ = 0.375

Step 5: Calculate the similitude relational degrees of ε12, ε13 and closeness rela-
tional degrees of ρ12, ρ13.

ε12 = 1

1 + |s1 − s2| = 0.91, ε13 = 1

1 + |s1 − s3| = 0.83

ρ12 = 1

1 + |S1 − S2| = 0.34, ρ13 = 1

1 + |S1 − S3| = 0.73
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Because ε12 > ε13, it follows that X2 is more similar to X1 than X3. Because ρ12 <
ρ13, it follows that X3 is closer to X1 than X2.

Please note that the grey relational analysis focus on relevant order relationship
and influence between sequences rather than the value of the grey relational degree.
For instance, let us assume that onemust compute the similitude relational degrees or
closeness relational degrees based on Eqs. (5.13) or (5.14).When the absolute values
of the sequencedata are relatively large, the values of both

∣∣si − sj

∣∣ and
∣∣Si − Sj

∣∣might
be large, too, which in turn leads to the resultant similitude and closeness relational
degrees being relatively small. This scenario does not have any substantial impact on
the analysis of order relationships. If a particular problem demands relatively large
numerical magnitudes in the value of grey relational degree, one can replace the
number 1 appearing in the numerators or denominators of Eqs. (5.13) and (5.14) by
a relevant constant, or use the grey absolute relational degree, or use other appropriate
models.

5.6.2 Three Dimensional Grey Relational Analysis Models

The above GRA models can be generalized to three-dimensional space based on
geometric descriptions of a behavior matrix.

Definition 5.6.3 Assume that X is a two-dimensional system factor, and aij is an
observation value of the system’s behavior at two-dimensional point (i, j), where 1
≤ i ≤ m;1 ≤ j ≤ n. Then the following expression is called the behavior matrix of
system factor X :

A = (aij)m×n =

⎡

⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a1n

· · · · · · · · · · · ·
am1 am2 · · · amn

⎤

⎥⎥⎦

For example, if the prices (e.g., opening prices, closing prices, maximum prices, or
minimum prices) of a share have been recorded on different dates, we can obtain
the behavior matrix of the different prices X of the share. The behavior matrix will
reduce to a behavior sequence if only one share price has been recorded on different
dates.

The scatter diagram in behaviormatrixA and the corresponding behavioral curved
surface in three-dimensional space are shown in Figs. 5.3 and 5.4.

Definition 5.6.4 Assume the following behavior matrix of system factor X .
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Fig. 5.3 The scatter diagram as behavior matrix

Fig. 5.4 The corresponding behavioral curved surface

A = (aij)m×n =

⎡

⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a1n

· · · · · · · · · · · ·
am1 am2 · · · amn

⎤

⎥⎥⎦

AD = (aijd)m×n, where D is a matrix operator, aijd = aij − a1j, then D is called a
zero-starting edge operator, AD is called the zero-starting edge image of A, and they
are denoted as AD = A0 = (a0

ij)m×n.
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Fig. 5.5 The zero-starting edge image of a behavior curved surface

The zero-starting edge curved surface of A is shown in Fig. 5.5.

Definition 5.6.5 Assume that behavior matrices A = (aij)m×n, B = (bij)m×n are
matrices of the same type. Then the following formula is called the three-dimensional
grey absolute relational degree between A and B (Zhang & Liu, 2009):

εab = 1 + |sa| + |sb|
1 + |sa| + |sb| + |sa − sb| (5.16)

This occurs when sa = Da
A0dxdy, sb = Db

B0dxdy, sa − sb =
Dab

(A0 − B0)dxdy.sa = Da
A0dxdy, sb = Db

B0dxdy, sa − sb =
Dab

(A0 − B0)dxdy.
Formula (5.16) looks similar to the absolute GRAmodel shown in formula (5.11).

However, the meaning is different. The meaning of |si|, |sj|, |si − sj| in formula
(5.11) is the area of curved edge trapezoids surrounded by axis X 0

i , X 0
j , the zero-

starting point curves, and the area of curved edge trapezoid surrounded by X 0
i and

X 0
j . However, the meaning of |sp|, |sq|, |sp − sq| in formula (5.16) is the volume of

curved roof cylinders surrounded by the axis plane and A0, B0, the curved surface of
zero-starting edge, and the volume of curved roof cylinders surrounded by A0 and
B0.

The three-dimensional grey relational analysis model can truly reflect the rela-
tional degree between system behavior matrices. The analysis results are objective,
reliable and easy to implement on computer. The three-dimensional GRA model is
seen to have expansive application prospects in many fields such as multi-criterion
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decision-making, panel data analysis, imageprocessing, amongothers,which include
matrices as objects of study.

5.7 Negative Grey Relational Analysis Models

In the past 40 years, driven by the realistic demand of measuring the relationship
between the reverse sequences of the system, many scholars have made unremitting
attempts and exploration around the construction of negative grey relational analysis
model. In 2008, Shi Hongxing, Liu Sifeng, and Fang Zhigeng proposed a kind of grey
relational analysis model referring to the grey absolute relational analysis model. In
this paper, the positive and negative sign of the grey relational degree is determined
according to the concave and convex direction of the periodic waveform to describe
the inverse relationship between the periodic factors (Shi et al., 2008). In 2015, based
on dissolved gas analysis (DGA), Song Bin et al. studied the latent fault diagnosis
of power transformer. In order to correctly describe the reverse change relationship
between different fault types, a calculation method of negative grey relational degree
is proposed (Song et al., 2015). In 2019, Saad Ahmed Javed and Sifeng Liu proposed
a bidirectional gabsolute GRAmodel for uncertain systems. The proposedmodel can
be used to evaluate both positive and negative relation of different sequences (Javed&
Liu, 2019).

Firstly, the definitionof inverse sequencewill be given in this section.Then, several
different negative grey relational analysis models, such as negative grey similarity
relational analysis model, negative grey absolute relational analysis model, negative
relative grey relational analysis model, negative grey synthetic relational analysis
model, and negative Deng’s grey relational analysis model will be put forward based
on the corresponding common grey relational analysis models. The properties of the
new models will be studied.

In order to build a negative grey relational model, it is necessary to give the
definition of inverse sequence at first.

Definition 5.7.1 Assume that Xi = (xi(1), xi(2), . . . , xi(n)).
is a system’s behavior data sequence,

(1) If ∀k = 2, 3, . . . , n, xi(k)− xi(k − 1) > 0, then Xi is referred to as a monotonic
increasing sequence;

(2) If the inequality sign in (1) is inversed, then Xi is referred to as a monotonic
decreasing sequence.

Monotonic increasing sequence and monotonic decreasing sequence are collec-
tively referred to as monotone sequence. Please see Fig. 5.6 for the curves of
monotonic increasing sequence and monotonic decreasing sequences.

Definition 5.7.2 Assume that Xi = (xi(1), xi(2), . . . , xi(n)).
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Fig. 5.6 Monotone sequence curves

Fig. 5.7 Oscillation
sequence curve

is a system’s behavior data sequence, if there are k, k ′∈{2, 3, …, n} such that
x(k) − x(k − 1) > 0, x

(
k ′) − x

(
k ′ − 1

)
< 0, then X is referred to as an oscillation

sequence.
Figure 5.7 shows the case of a curve of oscillation sequence.

Definition 5.7.3 Assume that Xi = (xi(1), xi(2), . . . , xi(n)) is a system’s behavior
data sequence, X 0

i = Xi − xi(1) is the zero-starting point sequence of Xi, let si =
n∫

1
(Xi − xi(1))dt, then.

(1) If si > 0, then Xi is referred to as an increasing sequence;
(2) If si < 0, then Xi is referred to as a decreasing sequence;
(3) If si = 0, then Xi is referred to as a horizontal sequence.

Obviously,monotonic increasing sequence is a special case of increasing sequence
and monotonic decreasing sequence is a special case of decreasing sequence. An
oscillation sequence can be an increasing sequence, decreasing sequence, or a
horizontal sequence.And stationary sequence is a special case of horizontal sequence.

Definition 5.7.4 Assume that.

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))
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are two system’s behavior data sequences.

(1) When both Xi, Xj are increasing sequences or decreasing sequences, then Xi and
Xj are called sequences with the same direction;

(2) When one of Xi and Xj is an increasing sequence and the other is a decreasing
sequence, then Xi and Xj are called reverse sequences (Liu, 2022).

The relationship between two sequences with the same direction can be measured
by positive grey relational analysis model. The relationship between two reverse
sequences needs to be measured by negative grey relational analysis model.

Proposition 5.7.1 Assume that.

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences. The zero-starting point sequences of Xi

and Xj as follows,

X 0
i = (x0i (1), x0i (2), . . . , x0i (n))

X 0
j = (x0j (1), x0j (2), . . . , x0j (n))

Let

si =
n∫

1

(Xi − xi(1))dt (5.17)

si − sj =
n∫

1

(X 0
i − X 0

j )dt (5.18)

then

|si| =
∣∣∣∣∣

n−1∑

k=2

x0i (k) + 1

2
x0i (n)

∣∣∣∣∣ (5.19)

∣∣si − sj

∣∣ =
∣∣∣∣∣

n−1∑

k=2

(x0i (k) − x0j (k)) + 1

2
(x0i (n) − x0j (n))

∣∣∣∣∣ (5.20)

Proof |si| and
∣∣si − sj

∣∣ are determined by areas of the following curved triangles,
respectively.

X = 0, X = X 0
i , and t = n

X = X 0
i , X = X 0

j , t = n
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They are sums of little areas of n-1 small trapezoids of height 1. Note the length
of the bottom edges of the small trapezoids, and it is easy to know that the conclusion
is true (Liu, 2022).

Proposition 5.7.2 Assume that Xi, Xj, X 0
i , X 0

j , and |si|,
∣∣si − sj

∣∣ as shown in
Proposition 1, then.

(1) When Xi and Xj are with the same direction, and X 0
i , X 0

j intersect only at the
starting point, then

∣∣si − sj

∣∣ = ∣∣|si| − ∣∣sj

∣∣∣∣;
(2) When Xi and Xj are two reverse sequences, then

∣∣si − sj

∣∣ = |si| + ∣∣sj

∣∣;
(3) If X 0

i fluctuates around X 0
j , then

∣∣si − sj

∣∣ is the absolute value of algebraic sum
of area enclosed by X 0

i and X 0
j . The parts where X 0

i are above X 0
j take positive

sign, and the parts where X 0
i are underneath X 0

j take negative sign.

Positional relationship of X 0
i and X 0

j can be clearly seen from Fig. 5.3. Figure 5.3a
shows the case where Xi and Xj are both increasing sequences, Fig. 5.3b shows the
case where Xi and Xj are both increasing sequences, Fig. 5.3c shows the case where
Xi andXj are two reverse sequences, and Fig. 5.3d shows the case whereX 0

i fluctuates
around X 0

j (Liu, 2022).
It can be seen from Fig. 5.8c, when Xi and Xj are reverse sequences, the value of∣∣si − sj

∣∣ is large.At this time, the value of grey relational degree calculated by positive
grey relational model will be very small. Before the negative grey relational analysis
model was proposed, people usually convert the inverse sequence into the same
direction sequence through inverse operator or reciprocal operator, then calculate
the positive grey relational degree of the sequences with the same direction, but the
results are not completely reasonable.

Therefore, for the measurement of the relationship between reverse sequences,
the construction of negative grey relational analysis model has become an inevitable
choice.

Corresponding to the normalization and proximity axioms of the grey relational
analysis model, the negative grey relational degree φN

ij shall meet the following
axioms.

Axiom 5.7.1 Normalization−1 < φN
ij ≤ 0, φN

ij = 0 ⇐ Xi = Xj

The value of φN
ij is negative. The minimum value is—1 and the maximum value

is 0 (Liu, 2022).

Axiom 5.7.2 Reversibility The stronger the inverse relation between Xi and Xj,the
smaller the value of φN

ij .
Note that the value of negative grey relational degree belongs to interval (− 1,0],

the smaller the value of φN
ij ,the greater the absolute value of φN

ij (Liu, 2022).

Definition 5.7.5 Suppose the following system’s behavior data sequences.

Xi = (xi(1), xi(2), . . . , xi(n))



5.7 Negative Grey Relational Analysis Models 117

(a) (b) 

(c) (d) 

Fig. 5.8 Positional relationship of X 0
i and X 0

j

Xj = (xj(1), xj(2), . . . , xj(n))

are reverse sequences, then

φN
ij = −

∣∣si − sj

∣∣
1 + |si − sj| (5.21)

is called the negative grey similarity relational degree of Xi and Xj (Liu, 2022).
It can be easily proved that the negative grey similarity relational degree defined

by formula (5.21) satisfies the axioms of normalization and reversibility, and has the
following properties.

Theorem 5.7.1 The negative grey similarity relational degree φN
ij satisfies the

following properties:
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(1) −1 < φN
ij < 0.

(2) φN
ij is only related to the geometric shapes of Xi and Xj,and has no relationship

with the spatial positions of these sequences. In other words, the translation
transformation does not change the value of negative grey similarity relational
degree.

(3) The stronger the reverse relation between Xi and Xj, the closer φN
ij is to − 1;The

weaker the reverse relation between Xi and Xj, the closer φN
ij is to 0.

(4) If Xi and Xj are parallel or X 0
i fluctuates around X 0

j , with the area of the parts of
X 0

i located above X 0
j equal to that of the parts with X 0

i located underneath X 0
j ,

then φN
ij = 0.

(5) φN
ii = φN

jj = 0.
(6) φN

ij = φN
ji .

(Liu, 2022).

Example 1 Let X1 = (x1(1), x1(2), x1(3), x1(4), x1(5)) = (1, 2, 3, 3, 5).
and X2 = (x2(1), x2(2), x2(3), x2(4), x2(5)) = (5, 4, 2, 2, 1).
Then the zero-starting point sequences of X1 and X2 as follows

X 0
1 = (x01(1), x01(2), x01(3), x01(4), x01(5)) = (0, 1, 2, 2, 4)

X 0
2 = (x02(1), x02(2), x02(3), x02(4), x02(5)) = (0,−1,−3,−3,−4)

We have s1 = 7, s2 = − 9, therefore, X1 is an increasing sequence, and X2 is a
decreasing sequence. That is, X1 and X2 are reverse sequences. From formula(5)

φN
12 = − |s1 − s2|

1 + |s1 − s2| = − 16

1 + 16
≈ −0.9412

It shows that there is a strong inverse correlation between X1 and X2.
Similarly, the definitions of negative grey absolute relational degree, negative grey

relative relational degree and negative grey comprehensive relational degree can be
given as follows.

Definition 5.7.6 Assume that Xi and Xj are system’s behavior data sequences,

(1) If Xi and Xj are reverse sequences, then

εN
ij = −

∣∣si − sj

∣∣

1 + |si| + ∣∣sj

∣∣ + ∣∣si − sj

∣∣ (5.22)

Is called negative grey absolute relational degree of Xi and Xj.

(2) If the initial valued sequences of Xi and Xj are reverse sequences, then
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rN
ij = −

∣∣∣s′
i − s′

j

∣∣∣

1 + ∣∣s′
i

∣∣ +
∣∣∣s′

j

∣∣∣ +
∣∣∣s′

i − s′
j

∣∣∣
(5.23)

Is called negative relative grey relational degree of Xi and Xj.

(3) If both of Xi and Xj, and the initial valued sequences of Xi and Xj are all reverse
sequences, then

ρN
ij = θεN

ij + (1 − θ)rN
ij (5.24)

is called negative grey synthetic relational degree of Xi and Xj.Where θ ∈ [0, 1] (Liu,
2022).

It should be noted that the grey proximity relational analysis model have been
constructed to measure the spatial relative position relationship of the sequences.
The grey proximity relational degree does not consider the change direction of the
sequences and does not pay attention to the same or reverse relationship between the
two sequences. Therefore, it is not necessary to define the corresponding “negative
grey proximity relational analysis model”.

Definition 5.7.7 LetX0 = (x0(1), x0(2), . . . , x0(n)) be a data sequence of a system’s
behavioral characteristic and the following are relevant factor sequences:

X1 = (x1(1), x1(2), . . . , x1(n))

. . . . . . . . .

Xi = (xi(1), xi(2), . . . , xi(n))

. . . . . . . . .

Xm = (xm(1), xm(2), . . . , xm(n))

If Xi is a reverse sequence of X0, for ξ ∈ (0, 1),let

γ N
0i (k) =

min
i

min
k

|x0(k) − xi(k)| − |x0(k) − xi(k)|
|x0(k) − xi(k)| + ξ max

i
max

k
|x0(k) − xi(k)| (5.25)

γ N
0i = 1

n

n∑

k=1

γ N
0i (k) (5.26)

Then γ N
0i is called negative Deng’s grey relational degree of Xi and X0, and γ N

0i (k)
is called the negative Deng’s grey relational coefficient of relevant factor sequence
Xi and the system’s behavioral characteristic sequence X0 at point k (Liu, 2022).

It is easy to show that the negative grey absolute relational degree, negative relative
grey relational degree, negative grey synthetic relational degree, and negative Deng’s
grey relational degree are all satisfy the axioms of normalization and Reversibility.
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5.8 Grey Relational Analysis Model for Cross-Sequences

5.8.1 Measure of Difference in Cross Sequences

All the grey relational analysis models from a global perspective based on integral
elements of si, sj, s′

i, s′
j, si−sj, s′

i−s′
j, Si−Sj. As can be seen fromprevious sections of

this chapter that all the integral elements are the algebraic sum of the corresponding
data in sequences of Xi, Xj, X 0

i , X 0
j , X

′0
i , X

′0
j , Xi −Xj, X 0

i −X 0
j , X

′0
i −X

′0
j .In the case

of intersecting sequences or sequences intersecting with coordinate axes, data with
opposite symbols cancel out each other, reducing the absolute value of the integral
element and affecting the correlation calculation results. Especially when the value
of integral elements of si −sj or s′

i −s′
j is equal to 0, the grey relational degree reaches

its maximum value of 1. This result is obviously not entirely reasonable.
In 1993, Guorong Xu discovered the problem of positive and negative offset

in the calculation process of the grey absolute relational model and proposed an
improved model (Xu, 1993). Lu et al. (2023) proposed a grey relational analysis
model for cross-sequences based on both the angle variations within a time interval
and between time intervals in 2023.

To further analyze the relationship between cross sequences and propose a new
definition of grey relational analysis model for cross-sequences based on them, we
will first provide the definitions of cross sequences and area elements.

Definition 5.8.1 Assume that.

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences.
If the fold line corresponding to Xi and Xj has at least one intersection point other

than the starting or ending point, then Xi and Xj are referred to as cross sequences
(Liu et al., 2024).

Definition 5.8.2 Assume that.

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences. Then

‖si‖ =
n∫

1

∣∣X 0
i

∣∣dt,
∥∥sj

∥∥ =
n∫

1

∣∣∣X 0
j

∣∣∣dt,
∥∥si − sj

∥∥ =
n∫

1

∣∣∣X 0
i − X 0

j

∣∣∣dt,
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∥∥s′
i

∥∥ =
n∫

1

∣∣X ′0
i

∣∣dt,
∥∥∥s′

j

∥∥∥ =
n∫

1

∣∣∣X ′0
j

∣∣∣dt,
∥∥∥s′

i − s′
j

∥∥∥ =
n∫

1

∣∣∣X ′0
i − X ′0

j

∣∣∣dt,

are referred to as area elements (Liu et al., 2024).

Proposition 5.8.1 For the area elements of ‖si‖,
∥∥sj

∥∥,
∥∥si − sj

∥∥, we have.

‖si‖ =
n−1∑

k=2

∣∣x0i (k)
∣∣ + 1

2

∣∣x0i (n)
∣∣

∥∥sj

∥∥ =
n−1∑

k=2

∣∣∣x0j (k)

∣∣∣ + 1

2

∣∣∣x0j (n)

∣∣∣

∥∥si−sj

∥∥ =
n−1∑

k=2

∣∣∣x0i (k) − x0j (k)

∣∣∣ + 1

2

∣∣∣x0i (n) − x0j (n)

∣∣∣

(Liu et al., 2024).

Proposition 5.8.2 For the area elements of
∥∥s′

i

∥∥,
∥∥∥s′

j

∥∥∥,
∥∥si′ − sj′

∥∥, we have.

∥∥s′
i

∥∥ =
n−1∑

k=2

∣∣∣x
′0
i (k)

∣∣∣ + 1

2

∣∣∣x
′0
i (n)

∣∣∣

∥∥∥s′
j

∥∥∥ =
n−1∑

k=2

∣∣∣x
′0
j (k)

∣∣∣ + 1

2

∣∣∣x
′0
j (n)

∣∣∣

∥∥∥s′
i−s′

j

∥∥∥ =
n−1∑

k=2

∣∣∣x
′0
i (k) − x

′0
j (k)

∣∣∣ + 1

2

∣∣∣x
′0
i (n) − x

′0
j (n)

∣∣∣

(Liu et al., 2024).
From Propositions 5.8.1 and 5.8.2, it can be seen that in the process of calculating

area elements, the absolute value of the difference between the data in the sequence
and the corresponding data in different sequences is first calculated, and then the
sum is calculated. There is no problem of positive or negative offset.

Proposition 5.8.3 Assume that.

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences. If

∣∣si − sj

∣∣ �= ∥∥si − sj

∥∥



122 5 Grey Relational Analysis Models

then X 0
i and X 0

j are cross sequences (Liu et al., 2024).

Definition 5.8.3 Assume that X 0
i and X 0

j are cross sequences. And ‖si‖,
∥∥sj

∥∥,∥∥si − sj

∥∥ are the area elements as shown in Proposition 1, then

�ij =
∥∥si − sj

∥∥

1 + ‖si‖ + ∥∥sj

∥∥ + ∥∥si − sj

∥∥ (5.27)

is referred to as the degree of difference between sequences X 0
i and X 0

j (Liu et al.,
2024).

Theorem 5.8.1 Assume that X 0
i and X 0

j are cross sequences. Then the degree of
difference �ij between sequences X 0

i and X 0
j having the following properties (Liu

et al., 2024):

(1) 0 ≤ �ij ≤ 1;
(2) The value of �ij related to the curved triangle areas of ‖si‖,

∥∥sj

∥∥ and∥∥si − sj

∥∥;The larger the value of ‖si‖,
∥∥sj

∥∥, the smaller the value of �ij is,
The greater the value of

∥∥si − sj

∥∥, The larger the value of �ij is;
(3) �ii = �jj = 0;
(4) �ij = �ji

Definition 5.8.4 Assume that X
′0
i and X

′0
j are cross sequences.

∥∥s′
i

∥∥,
∥∥∥s′

j

∥∥∥,
∥∥∥s′

i − s′
j

∥∥∥
are the area elements as shown in Proposition 5.8.2, then.

�ij =
∥∥∥s′

i − s′
j

∥∥∥

1 + ∥∥s′
i

∥∥ +
∥∥∥s′

j

∥∥∥ +
∥∥∥s′

i − s′
j

∥∥∥
(5.28)

is referred to as the degree of difference between sequences of X
′0
i and X

′0
j .(Liu,

et al., 2024)
Similarly, we can discuss the properties of the degree of difference between

sequences of X
′0
i and X

′0
j .

Example 5.8.1 Let

X1 = (1, 1.2, 0.8, 1.2, 0.8, 1)

X2 = (1.5, 1.3, 1.7, 1.3, 1.7, 1.5)

Calculate the grey similitude relational degree between sequences X1 and X2, and
the degree of difference between sequences X 0

1 and X 0
2 .

Solution:
The zero-starting point sequences of X1, X2 are
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X 0
1 = (0, 0.2,−0.2, 0.2,−0.2, 0)

X 0
2 = (0,−0.2, 0.2,−0.2, 0.2, 0)

So,

s1 − s2 =
5∑

k=2

[x01(k) − x02(k)] + 1

2
[x01(6) − x02(6)] = 0

‖s1‖ =
5∑

k=2

∣∣x01(k)
∣∣ + 1

2

∣∣x01(6)
∣∣ = 0.8

‖s2‖ =
5∑

k=2

∣∣x02(k)
∣∣ + 1

2

∣∣x02(6)
∣∣ = 0.8

‖s1−s2‖ =
5∑

k=2

∣∣x01(k) − x02(k)
∣∣ + 1

2

∣∣x01(6) − x02(6)
∣∣ = 1.6

Therefore, we have

δ12 = 1

1 + |s1 − s2| = 1

�12 = ‖s1 − s2‖
1 + ‖s1‖ + ‖s2‖ + ‖s1 − s2‖ = 0.38

In Example 5.8.1, X1 and X2 have a high degree of similarity in shape. After
translation,X 0

1 can completely coincides with X 0
2 .But from a spatial perspective,

there is a significant difference between X1 and X2. The degree of difference between
sequences X 0

1 and X 0
2 is �12 = 0.38.

From Fig. 5.9, it can be seen that the overall trend of changes in the line corre-
sponding to sequences X 0

1 and X 0
2 remains basically consistent.X 0

2 can be regarded
as a lagging variable of X 0

1 .In the time intervals of [0, 1], [1, 2], [2, 3], [3, 4], [4, 5],
the direction of change between X 0

1 and X 0
2 are opposite.

Fig. 5.9 The fold line of X1 and X2
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5.8.2 The Modified Grey Relational Models

For the sequences with same or reverse direction that do not cross, the calculated
results by the grey relational analysis models from a global perspective based on
integral elements of si, sj, s′

i, s′
j, si − sj, s′

i − s′
j can accurately reflect the relationship

between sequences. For cross sequences, it is necessary to use the degree of difference
to modify the calculation results.

Definition 5.8.5 Assume that

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences, then

εEC
ij

= εij − �ij = 1 + |si| + ∣∣sj

∣∣

1 + |si| + ∣∣sj

∣∣ + |si − sj| −
∥∥si − sj

∥∥

1 + ‖si‖ + ∥∥sj

∥∥ + ∥∥si − sj

∥∥
(5.29)

is referred to as the modified grey absolute relational degree (Liu et al., 2024)

Definition 5.8.6 Assume that

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences, then

γ EC
ij

= γij − �ij =
1 + ∣∣s′

i

∣∣ +
∣∣∣s′

j

∣∣∣

1 + ∣∣s′
i

∣∣ +
∣∣∣s′

j

∣∣∣ + |s′
i
− s′

j
|
−

∥∥∥s′
i
− s′

j

∥∥∥

1 + ∥∥s′
i

∥∥ +
∥∥∥s′

j

∥∥∥ +
∥∥∥s′

i − s′
j

∥∥∥
(5.30)

is called the modified grey relative relational degree (Liu et al., 2024).

Definition 5.8.7 Assume that

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences, and εEC
ij , γ EC

ij are the modified grey abso-
lute relational degree and the modified grey relative relational degree respectively,
then
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ρEC
ij

= θεEC
ij

+ (1 − θ)γ EC
ij

, θ ∈ [0, 1] (5.31)

is referred to as the modified grey synthetical relational degree (Liu et al., 2024).

Definition 5.8.8 Assume that

Xi = (xi(1), xi(2), . . . , xi(n))

Xj = (xj(1), xj(2), . . . , xj(n))

are two system’s behavior data sequences, then

δEC
ij

= δij − �ij = 1

1 + |si − sj| − ‖si − si‖
1 + ‖si‖ + ∥∥sj

∥∥ + ∥∥si − sj

∥∥ (5.32)

is called the modified grey similitude relational degree (Liu et al., 2024).

Example 5.8.2 Let X1 and X2 as shown in Example 1, please calculate the modified
grey similitude relational degree.

Solution: From Example 1, we have δ12 = 1,�12 = 0.38,therefore

δEC
12

= δ12 − �12 = 0.62

This result better reflects the difference between X1 and X2 and the consistency
of their overall trend of change.

Example 5.8.3 Let

X1 = (1, 1.2, 0.8, 1.2, 0.8, 1)

X3 = (1.2, 0.6, 1.8, 1.2, 2.4, 1.2)

Calculate the modified grey absolute relational degree, the modified grey relative
relational degree and the modified grey synthetical relational degree of X1 and X3.

Solution:

(1) Calculation of the modified grey absolute relational degree

The zero-starting point sequences of X1 and X3 are

X 0
1 = (0, 0.2,−0.2, 0.2,−0.2, 0)

X 0
3 = (0,−0.6, 0.6, 0, 1.2, 0)

From

s1 =
5∑

k=2

x01(k) + 1

2
x01(n) = 0, s3 =

5∑

k=2

x03(k) + 1

2
x03(n) = 1.2
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s1 − s3 =
5∑

k=2

[x01(k) − x03(k)] + 1

2
[x01(6) − x03(6)] = −1.2

‖s1‖ =
5∑

k=2

∣∣x01(k)
∣∣ + 1

2

∣∣x01(6)
∣∣ = 0.8

‖s3‖ =
5∑

k=2

∣∣x03(k)
∣∣ + 1

2

∣∣x03(6)
∣∣ = 2.4

‖s1−s3‖ =
5∑

k=2

∣∣x01(k) − x03(k)
∣∣ + 1

2

∣∣x01(6) − x03(6)
∣∣ = 3.2

We have

ε13 = 1 + |s1| + |s3|
1 + |s1| + |s3| + |s1 − s3| = 0.65

�13 = ‖s1 − s3‖
1 + ‖s1‖ + ‖s3‖ + ‖s1 − s3‖ = 0.43

εEC
13

= ε13 − �13 = 0.22

(2) Calculation of the modified grey relative relational degree

The initial value sequences and the zero-starting point sequences of initial value
sequences of X1 and X3 are as follows

X ′
1

= (1, 1.2, 0.8, 1.2, 0.8, 1)

X ′
3

= (1, 0.5, 1.5, 1, 2, 1)

X
′0
1

= (0, 0.2,−0.2, 0.2,−0.2, 0)

X
′0
3

= (0,−0.5, 0.5, 0, 1, 0)

From

s′
1 =

5∑

k=2

x
′0
1 (k) + 1

2
x

′0
1 (6) = 0

s′
3 =

5∑

k=2

x
′0
3 (k) + 1

2
x

′0
3 (6) = 1

s′
1 − s′

3 =
5∑

k=2

[x′0
1 (k) − x

′0
3 (k)] + 1

2
[x′0

1 (6) − x
′0
3 (6)] = 1

∥∥s′
1

∥∥ =
5∑

k=2

∣∣∣x
′0
1 (k)

∣∣∣ + 1

2

∣∣∣x
′0
1 (6)

∣∣∣ = 0.8
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∥∥s′
3

∥∥ =
5∑

k=2

∣∣∣x
′0
3 (k)

∣∣∣ + 1

2

∣∣∣x
′0
3 (6)

∣∣∣ = 2

∥∥s′
1
−s′

3

∥∥ =
5∑

k=2

∣∣∣x
′0
1 (k) − x

′0
3 (k)

∣∣∣ + 1

2

∣∣∣x
′0
1 (6) − x

′0
3 (6)

∣∣∣ = 2.8

We have

γ13 = 1 + ∣∣s′
1

∣∣ + ∣∣s′
3

∣∣

1 + ∣∣s′
1

∣∣ + ∣∣s′
3

∣∣ + |s′
1 − s′

3|
= 0.67

�13 =
∥∥s′

1 − s′
3

∥∥

1 + ∥∥s′
1

∥∥ + ∥∥s′
3

∥∥ + ∥∥s′
1 − s′

3

∥∥ = 0.42

γ EC
13 = γ13 − �13 = 0.25

(3) Calculation of the modified grey synthetical relational degree

Let θ = 0.5, then

ρEC
13 = 0.5 · εEC

13 + 0.5 · γ EC
13 = 0.235

5.9 Superiority Analysis

Definition 5.9.1 Assume that Y1, Y2, . . . , Ys are a system’s characteristic behavioral
sequences, and X1, X2, . . . , Xm are behavioral sequences of relevant factors with the
same length. Let γij be the grey relational degree between Yi and Xj, i = 1, 2, . . . , s,
and j = 1, 2, . . . , m. Then:

 = (
γij

)
s×m =

⎡

⎢⎢⎣

γ11 γ12 · · · γ1m

γ21 γ22 · · · γ2m

· · · · · · · · · · · ·
γs1 γs2 · · · γsm

⎤

⎥⎥⎦.

This formula is referred to as the grey relational matrix of the system, where the
ith row is made up of the grey relational degree between the characteristic sequence
Yi(i = 1, 2, . . . , s) and each of the factor sequences X1, X2, . . . , Xm; and the jth
column consists of the grey relational degree between each of the characteristic
sequences Y1, Y2, . . . , Ys and Xj(j = 1, 2, . . . , m). We can analyze both the superi-
ority of a system’s characteristic behavioral variables or the behavioral variables of
relevant factors.
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Definition 5.9.2 Assume that Y1, Y2, . . . , Ys are a system’s characteristic behavioral
sequences, X1, X2, . . . , Xm are behavioral sequences of relevant factors, and  =(
γij

)
s×m is the grey relational matrix. If there are k, i ∈ {1, 2, . . . , s} such that γkj ≥

γij, j = 1, 2, . . . , m, then the system’s characteristic variable Yk is said to be more
favorable than the system’s characteristic variable Yi, written as Yk � Yi.

If ∀i = 1, 2, . . . , s, i �= k, Yk � Yi always holds true, then Yk is said to be the
most favorable characteristic variable.

Definition 5.9.3 Assume that Y1, Y2, . . . , Ys are a system’s characteristic behavioral
sequences, X1, X2, . . . , Xm are behavioral sequences of relevant factors, and  =(
γij

)
s×m is the grey relational matrix. If there are l, j ∈ {1, 2, . . . , m} such that

γil ≥ γij, i = 1, 2, . . . , s, then we say that the system’s factor Xl is more favorable
than factor Xj, written as Xl � Xj.

If ∀j = 1, 2, . . . , m, j �= l, Xl � Xj always holds true, then Xl is said to be the
most favorable factor.

Definition 5.9.4 Assume that Y1, Y2, . . . , Ys are a system’s characteristic behavioral
sequences, X1, X2, . . . , Xm are behavioral sequences of relevant factors, and  =(
γij

)
s×m is the grey relational matrix.

(1) If there are k, i ∈ {1, 2, . . . , s} satisfying
m∑

j=1
γkj ≥

m∑
j=1

γij, then the system’s

characteristic variable Yk is said to be more quasi-favorable than Yi, which is
denoted as Yk�Yi.

(2) If there are l, j ∈ {1, 2, . . . , m} satisfying
m∑

i=1
γil ≥

m∑
i=1

γij, then the system’s

factor Xl is more quasi-favorable than Xj, which is denoted as Xl�Xj.

Definition 5.9.5 Assume that Y1, Y2, . . . , Ys are a system’s characteristic behavioral
sequences, X1, X2, . . . , Xm are behavioral sequences of relevant factors, and  =(
γij

)
s×m is the grey relational matrix.

(1) If there is k ∈ {1, 2, . . . , s} such that ∀i = 1, 2, . . . , s, i �= k, Yk�Yi, then the
system’s characteristic variable Yk is said to be quasi-preferred.

(2) If there is l ∈ {1, 2, . . . , m} such that ∀j = 1, 2, . . . , m, j �= l, Xl�Xj, then the
system’s factor Xl is said to be quasi-preferred.

Proposition 5.9.1 In a system of S characteristic variables and m relevant factors,
there may not be a most favorable characteristic variable and a most favorable factor.
However, there must be quasi-preferred characteristic variable and factor.

Example 5.9.1 The formulas below are system’s characteristic behavioral
sequences.

Y1 = (170, 174, 197, 216.4, 235.8)

Y2 = (57.55, 70.74, 76.8, 80.7, 89.85)

Y3 = (68.56, 70, 85.38, 99.83, 103.4)
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The formulas below are behavioral sequences of relevant factors.

X1 = (308.58, 310, 295, 346, 367)

X2 = (195.4, 189.9, 189.2, 205, 222.7)

X3 = (24.6, 21, 12.2, 15.1, 14.57)

X4 = (20, 25.6, 23.3, 29.2, 30)

X5 = (18.98, 19, 22.3, 23.5, 27.655)

Try and analyze the superiority of the system’s characteristic behavioral variables
and the superiority of the behavioral variables of relevant factors.

Solution

We analyze the superiority of the system’s characteristic behavioral sequences and
the behavioral sequences of relevant factors by absolute degree of GRA model.

(1) Find the matrix of the grey absolute relational degree. Calculate the images of
zero-starting point for all the system’s characteristic behavioral sequences as
well as the behavioral sequences of relevant factors as follows:

Y 0
1 = (0, 4, 27, 46.4, 65.8)

Y 0
2 = (0, 13.19, 19.25, 23.15, 32.3)

Y 0
3 = (0, 1.44, 16.82, 31.27, 34.84)

X 0
1 = (0, 1.42,−13.58, 37.42, 58.42)

X 0
2 = (0,−5.5,−8.2, 9.6, 27.3)

X 0
3 = (0,−3.6,−12.4, ,−9.5,−10.03)

X 0
4 = (0, 5.6, 3.3, 9.2, 10)

X 0
5 = (0, 0.02, 3.32, 4.52, 8.675)

For the system’s characteristic behavioral variable Y1, we have:

∣∣sy1

∣∣ =
∣∣∣∣∣

4∑

k=2

y01(k) + 1

2
y01(5)

∣∣∣∣∣ =
∣∣∣∣4 + 27 + 46.4 + 1

2
× 65.8

∣∣∣∣ = 110.3

∣∣sx1

∣∣ =
∣∣∣∣∣

4∑

k=2

x01(k) + 1

2
x01(5)

∣∣∣∣∣ =
∣∣∣∣1.42 + (−13.58) + 37.42 + 1

2
× 58.42

∣∣∣∣ = 54.47

∣∣sy1 − sx1

∣∣ =
∣∣∣∣∣

4∑

k=2

(y01(k) − x01(k)) + 1

2
(y01(5) − x01(5))

∣∣∣∣∣ = 55.9

ε11 = 1 + ∣∣sy1

∣∣ + ∣∣sx1

∣∣

1 + ∣∣sy1

∣∣ + ∣∣sx1

∣∣ + ∣∣sy1 − sx1

∣∣ = 1 + 110.3 + 54.47

1 + 110.3 + 54.47 + 55.9
= 0.748
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∣∣sx2

∣∣ =
∣∣∣∣∣

4∑

k=2

x02(k) + 1

2
x02(5)

∣∣∣∣∣ =
∣∣∣∣(−5.5) + (−8.2) + 9.6 + 1

2
× 27.3

∣∣∣∣ = 9.55

∣∣sy1 − sx2

∣∣ =
∣∣∣∣∣

4∑

k=2

(y01(k) − x02(k)) + 1

2
(y01(5) − x02(5))

∣∣∣∣∣ = 100.75

ε12 = 1 + ∣∣sy1

∣∣ + ∣∣sx2

∣∣

1 + ∣∣sy1

∣∣ + ∣∣sx2

∣∣ + ∣∣sy1 − sx2

∣∣ = 1 + 110.3 + 9.55

1 + 110.3 + 9.55 + 100.75
= 0.545

Similarly:

ε13 = 1 + ∣∣sy1

∣∣ + ∣∣sx3

∣∣

1 + ∣∣sy1

∣∣ + ∣∣sx3

∣∣ + ∣∣sy1 − sx3

∣∣ = 0.502

ε14 = 1 + ∣∣sy1

∣∣ + ∣∣sx4

∣∣

1 + ∣∣sy1

∣∣ + ∣∣sx4

∣∣ + ∣∣sy1 − sx4

∣∣ = 0.606

ε15 = 1 + ∣∣sy1

∣∣ + ∣∣sx5

∣∣

1 + ∣∣sy1

∣∣ + ∣∣sx5

∣∣ + ∣∣sy1 − sx5

∣∣ = 0.557

For the system’s characteristic behavioral variable Y2, Y3, we have:

ε21 = 0.880, ε22 = 0.570, ε23 = 0.502, ε24 = 0.663, ε25 = 0.588

ε31 = 0.907, ε32 = 0.574, ε33 = 0.503, ε34 = 0.675, ε35 = 0.594

Therefore, we have the grey absolute relational degree matrix as follows:

A = (εij) =
⎡

⎣
ε11 ε12 ε13 ε14 ε15

ε21 ε22 ε23 ε24 ε25

ε31 ε32 ε33 ε34 ε35

⎤

⎦ =
⎡

⎣
0.748 0.545 0.502 0.606 0.557
0.880 0.570 0.502 0.663 0.588
0.907 0.574 0.503 0.675 0.594

⎤

⎦

(2) Calculate the relative grey relational degree matrix. Calculate the initial images:

Y ′
i (i = 1, 2, 3) andX ′

j (j = 1, 2, 3, 4, 5) of Yi(i = 1, 2, 3) andXj(j = 1, 2, 3, 4, 5).

Then find the images of zero-starting point for all system’s characteristic behav-
ioral sequences Yi(i = 1, 2, 3) and the behavioral sequences of relevant factors
Xj(j = 1, 2, 3, 4, 5).

Y
′0
i (i = 1, 2, 3) and X

′0
j (j = 1, 2, 3, 4, 5) of Y ′

i (i = 1, 2, 3) and X ′
j (j =

1, 2, 3, 4, 5).
From:

∣∣∣s′
yi

∣∣∣ =
∣∣∣∣∣

4∑

k=2

y
′0
i (k) + 1

2
y

′0
i (5)

∣∣∣∣∣; i = 1, 2, 3
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∣∣∣s′
xj

∣∣∣ =
∣∣∣∣∣

4∑

k=2

x
′0
j (k) + 1

2
x

′0
j (5)

∣∣∣∣∣; j = 1, 2, 3, 4, 5

∣∣∣s′
yi

− s′
xj

∣∣∣ =
∣∣∣∣∣

4∑

k=2

(y
′0
i (k) − x

′0
j (k)) + 1

2
(y

′0
i (5) − x

′0
j (5))

∣∣∣∣∣ ;i = 1,2,3,;j = 1, 2, 3, 4, 5

rij =
1 +

∣∣∣s′
yi

∣∣∣ +
∣∣∣s′

xj

∣∣∣

1 +
∣∣∣s′

yi

∣∣∣ +
∣∣∣s′

xj

∣∣∣ +
∣∣∣s′

yi
− s′

xj

∣∣∣
; i = 1, 2, 3; j = 1, 2, 3, 4, 5,

we have:

r11 = 0.7945, r12 = 0.7389, r13 = 0.6046, r14 = 0.8471, r15 = 0.9973

r21 = 0.6937, r22 = 0.6571, r23 = 0.5837, r24 = 0.9738, r25 = 0.8271

r31 = 0.7300, r32 = 0.6866, r33 = 0.6101, r34 = 0.9444, r35 = 0.8884

Therefore, we have the relative grey relational degree matrix as follows:

B =
⎡

⎣
r11 r12 r13 r14 r15
r21 r22 r23 r24 r25
r31 r32 r33 r34 r35

⎤

⎦ =
⎡

⎣
0.7945 0.7389 0.6046 0.8471 0.9973
0.6937 0.6571 0.5837 0.9738 0.8271
0.7300 0.6866 0.6101 0.9444 0.8884

⎤

⎦

(3) Compute the grey synthetic relational degree matrix. If θ = 0.5, we have:

C = θA + (1 − θ)B = (θεij + (1 − θ)rij) = (ρij)

=
⎡

⎣
ρ11 ρ12 ρ13 ρ14 ρ15

ρ21 ρ22 ρ23 ρ24 ρ25

ρ31 ρ32 ρ33 ρ34 ρ35

⎤

⎦

=
⎡

⎣
0.7713 0.6420 0.5533 0.7266 0.7772
0.7869 0.6136 0.5429 0.8184 0.7076
0.8185 0.6303 0.5566 0.8097 0.7412

⎤

⎦

(4) Analysis and discussion. In matrix A of the grey absolute relational degree, the
rows of A satisfy the following formula:

ε3j > ε2j ≥ ε1j; j = 1, 2, 3, 4, 5.

Therefore, we have Y3 � Y2 � Y1. That is, Y3 is the most favorable characteristic
variable, Y2 is the second, and Y1 the least favorable characteristic variable. All
columns of A satisfy:

εi1 > εi4 > εi5 > εi2 > εi3 ; i = 1, 2, 3.
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Therefore, we have:

X1 � X4 � X5 � X2 � X3.

That is, X1 is the most favorable factor, X4 the second, X5 the third, X2 the fourth,
and X3 the least.

From the matrix B of relative degree of relational, it can be seen that because the
elements of B satisfy

ri4 > ri1 > ri2 > ri3; i = 1, 2, 3

ri5 > ri1 > ri2 > ri3; i = 1, 2, 3

Thus, we can conclude that:

X4 � X1 � X2 � X3, X5 � X1 � X2 � X3.

Hence, X3 is the most unfavorable factor of the system. Further, let us consider
the following:

5∑

j=1

r1j = 3.9824 >

5∑

j=1

r3j = 3.8595 >

5∑

j=1

r2j = 3.7354.

Thus, we can conclude that Y1�Y3�Y2, that is, Y1 is the quasi-preferred
characteristic. Also, given that:

3∑

i=1

ri4 = 2.7653 >

3∑

i=1

ri5 = 2.7128 >

3∑

i=1

ri1 = 2.2182

>

3∑

i=1

ri2 = 2.0826 >

3∑

i=1

ri3 = 1.7984,

we have:

X4�X5�X1�X2�X3.

That is, X4 is the quasi-preferred factor, X5 the next, and X3 the most unfavorable
factor.

OnmatrixC of the grey synthetic relational degree, it can be seen that the elements
of C satisfy:

ρi1 > ρi2 > ρi3, ρi4 > ρi2 > ρi3, ρi5 > ρi2 > ρi3, i = 1, 2, 3.

Therefore, we have:
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X1�X2�X3, X4�X2�X3, X5�X2�X3.

That is, X3 is the least preferred factor. We further consider the following:

5∑

j=1

ρ3j = 3.5563 >

5∑

j=1

ρ1j = 3.4704 >

5∑

j=1

ρ2j = 3.4694.

Thus,

Y3�Y1�Y2.

That is, Y3 is the quasi-preferred characteristic variable. Also, based on:

3∑

i=1

ρi1 = 2.3767 >

3∑

i=1

ρi4 = 2.3547 >

3∑

i=1

ρi5 = 2.226 >

3∑

i=1

ρi2 = 1.8859

>

3∑

i=1

ρi3 = 1.6528,

it follows that:

X1�X4�X5�X2�X3.

Therefore, X1 is the quasi-preferred factor, X4 the next, X5 is more favorable than
X2, and X3 is the most unfavorable factor.

When investigating practical problems, the analyses of the three relational orders
may not provide cohesive conclusions. This is because the absolute relational order
looks at the relationship between absolute quantities, the relative relational order
focuses on the rates of change with respect to the initial values of the observed
sequences, while the synthetic relational order combines both the relationships
between absolute quantities and rates of change. When considering the background
of the problem of concern, we can choose one of the relational orders. For parsi-
mony purposes, after a particular grey relational operator is applied to the system’s
characteristic behavioral sequences and relevant factor sequences, one only needs to
employ the absolute relational order to the processed data.

5.10 Practical Application

Through the example below, we look at how to apply GRA models to analyze the
time difference of economic indices.
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Example 5109.1 In order to effectivelymonitor the performance ofmacro-economic
systems and provide timely warnings, there is a need to investigate the time rela-
tionship of various economic indices with respect to economic cycles in terms of
their peaks and valleys. In order to do so, questions such as the following must be
addressed: Which indices can provide warning ahead of time? Which indices would
be synchronic with the evolution of economic systems? And which indices tend to
lag behind economic development? In other words, there is a need to divide economic
indices into three classes: leading indicators, synchronic indices, and stagnant repre-
sentations. To this end, grey relational analysis is an effective method for classifying
economic indices (Chen & Liu, 2005).

Through careful research and analysis, we selected the following 8 major classes
and 17 criteria as indices for economic performance:

(1) The Energy and raw materials class: the total production of energy;
(2) The investments class: the total investment in real estate;
(3) The production class: increase in industry output, increase in light industry

output, increase in heavy industry output;
(4) The revenue class: national income, national expenditure;
(5) The currency and credit class: currency in circulation, savings at various finan-

cial institutions, amount of loans issued by financial institutions, cash payout in
the form of salary and wages, net amount of currency in circulation;

(6) The consumption class: the gross retail amount of the society;
(7) The foreign trade class: gross amount of imports, gross amount of exports, direct

investments by foreign entities; and
(8) The commodity prices class: the consumer price index.

By applying the following standards, we classify the previous criteria into three
classes: leading indicators, synchronic indices, and stagnant representations. The
standards for determining leading indicators are as follows:

(1) The indicated appearance of economic cyclic peaks needs to be at least three
months ahead of their actual occurrence. Such leading relationship must be
relatively stable with few exceptions;

(2) Indicated cycles and historical cycles are nearly one-to-one corresponded to
each other. Also, for the most recent three economic cycles, the indicated cycles
must be at least two times ahead of the actual occurrences with at least 3 months
of lead time; and

(3) The economic characteristics of the indices provide relatively definite and clear
leading relationships with respect to the background economic cycles.

The standards for determining both synchronic indices and stagnant represen-
tations are similar to those outlined above. However, for synchronic indices the
time differences between the indicated appearances and the actual occurrences
of economic cycles must be within plus and minus 3 months, while for stagnant
representations the indicated appearances of economic cycles are behind the actual
occurrences by at least 3 months.
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In practice, it is almost impossible to find an index that meets all the stated stan-
dards. Therefore, based on the recorded reference cycles, we look for the statistical
indices that meet the previously stated standards as closely as possible. In reality, a
leading indicator can sometimes lag behind actual economic development, while an
identified stagnant representation can also provide good lead-time in its forecast of a
specific economic evolution. Similar scenarios also occur with regard to synchronic
indices. However, theoretically, if the index is leading the actual occurrences among
the one-to-one correspondences between an index and the actually recorded cycles
over 2/3 of times, then we treat such an index as leading. Similar treatments are
applied to synchronic indices and stagnant representations.

Given that the increase in industry output has played a significant role in the
Chinese economy, as a synchronic index it has high quality. Therefore, it can be
employed as the basic index in our grey relational analysis. We will compute not
only the grey absolute relational degree between each criterion and the increase in
industry output, but also the grey absolute relational degree of the other 16 criteria
with their data translated 1 – 12 months along the time axis either left or right. When
data are translated to the left, the months will take negative values; when translated to
the right, the months will take positive values. The amount of horizontal translation
is denoted by L. That is, we compute the grey absolute relational degree between
all 16 individual criteria, excluding that of increase in industry output, and that of
increase in industry output for L = − 12, …, 12. For each L-value, we order the
obtained the grey absolute relational degree from the smallest to the largest, with the
criterion listed in the front chosen as candidate criterion for that specific L-value. For
instance, when L = 0, the grey absolute relational degree of the criteria are listed in
Table 5.2.

Synchronic indices should be selected from those with large grey absolute rela-
tional degree, because large degrees of relational indicate that these criteria have
greater similarities in comparison with that of increase in industry output, which
we employ as the basic standard of the Chinese economic cycles. However, we still
do not have theoretical evidence to support that an index with large grey absolute
relational degree must be synchronic. To this end, we also need to consider whether
or not the related grey absolute relational degree will be even greater when L �= 0.
If when L = 0 the value of the grey absolute relational degree of a certain index is
ranked in the front, and if when L = − 4 its value is even greater, it means that after
this index is translated to four months earlier, it is more similar to the pattern of the
increase in industry output. Thus, in this case, this specific index can be seen as one
leading the economic cycle by as much as about four months. By using these two
standards, we can not only classify indices as synchronic, leading, or stagnant, but
also specify the amount of leading or staggering time.

When L = 0, the index of “cash payout as salaries” is ranked relatively in the
front. Therefore, it is a natural candidate for being a synchronic indicator. When the
L–value changes, the relevant changes in its absolute degrees of grey relational are
given in Table 5.3.

From Table 5.3, it follows that when L = 1, the grey absolute relational degree
reaches its maximum. Therefore, this specific index should be seen as one that is
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Table 5.2 The absolute degrees of grey relational of the criteria when L = 0

Index Absolute degree of
grey relational

Index Absolute degree of
grey relational

Increase in heavy
industry output

0.979810 National income 0.559540

Increase in light
industry output

0.972655 Gross amount of exports 0.544870

Gross retail amount 0.862105 Total production of
energy

0.541044

Cash payout as
salaries

0.789278 Net amount of currency
in circulation

0.525936

Currency in
circulation

0.753681 Loans issued by financial
institutions

0.507958

Total investment in
real estate

0.726366 Savings at financial
institutions

0.505226

Gross amount of
imports

0.598248 Consumer price index 0.500173

National
expenditure

0.566914 Direct investments by
foreign entities

0.500002

Table 5.3 The grey absolute relational degrees of “cash payout as salaries” when L �= 0

L The grey absolute relational degree L The grey absolute relational degree

− 12 0.664615 1 0.877090

− 11 0.705983 2 0.867859

− 10 0.733564 3 0.857366

− 9 0.752740 4 0.832260

− 8 0.753598 5 0.825027

− 7 0.732221 6 0.806787

− 6 0.723942 7 0.806782

− 5 0.731232 8 0.820384

− 4 0.742249 9 0.803771

− 3 0.752628 10 0.806649

− 2 0.770216 11 0.805679

− 1 0.800838 12 0.836308

0 0.789278

lagging the economic cycle by as much as one month. An index which is leading
or lagging no more than two months is usually seen as synchronic. However, if it
exceeds this range of time it will be treated as either a leading or staggering index.

As a second example, the computational results for the index of “gross retail
amount” are provided in Table 5.4.
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Table 5.4 The grey absolute relational degrees of “gross retail amount”

L The grey absolute relational degree L The grey absolute relational degree

− 12 0.914466 1 0.856944

− 11 0.915117 2 0.866789

− 10 0.918527 3 0.876758

− 9 0.887243 4 0.882430

− 8 0.888258 5 0.889590

− 7 0.928151 6 0.895899

− 6 0.948684 7 0.900899

− 5 0.939351 8 0.900130

− 4 0.923900 9 0.895977

− 3 0.909621 10 0.894374

− 2 0.884610 11 0.892662

− 1 0.846814 12 0.889532

0 0.862105

From Table 5.4, it can be seen that when L = − 6 the grey absolute relational
degree of the particular index reaches its maximum. Therefore, it can be seen as a
leading indicator. By using this method, we can compute the L–values corresponding
to the maximum grey absolute relational degree of each of the indices of our interest.
The results are listed in Table 5.5.

Table 5.5 L–values corresponding to maximum grey absolute relational degree of the indices of
our interest

Index L Absolute
degree

Index L Absolute
degree

Currency in circulation − 6 0.983452 National income +
12

0.718998

Increase in heavy industry
output

0 0.979810 Gross amount of
imports

− 9 0.606556

Increase in light industry
output

0 0.972655 Gross amount of exports +
10

0.560054

Gross retail amount − 6 0.948684 Total production of
energy

− 6 0.555035

Cash payout as salaries + 1 0.877090 Direct investments by
foreign entities

−
11

0.510016

National expenditure +
12

0.800533 Loans issued by
financial institutions

− 5 0.508375

Net amount of currency in
circulation

+ 8 0.796688 Savings at financial
institutions

− 6 0.505588

Total investment in real
estate

−
11

0.769778 Consumer price index +
11

0.503235
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Table 5.5 indicates that we can classify the 16 indices of the eight major classes
into three classes as leading, synchronic, and stagnant indices, as shown in Table 5.6.

Example 5.10.2 Measurement of Reverse Incentive Effect of Fields Medal (Liu,
2022).

Most people agree that knowledge production can promote long-term economic
growth. Yet little is known about how knowledge is produced (Borjas & Doran,
2015). For example, it is difficult for the author to explain clearly how the models of
the negative grey similarity relational degree, the negative grey absolute relational
degree, negative grey relative relational degree, negative grey comprehensive rela-
tional degree, and negative Deng’s grey relational degree are finally proposed in
this paper after 40 years of thinking. People try to motivate knowledge producers
through awards. Hundreds of scientific prizes are awarded throughout the world and
across all scientific disciplines. Although these prizes are frequently awarded with
the explicit goal of inspiring more and better scientific work (Scotchmer, 2006). But

Table 5.6 Classifications of leading, synchronic, and stagnant indices

Leading index Synchronic index Stagnant index

Energy and raw
materials

Total production of
energy (− 6)*

Investment Total investment in real
estate (− 11)

Production Increase in light
industry output (0)
Increase in heavy
industry output (0)

Finance National income (+ 12)
National expenditure (+
12)

Currency and
credit

Currency in circulation
(− 6)
Savings at financial
institutions (− 6)
Loans issued by financial
institutions (− 5)

Cash payout as
salaries (+1)

Net amount of currency
in circulation (+ 8)

Consumption Gross retail amount (−
6)

Foreign trade Gross amount of imports
(− 9)
Direct investments by
foreign entities (− 11)

Gross amount of exports
(+ 10)

Commodity price Consumer price index (+
11)

* Numbers in parentheses stand for the time difference between indicated cycles and reference
cycles
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a question remains: what kind of incentive effect does these prizes have produced
(Rosen, 1986)?

Fields Medal is recognized internationally as the highest academic award project
in the field of mathematics. Mathematicians all over the world are proud to win the
Fields Medal. Because there is no mathematics award in the Nobel Prize for natural
science, Fields Medal is also known as the “Nobel Prize in mathematics”.

In 1932, according to the proposal of the Canadian mathematician John Charles
Fields, the 9th International Conference of mathematicians held in Zurich decided
to establish an international mathematics award named after his surname—Fields
Medal.

Fields Medal is awarded every four years. The award ceremony is held at the
Quadrennial International Conference of mathematicians hosted by the International
Mathematical Federation. Each time, it is awarded to 2 to 4 young mathematicians
with outstanding contributions. Winners will receive a bonus of 15,000 Canadian
dollars and a gold medal. According to the award rules, FieldsMedal is only awarded
to mathematicians under the age of 40 on January 1, the year of award.

Fields Medal was first awarded in 1936. By 2018, a total of 60 mathematicians in
the world had won Fields Medal.

As a prestigious World Award, Fields Medal has played an important role in
attracting a large number of talented young scholars to participate in mathematical
research and solve the world’s mathematical problems.

Unlike the Nobel Prize, Fields Medal is awarded only to mathematicians under
the age of 40. Mathematicians over the age of 40, no matter how much academic
achievements they have made, are not eligible for Fields Medal. If there are a large
number of mathematicians who have made greater contributions than the winners
and can not win the prize only because of their age, the fairness of such a “grand
prize” is obviously debatable.

For those scholars who won Fields Medal, what effect does the award have on
their research work?

In 2015, George J. Borjas and Kirk B. Doran with University of Notre Dame
conducted an in-depth study on the effect of Fields Medal. They selected 142 mathe-
maticians at first, including all 56 Fields Medal winners (Medalists) at that time and
86 mathematicians in the control group (Contenders). Then collected the data of the
published academic papers and other relevant data every year from the beginning of
their academic career to the age of 60. Trying to analyze the impact of Fields Medal
on the research output of the winners according to the actual data (Borjas & Doran,
2015).

The 86 mathematicians of contenders are all the winners of other prestigious
mathematics awards. Such as the Abel Prize and the Wolf Prize. Other important
awards are issued by the American Mathematical Society which including the Cole
Prize for algebra, the Bôcher Prize for mathematical analysis, the Veblen Prize for
Geometry, and Salem Prize for Fourier Series. Most of the winners of Fields Medal
were won the above awards at first, and then won their Fields Medal. Therefore, it
can be said that the 86 mathematicians in the control group are scholars who have
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the strength to participate competition for Fields Medal and finally fail to win Fields
Medal.

We divide the sequences of annual average number of papers published by the
Medalists and the Contenders into two parts: 16 years before the award and 20 years
after the award. The data sequences of annual average number of papers published
by Medalists and Contenders for 16 years before the award are denoted by XM , XC

respectively. And the data sequences of annual average number of papers published
by the Medalists and the Contenders for 20 years after the award are denoted by
YM , YC respectively.

Calculate the three term center moving average smoothing sequence of
XM , XC; YM , YC . Still denoted by XM , XC; YM , YC as before.

XM = (xM (1), xM (2), . . . , xM (16))

= (2.64, 2.63, 2.70, 2.69, 2.80, 2.91, 3.01, 3.09, 3.38,

3.63, 3.81, 3.83, 3.95, 3.75, 3.85, 3.62)

XC = (xC(1), xC(2), . . . , xC(16))

= (1.95, 2.11, 2.32, 2.72, 3.03, 3.48, 3.51, 3.61, 3.60,

3.50, 3.59, 3.75, 4.02, 4.10, 4.02, 4.00)

YM = (yM (1), yM (2), . . . , yM (20))

= (3.72, 3.50, 3.51, 3.35, 3.15, 2.90, 2.95, 2.92, 3.02, 3.01, 3.02, 3.10,

3.25, 3.30, 3.40, 3.35, 3.33, 2.96, 2.72, 2.60)

YC = (yC(1), yC(2), . . . , yC(20))

= (3.95, 3.90, 4.20, 4.40, 4.50, 4.53, 4.48, 4.46, 4.01, 4.54, 4.75, 4.72, 4.49, 4.23, 4.50,

4.62, 4.91, 4.95, 5.24, 5.49)

Calculate the zero-starting point sequences of XM , XC; YM , YC ,

X 0
M = (0,−0.01, 0.06, 0.05, 0.16, 0.27, 0.37, 0.45, 0.74,

0.99, 1.17, 1.19, 1.31, 1.11, 1.21, 0.98)

X 0
C = (0, 0.16, 0.37, 0.77, 1.08, 1.53, 1.56, 1.66, 1.65, 1.55,

1.64, 1.80, 2.07, 2.15, 2.07, 2.05)

Y 0
M = (0,−0.22,−0.21,−0.37,−0.57,−0.82,−0.77,−0.80,

− 0.70,−0.71,−0.70,−0.62,−0.47,−0.42,−0.32,

− 0.37,−0.39,−0.76,−1.00,−1.12)

Y 0
C = (0,−0.05, 0.25, 0.45, 0.55, 0.58, 0.53, 0.51, 0.06, 0.59, 0.80, 0.77, 0.54, 0.28,

0.55, 0.67, 0.96, 1.00, 1.29, 1.07)
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From definition 2, we have

sXM = 9.56, sXC = 21.085

and

sYM = −10.78, sYC = 10.865

Therefore, both XM and XC are all increasing sequences. YM and YC are reverse
sequences.

By formula (5), we have

φN
YM YC

= −
∣∣sYM − sYC

∣∣
1 + |sYM − sYC | ≈ −0.96

Before the award, the average annual number of papers published by both the
Medalists and the Contenders are all showed increasing trend, and the number was
roughly the same. After winning the award, the average annual number of papers
published by the Contenders is still an increase sequence, while the average annual
number of papers published by the Medalists is an attenuation sequence, and the two
show a strong inverse relation. The results clearly reveals that the “highest award”
won by researchers in their prime of life has a significant reverse incentive effect on
their research output.

At the same time, George J. Borjas and Kirk B. Doran are collected and analyzed
the relevant data that can reflect the research “quality” of the Medalists and the
Contenders. They found that from the data such as the citation of the papers, the
quality of research work of the winners of Fields Medal were also significantly
reduced (Borjas & Doran, 2015).

Borjas and Doran’s research further shows that, compared with the Contenders,
more the Medalists changed their research direction after winning the prize. The
Medalists are usually not as worried about the “failure” of the research as before.
Therefore, the proportion of those who change the research direction in theMedalists
is significantly higher than that in the Contenders (Borjas & Doran, 2015).

The Fields Medal not only won the winners social reputation and respect, but also
produced a huge wealth effect. Many academic institutions have hired or hope to hire
the winners of Fields Medal with high salaries, giving them more opportunities and
choices. After winning the prize, some people began to “Revel in being sought after
“ and “To play the game of life”, giving up their previous academic pursuit (Borjas &
Doran, 2015). This may be one of the reasons for the reverse incentive effect.

Some people say, “small awards inspire people to forge ahead, and big awards
stop people.” maybe it’s not unreasonable.

Example 5.10.3 Grey relational analysis of consumer price indices of various
foods in Shaanxi Province, China (Liu et al., 2024)
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Fig. 5.10 The line graphs of the consumer price indices of 11 main foods

An in-depth analysis will be conducted on the relationship between various food
consumer price indices in Shaanxi Province, China. Here, the consumer price indices
of 11 main foods including Grain, Potato, Beans, Edible oil, Vegetables, Livestock
meat, Poultry, Aquatic products, Eggs, Milk, and Fruits, etc. are considered.

The data sequences of the consumer price indices of Grain, Potato, …, and Fruits
are recorded as X1, X2, …, and X11 respectively. Based on the actual data from 2016
to 2021, the line graphs of X1, X2, …, and X11 can be drawn as Fig. 5.10.

From Fig. 5.10, it can be seen that the relationship between the consumer price
index curves of 11major foods is very complex.Especially sincemost curves intersect
with each other, traditional grey relational analysismodels cannot be used to calculate
the correlation degree of the consumer price index sequences of 11 major foods.

For the convenience of discussion, we will refer to the classification of substitutes
and complements in economics and divide the 11main foods into 5 groups as follows:

(1) Group 1: Grain category including Grain, Potato, Beans;
(2) Group 2: Meat category including Livestock meat, Poultry, and Aquatic

products;
(3) Group 3: Livestock meat, Eggs, and Milk;
(4) Group 4: Grain, Vegetables, and Livestock meat;
(5) Group 5: Vegetables, Edible oil, and Fruits.

According to the conclusions of economic analysis, there is a mutual substitution
relationship between the foods in group 1, group 2 and group 3. And there is a
complementary relationship between the foods in group 4 and group 5.
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Based on the actual data from 2012 to 2021, the line graphs of the data sequences
in group 1, group 2 and group 3, group 4 and group 5 can be drawn as Figs. 5.11,
5.12, 5.13, 5.14 and 5.15.

According to economic theory, there is a positive correlation between the price
indices of substitutes, while the price indices of complementary products have a
reverse correlation. But it’s very difficult to find the positive or reverse correlation
from Figs. 5.11, 5.12, 5.13, 5.14 and 5.15.We need to use the grey relational analysis
model of cross sequences and reverse sequences (Liu, 2023) for in-depth quantitative
research.
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Fig. 5.11 The line graphs of the data sequences in group 1
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Fig. 5.12 The line graphs of the data sequences in group 2
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Fig. 5.13 The line graphs of the data sequences in group 3
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Fig. 5.14 The line graphs of the data sequences in group 4

For group 1, from the Statistical Yearbooks of Shaanxi Province of 2013–2022,
we can find out the consumer price index sequences of Grain, Potato, and Beans as
follows:

Grain X1 = (103.3, 107.9, 103.3, 102.7, 100.3, 101.6,

100.9, 100.7, 101.6, 103.7)102.6.

Potato X2 = (100.3, 105.7, 99.6, 99.6, 111.4, 96.7,

105.9, 101.1, 105.4, 93.7)101.94.
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Fig. 5.15 The line graphs of the data sequences in group 5

Beans X3 = (99.5, 109.4, 109.7, 103.3, 99.9, 100.1,

99.9, 100.6, 108.4, 105.2)103.6.

The mean sequences of X1, X2, and X3 as follows:

Y1 = (1.01, 1.05, 1.01, 1, 0.98, 0.99, 0.98, 0.98, 0.99, 1.01)

Y2 = (0.98, 1.04, 0.98, 0.98, 1.09, 0.95, 1.04, 0.99, 1.03, 0.92)

Y3 = (0.96, 1.06, 1.06, 1, 0.96, 0.97, 0.96, 0.97, 1.05, 1.02)

The starting point zero sequences of Y1, Y2, and Y3 as follows:

Y0
1 = (0, 0.04, 0,−0.01,−0.03,−0.02,−0.03,−0.03,−0.02, 0)

Y0
2 = (0, 0.06, 0, 0, 0.11,−0.03, 0.06, 0.01, 0.05,−0.06)

Y0
3 = (0, 0.1, 0.1, 0.04, 0, 0.01, 0, 0.01, 0.09, 0.06)

Therefore, we can obtain the following results

s1 = −0.1 ‖s1‖ = 0.15

s2 = 0.23 ‖s2‖ = 0.35

s3 = 0.38 ‖s3‖ = 0.38

The calculation results are different from the conclusions of traditional economic
research. In traditional economic theory, Potato and Beans are substitute for grain.
But the opposite sign between s1 and s2,and between s1 and s3 indicates a complemen-
tary relationship between Potato and grain, and Beans and grain. In fact, the results
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obtained in this article are reasonable. Because in China, people usually make pota-
toes into dishes, and make soybeans into tofu, bean sprouts, etc. They are indeed to
a large extent complementary to grain as sideline foods.

From

s1 − s2 = −0.33 ‖s1 − s2‖ = 0.41

s1 − s3 = 0.48 ‖s1 − s3‖ = 0.48

s2 − s3 = −0.15 ‖s2 − s3‖ = 0.49

we have

ε12 − �12 = 0.75 − 0.21 = 0.54 φN
12 = − |s1 − s2|

1 + |s1 − s2| = −0.25

ε13 − �13 = 0.68 − 0.24 = 0.44 φN
13 = − |s1 − s3|

1 + |s1 − s3| = −0.32

And

ε23 − �23 = 0.87 − 0.22 = 0.65

Here, φN
12 = −0.25 < φN

13 = −0.32
This indicates that the complementarity between soybeans and grains is stronger

than that between potatoes and grains. And there is a significant substitution
relationship between soybeans and potatoes.

Similarly, we can obtain the results for group 2-group 5 as follows:
For group 2, we have

s6 = 0.675 ‖s6‖ = 0.985

s7 = 0.235 ‖s7‖ = 0.365

s8 = −0.605‖s8‖ = 0.635

s6 − s7 = 0.44 ‖s6 − s7‖ = 0.86
s6 − s8 = 1.2 ‖s6 − s8‖ = 1.46

s7 − s8 = 0.84 ‖s7 − s8‖ = 0.94

ε67 − �67 = 0.69 - 0.27 = 0.42

ε68 − �68 = 0.45 - 0.36 = 0.09

φN
68 = − |s6 − s8|

1 + |s6 − s8| = −0.55

ε78 − �78 = 0.54 − 0.32 = 0.22
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φN
78 = − |s7 − s8|

1 + |s7 − s8| = −0.46

The opposite sign between s6 and s8, and between s7 and s8 indicates a comple-
mentary relationship between Livestock meat and Aquatic products, and Poultry and
Aquatic products. As an inland province, The aquatic products’ consumption of resi-
dents in Shaanxi Province is much lower than that of coastal areas. Here, in people’s
daily lives, aquatic products are difficult to replace meat.

For group 3, we have

s6 = 0.675 ‖s6‖ = 0.985

s9 = 0.4 ‖s9‖ = 0.78

s10 = 0.02 ‖s10‖ = 0.26

s6 − s9 = 0.365 ‖s6 − s9‖ = 1.355
s6 − s10 = 0.655 ‖s6 − s10‖ = 1.105
s9 − s10 = 0.29 ‖s9 − s10‖ = 0.53

ε69 − �69 = 0.73 − 0.33 = 0.40

ε610 − �610 = 0.60 − 0.33 = 0.27

ε910 − �910 = 0.78 − 0.21 = 0.57

The sign of s6, s9, and s10 are the same. The results indicate that Livestock meat,
eggs and milk are substitutes for each other. The calculation results both of grey
similarity relational degrees and the modified grey similarity relational degrees indi-
cate that the substitution relationship between eggs and milk is the strongest, and
compared to the substitution relationship between Livestock meat and eggs, the
substitution relationship between Livestock meat and milk is weaker.

For group 4, we have,

s1 = −0.1 ‖s1‖ = 0.15

s5 = −0.5 ‖s5‖ = 0.54

s6 = 0.675 ‖s6‖ = 0.985

s1 − s5 = 0.58 ‖s1 − s5‖ = 0.72
s1 − s6 = −0.775 ‖s1 − s6‖ = 1.005
s5 − s6 = 1.355 ‖s5 − s6‖ = 1.445

ε15 − �15 = 0.63 − 0.30 = 0.33

ε16 − �16 = 0.56 − 0.40 = 0.16 φN
16 = − |s1 − s6|

1 + |s1 − s6| = −0.44
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ε56 − �56 = 0.42 − 0.36 = 0.06 φN
56 = − |s5 − s6|

1 + |s5 − s6| = −0.58

The sign of s1 and s5 are the same. This result tells us that the relationship between
grains and vegetables is not entirely complementary, and the two can sometimes be
substitutes for each other. In fact, the total food intake of a person is relatively
stable. As people’s vegetable consumption increases, the amount of grain consumed
will naturally decrease. The calculation results of negative grey similarity relational
degrees φN

56 = −0.58 < φN
16 = −0.44 indicate that compared to the complemen-

tary relationship between Livestock meat and grain, the complementary relationship
between Livestock meat and vegetables is stronger.

For group 5, we have,

s4 = −0.425 ‖s4‖ = 0.475

s5 = −0.5 ‖s5‖ = 0.54

s11 = 0.18 ‖s11‖ = 0.52

s4 − s5 = 0.255 ‖s4 − s5‖ = 0.435
s4 − s11 = −0.605 ‖s4 − s11‖ = 0.795
s5 − s11 = −0.86 ‖s5 − s11‖ = 1.08

ε45 − �45 = 0.80 - 0.18 = 0.62

ε4,11 − �4,11 = 0.62 - 0.28 = 0.34

φN
4,11 = − |s4 − s11|

1 + |s4 − s11| = −0.38

ε5,11 − �5,11 = 0.54 - 0.34 = 0.20

φN
5,11 = − |s5 − s11|

1 + |s5 − s11| = −0.46

The sign of s4 and s5 are the same. This result tells us that the relationship between
edible oil and vegetables is not entirely complementary, and the two can sometimes be
substitutes for eachother. In northernChina, residents prefer fried foods. Somepeople
seek convenience by eating fried foods to avoid the trouble of cooking vegetables. The
calculation results of negative grey similarity relational degrees φN

5,11 = −0.46 <

φN
4,11 = −0.38 indicate that compared to the complementary relationship between

edible oil and fruits, the complementary relationship between vegetables and fruits
is stronger.

The grey relational analysis models of cross sequences and reverse sequences was
used to analyze the consumer price indices of various foods in Shaanxi Province.
We have obtained some interesting results that are not completely consistent with
general economic theory. The group analysis results of the foods consumer price
indies in Shaanxi Province indicate that there is also a certain degree of substitution
relationship between foods that are considered complementary by people. There
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is also a certain degree of complementarity between foods that are considered to
be substitutable. There is no complete substitution or complementary relationship
between different types of food. In the event of a shortage of supply in a certain food
market, complementary foods may also replace each other. With the improvement
of people’s living standards, the diversity of food has become the norm, and the
complementary relationship between alternative foods will gradually strengthen. To
some extent, it may be possible to consider using the complementary relationship
between alternative foods as a criterion to determine the level of living standards of
people in different regions.
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Chapter 6
Grey Clustering Evaluation Models

6.1 Introduction

Grey clustering is a method developed for classifying observation indices or obser-
vation objects into definable classes using grey incidence matrices or grey possibility
functions. Each cluster can be seen as a set consisting of all the observational objects
of a kind. When investigating practical problems, it is often the case that each obser-
vational object possesses quite a few characteristic indices, which are difficult to
accurately classify. Depending on the objects to be clustered, grey clustering can
be based on two methods: clustering using GRA models, and clustering using grey
possibility functions. The first method is mainly applied to group the same kinds of
factors into their individual categories, so that a complicated system can be simpli-
fied. By using the clustering method of grey relational analysis, we can examine
whether or not some of the factors under consideration really belong to the same
kind. This allows a synthetic index of these factors, or one of these factors, to be
used to represent all factors without losing any part of the available information
carried by such factors. This problem regards the selection of variables to be used in
the study of a system. Before conducting a large-scale survey, which generally costs
a lot of money and man power, by using the clustering method of grey relational
analysis on a typical sample data, one can reduce the amount of data collection to a
minimal level by eliminating the unnecessary variables so that tangible savings can
be achieved.

The clustering method based on grey possibility functions is mainly used for
checkingwhether or not the observational objects belong to pre-determined classes so
that they can be treated differently. In practice, we need to set the possibility functions
and theweights for different criterion according to the corresponding clustering index
and the grey classes we intend to partition if using the clustering method based on
grey possibility functions.

Grey clustering evaluation models using possibility functions are used widely for
uncertain systems analysis. For the past four decades, much research on modeling
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techniques has been done, and new research results emerge constantly. For example,
Professor JulongDenghas proposed the variableweight grey clusteringmodel (Deng,
1985), while Professor Liu et al. has proposed the fixed weight grey clustering evalu-
ation model (Liu, 1993), the grey clustering evaluation model using end-point trian-
gular possibility functions (Liu & Guo, 1991; Liu & Zhu, 1993), the grey cluster
evaluation model using center-point triangular possibility functions (Liu & Xie,
2011),the grey cluster evaluation model using mixed possibility functions (Liu et al.,
2015a, 2015b), among others. Grey variable weight clustering model is applicable
to the problems with criteria that have the same meanings and dimensions. When the
criteria for clustering involve different meanings and dimensions, the fixed weight
grey clustering evaluation model and grey clustering evaluation model using trian-
gular possibility functions are suitable. In particular, compared with the variable
weight grey clustering and fixed weight grey clustering models, the grey clustering
evaluation model using triangular possibility functions is more suitable for problems
of poor information clustering evaluation. The grey clustering evaluationmodel using
mixed end-point triangular possibility functions is suitable for situations where all
grey boundaries are clear, but where the most likely points belonging to each grey
class are unknown. Conversely, the grey clustering evaluation model using mixed
center-point triangular possibility functions is suitable for problems where it is easy
to judge themost likely points belonging to each grey class, butwhere the grey bound-
aries are unclear (Liu et al., 2015a, 2015b). Additionally, both of the last two grey
clustering evaluation models based on mixed possibility function which composed
by the possibility function of moderate measure, the possibility function of lower
measure, and the possibility function of upper measure.

Further, Xiao (1997), Xiong andChen (1999), Dong et al. (2010), Pei et al. (2012),
Xu0 (2006), Zhou et al.(2013), Liu et al. (2013), Dang et al.(2017), Qian et al. (2016),
Sun et al. (2022), Zhang and Dang (2023), Li and Li(2023), and others are improved
and optimized grey clustering evaluationmodels fromdifferent perspectives. Further-
more, Zhang (2002) has studied the measurement problem of Grey Characteristics
of Grey Clustering Result. He has investigated the relation between a grey clustering
analysis result and the entropy of the weight sequence, and proposed a measure
method for the grey characteristics of a grey clustering analysis result.

Grey clustering models based on mixed possibility functions are used widely.
For example, Caixin Sun and his group used to online monitoring and diagnosis
technology of the state of power transmission and transformation equipment (Sun,
2005; Yuan et al., 2005). Liang, et al. applied in torpedo life cycle cost effectiveness
evaluation (Liang et al., 2007). Zhang et al. applied in safety evaluation of carier
aircraft system (Zhang et al., 2010). Yao and Hu used to analysis the operational
efficiency of OTHGround-Wave Radar (Yao&Hu, 2008). Han et al. used to evaluate
the development scheme of warhead in antimissile missile of air defense (Han et al.,
2014).Chen, et al. used in evaluation of radar netting operational effectiveness (Chen
et al., 2019). Su and Xie applied in safety evaluation of civil aircraft (2018). Delcea,
et al applied to reverse pyramid boarding method (Delcea et al., 2022)
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Fang Peng applied in evaluation of oil and gas cap layer (Peng et al., 2005). Fang,
et al. applied in Coal and Gas Outburst Prediction (Fang et al., 2012). Jiskani et al.
applied in safety evaluation in mines (2021).

Maleki and Taghavi Fard used in scheduling evaluation (2015). Ţilică et al. used
in portfolio management under capital market frictions (Ţilică et al., 2024). Liu and
his group used in disabled elders evaluation (2019). Delgado and Romero applied in
environmental conflict analysis (Delgado & Romero, 2016), etc.

In this chapter, two novel grey cluster evaluation models based on mixed center-
point triangular possibility functions andmixed end-point triangular possibility func-
tions are put forward. These new grey clustering models based on mixed possi-
bility functions are especially applicable to evaluation and classification of poor
information objects, and have broad application prospects.

6.2 Grey Relational Clustering Model

Definition 6.2.1 Assume that there are n observational objects. For each object the
data of m attribute indexes are collected, producing the following sequences:

X1 = (x1(1), x1(2), . . . , x1(n))

X2 = (x2(1), x2(2), . . . , x2(n))

· · · · · · · · · · · ·
Xm = (xm(1), xm(2), . . . , xm(n))

Then, for all i < j, i, j = 1, 2, ...,m, calculate εij, the absolute grey relational
degree between Xi and Xj, so that we have the following upper triangular matrix A:

A =

⎛
⎜⎜⎜⎝

ε11 ε12 · · · ε11

ε22 · · · ε2m
. . .

...

εmm

⎞
⎟⎟⎟⎠

A is referred to as the grey relational matrix of the attribute indexes, where εii = 1,
i = 1, 2, ...,m. For a chosen threshold value r ∈ [0, 1], which in general satisfies
r > 0.5, if εij ≥ r, i �= j, the variables Xj and Xi are seen as the same attribute.

Definition 6.2.2 The classification of the attribute indexes with the chosen value r
is referred to as the r- classification by grey relational degree.

When studying a specific problem, the particular value r is determined based on
the circumstances involved. The closer the r is to 1, the finer the classification and
the fewer the variables in each class. Conversely, the smaller the r, the coarser the
classification and the greater the number of variables in each class.
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Example 6.2.1 The talent search committee of a firm has proposed 15 candidate
recruitment criteria as follows:

1. Impression of overall application package;
2. Academic abilities;
3. Likability by others;
4. Level of self-confidence;
5. Intelligence;
6. Honesty;
7. Ability to sell;
8. Experience;
9. Motivation;
10. Ambition;
11. Presentation skills;
12. Ability to comprehend instructions;
13. Potential for future growth;
14. Interpersonal skills; and
15. Adaptability.

Members of the committee admit that some of these 15 criteria can overlap and
hope that through the study of a sample of a few data points, these 15 criteria can be
classified into fewer categories. By using the scoring method to quantify the criteria,
9 observational objects have been scored according to each of the criteria. Table 6.1
gives the scores, where Oi stands for the ith object, i = 1, 2, …, 9.

To calculate the absolute grey relational degree of εij ofXi andXj for all i ≤ j, i, j =
1, 2 . . . , 15, we obtained the upper triangular matrix A as shown in Table 6.2.

We divided the 15 criteria into different classes based onTable 6.2, where the value
of threshold r can be different based on the requirements involved. For example, if
we take r = 1, all 15 criteria above belong to their own classes with each in its own
class. If we take r = 0.80, then we check the values in Table 6.2, row by row, and
pick out all the values of εij which are greater than 0.80. Thus, we have:

ε1,3 = 0.88, ε1,11 = 0.90, ε1,12 = 0.88, ε1,13 = 0.80, ε2,8 = 0.99

ε3,11 = 0.80, ε3,13 = 0.90, ε6,11 = 0.84, ε6,12 = 0.86, ε6,14 = 0.81

ε7,10 = 0.83, ε7,15 = 0.89, ε9,10 = 0.81, ε10,15 = 0.92, ε11,12 = 0.97

Therefore, we know that X3, X11, X12, and X13 belong to the same class as X1;
X8 belong to the same class as X2; X11 and X13 belong to the same class as X3; X11,
X12, and X14 belong to the same class as X6; X10 and X15 belong to the same class
as X7; X10 belong to the same class as X9; X15 belong to the same class as X10; and
X12 belong to the same class as X11.
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Table 6.1 The scores of 9 observational objects

Objects

Attributes 1 2 3 4 5 6 7 8 9

X1 6 9 7 5 6 7 9 9 9

X2 2 5 3 8 8 7 8 9 7

X3 5 8 6 5 8 6 8 8 8

X4 8 10 9 6 4 8 8 9 8

X5 7 9 8 5 4 7 8 9 8

X6 8 9 9 9 9 10 8 8 8

X7 8 10 7 2 2 5 8 8 5

X8 3 5 4 8 8 9 10 10 9

X9 8 9 9 4 5 6 8 9 8

X10 9 9 9 5 5 5 10 10 9

X11 7 10 8 6 8 7 9 9 9

X12 7 8 8 8 8 8 8 9 8

X13 5 8 6 7 8 6 9 9 8

X14 7 8 8 6 7 6 8 9 8

X15 10 10 10 5 7 6 10 10 10

Table 6.2 The grey relational matrix of attribute indexes

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

X1 1 0.66 0.88 0.52 0.58 0.77 0.51 0.66 0.51 0.51 0.9 0.88 0.8 0.67 0.51

X2 1 0.72 0.51 0.53 0.59 0.5 0.99 0.51 0.51 0.63 0.62 0.77 0.55 0.51

X3 1 0.56 0.7 0.51 0.72 0.51 0.51 0.51 0.8 0.78 0.9 0.63 0.51

X4 1 0.56 0.53 0.58 0.51 0.69 0.62 0.52 0.52 0.51 0.54 0.6

X5 1 0.65 0.51 0.53 0.53 0.52 0.61 0.61 0.55 0.75 0.52

X6 1 0.51 0.59 0.52 0.52 0.84 0.86 0.66 0.81 0.51

X7 1 0.5 0.7 0.83 0.51 0.51 0.51 0.51 0.89

X8 1 0.51 0.51 0.63 0.62 0.77 0.55 0.51

X9 1 0.81 0.0.52 0.52 0.51 0.53 0.76

X10 1 0.51 0.51 0.51 0.52 0.92

X11 1 0.97 0.74 0.71 0.51

X12 1 0.73 0.72 0.51

X13 1 0.6 0.51

X14 1 0.52

X15 1
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Let each class be representedwith the criterionwith theminimum index contained
in the class, and combine the classes containing X6 and X11, respectively, with the
class containing X1. Put X9 and X10 into the class containing X7, and treat X4 and
X5 as individual classes. Then, we have obtained a classification of the 15 attribute
criteria for our shortened list as follows:

{X1,X3,X6,X11,X12,X13,X14}, {X2,X8}, {X4}, {X5},
{X7,X9,X10,X15}

Here, the class of {X1,X3,X6,X11,X12,X13,X14} including the attribute criteria such
as impression of overall application package, likability by others, honesty, presenta-
tion skills, ability to comprehend instructions, potential for future growth, and inter-
personal skills, all ofwhich direct impression, can be obtained through the application
form or interviews. These attribute criteria can be replaced by one synthetic impres-
sion attribute criterion because all these attribute criteria correlate and it is difficult
to be separate them completely. The class of {X2,X8} includes two attribute criteria,
namely academic abilities and experience, which can be evaluated through investi-
gation and understanding of the academic research and practical work accomplished
by the candidate. The class of {X7,X9,X10,X15} includes four attribute criteria,
namely ability to sell, motivation, ambition, and adaptability, which can be judged
synthetically by investigating the learning and working background of the candi-
date. Special investigation is required for assessment of the attribute criterion level
of self-confidence of {X4}, and the attribute criterion intelligence of {X5}.

6.3 Common Possibility Functions

The variable weight grey clustering evaluation model, the fixed weight grey clus-
tering evaluation model, the grey clustering evaluation model using end-point and
center-point triangular possibility functions, and the grey clustering evaluationmodel
based on mixed possibility functions are all grey clustering evaluation models based
on different possibility functions. Therefore, the four kinds of common possibility
functions are explained in this section.

The possibility function of the jth criterion about the kth class is denoted by f kj (·),
j = 1, 2, . . .m, k = 1, 2, . . . s.

Definition 6.3.1 Assume that the possibility function f kj (·) of the jth criterion about
kth class is a trapezoidal function shown in Fig. 6.1. Then f kj (·) is referred to as
possibility function of typical form, and xkj (1), x

k
j (2), x

k
j (3), and xkj (4) are referred

to as turning points of f kj (·).
The possibility function of typical form is denoted by

f kj

[
xkj (1), x

k
j (2), x

k
j (3)x

k
j (4)

]
.
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Fig. 6.1 The possibility
function of typical form

Fig. 6.2 The possibility
function of lower measure

Definition 6.3.2 Assume that the possibility function f kj (·) of the jth criterion about
kth class does not have the first and second turning points xkj (1) and x

k
j (2), as shown

in Fig. 6.2. Then f kj (·) is referred to as the possibility function of lower measure.

The possibility function of lower measure is denoted by, f kj
[
−,−, xkj (3), x

k
j (4)

]
.

Definition 6.3.3 Assume that the possibility function f kj (·) of the jth criterion about
kth class does not have the third turning point xkj (3), or that the second and third
turning points xkj (2) and xkj (3) of f

k
j (·) coincide, as shown in Fig. 6.3. In this case,

f kj (·) is referred to as a possibility function of moderate measure, or a triangular
possibility function. The possibility function of moderate measure, or triangular

possibility function, is denoted by f kj
[
xkj (1), x

k
j (2),−, xkj (4)

]
.

Definition 6.3.4 Assume that the possibility function f kj (·) of the jth criterion about
kth class does not have turning points xkj (3) and x

k
j (4), as shown in Fig. 6.4. Function

f kj (·) is then referred to as a possibility function of upper measure. The possibility

function of upper measure is denoted by f kj
[
xkj (1), x

k
j (2),−,−

]
.
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Fig. 6.3 The possibility
function of moderate
measure

Fig. 6.4 The possibility
function of upper measure

Proposition 6.3.1

(1) For the possibility function of typical form as shown in Fig. 6.1, we have:

f kj (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x /∈
[
xkj (1), x

k
j (4)

]

x−xkj (1)

xkj (2)−xkj (1)
x ∈

[
xkj (1), x

k
j (2)

]

1 x ∈
[
xkj (2), x

k
j (3)

]

xkj (4)−x

xkj (4)−xkj (3)
x ∈

[
xkj (3), x

k
j (4)

]
(6.1)

(2) For the possibility function of lower measure as shown in Fig. 6.2, we have:

f kj (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x /∈
[
0, xkj (4)

]

1 x ∈
[
0, xkj (3)

]

xkj (4)−x

xkj (4)−xkj (3)
x ∈

[
xkj (3), x

k
j (4)

] (6.2)
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(3) For the possibility function of moderate measure as shown in Fig. 6.3, we have:

f kj (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x /∈
[
xkj (1), x

k
j (4)

]

x−xkj (1)

xkj (2)−xkj (1)
x ∈

[
xkj (1), x

k
j (2)

]

xkj (4)−x

xkj (4)−xkj (2)
x ∈

[
xkj (2), x

k
j (4)

] (6.3)

(4) For the possibility function of upper measure as shown in Fig. 6.4, we have:

f kj (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < xkj (1)
x−xkj (1)

xkj (2)−xkj (1)
, x ∈

[
xkj (1), x

k
j (2)

]

1, x ≥ xkj (2)

(6.4)

6.4 Variable Weight Grey Clustering Model

Definition 6.4.1 Assume that there are n objects to be classified according to m
criteria into s different grey classes. Classifying the ith object into the kth grey class
according to the observed value of the ith object judged against the jth criterion,
xij, i = 1, 2, . . . n, j = 1, 2, . . .m, is called grey clustering (Deng, 1985).

Definition 6.4.2

(1) For the possibility function of typical form as shown in Fig. 6.1, let λk
j =

1
2

(
xkj (2) + xkj (3)

)
.

(2) For the possibility function of lower measure as shown in Fig. 6.2, let λk
j =

xkj (3)).
(3) For the possibility function of moderate measure as shown in Fig. 6.3 and the

possibility function of upper measure as shown in Fig. 6.4, let λk
j = xkj (2).

Then λk
j is referred to as the basic value of the jth criterion about the kth class.

Definition 6.4.3 Assume that λk
j is the basic value of the jth criterion about the kth

class. Then formula is referred to as the weight of the jth criterion about kth class
(Deng, 1985):

ηk
j = λk

j

/
m∑
j=1

λk
j (6.5)

Definition 6.4.4 Assume that xij, i = 1, 2, . . . n, j = 1, 2, . . .m is the observed value
of object i with regard to the jth criterion, f kj (·) the possibility function and ηk

j the
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weight of the jth criterion about the kth class, with j = 1, 2, . . .m, k = 1, 2, . . . s.
Then formula (6.6) is referred to as the grey clustering coefficient of variable weight
for object i to belong to the kth grey class (Deng, 1985):

σ k
i =

m∑
j=1

f kj
(
xij

)· (6.6)

Definition 6.4.5

(1) The following formula is referred to as the clustering coefficient vector of object
i:

σi = (
σ 1
i , σ 2

i , . . . , σ s
i

) =
⎛
⎝

m∑
j=1

f 1j
(
xij

)·η1
j ,

m∑
j=1

f 2j
(
xij

)·η2
j , . . . ,

m∑
j=1

f sj
(
xij

)·ηs
j

⎞
⎠

(2) The following matrix is referred to as the cluster coefficient matrix:

∑
= (

σ k
i

) =

⎡
⎢⎢⎢⎣

σ 1
1 σ 2

1 · · · σ s
1

σ 1
2 σ 2

2 · · · σ s
2

...
...

. . .
...

σ 1
n σ 2

n · · · σ s
n

⎤
⎥⎥⎥⎦

Definition 6.4.6 If max
1≤k≤s

{
σ k
i

} = σ k∗
i , then it is called object i belongs to grey class

k∗.
The variable weight clustering method is used to study problems with criteria that

have the same meanings and units. Otherwise, it is not appropriate to employ this
method. Also, if the numbers of observed values of individual criteria are greatly
different from each other, this clustering method should not be applied.

Example 6.4.1 Assume that we are interested in the study of three economic districts
with the added value by the primary, secondary and tertiary industries as the three
cluster criteria. The observational values xij, i= 1, 2, 3; j= 1, 2, 3, of the ith economic
district with respect to the jth criterion is given in the following matrix A, where the
unit of the three criteria is same as a hundred million RMB:

A = (
xij

)
⎡
⎣
x11 x12 x13
x21 x22 x23
x31 x32 x33

⎤
⎦ =

⎡
⎣
80 20 100
40 30 30
10 90 60

⎤
⎦

Please try to perform a synthetic clustering based on high, medium, and low added
values.

Solution: Assume that the possibility functions f kj (·) for the jth criterion about
the kth class are as follows:
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f 11 [30, 80,−,−], f 21 [10, 40,−, 70], f 31 [−,−, 10, 30]

f 12 [30, 90,−,−], f 22 [20, 50,−, 90], f 32 [−,−, 20, 40]

f 12 [40, 100,−,−], f 23 [30, 60,−, 90], f 33 [−,−, 30, 50]

It follows that:

f 11 (x) =
⎧⎨
⎩
0, x < 30
x−30
80−30 , 30 ≤ x < 80
1, x > 80

; f 21 (x) =

⎧⎪⎨
⎪⎩
0, x /∈ [10, 70]
x−10
40−10 , 10 ≤ x < 40
70−x
70−40 , 40 ≤ x < 70

f 31 (x) =
⎧⎨
⎩

0, x /∈ [0, 30]
1, 0 ≤ x < 10

30−x
30−10 , 10 ≤ x < 30

; f 12 (x) =
⎧⎨
⎩
0, x < 30
x−30
90−30 , 30 ≤ x < 90
1, x > 90

f 22 (x) =

⎧⎪⎨
⎪⎩
0, x /∈ [20, 90]
x−20
50−20 , 20 ≤ x < 50
90−x
90−50 , 50 ≤ x < 90

; f 32 (x) =
⎧⎨
⎩
0, x /∈ [0, 40]
1, 0 ≤ x < 20
40−x
40−20 , 20 ≤ x < 40

f 13 (x) =
⎧⎨
⎩
0, x < 40
x−40

100−40 , 40 ≤ x < 100
1, x > 100

; f 23 (x) =

⎧⎪⎨
⎪⎩
0, x /∈ [30, 90]
x−30
50−30 , 30 ≤ x < 50
90−x
90−50 , 50 ≤ x < 90

f 33 (x) =
⎧⎨
⎩
0, x /∈ [0, 50]
1, 0 ≤ x < 30
50−x
50−30 , 30 ≤ x < 50

Therefore:

λ1
1 = 80, λ1

2 = 90, λ1
3 = 100, λ2

1 = 40,

λ2
2 = 50, λ2

3 = 60, λ3
1 = 10, λ3

2 = 20, λ3
3 = 30

By ηk
j = λk

j∑3
j=1 λk

j
we have:

η1
1 = 80

270
, η1

2 = 90

270
, η1

3 = 100

270
, η2

1 = 40

150
, η2

2 = 50

150
,

η2
3 = 60

150
, η3

1 = 10

60
, η3

2 = 20

60
, η3

3 = 30

60
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Thus, from σ k
i = ∑m

j=1 f
k
j

(
xij

) · ηk
j , when i = 1 for economic district 1, we have:

σ 1
1 =

3∑
j=1

f 1j
(
x1j

) · η1j = f 11 (80) × 80

270
+ f 12 (20) × 90

270
+ f 13 (100) × 100

270
= 0.6667

Similarly, we obtained the following:

σ 2
1 = 0, σ 3

1 = 0.3333

Therefore, σ1 = (σ 1
1 , σ 2

1 , σ 3
1 ) = (0.6667, 0, 0.3333).

Similarly, we can calculate the clustering coefficient vector for economic districts
2 and 3 as done for economic district 1.

When i = 2, σ2 = (
σ 1
2 , σ 2

2 , σ 3
2

) = (0.0593, 0.3778, 0.6667).
When i = 3, σ3 = (

σ 1
3 , σ 2

3 , σ 3
3

) = (0.4667, 0.4, 0.1667).
The clustering coefficient matrix is as follows:

∑
= (

σ k
i

) =
⎡
⎣

σ 1
1 σ 2

1 σ 3
1

σ 1
2 σ 2

2 σ 3
2

σ 1
3 σ 2

3 σ 3
3

⎤
⎦ =

⎡
⎣
0.6667 0 0.3333
0.0593 0.3778 0.6667
0.4667 0.4 0.1667

⎤
⎦

From max
1≤k≤3

{
σ k
1 n

} = σ 1
1 = 0.6667, max

1≤k≤3

{
σ k
2

} = σ 3
2 = 0.6667, max

1≤k≤3

{
σ k
3

} =
σ 1
3 = 0.4667, it follows that the second economic district belongs to the low grey

class of added value, and the first and third economic districts belong to the high
grey class of added value. Furthermore, from the cluster coefficients σ 1

1 = 0.6667
and σ 1

3 = 0.4667, it follows that there still exists some differences between the first
and third districts, even though both belong to the high grey class of added value. If
the grey classes of added value are refined, that is, if we use five grey classes such
as high, mid-high, medium, mid-low, and low added value, then different results can
be obtained.

Furthermore, to determine the possibility function for the jth criterion about the
kth class, it is generally possible to use the background information of the problem at
hand.When resolving practical problems, one can determine the possibility functions
from either the angle of the objects that are to be clustered or by looking at all the
same type objects in the whole system, not just the ones involved in the clustering.
For example, in Example 6.4.1, we could determine the possibility functions not
only from the three economic districts in question, but also from the same level of
economic districts in a city, a province, or from around the nation. Therefore, the
results of grey clustering evaluation can only be applied to a certain range, which is
the same as the one used in the determination of relevant possibility functions.
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6.5 The Fixed Weight Grey Clustering Model

When the criteria for clustering have different meanings, dimensions (units), and
drastically different numbers of observed data points, the variable weight clustering
method will fail. Because the indexes with different meanings and dimensions do
not meet the additivity. There are two ways to get around this problem. The first is to
transform the sample of data values of all the criteria into non-dimensional values by
applying either the initiating operator or the averaging operator, and then clustering
the transformed data.When employing thismethod, all the criteria are treated equally
so that no difference played by the criteria in the process of clustering is reflected.
The second way to solve non additive problem is to assign each clustering criterion
a weight ahead of the clustering process. In this section, we address this second
method.

Definition 6.5.1 Assume that xij is the observed value of object i with regard to
criterion j, i = 1, 2, . . . n, j = 1, 2, . . .m, and the possibility function f kj (·) of the jth
criterion about kth class, j = 1, 2, . . .m, k = 1, 2, . . . , s. If the weight ηk

j of the jth
criterion about the kth class is not a function of k, j = 1, 2, . . .m, k = 1, 2, . . . , s.
That is, if for any k1, k2 ∈ {1, 2, . . . , s} we always have η

k1
j = η

k2
j , then the symbol

ηk
j can be written as ηj, j = 1, 2, . . .m, with the superscript k removed. In this case,

formula (6.7) is referred to as the fixed weight clustering coefficient for object i to
belong to the kth grey class (Liu, 1993).

σ k
i =

m∑
j=1

f kj
(
xij

)
ηj (6.7)

Definition 6.5.2 In formula (6.7), if ηj = 1
m , for j = 1, 2, . . . ,m, then the following

formula is referred to as the equal weight clustering coefficient for object i to belong
to the kth grey class:

σ k
i =

m∑
j=1

f kj
(
xij

) · ηj = 1

m

m∑
j=1

f kj
(
xij

)

Themethod of clustering objects by using grey fixedweight clustering coefficients
is known as grey fixed weight clustering. The method which uses grey equal weight
clustering coefficients is known as grey equal weight clustering.

Grey fixed weight clustering can be carried out according to the following steps:

Step 1: Determine the possibility function f kj (·) for the jth criterion about the kth
class, j = 1, 2, . . .m, k = 1, 2, . . . , s.

Step 2: Determine a clustering weight ηj for each criterion j = 1, 2, . . .m.
Step 3: Based on the possibility functions f kj (·) obtained in step 1, the clustering

weights ηj obtained in step 2, and the observed data value xij of object i
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with respect to criterion j, calculate the fixed weight clustering coefficients
σ k
i = ∑m

j=1 f
k
j

(
xij

)
ηj, i = 1, 2, . . . n, j = 1, 2, . . .m, k = 1, 2, . . . , s

Step 4: If max
1≤k≤s

{
σ k
i

} = σ k∗
i , then it is called object i belongs to grey class k∗.

Example 6.5.1 Let us perform a grey clustering for the ecological adaptation of
major strains of trees commercially used in China (Li et al., 1994). China is a huge
country with a very diverse ecological environment, and different strains of trees
obviously require different growing conditions. The area where a certain strain of
trees has been growing reflects the adaptability of the strain to that particular ecolog-
ical environment. We now classify ecological environmental conditions into four
main quantification criteria:

(1) Geographical measure;
(2) Temperature measure;
(3) Precipitation measure; and
(4) Arid measure.

Here, geographical measure is an index representing the geographical width of
the region in which the strain of trees grows. The numerical value of this measure is
given by the product of differences of longitudes in the directions of east and west,
and latitudes in the directions of south and north. The temperature measure indicates
the adaptability of the strain of trees to various temperatures. Its numerical value is
computed by using the difference of annual average temperatures of the southern
and the northern bounds of the growing region. The precipitation measure is the
adaptability of the trees to precipitation conditions. Its numerical value is recorded
as the difference between the maximum and minimum annual average precipitation
in all areas of the growing region. The arid measure is selected to describe a strain’s
adaptability to arid conditions in the atmosphere. Its value is the difference between
themaximum andminimum annual average aridities in different areas of the growing
region.

Statistics regarding the four measures for the 17 main strains of trees planted in
China are given in Table 6.3.

With such data it is possible to carry out grey clustering based onwide adaptability,
medium adaptability, and narrow adaptability.

Solution: Because the meanings of the criteria are different and there exists much
difference among the values observed, we must apply the fixed weight clustering
method.

Step 1: Assume that the possibility functions f kj (·)(j = 1, 2, 3, 4; k = 1, 2, 3) for
the jth criterion about the kth class are as follows:

f 11 [100, 300,−,−], f 21 [50, 150,−, 250], f 31 [−,−, 50, 100]

f 12 [3, 10,−,−], f 22 [2, 6,−, 10], f 32 [−,−, 15, 30]
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Table 6.3 The four measures of the 17 main strains of trees in China

Measure trees Geo. Eco
measure

Temp. eco
measure

Prec. eco
measure

Arid eco
measure

1 Camphor pine 22.50 4 0 0

2 Korean pine 79.37 6 600 0.75

3 Northeast China ash 144.00 7 300 0.75

4 Diversiform-leaved
poplar

300.00 6.1 189 12.00

5 Sacsaoul 456.00 12 250 12.00

6 Chinese pine 189.00 8 700 1.5

7 Oriental arborvitae 369.00 8 1300 2.25

8 White elm 1127.11 16.2 550 3.00

9 Dryland willow 260.00 11 600 1.00

10 Chinese white poplar 200.00 8 600 1.25

11 Oak 475.00 10 1000 0.75

12 Huashan pine 314.10 8 900 0.75

13 Masson pine 282.80 7.4 1300 0.5

14 China fir 240.00 8 1200 0.5

15 Bamboo 160.00 5 1000 0.25

16 Camphor tree 270.00 8 1200 0.25

17 Southern Asian pine 9.00 1 200 0

f 13 [200, 1000,−,−], f 23 [100, 600,−, 1100], f 33 [−,−, 300, 600]

f 14 [0.25, 1.25,−,−], f 24 [0, 0.5,−, 1], f 34 [−,−, 0.25, 0.5]

Step 2: Let the weights for the geographical, temperature, precipitation, and aridity
measures be:

η1 = 0.3, η2 = 0.25, η3 = 0.25, η4 = 0.2

Step 3: Based on σ k
i = ∑m

j=1 f
k
j

(
xij

) · ηj ; i = 1, 2, . . . , 17; k = 1, 2, 3 and
Table 6.3, when i = 1,

σ 1
1 =

4∑
j=1

f 1j
(
xij

)·ηj = f 11 (22.5) × 0.3 + f 12 (4) × 0.25

+ f 13 (0) × 0.25 + f 14 (0) × 0.2 = 0.0357
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and

σ 2
1 =

m∑
j=1

f 2j
(
xij

) · ηj = 0.125, σ 3
1 =

m∑
j=1

f 3j
(
xij

) · ηj = 1

Therefore,

σ1 = (
σ 1
1 , σ 2

1 , σ 3
1

) = (0.0357, 0.125, 1)

Similarly, we can calculate and obtain:

σ2 = (σ 1
2 , σ 2

2 , σ 3
2 ) = (0.3321,0.6881, 0.2488)

σ3 = (σ 1
3 , σ 2

3 , σ 3
3 ) = (0.3401,0.6695, 0.3125)

σ4 = (σ 1
4 , σ 2

4 , σ 3
4 ) = (0.6107, 0.2883, 0.3688)

σ5 = (σ 1
5 , σ 2

5 , σ 3
5 ) = (0 .7656, 0.075 ,0 .25)

σ6 = (σ 1
6 , σ 2

6 , σ 3
6 ) = (0.6683, 0.508, 0)

σ7 = (σ 1
7 , σ 2

7 , σ 3
7 ) = (0.9286,0.125, 0)

σ8 = (σ 1
8 , σ 2

8 , σ 3
8 ) = (0.8594,0.225, 0.0417)

σ9 = (σ 1
9 , σ 2

9 , σ 3
9 ) = (0.765,0.25, 0)

σ10 = (σ 1
10, σ

2
10, σ

3
10) = (0.6536, 0.525, 0)

σ11 = (σ 1
11, σ

2
11, σ

3
11) = (0.9, 0.15, 0)

σ12 = (σ 1
12, σ

2
12, σ

3
12) = (0.7973,0.325, 0)

σ13 = (σ 1
13, σ

2
13, σ

3
3 ) = (0.7313,0.3625, 0.0375)

σ14 = (σ 1
14, σ

2
14, σ

3
4 ) = (0.6886,0.355, 0)
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σ15 = (σ 1
15, σ

2
5 , σ 3

15) = (0.4114,0.6075, 0.3875 )

σ16 = (σ 1
16, σ

2
16, σ

3
16) = (0.6836,0.225, 0.2)

Furthermore,

σ17 = (σ 1
17, σ

2
17, σ

3
7 ) = (0, 0.05,1)

Step 4: Based on the following facts, it follows that trees with numberings 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 16, are strains with wide adaptability:

max
1≤k≤3

{σ k
1 } = σ 3

1 = 1, max
1≤k≤3

{σ k
2 } = σ 2

2 = 0.6881, max
1≤k≤3

{σ k
3 } = σ 2

3 = 0.6695

max
1≤k≤3

{σ k
4 } = σ 1

4 = 0.6107, max
1≤k≤3

{σ k
5 } = σ 1

5 = 0.7656,

max
1≤k≤3

{σ k
6 } = σ 1

6 = 0.6683

max
1≤k≤3

{σ k
7 } = σ 1

7 = 0.9286, max
1≤k≤3

{σ k
8 } = σ 1

8 = 0.8594,

max
1≤k≤3

{σ k
9 } = σ 1

9 = 0.765

max
1≤k≤3

{σ k
10} = σ 1

10 = 0.6536, max
1≤k≤3

{σ k
11} = σ 1

11 = 0.9,

max
1≤k≤3

{σ k
12} = σ 1

12 = 0.91

max
1≤k≤3

{σ k
13} = σ 1

13 = 0.82, max
1≤k≤3

{σ k
14} = σ 1

14 = 0.6886,

max
1≤k≤3

{σ k
15} = σ 2

15 = 0.6075

max
1≤k≤3

{σ k
16} = σ 1

16 = 0.6836, max
1≤k≤3

{σ k
17} = σ 3

17 = 1

Such strains are diversiform-leaved poplars, sacsaouls, Chinese pines, oriental
arborvitaes, white elms, dryland willows, Chinese white poplars, oaks, Huashan
pines, masson pines, China firs, and camphor trees. These trees have an extremely
strong ability to adapt themselves to natural ecological environments, can grow well
in most parts of China, and should be widely introduced. The trees named Korean
pine, Northeast China Ash, and bamboo with numberings 2, 3, and 15, respectively,
belong to the grey class of medium adaptability, and can be introduced to a relatively
large area in China. Finally, trees with the names camphor pine and South Asian
pine, and numberings 1 and 17, respectively, belong to the grey class of narrow
adaptability, where camphor pines are found near the Northern border of China and
South Asian pines are mainly located near the Southern border of China.
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6.6 Grey Clustering Evaluation Models Based on Mixed
Possibility Functions

The grey clustering evaluation model based on the mixed possibility function defines
the specific steps of constructing the possibility function and solve the problem
of constructing the possibility function, which is especially suitable for clustering
evaluation under the background of poor information (Liu et al., 2015a).

6.6.1 Grey Clustering Evaluation Model Based on End-Point
Mixed Possibility Functions

The grey clustering evaluation model based on end-point mixed possibility functions
is suitable for situations where the grey boundaries of all sub-intervals are clear, but
the most likely points belonging to each grey class are unknown(Liu et al., 2015a).
The modeling steps of the grey clustering evaluation based on end-point mixed
possibility functions are explained below (Liu et al., 2015a).

Step 1: Assume that according to the assessment requirements, the number of grey
classes to be divided is s. Then the value range of each index is also divided
into s classes. For example, the value range

[
a1, as+1

]
of index j can be

divided into s small intervals:

[a1, a2], . . . ,
[
ak−1, ak

]
, . . . ,

[
as−1, as

]
,
[
as, as+1

]

The value of ak(k = 2, . . . , s) can be determined by the actual
assessment requirements or the qualitative research results.

Step 2: Determine the turning point λ1
j and λs

j of [a1, a2] and [as, as+1] that corre-
spond to grey classes 1 and s. At the same time, calculate the geometric
center-point λk = (ak + ak+1)/2 for each small interval [ak , ak+1], k =
2, . . . , s − 1.

Step 3: For grey class 1 and grey class s, construct the corresponding possibility

function of lower measure f 1j
[
−,−, λ1

j , λ
2
j

]
and the possibility function of

upper measure f sj
[
λs−1
j , λs

j ,−,−
]
.

Assume that x is an observation of index j, when x ∈
[
a1, λ2

j

]
or x ∈[

λs−1
j , as+1

]
, using formulas (6.8) or (6.9), respectively:

f 1j (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
1

λ2
j −x

λ2
j −λ1

j

x /∈
[
a1, λ2

j

]

x ∈
[
a1, λ1

j

]

x ∈
[
λ1
j , λ

2
j

] (6.8)
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or

f sj (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
x−λs−1

j

λs
j−λs−1

j

1

x /∈
[
λs−1
j , as+1

]

x ∈
[
λs−1
j , λs

j

]

x ∈
[
λs
j , as+1

] (6.9)

Byusing these formulas, the possibility degree of f 1j (x)or f sj (x) regarding
grey class 1 and grey class s can be calculated.

Step 4: For grey class k(k ∈ {2, 3, . . . , s−1}), connecting point (λk
j , 1)with center-

point (λk−1
j , 0) of grey class k − 1 (or turning point (λ1

j , 0) of grey class 1),

and connecting (λk
j , 1) with center-point (λk+1

j , 0) of grey class k + 1 (or
turning point (λs

j , 0) of grey class s), we can get the triangular possibility

function f kj [λk−1
j , λk

j ,−, λk+1
j ], j = 1, 2, . . . ;m; k = 2, 3, . . . , s − 1 of

index j regarding grey class k (shown in Fig. 6.5).

For index j, x is an observation of it when k = 2, 3, . . . , s − 1, according to
formula (6.10):

f kj (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0
x−λk−1

j

λk
j −λk−1

j

λk+1
j −x

λk+1
j −λk

j

x /∈
[
λk−1
j , λk+1

j

]

x ∈
[
λk−1
j , λk

j

]

x ∈
[
λk
j , λ

k+1
j

]
(6.10)

This formula allows the possibility degree of f kj (x) regarding grey class
k(k ∈ {2, 3, . . . , s − 1}) to be calculated.

Step 5: Determine the weight wj, j = 1, 2, . . . ,m of each index.
Step 6: Calculate the clustering coefficient σ k

i of object i(i = 1, 2, . . . , n) regarding
grey class k(k = 1, 2, . . . , s):

1( )jy f x

y

o

1

x1
j1

ja 2
ja 2

j
3
ja 3

j
4
ja 1k

ja  1k
ja k

ja1k
j
 1k

j
 2s

j
 1s

ja  1s
j
 s

ja s
j

1s
ja k

j
2k

ja  2s
ja 

2 ( )jy f x ( )k
jy f x ( )s

jy f x1( )s
jy f x

Fig. 6.5 The end-point mixed possibility function
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σ k
i =

m∑
j=1

f kj (xij) · wj (6.11)

f kj (xij) is the possibility function of index j about grey class k, wj is the weight of
index j among comprehensive clustering.

Step 7: By max
1≤k≤s

{σ k
i } = σ k∗

i , determine that object i belongs to grey class k∗. When

there aremultiple objects belonging to the same grey class k∗, we can further
determine individual objects’ precedence in grey class k∗ on the basis of
the size of integrate clustering coefficients.

6.6.2 Grey Clustering Evaluation Model Based
on Center-Point Mixed Possibility Functions

The srey clustering evaluation model based on center-point mixed possibility func-
tions is suitable for situations where the most likely points belonging to each grey
class are clear, but the grey boundaries of all sub-intervals are unknown (Liu et al.,
2015a).

Definition 6.6.1 For grey class k(k ∈ {2, 3, . . . , s−1}), the point which most likely
belongs to grey class k is called the center-point of grey class k (Liu et al., 2015a).

The center-point may or may not be the midpoint. This is determined by the
maximum likelihood of such a point to belong to the grey class.

The modeling steps of the grey cluster evaluation using center-point mixed
possibility functions are as follows (Liu et al., 2015a).

Step 1: Assume that [aj, bj] is the range of index j. According to the evaluation
requirements, we divide [aj, bj] into s small intervals. Then we deter-
mine the turning point λ1

j , λ
s
j of grey classes 1 and s, and the center-point

λ2
j , λ

3
j , . . . , λ

s−1
j of grey class k(k ∈ {2, 3, . . . , s − 1}), respectively.

Step 2: Construct the corresponding lower measure possibility func-
tion f 1j [−,−, λ1

j , λ
2
j ], and the upper measure possibility function

f sj [λs−1
j , λs

j ,−,−] for grey classes 1 and s (see Fig. 6.6).

Assume x is an observation value of index j. When x ∈ [aj, λ2
j ] or x ∈ [λs−1

j , bj],
the possibility degree of f 1j (x) or f sj (x) regarding grey classes 1 and s can be calculated
by using formulas (6.12) and (6.13), respectively.

f 1j (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
1

λ2
j −x

λ2
j −λ1

j

x /∈
[
aj, λ2

j

]

x ∈
[
aj, λ1

j

]

x ∈
[
λ1
j , λ

2
j

] (6.12)
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Fig. 6.6 Center-point mixed possibility function

f sj (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
x−λs−1

j

λs
j−λs−1

j

1

x /∈
[
λs−1
j , bj

]

x ∈
[
λs−1
j , λs

j

]

x ∈
[
λs
j , bj

] (6.13)

Step 3: For grey class k(k ∈ {2, 3, . . . , s − 1}), by connecting point (λk
j , 1) with

center-point (λk−1
j , 0) of grey class k − 1 (or turning point (λ1

j , 0) of grey

class 1), and by connecting (λk
j , 1) with center-point (λ

k+1
j , 0) of grey class

k + 1 (or turning point (λs
j , 0) of grey class s), we get triangular possibility

function f kj

[
λk−1
j , λk

j ,−, λk+1
j

]
, j = 1, 2, . . . ;m; k = 2, 3, . . . , s − 1 of

index j regarding grey class k (see Fig. 6.6).

Assume that x is an observation value of index j. The degree of membership f kj (x)
regarding grey class k(k ∈ {2, 3, . . . , s − 1}) can be calculated by using formula
(6–14).

f kj (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0
x−λk−1

j

λk
j −λk−1

j

λk+1
j −x

λk+1
j −λk

j

x /∈
[
λk−1
j , λk+1

j

]

x ∈
[
λk−1
j , λk

j

]

x ∈
[
λk
j , λ

k+1
j

]
(6.14)

Step 4: Determine the weight wj, j = 1, 2, . . . ,m of each index.

Step 5: Compute clustering coefficient
max
1≤k≤s

{
σ k
i

} = σ k∗
i

x6
of object i(i =

1, 2, . . . , n) regarding grey class k(k = 1, 2, . . . , s), as seen in Eq. (6.15).
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σ k
i =

m∑
j=1

f kj (xij) · wj (6.15)

f kj (xij) is the possibility function of index j about class k, while wj is the weight of
comprehensive clustering of index j.

Step 6: By max
1≤k≤s

{
σ k
i

} = σ k∗
i , determine that object i belongs to grey class k∗; when

there are multiple objects that belong to the same grey class k∗, we can
further determine the precedence of individual objects in grey class k∗ on
the basis of the size of integrate clustering coefficients.

6.7 Practical Applications

Example 6.7.1 Five suppliers A, B, C, D, E who undertake the development of the
C919 body component for Commercial Aircraft Corporation of China Ltd (COMAC)
are evaluated on their performance and are divided into four classes including
“excellent”, “good”, “medium” and “poor”.

Step 1: Set the evaluation index system for supplier performance.
The evaluation index system for supplier performance reflects the

specific requirements of the main manufacturers to supplier. It is an impor-
tant basis for the main manufacturers to comprehensively evaluate the
supplier and make final management decisions.

Factors that affect supplier performance are very complex. Main manu-
factures’ foci on supplier performance are also not the same across different
stages in C919 development. After four rounds of expert investigation,
six first-grade evaluation indexes are determined, including quality, cost,
delivery, cooperation, technology and service.

At development stage, the four second-grade indexes of quality are pass
rate of product, quality control system, airworthiness certification ability
and control of sub-supplier. The three second-grade indexes of cost are
price, logistics costs and price stability. The two second-grade indexes of
delivery are punctuality and flexibility. The three second-grade indexes of
cooperation are credit, information communication and cooperation inten-
tion. The five second-grade indexes of technology are professional R&D
staff, R&D investment, number of invention patents, market share and tech-
nology level. The four second-grade indexes of service are quick response,
spare part support, training and technology support.

Among those indexes, pass rate and market share are shown in
percentage. Price and logistics costs are quantitative indexes and the unit is
ten thousand yuan. The smaller the indexes, the better. The unit of profes-
sional R&D staff is person, R&D investment is ten thousand yuan, and
the unit of patent number is an item. The bigger the indexes, the better.
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Other indexes like quality control system, price stability, delivery punctu-
ality, flexibility, credit, information communication, technology level, quick
response, spare part support, training and technology support are all quali-
tative indexes. They are usually quantified by expert grade. Here, the grade
is a 10-point scale score and decimal points are allowed.

If supplier who have different tasks are evaluated together, most quanti-
tative indexes such as price and logistics costs cannot be compared. There-
fore, at this point we need to invite experienced experts to make qualitative
assessments of quantitative indexes by grading them as a 10-point scale
score. The evaluation index system for supplier performance and its weight
at development stage of C919 are shown in Table 6.4.

For the evaluation of supplier performance at development stage, we use
the index system shown in Table 6.4.

Table 6.4 The evaluation index system for supplier performance and its weight at development
stage

First-grade index and its
weight

Second-grade index Code Unit Weight

Quality (22%) Pass rate x1 % 6

Quality control system x2 Qualitative 6

Airworthiness certification
ability

x3 Qualitative 5

Control of sub-supplier x4 Qualitative 5

Cost (18%) Price x5 Ten thousand yuan 8

Logistic cost x6 Ten thousand yuan 4

Price stability x7 Qualitative 6

Delivery (17%) Punctuality x8 Qualitative 12

Flexibility x9 Qualitative 5

Cooperation (13%) Credit x10 Qualitative 6

Information communication x11 Qualitative 4

Cooperation intention x12 Qualitative 3

Technology (16%) Professional R&D staff x13 Person 3

R&D investment x14 Ten thousand yuan 3

Number of invention patent x15 Item 3

Market share x16 % 3

Technology level x17 Qualitative 4

Service (14%) Quick response x18 Qualitative 4

Spare part support x19 Qualitative 4

Training x20 Qualitative 3

Technology support x21 Q ualitative 3
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Step 2: According to the evaluation results, the value range of each index is divided
into four grey classes. The value of second-grade indexes are usually divided
into four small sections based on the sample value. Considering the opinion
of COMAC, the effect sample matrix of second-grade index is omitted.
Here are the actual values of six first-grade indexes that are obtained by
weighted integration of the second-grade indexes as 10-point scale scores.
The values are yij, (i = 1, 2 . . . , 5; j = 1, 2, . . . 6) as shown in Table 6.5.

The six first-grade indexes are all in 10-point scores, and the value
range is [0,10]. Interval [0,10] is sub-divided into 4 small intervals as [0,6),
[6,7.5), [7.5,9), [9,10], which correspond to “poor”, “medium”, “good” and
“excellent”.

Step 3: Determine the turning point λ1
j = 5, λ4

j = 9.5 of [0,6) and [9,10] that
correspond to grey class 1 and grey class 4. At the same time, calculate the
center-point of [6,7.5) and [7.5,9), λ2

j = 6.75, λ3
j = 8.25.

Step 4: Byusing formulas (6.8)–(6.10), the possibility functions of index j regarding
grey class k (k = 1, 2, 3, 4) can be obtained as follows:

f 1j (x) =
⎧⎨
⎩

0
1

6.75−x
1.75

x /∈ [0, 6.75]
x ∈ [0, 5)

x ∈ [5, 6.75]
f 2j (x) =

⎧⎨
⎩

0
x−5
1.75

8.25−x
1.5

x /∈ [5, 8.25]
x ∈ [5, 6.75)

x ∈ [6.75, 8.25]

f 3j (x) =

⎧⎪⎪⎨
⎪⎪⎩

0
x−6.75
1.5

9.5−x
1.25

x /∈ [6.75, 9.5]
x ∈ [6.75, 8.25)

x ∈ [8.25, 9.5]
f 4j (x) =

⎧⎨
⎩

0
x−8.25
1.25
1

x /∈ [8.25, 10]
x ∈ [8.25, 9.5)
x ∈ [9.5, 10]

where j = 1, 2, . . . 6.
Step 5: The weight of each index wj, j = 1, 2, 3, 4, 5, 6 is shown in Table 6.4.
Step 6: According to formulas (6.6)–(6.11), the clustering coefficient regarding

the grey class of five suppliers can be calculated (i = 1, 2, 3, 4, 5; k =
1, 2, 3, 4), as shown in Table 6.6.

Table 6.5 The actual values of first-grade index of five suppliers

Supplier Actual value yij

Quality Cost Delivery Technology Cooperation Service

A 9.1 7.8 8.4 9 9.5 9.3

B 9.3 7.5 9 9.2 9 9

C 9 8.6 8.7 9 9.1 9.1

D 8.9 8.5 9 9.1 9.6 9.2

E 8.6 9 8.6 9 9.7 9.5



6.7 Practical Applications 179

Table 6.6 The clustering coefficient regarding to each grey class of five suppliers

The clustering objects The clustering coefficient

σ 1
i σ 2

i σ 3
i σ 4

i

A 0 5.4 42.04 52.56

B 0 9 34.44 56.56

C 0 0 47.44 52.56

D 0 0 39.28 60.72

E 0 0 40.48 59.52

Step 7: As can be seen from the results of max
1≤k≤4

{
σ k
A

} = 52.56 = σ 4
A , max

1≤k≤4

{
σ k
B

} =
56.56 = σ 4

B , max
1≤k≤4

{
σ k
C

} = 52.56 = σ 4
C , max

1≤k≤4

{
σ k
D

} = 60.72 =
σ 4
D max
1≤k≤4

{
σ k
E

} = 59.52 = σ 4
E , the performance of five suppliers A, B,

C, D, E at development stage all reach the level of “excellent”. Among
those supplier, the clustering coefficient of supplier D regarding grey class
“excellent” is the highest and supplier E takes the second place. However,
the difference between D and E is very small, so the two supplier belong to
the same level. Then comes supplier B. The coefficient of supplier A and C
regarding grey class “excellent” is the smallest.

Further investigation reveals that the indexes belonging to class “excellent” of
supplier D and E are technology, cooperation and service. There is much room for
improvement in terms of quality and cost for D, and in terms of quality and delivery
for E.. The main problem for supplier B is its high cost. Although the evaluation on
cooperation and service is quite good, the value is still on the low side compared
with other supplier. For supplier A and C, the main problems are cost and delivery.
The management department of COMAC can focus on each supplier according to
their own problems and improve their whole performance level promptly.

In this example, the value rangeof each index aswell as its turningpoint and center-
point λ1

j , λ
2
j , λ

3
j , λ

4
j , j = 1, 2, . . . , 6 regarding different grey classes are determined

according to the expert evaluation results of supplier A, B, C, D, and E. Also, the
conclusion only applies to the current situation of those supplier. The results of
grey clustering evaluation can be used with a certain scope: the scope used when
determining the possibility function is the one that can be used in the evaluation
results. The so called “excellent”, “good”, “medium” and “poor” classes are also
relative. Supplier A, B, C, D, and E are all prominent enterprises in China. Although
they are very strong, there is a big gap between their performance and that of similar
manufacturers around the world.

Example 6.7.2 The evaluation of a project for discipline development at a university
will be used to illustrate the application of the grey clustering evaluation models,
which are based on mixed center-point triangular possibility functions (Jian, et al.,
2007; Liu, et al., 2017; Liu, 2024).
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Based on extensive surveys, there are 6 primary indicators to reflect the perfor-
mance of a discipline development project, including faculty, scientific research,
student cultivation, discipline platform development, conditions for development
and academic communication. The corresponding weights are 0.21, 0.24, 0.23, 0.14,
0.1, and 0.08, respectively (see Fig. 6.7).

We convert the evaluation scores of each indicator to centesimal system for conve-
nience. The evaluation results are divided into four grey classes including “excellent”,
“good”, “medium” and “poor”, according to requirements of the university authori-
ties. 41 projects for discipline development have been conducted from 2016 to 2020.
All the evaluation scores of the 6 indexes of these 41 projects for discipline devel-
opment are laid in the interval of [40, 100]. We set up the turning point λ4

j = 90 for
grey class “excellent” and the turning point λ1

j = 60 for grey class “poor”, as well as
the most likely points λ3

j = 80, λ2
j = 70, which belong to grey classes “good” and

“medium”.
Since the evaluation scores of each indicator are converted to centesimal system,

the possibility function of all 6 indicators on four grey classes of “poor”, “medium”,
“good”, and “excellent” are the same:

f 1j (x) =
⎧⎨
⎩

0
1

70−x
70−60

x /∈ [40, 70]
x ∈ [40, 60]
x ∈ [60, 70]

, f 2j (x) =

⎧⎪⎨
⎪⎩
0 x /∈ [60, 80]
x−60
70−60 x ∈ [60, 70]
80−x
80−70 x ∈ [70, 80]
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Fig. 6.7 Evaluation indicator system of project for discipline construction
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f 3j (x) =

⎧⎪⎨
⎪⎩
0 x /∈ [70, 90]
x−70
80−70 x ∈ [70, 80]
90−x
90−80 x ∈ [80, 90]

f 4j (x) =
⎧⎨
⎩

0
x−80
90−80

1

x /∈ [80, 100]
x ∈ [80, 90]
x ∈ [90, 100]

where the possibility function of each indicator for grey class “poor” is a possibility
function of lower measure, each indicator for grey class “excellent” is a possibility
function of upper measure, and each indicator for grey classes “medium” and “good”
are triangular possibility functions. The values of the 6 indicators for a university’s
discipline development project are shown in Table 6.7.

The values of possibility functions for the different grey classes of each indicator
can be calculated by using f 1j (x)f 2j (x)f 3j (x)f 4j (x), j = 1, 2, . . . , 6. The grey clustering
coefficient δi can be calculated by using formulas (6.6) and (6.7). The outcomes are
shown in Table 6.8.

Based on the results in Table 6.8, we can confirm that the project belongs to
grey class “excellent” according to max

1≤k≤4

{
δki

} = δ4i = 0.419. Therefore, the effect

of the project for discipline development is remarkable. But the grey clustering
coefficient which suggests that the project belongs to grey class “good” is δ3i =
0.413. This result is very close to δ4i . It also shows that the execution effect of the
project for discipline development is situated between grey classes “excellent” and
“good”. As for the sub-indicators, the indicator on student cultivation belongs to
grey class “excellent”, and reached a high level. The indicator on scientific research
is situated between grey classes “good” and “excellent”, but close to grey class
“excellent”. The indicators on faculty and discipline platform development basically
belong to grey class “good”, which indicates that the implementation effect of these
two indicators are satisfactory. The indicator on development conditions is situated
between grey classes “good” and “medium”, but closer to grey class “medium”. The
indicator on academic communication belongs to grey class “poor “, which suggests
that there are still significant shortcomings in development conditions and academic
communication that require further strengthening.

Table 6.7 The values of 6 indicators of a project for discipline development

Indicator Faculty Scientific
research

Student
cultivation

Discipline
platform

Development
conditions

Academic
communication

value 81 87 92 78 74 53

Table 6.8 Grey clustering coefficients of each indicator for different grey classes

Grey class x1 x2 x3 x4 x5 x6 δi

Excellent 0.1 0.7 1.0 0 0 0 0.419

Good 0.9 0.3 0 0.8 0.4 0 0.413

Medium 0 0 0 0.2 0.6 0 0.088

Poor 0 0 0 0 0 1.0 0.080
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The grey cluster evaluation model based on mixed possibility function is more
suitable to solve problems of poor information clustering evaluation. On the other
hand, grey cluster evaluation model using center-point mixed possibility functions
is suitable for problems where it is relatively easy to judge the most likely points
belonging to each grey class, but the grey boundaries of all sub-intervals are not clear.
Finally, grey cluster evaluation model using end-point mixed possibility functions is
suitable for situations where all grey boundaries of all sub-intervals are clear, but the
most likely points belonging to each grey class are unknown.
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Chapter 7
Series of GM Models

7.1 Introduction

Model GM(1,1) is the basic model of grey prediction theory and has been used
widely since its development in the early 1980s (Deng, 1982). Grey system theory
is a new methodology that focuses on uncertain problems involving small data and
poor information. Incomplete and inaccurate information is the basic characteristic of
uncertainty systems. In the case of incomplete information and inaccurate data, it is
impossible to pursue a refined model (Liu et al., 2012). Professor Zadeh’s incompati-
bility principle also clearly states that, when the complexity of the system grows, our
ability to make an accurate and significant description of a system’s characteristics
decreases until it reaches a threshold value that, if it exceeded, accuracy and signifi-
cance will become mutually exclusive characteristics (Zadeh, 1994). The incompat-
ibility principle tells us that pursuing a refinement model one-sidedly will reduce the
feasibility and significance of the results. A refined model is not an effective means
address complex systems.

In the last 40 years, much research has been carried out on the practical
applications of Model GM(1,1), and new research results emerge continuously.

The grey prediction model is one type of the GM with most active research
and used widely. In 2005, Xie and Liu proposed the discrete grey model (DGM)
first and studied its properties (Xie & Liu, 2005, 2009). Later, Wu et al. (2013b,
2015) came up with a kind of the fractional accumulation DGM and completed
perturbation problem of GM. Chen et al. (2009) set up the DHGM (2,2) coupled
equations combining grey differential equation and selfmemory principle based on
power system self-memory principle. Guo et al. (2014b) proposed the interval grey
number self-memory prediction model based on the degree of greyness of synthesis
grey number, then studied self-memory prediction model from different views.

Various forms of developments and derived model emerged in an endless stream.
Dang and Liu (2004) came up with GM (1,1) model based on x(n) as the initial

condition. In 2014d, Liu et al. determined four kinds ofGM(1,1) basicmodels that are
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even GM(1,1) model, discrete GM(1,1) model, even difference GM(1,1) model and
original differenceGM(1,1)model through the experiments of simulation, thenmade
clear of the suitable type of sequences of the differentmodel. Li et al. (2014) proposed
GM(1,1, β) model, studied the content type and parameter set form of the model
and analyzed several properties of the GM(1,1, β) model, then gave its optimization
algorithm.Wang (2013) provided several kinds of formsofGM(1,1) powermodel and
studied the characteristics of their time response function. Xiao et al. (2013) studied
generalized accumulation GM and proposed a combined optimization method. Qian
et al. (2012) came up with the grey GM(1,1, tα) model with the time power item
and studied the process of modeling and parameter estimation method. Tang (2006)
proposed a new prediction model based on grey supporting vector machine. Zhang
(2014) put forward the multi variable DGM based on driving control. Zeng and Liu
(2014) cameupwith the randomoscillation sequence predictionmodel taking smooth
operator compress random oscillation amplitude.Wu et al. proposed a time power-
based grey model with conformable fractional derivative (Wu et al., 2022). Zeng
et al. proposed a variable-structure grey model (Zeng et al., 2023). Öztürk et al.,
proposed a optimization continuous fractional grey model (Öztürk et al., 2022).
Saxena proposed a optimization fractional overhead power term polynomial grey
model (Saxena, 2023).

Zhang (2007) used particle swarm algorithm and provided a new method of
increasing the grey GM(1,1) precision through the optimization of background value
interpolation coefficient and boundary value. Yao et al. (2010) studied the parameter
characteristics of the new information discrete GM(1,1) model and fitting properties
of the geometric sequence, then put forward a new information discrete GM(1,1)
model with the sectional correction. Wu et al. (2013a) constructed the twice time-
varying parameter DGMwith the features of the white index law coincidence, linear
law coincidence, twice law coincidence and stretching transformation consistency.
Benitez et al. (2013) improved the GM model and forecasted long-term trend of
American air transport industry passenger flow using improved model, then get
satisfied results.Evans (2014) proposed a more general grey Verhulst model and
forecasted changes of the steel strength in British used this model. Xie et al. (2014)
studied the prediction problems of grey number sequence.

Liu and Deng (2000) studied the range suitable for GM(1,1) based on simulated
test.The area of validity, the area to be used carefully, the area not suitable for use and
the prohibited area of GM(1,1) have been divided clearly according to the threshold
of the developing coefficients. Xiao andWang (2014) studied the influences of model
relative error made by the change of the background value of grey GM(1,1,α) model
based on analysis of the modeling mechanism. Liu et al. (2003) utilized the method
of “the least square estimate” to determine the constant number c in the time response
sequence of whiterization equation of GM(1,1), then got the optimum time response
sequence of whiterization equation for GM(1,1). Song et al. (2002) given a new
method to handle derivative signal and background value and derived the adjusting
GM. Ji et al. (2001) analyzed the characteristics of the deviation of the model. Then
clarified the essence of the error of GM(1,1) model. Tong et al. (2002) shown that
accumulated generating operation (AGO) of the GM can “strengthen” the law and
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reform randomicity of numbers, so it has nice anti-interference. Wang et al. (2001)
put forward aGM(1,1)modelingmethod by taking the optimumweighted averages of
ahead difference quotient and back difference quotient as the grey derivative whiting
values, and proved that the new method have the linear transformation consistency.
Mao et al. (2015) built a time-lag GM(1, N,τ) model, and provided its least squares
parameter estimation formula and analytical solution. Liu et al. (2014a) analyzed the
solution errors of a whitenization GM(1,1) model and a connotation GM(1,1) model,
then present the condition that a connotation GM(1,1) model can be replaced by a
whitenization GM(1,1) model. Tien (2003) proposed deterministic grey dynamic
model with multiple inputs, DGDMMI(1,1,1) which with high prediction accuracy.
Xia et al. (2015) proposed a real-time rolling grey forecasting method to provide
efficient and accurate machine health prediction, while effects of influencing factors
such as operating load are considered and analyzed.

The application results of the grey prediction model are numerous.
Such as Kose and Tasci (2015) predicted the vertical displacement of the Crest

of Keban Dam in Turkey by grey prediction method. Their results indicate that the
grey prediction method produces better results, more in-keeping with true values.
Gurden et al. (2001) built a spectroscopic batch process data model using GMs to
incorporate external information. In their paper, different approaches to buildingGMs
are described and some of their properties discussed. Chirwa and Mao (2006) used
GM(1,1) model to estimate the accident risk based on data of UK and USA. Cempel
(2008) monitored mechanical vibration state using the grey prediction model. Hsu
and Yeh (2000) developed a new methodology for lossy image compression based
on GM. Hao et al. (2012) analyzed and predicted hydrological process in Karst
River Basin using the grey prediction model and gained the higher precision. Then
they studied human activities effect on hydrological process in Karst River Basin
using sectioned GM (Hao et al., 2013). Yang and Wong (2014) made the further
improvement about the unbiased GM and forecasted the amount of some city’s gas
supplement. Tabaszewski andCempel (2015) developed amethodology of predicting
values of vibration symptoms of fan mills in a combined heat and power plant based
on grey system theory and GM(1,1) prognostic models.

Wang and Nie (2008) forecasted mechanical fatigue life using the grey system
model, which made prediction error greatly reduced. Bo et al. (2012) applied BP
neural network method and grey system model to predict Tianjin Qinhuangdao
passenger dedicated line Luqiao transition section roadbed settlement. Wang and
Yihua (2010) adopted the grey neural network method and set up a nonlinear predic-
tionmodel ofChina civil aviation operation risk. Li et al. (2011) andYang et al. (2008)
forecasted spacecraft fault using the grey system model and obtained the high accu-
racy. Zhang et al. (2006) applied GM(1,1) model to study variation rule of the robot
emotional state and achieved emotional robot interaction system. Liet al. (2010)
measured fatigue crack propagation rate using the grey prediction model. Lin et al.
(2005) established the grey prediction model about the slope rock mass deformation
according to the test data of Three Gorges site slope. Then they drew the fitting and
prediction curves of slope deformation, which provided reliable guarantee and theo-
retical basis for its prediction. Benítez et al. predicted the damp trend of the airline
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industry (Benítez et al., 2013). Xie et al. evaluated and forecasted the niche fitness of
regional innovation ecosystems (Xie et al., 2023). Duman et al. Estimated the elec-
tronic waste using optimized multivariate grey models (2019). Özdemir and Özda-
goglu predicted product demand based on small-sized data (Özdemir & Özdagoglu,
2017). Comert et al. Built a grey models for short-term queue length predictions
for adaptive traffic signal control (Comert et al., 2021). Manickam et al. predicted
the volatile price of gold by grey model (Manickam et al., 2023). Zeng et al. built a
novel-structuredmultivariable greymodelwith various orders to forecast the bending
strength of concrete (Zeng et al., 2023). Zhang et al. predicted the demand for staple
food and feed grain by a novel hybrid fractional discrete multivariate grey model
(Zhang et al., 2024).

In big data area, the grey systempredictionmethod based on small datamining as a
new force suddenly rises, which becomes an effective tool for valuable information
extracted from a mass of data. It is a very meaningful job to build more normal
model testing standards based on the grey system prediction model testing method
and statistical testing theory. The investigation on the potential of grey prediction
models in Big Data is certainly a future direction in this field.

7.2 The Four Basic Forms of GM(1,1)

In this sectionwe present definitions of four basic forms ofmodelGM(1,1), including
Even Grey Model (EGM), Original Difference Grey Model (ODGM), Even Differ-
ence Grey Model (EDGM) and Discrete Grey Model (DGM). The properties and
characteristics of different models are discussed in-depth (Liu et al., 2015).

7.2.1 The Basic Forms of Model GM(1,1)

Definition 7.2.1 Let X (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)), x(0)(k) ≥ 0,X (1) be the
1-AGO sequence of X (0); that is.

X (1) = [x(1)(1), x(1)(2), . . . , x(1)(n)
]

where x(1)(k) =
k∑

i=1
x(0)(i), k = 1, 2, . . . n Then

x(0)(k) + ax(1)(k) = b (7.1)

is referred to as the original form of model GM(1,1), which is a difference equation
(Deng, 1985).
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The parameter vector â = [a, b]T of formula (7.1) can be estimated using the
least square method, which satisfies

â = (BTB)−1BTY (7.2)

where

B =

⎡

⎢⎢⎢
⎣

− x(1)(2) 1
− x(1)(3) 1

...
...

− x(1)(n) 1

⎤

⎥⎥⎥
⎦

,Y =

⎡

⎢⎢⎢
⎣

x(0)(2)
x(0)(3)

...

x(0)(n)

⎤

⎥⎥⎥
⎦

(7.3)

Definition 7.2.2 Based on the original form of model GM(1,1) and formula (7.2),
which is used to estimate the model’s parameters, then the model that takes the
solution of the original difference Eq. (7.1) as the time response formula is called the
original difference form of model GM(1,1), and is referred to as Original Difference
Grey Model(ODGM) for short (Liu et al., 2015).

Definition 7.2.3 Let X (0),X (1) and, just like Definition 7.2.1, let.

Z (1) = (z(1)(2), z(1)(3), . . . , z(1)(n)
)
,

where z(1)(k) = 1
2 (x

(1)(k) + x(1)(k − 1)), then

x(0)(k) + az(1)(k) = b (7.4)

is referred to as the even form of model GM(1,1)(Deng, 1985).
The even form of model GM(1,1) is also essentially a difference equation. The

parameter vector of formula (7.4) can also be estimated with formula (7.2), but it
should be noted that the elements of matrix B are different from those in formula
(7.3), which is

B =

⎡

⎢⎢⎢
⎣

− z(1)(2) 1
− z(1)(3) 1

...
...

− z(1)(n) 1

⎤

⎥⎥⎥
⎦

(7.5)

Definition 7.2.4 The following differential equation.

dx(1)

dt
+ ax(1) = b (7.6)

is called a shadow equation of the even form x(0)(k)+az(1)(k) = b ofmodel GM(1,1)
(Deng, 1985).
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Definition 7.2.5 Replace matrix B of formula (7.2) with (7.5), according to param-
eter vector â = [a, b]T of the least squares estimator of (6) and the solution of
whitenization Eq. (7.6), and model the difference, differential hybrid model of the
time response formula of GM(1,1). This is called the even hybrid form of model
GM(1,1), and is referred to as Even Grey Model (EGM) for short (Deng, 1985).

Definition 7.2.6 The parameter −a of Even GM(1,1) is called development index
and b is called grey actuating quantity. The development index reflects the trend of
x̂(1) and x̂(0).

Even Model GM(1,1) is the grey prediction model proposed firstly by Professor
Deng Julong, and is currently the most influential, widely used form. When
researchers mention model GM(1,1) they are often referring to EGM.

Definition 7.2.7 Based on the even form of model GM(1,1) and the estimated model
parameters, then the model that takes the solution of the even difference Eq. (7.4) as
the time response formula is called the even difference form of model GM(1,1), and
is referred to as Even Difference Grey Model(EDGM) for short (Liu et al., 2015).

Definition 7.2.8 The difference equation as follows.

x(1)(k + 1) = β1x
(1)(k) + β2 (7.7)

is called a discrete form of model GM(1,1), and is referred to as Discrete GreyModel
(DGM) for short (Xie & Liu, 2005).

The parameter vector β̂ = [β1, β2]T in Eq. (7.7) is similar to formula (7.2), where

B =

⎡

⎢
⎢⎢
⎣

x(1)(1)
x(1)(2)

...

x(1)(n − 1)

1
1
...

1

⎤

⎥
⎥⎥
⎦

,Y =

⎡

⎢
⎢⎢
⎣

x(1)(2)
x(1)(3)

...

x(1)(n)

⎤

⎥
⎥⎥
⎦

The four different models of GM(1,1) use only the system’s behavior data
sequence to model the predictive models and belong to the simple and practical
modeling method with a single sequence. In the case of time series data, only a
regular time variables are involved; In the case of horizontal sequence data, only a
regular object sequence number variables are involved, and other explanatory vari-
ables are not involved. GM(1,1) model is a modeling method which is relatively
simple to apply and can mine valuable development and change information, so it is
widely used.
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7.2.2 Properties and Characteristics of the Basic Model

Theorem 7.2.1 The time response sequence of the Even Model GM(1,1) is as
follows:

x̂(1)(k) =
(
x(0)(1) − b

a

)
e−a(k−1) + b

a
, k = 1, 2, . . . n (7.8)

Proof The solution of whitenization or shadow equation dx(1)

dt + ax(1) = b is

x(1)(t) = Ce−at + b

a
. (7.9)

When t = 1, we let x(1)(1) = x(0)(1), and feed into Eq. (7.9); we can obtain
C = [x(0)(1) − b

a

]
ea. After that we take C into Eq. (7.9) and can get

x̂(1)(t) =
(
x(0)(1) − b

a

)
e−a(t−1) + b

a
(7.10)

Equation (7.8) is the discrete form of Eq. (7.10). From Eq. (7.8)’s regressive
reduction formula

x̂(0)(k) = α(1) x̂(1)(k) = x̂(1)(k) − x̂(1)(k − 1), k = 1, 2, . . . n,

we can obtain the time response formula of X(0), that is

x̂(0)(k) = (1 − ea
)(

x(0)(1) − b

a

)
e−a(k−1),

k = 1, 2, . . . n, (7.11)

Theorem 7.2.2 The time response formula of formula (7.7) of the Discrete Model
GM(1,1) is.

x̂(1)(k) =
[
x(0)(1) − β2

1 − β1

]
βk
1 + β2

1 − β1
(7.12)

Proof The general solution of the difference Eq. (7.13)

x(1)(k + 1) = Ax(1)(k) + B (7.13)

is

x(1)(k) = CAk + B

1 − A
, (7.14)
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where C is an arbitrary constant and can be defined by the initial conditions.
Formulas (7.7) and (7.14) are exactly the same difference equation. Let A =

β1,B = β2, then

x(1)(k) = Cβk
1 + β2

1 − β1
. (7.15)

When k = 0, let x(1)(0) = x(0)(1), and feed into formula (7.15), we can get

C =
[
x(0)(1) − β2

1−β1

]
. Then take C into formula (7.15) and we can obtain formula

(7.12).
From formula (7.12)’s regressive reduction formula

x̂(0)(k) = α(1) x̂(1)(k) = x̂(1)(k) − x̂(1)(k − 1), k = 1, 2, . . . n,

we can obtain the time response formula of X(0), that is

x̂(0)(k) = (β1 − 1)

[
x(0)(1) − β2

1 − β1

]
βk−1
1 . (7.16)

Theorem 7.2.3 The time response formula of Original Difference Model GM(1,1)
is.

x̂(1)(k) =
(
x(0)(1) − b

a

)(
1

1 + a

)k

+ b

a
(7.17)

Proof From the original form (7.1) of model GM(1,1) we can get

x(1)(k + 1) − x(1)(k) + ax(1)(k + 1) = b. (7.18)

After transposition, we obtain

x(1)(k + 1) =
(

1

1 + a

)
x(1)(k) + b

1 + a

Contrast with the difference Eq. (7.13), when we feed A = 1
1+a ,B = b

1+a into
Eq. (7.14), we can obtain

x(1)(k) = C

(
1

1 + a

)k

+ b

a
(7.19)

When k = 0, let x(1)(0) = x(0)(1), feed into formula (7.18) and get C =[
x(0)(1) − b

a

]
. Then we feed C into formula (7.19) and can obtain formula (7.17).

From formula (7.17)’s regressive reduction formula
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x̂(0)(k) = α(1) x̂(1)(k) = x̂(1)(k) − x̂(1)(k − 1), k = 1, 2, . . . n,

we can obtain the time response formula of X(0), which is

x̂(0)(k) =
(
x(0)(1) − b

a

)(
1

1 + a

)k

+ b

a
−
[(

x(0)(1) − b

a

)(
1

1 + a

)k−1

+ b

a

]

.

That is

x̂(0)(k) = (−a)

(
x(0)(1) − b

a

)(
1

1 + a

)k

(7.20)

Theorem 7.2.4 The time response formula of Even Difference Model GM(1,1) is.

x(1)(k) =
(
x(0)(1) − b

a

)(
1 − 0.5a

1 + 0.5a

)k

+ b

a
(7.21)

Proof From the even form (7.4) of model GM(1,1) we can get

x(1)(k + 1) − x(1)(k) + a

(
x(1)(k + 1) + x(1)(k)

2

)
= b.

After transposition, we obtain

x(1)(k + 1) =
(
1 − 0.5a

1 + 0.5a

)
x(1)(k) + b

1 + 0.5a

Contrast with the difference Eq. (7.13), and feed A = 1−0.5a
1+0.5a ,B = b

1+0.5a into
formula (7.14). We can obtain

x(1)(k) = C

(
2 − a

2 + a

)k

+ b

a
(7.22)

When k = 0, let x(1)(0) = x(0)(1), feed it into formula (7.22) and get C =[
x(0)(1) − b

a

]
. Then feed C into formula (7.22) and we can obtain formula (7.21).

From formula (7.21)’s regressive reduction formula

x̂(0)(k) = α(1) x̂(1)(k) = x̂(1)(k) − x̂(1)(k − 1), k = 1, 2, . . . n,

we can obtain the time response formula of X(0), which is

x̂(0)(k) =
(
x(0)(1) − b

a

)(
1 − 0.5a

1 + 0.5a

)k
+ b

a
−
[(

x(0)(1) − b

a

)(
1 − 0.5a

1 + 0.5a

)k−1
+ b

a

]

.
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That is

x̂(0)(k) =
( −a

1 − 0.5a

)(
x(0)(1) − b

a

)(
1 − 0.5a

1 + 0.5a

)k

(7.23)

Lemma 7.2.1 When −a → 0+, 1−0.5a
1+0.5a ≈ e−a.

Proof The Maclaurin expansions of e−a and 1−0.5a
1+0.5a are as follows:

e−a = 1 − a + a2

2! − a3

3! + · · · + (−1)n
an

n! + o(an)

1 − 0.5a

1 + 0.5a
= 1 − a + a2

2
− a3

22
+ · · · + (−1)n+1 a

n+1

2n
+ o(an+1)

As n = 3, then there is � = e−a − 1−0.5a
1+0.5a = − a3

6 + a3

4 = a3

12 , therefore, when
−a → 0+, 1−0.5a

1+0.5a ≈ e−a.

Theorem 7.2.5 When −a → 0+, Even Model GM(1,1) and Discrete Model
GM(1,1) are equivalent.

Proof From the even form (7.4) of Model GM(1,1).

x(1)(k + 1) =
(
1 − 0.5a

1 + 0.5a

)
x(1)(k) + b

1 + 0.5a
.

and contrast with the discrete form (7.7), we can obtain β1 = 1−0.5a
1+0.5a , β2 = b

1+0.5a
and

a = 2(1 − β1)

1 + β1
, b = 2β2

1 + β1
,
b

a
= β2

1 − β1
. (7.24)

Take b
a = β2

1−β1
into formula (7.8), we can get

x̂(1)(k) =
[
x(0)(1) − β2

1 − β1

]
e−a(k−1) + β2

1 − β1
, k = 1, 2, . . . n (7.25)

It is known from Lemma 1 that when −a → 0+, therefore, Even Model GM(1,1)
and Discrete Model GM(1,1) are equivalent.

Analogously, we can prove that when −a → 0+, the four basic forms of
model GM(1,1), namely Even Model GM(1,1) (EGM), Original Difference Model
GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete Model
GM(1,1)(DGM) are pairwise equivalent. However, the degree of approximation
between different forms is a difference. This difference leads to different forms
of Model GM(1,1) being suitable for different situations, and it also offers a variety
of possible options for the actual modeling process.
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Theorem 7.2.6 Original Difference Model GM(1,1)(ODGM), Even Difference
Model GM(1,1) (EDGM) and Discrete Model GM(1,1) (DGM) can all accurately
simulate homogeneous exponential sequences.

Since the time response formulas ofOriginalDifferenceModelGM(1,1)(ODGM),
Even Difference GM(1,1) model (EDGM) and Discrete GM (1,1) model (DGM) are
all geometric sequences, they can accurately simulate homogeneous exponential
sequences.

In the basic forms of GM(1,1), the development coefficient (−a) reflects the
development states of x̂(1) and x̂(0). In general, the variables that act upon the system
of interest should be external or pre-defined. Because GM(1,1) is a kind of model
constructed on a single sequence, it uses only the behavioral sequence (also referred
to as output sequence or background values) of the system without considering any
externally acting sequences (also referred to as input sequences, or drivingquantities).
The grey action quantity b in the basic forms of GM(1,1) is a value derived from the
background values. It reflects changes contained in the data and its exact intension
is grey. This quantity realizes the extension of the relevant intension. Its existence
distinguishes grey systems modeling from the general input–output (or black-box)
modeling. It is also an important test stone of separating the thoughts of grey systems
and those of grey boxes.

7.3 Suitable Ranges of Different GM(1,1)

The suitable sequences of different basicmodels of GM(1,1) (Liu et al., 2015) and the
applicable ranges of EGM (Liu&Deng, 2000) are studied by simulation and analysis
with homogeneous exponential sequences, non-exponential increasing sequences,
and vibration sequences. It can provide reference and a basis for people to choose
the correct model in the actual modeling process.

7.3.1 Suitable Sequences of Different GM(1,1)

For further study of the suitable sequences of four basic forms of model GM(1,1),
we let

−a = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25,

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9,

1.0, 1.1, 1.2, 1.5, 1.8
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and conduct simulation analysis, respectively. Let k= 1, 2, 3, 4, 5, with the homoge-
neous exponential function x(0)

i (k) = e−ak , and accurate to six decimal places. Then
we can get the corresponding sequences as follows:

−a = 0.01,X (0)
1 =

(
x(0)
1 (1), x(0)

1 (2), x(0)
1 (3), x(0)

1 (4), x(0)
1 (5)

)

= (1.010050, 1.020201, 1.030455, 1.040811, 1.051271)

−a = 0.02,X (0)
2 =

(
x(0)
2 (1), x(0)

2 (2), x(0)
2 (3), x(0)

2 (4), x(0)
2 (5)

)

= (1.020201, 1.040811, 1.061837, 1.083287, 1.105171)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

−a = 1.8,X (0)
25 =

(
x(0)
25 (1), x(0)

25 (2), x(0)
25 (3), x(0)

25 (4), x(0)
25 (5)

)

= (6.049647, 36.59823, 221.4064, 1339.431, 8103.084).

We use X (0)
1 , X (0)

2 , …, X (0)
25 as the original data to establish Even Model

GM(1,1)(EGM), Original Difference Model GM(1,1)(ODGM), Even Difference
Model GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM), respectively. We
can find that Original Difference Model GM(1,1)(ODGM), Even Difference
Model GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM) can accurately
simulate homogeneous exponential sequence, which confirms the conclusions of
Theorem 7.2.6 once again. Using Even Model GM(1,1)(EGM) to simulate X (0)

1 ,
X (0)
2 , …, X (0)

25 , it is fond that with the increasing of −a, the error will also increase.
Table 7.1 shows the average relative error using four kinds of model GM(1,1) to
simulate the homogeneous exponential sequence X (0)

1 , X (0)
2 , …, X (0)

25 .
In Table 7.1, we can see that the small errors of Original Difference Model

GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete Model
GM(1,1)(DGM) which simulate the homogeneous exponential sequence are all
caused by round-off errors. In fact, the three models can all accurately simulate
the homogeneous exponential sequence.

Then,we limited the range of randomnumbers at first, and got the non-exponential
increasing sequence Y (0)

1 , Y (0)
2 , …, Y (0)

25 randomly generated by the homogeneous
exponential sequence X (0)

1 , X (0)
2 , …, X (0)

25 , along with the vibration sequence Z (0)
1 ,

Z (0)
2 ,…, Z (0)

25 .With that, when k = 2, 3, . . . , 5, z(0)
i (k) < z(0)

i (k−1), i = 1, 2, . . . , 25
will arise in the sequence data but there is a growth trend as a whole, both are equally
accurate to six decimal places. Then we build EvenModel GM(1,1)(EGM), Original
Difference Model GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and
Discrete Model GM(1,1)(DGM) using sequences Y (0)

1 , Y (0)
2 , …, Y (0)

25 and Z (0)
1 , Z (0)

2 ,
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Table 7.1 The simulation errors of the homogeneous exponential sequence of four kinds of
GM(1,1) (%)

Code −a EGM DGM ODGM EDGM

X (0)
1 0.01 0.000849 0.000027 0.000027 0.000027

X (0)
2 0.02 0.003468 0.000013 0.000013 0.000013

X (0)
3 0.03 0.007951 0.000018 0.000018 0.000018

X (0)
4 0.04 0.014403 0.000004 0.000004 0.000003

X (0)
5 0.05 0.022922 0.000016 0.000016 0.000016

X (0)
6 0.1 0.100058 0.000008 0.000008 0.000008

X (0)
7 0.15 0.244034 0.000009 0.000009 0.000009

X (0)
8 0.2 0.467588 0.000003 0.000003 0.000007

X (0)
9 0.25 0.78359 0.000005 0.000005 0.000006

X (0)
10 0.3 1.205144 0.000004 0.000004 0.00001

X (0)
11 0.35 1.74561 0.000006 0.000006 0.00001

X (0)
12 0.4 2.418758 0.000004 0.000004 0.00001

X (0)
13 0.45 3.238864 0.000007 0.000007 0.000008

X (0)
14 0.5 4.220851 0.000011 0.000011 0.000008

X (0)
15 0.55 5.380507 0.000003 0.000003 0.000003

X (0)
16 0.6 6.734574 0.000016 0.000016 0.000011

X (0)
17 0.65 8.30104 0.000009 0.000009 0.000006

X (0)
18 0.7 10.09936 0.000021 0.000021 0.000021

X (0)
19 0.8 14.47851 0.000015 0.000015 0.000015

X (0)
20 0.9 20.06845 0.000016 0.000016 0.000022

X (0)
21 1 27.11084 0.000047 0.000047 0.000047

X (0)
22 1.1 35.90812 0.00004 0.00004 0.000035

X (0)
23 1.2 46.84484 0.000105 0.000105 0.000105

X (0)
24 1.5 98.1885 0.000129 0.000129 0.000129

X (0)
25 1.8 – 0.000433 0.000433 0.000433

…, Z (0)
25 respectively. The errors we can see are in Tables 7.2 and 7.4. Due to limited

space, the generating data are not shown here.
From Table 7.2 we can see that four kinds of model GM(1,1) can all simulate

the non-exponential increasing sequence to a certain degree. Generally speaking, the
simulation error will increase with the increasing of the development index. In most
cases, the simulation error of the difference, differential hybrid form of Even Model
GM(1,1)(EGM), is smaller than that of the three discrete forms ofOriginalDifference
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Table 7.2 The simulation errors of the non-exponential increasing sequence of four kinds of
GM(1,1) (%)

Code −,−a,+ EGM DGM ODGM EDGM

Y (0)
1 0.01 0.030994 0.030429 0.030432 0.03043

Y (0)
2 0.02 0.658978 0.659039 0.660095 0.659572

Y (0)
3 0.03 0.495833 0.495773 0.495768 0.49577

Y (0)
4 0.04 1.010474 1.010308 1.010329 1.010319

Y (0)
5 0.05 1.550886 1.550331 1.550468 1.550401

Y (0)
6 0.1 1.626294 1.70498 1.690324 1.697211

Y (0)
7 0.15 1.343565 1.4578 1.458993 1.458442

Y (0)
8 0.2 5.155856 5.100486 5.22948 5.171925

Y (0)
9 0.25 4.353253 4.893857 4.743792 4.808361

Y (0)
10 0.3 4.736323 5.345755 5.168529 5.244168

Y (0)
11 0.35 5.236438 5.377225 5.192273 5.269577

Y (0)
12 0.4 3.603875 4.166958 4.044567 4.096904

Y (0)
13 0.45 12.834336 15.36423 13.520184 14.246584

Y (0)
14 0.5 7.39677 8.276073 7.878017 8.044898

Y (0)
15 0.55 10.218727 10.084749 10.188912 10.143461

Y (0)
16 0.6 21.07307 23.709858 21.610863 22.440905

Y (0)
17 0.65 6.637022 7.906483 7.629068 7.731359

Y (0)
18 0.7 9.0889 11.000565 10.479505 10.677398

Y (0)
19 0.8 21.156265 30.606589 28.554915 29.245194

Y (0)
20 0.9 14.441947 20.378328 17.104 18.188008

Y (0)
21 1 11.685913 18.463203 17.357496 17.734931

Y (0)
22 1.1 13.011857 20.620317 19.396248 19.782271

Y (0)
23 1.2 17.176472 27.929743 26.16349 26.624283

Y (0)
24 1.5 26.327218 51.915584 50.006882 50.471089

Y (0)
25 1.8 62.460946 75.503705 73.434001 74.070128

Model GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete
Model GM(1,1)(DGM). As the non-exponential increasing sequence is closer to the
homogeneous exponential sequence, the simulation accuracy of the three discrete
models is higher than. When the non-exponential increasing sequence is close to the
homogeneous exponential sequence to a certain extent, the simulation accuracy of
the discrete models will be smaller than that of Even Model GM(1,1)(EGM). From
the simulation results of the three discrete models GM(1,1), we can see that with
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the increasing of the development coefficient, the simulation accuracy of Original
Difference Model GM(1,1)(ODGM), and Even Difference Model GM(1,1)(EDGM)
is higher than that of Discrete Model GM(1,1)(DGM) in most cases. The statistics
for sorting the simulation error of different models with the sequence Y (0)

1 , Y (0)
2 , …,

Y (0)
25 in ascending order are presented in Table 7.2. Table 7.3 shows the statistical

results.
As can be seen from Table 7.3, among the four kinds of models, Even Model

GM(1,1)(EGM) is the most suitable for modeling with a non-exponential increasing
sequence, followed by the Original Differential Model GM (1,1) (ODGM) and
Even Difference Model GM (1,1) (EDGM). The error is slightly larger when using
the Discrete Model GM (1,1)(DGM) to simulate the non-exponential increasing
sequence.

In theory, any simple model which describes a monotonous trend struggles to
describe a change in the vibration sequence. Therefore, we add the limiting condition
of the random number, then the research range is the vibration sequence Z (0)

1 , Z (0)
2 ,

…, Z (0)
25 . With that, when k = 2, 3, . . . , 5, z(0)

i (k) < z(0)
i (k−1), i = 1, 2, . . . , 25 will

arise in the sequence data, but there is a growth trend as a whole. We can see from
Table 7.4 that, for this specific vibration sequence, the simulation error of the four
kinds of models is significantly higher than the non-exponential increasing sequence.
Similar to the situation of the non-exponential increasing sequence, in most cases the
simulation error of Even Model GM(1,1)(EGM) to the vibration sequence is smaller
than that of the three discrete forms of Original DifferenceModel GM(1,1)(ODGM),
Even Difference Model GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM). For
the vibration sequence being close to the homogeneous exponential sequence, the
simulation error of the discretemodel is smaller than one of the difference, differential
hybrid form of Even Model GM(1,1)(EGM).

The statistics for sorting the simulation error of differentmodels with the vibration
sequence Z (0)

1 ,Z (0)
2 , …, Z (0)

25 in ascending order are presented in Table 7.4. Table 7.5
shows the statistical results.

As can be seen in Table 7.5, of the four kinds of models the Even Model
GM(1,1)(EGM) is more suitable for modeling with vibration sequence than the
other three discrete form models. The error using Discrete Model GM (1,1) (DGM)
to simulate the vibration sequence is slightly larger than other two discrete form
models.

Table 7.3 Statistics for sorting the simulation error of the non-exponential increasing sequence of
four kinds of model GM(1,1)

Error sorting EGM DGM ODGM EDGM

1 18 5 2 0

2 2 2 15 6

3 0 1 5 19

4 5 17 3 0
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Table 7.4 Simulation errors of the vibration sequence of four kinds of model GM(1,1)

Code −,−a,+ EGM DGM ODGM EDGM

Z(0)
1 0.01 0.298392 0.299400 0.299118 0.299258

Z(0)
2 0.02 0.501223 0.505800 0.504877 0.505331

Z(0)
3 0.03 0.369630 0.378773 0.379089 0.378935

Z(0)
4 0.04 2.583662 2.586760 2.572109 2.579300

Z(0)
5 0.05 2.928035 2.953655 2.899369 2.925619

Z(0)
6 0.10 4.759929 4.791858 4.825226 4.807851

Z(0)
7 0.15 3.802630 3.770562 3.776330 3.773545

Z(0)
8 0.20 11.723459 11.946525 11.393483 11.642630

Z(0)
9 0.25 14.895391 14.979357 15.229595 15.130729

Z(0)
10 0.30 17.953543 17.992976 18.397577 18.241183

Z(0)
11 0.35 7.299184 8.980062 8.537865 8.708603

Z(0)
12 0.40 11.474779 11.519781 11.693309 11.619287

Z(0)
13 0.45 11.988111 12.321804 12.261075 12.286039

Z(0)
14 0.50 12.728220 11.753460 12.270432 12.038094

Z(0)
15 0.55 10.636507 10.285910 10.897796 10.623904

Z(0)
16 0.60 13.393234 13.515007 13.006751 13.227910

Z(0)
17 0.65 15.420377 15.457643 14.690315 15.004381

Z(0)
18 0.70 16.304197 16.365096 15.735103 15.998031

Z(0)
19 0.80 14.542100 14.579829 14.110548 14.310293

Z(0)
20 0.90 33.798587 33.160101 34.928437 34.293058

Z(0)
21 1.00 22.586380 22.384127 22.016157 22.145609

Z(0)
22 1.10 34.305920 34.481612 36.023522 35.484180

Z(0)
23 0.02 0.501223 0.505800 0.504877 0.505331

Z(0)
24 1.20 23.591927 24.133298 23.323921 21.511839

Z(0)
25 1.50 40.373380 40.475348 42.698005 41.917026

Table 7.5 Statistics for sorting the simulation error of the vibration sequence of four kinds ofmodel
GM(1,1)

Error sorting EGM DGM ODGM EDGM

1 12 4 8 1

2 1 7 6 11

3 9 1 2 13

4 3 13 9 0
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The authors once tried to use the original form (7.1) ofModel GM(1,1) to estimate
theparameter vector â = [a, b]T and, in accordancewith the solutionofwhitenization
Eq. (7.6) along with the time response formula of Even Model GM(1,1)(EGM),
modeled the original Model GM(1,1). After simulating the above data we found that,
even in caseswhere the development index is very small, the simulation errorwas still
comparatively large. Also, as the development index increases, the simulation error
increases rapidly. Based on even transformation of the accumulation data to build the
EvenModel GM(1,1), the simulation accuracy improves greatly. Then a newmethod
which can accurately simulate and predict the uncertain system involving small data
and poor information comes into being.

Among the four basic forms of model GM(1,1) discussed in Sects. 7.3 and 7.4,
three discrete models can all accurately simulate the homogeneous exponential
sequence. In the real world, a mass of practical data are not the simple homoge-
neous exponential sequence or close to it. This is the fundamental reason that people
prefer to choose Even Model GM(1,1)(EGM) in the modeling process of the uncer-
tain system involving small data and poor information, and it can reflect a satisfactory
result in most cases.

In Sects. 7.3 and 7.4, the definitions of four basic forms of model GM(1,1) are
put forward, and the properties and characteristics of different models are studied
in-depth. The suitable sequences of different models are studied by simulation
and analysis with homogeneous exponential sequences, non-exponential increasing
sequences, and vibration sequences. The main conclusions of the research are as
follows:

(1) The four basic forms of model GM(1,1), namely Even Model GM(1,1)
(EGM), Original Difference Model GM(1,1)(ODGM), Even Difference Model
GM(1,1)(EDGM) and DiscreteModel GM(1,1)(DGM) are pairwise equivalent.

(2) Original Difference Model GM(1,1)(ODGM), Even Difference Model
GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM) can all simulate the
homogeneous exponential sequence accurately.

(3) For the non-exponential increasing sequences and vibration sequences, we
should first choose the difference, differential hybrid form of Even Model
GM(1,1)(EGM).

(4) For the non-exponential increasing sequences and vibration sequences which
are close to the homogeneous exponential sequences, we should first choose the
discrete form of Original DifferenceModel GM(1,1)(ODGM), Even Difference
Model GM(1,1)(EDGM) or Discrete Model GM(1,1)(DGM).

The conclusions above can be the reference and basis for choosing an appropriate
model in the actual modeling process. There is a modeling software corresponding
to the models. Interested readers can download it for free from the website of the
Institute for Grey System Studies of Nanjing University of Aeronautics and Astro-
nautics (http://igss.nuaa.edu.cn) or from the website of the Marie Curie International
Incoming Fellowship project (FP7.People-IIF-GA-2013-629051) (http://preview.
dmu.ac.uk/research/research-faculties-and-institutes/technology/cci/projects/).

http://igss.nuaa.edu.cn
http://preview.dmu.ac.uk/research/research-faculties-and-institutes/technology/cci/projects/
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Example 6.2.1 Let sequences of X (0)
1 ,X (0)

2 and X (0)
3 be as follows,

X (0)
1 =

(
x(0)
1 (1), x(0)

1 (2), x(0)
1 (3), x(0)

1 (4), x(0)
1 (5)

)

= (1.5,2.1, 3.0,4.5, 5.48)

X (0)
2 =

(
x(0)
2 (1), x(0)

2 (2), x(0)
2 (3), x(0)

2 (4), x(0)
2 (5), x(0)

2 (6)
)

= (1.5,1.3, 3.0,3.9, 7.2, 9.5)

X (0)
3 =

(
x(0)
3 (1), x(0)

3 (2), x(0)
3 (3), x(0)

3 (4), x(0)
3 (5)

)

= (2, 9, 32, 27, 55)

Try to build the Even Model GM(1,1)(EGM), Discrete Model GM(1,1)(DGM),
Original Difference Model GM(1,1)(ODGM), and Even Difference Model
GM(1,1)(EDGM) using sequences X (0)

1 ,X (0)
2 and X (0)

3 . Compare the simulation
errors. Table 7.6

Solution:

(1) For X (0)
1 , we build Even Model GM(1,1)(EGM), Discrete Model

GM(1,1)(DGM), Original Difference Model GM(1,1)(ODGM), and Even
Difference Model GM(1,1)(EDGM) using 1.5, 2.1, 3.0, 4.5, 5.48. We then
obtained the simulation results as follows.

Simulation results by EGM: X̂ (0)
1 = (1.5000, 2.2459, 3.0428, 4.1225, 5.5853)

Simulation results byDGM: X̂ (0)
1 = (1.5000, 2.2746, 3.0844, 4.1827, 5.6719).

Simulation results by ODGM: X̂ (0)
1 = (1.5000, 2.2600, 3.0726, 4.1772,

5.6789).
Simulation results by EDGM: X̂ (0)

1 = (1.5000, 2.2662, 3.0776, 4.1795,
5.6760).

(2) For X (0)
2 , we build EGM, DGM, ODGM, and EDGM using 1.5, 1.3, 3.0, 3.9,

7.2, 9.5. Then we obtained the simulation results as follows. Table 7.7
Simulation results by EGM: X̂ (0)

2 = (1.5000, 1.8632, 2.8290, 4.29556.5220,
9.9028)

Simulation results by DGM: X̂ (0)
2 = (1.5000, 1.9247, 2.9317, 4.4654, 6.8016,

10.3599).

Table 7.6 Simulation errors of four different models with X (0)
1

Models EGM DGM ODGM EDGM

Mean relative errors (%) 4.7363 5.3458 5.1685 5.2442
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Table 7.7 Simulation errors of four different models with X (0)
2

Models EGM DGM ODGM EDGM

Mean relative errors (%) 11.9881 12.3218 12.2611 12.2860

Table 7.8 Simulation errors of four different models with X (0)
3

Models EGM DGM ODGM EDGM

Mean relative errors (%) 27.2510 25.9994 26.4180 26.1794

Simulation results by ODGM: X̂ (0)
2 = (1.5000, 1.8793, 2.8771, 4.4047,

6.7433, 10.3236).
Simulation results by EDGM: X̂ (0)

2 = (1.5000, 1.8973, 2.8988, 4.4290,
6.7669, 10.3388).

(3) For X (0)
3 , we build EGM, DGM, ODGM, and EDGM using 2, 9, 32, 27, 55.

Then we obtained the simulation results as follows. Table 7.8

Simulation results by EGM: X̂ (0)
3 =(2.0000, 13.9767, 21.6340, 33.4864,

51.8323)
Simulation results by DGM: X̂ (0)

3 = (2.0000, 15.4516, 23.4647, 35.6332,
54.1122).
Simulation results by ODGM: X̂ (0)

3 =(2.0000, 13.4756, 21.3666, 33.8782,
53.7164).
Simulation results by EDGM: X̂ (0)

3 = (2.0000,14.2602, 22.2313, 34.6581,
54.0311).

The simulation results with X (0)
1 ,X (0)

2 and X (0)
3 confirmed the above conclusion

once again.

7.3.2 Applicable Ranges of EGM

Proposition 7.3.1. When (n − 1)
n∑

k=2

[
z(1)(k)

]2 →
[

n∑

k=2
z(1)(k)

]2
, the EGM(1,1)

becomes invalid.

Proof By using the model parameters obtained by the least squared estimate, we
have.

â =
∑n

k=2 z
(1)(k)

∑n
k=2 x

(0)(k) − (n − 1)
∑n

k=2 z
(1)(k)x(0)(k)

(n − 1)
∑n

k=2

[
z(1)(k)

]2 − [∑n
k=2 z

(1)(k)
]2
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b̂ =
∑n

k=2 x
(0)(k)

∑n
k=2

[
z(1)(k)

]2 −∑n
k=2 z

(1)(k)
∑n

k=2 z
(1)(k)x(0)(k)

(n − 1)
∑n

k=2

[
z(1)(k)

]2 − [∑n
k=2 z

(1)(k)
]2

When (n − 1)
n∑

k=2

[
z(1)(k)

]2 →
[

n∑

k=2
z(1)(k)

]2
, â → ∞, b̂ → ∞, so that the

model parameters cannot be determined. Hence, the EGM(1,1) becomes invalid.

Proposition 7.3.2. When the development coefficient a of the EGM(1,1) model
satisfies |a| ≥ 2, the GM(1,1) model becomes invalid.

Proof From the following expression of the GM(1,1) model.

x(0)(k) =
(
1 − 0.5a

1 + 0.5a

)k−2(b − ax(0)(1)

1 + 0.5a

)
; k = 2, 3, . . . , n

it can be seen that when a = −2, x(0)(k) → ∞; when a = 2, x(0)(k) = 0; and when
|a| > 2, b−ax(0)(1)

1+0.5a becomes a constant, while the sign of
(
1−0.5a
1+0.5a

)k−2
changes with k

being even or odd. Thus, the sign of x(0)(k) flips with k being even or odd.
The discussion above indicates that (−∞,−2] ∪ [2,∞) is the forbidden area for

the development coefficient (−a) of the GM(1,1) model. When a ∈ (−∞,−2] ∪
[2,∞), the GM(1,1) model loses its validity. In general, when |a| < 2, the GM(1,1)
model is meaningful. However, for different values of a, the prediction effect of the
model is different. For the case of − 2 < a < 0, let us respectively take −a = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.5, 1.8 to conduct a simulation analysis. By taking k =
0, 1, 2, 3, 4, 5, from x(0)

i (k + 1) = e−ak , we obtain the following sequences:

If − a = 0.1,X (0)
1 =

(
x(0)
1 (1), x(0)

1 (2), x(0)
1 (3), x(0)

1 (4), x(0)
1 (5), x(0)

1 (6)
)

= (1, 1.1051, 1.2214, 1.3499, 1.4918, 1.6487).

If − a = 0.2,X (0)
2 = (1, 1.2214, 1.4918, 1.8221, 2.2255, 2.7183).

If − a = 0.3,X (0)
3 = (1, 1.3499, 1.8221, 2.4596, 3.3201, 4.4817).

If − a = 0.4,X (0)
4 = (1, 1.4918, 2.225, 3.3201, 4.9530, 7.3890).

If − a = 0.5,X (0)
5 = (1, 1.6487, 2.7183, 4.4817, 7.3890, 12.1825).

If − a = 0.6,X (0)
6 = (1, 1.8821, 3.3201, 6.0496, 11.0232, 20.0855).

If − a = 0.8,X (0)
7 = (1, 2.2255, 4.9530, 11.0232, 24.5325, 54.5982).

If − a = 1,X (0)
8 = (1, 2.7183, 7.3890, 20.0855, 54.5982, 148.4132).

If − a = 1.5,X (0)
9 = (1, 4.4817, 20.0855, 90.0171, 403.4288, 1808.0424).

If − a = 1.8,X (0)
10 = (1, 6.0496, 36.5982, 221.4064, 1339.4308, 8103.0839).

Let us respectively apply X (0)
1 , X (0)

2 , …, and X (0)
9 to establish a GM(1,1) model

and obtain the following time response sequences:
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x̂(1)
1 (k + 1) = 10.50754e0.09992182k − 9.507541,

x̂(1)
2 (k + 1) = 5.516431e0.1993401k − 4.516431,

x̂(1)
3 (k + 1) = 3.85832e0.297769k − 2.858321,

x̂(1)
4 (k + 1) = 3.033199e0.394752k − 2.033199,

x̂(1)
5 (k + 1) = 2.541474e0.4898382k − 1.541474,

x̂(1)
6 (k + 1) = 2.216363e0.5826263k − 1.216362,

x̂(1)
7 (k + 1) = 1.815972e0.7598991k − 0.8159718,

x̂(1)
8 (k + 1) = 1.581973e0.9242348k − 0.5819733,

x̂(1)
9 (k + 1) = 1.287182e1.270298k − 0.2871823,

x̂(1)
10 (k + 1) = 0.198197e1.432596k − 0.1981966.

From x̂(0)
i (k + 1) = x̂(1)

i (k + 1) − x̂(1)
i (k), i = 1, 2, . . . , 10, we obtain

x̂(0)
1 (k + 1) = 0.99918e0.09992182k ,

x̂(0)
2 (k + 1) = 0.99698e0.1993401k ,

x̂(0)
3 (k + 1) = 0.99362e0.297769k ,

x̂(0)
4 (k + 1) = 0.989287e0.394752k ,

x̂(0)
5 (k + 1) = 0.984248e0.4898382k ,

x̂(0)
6 (k + 1) = 0.97868e0.5826263k ,

x̂(0)
7 (k + 1) = 0.966617e0.7598991k ,

x̂(0)
8 (k + 1) = 0.95419e0.9242348k ,

x̂(0)
9 (k + 1) = 0.925808e1.270298k ,

x̂(0)
10 (k + 1) = 0.91220e1.432596k .

From the mean generation of z(1)(k) = 1
2 (x

(1)(k) + x(1)(k − 1)) of GM(1,1)
model x(0)(k) + az(1)(k) = b, it has the effect of weakening the growth for
increasing sequences. For an exponential sequence, the established GM(1,1) has
a small development coefficient.

Let us compare the errors between the original sequence X (0)
i and the simulation

sequence X̂ (0)
i , as seen in Table 7.9.

It can be seen that as the development coefficient increases, the simulation error
grows drastically. When the development coefficient is smaller than or equal to 0.3,
the simulation accuracy can reach above 98%. When the coefficient is smaller than
or equal 0.5, the simulation accuracy can reach above 95%. When the coefficient is
greater than 1, the simulation accuracy is lower than 70%. When the coefficient is
greater than 1.5, the simulation accuracy is lower than 50%.
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Table 7.9 The simulation errors of different development coefficients (−a)

Development coefficient (−a) 1
5

6∑

i=2

[
x̂(0)(k) − x(0)(k)

] Mean relative error 1
5

6∑

k=2
�k (%)

0.1 0.004 0.104

0.2 0.010 0.499

0.3 0.038 1.300

0.4 0.116 2.613

0.5 0.307 4.520

0.6 0.741 7.074

0.8 3.603 14.156

1 14.807 23.544

1.5 317.867 51.033

1.8 1632.240 65.454

Let us now further focus on the first step, second step, fifth step, and 10th step
prediction errors. See Table 7.10.

It can be seen that when the development coefficient is smaller than 0.3, the step
1 prediction accuracy is above 98%, with both steps 2 and 5 accuracies above 97%.
When 0.3 < − a ≤ 0.5, the steps 1 and 2 prediction accuracies are all above 90%; and
the step 10 prediction accuracy also above 80%. When the development coefficient
is greater than 0.8, the step 1 prediction accuracy is below 70%. The horizontal bars
in Table 4.5 represent that the relevant errors are greater than 100%.

From this analysis, we can draw the following conclusions: When − a ≤ 0.3,
GM(1,1) can be applied to make mid- to long-term predictions; when 0.3 < − a ≤
0.5, GM(1,1) can be applied to make short- and mid-term predictions with caution;
when 0.5 < − a ≤ 0.8 and GM(1,1) is used to make short-term predictions, one

Table 7.10 Prediction errors

− a 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 1.8

Step 1
error
(%)

0.129 0.701 1.998 4.317 7.988 13.405 31.595 65.117 − −

Step 2
error
(%)

0.137 0.768 2.226 4.865 9.091 15.392 36.979 78.113 − −

Step 5
error
(%)

0.160 0.967 2.912 6.529 12.468 21.566 54.491 − − −

Step 5
error
(%)

0.855 1.301 4.067 9.362 18.330 32.599 88.790 − − −
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needs to be very cautious about the prediction results; when 0.8 < − a ≤ 1, one
should employ the remnant GM (1,1) model; and when − a > 1, GM(1,1) should not
be applied.

7.4 Remnant GM(1,1) Model

When the accuracyof aGM(1,1)model does notmeet the predetermined requirement,
one can establish another GM(1,1) model using the error sequence to remedy the
originalmodel to improve the accuracy.Wewill use the remnantGM(1,1) of EGM(1)
as an example.

Definition 7.4.1 Assume that X (0) is a sequence of raw data, X (1) the accumulation
generated sequence based on X (0), and the time response formula of the GM(1,1)
model is

x̂(1)(k + 1) =
(
x(0)(1) − b

a

)
e−ak +b

a

then

d x̂(1)(k + 1) = (−a)

(
x(0)(1) − b

a

)
e−ak (7.26)

is referred to as the restored value through derivatives.
Generally, dx̂(1)(k + 1) 	= x̂(0)(k + 1), where x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k)

stands for the restored value through inverse accumulation. This very fact implies that
the GM(1,1) is neither a differential equation nor a difference equation. However,
when |a| is sufficiently small, from 1 − ea ≈ −a, it follows that d x̂(1)(k + 1) ≈
x̂(0)(k + 1), meaning that the results of differentiation and difference are quite close.
Therefore, the GM(1,1) model in this case can be seen as both a differential equation
and a difference equation.

Because the restored values through derivatives and through inverse accumulation
are different, to reduce possible errors caused by reciprocating operators, the errors
of X (1) are often used to improve the simulated values x̂(1)(k + 1) of X (1).

Definition 7.4.2 Assume that ε(0) = (
ε(0)(1), ε(0)(2), . . . , ε(0)(n)

)
, where ε(0)(k)

= x(1)(k) − x̂(1)(k), is the error sequence of X (1). If there is a k0 satisfying
that n − k0 ≥ 4 and ∀k ≥ k0, the signs of ε(0)(k) stay the same, and(∣∣ε(0)(k0)

∣∣,
∣∣ε(0)(k0 + 1)

∣∣, , . . . ,
∣∣ε(0)(n)

∣∣) is referred to as the error sequence of
modelability, which is and still denoted ε(0) = (ε(0)(k0), ε(0)(k0 + 1), . . . , ε(0)(n)

)
.

In this case, let the sequence ε(1) = (
ε(1)(k0), ε(1)(k0 + 1), . . . , ε(1)(n)

)
be

accumulation generated on ε(0) with the following GM(1,1) time response formula:
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ε̂(1)(k + 1) =
(

ε(0)(k0) − bε

aε

)
exp[−aε(k − k0)] + bε

aε

, k ≥ k0

Then the simulation sequence of ε(0) is given by ε̂(0) = (ε̂(0)(k0), ε̂(0)(k0 +
1), . . . , ε̂(0)(n)), where

ε̂(0)(k + 1) = (−aε)

(
ε(0)(k0) − bε

aε

)
exp[−aε(k − k0)], k ≥ k0

Definition 7.4.3 If ε̂(0) is used to improve X̂ (1), the modified time response formula.

x̂(1)(k + 1) =
{(

x(0)(1) − b
a

)
e−ak + b

a , k < k0(
x(0)(1) − b

a

)
e−ak + b

a ± aε(ε
(0)(k0) − bε

aε
) e−aε(k−k0), k ≥ k0

(7.27)

is referred to as the GM(1,1) model with error modification, or simply remnant GM
(1,1) for short, where the sign of the error modification value

ε̂(0)(k + 1) = aε ×
(

ε(0)(k0) − bε

aε

)
exp[−aε(k − k0)]

needs to stay the same as those in ε(0).
If a modeling of the error sequence ε(0) = (ε(0)(k0), ε(0)(k0 + 1), . . . , ε(0)(n)

)
of

X (0) and X̂ (0) is used to modify the simulation value X̂ (0), then different methods of
restoration from X̂ (1) to X̂ (0) can produce different time response sequences of error
modification.

Definition 7.4.4 Let

x̂(0)(k) = x̂(1)(k) − x̂(1)(k − 1) = (1 − ea
)(

x(0)(1) − b

a

)
e−a(k−1)

Then the corresponding time response sequence of error modification

x̂(0)(k + 1) =
{

(1 − ea)
(
x(0)(1) − b

a

)
e−ak , k < k0

(1 − ea)
(
x(0)(1) − b

a

)
e−ak ± aε

(
ε(0)(k0) − bε

aε

)
e−aε(k−k0), k ≥ k0

(7.28)

is called the error modification model of inverse accumulation restoration.

Definition 7.4.5 Let

x̂(0)(k + 1) = (−a)

(
x(0)(1) − b

a

)
e−ak ,
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then the corresponding time response sequence of error modification

x̂(0)(k + 1) =
{

(−a)
(
x(0)(1) − b

a

)
e−ak , k < k0

(−a)
(
x(0)(1) − b

a

)
e−ak ± aε

(
ε(0)(k0) − bε

aε

)
e−aε(k−k0), k ≥ k0

(7.29)

is referred to as the error modification model of derivative restoration.
In the previous discussion, all the error simulation terms in remnant GM (1,1)

have been taken as the derivative restoration. Of course, they can be taken as inverse
accumulation restoration. That is, one can take

ε̂(0)(k + 1) = (1 − eaε
)(

ε(0)(k0) − bε

aε

)
e−aε(k−k0), k ≥ k0

As long as |aε| is sufficiently small, the effects of different error restoration
methods on the modified x̂(0)(k + 1) are almost the same.

Example 7.4.1 Let.

X(0) = (x(0)(1), x(0)(2), . . . , x(0)(13)
)

= (6, 20, 40, 25, 40, 45, 35, 21, 14, 18, 15.5, 17, 15)

be a sequence of raw data, and the creation of a EGM(1, 1) model produce the
following time response sequence:

x̂(1)(k + 1) = −567.999e−0.06486k + 573.999

The application of inverse accumulating restoration gives:

X̂ (0) = {x̂(0)(k)}132 = (35.6704, 33.4303, 31.3308, 29.3682, 27.5192, 25.7900,

24.1719, 22.6534, 21.2307, 19.8974, 18.6478, 17.4768)

The errors and relative errors of the results can be seen in Table 7.11.

From Table 7.11, it can be seen that the simulation error is relatively large. Thus,
it is necessary to apply a remnant model to remedy some of the errors.

Let k0 = 9, we get the error sequence as follows

ε(0) = (ε(0)(9), ε(0)(10), ε(0)(11), ε(0)(12), ε(0)(13))

= (−8.6534,−3.2307,−4.3974,−1.6478,−2.4768)

which is an error sequence of modelability. Taking absolute value gives

ε(0) = (8.6534, 3.2307, 4.3974, 1.6478, 2.4768)
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Table 7.11 The errors and relative errors of EGM(1,1)

No Real Data
x(0)(k)

Simulated
Values x̂(0)(k)

Errors
ε(k) = x(0)(k) − x̂(0)(k)

Relative errors

�k = |ε(k)|
x(0)(k)

(%)

2 20 35.6704 − 15.6704 78.3540

3 40 33.4303 6.5697 16.4242

4 25 31.3308 − 6.3308 25.3232

5 40 29.3682 10.6318 26.5795

6 45 27.5192 17.4808 38.8642

7 35 25.6901 9.2099 26.3140

8 21 24.1719 − 3.1719 15.1043

9 14 22.6534 − 8.6534 61.8100

10 18 21.2307 − 3.2307 17.9483

11 15.5 19.8974 − 4.3974 28.3703

12 17 18.6478 − 1.6478 9.6926

13 15 17.4768 − 2.4768 16.5120

In establishing a EGM(1, 1) for ε(0), we have the time response sequence of ε(1)ε(1)

ε̂(1)(k + 1) = −24e−0.16855(k−9) + 32.7

whose restored value of derivatives is

ε̂(0)(k + 1) = (−0.16855)(−24)e−0.16855(k−9) = 4.0452e−0.16855(k−9)

From

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k) = (1 − ea)(x(0)(1) − b

a
)e−ak = 38.0614e−0.06486k

We can obtain the remnant model of inverse accumulating restoration

x̂(0)(k + 1) =
{
38.0614e−0.06486k , k < 9

38.0614e−0.06486k − 4.0452e−0.16855(k−9), k ≥ 9

where the sign of ε̂(0)(k + 1) is the same as the original error sequence.
Based on this model, we can modify the four simulation values with k = 10, 11,

12, 13, with improved accuracy listed in Table 7.12.
From this table, we can compute the sum of squares of errors as follows,

s = εT ε = 3.1611

and the average relative error
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Table 7.12 Improved results

No. Real Data x(0)(k) Simulated
Values x̂(0)(k)

Errors
ε(k) = x(0)(k) − x̂(0)(k)

Relative errors

�k = |ε(k)|
x(0)(k)

(%)

10 18 17.1858 0.8142 4.52

11 15.5 16.4799 − 0.9799 6.32

12 17 15.6604 1.2396 7.29

13 15 15.0372 − 0.0372 0.25

� = 1

12

13∑

k=10

�k = 4.595%

Here, the simulation accuracy of the remnant EGM(1, 1) has obviously increased.
However, the current error sequence no longer satisfies the modeling requirement.
Therefore, if the improved accuracy is still unsatisfactory, we will have to consider
other models or some appropriate choice of data to the original sequence.

7.5 Group of GM(1,1) Models

In practice, one does not have to use all the available data in their modeling. Each
subsequence of the original data can be employed to establish a model. Generally
speaking, different subsequences lead to different models. Even though the same
kind of GM(1,1) is applied, different subsequences lead to different a, b values.
These changes reflect the fact that varied circumstances and conditions have different
effects on the system under consideration.

For example, for the grain production in China, if we use the data values collected
since 1949 to establish a model GM(1, 1), the development coefficient (− a) will
be on the small side. However, if only the values collected after 1978 are used, the
corresponding development coefficient (− a) will obviously increase.

Definition 7.5.1 For a given sequence X (0) = (
x(0)(1), x(0)(2), . . . , x(0)(n)

)
, if we

take x(0)(n) as the origin of the time axis, then t < n is seen as the past, t = n the
present, and t > n the future.

Definition 7.5.2 Assume that X (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)
)
is a sequence of

raw data, let.

x̂(0)(k + 1) = (1 − ea
)(

x(0)(1) − b

a

)
e−ak

be the restored values of inverse accumulation of the GM(1,1) time responses of
X (0). Then:
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(1) For t ≤ n, x̂(0)(t) is referred to as the simulated value out of the model; and
(2) When t > n, x̂(0)(t) is known as the prediction of the model.

The main purpose of modeling is to make predictions. To improve the prediction
accuracy, one first needs to guarantee sufficiently high accuracy in his simulation,
especially for the simulation of the time moment t = n. Therefore, in general, the
data, including x(0)(n), used for modeling should be an equal-time-interval sequence.

Definition 7.5.3 Assume that X (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)
)
is a sequence of

raw data, then:

(1) The GM(1,1) model established using the entire sequence X (0) is known as the
all-data GM(1,1) );

(2) ∀k0 > 1, the GM(1,1) model established on the tail sequence X (0) =(
x(0)(k0), x(0)(k0 + 1), . . . , x(0)(n)

)
is known as a partial-data GM(1,1);

(3) If x(0)(n + 1) stands for a piece of new information, then the
GM(1,1) model established on the prolonged sequence X (0) =(
x(0)(1), x(0)(2), . . . , x(0)(n), x(0)(n + 1)

) = is known as a new-information
GM(1,1);

(4) The GM(1,1) model established on X (0) = (
x(0)(2), . . . , x(0)(n), x(0)(n + 1)

)

with the new information added and the oldest piece x(0)(1) of information
removed is known as a metabolic GM(1,1).

Example 7.5.1 Let.

X(0) = (60.7, 73.8, 86.2, 100.4, 123.3)

and x(0)(6) = 149.5 is a piece of new information. Try to establish a model with
X(0), a model of new information, and a metabolic EGM(1,1).

Solution:

(1) The model with X(0). From

X(0) = (60.7, 73.8, 86.2, 100.4, 123.3)

We have

â = (BTB)−1BTY =
[
a
b

]
=
[ −0.17241
55.889264

]

The time response sequence is as follows

x̂(1)(k) =
(
x(0)(1) − b

a

)
e−a(k−1) + b

a
= 384.865028e0.17241k − 324.165028
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Then we obtained the simulation sequence of X(0) as follows

X̂ (0) = (60.7, 72.41804, 86.04456, 102.2351, 121.4721)

The corresponding error sequence is

ε = (0, 1.38196, 0.155434,−1.8351, 1.827829)

where ε(k) = x(0)(k) − x̂(0)(k).
Therefore, we got the average relative error

� = 1

4

5∑

k=2

�k = 1.34%

where �k = |ε(k)|
x(0)(k) .

(2) Themodel of new information. In inserting a piece of new information x(0)(6) =
149.5, the data sequence became

X (0) = (60.7, 73.8, 86.2, 100.4, 123.3, 149.5)

We have

â = (BTB)−1BTY =
[
a
b

]
=
[−0.180888
54.254961

]

Its time response sequence is as follows:

x̂(1)(k) =
(
x(0)(1) − b

a

)
e−a(k−1) + b

a
= 360.63748e0.180888k − 299.93748

The simulation sequence of the new information sequence X(0, the corresponding
error sequence ε,

and the average relative error � are as follows:

X̂ (0) = (60.7, 71.50736, 85.68587, 102.6757, 123.0342, 147.429)

ε = (0, 2.29264, 0.514129,−2.2757, 0.265712, 2.07041)

� = 1

5

6∑

k=2

�k = 1.51%
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(3) Themetabolic EGM(1,1). In adding a piece of new information x(0)(6) = 149.5,
and deleting a piece of old information x(0)(1) = 60.7, we have

X(0) = (73.8, 86.2, 100.4, 123.3, 149.5)

and

â = (BTB)−1BTY =
[
a
b

]
=
[−0.187862
62.830896

]

The corresponding time response sequence is:

x̂(1)(k) =
(
x(0)(1) − b

a

)
e−a(k−1) + b

a
= 408.251645e0.187862k − 334.451645

And the simulation sequence of the metabolic sequence X(0, the corresponding
error sequence ε, and the average relative error � are as follows:

X̂ (0) = (73.8, 84.37234, 101.8093, 122.85, 148.2391)

ε = (0, 1.827657,−1.4093, 0.45, 1.2609)

� = 1

4

6∑

k=3

�k = 1.18%

Compared with these different results, it implies that the simulation accuracy
can be improved by appropriately choosing the data to be used in the process of
modeling. From the three different error sequences, we can see that for the simulation
accuracy of value x(0)(5), both the new information model and the metabolic model
are better than the model in (1). This implies that the new information EGM(1, 1)
and the metabolic EGM(1, 1) have better prediction abilities than the old model. As
a matter of fact, in the development process of a grey system, there always exists
some stochastic interferences or driving forces entering the system as time goes on,
so that the consequent development of the system is accordingly affected.

Therefore, when using the EGM(1, 1) model to do predictions, high accuracy can
be achieved only for the first or the second data values after the last origin value
x(0)(n). In general, the farther away into the future, and the farther away from the last
origin value, the weaker the prediction ability of EGM(1, 1) becomes. In practical
applications, one needs to constantly consider those interferences and driving factors
entering the system as time goes on and promptly add new pieces of information to
the original sequence X(0) and establish consequent new information EGM(1, 1)
models.
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From the simulation accuracy of value x(0)(6), it can be seen that the metabolic
model is better than the new information model. From the angle of prediction, it can
be seen that themetabolic model is the best predictionmodel. As the system develops
further, the significance of the older data reduces so that, when new data are added,
the older data are deleted promptly, and the constantly renewing modeling sequence
can better reflect the current characteristics of the system. Specifically, as the accu-
mulation of quantitative changes increases, a jump or sudden change in the system
will occur. At this very moment, compared with the older system, the current system
is completely different. Hence, the practice of deleting old data is very reasonable.
Indeed, the ongoing replacement of old data can avoid computation difficulties in
modeling due to the fact that increased information can increase computer storage
space requirements tremendously.

7.6 The Fractional Grey Model

Definition 7.6.1 Assume that X (0)
1 =

(
x(0)
1 (1), x(0)

1 (2), . . . , x(0)
1 (n)

)
is a non-

negative sequence, then.

x
(

p
q

)

(k) =
k∑

i=1

Ck−i
k−i+ p

q −1x
(0)(i)

is called a p
q order accumulation operator. Let C0

p
q −1 = 1,Ck+1

k = 0, k =
0, 1, . . . , n − 1,

Ck−i
k−i+ p

q −1 =
(
k − i + p

q − 1
)(

k − i + p
q − 2

)
. . .
(
p
q + 1

)
p
q

(k − i)!

Then X
(

p
q

)

=
(
x
(

p
q

)

(1), x
(

p
q

)

(2), . . . , x
(

p
q

)

(n)

)
is called a p

q order accumulation

sequence (Wu et al., 2013).

Definition 7.6.2 Assume that X (0) is a non-negative sequence, then.

α(1)x
(
1− p

q

)

(k) = x
(
1− p

q

)

(k) − x
(
1− p

q

)

(k − 1)

is called a p
q

(
0 <

p
q < 1

)
order inverse accumulation operator. And

α

(
p

q

)

X (0) = α(1)X
(
1− p

q

)

=
(

α(1)x
(
1− p

q

)

(1), α(1)x
(
1− p

q

)

(2), . . . , α(1)x
(
1− p

q

)

(n)

)
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is called a p
q

(
0 <

p
q < 1

)
order inverse accumulation sequence.

Definition 7.6.3 Assume thatX (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)
)
is a non-negative

sequence, and.

x
(

p

q

)

=
(
x
(

p

q

)

(1), x
(

p

q

)

(2), . . . , x
( p
q )
q (n)

)
is the p

q order accumulation sequence

of X (0), then the following

x
(

p
q

)

(k + 1) = β1x
(

p
q

)

(k) + β2(k = 1, 2, . . . n − 1) (7.30)

is called a p
q order accumulation discrete grey model (Wu et al., 2013).

Theorem 7.6.1 Assume that x
(

p
q

)

(k + 1) = β1x
(

p
q

)

(k) + β2 is called a p
q order

accumulation discrete grey model, then.

[
β2

β1

]
= (BTB

)−1
BTY

where

B =

⎡

⎢⎢⎢⎢⎢
⎣

1 x
(

p
q

)

(1)

1 x
(

p
q

)

(2)
...

...

1 x
(

p
q

)

(n − 1)

⎤

⎥⎥⎥⎥⎥
⎦

,Y =

⎡

⎢⎢⎢⎢⎢
⎣

x
(

p
q

)

(2)

x
(

p
q

)

(3)
...

x
(

p
q

)

(n)

⎤

⎥⎥⎥⎥⎥
⎦

Definition 7.6.4 Assume that X (0) = (
x(0)(1), x(0)(2), . . . , x(0)(n)

)
is a non-

negative sequence, p(0 < p < 1), then.

α(1)x(1−p)(k) + az(0)(k) = b (7.31)

is called a grey model of GM(p,1).
where α(1)x(1−p)(k) is the p order difference of x(0)(k). We can calculated the

1 − p order accumulation of x(0)(k) at first, then acted by the first order inverse
accumulation operator on x(1−p)(k) α(1)x(1−p)(k) = x(1−p)(k) − x(1−p)(k − 1), let

[
a

b

]

= (BTB)−1BTY
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where

B =

⎡

⎢⎢⎢
⎣

−z(0)(2) 1
−z(0)(3) 1
...

...

−z(0)(n) 1

⎤

⎥⎥⎥
⎦

,Y =

⎡

⎢⎢⎢
⎣

α(1)x(1−p)(2)
α(1)x(1−p)(3)
...

α(1)x(1−p)(n)

⎤

⎥⎥⎥
⎦

and z(0)(k) = x(0)(k)+x(0)(k+1)
2 .

The whitening equation of the model GM(p,1) as follows

dpx(0)(t)

dtp
+ ax(0)(t) = b (7.32)

Let x̂(0)(1) = x(0)(1), we obtained the time response sequence of (7.32) by
fractional Laplace transform

x(0)(k) = (x(0)(1) − b

a
)

∞∑

i=0

(−atp)i

�(pi + 1)
+ b

a
(7.33)

where �(pi + 1) is Gamma function.

Example 7.6.1 Let.

X(0) = (247.839, 273.021, 289.014, 285.208, 288.818, 297.078)

Please try to build a 0.1 order accumulation discrete grey model.

Solution: The 0.1 order accumulation sequence of X (0) as follows.
X(0.1) = (247.839, 297.805, 329.947, 338.667, 351.141, 366.983),

From

[
β2

β1

]
= (BTB

)−1
BTY , we have

x̂(0.1)(k + 1) = −126.356 × 0.6101k−1 + 374.195

The simulated sequence is.
x̂(0.1)(k) = (247.839, 297.105, 327.163, 345.501, 356.689, 363.515), its 0.9

order accumulation sequence is

x̂(1)(k) = (247.839, 520.160, 806.460, 1098.811, 1392.639, 1685.479)

Acted by a first order inverse accumulation operator, we have

x̂(0)(k) = (247.839, 272.321, 286.299, 292.351, 293.828, 292.841)
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7.7 The Models of GM(r,h)

7.7.1 The Model of GM(0,N)

Definition 7.7.1 Assume that X (0)
1 =

(
x(0)
1 (1), x(0)

1 (2), . . . , x(0)
1 (n)

)
is a data

sequence of a system’s characteristic variable,

X (0)
2 =

(
x(0)
2 (1), x(0)

2 (2), . . . , x(0)
2 (n)

)

X (0)
3 =

(
x(0)
3 (1), x(0)

3 (2), . . . , x(0)
3 (n)

)

. . . . . . . . . . . . . . .

X (0)
N =

(
x(0)
N (1), x(0)

N (2), . . . , x(0)
N (n)

)

the data sequences of relevant factors, and X (1)
i the accumulation generated sequence

of X (0)
i , i = 2, 3, . . . ,N . Then

x(1)
1 (k) = a + b2x

(1)
2 (k) + b3x

(1)
3 (k) + . . . + bNx

(1)
N (k) (7.34)

is called the model of GM(0,N). Because this model does not contain any derivative,
it is a static model. Although its form looks like a multivariate linear regression
model, it is essentially different from any of the statistical models. In particular, the
general multivariate linear regressionmodel is established on the basis of the original
data sequences, while the model of GM(0,N) is constructed on the accumulation
generation of the original data.

Theorem 7.7.1 AssumeX (0)
i andX (1)

i (i = 1, 2, . . . ,N ) as given in Definition 7.6.1,
let.

B =

⎡

⎢⎢⎢
⎣

1 x(1)
2 (2) x(1)

3 (2) . . . x(1)
N (2)

1 x(1)
2 (3) x(1)

3 (3) . . . x(1)
N (3)

. . . . . . . . . . . . . . .

1 x(1)
2 (n) x(1)

3 (n) . . . x(1)
N (n)

⎤

⎥⎥⎥
⎦

,Y =

⎡

⎢⎢⎢
⎣

x(1)
1 (2)
x(1)
1 (3)

...

x(1)
1 (n)

⎤

⎥⎥⎥
⎦

then the least squares estimate of the parametric sequence â = [a, b1, b2, . . . , bN ]T
is given by

â = (BTB)−1BTY

Example 7.7.1 Let.

X (0)
1 = (2.874, 3.278, 3.307, 3.39, 3.679) = {x(0)

1 (k)}51
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be a data sequence of a system’s characteristic variable, and

X (0)
2 = (7.04, 7.645, 8.075, 8.53, 8.774) = {x(0)

2 (k)}51
the data sequences of a relevant factor. Try to establish the model of GM(0,2).

Solution: Assume the model of GM(0,2) as follows:

X (1)
1 = bX (1)

2 + a

From

B =

⎡

⎢⎢⎢
⎣

x(1)
2 (2) 1
x(1)
2 (3) 1
x(1)
2 (4) 1
x(1)
2 (5) 1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

14.685 1
22.76 1
31.29 1
40.064 1

⎤

⎥⎥
⎦,Y =

⎡

⎢⎢⎢
⎣

x(1)
1 (2)
x(1)
1 (3)
x(1)
1 (4)
x(1)
1 (5)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

6.152
9.459
12.849
16.528

⎤

⎥⎥
⎦

We have

b̂ =
[
b
a

]
= (BTB)−1BTY =

[
0.412435

−0.482515

]

It follows that

x̂(1)
1 (k) = 0.412435x(1)

2 (k) − 0.482515

Therefore, the simulation results are as shown in Table 7.13.

The average relative error is

� = 1

4

5∑

k=2

�k = 1

4

5∑

k=2

|ε(k)|
x(0)(k)

= 2.475%

Table 7.13 Simulation results with errors

Ordinality Real Data x(0)(k) Simulated
Values x̂(0)(k)

Errors
ε(k) = x(0)(k) − x̂(0)(k)

Relative errors

�k = |ε(k)|
x(0)(k)

(%)

2 3.278 3.153 0.125 3.8

3 3.307 3.331 − 0.024 0.7

4 3.390 3.518 − 0.128 3.8

5 3.679 3.619 0.06 1.6
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7.7.2 The Model of GM(1, N)

Definition 7.7.2 Assume that X (0)
i and X (1)

i (i = 1, 2, . . . ,N ) as given in definition
7.6.1. Let X (1)

i be the accumulated sequences of X (0)
i , i = 1, 2, ...,N , and Z (1)

1 the
adjacent neighbor average sequence of X (1)

1 . Then,

x(0)
1 (k) + az(1)

1 (k) =
N∑

i=2

bix
(1)
i (k) (7.35)

is called the model of GM(1,N).
The constant (−a) is known as the system’s development coefficient, bix

(1)
i (k) the

driving term, bi the driving coefficient, and â = [a, b1, b2, . . . , bN ]T the sequence
of parameters.

Theorem 7.7.2 For the previously defined termsX (0)
i ,X (1)

i , and Z (1)
1 , i = 1, 2, ...,N ,

let.

B =

⎡

⎢⎢
⎣

−z(1)
1 (2) x(1)

2 (2) · · · x(1)
N (2)

−z(1)
1 (3) x(1)

2 (3) · · · x(1)
N (3)

· · · · · · · · · · · ·
−z(1)

1 (n) x(1)
2 (n) · · · x(1)

N (n)

⎤

⎥⎥
⎦,Y =

⎡

⎢⎢⎢
⎣

x(0)
1 (2)
x(0)
1 (3)

...

x(0)
1 (n)

⎤

⎥⎥⎥
⎦

Then the least squares estimate of the sequence â = [a, b1, b2, . . . , bN ]T of
parameters satisfies

â = (BTB)−1BTY .

Example 7.7.2 Let.

X (0)
1 = (2.874, 3.278, 3.307, 3.39, 3.679) = {x(0)

1 (k)}51
is a data sequence of a system’s characteristic variable, and

X (0)
2 = (7.04, 7.645, 8.075, 8.53, 8.774) = {x(0)

2 (k)}51
the data sequences of a relevant factor. Try to establish the model of GM(1,2).

Solution: Assume that the model of GM(1,2) is as follows:

x(0)
1 (k) + az(1)

1 (k) = bx(1)
2 (k)
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From

X (1)
1 =

[
x(1)
1 (1), x(1)

1 (2), x(1)
1 (3), x(1)

1 (4), x(1)
1 (5)

]

= (2.874, 6.152, 9.459, 12.849, 16.528)

X (1)
2 =

[
x(1)
2 (1), x(1)

2 (2), x(1)
2 (3), x(1)

2 (4), x(1)
2 (5)

]

= (7.04, 14.685, 22.76, 31.29, 40.064)

We have

Z (1)
1 =

[
z(1)
1 (2), z(1)

1 (3), z(1)
1 (4), z(1)

1 (5)
]

= (4.513, 7.8055, 11.154, 14.6885)

It follows that

B =

⎡

⎢⎢⎢
⎣

−z(1)
1 (2) x(1)

2 (2)
−z(1)

1 (3) x(1)
2 (3)

−z(1)
1 (4) x(1)

2 (4)
−z(1)

1 (5) x(1)
2 (5)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

−4.513 14.685
−7.8055 22.76
−11.154 31.29
−14.6885 40.064

⎤

⎥⎥
⎦,Y =

⎡

⎢⎢⎢
⎣

x(0)
1 (2)
x(0)
1 (3)
x(0)
1 (4)
x(0)
1 (5)

⎤

⎥⎥⎥
⎦

=

⎡

⎢
⎢
⎣

3.278
3.307
3.390
3.679

⎤

⎥
⎥
⎦,Y =

⎡

⎢⎢
⎢
⎣

x(0)
1 (2)
x(0)
1 (3)
x(0)
1 (4)
x(0)
1 (5)

⎤

⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

3.278
3.307
3.390
3.679

⎤

⎥
⎥
⎦.

Therefore, we have

â =
[
a
b

]
= (BTB)−1BTY =

[
2.2273
0.9068

]

and

x(0)
1 (k) + 2.2273z(1)

1 (k) = 0.9068x(1)
2

That is,

x̂(0)
1 (k) = −2.2273z(1)

1 (k) + 0.9068x(1)
2

The simulation results are as shown in Table 7.14.
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Table 7.14 Simulation results with errors

Ordinality Real data x(0)(k) Simulated values
x̂(0)(k)

Errors ε(k) =
x(0)(k) − x̂(0)(k)

Relative errors

�k = |ε(k)|
x(0)(k)

(%)

2 3.278 3.265 0.013 0.4

3 3.307 3.254 0.053 1.6

4 3.390 3.530 − 0.140 4.1

5 3.679 3.614 0.065 1.8

The average relative error is

� = 1

4

5∑

k=2

�k = 1

4

5∑

k=2

|ε(k)|
x(0)(k)

= 1.975%

7.7.3 The Grey Verhulst Model

The GM(1,1) model is suitable for sequences that show an obvious exponential
pattern and can be used to describe monotonic changes. As for non-monotonic
wavelike development sequences, or saturated sigmoid sequences, one can consider
establishing a grey Verhulst model.

Definition 7.7.3 Assume that X (0) is a sequence of raw data, X (1) the accumulation
sequence of X (0), and Z (1) the adjacent neighbor average sequence of X (1). Then,

x(0)(k) + az(1)(k) = b
[
z(1)(k)

]α
(7.36)

is known as the power model of GM(1,1). Also,

dx(1)/dt + ax(1) = b(x(1))α (7.37)

is known as the shadow equation of the power model of GM(1,1) (Deng, 1985).

Theorem 7.7.3 The solution of the whitenization equation of the power model of
GM(1,1) is.

x(1)(t) =
{
e−(1−a)at[(1 − a)

∫
be(1−a)atdt + c]

} 1
1−a

(7.38)

Theorem 7.7.4 Let X (0), X (1), and Z (1) be defined as above. Let.



7.7 The Models of GM(r,h) 223

B =

⎡

⎢⎢⎢
⎣

−z(1)(2)
[
z(1)(2)

]α

−z(1)(3)
[
z(1)(3)

]α

...
...

−z(1)(n)
[
z(1)(n)

]α

⎤

⎥⎥⎥
⎦

,Y =

⎡

⎢⎢⎢
⎣

x(0)(2)
x(0)(3)

...

x(0)(n)

⎤

⎥⎥⎥
⎦

Then the least squares estimate of the parametric sequence â = [a, b]T of the
power model of GM(1,1) is

â = (BTB)−1BTY .

Definition7.7.4 When the powerα = 2 in the powermodel ofGM(1,1), the resultant
model.

x(0)(k) + az(1)(k) = b(z(1)(k))2 (7.39)

is known as the grey Verhulst model; and

dx(1)/dt + ax(1) = b(x(1))2 (7.40)

is known as the whitenization equation of the grey Verhulst model (Deng, 1985).

Theorem 7.7.5

(1) The solution of the Verhulst whitenization equation is

x(1)(t) = 1

eat[ 1
x(1)(0) − b

a (1 − e−at)
= ax(1)(0)

eat[a − bx(1)(0)(1 − e−at)

That is

x(1)(t) = ax(1)(0)

bx(1)(0) + [a − bx(1)(0)
]
e−at

(7.41)

(2) The time response sequence of the grey Verhulst model is

x̂(1)(k + 1) = ax(1)(0)

bx(1)(0) + [a − bx(1)(0)
]
e−ak

(7.42)

The Verhulst model is mainly used to describe and study processes with saturated
states (or sigmoid processes). For instance, this model is often used in the prediction
of human populations, biological growth, reproduction, and economic life span of
consumable products. From the solution of the Verhulst equation, it can be seen that
when t → ∞, if a > 0, then x(1)(t) → 0; if a < 0, then x(1)(t) → a

b . That is, there
is a sufficiently large t such that for any k > t, both x(1)(k + 1) and x(1)(k) will be
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sufficiently close to each other. In this case, x(0)(k + 1) = x(1)(k + 1) − x(1)(k) ≈ 0,
which means that the system approaches distinction.

In practice, one often faces sigmoid processes in the original data sequences.
When such an instance appears, we can simply take the original sequence as X (1)

with its accumulation generation asX (0) to establish a greyVerhulst model to directly
simulate X (1).

Example 7.7.3 Assume that the expenditures on the research of a certain kind of
torpedo are given in Table 7.15. Try to employ the grey Verhulst model to simulate
the data and make predictions (Liang et al., 2005).

The accumulated expenditures are given in Table 7.16.
From Theorem 7.7.5, we compute the parameters as follows:

â = [a, b]T =
[ −0.98079

−0.00021576

]

so that the whitenization equation is

x(1)/dt − 0.98079x(1) = −0.00021576(x(1))2.

By taking x(1)(0) = x(0)(1) = 496, we obtain the time response sequence

x̂(1)(k + 1) = ax(1)(0)

bx(1)(0) + [a − bx(1)(0)]e−ak
= −486.47

−0.10702 − 0.87378e−0.98079k
.

On the basis of this formula, we produce the simulated values x̂(1)(k) as shown in
Table 7.17

From Table 7.17, we can obtain the average relative error

� = 1

9

10∑

k=2

�k = 4.3354%

and predict the research expenditure for the year of 2005 on the special kind of
torpedo as

Table 7.15 Expenditures on the research of a certain kind of torpedo (in million Yuan)

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Expenditure 496 779 1187 1025 488 255 157 110 87 79

Table 7.16 Accumulated expenditures (in ten thousand Yuan)

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Expenditure 496 1275 2462 3487 3975 4230 4387 4497 4584 4663
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Table 7.17 The simulation results with errors

Ordinality Actual data
x(0)(k)

Simulated data
x̂(0)(k)

Error
ε(k) = x(0)(k) − x̂(0)(k)

Relative error

�k = |ε(k)|
x(0)(k)

2 1275 1119.1 155.9 0.12226

3 2462 2116 346 0.14053

4 3487 3177.5 309.5 0.08876

5 3975 3913.7 61.3 0.01541

6 4230 4286.2 − 56.2 0.01328

7 4387 4444.8 -57.8 0.01318

8 4497 4507.4 − 10.4 0.0023

9 4584 4531.3 52.7 0.0115

10 4663 4540.3 122.7 0.02631

x̂(0)
1 (11) = x̂(1)

1 (11) − x̂(1)
1 (10) = 9.0342.

This value indicates that the researchwork on the torpedo is nearing its conclusion.

7.7.4 The Self-memory Grey Model

For unimodal series or nonlinear saturated growth series, self memory GM (1,1)
power model can also be established to describe its evolution law (Guo et al. 2014a).

Definition 7.7.5 Assume that.

F(x, t) = −ax(1) + b(x(1))γ (7.43)

where x is variable, t is time, then formula (7.43) is called a self-memory dynamic
equation.

Definition 7.7.6 Assume that β(t), |β(t)| ≤ 1 is a memory function,
the variable x, memory function β(t) and self-memory dynamic equation F(x, t)

all meet the conditions of continuity, differentiability, integrability, then following

βtxt − β−px−p −
0∑

i=−p

xmi (βi+1 − βi) −
t∫

t−p

β(τ)F(x, τ )dτ = 0 (7.44)

is called a self-memory prediction model.
Where T = {t−p, t−p+1, . . . , t−1, t0, t} is the time set.
Let xm−p−1 ≡ x−p, β−p−1 ≡ 0, we can obtained the following
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xt = 1

βt

0∑

i=−p−1

xmi (βi+1 − βi) + 1

βt

t∫

t−p

β(τ)F(x, τ )dτ = S1 + S2 (7.45)

where S1 is the self-memory item which represents the influence of historical statis-
tical data on the predicted value xt , S2 is other effective item which represents the
influence of the dynamic equation F(x, t) = −ax(1) +b(x(1))γ on the predicted value
xt within the backtracking period [t−p, t0].

In (7.45), we use addition to approximately replace integration and difference to
approximately replace differentiation and let xmi = 1

2 (xi+1+xi) ≡ yi,�ti = ti+1−ti =
1 further, then we obtained the discrete self-memory prediction model as follows

xt =
−1∑

i=−p−1

αiyi +
0∑

i=−p

θiF(x, i) (7.46)

where αi = (βi+1 − βi)
/

βt , θi = βi
/

βt , and F(x, t) = −ax(1) + b(x(1))γ .

Theorem 7.7.6 Assume that.

Xt
L×1

=

⎡

⎢⎢⎢
⎣

xt1
xt2
...

xtL

⎤

⎥⎥⎥
⎦

, Y
L×(p+1)

=

⎡

⎢⎢⎢
⎣

y−p−1,1 y−p,1 · · · y−1,1

y−p−1,2 y−p,2 · · · y−1,2
...

...
. . .

...

y−p−1,L y−p,L · · · y−1,L

⎤

⎥⎥⎥
⎦

, A
(p+1)×1

=

⎡

⎢⎢⎢
⎣

α−p−1

α−p
...

α−1

⎤

⎥⎥⎥
⎦

�L×(p+1) =

⎡

⎢⎢
⎢
⎣

F(x,−p)1 F(x,−p + 1)1 · · · F(x, 0)1
F(x,−p)2 F(x,−p + 1)2 · · · F(x, 0)2

...
...

. . .
...

F(x,−p)L F(x,−p + 1)L · · · F(x, 0)L

⎤

⎥⎥
⎥
⎦

, 

(p+1)×1

=

⎡

⎢⎢
⎢
⎣

θ−p

θ−p+1
...

θ0

⎤

⎥⎥
⎥
⎦

Let Z = [Y , �], W =
[
A



]
W =

[
A



]

then the least squares estimate of the parametric vector W =
[
A



]
satisfies

W = (ZTZ)−1ZTXt (7.47)
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7.7.5 The Models of GM(r,h)

In this subsection, we focus on the investigation of the structure of the models of
GM(r,h), and its relationships with models GM(1,1), GM(1,N), GM(0,N), and the
grey Verhulst model.

Definition 7.7.7 Assume that X (0)
i =

(
x(0)
i (1), x(0)

i (2), . . . , x(0)
i (n)

)
, i = 1, 2, ..., h,

where X (0)
1 stands for a data sequence of a system’s characteristic, and X (0)

i , i =
2, 3, . . . , h data sequences of relevant factors. Let.

α(1)x̂(1)
1 (k) = x̂(1)

1 (k) − x̂(1)
1 (k − 1) = x̂(0)

1 (k)

α(2)x̂(1)
1 (k) = α(1)x̂(1)

1 (k) − α(1)x̂(1)
1 (k − 1) = x̂(0)

1 (k) − x̂(0)
1 (k − 1)

… … … … … …

α(r)x̂(1)
1 (k) = α(r−1)x̂(1)

1 (k) − α(r−1)x̂(1)
1 (k − 1) = α(r−2)x̂(0)

1 (k) − α(r−2)x̂(0)
1 (k − 1)

and z(1)(k) = 1
2

(
x(1)(k) + x(1)(k − 1)

)
, then

α(r)x̂(1)
1 (k) +

r−1∑

i=1

aiα
(r−i)x(1)

1 (k) + arz
(1)
1 (k) =

h−1∑

j=1

bjx
(1)
j+1(k) + bh (7.48)

is referred to as the model of GM(r,h). The GM(r,h) model is a rth order grey model
in h variables.

Definition 7.7.8 In the model of GM(r,h), −â = [−a1,−a2, . . . ,−ar]T is referred

to as the development coefficient vector,
h−1∑

j=1
bjx

(1)
j+1(k) the driving term, and b̂ =

[b1, b2, . . . , bh]
T the vector of driving coefficients.

Theorem 7.7.7 Let X (0)
1 be a data sequence of a system’s characteristic, X (0)

i , i =
2, 3, . . . , h, the data sequences of relevant factors, X (1)

i the accumulation sequence
of X (0)

i , Z (1)
1 the adjacent neighbor average sequence from X (1)

1 , and α(r−i)X (1)
1 the

(r − i)th order inverse accumulation sequence of X (1)
1 . Define.

B =

⎡

⎢
⎢
⎢
⎣

−α(r−1)x(1)
1 (2) −α(r−2)x(1)

1 (2) · · · −α(1)x(1)
1 (2) −z(1)1 (2) x(1)

2 (2) · · · x(1)
h (2) 1

−α(r−1)x(1)
1 (3) −α(r−2)x(1)

1 (3) · · · −α(1)x(1)
1 (3) −z(1)1 (3) x(1)

2 (3) · · · x(1)
h (3) 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
−α(r−1)x(1)

1 (n) −α(r−2)x(1)
1 (n) · · · −α(1)x(1)

1 (n) −z(1)1 (n) x(1)
2 (n) · · · x(1)

h (n) 1

⎤

⎥
⎥
⎥
⎦

,
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Y =

⎡

⎢
⎢⎢
⎢
⎣

α(r)x(1)
1 (2)

α(r)x(1)
1 (3)
.
.
.

α(r)x(1)
1 (n)

⎤

⎥
⎥⎥
⎥
⎦

then the parametric sequence ĉ = [−â, b̂]T = [−a1,−a2, . . . ,−ar; b1, b2, . . . , bh]T
of the least squares estimate satisfies

â = (BTB)−1BTY .

The model of GM(r,h) is the general form of grey systems models. In particular,

(1) When r = 1 and h = 1, the previous (7.48) reduces to:

dx(1)
1 /dt + a1x

(1)
1 = b1 and α(1)x(1)

1 (k) + a1z
(1)
1 (k) = b1.

which is the model of GM(1,1).

(2) When r = 1 and h = N, the previous (7.48) takes the form of

x(0)
1 (k) + a1z

(1)
1 (k) =

N∑

i=2

bix
(1)
i (k)

which is the GM(1,N) model.

(3) When r = 0 and h = N, the previous model (7.48) is

x(1)
1 (k) = b1x

(1)
2 (k) + b2x

(1)
3 (k) + · · · + bN−1x

(1)
N (k) + bN

which is the GM(0,N) model.

(4) When r = 1 and h= 1, and b1 in the model of GM(1,1) is changed to b(z(1)(k))2,
then we have the following grey Verhulst model:

x(0)(k) + az(1)(k) = b(z(1)(k))2

Based on this discussion, it can be seen thatmodelsGM(1,1), GM(1,N), GM(0,N),
etc., are all special cases of model GM(r,h). So, it is very important to further the
study of model GM(r,h).

7.8 Practical Applications

Example 7.8.1 (Liu, 1991) Let us look at the revenue predictions of private enter-
prises at Changge County, Henan Province, The People’s Republic of China, which
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wementioned in Example 4.3.1. For the years from1983 to 1986, the overall business
revenue of private enterprises in Changge county was recorded as.

X = (10155, 12588, 23480, 35388)

We obtained the following second-order buffered sequence

XD2 = (27260, 29547, 32411, 35388)

in Example 4.3.1 by a second-order average weakening buffer operator (AWBO) as
follows:

x(k)d = 1

n − k + 1
[x(k) + x(k + 1) + · · · + x(n)], k = 1, 2, · · ·, n

We denote the XD2 as X(0), that is, let

X(0) = (27260, 29547, 32411, 35388).

Then the 1-AGO sequence X(1) of X(0) is as follows.

X (1) = (x(1)(1), x(1)(2), x(1)(3), x(1)(4)
) = (27260, 56807, 89218, 124606)

Assume that

x(0)(k) + az(1)(k) = b

Based on the least squares method, we obtain the estimated values for a and b as
follows:

â = −0.089995, b̂ = 25790.28

Thus, the resultant whitenization equation of EGM(1, 1) is given by

dx(1)

dt
− 0.089995x(1) = 25790.28

and its time response sequence is

{
x̂(1)(k + 1) = 313834e0.089995k − 286574

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k)

From these results, we obtain the simulated sequence

X̂ = (x̂(1), x̂(2), x̂(3), x̂(4)) = (27260, 29553, 32337, 35381)
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with the sequence of errors

ε(0) = (ε(0)(1,)ε(0)(2), ε(0)(3), ε(0)(4)
) = (0,−6, 74, 7)

The sequence of relative errors

� =
[∣∣∣∣

ε(0)(1)

x(0)(1)

∣∣∣∣,
∣∣∣∣
ε(0)(2)

x(0)(2)

∣∣∣∣,
∣∣∣∣
ε(0)(3)

x(0)(3)

∣∣∣∣,
∣∣∣∣
ε(0)(4)

x(0)(4)

∣∣∣∣

]

= (0, 0.0002, 0.00228, 0.0002)

And the average relative error

� = 1

4

n4∑

k=1

�k = 0.00067 = 0.067% < 0.01

�4 = 0.0002 = 0.02% < 0.01

Therefore, the accuracy of our simulation is in level one.
Now, we can compute the absolute degree ε of grey incidences of X and X̂ .

|s| =
∣∣∣∣
∣

3∑

k=2

[x(k) − x(1)] + 1

2
[x(4) − x(1)]

∣∣∣∣
∣
= 11502

|ŝ| =
∣∣∣∣∣

3∑

k=2

[x̂(k) − x̂(1)] + 1

2
[x̂(4) − x̂(1)]

∣∣∣∣∣
= 11430.5

|ŝ − s| =
∣∣∣∣∣

3∑

k=2

[x(k) − x(1) − (x̂(k) − x̂(1))] + 1

2
[x(4) − x(1) − (x̂(4) − x̂(1))]

∣∣∣∣∣

= 71.5

Thus,

ε = 1 + |s| + |ŝ|
1 + |s| + |ŝ| + |ŝ − s| = 1 + 11502 + 11430.5

1 + 11502 + 11430.5 + 71.5
= 0.997 > 0.90

That is, the degree of incidence is in level one.
Compute the ratio of mean square deviations C:
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x = 1

4

4∑

k=1

x(k) = 31151.5, S2
1 = 1

4

4∑

k=1

(x(k) − x)2 = 37252465, S1 = 6103.48

ε = 1

4

4∑

k=1

ε(k) = 18.75, S2
2 = 1

4

4∑

k=1

(ε(k) − ε)2 = 4154.75, S2 = 64.46

It follows that

C = S2
S1

= 64.46

6103.48
= 0.01 < 0.35

which is in level one.
Compute the small error probability. From

0.6745S1 = 4116.80

|ε(1) − ε| = 18.75, |ε(2) − ε| = 24.75, |ε(3) − ε| = 55.25, |ε(4) − ε| = 11.75

Therefore

p = P(|ε(k) − ε| < 0.6745S1) = 1 > 0.95

With our accuracy checks in place, we can apply the grey model

{
x̂(1)(k + 1) = 313834e0.089995k − 286574

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k)

to make predictions. Here, we list five predicted values as follows:

X̂ (0) = [x̂(0)(5), x̂(0)(6), x̂(0)(7), x̂(0)(8), x̂(0)(9)
]

= (38714, 42359, 46348, 50712, 55488)

These predictions indicated an average 9.4% annual growth. When we look back
today, this predicted rate of growth agreed very well with the recorded values over
the time span of our predictions.

Example 7.8.2 Subgrade settlement prediction (Guo et al. 2015).
Subgrade settlement is one important indicator affecting road safety because the

major hidden danger could result in road traffic accidents. So subgrade settlement
prediction is one of the major research topics in the field of geotechnical engineering.
Three monitoring points (Points A, B and C) at certain roadbed sections of Beijing-
Harbin freeway (G102 line) were arranged, the method of single point extensometer
was employed to monitor its subgrade settlement.
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The three groups of accumulated subgrade settlement data at different monitoring
points are listed in Table 7.18 (Liu et al., 2013).

Step 1: Analyze the coupling relationship between the data of differentmonitoring
points.

Analyze the coupling relationship between the data of different monitoring points
to determine whether the data of monitoring points A, B and C are relevant. Let

X1 = (13.42, 15.38, 22.18, 23.30, 24.55, 25.41, 26.91, 28.02, 28.44, 28.64)

X2 = (9.89, 12.20, 16.27, 17.66, 19.07, 20.85, 21.91, 23.40, 23.77, 24.12)

X3 = (12.03, 15.60, 19.57, 20.80, 22.03, 23.38, 24.60, 25.79, 26.36, 27.16)

Calculate the grey absolute relational degree betweenX1, X2, andX3 respectively,
we have

ε12 = 0.9923, ε13 = 0.9721, ε23 = 0.9648.

The results shows that there is coupling relationship and certain relationship exists
of the data at monitoring point A, B and C.

Step 2: Determining the self-memory dynamic equation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(1)
1

dt
+ 4.0920x(1)

1 + 2.8789x(1)
2 − 7.0870x(1)

3 = 7.2671

dx(1)
2

dt
+ 1.7787x(1)

1 + 1.5361x(1)
2 − 3.3707x(1)

3 = 7.4767

dx(1)
3

dt
+ 1.9224x(1)

1 + 1.5285x(1)
2 − 3.5145x(1)

3 = 10.9312

(7.49)

Table 7.18 The accumulated subgrade settlement data of monitoring points A, B and C (unit: mm)

Period Number of
days

Accumulated subgrade settlement value

Point A Point B Point C

1 35 13.42 9.89 12.03

2 50 15.38 12.20 15.60

3 65 22.18 16.27 19.57

4 80 23.30 17.66 20.80

5 95 24.55 19.07 22.03

6 110 25.41 20.85 23.38

7 125 26.91 21.91 24.60

8 140 28.02 23.40 25.79

9 155 28.44 23.77 26.36

10 170 28.64 24.12 27.16
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The matrix form dX (1)
/
dt = −AX (1) +B of Eq. (7.49) was taken as the dynamic

kernel F(X , t) of the self-memory equation of the SMGM(1,3) model.
Step 3: Deducing the self-memory prediction equation system.
The value of retrospective order is determined as p= 1 by trial calculationmethod

under the principle of minimum error of fitting root-mean-square. Then the self-
memorization equation system of the SMGM(1,3) model can be established for
subgrade settlement forecasting as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1t =
−1∑

i=−2

α1iy1i +
0∑

i=−1

θ1iF1(x, i)

x2t =
−1∑

i=−2

α2iy2i +
0∑

i=−1

θ2iF2(x, i)

x3t =
−1∑

i=−2

α3iy3i +
0∑

i=−1

θ3iF3(x, i)

(7.50)

Step 4: Estimate the memory coefficients matrix by the least square method.

W = [W1, W2, W3] =

⎡

⎢
⎢
⎣

α1,−2 α2,−2 α3,−2

α1,−1 α2,−1 α3,−1

θ1,−1 θ2,−1 θ3,−1

θ1,0 θ2,0 θ3,0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−0.05200.08900.0260
1.04680.90670.9712
0.21410.36160.2931
1.27611.27691.2702

⎤

⎥
⎥
⎦

Step 5: Simulation.
Substituting the memory coefficient matrix into Eq. (7.50), The simulation values

of original subgrade settlement data matrix X (0) can be obtained.
The simulated values and their corresponding APE of three compared models,

SMGM(1,3), GM(1,1) and MGM(1,3) are presented in Tables 7.19, 7.20, and 7.21
respectively.

Step 6: Simulation accuracy comparison.
The values of accuracy criteria (MSE, AME and MAPE) of different subgrade

settlement prediction models are shown in Table 7.22.
From the viewpoint of error analysis, the multi-variable models ofMGM(1,3) and

SMGM(1,3) always show lower error values than the uni-variable model GM(1,1).
It is shown that the multi-point prediction models can take the relationship among
variables into account, and are able to adequately reflect the integral evolution laws of
subgrade settlement system. The self-memory technique helped model SMGM(1,3)
to further reduce themodeling errors comparedwith the traditionalmodelMGM(1,3).
Meanwhile, the model SMGM(1,3) has passed the modeling simulation and predic-
tion accuracy test, and the single-step and two-step rolling prediction precisions are
also generally superior than that of the other two greymodels. In summary, themodel
SMGM (1,3) markedly promoted the predictive performance compared with other
grey prediction models.
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Table 7.19 The simulated values and APE of the SMGM(1,3), GM(1,1) and MGM(1,3) at point
A (unit: mm)

No Actual value GM(1,1) MGM(1,3) SMGM(1,3)

Simulated
value

APE/% Simulated
value

APE/% Simulated
value

APE/%

1 13.42 – – – – – –

2 15.38 18.931 23.088 16.283 5.871 – –

3 22.18 20.333 8.327 21.182 4.500 22.168 0.055

4 23.30 21.839 6.270 23.276 0.103 23.331 0.132

5 24.55 23.456 4.456 24.601 0.208 24.625 0.307

6 25.41 25.193 0.854 25.715 1.200 25.105 1.201

7 26.91 27.059 0.554 26.775 0.502 27.229 1.184

8 28.02 29.063 3.722 27.824 0.700 27.913 0.381

9 28.64 31.216 8.994 29.057 1.456 28.594 0.161

10 28.44 30.298 6.533 30.340 6.681 29.746 4.591

Table 7.20 The simulated values and APE of the SMGM(1,3), GM(1,1) and MGM(1,3) at point
B (unit: mm)

No Actual value GM(1,1) MGM(1,3) SMGM(1,3)

Simulated
value

APE/% Simulated
value

APE/% Simulated
value

APE/%

1 9.89 – – – – – –

2 12.20 14.171 16.156 12.625 3.484 – –

3 16.27 15.484 4.831 15.789 2.956 16.258 0.075

4 17.66 16.920 4.190 17.713 0.300 17.737 0.434

5 19.07 18.488 3.052 19.256 0.975 19.165 0.496

6 20.85 20.202 3.108 20.662 0.902 20.373 2.288

7 21.91 22.075 0.753 22.001 0.415 22.222 1.423

8 23.40 24.121 3.081 23.300 0.427 23.520 0.512

9 23.77 26.357 10.883 24.654 3.719 24.527 3.186

10 24.12 26.624 10.381 25.131 4.192 24.842 2.993
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Table 7.21 The simulated values and APE of the SMGM(1,3), GM(1,1) and MGM(1,3) at point
C (unit: mm)

No Actual value GM(1,1) MGM(1,3) SMGM(1,3)

Simulated
value

APE/% Simulated
value

APE/% Simulated
value

APE/%

1 12.03 – – – – – –

2 15.60 17.443 11.814 16.044 2.846 – –

3 19.57 18.696 4.466 19.085 2.478 19.564 0.032

4 20.80 20.039 3.659 20.810 0.048 20.836 0.171

5 22.03 21.479 2.501 22.153 0.558 22.107 0.351

6 23.38 23.022 1.531 23.378 0.009 23.084 1.266

7 24.60 24.676 0.309 24.558 0.171 24.771 0.694

8 25.79 26.449 2.555 25.719 0.275 25.886 0.374

9 26.36 28.349 7.546 26.954 2.253 26.813 1.720

10 27.16 29.087 7.095 27.445 1.049 27.412 0.927

Table 7.22 Simulation error of different subgrade settlement prediction models

Monitoring point Model MSE AME MAPE (%)

Point A MGM(1,3) 3.924 1.595 10.174

OMGM(1,3) 3.088 1.511 9.277

SMGM(1,3) 0.170 0.316 1.572

Point B MGM(1,3) 4.538 1.665 10.096

OMGM(1,3) 3.336 1.542 9.017

SMGM(1,3) 0.232 0.370 1.741

Point C MGM(1,3) 5.200 1.735 10.051

OMGM(1,3) 3.700 1.607 8.961

SMGM(1,3) 0.343 0.451 2.026

Subgrade system MGM(1,3) 4.554 1.665 10.107

OMGM(1,3) 3.375 1.553 9.085

SMGM(1,3) 0.248 0.379 1.780
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Chapter 8
Combined Grey Models

8.1 Introduction

Alongwith the disciplinary development of systems science and systems engineering,
methods and modeling techniques established for systems evaluation, prediction,
decision-making, and optimization are enriched constantly. Generally, each method
and every model have their strengths and weaknesses, so in practical applications
several different methods and modeling techniques are combined to form hybrid
methods or techniques in order to successfully deal with the problems at hand. Such
combinations and mixtures are used to capitalize upon the strengths and advantages
of differentmethods so that they complement each other and at the same time improve
the weaknesses of individual methods and modeling techniques. This explains why
combined or mixed systems are superior to individual component methods. Addi-
tionally, the availability of many different methods and modeling techniques also
provides us with different ways to deal with information and systems. Therefore,
how to combine and mix different methods and techniques has become a research
direction with wide-ranging applicability in areas of data mining and knowledge
discovery.

The grey system model has the effect of weakening the randomness of the
sequence and mining the evolution law of the system, and has strong fusion and
penetration to the general model. Integrating the grey system model with the tradi-
tional model to achieve functional complementarity can often get more satisfactory
results.

In the process of modeling, the grey system theory advocates respecting the
original data but not rigidly adhering to the original data, allowing the necessary
screening and processing of the experimental, observational and statistical data of
the research object based on scientific qualitative analysis. Using the idea andmethod
of grey system theory to process the original observation data will greatly improve
the statistical characteristics of the model.
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Any model is just an image of one (or several) side of the research object. At the
same time, because the development and evolution process of the system is often the
result of the interaction of many known factors and unknown factors, deterministic
factors and uncertain factors, it is difficult to fully reveal the development and change
lawof the research objectwith a singlemodel.Among the numerousmodels, different
models have their own characteristics, and have different advantages in revealing the
change law of one side of the research object. Therefore, the organic combination
of the grey system model and other models may deepen the understanding of the
system evolution law.

In 1996, based on the grey relational analysis method, the explanatory variables of
themodel are selected, and theGM(1,1)model of explanatory variables is established
to predict the values of explanatory variables. Then, the GM (1,1) model simulation
values of all variables are used as the basic data to estimate the model parameters,
Liu and Zhu proposed a grey-econometrics combined model (Liu & Zhu, 1996).

In 2004, the author of this book combines the possibility degree function of grey
systemwith the capital asset pricingmodel (CAPM), and proposes a new comprehen-
sive utility evaluation model for venture capital investment. This method overcomes
the shortcomings of the expectation-variance method and Sharpe’s index method,
and avoids the difficulty of constructing utility function to a certain extent (Liu et al.,
2004a). Combined the thought andmethod of grey system theorywithCobb–Douglas
production function, a grey Cobb–Douglas (G-C-D) production function model is
proposed (Liu et al., 2004a).

In 2008, Li and Liu studied the grey matrix and grey input–output model in depth.
Based on these, they put forward an analytical model for enterprise grey input–output
in 2012 (Li & Liu, 2008; Li et al., 2012) the grey physical input–output analysis
model. Jian et al. (2011) developed a series of the grey rough set hybrid models.
Wang and Liu (2009) conducted research on the grey DEA model, which has made
significance research results.

Lin et al. (2001) proposed a Markov-Fourier grey prediction model. They
compared the performance of the newmodel with different prediction schemes, such
as back propagation neural networks and fuzzy models. The simulation results show
that the new approach can predict the futuremore accurately and also use less compu-
tation time than other methods. Kose and Forrest (2015) combined the grey system
theory with the classic N-person game theory and sets up the N-person grey game
with grey payoff functions. Chen and Chang (2000) proposed a new approach of grey
fuzzy dynamicmodeling for the prediction of solidwaste generation in the urban area
based on a set of limited samples. Luo et al. (2001) proposed a hierarchical grey fuzzy
motion decision-making algorithm, which is capable of integrating multiple sequen-
tial data for decision making and for the design of the control kernel of the target
tracking system. Bahrami et al. (2014) proposed a new model based on the combina-
tion of the wavelet transform and GM for short-term electric load forecasting. Samet
and Mojallal (2014) proposed a rolling GM and a Grey-Markov method to predict
the actual reactive power of Mobarakeh Steel Company in Iran. Verma et al. (2014)
used GRA coupled with fuzzy logic to model the stator winding fault and to predict
the optimal setting for running the induction motor within its parameters range. The
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results indicate that the proposed novel approach is very effective in predicting the
statorwinding fault (Aydemir et al., 2015).Oztaysi (2014) proposed aAHP integrated
grey-TOPSIS method, and applied in a Turkish foreign trade company. Zhang and
Chen (2002) proposed a new genetic algorithm method based on random simulation
to solve the general grey nonlinear programming problem.

Liu et al. (2010) optimized the railway digital mobile communication system
scheme under the condition of limit frequency planning based on grey cluster and
rough set models. Guo et al. (2013) combined grey prediction and Markov chain
to improve the prediction accuracy of pollutants. Yuan et al. (2014) forecasted fire
accidents based on portfolio optimization model of grey neural network. Meng et al.
(2012) predicted gun tube life using the grey linear regression combinationmodel and
enhanced the prediction accuracy. Mi et al. (2014) constructed an optimal portfolio
model based on the diagnosis results of three kinds of diagnosis methods such as
fuzzy fault diagnosis method, genetic algorithm and grey system theory and made
the fault diagnosis on 25 Hz phase sensitive track circuit. Xu et al. (2010) used
grey econometrics model to predict the traffic volume of highway. Jiang (2012)
diagnose the fault of wind turbine drive chain based on the grey rough set theory. Yin
et al. (2012) evaluated groundwater quality in Taonan City based on the grey cluster
method and matter element extension method. Tang et al. (2012) studied the main
influential factors of gas well productivity of Permian Shan 2 gas reservoir in Zizhou
Gas Field using grey system method, the method of principal component analysis
and R cluster analysis method comprehensively.

The Chinese academician Wu et al. (2012) with The National Key Laboratory on
Hydrology Water Resources and Hydraulic Engineering at Hehai University applied
grey system theory and a variety of scientific methods to research the slope stability
and dam safety service status, which made a series of vital achievements (Zheng
et al., 2005).

Wang and Huang applied GM-BP combined model to deformation forecasting of
foundation pit (Wang & Huang, 2016). Chen, et al. used three-point-method-gray
GM(1,1) combination model in settlement prediction for a railway line (Chen et al.,
2015). Khuman, et al. studied the problem of quantification of subjectivity by the
R-fuzzy grey analysis framework (Khuman et al., 2019). Tian analyzed the radial
velocity of projectile based on combined model of ARIMA, GM(1,1) and linear
regression model (Tian, 2022). He, et al. Solved the problem of segmented calibra-
tion of transducer (He et al., 2015), Huang and Su’s research on failure prediction
based on combined model of grey neural network (Huang & Su, 2020). Karimi
and Hojati designed a medical rule model system by using rough-grey modelling
(Karimi & Hojati, 2020). Nain, et al. studied the cutting speed, wire wear ratio, and
dimensional deviation of wire electric discharge machining of super alloy Udimet-
L605 using support vector machine and grey relational analysis model (Nain et al.,
2018). Vyavahare, et al. investigated FDM manufactured auxetic structures byma-
chine learning techniques and GRA model (Vyavahare et al., 2023). Muthukumar,
et al. analyzed the localization and classification of gender focus in epilepsy patients
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based on Rough Set and GRA model (Muthukumar et al., 2023). Rajesh pred-
ited sustainability performance of supply chains by grey and rough set theoretical
approaches (Rajesh, 2022).

Grey systems theory and methods strongly complement many of the tradi-
tional technologies and soft computing techniques. In this chapter, we explore
various combinations, mixtures and applications of grey systems models and models
developed in econometrics, production functions, artificial neural networks, linear
regression, Markov models, and rough sets.

8.2 Grey Econometrics Models

8.2.1 Select Explanatory Variables Using Grey Relational
Analysis Method

In analyzing systems, due to the complications of mutually crossing influences of
the endogenous variables, at the very start of modeling, the first problem that needs
to be addressed is how to select the variables that will be part of the eventual model.
To revolve this problem, the researcher needs not only rely on his qualitative analysis
of the system, but also have sufficiently adequate tools for conducting quantitative
analysis. Grey relational analysis model provide an effective method for this class of
problems.

Let y be an endogenous variable of the system of our concern (for systems
with many endogenous variables, these variables can be studied individually), and
x1, x2, . . . , xn be pre-images of influencing factors that are correlated either posi-
tively or negatively to y. Calculate the grey relational degree εi between y and xi,
i = 1, 2, . . . , n, at first. For a chosen lower threshold value ε0, when εi < ε0,
remove the variable xi out of consideration. By doing so, some of the system’s
endogenous variables with weak grey relational degrees with y can be removed
from further consideration. Assume that the remaining illustrative variables of y are
xi1 , xi2 , . . . , xim . Next, consider the grey relational degrees εij ik (ij, ik = i1, i2, . . . ,im)

between these remaining variables. For a chosen threshold value ε0′, when εij ik ≥ ε0′,
the variables xij and xik are seen as the same kind so that the remaining variables are
divided into several subsets. Now, choose one representative from each of these
subsets to enter into the eventual model. By going through this possess, the resultant
econometrics model can be greatly simplified without losing the needed power of
explanation. At the same time, to a certain degree the difficult problem of collinearity
of the variables can be avoided.
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8.2.2 Grey Econometrics Model

In econometrics, there are many different kinds of models, such as linear regression
models in one or multiple variables, nonlinear models, systems of equations, among
others. When estimating the parameters of these models, one often faces phenomena
that are difficult to explain. For instance, the coefficients of the major illustrative
variables are nearly zero; the signs of some estimated values of the parameters do not
agree with reality or contradict theoretical economic analysis; small vibrations in a
few individual observations cause drastic changes inmanyother estimated parametric
values. Among the main reasons underlying these difficulties are:

(1) During the time period the observations are done, the internal structure of the
system goes through major changes;

(2) There is a problem of collinearity between the illustrative variables; and
(3) There are randomness and noise in the observed data.

For the first two scenarios, there is a need to repeat the investigation of the model
structure or a need to recheck the illustrative variables. For the third scenario, one
can consider establishing models using the GM(1,1) simulated values of the orig-
inal observations to eliminate the effect of the randomness or noise existing in the
available data. The combined grey econometrics model, obtained this way, can more
accurately reflect the relationship between the system’s variables. At the same time,
the prediction results made on the endogenous variables of the grey econometrics
model system, which is based on the GM(1,1) predicted values of the illustrative
variables, possess more solid scientific foundation than qualitative estimate values
of the illustrative variables. Besides, by comparing the results of grey predictions of
the endogenous variables with those obtained out of econometrics models, one can
further improve the reliability of the predictions.

The steps for establishing and applying grey econometrics models are as follows:

Step 1: Design the theoreticalmodel. Study the economic activity of interest closely.
According to the purpose of the investigation, select the variables that will
potentially enter the model. Discover the relationships between these vari-
ables based on theories of economic behavior and experience and/or analyze
the sampled data. Develop the mathematical expressions, which are the
theoretical model, that describe the relationships between these variables.
This stage is the most important and difficult phase of the entire modeling
process, and the following work need to be done:

(1) Study relevant theories of economics

Theoretical models summarize the fundamental characteristics and laws of develop-
ment of the objective matters. They are abstract pictures of reality. Therefore, in the
stage ofmodel design, onefirst needs to conduct a qualitative analysis using economic
theories. With different theories, various models can be established. For instance,
according to the theory of equilibrium of labor markets, the rate y of wage increase
is related to the unemployment rate x1 and inflation rate x2, that is, y = f (x1, x2).
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The greater the unemployment rate increases, the smaller the rate of wage increase
due to the fact that the supply of labor is clearly greater than the demand. This is
the well-established Alban W. Phillips curve, which has been widely accepted and
applied in the economic models of Western countries. However, this model may not
necessarily hold true in the socialist market economy of China. As a second example,
according to Keynes’s theory of consumption, it is believed that, on average, when
income grows, people tend to increase their consumption. However, the degree of
increase in consumption is not as high as that of income. Assume that y stands for
consumption, and x for income. Then, a mathematical expression for the relationship
between these variables is

y = f (x) = b0 + b1x + ε

where the parameter b1 = dy/dx stands for the marginal consumption tendency, and
ε a random noise, representing the inherent randomness of consumption. According
to Keynes, 0 < b1 < 1. However, Simon Kuznets does not agree with Keynes’s
opinion of a declining marginal consumption tendency. His work indicates that there
is a stable proportion of increase between consumption and income. That is, the
previous model is only a product of Keynes’s theory.

(2) Variables and the form of the eventual model

The established model should reflect the objective economic activity. However, it is
impossible for such a reflection to include all details. This is why we need reasonable
assumptions. Employing the method of this section to select the major variables to
be included in the model using grey relational analysis will help to eliminate minor
relationships and factors. It focuses on the dominant connections while simplifying
the eventual model, making it convenient to handle and apply.

The specific works of this stage of model design include: (i) Determine which
variables to include, which ones are dependent variables, and which ones are inde-
pendent. Here, each independent variable is also known as illustrative variable. (ii)
Determine the number of parameters to be included in the model and their (positive
or negative) signs. (iii) Determine the mathematical form of the model expression.
Is it linear or nonlinear?

(3) Collection and organization of statistical data

After having decided on which variables to consider, one needs to collect all the
relevant data. That is the foundation of establishing models. Generally speaking, all
the collected raw data need to be statistically categorized and organized so that they
become the empirical evidenceof the characteristics of the problemof concern and are
systematically usable for the purpose of modeling. The basic types of statistical data,
as discussed in Chap. 3, include behavioral sequences, time series, index sequences,
horizontal sequences, among others.
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Step 2: Establish the GM(1,1) model and obtain its simulated values. In order to
eliminate the random effect or error noise existing in the observational
values of individual variables of the model, establish the GM(1,1) models
for the individually observed sequences and then apply the simulated values
of these GM(1,1) models as the base sequences on which to construct the
eventual model.

Step 3: Estimate the parameters. After having designed the econometricsmodel, the
next task is to estimate the parameters, which are the constant coefficients
of the quantitative relationship between the chosen variables of the model.
They connect the individual variables within the model. More specifically,
these parameters explain how independent variables affect the dependent
variable. Before using observed data to make estimations, these parame-
ters are unknown. After the form of the model is established on the basis
of the GM(1,1) model, simulated sequences solve the estimated values of
the parameters using an appropriate method, such as that of least squares
estimate. As soon as the parameters are clearly specified, the relationships
between model variables become known and the model can be determined.

The estimated values of the parameters provide realistic and empirical contents
and verification for the theories of economics. For instance, in the previously
mentioned consumption model, if the estimated value of parameter b1 is b̂1 = 0.8, it
not only classifies the realistic content of themarginal consumption tendency, but also
provides a piece of evidence for the assumption of Keynes’s theory of consumption
that this parameter is between 0 and 1.

Step 4: Test the model. After the parameters are estimated, the abstract model
becomes specific and determined. However, to determine whether or not
the model agrees with objective reality, and whether or not it can explain
realistic economic processes, it still has to go through tests. The tests consist
of two aspects, the test of economicmeanings and statistical tests. The test of
economic meanings checks whether or not the individual estimated values
of the parameters agree with economic theories and relevant experiences.
Statistical tests check the reliability of the estimate, the effectiveness of the
data sequence simulation, the correctness of various econometrics assump-
tions, as well as the overall structure of the model and its prediction ability
using the principles of statistical reasoning. It is only after the model passes
through these tests that it can be applied in practice. If the model does not
pass the tests, then the model needs to be modified and improved.

Step 5: Apply the established model. Grey econometrics models have been mainly
employed to analyze economic structures, evaluate policies and decisions,
simulate economic systems, and predict economic development. Each appli-
cation process is also a process of verifying the model and its underlying
theory. If the prediction contains small errors, it means that the model is
of high accuracy and quality, with a strong ability to explain reality and
an underlying theory that agrees with reality. Otherwise, the model and the
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economic theory on which the model was initially developed need to be
modified.

Combined grey econometrics models can be employed not only to situations
of known system structures, but also to situations of system structures that need
further study and exploration. Combined grey econometrics models have produced
satisfactory results in practical applications. To this end, please consult Liu and Lin
(2006, p. 247–254) to see how applications are carried out.

8.3 Combined Grey Linear Regression Models

Combined grey linear regression models can improve the weakness of original linear
regressionmodelswhere no exponential growth is considered. They can also improve
the weakness of GM(1,1) models that do not involve enough linear factors. Thus,
such combined models are suited for studying sequences with both linear tendencies
and exponential growth tendencies. For such a sequence, the modeling process can
be described as follows.

Definition 8.2.1 Assume that X (0) = {
x(0)(1), x(0)(2), ..., x(0)(n)

}
is a

sequence of raw data. Its first order accumulation sequence is X (1) ={
x(1)(1), x(1)(2), ..., x(1)(n)

}
.

x̂(1)(k) = C1e
−vk + C2k + C3 (8.1)

is called a combined grey linear regressionmodel, where v,C1,C2,C3 are parameters
that need to be estimated.

In fact, combined grey linear regression model (8.1) is a simulation model of X (1),
which can be seen as the sum of a linear regression model of y = ak + b and an
exponential model of y = C1e−ak + C2.

From the model GM(1,1), we can obtain

x̂(1)(k + 1) =
(
x(0)(1) − b

a

)
e−ak + b

a
(8.2)

Let C1 = (x(0)(1) − b
a ),C3 = b

a , which can be written as shown below:

x̂(1)(k + 1) = C1e
−ak + C3 (8.3)

By adding a linear term C2k to Formula (8.3), we can obtain the same formula as
(8.1).

Lemma 8.2.1 Assume that X (0) and X (1) are the same as in Definition 8.2.1, then
the parameter v in Formula (8.1) can be estimated by the following Formula (8.4):
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V̂ =
∑n−3

m=1

∑n−2−m
k=1 Ṽm(k)

(n − 2)(n − 3)/2
(8.4)

where Ṽm(k) = ln[ym(k + 1)/ym(k)], ym(k) = x(1)(k + m + 1) − x(1)(k + m) −
x(1)(k + 1) + x(1)(k), k,m = 1, 2, ..., n − 3

Theorem 8.2.1 Assume that X (0) and X (1) are the same as in Definition 8.2.1. Let

X (1) =

⎡

⎢⎢⎢
⎣

x(1)(1)
x(2)(2)

...

x(1)(n)

⎤

⎥⎥⎥
⎦

,C =
⎡

⎣
C1

C2

C3

⎤

⎦,A =

⎡

⎢⎢⎢
⎣

ev 1 1
e2v 2 1
...

...
...

env n 1

⎤

⎥⎥⎥
⎦

,

then we have the matrix form (8.5) of (8.1):

X (1) = AC (8.5)

Therefore, we have

C = (ATA)−1ATX (1) (8.6)

With the estimated values of parameters v, C1,C2,C3, the following Formula
(8.7) can be used as a simulating or forecasting model:

x̂(1)(k) = C1e
−V̂ k + C2k + C3 (8.7)

From Eq. (8.7), it can be seen that if C1 = 0, then the first order accumulation
sequence stands for a linear regression model. If C2 = 0, then the accumulation
sequence stands for a GM(1,1) model. This new model improves the weaknesses
of the original linear regression model with no exponential growth and that of the
GM(1,1) model where no linear factors are considered.

By applying the inverse accumulation generation operator to Eq. (8.7), we can
obtain the simulated and predicted values X̂ (0) of the original sequence.

Example 8.2.1 At a certain observation station of ore and rock movement, the
sequence of recorded subsides of a specific location from February 1995 to April
1996 is given in Table 8.1. Try to make predictions for the sinking dynamics of this
specific location.

Table 8.1 The original sequence of recorded subsides

Time 9502 9504 9506 9508 9510 9512 9602 9604

Amount of subside 12 22 31 43 51 57 75 83
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Table 8.2 Simulated and predicted values and their errors

Time 9502 9504 9506 9508 9510 9512 9602 9604 9606 9608

x(0)(k) 12 22 31 43 51 57 75 83

x̂(0)(k) 12.34 21.75 31.35 41.15 51.15 61.36 71.79 82.43 93.29 104.38

Error
(%)

− 2.85 1.15 − 1.12 4.31 − 0.30 − 7.66 4.28 0.69

Solution Due to the small amount of available data, grey systems models are the
most appropriate models for this prediction task. However, grey systems models
employ exponential functions to simulate accumulation generated sequences. They
are generally only suitable for modeling situations of exponential development, as
it is difficult for such models to describe linear tendencies of change. Therefore, in
this case study we will apply a grey linear exponential regression model to predict
the subsides of the specified location.

The original sequence of data is

X (0) = (12, 22, 31, 43, 51, 57, 75, 83).

Its first order accumulation sequence is

X (1) = (12, 34, 65, 108, 159, 216, 291, 374).

For different m values, from Eqs. (8.6) and (8.7) we obtain the estimated value
V̂ = 0.02058096 for v. Also, from Eq. (6.10), we obtain the estimated value of C:

C = (ATA)−1ATX (1) = (21750.995,−439.9523,−21751.078).

Thus, the combined model of the first order accumulation generation sequence is

x̂(1)(k) = 21750.995e0.02058096k − 439.9523k − 21751.078.

Out of this model, we obtain the simulated and predicted values for each of the
time moments as listed in Table 8.2

8.4 Grey Cobb–Douglas Model

In this section, we study the Cobb–Douglas or production function model. Let K be
the capital input, L the labor input, and Y the production output. Then,

Y = A0e
γ tKαLβ
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is known as the C-D production function model, where α stands for capital elasticity,
βlabor elasticity, and γ the parameter for the progress of technology. The log-linear
form of this production function model is given below:

ln Y = lnA0 + γ t + α lnK + β ln L

For given time series data of the production output Y , capital inputK , and labor input
L,

Y = (y(1), y(2), . . . , y(n)),K = (k(1), k(2), . . . , k(n))and L = (l(1), l(2), . . . , l(n)),

one can employ the method of multivariate least squares estimate to approximate the
parameters lnA0, γ , α, and β.

When Y , K , and L represent the time series of a specific department, district, or
business, it is often the case that, due to severe fluctuations existing in the data, the
estimated parameters contain errors leading to incorrect results. For instance, the
estimated coefficient γ for progress of technology is too small or becomes a negative
number; the estimated values α and β for elasticity go beyond their reasonable
ranges. Under such circumstances, if one considers using the GM(1,1) simulated
data of Y , K , and L as the original data for their least squares estimates, then to a
certain degree they can eliminate some of the random fluctuations, produce more
reasonable estimated parameter values, and obtain a model that can more accurately
reflect the relationship between the production output and labor, and capital inputs
and the progress of technology.

Definition 8.3.1 Assume that

Ŷ = (ŷ(1), ŷ(2), . . . , ŷ(n)),

K̂ = (k̂(1), k̂(2), . . . , k̂(n)),

and

L̂ = (l̂(1), l̂(2), . . . , l̂(n)).

are respectively the GM(1,1) simulated sequences of Y , K , and L. Then Ŷ =
A0eγ t K̂αL̂β is known as the grey model of production function.

In the grey production functionmodel, although no grey parameters appear explic-
itly, it stands for an expression that combines the idea of grey systems modeling into
the C-D production function model. That is, this model possesses a very deep inten-
sion of the greyness. It embodies the non-uniqueness principle of solutions and the
absoluteness principle of greyness. This is why, in practical applications, this model
has produced satisfactory results. To this end, please consult Liu and Lin (2006,
pp. 256–258) to see how applications are carried out.
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8.5 Grey Artificial Neural Network Models

8.5.1 BP Artificial Neural Model and Computational
Schemes

Each artificial neural network is made up of a large amount of elementary informa-
tion processors, known as neurons or nodes. The model with multi-layered nodes, or
the scheme known as error back propagation, represents the currently well developed
and widely employed artificial neural network system and computational method.
It translates the input–output problem of an available sample into a nonlinear opti-
mization problem. It is a powerful tool that can be employed to uncover the laws
and patterns hidden in large amounts of data. The use of artificial neural networks
to simulate data sequences has several latent advantages. First, it has the ability to
model multiple kinds of functions, including nonlinear functions, piecewise defined
functions, among others. Secondly, artificial neural networks are unlike the tradi-
tional methods of distinguishing data sequences, which, to work properly, must have
presumed types of functional relationships between data sequences. This means that
artificial neural networks can establish the needed functional relationship by using
the attributes and intension naturally existing in the provided data variables, without
presuming the kinds of distributions the parameters satisfy. Thirdly, this method
possesses the advantage of making use of available information very efficiently,
while avoiding the problem of losing the real meanings and pictures of the data due
to various combinations, such as additions of positive and negative values of data
mining methods. That is, the artificial neural networks method is especially useful
for improving the GM(1,1) model.

Figure 8.1 shows a back propagation network with three layers. The network
consists of an input layer, an implicit (or latent) layer, and an output layer. An entire
process of learning consists of forward and backward propagation. The particular
scheme of learning is given below:

(1) Apply random numbers to initializeWij (the connection weight between nodes
i and j of different layers) and θj (the threshold value of node j);

Fig 8.1 A back propagation
neural network



8.5 Grey Artificial Neural Network Models 253

(2) Feed in the preprocessed training samples {XPL} and {YPK };
(3) Compute the output of the nodes of each layer, Opj = f

∑
i (WijIpi − θj) for the

pth sample point, where Ipi stands for the output of node i and the input of node
j;

(4) Compute the information error of each layer. For the input layer, δpk = Opk(ypk−
Opk)(1 − Opk); for the latent layer, Opi = Opi(1 − Opi)

∑
i δpiWij;

(5) For the backward propagation, the modifiers of the weights are Wij(t + 1) =
αδpiOpi + Wij(t), and the modifiers of the thresholds θj(t + 1) = θj(t) + βδpi,
whereα stands for the learning factor andβ themomentum factor for accelerated
convergence; and

(6) Calculate the error Ep = (
∑

p

∑
k )(Opk − Ypk)2/2.

8.5.2 Steps in Grey BP Neural Network Modeling

The steps to establish a grey BP neural network model are as follows:

Step 1: Assume that a time series
{
x(0)(i)

}
, i = 1, 2, . . . , n, is given.We then obtain

the restored values x̂(0)(t), i = 1, 2, . . . , n, using the outputs of the GM(1,1)
model.

Step 2: Establish the back propagation network model for the error sequence{
e(0)(k) = x(0)(k) − x̂(0)(k)

}
,k = 1, 2, . . . , n.

If the order of prediction is S, it means that we use the information of e(0)(i − 1),
e(0)(i − 2), …, e(0)(i − S) to predict the value at the ith moment; we will treat
e(0)(i−1), e(0)(i−2),…, e(0)(i−S) as the input sample points of the back propagation
network training, while using the value of e(0)(i) as the expected prediction of the
back propagation network training. By using the back propagation computational
scheme outlined earlier, train this network through enough amount of cases of error
sequences so that output values (along with empirical test values) are produced in
ways that correspond to different input vectors. The resultant weights and thresholds
represent the correct internal representations through the self-learning and adaptation
of the network. A well trained back propagation network model can be an effective
tool for error sequence prediction.

Step 3: Determine the simulation values of
{
e(0)(k) = x(0)(k) − x̂(0)(k)

}
,k =

1, 2, . . . , n. Assume that the simulation sequence is
{
ê(0)(k)

}
,k =

1, 2, . . . , n, which is obtained by the BP neural network.
Step 4: Based on

{
x̂(0)(i)

}
and

{
ê(0)(k)

}
,i, k = 1, 2, . . . , n, we have the following

result

x̂(0)(i, k) = x̂(0)(i) + ê(0)(k) (8.8)

which is the predicted sequence of the grey artificial neural network model.
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Table 8.3 The GM(1,1) simulations and errors

Year Investment x(0)(i) GM(1,1) simulation x̂(0)(i) Errors e(0)(k)

1985 110.20 110.20 0

1986 146.34 164.39 − 19.05

1987 185.36 187.65 − 2.29

1988 221.14 214.22 6.92

1989 255.16 244.54 10.52

1990 289.18 279.17 9.01

1991 320.54 319.69 1.85

1992 352.79 363.81 − 11.02

Table 8.4 Simulation results of the grey artificial neural network model

Year Actual value x(0)(i) Simulated value x̂(i, k) Relative errors (%)

1988 221.14 221.12 0.01

1989 255.16 255.29 0.05

1990 289.18 289.11 0.02

1991 320.54 320.79 0.08

1992 352.79 352.70 0.03

Example 8.4.1 Given the actual yearly investments in environmental protection over
a period of time of a certain location, and the GM(1,1) simulations and relevant errors
in Table 8.3, establish an artificial neural network model for the error sequence.

Solution Based on and using the GM(1,1) error sequence data given in Table 8.3, we
apply the previously outlinedmethod to establish a back propagation networkmodel.
Our projected back propagation network will have three characteristic parameters,
one latent layer, within which there are 6 nodes, and one input layer within which
there is one node. Let the learning rate be 0.6, the convergence rate 0.001, and the
variance limited within the range of 0.01. Let us conduct the training and testing
of the network on a computer. Then, Table 8.4 lists the simulation results of the
combined back propagation network model.

8.6 Grey Markov Model

8.6.1 Grey Moving Probability Markov Model

Definition 8.5.1 Assume that {Xn, n ∈ T } is a stochastic process. If for any
whole number n ∈ T and any states i0, i1, . . . , in+1 ∈ I , the following conditional
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probability satisfies

P(Xn+1 = in+1|X0 = i0,X1 = i1, . . . ,Xn = in) = P(Xn+1 = in+1|Xn = in) (8.9)

then {Xn, n ∈ T } is known as a Markov chain. Equation (8.9) is seen without any
post-effect. It means that the future state of the system at t = n+ 1 is only related to
the current state at t = n, without any influence from any other earlier state t ≤ n−1.

For any n ∈ T and states i, j ∈ I , the following

pij(n) = P(Xn+1 = j|Xn = i) (8.10)

is known as the transition probability of theMarkov chain. If the transition probability
pij(n) in this equation does not have anything to do with the index n, then {Xn,n ∈ T }
is known as a homogeneous Markov chain. For such a Markov chain, the transition
probability pij(n) is often denoted as pij. Because our discussion will be mainly on
homogeneous Markov chains, the word “homogeneous” will be omitted. When all
the transition probabilities pij(n) are placed in a matrix, such as P = [pij], this matrix
is referred to as the transition probability matrix of the system’s state.

Proposition 8.6.1 The entries of the transition probability matrix P satisfy

(1) pij ≥ 0, i, j ∈ I ; and
(2)

∑
j∈I pij = 1, i ∈ I .

The probability p(n)
ij = P(Xm+n = j|Xm = i), i, j ∈ I , n ≥ 1 is known as the nth

step transition probability of the given Markov chain, and P(n) = [p(n)
ij ] the nth step

transition probability matrix.

Proposition 8.6.2 The nth step transition probability matrix P(n) satisfies

(1) p(n)
ij ≥ 0, i, j ∈ I ;

(2)
∑

j∈I p
(n)
ij = 1, i ∈ I ; and

(3) P(n) = Pn.

Any Markov chain with grey transition probabilities is known as a grey Markov
chain. When studying practical problems, due to a lack of sufficient information, it
is often difficult to determine the exact values of the transition probabilities. In such
cases, it might be possible to determine the grey ranges pij(⊗) of these uncertain
probabilities based on available information. When the transition probability matrix
is grey, the entries of its whitenization P̃(⊗) = [P̃ij(⊗)] are generally required to
satisfy the following properties:

(1) P̃ij(⊗) ≥ 0, i, j ∈ I ; and
(2)

∑
j∈I P̃ij(⊗) = 1, i ∈ I .
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Proposition 8.6.3 Assume that the initial distribution of a finite-state grey Markov
chain is PT (0) = (p1, p2, . . . , pn) and the transition probability matrix P(⊗) =
[Pij(⊗)]. Then, the system’s distribution of the next sth state is

PT (s) = PT (0)Ps(⊗) (8.11)

That is, when the system’s initial distribution and the transition probability matrix
are known, one can predict the system’s distribution for any future state.

8.6.2 Grey State Markov Model

Assume that a stationary process X (0) satisfies the condition of Markov chains. If we
divide it into n states and each of the states ⊗i is expressed by

(i = 1, 2, . . . , s)(i = 1, 2, . . . , s)

where ai, bi are constants and determined according to the states. The steps to
establish a grey state Markov model are outlined next.

Step 1: Determine the states for a stationary process X (0) which satisfies the
condition of Markov chains

(i = 1, 2, . . . , s) (i = 1, 2, . . . , s).

Step 2: Compute the initial probability distribution.Assume that there are s different
states ⊗1,⊗2, . . . ,⊗s. If state ⊗i(i = 1, 2, . . . , s) occurs Mi times in total
in M experimentations, then the frequency of Mi can be calculated by

fi = Mi

M
(i = 1, 2, . . . , s).

We can use fi(i = 1, 2, . . . , s) as an approximation of the initial
probability pi(i = 1, 2, . . . , s), that is, let fi ≈ pi(i = 1, 2, . . . , s).

Step 3: Compute the transition probability. Just like computing the initial prob-
ability, we take the frequency as an approximation of the transition
probability.

Firstly, we calculate the one step transition frequency of⊗i → ⊗j (from
state ⊗i transfer to state ⊗j through one step) by

fij = f (⊗j|⊗i)
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If state ⊗i(i = 1, 2, . . . , s) occurs Mi times in total in M experimenta-
tions, let Mij be the number of transfers to the state ⊗j from Mi state ⊗i.
Then we have

fij = Mij

Mi

Then, if fij ≈ pij, we have the transition probability matrix P =
(pij)s×s. Similarly, we can calculate the approximation of m steps transition
probability as follows (8.12):

pij(m) = Mij(m)

Mi
, (i = 1, 2, . . . , s), (8.12)

whereMij(m) is the number of transfers to the state ⊗j fromMi state ⊗i

through m steps.
Step 4: Prediction using the transition probability. Assume that the object of

prediction is located at state ⊗k , then consider the kth row of P. If

max
j

pkj = pkl

then it can be inferred that, at the next time moment, the system will
most likely transform from state ⊗k to state ⊗l . If there are two or more
entries in the kth row of P that are equal or roughly equal, then the direction
of change in the system’s state is difficult to determine. In this case, one
needs to look at the two-step or n-step transition probability matrix P(2) or
P(n), where n ≥ 3.

8.7 Combined Grey-Rough Model

Grey systems theory and rough set theory are two mathematical tools developed
to address uncertain and incomplete information. To a certain degree they comple-
ment each other. They both apply the idea of lowering the preciseness of expression
of the available data to gain the extra generality of the expression. In particular,
grey systems theory employs the method of grey sequence generations to reduce
the accuracy of data expressions, while rough set theory makes use of the idea
of data scattering to uncover patterns hidden in the data by ignoring unnecessary
details. Neither grey systems theory nor rough set theory requires any prior knowl-
edge, such as probability distribution or degree of membership. On one hand, rough
set theory investigates rough, non-intersecting classes and concepts of roughness,
with emphasis placed on the indistinguishability of objects. On the other hand, grey
systems theory focuses on grey sets with clear extension and unclear intension, with
emphasis placed on uncertainties caused by insufficient information. Thus, if rough
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set theory and grey systems methodology are mixed, their individual weaknesses
both in theory and application can be improved so that greater theoretical strength
and practical applicability can be achieved (Jian & Liu, 2005).

8.7.1 Rough Membership, Grey Membership and Grey
Numbers

Rough set theory can be seen as an expansion of the classic set theory. It makes use of
rough membership functions to define rough sets, where each membership function
is explained and understood as those of conditional probabilities.

The concepts of rough approximation sets and rough membership functions of
the rough set theory are closely related to those of greyness of grey numbers. When
eitherμX (x) = 0 orμX (x) = 1, the object is assured either to belong or not to belong
to set X. In such cases, the classification is definite and clear; the involved greyness
is the smallest. If 0 < μX (x) < 1, then object x belongs to set X with the degree
of confidence μX (x). In this case, object x projects a kind of grey state of transition
between definitely being in set X and definitely not being in X. When μX (x) = 0.5,
the probability of object x to either belong to set X or not to belong to X is 50%.
For this situation, the degree of uncertainty is the highest. That is, the degree of
greyness is the highest. When the rough membership function μX (x) is near 1 or 0,
the uncertainty for object x to belong or not to belong to set X is decreased, and the
corresponding degree of greyness should also decrease. The closer to 0.5 the rough
membership is, the greater the uncertainty for object x to belong or not to belong to set
X; the corresponding degree of greyness is also greater in such cases. We categorize
all roughmembership functions into two groups: upper and lower roughmembership
functions, where a rough membership function is upper if its values come from the
interval [0.5, 1], denotedμX (x); the corresponding grey membership function is also
referred to as upper and denoted by gX (x). A lower roughmembership function is one
that takes values from the interval [0, 0.5], denoted μ

X
(x). The corresponding grey

membership function is referred to as a lower grey membership function, denoted
g
X
(x).
Evidently, upper, lower and general rough membership functions satisfy the

following properties:

(1) μX (x) = 1 − μ
X
(x);

(2) μX∪Y (x) = μX (x) + μY (x) − μX∩Y (x); and
(3) max(0, μX (x) + μY (x) − 1) ≤ μX∩Y (x) ≤ min(1, μX (x) + μY (x)).

Based on the discussion above, we introduce the following definition of grey
membership functions using the concept of rough membership functions.

Definition 8.6.1 Assume that x is an object with its field of discourse U . That is,
x ∈ U . Let X be a subset of U . Then mappings from U to the closed interval [0, 1]:
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Fig. 8.2 A conceptual depiction of grey membership functions

μX : U → [0.5, 1], μ| → gX (x) ∈ [0, 1].

and

μ
X

: U → [0, 0.5], μ| → g
X
(x) ∈ [0, 1]

are respectively referred to as upper and lower grey membership functions of X ,
where μX ≥ μ

X
; gX (x) and g

X
(x) are respectively referred to as upper and lower

grey membership functions of object x with respect to X .
The defined concept of grey membership functions based on rough membership

functions is depicted in Fig. 8.2

Definition 8.6.2 Assume that x ∈ U , X ⊆ U , the grey number scale of the uncer-
tainty for x to belong to X is gc, the grey number scale of the upper grey membership
function gX (x) is gc, and the grey number scale of the lower grey membership func-
tion g

X
(x) is g

c
. Then the greyness scales gc and gc of the upper grey number and the

lower grey number of the greyness scales gc of different grey numbers are respectively
given as outlined below.

The greyness of white numbers (gc = 0): if μX (x) = 0, then g
c
= 0; if μX (x) =

1, then gc = 0.
For first class grey numbers (gc = 1): if μX (x) ∈ (0,0.1], then g

c
= 1; if μX (x) ∈

[0.9,1), then gc = 1.
For second class grey numbers (gc = 2): if μX (x) ∈ (0.1,0.2], then g

c
= 2; if

μX (x) ∈ [0.8,0.9), then gc = 2.
For third class grey numbers (gc = 3): if μX (x) ∈ (0.2,0.3], then g

c
= 3; if μX (x)

∈ [0.7,0.8), then gc = 3.
For fourth class grey numbers (gc = 4): if μX (x) ∈ (0.3,0.4], then g

c
= 4; if

μX (x) ∈ [0.6,0.7), then gc = 4.
For fifth class grey numbers (gc = 5): if μX (x) ∈ (0.4,0.5), then g

c
= 5; if μX (x)

∈ (0.5,0.6), then gc = 5.
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The greyness of black numbers (gc > 5): if μX (x) = 0.5, then g
c
= gc > 5.

When μX (x) ∈ [0,1], g
X
(x) = 0 and gX (x) = 1. In this case, there is no uncertain

information, so it is referred to as the greyness of white numbers. That is, gc = g
c= gc = 0. When μX (x) = 0.5, g

X
(x) = gX (x) = 1, the degree of uncertainty for

object x to belong or not to belong to set X reaches its maximum, which is referred
to as the greyness of black numbers gc > 5. From Definition 8.6.1, it follows that
the higher the greyness of a grey number, the less clear the information is; the lower
the greyness of a grey number, the clearer the information is.

From Definition 8.6.1, it can be readily obtained that μX (x) = 1 − μ
X
(x). If we

use the greyness of the upper grey number to represent the degree of uncertainty for
object x to belong to set X, and the greyness of the lower grey number to illustrate
the degree of uncertainty for object x not to belong to set X, then these two degrees
of uncertainty are supplementary.

According to Definition 8.6.2, the scale of the greyness of a grey number is
determined by the grey interval to which the maximum rough membership value of
the information granularity could belong.Thus, thewhitenizations of grey numbers of
different degrees of greyness are defined as themaximumpossible roughmembership
value of the grey numbers of corresponding scales. For example, if the possible
maximum rough membership value of a certain conditional subset computed out of
the available decision-making table is μX (x) = 0.75, because 0.75 ∈ [0.7,0.8), then
μX (x) = 0.75 stands for the white value of such a grey number whose upper greyness
is gc = 3.

8.7.2 Grey Rough Approximation

Definition 8.6.3 Assume that S = (U ,A,V , f ), A = C ∪ D, X ⊆ U , P ⊆ C, and
the greyness scale gc ≤ 5 of a grey number. Then

aprgc
P

(X ) = ∪
{ |IP(x) ∩ X |

|IP(x)| ≤ gc

}
(8.13)

and

aprgcP (X ) = ∪
{ |IP(x) ∩ X |

|IP(x)| > g
c

}
(8.14)

are respectively referred to as the gc-lower approximation and gc-upper approxi-
mation of X with respect to IP , where the upper rough membership function corre-
sponding to the upper scale gc of grey-number greyness satisfies μX (x) ∈ (0.5, 1],
and the lower rough membership function corresponding to the lower scale g

c
of

grey-number greyness satisfies μ
X
(x) ∈ [0, 0.5).

The gc-lower approximation of the set X ⊆ U under the grey-number greyness
scale gc equals the union of all the equivalence classes of U that belong to X , with
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grey-number greyness scales less than or equal to the upper grey-number greyness
scale gc. The gc-upper approximation is equal to the intersection of all the equivalence
classes ofU that belong toX ,with grey-number greyness scales greater than the lower
grey-number greyness scale g

c
.

Definition 8.6.4 The quality of gc-classification is

γ
gc
P (P,D) =

| ∪
{

|X∩IP(x)|
|IP(x)| ≤ gc

}
|

|U | (8.15)

The classification quality γ
gc
P (P,D) measures the percentage of the knowledge in

the field of discourse that can be clearly classified for a given grey-number greyness
scale gc ≤ 5, in the totality of current knowledge.

For a given grey-number greyness scale gc ≤ 5, let approximate reduction
redgc

P (C,D) stand for the set of attributes with the minimum condition that still
produces clear classification without containing any extra attributes.

In rough set theory, the classification of the elements located along the boundary
regions is not clear.Whether or not an element in such a region canbe clearly classified
is determined most commonly by the pre-fixed greyness scale. The concept of grey
rough approximation so defined is analogous to that of variable precision rough
approximation. When the interval grey numbers in which the upper greyness scale
gc and the lower greyness scale gc of the grey-number greyness gc of the grey rough
approximation respectively belong to their corresponding white values, the grey
rough approximation is consequently transformed into rough approximation under
the meaning of variable precision rough sets. Evidently, variable precision rough
approximation can be seen as a special case of grey rough approximation. When
compared to models of variable precision rough sets of the sets of variable precision,
whether or not elements in a relatively rough set X can be correctly classified is
mostly determined by the pre-fixedmaximumcritical confidence threshold parameter
β. This is where classification can be done if smaller than or equal to the upper
bound of β, and indistinguishability appears when this upper bound is surpassed.
However, the parameter of the maximum critical confidence threshold β in general
is difficult to determine beforehand, especially for large data sets. In other words, the
parameter of maximum critical confidence threshold β generally stands for a grey
number. Thus, the concept of interval grey numbers provides a practical quantitative
tool which appoints upper and lower endpoints. For cases where we cannot obtain
much information about the degree of accuracy of the actual data, this method of
representation becomes extremely useful.

Proposition 8.6.1 Given the greyness scale gc ≤ 5, the following hold true:

(1) aprgcP (X ∪ Y ) ⊇ aprgcP (X ) ∪ aprgcP (Y );
(2) aprgc

P
(X ∩ Y ) ⊆ aprgc

P
(X ) ∩ aprgc

P
(Y );

(3) aprgC
P

(X ∪ Y ) ⊇ aprgC
P

(X ) ∪ aprgC
P

(Y ); and
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(4) aprgcP (X ∩ Y ) ⊆ aprgcP (X ) ∩ aprgcP (Y ).

Proof

(1) For any X ⊆ U and Y ⊆ U , and given the greyness scale gc, we have

|IP(x) ∩ (X ∪ Y )|
|IP(x)| ≥ |IP(x) ∩ X |

|IP(x)|
and

|IP(x) ∩ (X ∪ Y )|
|IP(x)| ≥ |IP(x) ∩ Y |

|IP(x)| .

Therefore, aprgcP (X ∪ Y )⊇ aprgcP (X ) ∪ aprgcP (Y ).
(2) For any X, Y ⊆ U, and given the greyness scale gc ≤ 5, we have

|IP(x) ∩ (X ∩ Y )|
|IP(x)| ≤ |IP(x) ∩ X |

|IP(x)|
and

|IP(x) ∩ (X ∩ Y )|
|IP(x)| ≤ |IP(x) ∩ Y |

|IP(x)| .

Therefore, aprgc
P

(X ∩ Y ) ⊆ aprgc
P

(X ) ∩ aprgc
P

(Y ). Similarly, we can prove
(3) and (4). QED.

Proposition 8.6.2 aprgc
P

(X ) ⊆ aprgcP (X ).

Proof Let x ∈ aprgc
P

(X ). Because the equivalence relation IP is reflective, we have
x ∈ IP(x). From Definition 8.6.2, it follows that gc ≤ 5 and that the interval grey
number to which the rough membership value corresponding to the upper grey-
number greyness scale belongs is greater than the interval grey number to which
the rough membership value corresponding to the lower grey-number greyness scale
belongs. Hence, we have x ∈ aprgcP (X ) and consequently aprgc

P
(X )⊆aprgcP (X ). QED.

8.7.3 The Combined Grey Clustering and Rough Set Model

When employing the expansion dominant rough set model to probabilistic decision-
making, one needs to have a multi-criteria decision-making table. However, in
many practical applications involving uncertain multi-criteria decision-making, the
researcher has to rely on existing data sets to generate his multi-criteria informa-
tion table instead of being able to obtain their own multi-criteria decision making
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table. For instance, we can easily collect the financial data of a publically-traded
company, such as income per share, net asset per share, net profit, reliability, oper-
ating profit, and so on. Based on the collected financial data, we can establish amulti-
criteria information table. Given that such a company’s style of decision-making is
unknown ahead of time, it is difficult to classify it according to whether it presents
a high risk, moderate risk, or low risk decision-making style. Thus, it is also diffi-
cult, if not impossible, to generate a relevant multi-criteria decision-making table.
Therefore, dominant rough set models and expanded dominant rough set models
cannot be directly employed to conduct decision-making analysis of these problems.
However, the method of grey clustering of grey systems theory generally groups
objects into different preference categories by considering attribute preference infor-
mation and decision-makers’ preference behaviors. In particular, the method of grey
fixed weight clustering provides an effective way to transform a multi-criteria infor-
mation table, which is made of preferred attributes of various dimensions, into a
multi-criteria decision-making table. For instance, based on the collected financial
data of companies, the distributions of the preferred attributes’ values of the criteria,
and the preferred behaviors of the decision-makers, we can establish possibility func-
tions. On this basis, we can group the companies into different risk classes, such as
high risk, moderate risk, and low risk class.

When considering the strengths of the methods of dominant rough sets and grey
fixed weight clustering, we can construct a hybrid method combining grey fixed
weight clustering and dominant rough sets, where grey fixed weight clustering can
be seen as a processing tool used before the method of dominant rough sets is
employed. The purpose of doing so is to generalize the dominant rough sets to a
method that can be employed to conduct decision-making analysis based on multi-
criteria information tables, and to extract the most precise expression of knowledge
from the multi-criteria information table.

By following the steps below, one can establish the needed model combining grey
fixed weight clustering and dominant rough sets:

(1) Develop a system of knowledge expressions using the values of preferred
conditional attributes (criteria);

(2) Determine the ordered decision-making evaluation grey classes g according to
the specific circumstances;

(3) Establish the possibility function for thefield of each criterion. Let the possibility
function of the kth subclass of the jth criteria be f ki (·) (j = 1, 2, . . . ,m; k =
1, 2, . . . , g);

(4) Determine the clustering weight ηj, j = 1, 2, …, m, for each criterion;
(5) Based on the observed value xij, i = 1, 2, …, n, j = 1, 2, …, m, of object i with

respect to criterion j, compute the coefficients σ k
i = ∑m

j=1 f
k
j (xij)ηj of the grey

fixed weight clustering i = 1, 2, …, n, k = 1, 2, …, g;
(6) Obtain the clustering coefficient vector

σi = (σ 1
i , σ 2

i , ..., σ
g
i ) =

⎛

⎝
m∑

j=1

f 1j (xij)ηj,
m∑

j=1

f 2j (xij)ηj, ...
m∑

j=1

f gj (xij)ηj

⎞

⎠;
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(7) Generate the clustering coefficient matrix

∑
= (σ k

i ) =

⎡

⎢⎢⎢
⎣

σ 1
1 σ 2

1 ... σ
g
1

σ 1
2 σ 2

2 ... σ
g
2

...
...

...
...

σ 1
n σ 2

n . . . σ
g
n

⎤

⎥⎥⎥
⎦

;

(8) Based on the clustering coefficient matrix Σ, determine the classes to which
individual objects belong. If max1≤k≤g{σ k

i } = σ k∗
i , then object i belongs to

grey class k∗;
(9) Establish the decision-making table using preferred conditional attributes and

preferred decision-making grey classes; and
(10) Employ the method of dominant rough sets to conduct decision-making

analysis.

8.8 Practical Applications

Example 8.7.1 Let us look at how to choose regional key technologies using a
hybrid model combining the methods of grey fixed weight clustering and dominant
rough sets. For a specific geographic area, the evaluation criteria system and relevant
evaluation values for its key technologies are given in Table 8.5 (Liu & Jian, 2009).

Table 8.5 The criteria system for evaluating key regional technologies

Code Meaning of criterion Criterion
weight

Evaluation values

a1 Time lag of technology 0.1 A: > 10 years; B: 5–10 years; C: 3–5
years; D: < 3 years

a2 Time length technological
bottleneck existed

0.09 A: > 10 years; B: 5–10 years; C: 3–5
years; D: < 3 years

a3 Ability to create own
knowledge right

0.14 A: complete own right; B: partial
right; C: no right at all

a4 Coverage of technology 0.09 A: widely applicable; B: applied in
profession; C: special technique

a5 Promotion and lead of
technological fields

0.11 A: strong; B: relatively strong; C:
general; D: weak

a6 Time needed for technology
transfer

0.07 A: within 1 year; B: 1–3 years; C: 4–5
years; D: > 5 years

a7 Input/output ratio 0.13 A: high; B: relatively high; C: normal;
D: low

a8 Effect on environmental
protection

0.12 A: strong; B: relatively strong; C:
normal; D: weak
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Based on the evaluations of relevant experts on 11 key technologies candidates,
we generate the knowledge expression system as shown in Table 8.6.

In the following graph we present a decision-making analysis for this region’s
key technologies candidates.

For the evaluation criteria of the region’s key technologies, the preference orders
are the same as A > B > C > D. Quantify the set of criteria evaluations by letting
the set be V = (A,B,C,D) = (7, 5, 3, 1). According to practical needs, we divide
each criterion into three grey classes of decision-making: the class of weak need
for key technologies (coded with 1), the class of general need for key technologies
(coded with 2), and the class of strong need for key technologies (coded with 3).
Let us take the possibility function of the class of weak need as the measurement of
the low bound, that of the class of general need as the moderate measurement, and
that of the class of strong need as the measurement of the upper bound. For details,
see Fig. 8.3. Based on decision-making goals and specific distributions of experts’
evaluation values, we introduce the possibility functions for each grey class as shown
in Table 8.7.

Table 8.6 The knowledge system on key regional technologies

U a1 a2 a3 a4 a5 a6 a7 a8

n1 B B C B D C B A

n2 D D B B C B C D

n3 D D B B C A D A

n4 B C C B B B A C

n5 B B B B C B B C

n6 D D B B B B B C

n7 D D B C D A C C

n8 C B B C C C B C

n9 B B B B A B A B

n10 C B B B B B B B

n11 B B B B C B C B

Fig. 8.3 Possibility
functions of the three grey
classes
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Table 8.7 Possibility functions for key regional technologies

Criterion
name

Weak need class (1) Moderate need class (2) Strong need class (3)

Time lag of
technology

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

3 − x

0

1 ≤ x < 2

2 ≤ x < 3

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 2

4 − x

0

2 ≤ x < 3

3 ≤ x < 4

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 1.5

1

0

3 ≤ x < 5

5 ≤ x ≤ 7

otherwise

Time length
technological
bottleneck
existed

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

3 − x

0

1 ≤ x < 2

2 ≤ x < 3

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 2

4 − x

0

2 ≤ x < 3

3 ≤ x < 4

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 1.5

1

0

3 ≤ x < 5

5 ≤ x ≤ 7

otherwise

Ability to
create own
knowledge
right

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

5 − x

0

3 ≤ x < 4

4 ≤ x < 5

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 4

6 − x

0

4 ≤ x < 5

5 ≤ x < 6

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 5

1

0

5 ≤ x < 6

6 ≤ x ≤ 7

otherwise

Coverage of
technology

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

5 − x

0

3 ≤ x < 4

4 ≤ x < 5

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 4

6 − x

0

4 ≤ x < 5

5 ≤ x < 6

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 5

1

0

5 ≤ x < 6

6 ≤ x ≤ 7

otherwise

Promotion
and lead of
technological
fields

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

2 − 0.5x

0

1 ≤ x < 2

2 ≤ x < 4

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 1

3 − 0.5x

0

2 ≤ x < 4

4 ≤ x < 6

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 2

1

0

4 ≤ x < 6

6 ≤ x ≤ 7

otherwise

Time needed
for technology
transfer

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

2 − 0.5x

0

1 ≤ x < 2

2 ≤ x < 4

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 1

3 − 0.5x

0

2 ≤ x < 4

4 ≤ x < 6

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 2

1

0

4 ≤ x < 6

6 ≤ x ≤ 7

otherwise

Input/output
ratio

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

4 − x

0

1 ≤ x < 3

3 ≤ x < 4

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

x − 3

3 − 0.5x

0

3 ≤ x < 4

4 ≤ x < 6

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 2

1

0

4 ≤ x < 6

6 ≤ x ≤ 7

otherwise

Effect on
environmental
protection

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

1

2.5 − 0.5x

0

1 ≤ x < 3

3 ≤ x < 5

otherwise

f (x) =⎧
⎪⎪⎨

⎪⎪⎩

0.5x − 1.5

3.5 − 0.5x

0

3 ≤ x < 5

5 ≤ x < 7

otherwise

f (x) ={
0.5x − 25 5 ≤ x ≤ 7

0 otherwise
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Table 8.8 Evaluation decision-making table for key regional technologies

U a1 a2 a3 a4 a5 a6 a7 a8 Cl

n1 B B C B D C B A 3

n2 D D B B C B C D 1

n3 D D B B C A D A 1

n4 B C C B B B A C 3

n5 B B B B C B B C 2

n6 D D B B B B B C 1

n7 D D B C D A C C 1

n8 C B B C C C B C 2

n9 B B B B A B A B 3

n10 C B B B B B B B 2

n11 B B B B C B C B 2

From formula σ k
i = ∑m

j=1 f
k
j (xij)·ηj, we can compute the clustering coefficient for

each grey class of each key technology. Based on such coefficients we can establish
the evaluation decision-making (Table 8.8) for choosing key technologies for the
region.

Because the values of all the conditional attributes have the preference order A >
B > C > D, these attributes contain preference information. Based on the decision-
making attributes, the comprehensive evaluation can be divided into three preference
ordered classes: Cl1 = {1}, Cl2 = {2}, Cl3 = {3}. Based on this result, we divide the
field of discourse and obtain the following unions of the decision-making classes:

Cl≤1 = Cl1, with the comprehensive evaluation 1 (the need for key technologies
is weak);

Cl≤2 = Cl1 ∪ Cl2, with the comprehensive evaluation ≤ 2 (the need for key
technologies is at most moderate);

Cl≥2 = Cl2 ∪ Cl3, with the comprehensive evaluation ≥ 2 (the need for key
technologies is at least moderate);

Cl≤3 = Cl1 ∪Cl2 ∪Cl3, with the comprehensive evaluation ≤ 3 (the need for key
technologies is at most strong); and

Cl≥3 = Cl3, with the comprehensive evaluation 3 (the need for key technologies
is strong).

A reduction found by using the method of dominant rough sets is {a2, a7}. The
setsD≥ andD≤ of the least amounts of preference rules generated from this reduction
are respectively given in Tables 8.9 and 8.10

Based on the setD≥ of preference decision-making rules generated by employing
our hybrid model that combines grey fixed weight clustering and dominant rough
sets, all the 11 key technologies considered are correctly classified. That is, the quality
of classification is 100%. Based on the setD≤ of preference decision-making rules, a
total of 7 key technologies are classified correctly so that the quality of classification
is 63.6%.
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Table 8.9 Set D≥ of preference rules

Rule Confidence
(%)

Support
number

If the length of time for technology bottleneck to exist ≥ C and input/
output ratio = A, then the urgency for needing key technologies = 3
(strong)

100 2

If the length of time for technology bottleneck to exist ≥ B and input/
output ratio ≥ C, then the urgency for needing key technologies ≥ 2
(moderate)

100 5

If the length of time for technology bottleneck to exist = D, then the
urgency for needing key technologies = 1 (weak)

100 4

Table 8.10 Set D≤ of preference rules

Rule Confidence
(%)

Support
number

If the length of time for technology bottleneck to exist ≤ C and input/
output ratio = A, then the need for key technologies = 3 (strong)

100 2

If the length of time for technology bottleneck to exist ≤ B and input/
output ratio ≤ C, then the need for key technologies ≤ 2 (moderate)

100 1

If the length of time for technology bottleneck to exist = D, then the
need for key technologies = 1 (weak)

100 4
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Chapter 9
Techniques for Grey Systems Forecasting

9.1 Introduction

No matter what needs to be done, one should always get familiar with the situation,
think through the details, make educated predictions, and lay out a detailed plan
before he could potentially arrive at his desired successful conclusions. For matters
as great as international affairs, national events and citizens’ lives, the development
of regional or business entities, and for matters as small as daily work or living
arrangements, scientifically sound predictions are needed everywhere (Deng, 1990;
Liu & Guo, 1991).

Prediction is about foretelling the possible course of development of societal
events, politicalmatters, economic ups anddowns, and so on, using scientificmethods
and techniques based on attainable historical and present data so that appropriate
actions can be planned and carried out. In short, prediction is about making scientific
inferences regarding the evolution of materials and events ahead of time. General
prediction includes not only static inference about unknownmatters based on what is
knownwithin a specific time frame, but also dynamic inference about the future based
on history and the present state of affairs of a certain matter. A specific prediction is
a dynamic forecast within which a scientific inference about the future evolution of
a certain event is given.

In 2010, Zeng, et al. proposed a prediction model of interval grey number based
on DGM (1, 1) ) (Zeng et al., 2010). In 2014, Xie, et al. proposed a grey number
sequence forecasting model of interval analysis (Xie et al., 2014). Then, they studied
interval grey number sequence prediction by non-homogenous exponential discrete
grey forecasting model (Xie et al., 2015). Luo et al. proposed a grey interval fore-
casting method in 2016. Firstly, two non-equidistance GM(1,1) models are built for
upper and lower sequences respectively, and the development boundary of the system
are described by the upper and lower envelope curves. Then, the computing method
for the interval and basic forecasting values of the original sequence are proposed, and
the algorithm is constructed. Finally, the grey exponent law and timeliness of interval
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forecasting model are studied. The numerical experiment shows that the value of the
development coefficient is not the only factor influencing the timeliness. The appli-
cation example shows that the forecasting accuracy can be effectively enhanced (Luo
et al., 2016). In the same year, Liu et al. proposed an improved interval forecasting
model based on fuzzy multi-objective programming combined with discrete grey
model theory (Liu et al., 2016). Chen et al. proposed a time series interval forecast
method using GM(1,1) and NGBM(1, 1) models in 2019 (Chen et al., 2019). In 2020,
Xiong et al. predicted the fog and haze pollution using amulti-variable grey model
based on interval number sequences (Xiong et al., 2020). Zeng et al. proposed a
multi-variable grey model based on dynamic background algorithm for forecasting
the interval sequence (Zeng et al., 2020). Zeng et al. proposed a novel grey interval
forecasting model to predict sulfur dioxide concentration in Beijing. They extended
the original modeling data to the area sequence and coordinate sequence with equal
information, which is used to deduce the boundary equation of the original sequence
(Zeng et al., 2021).Hu applied grey predictionmodels and neural networks to develop
interval models for tourism demand forecasting (Hu, 2021). Please refer to Wang’s
review article for details if the readers interested in interval forecasting (Wang et al.,
2024).

9.2 Criteria for Model Verification

Grey prediction makes scientific, quantitative forecasts about the future states of
systems based on understandings of unascertained characteristics of such systems. It
makes use of sequence operators on the original data sequences in order to generate,
treat, and excavate the hidden laws of systems evolution, so that grey systemsmodels
can be established to predict future outcomes. All the methods of the grey systems
theory studied so far can be employed to make predictions. For a given problem,
the appropriate prediction model is chosen by making use of the conclusions of a
sufficiently and carefully done qualitative analysis. Also, the choice ofmodels should
vary along with changing conditions. Each model chosen has to be tested through
many different methods in order to decide its appropriateness and effectiveness. Only
the models that pass various tests can be meaningfully employed to make predictions
(Liu, et al., 2020; Liu, 2024; Liu, et al., 2022).

Definition 9.2.1 Let X (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)) be a sequence of raw
data, X̂ (0) = (x̂(0)(1), x̂(0)(2), . . . , x̂(0)(n)) the simulated data out of a chosen predic-
tion model, ε(0) = (ε(1), ε(2), . . . , ε(n)) = (

x(0)(1) − x̂(0)(1),x(0)(2) − x̂(0)(2), …,
x(0)(n) − x̂(0)(n)

)
the error sequence, and

� =
(∣∣

∣∣
ε(1)

x(0)(1)

∣∣
∣∣,

∣∣
∣∣

ε(2)

x(0)(2)

∣∣
∣∣, . . . ,

∣∣
∣∣

ε(n)

x(0)(n)

∣∣
∣∣

)
= {�k}n1

the relative error sequence. Then:
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(1) For k ≤ n, �k =
∣∣
∣ ε(k)
x(0)(k)

∣∣
∣ is known as relative error of the simulation at point k,

and � = 1
n

∑n
k=1 �k the average relative error;

(2) 1 − � is known as the average relative accuracy, and 1 − �k the simulation
accuracy at point k, k = 1, 2, . . . , n; and

(3) For a given α, when � < α and �n < α hold true, the prediction model is said
to be error-satisfactory.

Definition 9.2.2 Let ε stand for the absolute grey relational degree between the raw
data X (0) and the simulated values X̂ (0). If for a given ε0 > 0 the absolute grey
relational degree ε satisfies ε > ε0, then the simulation model is said to be grey
relational satisfactory.

Definition 9.2.3 Assume that the sequences X (0), X̂ (0), and ε(0) are the same as
above, and consider the relevant means and variances.

x = 1

n

n∑

k=1

x(0)(k), S2
1 = 1

n

n∑

k=1

(x(0)(k) − x)2

and

ε = 1

n

n∑

k=1

ε(k), S2
2 = 1

n

n∑

k=1

(ε(k) − ε)2.

(1) If for a givenC0 > 0, the ratio of root-mean-square deviation (RMSD) isC = S2
S1

< C0, then the model is said to be RMSD ratio satisfactory.
(2) If p = P(|ε(k) − ε) | < 0.6745S1) is seen as a small error probability and for a

given p0 > 0, when p > p0, then the model is said to be small-error probability
satisfactory.

The discussion above shows three different ways to test a chosen model. Each of
them is based on observations of the error to determine the accuracy of the model.
For both the mean relative error � and the simulation error, the smaller they are,
the better. With regards to the grey relational degree ε, the greater it is the better. As
for the RMSD ratio C, the smaller the value is, the better. This is because a small
C indicates that S2 is relatively small, while S1 is relatively large. This means that
the error variance is small while the variance of the original data is large, so that the
errors are relativelymore concentratedwith little fluctuation compared to the original
data. Therefore, for better simulation results, the smaller S2 is when compared to S1,
the better. With regards to small error probability p, as soon as a set of α, ε0, C0, and
p0 values are chosen, a scale of accuracy for testing models is determined. The most
commonly used scales of accuracy for testing models are listed in Table 9.1.

In most applications published so far in the area of grey systems, the most
commonly used is the criterion of relative errors.
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Table 9.1 Commonly used scales of accuracy for model testing

Accuracy scale Threshold

Relative error α Grey relational degree
ε0

RMSD C0 Small error probability
p0

1st level 0.01 0.90 0.35 0.95

2nd level 0.05 0.80 0.50 0.80

3rd level 0.10 0.70 0.65 0.70

4th level 0.20 0.60 0.80 0.60

9.3 Interval Forecasting

If a given sequence of raw data is chaotic and it is difficult for any model to pass the
accuracy test, the researcher will then have trouble producing accurate quantitative
predictions. In this case, one can consider providing a range for future values to fall
within.

Definition 9.3.1 Let X (t) be a zigzagged line. If there are smooth and continuous
curves fu(t) and fs(t), satisfying that for any t, fu(t) < X (t) < fs(t), then fu(t) is
known as the lower bound function of X (t), fs(t) the upper bound function, and S
= {(t,X (t))|X (t) ∈ [fu(t), fs(t)] } the value domain of X (t). If the upper and lower
bound of X (t) are the same kind of function, then S is known as a uniform domain.
When S is a uniform band with exponential functions as its upper and lower bounds
fu(t) and fs(t), then S is known as a uniform exponential domain. If a uniform band
S has linear upper and lower bound functions fu(t) and fs(t), then S is known as a
uniform linear domain or a straight domain for short. If for t1 < t2, fs(t1) − fu(t1) <

fs(t2) − fu(t2) always holds true, then S is known as a trumpet-like domain.

Example 9.3.1 Let X (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)) be a sequence of raw data,
and its accumulation generation be X (1) = (x(1)(1), x(1)(2), . . . , x(1)(n)). Define

σmax = max
1≤k≤n

{x(0)(k)}, σmin = min
1≤k≤n

{x(0)(k)}

and respectively take the upper and lower bound functions fu(n+ t) and fs(n+ t) of
X (1) as follows:

fu(n + t) = x(1)(n) + tσmin, fs(n + t) = x(1)(n) + tσmax.

That is, both the upper and lower bound functions of a proportional band are
increasing straight lines of time with slopes σmin and σmax, respectively.

Then S = {(t,X (t))|t > n,X (t) ∈ [fu(t), fs(t)]} is known as the proportional
domain (see Fig. 9.1).
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Fig. 9.1 A trumpet-like
domain

Example 9.3.2 For a sequence X (0) of raw data, let X (0)
u be the sequence corre-

sponding to the curve that connects all the low points of X (0), and X (0)
s the sequence

corresponding to the curve of all the upper points of X (0). Assume that

x̂(1)
u (k + 1) =

(
x(0)
u (1) − bu

au

)
exp(−auk) + bu

au

and

x̂(1)
s (k + 1) =

(
x(0)
s (1) − bs

as

)
exp(−ask) + bs

as

are respectively the GM(1,1) time response sequences of X (0)
u and X (0)

s . Then

S = {(t,X (t))
∣∣X (t) ∈ [X̂ (1)

u (t), X̂ (1)
s (t)]}

is known as a wrapping domain (see Fig. 9.2).

Example 9.3.3 For a given sequence X (0) of raw data, let us take m different sub-
sequences to establish m GM(1, 1) models with the corresponding parameters âi =
[ai, bi]T ; i = 1, 2, . . . ,m. Let

Fig. 9.2 A wrapping
domain



276 9 Techniques for Grey Systems Forecasting

−amax = max1≤i≤m{−ai},−amin = min1≤i≤m{−ai}, and

x̂(1)
u (k + 1) =

(
x(0)
u (1) − bmin

amin

)
exp(−amink) + bmin

amin

x̂(1)
s (k + 1) =

(
x(0)
s (1) − bmax

amax

)
exp(−amaxk) + bmax

amax

Then S = {(t,X (t))
∣∣X (t) ∈ [X̂ (1)

u (t), X̂ (1)
s (t)]} is known as a development

domain. The wrapping domain and development domain are exponential domains.

Definition 9.3.2 For a sequence X (0) = (x(0)(1), x(0)(2), . . . , x(0)(n)) of raw data,
let fu(t) and fs(t) be a upper and a lower bound function of the accumulation sequence
X (1) of X (0). For any k > 0,

x̂(0)(n + k) = 1

2
[fu(n + k) + fs(n + k)]

is known as basic prediction value, and x̂(0)
u (n + k) = fu(n + k) and x̂(0)

s (n + k) =
fs(n + k), respectively, the lowest and highest predicted values.

Example 9.3.4 The data (in tens of thousands) for electric car sales in a certain city
are given as follows:

X (0) = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5), x(0)(6))

= (5.0810,4.6110, 5.1177,9.3775, 11.0574,11.3524)

where x(0)(1) = 5.0810 is the annual sales for the year of 2018, …, and x(0)(6) =
11.3524 for the year of 2023. Try to make a prediction using development domain.

Solution: Take the following sub-sequences

X (0)
1 = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5), x(0)(6))

= (5.0810,4.6110, 5.1177,9.3775, 11.0574,11.3524)

X (0)
2 = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5))

= (5.0810,4.6110, 5.1177,9.3775, 11.0574)

X (0)
3 = (x(0)(2), x(0)(3), x(0)(4), x(0)(5), x(0)(6))

= (4.6110,5.1177, 9.3775,11.0574, 11.3524)

X (0)
4 = (x(0)(3), x(0)(4), x(0)(5), x(0)(6))

= (5.1177,9.3775, 11.0574,11.3524)
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Based on each of these sub-sequences, let us establish the corresponding the
models of EGM(1, 1):

dx(1)

dt
+ aix

(1) = bi, i = 1, 2, 3, 4

Their individual parameters âi = [ai, bi]T , i = 1, 2, 3, 4, are given below:

â1 = [a1, b1]T = [−0.2202, 3.4689]T , â2 = [a2, b2]T = [−0.3147, 2.1237]T .

â3 = [a3, b3]T = [−0.2013, 5.0961]T , â4 = [a4, b4]T = [−0.0911, 8.7410]T .

Because

−amin = min
1≤i≤4

{−ai} = min{0.2202, 0.3147, 0.2013, 0.0911} = 0.0911 = −a4

−amax = max
1≤i≤4

{−ai} = max{0.2202, 0.3147, 0.2013, 0.0911} = 0.3147 = −a2

the upper bound time response sequence of the development domain is

⎧
⎪⎨

⎪⎩

x̂(1)
s (k + 1) =

(
x(0)(1) − b2

a2

)
e−a2k + b2

a2
= 11.8293e0.3147k − 6.7483

x̂(0)
s (k + 1) = x̂(1)

s (k + 1) − x̂(1)
s (k)

That is, x̂(0)
s (k + 1) = 11.8293e0.3147k − 11.8293e0.3147k−0.3147 = 3.1938e0.3147k .

Thus, the highest predicted values are x̂(0)
s (7) = 21.1029, x̂(0)

s (8) = 28.9078, and
x̂(0)
s (9) = 39.5993. Because the starting value of X (0)

4 is x(0)(3), the lower bound time
response sequence of the development domain is

⎧
⎪⎨

⎪⎩

x̂(1)
u (k + 3) =

(
x(0)(3) − b4

a4

)
e−a4k + b4

a4
= 101.0672e0.0911k − 95.9495

x̂(0)
u (k + 3) = x̂(1)

u (k + 3) − x̂(0)
u (k + 2)

That is, x̂(0)
u (k+3) = 101.0672e0.0911k−101.0672e0.0911k−0.0911 = 8.8003e0.0911k .

Therefore, we obtain the lowest predicted values: x̂(0)
u (7) = 12.6694, x̂(0)

u (8) =
13.8777, and x̂(0)

u (9) = 15.2014. From the highest and lowest predicted values, we
obtain the basic prediction values:

x̂(0)(7) = 1

2
[x̂(0)

s (7) + x̂(0)
u (7)] = 16.8862

x̂(0)(8) = 1

2
[x̂(0)

s (8) + x̂(0)
u (8)] = 21.3928
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x̂(0)(9) = 1

2
[x̂(0)

s (9) + x̂(0)
u (9)] = 27.4004

Based on the qualitative analysis of the estimated amount of electric car ownership
in the given city and the improvement in public transportation systems, we conclude
that the basic predicted values are the most reliable.

9.4 Grey Distortion Forecasting

The basic idea of grey distortion prediction is essentially the prediction of abnormal
values. The kinds of values that are considered abnormal are commonly determined
based on individuals’ experiences. The objective of grey distortion predictions is
to provide the time moments of the forthcoming abnormal values so that relevant
parties can prepare for the worst ahead of time.

Definition 9.4.1 Let X = (x(1), x(2), . . . , x(n)) be a sequence of raw data. Then

(1) For a given upper abnormal value ξ , the sub-sequence of X

Xξ = (x[q(1)], x[q(2)], . . . , x[q(m)]) = {x[q(i)]|x[q(i)] ≥ ξ ; i = 1, 2, . . . ,m}

is known as the upper distortion sequence.
(2) For a given lower abnormal value ζ , the sub-sequence

Xζ = (x[q(1)], x[q(2)], . . . , x[q(l)]) = {x[q(i)]|x[q(i)] ≥ ζ ; i = 1, 2, . . . , l}

is known as the lower distortion sequence. Together, these upper and lower distor-
tion sequences are referred to as distortion sequences. Because the idea behind the
discussion of distortion sequences is the same, in the following discussion we will
not distinguish between upper and lower distortion sequences.

Definition 9.4.2 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data.
The following sub-sequence of X

Xξ = (x[q(1)], x[q(2)], . . . , x[q(m)]) ⊂ X

is a distortion sequence. Then,

Q(0) = (q(1), q(2), . . . , q(m))

will be referred to as the distortion date sequence. Distortion prediction is about
finding patterns, if any, through the study of distortion date sequences to predict future
dates of occurrences of distortion. In grey system theory, each distortion prediction is
realized through establishing GM(1,1) models for relevant distortion date sequences.
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Definition 9.4.3 If Q(0) = (q(1), q(2), . . . , q(m)) is a distortion date sequence, the
following

Q(1) = (q(1)(1), q(2)(1), . . . , q(m)(1))

is the 1-AGO sequence of the distortion date sequence Q(0),Z (1) is the adjacent
neighbor mean generated sequence of Q(1), and

q(k) + az(1)(k) = b

is referred to as a distortion model of GM(1, 1). For the available sequence
X = (x(1), x(2), . . . , x(n)) of raw data, if n stands for the present and the last
entry q(m)(≤ n) in the corresponding distortion date sequence Q(0) represents when
the last abnormal value occurred, then the predicted value q̂(m + 1) represents the
next forthcoming abnormal value and for any k > 0, q̂(m+k) stands for the predicted
date for the kth abnormal value to occur in the future.

Example 9.4.1 The following sequence gives the annual average precipitations (in
mm) of a certain region for 17 years, where x(1), x(2), …, x(17) are respectively the
data for the years of 2006,2007, …, 2023:

X = (x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10)

x(11), x(12), x(13, x(14), x(15), x(16), x(17))

= (390.6, 412.0, 320.0, 559.2, 380.8, 542.4, 553.0, 310.0, 561.0, 300.0

632.0, 540.0, 406.2, 313.8, 576.0, 586.6, 318.5)

Take ξ = 320 mm as a lower abnormal (drought) value. Carry out a drought
prediction for this specific region.

Solution: If ξ = 320, we obtain the following lower distortion sequence

Xξ = (x(3), x(8), x(10), x(14), x(17)) = (320.0, 310.0, 300.0, 313.8, 318.5)

with the corresponding distortion date sequence

Q(0) = (q(1), q(2), q(3), q(4), q(5)) = (3, 8, 10, 14, 17)

and it’s 1-AGO sequence

Q(1) = (3, 11, 21, 35, 52)

The mean sequence based on consecutive neighbors of Q(1) is given by

Z (1) = (7, 16, 28, 43.5)
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Let q(k) + az(1)(k) = b. From

B =

⎡

⎢⎢
⎣

−7 1
−16 1
−28 1

−43.5 1

⎤

⎥⎥
⎦, Y =

⎡

⎢⎢
⎣

8
10
14
17

⎤

⎥⎥
⎦

it follows that

â =
[
a

b

]

= (BTB)−1BTY =
[

−0.25361

6.258339

]

Therefore, the GM(1, 1) ordinality response sequence of the distortion date
sequence is

q̂(1)(k + 1) = 27.667e0.25361k − 24.667

q̂(k + 1) = q̂(1)(k + 1) − q̂(1)(k)

That is,

q̂(k + 1) = 27.667e0.25361k − 24.667e0.25361(k−1) = 6.1998e0.25361k

Thus, we can obtain a simulated sequence for Q(0) as follows:

Q̂(0) = (q̂(1), q̂(2), q̂(3), q̂(4), q̂(5))

= (6.1998, 7.989, 10.296, 13.268, 17.098)

From

ε(k) = q(k) − q̂(k), k = 1, 2, 3, 4, 5

we obtain the error sequence as follows:

ε(0) = (ε(1), ε(2), ε(3), ε(4), ε(5))

= (−3.1998, 0.011,−0.296, 0.732,−0.098)

And from

�k =
∣∣
∣∣
ε(k)

q(k)

∣∣
∣∣; k = 1, 2, 3, 4, 5

it follows that the sequence of relative errors is



9.5 Wave Form Forecasting 281

� = (�2,�3,�4,�5) = (0.1%, 2.96%, 5.1%, 0.6%)

From this sequence, we calculate the average relative error

� = 1

4

5∑

k=2

�k = 2.19%

With 1 − � = 97.81% as the average relative accuracy, and 1 − �5 = 99.4%.
Therefore, we can use

q̂(k + 1) = 6.1998e0.25361k

to carry out our predictions. Because

q̂(5 + 1) = q̂(6) ≈ 22, q̂(6) − q̂(5) ≈ 22 − 17 = 5

we predict that in five years, counting from the time of the last drought in 2023, there
might be a drought. In order to improve the accuracy of our prediction, we can take
several different abnormal values to build various models to make predictions.

9.5 Wave Form Forecasting

When the available data sequence vibrates widely with large magnitudes, it is often
difficult, if not impossible, to find an appropriate simulation model. In this case, one
can consider making use of the pattern of fluctuation of the data to predict the future
development of the wavy movement. This kind of prediction is known as a wave
form forecasting.

Definition 9.5.1 Let X = (x(1), x(2), . . . , x(n)) be the sequence of raw data, then

xk = x(k) + (t − k)[x(k + 1) − x(k)]

is known as a k-piece zigzagged line of the sequence X, and

{xk = x(k) + (t − k)[x(k + 1) − x(k)]|k = 1, 2, . . . , n − 1 }

the zigzagged line, still denoted by using X.

Definition 9.5.2 Assume that X is a zigzagged line, let

σmax = max1≤k≤n{x(k)} and σmin = min1≤k≤n{x(k)}.
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Then

(1) For any ∀ξ ∈ [σmin, σmax], X = ξ is known as the ξ -contour (line); and
(2) The solutions (ti, x(ti))(i = 1, 2, . . .) of system of equations

{
X = {x(k) + (t − k)[x(k + 1) − x(k)]|k = 1, 2, . . . , n − 1 }
X = ξ

is called the ξ -contour points. The ξ -contour point is the intersection of the zigzagged
line X and the ξ -contour line.

Proposition 9.5.1 If on the ith segment of X there is a ξ -contour point, then the

coordinates of this point are given by
(
i + ξ−x(i)

x(i+1)−x(i) , ξ
)
.

Proof The equation of i-piece zigzagged line of the sequence X is as follows:

X = x(i) + (ti − i)[x(i + 1) − x(i)]

From
{
X = x(i) + (ti − i)[x(i + 1) − x(i)]
X = ξ

We have

ti = i + ξ − x(i)

x(i + 1) − x(i)

Definition 9.5.3 Let Xξ = (P1,P2, . . . ,Pm) be the sequence of ξ -contour points of
X such that point Pi is located on the ith segment. Let

q(i) = ti + ξ − x(ti)

x(ti + 1) − x(ti)
, i = 1, 2, . . . ,m

Then Q(0) = (q(1), q(2), . . . , q(m)) is known as the ξ -contour time moment
sequence. By establishing a GM(1, 1) model using this ξ -contour moment sequence,
one can produce the predicted values for future ξ -contour time moments:

q̂(m + 1), q̂(m + 2), . . . , q̂(m + k).

Definition 9.5.4 The lines X = ξi(i = 0, 1, 2, . . . , s), where ξ0 = σmin, ξ1 =
1
s (σmax −σmin)+σmin, … ξi = i

s (σmax −σmin)+σmin, …, ξs−1 = s−1
s (σmax −σmin)+
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σmin, ξs = σmax are known as equal time distanced contours. When taking contour
lines, one needs to make sure that the corresponding contour moments satisfy the
conditions for establishing valid GM(1,1) models.

Definition 9.5.5 Let X = ξi(i = 1, 2, . . . , s) be s different contours,

Q(0)
i = (qi(1), qi(2), . . . , qi(m1), i = 1, 2, . . . , s,

stand for the sequence of ξi-contour time moments, and

q̂i(mi + 1), q̂i(mi + 2), . . . , q̂i(mi + ki), i = 1, 2, . . . , s,

the GM(1,1) predicted ξi-contour time moments. If there are i �= j such that

q̂i(mi + li) = q̂j(mj + lj),

then these values are known as a pair of invalid moments.

Proposition 9.5.2 Let q̂i(mi + j),j = 1, 2, . . . , ki,i = 1, 2, . . . , s, be the GM(1,1)
predicted ξi-contour time moments. After deleting all invalid predictions, order the
rest in terms of their magnitudes as follows:

q̂(1) < q̂(2) < · · · < q̂(ns),

where ns ≤ k1 + k2 +· · ·+ ks. If X = ξq̂(k) is the contour line corresponding to q̂(k).
Then the predicted wavy curve of X (0) is given below:

X = X̂ (0) = {ξq̂(k) + [t − q̂(k)][ξq̂(k+1) − ξq̂(k)]|k = 1, 2, . . . , ns }.

9.6 System Forecasting

9.6.1 The Five-Step Modeling Process

Generally, when studying a system one should first establish a mathematical model
through which the overall functionality of the system, abilities of coordination, inci-
dence relations, causal relations, and dynamic relationships between different parts
can be quantitatively investigated. This kind of study has to be guided by an early
qualitative analysis, and there must be close connection between the quantitative
and qualitative studies. As for the development of the system’s model, one generally
goes through the following five steps: development of thoughts, analysis of relevant
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Fig. 9.3 Depicted causal relationships

Fig. 9.4 Line drawing of an abstract system

factors, quantification, dynamics, and optimization. This is the so-called five-step
modeling (Deng, 1985).

Step 1: Develop thoughts and form concepts. Through an initial qualitative anal-
ysis, one clarifies his goal, possible paths and specific procedures, and then verbally
and precisely describes the desired outcomes. This is the initial language model of
the problem (see Fig. 9.3).

Step 2: Examine all the factors involved in the language model and their mutual
relationships in order to pinpoint the causes and conclusions. Then, construct a line-
drawing to depict the causal relationships (Fig. 9.3). Each pair (or a group) of causes
and effect form a link. A system might be made up of many of such links. At the
same time, a quantity can be a cause of a link and also a consequence of another link.
When several of these links are connected, one obtains a line drawing of many links
that organically form the system of our concern (Fig. 9.4).

Step 3: Quantitatively study each causality link and obtain an approximate
quantitative relationship, which is a quantified model.

Step 4: For each link, collect additional input–output data, on which dynamic GM
models are established. Such dynamic models are higher level quantitative models.
They can further reveal the relationships between input and output, and their laws of
transformation. They are the foundation of systems analysis and optimization.

Step 5: Systematically investigate the established dynamic models by adjusting
their structures, mechanisms, and parameters, in order to arrive at the purpose of
optimizing the outcome and realizing the desired conclusions. Models obtained in
this way are known as optimal models.

The procedure of five-step modeling is such a holistic process that at five different
stages five different kinds of models are established: language models, network
models, quantified models, dynamic models, and optimized models. In the entire
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process of modeling, the conclusions of the next level should be repeatedly fed back
so that the modeling exercise itself becomes a feedback system making the model
system as perfect as possible.

9.6.2 System Models for Prediction

For a system with many mutually related factors and many autonomous controlling
variables, no single model can reflect adequately the development and change of the
system. To effectively study such a system and to predict its future behaviors, one
should consider establishing a system of models.

Definition 9.6.1 Assume that

X (0)
i =

(
x(0)
i (1), x(0)

i (2), . . . , x(0)
i (n)

)
, i = 1, 2, . . .m,

are sequences of raw data for the state variables of a system, and

U (0)
i =

(
u(0)
i (1), u(0)

i (2), . . . , u(0)
i (n)

)
, j = 1, 2, . . . s,

are sequences of data of the control variables. Then the following

x(0)
1 = a11z

(1)
1 + a12x

(1)
2 + · · · + a1mx

(1)
m + b11u

(1)
1 + b12u

(1)
2 + · · · + b1su

(1)
s

x(0)
2 = a21x

(1)
1 + a22z

(1)
2 + · · · + a2mx

(1)
m + b21u

(1)
1 + b22u

(1)
2 + · · · + b2su

(1)
s

. . .

x(0)
m = am1x

(1)
1 + am2x

(1)
2 + · · · + ammz

(1)
m + bm1u

(1)
1 + bm2u

(1)
2 + · · · + bmsu

(1)
s

du(1)
1

dt
= c1u

(1)
1 + d1,

du(1)
2

dt
= c2u

(1)
2 + d2, . . . ,

du(1)
s

dt
= csu

(1)
s + ds

are known as system models for prediction. As a matter of fact, each system model
for prediction consists ofmDGM(1,m + s) and s EGM(1, 1) models. If we write the
previous system models for prediction using the terminology of matrices, we have

{
X (0) = AX (1) + BU (1)

U (0) = CU (1) + D

where X (1) =
(
x(1)
1 , x(1)

1 , . . . , x(1)
m

)T
, U (1) =

(
u(1)
1 , u(1)

1 , . . . , u(1)
s

)T
, A =

[akl]m×m,B = [
bpq

]
m×s, C = diag

[
cj

]
s×s, and D = [

dj
]
s×1.

X is known as the state vector, U the control vector, A the state matrix, B the
control matrix, C the development matrix, and D the grey effect vector.
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Proposition 9.6.1 For the previous system models for prediction, the time response
sequences are given as follows:

x̂(0)
i (k) = ai1x

(1)
1 (k) + ai2x

(1)
2 (k) + · · · + aimx

(1)
m (k)

+ bi1u
(1)
1 (k) + bi2u

(1)
2 (k) + · · · + bisu

(1)
s (k) i = 1, 2, . . . ,m

û(0)
j (k) = (1 − ecj)

(
u(0)
j (1) − dj

cj

)
e−cj(k−1), j = 1, 2, . . . , s

9.7 Practical Applications

Example 9.7.1 Let us look at a wavy curve prediction for the (synthetic) stock index
of Shanghai stock exchange. Using the stock index data of the stock index weekly
closes of Shanghai stock exchange, the time series plot from February 21, 1997,
through to October 31, 1998, is shown in Fig. 9.5 (Dang & Liu, 2009).

Let us take
ξ1 = 1140, ξ2 = 1170, ξ3 = 1200, ξ4 = 1230, ξ5 = 1260,
ξ6 = 1290, ξ7 = 1320, ξ8 = 1350, ξ9 = 1380.
Then the corresponding ξi-contour time moment sequences are given below:

(1) For ξ1 = 1140,

Q(0)
1 = {q1(k)}71 = (4.4, 31.7, 34.2, 41, 42.4, 76.8, 78.3)

(2) For ξ2 = 1170,

Q(0)
2 = {q2(k)}122 = (5.2,19.8, 23, 25.6,26.9, 31.2,34.8, 39.5,44.6, 76, 76.2,79.2)

Fig. 9.5 Shanghai stock
exchange index (Feb. 21,
1997, to Oct. 31, 1998)
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(3) For ξ3 = 1200,

Q(0)
3 = {q3(k)}113 = (5.9,19.5, 24.8,25.2, 26.5,30.3, 46.2,53.4, 55.4,75.5, 79.7)

(4) For ξ4 = 1230,

Q(0)
4 = {q4(k)}104 = (6.5,19.2, 28.3,29.5, 49.7,50.8, 56.2,76.4, 82.9,85)

(5) For ξ5 = 1260,

Q(0)
5 = {q5(k)}75 = (7, 14.2,16.5, 16.4,18.8, 56.7,75.2)

(6) For ξ6 = 1290,

Q(0)
6 = {q6(k)}56 = (8.3,13.4, 16.9,56.2, 74.6)

(7) For ξ7 = 1320,

Q(0)
7 = {q7(k)}67 = (8.8,12.8, 60.2,71.8, 72.7,73.6)

(8) For ξ8 = 1350,

Q(0)
8 = {q8(k)}68 = (9.6,12.5, 61.8,69.8, 70.9,71.8)

(9) For ξ9 = 1380,

Q(0)
9 = {q9(k)}49 = (10.8,12.4, 64.1,69)

Applying the 1-AGO on Q(0)
i (i = 1, 2, . . . , 9) produces Q(1)

i (i = 1, 2, . . . , 9),
whose EGM(1,1) response sequences are respectively given by:

q̂(1)
1 (k + 1) = 113.91e0.215k − 109.51, q̂(1)

2 (k + 1) = 98.58e0.159k − 93.83,

q̂(1)
3 (k + 1) = 102.08e0.166k − 96.18, q̂(1)

4 (k + 1) = 151.66e0.160k − 145.16,

q̂(1)
5 (k + 1) = 13e0.435k − 6, q̂(1)

6 (k + 1) = 21.94e0.539k − 13.64,

q̂(1)
7 (k + 1) = 185.08e0.192k − 176.28, q̂(1)

8 (k + 1) = 193.19e0.186k − 182.57,

q̂(1)
9 (k + 1) = 45.22e0.490k − 35.39.

By letting q̂i(k + 1) = q̂(1)
i (k + 1) − q̂(1)

i (k), we obtain the following ξi-contour
prediction sequences, i = 1, 2, . . . , 9,
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Fig. 9.6 The predicted wavy
curve of Shanghai stock
exchange index (Nov. 1998
to March 2000)

Q̂(0)
1 = (q̂1(12), q̂1(13)) = (99.8, 127.7)

Q̂(0)
2 = (q̂2(13), q̂2(14), q̂2(15)) = (96.8, 116.7, 131.4)

Q̂(0)
3 = (q̂3(12), q̂3(13), q̂3(14)) = (95.7, 114.2, 133.8)

Q̂(0)
4 = (q̂4(11), q̂4(12), q̂4(13)) = (110.9, 134.2, 152.8)

Q̂(0)
5 = (q̂5(8), q̂5(9)) = (94.2, 148.8)

Q̂(0)
6 = (q̂6(6)) = (135.5)

Q̂(0)
7 = (q̂7(7), q̂7(8), q̂7(9)) = (101.9, 123.4, 149.5)

Q̂(0)
8 = (q̂8(7), q̂8(8), q̂8(9)) = (105, 119.8, 144.6)

Q̂(0)
9 = (q̂9(5)) = (122.3)

Based on these predictions, we construct the predicted wavy curve for the
Shanghai stock exchange index for the time period from November 1998 to the
end of 1999 (see Fig. 9.6).
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Chapter 10
Grey Models for Decision-Making

10.1 Introduction

The so-called decision-making is to determine the action to be taken according to
the actual situation and the predetermined goal. The essential meaning of decision-
making is “making a decision” or “deciding countermeasures”. Decision making
activities are not only an important part of various management activities, but also
run through everyone’s work, study and life process. The understanding of decision-
making can be divided into broad sense and narrow sense. In a broad sense, decision-
making refers to the whole process of raising questions, collecting information,
determining objectives, formulating options, evaluating and selecting options, and
implementing, feeding back and revising a series of activities; In a narrow sense,
decision-makingonly refers to theprocess of selecting schemes in thewhole decision-
making process, which is traditionally called “clappers”. Some people only under-
stand decision-making as choosing a scheme under uncertain conditions, that is,
making a choice, which largely depends on the decision-maker’s personal experi-
ence, attitude and determination, and has to bear certain risks. Grey decision-making
is the case that the decision-makingmodel contains grey elements orwhen the general
decision-making model is combined with the grey model. It focuses on the problem
of scheme selection (Liu et al., 2020; Liu, 2024).

ProfessorDengproposed the concept of grey target decision-making at first (Deng,
1990; Deng, 2002). A grey target is defined as a satisfying region, which a decision
maker wants to reach. The grey targets can be divided into rectangular grey targets
and spherical grey targets. As the name suggests, grey target decision-makingmainly
focuses on “hitting the target” or “off target” to help people make judgments or
choices in uncertain situations.

In 2010, Liu et al. proposed a multi-attribute weighted intelligent grey target
decision model (Liu et al., 2010). This model converts the target effect values of
different types into additive consistent effect measurement values by determining the
critical value of the target effect and using consistent effect measurement functions,
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including effect measurement function for benefit type objective, effect measurement
function for cost type objective, cost based target effectmeasurement functions, lower
effect measurement function for moderate objective, and upper effect measurement
function for moderate objective. Based on this, comparable comprehensive effect
measurement values can be calculated (Liu et al., 2013). According to the results
obtained from the multi-attribute weighted intelligent grey target decision model, it
is not only possible to determine whether the decision is “hitting the target” or “off
target”, but also to compare the advantages and disadvantages of different decision-
making options.

The general decision model usually uses the “maximum value criterion” or “max-
imum expected value criterion” as the basis for decision-making. For example, grey
clustering evaluation decision is to determine the grey class to which the decision
object belongs based on themaximumcomponent of the clustering coefficient vector.
Dang et al. researched the problem of decision object attribution when there is no
significant difference in the components of the grey clustering coefficient vector
(Dang et al., 2005). Liu et al. (2014) proposed a two-stage decision model to address
the situation where the maximum component value of the grey comprehensive clus-
tering coefficient vector has low discrimination from other components, and the deci-
sion made according to the “maximum value criterion” conflicts with the conclusion
obtained from the overall evaluation of the decision coefficient vector, known as
the “maximum value criterion” decision paradox. In 2015, Liu and Yang defined a
general synthetic weight vectors for decision making and the decision coefficient
vectors with grey synthetic measures (Liu & Yang, 2015). Then, the new concepts
of weight vector group of kernel clustering and weighted coefficient vector of kernel
clustering for decision-making were put forward to solve the problem of decision
paradox or the dilemma in supplier selection (Liu et al., 2018, 2022).

Wu and Chang (2004) studied optimization problems of the company produc-
tion plan under variable environmental costs using the grey compromise program-
ming model. Li et al. (2007) constructed the grey planning model of missile nuclear
optimal allocation, which provided a theoretical basis for the order, storage, posi-
tion allocation and operational application of the missile nuclear weapons. Yu et al.
(2009) applied the grey cluster decision method to aircraft large parts automatic
docking assembly system, which enhanced the stability of the system, reduced
the risk of equipment failure and reduced repair costs as well. Cui et al. (2012b)
researched the selection problem of ground and air missile weapon system applying
the multi-objective grey decision model.

Cui et al. (2012a) gave theweighting formula evaluation value on each stage detec-
tion based on the new information priority principle, which provided a new thinking
to solve multiple stages grey decision problems. Golmohammadi and Mellat-Parast
(2012) gave the grey decision model about supplier selection. Liang et al. (2012)
came up with a case reasoning method based on the grey system theory and logistic
regression model and applied it to safety assessment for thermal power plant. Bai
et al. researched the regional leading industry selection of “Kashgar urban agglomera-
tions” by multi-attribute weighted intelligent grey target decision-making evaluation
model (Bai et al., 2021). Rogulj et al. studied historic bridges reconstruction using
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Intuitionistic fuzzy decision support based on EDAS and grey relational analysis
model (Rogulj et al., 2022).

Dang Luo studied grey decision models of different types and obtained a series
of achievements (Luo & Wang, 2012a, 2012b). Guo et al. (2014) researched the
grey double layers and multi-objective linear programming and solving problems.
Yan et al. (2014) proposed a new method to determine the weights of decision
makers and attributes for group decision making with interval grey numbers. In
2019, Yazdani et al. proposed a combined compromise solution (CoCoSo) method
for multi-criteria decision-making problems (Yazdani et al., 2019). Jafarian et al.
put forward a novel multi-objective co-evolutionary approach for supply chain gap
analysis with consideration of uncertainties in 2020 (Jafarian et al., 2020). In 2021,
Dahooie proposed a novel dynamic credit risk evaluation method using data envel-
opment analysis with common weights and combination of multi-attribute decision-
making methods (Dahooie et al., 2021). Aslani et al. researched the problem of
integrated information fusion and grey multi-criteria decision-making framework
for sustainable supplier selection (Aslani et al., 2021). Chatterjee et al. solved the
optimization problem of green machining processes using grey-based multi-criteria
decisionmakingmethods (Chatterjee et al., 2024). Li and Li proposed a grey decision
model based on generalized greyness of interval grey number (Li & Li, 2024).

10.2 Event and Decision Scheme

In this chapter, we define an event as the problem waiting to be resolved, the event
needing to be handled, and the current state of a system’s behavior. Events are where
we begin our investigation.

Definition 10.2.1 Events, countermeasures, objectives, and effects are known as the
four key elements of decision-making.

Definition 10.2.2 The totality of all events within the range of a research is known as
the set of events of the study, denotedA = {a1, a2, ...an}, where ai, i = 1, 2, 3, . . . , n,
stands for the ith event. The totality of all possible countermeasures is known as the
set of countermeasures, denoted B = {b1, b2, . . . , bm} with bj, j = 1, 2, . . . ,m, be
the jth countermeasure.

Definition 10.2.3 The Cartesian product A × B = {
(ai, bj)|ai ∈ A,bj ∈ B

}
of the

event set A and the countermeasure set B is known as the set of decision schemes,
written as S = A× B, where each ordered pair sij = (

ai, bj
)
, for any ai ∈ A, bj ∈ B,

is known as a decision scheme.
For example, in the decision-making on what to plant in agriculture, weather

conditions can be used as the set of events, with a normal year denoted as a1, a
drought year as a2, and a flood year as a3. Then, the set of events is

A = {a1, a2, a3}
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Different strains of crops can be seen as countermeasures, with corn denoted as
b1, Chinese sorghum as b2, soybeans as b3, sesame b4, potatoes and yams as b5, . . .;
then the countermeasure set is given as

B = {b1, b, b3, b4, b5, . . .}

Therefore, the set of decision scheme is

S = A × B = {s11, s12, . . . , s15, . . . , s21, . . . , s25, . . . , . . . , s31, . . . , s35, . . .}

where sij = (ai, bj).

Here, events and countermeasures are simple. Therefore, the constructed deci-
sion schemes are relatively simple, too. In practical decision-making, events are
often complicated, consisting of many kinds of simple events, so the countermea-
sures are complicated, too. Hence, the resultant decision schemes can be extremely
complicated.

Let us continue to use the previous agricultural decision-making example. The
set of events is the organic body consisting of weather, soil, irrigation, fertilizer,
agricultural chemicals, work force, and technology. The countermeasures are not
simply the individual strains of crops, but various proportional combinations ofmany
different strains of crops. Let us define a1 as an event characterized by a normal year,
loam, 50% effective irrigation area, sufficient fertilizer and agricultural chemicals,
sufficient work force, and medium level of technology. Additionally, let us define
a2 as an event characterized by a drought year, black earth, 50% effective irrigation
area, sufficient fertilizer and work force, lack of agricultural chemicals, and medium
level of technology. Then, we have the set of events:

A = {a1, a2, . . .}

Let uswriteb1 as the countermeasure including30%corn+10%Chinese sorghum
+ 20% soybeans + 15% sesame + 15% potatoes and yams + 10% others. Also, let
us write b2 as the countermeasure including 10% corn + 20% Chinese sorghum +
30% soybeans + 30% sesame + 10% others. Then, we have the countermeasure set:

B = {b1, b2, . . .}

Now, the decision scheme s11 = (a1, b1) is that, under the conditions of a normal
year, loam, 50% effective irrigation area, with sufficient fertilizer and agricultural
chemicals, sufficient workforce, and medium level of technology, we should plant
30% corn, 10% Chinese sorghum + 20% soybeans + 15% sesame + 15% potatoes
and yams + 10% others.

Let us look at the example of teaching scheduling. The collection of all course
offerings of a fixed semester at a certain school can be seen as the set of events;
all teaching faculty of this school, and various teaching methods, such as laboratory,
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interns, andmultimedia, are seen as the set of countermeasures. Based on the circum-
stances, one teacher can teach several courses, or several teachers teach one course
together. The work load could be 100% teaching, or 60% teaching, 20% laboratory,
10% interns, and 10% multimedia and others.

For a given decision scheme sij ∈ S, evaluating the effects under a set of pre-
determined objectives and deciding on what to take and what to let go based on
evaluation is the decision-makingwediscuss in this chapter. In the following sections,
we will study several different kinds of grey decision-making methods.

10.3 Grey Target Decisions

Definition 10.3.1 Let S = {sij = (ai, bj)
∣∣ai ∈ A, bj ∈ B } be a set of decision

schemes, u(k)
ij the effect value of decision scheme sij with respect to objective k,

and R the set of all real numbers. Then u(k)
ij : S �→ R, defined by sij �→ u(k)

ij , is known
as the effect mapping of S with respect to object k.

Definition 10.3.2 If u(k)
ij = u(k)

ih , then we say that the countermeasures bj and bh of
event ai are equivalent with respect to objective k, written as bj ∼= bh; and the set

B(k)
i = {b|b ∈ B, b ∼= bh }

is known as the effect equivalence class of countermeasure bh of event ai with respect
to objective k.

Definition 10.3.3 If k is such an objective that the greater the effect value is the
better, and u(k)

ij > u(k)
ih , then we say that the countermeasure bj is superior to bh in

terms of event ai with respect to objective k, written as bj � bh. The set B(k)
ih =

{b|b ∈ B, b � bh } is known as the superior set of countermeasure bh of event ai with
respect to objective k.

Similarly, we can define the concept of superior classes of countermeasures for
situations where the closer to a fixed moderate value the effect value is the better,
and where the smaller the effect value is the better.

Definition 10.3.4 If u(k)
ij = u(k)

ih , then events ai and aj are said to be equivalent in
terms of the countermeasure bh with respect to objective k, written ai ∼= aj. The set

A(k)
jh = {a|a ∈ A, a ∼= ai }

is known as the effect equivalence class of events of the countermeasure bh with
respect to objective k.

Definition 10.3.5 If k is such an objective that the greater the effect value is the
better, and u(k)

ih > u(k)
jh , then we say that event ai is superior to event aj in terms of

countermeasure bh with respect to objective k, denoted a � aj. The set
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A(k)
jh = {

a
∣∣a ∈ A, a � aj

}

is known as the superior class of event aj in terms of countermeasure bh with respect
to objective k.

Similarly, the concept of superior classes can be defined for situations where the
closer to a fixed moderate value the effect value is the better, and where the smaller
the effect value is the better.

Definition 10.3.6 If u(k)
ij = u(k)

hl , then scheme sij is equivalent to scheme shl under
objective k, denoted sij ∼= shl . The set

S(k) = {s|s ∈ S, s ∼= shl }

is known as the effect equivalence class of scheme shl under objective k.

Definition 10.3.7 If k is such an objective that the greater the effect value is the
better, and u(k)

ij > u(k)
hl , then scheme sij is said to be superior to scheme shl under

objective k, denoted sij � shl . The set

S(k)
hl = {s|s ∈ S, s � shl }

is known as the effect superior class of scheme shl under objective k.
Similarly, the concept of superior classes for scheme effects can be defined for

scenarios where the closer to a fixed moderate value the effect value of a scheme is
the better, and where the smaller the effect value of the scheme is the better.

Proposition10.3.1 Assume that S = {sij = (ai, bj)
∣∣ai ∈ A, bj ∈ B } �= ∅and U (k) ={

u(k)
ij

∣∣ai ∈ A, bj ∈ B
}
is the set of effects under objective k, and

{
S(k)

}
the set of effect

equivalence classes of schemes under objective k. Then the mapping u(k) : {S(k)
} →

U (k), defined by S(k) �→ u(k)
ij , is bijective.

Definition 10.3.8 Let d (k)
1 and d (k)

2 be the upper and lower threshold values of the

decision effects of sij under objective k. Then S1 =
{
r
∣∣∣d (k)

1 ≤ r ≤ d (k)
2

}
is known as

the one-dimensional grey target of objective k, u(k)
ij ∈ [d (k)

1 , d (k)
2 ] a satisfactory effect

under objective k, the corresponding sij a desirable scheme with respect to objective
k, and bj a desirable countermeasure of event ai with respect to objective k.

Proposition 10.3.2 Assume that u(k)
ij stands for the effect value of scheme sij with

respect objective k. If u(k)
ij ∈ S1, that is, sij is a desirable scheme with respect to

objective k. Then for any s ∈ S(k)
ij , s is also a desirable scheme. That is, when sij is

desirable, all schemes in its effect superior class are desirable.
The discussion above applies to cases involving a single objective. Nevertheless,

grey targets of decision-making with multi-objectives can also be addressed.
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Definition 10.3.9 Assume that d (1)
1 and d (1)

2 are the threshold values of decision
effects of objective 1, d (2)

1 and d (2)
2 the threshold values of decision effects of objective

2. Then

S2 =
{
(r(1), r(2))

∣∣∣d (1)
1 ≤ r(1) ≤ d (1)

2 , d (2)
1 ≤ r(2) ≤ d (2)

2

}

is known as a grey target of two-dimensional decision-making. If the effect vector

of scheme sij satisfies uij =
{
u(1)
ij , u(2)

ij

}
∈ S2, then sij is seen as a desirable scheme

with respect to objectives 1 and 2, and bj a desirable countermeasure for event ai
with respect to objectives 1 and 2.

Definition 10.3.10 Assume that d (1)
1 , d (1)

2 ; d (2)
1 , d (2)

2 ; · · · ; d (s)
1 , d (s)

2 ; are respectively
the threshold values of decision effects under objectives 1, 2,…, s. Then the following
region of the s–dimensional Euclidean space

Ss =
{
(r(1), r(2), . . . , r(s))

∣∣∣d (1)
1 ≤ r(1) ≤ d (1)

2 , d (2)
1 ≤ r(2) ≤ d (2)

2 , . . . , d (s)
1 ≤ r(s) ≤ d (s)

2

}

is known as a grey target of an s–dimensional decision-making. If the effect vector
of scheme sij satisfies

uij = (u(1)
ij , u(2)

ij , . . . , u(s)
ij ) ∈ Ss

where u(k)
ij stands for the effect value of the scheme sij with respect to objective k,

k = 1, 2, . . . , s,, then sij is known as a desirable scheme with respect to objectives
1, 2, …, s, and bj a desirable countermeasure of event ai with respect to objectives
1, 2, …, s.

Intuitively, the grey targets of a decision-making essentially represent the location
of satisfactory effects in terms of relative optimization. In many practical circum-
stances, it is impossible to obtain the absolute optimization so that people are happy
if they can achieve a satisfactory outcome. Of course, based on the need, one can
gradually shrink the grey targets of his decision-making to a single point in order
to obtain the ultimate optimal effect, where the corresponding scheme is the most
desirable, and the corresponding countermeasure the optimal countermeasure.

Definition 10.3.11 The following equation

Rs =
{
(r(1), r(2), . . . , r(s))

∣∣∣(r(1) − r(1)0 )2 + (r(2) − r(2)0 )2 + · · · + (r(s) − r(s)0 )2 ≤ R2
}

is known as an s-dimensional spherical grey target centered at r0 =
(r(1)

0 , r(2)
0 , . . . , r(s)

0 ) with radius R. The vector ss is seen as the optimum effect vector.
For r1 = (r(1)

1 , r(2)
1 , . . . , r(s)

1 ) ∈ R,
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|r1 − r0| =
[
(r(1)

1 − r(1)
0 )2 + (r(2)

1 − r(2)
0 )2 + · · · + (r(s)

1 − r(s)
0 )2

]1/2

is known as the bull’s-eye distance of vector r1. The values of this distance reflect
the superiority of the corresponding decision effect vectors.

Definition 10.3.12 Let sij and shl be two different schemes, and uij =
(u(1)

ij , u(2)
ij , . . . , u(s)

ij ) and uhl = (u(1)
hl , u(2)

hl , . . . , u(s)
hl ) their effect vectors, respectively.

If

∣∣uij − r0
∣∣ ≥ |uhl − r0| (10.1)

then scheme shl is said to be superior to sij, denoted shl � sij. When the equal sign in
Eq. (10.1) holds true, schemes sij and shl are said to be equivalent, written shl ∼= sij.

If for i = 1, 2, . . . , n and j = 1, 2, . . . ,m,, uij �= r0 always holds true, then the
optimum scheme does not exist, and the event does not have any optimum counter-
measure. If the optimum scheme does not exist, however, there are h and l such that
for any i = 1, 2, . . . , n and j = 1, 2, . . . ,m,, |uhl − r0| ≤ ∣∣uij − r0

∣∣ holds true, that
is, for any sij ∈ S, shl � sij holds, then shl is known as a quasi-optimum scheme, ah
a quasi-optimum event, and bl a quasi-optimum countermeasure.

Theorem 10.3.1 Let S = {sij = (ai, bj)
∣∣ai ∈ A, bj ∈ B } be a set of schemes, and

Rs =
{
(r(1), r(2), . . . , r(s))

∣∣∣(r(1) − r(1)0 )2 + (r(2) − r(2)0 )2 + . . . + (r(s) − r(s)0 )2 ≤ R2
}

an s-dimensional spherical grey target. The S becomes an ordered set with
“superiority” as its order relation ≺.

Theorem10.3.2 Theremust be quasi-optimum scheme in the set of decision schemes
of (S,�).

Proof This is a restatement of Zorn’s Lemma in set theory.

Example 10.3.1 Consider event a1 of reconstructing an old building. There are three
possibilities: b1 = renovate the building completely; b2 = tear down the building
and reconstruct another; and b3 = simply maintain what the building is by fixing
up minor problems. Let us make a grey target decision using three objectives: cost,
functionality, and construction speed.

Solution Let us denote the cost as objective 1, the functionality as objective 2, and
the construction speed as objective 3. Then, we have the following three decision
schemes:

s11 = (a1, b1) = (reconstruction, renovation),

s12 = (a1, b2) = (reconstruction, new building), and .

s13 = (a1, b3) = (reconstruction, maintenance).
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Evidently, different decision schemes with respect to different objectives have
different effects; and the standards for measuring the effects are also accordingly
different. For instance, regarding cost, the lesser the better; for functionality, the
higher the better; and for speed, the faster the better. Let us divide the effects of the
decision schemes into three classes: good, okay, and poor.

The effect vectors of the decision schemes are respectively defined as follows:

u11 =
(
u(1)
11 , u(1)

11 , u(3)
11

)
= (2, 2, 2),

u12 =
(
u(1)
12 , u(2)

12 , u(3)
12

)
= (3, 1, 3), and

u13 =
(
u(1)
13 , u(2)

13 , u(3)
13

)
= (1, 3, 1)·

Let the bull’s eye be located at r0 = (1, 1, 1) and compute the bull’s-eye distances

|u11 − r0| =
[(

u(1)
11 − r(1)

0

)2 +
(
u(2)
11 − r(2)

0

)2 +
(
u(3)
11 − r(3)

0

)2]
1/2

= [
(2 − 1)2 + (2 − 1)2 + (2 − 1)2

]1/2 = 1.73

|u12 − r0| =
[(

u(1)
12 − r(1)

0

)2 +
(
u(2)
12 − r(2)

0

)2 +
(
u(2)
12 − r(3)

0

)2]
1/2

= [
(3 − 1)2 + (1 − 1)2 + (3 − 1)2

]1/2 = 2.83

|u13 − r0| =
[(

u(1)
13 − r(1)

0

)2 +
(
u(2)
13 − r(2)

0

)2 +
(
u(3)
13 − r(3)

0

)2]
1/2

= [
(1 − 1)2 + (3 − 1)2 + (1 − 1)2

]1/2 = 2

where |u11 − r0| is the smallest. So, the effect vector u11 = (2, 2, 2) of the decision
scheme s11 enters the grey target. Hence, renovation is a satisfactory decision.

10.4 Other Approaches for Grey Decision

10.4.1 Grey Relational Decision

The bull’s-eye distance between a decision effect vector and the center of the target
measures the superiority of the scheme in comparison with other schemes. At the
same time, the grey relational degree between the effect vector of a decision scheme
and the optimum effect vector can be seen as another way to evaluate the superiority
of a decision scheme.
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Definition 10.4.1 Let S = {sij = (ai, bj)
∣∣ai ∈ A, bj ∈ B } be a set of decision

schemes, and ui0j0 = {u(1)
i0j0

, u(2)
i0j0

, . . . , u(s)
i0j0

} the optimum effect vector. If the decision
scheme corresponding to ui0j0 satisfies ui0j0 /∈ S, then ui0j0 is known as an imagined
optimum effect vector, and si0j0 the imagined optimum scheme.

Proposition 10.4.1 Let S be the same as above and the effect vector of scheme
sij is uij = {u(1)

ij , u(2)
ij , . . . , u(s)

ij }, = {u(1)
ij , u(2)

ij , . . . , u(s)
ij }, for i = 1, 2, . . . , n, j =

1, 2, . . . ,m.

(1) When k is an objective such that the greater its effect value is the better, let

u(k)
i0j0

= max1≤i≤n,1≤j≤m

{
u(k)
ij

}
;

(2) When k is an objective such that the closer to a fixed moderate value u0 its effect
value is the better, let u(k)

i0j0
= u0; and

(3) When k is an objective such that the smaller its effect value is the better, let

u(k)
i0j0 = min1≤i≤n,1≤j≤m

{
u(k)
ij

}
,

then ui0j0 =
{
u(1)
i0j0

, u(2)
i0j0

, . . . , u(s)
i0j0

}
is the imagined optimum effect vector.

Proposition 10.4.2 Assume the same as in Proposition 10.3.1 and let ui0j0 ={
u(1)
i0j0

, u(2)
i0j0

, . . . , u(s)
i0j0

}
be the imagined optimum effect vector, εij the grey absolute

relational degree between uij and ui0j0 , for i = 1, 2, . . . , n, j = 1, 2, . . . ,m. If for any
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} satisfying i �= i1 and j �= j1, εi1j1 ≥ εij always
holds true, then ui1j1 is a quasi-optimum effect vector and si1j1 a quasi-optimum
decision scheme.

Grey relational decisions can be made by following the following steps:

Step 1: Determine the set of events A = {a1, a2, . . . , an} and the set of countermea-
sures B = {b1, b2, . . . , bm}. And then construct the set of decision schemes
S = {sij = (ai, bj)

∣∣ai ∈ A, bj ∈ B }.
Step 2: Choose the objectives 1, 2, …, s, for the decision-making.
Step 3: Compute the effect values u(k)

ij of the individual decision scheme sij, i =
1, 2, . . . , n, j = 1, 2, . . . ,m, with respect to objective k, obtained in the
decision effect sequence u(k)

u(k) =
(
u(k)
11 , u(k)

12 , . . . u(k)
1m; u(k)

21 , u(k)
22 , . . . u(k)

2m; . . . ; u(k)
n1 , u(k)

n2 , . . . u(k)
nm

)
; k = 1, 2, . . . , s·

Step 4: Compute the average image of the decision effect sequence u(k) with respect
to objective k, which is still written the same as

u(k) =
(
u(k)
11 , u(k)

12 , . . . u(k)
1m; u(k)

21 , u(k)
22 , . . . u(k)

2m; . . . ; u(k)
n1 , u(k)

n2 , . . . u(k)
nm

)
; k = 1, 2, . . . , s

Step 5: Based on the results of Step 4, write out the effect vector uij ={
u(1)
ij , u(2)

ij , . . . , u(s)
ij

}
of decision scheme sij, for i = 1, 2, . . . , n,j = 1, 2,m.
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Step 6: Compute the imagined optimum effect vector ui0j0 ={
u(1)
i0j0

, u(2)
i0j0

, . . . , u(s)
i0j0

}
.

Step 7: Calculate the grey absolute relational degree εij between uij and ui0j0 , i =
1, 2, . . . , n, j = 1, 2, . . . ,m.

Step 8: From max1≤i≤n,1≤j≤m
{
εij
} = εi1j1 , the quasi-optimum effect vector ui1j1 and

the quasi-optimum decision scheme si1j1 are obtained.

Theorem 10.4.1 Let us look at grey relational decision-making regarding the
evaluation of looms.

Solution Let us denote the event of evaluating loom models by a1. Then the event
set is A = {a1}. There are three loommodels under consideration: Model 1: purchase
projectile loom, which is treated as countermeasure b1; Model 2: select air jet loom,
which is treated as countermeasure b2; Model 3: choose rapier loom, which is treated
as countermeasure b3. Thus, the set of countermeasure is B = {b1, b2, b3}, and the
set of decision schemes is S = {

sij = (
ai, bj

)∣∣ai ∈ A, bj ∈ B
} = {s11, s12, s13}.

Now, let us determine the objectives. According to the functionality of looms,
elevenobjectives are chosen.Theweft-insertion rate (m/min) of the looms is objective
1. The efficiency of the looms is objective 2. The total investment (in ten thousand
US$) on the looms is objective 3. The total energy cost (W/a) is objective 4. The total
area (m2) of the land to be occupied by the looms is objective 5. The total manpower
(person) is objective 6. The quantity of weft yarn waste (cm/weft) is objective 7.
The cost of replacement parts (ten thousand Yuan/a) is objective 8. Noise (dB) is
objective 9. The quality of the produced fabric is objective 10. And, the adaptability
of the type of loom is objective 11.

Under the assumptions that the above-mentioned three loom models produce
the same kind of grey fabric meeting the same set of requirements, and that these
looms will produce the same amount of annual output, let us conduct the associated
computations for the said loommodels. Our quantitative calculations lead to relevant
values for the objectives, some of which determined from the literature and field
investigations (see Table 10.1).

In the following equations, we compute decision effect sequences Uk(k =
1, 2, . . . , 11) with respect to the objectives.

For objective 1, we have U (1) =
(
u(1)
11 , u(1)

12 , u(1)
13

)
= (1000, 1200, 800).

For objective 2, we have U (2) =
(
u(2)
11 , u(2)

12 , u(2)
13 = (92, 90, 92)

)
.

For objective 3, we have U (3) = (u(3)
11 , u(3)

12 , u(3)
13 ) = (880, 336, 612).

For objective 4, we have U (4) = (u(4)
11 , u(4)

12 , u(4)
13 ) = (374, 924, 816).

For objective 5, we have U (5) =
(
u(5)
11 , u(5)

12 , u(5)
13

)
= (1760, 1092, 2124).

For objective 6, we have U (6) =
(
u(6)
11 , u(6)

12 , u(6)
13

)
= (18, 22, 24).

For objective 7, we have U (7) =
(
u(7)
11 , u(7)

12 , u(7)
13

)
= (5, 6, 10).

For objective 8, we have U (8) =
(
u(8)
11 , u(8)

12 , u(8)
13

)
= (37, 35, 75).
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Table 10.1 Objective values for the looms

Model Projectile loom Air jet loom Rapier loom

Weft-insertion rate (m/min) 1000 1200 800

Efficiency (%) 92 90 92

Total investment (10 K US$) 880 336 612

Total energy consumption (W/a) 374 924 816

Total land needed (m2) 1760 1092 2124

Total manpower (person) 18 22 24

Quantity of weft yarn waste (cm/weft) 5 6 10

Cost of parts (10K ¥/a) 37 35 75

Noise (dB) 85 91 91

Quality Best Good Fine

Adaptability Good Better Best

For objective 9, we have U (9) =
(
u(9)
11 , u(9)

12 , u(9)
13

)
= (85, 91, 91).

For objective 10, we have U (10) =
(
u(10)
11 , u(10)

12 , u(10)
13

)
= (best, good , fine).

For objective 11, we have U (11) =
(
u(11)
11 , u(11)

12 , u(11)
13

)
= (good , better, best).

Quantify the last two qualitative objectives as follows:

U (10) =
(
u(10)
11 , u(10)

12 , u(10)
13

)
= (9, 8, 7)

U (11) =
(
u(11)
11 , u(11)

12 , u(11)
13

)
= (8, 7, 9)

We now compute the average images of the decision effect sequences for each of
the objectives:

U (1) = (1, 1.2, 0.8);U (2) = (1.01, 0.98, 1.01);U (3) = (1.44, 0.55, 1.01)

U (4) = (0.53, 1.31, 1.16);U (5) = (1.06, 0.66, 1.28);U (6) = (0.84, 1.03, 1.13)

U (7) = (0.71, 0.86, 1.43);U (8) = (0.76, 0.71, 1.53);U (9) = (0.96, 1.02, 1.02)

U (10) = (1.13, 1, 0.87); and U (11) = (1, 0.87, 1.13).
We also compute the effect vectors Uij of decision schemes sij, i = 1, j = 1, 2, 3:

U11 =
(
u(1)
11 , u(2)

11 , . . . , u(11)
11

)
= (1, 1.01, 1.44, 0.53, 1.06, 0.84, 0.71, 0.76, 0.96, 1.13, 1)

U12 =
(
u(1)
12 , u(2)

12 , . . . , u(11)
12

)
= (1.2, 0.98, 0.55, 1.31, 0.66, 1.03, 0.86, 0.71, 1.02, 1, 0.87)

U13 =
(
u(1)
13 , u(2)

13 , . . . , u(11)
13

)
= (0.8, 1.01, 1.01, 1.16, 1.28, 1.13, 1.43, 1.53, 1.02, 0.87, 1.13), and

According to the principle of constituting optimum reference sequences, from the
average images of the decision effect sequences of the objectives, it follows that:
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For objective 1, the greater the effect value is the better, so U (1)
i0j0

= max
{
u(1)
ij

}
=

u(1)
12 = 1.2;
For objective 1, the higher the effect value is the better, so U (2)

i0j0
= max

{
u(2)
ij

}
=

u(2)
11 = 1.01;
For objective 3, the smaller effect value is the better, so U (3)

i0j0 = min
{
u(3)
ij

}
=

u(3)
12 = 0.55;
For objective 4, the smaller effect value is the better, so U (4)

i0j0
= min

{
u(4)
ij

}
=

u(4)
11 = 0.53;
For objective 5, the smaller effect value is the better, so U (5)

i0j0
= min

{
u(5)
ij

}
=

u(5)
11 = 0.66;
For objective 6, the smaller effect value is the better, so U (6)

i0j0
= min

{
u(6)
ij

}
=

u(6)
11 = 0.84;
For objective 7, the smaller effect value is the better, so U (7)

i0j0
= min

{
u(7)
ij

}
=

u(7)
11 = 0.71;;
For objective 8, the smaller effect value is the better, so U (8)

i0j0
= min

{
u(8)
ij

}
=

u(8)
12 = 0.71;;
For objective 9, the smaller effect value is the better, so U (9)

i0j0
= min

{
u(9)
ij

}
=

u(9)
11 = 0.96;
For objective 10, the higher effect value is the better, so U (10)

i0j0 = max
{
u(10)
ij

}
=

u(10)
11 = 1.13; and .
For objective 11, the higher effect value is the better, so U (11)

i0j0
= max

{
u(11)
ij

}
=

u(11)
13 = 1.13;.
That is, we obtain the following optimum reference sequence:

Ui0j0 =
(
u(1)
i0 j0

, u(2)
i0j0

, . . . , u(11)
i0j0

)

= (1.2, 1.01, 0.55, 0.53, 0.66, 0.84, 0.71, 0.71, 0.96, 1.13, 1.13)

From uij and ui0j0 , we compute the absolute grey relational degrees:

ε11 = 0.628, ε12 = 0.891, ε13 = 0.532

From the definition of grey relational decision-making, it follows that because
max

{
εij
} = ε12 = 0.891,U12 is the quasi-optimumvector and s12 the quasi-optimum

decision scheme. That is to say, in terms of producing general grey fabric, the air jet
loom is the best choice among the available loom models.
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10.4.2 Grey Development Decision

Grey development decision-making is done based on the development tendency or
the future behaviors of the decision scheme of concern. It does not necessarily place
specific emphasis on the current effect of the scheme. Instead it focuses more on the
change of the decision effect over time. This method of decision-making can be and
has been employed for long-term planning as well as the decision-making of large
scale engineering projects and urban planning. It looks at problems from the angle
of development while attempting to make feasible arrangements and avoiding repe-
titious constructions so that great savings of capital and manpower can be achieved.
Whatwe have discussed earlier are static decision schemeswith a fixed timemoment.
Because we now involve the concept of time, as time moves, constantly changing
decision effects are considered.

Definition 10.4.2 Assume that A = {a1, a2, . . . , an} is a set of events, B =
{b1, b2, . . . , bm} a set of countermeasures, and S = {sij = (

ai, bj
)∣∣ai ∈ A, bj ∈ B }

the set of decision schemes. Then,

u(k)
ij =

(
u(k)
ij (1), u(k)

ij (2), . . . , u(k)
ij (h)

)

is known as the decision effect time series of scheme sij with respect to objective k.

Definition 10.4.3 Let the decision effect time series of the scheme sij with respect
to objective k be

u(k)
ij =

(
u(k)
ij (1), u(k)

ij (2), . . . , u(k)
ij (h)

)

â(k)
ij =

[
a(k)
ij , b(k)

ij

]T
the least squares estimate of the parameters of the EGM(1,1)

model of u(k)
ij . Then the inverse accumulation restoration of the EGM(1,1) time

response of u(k)
ij is given by

û(k)
ij (l + 1) =

[
1 − exp

(
a(k)
ij

)]
·
[

u(k)
ij (1) − b(k)

ij

a(k)
ij

]

exp
(
−a(k)

ij · l
)

Assume that the restored sequence through inverse accumulation of the EGM(1,1)
time response of the decision effect time series of the scheme sij with respect to
objective k is

û(k)
ij (l + 1) =

[
1 − exp

(
a(k)
ij

)]
·
[

u(k)
ij (1) − b(k)

ij

a(k)
ij

]

exp
(
−a(k)

ij · l
)
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When objective k satisfies that the greater the effect value is the better, if

(1) max1≤i≤n,1≤j≤m

{
−a(k)

ij

}
= −a(k)

i0j0
, then si0j0 is known as the optimum scheme of

development coefficients with respect to objective k;

(2) max1≤i≤n,1≤j≤m

{
û(k)
ij (h + l)

}
= û(k)

i0j0(h + l), then si0j0 is known as the optimum

scheme of predictions with respect to objective k.

Similarly, the concepts of optimum schemes of development coefficients and
predictions can be defined for cases of objectives satisfying that the smaller the
effect value is the better, and that the closer to a moderate value the effect value is the
better, respectively. In particular, for objectives satisfying that the smaller the effect
value is the better, one only needs to replace “max” in the items (1) and (2) above
by “min”; if k is an objective satisfying that the closer to a fixed moderate value the
effect value is the better, one can determine the moderate value of the development
coefficients or predicted values at first; then define the optimum scheme based on the
distances of the development coefficients or predicted values to the moderate value.

In practical applications, one may face the scenarios that either both the optimum
scheme of development coefficients and predictions are the same, or that they are
different. Even so, the following theorem tells us that eventually these optimum
schemes would converge into one.

Theorem 10.4.1 Assume that k is such an objective that the greater its effect value
is the better, si0j0 is the optimum scheme of development coefficients, that is,−a(k)

i0j0 =
max1≤i≤n,1≤j≤m

{
−a(k)

ij

}
, and û(k)

i0j0(h + l + 1) is the predicted value for the decision

effect of si0j0 . Then there must be l0 > 0 such that

û(k)
i0j0(h + l0 + 1) = max

1≤i≤n,1≤j≤m

{
û(k)
ij (h + l0 + 1)

}

That is, in a sufficiently distant future, si0j0 will also be the optimum scheme of
predictions.

Proof See Liu and Lin (2006, p. 340–341) for details.
Similar results hold true for those objectives satisfying either that the smaller the

effect value is the better or that the closer to a fixed moderate value the effect value
is the better.

At this junction, careful readers might have noticed that Theorem 10.4.1 does not
state the case that there are some increasing anddecreasing sequences amongdecision
effect time series at the same time. As a matter of fact, for objectives satisfying that
the greater the effect value is the better, there is no need to consider decreasing
decision effect time series. For objectives satisfying that the smaller the effect value
is the better, all increasing decision effect time series are deleted in advance in all
discussions. As for objectives satisfying that the closer to a moderate value the effect
value is the better, one can consider only either increasing or decreasing decision
effect time series depending on the circumstances involved.
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10.4.3 Grey Clustering Decision

Grey cluster decision is useful for synthetic evaluations of objects with respect to
several different criteria so that decisions can be made about whether or not an object
meets the given standards for inclusion in or exclusion from a set. This method has
often been employed for classification decision-making regarding objects or people.
For instance, school students can be classified based on their individual capabilities
to receive information, to comprehend what is provided, and to grow so that different
teaching methods can be applied and different students can be enrolled in different
programs. As a second example, based on different sets of criteria, comprehen-
sive evaluations can be done for general employees, technicians, and administrators
respectively so that decisions can be made regarding who is qualified for his/her job,
who is ready for a promotion, and so on.

Definition 10.4.4 Assume that there are n objects to make decisions on, m criteria,
s different grey classes, the quantified evaluation value of object i with respect to
criterion j is xij, f kj (∗) are the possibility functions of the kth grey class with respect
to the jth criterion, and wj is the synthetic decision-making weight of criterion j such
that

∑m
j=1 wj = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , s. Then

σ k
i =

m∑

j=1

f kj
(
xij
)
wj

is known as the decision coefficient for the object i to belong to grey class k;
σi = (σ 1

i , σ 2
i , . . . , σ s

i ) is known as the decision coefficient vector of object i, i =
1, 2, . . . , n; and∑ = (

σ k
i

)
n×s

the decision coefficient matrix. If max1≤k≤s
{
σ k
i

} =
σ k∗
i , then the decision is that the object i belongs to grey class k∗.
In practical applications, it is quite often the case that many objects belong to the

same decision grey class at the same time, while there is a constraint on how many
objects are allowed in the grey class. When this occurs, we can further determine
individual objects’ precedence in grey class k∗ on the basis of the size of integrate
clustering coefficients.

10.5 Multi-attribute Weighted Intelligent Grey Target
Decision Model

In this section, we will study a new decision model, which is constructed on the basis
of four new functions of uniform effect measures. This new decision model suffi-
ciently considers the two different scenarios of whether or not the effect values of the
objectives actually hit the targets with very clear physics significance. First, a grey
target is defined as a satisfying region, which a decision maker wants to reach, with
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an inside ideal point across multiple objectives. To facilitate the uniform distance
measure of a decision strategy to the pre-defined grey target, four kinds of measure
procedures are designed including the effect measures for benefit-type objectives
and cost-type objectives, the lower effect measure for moderate-type objectives, and
the upper effect measure for moderate-type according to three types of decision
objective including benefit objective, cost objective, and non-monotonic objective
with a most preferred middle value. Then, a matrix of synthetic effect measures can
be easily obtained based on the uniform distance measure of a decision strategy to
the grey target over different objectives. Based upon the obtained matrix informa-
tion, different decision strategies can be evaluated easily and comprehensively. The
proposed method has a clear physical meaning as missing target, hitting target as
well as hitting performance.

10.5.1 The Uniform Effect Measure

Definition 10.5.1

(1) Let k be a benefit type objective, that is, for k the larger the effect
value is the better, and the decision grey target of objective k is u(k)

ij ∈[
u(k)
i0j0

,maxi maxj
{
u(k)
ij

}]
, that is, u(k)

i0j0
stands for the threshold effect value of

objective k. Then

r(k)
ij = u(k)

ij − u(k)
i0j0

maxi maxj
{
u(k)
ij

}
− u(k)

i0j0

· (10.2)

is referred to as the effect measure of a benefit-type objective.

(2) Let k be a cost-type objective, that is, for k the smaller the effect
value is the better, and the decision grey target of objective k is u(k)

ij ∈[
mini minj

{
u(k)
ij

}
, u(k)

i0j0

]
, that is, u(k)

i0j0 stands for the threshold effect value of

objective k. Then

r(k)
ij = u(k)

i0j0
− u(k)

ij

u(k)
i0j0

− mini minj
{
u(k)
ij

} (10.3)

is referred to as the effect measure of cost-type objective.

(3) Let k be a moderate-value type objective, that is, for ηk the closer to a moderate
value A the effect value is the better, and the decision grey target of objective ηk

is u(k)
ij ∈

[
A − u(k)

i0j0
,A + u(k)

i0j0

]
, that is, bothA− u(k)

i0j0
andA+ u(k)

i0j0
are respectively

the lower and upper threshold effect values of objective k. Then,
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(i) When u(k)
ij ∈

[
A − u(k)

i0j0
,A
]
,

r(k)
ij = u(k)

ij − A + u(k)
i0j0

u(k)
i0j0

(10.4)

is referred to as the lower effect measure of moderate-value type objective.

(ii) When u(k)
ij ∈

[
A,A + u(k)

i0j0

]
,,

r(k)
ij = A + u(k)

i0j0
− u(k)

ij

u(k)
i0j0

(10.5)

is referred to as the upper effect measure of moderate-value type objective.
The effectmeasures of benefit-type objectives reflect the degrees of both howclose

the effect sample values are to themaximum sample values and how far away they are
from the threshold effect values of the objectives. Similarly, the effect measures of
cost-type objectives represent how close the effect sample values are to the minimum
effect sample values and how far away the effect sample values are from the threshold
effect values of the objectives; the lower effect measures of moderate-value type
objectives indicate how far away the effect sample values that are smaller than the
moderate value A are from the lower threshold effect value, and the upper effect
measures indicate how far away the effect sample values that are greater than the
moderate value A are from the upper threshold effect values of the objectives.

For situations ofmissing targets, there are the following four different possibilities:

(1) The effect value of a benefit-type objective is smaller than the threshold value
u(k)
i0j0

, that is,u(k)
ij < u(k)

i0j0
l;

(2) The effect value of a cost-type objective is greater than the threshold value u(k)
i0j0

,

that is,u(k)
ij > u(k)

i0j0
;

(3) The effect value of a moderate-value type objective is smaller than the lower
threshold effect value A − u(k)

i0j0
, that is, u(k)

ij < A − u(k)
i0j0

; and
(4) The effect value of a moderate-value type objective is greater than the upper

threshold effect value A + u(k)
i0j0

, that is,u(k)
ij > A + u(k)

i0j0
·

In order for the effect measures of each type of objective to satisfy the condition
of normality, that is, r(k)

ij ∈ [−1, 1], without loss of generality, we can assume that:

For a benefit-type objective, u(k)
ij ≥ −maxi maxj

{
u(k)
ij

}
+ 2u(k)

i0j0
;

For a benefit-type objective, u(k)
ij ≤ −mini minj

{
u(k)
ij

}
+ 2u(k)

i0j0
;

For cases where the effect value of a moderate-value type objective is smaller
than the lower threshold effect value A − u(k)

i0j0 , u
(k)
ij ≥ A − 2u(k)

i0j0 , ; and
For cases where the effect value of a moderate-value type objective is greater than

the upper threshold effect value A + u(k)
i0j0

, u(k)
ij ≤ A + 2u(k)

i0j0
.

With these assumptions, we have the proposition below.
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Proposition 10.5.1 The effect measures r(k)
ij (i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k =

1, 2, . . . , s),, as defined in Definition 4.1, satisfy the following properties:
(1) r(k)

ij is non-dimensional; (2) the more ideal the effect, the larger r(k)
ij is; and (3)

r(k)
ij ∈ [−1, 1].

Definition 10.5.2 r(k)
ij (i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k = 1, 2, . . . , s), as

defined in Definition 4.1, is called uniform effect measure of decision scheme sij.For
decision scheme sij of hitting the target, r(k)

ij ∈ [0, 1]; and for decision scheme sij of

missing the target, r(k)
ij ∈ [−1, 0].

Definition 10.5.3 For a given set S, defineR(k) =
(
r(k)
ij

)

n×m
as thematrix of uniform

effect measure of S with respect to objective k. For sij ∈ S, rij =
(
r(1)
ij , r(2)

ij , . . . , r(s)
ij

)

is known as the vector of uniform effect measure of the decision scheme sij.

10.5.2 The Weighted Synthetic Effect Measure

Definition 10.5.4 Assume that ηk stands for the decision weight of objective k,
k = 1, 2, . . . , s, satisfying

∑s
k=1 ηk = 1, then

∑s
k=1 ηk · r(k)

ij is called a weighted
synthetic effect measure of the decision scheme sij, which is still denoted as rij =
∑s

k=1 ηk · r(k)
ij ; and R = (

rij
)
n×m is known as the matrix of weighted synthetic effect

measures.
In the case of weighted synthetic effect measures, rij ∈ [−1, 0] belongs to the

decision scheme sij of missing the target, while rij ∈ [0, 1] belongs to the decision
scheme sij of hitting the target. For the decision scheme of hitting the target, we
can further compare the superiority of events ai, countermeasures bj, and decision
schemes sij respectively by using the magnitudes of the weighted synthetic effect
measures, i = 1, 2, ..., n, j = 1, 2, ...,m.

Definition 10.5.5 (1) Ifmax1≤j≤m
{
rij
} = rij0 , then bj0 is known as the optimumcoun-

termeasure of event ai; (2) If max1≤i≤n
{
rij
} = ri0j, then ai0 is known as the optimum

event corresponding to countermeasure bj; (3) If The weighted multi-attribute grey
target decision can be made by following the below:

Step 1: Based on the set A = {a1, a2, . . . , an} of events and the set B =
{b1, b2, . . . , bm} of countermeasures, construct the set of decision schemes
S = {

sij = (
ai, bj

)∣∣ai ∈ A, bj ∈ B
};

Step 2: Determine the decision objectives k = 1, 2, . . . , s;
Step 3: Determine the decision weights η1, η2, . . . , ηs of the objectives;
Step 4: For each objective k = 1, 2, . . . , s, compute the corresponding observed

effect matrix U (k) =
(
u(k)
ij

)

n×m
;

Step 5: Determine the threshold effect value of objective k = 1, 2, . . . , s;
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Step 6: Calculate the matrix R(k) =
(
r(k)
ij

)

n×m
of uniform effect measures of

objective k = 1, 2, . . . , s;
Step 7: From rij = ∑s

k=1 ηk · r(k)
ij , compute the matrix of synthetic effect measures

R = (
rij
)
n×m; and

Step 8: Determine the optimum decision scheme si0j0 .

max1≤i≤n,1≤j≤m
{
rij
} = ri0j0 , then si0j0 is known as the optimum decision scheme.

The proposedmodel here has a unique feature of clear physicalmeaning presented
as missing target, hitting target and hitting performance of different decision strate-
gies with a pre-defined grey target. The distance of a strategy to the grey target over
different objectives is calculated through effect measure functions as follows: the
concept of upper effect measure reflects the distance of the observed effect value
from the maximum observed effect value; the concept of lower effect measure indi-
cates the distance between the observed effect value from the minimum observed
effect value; and the concept of moderate effect measure tells the distance of the
observed effect value from the pre-defined most preferred effect value in the middle.

To aggregate the performance of a strategy over different objectives, one canmake
use of the concept of upper effect measure for benefit objectives where the larger or
the more the effect sample values are the better; for cost objectives where the smaller
or the fewer the effect sample values are the better, one can utilize the concept of
lower effect measure. As for non-monotonic objectives that require “neither too large
nor too small” and/or “neither too many nor too few,” one can apply the concept of
moderate effect measure. The effect measure for benefit and cost type objectives, the
lower effect measure for moderate type, and the upper effect measure for moderate
type can be further integrated as uniform effect measures by incorporating weight
information over different objectives. The value of uniform effect measures is located
in the interval of [-1,1] and has a crystal physical meaning: if a strategy hits the target,
the value will be positive and the larger the closer to the ideal point in the grey target;
if a strategy misses the target, the value will be negative. The new model has been
applied to the selection of the supplier of a key component used in the production of
large commercial aircrafts and this application confirmed its feasibility.

Example 10.5.1 Let us look at the selection of the supplier of a key component used
in the production of large commercial aircrafts.

In China, the production of large commercial aircrafts is managed using themodel
of main manufacturers—suppliers, where a great amount of key components comes
from international suppliers. So, the scientific approach to decision-making regarding
the selection of relevant suppliers is a key determinant of the success or failure
of the operation. As a typical decision-making problem involved in the production
process of sophisticated products, the selection of suppliers is generally accomplished
through public bidding. Usually the main manufacturer first lists his demands, then
each potential supplier puts together their proposal to outline how they meet the
needs of the manufacturer. After collecting the proposals, the manufacturer compre-
hensively evaluates all the suppliers’ submissions to select the optimum proposal
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and sign the purchase agreement. As for what factors actually affect the manufac-
turer’s decision, it is an extremely complicated matter. In order to arrive at educated
and scientifically sound decisions, there is a need to analyze all the involved factors
closely and holistically.

During the selection of international suppliers for a specific key component of the
production of large commercial aircrafts, there were there suppliers accepted into
the second round of the tender. To decide on the eventual supplier, let us go through
the following steps.

Step 1: Establish the sets of events, countermeasures, and situations. Let us define
event a1 as the selection of a supplier for the said component for the
production of large commercial aircrafts. So, the set of events is A = {a1}.
Define the selection of supplier 1, supplier 2, or supplier 3 to be our coun-
termeasures b1, b2, and b3, respectively, so that the set of countermea-
sures is B = {b1, b2, b3}·. Therefore, our set of situations in this case is
S = −{sij = (

ai, bj
)∣∣ai ∈ A, bj ∈ B, i = 1; j = 1, 2, 3

} = {s11, s12, s13}.
Step 2: Determine the decision objectives. Through three rounds of surveys with

relevant experts, the following 5 objectives are considered: quality, price,
time of delivery, design proposal, and competitiveness.

Among these objectives, competitiveness, quality, and design proposal
are qualitative. They are scored by relevant experts’ evaluations, and the
higher the evaluation scores the better. That is, they are benefit-type objec-
tives. Let us take the threshold value u(k)

i0j0
= 9, k = 1, 4, 5· For the objective

of cost, the lower the cost the better. So, it is a cost-type objective. Let us
take the threshold value u(2)

i0J0
= 15. The objective of time of delivery is one

of moderate-value type. The main manufacturer desires the delivery at the
end of the 16th month with 2 months’ deviation allowed. That is u(3)

i0j0 = 2,
the lower threshold effect value is 16 − 2 = 14, and the upper threshold
effect value is 16 + 2 = 18.

Step 3: Determine the decision weights of the objectives. To this end, we apply the
Analytic Hierarchy Process(AHP) method (see Table 10.2 for details).

Step 4: Determine the effect sample vectors of each of the objectives:

U (1) = (9.5, 9.4, 9),U (2) = (14.2, 15.1, 13.9),U (3) = (15.5, 17.5, 19),

U (4) = (9.6, 9.3, 9.4),U (5) = (9.5, 9.7, 9.2).

Table 10.2 The weights of objectives

Objective Quality Price Delivery Design Competitiveness

Unit Qualitative Million US$ Month Qualitative Qualitative

Order # 1 2 3 4 5

Weight 0.25 0.22 0.18 0.18 0.17
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Step 5: Assign the threshold effect values for the objectives. Because competitive-
ness, quality, and design proposal are all benefit-type ss us take the threshold
value u(2)

i0j0
= 15. Because time of delivery is a moderate value-type objec-

tive and the main manufacturer desires the delivery at the end of the 16th
month with a tolerance of ± 2 months, we set u(3)

i0j0 = 2, the lower threshold
effect value 16 − 2 = 14, and the upper threshold effect value 16 + 2 = 18.

Step 6: Calculate the vectors of uniform effect measures. For the three qualitative
objectives, competitiveness, quality, and design proposal, we employ the
effect measures of benefit-type. For the objective of price, we utilize the
effect measures of cost-type. For the objective of time of delivery, we apply
the lower and upper effect measures. Thus, we obtain the following vectors
of uniform effect measures:

R(1) = [1, 0.8, 0],R(2) = [0.73,−0.09, 1],R(3) = [0.75, 0.25,−0.5]

R(4) = [1, 0.5, 0.67], andR(5) = [0.71, 1, 0.29]·

Step 7: From, rij = ∑5
k=1 ηk · r(k)

ij , we compute the following vector of synthetic
effect measures:

{
δkj

}
= 0.40 = δ3j

Step 8: Make the final decision. Because
{
δkj

}
= 0.40 = δ3j , it means that all these

three suppliers have hit the target. This result implies that it is reasonable
for these suppliers to enter the second round of the tender. However, based
on max1≤j≤3

{
r1j
} = r11 = 0.08463,, it follows that the main manufacturer

should sign the agreement with supplier 1.

10.6 On Paradox of Rule of Maximum Value and Its
Solution

In cases where more than one object belongs to a class or cluster, people may be
confronted with a decision paradox. For example, assume that δ1 = (0.4, 0.35, 0.25)
and δ2 = (0.41, 0.2, 0.39) are the clustering coefficient vectors of objects 1 and 2,
respectively. It is demonstrably the case that objects 1 and 2 both belong to class 1,
according to the principles of maximum value of clustering coefficient. Also, object
2 is better than object 1 given that 0.41 > 0.4. However, if we were to consider
the values of all the components of δ1, δ2 in an integrated manner, object 1 could be
perceived as being superior to object 2. This is a paradox.

In this section, we try and find a solution for the decision paradox by using
weight vector group with kernel, weighted coefficient vector of kernel clustering for
decision-making and a two-stages decision model.
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10.6.1 The Weight Vector Group with Kernel

Clustering coefficient vectors cannot be compared with each other because usually
they are not unit vectors. Therefore, firstly all clustering coefficient vectors need to
be unitized.

Definition 10.6.1 Assume that σi = (σ 1
i , σ 2

i , . . . , σ s
i ), i = 1, 2, . . . , n are n clus-

tering coefficient vectors, δki = σ k
i∑s

k=1 σ k
i
, δki , δ

k
i is called unitized clustering coefficient

of decision-making object i belonging to class k. Clearly, δki (k = 1, 2, . . . s) satisfy∑s
i=1 δki = 1.

Definition 10.6.2 δi = (
δ1i , δ

2
i , . . . , δ

s
i ); (i = 1, 2, . . . , n

)
is called unitized clus-

tering coefficient vectors of decision-makingobject i. The following conclusion about
unitized clustering coefficient vector δi is also suitable for non-unitized clustering
coefficient vector σi. Therefore, the "unitized" can be omitted.

Sort the components of δi according to their values, that is, δ
k1
i ≥ δ

k2
i ≥ · · · ≥

δ
kl
i ≥ · · · ≥ δ

ks
i .

Definition 10.6.3 Assume that max1≤k≤s
{
δki
} = δk

∗
i , then δk

∗
i is called the maximum

component of clustering coefficient vector δi.
Given that all the corresponding coefficients of two decision coefficient vectors

δi,δj are equal, then there is no difference between δi,δj. When two objects i, j belong
to a class k* and the maximum component δk

∗
i > δk

∗
j , it means that δi is better than

δj by the rule of maximum value; but it is possible to think that δj is better than δi if
we consider the values of all the components of δ1, δ2 in an integrated manner. This
is a decision paradox of rule of maximum value.

To solve the decision paradox of rule of maximum value, firstly the weight vector
group of kernel clustering is defined. The basic step to solve the paradox is to cluster
the information which is included in other components around ηk , and supporting
objects i come under class k into component k. Then it is necessary to obtain a
new decision coefficient vector which contains factors included in other components
around ηk .

Definition 10.6.4 Assume that there are s classes of decision-making, and real
numbers wk ≥ 0, k = 1, 2, . . . , s, let

η1 = 1
∑s

k=1 wk
(ws,ws−1,ws−2, . . . ,w1),

η2 = 1

ws−1 +∑s
k=2 wk

(ws−1,ws,ws−1,ws−2, . . . ,w2),

η3 = 1

ws−1 + ws−2 +∑s
k=3 wk

(ws−2,ws−1,ws,ws−1, . . . ,w3),

ηk = 1
∑s−1

i=s−k+1 wi +∑s
i=k wi

(ws−k+1,ws−k+2, . . . ,ws−1,ws,ws−1, . . . ,wk),
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ηs−1 = 1

ws−1 +∑s
k=2 wk

(w2,w3, . . .ws−1,ws,ws−1),

ηs = 1
∑s

k=1 wk
(w1,w2,w3, . . . ,ws−1,ws),

then ηk(k = 1, 2, . . . , s) is called a weight vector group with kernel.
Note: s-dimensional vector ηk = (

η1
k , η

2
k , . . . , η

s
k

)
(k = 1, 2, . . . , s) is the multi-

plication of scalar ak = 1∑s−1
i=s−k+1 wi+∑s

i=k wi
with vector ζk , where the function of scalar

factorak is to ensureηk(k = 1, 2, . . . , s) is a normalized vector.Also, the k-th compo-
nent of vector factor ζk(k = 1, 2, . . . , s) is ws, which is the maximum component of
ζk . Then the k-th component ws can be taken as a center, and the other components
on both sides of the k-th component ws descend step by step. The k-th component
with the largest contribution for the decision-making object belongs to grey class
k, so the k-th component of ζk should take the maximum weight ws. The values of
other components are set by the principle which states that “the component which
is closest to the k-th component has the largest contribution for object I belonging
to class k, so it is given the largest weight; the component which is farthest from the
k-th component has the smallest contribution for object I belonging to class k, so it
is given the smallest weight”.

10.6.2 The Weighted Coefficient Vector of Kernel Clustering
for Decision-Making

Definition 10.6.5 Assume there are n decision objects and s different grey classes,
then ωk

i = ηk · δTi is called the weighted coefficient of kernel clustering for decision-
making of object i about grey class k. And.

ωi = (
ω1
i , ω

2
i , . . . , ω

s
i

); i = 1, 2, . . . , n

is called the weighted coefficient vector of kernel clustering for decision-making of
object i.

Definition 10.6.6 Let max1≤k≤s
{
ωk
i1

} = ωk∗
i1

, max1≤k≤s
{
ωk
i2

} = ωk∗
i2

, when ωi1 >

ωi2 , then decision object i1 is better than decision object i2 in grey class k∗.

Definition 10.6.7 Let max1≤k≤s
{
ωk
i1

} = ωk∗
i1

,max1≤k≤s
{
ωk
i2

} =
ωk∗
i2 ,max1≤k≤s

{
ωk
il

} = ωk∗
il , in other words, objects i1, i2, . . . , il all belong to

grey class k∗. Also, ωi1 > ωi2 > · · · > ωil , and if the number of objects contained in
the decision grey class k∗ is l1, then objects i1, i2, . . . , il1 are called the taken object
of grey class k∗, and the rest of the objects are called the candidates of grey class k∗.

The two stages decision model to solve the decision paradox by the weight
vector group with kernel and the weighted coefficient vector of kernel clustering
for decision-making can be constructed step by step as outlined below.
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Stage 1

Step 1: Compute normalized clustering coefficient vector δi

δi = (δ1i , δ
2
i , . . . , δ

s
i ); (i = 1, 2, . . . , n)

Step 2: Estimate the distinguishability of the clustering coefficient vectors of objects
belonging to class k*. If the order of priority of the objects i belonging to
class k* is easy to identify, turn to step 6; in cases where the order of priority
of the objects belonging to class k* is difficult to identify, turn to step 3;

Stage 2

Step 3: Set the weight vector group with kernel (η1, η2, . . . , ηs);
Step 4: Calculate the weighted coefficient vector of kernel clustering for decision-

making of object i.
ωi = (ω1

i , ω
2
i , . . . , ω

s
i ); i = 1, 2, . . . , n;

Step 5: Determine object i belonging to grey class k∗ by max1≤k≤s
{
ωk
i

} = ωk∗
i ;

Step 6: Sort the decision objects which belong to class k* according to the values
of δk

∗
i1

, δk
∗

i2
, . . . , δk

∗
il

for case where there are l objects belonging to class k∗.

10.6.3 Several Functional Weight Vector Groups with Kernel

Proposition 10.6.1 Assume that

η1 = 2

s(s + 1)
(s, s − 1, s − 2, . . . , 1)

η2 =
(

1
s(s+1)

2 + (s − 2)

)

(s − 1, s, s − 1, s − 2, . . . , 2)

η3 =
(

1
s(s+1)

n + (2s − 6)

)

(s − 2, s − 1, s, s − 1, . . . , 3)

ηk =
⎧
⎨

⎩
1

s(s+1)
2 +

[
(k − 1)s − k(k−1)

2

]

⎫
⎬

⎭
(s − k + 1, s − k + 2, . . . , s

−1, s, s − 1, . . . , k),

ηs−1 = 2
s(s+1)

2 + (s − 2)
(2, 3, . . . s − 1, s, s − 1)

ηs = 2

s(s + 1)
(1, 2, 3, . . . s − 1, s)

Then ηk(k = 1, 2, . . . , s) is a weight vector group with kernel.
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Proposition 10.6.2 Assume that

η1 = 1
∑s

k=1
1
2k

(
1

2
,
1

22
,
1

23
, . . .

1

2s−1
,
1

2s

)

η2 =
(

1
1
22 +∑s−1

k=1
1
2k

)(
1

22
,
1

2
,
1

22
,
1

23
, . . . ,

1

2s−1

)

η3 =
(

1
1
23 + 1

22 +∑s−2
k=1

1
2k

)(
1

23
,
1

22
,
1

2
,
1

22
,
1

23
. . . ,

1

2s−2

)
,

ηk =
{

1
∑k

i=2
1
2i +∑s−k+1

i=1
1
2i

}(
1

2k
,

1

2k−1
, . . . ,

1

22
,
1

2
,
1

22
, . . . ,

1

2s−k+1

)
,

ηs−1 = 1
1
22 +∑s−1

k=1
1
2k

(
1

2s−1
,

1

2s−2
, . . .

1

22
,
1

2
,
1

22

)

ηs = 1
∑s

k=1
1
2k

(
1

2s
,

1

2s−1
, . . .

1

23
,
1

22
,
1

2

)

Then ηk(k = 1, 2, . . . , s) is a weight vector group with kernel.

Proposition 10.6.3 For case s = 10, assume that

η1 = 1

5.5
(1, 0.9, 0.8, 0.7 . . . , 0.1)

η2 = 1

6.3
(0.9, 1, 0.9, 0.8, . . . , 0.2)

η3 = 1

6.9
(0.8, 0.9, 1, 0.9, . . . , 0.3),

ηk = 1

1 +∑k
i=1 0 · (10 − i) +∑9

i=k 0.i
(0.(10 − k), 0.8, 0.9, 1, 0, 9 . . . , 0.k),

η9 = 1

6.3
(0.2, . . . 0.8, 0.9, 1, 0.9)

η10 = 1

5.5
(0.1, . . . , 0.7, 0.8, 0.9, 1)

Then ηk (k = 1, 2, . . . , s) is a weight vector group with kernel.

10.7 Practical Applications

Example 10.7.1 Strategic supplier selection for the C919 cooperative development.
C919 is the first large commercial aircraft developed by Commercial Aircraft Corpo-
ration of China Ltd. (COMAC). Many domestic and overseas suppliers joined the



10.7 Practical Applications 317

development program. Suppliers A and B took part in the development task of the
C919 program for a specific key component. One of the two suppliers, either A or
B, should be chosen and confirmed as a strategic supplier according to COMAC’s
criteria. A dilemma for strategic supplier selection will be presented to demonstrate
the feasibility of the two-stage decision model based on the weight vector group with
kernel and the weighted coefficient vector of kernel clustering for decision-making
to solve the selection dilemma.

The consulting group collected all data according the evaluation index system,
which was determined in advance. Then the clustering coefficient vectors of A and
B are defined as follows:

δA = (δ1A, δ
2
A, δ

3
A, δ

4
A, δ

5
A) = (0.246, 0.338, 0.292, 0.124, 0)

δB = (δ1B, δ
2
B, δ

3
B, δ

4
B, δ

5
B) = (0.089, 0.352, 0.312, 0.197, 0)

Here, classes 1, 2, 3, 4, 5 correspond to ‘especially excellent’, ‘excellent’, ‘good’,
‘moderate’, and ‘poor’, respectively.

From max1≤k≤5
{
δkA
} = 0.338 = δ2A, max1≤k≤5

{
δkB
} = 0.352 = δ2B, it is known

that the two suppliers A and B both belong to class ‘excellent’. It seems that B should
be selected and confirmed as the strategic supplier if we compare the clustering
coefficients δ2A of A belonging to class excellent with δ2B of B belonging to class
excellent, because δ2A = 0.338 < δ2B = 0.352. But we found that the clustering
coefficients δ1A = 0.246 of A belonging to class ‘especially excellent’ is greater than
the clustering coefficients δ1B = 0.089 of B belonging to class ‘especially excellent’ if
we compare δA and δB in an integrated way. Therefore, the values of each component
of the clustering coefficient vectors δA and δB should be integrated by a weight vector
group with ke rnel.

Theweight vector groupwith kernel presented in Proposition 2 is used to integrate
the values of each component of the clustering coefficient vectors δA and δB. Notice
that s = 5. We obtain:

η1 = 32

31

(
1

2
,
1

22
,
1

23
,
1

24
,
1

25

)
, η2 = 16

19

(
1

22
,
1

2
,
1

22
,
1

23
,
1

24

)
,

η3 = 4

5

(
1

23
,
1

22
,
1

2
,
1

22
,
1

23

)
, η4 = 16

19

(
1

24
,
1

23
,
1

22
,
1

2
,
1

22

)
,

η5 = 32

31

(
1

25
,
1

24
,
1

23
,
1

22
,
1

2

)

Then, from ωk
j = ηk · δTj , j = A,B, we haves
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ω1
A = η1 · δTA = 32

31

(
1

2
,
1

22
,
1

23
,
1

24
,
1

25

)
· (0.246620.338, 0.292.0.124.0)

T = 0.26

ω2
A = η2 · δTA = 16

19

(
1

22
,
1

2
,
1

22
,
1

23
,
1

24

)
· (0.2460.338, 0.292.0.124.0)T = 0.27

ω3
A = η3 · δTA = 0.23, ω4

A = η4 · δTA = 0.16, ω5
A = η5 · δTA = 0.10

ωA = (
ω1
A, ω

2
A, ω

3
A, ω

4
A, ω

5
A

) = (0.26, 0.27, 0.23, 0.16, 0.10)

ω1
B = η1 · δTB = 0.19, ω2

B = η2 · δTB = 0.25, ω3
B = η3 · δTB = 0.24,

ω4
B = η4 · δTB = 0.19, ω5

B = η5 · δTB = 0.12

ωB = (
ω1
B, ω

2
B, ω

3
B, ω

4
B, ω

5
B

) = (0.19, 0.25, 0.24, 0.19, 0.12)

When comparing the weighted coefficient vector of kernel clustering for decision-
making of ωA and ωB, we found that ω1

A = 0.26 > ω1
B = 0.19, ω2

A = 0.27 > ω2
B =

0.25;at the same time, ω4
A = 0.16 < ω4

B = 0.19, ω5
A = 0.10 < ω5

B = 0.12.
So, it can be judged that the supplier A is better than vendor B. Supplier A should

be selected and confirmed as the strategic supplier. The outcome can provide a basis
for COMAC’s strategic supplier selection.

We can obtain the same conclusion if the weight vector group with kernel
presented in Proposition 1 or proposition 3 is used to integrate the values of each
component of the clustering coefficient vectors δA and δB.

It is directed against the decision paradox that the conclusion we arrive at by
comparing the maximum components δki and δkj of δi and δj is in conflict with the
conclusion we arrive at by comparing δi and δj, in an integrated way. The decision
paradox that the value of the maximum component δki of δi is close to the maximum
component δkj of δj is solved effectively
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Chapter 11
Grey Control Systems

11.1 Introduction

Grey system theory originated from control system. The first paper on grey system
theory is “Control problems of grey systems” (Deng, 1982). Since then, Professor
Deng and his students have published several papers on the research of grey control
system (Deng&Zhou, 1986; Zhou&Deng, 1989). In 1985, the book ofGreyControl
System published by Press of Huazhong University of Science and Technology
(Deng, 1985).

As a scientific concept, the so-called control stands for a special effect a controlling
device exerts on controlled equipment. It is a purposeful, selective and dynamic
activity. A control system contains at least three parts, including a controlling device,
controlled equipment, and an information path. A control system made up of these
three parts is known as an open loop control system, as shown in Fig. 11.1. Each
open loop control system is quite elementary in that the input directly controls the
output, with no resistance against disturbances.

A control systemwith a feedback return is known as a closed loop control system,
as shown in Fig. 11.2. The closed loop control systemmaterializes its control through
the combined effect of the input and the feedback of the output.One of the outstanding
characteristics of closed loop systems is their strong ability to assist disturbances,
with their outputs constantly vibrating around pre-determined objectives. Therefore,
closed loop control systems possess a degree of stability.

A grey control system stands for such a system whose control information is
only partially known, and is known as a grey system for short. The control of grey
systems is different to that of general white systems, mainly due to the existence of
grey elements in such systems. Under such conditions, one first needs to understand
the possible connection between the systems’ behaviors and the parametric matrices
of the grey elements, how the systems’ dynamics differ from one moment to the next
and, in particular, how to obtain a white control function to alter the characteristics of
the systems and to materialize control of the process of change of the systems. Grey
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Fig. 11.1 Open loop control system

Fig. 11.2 Closed loop control system

control contains not only the general situation of systems involving grey parameters,
but also the construction of controls based on grey systems analysis, modeling,
prediction, and decision-making. Grey control thinking can reveal the essence of the
problems at hand and help materialize the purpose of control.

In the past 40 years, the research and application of grey control have achieved a
lot of valuable results.

In 1982, Chen applied the grey dynamic control method to the dynamic control
of boring machine spindle system and feed system, and achieved satisfactory control
effect (Chen, 1982). In 1994, Ni et al. developed a grey predictive controller for
EDM servo system (Ni et al., 1994). Wang and Qiu studied the problem of grey
prediction guidance and simulation of air defense missile (Wang & Qiu, 1999).
Liu et al. researched the problem of rotor vibration applying grey relational control
method andGreyVerhuslt predictive optimal controlmodel (Liu et al., 2004a, 2004b).

Su and Liu (2008, 2009) used several methods such as the Lyapuonv function,
Lyapunov–Krasovskii function and model transformation and combined formula,
matrix inequality, Holder inequality, Schur complement and othermathematical tools
and decomposition technique of continuous matrix cover of grey matrix, and studied
the robust stability problemof grey stochastic time-delay systems in depth, especially
the distribution type, neutral type and neutral-distribution type exponential robust
stability problem of grey stochastic time-delay systems. They investigated in details,
gave the effective criterion, and obtained several useful achievements (Su, 2012).

Li et al. (2015) proposed an improved GM to acquire high-control system perfor-
mance. Liem et al. (2015) set up a new method for estimating the load torque of
a DC motor shaft by using a novel modeling method based on an adaptive control
technique, named as online tuning grey fuzzy PID (OTGFPID). Huang and Huang
(2000) proposed a grey prediction model combined with a proportional plus deriva-
tive controller to balance an inverted pendulum. Luo and Chen (2000) developed
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an autonomous mobile target tracking system based on grey fuzzy control algo-
rithm. Chou et al. (2000) designed an optimal grey fuzzy controller of a constant
turning force system by Taguchi-genetic method. Li et al. (2001) used the “grey
system” analysis methodology for automated boiler water chemistry control in elec-
tric power plants. Lee and Liao (2003) proposed a selftuning fuzzy control system
which adopted the grey predictor to compensate the timedelayed R-ab caused by the
low pass filter data processing.

Gao et al. (2012) built up high-speed train speed controller model based on the
model of grey genetic algorithm according to the fitness grey number of train opera-
tion target design. Lu and Wang (2013) studied the problem on modeling and simu-
lation of the automatic train operation speed controller. Tian and Lu (2007) set up
the grey forecast model of billet heating furnace temperature and put forward billet
temperature control method. In the view of the flue temperature control problems
with strong nonlinearity, large time delay, multi disturbance characteristics, Wang
et al. (2010) brought forth an improved fuzzy expert control method based on the
combination of grey prediction model. Zhang et al. (2004) designed self-adjustable
grey prediction controller combining the traditional feedback control methods and
grey prediction controlling. The simulation results showed that the new controller
withmore excellent dynamic performance and robustness. Salmeron et al. studied the
problem of. Fuzzy grey cognitive maps and nonlinear Hebbian learning in process
control (Salmeron&Palos-Sanchez, 2019; Salmeron&Papageorgiou, 2014). Abdul-
shahed et al. applied ANFIS prediction models for thermal error compensation on
CNC machine tools (Abdulshahed et al., 2015). Dinh et al. researched the robust
predictive tracking control of nonlinear systems (Dinh et al., 2017, 2018).

Chinese academician Yexiang Liu and his research group with the National
Key Laboratory of Powder Metallurgy at Central South University made a number
of achievements using grey system methods and models on control problems of
aluminum electrolysis process (Lai et al., 2004; Liu et al., 2004a, 2004b, 2004c). In
the light of the characteristics such as stochastic, nonlinear, time-varying and diffi-
cult to establish precise mathematical model of deep sea walking mechanism at the
bottom of the complex operation environment of deep sea, Qiao et al. (2009) put
forward the grey prediction and fuzzy PID control method, and realized the effec-
tive control of the deep sea walking mechanism. Wang et al. proposed a SINS/GPS
integrated navigation system based on improved grey prediction model (Wang et al.,
2015). Nie et al. researched grey prediction PID control method for pressure control
system of pressure regulator (Nie et al., 2016). Luo designed an intelligent control
system for biomass gasification furnace (Luo, 2016). Pang et al. designed a mine
sweeping pear control system for a weapon based on variable step grey prediction
fuzzy PID (Pang et al., 2017). Liang, Wei, Wang, Huang and Gao studied grey or
fuzzy neuron PID control methods (Liang et al., 2018; Wei et al., 2019; Wang et al.,
2021; Gao et al., 2022; Huang et al., 2024).
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Li et al. applied grey prediction on dual hydraulic cylinder synchronous control
(Li et al., 2020). Wang et al. Used grey prediction PI control on direct drive perma-
nent magnet synchronous wind turbine (Wang et al., 2021). Chen et al. Researched
the problem of spray burner swing angle reheat steam temperature control based
on improved multivariate grey prediction model (Chen et al., 2023). Guo, Liu and
Hu applied grey control technology to different scenes, such as control for multi
autonomous underwater vehicles (Guo, 2023), control for micro cracking degree of
cement stabilized crushed stone based onCT technology (Liu et al., 2024) and control
on the noise of automotive cooling fans (Hu et al., 2024). Xu and Liao researched the
problem of global Control of solar power generation stability based on active fault
tolerant synovial prediction (Xu & Liao, 2024).

11.2 Controllability and Observability of Grey System

The concepts of controllability and observability are two fundamental structural
characteristics of systems seen from the angle of control and observation. This section
focuses on the problems of controllability and observability of grey linear systems.

Definition 11.2.1 Assume that U = [u1, u2, . . . , us]T is a control vector, X =
[x1, x2, . . . , xn]T a state vector, and Y = [y1, y2, . . . , ym]T the output vector. Then

{
Ẋ = A(⊗)X + B(⊗)U

Y = C(⊗)X
(11.1)

is known as the mathematical model of a grey linear control system, where A(⊗) ∈
Gn×n, B(⊗) ∈ Gn×s, C(⊗) ∈ Gm×n. Correspondingly, A(⊗) is known as the grey
state matrix, B(⊗) the grey control matrix, and C(⊗) the grey output matrix.

In some studies, to emphasize the fact that U, X, and Y change the dynamic
characteristics of the system over time, we also respectively write the control vector,
state vector, and the output vector as U (t), X (t), and Y (t).

The first group of equations

Ẋ (t) = A(⊗)X (t) + B(⊗)U (t) (11.2)

in the mathematical model of grey linear control systems in Eq. (11.1) is known as
the state equation, while the second group of equations

Y (t) = C(⊗)X (t) (11.3)

is known as the output equation.

Definition 11.2.2 For a given precision and an objective vector J = [j1, j2, . . . , jm]T ,
with a controlling device and a control vectorU (t) such that the output of the system
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can reach objective J while satisfying the required precision through controlling the
input, then the system is said to be controllable.

Definition 11.2.3 For a given time moment t0 and a pre-determined precision, if
there is t1 ∈ (t0,∞) such that based on the system’s output Y (t),t ∈ [t0, t1], one
can measure the system’s state X (t) within the required precision, then the system
is said to be observable within the time interval [t0, t1]. If for any t0, t1, the system is
observable within the interval [t0, t1], then the system is said to be observable.

According to control theory, it follows that whether or not a grey system is control-
lable or observable is determined by whether or not the controllability matrix and the
observability matrix, made up of A(⊗),B(⊗), are of full rank. That is, the following
result holds true.

Theorem 11.2.1 For the system in Eq. (11.1), define

L(⊗) = [B(⊗) A(⊗)B(⊗) A2(⊗)B(⊗) · · · An−1(⊗)B(⊗)
]T

D(⊗) = [C(⊗) C(⊗)A(⊗) C(⊗)A2(⊗) · · · C(⊗)An−1(⊗)
]T

Then the following hold true (Su & Liu, 2008):

(1) When rank(L(⊗)) = n, the system is controllable; and
(2) When rank(D(⊗)) = n, the system is observable.

Based on this result, the following four theorems can be established.

Theorem11.2.2 For the system inEq. (11.1), if the grey control matrix B(⊗) ∈ Gn×n

satisfies B(⊗) =
⇀
diag[⊗11,⊗22, . . . ,⊗nn], where each grey entry along the diagonal

is non-zero, then the system is controllable.

Theorem 11.2.3 For the system in Eq. (11.1), if the grey output matrix C(⊗) ∈ Gn×n

satisfies C(⊗) =
⇀
diag[⊗11,⊗22, . . . ,⊗nn], where each grey entry along the diagonal

is non-zero, then the system is observable.

Theorem 11.2.4 For the system in Eq. (11.1), if the control matrix B(⊗) ∈ Gn×n

satisfies B(⊗) =
⇀

diag[⊗11,⊗22, . . . ,⊗nn, 0.., 0] with rankB(⊗) = m < n, and

the grey state matrix A(⊗)n×n = diag
[
0, . . . 0⊗m+1,1,⊗m+2,2, . . . ⊗n,n−m

]
with

rankA(⊗) = n − m < n, then the system is controllable.

Theorem11.2.5 For the system in Eq. (11.1), if the grey outputmatrix C(⊗) ∈ Gm×n

satisfies C(⊗) = diag[⊗11,⊗22, · · · ⊗mm], with rankC(⊗) = m < n and the grey
state matrix.
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A(⊗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ⊗1,m+1 0 · · · 0
0 · · · 0 0 ⊗2,m+2 · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 0 0 · · · ⊗n−m,n

0 · · · 0 0 0 · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; rankA(⊗) = n − m < n

then the system is observable.

11.3 Transfer Functions of Grey System

The concept of transfer functions stands for a fundamental relationship between the
input and output of time invariant, linear grey control systems. Its rich connection
with the expressions of the systems’ state spaces can be described by using the
concepts of controllability and observability.

11.3.1 Grey Transfer Function

Definition 11.3.1 Assume that the mathematical model of an nth order linear system
with grey parameters is given as follows:

⊗n
dnx

dtn
+ ⊗n−1

dn−1x

dtn−1
+ · · · + ⊗0x = ⊗ · u(t) (11.4)

After applying Laplace transform to both sides of this equation, we obtain

G(s) = X (s)

U (s)
= ⊗

⊗nsn + ⊗n−1sn−1 + · · · ⊗1 s + ⊗0
(11.5)

where L(x(t)) = X (s) and L(u(t)) = U (s). Equation (11.5) is known as a grey
transfer function, which is the ratio of the Laplace transform of the response x(t)
of the nth order grey linear control system and the Laplace transform of the driving
term u(t). In fact, the transfer function represents a fundamental relationship between
the input and output of a first order grey linear control system. From the following
theorem, it follows that each nth order grey linear system can be reduced to an
equivalent first order grey linear system.

Theorem 11.3.1 For an nth order grey linear system as shown in Eq. (11.4), there
is an equivalent first order grey linear system.
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Proof Assume that the given nth order grey linear system is

⊗n
dnx

dtn
+ ⊗n−1

dn−1x

dtn−1
+ · · · + ⊗0x = ⊗ · u(t)

Let

x = x1; dx

dt
= dx1

dt
= x2; d

2x

dt2
= dx2

dt
= x3, . . . ,

dn−1x

dtn−1
= dxn−1

dt
= xn

Therefore, we have

dxn
dt

= −⊗0

⊗n
x1 − ⊗1

⊗n
x2 − ⊗2

⊗n
x3 − · · · − ⊗n−1

⊗n
xn + ⊗

⊗n
u(t)

and the nth order system is reduced to the following first order system

Ẋ (t) = A(⊗)X (t) + B(⊗)U (t)

where X (t) = [x1, x2, . . . , xn]T , U (t) = u(t),

A(⊗) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · 0
0 0 · · · · · · 1

−⊗0
⊗n

−⊗1
⊗n

· · · · · · −⊗n−1

⊗n

⎤
⎥⎥⎥⎥⎥⎦ and B(⊗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0
⊗
⊗n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This ends the proof.

11.3.2 Transfer Functions of Typical Links

A grey control system that is symbolically written in an equation is also known as
a grey link. When the transfer function of a link is known, from the relationship
X (s) = G(s) ·U (s) and the Laplace transform of the driving term, one can obtain the
Laplace transform of the response. Then, by using the inverse Laplace transform, one
can produce the response x(t). The relationship between the driving and response
terms is depicted in Fig. 11.3.

In the following definition, let us look at the transfer functions of several typical
links.
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Fig. 11.3 The driving and response terms

Definition 11.3.2 The link between driving term u(t) and response term x(t)
satisfying

x(t) = K(⊗)u(t) (11.6)

is known as a grey proportional link, where K(⊗) is the grey magnifying coefficient
of the link.

Proposition 11.3.1 The transfer function of a grey proportional link is

G(s) = K(⊗) (11.7)

The characteristics of a grey proportional link are that when a jump occurs in
the driving quantity, the response value changes proportionally. This kind of change
and relationship between the drive and response are depicted in Fig. 11.4.

Definition 11.3.3 When driven by a unit jump, if the response is given by

x(t) = K(⊗)
(
1 − e−tT

)
(11.8)

then the link is known as a grey inertia link, where T stands for a time constant of
the link.

Proposition 11.2.2 The transfer function of a grey inertial link is given by

G(s) = K(⊗)

T · s + 1
(11.9)

Fig. 11.4 The grey proportional link
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Fig. 11.5 The grey inertia link

The characteristics of a grey inertia link are that when a jump occurs in the
driving quantity, the response can reach a new state of balance only after a period of
time. Figure 11.5 provides a block diagram and the curve of change of the response
of a grey inertia link when K̃(⊗) = 1.

Definition 11.3.4 When the drive and response are related as follows, the link is
known as grey integral link:

x(t) =
∫

K(⊗)u(t)dt (11.10)

Proposition 11.3.3 The transfer function of a grey integral link is given below:

G(s) = K(⊗)

s
(11.11)

For a grey integral link, when the drive is a jump function, its response is x(t) =
K(⊗)ut, as shown in Fig. 11.6.

Definition 11.3.5 If the response and the drive are related as follows, the link is
known as a grey differential link:

Fig. 11.6 The grey integral link
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x(t) = K(⊗)
du(t)

dt
(11.12)

Proposition 11.3.4 The transfer function of a grey differential link is given as
follows:

G(s) = K(⊗)s (11.13)

The characteristics of a grey differential link are that when the drive stands for
a jump, the response becomes an impulse with an infinite amplitude.

Definition 11.3.6 If the drive and response are related as follows, the link is known
as a grey postponing link, where τ(⊗) is a grey constant:

x(t) = u(t − τ(⊗)) (11.14)

Proposition 11.3.5 The transfer function of a grey postponing link is given below:

G(s) = e−τ(⊗)s (11.15)

For a grey postponing link, when the drive is a jump function, it takes some time for
the response to react accordingly. For details, see Fig. 11.7.

The figure above represents some typical linksmet in practical applications.Many
complicated devices and systems canbe treated as combinations of these typical links.
For instance, when the grey proportional link is combined with a grey differential
link, one can obtain a grey proportional differential link. When a grey integral link is
connected with grey postponing link, one establishes a grey integral postponing link.
Along the same lines, multi-layered combinations can be developed for practical
purposes. One of the purposes of studying grey transfer functions is that we can
investigate the stabilities and other properties of systems by looking at the extreme
values of relevant transfer functions.

Fig. 11.7 The grey postponing link
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11.3.3 Matrices of Grey Transfer Functions

Matrices of grey transfer functions can be employed to express a fundamental rela-
tionship between the multi-inputs and multi-outputs of grey linear control systems.
In particular, for the following grey linear control system

{
Ẋ (t) = A(⊗)X (t) + B(⊗)U (t)

Y (t) = C(⊗)X (t)

Employing Laplace transforms produces

{
sX (s) = A(⊗)X (s) + B(⊗)U (s)

Y (s) = C(⊗)X (s)

and {
(sE − A(⊗))X (s) + B(⊗)U (s)

Y (s) = C(⊗)X (s)

If (sE − A(⊗)) is invertible, then we can further obtain

{
X (s) = (sE − A(⊗))−1B(⊗)U (s)

Y (s) = C(⊗)X (s)

That is, we have Y (s) = C(⊗)(sE − A(⊗))−1B(⊗)U (s).

Definition 11.3.7 The m n matrix below is known as the matrix of grey transfer
functions:

G(s) = C(⊗)(sE − A(⊗))−1B(⊗) (11.16)

Definition 11.3.8 For an nth order grey linear system, if the state grey matrix A(⊗)

of the corresponding equivalent first order system is non-singular, then

lim
s→0

G(s) = −C(⊗)A(⊗)−1B(⊗) (11.17)

is known as a grey gain matrix. If the grey gain matrix −C(⊗)A(⊗)−1B(⊗) is used
to replace the transfer function G(s), then the system is reduced into a proportional
link. Because Y (s) = G(s)U (s), when m = s = n, if G(s) is non-singular, we have
the following:

U (s) = G(s)−1Y (s) (11.18)
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Definition 11.3.9 The following matrix is known as a grey structure matrix:

G(s)−1 = B(⊗)−1(sE − A(⊗))C(⊗)−1 (11.19)

When the grey structure matrix is known, to make the output vector Y (s) meet or
close tomeet a certain expected objective J (s), one candetermine the system’s control
vectorU (s) throughG−1(s)·J (s).Additionally,we can also discuss the controllability
and observability of systems by using matrices of grey transfer functions.

11.4 Robust Stability of Grey System

Stability is a fundamental structural characteristic of systems. It stands for an impor-
tant mechanism for a system to sustain itself and is a prerequisite for the system to
operate smoothly. This is why stability is studied in systems control theory and it is a
key objective in relevant engineering designs. Each physical system has to be stable
before it can be employed in practical applications.

The stability of grey systems focuses on the investigations of informational
changes. It also focuses on whether or not the grey system of concern stays stable or
can recover to its stability when the whitenization value of a grey parameter moves
within the field of discourse. The existence of grey parameters complicates the study
of grey systems stability, and puts them at the center of attention of control theory
and control engineering.

In grey systemsmodeling, there is a distinction between having a postponing term
and not having such a term; there is also a difference between having a random term
and not having such a term. Ordinarily, grey systems without involving any random
and postponing term are known as grey systems; those involving postponing terms
without any random terms are grey postponing systems, and those involving random
terms are known as grey stochastic systems. In this section, wewill study the problem
of robust stability of these three kinds of systems.

11.4.1 Robust Stability of Grey Linear Systems

The study of systems’ stability is often limited to systems without the effect of any
external input. This kind of system is known as an autonomous system. A simple
grey linear autonomous system can be written as follows:

{
ẋ(t) = A(⊗)x(t)

x(t0) = x0,∀t ≥ t0
(11.20)
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where x ∈ Rn stands for the state vector, and A(⊗) ∈ Gn×n is the matrix of grey
coefficients.

Definition 11.4.1 If A(⊗̃) is a whitenization matrix of the grey matrix A(⊗), then

{
ẋ(t) = A

(⊗̃)x(t)
x(t0) = x0

(11.21)

is referred to as a whitenization system of the system in Eq. (11.20).
Ordinarily, we assume that the matrix A(⊗) of grey coefficients of the system in

Eq. (11.20) has a continuous matrix cover:

A(D) = [La,Ua] =
{
A
(⊗̃) : aij ≤ ⊗̃ ≤ aij, i, j = 1, 2, · · · , n

}
where Ua = (aij),La = (aij).

Definition 11.4.2 If any whitenization system of the system in Eq. (11.20) is stable,
then the system in Eq. (11.20) is referred to as robust stable.

The ordinary concept of a system’s (robust) stability represents the (robust)
asymptotic stability of the system.

Theorem 11.4.1 If there is positive definite matrix P such that

PLa + LTa P + 2λmax(P)‖|Ua − La‖In < 0

Then the system in Eq. (11.20) is robust stable (Su & Liu, 2009).

Proof Let us take the Lyapunov function V (x) = xTPx. For any whitenization
matrix A(⊗̃) ∈ A(D), let us compute the derivative of V (x) with respect to t along
the trajectory of the whitenization system and obtain.

.

V (x) = 2xTPA
(⊗̃)x = xT

(
PLa + LTa P

)
x + 2xTP�Ax

≤ xT
(
PLa + LTa P + 2λmax(P)‖Ua − La‖In

)
x < 0, ∀x 
= 0

This implies that the system in Eq. (11.20) is robust stable. QED. If in
Theorem 11.4.1 we let P = In, then we have the result shown below.

Corollary 11.4.1 If

‖Ua − La‖ < −λmax

(
La + LTa

2

)
(11.22)

holds true, then the system in Eq. (11.20) is robust stable. If we employ another form
of decomposition A

(⊗̃) = Ua − �A of the whitenization matrix A
(⊗̃) to study the
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robust stability of the system in Eq. (11.20), then much like in Theorem 11.4.1 and
Corollary 11.4.1 we can obtain the following results.

Theorem 11.4.2 If there is a positive definite matrix P such that

PUa + UT
a P + 2λmax(P)‖Ua − La‖In < 0

then the system in Eq. (11.20) is robust stable (Su & Liu, 2009).

Corollary 11.4.2 If

‖Ua − La‖ ≤ −λmax

(
Ua + UT

a

2

)
(11.23)

holds true, then the system in Eq. (11.20) is robust stable. Both Corollaries 11.4.1
and 11.4.2 respectively provide us a meaning result, because Ua − La in fact stands
for the matrix of disturbance errors of the system in Eq. (11.20); Eqs. (11.22) and
(11.23) indicate that when the norm of the disturbance error matrix varies within
the range of (0, λ), the system in Eq. (11.20) will always be stable, where λ =
max

{
−λmax

(
La+LTa

2

)
,−λmax

(
Ua+UT

a
2

)}
Theorem 11.4.3 If La+LTa +λmax[(Ua − La) + (Ua − La)]

T In < 0, then the system
in Eq. (11.20) is robust stable; if Ua +UT

a −λmax
[
(Ua − La) + (Ua − La)

T
]
In > 0,

then the system is instable2009.

Example 11.4.1 Let us consider the robust stability problem of the following 2-
dimensional grey linear system:

ẋ(t) =
(
[−2.3,−1.8] [0.6, 0.9]
[0.8, 1.0] [−2.5,−1.9]

)
x(t)

Solution: Through computations, we have

‖Ua − La‖ = 0.8072 < −λmax

(
La + LTa

2

)
= 1.3000

La + LTa + λmax
[
(Ua − La) + (Ua − La)

T
]
In = −1.7759In < 0

These inequalities indicate that, by using Corollary 11.4.1 or Theorem 11.4.3, we
can conclude that this given system is robust stable.
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11.4.2 Robust Stability of Grey Linear Time-Delay Systems

The phenomena of timely postponing are very common. They are often the main
reason for causing instability, vibration, and poor performance in systems. Therefore,
it is very important to investigate the stability problem of postponing systems. In
particular, let us look at the following n-dimensional linear postponing autonomous
system:

{
ẋ(t) = Ax(t) + Bx(t − τ),∀t ≥ 0,

x(t) = φ(t),∀t ∈ [−τ, 0]
(11.24)

where x(t) ∈ Rn stands for the system’s state vector, A,B ∈ Rn×n the known constant
matrices, τ > 0 the amount of time of postponing, and φ(t) ∈ Cn[−τ, 0] the nth
dimensional space of continuous functions.

Definition 11.4.3 If at least one of the matrices A,B of constants in the linear post-
poning system in Eq. (11.24) is grey, then this system is referred to as a grey linear
postponing autonomous system, denoted as

{
ẋ(t) = A(⊗)x(t) + B(⊗)x(t − τ),∀t ≥ 0,

x(t) = φ(t),∀t ∈ [−τ, 0].
(11.25)

In the following equation, we assume that the constant matrices in the system
in Eq. (11.25) are all grey and have continuous matrix covers; that is, A(⊗),B(⊗)

respectively have the following form of matrix covers:

A(D) = [La,Ua] =
{
A
(⊗̃) : aij ≤ ⊗̃ ≤ aij, i, j = 1, 2, . . . , n

}

B(D) = [Lb,Ub] =
{
B
(⊗̃) : bij ≤ ⊗̃ ≤ bij, i, j = 1, 2, . . . , n

}

where Ua = (aij),La = (aij),Ub = (bij),Lb = (bij).

Definition 11.4.4 If A(⊗̃),B(⊗̃) are respectively whitenization matrices of
A(⊗),B(⊗), then

{
ẋ(t) = A

(⊗̃)x(t) + B(⊗̃)x(t − τ),∀t ≥ 0,

x(t) = φ(t),∀t ∈ [−τ, 0].
(11.26)

is referred to as a whitenization system of the system in Eq. (11.25).

Definition 11.4.5 If any whitenization system of the system in Eq. (11.25) is stable,
the system in Eq. (11.25) is referred to as robust stable.
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Based onwhether or not the robust stability condition of a grey postponing system
depends on the amount of postponing, the robust stability condition can be divided
into two classes: postponing independent and postponing dependent. In particular,
the condition for a robust stable system to be postponing independent is that for
any time postponing τ > 0, the system is robustly asymptotic stable. Because this
condition does not require the amount of postponing, it is appropriate for the study
of the stability problem of postponing systems whose amounts of postponing are
uncertain or unknown.

The condition for a robust stable system to be postponing dependent is that for
some values of postponing τ > 0, the system is robust stable, while for some other
values of the postponing τ > 0, the system is not stable. That is why the system’s
stability is dependent on the amount of postponing.

Theorem 11.4.4 If there are positive definite matrices P,Q and positive constants
ε1, ε2 such that the symmetric matrix

⎛
⎜⎜⎝

� PLb P P
LTbP −Q + ε2‖Ub − Lb‖2In 0 0
P 0 −ε1In 0
P 0 0 −ε2In

⎞
⎟⎟⎠ < 0

where� = LTaP+PLa+Q+ε1‖Ua − La‖2In, and In stands for the identitymatrix (the
same symbol will be used for the rest of this chapter), then the system in Eq. (11.25)
is robust stable (Su & Liu, 2012).

Theorem11.4.5 If there are positive definitematricesP,Q,N andpositive constants
ε1, ε2 such that the symmetric matrix

⎛
⎜⎜⎜⎜⎜⎝

	 PLb ρ In P P
LTbP −Q + ε2‖Ub − Lb‖2In 0 0 0
ρ In 0 −N 0 0
P 0 0 −ε1In 0
P 0 0 0 −ε2In

⎞
⎟⎟⎟⎟⎟⎠ < 0

where 	 = LTaP + PLa + Q + ε1||Ua − La||2In and N = N−1, ρ = √
τ , then the

system in Eq. (11.25) is robust stable.

Example 11.4.2 Let us look at the following 2-dimensional grey linear postponing
system

{
ẋ(t) = A(⊗)x(t) + B(⊗)x(t − τ),∀t ≥ 0,

x(t) = φ(t),∀t ∈ [−τ, 0].

Assume that the upper and lower bound matrices of the continuous matrix covers
of the grey constant matrices A(⊗),B(⊗) are respectively give as follows:
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La =
(−4.38 0.20

0.19 −4.33

)
; Ua =

(−4.26 0.29
0.27 −4.22

)

Lb =
(−0.93 0.21

0.23 −0.86

)
; Ub =

(−0.88 0.24
0.26 −0.82

)

According to Theorem 9.10, by using the solver in the LMI (linear matrix
inequality) control toolbox, we obtain the behavioral solution as follows:

P =
(
9.4642 0.6983
0.6983 9.8228

)
; Q =

(
28.0088 −0.0340
−0.0340 27.8605

)
; ε1 = 30.0826; ε2 = 30.2461

Now from Theorem 9.11, by using the solver in the LMI (linear matrix inequality)
control toolbox, we obtain the behavioral solution below:

P =
(
6.8592 0.5061
0.5061 7.1191

)
, Q =

(
20.2294 −0.0246
−0.0246 20.1920

)
, N =

(
0.0456 0

0 0.0456

)

ε1 = 21.8024, ε2 = 21.9209, τ = 2.7035

These results indicate that the system considered in this example is robust
stable. And the maximum allowed postponing length of time as obtained from
Theorem 11.4.5 is 2.7035.

11.4.3 Robust Stability of Grey Stochastic Linear Time-Delay
System

The mathematical model that describes a stochastic system is generally the Itto
stochastic differential equation, where the often seen n-dimensional Itto stochastic
differential postponing equation is

{
dx(t) = Ax(t) + Bx(t − τ) + [Cx(t) + Dx(t − τ)]dw(t),∀t ≥ 0,

x(t) = ξ(t), ξ(t) ∈ L2F0
([−τ, 0];Rn),∀t ∈ [−τ, 0]. (11.27)

where x(t) ∈ Rn stands for the system’s state vector, A,B,C,D ∈ Rn×n known
constant matrices, τ > 0 the time of postponing, andw(t) a 1-dimensional Brownian
motion defined on a complete probability space (�,F, {Ft}t≥0,P).L2F0

([−τ , 0]; Rn)

stands for the totality of allF0-measurable stochastic variables ξ = {ξ(t) : −τ ≤ t ≤
0} that take values from C([−τ , 0] ;Rn) satisfying sup−τ≤t≤0 E|ξ(θ)|2 < ∞, while
C([−τ , 0] ;Rn) stands for the totality of continuous functions φ : [−τ , 0] → Rn.
Under the initial condition x(t) = ξ(t) ∈L2F0

([−τ , 0] ; Rn), the system in Eq. (11.27)
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has an equilibrium point x(t ; ξ), and corresponds to the initial value ξ(t) = 0,
x(t ; 0) ≡ 0.

There are several different concepts of stability for stochastic systems. In the
following, we list four of the important stabilities.

Definition 11.4.6 The equilibrium point x(t) ≡ 0 of the system in
Eq. (11.27) is referred to as stochastically stable, if for each ε > 0,
limx0→0 P

(
supt>t0 |x(t; t0, x0)| > ε

) = 0.

Definition 11.4.7 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is
referred to as stochastically asymptotically stable, if it is stochastically stable and
limx0→0 P(limt→+∞ x(t; t0, x0) = 0) = 1.

Definition 11.4.8 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is
referred to as large-scale stochastically asymptotically stable, if it is stochastically
stable and for any t0, x0, P(limt→+∞ x(t; t0, x0)) = 0 = 1.

Definition 11.4.9 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is
referred to as mean square exponential stable, if there are positive constants α >

0, β > 0 such that E|x(t; t0, x0)|2 ≤ α|x0|2 exp(−βt), t > t0.
A grey system is stochastic if it involves grey parameters. Concepts related to grey

stochastic systems are generally introduced based on relevant concepts of conven-
tional stochastic systems. Considering the problems we will study, let us provide the
following definitions.

Definition 11.4.10 If at least one of the matrices A,B,C,D of the stochastic linear
postponing system in Eq. (11.27) is grey, then the system is referred to as a grey
stochastic linear postponing system, written as follows:

{
dx(t) = A(⊗)x(t) + B(⊗)x(t − τ) + [C(⊗)x(t) + D(⊗)x(t − τ)]dw(t),∀t ≥ 0,

x(t) = ξ(t), ξ(t) ∈ L2F0
([−τ, 0];Rn),∀t ∈ [−τ, 0].

(11.28)

In this section, we assume that all the coefficient matrices of the system in
Eq. (11.28) are grey with continuous matrix covers. That is, the matrix covers of
the grey matrices A(⊗), B(⊗), C(⊗), and D(⊗) are respectively given as follows:

A(D) = [La, Ua] = {A(⊗̃) = (⊗̃aij)n×n : aij ≤ ⊗̃aij ≤ aij}

B(D) = [Lb, Ub] = {B(⊗̃) = (⊗̃bij)n×n : bij ≤ ⊗̃bij ≤ bij}

C(D) = [Lc, Uc] = {C(⊗̃) = (⊗̃cij)n×m : cij ≤ ⊗̃cij ≤ cij}



11.4 Robust Stability of Grey System 339

and

D(D) = [Ld , Ud ] =
{
D
(⊗̃) = (⊗̃dij

)
n×n : d ij ≤ ⊗̃dij ≤ d ij

}

where La = (aij)n×n, Ua = (aij)n×n, Lb = (bij)n×n, Ub = (bij)n×n, Lc = (cij)n×n,

Uc = (cij)n×n, Ld = (d ij)n×n, and Ua = (d ij)n×n.

Definition 11.4.11 If A(⊗̃),B(⊗̃),C(⊗̃), and D(⊗̃) are arbitrary whitenization
matrices of the grey matrices A(⊗),B(⊗),C(⊗), and D(⊗), respectively, then

{
dx(t) = A(⊗̃)x(t) + B(⊗̃)x(t − τ) + [C(⊗̃)x(t) + D(⊗̃)x(t − τ)]dw(t),∀t ≥ 0,

x(t) = ξ(t), ξ(t) ∈ L2F0
([−τ, 0];Rn),∀t ∈ [−τ, 0].

(11.29)

is referred to as a whitenization system of the system in Eq. (11.28).

Definition 11.4.12 If any whitenization system of the system in Eq. (11.28) is large-
scale stochastic asymptotic stable, that is,

lim
t→∞ x(t; ξ) = 0 a.s.

then the system in Eq. (11.28) is said to be large scale stochastic robust asymptotic
stable.

Definition 11.4.13 If any whitenization system of the system in Eq. (11.28) is mean
square exponential stable, that is, there are positive constants r0 and K such that the
equilibrium points of whitenization systems of the system in Eq. (11.28) satisfy

E|x(t, ξ)|2 ≤ Ke−r0t sup
−τ≤θ≤0

E|ξ(θ)|2, t ≥ 0

or equivalently

lim
t→∞ sup

1

t
logE|x(t; ξ)|2 ≤ −r0

then the system in Eq. (11.28) is said to be mean square exponential robust stable.

Theorem 11.4.6 For the system in Eq. (11.28), if there is a positive definite
symmetric matrix Q and there are positive constants εi, i = 1 , . . . , 6, satisfying
M + N < 0, then for any initial condition ξ ∈ Cp

F0
([−τ , 0] ; Rn) the following

holds true:

lim
t→∞ x(t ; ξ) = 0 a . s.
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That is, according to Su (2012), the system in Eq. (11.28) is large-scale stochastic
robust asymptotic stable, where

M = QLa + LTa Q + (ε1 + ε2)Q + ε−1
1 λmax(Q) · ||Ua − La||2In

+ (1 + ε4)(1 + ε5)L
T
c QLc

+ (1 + ε−1
4 )(1 + ε5)λmax(Q)||Uc − Lc||2In

and

N = ε−1
2 (1 + ε−1

3 )λmax(Q)||Ub − Lb||2In + ε−1
2 · (1 + ε3)L

T
b QLb

+ (1 + ε−1
5 )(1 + ε6)L

T
d QLd

+ (1 + ε−1
5 )(1 + ε−1

6 )λmax(Q)||Ud − Ld ||2In.

Theorem11.4.7 For the system inEq. (11.28), if there are positive definite symmetric
matrix Q and positive constants εi , i = 1 , . . . , 6, satisfying K + L < 0, then for
any initial condition ξ ∈ Cp

F0
([−τ , 0] ; Rn), the following holds true:

lim
t→∞ x(t ; ξ) = 0 a . s

That is, the system inEq. (11.28) is large-scale stochastic asymptotic stable, where

K = QLa + LTa Q + (ε1 + ε2)Q +
[
ε−1
1 λmax(Q)trace

(
GT
a Ga

)
+ (1 + ε4)(1 + ε5)trace

(
LTc Lc

)
+
(
1 + ε−1

4

)
(1 + ε5)λmax(Q)trace

(
GT
c Gc

)]
In,

and

L = [ε−1
2 (1 + ε−1

3 )λmax(Q)trace(GT
b Gb) + ε−1

2 (1 + ε3)trace(L
T
b Lb)

+(1 + ε−1
5 )(1 + ε6)trace(L

T
d Ld ) + (1 + ε−1

5 )(1 + ε−1
6 )λmax(Q)trace(GT

d Gd )]In.

If we let the matrix and constants in Theorems 11.4.6 and 11.4.7 be ε1 = · · · =
ε6 = 1 and Q = In, then we can obtain the following corollaries, respectively.

Corollary 11.4.3 If the upper and lower bound matrices of the continuous matrix
covers of the coefficient matrices of the system in Eq. (11.28) satisfy

La + LTa + 2LTb Lb + 4LTc Lc + 4LTd Ld

< −(2||Ub − Lb||2 + ||Ua − La||2 + 4||Ud − Ld ||2 + 4||Uc − Lc||2 + 2)In

then the system in Eq. (11.28) is large-scale stochastic asymptotic stable.
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Corollary 11.4.4 If the upper and lower bound matrices of the continuous matrix
covers of the coefficient matrices of the system in Eq. (11.28) satisfy

La + LTa + [2trace(LTb Lb) + 4trace(LTc Lc) + 4trace(LTd Ld )]In
< −(trace(GT

a Ga) + 2trace(GT
b Gb) + 4trace(GT

c Gc) + 4trace(GT
d Gd ) + 2)In

then the system in Eq. (11.28) is large-scale stochastic asymptotic stable.

Theorem11.4.8 For the system inEq. (11.28), if there are positive definite symmetric
matrix Q and positive constants εi , i = 1 , . . . , 3, satisfying

QLa + LTa Q + (ε1 + ε2)Q + ε−1
1 λmax(Q)||Ua − La||2In

< −[(1 + ε3)λmax(Q)trace(MT
c Mc) + ε−1

2 λmax(Q) trace(MT
b Mb)

+(1 + ε−1
3 )λmax(Q)trace(MT

d Md )]In
then the system in Eq. (11.28) is large-scale stochastic robust asymptotic stable. If
in Theorem 11.4.8 we let ε1 = ε2 = ε3 = 1 and Q = In, then we have the corollary
below.

Corollary 11.4.5 If the upper and lower bound matrices of the matrix covers of the
grey coefficient matrices in the system in Eq. (11.28) satisfy

La + LTa + 2In + ||Ua − La||2In + 2trace(MT
c Mc)In

< −[ trace(MT
b Mb) + 2trace(MT

d Md )]In
then the system in Eq. (11.28) is large-scale stochastic robust asymptotic stable.

Theorem11.4.9 For the system inEq. (11.28), if there are positive definite symmetric
matrix Q and positive constants εi , i = 1 , . . . , 6, satisfying λmax(M )+λmax(N ) <

0, then for any initial condition ξ ∈ Cp
F0

([−τ , 0] ; Rn), the following holds true:

E|x(t, ξ)|2 ≤ Ke−r0t sup
−τ≤θ≤0

E|ξ(θ)|2, t ≥ 0

or equivalently,

lim
t→∞ sup

1

t
logE|x(t; ξ)|2 ≤ −r0

where thematricesM ,N are the same as in Theorem 11.4.6, K = τ er0τ λmax(N )+λmax(Q)

λmin(Q)
,

and r0 is the unique real root of the following equation r0λmax(Q) + λmax(M ) +
er0τ λmax(N ) = 0, then the system in Eq. (11.28) is mean square exponential robust
stable.
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11.5 Several Typical Grey Control Models

Grey control stands for the control of essential grey systems, including the situation
of general control systems involving grey numbers, by constructing controls through
employing the thinking methods of grey systems analysis, modeling, prediction, and
decision-making.

11.5.1 Control of Redundancy Removal

The dynamic characteristics of grey systems are mainly determined by the matrices
G(s) of grey transfer functions. So, to realize effect control over the systems’ dynamic
characteristics, one of the effective methods is to modify and correct the matrices of
transfer functions and the structure matrices.

Definition 11.5.1 Assume thatG−1(s) is a system’s structure matrix, andG−1∗ (s) an
objective structure matrix, then

�−1 = G−1
∗ (s) − G−1(s) (11.30)

is known as a structural deviation matrix (Deng, 1965).

From G−1(s)Y (s) = U (s) and G−1∗ (s) = �−1 + G−1(s), we obtain (G−1∗ (s) −
�−1)Y (s) = U (s). That is,

G−1
∗ (s)Y (s) − �−1Y (s) = U (s) (11.31)

Definition11.5.2 −�−1Y (s) is referred to as a superfluous term.The control through
a feedback of �−1Y (s) to cancel the superfluous term is known as a control of
redundancy removal (Deng, 1965). Through the effect of the feedback of �−1Y (s),
the system G−1(s)Y (s) = U (s) is reduced to

G−1(s)Y (s) + �−1Y (s) = U (s)
(
G−1(s) + �−1

)
Y (s) = U (s)

That is,G−1∗ (s)Y (s) = U (s) has already processed the desired objective structure
(Deng, 1965).

The number of entries in the structural deviation matrix �−1, used in a control
with abandonment, directly affects the number of components in the controlling
equipment. So, when considering the economics, reliability, and ease of application
of a dynamic system, one must keep the number of elements in the deviation matrix
�−1 as low as possible. That is to say, in the objective structural matrix, one should
try to keep the corresponding entries of the original structure matrix. The idea of
control with abandonment is depicted in Fig. 11.8.
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Fig. 11.8 Control of redundancy removal

11.5.2 Grey Relational Control

Definition 11.5.3 Assume that Y = [y1, y2, . . . , ym
]T

stands for the output vector,

and J = [
j1, j2, . . . , jm

]T
the objective vector. If the components of the control

vector U = [u1, u2, . . . , us]T satisfy

uk = fk(γ (J ,Y )) k = 1, 2, . . . , s (11.32)

where γ (J ,Y ) is the grey relational degree between the output vector Y and the
objective vector J , then the system control is known as a grey relational control.

A grey relational control system is obtained by attaching a grey relational
controller to the general control system. It determines the control vector U through
the grey relational degree of γ (J ,Y ) so that the grey relational degree between the
output vector and the objective vector does not go beyond a pre-determined range.
The idea of the grey relational control system is depicted in Fig. 11.9.
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Fig. 11.9 The grey relational control system

11.5.3 Control of Grey Prediction

All the various kinds of controls studied earlier are about applying controls after
first checking whether or not the system’s behavioral sequence satisfies some
pre-determined requirements. Such post-event controls evidently suffer from the
following weaknesses:

(1) Expected future disasters cannot be prevented;
(2) Instantaneous controls cannot be done; and
(3) Adaptability is weak.

The so-called grey predictive control is designed based on the system’s future
behavioral tendency, which is predicted using the system’s behavioral sequences and
the patterns discovered from the sequences. This kind of control can be employed
to avoid future adverse events from happening; it can be implemented in a timely
fashion, and possesses a wide range of applicability.

The idea of a grey predictive control system is graphically shown in Fig. 11.10. Its
working principle is that first one must collect and organize the device’s behavioral
sequence of the output vector Y; secondly, one must use a prediction device to
compute the predicted values for the future steps; and lastly, one must compare the
predicted values with the objective and determine the control vector U so that the
future output vector Y will be as close to the objective J as possible.

Definition 11.5.4 Assume that ji(k), yi(k), ui(k) (i = 1, 2, . . . , m) are
respectively the values of the objective component, output component, and control
component at time moment k. For i = 1, 2, . . . , m, let

Fig. 11.10 Grey predictive control
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ji = (ji(1), ji(2), . . . , ji(n))

yi = (yi(1), yi(2), . . . , yi(n))

ui = (ui(1), ui(2), . . . , ui(n))

For the control operator f : (ji(λ), yi(λ)) → ui(k),

ui(k) = f (ji(λ), yi(λ)) (11.33)

when k > λ, the system is known as a post-event (or after-event) control; when
k = λ, the system is known as an on-time control; and when k < λ, the system is
known as a predictive control.

Definition 11.5.5 If the control operator f satisfies

f (ji(λ), yi(λ)) = ji(λ) − yi(λ) (11.34)

That is,

ui(k) = ji(λ) − yi(λ) (11.35)

then when k > λ, the system is known as an error-afterward control; when k = λ,
the system is known as an error--on-time control; and when k < λ, the system is
known as an error-predictive control.

Definition 11.5.6 Let yi = (yi(1), yi(2), . . . , yi(n))(i = 1, 2, . . . ,m) stand for a
sample of output components and its GM(1,1) response formula be given as follows:

⎧⎨
⎩ ŷ(1)

i (k + 1) = (yi(1) − bi
ai

)e−aik + bi
ai

ŷ(0)
i (k + 1) = ŷ(1)

i (k + 1) − ŷ(1)
i (k)

If the control operator f satisfies

ui(n + k0) = f
(
ji(k), y(0)

i (k)
)
, n + k0 < ki i = 1, 2, . . . , m (11.36)

then the system control is known as a grey predictive control.

In a grey predictive control system, predictions are often done using metabolic
models. So, the parameters of the prediction device vary with time. When a new data
value output is produced and accepted by the sampling device, an old data value is
removed so that a new model is developed. Accordingly, a series of new predicted
values are provided. Doing so guarantees the strong adaptability of the system.

Example 11.5.3 Let us look at the EDM (electric discharge machining) grey control
system (Yang & Zheng, 1996). The investigation on the control systems of EDM
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machines has been an important effort in the field of electric discharge machining.
Each EDM can be seen as a stochastic time-dependent nonlinear system involving
many parameters. Applications mainly include those situations when the conven-
tional controls of linear, constant coefficient systems cannot produce adequate
outcomes. The current commonly employed EDM control systems are established
based onmodern control theory. The frequently applied self-adaptive control systems
generally employ mathematical models of approximation with accompanied high
costs without actually realizing optimal results. Grey control is not like precise math-
ematical models based on complete knowledge of a system as addressed in modern
control theory. It is also unlike fuzzy control, where the system is treated as a black
box as all the information about the internal working of the system is disregarded,
which leads to low accuracy controls. The parameters, structures, and other aspects
of grey models vary with time. Such dynamic modeling can be highly appropriate for
the study of EDMmachines with high degrees of uncertainty and produce relatively
more satisfactory control effects.

For EDM control systems, the objects of control are EDM machine tools, where
outputs need signals from the testing of EDM machine tools as well as the control
quantity U, that is, the signals about the control of the EDM machine tools.
EDM control systems, in general, mean the control over systems that serve EDM
machine tools. For instance, let us look at the traditional gap-voltage feedback servo
control system. Due to a lack of linear relationship between the gas voltage, gap
size, discharge strength, discharge state, and servo reference voltage, the effect of
employing only one gap-voltage feedback servo control system is not very good.

In order to make up for the insufficiency of single loop controls, one can employ
double-loop controls with the inner loop being the traditional gap-voltage feedback
control and the outer loop being an impulse discharge rate feedback control that
instantaneously adjusts the inner loop. The block-design chart of this control system
is depicted in Fig. 11.11. Figure 11.11 shows that this control design represents a
system of two loops. Based on the collected sequence of gap voltage readingsUg(K),
the inner loop employs theGMmodel to predict the nextmoment Ûg(K+i+1). Here,
i stands for the prediction steps, which are then fed into the input end to determine
the servo reference voltage value Us, which is a proportionality coefficient. The
outer loop establishes a GM model based on a sequence Y (K) of output values to
predict the next steps Ŷ (K + i+ 1). When these predicted values are compared with
requirements Y ∗, a sequence e(K) = Ŷ − Y ∗ of errors is found. These error values
are then fed back into the system to adjust the proportionality coefficient K1 and the
servo reference voltage Us, in order to adjust the inner loop. That is,

�U = K1
(
Y ∗ − Ŷ

)
, Us = K2Ûg − �U

Therefore, Us = K2Ûg − K1(Y ∗ − Ŷ ), where parameters K1,K2 are determined
by experiments.

Example 11.5.4 Let us now look at the grey predictive control for the vibration
of a rotor system (Zhu & Zhi, 2002). The theory and methods for active vibration
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Fig. 11.11 EDM control system

control of rotors have caught more attention in recent years. Many new control
theories, such as neural network theory, time-delay theory, self-learning theory, fuzzy
theory, and H∞ theory have gradually been employed in research on active control
theory of rotors, leading to some good outcomes. For a Jeffcott symmetric rotor
follower system with an electromagnetic damper as its executor, we employ control
theory and methods of grey predictions to investigate an active amplitude control of
vibration. We first establish a grey predictive control module with the GM(1, 1) as
its main component. In the vibration control system of the rotor, let I0(k) and x0(k),
k = 1, 2, . . . , n, respectively be electric current inputting into the electromagnetic
damper and the corresponding maximum output amplitude of the rotor vibration. By
employing the available experimental measurement results from the literature, we
obtain a set of data of I0(k) and the relevant x0(k), as shown in Table 11.1, when the
sensitivity of the transducer is 104 V/m.

Based on the mechanism of the GM(1, 1) model, we establish the following
modification model of the system based on the errors of the grey predictions:

â(0)(k + 1) = −a
[
x(0)(1) − β

]
e−ak + δ(k − i)(−a′)[q(0)(1) − β′]e−a′k

where a = 0.1862; x(0)(1) = 1.4;β = 9.3298; a′ = 0.14; q(0)(1) = 0.36;β ′ =
3.78, and

δ(k − i) =
{
1 k ≥ i

0 k < i

The design of our grey predictive control of the rotor system is shown in Fig. 11.12.

Table 11.1 Sampled data of I0(k) and x0(k) when the transducer’s sensitivity is 104 V/m

I0(k)(A) 0.1 0.125 0.175 0.225 0.325

x0(k)(dm m) 1.4 1.35 1.2 0.9 0.65
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Fig. 11.12 Grey predictive control of the rotor system

Table 11.2 Simulations and actual measurements

I(A) X1m (m) X2m (m) X3m (m) e12 (%) e13 (%) e23 (%)

0.1 1.41 × 10–4 1.4 × 10–4 1.4 × 10–4 0.71 0.71 0

0.125 1.27 × 10–4 1.227 × 10–4 1.35 × 10–4 3.5 − 5.93 − 9.11

0.175 1.03 × 10–4 0.949 × 10–4 1.2 × 10–4 9 − 13.8 − 20.92

0.225 0.83 × 10–4 0.745 × 10–4 0.9 × 10–4 11.4 − 7.78 − 17.22

0.325 0.55 × 10–4 0.46 × 10–4 0.65 × 10–4 19.57 − 13.38 − 29.23

In this control system, the displacement signal of the rotor system is measured by
the eddy current transducer. The sampling equipment collects the data from the ampli-
tude recorder, and through the effect of the grey prediction controller, controlling
voltage is produced. This voltage is transformed into a controlling electric current
through the current amplifier. Then, when this electric current flows through the
stator coil of the electromagnetic damper, an electromagnetic force is created, which
in turn controls the amplitude of vibration of the rotor within the expected range so
that the system’s stability is achieved.

For this grey predictive control system developed for the vibration of the said
Jeffcott symmetric rotor follower, our computer simulation, when compared to the
physical measurements of the amplitudes, indicates that the maximum amplitudes
under the control are only about 7% of those physically observed without the control
imposed on the rotor system. Table 11.2 respectively provides the results of the
maximum amplitudes of two separate computational simulations and the actual
measurements X1m, X2m, and X3m, along with the change in the static electricity i
of the electromagnetic damper, when the sensitivity of the transducer is k1 = 104 V/
m, and the corresponding errors e12, e13, and e23 between X1m and X2m, X1m and X3m,
and X2m and X3m.
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Chapter 12
Spectrum Analysis of Sequence
Operators

12.1 Introduction

Changhai Lin et al. introduced spectrum analysis into grey system theory firstly in
2019 (Lin et al., 2019).

Generally, systemdata is presented in the formof time series data. Due to the influ-
ence of system disturbance, there will be some deviation between the observed data
and the original behavior data series. It is of great significance for people to under-
stand the evolution law of system to analyze and recognize the influence of system
disturbance factors correctly. The spectrum analysis of time series data provides us
a new perspective to understand time series data. Some characteristics of time series
data can be presented more clearly in the frequency domain.

Behavioral prediction of a system under the influence of shocking disturbances
has always been a difficult problem. In this case, the available data of the system’s
behavior can no longer truthfully reflect the law of change of the system. At this
situation, if we directly established our model and made our predictions using the
severely affected data without first considering the disturbance, then our predictions
would most likely fail. This is because the model would not have described the true
state of change of the underlying system. Therefore, one of the main tasks of grey
forecasting is to uncover the laws of change of certain system variables themselves
based on the available data of the system (Liu, 1991).

As usually, a general data sequence composited by various factors of trend and
noise (Fig. 12.1a), cycles (Fig. 12.1b), shock disturbance by long-duration impulse
(Fig. 12.1c), shock disturbance by transient impulse (Fig. 12.1d), and some factors
be ignored (Fig. 12.1e), even some factors joining with noise or be seen as noise
(Fig. 12.1a). The evolution rule of data series may change at some points which are
called change points (Page, 1955). Before and after the change points, people need
to use different models to describe the change rule of data series. The difference may
be the change of model form, or the change of one or some parameters in the model
(Fig. 12.1f).
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Fig. 12.1 Various factors of a data sequence
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It’s very difficult to analyze and discriminate the factors of a data sequence in
time domain. Thanks to spectrum analysis, we can transfer data in time domain to
frequency domain by Fourier transformation. Then analyze and discriminate various
factors of a data sequence in frequency domain (Liu et al., 2020).

12.2 Spectrum Analysis of Time Series Data

Spectral analysis is an important term proposed by Isaac Newton. He first used the
concept of spectral analysis in his paper submitted to the Royal Society in 1672
(Newton, 1672). In this paper, Newton mentioned the famous prism experiment.
As we all know, prism can decompose sunlight into seven colors. The principle
is to decompose the light of different colors from the white light by using the
different refractive index of the medium to the light of different colors. In the experi-
ment, Newton also used two positive and negative inverted prisms. Through the first
prism, white sunlight was decomposed into different colors of light, while the second
inverted prism synthesized different colors of light into white sunlight. In the whole
process of decomposition and synthesis, the essence of light has not changed. Prism
can be seen as a conversion tool to show the characteristics of light (Newton, 1672)
(Fig. 12.2).

The knowledge of physics tells us that every color of light represents a frequency
range in visible light.Color analysis of light belongs to the scopeof spectrumanalysis.
Spectrum analysis, as the name implies, its research on the object is carried out in
the frequency domain. In the process of system analysis, the data of system behavior
observed in the real physical world are mostly time series data recorded based on
time, which can be abstracted as a function of time and belong to the scope of time
domain. The spectrum analysis of time series data is based on signal decomposition.
With the help of the mathematical tool of Fourier transform, the spectrum analysis
regards the time series signal as the superposition of sine waves or cosine waves with
different periods and amplitudes. The sinewave or cosinewavewith different periods
and different amplitudes is defined as the frequency content with one amplitude in
frequency domain. The conversion process of time series data from time domain

Fig. 12.2 Decomposition and synthesis of white light
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to frequency domain can also be expressed as the process of mapping different
frequency content of time signal to frequency domain.

The spectrumanalysis of time series data is amethod of informationmining. Infor-
mation that is not easy to find in time domain analysis can be found through spectrum
analysis. By decomposing and analyzing the time series data, we can quantitatively
analyze the periodic law contained in the time series data. Themagnitude and propor-
tion of different frequency content can be quantitatively analyzed by calculating the
frequency amplitude at different frequency points of time series signal.

12.3 Filtering Effect of Mean Operator and Accumulation
Operator

The classical model of grey system—mean GM(1, 1) is based on accumulation
operator and mean operator. The dual effects of accumulation operator and mean
operator produce magical effects, so that people can use the mean GM(1, 1) to
obtain high simulation and prediction accuracy based on few data.

In 1987, Professor Deng Julong studied the grey exponential law of the accu-
mulation operator (Deng, 1987), and found that the the randomness of grey data
sequence can be weaken under the action of the accumulation operator and show the
variation law of the exponential function. Referring to the digital signal processing
(DSP) system, we will study the mean operator and accumulation operator in the
frequency domain through Z-transform, as well as the filtering effect of their series
action. The contents and main conclusions of this section are based on the research
of Lin et al. (2022).

12.3.1 Filtering Effect of Mean Operator

The general 2-term weighted moving average operator can be rewritten into the
following form

y[n] = b0x[n] + b1x[n − 1] b0 + b1 = 1. (12.1)

Equation (12.1) can be regarded as the transfer function of DSP signal system,
the following Eq. (12.2) can be obtained from Z transformation.

Y [z] = b0X [z] + b1X [z]z−1. (12.2)

From Eq. (12.3), it is easy to obtain the frequency domain expression of the
transfer function of the digital filter system corresponding to the 2-term weighted
moving average operators as follows
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H [z] = Y [z]

X [z]
= b0 + b1z

−1 (12.3)

Let b0 = b1 = 0.5, the frequency domain expression of the transfer function
of the digital filter system corresponding to the mean operator can be obtained as
follows

H [z] = Y [z]

X [z]
= 0.5 + 0.5z−1 (12.4)

It can be seen from Fig. 12.3 that when the frequency content is 0, the frequency
amplitude is 1, and when the frequency content is greater than zero, the frequency
amplitude is less than 1. And the higher the frequency content, the smaller the
frequency amplitude. That is, the mean operator has the effect of low-pass filtering,
the low-frequency part (Evolution Law) of the data remains basically unchanged
under the action of the mean operator, and the high-frequency part (fluctuation or
disturbance) will be compressed and suppressed. Through spectrum analysis, it is
further confirmed that the randomness of grey data sequence can be weaken and the
real evolution law will be presented under the action of mean operator.

Fig. 12.3 The frequency domain curve of mean operator equivalent filter transfer function
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12.3.2 Filtering Effect of Accumulation Operator

The first order accumulation operator (1-AGO) can be rewritten into the following
form

y[n] = x[n] + y[n − 1] (12.5)

Equation (12.5) can be regarded as the transfer function of DSP signal system,
the following Eq. (12.6) can be obtained from Z transformation.

Y [z] = X [z] + Y [z]z−1 (12.6)

From Eq. (12.6), it is easy to obtain the frequency domain expression of the
transfer function of the digital filter system corresponding to 1-AGO as follows

H [z] = Y [z]

X [z]
= 1

1 − z−1
(12.7)

From Eq. (12.7) and z = ejω, it follows that

(1) When 0 ≤ ω ≤ π/3, |H[ω]|>1. The amplitude of output Y[ω] will be greater
than the amplitude of input X[ω]. The system amplifies the input spectrum.

(2) When ω < π/3, |H[ω]| < 1. The amplitude of output Y[ω] will be less than
the amplitude of input X[ω]. The system compresses or suppresses the input
spectrum.

(3) z = 1 is the pole of the transfer function of the digital filter corresponding to
1-AGO.

The frequency domain curve of transfer function of 1-AGO equivalent filter as
shown in Fig. 12.4.

The first-order accumulation operator equivalent digital filter belongs to low-pass
filter, that is, the low-frequency content (less than a critical frequency) in the input
signal can pass through or be amplified. The high frequency content (greater than a
critical frequency) in the signal will be compressed or suppressed.

The data fluctuation and random disturbance of general discrete data series belong
to high-frequency content. These information will be suppressed during the action
of 1-AGO equivalent digital filter. Aperiodic system evolution law belongs to low-
frequency signal, which can pass through or be amplified in the process of 1-AGO
equivalent digital filter. It is also proved that for general non-negative quasi smooth
sequences, the randomness can be reduced by the action of accumulation operator,
showing an approximate exponential growth law.

Since the transfer function of digital filter corresponding to 1-AGO has pole,
and the frequency content ω = 0 is its pole. This means that when the frequency
content is 0, the transfer function of 1-AGO corresponding digital filter has infinite
amplification effect. Furthermore, the conclusion of Theorem 4.7.3 of this book is
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Fig. 12.4 The frequency domain curve of transfer function of 1-AGO equivalent filter

confirmed from the mechanism: the function of accumulation operator shouldn’t
over. That is, if the action sequence of the r-th accumulation operator of X (0) has
obvious exponential law, the application of AGO operator will destroy its regularity
and turn the exponential law grey.

12.3.3 Filtering Effect of Series Operator

Let the corresponding digital filter transfer functions mean operator (12.4) and accu-
mulation operator (12.7) be denoted by HE(z) and HA(z) respectively. According to
the transfer function calculation formula of series system, the transfer function of
equivalent filter of the series operator of 1-AGO and mean operator can be obtained
as follows

H [z] = HAzHE(z)

= 1

1 − z−1

(
0.5 + 0.5z−1

)

= 0.5 + 0.5z−1

1 − z−1
(12.8)

The frequency domain curve of series equivalent filter of the 1-AGO and mean
operator as shown in Fig. 12.5.
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Fig. 12.5 The frequency domain curve of series equivalent filter of the 1-AGO and mean operator

As can be seen from the comparisonwith Fig. 12.4 that The accumulation operator
acting alone or the accumulation operator acting in series with the mean operator
can produce similar amplification effect on the low-frequency part of the signal. But
for the high-frequency part of the data sequence (fluctuation and noise), the series
operator

H [z] = HA(Z)HE(Z)

has stronger suppression effect than the accumulation operator acting alone. The
signal-to-noise ratio of the series operator sequence is significantly improved. This
also proves from the mechanism why the mean GM (1, 1) model can obtain high
simulation and prediction accuracy based on small data in most cases.

12.4 Spectrum Analysis of Buffer Operator

In order to solve the prediction problem of impact disturbance system, Liu proposed
the concept of buffer operator, established the axiom system of buffer operator, and
designed the widely used average weakening buffer operator (AWBO) (Liu, 1991).
Please refer to Chap. 4 of this book for details.

Let the x(k)d in the following AWBO

x(k)d = 1

n − k + 1
[x(k) + x(k + 1) + . . . + x(n)]; k = 1, 2, . . . , n
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be denoted by y(k). The AWBO can be rewritten into the following Formula (12.9)

y(k) = 1

n − k + 1

[
n∑

i=1

x(i) −
k−1∑

i=1

x(i)

]

k = 1, 2, . . . , n (12.9)

Replace k with k − 1, we have

y(k − 1) = 1

n − k + 2

[
n∑

i=1

x(i) −
k−2∑

i=1

x(i)

]

k = 2, . . . , n (12.10)

Eliminate the denominator at the right end of Eqs. (12.9) and (12.10), we have

y(k)(n − k + 1) =
[

n∑

i=1

x(i) −
k−1∑

i=1

x(i)

]

k = 1, 2, . . . , n (12.11)

y(k − 1)(n − k + 2) =
[

n∑

i=1

x(i) −
k−2∑

i=1

x(i)

]

k = 2, . . . , n (12.12)

Subtract Eq. (12.12) from Eq. (12.4), we obtain

y(k)(n − k + 1) − y(k − 1)(n − k + 2) =
k−2∑

i=1

x(i) −
k−1∑

i=1

x(i) (12.13)

Therefore

y(k)(n − k + 1) − y(k − 1)(n − k + 2) = −x(k − 1), k = 2, 3, . . . , n (12.14)

The digital signal processing expression corresponding to Eq. (12.15) as follows

Y (Z)(n − k + 1) − Y (Z)Z−1(n − k + 2) = X (Z)Z−1 (12.15)

k = 2, 3, . . . , n (12.16)

So, the transfer function of AWBO can be obtained

H (Z) = Y (Z)

X (Z)
= Z−1

[
(n − k + 1) − (n − k + 2)Z−1

] (12.17)

The actual data simulation results show that the AWBO equivalent digital filter
also belongs to low-pass filter. For the low-frequency part of the input signal, the
amplitude of the spectrum of the AWBO action sequence is higher than that of the
reference, which means that AWBO has amplification effect on the low-frequency
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content in the sequence. For the high-frequency part of the input signal, the amplitude
of the spectrum of the AWBO action sequence is lower than the reference amplitude,
indicating that AWBO has the effect of restraining, attenuating or blocking the high-
frequency content in the sequence. The high-frequency part of the input signal of the
impact disturbance system is mainly composed of impact disturbance components.
Therefore, AWBO can weaken the impact disturbance (Lin et al., 2021).
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Appendix
Introduction to Grey Systems Modeling
Software

A.1 Introduction

In 1982, Julong Deng initiated and established grey systems theory. Currently, grey
systems theory is widely applied in areas such as social sciences, economics, agri-
culture, meteorology, military and science, providing solutions to a large number
of practical problems and challenges met in everyday life. Various versions of grey
system modeling software have played a very important role in such large scale
practical applications of grey systems theory. Along with the rapid development of
information technology, high level programming languages have gradually matured,
applications of computing packages have been routinized, and grey systemsmodeling
programs have also become sophisticated.

In 1986, Xuemeng Wang and Jiangjun Luo created their grey systems modeling
software using BASIC language and published Programs of Grey Systems’ Predic-
tion, Decision-Making, and Modeling. In 1991, Xiuli Li and Ling Yang respectively
developed greymodeling software usingGWBASIC andTurboC. In 2001,Xuemeng
Wang, JizhongZhang, andRongWang published the book entitled “Computer Proce-
dures for Grey SystemsAnalysis andApplications,” in which they listed the structure
and procedure codes established for grey modeling. All of these computer software
packages were developed on the DOS platform and have become obsolete in the
more user-friendly Windows framework.

In 2003, Dr. Bing Liu developed the first grey systems modeling software for
Windows using VisualBasic6.0. As soon as this package was available, it was
most welcomed in the community of scholars and practitioners of the grey systems
research, and became the first choice of application in the field of grey systems
modeling.

With the rapid development of software development technology, the constant
changes in people’s operating habits, and the continuous development and improve-
ment of grey system theory itself, people’s requirements for grey system modeling
software are also constantly increasing. In 2009, Dr. Zeng Bo developed a new
grey system modeling software based on the object-oriented programming language
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Visual C #, which greatly promoted the application and popularization of grey system
theory. The software has now been updated to version 10.0 and has reached hundreds
of thousands of users.

A.2 Software Features and Functions

On one hand, an ideal grey systems modeling software package needs to have the
computational power to handle practical models, and on the other hand it has to
deal with user confirmation, registration, and other functionalities. The software
system accompanying this book sufficiently combines the capabilities of the C/S
(client/server) and B/S (Browser/Server) modules, where the C/S part completes
computational functions, while the B/S part handles the relevant operations that serve
the user and his communication with the server. With a view to improve existing
systems, the design of this package focuses more on the reliability, practicality,
compatibility, upgradability, accuracy, operational convenience, visual appeal and
user friendliness. This package has the following characteristics:

• Data entry is convenient and fast.

For data sequences of the same kind, the package provides a rectangular window
into which the user can simply copy the sequences with one operation. For grey
clustering and grey decision-making modules that involves large amounts of data, it
is evidently inconvenient to employ the traditional way of entering data values. In
such instances, the user can enter data in an Excel document and then open the data
file into this package system. This software system makes use of the powerful data
entry ability of Excel while making data entry convenient for the user.

• Modules are designed according to functionalities.

In software engineering, a module is a relatively independent system unit of proce-
dures. Each such unit of procedures handles andmaterializes a relatively independent
task. In other words, it contains a group of independent procedures. Each program
module has its own external characteristics, such as its own name, label, and inter-
faces. During the design of this software package, the developer scientifically orga-
nized the contents of grey systems theory, defined the relevant functions and related
modules.

• This system provides operational details as well as periodic results.

For modules with complicated computational procedures where intermediate results
are also important, the system provides a textbox that can store and show multi-line
operational details. The user can monitor data changes in each computational step so
that he can further understand how the model operates. Also, the software interface
provides relevant information to remind the user of the relevant formulas employed
in the model.
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• The functionalities of the modules are greatly expanded.

Based on current practical applications of grey systems theory, combined with the
most recent research results, this software system is themost up-to-date system avail-
able in the market. It includes: weakening operators (mean weakening buffer opera-
tors, geometric mean weakening buffer operators, weighted mean weakening buffer
operators), strengthening operators (mean strengthening buffer operators, geometric
mean strengthening buffer operators, weightedmean strengthening buffer operators),
grey incidence analysis (relative degree of incidence, closeness degree of incidence),
clustering analysis (based on center-point triangular whitenizationweight functions),
grey prediction (GM(1, n) andDGM(1, 1)models), grey decision analysis (intelligent
grey target decision making), among other contents.

• The degree of accuracy of the computational results can be adjusted.

The computation precision of different systems is different. In this software system
there is a ComboBox, which can select of computational precision. Therefore, the
user can choose the desired degree of accuracy for his work.

• The operation of the software system is convenient and easy to learn.

This software system is based on the Windows interface using pull-down menus,
where the commonly employed modeling techniques of grey systems theory are
effectively gathered together. The user only needs to have an elementary under-
standing of how a desktop PC works to successfully use this software system. At the
same time, this system has a relatively strong ability to locate and correct mistakes.
When an illegal operation is performed, the system will provide an accurate and
detailed hint.

• This system is developed using Visual C#.

C# is an object-oriented programming language created by Microsoft and an impor-
tant part of Microsoft’s .NET development environment. Also, Microsoft Visual C#
is an integrated development environment (IDE) constructed on C# by Microsoft. It
is designed for the operation of many application software packages created on the
.NET framework. C# possesses powerful capabilities, type safety, object orientation,
and other superb functions. It is currently the main development tool of C/S software
architecture.

A.3 Main Components

The new edition of the grey system modeling software consists of five modules
including grey sequence operators, grey incidence analysis models, grey clustering
evaluation models, grey forecasting models and grey models for decision-making,
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Table A.1 The basic constitution of the grey system modeling software

Grey system modeling software B/S part User info

Statistics

C/S part Grey sequence operators

Grey relational analysis

Grey clustering evaluation

Grey forecasting

Grey decision-making

Table A.2 Grey sequence operators

Grey sequence operators Weakening operators Average weakening buffer
operator (AWBO)

Weighted average weakening
buffer operator (WAWBO))

Geometric average weakening
buffer operator (GAWBO)

Weighted geometric average
weakening buffer operator
(WGAWBO)

Strengthening operators Even strengthening buffer
operator (ESBO)

Average strengthening buffer
operator (ASBO)

Weighted average
strengthening buffer operator
(WASBO)

Information mining operators Accumulating generation
operator

Inverse accumulating
generation operator

Even operator by adjacent
neighbor

Operator of stepwise ratio

given the currently available research on grey systems theory and its practical appli-
cations. The software system modules are shown in Tables A.1, A.2, A.3, A.4, A.5
and A.6.
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Table A.3 Grey relational analysis models

Grey relational analysis models Deng’s model of degree of grey relation

Absolute degree of grey relation

Relative degree of grey relation

Synthetic degree of grey relation

Closeness degree of grey relation

Similitude degree of grey relation

Table A.4 Grey clustering evaluation models

Grey clustering evaluation models Grey clustering model of variable weight

Grey clustering model of fixed weight

Grey clustering model using center-point mixed triangular
possibility functions

Grey clustering model using end-point mixed triangular
possibility functions

Table A.5 Grey forecasting models

Grey forecasting models Singular variable models Even GM(1,1)

Original difference GM (1, 1)

Even difference GM (1,1)

Discrete grey model

Grey Verhulst model

Multi-variable models Model GM(0, N)

Model GM(1, N)

Table A.6 Grey models for decision-making

Grey models for decision-making Weighted multi-attribute grey target decision

Two stages model for decision-making

A.4 Operation Guide

A.4.1 The Confirmation System

To verify legal ownership, the user needs to enter his account number and password
before he can actually start using the system. However, if every time the user uses
the system he has to confirm his legal ownership of the software package, it will
become an annoyance. So, to guarantee the legal ownership of the user and maintain
the operational simplicity of the system, the system applies the XML-based client
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Fig. A.1 The confirmation window

programming technique.When the user attempts to run the program for the first time,
the system will prompt him to provide the needed account number and password.
The provided data will then be delivered through the internet to the database located
at the server to verify their legality. When the user attempts to use the program on
different, subsequent occasions, he can directly enter the main interface window
without having to enter his account number and password again.

On the first time of confirmation, if the user does not have an account number
or password, he needs to click on the “User registration” button (see Fig. A.1) to
register for a free user account (B/S). If the user forgets his password, he can click on
the “Recall password” button to retrieve his password. Figure A.2 is the flow chart
of confirmation.

A.4.2 Using the Software Package

After successful confirmation of legal ownership, the user will enter the system’s
main interface window, as shown in Fig. A.3. Various grey systems theory modules
(and their sub-modules) are administrated through menus.

Figure A.4 provides the flow chart of various sub-modules of the system

I. Data Entering

Before running the program, one needs to first enter data into the software package
and specify the system parameters. As mentioned earlier, there are two ways to input
data. One can directly enter data into the provided text box or import data from an
external Excel document. For those modules that require large amounts of data, the
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Fig. A.2 The confirmation flow chart

onlyway provided for entering data is through importing data fromExcel documents.
The following sections look at the details of these two data entering methods.

• Enter data directly into the provided text box.

With VisualC#, there are two kinds of controllers available for direct data entry.
One is the TextBox controller, and the other the ComboBox controller. The former
controller is used to develop the standard Windows’ editing controller of the text-
box, which is used to acquire the user’s input or show what is already stored in the
storage space. When entering data into the text-box, right click the mouse inside
the text box. When the cursor blinks inside the text box, one can start entering data.
The ComboBox of the Windows’ window group is mainly used to show data in a
down-drop list box. As a default, ComboBox consists of two parts: the top is a text
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Fig. A.3 The main interface window

Fig. A.4 Sub-modules

box in which the user is allowed to enter data, and the bottom is a list box where
the user can make selections. It is because the ComboBox consists of the text box
on the top and the list box at the bottom that it is named a ComboBox. When using
the ComboBox to enter data, the user needs to first check whether or not the list
box contains the data he wants. If so, he can simply use the mouse to directly make
the selection; otherwise, he needs to enter data into the text box on the top. The
detailed procedure for entering data in the ComboBox is similar to that of operating
the TextBox and is therefore omitted here.

Note: When entering data using either the TextBox or the ComboBox, the state
of entry method needs to be adjusted to half-angle. Data values entered in the state
of full angle will be treated by the program as illegal data, which will directly affect
the normal operation of the program and potentially lead to unexpected outcomes.
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• Import data from an Excel document.

Both the TextBox and ComboBox can only accept small amounts of data values. For
entering large sums of information, the use of either the Textbox or the ComboBox is
inefficient, and can also lead to errors. To resolve theproblemof entering large sumsof
data valueswhen dealingwith grey clustering and grey decision-making, for instance,
it is very often the case that large amounts of information are involved, and this
software systemmakes use of the powerful Excel. First enter and edit the needed data
in Excel, and then use the provided interface to import the Excel data into the software
system. Excel is one of the components of Microsoft Office. It is a tabulated testing
and computing software developed for Microsoft Windows and Apple’s Macintosh.
Its straightforward interface, excellent capabilities of computation and graphicsmake
it the most widely employed PC software used for data analysis. Through Excel, our
software package system can conveniently acquire data.

Each Excel document generally contains three tables, respectively labeled as
Sheet1, Sheet 2, and Sheet3. When an Excel document opens, it generally shows
Sheet1. When entering data according to the system’s requirements, one can directly
type in the corresponding values in the relevant rows and columns. Upon finishing
data entry into the Excel document, one can employ our system’s input function to
import the Excel data. When importing an Excel data document, first select the path
from which the Excel file is located. As soon as the importing path and location of
the file is confirmed, the data will be successfully imported. In fact, the process of
importing data connects the Excel file to our system through a specific path so that
the data in the Excel file can be mapped into the database controller DataGridView.

DataGridView is a database controller of VisualC#, which can exactly and entirely
reveal data from a source file. Through the DataGridView controller of VisualC#,
data can be acquired from an Excel file. However, our system does not provide
any of the editing capabilities of DataGridView. In other words, if it is found in
DataGridView that there is an error in the data, this error cannot be corrected directly
within DataGridView. Instead, one has to return to the original Excel file to make
the correction and then reimport the entire corrected file back into the grey systems
modeling package.

Notes:

• The DataGridView controller does not have any editing capability. To make
changes in the data, one has to do it in the original Excel file.

• When entering data into an Excel document, one needs to do so in the mode
of “half-angle.” All data entered in the mode of “full-angle” will be treated as
illegal entries, which will directly affect the normal operation of the grey systems
modeling package, and potentially lead to unexpected outcomes.

• The table names of the Excel file have to be the default Sheet1, Sheet2 and/or
Sheet3 without any modification, otherwise the import of data will be affected.

• The data entry field of Excel is very large. However, one often needs only a few
rows and columns. Make sure that there are no symbols or blank cells accidently
entered into other area of the field. Otherwise, the data transfer will be affected.
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Fig. A.5 The interface of the mean weakening buffer operator

II. Model Computations

(1) Grey sequence operators

Click on “Sequence generation.” From the pull-down menu that appears, select
the module according to the practical modeling need. The corresponding detailed
modeling interface appears. Let us use the “average weakening buffer operator” as
an example to illustrate how to apply grey sequence generations. What is shown in
Fig. A.5 is the interface of the mean weakening buffer operator.

This interface window contains three main areas: the first shows the original data
sequence, which is the area for data entry or importing data; the second area shows
the “order and outcome precision,” in which it is possible to adjust the order of the
operator being applied and the corresponding precision of the computational outputs
based on one’s modeling needs; and the third the area is where computational results
are shown. After the data entry is completed, click on the “mean weakening buffer
operator (AWBO)” button. Immediately, the generated sequence will appear in the
generated sequence window. Figure A.6 shows a work sheet of an Excel document.
When applying this Excel capability and importing data from Excel, the user has to
follow this shown format exactly.

(2) Grey relational analysis models

Similar to the generation of grey sequences, there are two ways to input data for all
parts of relational analysis, so such data entry details are omitted here. However, this
is not valid for Deng’s degree of grey relation due to the need for a large amount of
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Fig. A.6 The required Excel file format

data. For Deng’s degree of grey relation, this software system allows only data entry
through Excel documents without the option of direct data entry. Figure A.7 shows
the editing format of an Excel document, while Fig. A.8 shows the complete work
interface.

Fig. A.7 The required Excel file format

Fig. A.8 The complete work interface of Deng’s degree of grey relation
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(3) Grey clustering evaluation models

Similar to Deng’s degree of grey relation, grey clustering evaluation also requires a
large amount of original data. However, in grey clustering evaluation it is possible
to have several different types of data, including objective-criterion data, possibility
functions, and criteria weights. Therefore, for grey clustering evaluation, the system
again provides only one way to enter data, which is by importing Excel files. The
key to using this part of the functions is to correctly edit the different types of data in
the Excel documents. Sheet1 contains the objective-criteria data (Fig. A.9), Sheet2
the corresponding possibility functions (Fig. A.10), and Sheet3 the weights of the
criteria (Fig. A.11).

FigureA.12 shows the operating interface of a grey clustering analysis. As for how
to apply grey variable weight clustering and analysis based on center-point mixed

Fig. A.9 The objective-criteria data

Fig. A.10 The corresponding whitenization weight functions
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Fig. A.11 The weights of the criteria

triangular possibility functions, the operational details are similar and therefore
omitted

(4) Grey prediction models

Grey prediction models stand for an important part of grey systems theory. The
operation of each individual prediction model is roughly the same. So, let us use
the EGM(1, 1) model to illustrate how to use the software system. The main steps
include: enter or import data; click the “computation, simulation, prediction” button
to compute the model parameters and the simulated values, and select the simula-
tion accuracy; enter the desired number of predicted values, then click “prediction
results.” Figure A.13 shows the operational interface of the EGM(1, 1) model.

Fig. A.12 The operating interface of a grey clustering evaluation
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Fig. A.13 The operational interface of the GM(1,1) model

(5) Grey decision-making

This part of the software package contains two modules, namely the multi-attribute
grey target decision-making model and the two-stage model for decision-making.

The data layout of an intelligent grey target decision-making model is the same
as that of any synthesized objective decision-making model, except that there is an
additional column of threshold value, as shown in Fig. A.14, where the interval (Liu,
2017; Liu et al., 2004) means that the lower effect threshold value is 14 and the upper
effect value is 18. Figure A.15 shows the entire operating page of an intelligent grey
target decision-making model.
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Fig. A.14 The exact layout of data page for multi-attribute grey target decision-making

Fig. A.15 The entire operating page of multi-attribute grey target decision-making



Memorabilia of the Establishment
and Development of Grey System Theory
(1982–2024)

1. Initial stage (1982–1987)

Based on data retrieved from the China National Knowledge Infrastructure (CNKI)
database. The number of papers onGrey SystemTheory included byCNKI increased
from 6 in 1982 to 82 in 1987. The establishment of Wuhan (National) Grey System
Research Association marks the end of the initial stage of grey system theory.

In 1982, professor Julong Deng has published the first paper on Grey System
Theory in System and Control Letters (Deng, 1982a, 1982b).

In 1984, the first national academic conference on grey system theory and applica-
tions which chaired by professor Julong Deng was held in Taiyuan, Shanxi Province,
China (Wang & Luo, 1985).

In 1985,Wuhan grey system consulting department was established (Xiao, 1990).
In 1985, professor Julong Deng has published the first book on Grey System

Theory by National Defense Industry Press (In Chinese) (Deng, 1985).
In 1986, the course of grey system theory is included in the postgraduate

training plan at both of Huazhong University of Science and Technology and Henan
Agricultural University (Liu et al., 2022a, 2022b)

In 1987, Wuhan (National) Grey System Research Association which professor
Julong Deng served as the president was established (Liu, 2024a, 2024b).

2. Developmental stage (1988–2000)

During this period, a professional international journal- The Journal of Grey System
has been established. Professor Julong Deng was rated as a doctoral supervisor. Ten
doctoral students in the field of grey system theory have graduated, becoming the
first generation successors of the original theory of grey system theory.

In 1989, the first Journal of “The Journal of Grey System” which edited by
professor Julong Deng was released by “Research Information Ltd” in the UK (Liu
et al., 2022a, 2022b).

In 1990, a research direction for training doctoral students in the field of grey
system theory has set up at system engineering discipline of Huazhong University
of Science and Technology (Liu et al., 2022a, 2022b).
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In 1991, the grey system research office which professor Julong Deng served as
the director was established in the Automation Department of Huazhong University
of Science and Technology (Liu et al., 2022a, 2022b).

In 1995, Professor Sifeng Liu passed the entrance examination and entered
Huazhong University of Science and Technology to pursue a doctoral degree, under
the guidance of Professor Julong Deng (Liu et al., 2022b).

In 1995, Professor Sifeng Liu was elected as vice president of Wuhan (National)
Grey System Research Association (Website of GSSC, 2024).

In 1996, The 9th national grey system academic conference attended by scholars
from both sides of the Taiwan Strait was held in Wuhan (Liu & Xu, 1996).

In 1997, Regional Grey System Society of Taiwan was established (Liu et al.,
2004).

In 1998, An Introduction to grey systems: foundations, methodology and
Applications was published by IIGSS Academic Publisher in USA (Liu & Lin,
1998).

In 2000, with the approval of the Academic Degrees Committee of the State
Council, Nanjing University of Aeronautics and Astronautics has established a
doctoral degree authorization point for management science and Engineering which
Professor Sifeng Liu serves as the Chief Discipline Leader (Liu et al., 2022b).

In 2000, Institute for Grey Systems Studies was established at Nanjing University
of Aeronautics and Astronautics (IGSS-NUAA). Over the past more than 20 years,
IGSS-NUAA has trained 200 doctoral students, postdoctoral fellows, and visiting
scholars in the field of grey system theory, forming a main force engaged in grey
system theory research (Xie et al., 2022).

3. Rapid growth period (2001–2010)

Grey System Theory is listed as the first leading research direction of doctoral
program in the discipline of Management Science and Engineering at Nanjing
University of Aeronautics and Astronautics. IGSS-NUAA has trained over 100
doctoral students, postdoctoral research fellows, and visiting scholars in the field of
grey system theory, formed the main force engaged in grey system theory research.
The number of papers on Grey System Theory included by CNKI increased from
1856 in 2001 to 11,900 in 2010.

In 2001, Grey System Theory is listed as the first leading research direction of
doctoral program in the first level discipline ofManagement Science andEngineering
at Nanjing University of Aeronautics and Astronautics (Xie et al., 2022).

In 2002, the first Doctor’s Forum on Grey System Theory was held in Nanjing
(Liu et al., 2022b).

In 2004, Kybernetes: The International Journal of Systems & Cybernetics
published a special issue on grey systems theory which edited by Mianyun Chen,
Sifeng Liu and Yi Lin (Liu & Lin, 2004).

In 2004, both the number of publications on grey system theory and the number
of citations of IGSS at NUAA are ranked No.1 in web of science. This record is
consistently maintained up to now (Xie et al., 2022).
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In 2005, theGrey SystemSociety of China (GSSC), CSOOPEM,was approved by
the Chinese Association for Science and Technology and Ministry of Civil Affairs,
China.

In 2005, Professor Sifeng Liu was elected as the president of GSSC. Professor
Julong Deng served as Honorary President of GSSC (Website of GSSC, 2024).

In 2006, for the first time, the national grey system academic conference was
supported by China Higher Science and Technology Center (CHSTC) which Nobel
laureates Tsung-Dao Lee served as the director. CHSTC’s support for grey system
academic activities has lasted for 16 years (Xie et al., 2022).

In 2007, the first IEEE International Conference on Grey Systems and Intelligent
Services was held in Nanjing (Liu, 2007).

In 2007, the Technical Committee of IEEE SMConGrey Systemswas established
(Webpage of IEEE SMC, 2024).

In 2007, The Journal of Grey System is included in the SCI database (Website of
JGS, 2024).

In 2008, the course of grey system theory of Nanjing University of Aeronautics
andAstronauticswas rated as aNational ExcellenceCourse (Website of IGSS, 2024).

In 2009, academician Xuesen Qian, the first winner of the National Highest
Science and Technology Award of China, sent professor Sifeng Liu and Dejin Song
a letter to encourage their research work (Qian, 2009).

In 2010, the team with professor Sifeng Liu as the chief expert was rated as a
National Excellence Teaching Team of China (Website of IGSS, 2024).

In 2010, the Journal of “GreySystems-Theory andApplication”which established
and edited by professor Sifeng Liu was launched by Emerald Group in the UK
(Website of GS, 2024).

4. Globalization period (2011–2024)

International academic organizations, international academic journals, and a series
of international academic conferences are the main symbols of internationalization
in a newly established discipline field. Scholars from over 130 countries around the
world have published papers on grey system theory. More than 18,000 grey system
related papers indexed in the Web of Science database. A large number of grey
system theory papers have been rated as highly cited papers by various databases
and journals. Many grey system theory researchers have been rated as “Global top
2% scientists” or highly cited scientists.

In 2011, the 2011 IEEE International Conference on Grey Systems and Intelligent
Services was held in Nanjing (Liu, 2011).

In 2012, the course of grey system theory of Nanjing University of Aeronautics
and Astronautics was selected as a National Excellence Sharing Course of China
(Website of IGSS, 2024).

In 2012, the first Workshop of European grey system research collaboration
network chaired by professor Yingjie Yang was held at De Montfort University
(Website of DMU, 2012).

In 2013, professor Julong Deng, the founder of Grey System Theory, passed away
(Website of GS, 2024).
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In 2013, the 2013 IEEE International Conference on Grey Systems and Intelligent
Services was held in Macau (Liu, 2013).

In 2013, Professor Sifeng Liu was selected for a Marie Curie International
Incoming Fellowship (FP7- PEOPLE- IIF-GA-2013-629051) of the European
Union(Zheng, 2014).

In 2014, an international network project entitled “Grey Systems and Its Appli-
cations” (IN-2014-020) directed by professor Yingjie Yang was funded by The
Leverhulme Trust (Xie et al., 2022).

In 2014, a book Series of Grey Systems in Chinese which edited by professor
Sifeng Liu were launched by Science Press (Liu et al., 2022b).

In 2015, the International Association of Grey System and Uncertainty Analysis
(GSUA) was established in UK (Xie et al., 2022).

In 2015, the first International Congress of GSUA was held in Leicester, UK (Liu
et al., 2022b).

In 2017, Grey Systems-Theory and Application is included in the ESCI database
(GS News, 2017).

In 2017, Polish ScientificAssociation ofGreySystemswhichDr.RafałMierzwiak
served as the founding president was set up (Website of IAGSUA, 2024).

In 2017, the 2017 IEEE International Conference on Grey Systems and Intelligent
Services was held in Stockholm, Sweden (Website of IGSS, 2017).

In 2017, according to a citation report by China National Knowledge Infrastruc-
ture, the book Grey System Theory and Its Applications, which authored by Prof.
Sifeng Liu and published by Science Press, is identified as the No.1 top sited books
in the pandect of natural science of China (CNKI, 2017).

In 2017, Professor Sifeng Liu has been selected to be one of the top 10 shortlisted
promising scientists in the MSCA 2017 Prizes (An, 2022).

In 2018, the course of grey system theory of Nanjing University of Aeronautics
and Astronautics was selected as a National Excellence Online Open Course (Xie
et al., 2022).

In 2018, Grey Systems Society of Pakistan which Dr. Saad Ahmed Javed served
as the founding president was established (Website of IAGSUA, 2024).

In 2018, Academician Jinpeng Huai, The Minister of Education of China, then
the Executive Vice President and Secretary of the China Association for Science and
Technology sent a letter of condolence to Professor Sifeng Liu, praised his important
contributions to the development and dissemination of grey system theory (Xie et al.,
2022).

In 2019, Grey Systems-Theory and Application is included in the SCI database
(Website of GS, 2024).

In 2019, Turkish Association of Grey Systems Theory which professor Erdal
Aydemir served as the founding president was established (Website of IAGSUA,
2024).

In 2019, the 2019 International Congress ofGSUAwas held in Bangkok, Thailand
(Website of IGSS, 2024).
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In 2019, Angela Dorothea Merkel, then German Chancellor, praised professor
JulongDeng, the founder of grey system theory, and professor SifengLiu, a developer
of grey system theory (Yu & Le, 2019).

In 2020, Grey Systems-Theory andApplication is included in the Scopus database
(Website of GS, 2024).

In 2020, the 2020 International Congress of GSUA was held in Nanjing (Website
of IAGSUA, 2024).

In 2020, the course of grey system theory of Nanjing University of Aeronautics
andAstronauticswas selected as aNational first class offline course (Xie et al., 2022).

In 2020, the course of grey system theory of Nanjing University of Aeronautics
andAstronautics was selected as aNational first class online course (Xie et al., 2022).

In 2021, a book Series of Grey Systems which edited by professor Sifeng Liu,
professor Yingjie Yang and professor Jeffrey Forrest were launched by Springer-
Nature Group (Dong & Tao, 2021).

In 2021, Grey Data Analysis has been put into service on iCourse International
(Tao & Rui, 2021).

In 2021, the 2021 International Congress of GSUA was held in Nanjing (Website
of IAGSUA, 2024).

In 2021, Grey Systems-Theory and Application is included in the Ei Compendex
database (Hu, 2022).

In 2022, the 40th Anniversary Commemorative Exhibition of the Founding of
GreySystemTheorywas held inNanjingUniversity ofAeronautics andAstronautics.
Many renowned scholars andLeaders of ProfessorYong’anZheng, then theSecretary
of NUAA, Academician Zhongde Shan, then the president of NUAA, Academician
Haiyan Hu, the former president of BIT, Academician Baozhu Guo, former Chief
Designer of Satellite Engineering of China, Ms Suping Hu, former deputy director
of the Standing Committee of the Shanxi Provincial People’s Congress, professor,
Professor Yingjie Yang, the Executive President of GSUA, Professor Hong Chi, the
President of Chinese Society ofOptimization, Overall Planning and EconomicMath-
ematics and Professor Xiaochang Ding, the President of Jiangsu Higher Education
Association attended the conference and delivered congratulatorymessages (Zhou&
Dong, 2022).

In 2023, Research Center for Grey Systems and Uncertainty Analysis which
professor R. M. K. T Rathnayaka serve as the director was established at Sabaraga-
muwa University of Sri Lanka (Rathnayaka, 2023; Website of IAGSUA, 2024).

In 2023, Professor Sifeng Liu received the “Global Excellence Award” from the
Grey Systems Society of Pakistan (GSSP) (GS News, 2023).

In 2023, the 2023 International Congress of GSUAwas held in Zhengzhou (HAU
News, 2023).

In 2024, the Center for Grey System Studies was established at Northwestern
Polytechnical University (CGSS-NPU).

In 2024, Professor Sifeng Liu is listed as a global top 0.05% Highly Ranked
Scholar-Lifetime by Scholar GPS (Website of Scholar GPS).
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Farewell to Our Tutor

The memorial speech by Sifeng Liu on behalf of students of Prof. Deng.
At 12:15 in the afternoon on June 22, 2013, ourmost beloved tutor, ProfessorDeng

Julong, saw the end of his eighty-year life journey and left us forever. Professor Deng
Julong was a tireless lifelong pioneer and founder of Grey System Theory, so the
world has lost a visionary. In recent days, dark clouds gathered and there was a long
period of wet weather: it was God’s crying for the death of a great scholar.

Prof. Deng graduated from the Department of Electrical Engineering of the
Huazhong Institute of Technology in 1955 and then taught at the Department of
Automatic Control. In the 1960s, he put forward the idea of control with abandon-
ment. In the 1970s, themethod of control with abandonment became a typical control
method internationally. In 1982, he pioneered Grey System Theory and created a
brand new subject area in the history of science. His academic achievements were
highly respected by many in the scientific circles.

In Prof. Deng’s academic career of 60 years, there existed neither holidays, week-
ends nor a line between service and retirement. Prof. Deng was the editor of The
Journal ofGrey System, an international journal, for 24 years. In his capacity as editor
he screened articles, checked the contents of their experiments and edited them in
English; he was dedicated and tireless. Until the last moment of his life, he was still
working on publishing a scholarly book.

I still remember 1983, when I first participated in a course onGrey SystemTheory.
Themimeographed teachingmaterials had a blue cover andwere presented as a book.
Itwas like finding a treasure, as the book attractedme deeply. The book really inspired
me, as I was a young scholar who was going through a period of confusion and lack
of direction for academic study. The book shone with sparkles of wisdom and built
a lighthouse for a knowledge seeker who was in the mist of trying to find his way
in academic research. This book became the light in my life’s journey. From then
onwards I forged an indissoluble bound with Grey System Theory.

My most unforgettable memory is the first time I joined Prof. Deng’s compre-
hensive course on Grey System Theory in Yu Jiashan’s air-raid shelter in 1986. The
course deepened my understanding and awareness of many scientific problems in
Grey System Theory. In 1995, when I was about 40 years old, I formally became a
disciple of Prof. Deng, and from then on I took on the mission of disseminating and
developing Grey System Theory.

Today, Grey System Theory is accepted by academics worldwide. A variety of
academic works on grey system theory have been published in different languages,
including English, Japanese, Korean and Romanian. In 1989, the British journal
entitled The Journal of Grey System was launched. In 1997, a Chinese publication
named Journal of Grey System was launched in Taiwan. Later in 2004, this same
publication started to be published in English. In 2011, Emerald launched a new
journal entitled Grey system: Theory and application.

Since November 2007, the biennial IEEE International Conference on Grey
System and Intelligent Services has been successfully held in Nanjing, China,



Memorabilia of the Establishment and Development of Grey System … 385

attracting scholars from different parts of the world. The fourth IEEE International
Conference on Grey System and Intelligent Services will be held at the University
of Macau, in November 2013.

Currently, a significant number of scholars from China, United States, England,
Germany, Japan, Australia, Canada, Austria, Russia, Turkey, the Netherlands, Iran,
and others, have been involved in the research and application ofGreySystemTheory.
Many countries have begun to recruit and cultivate doctoral and other postgraduate
students in the area of Grey System Theory. To date, more than 100 students have
graduated and received Ph.D.s in this area, and tens of thousands of graduate students
have carried out their research on Grey System Theory.

At the Nanjing University of Aeronautics and Astronautics, Grey System Theory
has become an important course for undergraduate, masters and doctoral students
from many different colleges.

In 2008, Grey System Theory was selected for a national course award in China.
In 2013, it was selected as an open learning course, free of charge to all lovers of
Grey System Theory.

Currently, there are more than 70 projects on Grey System Theory research and
applications funded by the National Natural Science Foundation of China. Many
projects have been supported by the European Union, the United Kingdom, USA,
Canada, Spain, Romania and other countries.

In 2012, De Montfort University in the UK funded and organized the first Euro-
pean collaboration network for Grey System research, and representatives from 14
European Member States attended the session.

Grey System Theory, as an emerging discipline, has carved its place in science
and demonstrated strong vitality.

Farewell to our tutor!
God bless you!
(Prof. Sifeng Liu is a former Ph.D. Student of Prof. Julong Deng. Currently Prof.

Liu works at the Nanjing University of Aeronautics and Astronautics. He also serves
as the founding director of the Institute for Grey Systems Studies, the founding chair
of the IEEE SMC Technical Committee on Grey Systems, and the president of Grey
Systems Society of China.)
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Index

A
Accuracy, 23, 26, 27, 31–33, 36, 37, 66, 75,

90, 185, 187, 198, 199, 201,
205–207, 210–212, 214, 215, 230,
231, 233, 243, 247, 257, 261,
272–274, 281, 346, 356, 360, 364,
365, 375

After-event control, 344
All-data GM (1, 1), 212
Average image, 93, 96, 300, 302
Average operator, 75, 76, 356
Average weakening buffer operator, 69, 71,

73, 229, 360, 366, 372
Axioms for buffer operator

analytic representation, 67
fixed points, 67
information basis, 14, 15

B
Background value, 186, 195
Basic predicted value, 278
Basic value, 49, 163
Behavioral sequence

economic sequence, 92
horizontal sequence, 92
time sequence, 92

Black number, 46, 260
Bull’s-eye-distance, 298, 299

C
Candidates, 265, 314
Capital elasticity, 251
Capital input, 250, 251
Characteristic

most favorable, 128, 131

quasi-favorable, 128
quasi-preferred, 128, 132, 133
variable, 59, 63, 92, 127–130, 133, 219,
220

Characteristic vector, 324
Coefficient

clustering of variable weight, 164
constraint, 306
decision, 267, 292, 306, 312–314, 318
development, 179, 181, 195, 199,
204–206, 211, 220, 227, 272, 305

equal weight cluster, 167
fixed weight cluster, 167, 168, 263
generation, 205
grey evaluation, 90, 179
grey impact, 63
grey influence, 90, 186
grey responsibility, 5
inverse matrix, 164

Combined model
prediction model, 26

Component
maximum component, the, 292, 313,
314

Consecutive neighbor, 279
Constraint condition, 22
Contour line, 282, 283
Contour moment, 282, 283
Contour point, 282
Control

closed loop, 321
open loop, 321

Control by remove redundant, 2
Control of grey predictions, 347
Control vector, 285, 324, 332, 343, 344
Countermeasure

desirable countermeasure, 297
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set, 293–295, 300, 301, 304, 309, 311
Critical value, 46, 291
Cross-sequences, 15, 120

D
Decision making

coefficient for decision-making, 292
coefficient vector for decision-making,
292

Decision scheme
decision scheme set, 293–295, 298, 300,
301, 304

desirable scheme, 296, 297
Derivative, 186, 187, 207, 209, 210, 218,

322, 333
Development domain, 276, 277
Differential restored value, 207
Discrete grey model, 185, 188, 190, 216,

217, 272, 367
Distance, 45, 89, 101, 108, 109, 283, 298,

305, 307, 310
Distance function, 310
Distinguishing coefficient, 95
Distortion date sequence, 278, 279
Distortion prediction, 16, 278
Domian

grey number, 15
grey sequence, 13

E
Economic reform, 21, 22, 28
Effect, 297, 309
Effect mapping, 295
Effect measure

effect measure for benefit type
objective, 292

effect measure for cost type objective,
292, 310

lower effect measure, 292, 307, 308, 310
lower effect measure for moderate
objective, 292

moderate effect measure, 310
synthetic effect measure matrix, 307,
310

uniform effect measure, 306, 309, 310,
312

upper effect measure, 292, 307, 308,
310, 312

upper effect measure for moderate
objective, 292

Effect value, 291, 295–297, 300, 303, 305,
307–312, 376

Efficiency matrix, 30
Entropy

evaluation coefficient vector, 156
information, 156

Equal grey matrices, 45
Equal time interval sequence, 100, 101, 212
Equation

shadow, 189, 191, 222
whitenization, 191, 222–224, 229

Equivalent scheme, 298
Error-afterward control, 345
Error-on-time control, 345
Error-prediction control, 323
Error sequence

modelability, 207, 209
Estimation operator, 63, 76
Even difference GM (1, 1), 186, 367
Even difference model, 193–196, 198, 199,

201, 202
Even GM (1, 1), 185, 190
Event, 4, 5, 13, 23, 27, 271, 293–298, 300,

301, 304, 309, 311, 344, 345
Exponential function

homogeneous exponential function, 81,
196

non-homogeneous exponential function,
81

Exponential region, 271
Exponential sequence

homogeneous exponential sequence, 81,
195–199, 201

non-homogeneous exponential
sequence, 81

F
Feedback loop, 321
Five-step modeling, 283, 284
Fluctuation term, 251
Four elements for decision-making, 260
Fractional accumulation, 185
Fractional grey model, 186, 215
Frequency domain, 353, 355–360
Function

distance, 310
grey transfer, 326, 330, 331, 342
homogeneous exponential, 81, 196
inverse, 327
smooth continuous, 274

Fuzzy mathematics, 1, 2, 6, 8, 25–27, 48

G
General grey number, 45, 53, 55–59
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Grey action quantity, 195
Grey characteristic value, 156
Grey clustering evaluation

basic value of grey class, 156
cluster based on grey relational analysis,
155

clustering decision-making, 36
equal weight clustering coefficient, 167
fixed weight clustering coefficient, 167
variable weight clustering coefficient,
15, 156, 374

Grey control, 15, 16, 33, 321, 322,
324–327, 342, 346

Grey derivative, 187
Grey differential link, 329, 330
Grey distortion prediction, 278
Grey distortion sequence

lower distortion sequence, 278
upper distortion sequence, 278

Grey forecasting model, 271, 365, 367
Grey gain matrix, 331
Grey induction coefficient, 242
Grey inertia link, 328, 329
Grey influence coefficient, 90, 186
Grey integral link, 329, 330
Grey linear space, 59
Grey Markov chain, 255, 256
Grey matrix

diagonal, 325
difference, 332
inverse, 116
non-singular, 331
power, 242
product, 242
scalar, 53
scalar multiplication, 50
sum, 49
symmetric, 336
transposition, 192
triangular, 156
unit, 59

Grey number
conceptual type, 48
continuous, 46
discrete, 46, 54, 271
domain, 356
essential type, 46, 48, 278, 342
information type, 15
kernel, 50, 53–60
layer type, 293
non-essential type, 46
non-synchronous, 47
reduced form, 56, 58–60

synchronous, 47, 59
wish type, 48
with only lower limits, 55
with only upper limits, 55
with zero center, 50

Grey postponing link, 330
Grey prediction control, 323, 348
Grey prediction model, 16, 26, 31, 32, 35,

36, 185, 187, 188, 190, 233, 242,
272, 322–324, 375

Grey proportional link, 328, 330
Grey relation

cluster, 15
matrix, 15, 110, 127, 128, 130, 131,
157, 159

order, 89, 110, 113, 133
Grey relational cluster, 15, 157
Grey relational control, 322, 343, 344
Grey relational degree

absolute relational degree, 89, 102, 124,
125, 129–131, 135–138, 232, 300, 301

deng’s relational degree, 95–97, 119,
138

nearness relational degree, 88
negative relational degree, 116
relative relational degree, 89, 103, 105,
118, 124–126, 138

similitude relational degree, 103,
105–108, 119, 122, 125, 131, 132

synthetic relational degree, 103, 105,
106, 119, 131, 132

three-dimensional relational degree, 106
Grey relational factor

set of grey relational factor, 92, 94
Grey relational operator

average image, 93
averaging operator, 93
initial image, 96, 103
initialing operator, 104
interval image, 94
interval operator, 93
set of grey relational operator, 92, 94

Grey target
bull’s-eye-distance, 299
one-dimensional decision-making, 15,
16, 296

s-dimensional decision-making, 297,
298

spherical grey target, 291
Grey target decision

intelligent grey target decision, 16, 291,
292, 306, 376
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multi-attribute grey target decision, 309,
376, 377

multi-attribute weighted grey target
decision, 291, 292, 306

Grey verhulst model, 30, 186, 222–224,
227, 228

H
Homogeneous Markov chain, 255

I
Imagined optimum effect vector, 300, 301
Imagined optimum model, 301
Imagined optimum scheme, 300
Information

density, 2
fuzzy, 27
grey, 1, 9, 13–15
new, 9, 14, 212–214
old, 14, 214
stochastic, 28
unascertained, 272

Information content, 13
Initial image, 92, 104, 105, 130
Input-output, 59
Internal point, 24, 253
Internal subsystem, 346
Intersection, 51, 120, 261, 282
Interval grey number, 31, 45–47, 52, 54, 55,

185, 261, 262, 271, 293
Interval prediction

basic predicted value, 278
development domain, 276, 277
highest predicted value, 276
linear domain, 274
lower bound function, 274
lowest predicted value, 277
predicted domain, 276
proportional domain, 274
trumpet-like domain, 274
uniform domain, 274
upper bound function, 274
value domain, 274
wrapping domain, 275

Interval value image, 93, 94

K
Knowledge base, 1, 24, 64
K-zigzagged line, 94, 98

L
Labor elasticity, 251
Labor input, 250
Laplace transformation, 217, 326, 327, 331
Law of grey exponent

law of negative grey exponent, 82
law of positive grey exponent, 82
law of quasi grey exponent, 82, 84

Length
information field, 103

Length of a sequence, 103, 105
Levels of accuracy, 75, 90, 199
Limit value, 31
Linear region, 64
Log-linear form, 251
Lower bound, 340, 341
Lower bound, 45, 46, 54, 274, 276, 277,

336, 340, 341
Lower effect measure, 307, 308, 310

M
Markov chain, 243, 255, 256
Mathematical model of linear control

system
controllable, 325
observable, 325
output equation, 324
output grey matrix, 15, 59, 242, 322
state equation, 324
state grey matrix, 331

Matrix
cluster coefficient, 164, 166
control, 285, 325
development, 285
grey characteristic, 156
mean-value, 53
moving probability, 254
nth step moving probability, 254
objective structure, 342
perturbation grey, 185
relational, 127, 128, 157, 159
scalar matrix, 104
state, 285, 324, 325
synthetic effect measures, 307, 309, 310
uniform effect measures, 306, 310, 312

Mean, 13, 15, 47, 59, 63, 76, 78, 97, 230,
273, 279, 338, 339, 341, 346, 356,
357, 359, 360, 365, 372

Mean-generating operator
adjacent neighbor, 222, 227, 279

Mean slope, 187
Membership function, 27, 48, 258–260
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Metabolic GM (1, 1), 212
Model

Cobb—Douglas, 16, 25, 242, 250
combined prediction, 26, 36, 90, 186,
187

comprehensively balanced, 37
critical, 46, 261, 358
distortion GM (1, 1), 278, 279
error modification, 208, 209
error-satisfactory, 273
general mathematical, 1
GM (0, N), 33
GM (1, 1), 271
GM (1, 1) power, 271
grey econometrics, 16, 243–245
grey input-output, 242
grey production function, 251
grey state, 256
grey Verhulst, 30, 186, 222–224, 227,
228

ideal, 307, 364
optimal grey input-output, 242
relation-satisfactory, 14, 273
remnant GM (1, 1), 207–209

Modeling
five-step, 283, 284
grey systems, 6, 16, 82, 195, 251, 332,
342, 363, 364, 371

Model simulation, 242
Moderate effect measure, 310
Monotonic sequence

decreasing sequence, 66, 68, 69, 72
increasing sequence, 66, 68, 72, 114

Most favorable factor, 128, 132
Moving average denoise operator, 75, 77
Moving probability, 254

N
New data, 75, 215, 345
New information GM (1, 1), 186, 212
Non-uniqueness principle, 251
Norm

continuous function, 335
Normality, 67, 95, 308

O
Objective, 15, 16, 24, 28, 35, 37, 91, 112,

247, 272, 278, 291–293, 295–298,
300–312, 324, 332, 342–344, 374,
376

Objective function, 16, 292, 298, 310, 342
Old data, 215, 345

On-time control, 345
Operations of grey number

addition, 226
division, 54
multiplication, 57
multiplication by a scalar, 50, 105
negative element, 261
power, 292
reciprocal, 116
subtraction, 57

Operator
averaging, 93, 167
buffer, 229, 360, 365, 366, 372
first order, 66, 67, 80, 216, 217
grey relational, 92
strengthening, 15, 67–69, 72–74, 365
weakening, 31, 67–71, 73, 75, 365, 366,
372

zero starting point, 98
Optimum

countermeasure, 298
decision scheme, 298–301, 310
effect vector, 299–301
event, 298

Original difference GM (1, 1), 186, 367

P
Paradox of decision-making, 313
Parameter, 16, 24, 25, 30, 31, 35, 75, 90, 91,

186, 187, 189, 190, 201, 203, 204,
220, 224, 242, 245–249, 251, 252,
254, 261, 275, 277, 284, 304, 322,
326, 332, 345, 346, 353, 368, 375

Partial-data GM (1, 1), 212
Partition, 155
Positioned coefficient

positioned coefficient of grey number,
47

synchronous, 324
Possibility function

lower measure, 156, 161–163, 172, 174
moderate measure, 156, 161, 163
typical form, 160–163
upper measure, 156, 161–163, 174, 181

Power model, 186, 222, 223, 225
Prediction control, 323, 348
Prediction value, 276, 277
Preference, 48, 263, 265, 267, 268
Principle of absolute greyness

informational differences, 13
minimal information, 14
new information priority, 14, 292



394 Index

non-uniqueness, 13, 14, 251
recognition base, 14

Probability, 26, 27, 48, 55, 56, 88, 231,
255–257, 273, 274, 337

Progress in technology, 12
Property closeness

maximum valuation, 89, 116, 120, 292,
308, 312, 313

non-negativeness, 80

Q
Quasi-favorable factor, 133
Quasi-optimal countermeasure, 301
Quasi-optimal event, 298
Quasi-optimal scheme, 301
Quasi-preferred factor, 132, 133
Quasi-smooth sequence, 77, 80, 82, 84

R
Ratio inverse, 366
Reciprocal image, 116
Relative errors, 202, 203, 209–211, 219,

222, 230, 254, 273, 280
Relative simulation error, 273
Remnant GM (1,1) model, 207
Restored value by inverse accumulation,

207
Restored value through derivative, 207
Reverse image, 116
Root-mean-square deviation, 273
Rule of maximum value, 312, 313

S
Satisfactory effect, 296
Self-memory grey model

other effective item, 226
self-memory item, 226

Sequence
behavioral, 64, 92, 93, 95, 97, 98, 119,
127–130, 133, 195, 246, 344

behavioral horizontal, 92
behavioral time, 92
equal time interval, 100, 212
errors, 196, 200, 202, 230, 254, 280
first order, 66, 67, 80, 248, 249
grey derivative, 187
homogeneous exponential, 81,
195–199, 201

length, 99–101, 103, 105, 107, 127
monotonously decreasing, 66, 68, 72,
73, 113, 114, 118, 305

monotonously increasing, 72, 73, 113,
114, 118, 305

non-dimensional, 92
non-homogeneous exponential, 81
quasi-smooth, 77, 80, 82
relative errors, 280
representative, 244
smooth, 77, 79, 186, 358
smooth ratio, 77
stepwise increasing, 78
upper distortion, 278
vibrational, 195, 196, 199–201

Sequence affected by operator, 78
Sequence operator

accumulating, 84
average operator, 75
inverse accumulating operator, 210
nth order, 326
smooth ratio, 77
stepwise ratio, 77, 78
unbiased operator, 31

Set of events, 293, 294, 300, 304
Shock wave

shock disturbed sequence, 66
shock disturbed system, 75
term of shock disturbance, 353

Simulation error
mean relative, 206, 273
relative, 202, 203

Simulation value, 208, 210, 233, 253
Slope

average slope, 94
Space

Euclidean, 297
grey relational factors, 94

Spectrum analysis, 15, 353, 355–357, 360
Spherical grey target, 291, 297, 298
State equation, 324
State transition probability, 255–257
State vector, 285, 324, 333, 335, 337
Stationary point, 114
Stochastic process, 64, 254
Superfluous term, 342
Superior

class, 295, 296
countermeasure, 295, 296
event, 295, 296, 309
object, 295, 296
scheme, 296, 298, 299

Superiority analysis, 127
Synthetic effect measure, 309, 310, 312
System

asymptotically stable, 338
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closed loop control, 321, 322
controllable, 325
grey, 73, 75, 78, 82, 87
grey linear control, 324, 326, 331
observable, 325, 326
open loop control, 321, 322
prediction models, 188
stable, 332–334, 336–341
uncontrollable, 69

Systems prediction, 1, 2, 15, 21, 187, 250,
272, 285, 286, 345

T
Tendency term, 304
Trap in prediction, 65
Triangular possibility function

center-point triangular possibility
function, 156, 157, 160, 179

end-point triangular possibility
function, 23, 157

mixed possibility functions, 156, 157
True behavioral sequence, 65, 66
Trumpet-like region, 274
Truth value, 65
Turning point, 160, 161, 172–175, 178–180
Two stages decision model, 314

U
Uncertain, 1, 4, 5, 13, 14, 21–24, 26, 27,

113, 155, 185, 201, 255, 257, 260,
262, 291, 336

Uncertainty
fuzzy, 26, 27
grey, 1, 27, 28
rough, 26, 28
stochastic, 27

Uniform domain, 274
Union, 4, 51, 55, 260, 267, 382, 385
Unitized

clustering coefficient, 313
clustering coefficient vector, 313

Upper domain, 274
Upper effect measure, 292, 307, 308, 310,

312
Useless predicted moment, 346

V
Value domain, 274
Variance, 35, 59, 88, 91, 242, 254, 273
Vector

cluster coefficient, 164
decision, 292, 297–300, 302, 303, 306,
309, 312–315, 317

decision coefficient, 292, 306, 313
grey constraints, 22
grey n-dimensional, 335
uniform effect measures, 312

Vibration sequence
amplitude, 66

W
Wave form prediction, 281
Weighted average weakening buffer

operator, 366
Weighted coefficient of kernel clustering

for decision-making, 314
Weighted moving average operator, 76, 356
Weight of criterion, 306
Weight vector group with kernel, 312–318
Whitenization of a grey number

mean whitenization, 47
whitenization equation, 223
whitenization matrix, 333

White number, 46, 49, 50, 55, 57, 64, 259,
260

Wrapping domian, 275

Z
Zigzagged line, 94, 98, 99, 105, 274, 281,

282
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