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Preface

TO THE SECOND EDITION

About five years after the first edition, my editor Rebecca Hodges-Davies at CRC Press
suggested to prepare a second edition. I happily agreed to fix some deficiencies, remove
some old and add some new material. In the process, I made sure that all MATLAB code
is up-to-date with release R2024a.

A little later, Rebecca contacted me about making the electronic version of this book
available as open access, sponsored by SCOAP3 (The Sponsoring Consortium for Open Ac-
cess Publishing in Particle Physics, https://scoap3.org). Of course I agreed, and Rebecca
suggested this second edition to SCOAP3, and then SCOAP3 approved. As a consequence
you can now check out https://oapen.org and pick up an electronic copy of this book,
but also other great books on accelerators, several of them named in the Bibliography.

But back to this book and the main changes compared to the first edition, which are:

⋆ In Chapter 2 the six-dimensional equations of motion are consistently derived from
the Hamiltonian. In the process the dynamical phase space variables naturally appear
and are subsequently used in Chapter 3 to derive six-dimensional transfer matrices.

⋆ I added new sections on

– fragment separators (Section 3.7.10);

– matching in longitudinal phase space (Section 5.5);

– system identification of superconducting cavity parameters (Section 6.7.3);

– new diagnostics, for example, a Feschenko monitor (Section 7.3);

– radioactive ion beams (Section 13.2.5);

– neutrino beams (Section 13.2.6);

– generating, measuring, and transporting polarized beams (Section 13.3);

– CEBAF as additional example of an accelerator (Section 14.4).

⋆ I added Chapter 15 on future accelerators with discussions of linear colliders, future
circular colliders, muon colliders, and plasma accelerators.

⋆ The calculations to analyze transverse betatron coupling now use Sagan and Rubin’s
algorithm, which is more robust than the previously employed method of Edwards
and Teng, especially for strongly coupled beamlines.

⋆ The transient beam loading calculations in Sections 6.6.3 and 6.6.4 now use the state-
space formalism which is very amenable to simulations in MATLAB.

⋆ Throughout the book, I cleaned up the MATLAB code and made it consistent with
the most recent release at the time of writing, which was R2024a.

xiii
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xiv ■ Preface

⋆ All dependencies on additional MATLAB toolboxes that had crept into the first edi-
tion are removed. All examples should now run in plain MATLAB and the PDE
toolbox. The latter is needed to calculate electro-magnetic fields in realistic geome-
tries.

⋆ Especially the PDE toolbox had evolved over time and required some changes in the
syntax. For example, a few commands such as pdesurf() are no longer supported and
are replaced by equivalent commands. For magnetic calculations only, a new so-called
unified workflow is available. Despite being more intuitive, I decided not to include it
in the main text, because it does not support the eigenmode calculations in Chapter 6,
and I prefer to use a consistent workflow throughout the book. I do, however, include
examples using the new workflow in Appendix B.6, which is available online from this
book’s webpage at https://www.routledge.com/9781032726960 or from github at
https://github.com/volkziem/HandsOnAccelerators2nd.

⋆ Many figures are now derived from three-dimensional models and are, hopefully, better
looking than those in the previous edition.

⋆ All known typos and mistakes from the previous edition were corrected. I am partic-
ularly grateful to my students and colleagues for pointing them out.

⋆ All software described in this book is freely available from my github site at https://
github.com/volkziem/HandsOnAccelerators2nd. Feel free to download and explore.

As before, there is a number of online appendices available as pdf, freely accessible from
this book’s webpage at https://www.routledge.com/9781032726960 or from github at
https://github.com/volkziem/HandsOnAccelerators2nd.

Solutions to the end-of-chapter exercises are available for qualifying teachers from this
book’s webpage at https://www.routledge.com/9781032726960.

TO THE FIRST EDITION

A little over 10 years ago I moved from our lab that operated the CELSIUS storage ring for
nuclear physics experiments to the high-energy physics department at Uppsala University.
There I followed a request to develop a course on Accelerator Physics. The main purpose at
the time was to teach graduate students in nuclear and high-energy physics how the accel-
erators, on which they perform the experiments for their theses, work. Of course, I was also
interested to attract students that are interested in my own field of research—accelerator
physics. When designing the course I had two types of students in mind, particle-physics
experimentalists and accelerator physicists, and what they should know after completing
my course.

As the archetypical high-energy or nuclear physics student, I visualized a detector-liaison
physicist, similar to the ones that populated the accelerator control-room of the SLAC
Linear Collider, where I used to work as a Post-Doc. At that time, in the early nineties, the
SLD detector “consumed” the beams and the detector collaboration deployed a physicist in
our control-room, where we, the accelerator crew, prepared the beams. The idea was to tell
us when our beams were not good enough for the detector or when we could experiment
with the beams ourselves, while they changed data collection tapes. These detector liaisons
were extremely beneficial for smooth operation and our interaction worked better as we
learned each other’s systems. In short, I want my students from high-energy physics to
have a sound understanding of the system, we accelerator physicists operate, in order to
efficiently interface the operation of detector and accelerator—a sort of survival guide for
detector liaisons. Over the years giving the course a variant of the liaisons, colleagues from

https://www.routledge.com/9781032726960
https://github.com/volkziem/HandsOnAccelerators2nd
https://www.routledge.com/9781032726960
https://github.com/volkziem/HandsOnAccelerators2nd
https://www.routledge.com/9781032726960
https://github.com/volkziem/HandsOnAccelerators2nd
https://github.com/volkziem/HandsOnAccelerators2nd
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neighboring departments, participated and I realized the course gives these experts in their
respective fields a wider perspective of accelerator physics and technology.

As to my prospective accelerator physics students, I visualized them marooned on an
island with a computer that is well-equipped with software to design accelerators and their
subsystems. Is there a better way to beat the boredom on a deserted island than to design
prototype accelerators? The software I selected at the time was the MADX code for beam
optics calculations, the student version of the Maxwell code from ANSYS for magnet calcu-
lations, and my own VAKTRAK for vacuum calculations. I used these codes on very simple
problems to teach how to get started designing beam optics, magnets, or vacuum systems.
This hands-on approach to really understand how to work with real-world, though simple,
problems was appreciated by the students, both with detector and with accelerator interest,
because they learned things useful beyond the direct use in accelerators. This worked quite
well for a number of years.

But over time, some of the software was not supported anymore and the installation
of large software packages took too much time to make it work for a number of students
with computers running all sorts of operating systems. Moreover, for some short examples,
learning an arcane input language distracts too much from the underlying physics. In the
past few years I therefore moved to using MATLAB® [1] and Octave [2] for a number
of topics. This had the additional benefit that the students could play with the software
more easily, add features and inspect what goes on inside the code. Moreover, only a single
software package, available on many operating systems, has to be installed and maintained.
Octave is open source and freely available, and most technical universities have site licenses
for MATLAB.

This book grew out of the move towards MATLAB and Octave and teaches the core
topics of accelerator design, but not limited to beam optics, magnets, radio frequency and
vacuum systems with the help of small or moderately complex code examples—each dis-
cussed in detail. All MATLAB functions referred to in this book, to prepare figures or
otherwise, as well as an instructor’s manual with complete solutions to all exercises, are
available on the book’s web page at https://www.crcpress.com/9781138589940. Most
examples work equally well in MATLAB or in Octave. Only the examples to numerically
calculate electro-magnetic fields in Chapters 4, 6, and 7 require solving partial differential
equations and are based on MATLAB’s PDE toolbox. Furthermore, the interface to the
functions of the PDE toolbox (the workflow in MATLAB’s parlance) has changed. There-
fore, two versions are provided: one for R2018b, which is covered in the text; and one for
R2015b, which is explained in the online material.

The best way of learning about accelerators is to spend time in the control-room, observe
what goes on, and eventually turn knobs oneself. But that is unfortunately not always
possible; either there is no accelerator close by, or the one that is, is tied up running for users,
either high-energy physicists, users of synchrotron radiation, or for treating patients. A way
out of this dilemma is to use equivalent systems that show key features of the corresponding

https://www.crcpress.com/9781138589940
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accelerator systems. I follow this approach in the lab sessions described in the appendix.
There I use a laser-pointer to illustrate beam size and emittance measurements, design and
measure magnets with small permanent magnets, and analyze a radio-frequency resonator
made of a closed metallic cylinder—a cookie-jar with antennas.

For product information on MATLAB, please contact:
The Mathworks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-607-7001
Email: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
https://www.mathworks.com
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C H A P T E R 1

Introduction and History

Charged particle accelerators drive a large sector of modern research in sub-atomic physics,
in material, and in life sciences. Moreover, they play an ever-increasing role in medical
applications, both for therapy and for diagnostic purposes. Most of these accelerators are
large installations, but also smaller accelerators are used to modify material properties or
to sterilize medical waste. Even old-fashioned thick-screen TV sets accelerate and guide
charged particles, electrons, in an evacuated vessel and guide them to a screen, where they
produce light that we experience as TV images. In this book we answer the question why and
how accelerators acquired such a prominent role in modern society, and which technologies
are used to satisfy this role. But before discussing the scientific and technical aspects, we
briefly recall the history of charged particle accelerators. For a more detailed exposé the
reader is referred to [3].

The first technical device, which accelerated charged particles, electrons, is the cathode
ray tube, invented by Braun. Already in 1897, he used electric and magnetic deflecting fields
to make electrical oscillations visible by directing accelerated electrons, moving in a vacuum
tube, onto a luminescent screen. Figure 1.1 shows a sketch of such a tube. The electrons are
created in a thermionic cathode, shown on the left. It is basically a heated wire from which
electrons are extracted by the electric field caused by the voltage between the anode and the
cathode. A second voltage, which can be time-varying, is applied to deflection plates and
directs the beam to the luminescent screen, where the electrons are detected. The entire
setup is embedded in a vacuum tube to avoid collisions of the electrons with the residual gas.

Here we already have the essential ingredients of an accelerator present: particle creation,
acceleration, guide field, detection or diagnostic, and vacuum. Note that in a TV tube the

Figure 1.1 Cathode ray tube.

This chapter has been made available under a CC BY NC license. 1



2 ■ Hands-On Accelerator Physics Using MATLAB®

deflection plates are replaced by magnetic coils, deflecting the electrons both horizontally
and vertically. Cathode ray tubes were used in TV sets and oscilloscopes into the early years
of the third millennium, but they are largely superseded by systems based on flat-screen
displays.

The energy of the electrons in cathode ray tubes is rather modest after being acceler-
ated through voltages on the order of a few tens of kV, but this is sufficient to produce
images. The development of accelerators did not advance significantly until the late 1920s
when several new technologies, which dramatically increased the kinetic energy of charged
particles, appeared. Of course this development was stimulated, like so much else, by the
development of quantum and nuclear physics during the first three decades of the previous
century. In 1911, Rutherford used charged particles, emitted by a radioactive source, to
probe atoms located in thin foils. He detected very large deflection angles and inferred that
atoms are made up of positively charged nuclei and negatively charged electrons, an obser-
vation that led Bohr to publish his model of the atom two years later. Using high-velocity
charged particles to probe the substructure of the target material thus proved highly useful
and inspirational.

In 1913 father and son Bragg used x-rays in order to probe the structure of crystals
because the x-rays have a wavelength comparable to the distance between atoms in the
crystal and cause diffraction patterns on photographic plates. Earlier, Einstein and Planck
had postulated that photons, such as x-rays, can behave like waves or like particles, de-
pending on the experiment performed. By exploiting this analogy, de’Broglie suggested in
1924 that even electrons, or actually any matter, can behave like either wave or particle
with wavelength λ, given by the momentum p of the particle

λ =
h

p
, (1.1)

where h is Planck’s constant. This suggestion was picked up by Schrödinger, who used it to
develop wave mechanics and the equation that bears his name. The inverse proportionality
of the wavelength on the momentum indicates that high momenta are required to generate
the short wavelengths needed to obtain diffraction patterns from small structures, such as
atomic nuclei. The bottom-line is that nuclear probes with large momenta are needed. And
this resulted in the development of a number of different accelerators, all of which were
invented in the late 1920s.

In 1928 Widerøe demonstrated a method to accelerate potassium ions using voltages
that reverse their polarity at very high radiofrequencies. Figure 1.2 illustrates the idea. A

Figure 1.2 Widerøe’s drift-tube linear accelerator.
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Figure 1.3 Van de Graaff accelerator.

drift tube is connected to a high-frequency oscillator that rapidly reverses the polarity to
create an alternating electric field between the drift tube and the adjacent tubes. In the
figure, the positively charged ions are accelerated by the electric field in the gap between
the source and the drift tube. The field between the drift tube and the following tube at
this instance points in the wrong direction and would decelerate the ions. But the length of
the drift tube is chosen such that the ions appear at the exit just as the field has reversed its
polarity and can accelerate the ions once again, thus doubling their energy. Repeating this
mechanism requires tubes of increasing length where the ions can “hide”while the polarity is
reversed, especially with the relative modest frequencies that could be reached at the time.
On the other hand, even today it is used to accelerate protons or heavier ions. An important
modification of Widerøe’s principle of using drift tubes is due to Alvarez. In the late 1940s,
he embedded the drift tubes in a large tank and used high-frequency radio waves to excite
standing waves in the tank. The geometry was adjusted in such a way that the longitudinal
electric field components in the gap between adjacent drift tubes have opposite signs. In
this way particles “hide” in the drift tubes, while the standing wave reverses polarity before
they are accelerated again in the following gap. This method is used in early stages of linear
proton accelerators, such as the European Spallation Source.

From 1929 on, Van de Graaff developed the electrostatic accelerator, shown in Figure 1.3.
It is based on charge being deposited on a belt, made of isolating elastic material, such as
silk or rubber, by a corona discharge. The belt is mechanically moved by a motor driving
pulleys to transport charges to the upper platform where they are deposited at a higher
potential. Ions, created in a source at the high potential, are accelerated toward ground
potential in the accelerating column, where a resistor cascade ensures a linearly changing
potential and a constant accelerating field. Back at ground potential, the accelerated ions
impinge on a target that is part of an experimental station. A modern version of this
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Figure 1.4 Greinacher voltage multiplier that is the base of a Cockroft-Walton ac-

celerator.

device is called a Pelletron and is, for instance, used for experiments to determine the
surface properties of materials, but also in high-energy electron coolers. A tandem accelerator
uses the high voltage generated by a Van de Graaff accelerator twice, once to accelerate
negatively charged ions, strip one or several electrons from the ion, and then it uses the
same acceleration potential a second time to accelerate the, now positively charged ions,
toward the experiment that is conveniently located at ground potential.

A second method to generate constant high voltages was employed by Cockroft and
Walton. They used a cascaded network of capacitors and diodes, invented by Greinacher in
the 1920s, to reach very high accelerating voltages. Figure 1.4 explains the basic operating
principle of the voltage multiplier. The negative voltage of the AC voltage Us that is applied
at the left-hand side charges capacitor C1 to Us and the positive voltage half an oscillation
period later charges C2 to 2Us. Cascading these units makes it possible to reach voltages into
the MV range. In 1932 Cockroft and Walton used their apparatus to impinge accelerated
protons on to a lithium target and induce the first artificial nuclear reaction: p + Li →
2He. For this discovery they received the Nobel prize in Physics in 1951.

Sustaining high multi-MV constant voltages to accelerate particles, as used in both Van
de Graaff and Cockroft-Walton accelerators, is technologically demanding and limited by
the available insulation. In 1929 Lawrence had the ingenious idea to use alternating radio-
frequency voltages to accelerate protons in a wound-up drift tube linac. Figure 1.5 illustrates
the operating principle of the device, called the cyclotron. In the center a source creates
charged particles that are forced on a near-circular spiral trajectory by a static magnetic
field. At the same time they are accelerated by repeatedly changing the polarity of two
accelerating “dees,” which have the same role as the drift tubes. The particles “hide” in
the “dees,” while the polarity is reversed, such that they are accelerated once again in
the second gap. The increase of the radius of the particles must exactly compensate their
increased speed. For non-relativistic particles at radius ρ, the speed v, and revolution time
T are related by v = 2πρ/T = 2πfρ, where we introduce the revolution frequency f = 1/T.
Moreover, on the circular path, the centrifugal and centripetal forces must balance

mv2

ρ
= evB . (1.2)

Inserting the relation between speed v and frequency f in order to eliminate the radius ρ,
we find that choosing the frequency to be

f =
eB

2πm
(1.3)

guarantees synchronicity, independent of the radius and the speed of the particle. For ob-
vious reasons f is called the cyclotron frequency. Since the magnetic field is constant, the
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Figure 1.5 Key components of a cyclotron. Only the lower yoke and coils of the

magnet are shown.

radius of the orbit increases as is indicated by the spiral drawn in Figure 1.5. Synchronism
is guaranteed as long as the particles move at non-relativistic speeds up to energies of a few
tens of MeV for protons.

The synchronous condition is violated, if the mass of the proton changes due to relativis-
tic effects as m = γm0, where m0 is the particle rest mass, γ = 1/

√
1− v2/c2, and c is the

speed of light. At higher speed or energy the radio frequency needs to be reduced in order
to maintain synchronicity. In these so-called synchrocyclotrons, the frequency is modulated
in such a way to balance the relativistic increase of the mass. That the particles follow the
changing radio frequency in a stable fashion is a consequence of phase focusing, discovered
in the mid-1940s by Vecksler and McMillan; particles with speed too low arrive a little late
and are accelerated a bit more and consequently are pushed closer to their desired arrival
time. We will discuss phase stability in detail in Chapter 5. A consequence of modulating
the frequency is a pulsed emission of accelerated particles from the cyclotron, typically a
few hundred times per second. At some point in time the frequency is just right to cap-
ture particles in the center, but then it decreases to guide the captured particles to higher
energies. While one particle batch travels outwards in the cyclotron to higher energies, no
other particles can be captured in the center, because the frequency is non-synchronous.
Synchro-cyclotrons with specially shaped magnetic fields in addition to the modulating gen-
erators make it possible to reach moderately relativistic energies up to about 600MeV in
the large cyclotrons at the Paul Scherrer Institute (PSI) near Zürich, Switzerland and at
the Tri-University Meson Facility (TRIUMF) in Vancouver, Canada.

The magnetic field in a cyclotron is constant, and the accelerated particles circulate with
increasing radii, which requires huge magnets to produce high fields all the way from the
center. In 1942 Oliphant came up with a way to leave out the central part of a cyclotron.
He suggested to maintain a fixed radius by synchronously increasing the magnetic field and
the frequency of the RF system used to accelerate the particles. Phase stability or phase
focusing, as it is also sometimes called, guaranteed that such an accelerator operates stably;
particles with a slightly “wrong” arrival time or energy experience a force that pushes them
back toward the design values. Adjusting magnets and RF synchronously led to calling
these accelerators synchrotrons. Early machines were built for electrons and later, in the
1950s, for protons. The early synchrotrons such as the Cosmotron in Brookhaven, shown
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Figure 1.6 The Cosmotron was the first high-energy proton synchrotron.

in Figure 1.6, and the Bevatron in Berkeley, used specially shaped magnet poles to provide
focusing toward the particle’s design trajectory, which is called weak-focusing (more on that
in later chapters). In 1952, however, Courant and his colleagues found out that splitting the
magnets into functional blocks, dipole magnets to deflect, and quadrupole magnets to focus,
allowed a more compact construction of the accelerator. Since Maxwell’s equations force the
quadrupoles to focus in one plane, say the horizontal, and defocus in the other, vertical plane,
a sequence of focusing and defocusing magnets is needed, which led to the name alternating
gradient focusing. Moreover, the focusing magnets could use much stronger fields, which led
to calling this method strong focusing. The first large strong-focusing synchrotrons were the
Alternating-Gradient Synchrotron (AGS) in Brookhaven and the Proton Synchrotron (PS)
at CERN in Geneva, the latter designed to accelerate protons to 25GeV, an energy that
corresponds to a little under 30 times the rest energy mpc

2 of the proton.
At this point, we need to look at the scientific output of the high-energy accelerators,

the developments of particle physics into the 1960s, and how that determined the further
development of accelerators. Life as a particle physicist was easy in the 1920s; only photons,
the carriers of light quanta, protons and electrons had to be considered. But in 1928 Dirac
predicted that the electron has an antimatter sibling, the positron, which can be considered
as its mirror image. Shortly afterward, in 1932, Anderson discovered the positron and in the
same year Chadwick and Urey discovered the neutron. By analyzing radioactive decay and
in order to explain the decay of the neutron, Pauli postulated the existence of yet another
particle, the neutrino. Further sub-atomic particles joined the zoo with the discovery of
the muon in 1936. Earlier, Yukawa had predicted the existence of elementary particles to
account for the stability of atomic nuclei, so-called pi mesons that were experimentally
discovered in the late 1940s. The number of elementary particles proliferated dramatically
after accelerators started producing them in abundance, and detection methods for new
particles improved. In the 1950s and 1960s, a veritable particle zoo emerged with a large
number of different mesons and heavier particles, the baryons. The abundant proliferation
of new particles initially had no discernable structure, but order was partially restored,
when Gell-Mann and Zweig identified underlying symmetries and proposed that mesons
and baryons are composed of more fundamental entities, the quarks. This discovery not
only explained the properties of the many recently discovered particles, but also predicted
new ones, which were promptly found. At this point the question arises how the quarks
interact with each other.

And this motivates a brief discussion of the fundamental forces that govern all inter-
actions. First known was the gravitational force, put on a sound theoretical foundation,
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Figure 1.7 Fermilab accelerator complex in which protons are created in the injector

complex before they are injected and accelerated further in the large ring from where

they either serve fixed-target experiments or generate antiprotons. Once protons

and antiprotons are available, they are made to collide in two detectors, CDF and

D0.

first by Newton in 1687, and later by Einstein with the general theory of relativity in 1915.
The second type of fundamental forces known were electric and magnetic forces. In 1865,
Maxwell published a theory that explains these forces in a unified way as a single underlying
force, the electro-magnetic interaction. Later these forces were associated with the exchange
of particles, the photons. The fundamental force responsible for radioactive decay is called
the weak interaction and we now know that it is mediated by Z– and W–bosons. The last
fundamental force is called the strong interaction and is responsible for the forces inside
the nucleus and between quarks. Since the 1970s we know that the strong interaction is
mediated by carriers called gluons. Here we already see another ordering scheme. There
are particles that constitute matter and there are force carriers, the interaction bosons
such as photons, Zs, or gluons. The theory that was developed during the 1960s and 1970s
that places the electro-magnetic, weak and strong interaction in a coherent framework is
called the standard model. This model was extremely successful in explaining and predicting
sub-atomic phenomena, culminating in the discovery of the Higgs boson in 2012.

The masses of the predicted particles were sometimes unknown and often beyond the
reach of existing accelerators. This triggered the construction of bigger accelerators to extend
the range toward higher energies in order to find the particles and probe their properties.
The accelerators dramatically grew in size because the field in conventional iron-dominated
electro-magnets is limited to approximately 2T. This high-energy frontier was explored with
large synchrotrons in Serpukhov, Russia, the Super Proton Synchrotron (SPS) at CERN,
and the one at Fermilab near Chicago, which is shown in Figure 1.7. These accelerators
reached proton energies of several hundreds of GeV and had circumferences measured in
kilometers.

A second feature of the predicted particles is the very small probability to produce
them, which made it necessary to increase the collision rate of the accelerated particles with
a target. Moreover, when smashing particles into a fixed target, momentum conservation
dictates that some of the available energy is converted to the kinetic energy of the reaction
products. On the other hand, when colliding particles head-on, with momentum of equal
magnitude, but opposite direction, the total momentum is zero in both laboratory and
rest frame, such that all energy is available for the reaction products. Additionally, by
circulating two beams in opposite directions and repeatedly colliding them head-on increases
the collision rate, and thus the ability to observe rare reactions. This reasoning led to the
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concept of colliding beam storage rings, which was first investigated with electrons in the
early 1960s with the small electron-positron collider ADA (Anello di Accumulazione) in
Frascati near Rome. In the following years, the concept was tested at the VEPP colliders
in Novosibirsk. For protons, the first collider was the Intersecting Storage Ring (ISR) at
CERN, where the ideas were tested further and the technology mastered throughout the
1970s.

Note that the ISR collided protons on protons due to the unavailability of a high-quality
source for antiprotons at the time. But the situation changed with the invention of stochastic
cooling by van der Meer, which greatly improves the beam quality of the antiprotons that
were generated by smashing high-energy protons into a target. Once the production of
high-quality antiprotons was under control, the large synchrotrons at Fermilab and CERN
were converted to colliders for protons and antiprotons, leading to the discovery of the
mediators of the weak force, the Z- and W-bosons at CERN in 1983 and the top quark in
1995 in the Tevatron at Fermilab. Figure 1.7 shows accelerator complex with the 6.3 km
Tevatron and its detectors CDF and D0 as well as the area for fixed-target experiments.
More recently, in operation since the year 2000, the Relativistic Heavy Ion Collider (RHIC)
in Brookhaven collides, for example, gold ions to probe how matter behaved immediately
following the Big Bang. At CERN, the Large Hadron Collider (LHC), in full operation
since 2010, was instrumental in the discovery of the Higgs boson, which explains the masses
of elementary particles. The Facility for Antiproton and Ion Research (FAIR), based on a
large synchrotron, dedicated to many aspects of nuclear physics, is under construction at
GSI near Frankfurt.

Most of the accelerators discussed so far accelerate protons and sometimes heavier ions in
order to induce subnuclear reactions and discover new particles. The large mass of the proton
helps to reach high energies used to stimulate nuclear reactions in targets, either a fixed
target or the counter-propagating beam in a collider. The high energy density makes them
the perfect tool to discover new particles or excited states of known particles. Thus proton
accelerators can be considered discovery machines. They allow us to create energy densities,
not accessible in any other way. But carefully probing a target with protons is difficult,
because protons are composite particles made of quarks and gluons. Electrons, on the other
hand are, as far as we know today, point-like and are much better probes of the internal
structure of the targets, such as nuclei. Therefore, high-energy electron accelerators can be
considered as precision machines. A hybrid machine that uses electrons to probe protons
is the Hadron-Electron Ring Accelerator (HERA) that operated at Deutsches Elektronen
Synchrotron (DESY) in the 1990s. But now let us turn to plain electron or electron-positron
accelerators.

After the first electron accelerators, the cathode ray tubes, Kerst developed the beta-
tron in the 1940s. This accelerator uses the induction voltage generated by a time-varying
magnetic field. In this way the betatron resembles a transformer, where the magnet coil is
the primary winding and the accelerated electron beam the secondary winding. Betatrons
can accelerate electrons up to about 200MeV but are not much used today, except in some
cases to generate x-rays by impinging the accelerated electrons on a target made of, for
example, tungsten.

As we saw earlier, electron accelerators were developed in parallel to the high-energy
proton machines, often as proof-of-principle prototypes. Examples comprise a small electron
synchrotron constructed as prototypes for the Bevatron and a small machine in Brookhaven
to explore the principle of alternating-gradient focusing. After starting their lives as pro-
totypes, many additional electron synchrotrons appeared throughout the 1950s. They were
mostly used for nuclear physics experiments. But the small mass of the electrons makes
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reaching high energies more difficult compared to protons. Moreover, it was already known
in the late 1940s that forcing electrons on a circular orbit causes them to emit synchrotron
radiation. The emitted energy is inversely proportional to the bending radius ρ and to the
fourth power of the mass of the radiating particle. Electrons therefore require either large
rings or a straight linear accelerators. But in linear accelerators, the acceleration structures
are used only once, and many of them are required in order to reach high energies. To
excite high accelerating fields in those structures, efficient sources of radio-frequency power
are needed. Luckily this technology was developed for radar applications during the Second
World War. In particular, power amplifiers for RF signals, called klystrons, became available
to generate radio-frequencies in the multi-MHz and even GHz range at MW power levels.
This development triggered a sequence of linear electron accelerators, culminating in the
3 km linac at the Stanford Linear Accelerator Center (SLAC), under construction from 1962
onward. In the SLAC linac, 240 klystrons were used to accelerate electrons to a maximum
energy of 20GeV.

The SLAC linac proved to be a precision probe for nuclear matter. It smashed point-like
electrons into target materials to probe the substructure of atomic nuclei. Their constituents
were originally called partons but could later be identified as quarks and gluons, thus proving
their existence. In the 1980s the acceleration system was upgraded to increase the maximum
beam energy to 50GeV. This energy is suitable to probe the Z-bosons, earlier found in the
SPS, and the SLAC linac was converted to a linear collider. Both electrons and positrons
were first accelerated in the linac and then guided through two arcs to collide head-on with
micron-sized beams. In the collisions, the details of the Z-boson were investigated. In paral-
lel, also in the 1980s, a large synchrotron with a circumference of 27 km to collide electrons
and positrons, named LEP, was built at CERN. It was also used for precision studies of
Z- and W-bosons. The copious amount of synchrotron radiation emitted by LEP, which is
proportional to E4/ρ where E is the beam energy and ρ the radius of curvature limited
the energy of the particles to 100GeV, in which case the beam lost about 3% of its energy
per turn. An electron collider at higher energies therefore needs to be straight—a linear
collider, or have a much larger circumference than LEP. There are several candidates for
accelerators to do precision measurements of the physics discovered at the LHC. One is the
International Linear Collider (ILC), a 30 km long linear accelerator that uses superconduct-
ing radio-frequency accelerating structures. The second candidate is the Compact Linear
Collider (CLIC). It uses normal-conducting structures, is up to 50 km long, but promises to
reach much higher energies than ILC. The third candidate is the Future Circular Collider
(FCC), a ring with a circumference of close to 100 km that might first house an e+e−–
collider, later to be replaced by a proton collider, to repeat the trick to replace LEP with
LHC in the same tunnel. We will come back to these machines in Chapter 15.

Of course the large electron ring for the FCC is not the first of its kind; several electron
synchrotrons were constructed at DESY in Hamburg, among them DESY, DORIS, and
PETRA, to explore the physics of quarks. In Japan, the KEK laboratory was established
in 1971 and operated, among other machines, the TRISTAN synchrotron and the KEKB
B-factory. Even at SLAC the SPEAR and PEP colliders were in operation and some of them
live on in different incarnations as synchrotron light sources or as factories. Nowadays, we
call colliders with very high beam currents “factories,” because they allow us to probe
extremely rare events, involving charm-quarks at Daphne in Frascati, or bottom(B)-quarks
at KEKB, mentioned above, and PEP-II at SLAC.

Next to the colliders, where head-on collisions reach high reaction energies, a second
class of electron machines produces a continuous high-intensity stream of electrons that is
directed onto fixed targets. Microtrons, for example MAMI in Mainz, reach energies up to
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the GeV range. A close relative to microtrons and reaching energies of soon up to 12GeV, is
the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab
in the US. Energy recovery linacs (ERL) are close relatives of microtrons. They use the
same structures that accelerate the beam, to later decelerate it, and thereby recover the
energy that is carried by the beam.

A further use of electron rings emerged from using the emitted synchrotron radiation in
material and life-science experiments. Electron rings, dedicated to this purpose, are called
synchrotron light sources and are nowadays custom-built whereas in the past high-energy
colliders were often refurbished colliders previously used for particle physics. As a prototyp-
ical example, let us consider SPEAR at SLAC, which went through several stages. It was
initially constructed as an electron-positron collider in which the J/ψ particle was discov-
ered in 1973. The spectrum of the synchrotron radiation emanating from the dipole bending
magnets extends into the x-ray regime and was used for material science and medical ap-
plications since the late 1970s. Thus SPEAR served as both a high-energy collider and as
a first-generation light source. Soon it was realized that the radiation can be dramatically
enhanced by placing special magnets, so-called undulator and wigglers, in the ring. They
just cause small sideways undulations of the particles without changing the overall geom-
etry of the ring. Yet, this sideways motion leads to an increased emission of synchrotron
radiation. Adding these specialty magnets transformed SPEAR into a second-generation
light source. In the 1990s SPEAR was completely rebuilt with a dedicated magnet sequence
to optimize the generation of synchrotron radiation, which turned it into a third-generation
light source. The expertise in using synchrotron radiation later led to the conversion of part
of the SLAC linac into the Linac Coherent Light Source (LCLS), the first free-electron laser
producing x-rays.

Worldwide, there are numerous third-generation light sources, specifically built to serve
a huge user base. Examples are ALS in Berkeley, BESSY-II in Berlin, the Shanghai Light
Source, the Swiss Light Source near Zürich, Diamond near Oxford, NSLS in Brookhaven,
TPS in Taipeh, PLS in South Korea, the APS in Argonne, ESRF in Grenoble, and the
MAX IV laboratory in Sweden. Not only are the ring-based light sources proliferating, but
also more and more free-electron lasers (FELs)are appearing. Examples are FLASH and the
European XFEL in Hamburg, SACLA in Japan, SwissFEL in Switzerland, and at PLS in
Korea.

In life and material sciences, the photons, produced so copiously in synchrotron light
sources, are used to probe the distribution of electrons in matter. A complementary way
is provided by neutrons that mostly scatter from light atoms such as hydrogen. Moreover,
being electrically neutral, and, at the same time, carrying a magnetic moment, neutrons
are the perfect probes for magnetic properties of materials. Historically, many experiments
with neutrons were performed on nuclear reactors, but they only provide a comparatively
low neutron flux and the neutrons arrive continuously, making time-of-flight experiments
difficult or wasteful by chopping the neutron beam by periodically removing a fraction of the
neutrons with a shutter. A complementary approach is pursued by dedicated accelerator-
based neutron sources, such as ISIS near Oxford, the cyclotron at PSI near Zürich, the
SNS near Oak Ridge, and soon the ESS in Sweden. These machines accelerate protons and
direct them onto targets, where they cause nuclear reaction cascades, resulting in a large
number of neutrons. These are moderated to low energies in a large block of hydrogen-rich
material, and they are directed to experimental stations. There, the arrival time of the
neutrons is related to their energy and a further selection is achieved by monochromators,
before directing the neutrons on a sample to probe its properties.
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Large numbers of accelerators are used for medical purposes. Small linear electron-
accelerators with energies of around 10MeV operate in many hospitals, either to produce
high-energy photons or to directly irradiate tumors. Since in this case the depth-profile of
the deposited dose decays exponentially, nowadays even protons or heavier ions such as
carbon are used, because they deposit most of the dose at a certain depth, as we shall see in
Chapter 9. Protons with energies around 200MeV deposit most of their dose at a depth of
about 28 cm, which allows them to irradiate tumors in any part of the human body. Since
the 1990s, dedicated cancer clinics using protons are in operation. Small proton accelerators,
often cyclotrons, are in use in order to produce radioactive isotopes for positron-emission
tomography or to produce medical tracers.

Apart from the larger groups of accelerators for sub-atomic research, synchrotron radi-
ation or medical applications, a wide variety of other specialty machines exist to sterilize
food, implant ions, and there is even one in the Louvre in Paris for analyzing works of art.
Van de Graaff Tandem accelerators probe surfaces by detecting particles ejected from the
surface.

Despite the huge difference in beam energies and sizes of accelerators, the basic physical
concepts that guide their design and operation are the same. In the following pages we
discuss these concepts in detail and illustrate the methods with MATLAB and Octave
code. We also discuss the technological choices to achieve certain performance goals, such
as why to use either normal- or superconducting technology for magnets or for accelerating
structures. We also address limits for different types of accelerators arising from achievable
fields in magnets that typically limit high-energy proton accelerators or radio-frequency
technology that may limit high-energy electron accelerators. But now we turn to a brief
outline of things to come.

In the next chapter we first discuss how to formulate design criteria for an accelerator
and define its geometry, which we illustrate with code to determine where to put magnets
and other accelerator components on the floor. We even produce input files for 3D model-
ing programs that allow us to visualize the layout of the accelerator. Dipole magnets and
the distance between them define the reference trajectory. We continue to introduce the
commonly used coordinate system relative to the reference trajectory. Deriving the Hamil-
tonian that describes the dynamics of charged particles in accelerators provides us with a
consistent framework to introduce the variables commonly used in the literature, both for
single particles and for ensembles of many particles, the beam.

In Chapter 3, we use the Hamiltonian formalism to derive six-dimensional transfer matri-
ces for beam optics. We illustrate their use with MATLAB code, first in one, the horizontal
plane, and then in both horizontal and vertical planes. We discuss concepts such as the
beam matrix, emittance and beta function, but also energy-dependent effects such as dis-
persion and chromaticity. Finally we apply the developed formalism to design simple beam
optical systems, also illustrated with MATLAB. In Chapter 4 we discuss methods to de-
sign the magnets needed to build the accelerator, designed in the previous section and also
illustrated with MATLAB to solve Poisson’s equation in simple geometries. We also dis-
cuss technological aspects pertaining to iron-dominated, superconducting, and permanent
magnets.

After having the magnets to guide and focus the beam, we discuss how to accelerate it
in Chapter 5. Here we discuss the concept of phase stability, alluded to above, and how to
accelerate in linear and in circular accelerators. After the beam physics, we turn to radio-
frequency technology in the next chapter, where we discuss power generation, transport in
waveguides and coax lines, couplers and antennas and the accelerating structures, sometimes
also called cavities, that transfer the power to the beam. For the analysis of the modes in



12 ■ Hands-On Accelerator Physics Using MATLAB®

waveguides and cavities, we use the MATLAB-PDE toolbox. Now that we have the basics
covered, we know how to accelerate and guide a perfect beam. But neither the world nor
accelerators are perfect, and we devote Chapter 7 to diagnostic methods to find out what is
wrong and Chapter 8 to imperfections and to correction methods to fix the imperfections.

At this point we can design, build, control, and operate an accelerator, and it is time to
use it for experiments. In Chapter 9, we discuss beam-physics issues arising from colliding
beams with targets or counter-propagating beams. In Chapter 10 we talk about the gen-
eration of synchrotron radiation, both about the amount and properties of the radiation
and how this affects the beam. We then cover the basic theory and technological aspects of
free-electron lasers. Chapter 11 introduces non-linear dynamics including Hamiltonians, Lie
methods, and normal forms, all illustrated with MATLAB code. In Chapter 12, we cover
intensity-dependent limitations of accelerators, and in Chapter 13 we consider many of the
technological subsystems that are needed to operate an accelerator. Here we treat, among
other topics, the control system, the particle sources, vacuum and cryogenics. In Chapter 14
we discuss a number of accelerators, such as the LHC, LCLS, and ESS, as well as medi-
cal and industrial accelerators. There we point out how the topics covered in the earlier
chapters are used to operate a real machine. Chapter 15 briefly describes future projects,
among them linear and muon colliders, the next generation of circular colliders, and plasma
accelerators.

Several student labs are discussed in the Appendix. Here we measure the beam profile
of a beam from a laser pointer and determine the emittance, or M2 in laser parlance, of
the same laser beam. In the next labs, we calculate, build, and measure magnets, based
on small permanent magnet cubes inserted in 3D-printed frames. In the last lab, we use a
network analyzer to characterize a simple pill-box cavity made from a cookie-jar.

Several topics are relegated to online appendices, available from this book’s webpage at
https://www.routledge.com/9781032726960 or from https://github.com/volkziem/

HandsOnAccelerators2nd, which also contains the MATLAB source code that appears
in this book. The online appendices comprise an overview over methods from linear alge-
bra, essential for our discussion of beam physics, and a short MATLAB tutorial. A short
description of the relation between light optics and the optics of charged particles follows. A
further Appendix contains a very brief tutorial of OpenSCAD, the software used to design
3D models of beamlines and the 3D-printed frames for the magnets, followed by Appendix
B.5 that contains detailed descriptions of all MATLAB code used in this book, both in the
simulations and to generate the figures. Finally, a brief description of a new workflow to
calculate magnets with MATLAB’s PDE toolbox is provided.

After all the historical background and outline of things to come, let’s get down to
business.

https://www.routledge.com/9781032726960
https://github.com/volkziem/HandsOnAccelerators2nd
https://github.com/volkziem/HandsOnAccelerators2nd
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Reference System

2.1 THE REFERENCE TRAJECTORY

Let us start by discussing how to place our accelerator into the world. This depends of
course on the type of accelerator and the space available. Consider the task to place the
LHC in the 27 km tunnel originally occupied by LEP; it just had to fit. Another task could
be to fit an ion-implanter into the basement of the lab. A third task could be to figure out
whether the large parking lot in front of the office is big enough for a small synchrotron
light source. In any these cases, we need to find out how to match the accelerator to the
available space and where on the floor to put all those magnets and accelerating structures.
This is the first problem we address in this chapter.

For this purpose we employ a somewhat formal language to describe the accelerator with
its components and their relative positions. We give each element a code number, a repeat
count, a length, and an additional parameter that contains other descriptive numbers, such
as deflection angle or focusing strength. A line in our input file thus looks like

1 10 0.2 0

where the code is 1, indicating an empty piece of beam pipe that constitutes 10 segments that
are 0.2m long each. The fourth number, not used here, is set to zero. The reason we chose
this format is that it can be easily represented as a n×4 matrix in MATLAB or Octave, and
concatenating is made trivial by using powerful built-in functions to manipulate matrices.
Moreover, reading from and writing to external files can be handled by built-in functions,
such as dlmread and dlmwrite, without having to spend many pages on the discussion of
elaborate, though probably much more convenient, input parsers. On the other hand, the
purpose of this book is to show the inner workings of beam dynamics codes. This helps us
to understand and to appreciate the power of other “big” programs, such as MADX [4] or
TRANSPORT [5, 6], the grand-daddies of most beam optics programs, and what goes on
under their hood.

We extend the number of codes to comprise several different elements in an accelerator,
but here we confine ourselves to those that predominantly determine its geometry, and those
elements are

- Empty beam pipe with code number 1, the same element we discussed in the previous
paragraph.

- Thin-lens focusing element with code 2.

- Finite-length quadrupole or focusing magnet with code 5.

- Dipole or bending magnet with code 4 that changes the direction of the reference

This chapter has been made available under a CC BY NC license. 13
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trajectory. One line in the input file may look like “4 1 0.7 15,” which describes a
dipole with one segment of length 0.7m, and deflection angle of 15 degrees.

- Coordinate rotation with code 20.

Additional elements can be easily accounted for by introducing additional codes. In the
context of this chapter, the reference beam goes straight through empty beam pipes,
quadrupoles, solenoids, and acceleration structures, and the only property we care about
is their length. In the dipole magnets, on the other hand, the reference trajectory changes
direction.

Here we always assume that the dipole magnets deflect in the horizontal plane, any other
angle can be handled by sandwiching a dipole between coordinate rotations. The bending
radius for a dipole with deflection angle ϕ and length L is given by ρ = L/ϕ. For a beam with
momentum p the magnetic flux density B in the dipole is then given by B = (p/e)ϕ/L. Note
that we can rewrite the definition of the bending radius as Bρ = p/e and immediately see
that we obtain a convenient translation of physics units of momentum in eV/c to engineering
units in tesla-meters, or Tm. This is often used in beam physics, where the momentum is
given in units of Tm and voiced as “Bee-rho.” Remembering the conversion that 1Tm
corresponds to a momentum 300MeV/c often proves useful in estimating the required field
and length of a magnet.

After these preliminary considerations we are ready to describe our first part of an
accelerator, a short section with one dipole and two quadrupoles, often called a FODO cell
for reasons that will become clear in the next chapter. The description of the beamline is
the following

fodo=[ 1 1 2.5 0 ;

5 1 1.0 0 ;

1 1 1.5 0 ;

4 1 2.0 60;

1 1 1.5 0 ;

5 1 1.0 0 ;

1 1 2.5 0 ]

where we simply define an array, called fodo, to describe the sequence of elements, first a
single drift section (code 1) followed by a long quadrupole (code 5) and then another drift.
Next comes a dipole magnet with a deflection angle of 60 degrees. Here we do not need to
specify the strength of the quadrupoles, they are considered drifts in the context of finding
the reference trajectory. Concatenating beamline sections is as easy as writing

ring = [fodo; fodo; fodo; fodo; fodo; fodo];

or, more compactly, as ring=repmat(fodo,6,1); by using the built-in function repmat.

In this way we define separate sections of a beamline and later combine them to a larger,
composite beamline. Here six cells with 60-degree bending magnets make up an entire ring.

Having the description of the beamline, we now turn to calculating where on the floor
we have to put the magnets. This is most easily done by following a Frenet-Serret tripod on
its journey along our beamline. This right-handed tripod rides on the reference trajectory
and is determined by a vector V⃗ pointing to the position of its origin and a matrix W
that describes its orientation in terms of three angles with respect to the orientation at the
coordinate origin.

All we have to do is to step through the beamline, calculate the vector dV⃗ that points
from the entrance of that element to its exit, and calculate the matrix dW that encodes
the change in orientation. Using these changes, we update V⃗ and W after each element
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Figure 2.1 Geometry of a single FODO cell (left) with a 60-degree bending magnet

and a ring that consists of six such cells (right).

and record the starting and end positions to tell us where the elements are and what their
orientation is. dV⃗ and dW for the straight elements are given by

dv=[0;0;beamline(line,3)]; dw=eye(3);

and in sector dipoles, we use

phi=beamline(line,4)*pi/180; % convert to radians

if abs(phi)>1e-7

rho=beamline(line,3)/phi;

dv=[rho*(cos(phi)-1);0.0;rho*sin(phi)]; dw=wmake(0,-phi,0);

end

where the function wmake() creates the rotation matrix around the respective axis, here the
second, vertical axis. Once the changes in position dV⃗ and orientation dW are available, we
update V⃗ and W with the following function

% wprop.m, updates the new vector vv and matrix ww, V. Ziemann, 240827

function [vnew,wnew]=wprop(vv,ww,dv,dw)

vnew=vv+ww*dv;

wnew=ww*dw;

These functions, along with routines to draw the magnets and the beam pipe, are coded in
the function layout.m. Inside the code, after some initializing tasks, a loop steps through
the beamline, determines dv and dw, depending on the type of element, and uses wprop to
update v and w. Then, again depending on the type of element, boxes and lines, representing
the magnets, are drawn on the image. Figure 2.1 shows the 2D rendering of a single FODO
cell on the left-hand side and a complete ring on the right-hand side. The layout script,
along with supporting functions, is described in detail in Appendix B.5 and is available
online from https://github.com/volkziem/HandsOnAccelerators2nd.

Running the layout script with a single FODO cell beamline=fodo; results in the
MATLAB plot shown on the left in Figure 2.1 with the dipole in the center that deflects
the trajectory and quadrupoles on either side of the dipole. Running the same program
again, but this time with six FODO cells beamline=repmat(fodo,6,1); results in the plot
shown on the right-hand side in Figure 2.1.

https://github.com/volkziem/HandsOnAccelerators2nd
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Figure 2.2 3D-view of the ring shown on the right-hand side in Figure 2.1.

Simultaneously with the 2D images, shown in Figure 2.1, the layout() function produces
an input file for the 3D modeling program OpenSCAD [7]. In OpenSCAD simple geometric
objects, such as cubes and cylinders, are placed in a “3D world” using the same vector
V⃗ and matrix W, we used before to generate the plots in Figure 2.1. A brief introduction
into using OpenSCAD can be found in the online Appendix B.3, available at this book’s
webpage. The functionality to generate the 3D models is already built into layout, which
generates an output file layout.scad that can be directly loaded into OpenSCAD with the
command

openscad layout.scad

Figure 2.2 shows the 3D model of the ring with six FODO cells exported from OpenSCAD.
We see the dipole magnets and quadrupoles, all with their small pedestal, and the beam
pipe in the sections in-between magnets. This simple example illustrates how to determine
the reference trajectory and where to put all the magnets and other elements. The curious
reader is encouraged to add more, and nicer looking, elements as well as additional features
to the MATLAB script or port it to other programming languages. As a sidenote, we point
out that OpenSCAD can export the model in formats that are compatible with “slicer”
programs to prepare the model for 3D printing.

After having defined the reference trajectory, we know where particles should move in an
ideal world. But since the real world is not ideal, they only move in the neighborhood of the
reference trajectory. We therefore have to specify a coordinate system for this neighborhood.
We then use it to describe individual particles first, and later ensembles of particles.

2.2 COORDINATE TRANSFORMATIONS AND HAMILTONIANS

Since the beam particles move in the vicinity of the reference trajectory r⃗0, it is convenient
to describe their motion in a coordinate system that “rides on the reference particle.” A
natural choice for this coordinate system is the Frenet-Serret tripod, which is based on
three normalized unit vectors: the first is the tangent vector to the reference trajectory
t⃗ = dr⃗0(s)/ds. Here we assume that r⃗0(s) is parametrized by the arc length s, which
guarantees that t⃗ has unit length. The second unit vector n⃗ is called the normal vector and,
for planar trajectories without torsion, it is proportional to the rate of change of the tangent
dt⃗/ds. The factor that makes n⃗ a unit vector is the curvature κ(s) or, equivalently, the inverse
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Figure 2.3 Reference trajectory and the co-moving tripod (left) that is used to define

the deviations (right) of particles with respect to the reference particle.

of the bending radius κ(s) = 1/ρ(s), such that we obtain n⃗ = −κdt⃗/ds. The minus sign
causes n⃗ to point away from the center of the deflection and ensures that the third unit vector
b⃗, defined by b⃗ = t⃗×n⃗, points upwards. This construction causes the three vectors t⃗, n⃗, and b⃗
to form the basis of a right-handed coordinate system. In a circular accelerator, for example,
t⃗ points along the direction of propagation of the reference particle, n⃗ points toward the
outside of the ring, and b⃗ points upward. By convention, in the accelerator literature they
are often denoted by s⃗, x⃗, and y⃗, respectively. The left-hand side in Figure 2.3 illustrates
their orientation.

The geometry of components, such as magnets or radio-frequency devices, which affect
the motion of beam particles, is normally specified in the laboratory system, and also
the forces that act on the beam are given in that frame. But now we transform these
forces, which determine the equations of motion, to the reference system that “rides on
the reference particle.” Since the particles move with relativistic velocities v⃗ we start our
discussion with the relativistic invariant Lagrangian L(r⃗, v⃗) of a point charge with charge
e, mass m, and coupled to electro-magnetic fields specified by their potentials Φ(r⃗, t) and

A⃗(r⃗, t) [8, 9], which is given by L = −γmc2− eΦ+ ev⃗A⃗ with γ = 1/
√
1− v2/c2. Hamilton’s

principle and the ensuing Euler-Lagrange equations then lead to the well-known Lorentz
force d(γmv⃗)/dt = eE⃗ + ev⃗ × B⃗, where the fields E⃗ and B⃗ are related to the potentials Φ

and A⃗ by E⃗ = −∇⃗Φ− ∂A⃗/∂t and B⃗ = ∇⃗ × A⃗.
Instead of using the Lagrange function L(r⃗, v⃗), which depends on the positions r⃗ and

velocities v⃗ of a particle, it is often more convenient to use the Hamiltonian H(P⃗ , r⃗), which

depends on positions r⃗ and the canonical momenta P⃗ , defined by P⃗ = ∇⃗v⃗L. As an il-
lustration of the canonical momentum, we consider one dimension, where it is given by
P = ∂L/∂v. The Hamiltonian H can be derived from the Lagrangian L by a Legendre-

transformation H = P⃗ · v⃗ − L and the equations of motion are transformed to a set of
first-order differential equations—Hamilton’s equations [9].

The Hamiltonian in the previous paragraph still depends on the coordinates r⃗ in the
laboratory system, but we can transform it to the co-moving system x, y, s with the help of
a canonical transformation [9] with the generating function of type 3 [10] F3(P⃗ , x, y, s) =

−P⃗ ·
(
r⃗0(s) + xn⃗(s) + y⃗b(s)

)
that depends on the momentum P⃗ in the laboratory frame

and the positions x, y, and s in the co-moving frame. The momenta in the co-moving frame
p⃗ are then given by the derivatives of the generating function F3 with respect to x, y, and s,
for example ps = −∂F3/∂s = (1+κx)P⃗ · t⃗, where we used dn⃗(s)/ds = κt⃗ and d⃗b(s)/ds = 0,
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which is valid for planar reference trajectories. Note that ps is proportional to the projection
of the momentum in the lab frame P⃗ onto the tangent t⃗ at s. The factor 1 + κx = 1 + x/ρ
accounts for the longer path s at larger horizontal position x in bending magnets, which
have ρ ̸= 0. Transforming the Hamiltonian H to the new variables with H1 = H + ∂F3/∂t
and expressing it in terms of the new variables, we obtain

H1(x, px, y, py,s, ps; t) = eΦ

+c

√
(px − eAx)

2
+ (py − eAy)

2
+

(
ps − (1 + x/ρ)eAs

1 + x/ρ

)2

+m2c2 ,
(2.1)

where the potentials Φ and As = A⃗ · t⃗ depend on the positions r⃗ = r⃗0(s) + xn⃗(s) + y⃗b(s).
Hamilton’s equations in positions x, y, s and momenta px, py, ps then yield the equations of
motion in the variables of the co-moving frame: ẋ = ∂H1/∂px, ṗx = −∂H1/∂x, and similarly
for y and s.

These equations of motion still depend on time as the independent variable, but using
the position on the trajectory s as the independent variable makes interpreting the location
of particles much more accessible. We do not want to know when they are somewhere,
but rather want to know their transverse position at a specific place, say, an experimental
station. Following [10], we solve Equation 2.1 for ps and can interpret H2 = −ps as a new
Hamiltonian, resulting in

H2(x, px, y, py, t,−H1; s) = −
(
1 +

x

ρ

)
eAs

−
(
1 +

x

ρ

)√
(H1 − eΦ)2

c2
− (px − eAx)2 − (py − eAy)2 −m2c2 ,

(2.2)

which depends on the variables x, px, y, py, t, and −H1. Now s, the position along the tra-
jectory, is the independent variable.

In the next step we divide the momenta and the Hamiltonian H2 by the momentum of
the reference particle p0 = β0γ0mc and introduce the variables p̃x = px/p0, p̃y = py/p0,

H̃1 = H1/p0, and H3 = H2/p0 to arrive at [11]

H3(x, p̃x, y, p̃y, t, H̃1;s) = −
(
1 +

x

ρ

)
eAs

p0

−
(
1 +

x

ρ

)√
(H̃1 − eΦ/p0)2

c2
−
(
p̃x − eAx

p0

)2

−
(
p̃y −

eAy

p0

)2

− m2c2

p20
.

(2.3)

This representation has the advantage that the new momenta are dimensionless and always
smaller than unity, which makes it later more amenable to a perturbative treatment. In
particular p̃x = px/p0 is approximately equal to the angle x′ with respect to the center of
the beam pipe. A disadvantage, on the other hand, is the monotonously increasing inde-
pendent parameter s. Instead, it is more convenient to describe the position of a particle
by its deviation z with respect to the longitudinal position of the reference particle. This
is accomplished by yet another canonical transformation with a generating function. This
time it is of type F2 [9], depends on the old coordinates and the new momenta PX , PY , and
δ, and is given by

F2(x, PX , y, PY , t, δ; s) = xPX + yPY + (s− β0ct)

(
1

β2
0

+ δ

)
(2.4)
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with the speed of the reference particle given by β0c. We address the physical relevance of
δ below. The relations between old and new coordinates are then given by

X =
∂F2

∂PX
= x, Y =

∂F2

∂PY
= y, z =

∂F2

∂δ
= s− β0ct . (2.5)

Likewise, we obtain the relations for the momenta

p̃x =
∂F2

∂x
= PX , p̃y =

∂F2

∂y
= PY , −H̃1 =

∂F2

∂t
= −β0c

(
1

β2
0

+ δ

)
(2.6)

and the new Hamiltonian H4 = H3 + ∂F2/∂s now reads

H4(X,PX , Y, PY , z, δ; s) = −
(
1 +

x

ρ

)
eAs

p0
+

1

β2
0

+ δ

−
(
1 +

X

ρ

)√(
β0δ +

1

β0
+

eΦ

cp0

)2

−
(
PX − eAx

p0

)2

−
(
PY − eAy

p0

)2

− m2c2

p20
.

(2.7)

We note that H1 from Equation 2.1 represents the total energy E = γmc2 of the particle,
which makes H̃1 = H1/p0 = γmc2/β0γ0mc = γc/β0γ0. Inserting in Equation 2.6 and solving
for δ we obtain

δ =
1

β2
0

γ − γ0
γ0

=
1

β2
0

∆E

E0
=

∆p

p0
(2.8)

which is the relative momentum deviation ∆p/p0 of the particle with respect to the reference
particle.

In the next section we will relate the dynamical variables X,PX , Y, PY , z, and δ to those
commonly used in beam physics.

2.3 PARTICLES AND THEIR DESCRIPTION

From Equation 2.5 we know that X = x and Y = y such that we can write the Hamiltonian
as

H5(x, PX , y, PY , z, δ; s) = −
(
1 +

x

ρ

)
eAs

p0
+ δ

−
(
1 +

x

ρ

)√(
β0δ +

1

β0
+

eΦ

cp0

)2

−
(
PX − eAx

p0

)2

−
(
PY − eAy

p0

)2

− 1

β2
0γ

2
0

,

(2.9)

where we also omitted the inconsequential constant term 1/β2
0 . The transverse coordinates

x and y have intuitively appealing interpretation of being the displacement of a particle with
respect to the reference particle, z = s−β0ct is the deviation along the reference trajectory,
and δ is the relative momentum deviation. The scaled transverse momenta PX = px/p0
and PY = py/p0 are related to the angles x′ = dx/ds and y′ = dy/ds with respect to the
reference orbit by

PX = sinx′ ≈ x′ and PY = sin y′ ≈ y′ . (2.10)

In most cases, the transverse momenta px and py are much smaller than the total momentum
p0, such that the sine of the angles x′ and y′ can be approximated by its argument. This
approximation is usually referred to as the paraxial approximation. The right-hand side in
Figure 2.3 illustrates x and x′.
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Thus we arrive at the following three position-like coordinates and three parameters re-
lated to momenta that are used to characterize particles in accelerators. Here we summarize
the parameters for convenience.

x, the horizontal distance to the reference particle;

x′ ≈ PX , the horizontal angle with respect to the trajectory of the reference particle;

y, the vertical distance to the reference particle;

y′ ≈ PY , the vertical angle with respect to the trajectory of the reference particle;

z, the longitudinal distance with respect to the reference particle, sometimes converted
to the “arrival time” τ = z/β0c;

δ, the relative momentum difference with respect to the reference particle.

The parameters can be visualized as the differences of the particles’ coordinates to those of
a tripod that rides on the reference particle.

It should be noted that some programs, such as MADX [4], use slightly different vari-
ables, which, however, in the ultra-relativistic limit, agree with those mentioned here. An
advantage of the variables from the table is that they describe geometric concepts like dis-
tances and angles, as shown on the right-hand side in Figure 2.3. The arrival time is relevant
if time-varying electro-magnetic fields affect the particle, for example, in accelerating struc-
tures. The relative momentum difference δ is convenient to use, because it describes the
relative deviation from the design deflection angles of dipole magnets that is due to the
deviation from the design momentum of the particles.

The longitudinal momentum is almost always much larger than the transverse momenta,
which causes the angles x′ and y′ to be very small, and typical values are on the order
of milliradians. Many approximations, used when dealing with accelerators, therefore use
the paraxial approximation and expand variables in power series in the kinematic variables
x, x′, y, y′, z, δ. As a matter of fact, the typical magnitude of these parameters is on the scale
of millimeters for x, y and z and 10−3 for the angles x′, y′ and the momentum deviation δ.
Of course, under special circumstances, also substantially different values can occur.

All possible values of the kinematic variables are commonly denoted as the six-
dimensional (6D) phase space and a particular set of values are used to describe the state
of a single particle. Sometimes it is not necessary to consider the full 6D phase space, and
it is sufficient to only cover the horizontal phase space, comprising the subspace of x and
x′ or the vertical phase space comprising y and y′, respectively. The subspace spanned by z
(or β0cτ) and δ is denoted longitudinal phase space. In later chapters, we will often restrict
ourselves to these subspaces, which is possible because the dynamics of the different sub-
spaces is often independent (also called uncoupled). This allows us to focus on the essential
dynamics at hand without cluttering the notation. Occasionally, we will use a hybrid phase
space comprising x, x′ and δ in order to account for momentum-dependent, also called chro-
matic, effects that mostly appear in the horizontal plane, because the deflection angle of
dipole magnets depends on the momentum of the particles.

So far, we have considered ways to describe the state of a single particle in an accelerator,
but in real accelerators large numbers of particles, often in the range 106 to 1011 or more,
propagate and we need efficient methods to describe these large ensembles of particles.

2.4 PARTICLE ENSEMBLES, BUNCHES

The simplest way to illustrate the distribution of a large number of particles is in the form
of a histogram. For the time being, we only consider a single variable, say the horizontal
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Figure 2.4 Histogram of the horizontal position of 1000 particles (left), where the

vertical axis is given by the number of particles having position values between x

and x +∆x with ∆x = 0.02mm. A normalized Gaussian distribution is shown on

the right.

position x, and we plot the number of particles having positions between x and x+∆x with
∆x = 0.02mm which yields the histogram shown on the left-hand side in Figure 2.4.

The values used in the histogram were chosen arbitrarily, but they show general features
of many distributions anyway. First, the number of particles N is finite, N = 1000 in this
case. This implies that the distribution can be normalized. Second, most particles have
positions x clustered around an average value, often denoted by ⟨x⟩. Finally, the distribution
has a width in values that we denote by σ. It is illustrative to visualize such a distribution
as a collection of repeated measurements of the same quantity. In such cases, we calculate
the average value to represent the most probable value and the root-mean-square (rms)
deviation as the spread in measured values or the uncertainty of the measurement.

Let us consider a discrete distribution in a histogram that is given as a table of discrete
x-values, say xi, where the index i labels the bins, populations (the height) of the bins bi,
and a bin width ∆x. We calculate the normalization, the average and the width in an almost
self-evident way. First, the normalization N is given by the sum over all bin populations

N =
∑
i

bi , (2.11)

where the sum extends over all bins. For the average X = ⟨x⟩, we have to weigh the position
represented in bin i at xi by its population

X = ⟨x⟩ = 1

N

∑
i

xibi (2.12)

and normalize by using the normalization constant N. Another way to visualize this is that
in each bin at position xi the fraction bi/N of all particles resides and we weigh the xi-value
with that fraction. The spread or width σ of the distribution we calculate as the average of
the squared distance (xi −X)2 from the average

σ2 =
1

N

∑
i

(xi −X)2bi . (2.13)

This quantity σ is often called the rms of a distribution of values.
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In MATLAB or Octave, the built-in commands mean() and std() make it almost triv-
ial to calculate these values. But even calculating them directly is straightforward. We
assume that x and b are given as two column vectors that contain the values xi and bi
used in the previous paragraph. The vectors must have equal size, and running the com-
mand plot(x,b) would produce a plot similar to the one shown in Figure 2.4. In that
case N=sum(b) corresponds to Equation 2.11, Xavg=sum(x.*b)/N to Equation 2.12, and
sigma2=sum(b.*(x-Xavg).^2)/N calculates σ2. Note that we need to use the element-wise
operations prepended with a dot. See Appendix B.2 for a discussion of basic MATLAB
commands.

In the previous paragraphs, we calculated powers xm of the variable x, weighted with
the bin populations. These quantities, calculated without subtracting the average value, are
called moments of the distribution and are defined by

⟨xm⟩ = 1

N

∑
i

xm
i bi . (2.14)

They will prove to be very useful in later chapters. This equation defines the angle brackets
to perform the average of the included quantity over the bin population. Note that the
average value is the same as the first moment and that σ2 can be called the central second
moment because the average is subtracted. It can also be expressed through the moments
by

σ2 = ⟨(x−X)2⟩ = ⟨x2 − 2xX +X2⟩ = ⟨x2⟩ −X2 (2.15)

which is the second moment minus the first moment squared.
The discrete distributions normally shown in a histogram have continuous equivalents,

the continuous probability distribution functions. Here “probability” essentially means that
the distribution is positive semi-definite—all values are larger than or equal to zero—and
it is normalized. Both requirements are obviously fulfilled for distributions that describe
physical quantities. A general one-dimensional distribution function ψ(x) that depends on
the variable x has a simple interpretation in the sense that the number of particles Nx (or
another quantity that the distribution function describes) in the interval between x and
x+∆x is given by

Nx = ψ(x)∆x (2.16)

and we immediately see that the distribution function ψ(x) has physical units of the inverse
of its independent variable, here x.

The prototypical probability distribution function, which is only characterized by its
average value X and its width σ, is the Gaussian distribution with its characteristic bell-
shaped curve shown on the right-hand side in Figure 2.4. Gaussians appear in many contexts,
because they are the limiting distributions of many, though not all, random processes, which
is a consequence of the central limit theorem. We explore this further in the exercises, but
here only point out that they are frequently used to describe the beams in accelerators.
Their functional form is given by

G(x;X,σ) =
1√
2πσ

e−(x−X)2/2σ2

, (2.17)

which is represented as a MATLAB inline function with arguments specified via the @()–
construction in the following lines of code

x=-5:0.01:5;

G=@(x,X,sigma)exp(-((x-X).^2)/(2*sigma^2))/(sqrt(2*pi)*sigma);

plot(x,G(x,1.2,1),’k’);
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which produces the right-hand plot in Figure 2.4. The peak value lies between 1 and 2, and
the width of the Gaussian in Figure 2.4 appears to be around unity. But we can also prove
that this is the case by first verifying that the distribution in Equation 2.17 is normalized,
has average X, and rms σ. For the normalization and the average, we need to show that

 ∞

−∞
G(x;X,σ)dx = 1 , (2.18)

which is easily done by substituting y = (x − X)/σ and looking up the resulting integral
in an integral table such as [12]. To verify that the average value is indeed X, we need to
show that  ∞

−∞
xG(x;X,σ)dx = X , (2.19)

which is even simpler, because the substitution y = (x−X)/σ leads to an integral that can
be reduced to an exponential by substitution. For the rms σ we need to show that

 ∞

−∞
(x−X)2G(x;X,σ)dx = σ2 , (2.20)

which can be achieved by a similar substitution and subsequent inspection of an integral
table. In passing we note that all integrals of Gaussians with polynomials in x can be solved
by parametric differentiation with respect to B of the following generating function

GB(x;X,σ) =

 ∞

−∞
G(x;X,σ)eBxdx = eXB+σ2B2/2 (2.21)

and subsequently setting B = 0. Each differentiation with respect to B pulls one power of
x down. The integral in Equation 2.21 can be calculated by completing the square in the
exponent, which leads to an integral similar to the one we encountered for the normalization.
Note how the repeated differentiation of the generating function GB(x;X,σ) with respect
to B results in the moments of a distribution

⟨xm⟩ =
 ∞

−∞
G(x;X,σ)xmdx =


∂

∂B

m  ∞

−∞
G(x;X,σ)eBxdx


B=0

(2.22)

after setting B = 0 at the end.
The purpose of sketching the mathematical manipulations to solve the integrals is to

indicate how Gaussians are rather benign integrands, even when considering Gaussian dis-
tributions of many variables, so-called multi-variate Gaussian distributions, which are often
good approximations for the distribution of particles in accelerators, expressed through their
phase space coordinates x, x′, y, y′, z, δ. With a small abuse of notation, we denote the six
phase space variables collectively by the symbol x⃗ with components xi. This allows us to
write the n-dimensional multi-variate Gaussian as

Ψ(x⃗; X⃗, σ) =
1

(2π)n/2
√
detσ

exp


−1

2

n
i,j=1

(σ−1)ij(xi −Xi)(xj −Xj)


 , (2.23)

which describes distributions with average values X⃗ and covariance matrix σij . In the
one-dimensional limit, this definition reverts to Equation 2.17. In order to show that the
parameters X⃗ and σ have the same interpretation as before, we need to have


Ψ(x⃗; X⃗, σ)xid

nx = Xi and


Ψ(x⃗; X⃗, σ)(xi −Xi)(xj −Xj)d

nx = σij , (2.24)
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which we state without proof. The calculations are lengthy and involve a multi-variate
generating function, the equivalent of GB in Equation 2.21, and repeated parametric dif-
ferentiations. These tricks are used later on in the book.

Note that the averages X⃗ and the covariance matrix σ uniquely specify the Gaussian
distribution, and we will later use these parameters as proxies to characterize beams of
charged particles. The parameters have succinct physical interpretations. X1 = ⟨x⟩ is the
horizontal position of the center of mass of all particles. It is a quantity that is experimentally
accessible with beam-position monitors. These monitors are normally not sensitive to the
positions of individual particles; they only sense averages. Likewise, X3 = ⟨y⟩ is the average
vertical position, and X2 and X4 are the angles of propagation of the beam. Moreover,
X5 = ⟨z⟩ describes the average distance with respect to the reference particle. X6 = ⟨δ⟩
is the average momentum deviation of the beam. The parameters on the diagonal of the
covariance matrix are the squared beam sizes in the respective dimensions, such that σ11

is the horizontal rms beam size squared and σ22 is the angular divergence, also squared.
In the same way, σ33 and σ44 describe beam size and angular divergence in the vertical
plane. The fifth and sixth diagonal elements describe its bunch length and its momentum
spread, respectively. Note that a beam described by a six-dimensional distribution function
describes an entity that is confined in its phase space dimensions and can be visualized as a
package that travels along the accelerator. Such a package is commonly called a bunch. In
many accelerators, many bunches propagate largely independently and at the same time.

In order to visualize a multi-variate distribution, we consider a two-dimensional example
of a Gaussian that is centered at the origin (X⃗ = 0) and therefore has the covariance matrix

σ =

(
⟨x2⟩ ⟨xy⟩
⟨xy⟩ ⟨y2⟩

)
=

(
2 1
1 1

)
(2.25)

where we choose some numerical values for the sake of definiteness. The MATLAB code to
generate the visualizations shown in Figure 2.5 is the following

sigma=[2,1;1,1]; siginv=inv(sigma);

psi=@(x,y)exp(-0.5*(siginv(1,1)*x.^2-2*siginv(1,2).*x.*y ...

+siginv(2,2)*y.^2))./(2*pi*sqrt(det(sigma)));

[XX,YY]=meshgrid(-5:0.1:5,-5:0.1:5); ZZ=psi(XX,YY);

subplot(2,2,1); contour(XX,YY,ZZ)); xlabel(’x’); ylabel(’y’);

subplot(2,2,2); surfc(XX,YY,ZZ)); xlabel(’x’); ylabel(’y’);

subplot(2,2,3); plot(-5:0.1:5,0.1*sum(ZZ,1),’k’); xlabel(’x’);

subplot(2,2,4); plot(-5:0.1:5,0.1*sum(ZZ,2),’k’); xlabel(’y’);

where we use the continuation command ... in order to split up the long definition of
psi over two consecutive lines. At the top of the script we define the sigma matrix and its
inverse and simply code the distribution function from Equation 2.23 as the variable psi.
Then we define the meshgrid structure to represent the coordinates compatible with the
use of contour and surf to generate the contour and 3D-surface plots in the top row of
Figure 2.5.

The plots in the lower row of Figure 2.5 show the projections of the two-dimensional
distribution onto the x and y axes. We find that even the projections are Gaussian and their
respective rms widths are given by σ2

x =sigma(1,1) and σ2
y =sigma(2,2). We easily verify

this by analytically integrating over one of the variables in a two-dimensional Gaussian.
Integrating or summing over variables in a distribution function corresponds to not paying
attention to the integrated variables. The dependence on the remaining variables leaves the
projection of the original distribution function onto the space of the remaining variables.
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Figure 2.5 Contour (top left) and 3D surface (top right) plots of a two-dimensional

Gaussian distribution. The lower row shows the projections onto the x and y axes.

As an example, let us consider the distribution of a charged particle beam that depends
on its six phase-space coordinates x, x′, y, y′, z,, and δ. If the beam impinges onto a fluores-
cent screen, we observe a two-dimensional image Φ(x, y) that depends on the two spatial
coordinates x and y, only. It corresponds to the projection of the six-dimensional distri-
bution Ψ(x, x′, y, y′, z, δ) and can be determined by integrating over variables that are not
observed

Φ(x, y) =

∫
Ψ(x, x′, y, y′, z, δ)dx′dy′dzdδ . (2.26)

The intensity of the image depends only on the number of particles that hit a particular
location on the screen, irrespective of their angle or arrival time τ = z/c (within some limit
related to the integration time of the camera) or momentum deviation δ.

At this point we know where to put the magnets and where the reference trajectory
and reference particle are. Moreover, we found a coordinate system whose origin “rides” on
the reference particle and that we use to describe individual particles. Since there are many
particles in a beam, we introduced distribution functions to describe large ensembles of par-
ticles. To avoid complex mathematical manipulations when handling distribution functions
we introduced the moments of the distribution as proxies for the essential characteristics
(average position, beam width) of a particle distribution. Finally, we spent some time on
Gaussian distributions. They are uniquely specified by their average and their width, or
for multi-variate distributions, by their averages and their covariance matrix. All this effort
provides us with a description of the particles and the distribution, the beam. But now is
the time to find out how the beam propagates along the accelerator and determine how the
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accelerator components such as magnets and accelerating structure affect the state of the
particles and consequently, also the beam.

QUESTIONS AND EXERCISES

1. Build a ring with 12, 24, and 36 FODO cells respectively and prepare 2D plots and
3D images in OpenSCAD. Use the geometry defined in the array fodo[] on page 14,
but adjust the deflection angle appropriately.

2. Build a racetrack ring with 12 equal FODO cells per arc and straight sections with 6
FODO cells each, based on the cells from the previous exercise. Prepare 2D plots and
3D images in OpenSCAD.

3. You need to design a beamline that takes the reference trajectory 100m ahead and
10m horizontally to the left. You have four dipole magnets available with a length of
2m and quadrupoles with a length of 1m, which should be spaced by approximately
5m. (a) Sketch the geometry first and then implement it in a beamline file; (b) generate
the 2D plots; (c) generate the 3D model and load it in OpenSCAD.

4. You must build a transfer line to cross a road in an underground tunnel. Assume that
the road is 10m wide and you have four dipole magnets available, each 4m long and
capable of deflecting the beam by 15 degrees. Assume that the spacing of quadrupoles
should be 5m. Hint: the syntax for a coordinate rotation by angle phi in degrees is
"20 1 0 phi".

5. Feel free to prepare nicer models for the magnets than the rectangular boxes.

6. Prepare a model of your favorite section of accelerator in your home institute and
prepare 2D plots and 3D images. If you have access to a 3D printer, make a 3D
model.

7. Whenever you have difficulty visualizing a beamline later in this book, make a 3D
model and have a look.

8. Derive the equations of motion for a particle in a field-free region.

9. Calculate the zeroth (normalization), the first and the second moment and the “central
moment” (rms width around the center) of the following distributions: (a) Triangular
distribution: linearly rising from zero to unity for c−w < x < c, continuous at c and
linearly falling for c < x < c+ w. It is zero everywhere else. Here c is the center and
w the width of the box. (b) Lorentzian distribution f(x) = 1/(w2 + x2) for all x; (c)

Gaussian distribution g(x) = e−x2/2w2

. What percentage lies between ±w/2 for the
respective distributions?

10. Verify that the projections of the Gaussian with covariance matrix given by Equa-
tion 2.25 are Gaussians. What are the widths and how are they related to the elements
in Equation 2.25? (a) Calculate the integrals numerically with MATLAB’s integral()
function. (b) Calculate the integral analytically.

11. Generate 27183 random numbers with the MATLAB function random() for a (a)
Uniform; (b) Exponential; (c) Poisson with mean value 3; (d) Student’s t-distribution
with ν = 2. Inspect the MATLAB help for the required parameters. Verify with the
hist() function that the distributions behave as advertised. Note that hist() also
returns arrays with the histogram data and the center positions of the bins.
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12. Generate (a) 314; (b) 3142; (c) 31416 random numbers, sampled from a Gaussian
(normal) distribution with center at zero and σ = 1. Then calculate the moments
from the random numbers and check how well you can recover the input values for
center and σ.

13. You can also determine the four parameters p(1) to p(4) that parametrize a gaussian
by minimizing a cost function chisq gaussian() with the help of the built-in function
fminsearch(). The following code snippet serves as an illustration where the raw data
are defined by via the arrays x and y.

gauss=@(p,x)p(1).*exp(-((x-p(2)).^2)./(2*p(3).^2))+p(4);

chisq_gaussian=@(p)sum((y-gauss(p,x)).^2);

[pfit,fval]=fminsearch(chisq_gaussian,[max(y),0.1,1,0])

plot(x,y,’k*’,x,gauss(pfit,x),’k’);

Explore the syntax as well as the different input and output parameters of
fminsearch() by running help fminsearch on the MATLAB command line. In
particular, the second argument contains reasonable initial guesses for the four fit
parameters. (a) Use this to fit Gaussians to the data from Exercise 12 and compare
the fit parameters b and c with the moments you calculated there. (b) Analyze the
distributions from Exercise 11 by also fitting Gaussians. (c) Implement fitting to a
Lorentzian distribution, defined in Exercise 9.

14. (Central limit theorem) Generate 105 random numbers sampled from a Gaussian
distribution with µ = 0, σ = 1 and calculate the sum of 10 consecutive samples, such
that there are 104 samples left. Determine the zeroth, first, and second moments of
the reduced set of samples. What is the average? The width? How are these values
related to the original values?

15. (Central limit theorem) Repeat the previous exercise with a uniform distribution
between −1 and +1.

16. (Failed central limit theorem, but Levy-stable) Repeat the previous exercise with a
Lorentzian distribution, which in MATLAB is known as Student’s t-distribution with
ν = 1.
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Transverse Beam Optics

In the previous chapter we discussed the description of particles and beams. In this chapter
we describe how they are affected by the elements, for example, the magnets, in a beamline.
An important task will be to adjust the magnets in order to satisfy constraints on the beam
position, beam size, or angular divergence. These constraints often come from experiments
that require either particularly small beam sizes or particularly parallel beams. This requires
a thorough understanding of how the different components of an accelerator affect the beam
and how to combine them in a way to satisfy the requirements.

We start by breaking up a large accelerator into distinct elements and therefore need to
understand the effect of each beamline element on the particles. To simplify the discussion,
we start by considering a single particle only and how its phase-space coordinates x⃗ =
(x, x′, y, y′, z, δ) change from the entrance of the element to its exit. Thus, we seek to find
a map M from the initial coordinates x⃗1 to those at the end x⃗2 such that

x⃗2 = Mx⃗1 . (3.1)

The entire accelerator is then represented by the concatenation of these maps. In the fol-
lowing we see that for many, and arguably the most important, magnetic elements, the map
M is linear and can be represented by a matrix.

In order to simplify the presentation further, we focus on the horizontal phase space
with x and x′ first, but later extend the discussion to comprise the vertical phase space and
the longitudinal phase space where the need arises. The first element is the space between
all other elements, where no external magnetic forces affect the particles. Such a section is
commonly called drift space but is essentially an empty piece of beam pipe. In these regions
the particle naturally travels on a straight line. If we assume that the drift has length L,
we can express the coordinates at the end as

x2 = x1 + Lx′
1

x′
2 = x′

1 (3.2)

which is easy to understand from inspecting Figure 3.1. A particle comes from the right
and travels toward the left. Initially it has a distance x1 with respect to the reference
trajectory and moves away from it with a positive angle x′

1. During the passage, the angle
does not change, but the distance to the s-axis increases linearly, according to the first
line of Equation 3.2. We see that the final coordinates, bearing the subscript 2, are linear
combinations of the initial coordinates, bearing the subscript 1, and therefore we can write
Equation 3.2 in matrix form (

x2

x′
2

)
=

(
1 L
0 1

)(
x1

x′
1

)
. (3.3)

28 This chapter has been made available under a CC BY NC license.
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Figure 3.1 Particle trajectory in a drift space. The horizontal axis corresponds to the

reference trajectory.

It is easy to see that the map for a drift space of length L1 followed by one with length L2

is given by the matrix where the length is given by L1 +L2. Observe that in many pictures
the particles propagate from the right to the left, which makes writing down the equivalent
matrix equations easier, because matrices are usually multiplied from the left to a column
vector that represents the particle.

Following the intuitive derivation in the previous paragraph, we now turn to a more
formal treatment and determine the transfer map using the Hamiltonian from Equation 2.9.
In a drift space all fields Ax, Ay, As, and Φ are zero and the reference trajectory is not curved,
which makes 1/ρ = 0. We will expand H5 to second order in the dynamical variables only,
which allows us to replace Px and Py by x′ and y′, respectively. This will cause the equations
of motion to be linear and amenable to the transfer-matrix formalism. For the Hamiltonian,
we thus find

H(x, x′, y, y′, z, δ; s) = δ −

√(
β0δ +

1

β0

)2

− x′2 − y′2 − 1

β2
0γ

2
0

= δ −
√

1 + 2δ + β2
0δ

2 − x′2 − y′2 . (3.4)

Expanding the square root to second order with
√
1 + x ≈ 1 + x/2− x2/8 then leads us to

H(x, x′, y, y′, z, δ; s) ≈ −1 +
δ2

2γ2
0

+
1

2
x′2 +

1

2
y′2 . (3.5)

We find the equations of motion from Hamilton’s equations

dx′

ds
= −∂H

∂x
= 0,

dy′

ds
= −∂H

∂y
= 0,

dδ

ds
= −∂H

∂z
= 0 . (3.6)

They tell us that the angles x′ and y′ as well as the momentum deviation δ do not change
in the drift space, and we have x′

2 = x′
1, y

′
2 = y′1, and δ2 = δ1. The other set of Hamilton’s

equations read

dx

ds
=

∂H

∂x′ = x′,
dy

ds
=

∂H

∂x′ = y′,
dz

ds
=

∂H

∂δ
=

1

γ2
0

δ . (3.7)

Knowing that x′, y′, and δ are constant in the drift space, we can replace them by their
values at the entrance x′

1, y
′
1, and δ1 and integrate the equations to find the values at the

exit

x2 = x1 + Lx′
1, y2 = y1 + Ly′1, z2 = z1 +

L

γ2
0

δ1 . (3.8)
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Figure 3.2 A thin focusing lens (left) deflects parallel rays to a focal point at distance

f downstream of the lens. In a magnetic lens, such as a thin quadrupole, this

demands the magnetic field to increase linearly with distance from the optical axis.

Where the last equation for z describes the fact that particles with different momenta have
different speeds and that changes their respective distance z with respect to the reference
particle.

As before, we assemble the equations that map the particle coordinates at the entrance
to those at the exit in a matrix




x2

x′
2

y2
y′2
z2
δ2




=




1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L/γ2

0

0 0 0 0 0 1







x1

x′
1

y1
y′1
z1
δ1




. (3.9)

We observe that the upper two 2 × 2 blocks on the diagonal are just copies of the 2 × 2
matrix from Equation 3.3, whereas the 2× 2 block on the lower right describes the change
of the distance to the reference particle z due to the energy deviation δ.

In the following section we will determine the corresponding maps for quadrupole and
dipole magnets. It turns out that most of them can be represented by matrices.

3.1 MAGNETS AND MATRICES

Before deriving the transfer maps from the Hamiltonian in Equation 2.9, we use geometric
reasoning to introduce thin quadrupoles, the equivalent of thin lenses from light optics. This
will help us to develop some intuition about the dynamics in focusing magnets.

3.1.1 Thin quadrupoles

Thin quadrupoles are equivalent to thin lenses in light optics. They are often very useful
for estimating the beam-optical properties of beamlines, because they are specified by the
focal length, a geometrical quantity with the dimension of a length and given in meters. It
derives directly from the defining property of a thin lens; it changes the particle’s angle x′

proportional to its distance x from the center of the lens. This behavior is illustrated on
the left-hand side in Figure 3.2, where two particles come from the right and travel parallel
to the axis. They are represented by the solid and the dotted lines, respectively. At the
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lens they receive a downward kick, proportional to their respective distance from the axis,
which causes both particles to cross the axis at the same downstream location. This distance
from the lens to the crossing point is, of course, the focal length. On the right-hand side in
Figure 3.2, we show the linearly increasing magnetic field that causes the deflection. It is
zero on the reference trajectory and increases linearly with transverse position x such that
the force on a particle has the necessary linear dependence to cause parallel rays to cross
the reference trajectory—equivalent to the optical axis—at the same point.

A matrix Q that represents a transverse deflection ∆x′ proportional to the transverse
position x is the following


x2

x′
2


= Q


x1

x′
1


with Q =


1 0

−1/f 1


. (3.10)

The second equation reads x′
2 = x′

1−x1/f, which shows the proportionality with the inverse
focal length as proportionality constant. The choice of sign depends on the convention to
assign positive focal length to focusing lenses. That the matrixQ has the advertised property
of directing all parallel rays to the focal point is easy to see by concatenating the matrix
for the quadrupole with that for the subsequent drift space. In that case we have


x3

x′
3


=


1 L
0 1


1 0

−1/f 1


x1

x′
1



=


1− L/f L
−1/f 1


x1

x′
1


, (3.11)

such that all parallel rays coming from the right, having x′
1 = 0, have the transverse position

x3 = (1 − L/f)x1 which is zero, independent of the transverse position x1, provided that
L = f. In other words, all parallel rays cross the optical axis, the reference trajectory, at a
distance equal to the focal length of the lens or the quadrupole. Similar to optical lenses,
there are both focusing and defocusing quadrupoles, and they differ by the sign of the focal
length. A defocusing lens has a negative sign, which is intuitively satisfying because the
intersection with the axis lies before the lens for a defocusing lens, and after the lens for a
focusing lens. We discuss the close analogy of light optics and charged-particle optics further
in Appendix B.4.

Optical lenses are often round and the focal lengths in the horizontal and vertical planes
are equal, even though there are exceptions, such as cylindrical lenses, which generate line
foci. In magnetic quadrupole lenses, the deflection is generated by the magnetic field which
has to obey Maxwell’s equations, especially ∇ × B⃗ = 0. Inside the quadrupole we have
∂By/∂x = ∂Bx/∂y. This causes a magnetic field, linearly rising along the positive x-axis,
to decrease along the positive y-axis. Another way of visualizing this behavior is by looking
at the field lines (dotted) and the Lorentz force F (solid) in the quadrupole shown in
Figure 3.3. A particle on the horizontal axis is kicked toward the center of the quadrupole
(focusing), whereas a particle on the vertical axis is deflected away from the quadrupole
center (defocusing). In summary, a quadrupole that focuses in one plane defocuses in the
other plane.

We can heuristically assemble a 6 × 6 matrix operating on the phase-space variables
x, x′, y, y′, z, δ that reflects this behavior. It is given by




x2

x′
2

y2
y′2
z2
δ2




=




1 0 0 0 0 0
− 1

f 1 0 0 0 0

0 0 1 0 0 0
0 0 1

f 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1







x1

x′
1

y1
y′1
z1
δ1




, (3.12)
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Figure 3.3 Forces in a quadrupole, if a positively charged particle moves into the

plane. Note that the force points inwards in the horizontal plane and outwards in

the vertical.

which consists of three 2 × 2 blocks on the diagonal. The upper two describe focusing
and defocusing in the transverse planes. The unit matrix at the lower right tells us that
longitudinal position z and the momentum deviation δ do not change in a thin quadrupole.
By convention a quadrupole that focuses (f > 0) in the horizontal plane and defocuses in
the vertical is called a focusing quadrupole and defocusing otherwise. Note also that all off-
diagonal 2× 2 blocks contain zeroes, which implies that normal quadrupoles do not couple
the horizontal, vertical, and the longitudinal planes.

As for the drift space, let us now use the Hamiltonian from Equation 2.9 to determine
transfer matrix for long, also called thick quadrupoles.

3.1.2 Thick quadrupoles

As we will see in Section 4.2, the longitudinal component of the vector potential As for a
quadrupole is given by

eAs/p0 = −(k1/2)(x
2 − y2) with k1 =

e

p0

∂By

∂x
=

∂By/∂x

Bρ
. (3.13)

Here By is the vertical component of the magnetic field inside the quadrupole. The other
components Ax, Ay, and Φ are zero, which turns the Hamiltonian into

H(x, x′, y, y′, z, δ; s) = δ −
√

1 + 2δ + β2
0δ

2 − x′2 − y′2 +
k1
2
(x2 − y2) . (3.14)

As for the drift space, expanding to second order, leads to the following Hamiltonian that
contains only quadratic terms

H(x, x′, y, y′, z, δ; s) ≈ −1 +
δ2

2γ2
0

+
1

2
x′2 +

1

2
y′2 +

k1
2
(x2 − y2) (3.15)

and Hamilton’s equations lead to

dx′

ds
= −∂H

∂x
= −k1x,

dy′

ds
= −∂H

∂y
= k1y,

dδ

ds
= −∂H

∂z
= 0 (3.16)



Transverse Beam Optics ■ 33

and
dx

ds
=

∂H

∂x′ = x′,
dy

ds
=

∂H

∂x′ = y′,
dz

ds
=

∂H

∂δ
=

1

γ2
0

δ . (3.17)

Here we observe that this set of equations separates into three groups of two equations, one
for (x, x′), one for (y, y′) and one for (z, δ). The latter is the same as for the drift space and
leads to δ2 = δ1 and z2 = z1 + (L/γ2

0)δ1. These equations can be combined in matrix RL

for the longitudinal phase-space coordinates


z2
δ2


= RL


z1
δ1


with RL =


1 L/γ2

0

0 1


. (3.18)

The equation for the horizontal phase-space coordinate of a particle reads

x′′ + k1x = 0 . (3.19)

For k1 > 0 this equation is solved by cos(
√
k1s) and the corresponding sine function

x(s) = A1 cos(

k1s) +A2 sin(


k1s) . (3.20)

The coefficients can be determined by matching to the initial values x1, x
′
1 and we obtain

x(s) = x1 cos(

k1s) +

x′
1√
k1

sin(

k1s) . (3.21)

At the end of the quadrupole we have s = L and can write for the 2× 2 horizontal transfer-
matrix


x2

x′
2


= Qf


x1

x′
1


with Qf =


cos(

√
k1L)

1√
k1

sin(
√
k1L)

−
√
k1 sin(

√
k1L) cos(

√
k1L)


(3.22)

that maps the initial coordinates x1, x
′
1 to those at the end of the quadrupole. Note that in

the limit of a thin quadrupole with L → 0, while keeping k1L constant, the transfer matrix
approaches that of a thin focusing quadrupole with focal length k1L → 1/f.

In the vertical plane the quadrupole is defocusing and the sign of k1 in Equation 3.19
is reversed. In that case we can solve the differential equation in terms of hyperbolic sines
and cosines. The corresponding transfer matrix is then given by


y2
y′2


= Qd


y1
y′1


with Qd =


cosh(


|k1|L) 1√

|k1|
sinh(


|k1|L)

|k1| sinh(


|k1|L) cosh(

|k1|L)


(3.23)

and the 6 × 6 matrix can be built by placing the 2 × 2 matrices Qf , Qd, and RL on the
diagonal and 2× 2 zero-matrices on the off-diagonal places to arrive at




x2

x′
2

y2
y′2
z2
δ2




=




Qf 02 02
02 Qd 02
02 02 RL







x1

x′
1

y1
y′1
z1
δ1




, (3.24)

where Qf is the 2 × 2 matrix from Equation 3.22, Qd from Equation 3.23, and RL from
Equation 3.18. We denote the 2× 2 matrix containing zeroes only by 02. If the quadrupole
is defocusing, we need to exchange Qf and Qd in Equation 3.24.
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Now we could already build straight beamlines consisting of drift spaces and quadrupoles
to follow particles with different initial conditions on their way through the beamlines, even
for different excitations of the quadrupoles. We are, however, confined to straight beamlines.
In order to remedy this deficiency, we now turn to dipole magnets and how they affect the
phase-space variables of particles.

3.1.3 Sector dipole

The main task of the dipoles is to define the reference orbit as we have seen in the previous
chapter, but that is not all; they also affect the phase-space variables of the particle motion
relative to the reference trajectory. We can account for this by including the vector potential
A⃗ in Equation 2.9 whose curl B⃗ = ∇× A⃗ produces a purely vertical magnetic field B⃗. Here
the situation is a bit more complicated, because the reference trajectory is curved, where
the curl of A⃗, and therefore the magnetic field B⃗, are given by

Bx =
1

h

(
∂(hAs)

∂y
− ∂Ay

∂s

)
, By =

1

h

(
∂Ax

∂s
− ∂(hAs)

∂x

)
, Bs =

(
∂Ay

∂x
− ∂Ax

∂y

)
(3.25)

with the abbreviation h = 1 + x/ρ. It is straightforward to verify that

Ax = 0, Ay = 0, and hAs = −B0

(
x+

x2

2ρ

)
(3.26)

cause Bx and Bs to vanish and By = B0.
Inserting the vector potential from Equation 3.26 and Φ = 0 into the Hamiltonian from

Equation 2.9 and using the approximation from Equation 2.10 then leads to

H(x, x′, y, y′, z, δ; s) =
eB0

p0

(
x+

x2

2ρ

)
+ δ −

(
1 +

x

ρ

)√
1 + 2δ + β2

0δ
2 − x′2 − y′2 . (3.27)

After first expanding the root and then keeping only terms up to second order results in
the approximate Hamiltonian

H(x, x′, y, y′, z, δ; s) ≈ x2

2ρ2
− 1 +

δ2

2γ2
0

+
1

2
x′2 +

1

2
y′2 − 1

ρ
xδ (3.28)

from which we derive the following equations of motion for the horizontal plane

dx′

ds
= −∂H

∂x
= − 1

ρ2
x+

1

ρ
δ, and

dx

ds
=

∂H

∂x′ = x′ . (3.29)

For the vertical plane we obtain

dy′

ds
= −∂H

∂y
= 0, and

dy

ds
=

∂H

∂x′ = y′, (3.30)

whereas the longitudinal motion is governed by

dδ

ds
= −∂H

∂z
= 0 and

dz

ds
=

∂H

∂δ
=

1

γ2
0

δ − 1

ρ
x . (3.31)

The two equations for y and y′ are the same as for a drift space. Integrating them leads
to y2 = y1 + Ly′1 and y′2 = y′1 where subscript 1 denotes the entrance of the dipole and
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subscript 2 its exit. Moreover, from the first of Equations 3.31 we find that δ is constant
and we have δ2 = δ1. The two parts of Equation 3.29 can be combined to

x′′(s) +
1

ρ2
x =

1

ρ
δ (3.32)

where we keep in mind that the right-hand side is constant. Thus it is easy to verify that
x̄ = ρδ is one particular solution. Moreover, the homogenous equation with the right-hand
side set is zero, agrees with Equation 3.19 and has the solution given by Equation 3.20,
provided k1 is replaced by 1/ρ2. Therefore the general solution is given by

x(s) = A1 cos(s/ρ) +A2 sin(s/ρ) + ρδ (3.33)

with integration constants A1 and A2. Matching the initial conditions x(0) = x1 and x′(0) =
x′
1 leads to

x(s) = cos(s/ρ)x1 + ρ sin(s/ρ)x′
1 + ρ [1− cos(s/ρ)] δ , (3.34)

where x′(s) follows from differentiating with respect to s. Setting s = L then describes the
position x2 and x′

2 at the end of the magnet. We find the evolution of z through the dipole
by inserting x(s) in the second part from Equation 3.31 and integrating with respect to s.
This yields

z2 = − sin(ϕ)x1 − ρ(1− cos(ϕ))x′
1 +


L

γ2
0

− ρ[ϕ− sin(ϕ)]


δ (3.35)

where the bending angle ϕ = L/ρ was introduced as an abbreviation. Finally we can as-
semble the transfer matrix that maps the phase-space variables at the entrance to those at
the end

RS =




cosϕ ρ sinϕ 0 0 0 ρ(1− cosϕ)
− sin(ϕ)/ρ cosϕ 0 0 0 sinϕ

0 0 1 L 0 0
0 0 0 1 0 0

− sinϕ −ρ(1− cosϕ) 0 0 1 L/γ2
0 − ρ(ϕ− sinϕ)

0 0 0 0 0 1




. (3.36)

The 2× 2 matrix in the upper left describes weak focusing of particles that move through
the magnet further outside. They experience a longer magnet and are therefore deflected
toward the reference trajectory. Conversely, particles on the inside experience a shorter
magnet and are deflected less. But both particles eventually converge toward the reference
as illustrated in Figure 3.4. The two matrix elements at the top of the sixth column describe
the spreading of trajectories due to non-zero momentum deviations δ, which is illustrated
in Figure 3.5. They describe how well the dipole works as a spectrometer to select particles
according to their energy. The 2 × 2 matrix in the center of R illustrates that the magnet
behaves just like a drift space in the vertical plane. The matrix element R56 describes the
variation of the path length z as a function of the momentum δ. The first contribution L/γ2

0

accounts for the change of speed and the remainder for the change in the trajectory that
particles with different values of δ take. And finally, the entries in the first two columns of
the fifth row describe account for the lengthening of trajectories for particles with different
horizontal launch conditions x1 and x′

1.
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Figure 3.4 Top view of a sector dipole magnet that illustrates weak focusing. The

three trajectories have the same bending radius ρ.

Figure 3.5 Trajectories of particles with different energies deviate in a dipole magnet,

which acts like a spectrometer.

3.1.4 Combined function dipole

Apart from the horizontally weak-focusing dipole we just encountered, sector bends can have
a quadrupole-like gradient added and are then referred to as combined function magnets.
Their gradient can, for example, be generated by tilted pole faces, such as those shown
in Figure 3.6. We obtain their transfer matrices by deriving the equations of motion after
adding a quadrupole-like term from Equation 3.13 to As from Equation 3.26

hAs = −B0

(
x+

x2

2ρ

)
− 1

2

∂By

∂x
(x2 − y2) (3.37)

while we keep Ax = 0 and Ay = 0. Calculating the components of the magnetic field B⃗
from Equation 3.25 then leads to

Bx =
1

1 + x/ρ

∂By

∂x
y ≈ ∂By

∂x
y+O(2) and By = B0+

1

h

∂By

∂x
x ≈ B0+

∂By

∂x
x+O(2) (3.38)

where O(2) denotes terms of order two or higher in x and y. They are beyond the linear
representation through transfer matrices, and we therefore do not carry them along in our
derivation.

After inserting hAs from Equation 3.37 in the Hamiltonian from Equation 2.9 and
expanding to second order, we obtain

H(x, x′, y, y′, z, δ; s) ≈ x2

2ρ2
+

1

2
k1(x

2 − y2)− 1 +
δ2

2γ2
0

+
1

2
x′2 +

1

2
y′2 − 1

ρ
xδ (3.39)
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Figure 3.6 Side view of a combined function dipole. The inclined pole faces in the

magnet gap are responsible for a larger field to the right compared to the left, thus

causing an additional gradient on top of the dipole field.

with k1 = e(∂By/∂x)/p0 defined in the same way as in Equation 3.13. Applying Hamilton’s
equations then leads to the following equations of motion in the horizontal plane

dx′

ds
= −∂H

∂x
= −

(
1

ρ2
+ k1

)
x+

1

ρ
δ, and

dx

ds
=

∂H

∂x′ = x′ . (3.40)

For the vertical plane we obtain

dy′

ds
= −∂H

∂y
= k1y, and

dy

ds
=

∂H

∂x′ = y′, (3.41)

whereas the longitudinal motion is governed by

dδ

ds
= −∂H

∂z
= 0 and

dz

ds
=

∂H

∂δ
=

1

γ2
0

δ − 1

ρ
x (3.42)

which is the same as Equation 3.31 for the plain sector dipole from Section 3.1.3. Also the
equations for the horizontal and vertical planes are very similar to those in Section 3.1.3
which allows us to solve them in the same way as before. We only need to keep track of
whether k = 1/ρ2 + k1 is positive or negative and whether k1 is positive or negative. Here
we only consider k1 > 0 and leave the other cases for the exercises.

Following the procedure to solve Equation 3.29 in the previous section, we obtain

x(s) = cos(
√
ks)x1 +

1√
k
sin(

√
ks)x′

1 +
1

kρ

[
1− cos(

√
ks)

]
δ (3.43)

and x′(s) is found by differentiating Equation 3.43. Turning to Equation 3.41 for the vertical
plane, we exploit the fact that k1 is positive. This implies that the equations are solved by
hyperbolic functions

y(s) = y1 cosh(
√

k1s) +
x′
1√
k1

sinh(
√

k1s) (3.44)

and y′(s) follows form differentiating y(s). Finally, from the first of Equations 3.42, we
deduce that δ is constant and by inserting x(s) from Equation 3.43 in the second, we obtain

z2 = − x1

ρ
√
k
sin(

√
kL)− x′

1

ρk
[1− cos(

√
kL)] +

[
L

γ2
0

− L

ρ2k
+

1

ρ2k3/2
sin(

√
kL)

]
δ . (3.45)



38 ■ Hands-On Accelerator Physics Using MATLAB®

Figure 3.7 Top view (left) of a rectangular bending magnet and three horizontal

trajectories. Side view (right) of a rectangular bending magnet and the vertical

magnetic field profile. Note the fringe field.

Introducing the abbreviations ψ =
√
kL and ψ1 =

√
k1L we find the transfer matrix RC

which maps the phase-space coordinates from the entrance of the combined function dipole
to its exit

RC =




cosψ 1√
k
sinψ 0 0 0 1−cosψ

kρ

−
√
k sinψ cosψ 0 0 0 sinψ√

kρ

0 0 coshψ1
1√
k1

sinhψ1 0 0

0 0
√
k1 sinhψ1 coshψ1 0 0

− sinψ√
kρ

− 1−cosψ
kρ 0 0 1 L

γ2
0
− ψ−sinψ

k3/2ρ2

0 0 0 0 0 1




. (3.46)

Note that RC reverts to RS from Equation 3.36 in the limit k1 → 0, because this implies√
k → 1/ρ.
Both dipoles in this and the previous section were sector dipoles, where the beam enters

and exits the magnet faces at right angles. But often rectangular dipoles are easier to
manufacture, but the beam enters such magnets at an angle, and that has ramifications for
the beam optics.

3.1.5 Rectangular dipole

Apart from sector bending magnets, such as that shown in the top view in Figure 3.4 there
are also rectangular bends, so-called RBENDs, which have parallel entrance and exit faces.
In such a magnet, the length of the trajectory does not depend on the horizontal offset,
as was the case for sector bends, discussed earlier in this section. Therefore, there is no
horizontal focusing in a rectangular bend. Of course, a quadrupole gradient can be added
by shaping the pole face (see Figure 3.6) or other means such as additional coils.

In a rectangular bend the particles enter the fringe field with a horizontal angle and can
interact with the longitudinal component of the B-field, which is present in the fringe-field
region, because the vertical component By varies with s and due to ∂By/∂s = ∂Bs/∂y
also the longitudinal component Bs varies with the vertical distance y to the center of the
magnet. A particle crossing the fringe-field region with a horizontal angle will therefore
experience a vertical component of the Lorentz force. Thus, we find a vertical force that
depends on the vertical position.
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We will now approximately calculate the magnitude of this effect by first observing that

∂Bs

∂y
=

∂By

∂s
≈ By

g
(3.47)

where g is the full gap height. We thus assume that the full vertical field inside the magnet
decays to zero over the longitudinal distance of one gap height. Moreover, here we assume
that this decay is linear, which is only a crude approximation that is convenient for the
calculations. Inside the fringe-field region, the longitudinal component therefore can be
approximated by Bs ≈ yBy/g and points toward the magnet at its entrance face. The
vertical force that a particle experiences is given by the vertical component of the Lorentz-
force equation

dpy
dt

= evxBs ≈ −ϕ

2
c
By

g
y , (3.48)

where the angle between the particle trajectory and the Bs is negative and half the deflection
angle ϕ. Changing the time derivative dt to the derivative along the beamline by ds ≈ c dt,
we obtain, after integrating over the longitudinal extent of the fringe field,

∆py = −ϕ

2
Byy . (3.49)

Normalizing by the total momentum p/e = Bρ results in

∆y′ =
∆py
p

= −ϕ

2

y

ρ
. (3.50)

Rewriting this in terms of a transfer matrix, we find


y2
y′2


=


1 0

− tan(ϕ/2)
2ρ 1


y1
y′1


, (3.51)

where we replaced the approximate value of the deflection angle ϕ/2 by tan(ϕ/2), which
follows from a more careful treatment that is, for example, shown in [13]. It turns out that
the 2 × 2 matrix for the horizontal plane has the sign of the matrix element in the lower
left reversed, such that we obtain

Rf =




1 0 0 0 0 0
tan(ϕ/2)

2ρ 1 0 0 0 0

0 0 1 0 0 0

0 0 − tan(ϕ/2)
2ρ 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1




(3.52)

The matrix Rf is the map from just outside the fringe field to just inside the magnet. The
same effect will affect the particle on its way out of the rectangular bend and therefore the
combined effect of a rectangular bend with matrix RB is approximately given by RB =
RfRSRf .

3.1.6 Coordinate rotation

The next, this time, “virtual element” is a coordinate rotation around the s-axis that we
use, for example, to create a vertically bending dipole magnet from a horizontally bending
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one. We can also create a so-called skew-quadrupole by rotating a normal quadrupole by
45 degrees, or π/4 radians, around the longitudinal s-axis. Rotating in the xy-plane with
an angle ϕ is simply achieved by a normal coordinate rotation

x2 = x1 cosϕ+ y1 sinϕ and y2 = x1(− sinϕ) + y1 cosϕ (3.53)

and differentiating with respect to s we find

x′
2 = x′

1 cosϕ+ y′1 sinϕ and y′2 = x′
1(− sinϕ) + y′1 cosϕ (3.54)

which leads to the 6× 6 transfer matrix



x2

x′
2

y2
y′2
z2
δ2




=




cosϕ 0 sinϕ 0 0 0
0 cosϕ 0 sinϕ 0 0

− sinϕ 0 cosϕ 0 0 0
0 − sinϕ 0 cosϕ 0 0
0 0 0 0 1 0
0 0 0 0 0 1







x1

x′
1

y1
y′1
z1
δ1




. (3.55)

The last two columns and rows simply state that the longitudinal phase-space variables z
and δ do not change. We can now use the transfer matrix Rr(ϕ) from Equation 3.55 to
determine the transfer matrix Qs for the above-mentioned skew quadrupole

Qs = Rr(−π/4)




Qf 02 02
02 Qd 02
02 02 RL


Rr(π/4) , (3.56)

where Qf and Qd are the 2 × 2 matrices from Equations 3.22 and 3.23 and RL is defined
in Equation 3.18. Moreover, vertically deflecting dipoles are described by sandwiching the
matrix for a horizontally deflecting dipole between coordinate rotations for angles of π/2
and −π/2. Note that the angle ϕ that appears in Equation 3.55 is often referred to as roll
angle.

3.1.7 Solenoid

In detectors for nuclear or high-energy physics experiments, a longitudinal magnetic field
is used to determine the momenta of the collision products. This magnet, creating this
longitudinal field Bs, is referred to as a solenoid. It also affects the beam particles, which,
if they enter the solenoid at an angle, will follow helical trajectories inside the magnet. The
reduction of the longitudinal field component Bs near the magnet ends causes transverse
field components Br to appear that focus the beam particles. The combined effect of the
ends and the bulk of the magnet can be described [14] by a 4×4–transfer matrix that is the
product of a matrix that describes focusing with strength ks = Bs/Bρ in both transverse
planes and coordinate rotation Rr(ϕs) with the magnet length L and ϕs = ksL/2. For the
matrix we then find

R̄s = Rr(ϕs)


Qs 0
0 Qs


with Qs =


cos(ϕs) 2 sin(ϕs)/ks

−ks sin(ϕs)/2 cos(ϕs)


. (3.57)

Note that the matrices in the previous equation commute and their order does not matter.
Moreover, we observe that solenoids couple the transverse planes, just as skew quadrupoles
or coordinate rotations do.
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The transfer matrix R̄s from Equation 3.57 is only the top left 4× 4 matrix of the full
6 × 6 matrix operating on (x, x′, y, y′, z, δ). We obtain the full matrix by adding RL from
Equation 3.18 to the lower right corner. As before, it takes into account the effect of the
finite length of the solenoid on the longitudinal position z of a particle. For the full 6 × 6
transfer matrix, we finally obtain

Rs =

(
R̄s 02×4

04×2 RL

)
. (3.58)

Here 0n×m is a n×m matrix with zeroes everywhere.

3.1.8 Non-linear elements

Apart from the magnets that can be represented by matrices, there are magnetic fields that
have a non-linear dependence on the transverse coordinates x and y. Some of these fields
are due to errors in other magnets, and others are due to magnets deliberately installed in
the accelerator in order to correct perturbations. Like for the other magnets we can derive
the equations of motion for the non-linear elements from the Hamiltonian in Equation 2.9
and assume that the vector potential only has a non-zero longitudinal component As. The
other components Ax, Ay and Φ are zero, which leaves us with

H(x, x′, y, y′, z, δ; s) = −eAs

p0
+ δ −

√
1 + 2δ + β2

0δ
2 − x′2 − y′2 . (3.59)

Expanding the square root to second order then results in

H(x, x′, y, y′, z, δ; s) ≈ −eAs

p0
− 1 +

δ2

2γ2
0

+
1

2
x′2 +

1

2
y′2 (3.60)

and the following equations of motion

dx′

ds
= −∂H

∂x
=

e

p0

∂As

∂x
,

dy′

ds
= −∂H

∂y
=

e

p0

∂As

∂y
,

dδ

ds
= −∂H

∂z
= 0 (3.61)

and
dx

ds
=

∂H

∂x′ = x′,
dy

ds
=

∂H

∂x′ = y′,
dz

ds
=

∂H

∂δ
=

1

γ2
0

δ . (3.62)

Solving these equations in general is not possible, but under the assumption that the magnet
is short, we can specify the action of a magnet by small changes in the angles x′ and y′,
which are commonly referred to as kicks. Here ’short’ means that the length L of the magnet
is small in the sense that the transverse positions do not change dx/ds ≈ 0, dy/ds ≈ 0, and
dz/ds ≈ 0, while the beam traverses the magnet. The first two equalities of Equations 3.61
can then be integrated with the result

∆x′ =
e

p0

∂As

∂x
L and ∆y′ =

e

p0

∂As

∂y
L (3.63)

where we assume that AsL remains finite as L → 0. This implies that the kick from
Equation 3.63 is localized at a specific point along the beamline.

In Section 4.2 we shall see that As can be written as a power series expansion in x+ iy
that is commonly referred to a multipole expansion given by Equation 4.12

As(x, y) + iVs(x, y) = −B0R0

∞∑
m=1

bm + iam
m

(
x+ iy

R0

)m

(3.64)
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where m denotes the multipole order. We will discuss Vs further in Section 4.2. The trans-
verse components of the magnetic field Bx and By are then given by Equation 4.10 or
Equation 3.25 with h → 1 from which we obtain

By + iBx = B0

∞∑
m=1

(bm + iam)

(
x+ iy

R0

)m−1

. (3.65)

Here B0 is some reference field, R0 is a reference radius, and the multipole coefficients bm
for upright magnets and am for skew magnets. Here m = 2 characterizes upright and skew
thin-lens quadrupoles and m = 3 characterizes sextupoles, both upright (b3) and skew (a3).
Octupoles, decapoles and higher multipoles follow the same scheme. When a beam particle
traverses such a short magnet, it receives a transverse kick due to the Lorentz force given by
∆x′ − i∆y′ = ±(By + iBx)L/Bρ, where Bρ = p0/e denotes the momentum of the particle,
and (By + iBx)L is the field integrated over the length L. Moreover, the ambiguity of the
sign ± represents the ambiguity originating from the charge of the particle; the same field
kicks electrons and positrons in opposite directions. Once, however, the charge of the beam
particle is known, a magnet that produces a negative kick ∆x′ < 0 at positive positions
x > 0 is referred to as horizontally focusing.

The kick that a particle receives is usually parameterized by a quantity knL =
−(∂nBy/∂x

n + i∂nBx/∂x
n)L/Bρ that can be related to Equation 3.65 and we find

∆x′ − i∆y′ = −
∞∑

n=0

knL

n!
(x+ iy)n =

B0L

Bρ

∞∑
m=1

(bm + iam)

(
x+ iy

R0

)m−1

. (3.66)

Comparing coefficients we obtain

knL

n!
= − (B0/R

n
0 )L

Bρ
(bn+1 + ian+1) , (3.67)

which facilitates translating between the different conventions to characterize non-linear
magnetic fields. The coefficients an and bn are typically used by magnet builders and the
kicks ∆x′ and ∆y′ parametrized by knL derived from Equation 3.66 are commonly used
when simulating the behavior of particles in non-linear magnetic fields. We will later use
them in Chapter 11 to investigate the effect of the non-linear elements on the beam dynam-
ics.

Now we have a well-filled toolbox of maps, kicks for the non-linearities, but especially
matrices for most common elements in an accelerator. In the following section we will use
the latter to propagate particles and beams through beamlines.

3.2 PROPAGATING PARTICLES AND BEAMS

In Chapter 2 we found that well-behaved distribution functions can be efficiently described
by their first few moments, namely the zeroth moment, the particle number; the first mo-
ments, the centroids; and the second moments, the beam sizes. Here we discuss how the
moments of the beam distribution propagate through a beamline. Once we can do this we
have reasonably complete information about the behavior of the beam everywhere in the
accelerator.

We start by considering how a single particle propagates through a single element or
through an entire beamline, as described by a transfer matrix R, and then calculate the
moments of the beam distribution at the end of the beamline by averaging the final coordi-
nates over the initial distribution. To clarify this approach, we work this out in detail and
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describe the initial phase-space vector by x⃗ = (x1, · · · , xn), where n can be any number,
but most often it will be 2, 4, or 6. We emphasize that the subscript is now used to denote
the phase-space variable rather than the location in the beamline. In particular x = x1,
x′ = x2, y = x3, and so forth. With this notation, the motion of a particle through a
beamline represented by the transfer matrix R is given by

x̄i =
n∑

j=1

Rijxj (3.68)

which is written in component form. We mark the particle coordinates at the end of the
beamline with a bar and averages over the initial distribution function are denoted by angle
brackets. Averaging Equation 3.68 leads to

X̄i = ⟨x̄i⟩ = ⟨
n∑

j=1

Rijxj⟩ =
n∑

j=1

Rij⟨xj⟩ =
n∑

j=1

RijXj . (3.69)

The first equality is the definition of X̄i as the ensemble average of the final coordinates x̄i.
In the second equality, we express it through the transfer matrixR and initial coordinates xj .
Since the transfer matrix is the same for all particles and the summing is a linear operation,
we can pull the sum and R from the average, such that only the average over the initial
coordinates xj is left. In summary, Equation 3.69 states that the centroids Xi propagate
in the same way individual particles do, which is convenient, because we can use the single
particle dynamics to describe the behavior of averages of a large ensemble of particles. In
particular, the beam-position monitors, which we will discuss further later in Chapter 7,
are sensitive to the centroid of the beam motion, and we can model these measurements
using the transfer matrices that were originally derived to describe the motion of a single
particle.

We now turn to the second moments and how they propagate in a beamline defined by
transfer matrix R. The sigma matrix is in general defined by the central second moments
of the distribution. “Central” in this context means that the centroid motion is subtracted.
The sigma- or beam matrix is then given by

σij = ⟨(xi −Xi)(xj −Xj)⟩ , (3.70)

which is consistent with Equation 2.24 on page 23. In the remainder of this section we
will, for the sake of simplifying the equations, assume that the centroid of the distribution
is located on the reference trajectory, i.e., Xi = 0. The sigma matrix at the end of the
beamline σ̄ is then given by

σ̄ij = ⟨x̄ix̄j⟩ = ⟨
n∑

k=1

Rikxk

n∑
l=1

Rjlxl⟩ =
n∑

k=1

Rik

n∑
l=1

Rjl⟨xkxl⟩ =
n∑

k=1

n∑
l=1

RikRjlσkl (3.71)

in terms of the initial sigma matrix σ and the transfer matrix R. The first equality is just
the definition of σ̄ij , and we exploit the fact that the transfer matrix is the same for all
particles and the sums are linear to pull them out of the average. Note that Equation 3.71
is given in component form. Written in matrix form we find

σ̄ = RσRT , (3.72)

where RT denotes the transpose of matrix R. In the calculation we have, strictly speaking,
only shown that the sigma matrix propagates with Equation 3.72 if X⃗ = 0, but with a little
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more effort it is straightforward to show that Equation 3.72 also holds when using the full
definition of the sigma matrix from Equation 3.70.

Equations 3.69 and 3.72 enable us to propagate a beam, which is characterized by its
first and second moments, through any beamline that is defined by the transfer matrices for
all its elements. This method is implemented in many beam transport codes, starting from
TRANSPORT [5] and MADX [4] to many others. We stress the importance of the sigma
matrix, because it carries all the information about the beam properties such as beam size
σ11 = σ2

x or angular divergence σ22 = σ2
x′ throughout the accelerator.

After we know how to describe beamline elements by matrices and the particles and
beams by vectors and matrices, we are ready to simulate this motion of beams through
accelerators in MATLAB or Octave.

3.3 TWO-DIMENSIONAL

In this section, we confine ourselves to the horizontal transverse dimension and to very
simple elements. We illustrate all calculations with examples coded in MATLAB or Octave.

3.3.1 Beam optics in MATLAB

We start by analyzing a simple beamline that consists of 20 straight FODO cells, similar
to those we used in Chapter 2, but without dipole magnets. In order to simplify the cal-
culations, we use thin quadrupoles instead of long ones. In that case we only need 2 × 2
matrices for drift spaces and for thin quadrupoles. We therefore write MATLAB functions
that return the respective transfer matrices. The file for the drift space, we call it DD.m, is
particularly simple

% DD.m, drift space, V. Ziemann, 240827

function out=DD(L)

out=[1,L;0,1];

It only receives one parameter, the length of the drift space L, as input and returns the 2×2
transfer-matrix for the element as parameter out. The function that returns the matrix for
a thin quadrupole, named Q.m, is not much more difficult.

% Q.m, thin quadrupole, V. Ziemann, 240827

function out=Q(F)

out=eye(2);

if abs(F)<1e-8, return; end

out=[1,0;-1/F,1];

It works very similar to the one for the drift space, except that it receives the focal length F

as input and returns the thin lens matrix for a quadrupole in the variable out unless the
focal length is too small. In that case the unit matrix is returned.

Based on these functions for the transfer matrices, we are ready to build a first beam
transport code. We give it the name beamoptics.m.

% beamoptics.m, V. Ziemann, 240827

clear; close all

ndim=2; % 2 for 2x2 matrices

F=2.1; % focal length of the quadrupoles

fodo=[ 1, 5, 0.2, 0; % 5* D(L/10)

2, 1, 0.0, -F; % QD
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1, 10, 0.2, 0; % 10* D(L/10)

2, 1, 0.0, F; % QF/2

1, 5, 0.2, 0]; % 5* D(L/10)

beamline=repmat(fodo,20,1); % name must be ’beamline’

nlines=size(beamline,1); % number of lines in beamline

nmat=sum(beamline(:,ndim))+1; % sum over repeat-count in column 2

Racc=zeros(ndim,ndim,nmat); % matrices from start to element-end

Racc(:,:,1)=eye(ndim); % initialize first with unit matrix

spos=zeros(nmat,1); % longitudinal position

ic=1; % element counter

for line=1:nlines % loop over input elements

for seg=1:beamline(line,2) % loop over repeat-count

ic=ic+1; % next element

Rcurr=eye(2); % matrix in next element

switch beamline(line,1)

case 1 % drift

Rcurr=DD(beamline(line,3));

case 2 % thin quadrupole

Rcurr=Q(beamline(line,4));

otherwise

disp(’unsupported code’)

end

Racc(:,:,ic)=Rcurr*Racc(:,:,ic-1); % concatenate

spos(ic)=spos(ic-1)+beamline(line,3); % position of element

end

end

x0=[0.001;0]; % 1 mm offset at start

data=zeros(1,nmat); % allocate memory

for k=1:nmat

x=Racc(:,:,k)*x0;

data(k)=x(1); % store the position

end

plot(spos,1e3*data,’k’,’LineWidth’,2);

xlabel(’s [m]’); ylabel(’ x [mm]’); xlim([spos(1),spos(end)])

set(gca,’FontSize’,16);

At the top of the script we clear the workspace, close all graphics windows, and define a
parameter ndim indicating that we work with 2 × 2 matrices. It is used to create arrays
with the right dimensionality. Next we define a parameter F that we use to set the focal
length of the thin quadrupole and define the lattice fodo using the same syntax we used
in Chapter 2, where we used the element code 2 to represent the thin quadrupole. It must
have length zero and the focal length is specified in the fourth column. Note the comments
following the % after each element description. MATLAB ignores everything following the
percent sign.

Following the definition of fodo, we make 20 consecutive copies of it with the repmat()
function that concatenates 20 copies of fodo and copies it to the variable beamline. Once
the complete beamline is assembled, we need to allocate arrays to hold all quantities we
will calculate. For this we first determine how many elements the beamline contains and
store that in the variables nlines. Likewise, taking the repeat count of the elements into
account, we determine the total number of matrices nmap. The array Racc will contain all
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Figure 3.8 The transverse position of a particle that oscillates along the beamline.

On the left, we have a stable beamline with proper oscillations, and on the right

the oscillations are increasing, which indicates an unstable beamline.

transfer matrices from the start to immediately behind each element, such that R(:,:,1)
holds the transfer matrix from just before the start to itself and is initialized with the unit
matrix, eye(ndim). For example, R(:,:,6) holds the matrix from the start of the beamline
to just after the element number 5, which is immediately upstream of the first quadrupole.
Note that the first drift space is sub-divided in five subsections such that it counts as 5.
The array spos holds the distance from the start of beamline to immediately after the
respective element. For example, spos(5) returns 0.8m.

After initializing the element counter ic, we are ready to step through the beamline by
iterating over the lines and over the segments seg that represent the repeat count of the
elements. Inside the loop, we first increment the element counter ic and then switch ac-
cording to the element code stored in the first column of the beamline description beamline.
If it is 1, we use the previously defined function DD.m for a drift space with length defined
in the third column of the current line and assign the transfer matrix to Rcurr. Likewise,
if the element code is 2, we set Rcurr to the transfer matrix for a thin quadrupole with
the focal length specified in the fourth column of beamline. If a code is unknown, a short
message is printed. Later we will extend the list of known elements to comprise all those
discussed in the previous sections and will also extend the number of dimensions. At this
point in the code, we know the transfer matrix for the current segment and we use it to up-
date Racc, the array of accumulated transfer matrices. Here we left-multiply the previously
accumulated transfer matrix in Racc(:,:,ic-1) with the current transfer matrix Rcurr.
In the same way, we fill the next position in the array spos by adding the length of the
current segment.

As a first example, we simply launch a particle with a position offset of 1mm
(x0=[0.001;0]), allocate an array in which to store the data, and loop over all positions.
Finally, we plot the positions after each location, and annotate the axes. The code is shown
in the last few lines of the example. Executing the script produces the plot shown on the
left-hand side in Figure 3.8. We observe an oscillation along the 20 FODO-cells with an
amplitude of up to 2mm, which is larger than the initial starting amplitude x0 because
the first quadrupole is defocusing and kicks the particle to larger amplitudes before it is
bent back towards the reference orbit in the following focusing quadrupole. In this way
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the particle receives one kick after the other in each quadrupole it traverses and oscillates
around the reference orbit until the end of the beamline.

On the left-hand side of Figure 3.8 the oscillation is stable, but if we decrease the focal
length in the example code from 2.1m to 0.999m and run the script once again we find the
oscillation with increasing amplitudes, shown on the right-hand side in Figure 3.8, which
indicates an unstable beamline. The lesson we pick up from this exercise is that it is possible
to set the quadrupoles in such a way that an accelerator is unstable and this normally leads
to beam loss. Exploring possible values for the focal lengths f further, we find that values
with f < −1m and f > 1m lead to stable oscillations.

3.3.2 Poincare section and tune

Let us continue to explore stable oscillations by observing the phase-space variables x and
x′ after every traversal through the FODO cell. This leads to a stroboscopic view of the
particle motion, called a Poincare section or phase-space portrait. To do this we change the
example code to only use a single FODO cell, instead of 20, by changing the definition of
beamline near the top of the script to beamline=fodo; and replace the last three lines in
the code by the following

hold on; xx=[0.001;0]; % 1 mm starting position

for k=1:100

xx=Rturn*xx;

plot(1e3*xx(1),1e3*xx(2),’.’);

end

xlabel(’x [mm]’); ylabel(’x’’ [mrad]’);

The command hold on allows us to add multiple data points in the same plot without
removing the old ones. Then we define the initial conditions for the particle in the array
xx[]. In the loop over k we map the phase-space state of the particle, as represented by xx,

from one turn to the next for 100 iterations. In each iteration we place a dot on the plot and
in the end, label the axes appropriately. We multiply the axes by 1000 in order to use the
more appropriate scales mm and mrad. After the loop, we correspondingly label the axes
and obtain the plot shown on the left-hand side in Figure 3.9, where we observe that the
phase-space coordinates of the particle all lie on an ellipse, and this is a strong indication
that the dynamics of particles in accelerators is very similar to that of harmonic oscillators,
well-known from elementary mechanics, whose phase-space portraits are also ellipses.

Since ellipses will play an important role further along in the discussion, we briefly
digress and discuss transforming them into a canonical form. Ellipses are conic sections
that can be represented by quadratic forms in the two phase-space coordinates x and x′,
such that we can write

2J = γx2 + 2αxx′ + βx′2 (3.73)

with, at present, arbitrary coefficients α, β, and γ to describe the shape and orientation
of the ellipse and a parameter 2J that describes its magnitude. Of course we choose a
nomenclature that is consistent with commonly used conventions. We now try to find a
linear transformation with a unit determinant that transforms the phase-space coordinates
x and x′ to x̃ and x̃′, which transform the equation for the ellipse to that of a circle in the
new variables. For the transformation between the variables we assume the form

(
x
x′

)
=

(
a 0
b c

)(
x̃
x̃′

)
(3.74)
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Figure 3.9 The phase space of a particle and the fast Fourier transform of the posi-

tion.

with determinant ac = 1. Inserting into Equation 3.73 leads to

2J =
[
γa2 + 2αab+ βb2

]
x̃2 + 2 [αac+ βbc] x̃x̃′ +

[
βc2

]
x̃′2 . (3.75)

The requirement that this equation describes a circle amounts to the three conditions

1 = γa2 + 2αab+ βb2 , 0 = αac+ βbc , and 1 = βc2 . (3.76)

Solving these equations for a, b, and c leads to a =
√
β, b = −α/

√
β, and c = 1/

√
β and the

consistency condition γ = (1 + α2)/β. The transformation matrix from Equation 3.74 that
transforms the ellipses to circles then assumes the form

(
x
x′

)
=

( √
β 0

−α/
√
β 1/

√
β

)(
x̃
x̃′

)
. (3.77)

In the literature, the parameters appearing in Equation 3.73 are known as Twiss parameters
α, β, γ and action, or Courant-Snyder invariant, J. Here the former describe the shape of
the ellipse that a particle traces out, and the latter describes the size of the ellipse. The
coordinate system in which the motion is confined to a circle is called normalized phase
space, a notion we will frequently encounter in the following sections. But let’s go back to
numerically investigating the motion.

Since harmonic oscillators are characterized by their frequency, it is prudent to determine
the oscillation frequency of our accelerator as well, and we do so by extending the loop over
N=1024 iterations and saving the position value xx(1) after every iteration in the array
xpos. After the loop, we calculate the fast Fourier transform (FFT), and plot the result
with

y=2*abs(fft(xpos))/N;

plot((1:N/2)/N,y(1:N/2),’k’);

which leads to the plot shown on the right-hand side in Figure 3.9, where a peak with
amplitude of 1.4× 10−3 is visible near 0.16. This indicates that a fraction of about 0.16 of
a full oscillation happens within one traversal of the FODO cell. The amplitude coincides
with the maximum excursion in x in the phase-space plot on the left-hand side in Figure 3.9.

We point out that harmonic oscillations are characteristic of slightly perturbed stable
systems in equilibrium. “Equilibrium” implies that all external forces are balanced and add
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up to zero. If we consider an equivalent mechanical system, this means that the system is
characterized by a potential function with zero first derivatives. The first non-zero term of
the Taylor-series expansion of the potential can only be quadratic. This, in turn, implies that
the motion derived from the potential is harmonic with system-specific eigenfrequencies. In
accelerators, these frequencies are called tunes.

3.3.3 FODO cell and beta functions

We continue the investigation by calculating the full-turn matrix R̂ =Rturn for our simple
system by hand from the matrices, such that we have

R̂ = D(L/2)Q(f)D(L)Q(−f)D(L/2) (3.78)

where D(L) is the matrix for a drift-space from Equation 3.3 and Q(f) for a thin quadrupole
from Equation 3.10. The same matrices are used in the scripts DD.m and Q.m, respectively.
Here we use L to represent the space between quadrupoles, such that the length of one
FODO cell is 2L. Inserting the matrices and evaluating the multiplications leads to

R̂ =

(
1− L

f − L2

2f2 2L− L3

4f2

− L
f2 1 + L

f − L2

2f2

)
, (3.79)

which gives us a useful representation of the transfer-matrix for one cell in terms of geomet-
rical quantities, the length L and focal length f . Note that the determinant of the matrix
is unity, because the matrices D and Q have a unit determinant.

The observation that there is an oscillation at the bottom suggests to decompose the full-
turn transfer matrix R =Rturn into a matrix A that stretches and twists the coordinate
axes of the phase space, a rotation matrix O and the inverse of A such that we write
R̂ = A−1OA, where all matrices, including R̂, have a unit determinant. Therefore, only
three of four matrix elements are independent. Since the rotation matrix O depends on one
parameter, the rotation angle µ, the matrix A depends on two more. Here we chose a form of
the matrix that is inspired by the discussion that led to Equation 3.77. That matrix already
maps a circle to an ellipse. Here we require the inverse operation, namely to map from the
regular phase space x and x′ to normalized phase space, where the motion is represented
by a circle. Therefore, we use the inverse matrix from Equation 3.77 on the right and the
matrix itself on the left of the following equation

R̂ = A−1OA

=

( √
β 0

− α√
β

1√
β

)(
cosµ sinµ
− sinµ cosµ

)(
1√
β

0
α√
β

√
β

)
(3.80)

=

(
cosµ+ α sinµ β sinµ

− 1+α2

β sinµ cosµ− α sinµ

)
.

with the definitions

O =

(
cosµ sinµ
− sinµ cosµ

)
and A =

(
1√
β

0
α√
β

√
β

)
. (3.81)

The parameterization shown in the first line of Equation 3.80 has a simple interpretation.
First we apply a coordinate transformation by the matrix with α and β, then we apply
a rotation, followed by the inverse coordinate transformation. The matrix A is thus just
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an affine transformation that rescales and changes the angle of the coordinate axis. Since
the motion in the new coordinate system is a circle, it is common to call this procedure
“transforming into normalized phase space.” Here β and α are the Twiss parameters and
µ is the phase advance. In particular, β is the ubiquitous beta function. It is a function
of the position s, because it has different values, depending on where we define the start
of the FODO cell. In this example we start in the middle of a drift space, but if we start
immediately after a quadrupole, its value will be different.

Now we have two ways to express the transfer-matrix through one FODO cell, either by
using the “hardware” parameters L and f from Equation 3.79 or by using the parameter-
ization using µ, β, and α. So, it is possible to express the latter parameters in terms of L
and f. Equating the matrices, we get

(
1− L

f − L2

2f2 2L− L3

4f2

− L
f2 1 + L

f − L2

2f2

)
=

(
cosµ+ α sinµ β sinµ

− 1+α2

β sinµ cosµ− α sinµ

)
(3.82)

and from adding the diagonal elements, we find

cosµ = 1− L2

2f2
. (3.83)

Exploiting the trigonometric equation 1− cosµ = 2 sin2(µ/2) we obtain

sin(µ/2) =
L

2f
. (3.84)

From the difference of the diagonal elements, we arrive at

2α sinµ = −2L

f
or α = − L

f sinµ
. (3.85)

After some manipulations involving trigonometric functions, we find

α = − 1√
1− L2/4f2

. (3.86)

From comparing the 12-elements of the transfer matrices, we obtain

β sinµ = 2L− L3

4f2
(3.87)

which leads to

β = f
2− L2/4f2

√
1− L2/4f2

. (3.88)

Note that α and β are calculated at the starting point, which also equals the end point of
the periodic cell, as given in Equation 3.78. This description is also consistent with the one
given by the array fodo in the MATLAB example.

In case we consider not only a single cell, but an entire circular accelerator, the full-turn
transfer matrix is composed of many individual matrices for the elements of the ring, but
we still have a full-turn matrix R̂ available and can perform the analysis to determine α, β
and the phase advance µ from R̂. First, we calculate µ from the trace of the matrix R̂, then
β from R̂12, and finally α from the difference of the diagonal elements as

µ = arccos

(
R̂11 + R̂22

2

)
, β =

R̂12

sinµ
, and α =

R̂11 − R̂22

2 sinµ
. (3.89)
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When R̂ describes an entire ring, the phase advance µ in units of 2π is called the tune
Q = µ/2π of the ring. It describes the number of transverse oscillations performed by a
particle on its journey around the ring. Note, however, that we can only determine the
fractional part of the tune in this way. It is crucial for the stability and robustness of
operating a ring, and we will return to this topic later. On the other hand, since we only
have information about the position of particles once per turn, it is impossible to determine
the integer number of oscillations the particle performed.

Next, we relate these calculations to earlier observations from our numerical experiments.
We see that the beta function grows without bounds with increasing focal length which
describes increasingly weaker quadrupoles. Moreover, as f is smaller than L/2, the cosine
in Equation 3.83 is less than its smallest permissible value of −1 and the square root in the
denominator of Equations 3.86 and 3.88 become imaginary. This observation is consistent
with the finding that the oscillations become unstable if F becomes less than 1 in the script
and that is half the distance between quadrupoles in the beamline definition of fodo. We
thus conclude that a beamline is stable if the sum of the diagonal elements, the trace of the
full-turn matrix, lies between −2 and 2, which is referred to as the stability criterion for
transfer matrices describing rings.

It remains to compare the phase advance µ to the numerical examples where we found
that the phase advance was around 0.16 if the focal length is f = 2.1m. Inserting this value,
together with L = 2m in Equation 3.84 we obtain

µ = 2arcsin(L/2f) = 2π × 0.158 (3.90)

which nicely shows the consistency of this analysis with the numerical experiments.

3.3.4 A complementary look at beta functions

We can exploit the view that there is “a harmonic oscillator at the bottom of every stable
system” by realizing the similarity of focusing in a periodic beamline as represented by
its focusing strength k1(s) = k1(s + L) with a harmonic oscillator that has a periodically
varying spring constant. Guided by this analogy, we may search for quasi-periodic solutions.
To do so, we start from the equation of motion for a single particle

x′′ + k1(s)x = 0 , (3.91)

where k1(s) is entirely determined by the magnetic setup, the lattice. We then make a
quasi-periodic Ansatz with functions u(s) and ψ(s) and integration constants A and ϕ0

x(s) = Au(s) cos(ψ(s) + ϕ0) (3.92)

and calculate the derivatives

x′ = Au′ cos(ψ(s) + ϕ0)−Auψ′ sin(ψ(s) + ϕ0) (3.93)

x′′ = A cos(ψ(s) + ϕ0)
[
u′′ − uψ′2]−A sin(ψ(s) + ϕ0) [2u

′ψ′ + uψ′′]

and, after inserting in the equation of motion, we collect terms in front of the sine and
cosine

0 = A cos(ψ(s) + ϕ0)
[
u′′ − uψ′2 + k1(s)u

]

−A sin(ψ(s) + ϕ0) [2u
′ψ′ + uψ′′] (3.94)
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which implies the following conditions among the functions u(s) and ψ(s)

0 = u′′ − uψ′2 + k1(s)u and 0 = 2u′ψ′ + uψ′′ . (3.95)

The second equation leads to
ψ′′

ψ′ = −2
u′

u
(3.96)

and integrating once leads to

lnψ′ = −2 lnu = ln(1/u2) or ψ′ =
1

u2
. (3.97)

Historically, u2(s) = β(s) is called the beta function, but it is essentially the amplitude of
the quasi-periodic oscillation which depends on the longitudinal position s in the beamline.
Moreover, instead of the constant A, often the Courant-Snyder invariant J = A2/2 is used.
We also note that the relation between u and ψ from Equation 3.97 can be written as

ψ(s) =

∫ s

0

ds′

β(s′)
. (3.98)

It implies that the phase advances by a lot at locations where β(s) is small. Now rewrite
the equations for the trajectory x and x′ in terms of the beta function

x =
√

2Jβ(s) cos(ψ(s) + ϕ0)

x′ = −

√
2J

β

[
β′

2
cos(ψ(s) + ϕ0) + sin(ψ(s) + ϕ0)

]
(3.99)

= −

√
2J

β
[α(s) cos(ψ(s) + ϕ0) + sin(ψ(s) + ϕ0)] ,

where the second equation follows by differentiating the first. The fact that the motion
is quasi-periodic and resembles a harmonic oscillator can be made explicit by solving the
previous equations for cos and sin with the result

cos(ψ(s) + ϕ0) =
x√
2Jβ

and sin(ψ(s) + ϕ0) = − 1√
2Jβ

[βx′ + αx] . (3.100)

Using the trigonometric identity

cos2(ψ(s) + ϕ0) + sin2(ψ(s) + ϕ0) = 1 (3.101)

this leads to the expression

2J = βx′2 + 2αxx′ +
1 + α2

β
x2

= β(s)x′2 + 2α(s)xx′ + γ(s)x2 (3.102)

which makes it obvious that the phase-portrait (Poincare-plot) of x and x′ is an ellipse
that is parameterized in a way that is consistent with Equation 3.73. The orientation of
the ellipse varies along the lattice, because β, α = β′/2, and γ = (1 + α2)/β depend on the
longitudinal position s.
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Now, we reinvent transfer matrices by expressing the integration constants J and ϕ0 in
terms of the initial coordinates x0 and x′

0. At s = 0 we have

x0 =
√
2Jβ0 cosϕ0

x′
0 = −

√
2J

β0
[α0 cosϕ0 + sinϕ0] , (3.103)

which we solve for cosϕ0 and sinϕ0 and replace the trigonometric functions in the general
equation for x and x′. We find

x =

√
β

β0
[cosψ + α0 sinψ]x0 +

√
ββ0 sinψx

′
0 (3.104)

x′ =
1√
ββ0

[(α0 − α) cosψ − (1 + αα0) sinψ]x0 +

√
β0

β
[cosψ − α sinψ]x′

0 ,

which is linear in the initial values x0 and x′
0 and can be written as the following matrix

equation (
x
x′

)
= R

(
x0

x′
0

)
(3.105)

where the matrix R can be written in the following form

R =

( √
β 0

−α/
√
β 1/

√
β

)(
cosψ sinψ

− sinψ cosψ

)(
1/
√
β0 0

α0/
√
β0

√
β0

)
, (3.106)

which makes the dynamics obvious. First, the particle is mapped into normalized phase
space using β0 and α0, followed by an oscillation. Finally, it is mapped from normalized
back to real space using β and α. If we calculate the matrix R at the end of the period
s = L, we recover the expression for the full turn matrix R̂ in Equation 3.80 with ψ = µ,
α0 = α, and β0 = β.

3.3.5 Beam size and emittance

So far, we only analyzed the propagation of single particles, but now we will consider
how a beam, as characterized by its centroids X⃗ and its beam-matrix σ, propagates along
a beamline. From general considerations, we already know that the averages, the beam-
centroids, behave just like a single particle, see Equation 3.69, whereas the beam-matrix
follows Equation 3.72, and our next task is to add the functionality to propagate beam-
matrices to the MATLAB script. The following few lines at the end of the MATLAB script
use Equation 3.72 to move the beam at the start of the beamline sigma0, here chosen
arbitrarily, to each position in the beamline and plot the beam size σx =

√
σ11 at each

position.

sigma0=[4,0;0,1];

for k=1:nmat

sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)’; % eq. 3.43

s11(k)=sigma(1,1); % record values for plotting

end

plot(spos,sqrt(s11)); xlabel(’ s[m]’); ylabel(’\sigma_x [mm]’)



54 ■ Hands-On Accelerator Physics Using MATLAB®

Figure 3.10 The beam size σx =
√
σ11 as a function of position s along the accelerator

for a mismatched (left) and a matched (right) beam.

This code snippet is all that is needed to propagate a beam with known initial beam matrix
sigma0 along a known beamline. Of course, normally we also want to know the other,
vertical beam sizes and the effect of momentum spread. We will address these points in due
time. For now we consider the plot for the above example. It is shown on the left-hand side
in Figure 3.10, where we observe that the beam size varies very irregularly and is at some
places much larger than the initial beam size of 2mm. This triggers the question whether
it is possible to find an initial beam size that propagates in a more regular pattern along
the beamline.

In order to find an initial beam matrix sigma0 that leads to a regularly oscillating beam
size, we observe that we can use the matrix A from Equation 3.81 to construct such a 2× 2
beam matrix σ0 in the following form

σ0 = εxA−1
(
A−1

)T
= εx

(
β −α
−α γ

)
(3.107)

with γ = (1 + α2)/β and an undetermined parameter εx. The rationale behind this con-
struction is two-fold. First, all transfer matrices R have unit determinant detR = 1. This
implies that the determinant of beam matrices does not change, which follows from

det σ̄ = det(RσRT ) = det(R) det(σ) det(RT ) = det(σ) . (3.108)

It is therefore reasonable to give the conserved quantity a name, here emittance squared, or
detσ = ε2x. Since the determinant of A is unity, the determinant of σ0 in Equation 3.107 is
chosen to be ε2x. The second reason to choose σ0 in that form is that it reproduces after one
cell. This is easy to see by using the parameterization of the transfer matrix as R = A−1OA,
given in Equation 3.80. Calculating the beam matrix σ̄ after one cell, we find

σ̄ = Rσ0R
T

= A−1OAεxA−1
(
A−1

)T (
A−1OA

)T

= εxA−1OAA−1
(
A−1

)T ATOT
(
A−1

)T
(3.109)

= εxA−1
(
A−1

)T
= σ0
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where we cancel terms whenever a matrix meets its inverse and we note that the inverse
of an orthogonal rotation matrix O equals its transpose, which allows us to cancel the
rotations. We thus find that the beam-matrix σ0, as defined in Equation 3.107, reproduces
itself after one cell. We immediately try this out and use Equation 3.89 to extract α and β
from a transfer matrix and encapsulate the procedure in a function R2beta() that receives
a matrix R and returns the tune Q, and the Twiss parameters α, β, and γ.

% R2beta.m, V. Ziemann, 240827

function [Q,alpha,beta,gamma]=R2beta(R)

mu=acos(0.5*(R(1,1)+R(2,2)));

if (R(1,2)<0), mu=2*pi-mu; end

Q=mu/(2*pi);

beta=R(1,2)/sin(mu);

alpha=(0.5*(R(1,1)-R(2,2)))/sin(mu);

gamma=(1+alpha^2)/beta;

From the Twiss parameters, we then construct the beam matrix according to Equation 3.107

eps0=1; sigma0=eps0*[beta0, -alpha0; -alpha0,gamma0]

where we simply set the emittance to unity such that the 11-element of the sigma matrix
equals the beta function. Using this sigma0 and repeating the calculation of the beam sizes
along the beamlines results in the plot shown on the right-hand side in Figure 3.10, where we
observe a regularly oscillating beam size along the beamline, with much smaller excursions,
compared to the plot on its left. A beam matrix that repeats itself after one cell is called
a matched beam. On the other hand, sending an unmatched beam into a beamline results
in the very irregular beam sizes visible on the left in Figure 3.10. This is commonly called
beta beating.

Apparently there are two types of beta functions, matched and unmatched. The former
is defined by the requirement for periodicity for one cell, or more generally, a section of
a beamline, and the latter depends on an externally provided beam matrix, for example
generated in a particle source. In a straight beamline, the two types of beta functions do not
necessarily agree and this results in beta beating. In a circular accelerator there is a natural
periodicity requirement and the beta function is unique and given by the calculations leading
to Equation 3.89 on page 50. The two types of beta functions can also be categorized whether
they depend on the hardware of the beamline, which determines the periodic beta function,
or whether they depend on the beam matrix σ and we determine it from first calculating
the emittance from ε2x = detσ and then the beam’s beta function from β = σ11/εx and
α = −σ12/εx. This beta function we denote the beam beta function. It only provides a
convenient parameterization of the beam matrix. The two types of beta-functions agree if
the beam is matched to the lattice.

We also reiterate that matrix elements of the beam matrix are related to the beam size
by σ2

x = εxβ and angular divergence by σ2
x′ = εxγ. The parameter α describes whether the

beam is convergent, if α > 0, or divergent, if α < 0. This is easy to see by considering the
definition of the off-diagonal element of the beam-matrix σ12 = −εxα = ⟨xx′⟩ where the
second equation describes the matrix element as the average of the product of position and
angle over all particles in the beam. If the particles in the beam with positive position x point
downward, which means x′ < 0, the particle trajectory points downwards and converges
toward the reference trajectory. Conversely, particles with x < 0 and positive angle x′ > 0,
also move toward the axis. Thus if the average of the product xx′ is negative, most particles
converge to the axis and the beam is convergent. The minus-sign in the definition of α
therefore causes α to be positive for convergent beams.
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Figure 3.11 The solid line shows the horizontal beta function in one FODO cell

as a function along the position in the cell. The quadrupoles are located at 1

and 3m where the beta function changes significantly. The dashed line shows the

beta function after reversing the polarity of both quadrupoles, which corresponds

to the situation in the vertical plane.

When we design accelerators, we normally build small cells that are repeated many times,
with many magnets of the same type, which makes their production less expensive. These
small cells—our FODO cell is an example—are then characterized by the beta functions,
which gives an indication of the beam sizes. Figure 3.11 shows this for our FODO cell. The
solid line represents βx, and the dashed line βy, the beta function in the vertical plane.
Note that the two lines are almost “mirror images” of each other, because the polarity of
quadrupoles in the two planes is reversed; quads are focusing in one plane and defocusing
in the other. Moreover, we find that the horizontal beta function βx is minimum in the
first quadrupole at s = 1m which is a defocusing quadrupole, and it is maximum in the
focusing quadrupole at s = 3m. The focusing quadrupole “bends the beta function back”
just as it is about to go through the roof. In the vertical plane, the situation is the converse.
The horizontally defocusing quadrupole focuses in the vertical plane, and the maximum
of the vertical beta function appears in the first quadrupole. Note that with the vertical
beta function βy also the vertical beam size is maximum in the first quadrupole, where the
horizontal beam size is minimal as indicated by the minimum of the solid line in Figure 3.11.

What have we achieved so far? We started with a description of a beamline and explored
the motion of a single particle, or equivalently, the beam centroid and found that the motion
resembles a harmonic oscillator, as long as a stability criterion is satisfied. Then we explored
how to propagate beam matrices along the beamline and found parameterizations of the
transfer matrix and the beam matrix in terms of beta functions. This framework will give us
a solid base to describe and design beamlines and accelerators. But an extra ingredient that
is missing is the effect of momentum deviations of the beam, so-called chromatic effects,
and that is what we have to look at next.
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Figure 3.12 Effect of a quadrupole on particles with different energies. The focal point

of particles with higher energy is further downstream than that of the reference

particle and particles with lower energy.

3.4 CHROMATICITY AND DISPERSION

Here we consider two chromatic effects. First the effect of momentum-dependent focusing
in quadrupoles, called chromaticity, and then the effect of momentum-dependent bending
of dipoles, called dispersion.

3.4.1 Chromaticity

The first effect we discuss depends on the momentum-dependence of the focal length of
quadrupoles, the chromaticity. Recall that the inverse focal length is given by

1

f
=

e

p

∂By

∂x
=

e

p0(1 + δ)

∂By

∂x
=

1

f0(1 + δ)
≈ 1

f0
− δ

f0
, (3.110)

where δ = (p − p0)/p0 is the relative momentum offset of a particle with respect to the
reference particle. Apparently, the momentum error has the same effect as an additional
quadrupole with focal length −f0/δ. Consequently the focusing is momentum dependent
and particles with different energies experience different focal lengths. This affects the lon-
gitudinal position of a focal point in a linear accelerator or the phase advance per cell and
thus the tune in a circular accelerator. Here we will consider the latter and explore the
effect of a single additional quadrupole of strength f̂ = −f0/δ at a location where the beta

function is known to be β̂. We assume α = 0 to make the calculation more traceable. Taking
it along it will drop out of the calculation in the end.

Adding an additional quadrupole to a ring that has tune Q starting at a location with
beta function β̂ can be described by multiplying the transfer matrix of the quadrupole to
that of a ring with tune Q and is given by

R̂ =

(
1 0

−1/f̂ 1

)(
cos(2πQ) β̂ sin(2πQ)

− sin(2πQ)/β̂ cos(2πQ)

)
(3.111)

=

(
cos(2πQ) β̂ sin(2πQ)

− sin(2πQ)/β̂ − cos(2πQ)/f̂ cos(2πQ)− β̂ sin(2πQ)/f̂

)
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and we can now use Equation 3.89 to determine the new tune Q+∆Q from R̂

2 cos(2π(Q+∆Q)) = R̂11 + R̂22 = 2 cos(2πQ)− β̂

f̂
sin(2πQ) . (3.112)

Since we assume that the extra quadrupole is weak, we expect a small change in the tune
∆Q and can rewrite cosine on the left-hand side as

cos(2π(Q+∆Q)) ≈ cos(2πQ)− 2π∆Q sin(2πQ) , (3.113)

where we use that cos(2π∆Q) ≈ 1 and sin(2π∆Q) ≈ 2π∆Q. Solving for ∆Q, we obtain

∆Q =
β̂

4πf̂
, (3.114)

which is a well-known (in accelerator circles) equation to describe the tune shift ∆Q as a

consequence of a quadrupole error of magnitude 1/f̂ . We notice that ∆Q is proportional to

the beta function β̂ at the location of the error. This indicates that the beta function not
only describes the beam size, but also the sensitivity to quadrupole errors. Conversely, it is
important to pay special attention to the manufacturing tolerances of quadrupoles located
at positions where the beta functions are very large.

The tune shift ∆Q due to a momentum error δ is found from realizing that f̂ = −f0/δ
and we find

∆Q = − β̂

4πf0
δ (3.115)

which is the contribution of a single quadrupole with focal length f0 to the chromaticity.
The chromaticity Q′

x = ∆Q/δ for the entire ring is consequently given by summing over
the contributions of all quadrupoles

Q′
x = ∆Q/δ = −

∑
i

βi

4πfi
, (3.116)

where the sum extends over all quadrupoles.
The quadrupole in the previous example is a thin quadrupole, but we can easily extend

the range of validity of Equation 3.114 to comprise long quadrupoles, which have an effective
focal length of 1/f ≈ k̂1l. Thus we arrive at the tune shift from a long quadrupole as

∆Q =
1

4π

∫ l

0

β(s)k̂1ds , (3.117)

where k1 = (∂By/∂x)/Bρ is the normalized gradient of the quadrupole. For the chromaticity

due to long quadrupoles we have k̂1 = −k1δ and we obtain in the same way as before

Q′
x = − 1

4π

∮
β(s)k1(s)ds , (3.118)

where the integral extends over the entire ring and picks up only contributions where k1(s)
differs from zero and that is in the quadrupoles.

For our simple FODO cell with thin quadrupoles, it is very easy to implement the
calculation of the chromaticity according to Equation 3.116 in a MATLAB script. We assume
that the calculation of the matched beam matrix and the beta functions is done previously,
and they are stored in an array beta(). Then, we only have to loop over all elements and
add the contributions from the thin quadrupoles in the following code snippet.
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xi=0;

ic=1;

for line=1:nlines

for seg=1:beamline(line,2)

ic=ic+1;

if beamline(line,1)==2

xi=xi-beta(ic)/(4*pi*beamline(line,4));

end

end

end

disp([’Chromaticity = ’ num2str(xi,4)])

In the end, the numerical value of the chromaticity is displayed. In case we have to deal
with long quadrupoles, we need to sum over their respective k1-values weighted by the beta
functions, but we leave that as an exercise.

A large value of the chromaticity is undesirable because it causes the tunes to vary
significantly with the momentum of the beam particles, and this has an important influence
on the stability of the beam. To alleviate this dependence we thus need to compensate the
chromaticity, but defer this task to Sections 8.4.4 and 8.5.4. Instead, we now turn to the
momentum-dependence of dipole magnets.

3.4.2 Dispersion

We already considered the momentum dependence of the deflection angle of dipoles in
Figure 3.5, which led to the transfer matrix for a dipole given in Equation 3.36 on page 35.
We see that a dipole magnet has the property of giving a particle a small horizontal change
in position and offset, which is proportional to the momentum offset δ and is represented by
the sixth column of the transfer matrix in Equation 3.36. Even if the particle was initially
on-axis, it starts to deviate from the reference trajectory, and, provided the beamline is
stable, starts to oscillate. The amplitude of this oscillation is proportional to δ and the
trajectory, normalized to δ, is called the dispersion, often denoted by D. In this way the
transverse offset x̄ of the trajectory, due to the momentum offset, is x̄ = Dδ. It thus describes
how much the trajectories are separated due to their momentum, and we may call it the
spectrometer function. Though this name is not commonly used, it describes the function
of the dispersion rather well.

We can treat this effect in our MATLAB simulation by including the momentum depen-
dence in the transfer matrix. In order to keep the discussion transparent, we only consider
the horizontal plane with x and x′ and assume that all dipoles have horizontal deflection
angles and affect the horizontal motion, only. We therefore can model this by extending
the previous simulation to 3 × 3 matrices where we place the entries in the sixth column
of Equation 3.36 into the third column of our reduced model. The transfer matrix for the
horizontally deflecting sector dipole magnet is then given by

R =




cosϕ ρ sinϕ ρ(1− cosϕ)
− sin(ϕ)/ρ cosϕ sinϕ

0 0 1


 (3.119)

with the deflection angle ϕ = eBL/p0 and the radius of curvature ρ = p0/eB. The MATLAB
function that implements this is the following

% SB.m, sector bend, V. Ziemann, 240828
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function out=SB(L,rho);

phi=L/rho;

out=eye(3);

if abs(phi)<1e-8

out(1,2)=L;

else

out(1:2,1:3)=[cos(phi),rho*sin(phi),rho*(1-cos(phi)); ...

-sin(phi)/rho,cos(phi),sin(phi)];

end

where we see that the matrix is a straight translation of the matrix in Equation 3.119. In
the same spirit, we update the transfer matrix for the drift space to 3× 3 format by adding
a third row and column with unity on the diagonal.

% DD.m, drift space, V. Ziemann, 240828

function out=DD(L)

out=eye(3);

out(1,2)=L;

Likewise, we introduce the 3× 3 transfer matrix for a thick quadrupole.

% QQ.m, thick quadrupole, V. Ziemann, 240828

function out=QQ(k,L)

ksq=sqrt(abs(k));

out=eye(3);

if abs(k) < 1e-6

out(1,2)=L;

elseif k>0

out(1:2,1:2)=[cos(ksq*L),sin(ksq*L)/ksq; ...

-ksq*sin(ksq*L),cos(ksq*L)];

else

out(1:2,1:2)=[cosh(ksq*L),sinh(ksq*L)/ksq; ...

ksq*sinh(ksq*L),cosh(ksq*L)];

end

Note that only the transfer matrix for the dipole has non-zero entries in the third column.
This implies that only dipoles can change a zero dispersion to a non-zero value.

In the function calcmat.m that calculates the transfer matrices we account for the sector
dipole and the thick quadrupole by adding the appropriate case statements and call the
functions SB() and QQ(), respectively, as indicated in the following code snippet.

switch beamline(line,1)

:

case 4 % sector dipole

phi=beamline(line,4)*pi/180; % convert to radians

rho=beamline(line,3)/phi

Rcurr=SB(beamline(line,3),rho);

case 5 % thick quadrupole

Rcurr=QQ(beamline(line,3),beamline(line,4));

:
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Figure 3.13 The trajectory of a particle with momentum offset δ = 10−3 in a FODO

lattice with bending magnets.

After these updates, we are ready to explore what happens to a particle with a non-zero
momentum offset δ. We use the following beamline description for our exercise. It is based
on the example in Chapter 2 but with dipoles bending by 20 degrees only. In order to obtain
smoother graphics, we sub-divide the elements in short segments, and the entire beamline
consists of three FODO-cells.

fodo=[ 1 5 0.5 0 ;

5 5 0.2 -0.1799;

1 3 0.5 0 ;

4 10 0.2 20/10 ;

1 3 0.5 0 ;

5 5 0.2 0.1799;

1 5 0.5 0 ];

beamline=repmat(fodo,3,1);

We explore the dispersion generated by the dipole by launching a particle with initial
coordinates (x, x′, δ) = (0, 0, 10−3) and display its horizontal position along the beamline
in Figure 3.13. We observe that the particle, launched at the left stays on-axis until it
encounters the first dipole magnet at s = 5m, whence it starts to deviate from the axis.
Next it encounters a focusing quadrupole at s = 7.5m that slightly bends the particle back
toward the axis, but not enough. The particle increases its distance from the axis, even
more so after passing the defocusing quadrupole at s = 15m, but eventually it is bent back
significantly by the focusing quadrupole at s = 22.5m and so forth. But it is apparent that
the orbit is non-periodic.

Note that we added a graphical representation of the magnets in the beamline lattice
at the bottom of the plot in order to aid interpretations of data on the plot. The function
drawmag() that accomplishes this is discussed in Appendix B.5. It simply loops through
the magnet lattice and draws rectangles of the magnets at the correct positions. We add
input parameters vpos and height to place the drawing vertically on the plot so that it
looks good.

But back to the dispersion. The question arises whether we can also find launch con-
ditions for the dispersion that causes it to be periodic. For this, we inspect the 3 × 3
transfer-matrix through a single FODO cell which for the above lattice file is
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Rturn=

1.1499 8.5130 1.5190

-0.2279 -0.8177 0.1619

0 0 1.0000

This matrix has the following structure

R̂ =




R̂11 R̂12 R̂16

R̂21 R̂22 R̂26

0 0 1


 (3.120)

and we ask ourselves whether we can find a launch vector (x, x′, δ) in which we also require
x and x′ to be proportional to δ that reproduces after one period. Thus we want to find a
vector (x, x′, δ) = (Dδ,D′δ, δ) that fulfills the following periodicity condition




D
D′

1


 =




R̂11 R̂12 R̂16

R̂21 R̂22 R̂26

0 0 1







D
D′

1


 . (3.121)

The first two lines can be rearranged and lead to


1− R̂11 −R̂12

−R̂21 1− R̂22


D
D′


=


R̂16

R̂26


. (3.122)

Solving for the dispersion (D,D′) we find


D
D′


=

1

(1− R̂11)(1− R̂22)− R̂12R̂21


1− R̂22 R̂12

R̂21 1− R̂11


R̂16

R̂26


, (3.123)

which denotes the periodic, or equilibrium, dispersion values at the start of the periodic
beamline that is described by R̂. These manipulations are easy to implement in MATLAB
as shown in the following snippet:

D=(eye(2)-Rturn(1:2,1:2))\Rturn(1:2,3)

dd0=[D;1]; % initial periodic dispersion

for k=1:nmat

x(k)=Racc(1,:,k)*dd0;

end

plot(spos,x,’k-.’);

We show the plot of the periodic dispersion function D, together with the horizontal beta
function, in Figure 3.14. Particles with energy error δ travel on periodic trajectories and
have horizontal positions Dδ along the accelerator, where D, the dispersion. It is shown as
the dashed trace in Figure 3.14.

The finite dispersion can have a major influence on the beam quality. Particularly in
electron rings, it determines the emittance by a process we now turn to.

3.4.3 Emittance generation

In the previous sections we found that the dispersion trajectory D(s) is the closed orbit
of a particle with momentum offset δ. If we assume that a particle with energy offset δ1 is
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Figure 3.14 Matched dispersion (dashed) and horizontal beta function (solid).

initially on its equilibrium orbit, the dispersion trajectory Dδ1 is as shown in Figure 3.15. If
that particle loses energy by emitting a photon and has the new energy offset δ2 < δ1 at a
position with non-zero dispersion, it will stay at transverse position Dδ1 but has energy δ2.
The equilibrium orbit of the particle with momentum δ2 is, however, Dδ2 and the particle
finds itself away from its new equilibrium orbit and will therefore start oscillating around
the new equilibrium orbit. In summary, initially the particle is on its equilibrium orbit,
but through the energy loss, the equilibrium orbit has jumped away and the particle starts
betatron oscillations around the new equilibrium orbit. The same argument holds for D′,
the derivative of the dispersion. Note that this process is the dominant mechanism that
determines the emittance in electron storage rings and synchrotron radiation sources. We
will discuss this topic in depth in Section 10.1.

The change in betatron state vector (x, x′) that the particle receives through a relative
momentum loss δ at a position with dispersion D, is given by

(
x
x′

)
= −δ

(
D
D′

)
(3.124)

Figure 3.15 The mechanism that causes the excitation of betatron oscillations by a

random energy loss.
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or x⃗ = −δD⃗. On the m-th turn the particle experiences the momentum change δm with
corresponding betatron state change x⃗ = (xm, x′

m) = (D,D′)δm. After n turns, we then
have to add all x⃗m over the previous turns with m ≤ n

(
xn

x′
n

)
= −

n∑
m=1

δmRn−m

(
D
D′

)
. (3.125)

The Courant-Snyder invariant 2Jn after n turns, as defined in Equation 3.73, is given by
2Jn = γx2

n+2αxnx
′
n+βx′2

n , where α, β, and γ are the Twiss parameters at the location where
the momentum kicks δm are applied. Expressing the transfer matrix R in Equation 3.125
by the representation from Equation 3.80 and after some algebra, we find for 2Jn

2Jn = (γD2 + 2αDD′ + βD′2)
n∑
k,l

δkδl cos(2π(k − l)Q) . (3.126)

The emission of photons is a random process, and we can therefore assume that the δm from
different turnsm are statistically independent. For the time being, we denote their rms value
by δrms, but we will later calculate it from the spectrum of the emitted synchrotron radiation
in Section 10.1. For the sum in Equation 3.126, we then obtain

n∑
k,l

δkδl cos(2π(k − l)Q) = nδ2rmsδkl , (3.127)

where δkl is the Kronecker delta, which is unity for k = l, and zero otherwise. If we fur-
thermore assume that we take the average over a large number of particles, we use the
ensemble average ε = ⟨J⟩ over the Courant-Snyder invariants, which is the emittance ε of
the ensemble. For the final result, we find

dε

dt
=

γD2 + 2αDD′ + βD′2

T
δ2rms , (3.128)

where T is the revolution time. We find that the emittance growth dε/dt is proportional to

H = γD2 + 2αDD′ + βD′2 (3.129)

and we immediately see that zero dispersion is desirable at locations, where the particles
change their momenta, as is the case in accelerating cavities and, especially important for
synchrotron light sources, in dipole magnets, where the beam loses energy due to syn-
chrotron radiation. The design of small emittance lattices is focused on designing magnet
configurations that have small beta functions and small dispersion, in particular in the
dipoles. We shall use this as a guideline when discussing different types of lattices in Sec-
tion 3.7.5 and return to the details of the emission of synchrotron radiation in Section 10.1.

3.4.4 Momentum compaction factor

The dispersion trajectory that we calculated in the previous section describes the orbit of
a particle with momentum offset δ. If such a particle traverses a dipole magnet, it will lie
further on the outside or the inside, depending on the sign of the dispersion function at that
location and the sign of δ. If it lies further outside, it will have a longer path to travel and
therefore will arrive later at the exit of the dipole. The change in length ∆l with momentum
variation of the path in a single dipole with bending radius ρ is given by

∆l

δ
=

∫ l

0

D(s)

ρ
ds . (3.130)
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In the case of a circular accelerator, we can sum the path-length changes over all dipoles and
normalize to the circumference C of the ring to obtain the so-called momentum compaction
factor α defined by

α =
∆C

Cδ
=

1

C

∫

all dipoles

D(s)

ρ
ds (3.131)

which gives the fractional change of the circumference normalized to the energy (∆C/C)/δ.
This quantity plays a central role for the stability of the longitudinal motion of the particles
in a storage ring, as we shall see in Chapter 5.

So far we have covered the motion of particles in one transverse plane and the momen-
tum dependence, but in general the motion in all three planes, horizontal, vertical, and
longitudinal, may be coupled and we address the motion in the two transverse planes in the
following section.

3.5 FOUR-DIMENSIONAL AND COUPLING

The first thing we have to do in order to consider the simultaneous effect of both transverse
planes simultaneously is to update the transfer matrices to four dimensions. This is rather
straightforward, and we do not show the code here but refer the reader to Appendix B.5.

Note that all 4 × 4 transfer matrices we encountered so far were block-diagonal and
this causes the motion in the two planes to be independent, or uncoupled in the sense
that a particle launched on a horizontal oscillation will always stay in the horizontal plane.
Conversely, a particle with a pure vertical oscillation stays in the vertical plane. In this
way we can treat uncoupled systems as two independent 2 × 2 systems and can apply the
analysis-methods from Section 3.3, once for the top left 2 × 2 block of the transfer matrix
and once for the block on the lower right. We can therefore apply the R2beta function to
calculate tunes and beta functions for systems in the same way as before. We just use the
top left or lower right 2× 2 transfer matrix as input to R2beta.

This situation changes dramatically once we introduce coupling elements, such as
quadrupoles that are installed with roll angles. The matrix for a roll angle is given in
Equation 3.55 and the MATLAB function that returns it is the following:

% ROLL.m, roll-angle around s-axis, V. Ziemann, 240828

function out=ROLL(phi) % phi in degree

c=cos(phi*pi/180); s=sin(phi*pi/180);

out=zeros(4);

out(1,1)=c; out(1,3)=s; out(2,2)=c; out(2,4)=s;

out(3,1)=-s; out(3,3)=c; out(4,2)=-s; out(4,4)=c;

which is self-explanatory. We refer to this transfer matrix by the code 20 in the lattice file
and place the roll angle ϕr in degrees in the fourth column of the lattice description. Once
the function for the transfer matrix is written, we need to make the matrix calculation
routine calcmat.m aware of it by adding the following two lines to the switch statement

case 20 % coordinate roll

Rcurr=ROLL(beamline(line,4));

such that it is automatically included in the calculation of the accumulated transfer matrices
stored in the array Racc. We illustrate the effect of coupling the planes by sandwiching the
focusing quadrupole in the FODO lattice between elements of opposite roll angle. This
introduces a rolled coordinate system for the traversal of the quadrupole. The lattice file
for the FODO cell is thus modified to look like
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Figure 3.16 The beta functions βx and βy along a beamline with a quadrupole in the

second FODO cell that is rolled by 5 degrees. It causes the beta functions to beat

downstream.

1 5 0.2 0

2 1 0 -2.1

1 1 0.2 0

20 1 0 5

2 1 0 2.1

20 1 0 -5

1 5 0.2 0

We store this lattice description in a file named fodoroll.bl and load it with

fodor=dlmread(’fodoroll.bl’)

Calculating the transfer matrix from start to end of this file, we find that the matrix is no
longer block-diagonal, but has non-zero elements in the top right and lower left 2×2 blocks.

Let us explore what happens in a long beamline of eight FODO cells, where the focusing
quadrupole in the second cell is rolled by 5 degrees, but we enter the system with a beam ma-
trix that is matched to the unperturbed FODO cells. The script display beta beating.m

that accomplishes this can be found in the online documentation. In this script we first
load the unperturbed FODO cell and determine the matched beta functions with R2beta

and build the matched beam matrix sigma0. Then we change the beamline to consist of
an unperturbed FODO cell, one perturbed with the rolled quadrupole and six more normal
ones before updating the transfer matrices for the long beamline and plotting the beam
sizes σx and σy along the beamline and show the result in Figure 3.16. Here we see the sizes
initially follow a regular pattern until they encounter the rolled quadrupole at s = 7m,
at which point the beam-sizes start to deviate from their regular oscillations. The rolled
quadrupole apparently causes a mismatch.

We explore this mismatch further by rolling both quadrupoles by the same angle and
also find that the off-diagonal blocks are populated with non-zero elements. So, the question
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arises: how do we calculate these quantities in a coupled beamline? Luckily, this problem
was solved before, and we discuss the method first introduced by Edwards and Teng [15] and
later refined by Sagan and Rubin [16]. They devised an algorithm to find a parameterization
of the transfer matrix R̂ that brings it into block-diagonal form such that we can write

R̂ = T−1

(
R̂x 02
02 R̂y

)
T (3.132)

where 02 are 2× 2 matrices containing only zeros and the 2× 2 matrices R̂x and R̂y are the
transfer-matrices of two eigenmodes that can be written in the form given in Equation 3.80
such that we have R̂x = A−1

x OxAx and a similar expression for R̂y. The magic of [15, 16]
is the construction of the 4 × 4-matrix T that achieves the de-coupling. Here we do not
go into the details, but in Appendix B.5 we provide the MATLAB function sagrub.m that
implements the algorithm described in [16]. The function receives the 4× 4 full-turn matrix
as input and returns 4×4 matrices A,O, and T as well as an array of parameters such that
we have

R̂ = T−1A−1OAT (3.133)

with

A =

(
Ax 02
02 Ay

)
and O =

(
Ox 02
02 Oy

)
(3.134)

and the additional array makes the raw parameters such as eigentunes, eigenbeta functions,
and coupling parameters available to the calling program. For the order of the parameters
see Appendix B.5 but the first six parameters Q1, α1, β1, Q2, α2, and β2 are the eigentunes
and the eigenbeta functions for the two eigenmodes.

We immediately use this to investigate the beamline with the rolled quadrupole that
led to the beam sizes shown in Figure 3.16 and assume that it represents a periodic lattice
such that it makes sense to display periodic eigenbeta functions. For this purpose we need to
calculate the full-turn matrix at every point along the beamline and then perform the Sagan-
Rubin decomposition to extract the eigenbeta functions and plot them. This is accomplished
by the following MATLAB script.

% display_sagrub_betas.m, V. Ziemann, 240828

clear; close all

fodo=dlmread(’fodo.bl’); fodor=dlmread(’fodoroll.bl’);

beamline=[fodo;fodor;repmat(fodo,6,1)];

[Racc,spos,nmat,nlines]=calcmat(beamline);

Rturn=Racc(:,:,end); % full-turn-matrix at start

beta1=zeros(1,nmat); beta2=beta1;

for k=1:nmat

R=Racc(:,:,k)*Rturn*inv(Racc(:,:,k)); % move FTM to point k

[O,A,T,p]=sagrub(R); beta1(k)=p(3); beta2(k)=p(6);

end

plot(spos,beta1,’k’,spos,beta2,’k-.’,’LineWidth’,2);

xlabel(’ s[m]’); ylabel(’\beta_1, \beta_2 [m]’);

axis([0, max(spos), 0, 1.05*max([beta1,beta2])])

xlim([0, max(spos)]); ylim([0, 1.05*max([beta1,beta1])])

set(gca,’FontSize’,16)

After loading the files with the beamline descriptions, we determine the full-turn matrix
Rturn at the start of the beamline. After allocating space for the beta functions beta1 and



68 ■ Hands-On Accelerator Physics Using MATLAB®

Figure 3.17 The periodic eigen beta functions along the beamline with one

quadrupole rolled by 5 degrees.

beta2, we loop over all positions k along the beamline and calculate the full-turn matrix
starting at that position. To do so we first apply the inverse of Racc(:,:,k) to move to
the start of the beamline, then we move forward through the entire beamline with Rturn

and then on to position k with Racc(:,:,k) in the following turn. In the next line we pass
this “moved” full-turn matrix R to sagrub and calculate the eigentunes and beta functions.
Those we save in beta1 and beta2 and later plot them in Figure 3.17. There we see that
now the beta functions are periodic, but they show a significant beating. The constraint
to maintain periodicity actually amplifies the effects of the rolled quadrupole compared to
simply plotting of beam sizes along the beamline with initial beam matrix held fixed, which
was earlier shown in Figure 3.16.

As a final example, we consider the effect of a rolled quadrupole on the eigentunes and
how well we can compensate the tunes with another upright quadrupole; a procedure that
is known as the closest-tune coupling measurement. This method is based on the idea that
the eigenfrequencies of two oscillators cannot coincide if they are coupled and the closest
difference between the eigentunes is proportional to the coupling constant. This idea is easy
to verify by calculating the eigenfrequencies of a system made of two pendula coupled with
an additional spring. We build an analogous system with the beamline we used before and
roll the quadrupole by only 1 degree instead of the 5 degrees we used earlier. The tunes
move from (Q1, Q2) = (0.2639, 0.2639) to (0.2583, 0.2694), and we now scan the focusing
quadrupole in the first FODO cell and record the eigentunes for all quadrupole settings.
The following MATLAB script

fodo=dlmread(’fodo.bl’); fodor=dlmread(’fodoroll_1deg.bl’);

beamline=[fodo;fodor;repmat(fodo,6,1)];

k=0;

for ff=1.85:0.01:2.3

k=k+1; xval(k)=ff;

beamline(4,4)=ff; % QF is 4th element and F is 4th column
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[Racc,spos,nmat,nlines]=calcmat(beamline); % update lattice

[O,A,T,p]=sagrub(Racc(:,:,end)); Q1(k)=p(1); Q2(k)=p(4);

end

plot(xval,Q1,’k*’,xval,Q2,’k*’); xlim([1.83,2.32]);

xlabel(’ Focal length [m]’); ylabel(’Eigen tunes Q_1, Q_2’)

produces Figure 3.18. In the script, we load the beamline as before, and loop over the desired
range of focal length values, update the correct slot in the beamline, recalculate the transfer
matrices with calcmat and determine the eigentunes with sagrub before storing the values
in the arrays Q1 and Q2. Finally we plot the values and annotate the axes. In Figure 3.18
we clearly see the tunes varying with the quadrupole strength, but they are unable to come
closer than |Q1 − Q2| ≈ 0.013. It turns out that this smallest achievable difference can be
used as a measurement for the “strength” of the coupling and is commonly used to adjust
other skew-quadrupole correctors in order to minimize the coupling or the “closest tune.”
We will return to this topic in Chapter 8, where we will also discuss a method to compensate
the coupling.

But now we move on to discuss how to tailor beamlines to serve specific purposes, such
as having a certain phase advance or beam size at specific points.

3.6 MATCHING

In the previous sections we used beamline description files that were defined beforehand
without further discussion. But this is not always the case. Often we have to find quadrupole
settings or values of other elements such that a beamline fulfills a certain purpose. This is
actually the task we set out to address in the first paragraph of this chapter on page 28.
A typical example is adjusting the phase advance of a FODO or other cell to certain val-
ues or to find quadrupole values that cause the beam to have a certain beam-size at an
experimental station. There the experiment may either require a beam waist, a focus, or

Figure 3.18 The eigentunes as a function of the focal length of the first focusing

quadrupole while the second focusing quadrupole is rolled by 1 degree. Note that

there is a minimum separation of the eigentunes that can be achieved.
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maybe a particularly parallel beam. The procedure of adjusting magnet values in order to
achieve constraints is commonly called matching, and we explore a few simple examples in
this section before using it more extensively later on.

3.6.1 Matching the phase advance

The first example is to adjust the phase advance of a FODO cell to certain values, say
Qx = 1/6 and Qy = 0.25. Since 1/6 of a full circle corresponds to 60 degrees, such a cell is
often referred to as a 60-90 degree FODO cell. Since we have two constraints to satisfy—
the phase advances—we need at least two parameters to vary and the obvious choices are
the two quadrupoles in a FODO cell. For convenience we just reproduce their beamline
description here

1 5 0.2 0

2 1 0 -2.1

1 1 0.2 0

2 1 0 2.1

1 5 0.2 0

which is stored in the file fodo.bl. The parameters we want to vary are the focal lengths of
the quadrupoles, which reside in rows 2 and 4 and in column 4 in the beamline description.
Basically we need a program to adjust these values until the phase advances are those we
want. Luckily, we can use the MATLAB function fminsearch(), which has the purpose of
minimizing a function, to achieve this. All we have to do is to define a function that tells
fminsearch() how close we are to the desired values. That function we call chisq tunes()

and it is defined by the following code:

% chisq_tunes.m, find focal length to set Qx and Qy of cell, VZ, 240828

function chisq=chisq_tunes(x)

global beamline % need info about the beamline

beamline(2,4)=x(1); % change quadrupole excitations

beamline(4,4)=x(2);

[Racc]=calcmat(beamline);

Rturn=Racc(:,:,end);

[Qx,alpha0x,beta0x,gamma0x]=R2beta(Rturn(1:2,1:2));

[Qy,alpha0y,beta0y,gamma0y]=R2beta(Rturn(3:4,3:4));

chisq=(Qx-0.166666)^2+(Qy-0.25)^2; % desired tunes

This function receives an array x with focal length values for the two quadrupoles and
plugs them into the proper slot in the beamline description beamline that we pass to the
chisq tunes function as a global variable. There are other, more robust, ways to pass
extra parameters to this function, but using global is the most transparent and least
clumsy. Once beamline is updated with the new values, we call calcmat to update the
transfer matrices and determine the phase advances with R2beta. This works well with an
uncoupled beamline, but in coupled beamlines we would need to use sagrub to calculate the
phase advances. Finally, we return the squared difference of the calculated to the desired
tunes as variable chisq.

We use the function chisq tunes in the following example:

% match_phase_advance_and_display.m, V. Ziemann, 240828

clear; close all

global beamline



Transverse Beam Optics ■ 71

beamline=dlmread(’fodo.bl’);

x0=[-3,3.]; % starting guesses

[x,fval]=fminsearch(@chisq_tunes,x0) % matching

dlmwrite(’fodo6090.bl’,beamline,’\t’); % save to file

[Racc,spos,nmat,nlines]=calcmat(beamline);

Rturn=Racc(:,:,end);

sigma0=periodic_beammatrix(Rturn,1,1);

plot_betas(beamline,sigma0); set(gca,’FontSize’,16)

After clearing the workspace and declaring the beamline to be a global object, we de-
fine starting values for the focal lengths of the quadrupoles to be used in the search and
launch the minimizer fminsearch to minimize the function chisq tunes. It returns the
final quadrupole values in the variable x and the achieved minimum values in fval. If the
matching was successful, fval should be very small, say 10−8 or less. Finally we save the lat-
tice description beamline, which now contains the updated values, to the file fodo6090.bl
such that we can retrieve it later to use in other contexts. At this point we use the function
periodic beammatrix to calculate the periodic beam matrix, which is constructed from
the two 2 × 2 blocks on the diagonal of Rturn using R2beta. Consult Appendix B.5 for
the code and further explanations. Finally plot beta() plots the beam sizes or the beta
functions in the matched FODO-cell. We do not reproduce the code here, but move on to
find quadrupole settings to make small beams for experiments.

3.6.2 Match beta functions to a waist

In this example, we use three FODO cells with 60- and 90-degree phase-advance from
the previous example and adjust the last four quadrupoles to create a double waist with
βx = βy = 1m after an additional 1m long drift space at the end of the beamline. We need
four quadrupoles in order to fulfill the requirements βx = βy = 1m and αx = αy = 0. The
latter requirement defines the waist and the requirement for the beta functions at the waist.
The MATLAB function used to define the beamline and engage the minimizer fminsearch
is the following:

% match_to_waist.m, V. Ziemann

clear all; close all

global beamline sigma0

beamline=dlmread(’fodo6090.bl’);

[Racc,spos,nmat,nlines]=calcmat(beamline); Rturn=Racc(:,:,end);

sigma0=periodic_beammatrix(Rturn,1,1); % epsx=espy=1

extra_drift=[1,5,0.2,0];

beamline=[repmat(beamline,3,1);extra_drift];

x0=[-1,2.,-2,2];

[x,fval]=fminsearch(@chisq_waist,x0)

plot_betas(beamline,sigma0)

First we clear the workspace and define the beamline description beamline and the initial
beam matrix sigma0 as global variables because we will need them inside the χ2−function
and this is the easiest way to make them accessible. Then we load the beamline description
of the FODO cell with a phase advance of 60 and 90 degrees that we saved in the previous
example and calculate the matrices for one FODO cell with calcmat. Passing Rturn and
the horizontal and vertical emittances to periodic beammatrix returns the periodic sigma
matrix sigma0 that we use as initial beam matrix. We then define an extra drift space
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that we want to add to the end of the beamline, because that is where our experimental
station is located. Now we extend the beamline to contain three FODO cells and add the
extra drift space at the end before defining starting values x0 for the four quadrupoles we
want to vary. Finally, we call the minimizer and plot the beta functions with the function
plot betas, which encapsulates the plotting and axis annotations in a separate function
and is also explained in Appendix B.5.

The χ2-function that we pass to the minimizer and that will find the quadrupole values
is the following:

% chisq_waist.m, find focal length to set waist at end, V. Ziemann, 240828

function chisq=chisq_waist(x)

global beamline sigma0 % need info about the beamline

beamline(7,4)=x(1); % set quadrupole focal lengths

beamline(9,4)=x(2);

beamline(12,4)=x(3);

beamline(14,4)=x(4);

[Racc,spos,nmat,nlines]=calcmat(beamline); Rend=Racc(:,:,end);

sigma=Rend*sigma0*Rend’;

chisq=(sigma(1,1)-1)^2+(sigma(3,3)-1)^2+sigma(1,2)^2+sigma(3,4)^2;

As input parameters, we receive the vector x with the four quadrupole values and assign
them to the strength parameter, here the focal lengths, of the quadrupoles. The position of
the quadrupoles are easily determined from inspecting the array beamline. We pick the lines
with a code for a quadrupole. After the quadrupoles have their new values, we calculate the
beamline matrix with calcmat and propagate the beam matrix at the start of the beamline
sigma0 to the end and finally calculate the chisq as the sum of squares of the difference
of the beam matrix elements to their desired values which is also returned to the calling
program.

Running the MATLAB script match to waist.m will produce the plot on the left-hand
side in Figure 3.19. It shows that both beta functions at the end are very small and the

Figure 3.19 Matching a beam waist of βx = βy = 1m at the end of the beamline.

The solid lines are the horizontal beta function and the dashed the vertical. The

left plot uses the regular quadrupole spacing of the FODO cells from the previous

example, and on the right plot the fifth quadrupole is moved closer to the final

quadrupole, which relaxes the vertical beta function significantly.
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Figure 3.20 Point-to-point imaging with a lens.

χ2 at the end fval is on the order of 10−9 which indicates that we actually fulfill the
requirements with the quadrupole settings x= -0.9315, 1.5834, -1.3585, 1.6292 albeit
at the expense of a rather large vertical beta function in the fifth quadrupole.

We explore to move quadrupoles around by moving the fifth quadrupole to be placed only
0.6m upstream of the sixth to create a quadrupole doublet. We simply add the instructions

beamline(11,2)=13; % change quadrupole positions

beamline(13,2)=2;

just before calling fminsearch(), which changes the repeat count of the drift spaces such
that the first becomes a little longer and the second, in-between the quadrupoles, corre-
spondingly shorter. Running the minimizer with the changed geometry once again results
in the beta-functions shown on the right-hand side of Figure 3.19 with a significantly
relaxed vertical beta function.

3.6.3 Point-to-point focusing

In the next example, we consider a simple imaging system where we require to image one
focus to a second focus, which is commonly called point-to-point focusing, as illustrated in
Figure 3.20. The system is given by a lens with focal length f sandwiched between two
drift spaces of length b = 2m and g = 1m, and we want to determine the required focal
length f . The point-to-point requirement implies that all rays starting in the middle of the
beam pipe with x = 0 but having a non-zero angle x′ to cross the center of the beam pipe
after the second drift space. This is illustrated by the solid ray starting at the foot of the
original image on the right which ends at the foot of the inverted image at the end of the
beamline. The requirement for point-to-point focusing is thus that all angles at the start of
the beamline are mapped to the same point on the optical axis at its end. But the matrix
element that maps angles, having index number 2 in the transfer matrix, to a position,
having number 1, is the R12.

The χ2-function to minimize therefore only contains the square of the R12. The following
code simply assigns the new focal length f to the entry in the beamline description that
holds the focal length of the thin quadrupole, calculates the transfer matrices and assigns
the square of the R12 at the end to the returned value chisq.

% chisq_R12.m, fit for matrix element, V. Ziemann, 240828

function chisq=chisq_R12(f)
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global beamline

beamline(2,4)=f;

[Racc,spos,nmat,nlines]=calcmat(beamline);

chisq=Racc(1,2,end)^2;

We minimize this cost function, named chisq R12(), in the following MATLAB script,
where we first define the beamline to be global in order to make it easily accessible inside
chisq R12() before defining the beamline. After assigning a starting guess for the minimizer
fminsearch, we use the chisq R12() function and the starting guess as input argument.

% match_point_to_point.m, match the R12, V. Ziemann, 240828

global beamline

beamline=[1, 1, 1, 0; % g

2, 1, 0, 3; % f

1, 1, 2, 0]; % b

f0=3; % starting guess

[f,fval]=fminsearch(@chisq_R12,f0)

Since we omitted the semicolon after the call to fminsearch, the final value for the focal
length f and the final value of the cost function fval are directly returned. For the focal
length we obtain f=0.6667 which is close to 2/3.

This example was deliberately chosen to be very simple, and we can also solve the
problem, quasi by hand, by explicitly calculating the matrix element R12 and solving for
the focal length that makes it zero. For the matrix R at the end of the beamline we have

R =

(
1 b
0 1

)(
1 0

−1/f 1

)(
1 g
0 1

)
=

(
1− b/f b+ g − bg/f
1/f 1− g/f

)
(3.135)

and the requirement that the R12 matrix element must be zero yields

b+ g − bg

f
= 0 or

1

b
+

1

g
− 1

f
= 0 (3.136)

which returns the well-known imaging equation for lenses from light optics. Solving for the
focal length f and inserting values for b and g, we recover f = 2/3. Thus, we find that
the requirement for point-to-point imaging leads to the well-known imaging equation. In
this simple system we can perform the optimization analytically. On the other hand, if we
have to deal with a more complex beamline, of course this becomes rather clumsy and we
must resort to numerical solutions, which is much more convenient, especially if several
constraints have to be fulfilled simultaneously.

In this section we found out how we formulate requirements as cost functions and
use fminsearch to satisfy these requirements by varying a number of parameters such
as quadrupole values or, in fact, any parameter in the beamline description. This works
nicely for phase advances, for beta functions, and also for individual matrix elements. Gen-
eralizing from these simple examples is straightforward, and we will use that as a tool in
the next section, where we discuss a number of beam-optical modules that are frequently
used as the building blocks to construct larger systems, up to entire accelerators.

3.7 BEAM-OPTICAL SYSTEMS

In this section we address several of the often-used beam-optical modules. One example
we encountered before, the FODO cell, is a module that is frequently used to cover long
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Figure 3.21 A telescope images the source plane to the image plane at the interaction

point (IP) with demagnification −f2/f1.

distances with a simple magnet lattice. The arcs of the Large Hadron Collider (LHC) consist
of FODO cells with additional dipole magnets to force the particles on their circular path
along the 27 km long beam pipe. Quadrupoles are used to focus deviating particles back
toward their design orbit and thereby ensure stable operation. While the FODO cells serve
to transport the beam through the approximately 3 km long octants, the beams need to be
focused to extremely small sizes inside the detectors, such as ATLAS and CMS, that are
located in straight sections between the octants. In order to demagnify the beams to sizes
of tens of microns, other optical modules are used, in this special case the telescopes.

3.7.1 Telescopes

We start by utilizing the imaging equation from Section 3.6.3 and build telescopes, which
are often used to obtain small beam sizes, as is the case in the collision or interaction points
(IP) of colliding-beam accelerators such as the LHC.

Using two lenses with a drift space between them, it is possible to build an optical
telescope that has the desired optical properties. It creates a point-to-point image of the
image plane (near the arc) to the IP, which means that the R12 and the R34 are made
zero. Moreover, we also require that the imaging is parallel-to-parallel, which means that
the R21 and R43 are zero. Consider a simple one-dimensional optical system as indicated
in Figure 3.21, where the beam comes from the right and first passes through a lens with
focal length f1 and then through a drift space of length f1 + f2, whence the beam passes
the second lens with focal length f2, and after another drift space of length f2, it arrives
at the IP. We can easily write down the transfer matrix for the first drift-lens-drift module
with index 1 with the result

R1 =

(
1 l1
0 1

)(
1 0

−1/f1 1

)(
1 l1
0 1

)
=

(
1− l1/f1 2l1 − l21/f1
−1/f1 1− l1/f1

)
. (3.137)

Since we have chosen l1 = f1 the matrix simplifies to

R1 =

(
0 f1

−1/f1 0

)
(3.138)

and we have a similar matrix R2 for the second drift-quadrupole-drift system with index 2.
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Multiplying the two matrices with indices 1 and 2, we arrive at the following transfer matrix
R that represents the beam optical system between the source plane and the IP

R = R2R1 =

(
−f2/f1 0

0 −f1/f2

)
. (3.139)

Here we see that it describes a system that demagnifies the x coordinate by the factor
M = −f2/f1, the ratio of the focal lengths. The minus sign describes the inversion of
a picture that is commonly encountered in normal telescopes. In practice, we now have
to realize such a system with quadrupole magnets and the matching module discussed in
earlier sections is very handy to find the quadrupole values once the geometry, i.e., the
magnet lengths and distances, are known.

A small problem arises, because quadrupoles do not act like optical lenses that focus in
both planes. As discussed in Section 3.1.1, quadrupoles focus the beam in one plane and
they defocus in the other plane. We therefore have to combine several quadrupoles to obtain
a system that focuses in both planes. We address such a system, a quadrupole triplet, in
the next section.

3.7.2 Triplets

The telescope from the previous subsection represents a one-dimensional optical system
where the focal lengths in the horizontal and vertical planes are usually equal. Quadrupoles,
on the other hand, focus in one plane and defocus in the other. We therefore have to combine
quadrupoles in such a way that their behavior resembles that of lenses—they should focus in
both planes. One such combination of quadrupoles is a triplet that consists of three closely
spaced quadrupoles, where the central quadrupole has twice the strength and opposite
polarity of the two equally powered outer quadrupoles.

The following lattice file triplet 25.bl describes such a beamline. It consists of a 5m
long drift space, the three quadrupoles, separated by 1m long drift spaces, and another
5m long drift space. The outer quadrupoles have about twice the focal length of the inner
quadrupole: therefore, the inner quadrupole is twice as strong as the outer ones. Moreover,
it has the opposite sign.

1 10 0.5 0

2 1 0 3.219

1 5 0.2 0

2 1 0 -1.739

1 5 0.2 0

2 1 0 3.219

1 10 0.5 0

These quadrupole values were calculated with the function match triplet tune.m. It uses
the χ2–function chisq tune triplet.m, which is similar to the one from Section 3.6.1 and
matches the phase advances of this triplet cell to 0.25 in both planes. Finally, it calculates
the transfer matrices with calcmat, determines the periodic beta functions and then plots
them, which results in Figure 3.22.

We see that the beta functions are periodic, and long sequences of triplet cells are used
in case equal beam sizes in long sections are required, such as long accelerating structures
with narrow apertures. In that case it is beneficial to use a triplet lattice, which provides
almost round beams with a rather constant and equal width in both planes. Only inside
the triplet, and especially inside the central quadrupole the beta functions, and thus also
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Figure 3.22 Beta functions for a triplet cell. Here the phase advance for the cell is

adjusted to µ/2π = 0.25 in both planes.

the beam sizes, differ significantly. From their appearance, the triplet cell maps an almost
round beam from the entrance to an almost round beam at the exit of the cell and we may
use triplets to construct telescopes to demagnify the beta functions in order to achieve very
small and round beam spots for experiments.

We therefore use a system of three consecutive triplet cells. The first is only used to
define the input beta functions and the second and third triplets form a telescope that we
will adjust to obtain a small and round spot at the end of the beamline. To encode this
requirement, we define a χ2-function that is very similar to the one from Section 3.6.2. It
requires αx and αy to be zero and requires βx and βy to have a small value. To fulfill these
requirements, we vary the quadrupoles in the last two triplets, but always power the outer
quadrupole pairs equally. The function chisq waist triplet achieves this.

% chisq_waist_triplet.m, fit waist, V. Ziemann, 240828

function chisq=chisq_waist_triplet(x)

global beamline sigma0 % need info about the beamline

beamline(9,4)=x(1); beamline(11,4)=x(2); beamline(13,4)=x(1);

beamline(16,4)=x(3); beamline(18,4)=x(4); beamline(20,4)=x(3);

[Racc,spos,nmat]=calcmat(beamline); Rend=Racc(:,:,end);

sigma=Rend*sigma0*Rend’;

chisq=(sigma(1,1)-0.5)^2+(sigma(3,3)-0.5)^2+sigma(1,2)^2+sigma(3,4)^2;

It is almost a straight copy of the function chisq waist from Section 3.6.2, only this time we
assign the four values to the six quadrupoles. The positions 9,11,13 of the quadrupoles in
the second triplet and 16,18,20 in the third can easily be found by inspecting the beamline
array. Running the matching code, we find that we have difficulties to achieve beta functions
at the end of the beamline much smaller than 1m. A way to achieve smaller spots is to
bring the final beam waist—the focus—closer to the final quadrupole. Basically, we need
to shorten the beamline, for example, by reducing the repeat count of the last drift in the
beamline array from 10 to 6. Another option is to add a drift space with a negative length
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Figure 3.23 Beta functions for a telescope made of triplets.

to the end of the beamline. This has the added bonus that we actually see the minimum of
the beta functions. The following code illustrates this method.

% match_waist_triplet.m, V. Ziemann, 240282

clear; close all

global beamline sigma0

t1=dlmread(’triplet_25.bl’);

beamline=repmat(t1,1,1);

[Racc,spos,nmat,nlines]=calcmat(beamline); Rturn=Racc(:,:,end);

sigma0=periodic_beammatrix(Rturn,1,1);

negdrift=[1,4,-0.5,0];

beamline=[repmat(t1,3,1);negdrift];

f0=[3.6,-1.8,3.6,-1.8]; % starting guess

[f,fval]=fminsearch(@chisq_waist_triplet,f0)

drawmag(beamline,2,3)

plot_betas(beamline,sigma0);

set(gca,’FontSize’,16)

This MATLAB script is based on the matching example from Section 3.6.2, but we also
define the drift space with the negative length negdrift to contain four segments of −0.5m
length and add it to the end of the beamline that already contains three triplet cells.
Then we provide starting guesses for fminsearch and call it to minimize the χ2-function
chisq waist triplet. Finally, we plot the beta functions and add the magnet lattice to
identify the positions of the quadrupoles.

Figure 3.23 shows the resulting plot. We see the three triplet cells, of which the last two
are detuned in order to achieve the small, and equal to 0.5m, beta functions. The values for
the focal lengths of the quadrupoles are given by f=[6.5836,-3.1531,2.2944,-1.3211],
where we, again, find the pattern that the excitations of inner quadrupoles of each triplet
(second and fourth values) have a negative sign and have approximately half the focal
lengths of the corresponding outer quadrupoles (first and third values). The χ2 after the
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match is below 10−9 indicating that the match completed successfully. By increasing the
number of negative drift-space segments to 9 and thus moving the s-position of the waist
to 0.5m after the last quadrupole, we can even achieve beta functions at the waist of 0.1m
in both planes.

Since the triplets treat both planes approximately equally, they can be considered as the
equivalent of spherical lenses and are often a good choice if both planes need to be treated
in a similar way, for example, if we require round spots at the experiment. If we, on the
other hand, deal with beams that have large aspect ratios βy/βx, we can use quadrupole
doublets.

3.7.3 Doublets

A doublet consists of two closely spaced quadrupoles with opposite polarity. The transfer
matrix of such a system is given by

RD =

(
1 0

−1/f 1

)(
1 l
0 1

)(
1 0

1/f 1

)
=

(
1 + l/f l
−l/f2 1− l/f

)
, (3.140)

where f is the focal length of the quadrupoles and l the distance between them. The
matrix element R21 = −l/f2 that translates initial positions of final angles is responsible
for focusing. It is always negative, irrespective of the sign of the focal length f , which
implies that the doublet also focuses if we reverse the polarities of the quadrupoles. But
this describes the situation in the other plane.

The periodic lattice with a phase advance of 0.2 in both planes per doublet cell is shown
on the left-hand side in Figure 3.24, where we depict two consecutive cells such that the total
phase advance in both planes is 0.4. We find that the variation of the beta functions is rather
modest, only by a factor of two from 7 to 14m. Moreover, the beta functions in one plane
are the left-to-right mirror image of those in the other plane. The large space between the
doublets makes this type of lattice suitable for systems that require free space for installation
of, for example, acceleration structures. Instead of using a sequence where focusing and

Figure 3.24 Beta functions for two doublet cells. On the left, the cells are periodic

with alternating focusing and defocusing quadrupoles. On the right, two focusing

and two defocusing quadrupoles follow each other. In the configurations, the phase

advance in both planes is µ/2π = 0.4.
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defocusing quadrupoles alternate, we can also use a sequence where two quadrupoles of a
kind follow one another. We show such a beamline and the corresponding beta functions on
the right-hand side in Figure 3.24. The total phase advance of the displayed sections with
two doublets is again 0.4 in both planes, but this time one beta function is large in the
space between the doublets, while the other one is small. The role of the planes alternates
in consecutive long drift spaces. Such a lattice is suitable, if we require a particularly small
beam size in one plane as is the case if we want the synchrotron radiation emitted by
electrons to be diffraction-limited in one plane.

We can also use doublets in telescopes but have to keep in mind that the focusing in
the two planes is different. We can use them if the beam at the IP has a large aspect ratio,
as is the case for the International Linear Collider (ILC), which uses a doublet as the final
focusing lens. The asymmetry between the planes is easy to understand by considering the
point-to-point focusing properties of a doublet which is important for using it in a telescope,
see Section 3.7.1. We calculate the transfer matrix for a beamline that starts with a drift
space of length 5L, followed by a doublet with focal length f and distance L between the
quadrupoles, followed by another drift space of length 5L. The resulting transfer matrix is

R =

(
1 + L/f − 5L2/f2 11L− 25L3/f2

−L/f2 1− L/f − 5L2/f2

)
(3.141)

where we see that the focal length f̂ =
√
25/11L makes the R12 matrix element zero, and

results in the transfer matrix

R =

(
−0.5367 0
−0.44/L −1.8633

)
. (3.142)

The transfer matrix for the other plane has the diagonal elements exchanged. And there
we have the case that the doublet demagnifies, here by −0.5367 in one plane but amplifies
by −1.8633 in the other plane. This is not surprising by considering the propagation of
rays in the doublet. The other plane has focusing and defocusing quadrupoles reversed,
but that corresponds to the rays going in the opposite direction through the doublet. If
it is demagnifying in one plane, it does the opposite when going in the other direction, or
equivalently, propagating in the other plane.

After the first optical building blocks that deal predominantly with imaging in the
transverse planes, we consider systems that are used to cancel the dispersion generated
when deflecting the beam with dipole magnets. Such systems are called achromats.

3.7.4 Achromats

Dipole or bending-magnets deflect particles with different energies by different deflection
angles and thereby sort the particles according to their energy. In other words they behave as
a spectrometer and generate dispersion, where dispersionD is defined through the trajectory
x = Dδ that a particle with non-zero momentum offset δ = (p − p0)/p0 follows. Since a
single dipole spreads the trajectories, we need at least a second dipole to collect the particles
again and put them back on the reference trajectory. The simplest system we can make
achromatic consists of two dipoles and a focusing quadrupole half-way between the dipoles.
Figure 3.25 illustrates this configuration. The first dipole on the left spreads the particles
according to their momentum such that they are sorted according to their momentum
when they arrive at the quadrupole, but the sorting is linear in the momentum offset and
the linearly rising off-axis field of the focusing quadrupoles deflects the particles with the
largest excursion the most. In this way all particles arrive at the second dipole on the
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Figure 3.25 Achromat with dipoles deflecting in the same direction.

reference trajectory, and by receiving the same momentum-dependent deflection as in the
first dipole, they are deflected back onto the reference trajectory. Note that this cancellation
of momentum-dependent deflections in the two dipoles only works if the quadrupole provides
point-to-point imaging between the centers of the dipoles. Here the focal length is a quarter
of the distance between the dipole centers. Note that point-to-point focusing corresponds
to a betatron phase advance of 180 degrees, and the particles arrive at the second dipole
with the opposite phase but receive the same deflection as in the first dipole such that the
deflections cancel.

The previous achromat works well with dipoles deflecting in the same direction, but how
many quadrupoles do we need and how do we excite them if the dipoles deflect in opposite
directions? This is, for example, the case, if the dipoles have to provide a parallel displace-
ment of the reference trajectory in order to deliver the beams to multiple experimental
areas, located side-by-side in a beam switchyard. Or to lift the reference trajectory from
the basement, where a cyclotron is located, to an upper level, where the experiment areas
are located. In the latter case, the dipoles are vertically deflecting, and we have to employ
the coordinate rotations from Section 3.1.6 to describe the vertically deflecting dipoles. But
to simplify the discussion, we stay with horizontally deflecting dipoles of opposite polarity.
In order to cancel the dispersion generated by the two dipoles, we would love to have them
at the same place because their effect would cancel locally. The next best thing is to have
them separated by a phase advance of 360 degrees. This can be accomplished by using two
point-to-point focusing quadrupoles, which is the configuration shown in Figure 3.26 where
the dipoles deflect in opposite directions and the two quadrupoles cause the dispersive or-
bit, denoted by a dashed line to perform a full 360-degree oscillation around the solid line
that denotes the reference trajectory. The angle between the reference trajectory and the
dispersive orbits in the two dipoles have equal magnitude, but opposite sign, whereas in the
previous example from Figure 3.25 both magnitude and sign are equal. These two examples
should serve as an intuitive guide on how to build achromatic systems, but in general more
constraints have to be fulfilled and more quadrupoles are part of the beamlines.

Figure 3.26 Achromat with dipoles deflecting in opposite directions.
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Figure 3.27 Double-bend achromat cell where the dashed line indicates the disper-

sion.

In those, more complex, cases the qualitative argument from the two previous paragraphs
can be generalized by observing that the momentum-dependent offset and angle are given
by the transfer-matrix elements R16 and R26, such that we can use these quantities in a
fitting routine. The constraint is given by the requirement to make R16 and R26 zero by
varying suitable quadrupoles within the beamline section under consideration.

Systems with two dipole magnets are the simplest achromatic systems, but more complex
ones are frequently found in synchrotron-light sources.

3.7.5 Multi-bend achromats

One of the important figures of merit for a synchrotron-light source is the achievable small
emittance. Moreover, they need moderately long straight sections with zero dispersion to
place the specialty magnets—undulators and wigglers—that produce the light. We thus need
sections, also called cells, that have zero dispersion at the entrance and exit of the cell as
well as the property to minimize the emittance. As discussed in Section 3.4.3, the emittance
is determined by the emission of radiation inside the dipole magnets and proportional to
H/|ρ|3 ≈ D2/|ρ|3 where H is defined in Equation 3.129 and the inverse dependence on
the bending radius ρ will be discussed in Section 10.1. We thus need to ensure that the
dispersion D inside the dipoles is small, and that is the case in the achromat shown in
Figure 3.25 because the dispersion orbit starts in one dipole from zero and is returned to
zero in the next dipole. Adding quadrupole doublets before the first and after the second
dipole allows us to control the beta functions in both planes as well. The layout of such a
double-bend achromat (DBA), or Chasman-Green, cell is shown in Figure 3.27. DBA cells
are used in many synchrotron light sources, most notably the NSLS in Brookhaven, Elettra
in Trieste, and the ESRF in Grenoble.

The dependence of the emittance on the inverse bending radius ρ indicates that it is
advantageous to make the rings larger by increasing ρ and building achromats consisting of
weaker, but more dipoles. An example that uses three dipoles is the triple-bend achromats
(TBA). A sketch of the layout of one cell is shown in Figure 3.28. Examples of light sources

Figure 3.28 Triple-bend achromat cell where the dashed line indicates the dispersion.



Transverse Beam Optics ■ 83

Figure 3.29 Left: the lattice file tme.bl. Right: the corresponding horizontal beta

function (solid) and the dispersion (dashes) for one TME cell.

using this type of cell are the ALS in Berkeley, the TLS in Taiwan, and the first version of
the PLS in Korea. Making the rings very large by increasing the circumference allows the
combination of multiple dipoles to multi-bend achromats. For example, MAX-IV in Sweden
uses seven dipoles in a single achromatic cell. The dispersion has a minimum close to zero
in the many and very short dipole magnets such that the dispersion never has a chance to
grow very much. With this globally small dispersion the emittance-generating process from
Section 3.4.3 is minimized and MAX-IV has an extremely small emittance.

3.7.6 TME cell

If we relax the requirement for zero dispersion outside the cell, but emphasize the require-
ment for the smallest possible emittance achievable with a single cell, we arrive at the
theoretical minimum emittance (TME) cell. Since we do not have to cancel the dispersion,
we use a single dipole magnet and place quadrupoles in such a way that the dispersion
and H is minimum inside the dipole magnet. See Figure 3.29 for the lattice file and optical
functions. The two focusing quadrupoles adjacent to the dipole focus the dispersion down
to the smallest possible value at the expense of having non-zero dispersion outside the cell
because we can only manipulate a non-zero dispersion with quadrupoles alone. Moreover,
the quadrupoles are often very strong. TME cells are sometimes considered for damping
rings for linear colliders. Their sole requirement is to provide the smallest possible emittance
without concern for dispersion-free straight sections to place undulators or wigglers.

Figure 3.29 shows the lattice file and a plot of the dispersion and the horizontal beta func-
tion for a TME cell with a 10-degree dipole that has phase advances of 240 and 120 degrees
in the horizontal and vertical planes, respectively. Note the very small dispersion with scale
given in centimeters, rather than meters. We see that the lattice is similar to the doublet
lattice shown on the right of Figure 3.24 with a dipole sandwiched between the doublets
with focusing quadrupoles that have the purpose to minimize dispersion inside the dipole.
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Figure 3.30 A dispersion suppressor in a 90-degree FODO lattice.

3.7.7 Dispersion suppressor

The dispersion in the interaction regions of storage-ring colliders must also be zero in order
to prevent the momentum spread σδ to increase of the beam size at the interaction point.
The dispersion that is inevitably generated by the dipole magnets in the arcs therefore has
to be canceled at the ends of the arcs. And this is the purpose of a dispersion suppressor
which is often implemented by reducing the excitation of the dipoles at the ends of the arcs.
Helm [17] determined patterns of dipole excitations that cancel the dispersion. Provided
that the phase advance in a FODO cell is a submultiple of 180 degrees horizontal phase
advance, it is possible to replace all dipoles within the last 180 degrees of the arc by dipoles
of half their normal length. This creates an interference pattern, opposite in phase to the
periodically oscillating dispersion in the arcs, which cancels the dispersion at the end of the
arc. Conceptually, this has a similar purpose as the “nose” at the bow of large ships, which
also creates an interference pattern that reduces the creation of waves. In the dispersion
suppressor, the dipoles with reduced excitation cancel the dispersion wave.

Figure 3.30 shows an example with a dispersion suppressor in a FODO arc with a
phase advance of 90 degrees per cell in both planes. On the left-hand side of the figure
the dispersion, shown as the solid line, starts with the periodic values for the arc, and the
first cell contains two long dipoles. The following two cells, covering a phase advance of
180 degrees, have the length of the dipoles halved and we see that the periodic dispersion
coming from the arcs is reduced to almost zero. Close observation shows that the dispersion
is not exactly zero, because the weak focusing of the shorter dipoles is different and slightly
changes the horizontal phase advance in the suppressor cells. This, however, is a small effect,
proportional to 1/ρ2 where ρ is the bending radius of the dipoles, and is only visible in this
example, because we chose dipoles with small bending radii. In large storage rings with
large bending radii, the discrepancy is not important.

A dispersion suppressor is normally used to interface arcs of a storage ring to straight
sections, often called interaction regions, where the experiments with their detectors are
located.
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Figure 3.31 The conceptual layout of the SLC final focus. The beam travels from

right toward the IP at the left. Above the boxes are the nominal transfer matrices

for the respective sections displayed. M denotes the demagnification factor for the

telescopes.

3.7.8 Interaction region

The µm-scale beam sizes at the interaction point (IP) in the SLAC Linear Collider (SLC)
in the 1990s and the nm-scale sizes in future linear colliders such as the International Linear
Collider (ILC) or the Compact LInear Collider (CLIC) require extremely strong quadrupoles
very close to the IP. If the focusing is very strong and the beta functions β∗ at the IP are
very small, it is easy to show that at a distance s before or after the IP they assume the
value β(s) = β∗ + s2/β∗. For very small values of β∗, say millimeters or less, the beta
functions at the closest quadrupoles, which typically are a few meters away, are on the
order of several kilometers. This is indicated by the dashed line, labeled β near the IP in
Figure 3.31. Moreover, since the focal lengths of quadrupoles depend on the momentum
of the particles, the finite momentum spread of the beam will increase the beam size at
the IP, because particles with different momenta have their waist at different longitudinal
positions. This longitudinal dependence of the focal point is also called chromaticity, just
like the chromaticity in a circular accelerator we discussed in Section 3.4.1, but here the
interpretation is different. But despite this difference the magnitude is also determined by
the product of quadrupole strength k1 and the beta function and the dominant contribu-
tion comes from the quadrupoles closest to the IP. In order to compensate this effect, we
need another momentum-dependent source of focusing, preferably close to the final focus
quadrupoles. Thus all linear collider final focus systems have to deal with correcting the
chromaticity, and in the following we discuss the solution that was implemented at the SLC.

The conceptual layout of the SLC final focus is shown in Figure 3.31. The beam comes
from the right and moves toward the left. It first passes through a matching section, which
contains a dispersion suppressor and several quadrupoles and skew quadrupoles in order
to match the beam matrix to the design values in the final focus. If a beam with design
parameters arrives, the transfer matrix through the matching section is a negative unit
matrix and will leave the sigma matrix untouched. The next section contains a telescope
that demagnifies the beam size by a factor Mx = 8.5 in the horizontal and My = 3.1 in
the vertical plane. Weak dipoles in the Chromatic Correction Section (CCS) generate some
dispersion, indicated by the dotted line. Sextupoles placed in this section act as momentum-
dependent quadrupoles and are used to compensate the chromaticity by the mechanism we
later discuss in Section 8.5.4. By placing equally powered sextupoles with phase advances
of 180 degrees apart, it is possible to cancel unwanted non-linear aberrations, a concept we
return to in Section 11.3. Two independently powered families of sextupoles, indicated by the
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solid and the hashed rhombs, are used to adjust the horizontal and the vertical chromaticity
independently. Finally, a second telescope, constructed using two triplets, demagnifies by
a factor of M = 4 in both planes, before the beam meets the other, counter-propagating
beam at the IP.

The correction of the chromaticity with a dedicated CCS with its four-dipole achro-
mat makes the entire final focus system extremely long, especially at high beam momenta
because the dipoles create very little dispersion in the sextupoles, needed to correct the
chromaticity. This problem can be alleviated by realizing that we only need to make the
dispersion D zero at the IP, but not necessarily the derivative of the dispersion D′. Thus
we can have significant dispersion near the IP and place sextupoles next to the final focus
quadrupoles and cancel the chromaticity where it is created. A highly flexible system can
be designed around this concept as is shown by Raimondi and Seryi [18]. Their design will
be used in future linear collider final focus systems because it shortens the length of the
system by kilometers besides having many other advantages [18].

The systems discussed so far dealt mostly with transverse properties of the beams. In
some cases, however, we need to address the longitudinal properties, for example to create
extremely short bunches. Examples are linear colliders and accelerators that drive free-
electron lasers such as LCLS, SACLA, or the European XFEL.

3.7.9 Bunch compressors

In a bunch compressor we seek to reduce the bunch length at the expense of the momentum
spread. This is achieved by accelerating the bunch off-crest in an accelerating cavity. In
this way the head of the bunch can be made to receive a lower energy than the tail of the
bunch. We now have to produce a device that translates momentum difference into arrival
time difference. A chicane is such a device, where four dipole magnets with bending angles
ϕ, −ϕ, −ϕ, and ϕ, respectively, are arranged as is shown in Figure 3.32. The idea is to
give particles with different energies different path lengths. In particular, a particle with
higher energy will be deflected less in the dipoles and will take a shortcut on the inside of
the chicane, resulting in a shorter path length. This shortening can be calculated by first
considering the length of the unperturbed path

l =
2L

cosϕ
≈ 2L

1− ϕ2/2
≈ 2L

(
1 +

ϕ2

2

)
. (3.143)

If the momentum offset is δ, the bending angle will be reduced by ϕ → ϕ/(1 + δ), we find

l(δ) = 2L

(
1 +

ϕ2

2(1 + δ)2

)
≈ 2L

(
1 +

ϕ2

2

)
− 2Lϕ2δ , (3.144)

where we observe that the first term is equal to l(0). The R56, which describes the path
length change as a function of momentum offset δ, is thus given by

R56 =
l(δ)− l(0)

δ
≈ −2Lϕ2 (3.145)

which is proportional to the distance L between dipole magnets and the square of their
bending angle ϕ.

In accelerators operating with low-energy beams, we can avoid using an accelerating
cavity and a chicane. Instead, the energy can be modulated by exciting a short, isolated
section of beam pipe by a time-varying voltage with respect to the adjacent beam pipe.
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Figure 3.32 Layout of a bunch compressor. A particle with higher momentum (dot-

ted) than the reference particle (solid) is deflected less and takes a shorter path

through the chicane and arrives earlier. A particle with lower momentum (dashed)

takes a longer path and therefore arrives later.

Figure 3.33 Three particles with different momenta have a larger distance between

them before the chicane (upper). After the chicane, the late high-momentum par-

ticle has caught up with the reference particles because it takes a shortcut and,

conversely, the early low-momentum particle arrives later because its path is longer.

This leads to the reduced distance between the particles.

This produces an energy and also a velocity modulation of non-relativistic beams, such that
the fast beam particles catch up with their slower companions in a drift space and cause
the beams to be bunched after some distance. This method is called velocity bunching.

3.7.10 Fragment Separator

Fragment separators are used to filter isotopes with a particular charge Z and mass number
A from the debris created when crashing a high-energy beam into a moderately thick target.
The target material is chosen to produce many fission products with a large variety of values
of Z and A. Such systems give us a chance to discuss beam-optical systems that rely on
energy-loss mechanisms caused by deliberately inserting matter into the path of the beam.

Figure 3.34 shows the simplified layout of the fragment separator (FRS), which is part
of the GSI facility in Darmstadt. The FRS [19] consists of a chicane with four dipoles
and adjacent triplets to create the focal points, labeled F2 and F4. The first two dipoles
and associate quadrupoles are configured as a spectrometer. They create a large dispersion
and a small beam size at F2, such that the aperture immediately upstream of F2 selects a
particular momentum, or more precisely magnetic rigidity Bρ, which depends on the charge-
to-mass ratio Z/A. Unfortunately, different isotopes can have very similar Z/A ratios. We
therefore insert a second target, called degrader and made of a material that minimizes
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Figure 3.34 The first spectrometer selects the reaction products coming from the

target according to their charge to mass ratio. Jointly, the degrader at F2 and the

second spectrometer make it possible to identify the particles by the mass and their

charge independently, once they pass the aperture at F4.

further fragmentation but, at the same time, reduces the energy of the passing particles.
As we shall see in Chapter 9 (Equation 9.6), the energy loss is proportional to Z2 of the
beam. Thus particles with similar Z/A ratios before the degrader have different energies
and thus different momenta after the degrader. Therefore the magnets in the section with
the third and fourth dipole are configured as a second spectrometer to isolate a particular
momentum with the aperture at the focal point F4.

Remarkably, shaping the thickness of the degrader allows us to optimize the resolution
of the system [19]. In order to work out the details let us consider a simplified layout, where
the second spectrometer is the mirror image of the first one, which maps the state vector
at the target to the corresponding vector at F2. It is characterized by the 3 × 3 transfer
matrix

Ra =




R11 R12 D
R21 R22 D′

0 0 1


 . (3.146)

In order to determine the transfer matrix for the second spectrometer it is more convenient
to write 

x2

x′
2


=


R11 R12

R21 R22


x1

x′
1


+


D
D′


δ . (3.147)

where x⃗1 = (x1, x
′
1) describes position and angle at the target, x⃗2 at F2. (D,D′) is the

dispersion at F2 and δ is the momentum deviation. In the second spectrometer the same
sequence of magnets is traversed in the reverse direction; it maps x⃗2 to x⃗1 or


x1

x′
1


=


R11 R12

R21 R22

−1 
x2

x′
2


−


D
D′


δ



=


R22 −R12

−R21 R11


x2

x′
2


−


R22D −R12D

′

−R21D +R11D


δ . (3.148)

But we do not want to map x⃗2 to x⃗1 but to x⃗4 at F4. To do so we have to reverse the s-axis
which reverses the sign of all angles, because they are derivatives with respect to s, which
reverses the sign of the second column and then again the second row in the matrix and
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the vector with the dispersion. For example, the matrix element at the lower right has its
sign reversed twice. This leaves us with


x4

x′
4


=


R22 R12

R21 R11


x2

x′
2


−


R22D −R12D

′

R21D −R11D
′


δ (3.149)

that can be written as the 3× 3 matrix

Rb =




R22 R12 −R22D +R12D
′

R21 R11 −R21D +R11D
′

0 0 1


 . (3.150)

for the second spectrometer that maps the state vector at F2 to F4. Note that Rb is the
transfer matrix that describes the motion of a particle traversing the mirrored beamline
that was described by Ra.

Let us now return to the fragment separator. Since we have a waist at F2, the transfer
matrix element Ra

12 is zero and the demagnification from the target to F2 is given by
Ra

11 = m. Making Ra
22 = 1/m ensures that the determinant of the 2 × 2 matrix is unity.

Moreover, we assume that the derivative of the dispersion D′ is zero at F2 which gives us
the following transfer matrices

Ra =




m 0 D
a 1/m 0
0 0 1


 and Rb =




1/m 0 −D/m
a m −aD
0 0 1


 , (3.151)

where a is the unspecified transfer matrix element Ra
21 and Rb is derived with the help of

Equation 3.150.
We model the degrader by the 3× 3 transfer matrix

D̂ =




1 0 0
0 1 0
b 0 c


 (3.152)

where c describes the change in momentum deviation due to the average thickness of the
degrader, and b describes the variation of its thickness, because a non-zero value of the
position x changes the momentum deviation proportional to b. Both b and c can be related
to properties of the material chosen for the degrader and its thickness.

The transport from the target to the analyzing aperture at F4 is thus described by R4,
the product of the three matrices for the first and second spectrometer and the degrader

R4 = RbD̂Ra =




1− bD 0 1
mD(1− c)− 1

m2 bD
2

am(2− bD) 1 aD(1− c)− abD2

mb 0 c+ bD


 . (3.153)

Provided that the initial beam matrix on the target σi = diag(σi
11, σ

i
22, σ

i
66) is diagonal, we

can calculate the beam matrix at F4 from σ4 = R4σiR4⊤ and find for the beam size σ4
11

σ4
11 = (1− bD)2σi

11 +


1

m
D(1− c)− bD2

2
σi
66 . (3.154)

We can now minimize the beam size on the analyzing aperture at F4 by choosing b =
(1 − c)/mD which causes the square bracket to vanish and makes the beam size at F4
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independent of the initial momentum spread of the beam. This mode of operation is called
achromatic. Instead of minimizing the beam size, we can also minimize the momentum
spread σ4

66 at F4. It is given by

σ4
66 = (c+ bD)2σi

66 (3.155)

and selecting b = −c/D removes the influence of the initial momentum spread. This mode of
operation is called monochromatic. We point out that for the sake of simplicity we omitted
the transverse spreading of the beam and the increase of the momentum spread, called
straggling, from the degrader. We will consider both in Chapter 9. Note also that a taylor-
made degrader is only suitable to optimize one particular isotope. The choice of which type
to use—selecting a value of b, including zero—depends on the experimental circumstances.

All beam optics modules we discussed so far, except the degrader, rely on magnets to
deflect the trajectory and focus the beams. Now is the time to have a closer look at how to
design and build these magnets.

QUESTIONS AND EXERCISES

1. Determine the six-dimensional transfer matrix for a combined function dipole with
(a) k = 1/ρ2 + k1 = 0 and (b) k = 1/ρ2 + k1 < 0.

2. Consider one transverse dimension only, such that you can use the 2D-version of the
software for this exercise. Prepare a FODO cell with thin-lens quadrupoles, having
the same absolute value of their focal lengths, that starts in the middle of a 5m long
drift space. Adjust the quadrupoles such that the phase advance is (a) 60 degrees; (b)
90 degrees; (c) 77 degrees.

3. Use the 60-degree FODO cell from the previous exercise and replace the thin
quadrupoles by long quadrupoles with a length of 0.2, 0.4, 0.8m. Adjust their strength
such that the phase advance per cell remains 60 degrees. By how much does the peri-
odic beta function at the start of the cell change? Express the change in percent.

4. Use the cells you prepared in Exercise 1 and (a) prepare phase-space plots by plotting
x versus x′ once per turn for 314 turns. Select a few different starting positions.
Discuss what you observe. (b) Build beamlines of 20 cells for each of the three phase
advances and display the position along the beamline when launching a particle with
an angle of x′

0 = 1mrad. (c) Unless you had already subdivided the drift spaces in
short segments, say 10, do so now and replot the orbit.

5. Still using the 2D software: (a) build a beamline of two 60-degree cells and one 90-
degree cell, then adjust the quadrupoles in the middle cell to match the Twiss param-
eters at the end of the first 60-degree cell to those of the 90-degree cell. (b) Replace
the 90-degree cell by the 77-degree cell and repeat the matching from part (a).

6. Use the FODO cells with the geometry from Exercise 1 and (a) determine their limit of
stability, i.e., for given cell half-length L, what values of f permit a periodic solution?
(b) What phase-advance per cell µ corresponds to the limiting cases? (c) Calculate
the maximum βmax and minimum beta function βmin within a cell as a function of
the phase-advance per cell µ. (d) Generate a plot of the βmax/min versus µ.

7. You are responsible for a short beamline which has the layout shown on the left-hand
side in Figure 3.35 with L1 = L3 = 2m and L2 = 1m and a quadrupole doublet
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Figure 3.35 The geometry of the beamline for Exercises 7 (left) and 8 (right).

with two magnets of equal strength but opposite polarity. The first one is horizontally
defocusing, and the second is focusing. The colleague who works on the accelerator
upstream promises to provide a beam at the entrance of your section which has a
horizontal waist there and an rms width of 5mm and rms angular divergence of
2mrad. (a) What is the sigma matrix at the entrance of your section? (b) What is
the transfer matrix for your beamline? (c) What beam size at the end of the beamline
do you find for f = 1m? (d) Your friends from the experimental group want a small
horizontal beam size at their target position at the left of your beamline. To what
strength do you need to adjust the quadrupoles? (e) What is the minimum achievable
beam size? (f) Assume that the incoming beam has the same vertical sigma matrix
as the horizontal. What is the vertical beam size on the target?

8. Use the doublet cell shown on the right-hand sides in Figures 3.24 and 3.35 and (a)
place one 4m long sector dipole with a bending angle of 12 degrees in the middle of
the drift space. Calculate the periodic dispersion and plot it. (b) Find out how the
dispersion differs depending on placing the dipole between the focusing or between
the defocusing quadrupoles. (c) If this example describes a section of an electron ring,
in which case do you expect a smaller emittance? (d) Numerically evaluate H from
Equation 3.129 (inside the dipoles) for each of the different variants and find out which
one will have the lower emittance.

9. Now use the 4D software, and prepare FODO cells with 60, 90 and 77 degrees in both
planes. (a) Then build a beamline to match the Twiss parameters from the 60-degree
cell to the 90-degree cell. How many intermediate cells do you need? explain why!
Then repeat part (a) by matching into a final 77-degree cell.

10. Use FODO cells with the same geometry as in the previous exercise and find the range
of focal lengths of the QF and the QD that permit stable periodic Twiss parameters.
The easiest way is to scan the quadrupole strengths 1/f for both quadrupoles within
reasonable limits and prepare a graph with the two 1/f on the axes and mark the spot
on the graph with an asterisk if the combination of focal lengths results in a stable
periodic lattice.

11. Design a ring that consists of 18 FODO cells with a length of 10m having a phase
advance of 90 and 60 degrees in the horizontal and vertical plane, respectively. You
can use thin lens quadrupoles and place one 2m-long sector dipole per cell in-between
the quadrupoles. (a) Find quadrupole values to adjust the tunes to Qx = 4.27 and
Qy = 3.38, respectively. (b) Prepare plots of the beta functions in one FODO cell,
and for the entire ring. (c) Calculate the chromaticities.

12. Repeat the previous exercise, but use the lattice with doublet cells, shown on the
right-hand side in Figure 3.24, instead. Use the doublet cell from Exercise 7 with the
4m long dipole. (a) Adjust the tune to Qx = 7.27 and Qy = 7.38 and (b) plot the
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beta functions for one segment and for the entire ring. (c) Track particles, starting
with x0 = y0 = 1mm, for 1024 turns, record the positions, Fourier transform them,
and verify that the fractional values of the tunes are correct.

13. Your beamline needs to cross a highway in an underground tunnel. In order to trans-
port the beam downwards by approximately 4m, as shown in Figure 3.26, you use two
1m long sector dipole magnets with a bending angle of 30 degrees, each. In-between
the dipoles, you place two quadrupoles. Adjust their focal lengths, such that the beam-
line from the entrance to the first dipole to the exit of the second is achromatic. You
can ignore the Twiss parameters in this exercise.

14. Two ultra-relativistic electrons, initially traveling together, but one of them having a
momentum 1% higher than the other one, pass a bunch compressor with four dipole
magnets, spaced by 1m. If each dipole deflects the electrons by 3 degrees, by how
much are they longitudinally separated after the bunch compressor?

15. In the ring with tunes Qy = 4.27 and Qy = 3.38, which you prepared in Exercise 11,
one of the horizontally focusing quadrupoles was accidentally mounted, such that it
is rolled by 5 degrees around the beam axis. (a) Track particles with 1mm initial
offsets, record turn-by-turn positions for 1024 turns, and make an FFT to determine
the tunes. By how much do they differ from the design values? (b) By changing the
excitation of all QF, try to make the tunes as equal as possible. You can use the
sagrub() function to determine the tunes directly from the transfer matrices. For
what focal length are the tunes closest? (c) Set the focal lengths of all QF to this
value and verify the tune with tracking and FFT. Make sure that the values agree
reasonably well.
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Magnets

In Chapters 2 and 3 we saw that dipole magnets define the reference trajectory in an
accelerator and that quadrupole magnets ensure that particles stay close to it. In this
chapter we will address the design and construction of those magnets.

4.1 MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS

The dynamics of electro-magnetic fields in general, and of the magnets in particular, is
governed by Maxwell’s equations [20]

∇⃗ · D⃗ = ρ , ∇⃗ × E⃗ = −∂B⃗

∂t
,

∇⃗ · B⃗ = 0 , ∇⃗ × H⃗ = J⃗ +
∂D⃗

∂t
. (4.1)

The two equations in the first line describe the dynamics of electric fields and the two
equations in the second line that of magnetic fields. Besides the above equations there are
relations among the four fields D⃗, E⃗, B⃗, and H⃗. In particular, the magnetic flux density B⃗
is related to the magnetic field H⃗ by B⃗ = µrµ0H⃗ and, the electric field E⃗ is related to the
displacement field D⃗ by D⃗ = εrε0E⃗. Here µ0 is the permeability and ε0 the permittivity of
vacuum, whereas µr and εr describe material properties that differ from those in vacuum.
The fields are excited by the charge density ρ and the current density J⃗ .

In this chapter, however, we will neglect the electric fields E⃗ and D⃗, and focus on
the equations for the magnetic fields B⃗ and H⃗ and how they are excited by currents.
To understand how the currents excite magnetic fields, we consider the fourth equation
∇⃗ × H⃗ = J⃗ , where we can ignore the displacement field ∂D⃗/∂t for constant fields. We now
use Stokes’s theorem to convert the equation to integral form

∫

S

J⃗ · dS⃗ =

∫

S

(
∇⃗ × H⃗

)
· dS⃗ =

∫

∂S

H⃗ · d⃗l . (4.2)

Here the first identity follows from integrating the fourth of Equation 4.1 over a surface area
dS⃗ and the second identity follows from Stokes’s theorem. It allows us to express the integral
over S as a line integral of the field H⃗ along the perimeter ∂S around S. An immediate
application is the calculation of the field around a wire. It is given by the enclosed current
I =

∫
S
J⃗ ·dS⃗, where S is a circle of radius r. Inserting in Equation 4.2, we recover Ampere’s

law I = 2πrH(r) or B(r) = µ0I/2πr, which describes the magnetic fields caused by an
infinitely long wire. In the derivation we implicitly assumed that the space around the wire
does not contain material with relative permeability µr different from unity.

This chapter has been made available under a CC BY NC license. 93
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Figure 4.1 Boundary conditions for Maxwell’s equations. See the text for explana-

tions.

If, on the other hand, materials with different µr and εr have a common interface, we
need to discuss the behavior of the fields D⃗, B⃗, E⃗, and H⃗ at those boundaries. If we use
Gauss’s law [20] to convert the two Maxwell equations for the divergence into integral form
and consider a small cylinder, as shown on the left-hand side in Figure 4.1, we find that the
normal component of the displacement current D⃗ flux density and the B⃗ have to obey
∫

n⃗ · D⃗2dS −
∫

n⃗ · D⃗1dS =

∫
ρdV = σsdS and

∫
n⃗ · B⃗2dS −

∫
n⃗ · B⃗1dS = 0 , (4.3)

which leads to
n⃗ ·

(
D⃗2 − D⃗1

)
= σs and n⃗ ·

(
B⃗2 − B⃗1

)
= 0 (4.4)

in the limit of a vanishingly small cylinder with height h and cross-sectional area dS. Here
σs is the surface charge density. We then use Stokes’s theorem on the other two of Maxwell’s
equations and calculate the line integral of the tangential component of H⃗ and E⃗ along the
contour shown on the right-hand side in Figure 4.1. This integral is equal to the surface
currents enclosed in the contour and we find [20]

n⃗×
(
E⃗2 − E⃗1

)
= 0 and n⃗×

(
H⃗2 − H⃗1

)
= js . (4.5)

To summarize the discussion about the boundary conditions, we denote the normal compo-
nents by a subscript ⊥, such that n⃗ · B⃗ = B⊥ and the tangential by a subscript ∥, such that

n⃗ × E⃗ = E∥. Using this notation, B⊥ and E∥ are continuous across the boundary and we
have ∆D⊥ = σs and ∆H∥ = js. If one of the materials is metallic with infinite conductivity,
we additionally find E∥ = 0 and B⊥ = 0.

After understanding how to generate magnetic fields with currents and how the fields
behave at boundaries, we need to understand the dynamics in materials. As before, we con-
sider magnetostatic fields only and can therefore assume that E⃗ and D⃗ are zero. Maxwell’s
equations for the flux density B⃗ then reduce to

∇⃗ · B⃗ = 0 and ∇⃗ × B⃗ = 0 . (4.6)

The first of these equations allows us to express the flux density B⃗ as the curl of a vector
potential A⃗, such that B⃗ = ∇⃗× A⃗. The second of these equations permits a complementary
description of the fields in vacuum and is given in terms of the gradient of a potential Φ
through B⃗ = −∇⃗Φ. For the characterization of the fields, it is most convenient to use the
second description and inserting in the first equation leads to

△Φ = 0 , (4.7)
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which implies that the magnetic potential Φ has to fulfill the Laplace equation. Finding
the magnetic fields therefore reduces to solving the Laplace equation subject to suitable
boundary conditions.

After these general results that are valid in three dimensions, we will simplify the sit-
uation further by considering long magnets. Their fields can be derived by studying the
two-dimensional (2D) transverse geometry, only.

4.2 2D GEOMETRIES AND MULTIPOLES

For long magnets, it suffices to only consider transverse components of the magnetic flux
density B⃗ in the two transverse directions x and y, only. Here we denote them by u = Bx

and v = −By. For these components, the equations in Equation 4.6 reduce to

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (4.8)

These equations we recognize as the Cauchy-Riemann equations for a complex function
w(z) = u(x, y) + iv(x, y) = Bx(x, y) − iBy(x, y) of a complex variable z = x + iy. Since
any complex function w(z) can be expressed as the derivative w(z) = i dF/dz of another
complex function

F (z) = A(x, y) + iV (x, y), (4.9)

we find

Bx = −∂V

∂x
=

∂A

∂y
and By = −∂V

∂y
= −∂A

∂x
, (4.10)

where we identify V (x, y) as the two-dimensional analogons of the three-dimensional poten-

tial Φ and A(x, y) as the out-of-plane component of the vector potential A⃗. This is the same
component that was denoted by As in Equation 2.2. Realizing that Maxwell’s equations in
two dimensions are closely related to the theory of complex functions makes it possible to
employ powerful methods such as conformal mapping and the existence of all derivatives of
analytic functions, namely, those that obey the Cauchy-Riemann equations.

A special potential is that of a filament that carries a current I, which is given by
F (z) = (−µ0I/2π) log(z). The magnetic flux density derived from it is

Bx − iBy =
µ0I

2πiz
(4.11)

with z = x+ iy. We observe that by taking the modulus on both sides we recover Ampere’s
law. The existence of all derivatives permits us to write the complex potential F (z) as a
Taylor series in z = x+ iy

F (z) = −B0R0

∞∑
m=1

bm + iam
m

(
z

R0

)m

(4.12)

where B0 is a suitably chosen reference field and R0 a reference radius. The coefficients bm
and am are commonly called multipole coefficients and are defined to be consistent with [14]
and lead to

iw(z) = By + iBx = −dF

dz
= B0

∞∑
m=1

(bm + iam)

(
z

R0

)m−1

. (4.13)
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Figure 4.2 Equipotential lines and field vectors for an upright quadrupole (left) and

an upright sextupole (right).

The first non-trivial coefficient is the dipole coefficient with m = 1, and we consider the
power series that truncates after the first term, which results in FD(z) = −B0(b1+ ia1)(x+
iy). Using Equation 4.10, we find the components of the flux density to be Bx = a1B0 and
By = b1B0. We can thus describe a dipole with a purely (b1 = 1, a1 = 0) vertical field
component B0 by the complex potential FD = −B0(x+ iy). According to Equation 4.9 the
imaginary part of FD defines the potential V (x, y) = −B0y and we immediately see that the
equipotential lines are given by V (x, y) = V0 with some constant V0 or equivalently V0 = B0y
which implies that the equipotential lines are given by y = V0/B0 which is constant and are
thus parallel to the horizontal axis. Since the pole faces of magnets are equipotential lines,
we find the expected result that a dipole with a vertical field has horizontal pole faces.

The second non-trivial coefficient with m = 2 is called the quadrupole coefficient and
the potential is given by FQ(z) = −(B0/2R0)(b2 + ia2)(x + iy)2 from which we derive the
magnetic flux densities with the help of Equation 4.10 and obtain

Bx = (B0/R0)(a2x+ b2y) and By = (B0/R0)(b2x− a2y) (4.14)

where we see that the components of the flux densities Bx and By grow linearly with x
and y, just as we required for a quadrupole in Chapter 3. In particular, for an upright
quadrupole (b2 = 1, a2 = 0) the gradient is given by g = ∂By/∂x = B0/R0. The potential
then becomes FQ = −(B0/2R0)(x + iy)2 and the equipotential lines—they also define the
pole faces—are given by V0xy with V0 being the value of the potential. Apparently, here the
choice of the reference field B0 is the field on the pole-tip and R0 is the pole-tip radius. We
show the equipotential lines as well as the flux-density vectors for the upright quadrupole on
the left-hand side in Figure 4.2. Note that the field along the horizontal axis grows linearly.
For the upright quadrupole, only b2 is non-zero. If, on the other hand, only a2 is non-zero,
the equipotential lines are rotated by 45 degrees and the corresponding magnet is called a
skew quadrupole.

The next multipole with m = 3 is a sextupole. It is characterized by a complex potential
FS(z) = −(B0/3R

2
0)(b3 + ia3)(x+ iy)3. If only a3 is non-zero, it is called skew sextupole. If

only b3 is non-zero, the magnet is called “upright”, and its equipotential lines are given by
V0 = (B0b3/(3R

2
0)(y

3−3x2y), according to Equation 4.9. They are shown, together with the
flux-density vectors, on the right-hand side in Figure 4.2. The vertical component By along
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Figure 4.3 Geometry of a C-shaped dipole.

the horizontal axis points upward on either side of the origin, consistent with a quadratic
dependence on x.

In the same manner, the equipotential lines for higher multipoles, such as octupoles,
decapoles, and do-decapoles are defined by their complex potentials. Occasionally, it is
desirable to combine several multipoles in one magnet. The most common combination
is a dipole magnet with a quadrupolar component added in order to provide additional
focusing, Figure 3.6 in Section 3.1.4 shows an example. The shape of the pole faces for
such magnets is determined, as before, by the complex potentials. In this case, we need to
add the potentials for a dipole with field B0 and for a quadrupole with gradient g, which
yields V (x, y) = −B0y − gxy. Note, that in combined function magnets, the quadrupolar
component is rigidly linked to the dipole field and cannot be adjusted independently. One
is not limited to combining dipoles and quadrupoles. In the arcs of the SLC the very tight
bending radius made it necessary to combine even sextupoles for chromatic correction on
top of the dipole and quadrupolar fields, because there was not enough space available for
separate magnets.

So far, we addressed the admissible potentials and fields. Next we need to address how to
excite the fields, and first we consider iron-dominated magnets that are excited by driving
currents through coils.

4.3 IRON-DOMINATED MAGNETS

The magnetic fields in iron-dominated magnets are predominantly defined by the shape
of the pole faces, which define the equipotential lines of a multipole, or combination of
multipoles. These magnetic poles are excited by coils that are wound around them, and our
task is to determine the magnitude of the fields as a function of the current in the coils.

4.3.1 Simple analytical methods

First we consider a C-shaped dipole magnet as shown in Figure 4.3 that is driven by two
pairs of coils which consist of N turns that each carry a current I. We now use Stokes’s
theorem from Equation 4.2 to relate the enclosed current in the contour, shown as a dashed
line in Figure 4.3, to the line integral of the magnetic field H⃗ along the perimeter, which is
the contour itself. For the total current we find

∫
S
J⃗ · dS⃗ = 2NI where we have to add NI
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Figure 4.4 The contour used to determine the excitation of a quadrupole.

from the upper and NI from the lower coil. For the line integral along the contour, we have

2NI =

∫

gap

Hydy +

∫

iron

Hirondl =

∫

gap

By

µ0
dy +

∫

iron

Biron

µ0µr
dl ≈ Byh

µ0
. (4.15)

Here we split the contour into one part across the magnet gap and a second part through
the iron where the relative permeability is much larger than unity µr ≫ 1, such that in the
limit µr → ∞ we can neglect this contribution to the integral, which remains the integral of
the magnetic field Hy = By/µ0 across the gap of height h. Solving for the flux density By,
we find

By =
µ0(2NI)

h
. (4.16)

As an example, we consider a dipole with a gap of h = 0.1m and that is excited by coils
with N = 40 windings that are driven by I = 1kA. This results in a magnetic flux density
By ≈ 1T. We observe that By is inversely proportional to the gap height h such that
magnets with large gaps either require large currents I or many turns N. Essentially, dipole
magnets with a large gap require many Ampere-turns NI to achieve a high field. Conversely,
in order to operate economically, the magnet designer should strive to design magnets with
the smallest gap that is compatible with other constraints. After the coarse design of a
dipole, let us move on to the design of a quadrupole magnet.

Normal-conducting quadrupole magnets are excited by coils that are wound around their
poles. The top right pole shown in Figure 4.4 is excited by the coil in which current flows
into the paper through the right conductor on the top and return through the upper coil
on the right. In the same way, the other poles are excited and the resulting field pattern is
shown on the left in Figure 4.2. If we now apply Stokes’s theorem to the contour shown as
a dashed triangle in Figure 4.4, we see that the enclosed current is given by the number of
Ampere-turns NI in the coil, and the line integral has three contributions: the horizontal
path from the center of the magnet to the right edge of the magnet, the path inside the
iron, and the path from the center of the magnet to the pole face radius a.

NI =

∫

horiz

Bdl

µ0
+

∫

iron

Bdl

µ0µr
+

∫ a

0

grdr

µ0
≈ ga2

2µ0
(4.17)

The first integral is zero, because the magnetic flux only has a vertical component on the
center line and the second integral vanishes in the limit of infinite permeability µr → ∞.
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Along the path from the center of the quadrupole to the pole face, Figures 4.2 and 4.4
illustrate that the field is parallel to the path of integration and increases linearly with the
radius. Evaluating the integral, and solving for g, we arrive at

g =
∂By

∂x
=

2µ0NI

a2
. (4.18)

We realize that the gradient is inversely proportional to the square of the pole-face radius a.
This implies that large currents are needed to power strong quadrupoles with a large bore,
such as those closest to the interaction points of colliders, where the beta functions are very
large, as discussed in Section 3.7.8.

The relation between exciting current and the resulting field for other multipoles can
be derived in the same way. We choose an integration path around one coil that has two
contributions that vanish. On the horizontal leg, the field is perpendicular to the integration
path, and the leg that passes through the iron vanishes in the limit µr → ∞. The only non-
zero contribution comes from the leg between the center of the multipole and the pole-tip
at radius a. Along this path, the field is parallel to the integration path and grows as rn.
The resulting field gradient thus becomes

∂n−1By

∂xn−1
=

nµ0NI

an
. (4.19)

Here we see that the multipole gradient scales inversely with the nth power of the pole-tip
radius and high gradients require large currents I or many winding turns N. Both quantities
are limited by the available space, the current carrying capability of copper and the ability
to remove the heat that is generated due to the finite resistance of the coils.

The equations in this section often serve as a first estimate of design parameters for
multipole magnets. Note, however, that the equations are only valid in the limit of infinite
permeability µr and under the assumption that the pole faces are perfect and extend in-
finitely. To improve the magnet design we have to resort to numerical methods, and for this
task we employ the MATLAB PDE toolbox to solve the partial differential equations.

4.3.2 Using the MATLAB PDE toolbox

Here we use numerical methods to address the following topics: finite permeability µr,
finite size pole faces, and saturation of magnetic flux in the iron. As a tool, we employ the
MATLAB PDE toolbox, which uses a finite-element algorithm to solve Maxwell’s equations
in discretized form on a mesh. Since the magnetic flux density B⃗ is divergence-free, we can
derive it from a vector potential A⃗ by B⃗ = ∇⃗× A⃗ and inserting in Maxwell’s Equations 4.1
we find

∇⃗ ×
(

1

µr
∇⃗ × A⃗

)
= µ0J⃗ . (4.20)

If we use the Lorentz gauge ∇⃗·A⃗ = 0 and we confine ourselves to two-dimensional problems,
this implies that we only have to consider one component of the vector potential Az and
one component of the current density Jz. The equation for Az then becomes

−∇⃗ ·
(

1

µr
∇⃗Az

)
= µ0Jz , (4.21)

which reduces to the two-dimensional Poisson equation if µr is constant. It is this equation
that the PDE toolbox solves after we provide the permeability µr and the current Jz in
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various subdomains of our problem. Once MATLAB has solved the previous equation, we
can determine the transverse components of the magnetic flux density Bx and By from
Bx = ∂Az/∂y and By = −∂Az/∂x in much the same way as in Equation 4.10. Apart from
specifying the material properties µr and Jz in the subdomains, we need to specify the
boundary condition on the outer boundaries of the integration volume. We can specify the
value of the potential, which is called a Dirichlet boundary condition. A common example
is setting the value to zero far away from the regions with currents. The other alternative
is to specify the normal component of the potential, which is called the von Neumann
boundary condition. A common example is setting the normal derivative to zero, which
implies that the tangential component of the magnetic field H⃗ = ∇⃗Az/µr vanishes. We
frequently encounter this at symmetry planes.

Equation 4.21 is a PDE, and MATLAB refers to it using the generic notation

m
∂2u

∂t2
+ d

∂u

∂t
− ∇⃗ ·

(
c∇⃗u

)
+ au = f (4.22)

and uses the generic names m, d, c, a, and f to define the coefficients of the PDE and u to
refer to the solution itself and to formulate boundary conditions. Generalized von Neumann
conditions are of the form

n⃗ · (c∇⃗u) + qu = g (4.23)

where n⃗ is the normal vector on the boundary and we need to specify q and g. Dirichlet
boundary conditions have the form

hu = r (4.24)

and we specify either h and r or set u to a fixed value. Comparing with Equation 4.21 we
see that u corresponds to Az, that c corresponds to 1/µr, and that f corresponds to µ0Jz,
while m, d, and a are zero.

In order to use the PDE solver, we have to follow a number of steps that are common
to most numerical solvers:

1. define the geometry;

2. discretize the geometry on a mesh;

3. define boundary conditions;

4. specify material properties;

5. solve the differential equations;

6. post-process the solution to extract physically relevant properties.

Let us start with the definition of the geometry. MATLAB allows us to define basic shapes
such as circles, ellipses, rectangles, and polygons from which we build our model of the
magnet. We first define the basic shapes in the form of a column vector and then define
the geometry as sums, differences, or intersections of the basic shapes. In order to illustrate
the procedure, we consider a simple example: the C-shape dipole magnet discussed in the
previous section. We assume that the magnet yoke has width and height of 1.6m. The gap
is h = 0.1m, and the coils are rectangular with a width of 0.3m and height of 0.2m. The
first component is the yoke, which we define as a polygon. It is advisable to first sketch the
shape on a piece of paper and note the edges of the polygon; the x-values in the first row
and the y-values immediately below. Once this table is complete, we transfer the data to
the MATLAB file and define the yoke as a column vector whose entry in the first row is the
code, here 2, for a polygon, followed by number of points, here 13. Then follows the list of
13 x-values and then the 13 y-values.
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yoke=[2; 13; ...

0;0;0.3;0.3;1;1;-0.6;-0.6;1;1;0.3;0.3;0; ...

0;0.3;0.3;0.05;0.05;0.8;0.8;-0.8;-0.8;-0.05;-0.05;-0.3;-0.3];

After the yoke is defined, we enter the definitions of the coils C1 to C4 in the same way and
finally the enclosing World that envelops the whole integration volume

C1=[3;4;0;0;0.3;0.3; 0.1;0.3;0.3;0.1;zeros(18,1)];

:

World=[3;4;-1.8;1.8;1.8;-1.8;-1.2;-1.2;1.2;1.2;zeros(18,1)];

Here we use the code 3 to define a rectangle. The meaning of the other entries is the same
as for the polygon. Note that the definitions for the geometric shapes all need to have the
same number of rows, which explains their padding with zeros. Note that the shapes are
plain MATLAB arrays and, instead of using numbers, we can also use variables or functions
to generate the various shapes. This makes parametric studies very easy to implement.

Once the basic shapes are defined, we can assemble the model, give names to the shapes,
and define their relation with the following commands:

gd=[World,yoke,C1,C2,C3,C4]; % assemble geometry

ns=char(’World’,’yoke’,’C1’,’C2’,’C3’,’C4’)’; % names of the shapes

sf=’World+yoke+C1+C2+C3+C4’; % relation

g=decsg(gd,sf,ns);

First we assemble the column vectors for each of the shapes into one matrix gd for “geometry
descriptor” before assigning names to the shapes in the variables ns. The use of the char()
function ensures the names all have the same length and that ns becomes an array of
characters. In the next line we define sf to hold the relation of the different shapes. Here
we only use the + operator, but we can also use - to define, for example, holes, such that
R-C describes a circular hole defined by C in a rectangle R. Using * allows us to define
regions that are part of two shapes. For example R*C describes the region that is both in
R and in C. But for the C-shaped dipole we only need to add the shapes. Finally, we are
ready to assemble the full geometry description with the decsg() function in the variable g.
Admittedly, this way of entering the geometry is somewhat arduous, but it gives the highest
flexibility in defining the geometry and later in post-processing the results.

With the definition of the geometry completed, we add it to the model, which is a
data structure that holds all information about the simulation. We create an empty model

with the createpde() function and since we only have a single variable Az in the PDE
Equation 4.21, we use 1 as the argument and we add the geometry description g to the
model in the call to the geometryFromEdges() function.

model=createpde(1);

geometryFromEdges(model,g);

figure(’Name’,’Edgelabels’); pdegplot(model,’EdgeLabels’,’on’)

figure(’Name’,’Domainlabels’); pdegplot(model,’SubDomainLabels’,’on’);

And then we are ready to inspect the geometry with the pdegplot() function; once to
show the EdgeLabels and once to show the SubDomainLabels. The corresponding plots are
shown in Figure 4.5. These two plots give us the labels that describe the edges and domains
of the geometry. Later we need them to specify the boundary conditions on the edges and
the material properties within the domains.

The next task is to discretize the geometry with a call to the generateMesh() function
and to show the result with the pdemesh() function.
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Figure 4.5 The subdomains and edges of the C-shaped dipole magnet.

generateMesh(model); % or generateMesh(model,’Hmax’,0.02);

pdemesh(model);

The resulting mesh is shown on the left-hand side of Figure 4.6. In the figure, MATLAB
chooses the default mesh size, but we can also require a mesh with smaller triangles by
specifying the maximum edge of a triangle with the Hmax argument. In the remainder, we
set Hmax equal to 0.02.

At this point we are ready to specify the boundary conditions on the outer edges of
geometry. They have the edge labels 1, 2, 25, and 26. with the following call

applyBoundaryCondition(model,’Edge’,[1,2,25,26],’u’,0);

which is fairly self-explanatory; on edges with labels 1,2,25, and 26 we require the value
of the solution u to be zero.

In the next step we specify the material properties in the subdomains. We refer to
the right image in Figure 4.5, where we find the labels for the subdomains. In particular,
1 labels the outside of the magnet, 2 to 5 the coils and 6 the magnet yoke. Next, we

Figure 4.6 The mesh (left) with the default mesh size that is refined by adjusting

Hmax to 0.02 to generate the solution (right).
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enter the values m, d, c, a and f for the respective subdomains in multiple calls to the
specifyCoefficients() function. We remember that c = 1/µr and therefore we specify
c = 1 everywhere, except the yoke, where we set c = 1/µr = 1/5000. Likewise, a is zero
everywhere, but we assume the coils to carry NI = 40 kA-turns. This causes f to be
f = µ0NI/A where A = 0.2× 0.3m2 is the cross-section of the coils. For f we thus find the
numerical value 0.8378, which we assign to the left coils with one sign, and the other coils
with the opposite sign.

specifyCoefficients(model,’m’,0,’d’,0,’c’,1,’a’,0,’f’,0,’Face’,1);

specifyCoefficients(model,’m’,0,’d’,0,’c’,1,’a’,0,’f’,0.8378,’Face’,[2,4]);

specifyCoefficients(model,’m’,0,’d’,0,’c’,1,’a’,0,’f’,-0.8378,’Face’,[3,5]);

specifyCoefficients(model,’m’,0,’d’,0,’c’,1/5000,’a’,0,’f’,0,’Face’,6);

result=solvepde(model);

figure(’Name’,’Magnetic Potential’);

pdeplot(model,’XYdata’,result.NodalSolution,’contour’,’on’);

hold on; pdegplot(model);

Then we solve the PDE with a call to solvepde(), which sets up the system of equations,
solves it, and returns a structure containing the solution as result. In particular, Az is
referred to as u=result.NodalSolution. We immediately plot it on the right-hand side in
Figure 4.6 to inspect the solution. Note that we plot both u and the contour lines. Here
hold on and the call to pdegplot() superimposes the geometry on the plot.

With the solution u = Az available, we can proceed to extract other physical quantities,
such as the magnetic flux density (Bx, By) = (∂u/∂y,−∂u/∂x). Both gradients are already
provided in result as Bx=results.XGradients and By=results.YGradients and we can
therefore proceed to calculate the magnitude of the field with the hypot() function. A call
to the pdeplot() function then displays the magnitude of the magnetic flux density Bmag.
The second argument Flowdata produces small arrows indicating the direction of the flux.
Finally, the geometry is superimposed.

figure(’Name’,’Flux density B’);

Bx=result.YGradients; By=-result.XGradients; Bmag=hypot(Bx,By);

pdeplot(result.Mesh,XYData=Bmag,FlowData=[Bx,By]);

hold on; pdegplot(model);

The left-hand side in Figure 4.7 shows this plot. We immediately observe on the color bar
that values above 5T occur in the iron, especially close to the coils. This causes saturation
of the iron, and we will later improve the solution by taking magnet saturation into account.

Figure 4.7 The magnetic flux density distribution (left) and the values in the mid-

plane of the gap (right) for µr = 5000 (solid) and µr = 500 (dashes).
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But we first explore the present solution further by plotting the flux density on the mid-
plane of the magnet gap. First, we create arrays x and y to describe the path along which
we seek to calculate the magnetic field. Then we employ the evaluateGradient() function
to determine the gradients along this path, use Equation 4.10 to ensure the fields have the
correct sign, and calculate the magnitude of the magnetic flux density B.

figure(’Name’,’Field in gap’);

x=0.05:0.01:1.4; y=zeros(1,length(x));

[dAx,dAy]=evaluateGradient(result,x,y); Bx=dAy; By=-dAx; B=hypot(Bx,By);

plot(x,B,’k’,’LineWidth’,2); xlabel(’x [m]’); ylabel(’B [T]’);

ylim([0,1.1]); set(gca,’FontSize’,16);

The solid line in the plot on the right-hand side in Figure 4.7 displays this absolute value
of the magnetic flux density B. We note that the field in the middle of the gap is around
1T, in agreement with the estimate using Equation 4.16. But we see that the field rolls off
at both ends of the magnetic gap near x = 0.3m and x = 1m, an effect we will consider
more closely below.

But first we investigate the effect of bad iron with a much lower permeability of µr = 500
instead of 5000, which is as easy as changing the definition of the parameter c inside the
yoke (Face 6) in a call to the specifyCoefficients() function, before solving the PDE
with solvepde(). The resulting flux density in the gap is shown as the dashed line on the
right-hand side in Figure 4.7. Apparently, the field in the gap is much lower.

In the first example we simulated the field in the entire magnet, which is redundant,
because the magnet has a mid-plane symmetry, and it is sufficient to model only the upper
half and adjust the boundary conditions accordingly. All we have to do is change the polygon
that describes the yoke to

Cmag=[2; 8; ...

0;0;0.3;0.3;1;1;-0.6;-0.6; ...

0;0.3;0.3;0.05;0.05;0.8;0.8;0];

and only define the two upper coils before defining the boundary conditions with the fol-
lowing code

applyBoundaryCondition(model,’Edge’,1:3,’u’,0);

applyBoundaryCondition(model,’Edge’,8:10,’q’,0,’g’,0);

where the first line defines the Dirichlet boundary conditions on the left, right, and upper
outer boundary. The second call defines von Neumann boundary conditions on the edges
on the mid-plane. The numbers we obtain by inspecting the EdgeLabels that are shown on
the left-hand side in Figure 4.8. Moreover, we only have to specify the coefficients m, d,

c, a, and f in four subdomains: the yoke, two coils, and the rest of the integration volume.
On the right-hand side in Figure 4.8, we show the solution u returned by solvepde() that
corresponds to the right-hand side in Figure 4.6. It is easy to verify that the magnetic field
in the gap equals that calculated with the full model we used before. Note that the number
of nodes for Hmax=0.02 is only 30377 as opposed to 99945 that were used before when
simulating the magnet without symmetries taken into account. Normally, it is advisable
to exploit symmetries, because fewer resources are required. This often results in faster
execution time and the ability to decrease the mesh size in order to solve more complex
problems.

With this more efficient simulation model, we investigate the roll-off of the magnetic flux
density at the ends of the magnet gap. A common way to improve the field in this region is
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Figure 4.8 The geometry and magnetic flux density of the magnet when exploiting

the mid-plane symmetry of the C-shaped dipole magnet.

called shimming. It is based on adding small pieces of iron near the end of the poles. In the
model, we simply add small, 5mm-wide rectangles just below the pole ends, as shown on the
left-hand side in Figure 4.9, where the labels 4 and 6 indicate the position of the shims on
either end of the upper pole face. The magnetic flux density in the mid-plane of the magnet
gap is shown on the right for shim heights of 0, 1, and 2mm as the dot-dashed, solid and
dotted line, respectively. We find that the 1mm shims clearly extend the good-field region
by about 0.05m on both sides of the magnet gap, while a 2mm shim obviously causes a
significant overshoot at the ends. We point out that the shim height depends on the magnet
gap h.

So far, we did not take saturation of iron into account, which starts around 1.5 to 2T,
depending on the quality of the iron or steel used when manufacturing the magnet. Adapting

Figure 4.9 On the left, the shims are added to the magnet geometry as 5mm wide

iron pieces with a height of 1 or 2mm. On the right, the magnetic flux density in

the gap is plotted for a magnet without shims (dot-dashed), with a 1mm high shim

(solid) and with 2mm shims (dotted).
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Figure 4.10 The magnetic flux density (left) and the field in the middle of the gap

(right) for a magnet with saturation taken into account. Note how the scale on the

colorbar indicates that the maximum field stays below 2T.

the simulation in order to take saturation into account is as easy as defining the relative
permeability µr to depend on the magnetic flux density. Here we will use the following
dependence for the relative permeability

µr = 5000

[
0.01 +

1

2
erfc

(
B − 1.5

0.3

)]
(4.25)

which approximates an example for a magnetostatic problem in the documentation of the
MATLAB PDE toolbox [21]. Here erfc() is the complementary error function [22], the
numerical value 1.5 defines the value of B [T] where µr is halved, and 0.3 defines the width
in T of the transition from the maximum value of 5000 to close to zero. The small value of
0.01 ensures that 1/µr stays finite. We now can accommodate saturation by changing a few
lines of code; first we define the function muR() that encodes Equation 4.25 and then the
function mufun() that inverts muR and provides the magnitude of the magnetic flux density,
given by hypot(state.ux,state.uy), as input parameter. Finally mufun is supplied as
parameter c in the call to specifyCoefficients() pertaining to the domains of the model
that are affected by saturation.

muR=@(B)5000*(0.01+0.5*erfc((B-1.5)/0.3));

mufun=@(location,state)1./muR(hypot(state.ux,state.uy));

specifyCoefficients(model,’m’,0,’d’,0,’c’,mufun,’a’,0,’f’,0,’Face’,4);

Though not used in this example, we briefly note that state.u refers to the potential itself
and, for example, location.x to the x-position in the domain of integration1. The rest of
the script remains the same as in previous examples.

The left-hand side in Figure 4.10 shows the magnetic flux density B, where the colorbar
on its right indicates that it indeed remains below 2T. Compare this to the maximum field
on the right-hand side in Figure 4.8, which exceeds 5T because saturation effects were
ignored. The right-hand side in Figure 4.10 shows the mid-gap field for a magnet with a

1Executing help FunctionCoefficientFormat in MATLAB displays the available information.
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Figure 4.11 The domains (left) and edges (right) for a quarter of a quadrupole.

constant value of µr (solid) and with saturation taken into account (dotted). The field in
the latter case is indeed reduced by about half a percent.

With these tools at hand, it is possible to explore many other dipole geometries, such
as H-magnets, but we leave that as an exercise and explore quadrupoles instead.

4.3.3 Quadrupoles

Quadrupoles can be treated in much the same way as dipoles. We realize, however, that
quadrupoles have a four-fold symmetry, and we therefore only need to model one quadrant,
if we treat the symmetry axes suitably by specifying von Neumann boundary conditions.
The quadrupole has width and height 0.6m and a pole-tip radius of 53mm. We show the
geometry with the subdomains specified on the top left plot in Figure 4.11. We see that
the iron yoke, labeled by index 1, the coils by indices 3 and 4, and the extra space by
indices 2 and 5. The iron yoke and the coils are specified by polygons, and the edges or
segments of the polygons are shown on the right plot at the top in Figure 4.11. Note that we
subdivided the hyperbolic pole-tip into a number of shorter segments, and we also added a
short segment, labeled 3, in the origin. This was necessary to avoid an ambiguity with the
von Neumann boundary conditions on the left boundary where the tangential component
is vertical and on the bottom boundary, where it is horizontal. We simply added a short
diagonal segment near the origin where we enforce zero Dirichlet boundary conditions. We
set the current density in the coils with cross-section 87.5 cm2 to be Jz = 106 A/m2 which
results in a total current of 8750A-turns.

The rest of the simulation code follows the previous examples and after specifying the
boundary conditions, we generate the mesh, specify the coefficients m, d, c, a, and f, and
solve the equations with solvepde(), which returns the vector potential u = Az from which

we calculate the magnetic field components Bx and By. Their modulus B =
√
B2

x +B2
y is

shown on the left-hand side in Figure 4.12 where the strongest field appears near the neck of
the pole-tip. There the iron will saturate first, if we increase the current in the coils further.
In the present scenario, the field on the pole-tip is approximately 0.4T. We read this value
off of the right plot in Figure 4.12, which shows B along the diagonal from the origin toward
the pole-tip center. We determine the gradient from a linear fit to be 7.7T/m, which we
compare to the estimate from Equation 4.18 which results in gradient of 7.8T/m. After
these initial simulations of the base performance of the quadrupole, we can start optimizing
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Figure 4.12 The magnetic flux density in one quarter of a quadrupole (left) and along

a line from the origin to the pole-tip center (right).

it by including saturation of the iron in our modeling, change the shape of the pole-tip, add
shims, or round the corners near the neck of the pole-tip, where we observe high magnetic
flux densities. We may also investigate iron or steel with different permeabilities µr. And
this brings us to the technological aspects of iron-dominated magnets.

4.3.4 Technological aspects

One particular aspect of iron-dominated magnets is the dependence of the relative perme-
ability µr on the magnetic flux density B, which is shown on the left-hand side in Figure 4.13
which is given by Equation 4.25. At low fluxes, the value of µr is large—we used µr = 5000 in
the simulations—whereas it decreases toward zero as the saturation limit of iron—typically
around 2T—is approached. The right-hand plot shows the magnetic flux B as a function
of the filed H = B/µ0µr. We observe that for large values of H, the values of B are limited
to the saturation value of about 2T. They typically range from 1.5 to somewhat over 2T,
but in any case the data sheets of the manufacturers must be consulted to obtain accurate
descriptions. We point out that specially manufactured mu-metal sheets are available to

Figure 4.13 The relative permeability µr as a function of the magnetic flux density

defined by Equation 4.25 (left) and magnetic flux B as a function of the magnetic

field H = B/µ0µr(B) illustrating the hysteresis of iron (middle). The plot on the

right illustrates hysteresis.
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Figure 4.14 Sandwich of conductor coils with water-cooling channels.

shield magnetic fields. They typically reach values of µr about ten times (or more) higher
than conventional iron.

In the previous sections and also in the two plots on the left and middle in Figure 4.13,
we assume a one-to-one relationship between the magnetic field H and the flux density
B, which is not always true. This relationship shows hysteresis and is multi-valued. When
increasing the excitation of a magnet to saturation, the B − H relationship differs from
the one when decreasing the excitation as shown on the right-most plot in Figure 4.13.
The reason for this behavior is the reluctance of magnetic domains in the iron to change
orientation. In this way the magnet “remembers” its previous excitation levels and, as a
consequence, exhibits hysteresis. In practice, this implies that occasionally the magnets have
to be demagnetized or, as it is often called, standardized. This is achieved by cycling the
power supplies of the magnet, initially between the maximum and minimum values, and then
repeating the procedure with successively decreasing amplitudes. In this way, the magnet
iron is forced to follow a gradually diminishing hysteresis curve until it cycles around zero
excitation, at which point the magnet has “forgotten” its history and almost no residual
magnetization remains. This procedure results in a well-defined initial state from which the
desired magnetic flux density can be reached in a reproducible way.

Another reason why the excitation of iron-dominated magnets depends on their history
are eddy-currents that are excited by quickly changing currents. This normally happens
in accelerator magnets used in rapidly cycling synchrotrons that cycle their magnetic field
several times per second. A common way to avoid excessive eddy-currents is to assemble the
magnets from laminated sheets of metal that prevent large current-loop to develop inside
the iron. The same principle is used for the construction of voltage transformers. Building
magnets from stacks of laminations has another advantage for large series of equal magnets,
because the stencil to stamp out the laminations from the sheet metal only needs to be
paid for once. Henceforth a large number of laminations can be stamped at moderate cost.
Moreover, in this way, only moderately lightweight laminations need to be assembled, rather
than large blocks of iron.

The magnets are excited by driving a current through the coils and the ohmic losses due
to the finite resistance of the conductor limit the maximum current. A common limit for
the current density is about 10A/mm2, provided that the coils are water-cooled and the
pressure drop across the coils is sufficiently large to ensure the flow to be turbulent [23].
Under these circumstances, the conductors are insulated by epoxy and have a hole in their
center through which the water flows. Figure 4.14 illustrates the cross-section through such
a “sandwich” of 3× 4 conductors with embedded water channels.
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In small magnets, such as those used as steering correctors, only moderate currents are
needed to excite the magnet. If the current density in the coils stays below approximately
1A/mm2, cooling by air-convection is sufficient, and we can avoid the additional complexity
of installing a water-cooling system.

Iron-dominated magnets are the most common magnets in accelerators, and their design
and manufacturing is well understood. This makes them the first choice unless one wants to
use permanent magnets to avoid electricity costs or magnetic flux densities above 2T are
required. In the latter, the high-field regime, superconducting magnets are the only choice.

4.4 SUPERCONDUCTING MAGNETS

In superconducting magnets, the flux densities are almost entirely determined by the dis-
tribution of currents in the system, and in the basic configuration, no iron is used to shape
the field. In this way, the achievable flux densities are not limited by saturation of the iron,
and superconductors permit extremely large current densities, because there are no ohmic
losses. The disadvantage is, however, that superconducting magnets need to be cooled to
temperatures close to absolute zero by embedding them in a bath of liquid Helium at 4.2K,
and in special cases even to 1.9K, where Helium becomes super-fluid.

The wires used to power the magnets are made of superconducting material that ex-
hibits a vanishing electrical resistance to direct currents near zero absolute temperature.
In certain materials, two electrons interact through phonons, which are lattice vibrations
of the crystal, and form bound states, so-called Cooper pairs, which can travel unimpeded
through the material [24]. When exposed to a magnetic fields, Type-I superconductors expel
the magnetic fields, provided it is below a critical field strength Hc. Unfortunately, their
Hc is too low to use this type of material for magnets. Instead, one uses Type-II supercon-
ductors. They completely expel magnetic fields below the first critical temperature Hc1 and
partially expel it in a range between Hc1 and the second critical field Hc2, before completely
losing superconductivity at fields above Hc2. The field Hc2 depends on the material and
notably on the temperature to which the material is cooled. Hc2 is higher for lower temper-
atures, which explains why high-field magnets are often cooled with super-fluid Helium at
1.9K, rather than the more easily accessible liquid Helium at 4.2K. The ability of Type-II
superconductors to support superconducting currents makes them the material of choice
for the wires.

The most common material for the wires is Nb-Ti, an alloy with approximately equally
shared weight of niobium and titanium. It consists of filaments of Nb-Ti, extruded to a
diameter of several microns. A few thousands of the filaments are embedded in a copper
matrix to form strands with a diameter of about 1mm. The copper matrix is needed to carry
the large currents and dissipate heat that is generated when the wire loses superconductivity
and quenches. Several tens of the strands are assembled to form the wires that are finally
used to wind the coils. Nb-Ti is widely used, because it can carry current densities between
1000 and 2000A/mm2 and it has good mechanical properties. For example, it can be easily
extruded. Other materials, such as Nb3Sn, can be used to reach higher fields, but it is very
brittle and the manufacturing process is very complex and expensive.

These superconducting wires form the base for the current-dominated dipole and
quadrupole magnets, which we will consider in the following section.
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Figure 4.15 Two intersecting cylinders cause a dipolar field in the inner region (left)

and intersecting ellipses cause a quadrupolar field (right).

4.4.1 Simple analytical methods

If we apply Equation 4.2 to the inside of a cylinder with a homogeneous current density Jz,
we find

πr2Jz = 2πrH(r) or B(r) = µ0H(r) =
µ0Jz
2

r . (4.26)

The field grows linearly with radius r. Since the flux density has only an azimuthal compo-
nent, we obtain for the components in the horizontal and vertical direction

Bx = −µ0Jz
2

y and By =
µ0Jz
2

x . (4.27)

If we superimpose two cylinders separated horizontally by a distance dx, as shown on the
left-hand side in Figure 4.15, the currents with opposite current density simply superimpose
and cancel in the inner region. The fields superimpose as well, such that B̄x = 0 and

B̄y =
µ0(−Jz)

2
(−dx/2) +

µ0Jz
2

(dx/2) =
µ0Jzdx

2
, (4.28)

which is purely vertical and constant in the inner region, just what is required for a dipole.
We can treat quadrupolar fields in a similar way if we observe that the field components

in an elliptic cylinder with homogeneous current density are given by [25]

Bx = −µ0Jza

a+ b
y and By =

µ0Jzb

a+ b
x , (4.29)

where a and b are major and minor axes of the ellipse. Summing contributions from two
ellipses with opposite current densities and rotated by 90 degrees, we obtain for the flux
densities

B̄x = µ0Jz
b− a

b+ a
y and B̄y = µ0Jz

b− a

b+ a
x , (4.30)

which grow linearly with distance from the origin, just as a quadrupolar field should.
Since the magnetic flux densities are generated by the distribution of currents, it is

prudent to investigate the contribution of a current filament at position z0 = x0 + iy0 to
the multipoles at position z = x + iy. We already know from the discussion at the end of
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Section 4.2 that the potential of a current filament can be written as F (z) = (µ0I/2π) log(z−
z0), and that the corresponding flux density is given by

B̂
∗
= B̂x − iB̂y =

µ0I

2π

i

z − z0
=

−iµ0I

2πz0

∞∑
n0

(
z

z0

)n

. (4.31)

Here we introduce the abbreviation B = Bx + iBy and use the asterisk to denote the
complex conjugate. In the last equality, we first extract z0 from the denominator and then
write the resulting expression as a power series in z/z0, which is permissible for |z/z0| < 1,
the region inside the current distribution. Comparing this expression with Equation 4.13,
we see that n = 0 corresponds to the contribution to the dipole component and n = 1 to
the quadrupole component.

The question of how to place the current filaments in such a way that the combined
effect of all filaments only produces a single multipole can be addressed by introducing
polar coordinates with z = reiϕ and z0 = r0e

iϕ0 which allows us to rewrite the previous
equation as

B̂
∗
(ϕ0) =

−iµ0I

2πr0

∞∑
n0

(
r

r0

)n

einϕe−i(n+1)ϕ0 (4.32)

where we added the argument ϕ0 to the left-hand side in order to make the dependence of the
magnetic flux density B̂ on the location of the current filament obvious. Now, if the current
filaments have an azimuthal current distribution that follows dI/dϕ0 = Î cos(mϕ0 + ϕ̂), we
see that integrating over all current filaments

B∗ =
−iµ0Î

2πr0

(
r

r0

)n

einϕ
∫ 2π

0

e−i(n+1)ϕ0 cos(mϕ0 + ϕ̂)dϕ0 (4.33)

extracts a single Fourier harmonic with m = n + 1. Here ϕ̂ describes the orientation and
distinguishes between upright and skew multipoles. We thus find that an azimuthal current
distribution with a cos(mϕ0)-dependence creates as pure multipole of order n+1. In partic-
ular, a cos(ϕ0)-dependence results in a dipolar field distribution and a cos(2ϕ0)-dependence
in a quadrupolar field distribution.

After the basic layout, we use the MATLAB PDE toolbox to verify the design and then
progress to construct the coils from more convenient rectangular current leads, rather than
the crescents shown in Figure 4.15 or filaments with a current distribution with a cos(mϕ0)
dependence.

4.4.2 PDE toolbox

We first verify that intersecting ellipses with homogeneous current densities generate a
dipole field as given by Equation 4.28. Since the geometry is particularly simple, we use the
interactive mode of the PDE toolbox and define the geometry with the following sequence
of commands:

pderect([-1,1,-1,1],’W’)

pdecirc(0.05,0,0.4,’C1’)

pdecirc(-0.05,0,0.4,’C2’)

which causes the window with the pdeModeler, shown in Figure 4.16, automatically to
appear on the screen. The large rectangle, labeled W, denotes the integration volume and
the two circles, labeled C1 and C2 define the coils of the dipole magnet. First we change the
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Figure 4.16 The interactive PDF toolbox interface with two intersecting circles shown

that will produce a dipolar field.

type of problem in the middle of the toolbar from “Generic Scalar” to “Magnetostatics,”
then we select the boundary condition mode by pressing the button with ∂Ω. This changes
the display to highlight the boundaries, and double-clicking the boundaries opens a window
in which to enter values. In this problem we use Dirichlet boundary conditions with u = 0
on the boundary, which is the default, and we do not have to change anything. Next we
select “PDE Mode” and “Show Subdomain Labels” from the “PDE” menu. This causes the
display to show the labels of the subdomains, and double-clicking on the number opens a
dialog box in which we enter µr and µ0Jz for the respective subdomains. In this case µr = 1
everywhere, and the right crescent has positive current, say µ0Jz = 1, and the left crescent
has µ0Jz = −1. The other subdomains carry no current, and we set µ0Jz = 0. Once the
geometry, boundary, and material properties are defined, we create a mesh by pressing on
the button with the triangle and then refine it by pressing the button immediately to its
right. Pressing the next button with ∂u/∂t and the small green triangle solves the system,
and, after a short while, displays the solution, here the potential, in the same window. The
button to the right of the equal sign opens a post-processing dialog, where we select to
display the “magnetic flux density” with “Arrows.” The display then changes to reflect this
choice. If we want to manipulate the data further, we can export the data structures to
the MATLAB workspace for the mesh p, e, and t and the solution u from the “Mesh”
and “Solve” menu, respectively. Then we can use the commands we used before to plot the
solution along a line or other subdomains.

In practice it is very expensive to manufacture crescent-shaped coils, and basing the
design of the magnet instead on coils with simple geometries, such as a square blocks,
is highly desirable. We already know from the discussion in the previous section that a
cosine-like azimuthal current distribution results in a dipolar field distribution. We therefore
investigate, whether we can find simple current distributions that can generate a dipole field
near the center of the magnet. We start by approximating the cosine by a distribution with
constant current density over a given azimuthal range, where we have positive current
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Figure 4.17 The geometry, lines of constant |B|, and arrows indicating the flux den-

sity for a superconducting dipole (left), and the magnitude of the flux density along

a horizontal line in the mid-plane of the magnet (right).

density for ϕ = ±α and negative density for ϕ = 180o ± α. Experimenting with varying α,
it quickly becomes obvious that α = 60o produces the most homogeneous flux density near
the center of the dipole.

The left-hand side in Figure 4.17 shows the geometry, the equipotential lines and the
magnetic flux density as arrows. We approximate the square blocks by a polygon that
closely follows two concentric circular arcs of radius 5 and 7 cm. We refer to Appendix B.5
for a detailed description of the MATLAB code. The current density we use is 500A/mm2.
Using the same functions as in previous sections to calculate the flux density along a line,
we find that this configuration results in a fairly homogeneous flux density with magnitude
B = 6.4T, shown on the right-hand side in Figure 4.17. Of course, we can try to improve
the quality of the field by distributing the current blocks in different ways and increase the
field by adding a second layer of current blocks at larger radii, but that is left as an exercise.
Instead we consider a current density distribution that results in a quadrupolar flux density.

Stimulated by the success of the simple current distribution that resulted in a fairly
homogeneous dipole field, we try an equally simple distribution to generate quadrupolar
fields. A little experimenting with the angular width ±α of the current blocks results in
α = 30o that produces a rather linear increase of the vertical flux density component By

along the horizontal axis with y = 0. Figure 4.18 shows the geometry, the equipotential
lines, and the flux density, shown as arrows. From a fit of a straight line to the plot of By

versus horizontal position x we find the gradient to be g = 114.8T/m. Even here we can
improve the current distribution by placing the current blocks in different ways and increase
the gradient by adding layers of current blocks, but we leave that as an exercise, as well.

Superconducting magnets are the only magnets to reach flux densities of several Teslas,
but occasionally, there are other requirements to fulfill, such as moderately high fields in
very tight spaces, or the need to avoid power supplies that drive currents through coils
altogether. This is the realm of permanent magnets.

4.5 PERMANENT MAGNETS

Permanent magnets are blocks of magnetized material that act as “flux pumps” for magnetic
field lines without the need for external excitation by electric currents. Moreover, the flux
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Figure 4.18 The geometry, lines of constant |B|, and arrows indicating the flux den-

sity for a superconducting quadrupole.

density they provide is independent of their size, which makes it possible to use them in
situations where moderately high flux densities, on the order of one Tesla, are needed in very
tight spaces. Today they are frequently found in electric motors, on physicists’ whiteboards,
and in magnets used to guide the beams in particle accelerators, where they are heavily
used for specialty magnets, undulators and wigglers, to produce synchrotron radiation and
in strongly focusing machines, such as CBETA [26]. The latter uses magnets that are based
on design ideas presented by Halbach [27] on which we also base the following discussion.

There are several types of permanent magnets available, often made of Samarium-Cobalt
or Neodym-Iron. The process in which they are produced consists of rapidly cooling a molten
mixture of the ingredients and then grinding the cold material to a very fine powder. The
powder is subsequently exposed to a strong magnetic field under high pressure, which aligns
the grains to their preferred magnetic orientation. In a second step the blocks are heated
and compressed further in a process called sintering, before machined to their final form as
blocks or disks. In a last step, the material is subjected to an even higher magnetic field than
before. This process imprints the large remanent magnetic flux density Br on the magnet,
which can exceed 1T for some materials. The direction in which the field is imprinted is
commonly called the easy axis of the magnet.

The main properties of permanent magnets are summarized in the relation of an exter-
nally generated magnetic field H to the flux density B

B|| = µrµ0H|| +Br and B⊥ = µrµ0H⊥ , (4.34)

whereB|| denotes the flux density parallel to andB⊥ perpendicular to the easy axis.Br is the
remanent field due to the magnetization of the material. It only has a non-zero component
Br along its easy axis. Moreover, µr is very close to unity, such that we will assume µr = 1
in the following. This has the remarkable property that the fields generated by permanent
magnets linearly superimpose, provided no other materials with large permeabilities are
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Figure 4.19 Homogeneous permanent magnets can be described by either surface

charges (Equation 4.35) or by surface currents (Equation 4.36) perpendicular to

the paper.

nearby. The permanent magnets are transparent to external fields H, but they contribute
by virtue of their remanent field Br.

Equation 4.34 can be written in vectorized form as B⃗ = µ0H⃗ + B⃗r where B⃗r points
along the easy axis. The magnetic flux density B⃗ has to fulfill Maxwell’s Equations 4.1,
with ∇⃗ · B⃗ = 0 and ∇⃗ × H⃗ = 0 in the absence of external currents or electric fields. The
first equation leads to

µ0∇⃗ · H⃗ = −∇⃗ · B⃗r = ρr (4.35)

where we observe that the divergence of the remanent field Br behaves just like a source-
term ρr for the magnetic field H⃗. If we derive the magnetic field from a scalar potential
H⃗ = −∇⃗V we obtain the Poisson equation for the potential △V = −ρr/µ0 that we can

solve for V. The second relation ∇⃗ × H⃗ = 0 leads to

∇⃗ × B⃗ = ∇⃗ × B⃗r = µ0J⃗r (4.36)

such that the curl of the remanent field behaves analogously to a source current J⃗r. This
allows us to use Equation 4.11 to calculate the magnetic flux for two-dimensional geometries,
to which we confine ourselves in the remainder.

If the permanent magnet blocks are homogeneous, the curl or divergence of the remanent
field in Equations 4.35 and 4.36 only change on the surface of the material. This immediately
leads to a description of the permanent magnets in terms of surface charges or currents, as
shown in Figure 4.19. We can therefore model their behavior in the MATLAB PDE toolbox
by adding, for example, thin layers of width w with current density Jz = Br/wµ0 to the sides
of the magnets that are parallel to their easy axis. The corresponding currents are enormous;
the current density in a 0.1mm layer of a magnet with Br = 1T is about 8 × 108 A/m2

and the total current I = Jzwh in a block with height h = 50mm corresponds to 40 kA! A
description, complementary to the one using currents, is based on using magnetic surface
charges and is also useful in some circumstances. Note that this does not imply the existence
of magnetic monopoles; it is just a convenient description of the string of dipoles, aligned
with the easy axis in the material, that show one end on the surface. Here we do not pursue
numerical simulations further, but we use the special properties of the permanent magnet’s
material (µr ≈ 1, linear superposition of fields) to calculate the fields by analytical methods
instead.
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Equation 4.36 implies that we can determine the flux density B from a distribution of
sources that are equivalent to electrical currents. Therefore, we use Equation 4.11, which
describes the flux density of a current filament, and the fact that the fields superimpose
linearly, to obtain the flux density due to all currents by convoluting with the current
density. In two-dimensional geometries this yields

B∗(ẑ) =
µ0

2πi

∫

Ω

Jr
ẑ − z

dxdy =
1

2πi

∫

Ω

[
∂(Br)y/∂x

ẑ − z
− ∂(Br)x/∂y

ẑ − z

]
dxdy (4.37)

where the integration extends over a volume Ω containing the permanent magnet material
with z = x + iy, and we use the abbreviation B∗ = Bx − iBy. The first expression in the
square bracket can be transformed with the help of partial integration over the variable x

∫

Ω

∂(Br)y/∂x

ẑ − z
dxdy =

∫

∂Ω

(Br)y
ẑ − z

dy −
∫

Ω

(Br)y
(ẑ − z)2

dxdy . (4.38)

The first integral vanishes, because it extends over a region just outside the permanent
magnet material where Br is zero. The second integrand in Equation 4.37 can be treated in
a similar way and after assembling the contributions, we finally obtain for the field outside
the permanent magnet material

B∗(ẑ) =
1

2π

∫

Ω

Br

(ẑ − z)2
dxdy (4.39)

with B∗ = Bx − iBy. The right-hand side does not contain derivatives of Br but instead
(ẑ − z)2 in the denominator, which is the same that appears in the Green’s function for
elementary dipoles. Equation 4.39 thus tells us that the field outside the permanent magnet
material at point ẑ is given as the distribution of dipoles at points z = x + iy inside the
permanent magnet that is convoluted with the Green’s function for dipoles.

4.5.1 Multipoles

We note the resemblance of Equation 4.39 with the second equality in Equation 4.31, where
we calculated the contributions of each current filament to the multipole coefficients. Here
we do the same, but instead of distributions of filaments, we have to deal with distributions
of magnetic dipoles and instead of a Green’s function 1/(ẑ − z) in Equation 4.31, we have
to use the dipolar Green’s function 1/(ẑ − z)2. For positions ẑ < z we have

1

(ẑ − z)2
=

d

dz

(
1

ẑ − z

)
= − d

dz

( ∞∑
n=1

ẑn−1

zn

)
=

∞∑
n=1

nẑn−1

zn+1
. (4.40)

Inserting in Equation 4.39 we finally obtain an equation in which the expression in the
square brackets describes the contribution of Br in the permanent magnet to the multipole
coefficient of order m = n− 1

B∗(ẑ) =
∞∑

m=0

[
m+ 1

2π

∫

Ω

Br

zm+2
dxdy

]
ẑm . (4.41)

In particular, m = 0 describes the contribution to the dipole and m = 1 to the quadrupole
component. In Section 4.4.1, we sought current distributions that led to a single non-zero
multipole coefficient and found the cos(nϕ) distribution for the currents. Here we seek an
angular distribution of remanent fields that results in a single multipole coefficient as well.
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Figure 4.20 The easy axis of the permanent magnet material continuously rotates in

order to provide a horizontal dipole field in its center (left) and a rendition with

discrete trapezoidal blocks (right).

First, we consider a dipole magnet with a horizontal field in which the permanent magnet
material is distributed in a ring around a region in which we desire the dipole field with
m = 0. Figure 4.20 shows the geometry, where we assume that the beam moves into the
paper inside the inner region. It is easy to understand that the easy axis of the permanent
magnet material, both on the left and on the right, point toward the right, because that
will pump field lines from the left to the right through the inner region. Likewise, the easy
axis on the top and bottom should point right to left, because that will pump the field lines
back to the left again. In-between these regions we interpolate. In this way the easy axis
appears to “tumble around” twice if we go around the ring once. Let us therefore assume
that the angle of the easy axis with respect to the horizontal axis α is given by α = 2ϕ
where ϕ is the azimuthal position around the ring, such that we can describe each position
in the ring by z = x+ iy = reiϕ. We thus have

Br = Bre
iα = Bre

2iϕ . (4.42)

Inserting this expression into Equation 4.41, rewriting dxdy = rdrdϕ in cylindrical coordi-
nates, and integrating from inner radius ri to outer radius ro we find

B∗(ẑ) =
∞∑

m=0

[
m+ 1

2π

∫ 2π

0

dϕ

∫ ro

ri

rdrBre
2iϕ 1

rm+2
e−i(m+2)ϕ

]
ẑm

= Br

∞∑
m=0

[
m+ 1

2π

∫ ro

ri

dr

rm+1

∫ 2π

0

e2iϕ−i(m+2)ϕdϕ

]
ẑm (4.43)

= Br log(ro/ri) ,

where we use that the integral over dϕ is 2π if m = 0 and is zero otherwise. Apparently,
the rule that the easy axis rotates twice α = 2ϕ leads to a configuration in which only the
m = 0 Fourier-harmonic is non-zero, and the flux density in the inner region is that of a
dipole with strength Br log(ro/ri), pointing toward the positive horizontal axis.
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Figure 4.21 Two trapezoidal segments of permanent magnet material.

Encouraged by the success with the dipole we generalize the “tumbling law,” by how
many times k the easy axis rotates, while it moves around the ring once, to

α = kϕ such that Br = Bre
ikϕ (4.44)

and insert this expression into Equation 4.41, whence we obtain

B∗(ẑ) = Br

∞∑
m=0

[
m+ 1

2π

∫ ro

ri

dr

rm+1

∫ 2π

0

eikϕ−i(m+2)ϕdϕ

]
ẑm

=
m+ 1

m

Br

rmi

(
1− rmi

rmo

)
ẑm for k = m+ 2 . (4.45)

Again, the integral over the angle ϕ is 2π only for k = m+2 and zero otherwise. In order to
obtain a multipole of order m, the easy axis needs to tumble m+ 2 times around the ring.
For a quadrupole with m = 1 we therefore need three tumbling rotations of the easy axis. It
is noteworthy that the pole-tip field at radius |ẑ| = ri can exceed Br. If the outside radius
of the ring ro becomes very large, ro ≫ ri, the ratio by which it exceeds Br approaches
(m+ 1)/m.

4.5.2 Segmented multipoles

We have shown that the “tumbling law” from Equation 4.44 results in multipolar fields of
order m, but it required the easy axis to rotate continuously as a function of angle ϕ, which
is very difficult to manufacture. It is therefore prudent to investigate configurations where
the ring is made of a number of trapezoidal segments that have a constant easy axis within
each segment. On the right-hand side of Figure 4.20 we show a magnet that is made of
eight trapezoidal segments and approximates the magnet with the continuous rotation of
the easy axis shown on the left-hand side. In the following, we assume that the number of
segments M is arbitrary.

To calculate the contribution of all segments, we start by calculating the contribution of
a single segment, shown to be located symmetrically around the x-axis in Figure 4.21, and
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then determine how its contribution changes when rotated by an angle ϕ. Note that the easy
axis for the different segments also rotates, albeit determined by the desired multipolarity
of the magnets according to Equation 4.44. But let us first calculate the contribution to
the magnetic flux density B̃ around the origin of the horizontally placed segment by using
Equation 4.41 and use the fact that the easy axis is constant throughout the integration
volume Ω, shown as the lower shaded region

B̃
∗
(ẑ) = Br

∞∑
m=0

[
m+ 1

2π

∫

Ω

dxdy

zm+2

]
ẑm . (4.46)

We now evaluate the integral only over Ω with z = x+ iy and obtain

∫

Ω

dxdy

(x+ iy)m+2
=

∫ ro

ri

dx

∫ x tanα

−x tanα

dy

(x+ iy)m+2

=
i

m+ 1

[
1

(1 + i tanα)m+1
− 1

(1− i tanα)m+1

] ∫ ro

ri

dx

xm+1

=
2

(m+ 1)2
(cosα)m+1 sin((m+ 1)α)Fm(ri, ro) , (4.47)

where we introduce the abbreviation α = π/M for half of the opening angle of the trapezoid
and then use it to parameterize the upper and lower boundary of the integration of dy by
y = ±x tanα. For the integral over dx, we introduce the abbreviation

Fm(ri, ro) = (m+ 1)

∫ ro

ri

dx

xm+1
=

{
log(ro/ri) for m = 0
m+1
m

(
1
rmi

− 1
rmo

)
otherwise.

(4.48)

Inserting in Equation 4.46, yields

B̃
∗
(ẑ) = Br

∞∑
m=0

[
(cosα)m+1 sin((m+ 1)α)

(m+ 1)π
Fm(ri, ro)

]
ẑm . (4.49)

Here B̃
∗
describes the contribution from the single horizontally placed segment. The con-

tribution from a second segment that is rotated by an angle ϕ with respect to the first
segment, is shown in Figure 4.21. Here we can proceed in the same way as for the first
segment, but we need to take into account that the easy axis has rotated by kϕ according
to Equation 4.44 and that the integration must be done over the coordinates x′ and y′.
Those, however, are related to the coordinates x and y by x′+ iy′ = eiϕ(x+ iy). Since there
is a factor (x′+ iy′)m+2 in the denominator of the integrand, the contribution of the second
segment is given by

B̄
∗
(ẑ′) = B̃

∗
(ẑ)eikϕe−i(m+2)ϕ (4.50)

and we observe that the contribution from the second segment is only phase shifted by the
angle (k −m − 2)ϕ with respect to the contribution from the first segment. Therefore the
flux density B̂ from M segments, rotated by an angle ϕ = 2π/M with respect to each other,
is given by

B̂
∗
= B̃

∗
M−1∑
j=0

e2πi(k−m−2)j/M , (4.51)

with B̃
∗
given by Equation 4.49. The sum is only non-zero if (k −m − 2)/M is a positive

or negative integer ν, in which case it equals M. We therefore only have contributions to
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Figure 4.22 The geometry of an undulator in the Halbach geometry. In the limit of

ri → ∞ the parameter g is the half-gap, and the h is the height of the permanent

magnet blocks.

harmonics m that fulfill m = k − 2 + νM. For the segmented dipole shown on the right of
Figure 4.20 we have k = 2 andM = 8, such that this dipole also has harmonicsm = 8, 16, . . .
other than the wanted dipole harmonic m = 0.

Finally we collect all terms and find for the flux density of a segmented multipole

B̂
∗
(ẑ) = Br

∞∑
ν=0

[
cos(π/M)m+1 sin((m+ 1)π/M)

(m+ 1)π/M

]
× Fm(ri, ro)ẑ

mδm,k−2+νM (4.52)

where the δm,k−2+νM describes the harmonics that are caused by the segmentation. The
difference from the perfect multipoles described by Equation 4.43 and 4.45 are the additional
harmonics and a reduction of the excitation, which is described by the factor in the square
brackets. Appendix A.3 adapts the calculations to cubic magnetic blocks and describes the
construction of small magnets by inserting the magnet cubes in 3D-printed frames.

4.5.3 Undulators and wigglers

Synchrotron radiation sources and free-electron lasers rely heavily on undulator and wiggler
magnets to provide transversely oscillating trajectories for the charged particles to emit
synchrotron radiation. In order to emit large intensities of short-wavelength radiation, these
magnets must reach very high magnetic fields and very short oscillation periods, which
requires using permanent magnets to construct them.

It turns out that the magnetic fields of undulators are closely related to those of multipole
magnets with high multipolarity as is apparent from considering Figure 4.22, which shows a
weakly curved segment of a multipole with very large inner radius ri and four segments per
azimuthal distance λ. If we consider the flux density along the dashed line a distance g below
the magnets, we immediately see that the radial field component oscillates between pointing
toward the magnets and in the reverse direction with period λ. It is easy to understand
that increasing the radius ri, while also increasing the multipolarity m in such a way that
the period length λ is kept fixed, will, in the limiting case, result in a planar undulator. To
formalize this idea, we introduce the scaling variable p, which scales the number of periods
of length λ around the circumference of length according to 2πri = 2pλ. When applying
this scaling to the segmented dipole on the right-hand side in Figure 4.20, we find that
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it consists of p = 2 four-segment periods with a total number of M = 4p segments while
the multipolarity is given by m+ 1 = 2p. Using the dipole as a reference, we calculate the
flux density on the dashed line that lies a distance g below the segments with the help of
Equation 4.52. For convenience, we summarize the scaling of the variables with p here

m+ 1 = 2p, ri = pλ/π, M = 4p, ẑ = i(ri − g) + z (4.53)

and proceed to address the parts of Equation 4.52 one at a time. Inserting these scaling
relations into the expression in the square brackets and taking the limit of p → ∞, we
find that the square bracket reduces to the constant sin(π/4)/(π/4) ≈ 0.9. The expression
Fm(ri, ro)ẑ

m we rewrite as

Fm(ri, ro)ẑ
m =

m+ 1

m

(
1− rmi

rmo

)
ẑm

rmi
(4.54)

and treat each of the factors independently. The factor (m+ 1)/m = 2p/(2p− 1) obviously
approaches unity in the limit p → ∞. The second factor becomes

(
1− r2p−1

i

r2p−1
o

)
= 1−

(
pλ/π

pλ/π + h

)2p−1

= 1−
(

1

1 + πh/pλ

)2p

≈ 1− (1− πh/pλ)
2p −→ 1− e−2πh/λ (4.55)

where we used ro = ri + h. In the last step, we use the representation (1− x/p)p → e−x for
the exponential function and see that the expression approaches 1 − e−2πh/λ in the limit
p → ∞. In a similar fashion we obtain for the last factor in Equation 4.54

ẑm

rmi
=

i(ri − g) + z

ri
= i2p−1

(
1− π(g − iz)

pλ

)2p−1

−→ i e−2π(g−iz)/λ (4.56)

where we tacitly assume that p is even to fix the sign before the imaginary unit. Finally we
realize that the effect of the second assembly of permanent magnets, the lower yoke, can be
visualized as lying on a similar circle with radius increasing with p. The insert on the lower
right of Figure 4.22 illustrates this. We need to note, however, that the variable z has the
opposite sign on the second circle. Since the fields from the permanent magnets on both
circles superimpose linearly, the flux density around the dashed mid-gap line is given by

B̂
∗
(ẑ) = iBr

sin(π/4)

π/4

(
1− e−2πh/λ

)(
e−2π(g−iz)/λ + e−2π(g+iz)/λ

)

= 2iBr

sin(π/4)

π/4

(
1− e−2πh/λ

)
e−2πg/λ cos(2πz/λ) , (4.57)

where we only took the lowest harmonic into account. Note that in the mid-plane of the
gap the field oscillates with period length λ and it is purely vertical. The field decreases
exponentially with increasing half-gap g. Increasing the height h of the permanent magnets
beyond λ/2 increases the peak field only marginally. In that case, the field is given by

B̂
∗
(ẑ) ≈ 1.723iBre

−2πg/λ cos(2πz/λ). Equation 4.57 is commonly used to design permanent
magnet undulators in the described permanent magnet configuration, which is referred to
as the Halbach configuration.

The manufacture of the magnet assembly with the very strong permanent magnets
requires special care, because the magnet blocks have the tendency to align along their
easy axes, rather than following the pattern with easy axes rotating by 90 degrees from
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Figure 4.23 Hall sensor (left) and its use on a magnet measuring bench (right).

block to block. Often they are fixed in a rigid aluminum frame. The frames for upper and
lower magnet assembly are often movable in the vertical direction in order to adjust By in
the mid-plane due to the exponential dependency on the half-gap g in Equation 4.57. We
refer to Appendix A.3 for the construction of undulators from magnetic cubes inserted in
3D-printed frames.

At this point, we have the tools available to make a first design of iron-dominated,
superconducting, and permanent magnet-based systems. Of course, once the magnets are
built, they will differ from the design, either due to the used approximations or due to
manufacturing tolerances. In either case, however, we need to verify their performance,
before installing them in an accelerator. And this brings us to measuring the magnets.

4.6 MAGNET MEASUREMENTS

When measuring magnets we distinguish methods that locally measure the magnetic flux
density at one or several points or methods that determine global quantities such as field
integrals or multipole coefficients. Here, we first discuss local measurements using sensors
based on the Hall effect.

4.6.1 Hall probe

Hall sensors are based on semiconductor materials, such as GaAs or InSb, that have a high
mobility of charge carriers. The Lorentz-force due to a magnetic flux density, perpendicular
to the direction of the current flow through the semiconductor, causes the charge carriers
to deflect sideways and accumulate on electrodes. The schematics on the left-hand side in
Figure 4.23 illustrates the geometry. The accumulated charges cause a transverse electric
field that compensates the Lorentz-force such that subsequent charge carriers can travel
unimpeded. The potential difference between the two electrodes Uh is proportional to the
magnetic flux density B and can be amplified and measured with a voltmeter, resulting in a
signal that is proportional to B. Note that only the flux density perpendicular to the plane
of the sensor can be detected. Three sensors, mounted in orthogonal directions are, however,
capable of measuring all three components of the flux density, albeit not at exactly the same
location, because the center positions of the sensors are separated by small distances that
depend on the design of the device. For precision measurements, one has to keep in mind
that the ambient temperature affects the semiconductor sensors, and precautions need to be
taken to compensate temperature variations electronically or by keeping the measurement
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Figure 4.24 Rotating coil (left) with positions of radial and tangential coils shown

as dashed lines. The sketch on the right shows operating the rotating coil on a

measuring bench.

setup in a temperature-controlled environment. A package of one or several sensors, with
appropriate temperature compensation, is often called a Hall probe.

A typical setup to move the Hall probe around inside a measuring volume, here a C-
shaped dipole magnet, is shown on the right-hand side in Figure 4.23. The Hall probe
can consist of one or several individual sensors for the three components of the magnetic
flux density and is mounted on a translation stage that allows the probe to be moved
around inside the measurement volume, for example the gap of the dipole in Figure 4.23.
For obvious reasons special care must be taken to avoid vibrations when designing the
mechanical translation stage. The output of such a measurement is a table of the magnetic
flux densities for each position where the probe is read out. This data can subsequently be
analyzed further in a spreadsheet or in MATLAB. In Appendix A.4, we describe a simple
measuring bench with a Hall sensor mounted on a translation stage and use it to measure
the magnets built in Appendix A.3. Special care must be taken when using the measured
field map in beam-transport calculations. This may lead to unphysical results, because the
three components of the flux density are not measured at the same position and even the
interpolated fields do not necessarily satisfy Maxwell’s equations. Normally, one should try
to fit the field map to analytical expressions that implicitly fulfill Maxwell’s equations.

While Hall probes are the standard device to perform local field measurements, rotating
coil measurements are the normal method to determine integral quantities of magnets.

4.6.2 Rotating coil

Rotating a coil with cross-section A and normal vector n⃗A in a magnetic field the flux
Φ = An⃗A · B⃗ enclosed by the coil changes with time and induces a voltage U = −dΦ/dt
in the coil. The basic geometry is shown on the left-hand side in Figure 4.24, where we
indicate that both radial and tangential coils can be used. It is easy to see that in the field
of a dipole the coil, rotating with angular frequency ω, causes both flux Φ and voltage U
to oscillate with the same frequency ω. On the other hand, in a quadrupolar field, positions
180 degrees apart, will cause the same Φ and the resulting voltage will oscillate with 2ω.
Sampling the voltage at a rate much higher than ω and subsequently Fourier-transforming
the signal will reveal harmonics that are related to the multipolarity. For example, a coil
that is not properly centered in a quadrupole will also show a first harmonic and reducing
it allows us to find the magnetic center of the quadrupole. The voltage caused by each
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multipole component of the field will depend on the magnetic flux density integrated over
the coil but is straightforward to calculate given the magnetic potential in Equation 4.12
and the fields resulting from it, but we leave this as an exercise.

The mechanical setup is shown on the right-hand side of Figure 4.24, where we see that
the motor on the right will turn the axis with a long and a short coil attached to it. The long
coil provides information about the integral multipole components of the magnet, including
those coming from the fringe fields, whereas the short coil will allow us to probe a subsec-
tion of the magnet and probe for inhomogeneities of the field. The practical difficulties of
performing rotating-coil measurements are knowing the area of the coil, limited mechanical
rigidity of the coil which might cause it to sag, and sliding contacts to bring the electrical
signals from the coil, which rotates, to the digitizer, which normally stands on the floor.

Despite these difficulties, rotating-coil measurement systems are widely used to rapidly
measure and characterize large numbers of conventional multipole magnets. Undulators,
however, require additional considerations.

4.6.3 Undulator measurements

Undulators are straight devices and they should only produce a wiggling particle motion
inside the undulator, but they should neither change angle nor position of the beam par-
ticles at the exit. We only consider the horizontal motion here and the deflection angle is
proportional to the vertical field By the particle experience. The total deflection angle for
the entire device is thus proportional to the integral of By along the undulator, and this

quantity I1x =
∫ L

0
Byds is called the first field integral. The integral extends over the entire

device, including the end-fields. The position at the exit can be calculated by integrating
the angle at longitudinal location s, which is proportional to

∫ s

0
By(s

′)ds′ along the whole

device. This quantity I2x =
∫ L

0
ds

∫ s

0
By(s

′)ds′ is called the second field integral. In order
to verify that an undulator magnet does not perturb the orbit of an accelerator, we must
measure the two field integrals. In most undulators the first integral is close to zero, but
for a pure sine or cosine-like field there is a systematic non-zero contribution due to the
fields at the ends of an undulator. They can, however, be approximately compensated by
tapering the periods at the entrance and exit of an undulator with an excitation pattern of
1/4,−3/4, 1, . . . .

It is of course possible to measure the vertical flux density By along an undulator with a
Hall probe and integrate numerically, but we can also use the stretched wiremethod [28]. It is
based on a wire that is mounted on translation stages on either end of the undulator, and the
coil is completed with a wire in the field-free region. When moving both translation stages
in parallel, the enclosed flux of the coil changes proportional to By along the wire, which
is precisely the first field integral. By moving the translation stages in opposite directions,
the flux changes in a way that is related to the second field integral.

There are other methods as well, but we leave them to the specialized literature. We move
on to address the problem of how to accelerate particles in linear and circular accelerators.

QUESTIONS AND EXERCISES

1. Calculate the Ampere turns NI for a dipole with a field of 1.5T. The dimensions of
the coil are 15×8 cm, and the gap is 12 cm. Do you need to use water cooling, or does
air cooling suffice?

2. Determine the number of Ampere turns for a quadrupole with pole-tip radius of 5 cm
and a gradient of ∂By/∂x = 20T/m. If your power supplies are limited to operate
below 100A, how many turns in the magnet coils are suitable?
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Figure 4.25 Sketches of the dipoles with the bad iron and the knocked-out corner.

3. It turns out that the dipole magnet shown in Figure 4.5 was built with substandard
iron. There is a square region, 20 cm ×20 cm, located directly above the gap in which
µr = 50. See Figure 4.25 for an illustration. (a) Model the geometry and determine
the fields and, in particular, the field in the mid-plane of the gap, as shown on the
right-hand side in Figure 4.9; (b) try to salvage the magnet by restoring the field
quality with shims. Document your success by showing the field in the gap; (c) find
out whether saturation of the iron changes this result; (d) how bad would the magnet
be, if the bad iron has µr = 1?

4. In a second magnet, the area with µr = 50 is located in the top right corner of the
magnet, as shown in the middle of Figure 4.25. Explore, by how much the field in the
mid-plane of the gap is affected.

5. Somebody mishandled a crane and badly bumped with a second magnet into your
dipole. The impact knocked out a triangular wedge that extends 50 cm in the vertical
and horizontal directions at the top left corner, as shown on the right-hand side in
Figure 4.25. Analyze the problem and figure out by how much the vertical field in the
gap is affected.

6. The other magnet that was hanging on the crane is of the same type and has a similar
wedge knocked out from its lower right corner. Analyze this magnet as well.

7. It turned out that the quadrupole shown in Figures 4.11 and 4.12 is too large for your
project. The width of the magnet must be reduced to 0.5m. You therefore need to
redesign the quadrupole, such that the pole-tip radius remains 5 cm, but its half-width
is reduced from 0.3 to 0.25m. Prepare a plot, similar to the one on the right-hand
side in Figure 4.12 to document how well this is possible. Can you reduce the size of
the magnet even further without sacrificing the achievable gradient? Investigate!

8. Design a sextupole magnet with a pole-tip radius of 5 cm and a maximum outer
diameter of 40 cm. Determine the gradient ∂2By/∂x

2 that is achievable with air-cooled
coils.

9. Place four current filaments with a current of 1 kA at the corners of a square with
10 cm to a side, as shown in Figure 4.26. (a) Powering the two right filaments with the
same polarity produces a dipole field. Use Equation 4.11 to calculate By in the mid-
plane. Apart from the dipole, what other multipoles appear? What is their magnitude?
(b) Calculate the field gradients ∂By/∂x, if the filaments are powered as shown in the
middle image in Figure 4.26. What is wrong with this quadrupole? (c) Place the
filaments in such a way that you obtain a quadrupole.

10. When the coils for the superconducting dipole magnet shown in Figure 4.17 were
delivered, you found out that the outer radius of the left coil is 1mm larger than that
of the right coil. Assume that the position of the inner radii of the coils are fixed.
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Figure 4.26 The current filaments are arranged in a square and powered to generate

dipole (left) and quadrupole (middle) field. A sketch to illustrate the bad coils from

Exercises 10 and 11.

Moreover, the coils are powered in series, such that the total current in both coils is
equal. Determine the quadrupole gradient that this asymmetry causes.

11. You cannot move the left coil, but please explore if you can move the right coil
further to the right to salvage the magnet. Can you reduce the gradient? Quantify the
multipoles that arise in the process.

12. One of the segments in an M=8 dipole from Section 4.5.2 has only 90% of the remanent
field Br of the other magnets. How large is the ensuing gradient?

13. Design an permanent magnet undulator with a period of 8 cm and a peak field of 0.4T
on the beam axis. Assume that you can obtain good-quality magnets with Br = 1.2T.
(a) plot By and Bx on the beam axis along the undulator; (b) plot By and Bx along
a vertical line at a longitudinal position where the vertical field on-axis is maximum;
(c) repeat this at a location where the vertical field is zero.

14. For the construction of an undulator, you had ordered square blocks of permanent
material. After their arrival you find out that the remanent field is only 70% of the
specified value. Can you recover field on the beam axis by redesigning the undulator
and placing two magnets on top of each other?

15. Calculate the induced voltage when rotating the radial coil with radius r, shown on the
left-hand side in Figure 4.24 with angular frequency ω in a (a) dipole; (b) quadrupole;
and (c) quadrupole, horizontally displaced by a small amount dx.

16. Repeat the calculations from the previous exercise for the tangential coil, also shown
on the left-hand side in Figure 4.24. The end points of the coil lie on a circle with
radius r.



C H A P T E R 5

Longitudinal Dynamics and
Acceleration

In the previous chapters we discussed magnets to guide and focus particles with a given
momentum p0 or energy. We noted that static magnetic fields do not change the energy of
moving particles, only their direction of propagation. In order to accelerate the particles
and change their energy, we need electric fields in the direction of propagation. The fields
are given by the derivatives of the potential Φ in Equation 2.1. Changing the energy of
the particles also changes their speed and thus their arrival time at a given location, at
least at low, non-relativistic energies. At high energies, the trajectory of the particles may
change, and this may also change the arrival time of the particles as described by the
momentum compaction factor α that we discussed in Section 3.4.4. If the electric field
is time-varying, particles will gain different energies, depending on the arrival time. The
interplay of energy gain and arrival time will determine the dynamics of their particles in
the so-called longitudinal phase space, which is described by the arrival time τ = z/β0c and
the relative momentum offset δ = (p− p0)/p0, the latter is often used instead of the energy,
as discussed in Sections 2.2 and 2.3.

In this chapter, we will discuss simple acceleration structures and the beam dynamics,
both in circular and in linear accelerators. Various technological aspects, such as the gen-
eration, transport, and control of power are deferred to the next chapter. Here we start
by considering methods to use electrical fields to transfer energy to the beam. Static fields
beyond a few MV/m, such as those used in Van de Graaff and Tandem accelerators, lead to
problems with the high-voltage insulation. Therefore, electro-magnetic fields in the radio-
frequency range are used to reach higher energies. The drift tube linear accelerator, shown
in Figure 1.2, is one example. It is based on “hiding” the particles in drift tubes, while the
polarity of the accelerating field is reversed, such that the particle experiences a longitudinal
field with the correct polarity, the next time it crosses the gap between drift tubes. In the
limiting case, we may consider a single acceleration gap and regard the beam pipe as the
drift tube. If the accelerator is circular, we often use individual accelerating gaps; and they
are typically located in resonant structures, the acceleration cavities. Since cavities play
such a central role in charged particle accelerators, we will look at a simple prototype—
the pill-box cavity—more closely, and we will analyze the electro-magnetic fields that can
oscillate inside the cavity in the following sections.

128 This chapter has been made available under a CC BY NC license.
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Figure 5.1 Pill-box cavity with the longitudinal electrical field vector indicated.

5.1 PILL-BOX CAVITY

The geometry of the pill-box cavity is shown in Figure 5.1 as the darker cylinder with
length L and radius R. The beam pipe extends from the left- to the right-hand side and
normally has a diameter much smaller than R. The dynamics of the electro-magnetic fields
is governed by Maxwell’s equations in vacuum with no charges or currents present. The
general form of these equations, shown in Equation 4.1, in Chapter 4 then simplifies to

∇⃗ · E⃗ = 0 , ∇⃗ × E⃗ = −µ0
∂H⃗

∂t
,

∇⃗ · H⃗ = 0 , ∇⃗ × H⃗ = ε0
∂E⃗

∂t
. (5.1)

The inside of the cavity is evacuated and both permeability and dielectric constants are
those of vacuum. Furthermore, we assume that the metallic walls of the cavity have infinite
conductivity, and, following the discussion in Section 4.1, this implies that the normal
component of the flux density n⃗ · H⃗ and the tangential component of the electric field n⃗× E⃗
are zero. Here n⃗ is a vector, normal to the surface.

We now have to solve the set of Equations 5.1 with the boundary conditions fulfilled
on the metallic walls of the cylindrical pill-box cavity. Taking the curl on both sides of the
second equation for E⃗ in Equation 5.1 we obtain

∇⃗
(
∇⃗ · E⃗

)
− ∇⃗2E⃗ = −µ0ε0

∂2E⃗

∂t2
, (5.2)

where we expressed the curl of B⃗ by the temporal derivative of E⃗. The first term on the
left-hand side is zero, because the divergence of E⃗ vanishes and this leaves us with

∇⃗2E⃗− µ0ε0
∂2E⃗

∂t2
= 0 , (5.3)

which is the wave equation. We thus find that the fields in the cavity propagate as waves
and that the propagation speed is given by c2 = 1/µ0ε0, the speed of light in vacuum. Since
these waves will be reflected from the walls of the cavity we expect standing-wave patterns
to emerge.

We are mostly interested in field patterns, or modes, that have an electric field component
Ez in the beam’s direction of propagation. We assume that this can be described by a wave
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propagating in the z-direction with frequency ω and the wave vector, often also called
propagation constant kz

E⃗ = E⃗ei(ωt−kzz) and H⃗ = H⃗ei(ωt−kzz) , (5.4)

where E⃗ = E⃗(x, y) and H⃗ = H⃗(x, y) depend on the transverse coordinates, only. Inserting
into Equation 5.1 and sorting the eight independent components, we obtain

∂Ex

∂x
+

∂Ey

∂y
= ikzEz

∂Ez

∂y
− ∂Ey

∂z
=

∂Ez

∂y
+ ikzEy = −iωµ0Hx

∂Ex

∂z
− ∂Ez

∂x
= −ikzEx − ∂Ez

∂x
= −iωµ0Hy

∂Ey

∂x
− ∂Ex

∂y
= −iωµ0Hz (5.5)

∂Hx

∂x
+

∂Hy

∂y
= ikzHz

∂Hz

∂y
− ∂Hy

∂z
=

∂Hz

∂y
+ ikzHy = iω0ε0Ex

∂Hx

∂z
− ∂Hz

∂x
= −ikzHx − ∂Hz

∂x
= iω0ε0Ey

∂Hy

∂x
− ∂Hx

∂y
= iω0ε0Ez .

It now turns out that we can express all transverse components of the electric and magnetic
fields through the longitudinal component Ez and Hz. For example, eliminating Ey from
the second and seventh equations, we get

ω0ε0
∂Ez

∂y
− β

∂Hz

∂x
= i

(
k2z −

ω2

c2

)
Hx , (5.6)

where we used µ0ε0 = 1/c2. Introducing k2c = ω2/c2 − k2z and solving for Hx leads to

Hx =
i

k2c

(
ωε

∂Ez

∂y
− kz

∂Hz

∂x

)
. (5.7)

We observe that the transverse component Hx can be expressed through derivatives of
the longitudinal component Ez and Hz. Likewise, the other transverse components can be
expressed in a similar way by eliminating the one transverse component without a derivative.
We find

Hy =
−i

k2c

(
ωε

∂Ez

∂x
+ kz

∂Hz

∂y

)

Ex =
−i

k2c

(
kz

∂Ez

∂x
+ ωµ

∂Hz

∂y

)
(5.8)

Ey =
i

k2c

(
−kz

∂Ez

∂y
+ ωµ

∂Hz

∂x

)
.

At this point we have expressed all transverse field components through the longitudinal
ones, but we still have the freedom to specify either Ez, orHz, or both. The special case with
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Ez = 0 describes transverse electric (TE) waves, but they are obviously unsuitable to accel-
erate particles along the z-direction. Instead, we choose transverse magnetic (TM) waves,
by requiring Hz to be zero, in which case the four equations depend on the longitudinal
field components Ez and from Equations 5.7 and 5.8, we obtain

Hx =
iωε

k2c

∂Ez

∂y
, Hy = − iωε

k2c

∂Ez

∂x
, Ex = − ikz

k2c

∂Ez

∂x
, Ey = − ikz

k2c

∂Ez

∂y
. (5.9)

Now we know how to calculate the transverse field components from the longitudinal, but
still have to find the longitudinal components Ez. And this we can do by inspecting Equa-
tion 5.3, which is actually three equations, one for each component of the vector E⃗ and in
particular also for the longitudinal component

△Ez +
ω2

c2
Ez = 0 , (5.10)

where we assume a harmonic time-dependence proportional to eiωt.
The cylindrical symmetry of the pill-box cavity suggests that using cylinder coordinates

will later facilitate to satisfy the boundary conditions. This transforms Equation 5.10 into

1

r

∂

∂r

(
r
∂Ez

∂r

)
+

1

r2
∂2Ez

∂ϕ2
+

∂2Ez

∂z2
+

ω2

c2
Ez = 0 . (5.11)

We attempt to solve this linear partial differential equation with the separation Ansatz
Ez = f(r)g(ϕ)h(z). Inserting it into Equation 5.11, we obtain

1

rf

∂(rf ′)

∂r
+

1

r2
g′′

g
+

h′′

h
+

ω2

c2
= 0 . (5.12)

Obviously, h′′/h only depends only on z and all the other terms depend on r, ϕ, or are
constant. Therefore h′′/h must be a constant, which we call −k2z in order to be consistent
with Equation 5.4, and find

h′′

h
+ k2z = 0 or h′′(z) + k2zh(z) = 0 , (5.13)

which is solved by
h(z) = E0e

±ikzz . (5.14)

The value of −k2z will be determined later by the boundary conditions. The remaining
equation still depends on f and on g. It is given by

1

rf

∂(rf ′)

∂r
+

1

r2
g′′

g
= −

(
ω2

c2
− k2z

)
= −k2c (5.15)

with k2c = ω2/c2 − k2z introduced as an abbreviation. This equation can be rewritten as

r

f

∂(rf ′)

∂r
+ k2cr

2 = −g′′

g
. (5.16)

Again, since the left-hand side only depends on r and the right-hand side only on ϕ, each
side must be independently constant and equal to some constant k2r . We thus obtain the
two equations

r2f ′′(r) + rf ′(r) + (k2cr
2 − k2r)f(r) = 0 and g′′(ϕ) + k2rg(ϕ) = 0 . (5.17)
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The second equation is either solved by exponentials or by sine and cosine functions with
argument krϕ. Periodicity in ϕ implies that 2πkr = 2πm or, equivalently, that kr needs to
be an integer. For g(ϕ) we then obtain

g(ϕ) = e±imϕ . (5.18)

We now insert kr = m into the first equation and make a variable substitution s = kcr.
This leads to

s2f ′′ + sf ′ + (s2 −m2)f = 0 , (5.19)

which is just the defining equation for the Bessel functions of integer order [22], denoted by
J±m(s). For f(r) we therefore obtain

f(r) = Jm(kcr) , (5.20)

where we have substituted back the original variable r. Collecting the solutions for f, g, and
h we find the solution for the longitudinal electric field component

Ez(r, ϕ, z, t) = E0Jm(kcr)e
±imϕe±ikzzeiωt (5.21)

inside the cavity. Here E0 is a constant amplitude.
If we assume that the cavity boundaries are perfectly conducting, we have Ez = 0

at r = R and this implies that Jm(kcR) = 0 and we conclude that the Bessel function
must have a zero on the surface of the cavity. If we denote the n-th zero of the Bessel
function Jm by γmn we must have kcR = γmn. For example, the mode with m = 0 therefore
requires kcR = 2.405 where 2.405 is approximately the first zero of J0. The requirement
that the electric field vanishes at z = 0 and at z = l can be fulfilled by combining the two
exponentials with argument ±ikzz to a cosine with the same argument that vanishes at
z = 0 and l whereby we get kzl = pπ with integer p. Collecting these constraints for kz and
kc we obtain a dispersion relation for the resonance frequencies

ω2
mnp

c2
=

(γmn

R

)2

+
(pπ

l

)2

(5.22)

with integers m,n, and p. Obviously, if the geometry of the cavity is given through its radius
R and length l the admissible frequencies are given by fmnp = ωmnp/2π in Equation 5.22.
Only these frequencies satisfy the boundary condition of vanishing fields on the metallic
boundaries.

We can turn the argument around and use Equation 5.22 to design a cavity that has the
desired frequency that we deem useful for our accelerator. A value for the frequency that is
often chosen is 500MHz and we now have to choose R and l suitably. We also require that
500MHz is the fundamental mode, or the lowest possible eigenfrequency. We therefore pick
m = 0 and n = 1, the first zero of the zeroth Bessel function. Solving Equation 5.22 for R,
we obtain

R =
2.405λ

2π
√
1− (pλ/2l)2

, (5.23)

where we introduced the wavelength λ = c/f = 0.6m. If we select p = 0, we find the relation
between the radius and the wavelength

R =
2.405λ

2π
= 0.23m (5.24)
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for the mode characterized by (mnp) = (010). It is usually denoted the TM010 mode. It
has a non-zero longitudinal field component Ez, which is used to accelerate particles. The
longitudinal magnetic field component is zero, and the other components can be derived
from Equation 5.9 with Ez from Equation 5.21. Note that the dimensions are of similar
magnitude to those of a cookie-jar, whose modes we will analyze in Appendix A.5.

In order to accelerate particles, we externally excite the TM010 mode with a radio-
frequency generator, but all the other modes are still present and it happens that the beam
itself excites these modes, which may lead to instabilities, a topic we return to in Chapter 12.
For the time being, we consider the cavity solely as a device that periodically provides a
longitudinal electric field and will now focus on how it affects the beam. Other aspects, such
as the generation of the radio-frequency power needed to excite the fields in the cavities is
deferred to Chapter 6.

We continue by observing that the accelerating cavity has a finite length l and the
finite velocity of the particles implies that a given particle cannot receive the maximum
acceleration voltage all the time during its traversal of the cavity. The effective voltage
“seen” by the particle is reduced by the so-called transit-time factor.

5.2 TRANSIT TIME FACTOR

The energy gain ∆W of a particle with charge q that arrives in the center of the cavity with
phase ϕ is given by

∆W = q

∫ l/2

−l/2

Êz cos(ωrft+ ϕ)dz (5.25)

with t(z) = z/βc, where βc is the velocity of the particle and Êz is the peak longitudinal
electric field in the pill-box cavity. The integral boundaries extend from the position the
particle enters the cavity on one side until its exits on the other. Evaluating the integral,
we find

∆W =
[
qÊzl cos(ϕ)

] sin(ωrf l/2βc)

ωrf l/2βc
. (5.26)

The expression in the square brackets is the energy gain the particle had received during the
traversal, had it been exposed to the peak field the whole time. Since the field varies during
the traversal, it is reduced by the transit-time factor T (x) = sin(x)/x with x = ωrf l/2βc.
Considering the 500MHz cavity from Equation 5.24 with a length of l = 0.2m, for rela-
tivistic electrons with β close to unity, we find T ≈ 1, whereas for low-energy protons with
β = 0.1 we find T ≈ 0.6. This inefficiency motivates the use of special accelerating cavities,
such as half-wave resonators or spoke cavities, for low-energy particles. These special cavities
are adapted to minimize the distance across which the particles experience the accelerating
field—the accelerating gap.

We now turn to the dynamics of beams in circular accelerators, where the cavities affect
the energy of the particles, but the travel time for one turn affects the arrival phase of a
particle in the cavity, and it needs to be synchronized with the frequency of the cavity. If
done correctly, the particles will perform stable oscillations, a subject we investigate in the
following section.

5.3 PHASE STABILITY AND SYNCHROTRON OSCILLATIONS

The energy gain in an accelerating cavity ∆W depends on the arrival time of the particles
or, equivalently, their arrival phase ϕ. In a circular accelerator, such as a storage ring, the
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Figure 5.2 The energy ∆E gained by a particle in a cavity as a function of the arrival

time τ or phase ϕ = ωrfτ.

RF frequency frf = ωrf/2π of the cavity must be chosen to be an integer multiple of the
revolution frequency f0 = 1/T0, where T0 is the revolution time for one turn. This integer
h = frf/f0 is called the harmonic number of the RF system.

The synchronous phase ϕs of the RF cavity at which the reference particle should arrive
is determined by external requirements, such as to achieve maximum acceleration, which
is indicated by the particle located at the crest of the oscillation in Figure 5.2. In other
accelerators the design phase may be determined by the requirement to replenish the losses
from the emission of synchrotron radiation or the interaction with a target. Increasing the
energy of the beam during an energy ramp is another example that we address in Section 5.7.
To be specific, we consider a storage ring, where the energy Ud must be delivered to the
beam every turn, and this needs to be provided by the accelerating cavity. The synchronous
phase ϕs, at which the beam receives this energy is then given by

Ud = qV̂ sinϕs , (5.27)

where V̂ is the peak acceleration voltage that a particle can experience in the cavity. It is
determined by the peak longitudinal electric field, the length of the cavity, and the transit-
time factor as given in Equation 5.26. A second particle, arriving at a slightly different
time τ, will then experience the following energy gain in the cavity

∆E = qV̂ [sin(ωrfτ)− sinϕs] . (5.28)

This situation is illustrated on the right-hand side in Figure 5.2, where the reference particle
is located at the phase ϕs, and an early and a late particle are also shown. They experience
an energy kick with respect to the reference particle given by the previous equation. We note
that it is convenient to use the phase variable ϕ instead of arrival time τ. These variables
are related by ϕ = ωrfτ.

We relate the change in energy to the change in the phase-space variable δ = ∆p/p with

∆E

E
= β2∆p

p
= β2δ , (5.29)

which follows from differentiating E =
√

m2c4 + p2c2, known from relativistic kinematics.
In most circumstances, the change of energy ∆E is small compared to the total energy of
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the particle, and we can replace the derivative with respect to time d/dt by averaging the
change over one revolution period T0. For the temporal variation of δ, we then find

dδ

dt
≈ 1

T0β2

∆E

E
=

eV̂

T0β2E
[sinϕ− sinϕs] , (5.30)

which relates the change in relative momentum per revolution period dδ/dt to the arrival
time τ, here expressed in terms of the phase variable ϕ = ωτ.

After analyzing what happens to the particles in the cavity, we need to investigate how
the travel time through the arcs of the ring is affected by the momentum deviation δ and on
the magnetic field in the dipoles ∆B/B. The latter is relevant, because changing the field
in the dipoles changes the length of the orbit such that the arrival phase of the particles is
systematically shifted to one side, causing them to systematically gain or lose energy. This
mechanism is used to accelerate the beams—just increase the dipole field and the beam
moves to a new arrival phase in the cavity to receive the right energy to stay synchronous.
This, of course, requires the motion to be stable, as shown in later parts of this section.

The dependence of the arrival time at the cavity on the magnetic field in the dipoles is
discussed in Section 3.4.4 and is given in terms of the momentum compaction factor α by
∆τ/T0 = −α∆B/B. Therefore, we find for the dependence of the circumference on δ and
∆B/B

∆C

C
= α

(
δ − ∆B

B

)
. (5.31)

The time for one revolution is given by T0 = C/v where v is the speed of the particle. From
p = βγmc we find dv/v = dβ/β = (1/γ2)dp/p = δ/γ2 and for the relative change of the
revolution time ∆T/T0, we obtain

∆T

T0
=

∆C

C
− ∆v

v
=

(
α− 1

γ2

)
δ − α

∆B

B
= ηδ − α

∆B

B
, (5.32)

where we introduce the phase-slip factor η = α − 1/γ2. It describes the dependence of the
revolution time, or equivalently revolution frequency, on the momentum deviation δ. There
are two contributions: the change of the circumference with momentum, as described by
α, and the change in the speed of the particle. The latter effect is mostly important in
low-energy rings. Note, however, that η can change sign as the particles are accelerated and
γ increases. The energy γT = 1/

√
α, at which η is zero, is called the transition energy, and

it has an important influence on the stability of the particle’s motion, as we shall shortly
see.

The change in revolution time ∆T/T0 in Equation 5.32 can be interpreted as the change
of arrival time in the cavity dτ/T0 = ∆T/T0 of a particle with momentum deviation δ. The
factor proportional to ∆B/B describes the variation of the phase with the field B in the
main dipoles of the ring. For the change in arrival phase, we then obtain

dϕ

dt
≈ ωrfdτ

T0
= ωrfηδ − ωrfα

∆B

B
. (5.33)

Equations 5.33 and 5.30 jointly describe the dynamics of particles in the longitudinal phase
space ϕ = ωrfτ and δ. Equation 5.30 describes the effect of arrival phase ϕ on the change of
momentum in the cavity dδ/dt, and Equation 5.33 describes the change of arrival phase as
a function of the momentum δ. Differentiating the latter equation with respect to time and
inserting in the first, results in

ϕ̈− ωrfη

T0β2

qV̂

E
[sinϕ− sinϕs] = 0 . (5.34)
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For small phase deviations ψ = ϕ − ϕs from the design phase ϕs Equation 5.34 can be
rewritten by using sinϕ − sinϕs ≈ ψ cosϕs. This allows us to express it in the following
form

ψ̈ +Ω2
sψ = 0 with Ω2

s = −ωrfη cosϕs

T0β2

eV̂

E
, (5.35)

valid for small oscillations. Equation 5.35 is the differential equation for a harmonic oscillator
and describes oscillations with the synchrotron frequency Ωs. These oscillations in the phase-
momentum phase space are called synchrotron oscillations. The motion of the phase ψ and
momentum offset δ will be harmonic with ψ = ψ̂ sinΩst and δ = δ̂ cosΩst where ψ̂ and δ̂ are
the maximum amplitudes of the phase and the momentum offset. Note that Equation 5.33
for ∆B/B = 0 implies that ψ̂ and δ̂ are related by ψ̂ = (ωrfη/Ωs)δ̂.

The oscillations described by Equation 5.35 are only stable if Ω2
s is positive, which implies

that the product of η and cosϕs must be negative. Considering the definition of the phase
slip factor η = α− 1/γ2 in terms of the momentum compaction factor α and the kinematic
factor γ we see that for low energies the γ-factor dominates and makes η negative which
implies that cosϕs must be positive. The transition energy where η is zero separates the
low-energy regime where a storage ring operates, colloquially speaking, below transition,
from the high-energy regime, where rings operate above transition. In the latter case we
find that cosϕs must be negative, and therefore the phase must be close to 180 degrees,
near the point where the RF voltage crosses zero from positive to negative voltages. This
is the case for practically all electron accelerators. Normally, the particles will assemble at
the design-phase, where the motion is stable: below transition around zero phase, where
the slope of ∆E versus τ is rising and shown in Figure 5.2, and above transition around
180 degrees, where it is falling. Around these phases the particles perform stable oscillations.

We now return to Equation 5.34 and the motion of particles with large amplitudes, as
might occur when injecting particles with too high energy into a ring.

5.4 LARGE-AMPLITUDE OSCILLATIONS

When injecting new particles into a ring, normally the energy and phase of the new particles
should be adjusted to arrive near the point where stable oscillations occur. If, however, the
timing or the energy is wrong, the particles are still governed by Equation 5.34, but the
small-angle approximation, which led to Equation 5.35, is no longer valid. We therefore use
Equation 5.34, but with the simplifying assumption ϕs = 0, and we arrive at the equation
of a mathematical pendulum

ϕ̈+Ω2
s sinϕ = 0 . (5.36)

By multiplying this equation with ϕ̇ we see that it gives rise to an integral of motion

d

dt

[
1

2
ϕ̇2 − Ω2

s cosϕ

]
= 0 or

1

2
ϕ̇2 − Ω2

s cosϕ = A . (5.37)

The constant A can be expressed in terms of the maximum phase excursion ϕ̂ because at
ϕ = ϕ̂ we have ϕ̇ = 0 and find A = −Ω2

s cos ϕ̂. Inserting into the previous equation yields

1

2
ϕ̇2 +Ω2

s(cos ϕ̂− cosϕ) = 0 . (5.38)

Introducing the maximum amplitude ϕ̂ characterizes the trajectories in much the same
way as we can distinguish different oscillations of a children’s swing by their maximum
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Figure 5.3 Phase portrait of the longitudinal phase space (left) and the oscillation

period as a function of the amplitude ϕ̂.

amplitude. Note that another option would be to describe the trajectories by their total
energy.

We can now solve Equation 5.38 for ϕ̇ and plot it as a function of ϕ and obtain

ϕ̇ = Ωs

√
2(cosϕ− cos ϕ̂) (5.39)

and plot ϕ̇ as a function of ϕ for parameter values ϕ̂ = π/5, 2π/5, . . . , π. We show the plots

in the ϕ, ϕ̇ phase plane on the left-hand side in Figure 5.3 and observe that for small ϕ̂ the
trajectories follow ellipses, but as the amplitude increases, the phase space is increasingly
distorted up to a limiting curve for ϕ̂ = π. It is drawn as a solid line and is called the
separatrix, because it separates stable oscillations from unbounded trajectories.

Note that ϕ̇ is related to the energy deviation δ = ∆p/p by Equation 5.33, which implies
that the vertical axis in Figure 5.3 is actually just a rescaled δ where the rescaling is given
by ϕ̇ = ηωrfδ. This implies that there is a maximum momentum acceptance δmax, namely
the height of the separatrix, which is often called the bucket half-height. It is given by

δmax =
2Ωs

ηωrf
= 2

√
1

ηωrfβ2T0

eV̂

E
, (5.40)

which clearly shows that the momentum acceptance is proportional to the root of the cavity
voltage V̂ . If a particle is badly injected or suffers a very large energy loss, it can end up
outside the separatrix, where it will not perform stable synchrotron oscillations.

We found that the particles with small phase angles ϕ perform harmonic synchrotron
oscillations. This will, however, change as the amplitude increases and the motion becomes
increasingly non-harmonic. To illustrate this, we calculate the oscillation period Tp as a
function of the amplitude by rearranging Equation 5.39 in the following way

ΩsTp

4
= Ωs

∫ Tp/4

0

dt =

∫ ϕ̂

0

dϕ√
2(cosϕ− cos ϕ̂)

=
1

2

∫ ϕ̂

0

dϕ√
(sin2(ϕ̂/2)− sin2(ϕ/2)

, (5.41)

where we calculate the time to get from ϕ = 0 to the extreme phase ϕ = ϕ̂, which cov-
ers a quarter of the oscillation period Tp/4. The integral on the right-hand side can be
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brought into the standard form of a complete elliptic integral K(x), as defined in [22], by

the substitution sinψ = sin(ϕ/2)/ sin(ϕ̂/2), whence we arrive at

ΩsTp

2
= 2

∫ π/2

0

dψ√
1− sin2(ϕ̂/2) sin2 ψ

= 2K(sin(ϕ̂/2)) . (5.42)

Solving for the oscillation period Tp, we obtain

Tp =
4

Ωs
K(sin ϕ̂/2) = Ts

(
2

π

)
K(sin ϕ̂/2) (5.43)

with the small-oscillation amplitude revolution period Ts = 2π/Ωs. The right-hand side in
Figure 5.3 shows the revolution period Tp, normalized to the small amplitude period Ts, as

a function of the amplitude ϕ̂ in the range 0 ≤ ϕ̂ ≤ π. The oscillation period diverges as the
amplitude ϕ̂ approaches π which corresponds to a starting phase close to one of the nodes
of the separatrix.

In the following paragraphs we determine transfer maps [29], non-linear variants of the
transfer matrices from Chapter 3, that allow us to map starting positions ϕ0 and ϕ̇0 to final
positions ϕ(t) and ϕ̇(t) after an arbitrarily long time t. To find this map, we use the initial
values of ϕ0 and ϕ̇0 to express the integration constant A, which appears in Equation 5.37,
instead of the maximum amplitude ϕ̂ to arrive at

1

2
ϕ̇2 − Ω2

s cosϕ = E =
1

2
ϕ̇2
0 − Ω2

s cosϕ0 . (5.44)

Later on, it will be convenient to express the cosine in terms of the square of a sine with
half-angle as argument. We therefore use the trigonometric identity cos y = 1− 2 sin2(y/2)
and rewrite the previous equation as

ϕ̇2 = 2[E +Ω2
s cosϕ] = ϕ̇2

0 + 4Ω2
s sin

2(ϕ0/2)− 4Ω2
s sin

2(ϕ/2) (5.45)

and, after introducing the abbreviation k2 = (ϕ̇2
0/2Ωs)

2 + sin2(ϕ0/2), we obtain

ϕ̇2 = (2Ωsk)
2

[
1− 1

k2
sin2(ϕ/2)

]
, (5.46)

which is the starting point for our further investigations.
First, we note that k2 = 1 defines a boundary between a region where the sign of the

expression in the square brackets may change (k2 < 1) and where the sign is always the
same (k2 > 1). The boundary is the separatrix and given by

ϕ̇ = 2Ωs

√
1− sin2(ϕ/2) = ±2Ωs cos(ϕ/2) , (5.47)

which, after using some trigonometric identities, is the same as given in Equation 5.39 for
ϕ̂ = π.

If k2 > 1 the expression in the square brackets in Equation 5.46 never changes sign and
we solve the expression for dt

dt =
1

2Ωsk

∫ ϕ

ϕ0

dϕ′
√
1− (1/k2) sin2(ϕ′/2)

. (5.48)
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With the substitution y = ϕ′/2 we transform the integral to the standard form for the
incomplete elliptic integral of the first kind [22]

Ωskt =

∫ ϕ/2

ϕ0/2

dy√
1− (1/k2) sin2 y

= F (ϕ/2, 1/k)− F (ϕ0/2, 1/k) . (5.49)

The elliptic integrals have inverses, which can be expressed in terms of the Jacobi elliptic
functions sn, cn, and dn [22]. In particular, for F (x, 1/k) = w, the inverse is given by
sin(x) = sn(w, 1/k). Applied to the previous equation, we find

sin(ϕ/2) = sn (Ωskt+ F (ϕ0/2, 1/k), 1/k) , (5.50)

which gives us the phase of a particle with known initial coordinates ϕ0 and ϕ̇0 after an
arbitrary time t. The other phase-space coordinate ϕ̇ after time t can be found from Equa-
tion 5.46. Inserting sin(ϕ/2) from Equation 5.50 leads to

ϕ̇2 = (2Ωsk)
2

(
1− 1

k2
sn(w, 1/k)2

)
= (2Ωsk)

2 dn(w, 1/k)2 (5.51)

with the abbreviation w = Ωskt + F (ϕ0/2, 1/k). Taking the square root results in ϕ̇ =
2Ωsk dn(w, 1/k), the other phase-space coordinate. To summarize, the two equations

sin(ϕ/2) = sn (Ωskt+ F (ϕ0/2, 1/k), 1/k)

ϕ̇ = 2Ωsk dn (Ωskt+ F (ϕ0/2, 1/k), 1/k) (5.52)

with k2 = (ϕ̇2
0/2Ωs)

2 + sin2(ϕ0/2) map the initial phase-space coordinates ϕ0 and ϕ̇0 to
those after an arbitrary time t. The Jacobi elliptic functions sn and dn take the place of the
trigonometric functions we normally encounter for small-amplitude oscillations. The case
with k2 > 1 corresponds to points inside the separatrix, and next we consider points outside
the separatrix.

For k2 < 1 we transform Equation 5.46 to

Ωst =
1

2

∫ ϕ

ϕ0

dϕ′
√
k2 − sin2(ϕ′/2)

=

∫ z

z0

dz√
1− k2 sin2(z)

= F (z, k)− F (z0, k) , (5.53)

where the second equality follows from the substitution sin(ϕ′/2) = k sin z, which transforms
the integral to the standard form of the incomplete elliptic integral with suitably transformed
integral boundaries z and z0 with sin z0 = sin(ϕ0/2)/k. Using the inverse of the elliptic
integral in terms of Jacobi elliptic functions, and using Equation 5.46 to calculate the other
phase-space coordinate ϕ̇, we find the map from initial to final coordinates for k2 < 1

sin(ϕ/2) = k sn (Ωst+ F (z0, k), k)

ϕ̇ = 2Ωsk cn (Ωst+ F (z0, k), k) . (5.54)

Equations 5.52 and 5.54 are straightforward to code in MATLAB in the function named
pendulumtracker.m, given in Appendix B.5. Given the small amplitude synchrotron fre-
quency Ωs and the time to integrate t as well as the initial phase space coordinated ϕ0 and
ϕ̇0 it returns ϕ and ϕ̇ at the end of the integration time. We now use this function to explore
the dynamics of particles inside and outside a radio-frequency bucket. For all simulations,
we choose the numerical value Ωs = 2π/Ts = 0.25.
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Figure 5.4 Trajectories of six particles (dots) starting at ϕ = 0 and ϕ̇ =

0.09, 0.19, . . . , 0.59 for one small-amplitude synchrotron period Ts = 2π/Ωs. Note

that particles starting with larger amplitudes fall increasingly short of completing

a full turn.

In Figure 5.4 we follow six particles that start at ϕ = 0 with ϕ̇ = 0.09, 0.19, . . . , 0.59
for 100 time steps, each having the duration of Ts/100. We observe that the particle with
the smallest amplitude actually completes one period and the circle is closed. Particles with
larger amplitudes fall short by an increasing degree. The particle closest to the separatrix
only completes a little more than one-half of a full turn. This behavior is a complementary
view of the increasing oscillation amplitude shown on the right-hand side in Figure 5.3. Of-
ten, this is called amplitude-dependent tune shift. Moreover, the particle that starts outside
the separatrix with starting amplitude ϕ̇ = 0.59 does not even follow a periodic trajectory.

The MATLAB function to track particles for arbitrarily long times enables us to in-
vestigate the effect of, for example, injecting a bunch that is too long. On the left-hand
side in Figure 5.5 we see the initial (gray) and final (black) distribution of 1000 particles
injected with evenly distributed initial phase-space coordinates ϕ0 = ±1 and ϕ̇0 = ±0.05.
After three oscillation periods, distinct spiral arms have developed and the vertical size,
proportional to the energy spread, has increased. After 100 oscillation periods, a homoge-
neous circular distribution has evolved. Its shape will not change further, and it signifies
the matched distribution for the given synchrotron frequency Ωs. We note that, in order to
maintain an unchanged, matched, beam distribution of the ensemble of particles, the size
in the phase variable ϕ, which is proportional to the bunch length σϕ and the spread σϕ̇ in

the phase-space coordinate ϕ̇, must be related by σϕ = σϕ̇/Ωs.
We continue by analyzing an incorrect energy of an injected bunch of particles in Fig-

ure 5.6. The initial phase space coordinates of the 1000 particles are evenly distributed
with ϕ0 = ±0.15 and ϕ̇0 = 0.4± 0.05 and shown as gray dots. The plots in the top row in
Figure 5.6 show the distribution after 0.2Ts, 0.5Ts, and Ts. The initially square distribution
is increasingly sheared and distorted, but the particles stay within a recognizable phase-
space area. The ensemble oscillates but gets wider in the process. The bottom row shows
the distribution after 3Ts, 10Ts, and 100Ts. The particles all have different amplitudes and
correspondingly different oscillation frequencies, which causes the particles to spread out
more and more. After 10Ts, a spiral that winds for one and a half turns is discernible, but
after 100Ts no visible structure is left and the particles are smeared out along a band. Note,
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Figure 5.5 The distribution of 1000 injected particles (gray) after three synchrotron

oscillation periods (left) and after 100 periods (right), where a homogeneous, or

matched, distribution emerges.

however, that each particle still oscillates independently with the amplitude it initially had,
but the ensemble of all particles is smeared out across a wide range of phases. We conclude
that the initial energy mismatch led to a rather large spread of both phases and energies.

The left-hand plot in Figure 5.7 shows the average phase ⟨ϕ⟩ (top) and energy ⟨ϕ̇⟩
(bottom) for the ensemble of particles as function of time for the same starting conditions
used in Figure 5.6. We observe that there is an apparent damping of the averages. This effect,
often called Landau damping, is not real damping in the sense that energy is dissipated, but
a loss of coherence in the ensemble of particles. We mentioned in the previous paragraph that
the oscillation amplitude of each individual particle is unaffected, but the particles get out of
step and the coherent motion of the average is lost. Instead, the distribution of the ensemble

Figure 5.6 Filamentation after injection with too high energy: 1000 particles (gray)

are followed for up to 100 synchrotron oscillation periods (dark).
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Figure 5.7 The average phase ⟨ϕ⟩ and energy ⟨ϕ̇⟩ (left, top and bottom) as a function

of time, which shows decoherence, often referred to as Landau damping. The pro-

jections of the initial distribution (narrow) and after 100Ts (wide), corresponding

to the bottom right plot in Figure 5.6, are shown on the right.

becomes wider. The right-hand side in Figure 5.7 shows the initial and final projections
of the distribution of particles after 100Ts, which corresponds to the bottom right plot in
Figure 5.6. Initially the distributions are well localized, as shown by the histograms in lighter
gray. After 100Ts the projections of the smeared out ring, visible in Figure 5.6, appear as
a spread-out projection in Figure 5.7, for the phase in the top plot and the energy η in the
bottom plot. Again, the loss of coherence leads to a widened final distribution. In order to
maintain a small beam size after injecting into a ring one obviously has to pay special care
to adjust the energy and also the timing, which would lead to the same widening of the
distribution.

The upper plot on the right-hand side in Figure 5.7 shows the projection of the particles’
phase-space distribution onto the phase axis. Often these projections can be recorded, for
example, with a fast oscilloscope, and used to reconstruct the two-dimensional distribution
in a process called bunch tomography [30]. Since each projection does not contain information
about ϕ̇, the algorithm assumes that the distribution in ϕ̇ spreads evenly over a range of
values and then propagates the resulting “vertical strips” backward in time to a common
reference. Superimposing these back-propagated strips from many projections will cause
the original distribution to reappear, at least approximately. An implementation, using
pendulumtracker() for the back-propagation, is discussed in Appendix B.5.

Once a beam is injected in a ring and has assumed a distribution that is matched to
the given RF voltage, it is possible to manipulate the bunch distribution by adjusting the
parameters of the radio-frequency system. This is called RF matching.

5.5 RF MATCHING

Frequently we want to transfer a beam from an accelerator operating with one specific value
of Ωs to a second accelerator operating with a different value. For example, the voltage V̂
or frequency ωrf might be different. We therefore have to carefully manipulate the beam’s
longitudinal distribution in order to prevent the smearing out of the occupied phase-space
area that is illustrated in Figure 5.5.
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In order to analyze the dynamics, we resort to the small-angle approximation from
Equation 5.35, which is linear and allows us to introduce the transfer matrix R̂ for the
longitudinal dynamics [31]

R̂(t) =


cos (Ωst) sin (Ωst) /Ωs

−Ωs sin (Ωst) cos (Ωst)


(5.55)

which operates on the state (ψ, dψ/dt). The corresponding transfer matrix for operating at
a higher frequency hωrf and at a voltage v times higher thus depends on Ω̂ =

√
vhΩs and

is given by

Rs(h, v, t) =


1/h 0
0 1


 cos


Ω̂t


sin


Ω̂t


/Ω̂

−Ω̂ sin

Ω̂t


cos


Ω̂t






h 0
0 1



=


 cos

√
vhΩst


sin

√
vhΩst


/
√
vh3Ωs

−
√
vh3Ωs sin

√
vhΩst


cos

√
vhΩst



 , (5.56)

where the two outer matrices in the first equality are necessary to scale the phase at har-
monic h, because there are h buckets in the longitudinal extent where there is only one
bucket at the first harmonic. Essentially, we stretch the phase-axis first, then we rotate
with frequency Ω̂, and finally we transform back into the phase space of the first harmonic.
We point out that the small-angle synchrotron period T̂ at harmonic h and voltage v also
depends on v and h and is given by T̂ = 2π/Ω̂ = 2π/

√
vhΩs.

As previously done for the transverse dynamics, we can introduce 2×2 longitudinal beam
matrices σ(h, v) where the matched distribution is characterized by σ(h, v) = Rsσ(h, v)R

⊤
s .

It is straightforward to verify that

σ(h, v) =


1/hΩ̂ 0

0 hΩ̂


=


1/

√
vh3Ωs 0

0
√
vh3Ωs


, (5.57)

satisfies this condition. Note that the determinant of σ(v, h) is unity, such that we have to
multiply with

√
εL in order to obtain a beam matrix that has a given bunch length. Here

εL is the longitudinal emittance.
Let us now turn to the transfer a matched beam between different sets of h and v. The

matched beam in system 1 is given by σ(h1, v1). We then turn off the first RF system and
switch to a second RF system operating with h2 and v2 with Ω2 =

√
h2v2Ωs that is only

turned on for the duration t2 = T2/4 of a quarter of its synchrotron period T2 = 2π/Ω2.
The transfer matrix for this time is then

R2(h2, v2) =


0 1/h2Ω2

−h2Ω2 0


. (5.58)

Finally we require that the beam matrix after this manipulation is a matched beam σ(h3, v3)
for a system operating with h3 and v3, or

σ(h3, v3) =


0 1

h2Ω2

−h2Ω2 0


1√

v1h3
1Ωs

0

0


v1h3
1Ωs


0 −h2Ω2
1

h2Ω2
0



=




√
v1h3

1

v2h3
2Ωs

0

0
v2h

3
2√

v1h3
1

Ωs


 . (5.59)
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Equating the 22-matrix elements of σ(h3, v3) with the last expression in the last equation,
we find √

v3h3
3Ωs =

v2h
3
2√

v1h3
1

Ωs (5.60)

and solving for v2h
3
2 we obtain v2h

3
2 =

√
v1v3 (h1h3)

3/2
. We see that using the higher

harmonic system at the intermediate stage (h2 = h3) requires a smaller voltage v2 for the
transition. For this configuration we obtain

v2 =
√
v1v3

(
h1

h3

)3/2

for h2 = h3. (5.61)

Both the initial and final bunch distributions are matched to their respective RF systems.
Therefore, the ratio of the bunch lengths σ̃i =

√
σ11(hi, vi) for i = 3 and i = 1 is given by

σ̃3

σ̃1
=

(
v1
v3

)1/4 (
h1

h3

)3/4

. (5.62)

In order to transfer the beam, we thus have to turn off the first RF system with h = h1,
turn on the second with h = h2 at the intermediate voltage v2 given by Equation 5.61 for
a quarter of a synchrotron period T2/4, before increasing the voltage to the level specified
by v3. The new bunch length σ̃3 is related to the initial one σ̃1 by Equation 5.62. Since all
transfer matrices have unit determinant, the longitudinal emittance will stay the same.

We can thus consider to shorten a bunch by successively transferring it to a higher-
harmonic RF system. This will work up to a point where the validity of the linearized
Equation 5.35 is violated and the bunch length is no longer small compared to the wave-
length of the radio-frequency system [31]. At that point the non-linearity of the RF force
will distort the bunches and lead to an effective increase of the longitudinal emittance.

In this section the changes of the RF system were done relatively rapidly on the time
scale given by the synchrotron period. In the next section we will, on the other hand, consider
very slow changes leading to bunch manipulations often referred to as RF gymnastics [32].

5.6 RF GYMNASTICS

The longitudinal dynamics of the particles is governed by Equation 5.36, which also describes
an equivalent Hamiltonian system, the mathematical pendulum. It can be shown [9] that the
action variables in such Hamiltonian systems remain constant if a system parameter, such
as the length of the pendulum, or V̂ of the RF system, changes slowly. In other words, the
action variable is an adiabatic invariant. Here “slowly” means that dΩs/dt ≪ Ω2

s. Since the
action variable of each particle remains constant, their average, the longitudinal emittance,
also stays constant in such an operation. This is exploited in a number of scenarios.

Occasionally, it is desirable to use one RF frequency during injection to capture the
incoming beam but later deliver a larger number of shorter bunches to an experiment or to
the next machine to accelerate further. In such circumstances one reduces the RF voltage
V̂ to zero and lets the bunches spread out around the ring, albeit with very low momentum
spread. Once the beam is thus “homogenized,” a second RF system, operating at a higher
frequency, is turned on and its voltage is slowly increased to capture the particles. The
particles then assemble in the RF buckets corresponding to the higher RF frequency. This
method is called debunching-rebunching [32].

Instead of first turning one RF voltage off before slowly increasing the amplitude of the
second one, one can start ramping up the second voltage, which has twice the original RF
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frequency, while the first one is still at its nominal value. The second RF frequency causes
the fixed point at the center of the separatrix to become unstable and forms two stable
fixed points separated in phase. The particles in the bunch then start to assemble around
these new fixed points and once the first RF voltage is slowly decreased to zero, the particles
have split in two buckets, each containing half the original particles. This operation is called
bunch splitting [32].

If a storage ring is equipped with an RF system that can operate in a wide range of
frequencies, it is possible to compress a bunch train. This keeps the same number of particles
per bunch and the same number of filled buckets, but it creates additional empty buckets.
This is achieved [32] by simultaneously decreasing the RF voltage of the first system, which
operates at a harmonic number h1 = ω/ω0, and increasing the voltage of a system with a
slightly large harmonic number, say h2 = h1+2. This operation is called batch compression.

After having analyzed the longitudinal motion of particles at fixed energy, we now turn
to investigating their dynamics during acceleration.

5.7 ACCELERATION

During acceleration the radio-frequency system has to continuously transfer energy to the
particles, which means, by virtue of Equation 5.27 that the design phase ϕs has to be
different from zero or π. In a ring, changing the phase of the RF system will only cause
the arrival time of the beam to move synchronously with the changing phase, but it does
not accelerate the particles. On the other hand, by continuously increasing the field of the
main dipoles ∆B/B, we systematically shorten the circumference of the ring, as described
by Equation 3.131, and thereby force the particles to systematically arrive earlier than the
zero-crossing of the RF voltage. This effect is already included in Equation 5.33, which
contains the shortening of the orbit due to ∆B/B. When ramping the dipole field with a
ramp linear in time and proportional to ∆B = Ḃt we can write

∆B

B
=

ρḂt

Bρ
=

ρḂt

p
=

ρḂt

βE/c
. (5.63)

Inserting in Equation 5.33 gives us

dϕ

dt
= ωrfηδ −

ωrfαcρḂ

βE
t (5.64)

and differentiating with respect to time and inserting dδ/dt from Equation 5.30 results in

d2ϕ

dt2
=

ωrfηeV̂

T0β2E
[sinϕ− sinϕs]−

ωrfαcρḂ

βE
=

ωrfηeV̂

T0β2E
[sinϕ− sinϕs − sinϕa] , (5.65)

where we express the term proportional to Ḃ as being due to an additional phase angle ϕa

with

qV̂ sinϕa =
αβcT0ρḂ

η
=

αC

η
ρḂ . (5.66)

Here C = βcT0 is the circumference of the ring. We see that a constant ramp rate of the
main dipoles Ḃ causes the beam to assume a non-zero phase angle ϕa, in addition to any
other losses described by the phase angle ϕs.
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Figure 5.8 The effective potential Veff(ϕ) (top) for a synchronous phase of ϕs =

15degrees (solid) and ϕs = 75degrees (dashed). The bottom plot shows the corre-

sponding regions where stable oscillations are possible.

Thus the dynamics of particles during acceleration is described by Equation 5.34 with ϕa

defining the synchronous phase ϕs. Equation 5.34 naturally leads to an integral of motion
by multiplying the equation with ϕ̇ and realizing that

d

dt

[
1

2
ϕ̇2 − Ω̂2

s(cosϕ+ ϕ sinϕs)

]
= 0 and A =

1

2
ϕ̇2 − Ω̂2

s(cosϕ+ ϕ sinϕs) , (5.67)

which implies that the expression in the square brackets is constant with value A. Here we
introduced the abbreviation Ω̂2

s = |ωrfηqV̂ /T0β
2E|, which is the synchrotron frequency Ω2

s

from Equation 5.35 for zero phase angle ϕs. Equation 5.67 can be interpreted to describe
the conservation of the energy, here represented by the constant A, of mechanical system
of a particle with unit mass in the effective potential Veff(ϕ) = −Ω̂2

s(cosϕ+ϕ sinϕs), which
is shown on the upper plot in Figure 5.8 for a synchronous phase ϕs = 15degrees. We see
that there are potential wells in which the mass point can perform stable oscillations. A
mass point is shown as a small dot near ϕ = 2π/3 in Figure 5.8 as an illustration. But
the range of stable oscillations is limited, because mass points launched from rest (ϕ̇0 = 0)
and with phases in the range denoted by the vertical dashed lines cannot be captured by
the potential wells. We also observe that there are equilibrium or fixed points, defined by
dVeff/dϕ = 0, where the mass point remains at rest. Solving for the fixed points we find
that they must obey sinϕ = sinϕs. These points at ϕs+2nπ are those at the bottom of the
well and are therefore stable. The points at (2n+1)π− ϕs correspond to the local maxima
visible in the upper plot in Figure 5.8. They are unstable, because the smallest perturbation
will cause the mass point to move away from this fixed point. For comparison, we also show
the potential for a synchronous phase angle of ϕs = 75degrees as a dashed line. It is much
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Figure 5.9 The stable-phase region (left) and the bucket half-height (right) as a

function of the synchronous phase ϕs.

steeper and the potential wells are much shallower, which already indicates that the range
where stable oscillations are possible, is much reduced.

These regions, where stable oscillations are possible, are enclosed by the separatrix,
shown in the bottom plot in Figure 5.8. They are characterized by values of the constant
A that correspond to the value of the effective potential at the unstable fixed point. It is
given by

A = Ω̂2
s (cosϕs − [(2n+ 1)π − ϕs] sinϕs) . (5.68)

Inserting in Equation 5.67 and solving for ϕ̇, we find the equation that defines the separatrix
to be

ϕ̇ = ±Ω̂s

√
2(cosϕ+ cosϕs − [(2n+ 1)π − ϕ− ϕs] sinϕs) , (5.69)

which is used to generate the plot in the bottom plot in Figure 5.8. Compared to the situation
with ϕs = 0 that we already encountered in Figures 5.3 and 5.4, the range of phases that
allows stable oscillations is reduced. The second, much smaller, set of separatrices, shown
as dashed lines in the bottom plot are the regions of stable oscillations if the phase angle is
ϕs = 75degrees. They are indeed much smaller than those for 15 degrees; both the extent
in phase and in the vertical direction, indicating a much reduced momentum acceptance.

The range of stable phases extends from the phase ϕmin at which the expression under
the root in Equation 5.69 is zero to the unstable fixed point at ϕmax = (2n+ 1)π − ϕs. On
the left-hand side in Figure 5.9, we show the range of stable phases as the area between the
solid lines. The dotted line denotes the synchronous phase ϕs. We observe that for ϕs close
to zero the range extends from −180 degrees to 180 degrees, or −π to π, which corresponds
to the situation shown in Figure 5.3. With increasing synchronous phase, the range of stable
phases shrinks until it is reduced to zero at a synchronous phase angle of ϕs = 90degrees,
which corresponds to acceleration on the crest of the radio-frequency voltage. On the right-
hand side in Figure 5.9, the half-height of the separatrix is shown as a function of ϕs. The
maximum of the separatrix is given by the value of ϕ̇ in Equation 5.69, evaluated at ϕ = ϕs,
because it is located directly above the stable fixed point. We observe that the height of the
separatrix, which defines the momentum acceptance, diminishes as a function of ϕs and it
vanishes at ϕ = 90degrees.
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Figure 5.10 The layout of the model linear accelerator.

We conclude that the range of phases and the momentum acceptance is reduced at
increasing synchronous phase angles ϕs and operating at maximum acceleration with ϕs =
90degrees, is only marginally feasible, because the stable region of synchrotron oscillations
shrinks to a single point and stability of the longitudinal motion is lost.

5.8 A SIMPLE WORKED EXAMPLE

In the hands-on spirit of this book, we now consider a MATLAB model, described in detail
in Appendix B.5, of the simple linear proton accelerator shown in Figure 5.10. Particles of
mass mp enter from the left with energy γ0mpc

2 and pass through a number of cells, say 30,
with length L, each made of one cavity with design phase ψi and maximum energy gain gi
and a quadrupole doublet to provide transverse focusing. Just upstream of cavity number
i the phase of the beam is given by ϕi and the energy after the cavity is γimc2.

The equations that govern the dynamics in the longitudinal phase space are

γi+1 = γi + gi sin(ϕi − ψi) and ϕi+1 = ϕi +
ωL/c√
1− 1/γ2

i

, (5.70)

where the first equation describes the energy added to the particle in the cavity. Note that gi
is given in units of the particles rest mass that may be called gamma-units. The energy gain
depends on the design phase ψi of that cavity and the actual arrival phase ϕi of the particle.
The second equation describes the change in arrival phase that depends on the distance L
between the cavities, the speed of the particle vi = c

√
1− 1/γ2

i , and the frequency ω of the
cavity. These equations correspond to Equations 5.30 and 5.33.

The transverse dynamics is defined by a doublet lattice, similar to the one shown on the
left-hand side in Figure 3.24 with a cell length of 10m and a nominal focal length for the
quadrupoles of f = ±2m. This leads to a phase advance per doublet cell of 97.2 degrees.
The required currents to drive the coils of the quadrupoles increase proportionally to the
desired momentum profile along the linac. Therefore, they depend on the phases and on the
gradients in the cavities. We normally want to operate the linac despite a malfunctioning
power generator with a cavity that does not accelerate the beam. Under these circumstances
we can reconfigure the quadrupole gradients to achieve nominal transverse focusing and still
operate the linac, albeit at lower energy.

Let us go through the necessary steps to set up the linac. The initial energy, given by
γ0 is known, and we assume that the arrival phase ϕ0 is zero. The maximum achievable
gradients gi are determined by external factors, and we need to accept them as given. But
we can set the operating phases ψi of the cavities, based on a compromise to reach the
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Figure 5.11 The energy gain per module (top plot), the cavity phases (second), the

energy profile (third), and the momentum (bottom) used to scale the quadrupole

excitations.

maximum energy to which we want to accelerate the particles, balanced by the requirement
for stability and robustness. The latter dictates to choose phase angles lower than 90 degrees
in order to have an acceptable stable-phase range. We consult Figure 5.9 and settle on a
synchronous phase for the cavities of ψi = 75degrees. In a linac we pay the electricity bill to
provide maximum power to the beam to accelerate to the highest possible energy, but then
we are forced by beam dynamics to waste some of this power by operating at a phase angle
below 90 degrees. Other constraints, for example, from operating feedback systems for the
beam energy, may also require to operate below the maximum in order to allow actually
increasing the energy delivered to the beam by changing a cavity phase. Knowing the gains
and phases of the cavities, we can determine the design energy profile of the beam along the
linac and this, in turn, determines the currents we need to excite the quadrupole magnets
to provide the nominal focal length of ±2m. This completes the setup of the linac, and we
can explore stability by varying parameters.

Figure 5.11 shows the energy gain gimpc
2 in MV/module along the linac. Modules 14

to 17 only operate at 10% of the nominal gradient, and this is shown as the dip around
z = 150m. The second plot shows the arrival phase of the nominal beam with initial phase
ϕ0 = 0 and kinetic energy T0 = 200MeV, which translates to an initial γ0 = 1 + T0/mp ≈
1.21. The cavity phases ψi, shown by the solid line, follow the reference particle such that
their difference remains at the nominal acceleration phase of 75 degrees. The latter is shown
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as the dashed line. With these gains and phases, the kinetic energy T = (γ − 1)mp of the
beam along the linac is shown in the third plot. Also here the “bad modules” show up with
a reduced rate of acceleration near z = 150m. The fourth plot shows the scaling of the
quadrupole currents with the momentum p/mpc = βγ. We see that βγ covers the range
from approximately 0.7 to 2.3, such that we need to excite the coils of the quadrupoles by
currents that vary by a factor of 3.5 in order to guarantee a constant nominal focal length.

This completes the basic setup of the linac. Instead of exploring the model further, we
now turn our attention to the technological aspects of generating, guiding, controlling, and
coupling power to the beam.

QUESTIONS AND EXERCISES

1. Explain why TM modes are used to accelerate the beam.

2. Can you use TE modes to accelerate a beam?

3. Give a typical example of a TEM mode. The example should be so obvious as to
immediately strike your eye. Why are they unsuitable for direct acceleration?

4. (a) Calculate Ez for a TM010 mode and use MATLAB’s surf() function to display
it. (b) What is Hz for this mode? (c) Calculate Hx, Hy, Ex, and Ey and display.

5. Repeat the previous exercise (a) for a TM020 mode; (b) for a TM110 mode; (c) for any
other TMmnp mode of your choice.

6. What is the size of a 100MHz pill-box cavity used for electrons? Prepare a plot of the
transit-time factor as a function of the length of the cavity.

7. In the CELSIUS storage ring in Uppsala, protons were injected with a kinetic energy
of 50MeV and slowly (Ḃ/B ≈ 0) accelerated up to a kinetic energy of 1360MeV.
The ring had a circumference of 82m, a momentum compaction factor of α = 0.123,
and typically used an acceleration voltage of V̂ = 2kV. Plot (a) the synchrotron
frequency and (b) the bucket half-height as a function of the kinetic energy for the
relevant energy range.

8. For an electron storage ring, calculate the bucket half-height as a function of the ramp
rate Ḃ/B and plot the result.

9. Simulate the bunch rotation, mentioned in Section 5.6, by tracking 1000 sam-
ple particles with the help of the longitudinal matching example.m script and
pendulumtracker() MATLAB function, available from this book’s webpage. Pre-
pare a matched beam with a five times smaller synchrotron frequency than used in
the preparation of Figure 5.5. The bunch should have a long extension in ϕ but small
height in ϕ̇. Then, instantaneously increase the synchrotron frequency back to the
original value and track for 1/4 synchrotron period. How does the distribution look
like now? In the real machine, instead of the synchrotron frequency, which parameter
would you change?

10. Simulate debunching in the same way as in the previous exercise. Start from the
situation shown on the right-hand side in Figure 5.5 and reduce the synchrotron
frequency in 100 equal steps to zero. At each step, track for 100 synchrotron periods
such that the distribution is matched to the new frequency. In the end the beam
should cover all phases but have a small momentum spread.
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11. And now simulate the process in reverse by increasing the synchrotron frequency back
to its original value. What do you observe?

12. Simulate rebunching on the (a) second and (b) third harmonic of the fundamental
radio frequency.



C H A P T E R 6

Radio-Frequency Systems

In this chapter, we cover the generation and control of the radio-frequency power that is
used to accelerate the beams. We will follow the flow of electrical power from the wall
plug through power amplifiers and through waveguides to the coupling antennas into the
accelerating structures, where the microwaves accelerate the beam. If a beam contains large
numbers of particles, it “consumes” a significant fraction of the power delivered to the
structures, and appears as a load that varies in time. We will briefly discuss the diagnostics
and control mechanism to stabilize the power delivered to the beam.

The radio-frequency signals with the desired frequency, amplitude, and phase start their
journey towards the beam in a frequency generator as a low-power signal at a power level
of milliwatts to watts, and must be amplified. And that is the topic of the next section.

6.1 POWER GENERATION AND CONTROL

The power difference between the input and the output of an amplifier must be provided
by a power supply that converts the three-phase electricity from the power grid, the “wall-
plug power,” usually with the help of transformers and rectifier diodes, to a level suitable to
operate the amplifier. If the accelerator, and consequently also the RF amplifier, is operated
in pulsed mode, we need to adapt the time structure of the power delivered to the amplifier
with a pulse-forming network or a modulator. The former can only provide short, typically
µs-long pulses, and is based on a coaxial cable, charged to high voltage, that is rapidly
discharged through a high-power switch, often a thyratron. A modulator is a pulsed power-
supply in which a continuously charged capacitor bank is periodically discharged through a
high-power switch. This releases a high-voltage pulse to a pulse transformer, which adapts
the voltage and current—the impedance—to that of the amplifier. Filter circuits, an example
is called bouncer, are often added in series to the primary side of the pulse transformer in
order to limit the droop of the voltage due to the discharging capacitors.

Now that we have the power available to amplify the low-power RF signal, we turn to the
different types of amplifiers. Most amplifiers are actually multi-stage devices that consist
of several pre-amplifiers, each of which increases the power level typically by a factor of
less than 100, or 20 dB(power) before the last, high-power, stage. The first stages often use
solid-state amplifiers, based on MOSFET transistors (LDMOS), specially adapted for RF
operation [33]. Matching networks adapt the input and output impedance of the transistor
to that of the surrounding circuits. Modern transistors provide an output power on the
order of 1 kW with an efficiency of about 70%, which makes water-cooling of the substrate,
onto which the transistor is mounted, necessary. These losses present a problem, because
operating at high frequencies of several hundreds of MHz requires the transistor to be small

152 This chapter has been made available under a CC BY NC license.
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but operating at high power requires them to be large in order to limit the power density
and the ability to cool the device. With the per-transistor power limited, we need to join
the output of a very large number transistors in power combiners in order to reach hundreds
of kW levels [34].

High-power RF amplifiers based on vacuum tube technology, often tetrodes, were used
for most of the 20th century to transmit radio and TV signals in the frequency range of up
to a few 100MHz and even modern accelerators [35] use them, where suitable, even though
the frequency and power ranges are limited. In tetrodes, electrons are emitted from a heated
cathode and attracted to the anode at high positive voltage. The large current is modulated
by a moderate voltage applied to a control grid close to the cathode. A fourth electrode,
the screen grid, shields the effect of surface charges, accumulated on the anode, and makes
operation with high gain more reliable. The four electrodes are mounted radially in high-
power tetrodes in order to efficiently cool the outermost lying anode, where the power of
the impinging electrons is dissipated. The large anode current is used to drive an antenna in
an output cavity, optimized for the operating frequency of the tetrode. As an example, we
consider the system used to drive cavities in a section of the ESS, where an anode voltage
of 16 kV and current of up to 18.7A is used to operate a 352MHz system that amplifies a
6.7 kW input signal to produce 200 kW output power with a 15 dB gain and an efficiency
of 67% [36]. In this system, the control grid is negatively biased in order to only cause
electrons to flow during the positive half-cycle of a sine. This improves the efficiency, because
current only flows part of the time, and this mode of operation is called class-B operation.
In contrast, when operating in class-A, a constantly flowing current is modulated around
its average value. This constant average current deteriorates the efficiency, and therefore
often class-B mode operation is chosen instead.

In vacuum tubes, such as tetrodes, the anode serves a dual purpose: it extracts the
power from the electrons by producing a large anode current at radio frequencies, and, at
the same time, stops the electrons. It can be beneficial to separate the two functions and use
a resonating cavity to extract the RF power and, further downstream, an electron collector
to stop the electrons. Devices, based on this technology, are called inductive output tubes
(IOT). Since the RF output is produced directly, without first producing an anode current,
the simpler design of the collector helps to improve the lifetime of the devices.

The capacitance of the control grid to ground limits the frequencies to below the GHz
range. In order to overcome this limiting factor, klystrons are used in order to produce
high power-levels in the GHz range. RF-cavities are used to modulate the velocity of the
electrons. Velocity bunching, where faster electrons catch up with the slower ones, causes
the initially continuous electron current to bunch at the modulating frequency. The bunched
high-current electron beam then excites modes in a second cavity, tuned to the modulating
frequency, and its power is extracted at the high-power output port. In klystrons, the
electrons are guided by a longitudinal magnetic field that is produced by solenoids. Their
performance is normally optimized by adding additional cavities between the modulating
cavity and output cavities. The intermediate cavities are not powered but excited by the
beam, and they are tuned both to the fundamental and to higher harmonics. The fields
created in these idle cavities are designed to enhance the bunching and increase the efficiency.
At very high power levels (MW), space-charge repulsion among the electrons reduces the
bunching, but using multiple electron beams side-by-side within the same klystron alleviates
this limitation. These devices are called multi-beam klystrons and are used, for example, in
the European XFEL in Hamburg. Typical anode voltages range up to 100 kV with currents
in the 10 to 100A range.
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The RF power produced by the tubes and klystrons needs to be transported to the
accelerating structures, where it is used to accelerate the beam. Apart from transporting
the high power, it may need to be split, or combined, diagnosed, and even dissipated in
dummy loads. Devices to achieve these operations are the topic of the next section.

6.2 POWER TRANSPORT: WAVEGUIDES AND TRANSMISSION LINES

In Section 5.1, we found that for electro-magnetic waves, defined by Equation 5.4, all trans-
verse electric and field components can be expressed through the longitudinal components
Ez and Hz with the help of Equations 5.7 and 5.8. If both Ez = 0 and Hz = 0, the waves are
called TEM waves [37]. The waves with Hz = 0 and Ez ̸= 0 are called transverse magnetic
(TM) waves. We sought fields of this type in the pill-box cavity in Section 5.1 in order
to support a longitudinal electric field Ez to accelerate the beam. A third type of waves,
with Ez = 0 and Hz ̸= 0, is called transverse electric (TE) waves. All their transverse field
components can be calculated from Hz alone

Hx = − ikz
k2c

∂Hz

∂x
, Hy = − ikz

k2c

∂Hz

∂y
, Ex = − iωµ0

k2c

∂Hz

∂y
, Ey =

iωµ0

k2c

∂Hz

∂x
, (6.1)

which follows from Equations 5.7 and 5.8 by setting Ez = 0 and using k2c = ω2/c2−k2z . Just

as the electric field E⃗, the magnetic field H⃗ obeys Equation 5.3, and we find that all, and in
particular, the longitudinal component of the magnetic fields fulfills △Hz +(ω2/c2)Hz = 0.
Inserting the Ansatz for Hz from Equation 5.4, we obtain the following equation for the TE
modes (

∂2

∂x2
+

∂2

∂y2

)
Hz = −k2cHz =

(
k2z −

ω2

c2

)
Hz , (6.2)

which is an eigenvalue equation for Hz. Its solutions depend on the boundary conditions
for Hz, and since the electric field components Ex and Ey have to vanish on perfectly
conducting metallic boundaries, Equation 6.1 dictates the respective derivatives ∂Hz/∂y
and ∂Hz/∂x to vanish on the wave-guide walls as well. Thus, we are facing the problem of
finding eigensolutions to the 2-dimensional Laplace operator with von Neumann boundary
conditions.

We start by considering the propagation of TE waves in a rectangular wave guide. For
the geometry we assume that the waveguide extends from x = 0 to x = a in the horizontal
direction from y = 0 to y = b in the vertical. For Hz, we then make the Ansatz

Hz = Bmn cos
(mπx

a

)
cos

(nπy
b

)
, (6.3)

which obviously obeys ∂Hz/∂x = 0 for x = 0 and x = a and ∂Hz/∂x = 0 for y = 0 and
y = b. The Bmn are the amplitudes of the respective modes labeled by the mode number
m and n. Inserting Hz from Equation 6.3 into Equation 6.2 yields the dispersion relation
for the propagation constant kz of the TEmn waves

−
(mπ

a

)2

−
(nπ

b

)2

= k2z −
ω2

c2
= −k2c or kz =

√
ω2

c2
−

(mπ

a

)2

−
(nπ

b

)2

, (6.4)

where the modes are labeled by two integers m and n of which at least one must be non-zero.
The other components of the magnetic and the electric field can now be calculated from
Equation 6.1. The impedance of an electro-magnetic wave is given by the ratio of Ex and Hy

and for the TE modes is given by ZTE = Ex/Hy = ωµ0/kz with the frequency-dependent
propagation constant kz given by Equation 6.4.
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Waveguides are used to transport RF power, and this property is described by the
Poynting vector, given by S⃗ = E⃗ × H⃗, which points in the direction of propagation. The
speed of delivery of a pulse of RF power is described by the group velocity vg = dω/dkz =

kzc/
√
k2z + k2c , which is always less than the speed of light, whereas the phase velocity is

given by

vp =
ω

kz
= c

√
k2z + k2c
kz

(6.5)

and always exceeds the speed of light. The product of phase and group velocities is given
by vpvg = c2. Note that frequencies ω with ω2/c2 < ω2

c/c
2 = k2c = (mπ/a)2 + (nπ/b)2 lead

to an imaginary propagation constant, and that implies that waves with this frequency are
exponentially damped and are called evanescent. The frequency fc = ωc/2π is called the
cutoff frequency and separates the regime with propagating waves from that with evanescent
waves. For the mode with m = 1 and n = 0 we see that the cutoff frequency is fc = c/2a and
for the cutoff wavelength λc we find λc = c/fc = 2a, which implies that half a wavelength
has to fit between the transverse walls and waves with longer wavelength will be attenuated
and become evanescent.

Many commonly used waveguides have an aspect ratio of 2, such that a = 2b, which
ensures that the cutoff frequency of the TE01 mode is twice that of TE10 and therefore
only a single mode can propagate in the frequency range between the respective cutoff
frequencies. These waveguides are labeled by WR-xx, where xx is the magnitude of the
larger dimension, here a, given in units of 1/100 of an inch. For example, we use WR-2300
waveguides in our lab to transport 352MHz RF power from the amplifier to the cavity.

The many components of the electric and magnetic fields are difficult to visualize, and
we therefore employ the MATLAB PDE toolbox to determine them numerically and then
display and analyze them further. Numerical methods not only help with visualization,
but also provide a tool to analyze geometries that are difficult or impossible to handle
analytically. First, we simulate the rectangular waveguide discussed in the previous para-
graphs. The full MATLAB code is available in Appendix B.5, so here we only highlight
the most important steps. After defining and inspecting the geometry, following the same
procedure already used for the magnets in Chapter 4, we mesh the problem with a call
to the generateMesh() function. Then we apply the von Neumann boundary conditions
and specify the model coefficients. Since here we deal with the eigenvalue problem posed
in Equation 6.2, a call to the solvepdeeig() function returns the eigenvalues k2c and the
eigenfunctions Hz in the variable result.

applyBoundaryCondition(model,’Edge’,1:4,’q’,0,’g’,0); % Neumann

specifyCoefficients(model,’m’,0,’d’,1,’c’,1,’a’,0,’f’,0,’Face’,1);

result=solvepdeeig(model,[1,5000]);

eigenvalues=result.Eigenvalues; Hz=result.Eigenvectors;

[p,e,t]=meshToPet(model.Mesh);

[dHx,dHy]=pdegrad(p,t,Hz(:,1)); Hx=-dHx; Hy=-dHy; Ex=-dHy; Ey=dHx;

It is easy to verify that the eigenvalues returned are very close to the analytical values
shown on the left-hand side in Equation 6.4. The call to the meshToPet() function creates
an array to describe the points, edges, and triangles of the mesh, which is needed in the
subsequent call to the pdegrad(), which returns the gradient of the solution and yields the
transverse field components by using Equation 6.1. Here we do not include the fore-factors
from Equation 6.1, because we are only interested in the field patterns. The transverse field
patterns can then be displayed with a call to pdeplot(model,’flowdata’,[Hx;Hy]) and
the like. In the MATLAB script from the appendix, we also plot the electric field on axis and
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Figure 6.1 The field components of the lowest (upper row) and second lowest (bottom

row) TM mode in a circular waveguide.

recover the sinusoidal dependence we expect from calculating fields for the lowest modes
analytically.

As a second example we consider TM waves in a circular waveguide with 10 cm radius
and show the resulting fields for the two modes with the lowest eigenvalues in Figure 6.1.
The only changes with respect to the previous example is that, instead of solving Equa-
tion 6.1, we need to solve Equation 5.10 with Ansatz from Equation 5.4. This leads to an
eigenvalue equation, equivalent to Equation 6.2, for the longitudinal electric field compo-
nent Ez. Moreover, for TM waves, the longitudinal component Ez vanishes on the metallic
boundaries, and we need to implement Dirichlet boundary conditions here. The call to the
MATLAB function thus reads

applyBoundaryCondition(model,’Edge’,1:4,’u’,0); % Dirichlet

and we use the solvepdeeig() function to return the eigenvalues k2c and longitudinal
field component Ez. The remaining field components are given by Equation 5.9, which in
MATLAB reads

[dEx,dEy]=pdegrad(p,t,Ez(:,mymode)); Hx=dEx; Hy=-dEy; Ex=-dEx; Ey=-dEy;

and several calls to pdeplot() generate the plots shown in Figure 6.1. Inspecting the eigen-
values from the call to solvepdeeig(), we see that they correspond to those given for the
pill-box cavity by Equation 5.22 with p = 0. This is no surprise, because the pill-box cavity
from Section 5.1 is a cylindrical waveguide, terminated by conducting plates, such that the
waves are not propagating, but form a standing-wave pattern instead. Based on these simple
examples, it should be easy to change the geometry and, for example, analyze the effect of
finite manufacturing tolerances.
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For frequencies in the hundreds of MHz range the waveguides are rather large, and it
is advantageous to transport RF power using coaxial waveguides, or, at low power, coaxial
cables. They have concentric inner and outer conductors with either air or a dielectric filling
the intermediate space. The waves that propagate on coaxial lines are TEM waves which
are characterized by Ez = 0 and Hz = 0. From Equation 5.5 we find that this leads to

∂Ex

∂x
+

∂Ey

∂y
= 0,

∂Ey

∂x
− ∂Ex

∂y
= 0,

∂Hx

∂x
+

∂Hy

∂y
= 0,

∂Hy

∂x
− ∂Hx

∂y
= 0 (6.6)

and to

ikzEy = −iωµ0Hx, −ikzHx = iωε0Ey, −ikzEx = −iωµ0Hy, ikzHy = iωε0Ex . (6.7)

Consistency between the first and the second pair of the latter equations requires that
k2z = ω2µ0ε0 = ω2/c2, or kz = ω/c, which is the dispersion relation of a wave propagating in
a coaxial wave guide. Comparing with the dispersion equation for TE waves, Equation 6.4,
we see that the cutoff wave vector kc now is zero and all waves, independent of their
frequency or wave vector, can propagate. We encountered equations, similar to those of
Equation 6.6 before, when discussing purely transverse magnetic fields in Chapter 4, where
we realized that the first and second pair of equations are equivalent to the Cauchy-Riemann
equations. Here, we can therefore derive, for example, the electric field components Ex

and Ey from a purely transverse scalar potential Φ(x, y) that fulfills the Laplace equation
△Φ = 0 via the expressions Ex = −∂Φ/∂x and Ey = −∂Φ/∂y. At this point we see
that we can calculate the field pattern of TEM waves by solving an equivalent electro-
static problem, namely solving the Laplace equation with constant voltages on metallic
boundaries. For azimuthally symmetric field configurations and in cylindrical coordinates
(r, ϕ), the Laplace equation is given by

1

r

∂

∂r

(
r
∂Φ

∂r

)
= 0 (6.8)

such that Φ does not depend on the variable ϕ. It is straightforward to verify that
Φ(r) = A ln r + B with arbitrary integration constants A and B satisfies Equation 6.8.
Matching them to a given potential Φ(ri) = V0 on the inner conductor with radius ri and
Φ(ro) = 0 on the outer conductor with radius ro, we find that the potential is given by
Φ(r, ϕ) = V0 ln(ro/r)/ ln(ro/ri). Converting back to Cartesian coordinates and calculating
the fields are left as an exercise. Instead, we use MATLAB to calculate them in the file
TEMcoax.m from Appendix B.5. After defining the geometry, meshing, we define the bound-
ary conditions and the material properties with calls to applyBoundaryCondition() and
specifyCoefficients(), where m, d, c, a, and f are the coefficients of the PDE.

applyBoundaryCondition(model,’Edge’,1:4,’u’,0); % outer

applyBoundaryCondition(model,’Edge’,5:8,’u’,1); % inner

specifyCoefficients(model,’m’,0,’d’,0,’c’,1,’a’,0,’f’,0,’Face’,1);

result=solvepde(model);

Phi=result.NodalSolution;

Ex=-result.XGradients; Ey=-result.YGradients; Hx=-Ey; Hy=Ex;

subplot(1,3,1);

pdeplot(model,’XYData’,Phi,’ZData’,Phi,’ColorBar’,’off’)

axis square; view([70,30]);

xlabel(’x [m]’); ylabel(’y [m]’); zlabel(’\Phi [V]’);



158 ■ Hands-On Accelerator Physics Using MATLAB®

Figure 6.2 The potential Φ (left) and the field components in a coaxial waveguide.

With the problem properly defined, we call solvepde() to solve the Laplace equation
and store the potential in the variable Phi. In the following line, we extract the gra-
dients, which yields the electric field components. The magnetic field components are
given by Equation 6.7, where we did not include the proportionality constant, because
we only are interested in the field patterns. Three calls to pdeplot() generate the plots in
Figure 6.2, where only the first call to show the potential Phi is specified in the code
snippet above. The electric and magnetic field patterns in the other two plots are created
with pdeplot(model,’flowdata’,[Ex,Ey]) and pdeplot(model,’flowdata’,[Hx,Hy]),
respectively. We observe that the electric field only has a radial component and the magnetic
field only an azimuthal component that encircles the inner conductor.

Waveguides and coax lines are two examples of transmission lines that are often charac-
terized by current and voltage waves traveling along them. The connection to the description
in terms of electric and magnetic fields, we used in the previous paragraphs, is made by
considering the fields in a coax line at a fixed position z and realizing that the azimuthal
magnetic field Hϕ(r, z) is created by a current I(z) traveling on the central conductor.
Moreover, the integral of the radial electric field component yields the voltage difference
V (z) between the inner and outer conductor:

I(z) =

∮
Hϕ(r, z)rdϕ and V (z) =

∫ ro

ri

E(r, z)dr . (6.9)

It can be shown [37] that the averaged power flow given by the integral of the Poynting
vector over the cross-section of the coax line equals the power flow given as the product of
current and voltage.

Using the description in terms of voltages and currents permits us to use the lumped-
element description of a short section of the transmission line with length ∆z shown in
Figure 6.3. Here L′ represents the inductance per unit length, such that L′∆z is the in-
ductance of a short section of the conductor. Likewise, C ′∆z is the capacitance between

Figure 6.3 The lumped-elements model for a transmission line. See text for details.
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inner and outer conductor. The series resistance R′ and shunt conductance G′ are intro-
duced to describe losses in the conductors or the dielectric between the conductors. For
harmonic currents and voltages with a eiωt dependence, Kirchhoff’s rules lead, in the limit
of infinitesimal short sections with ∆z → dz, to the telegrapher’s equations

dV

dz
= −(R′ + iωL′)I(z) and

dI

dz
= −(G′ + iωC ′)V (z) . (6.10)

Inserting one of the equations into the other leads to d2V (z)/dz2 − γ2V (z) = 0 and
d2I(z)/dz2 − γ2I(z) = 0 with the complex propagation constant γ = α + iβ =√

(R′ + iωL′)(G′ + iωC ′). Solutions to these equations are waves traveling to the left and
to the right. They are given by

V (z) = V+e
−γz + V−e

γz and I(z) = I+e
−γz + I−e

γz . (6.11)

Inserting the expression for V (z) into the left-hand side in Equation 6.10, we find I(z) =
γ (V+e

−γz − V−e
γz) /(R′ + iωL′). Comparing with I(z) in Equation 6.11, we see that we

can relate the current and the voltage by

I(z) =
1

Z0

(
V+e

−γz − V−e
γz
)

with Z0 =

√
R′ + iωL′

G′ + iωC ′ . (6.12)

Here Z0 has the units of Ohms and is the characteristic impedance of the transmission
line. It is given by the ratio of voltage and current, analogously to the earlier definition in
waveguides as the ratio of electric and magnetic fields. For a line without losses, R′ = 0
and G′ = 0, it is given by the ratio of the inductance and the capacitance Z0 =

√
L′/C ′,

while the real part of the propagation constant α vanishes and the imaginary part is given
by β = ω

√
L′C ′. Without proof [37] we mention that this propagation constant β agrees

with kz, calculated from the analysis of the electro-magnetic fields earlier in this section.
The purpose of the transmission line is to move the RF power from the amplifier dis-

cussed in Section 6.1 to a “consumer”, for example an acceleration structure, and the latter
can be represented by a load impedance ZL at the end of the transmission line. Let us choose
the reference point, where the load is located, to be z = 0. There, the current and voltage
are related by V (0) = ZLI(0) with V (z) given by Equation 6.11 and I(z) by Equation 6.12.
Solving for the reflected voltage V− we find

V− =
ZL − Z0

ZL + Z0
V+ or V− = ΓV+ with Γ =

ZL − Z0

ZL + Z0
, (6.13)

where Γ is the reflection coefficient. We observe that matching the load impedance ZL

to the impedance of the transmission line Z0 minimizes the reflections, and all power is
“consumed” by the load.

If ZL = 0, the transmission line is short-circuited and the wave is reflected with Γ =
−1 and V− = −V+. This results in a counter-propagating wave and leads to standing
waves along the transmission line. The voltage at position z is V (z) = V+(e

−iβz − eiβz) =
−2iV+ sin(βz) and for the current we find I(z) = V+(e

−iβz + eiβz)/Z0 = 2V+ cos(βz)/Z0.
For the ratio of voltage and current a distance z = −L to the left of the short circuit, we
obtain Z(−L) = iZ0 tan(βL), which is purely imaginary or reactive. We thus find that the
impedance varies periodically with distance L. For an open circuit with ZL = ∞ we have
V− = V+ and showing that the impedance in that case is Z(−L) = −iZ0 cot(βL) we leave
as an exercise.

The transmission line shown in Figure 6.3 is an example of the more general device, a two-
port network with current I1 and voltage V1 on the one side and the corresponding quantities
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with index 2 on the other side. Other examples are attenuators, filters, or amplifiers. Many
of these devices are linear and their inner workings can be understood with the help of
Kirchhoff’s rules, just as we did earlier, when discussing the transmission line itself. The
linearity makes it possible to prepare so-called ABCD matrices that relate the input current
and voltage to the output voltages

(
V1

I1

)
=

(
A B
C D

)(
V2

I2

)
(6.14)

in much the same way we earlier used transfer matrices for the phase-space coordinates.
Likewise we can use the ABCD matrices for two-port components to cascade several of
them. We will use them further on and list matrices of a few examples in the following
table:

(
1 Z
0 1

) (
1 0

1/Z 1

)

(
cosβL iZ0 sinβL

(i/Z0) sinβL cosβL

) (
1/n 0
0 n

)

The top line shows the symbols and matrices for series and shunt impedances, and the bot-
tom row those for a loss-less transmission line with characteristic impedance Z0, propagation
constant β, and length L, as well as a transformer with winding ratio n.

Representing networks by matrices automatically takes Kirchhoff’s rules into account
and a useful application is matching load impedances ZL to line impedances Z0. Two ex-
amples are shown in Figure 6.4. The matrix representation of the left-hand side example,
where a transformer is used, leads to the following equation

(
V0

I0

)
=

(
1/n 0
0 n

)(
1 0

1/ZL 1

)(
VZL

0

)
such that Z0 =

V0

I0
=

1

n2
ZL (6.15)

where we used that no current enters or leaves the circuit at the end where ZL is located.
We find that a transformer with winding ratio n reduces the impedance ZL by n2. This is
suitable for |Z0| < |ZL|, but reversing the transformer works in the converse case, where
|Z0| > |ZL|. Note that a transformer cannot match a complex impedance ZL to a real Z0,
because both impedances have the same ratio of real to imaginary part. This deficiency is
remedied by the circuit shown on the right-hand side in Figure 6.4, which uses two reactive
impedances iX and iY to match the real and the imaginary part of the load impedance
ZL to Z0. Multiplying the matrices gives voltage V0 and current I0 and the condition to
match the impedances is Z0 = V0/I0 = iX + 1/ [1/iY + 1/(RL + iXL)] . Separating real

Figure 6.4 Matching a load impedance ZL to a line impedance Z0 with the help of

a transformer (left) and with two reactances (right).
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and imaginary parts yields two equations for the unknown values X and Y for the matching
reactances. Solving the equations involves long, but standard, algebra that we do not repeat
here. Instead, we refer to the specialized literature [37] for the solution that turns out to be
suitable for Z0 < RL, and the converse solution that is suitable for Z0 < RL, and involves
moving the line reactance iX to a position adjacent of ZL.

The analysis of matching networks so far only used lumped circuit elements, but it
is equally well applicable to transmission lines involving waveguides. Instead of resistors,
capacitances, or inductors, so-called matching stubs are used. They consist of either cylin-
ders, often movable, that are inserted in the waveguide, or of alcoves to a waveguide. These
elements create local interference patterns of the passing waves. They change the magni-
tude and phase of magnetic and electric fields components in different ways, and thereby
change the impedance of the wave. The design of these elements requires electro-magnetic
simulation tools that are beyond our scope.

The ABCD matrices are not the only matrix description for circuit networks and other
descriptions of the same physics exist; for example, the impedance matrix that returns the
voltages on the ports as a consequence of currents flowing into the ports. Its inverse is called
the admittance matrix. The matrix elements of the different matrix descriptions can be
expressed in terms of each other, but we leave this to the specialized literature [37]. Instead
we briefly discuss the commonly used characterization of network elements in terms of S-
parameters, which have the big advantage of being experimentally accessible with network
analyzers by exciting a port n with a voltage Vn+ and recording the voltage response
Vm− exiting from the same port n or from another port m. Thus, they are generalizations
of reflections and transmission coefficients. It is important to realize that only a single
port is excited, and it is assumed that no reflections from other ports occur; they must
be matched by their characteristic impedance. For a given port, say n, we can relate the
forward and backward traveling voltages with the help of Equations 6.11 and 6.12 and the
notation Vn = Vn+ + Vn− and In = (Vn+ − Vn−)/Z0. Solving for Vn+ and Vn− we obtain
Vn+ = (Vn+InZ0)/2 and Vn− = (Vn−InZ0)/2. In passing, we mention that in the literature
often the quantities an = Vn+/

√
Z0 and bn = Vn−/

√
Z0 are used. The S-parameters are

defined by

S11 =
V1−

V1+

∣∣∣∣
V2+=0

, S12 =
V1−

V2+

∣∣∣∣
V1+=0

, S21 =
V2−

V1+

∣∣∣∣
V2+=0

, S22 =
V2−

V2+

∣∣∣∣
V1+=0

, (6.16)

and since the Vn± can be expressed in terms of currents and voltages, the S–parameters for
two-port devices can be converted to ABCD and the other matrices [38].

S-parameters are, however, not limited to two-port devices and describe devices with
different numbers of ports equally well, and we will discuss a few examples that frequently
appear in RF systems. A load is a one-port device whose purpose is to dissipate all incident
power. It therefore must be matched to the transmission line feeding it. The reflections,
given by its S11, should be as small as possible. Typical values are 10−3 < S11 < 10−2.
Loads are used in many installations during commissioning to ensure proper operation of
subsystems and during later operation to dissipate undesired reflected signals. We already
mentioned transmission lines, attenuators, filters, and amplifiers as typical examples for
two-port networks and will not discuss them further. Transitions between different types
of transmission lines, for example from a coaxial line to a waveguide, shown on the left-
hand side in Figure 6.5, are further examples of two-port networks. Examples for three-port
devices are 3 dB power splitters. They divide the power incident on one port equally to
two other ports. They are used, for example, to distribute the power from one klystron to
two or several accelerating structures. Circulators are three-port devices that use magnetic
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Figure 6.5 Coupling a coaxial line or a cable to a circular waveguide (left) and a

transition from a coaxial line to a square waveguide with a door knob (middle).

The right-most figure shows a two-hole directional coupler.

materials, often ferrites, to produce an asymmetry between signals propagating one way
and those in the reverse direction. In particular, they pass signals from the first port to the
second, but power entering the second port is directed to the third port, often connected to
a load to dissipate the power. Circulators are commonly used to protect klystrons or other
amplifiers from the reflected power from mismatched accelerating structures. It is possible
to eavesdrop on the signals in RF distribution systems with directional couplers. They are
four-port devices that pick up a small fraction, typically 10−3 to 10−6, of the RF power
that passes through them from port 1 to port 2. In their simplest incarnation, they consist
of a parallel waveguide, coupled with two holes a distance λ/4 apart, to the power-carrying
waveguide. In the upstream port 4 of the “diagnostic waveguide,” the signals from the
two coupling holes are λ/2 out-of-phase and cancel, as is illustrated on the right-hand side
in Figure 6.5, while on the downstream port 3 they add to a non-vanishing contribution
that can be coupled to coaxial cable and transported to analyzing electronics, such as an
oscilloscope.

Using waveguides and other transmission lines enables us to transport the RF power
into the vicinity of the accelerating structures and cavities, but now we need to address the
question of how to efficiently couple the power into the structures themselves, and that is
the topic of the next section.

6.3 COUPLERS AND ANTENNAS

The task of a power coupler is to transfer the RF power from a coaxial line or waveguide to
a resonant structure, such as a cavity. There are three basic methods [39] to accomplish this,
and we already mentioned two of them in conjunction with directional couplers: coupling
through holes or slots, and coupling waveguides to coaxial cables. Figure 6.5 shows two
examples of the latter, which both have a coaxial line coming from the top, and only a
short section of the central conductor extends into the circular waveguide and serves as an
antenna. Ensuring that the distance to the right-hand end of the waveguide is a quarter
of the wavelength ensures the electric field, which must be zero at the end, to have a
maximum at the location of the small antenna. In the example in the middle, the coupling
to the waveguide is increased by extending the center conductor to the other side of the
waveguide and terminating it in a so-called door knob. The sinusoidal current flowing in the
center conductor behaves similar to dipole antenna and radiates power into the modes that
propagate in the waveguide. Note that in these transitions the signal can equally well flow
from waveguide to the coaxial line or in the reverse direction, and such devices are therefore
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Figure 6.6 Three coupling methods to feed power into resonating acceleration struc-

tures: slot couplers, coaxial couplers, and loop couplers.

called reciprocal. On the right-hand side in Figure 6.5, we show the directional coupler
mentioned near the end in the previous section. Here power flows from port 1 to port 2,
but part of the magnetic field, which is largest on the waveguide surface, can penetrate as
an evanescent wave through the small coupling holes into the second waveguide, where it
excites waves that propagate with the same frequency as the original one.

The two mechanisms of coax antennas and slot coupling are also used to couple power
into the accelerating cavities. The left-hand side in Figure 6.6 shows a waveguide coupled
with a coupling hole to an accelerating structure and in the middle a coaxial coupler,
similar to those used to excite the superconducting cavities in LEP at CERN. On the
right-hand side, the third coupling mechanism is shown, where a small loop couples to the
azimuthal magnetic field component and thereby excites the fields in the cavity. The design
and optimization of these couplers requires numerical three-dimensional electro-magnetic
field calculations, and the interested reader is referred to [39] and the references given there.

A qualitative understanding of the process of filling a cavity can be derived from the
equivalent circuit model, shown in Figure 6.7, where the power source is represented by
a matched current source Ig that is connected through a transmission line to the power
coupler, which is modeled by a transformer with a winding ratio n. The resonating cavity
or accelerating structure is modeled as an RLC resonator. The inductance L and capacitance
C define the resonance frequency ω̂, and the resistance R defines the losses in the cavity.
Note that there are additional losses due to the source impedance of the generator Z0,
but transformed to the other, resonator, side of the transformer. Using ABCD matrices we
can easily calculate the voltage VL and current IL at the reference plane, indicated by the

Figure 6.7 Equivalent circuit with a current source, the generator, with current Ig
driving a resonant structure, such as a cavity. The second current source Ic models

the beam and will be discussed in Section 6.6.
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vertical dashed line in Figure 6.7. The circuit then directly translates to

(
VL

IL

)
=

(
1/n 0
0 n

)(
1 0

1/R 1

)(
1 0

1/iωL 1

)(
1 0

iωC 1

)(
Vc

Ic = 0

)

=

(
1/n 0

n/R+ n (iωC + 1/iωL) n

)(
Vc

0

)
(6.17)

where each circuit element from right to left is replaced by the matrix for the corresponding
shunt impedances. Vc is the voltage in the cavity and since we consider operating the circuit
without beam, the current Ic is zero. The impedance ZL, which is the load that the generator
drives is then given by the ratio of voltage VL and current IL at the reference plane

ZL =
VL

IL
=

1/n

n/R+ n(iωC + 1/iωL)
=

R/n2

1 + iR
√
C/L

(
ω
√
LC − 1/ω

√
LC

) . (6.18)

Introducing the resonance frequency ω̂ = 1/
√
LC and loss parameter Q0 = R

√
C/L, we

can write the previous equation as

ZL =
R/n2

1 + iQ0

(
ω
ω̂ − ω̂

ω

) (6.19)

and realize that ZL is the load resistance to which the generator with source impedance
Z0 delivers the power, and we can use Equation 6.13 to calculate the reflection coefficient
Γ = (ZL − Z0)/(ZL + Z0). Obviously, all power is delivered to the cavity, provided that
ZL = Z0.

The power coupler does not only deliver power to the resonator, it also allows power to
escape from the resonator, which is easily seen by realizing that the source impedance Z0 is
placed in parallel to the resistor R. We have, however, taken into account that the resonator
“sees” Z0 through the coupler, which steps up the voltage by a factor n and steps down the
current by the same factor, such that the impedance, being the ratio of voltage and current,
is stepped up by n2. We thus find Zg = n2Z0, and the total losses are given by the total
impedance 1/Rt = 1/R+1/Zg = 1/R+1/n2Z0. The ratio of internal losses, given by R and
external losses, given by Zg = n2Z0 is commonly called the coupling factor β = R/n2Z0, and

one associates a quantity QE = n2Z0

√
C/L, the external quality factor, to the losses due

to power escaping from the resonator through the coupler. The sum of the losses are then
described by the loaded Q, or QL. It is given by 1/QL = 1/Q0 + 1/QE = (1 + β)/Q0 and
simply describes the two contributions to the power loss from the resonator: Q0 describes
the power dissipated in the cavity walls and QE the power escaping through the coupler.

The above definition of the coupling factor β = R/n2Z0 and ZL from Equation 6.19
now allows us to express the reflection coefficient Γ as

Γ =
ZL − Z0

ZL + Z0
=

β − 1− iQ0δ

β + 1 + iQ0δ
with δ =

ω

ω̂
− ω̂

ω
, (6.20)

which succinctly summarizes the coupling of an external generator to a resonator by two
parameters: Q0, which describes the internal losses of the resonator and the coupling factor
β, which describes both the power transfer into the resonator, but also the power escaping
from the resonator. The coupling factor β can be adjusted by changing, for example, the
length of the antenna, shown in Figure 6.6, or the angle of the loop with respect to the
magnetic field lines. Tuning it to make the reflection coefficient Γ zero for ω = ω0 requires
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β = 1; this condition is called critically coupled and describes steady-state operating con-
ditions. The case with β < 1 is called under-coupled and describes the situation where the
power is escaping from the resonator faster than it is replenished. The converse situation
with β > 1 is called over-coupled.

To implement tunability of the coupling factor β is often technically challenging, be-
cause the available space is very tight. Moreover, the design engineer has to accommodate
vacuum barriers, so-called windows, because the waveguides are usually air-filled, while the
resonating structures are evacuated. These windows must withstand the flow of MW with
electric field levels in the multi-MV range. This may lead to harmful discharges that must
be avoided, because they can destroy the vacuum windows. A further difficulty is multi-
pacting, resonant avalanches of field-emitted electrons that bounce back and forth between
surfaces and increase in numbers every time they impact the coupler surface. This usually
happens intermittently during power-conditioning and commissioning and only at certain
power levels. Couplers for superconducting cavities must include heat barriers to separate
the waveguides at room temperature from the resonating structures at liquid Helium tem-
peratures.

Instead of discussing the technical realization of couplers further, we turn to the res-
onating structures that are used to accelerate the beam. First we look at the internal losses
in a cavity which determine, for example, Q0 in Equations 6.19 and 6.20.

6.4 POWER TO THE BEAM: RESONATORS AND CAVITIES

In Section 5.1 we determined the resonating modes in a pill-box cavity. Moreover, in the
previous section, we found that the internal losses, expressed by the Q0 play an important
role for filling the cavity. Therefore, we will consider the origin of these losses closer and
determine them for the pill-box cavity.

6.4.1 Losses and quality factor Q0 of a pill-box cavity

In Section 5.1, we assumed that the walls of the cavity are perfectly conducting, but this
assumption is only approximately fulfilled, and a finite conductivity σ will be responsible
for the dissipation of some energy. The reason is the tangential component of the magnetic
field, which is continuous at the interface between the inside of the cavity and the walls
and therefore penetrates into the cavity walls. Since it is time-varying, it will cause an
electric field (skin effect) that in turn drives eddy currents in the cavity walls; just like in a
transformer or induction stove, they will heat the metal through ohmic losses.

The quantitative description is based on Maxwell’s equations in materials with finite
conductivity σ, where electric fields E⃗ drive conduction currents J⃗ via Ohm’s law J⃗ = σE⃗.
The two curl equations from Equation 5.1 then read

∇⃗ × E⃗ = −µ0
∂H⃗

∂t
and ∇⃗ × H⃗ = σE⃗+ ε0

∂E⃗

∂t
. (6.21)

Applying the curl operator to the second equation and assuming a harmonic time-
dependence with H⃗ = H⃗′eiωt, we find, after using ∇⃗ · H⃗ = 0, that

△H⃗′ = (iωµ0σ − µ0ε0ω
2)H⃗′ = γ2H⃗′ (6.22)

with γ2 = iωµ0σ − µ0ε0ω
2. Likewise, applying the curl operator to the first equation, we

find △E⃗′ = γ2E⃗′. Both E⃗ and H⃗ show exponential dependence on a local coordinate z′ that
points into the metallic surface

E⃗′ = E⃗0e
−γz′

(6.23)



166 ■ Hands-On Accelerator Physics Using MATLAB®

with γ ≈
√
iωµ0σ = (1 + i)

√
ωµ0σ/2 = (1 + i)/λs. Here we use the fact that at high fre-

quencies ω, the first term in γ2 is much larger than the second, because conduction currents
are much larger than the displacement currents. Therefore, the fields decay exponentially
into the metal with decay length λs =

√
ωµ0σ/2, the skin depth. The factor 1 + i accounts

for a phase shift by arg(1 + i) = π/4.
We can now relate the magnetic field on the surface, which is continuous, to the electric

field just inside the metal by exploiting −iωµ0H⃗
′ = ∇⃗× E⃗′, the first of Equations 6.21, and

assume that the tangential component of the magnetic field H0y′ on the interface points
toward the local y′-direction, such that the only component of the electric field affected by
curl-operator is E0x and we get

−iωµ0H0y′e−γz′
= − ∂

∂z′
E0x′e−γz′

, (6.24)

such that we arrive at the electric field just below the surface E0x′ = −i(ωµ0/γ)H0y′ ≈
−(1 + i)

√
ωµ0/2σH0y′ , expressed in terms of the magnetic field which is continuous across

the boundary.
Inside the metal, the electric fields Ex′ = E0x′e−γz′

drive conduction currents
Jx′ = σEx′ , which will dissipate energy, and lead to a time-averaged power loss density
d3P/dx′dy′dz′ = Jx′E∗

x′/2 = Jx′J∗
x′/2σ, where the asterisk denotes the complex conjugate.

Integrating over dz′, extending far into the metal, we obtain

d2P

dx′dy′
=

ωµ0

2
H2

0y′

∫ ∞

0

e−2z′/λsdz′ =
ωµ0λs

4
H2

0y′ =
1

2λsσ
H2

0y′ . (6.25)

Remembering that we selected the y′-direction to be parallel to the tangential component
H|| of the magnetic field on the surface, we obtain the total power loss P0 by integrating
over the inner surface areas of the cavity

P0 =
1

2λsσ

∫
H2

||dA =
Rs

2

∫
H2

||dA (6.26)

where we introduce the sheet resistivity Rs = 1/λsσ.
The magnetic field of a TM010 mode is purely azimuthal and is given by Hϕ =

−i(E0/Z0)J1(p1r/R) where p1 = 2.405 is the first zero of the Bessel function J0 with
J0(p1) = 0. This field is tangential on the circumference of the pill box and on the two
faces at the end. We calculate the losses on the circular circumference Pc first. Here we have
r = R which makes the integral trivial to evaluate

Pc =
Rs

2

∫
H2

ϕRdzdϕ =
πRsE

2
0

Z2
0

J2
1 (p1)Rl (6.27)

and the losses Pe on the two end faces are

Pe = 2
Rs

2

∫
H2

ϕrdϕdr =
2πRsE

2
0

Z2
0

R2

∫ 1

0

J2
1 (p1t)tdt =

πRsE
2
0

Z2
0

J2
1 (p1)R

2 , (6.28)

where we used the identity
∫ 1

0
J2
1 (p1t)tdt = [J2

0 (p1) − (2/p)J0(p1)J1(p1) + J2
1 (p1)]/2 =

J2
1 (p1)/2 because of J0(p1) = 0. The total losses P0 for the fundamental mode of the pill-

box cavity are then given by the sum of Pc and Pe

P0 =
πRsE

2
0

Z2
0

J2
1 (p1)R(R+ l) , (6.29)

where J1(p1) ≈ 0.52.
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We compare these losses to the time-averaged energy U in the cavity, which is given by
the integral of the energy density of the electric and magnetic fields over the volume V of
the cavity

U =
1

4

∫ (
ε0E⃗

′2 + µ0H⃗
′2
)
dV . (6.30)

Since the two contributions from the electric and the magnetic fields are equal, it suffices to
calculate twice the contribution from the electric field and since the only non-zero component
is Ez = E0J0(p1r/R), we need to calculate

U = ε0E
2
0

∫
J2
0 (p1r/R)rdϕdrdz = πR2lε0E

2
0

∫ 1

0

J2
0 (p1t)tdt =

πR2lε0E
2
0

2
J2
1 (p1) (6.31)

where we used the identity
∫ 1

0
J2
0 (p1t)tdt = [J2

0 (p1) + J2
1 (p1)]/2 with J0(p1) = 0.

These are the losses we previously described by the quality factor Q0 in Equation 6.19,
which is also given by the ratio of the stored energy U and as 2π times the losses during
one oscillation period P0/ω1 of, here, the first mode with frequency ω1/c = p1/R.

Q0 =
ω1U

P0
=

p1Z0

2Rs

1

1 +R/l
=

G

Rs
(6.32)

where we see that Q0 on one hand depends on the geometry constant G through geometric
quantities: the radius R and the length l. On the other hand, it is inversely proportional
to the surface resistance Rs. Since the surface resistance depends on the penetration of the
fields into the conductor through the skin effect, it is frequency dependent and proportional
toRs ∝

√
ωrf . For copper at room temperature and at frf = ωrf/2π = 1GHz it isRs ≈ 8mΩ.

For our pill-box cavity with R = 0.23m and assuming a length of l = 0.2m, we find
Q0 = 3.7 × 104. If we were to construct the same cavity from superconducting niobium
at 4K, where the surface resistance is on the order of Rs ≈ 100 nΩ, we obtain Q0 =
2.1× 109. This indicates that the losses in the normal-conducting copper cavity are about
five orders of magnitude larger than in a corresponding superconducting cavity and explains
why the latter are used in accelerators with continuously running radio-frequency systems
that require large power delivered to the beam, such as LEP. Other examples are linear
accelerators operating with long macro-pulses, often in the millisecond range, such as the
ESS, the European XFEL, and LCLS-II at SLAC.

When exciting a cavity with an external generator, we want to accelerate particles, but
we do not want to dissipate power in the cavity walls. Using the symbols from Figure 6.7:
we want Vc to accelerate, but do not want to dissipate P0 = ⟨V 2

c ⟩/R = V̂ 2
c /2R in the shunt

resistor R. The angle brackets denote averaging over time such that we have ⟨V 2
c ⟩ = V̂ 2

c /2.
The voltage V̂c is related to the peak electric field E0 by V̂c = TE0l, where T is the transit-
time factor, defined in Section 5.2. For the shunt resistance R we therefore find

R =
V̂ 2
c

2P0
=

Z2
0

πJ2
1 (p1)Rs

× T 2l2

R(R+ l)
(6.33)

for our pill-box cavity. The second factor contains only parameters that define the geometry
of the cavity: the length l, the radius R, and the transit-time factor T. The first factor
contains only numerical constants and the surface resistance Rs. We note that a small value
of Rs, as found in superconducting cavities, results in a large shunt resistance R.

Comparing Equations 6.32 and 6.33, we observe that both definitions are inversely pro-
portional to the dissipated power P0, which makes it natural to consider the ratio R/Q0. It



168 ■ Hands-On Accelerator Physics Using MATLAB®

is given by
R

Q0
=

V̂ 2
c

2ω1U
=

Z0T
2

πp1J2
1 (p1)

(
l

R

)
(6.34)

and relates the voltage “seen” by the beam V̂c to the stored energy U in the cavity. It only
depends on natural constants and parameters defining the geometry of the cavity. The art
of designing cavities involves maximizing this quantity, because it maximizes the efficiency
of the cavity geometry, but is independent of material properties.

We could analyze our simple pill-box cavity analytically, but for other geometries we
need to employ the numerical methods we turn to in the next section.

6.4.2 General cavity geometry with the PDE toolbox

In most circumstances the geometry of cavities differs from the simple and analytically
tractable models with high degrees of symmetry, such as the pill-box cavity, and we have to
employ numerical tools to find the eigenfrequencies and the fields. In order to illustrate the
methods, we first investigate the influence of the beam pipe aperture on the fundamental
mode and eigenfrequency of a pill-box cavity with a length l = 0.3m and radius R = 0.23m,
such that the frequency of the fundamental mode, according Equation 5.23, should be close
to 500MHz. The pipe through which the beam enters and exits the cavity has a radius of
1 cm. The geometry is assumed to be azimuthally symmetric and is shown on the left-hand
side in Figure 6.8. In the center, extending from −0.15 to 0.15m is the cavity visible with
the beam pipe sticking out near to ±0.4m.

The eigenfrequencies and fields of TM modes are determined by Equation 5.10 subject to
the boundary conditions that the tangential electric field components are zero on the metal-
lic surfaces. Since we seek azimuthally symmetric solutions, we can omit the dependence on
the azimuthal angle ϕ and turn Equation 5.11 into

∂Ez

∂r
+ r

∂2Ez

∂r2
+ r

∂2Ez

∂z2
= −r

ω2

c2
Ez . (6.35)

Figure 6.8 The presence of the beam pipe distorts the electric field in a pill-box cavity

(left) and on the axis (bottom right, solid line), but the influence is moderate at

larger radius (dotted line). Very little distortion is visible along the vertical radial

line at z = 0 (top right).
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As before, we will use the MATLAB PDE toolbox to solve this problem, but, since we will
use cylindrical coordinates, we first have to adapt the Laplace operator in Equation 6.35 to
a form that the toolbox can handle, namely we have to “put it into divergence form,” which,
according to the manual for the PDE toolbox, is written as −∇⃗ · (c∇⃗Ez) + aEz = λdEz.

Here ∇⃗ = (∂/∂r, ∂/∂z) is the gradient operator in cylindrical coordinates r and z.Moreover,
the 2 × 2 matrix c and the functions a and d depend on r and z. Comparing this form to
Equation 6.35 we find that ã = 0, d̃ = −r, and c̃ is a matrix with −r on the diagonal and
zeroes on the off-diagonal. However, it turns out that MATLAB R2024a requires c to be
positive. We therefore simply multiply Equation 6.35 by −1, which basically flips the signs of
ã, b̃ and c̃, giving us a = 0, d = r, and c with r on the diagonal. These preparations enable us
to solve azimuthally symmetric, sometimes called 2.5-dimensional, problems. We define the
geometry of the problem with cavity and beam pipe sections attached and specify Dirichlet
boundary conditions for boundaries parallel to the beam pipe and Neumann conditions for
radial boundaries, because Equation 5.9 indicates that radial fields are given by derivatives
of Ez. After meshing the geometry and defining the boundary conditions, we specify the
coefficients m, d, c, a, and f and call the eigenvalue solver solvepdeeig(), which returns
the eigenvalues k2 = ω2

mnp/c
2 for m = 0 in the range 1 < k2 < 800 and the fields Ez

cfun=@(location,state)location.y;

dfun=@(location,state)location.y;

specifyCoefficients(model,’m’,0,’d’,dfun,’c’,cfun,’a’,0,’f’,0);

result=solvepdeeig(model,[1,800]);

k2=result.Eigenvalues; Ez=result.Eigenvectors;

freq_GHz=sqrt(k2’)*3e8/(2*pi*1e9)

In the MATLAB script, which is reprinted in Appendix B.5, we generate the figure shown on
the left-hand side in Figure 6.8 with contour lines of Ez that show the field to be distorted
near to the beam pipe and even slightly penetrates into the pipe. On the right-hand side,
the upper graph shows the radial dependence of Ez along a radial line in the center of the
cavity as a solid line. The asterisks show the analytical result from Equation 5.21. Here we
see that the pipe has very little influence. The solid line in the lower graph shows Ez along
the center line, and we find that the field penetrates into the beam pipe and is significantly
reduced near the ends of the cavity. The dotted line shows Ez at r = R/2 and, since it
is further removed from the beam pipe, is much more constant. When varying the beam
pipe radius, we found that the eigenvalues, and the frequency of the fundamental mode
changes. It is now a simple exercise to vary the radius R of the cavity to recover the desired
frequency, here 500MHz.

Since all fields in the cavity are available in numerical from, it is a straightforward ex-
ercise to calculate the loss factor and shunt impedance from integrals of the fields over
the surfaces. In most cases, specific design codes for RF applications calculate these quan-
tities automatically. Instead of discussing the details of cavity design further, we turn to
accelerating structures that are normally used in linear accelerators.

6.4.3 Disk-loaded waveguides

It is possible to accelerate beams with multiple and separate cavities, but in that case each
cavity has to be synchronized, or “phased,” with the arrival time of the particles. This
requires a significant amount of hardware, such as phase shifters. This complication can be
avoided by connecting many cavities in series, only separated by an iris through which the
particles and the RF power propagate from one cavity, in this case often called a cell, to
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Figure 6.9 Physical realization of a disk-loaded waveguide (left) and the electrical

model as an equivalent transmission line (right). See the text for explanations of

the symbols.

the next. See the left-hand side in Figure 6.9 for an illustration. By suitably choosing the
radius R and length d of the cells, as well as the aperture a and thickness w of the irises,
it is possible to adjust the coupling from one cell to the next and control the phase of the
fields in the cells to match the arrival time of the particles. The structure with multiple
cells separated by the irises in-between resembles a waveguide with corrugations and is aptly
called disk-loaded waveguide. Instead of considering the sequence of cells that are coupled
through apertures, the irises, we may also consider it as a waveguide that is loaded with
washer disks, spaced by a distance d. In this view, the purpose of the disks is to reduce the
phase velocity of waves propagating in the waveguide to match the speed of the particles.
This ensures that the particles experience the same phase of the field, typically close to the
maximum, in each of the cells.

In the following we consider TM01 waves that accelerate particles with their longitudinal
electric field Ez. The disks reflect the waves and cause a longitudinal modulation of the field.
Owing to the periodicity with the longitudinal spacing of the disks d, and with the help of
Floquet’s theorem, we can express Ez as a propagating wave modulated with some periodic
function g(r, z) =

∑
n fn(r)e

−2πinz/d = g(r, z + d). Here we express the periodic function
as a Fourier series in z with coefficients fn(r) that depend on the radial coordinate r. Thus
we arrive at

Ez(r, z, t) = ei(ωt−kzz)g(r, z) = ei(ωt−kzz)

( ∞∑
n=−∞

fn(r)e
−2πinz/d

)
(6.36)

instead of the simple harmonic Ansatz for the spatial dimension z from Equation 5.4. The
functions fn(r) with the radial dependence is determined by inserting Equation 6.36 into
Equation 5.10, which leads to

r2
d2fn
dr2

+ r
dfn
dr

+ r2

[
ω2

c2
−

(
kz +

2πn

d

)2
]
fn = 0 . (6.37)

We recognize this equation as Bessel’s differential equation for index zero [22], such that
we can write the solution as an ordinary Bessel function of integer order fn(r) = J0(K̂nr)

with the expression in the square brackets abbreviated as K̂2
n = ω2/c2 − (kz + 2πn/d)

2
,

provided K̂2
n > 0. If, on the other hand K2

n < 0, the solution is a modified Bessel function
with fn(r) = I0(K̂nr). Inserting the solution for K2

n > 0 into Equation 6.36 we obtain

Ez(r, z, t) =
∞∑

n=−∞
En,0J0(K̂nr)e

iωt−i(kz+2πn/d)z) (6.38)
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which describes waves for different values of n, called space harmonics. Comparing the
phase velocity of a space harmonic vp,n = ω/(kz + 2πn/d) with that of the fundamental
vp,0 = ω/kz, we find for their ratio

vp,n
vp,0

=
1

1 + 2πn/kzd
. (6.39)

By choosing n suitably large, we can make the phase velocity as small as we like and, in
particular, make it smaller than the speed of light and match it to the speed of the particles.

To visualize the interaction of a particle that we assume to move very close to the speed
of light and the longitudinal electric field component Ez we select ω = 2πf and the distance
d such that 2df = c. In that case, the fields in adjacent cells point in opposite directions,
but once the particle arrives in the next cell, the polarity is reversed and is accelerated
once again. This mode of operation is called π–mode, because the fields in adjacent cells
are 180 degrees out of phase. Equivalently, considering a snapshot in time, one period (or
wavelength) of the field repeats after two cells. Other modes, where the fields repeat after
three cells, so-called π/3 or 2π/3–modes or after four cells, so-called π/2–mode are used.
We refer to the specialized literature [40] for further discussions.

Instead of the electro-magnetic description in terms of fields, we can describe the disk-
loaded waveguide as an electric circuit consisting of a transmission line with impedance Z0,
and propagation constant kz, and impedances Z1, typically capacitive, that represent the
washer disks and repeatedly shunt part of the current with period d. We use the model
shown on the right-hand side in Figure 6.9 to relate the currents Ik and voltages Vk in the
circuit with the help of the ABCD matrices from Section 6.2

(
Vk

Ik

)
=

(
cos kzd iZ0 sin kzd

(i/Z0) sin kzd cos kzd

)(
1 0

1/Z1 1

)(
Vk+1

Ik+1

)
. (6.40)

This description closely resembles that to describe the effect of an additional quadrupole on
the tune in a storage ring, a system we will analyze in Section 8.3.2. Here kzd takes the role
of the unperturbed tune and Z1 the focal length of the perturbing quadrupole. Therefore,
we can also calculate the perturbed propagation constant k′z for one cell from the trace of
the matrix and find

cos k′zd = cos kzd+ (iZ0/2Z1) sin kzd . (6.41)

The impedance Z1 = 1/iωC1 of the perturbing washer disk is usually capacitive with ca-
pacitance C1, and the impedance Z0 and propagation constant kz of a loss-less transmission
line are given by Z0 =

√
L′/C ′ and kz = ω

√
L′C ′, respectively. Here we use the notation

introduced in Figure 6.3. Inserting in Equation 6.41, we obtain the dispersion relation that
relates the propagation constant k′z to the frequency ω of the wave

cos k′zd = cos(ω/ωLC)− a
ω

ωLC
sin(ω/ωLC) (6.42)

with the abbreviation ωLC = 1/d
√
L′C ′ and a = C1/2C

′d characterizes the perturbation.
Figure 6.10 shows a graphical representation of the dispersion relation for a = 0.2 (solid

lines) and a = 0.5 (dashed lines), where we calculate k′zd as a function of ω/ωLC and
then swap the axes. We see that the periodicity of the cosine function causes all branches
of the dispersion relation to appear in the range between 0 and π. Note that there are
forbidden frequencies at which waves cannot propagate in the perturbed waveguide; so-
called stopbands. For a = 0.5 they are indicated by the dotted lines in Figure 6.10. Waves
can thus only propagate for frequencies that are in a passband, defined as the range that is
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Figure 6.10 Dispersion diagram with stopbands for a disk-loaded waveguide.

not in a stopband. The existence of passbands and stopbands is fundamental to perturbed
periodic systems. Since Equation 6.42 is formally the same as Equation 8.32 that describes
the changed tune in a storage ring due to a perturbing quadrupole, we can identify the
stopbands in Figure 6.10 with the integer and half-integer stopbands in the tune diagram of
a storage ring. Moreover, the perturbed crystal potentials described by the Kronig-Penney
model [24] cause the formation of energy bands and forbidden band gaps—corresponding
to the stopbands—in solids.

Disk-loaded waveguides are operated either as traveling-wave structures or as standing-
wave structures. The latter are equipped with a coupler on one end and terminated by an
electrical short on the other end, such that a standing wave pattern inside the structure
ensues. In most cases the accelerating field in adjacent cells is pointing in opposite directions;
it differs by π in phase and is called π-mode. Electrically, this mode of operation resembles
that of a transmission line feeding power into a resonator. If, on the other hand, the disk-
loaded waveguide has couplers on both ends, the RF power passes through the structure,
which then is called traveling-wave structure. In this case the fraction of the RF-power, not
used to accelerate the beam, is directed to a load, where the remaining power is dissipated.
Traveling-wave structures can thus be thought of as a different section of transmission line
with matching section—the couplers—on either end. The phase-advance between adjacent
cells in this case can be anything admissible from the dispersion diagram in Figure 6.10,
but often 2π/3 is chosen, such that the field pattern repeats every three cells.

We now turn to a number of practical aspects when operating radio-frequency compo-
nents.

6.5 TECHNOLOGICAL ASPECTS

The theoretical considerations discussed in the previous sections are indispensable when
first designing a radio-frequency system, but there are a number of practical aspects that
appear when operating them.
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6.5.1 Normal-conducting

A pertinent feature of normal-conducting acceleration structures, often made of copper, are
the ohmic losses on the inner surfaces of the structure. This limits the loss factor Q0 to be
on the order of 105, which causes the fields to decay rapidly and limits the pulse length for
high-gradient linacs to the order of microseconds and the repetition rate of the linac to a few
hundred pulses per second, each of which contains one or a few closely separated bunches.
Moreover, the dissipated energy must be removed from the structure and requires cooling
water, usually de-ionized. The varying temperatures cause varying thermal expansions of
the material and that causes detuning of the structures from their design frequency. This
is compensated with a regulation system that adjusts the cooling water temperature to
maintain a constant temperature of the structure.

After their installation and powering them for the first time, new accelerating structures
or cavities often exhibit internal discharges, even at field strengths well below their design
fields. These discharges are typically detectable by an increased emission of x-rays, increased
vacuum pressure, and reflected RF power. Often they are related to field-emitted electrons,
so-called dark currents, that resonantly bounce between surfaces within the structure; a
process called multipacting. Or contaminations, such as gas or dust, are desorbed from the
inner surfaces and are subsequently ignited by dark currents to form a plasma. These effects
are typically intermittent and are cured during a process called conditioning in which the
RF-power and the fields are gradually increased until some discharge happens, whence the
power is reduced for a little while, before increasing it again. In this way the fields are inched
upward to and beyond their design’s level.

In order to make linear accelerators as short as possible, the longitudinal accelerating
electric fields Ez are made a large as possible. With linac structures the fields of the inner
surfaces are two to three times larger than the accelerating field on the axis which lies be-
tween a few MV/m up to 100MV/m for the structures intended for CLIC. These high fields
cause spontaneous discharges, even after conditioning, and pose a limit to the reliability of
future high-energy linear accelerators.

The structures for linear accelerators are often based on radio-frequency systems oper-
ating between 3 and 12GHz with correspondingly short wavelengths. This also causes the
accelerating structures to be rather small with irises in the disk-loaded waveguides that
measure a few millimeters in diameter. This poses extreme requirements on the steering
of the particle beams, in particular, because transversely displaced beams excite transverse
modes in the structures, and those can disturb following bunches. These fields are commonly
called wake fields, and we will discuss them further in Chapter 12, but next we will briefly
address a few topics relevant for the operation of superconducting cavities.

6.5.2 Superconducting

The reason to choose superconducting cavities for an accelerator is to minimize the dissipa-
tion of energy on the inner surfaces. Despite a vanishing resistance to direct currents show
superconductors a finite resistance to alternating currents caused by the radio-frequency
fields. This finite resistance stems from the finite inertia of the Cooper pairs that are the
charge carriers in the superconducting state; once they flow, they flow without losses, but
turning them around dissipates energy and is the main cause for the large, but finite Q0 in
the range of 109 to 1010 for superconducting cavities. These losses need to be removed and
are a determining factor for the specification of the cryogenic system that cools the cavi-
ties below the critical temperature Tc of the superconducting material, usually Niobium or
one of its alloys. The only agent able to cool to the required temperatures is Helium that
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Figure 6.11 Five-cell superconducting cavity.

turns liquid below 4.2K. Improved performance of the cavities can be achieved by cooling
with super-fluid Helium at temperatures below 1.9K. We will return to cryogenics in Sec-
tion 13.7. A further consequence of the low losses is the ability to accelerate much longer,
typically several millisecond-long pulse trains of bunches.

Figure 6.11 shows a five-cell, so-called elliptic, cavity made of Niobium. Its rounded
shape is optimized to provide large accelerating gradients and, at the same time, prevent
resonant amplification of field-emitted electrons, referred to as multipacting. In order to
allow efficient cooling from the Helium that flows in a vessel surrounding the cavities, the
Niobium is very thin and therefore not very rigid. Pressure fluctuations in the surrounding
Helium bath or other mechanical perturbations can cause the cavities to deform and thereby
detune the resonance frequency, which is referred to as microphonics. Considering the very
small bandwidth ∆f ≈ f0/Q0, which is on the order of Hz for a bare (without power-
coupler installed) cavity, even minute deformations will change the resonance frequency
unacceptably. A second mechanism, commonly referred to as Lorentz-force detuning, that
deforms the cavity is the large electric fields that pull on the inner surfaces proportional to
the square of the electric field. The origin of this force is the same by which the plates of a
capacitor attract each other. The capacitance C ∝ A/x depends on area A and distance x
between plates, such that we obtain for the force F ∝ d(CU2/2))/dx ∝ (U/x)2. And U/x
equals the electric field between the capacitor plates. When operating cavities in pulsed
mode, this mechanism will periodically detune the cavity and needs to be corrected. Tuners
with piezo-electric actuators are normally used, because they are fast enough to compensate
deformations during the milliseconds-long, pulse trains of bunches.

The inner surfaces of the cavities need to be extremely smooth to avoid any protrusions
that locally enhance the electric field and thereby cause increased field emissions, because
field-emitted electrons are accelerated by the same fields and will hit the superconduct-
ing surfaces uncontrollably. In the worst case, the impacting electrons knock out additional
electrons that are accelerated back to the original site, leading to multipacting, the resonant
amplification of electrons, mentioned above. The electrons deposit their kinetic energy at
the impact sites and locally heat the material above the critical temperature, such that it
loses superconductivity. At the now normalconducting impact site the fields will dissipate
more energy such that the site expands and eventually the entire cavity will turn normalcon-
ducting; a process called quenching. Thus reliable operation requires extreme smoothness
of the inner surfaces, and this is ensured during manufacturing and preparation of the
cavities, which includes several steps, including chemically etching, electro-polishing, and
high-pressure water rinsing. Once the cavities are installed, one has to avoid to deposit new
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protrusions, such as dust particles, on the inside of the cavities. This explains the need
for clean rooms in the manufacturing process and extreme care after installation in the
accelerator, especially with venting the vacuum system.

With many aspects of the RF system covered, we turn to its interaction with the beam.

6.6 INTERACTION WITH THE BEAM

When a beam passes a resonating structure, such as a cavity, the image currents that
accompany the beam excite electro-magnet fields in the structure. The energy stored in
these fields was provided by the beam, and in the next section we address the question of
how much energy is actually lost.

6.6.1 Beam loading

This question can be answered [40, 41] by considering two short bunches, each having
charge q, that arrive in the cavity half an oscillation period apart. We assume that the first
particle induces a voltage V̂ in the cavity and loses some fraction η of this voltage as energy
such that its energy changes by ∆E1 = −ηqV̂ . Half a period later, when a second bunch
arrives, the voltage induced from the first bunch has reversed its polarity, and increases the
energy of the second bunch by qV̂ . At the same time the second bunch creates a voltage
pulse that cancels the one from the first bunch and thereby loses energy −ηqV̂ . The total
change of energy of the second bunch is ∆E2 = qV̂ − ηqV̂ . Since the fields in the cavity
are canceled, the stored energy is zero, and therefore the sum of the energy changes of the
two bunches must cancel, such that 0 = ∆E1 + ∆E2 = −ηqV̂ + (1 − η)qV̂ , which implies
η = 1/2. Thus we find, based on very few assumptions, the fundamental theorem of beam
loading [41]: a bunch that excites a voltage V̂ in a cavity, loses energy by “seeing” half that
voltage itself. It also implies that the bunch-induced voltage opposes the current flow; it is
always retarding. At the same time, the beam extracts energy from the cavity and is thereby
accelerated, but in order to balance the energy, it must leave behind a field that cancels
part of the accelerating fields. This mechanism is commonly referred to as beam loading.
The additional current that drives the cavity is already shown in Figure 6.7 on page 163 as
the current source Ic.

We now need to relate this current source Ic to the average circulating beam current Ib.
Since the beams are bunched and we assume that the bunches are much shorter than the
wavelength of the RF, we can represent them as a sequence of delta functions that appear
with a period T0, the revolution time in the ring. For bunches made of N charges, we have

I(t) = Ne

∞∑
k=−∞

δ(t− kT0) =
Ne

T0

∞∑
m=−∞

eimω0t =
Ne

T0
+

2Ne

T0

∞∑
m=1

cos(mω0t) (6.43)

with ω0 = 2π/T0. Here we find that the driving current Im = 2Ne/T0 of harmonicm is twice
that of the average current Ib = Ne/T0.Moreover, we already know that the voltage induced
in a cavity is opposed to the driving current, such that for the current source Ic in Figure 6.7
we obtain Ic = −2Ib. In the following paragraph, we will first investigate the steady-state,
also called continuous wave (CW) operation of beam with current Ib interacting with a
cavity. Later we consider the pulsed operation, normally encountered in linear accelerators.
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6.6.2 Steady-state operation

From Figure 6.7 we see that both the generator current Ig and the beam current Ic = −2Ib
drive a load that consists of the RLC circuit that represents the cavity and the load resistor
Z0 “seen” through the transformer with winding ratio n. Their combined impedance Zt is
then given by 1/Zt = 1/n2Z0 + (1 + iQ0δ)/R at a reference point inside the cavity. This
can then be expressed as

Zt =
R

1 + β + iQ0δ
, (6.44)

where the detuning δ is defined in Equation 6.20, and we use the definition of the coupling
factor β = R/n2Z0 to simplify the equation. The voltage Vc in the cavity that is seen by the
beam must be Vc = V̂ eiϕs with the peak cavity voltage V̂ and synchronous phase angle ϕs.
Since the generator current Ig is stepped down with the winding ratio n, we obtain

V̂ eiϕs = Zt

(
Ig
n
eiψg − 2Ib

)
=

R
(
(Ig/n)e

iψg − 2Ib
)

1 + β + iQ0δ
, (6.45)

which determines the generator current Ig and phase ψg. Note that for negligible beam

current, and operating on the resonance frequency with δ = 0, we have V̂ eiϕs =
R(Ig/n)e

iψg/(1 + β) such that the shunt impedance R of the cavity determines the re-

quired current to be Ig/n = (1 + β)V̂ /R and the generator phase must be equal to the
synchronous phase: ψg = ϕs. However, with non-negligible beam current, these values will
change, and we have to adjust other parameters, such as the coupling β and the detuning δ
in order to minimize the reflections to the generator.

To determine the reflections, we need to know the impedance ZL, shown in Figure 6.7
that the generator “sees,” but with the beam current taken into account. To find ZL, we
again use Equation 6.17 with non-zero Ic, and find the impedance ZL to be

ZL =
VL

IL
=

(R/n2)V̂ eiϕs

(1 + iQ0δ)V̂ eiϕs − 2IbR
=

βZ0V̂ eiϕs

(1 + iQ0δ)V̂ eiϕs − 2IbR
(6.46)

instead of the zero-current value given by Equation 6.19. This impedance is perfectly
matched to the load impedance Z0 of the generator, provided Z0 = ZL, and this require-
ment leads to a condition for the coupling β = 1+iQ0δ−(2IbR/V̂ )e−iϕs . Since the coupling
must be real-valued, we obtain the following conditions for its real and imaginary part

β = 1 +
2IbR

V̂
cosϕs and Q0δ = −2IbR

V̂
sinϕs , (6.47)

which indicates that a non-zero beam current Ib causes both the matched coupling β and the
detuning δ of the cavity from resonance differ from the values found in Section 6.4.3, which
were valid in the limit of negligible beam current. Realizing that the power transferred to
the beam Pb is given by Pb = IbV̂ cosϕs and the power dissipated in the cavity Pc can be
written as Pc = V̂ 2/2R, we can express the optimum coupling parameter as β = 1+Pb/Pc.
Moreover, in the literature, the detuning δ is usually expressed in terms of the detuning
angle ψ by tanψ = QLδ = Q0δ/(1 + β). Inserting into Equation 6.47 then leads to

tanψ = −β − 1

β + 1
tanϕs with β = 1 +

Pb

Pc
(6.48)
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for the values of the detuning angle ψ and the coupling β that match the generator to
the cavity with beam loading. Here we operate with a current Ib and synchronous phase
angle ϕs.

Now that we know the values of β and δ, or equivalently ψ that minimize reflections, we
can insert them in Equation 6.45 and solve for the generator current Ig and phase ψg that
provide the required operating conditions

Ig
n
eψg = (1 + i tanψ)

(1 + β)V̂ eiϕs

R
+ 2Ib (6.49)

with β and tanψ from Equation 6.48. These last two equations specify the parameters of
the RF system, such as coupling β and the generator current Ig in terms of parameters that

come from beam physics requirements, the beam current Ib, the peak voltage V̂ , and the
synchronous angle ϕs. As a corollary, these equations also show that varying beam currents
spoil the matching and lead to reflections.

This change of beam current is maximum at the time of injecting the beam into an
accelerator and leads to what is called transient beam loading, the topic of the next section.

6.6.3 Pulsed operation and transient beam loading

This abrupt change of beam current typically occurs when injecting a beam into a storage
ring or when operating a high-intensity linear accelerator in pulsed mode; the European
Spallation Source (ESS) may serve as an example. In such cases, the RF system starts
to fill the cavities up to a certain level before the beam is injected and is accelerated by
extracting power from the cavities.

Since we intend to understand the transient behavior of the system, we need to consider
the time dependence of the currents flowing through each of the circuit elements from
Figure 6.7

Ig
n

− 2Ib =
Vc

n2Z0
+

Vc

R
+

1

L

∫
Vcdt+C

dVc

dt
=

1 + β

R

[
Vc + ω̂QL

∫
Vcdt+

QL

ω̂

dVc

dt

]
(6.50)

where we use the relations ω̂2 = 1/LC, Q0 = R
√
C/L, and QL = Q0/(1+β) that we already

encountered in Section 6.2 to simplify the notation. In deriving Equation 6.50, we moved
the line impedance Z0 and the generator current Ig, shown in Figure 6.7, to a reference
point inside the cavity, which lies on the “other side” of the transformer. This accounts for
the factor n2 for the impedance Z0 and the factor n for the current Ig.

For given time-dependent drive currents for generator Ig and beam Ib, Equation 6.50
describes the response of the cavity, expressed by the voltage Vc(t) and an arbitrarily fast
time-scale where every oscillation is visible. It is, however, more instructive to factor out
the fast oscillations eiωt and only consider the time dependence of slowly varying amplitude
functions Ig = Igse

iωt and Ic = Icse
iωt for the currents and likewise for the cavity voltage

Vs(t) with Vc(t) = Vs(t)e
iωt. Using the latter expression to evaluate the derivative and

integral over Vc, we find

dVc

dt
= eiωt

[
iωVs +

dVs

dt

]
and

∫
Vcdt ≈

eiωt

ω2

[
−iωVs +

dVs

dt

]
(6.51)

where we use partial integration twice and then neglect a term with d2Vs/dt
2 to obtain the

second expression. Inserting into Equation 6.50 and after canceling the common exponential
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factor, we arrive at

Igs
n

− 2Ibs =
1 + β

R

[(
1 + iQL

(
ω

ω̂
− ω̂

ω

))
Vs +

(
QLω̂

ω2
+

QL

ω̂

)
dVs

dt

]

≈ 1 + β

R

[
(1 + iQLδ)Vs +

2QL

ω̂

dVs

dt

]
(6.52)

with δ from Equation 6.20. Here we assume that the drive frequency ω is close to the
resonance frequency ω ≈ ω̂. Solving for dVs/dt gives us

dVs

dt
= − ω̂

2QL
(1 + iQLδ)Vs +

ω̂

2QL

R

1 + β

(
Igs
n

− 2Ibs

)
. (6.53)

Introducing the bandwidth ω12 = ω̂/2QL of the cavity we obtain

dVs

dt
= −ω12(1 + iQLδ)Vs +

ω12R

1 + β
Is with Is =

(
Igs
n

− 2Ibs

)
. (6.54)

Instead of solving the equation in the complex domain, we now split the voltage and current
into real and imaginary parts with Vs = Vr+iVi and Is = Ir+iIi, which yields two equations
that can be written in the following form

(
dVr

dt
dVi

dt

)
= −ω12

(
1 −QLδ

QLδ 1

)(
Vr

Vi

)
+

ω12R

1 + β

(
Ir
Ii

)
. (6.55)

We point out that in engineering applications the real part is often referred to as the in-phase
(I) component and the imaginary part as the quadrature (Q) component of a signal.

In order to simulate the system, it is advantageous to convert the continuous-time system
from Equation 6.55 to a discrete-time version by approximating the derivatives by finite
differences, in particular

dVr

dt
→ Vr,t+1 − Vr,t

∆t
and

dVi

dt
→ Vi,t+1 − Vi,t

∆t
(6.56)

where we label the time steps by t, and ∆t is the time between steps. With these substitu-
tions, Equation 6.55 becomes

(
Vr

Vi

)

t+1

= A

(
Vr

Vi

)

t

+B

(
Ir
Ii

)

t

(6.57)

with

A =

(
1− ω12∆t ω12∆tQLδ
−ω12∆tQLδ 1− ω12∆t

)
and B =

ω12∆tR

1 + β
, (6.58)

which is straightforward to program in MATLAB. Once constants are defined, we store the
matrix A and the coefficient B. Inside the loop over time, we iterate Equation 6.57 and
occasionally update the currents to reflect that the generator is turned on or the beam is
injected.

Figure 6.12 shows the results of a simulation with cavity peak voltage V̂ = 1MV, shunt
resistance R = 1MΩ, synchronous phase ϕs = −15 degrees, cavity bandwidth ω12 = 104/s,
beam current Ib = 100mA, and time step ∆t = 10µs. Beforehand, we adjust the coupling
β and tuning angle tanψ = QLδ to the values given by Equation 6.48 and use these values
to determine the generator current and phase from Equation 6.49. The plots in Figure 6.12,
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Figure 6.12 The upper plot shows the real and imaginary part of the generator cur-

rent Ig starting at 1ms and continuing until 4ms. The second plot shows the beam

current Ib between 1.35 and 3.5ms. The third plot shows the cavity voltage Vs,

and the fourth shows the phase of the cavity voltage (solid) and the desired syn-

chronous phase ϕs. The bottom graph shows the voltage pulse that travels back to

the generator.

from top to bottom show the generator current Ig, the beam current Ib, the cavity voltage
Vs, the cavity phase ϕs, and the voltage that is reflected back to the generator.

In the simulation, the generator current is turned on after 1ms, which causes the cavity
voltage Vs, shown on the third plot, to increase with a time constant τf = 1/ω12 that is
related to the bandwidth ω12 of the cavity. The corresponding phase ϕs is shown in the
fourth plot. Initially it differs from the desired value, because the generator phase ψg was
optimized for Ib = 100mA, but no beam is present between 1 and 1.35ms. After 1.35ms,
however, the beam is injected, and, at this time the peak field in the cavity already exceeds
the desired value of 1MV, but is soon reduced to the correct value, again on a time scale
given by τf . Simultaneously, the cavity phase approaches the required value of −15 degrees,
as indicated by the dotted line in the fourth graph. After 3.5ms the beam current stops,
but the generator keeps providing current, which then causes cavity voltage and phase to
deviate from their desired values.
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Figure 6.13 Left: the dynamical system from Equation 6.57, represented by A and B

from Equation 6.58. It converts the current Ig to the cavity voltage Vs. Right: the

closed-loop feedback controller F is added.

The detuning angle tanψ and coupling β, used in Figure 6.12, were determined by
matching the impedance of the transmission line Z0 to that of the cavity ZL, which was
given by the ratio ZL = VL/IL in Figure 6.7. But Figure 6.12 shows that the voltage
VL = Vs/n varies with time, and, in particular, during the start and end of the pulse, when
the impedance is different from the matched value. And this causes a voltage pulse Vref to
travel back towards the generator. The current IL is given by Ig without the part that is
dissipated in Z0, such that IL = Ig − VL/Z0 = Ig − nβVs/R and the voltage is VL = Vs/n.
For the reflected voltage pulse, we obtain

nVref = n
VL − Z0IL

2
= Vs −

RIg/n

2β
, (6.59)

which is shown in the bottom graph in Figure 6.12. Clearly visible are the reflections at the
start and end of the pulse. Circulators are often installed in the transmission line to direct
the reflections to a load in order to protect the generator.

In the simulation, the deviation of cavity voltage and phase from their desired values
can be reduced by measuring the actual values with a second antenna, connected to the
cavity, comparing this signal to the desired values, and using the difference to adjust the
generator current and phase in order to minimize the difference. This regulation or control
system is often called the low-level RF (LLRF) system and is the topic of the next section.

6.6.4 Low-level RF system

In the previous section we pre-calculated the generator current and phase beforehand and
adjusted the coupling β and detuning angle tanψ = QLδ from Equation 6.57 accordingly.
Then we just operated the generator to provide the current that will result in the desired
cavity voltage and angle after the beam is injected. This situation corresponds to the left-
hand image in Figure 6.13. Some current Ig/n excites a dynamical system represented by
A and B from Equation 6.58, and that produces a voltage Vs according to Equation 6.57.

On the other hand, the right-hand side in Figure 6.13 shows a situation, where the
measured cavity voltage is used in a feedback process [42] that updates the current in order
to produce the desired cavity voltage Vd. The dashed line symbolizes the measured cavity
voltage Vs picked up in the cavity with a small antenna. It is then used to calculate the
difference signal ∆ = Vd − Vs between the desired cavity voltage Vd and Vs. This difference
is passed to a, so far unspecified, function F which represents the feedback controller that
produces the generator current Ig/n as output. After subtracting the beam current, we
obtain a current I = Ig/n − 2Ib, which is passed to the cavity, represented by A and B.
The output is, of course, the cavity voltage Vs.
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We first employ a proportional (P) controller to stabilize the cavity voltage and phase. By
denoting the column vectors with real and imaginary components of voltages and currents
that appear in Equation 6.57 with an arrow over the respective symbol, the P controller is
defined by

(I⃗g/n)t = Kp(V⃗d − V⃗t) (6.60)

where Kp is a constant that describes the magnitude of the applied feedback. Here (I⃗g/n)t
is the generator current at time step t and V⃗t is the cavity voltage at the same iteration.
Inserting Equation 6.60 in Equation 6.57, we obtain

V⃗t+1 = AV⃗t +BKp(V⃗d − V⃗t)− 2BI⃗b = (A−BKp)V⃗t +BKpV⃗d − 2BI⃗b (6.61)

where I⃗b is the beam current that we consider to be constant for the time being. If the
steady state exists, it is defined through the condition V⃗t+1 = V⃗t = V⃗∞ which leads to

V⃗∞ = (A−BKp)V⃗∞ +BKpV⃗d − 2BI⃗b. Solving for V⃗∞ gives us

V⃗∞ = [1− (A−BKp)]
−1

(BKpV⃗d − 2BI⃗b) . (6.62)

We observe that V⃗∞ → V⃗d only for Kp → ∞. Any finite value of Kp will result in a finite

difference between the desired voltage V⃗d and the achievable steady-state value V⃗∞, which
is a well-known [42] deficiency of P controllers. We will address a remedy below.

The speed by which the controller corrects errors can be determined by figuring out the
time evolution for V⃗t − V⃗∞. It is given by

V⃗t+1 − V⃗∞ = (A−BKp)(V⃗t − V⃗∞) (6.63)

with A and B from Equation 6.58, which implies that the largest eigenvalue of A − BKp

determines the rate of convergence. The smaller it is, the faster the feedback corrects per-
turbations.

Adding the P controller to the MATLAB simulation from the previous section is as
simple as calculating the generator current from Equation 6.60 before updating the cavity
voltage with Equation 6.57

Ig=Kp*(Vd-Vs); % P-controller

Vs=A*Vs+B*(Ig-2*Ib); % update cavity voltage

inside the iteration loop. All parameters, such as A and B, were previously defined in the
MATLAB script that is reproduced in Appendix B.5. The left-hand panel in Figure 6.14
shows—top to bottom—the generator current, the absolute voltage in the cavity, and the
cavity phase for the same parameters used for Figure 6.12. Kp was set to 10/R where
R = 1MΩ is the shunt impedance of the cavity. The current, shown in the top plot, exhibits
some initial overshoot and also increases in response to the appearance of the beam at
1.35ms. The cavity voltage, shown in the middle plot, approaches its steady-state value
much more rapidly than in Figure 6.12. We note, however, that the cavity voltage does
not reach the desired voltage of 1MV that is shown by the dotted line, just as the analysis
from the previous paragraph predicted. Likewise, the cavity phase shown in the bottom plot
deviates from the desired value of −15 degrees.

A way to remedy the lack of convergence is to add an integral term to Equation 6.60

(I⃗g/n)t = Kp(V⃗d − V⃗t) +KiW⃗ with W⃗ =
∑
t′≤t

(V⃗d − V⃗t′) (6.64)

where the sum extends over all previous time steps including the current one. Adding this
so-called PI controller to the simulation is accomplished by the following lines of MATLAB
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Figure 6.14 Left, top to bottom: the generator current, the cavity voltage, and the

cavity phase for a P controller with Kp = 10/R. Right: the corresponding plots for

a PI controller with Kp = 10/R and Ki = 1/R. All other parameters are the same

as those used for Figure 6.12.

W=W+(Vd-Vs); % integral

Ig=Kp*(Vd-Vs)+Ki*W; % PI-controller

Vs=A*Vs+B*(Ig-2*Ib); % update cavity voltage

inside the iteration loop. The right-hand side in Figure 6.14 shows the corresponding plots
to the left-hand side with Kp = 10/R and Ki = 1/R but all other parameters equal to those
in the previous simulations. Now we note that voltage, shown in the middle panel, actually
reaches the desired voltage level, shown by the dotted line. Even the cavity phase, shown
on the bottom plot, reaches the desired phase.

The PI controller defined by Equation 6.64 is the most common one to control cavities.
It can, however, be enhanced by adding a derivative term Kd(V⃗t − V⃗t−1) with a constant
Kd, which turns the PI into a PID controller. Its properties are extensively discussed in the
literature [42], and we therefore do not pursue this further.

In the previous sections, we compensated beam loading by adjusting the tuning an-
gle tanψ of the cavity which actually slightly detunes its resonance frequency ω̂ with a
mechanical tuner that squeezes the cavity. Additional detuning mechanisms that affect pre-
dominantly superconducting cavities are the Lorentz-force detuning and fluctuations of the
Helium bath, both already mentioned in Section 6.5.2. Understanding and quantifying these
mechanisms make it necessary to measure the detuning and other parameters. And this is
the topic of the following section.

6.7 TESTING OF SUPERCONDUCTING CAVITIES

Superconducting cavities are typically measured two times. First, the cavities are tested
at low input power using a critically coupled input coupler with β = Q0/QE ≈ 1. We
refer to Figure 6.15 for an explanation of the different Q-values and other symbols. In
this configuration, the forward power Pf from the generator is approximately equal to the
power P0 that is dissipated in the cavity walls, which also makes the intrinsic Q0 equal
to the external QE . Later, once the cavities are installed inside a cryomodule, they are
equipped with a high-power coupler with β ≫ 1. In this over-coupled mode, the generator
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Figure 6.15 A superconducting cavity to identify the symbols used in the text. A

directional coupler before the cavity measures the forward Pf and reflected power

Pr arriving from the generator. A coupler, characterized by β and QE , feeds the

power into the cavity. From there, the transmitted power Pt escapes through the

field probe, characterized by βt and Qt, and the power P0 heats the cavity walls. It

is characterized by Q0.

provides more much power than is dissipated in the cavity walls. Instead it is consumed by
the accelerated beam but is reflected back toward the generator if the beam is absent. Let
us first turn to the low-power measurements.

6.7.1 Low-power measurements

This type of measurement exploits the inverse proportionality of the Q values to power loss,
as is illustrated by Equation 6.32 for Q0 ∝ 1/P0. Likewise QE ∝ 1/Pf and Qt ∝ 1/Pt. We
can therefore determine ratios of Q-values from ratios of power measurements. Our task is to
determine the intrinsic Q0, β = Q0/QE for the input coupler, and βt = Q0/Qt for the field
probe by measuring the power at three points: the transmitted power Pt at the field probe,
the forward Pf , and reflected power Pr. The latter are measured at a directional coupler
before the cavity [43]. For these measurements, we require that the cavity is operated on
resonance with ω = ω̂ or δ = 0.

After carefully calibrating the hardware to determine, for example, losses in cables, we
continuously excite the cavity with a generator and note that the incoming power is the
forward power Pf = P0+Pt+Pr that is either lost in the cavity walls (P0), exits through the
field probe (Pt), or is reflected back (Pr) through the input coupler. We can thus determine
the coupling βt of the field probe from

βt = Pt/P0 with P0 = Pf − Pt − Pr . (6.65)

From the ratio of the reflected to the forward power, we can determine the absolute value of
the reflection coefficient |Γ| =

√
Pr/Pf . Note however that we have no information about

its sign, and we will address methods to resolve this ambiguity below. From |Γ| we can
determine a quantity β∗, called the reduced coupling, with the help of Equation 6.20

β∗ =
1± |Γ|
1∓ |Γ|

=
1±

√
Pr/Pf

1∓
√

Pr/Pf

=
Pf

P0 + Pt
=

β

1 + βt
. (6.66)

The third equality follows from the definition of the coupling, here β∗, as the ratio of power
flowing into the port, which is Pf , to the power lost on the “other side” of the port, which
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Figure 6.16 Reflected power after the start of a pulse. From left to right for β = 0.3,

β = 1, and β = 3. In all three cases, zero power is at the bottom of the shown area.

is P0 + Pt. The last equality follows from β = Pf/P0 and βt = Pt/P0. Solving for β, we
obtain

β = (1 + βt)
1±

√
Pr/Pf

1∓
√

Pr/Pf

(6.67)

with βt from Equation 6.65.
Now we excite the cavity by pulsing the generator and measure the exponential decay

time τp of the power Pt escaping through the field probe in-between pulses. From Equa-
tion 6.53 we see that the voltage Vs inside the cavity decays with a time constant given
by τf = 2QL/ω̂ in the absence of exciting currents. Here we measure the power, which
therefore decays with half the time constant and is given by τp = QL/ω̂. Solving for QL

gives us

ω̂τp = QL =
Q0

1 + β + βt
, (6.68)

where the second equality follows from 1/QL = 1/Q0 + 1/QE + 1/Qt. Solving for Q0 =
ω̂τp(1 + β + βt) now expresses Q0 through previously determined quantities.

In order to determine the sign of the reflection coefficient Γ, we consider the solution of
Equation 6.54 for δ = 0 and Ib = 0 right after the start of a pulse. It is given by

Vs(t) =
RIg/n

1 + β

(
1− e−ω12t

)
(6.69)

and from Equation 6.59 we obtain the reflected voltage nVref(t) = Vs(t)− (RIg/n)/2β. On
the left-hand plot in Figure 6.16, we show the reflected power Pr ∝ V 2

ref for an under-coupled
cavity with β < 1, which makes Γ negative. In the middle, β = 1 and the cavity is critically
coupled, whereas on the right-hand plot the cavity is over-coupled with β > 1. By observing
the pulse shape of the reflected power on an oscilloscope, we can thus determine the sign
of Γ. In short, if there is a dip, as shown on the right-hand plot, the cavity is over-coupled
with Γ > 0; if it reaches zero without a dip, it is critically coupled; and if it never reaches
zero, it is under-coupled with Γ < 0.

Once cavities are thoroughly tested at low power, they are equipped with a high-power
coupler having a large coupling β before they are mounted inside a cryostat.
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Figure 6.17 Schematic of the resonance monitor showing the functional blocks. The

signal S passes the limiter (LIM), is split in a hybrid (HYB), mixed with the

signal from a local oscillator (LO) and low-pass filtered (LPF). Differentiating the

resulting signals and calculating xẏ− ẋy, either with analog or digital components,

yields ∆ω.

6.7.2 High-power measurements

In order to allow efficient cooling, superconducting cavities have very thin walls, which
makes them susceptible to mechanical vibrations, either caused by pressure variations of
the helium or by the pulsing RF power. This varies the cavity’s resonance frequency ω̂ by
a small amount ∆ω, which needs to be measured.

We therefore assume that the signal measured at the field probe is S = A cos(ω̂t+∆ωt)
from which we seek to extract ∆ω. Figure 6.17 illustrates how this was done using analog
electronics. First, the amplitude of the signal S is normalized in a limiter (named “LIM”
in the figure) and then a sine and a cosine-like signal is created with a so-called 90-degree
hybrid (HYB). It provides signals shifted by 90 and by 180 degrees at two output ports.
Multiplying these two signals with a second signal from a so-called local oscillator (LO)
providing a signal cos(ω̂t) in a mixer, we obtain

x̂ = sin(ω̂t+∆ωt) cos(ω̂t) =
1

2
sin(∆ωt) +

1

2
sin(2ω̂t+∆ωt)

ŷ = − cos(ω̂t+∆ωt) cos(ω̂t) = −1

2
cos(∆ωt)− 1

2
cos(2ω̂t+∆ωt) .

(6.70)

A low-pass filter (LPF) then removes terms oscillating with 2ω̂ leaving us with x =
sin(∆ωt)/2 and y = − cos(∆ωt)/2. If the circuit is implemented with analog compo-
nents only, the grayed-out analog-to-digital converter (ADC) is omitted. Splitting the
analog signals electronically and then differentiating them provides two additional signals
ẋ = ∆ω cos(∆ωt)/2 and ẏ = ∆ω sin(∆ωt)/2. Finally the four signals are electronically
combined in the following way

xẏ − ẋy =
∆ω

4
sin2(∆ω) +

∆ω

4
cos2(∆ω) =

∆ω

4
, (6.71)

which provides a signal that is proportional to ∆ω at its output. Historically, this circuit
was constructed using analog components only. Nowadays, on the other hand, the signals
are often digitized at some stage, for example, after the low-pass filter. The grayed-out
digitizer (ADC) then converts the analog signals to digital words such that all further
signal processing is done digitally.

An equally important quantity to measure is the intrinsic quality factor Q0, because
it quantifies the losses in the cavity walls and thus determines the heat that needs to be
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taken up by the liquid helium. It is therefore a key parameter for specifying the capacity of
the cryogenic plant and has a large impact on its cost. Measuring Q0 is done by exciting
the cavities to high power levels and then measuring the rate at which liquid helium is
evaporated. Two methods are commonly used. One is based on measuring the increase
of pressure if the helium vessel is closed. The second method is based on measuring the
increased flow rate of the evaporated helium. These two methods work reasonably well
for cavities operating at very high power levels when substantial amounts of helium are
evaporated. On the other hand, their accuracy deteriorates towards lower power levels when
rather small changes of the pressure or flow rate need to be measured. Both methods rely
on careful calibrations to relate the measured values to the dissipated heat and pass a
well-defined current pulse through a resistor immersed in the helium bath, which deposits a
known amount of heat. Subsequently measuring the changes in pressure or flow rate provides
the data needed to relate the raw measurement data to the deposited amount of heat and
thereby determine Q0.

The advent of high-speed ADC made it possible to directly analyze Equation 6.57 to
determine the detuning ∆ω and the bandwidth ω12. The following section discusses how
that is done [44].

6.7.3 System identification

The current I⃗t = (Ir, Ii)t from Equation 6.57 that the generator produces is usually mea-
sured with a directional coupler installed just before the cavity. But rather than measuring
the total current I⃗t = I⃗+t + I⃗−t , it separately provides the forward I⃗+t and the reflected

I⃗−t currents on the respective ports. From Equation 6.20 and close to resonance, we find

I⃗−t = β−1
β+1 I⃗

+
t , which directly leads us to

I⃗t =
2β

1 + β
I⃗+t =

2QL

QE
I⃗+t . (6.72)

Moreover, the off-diagonal element of the matrix A in Equation 6.57 can be written as
ω12∆tQLδ = −∆ω∆t with ∆ω = ω̂ − ω. This allows us to rewrite Equation 6.57 as

V⃗t+1 = (1+ F )V⃗t +BI⃗+t with F =


−ω12∆t −∆ω∆t
∆ω∆t −ω12∆t


and B =

ω̂R/QE

1 + β
(6.73)

from which we now seek to determine ω12∆t and ∆ω∆t by measuring V⃗t and I⃗+t at many
successive time steps t.

Moving most of the known or measured quantities to the left-hand side, we rewrite
Equation 6.73 as V⃗t+1−V⃗t−BI⃗+t = FV⃗t. Introducing the abbreviation y⃗t+1 = V⃗t+1−V⃗t−BI⃗+t
we obtain

y⃗t+1 = FV⃗t = Gtq⃗ with Gt =


−V ′

r −V ′
i

−V ′
i V ′

r



t

and q⃗ =


ω12∆t
∆ω∆t


(6.74)

which isolates the sought-after quantities in the vector q⃗. Stacking multiple copies of Equa-
tion 6.74 for consecutive time steps on top of each other leads to the following over-
determined set of equations




y⃗2
y⃗3
...

y⃗T+1


 = UT


ω12∆t
∆ω∆t


with UT =




G1

G2

...
GT


 (6.75)
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that we solve in the least-squares sense with the Moore-Penrose pseudo-inverse

q⃗T =


ω12∆t
∆ω∆t



T

=
�
U⊤
T UT

−1
U⊤
T




y⃗2
y⃗3
...

y⃗T+1


 . (6.76)

Here we gave q⃗T the subscript T to indicate that it is the estimate of q⃗ after T time steps
which will improve with increasing T .

We can avoid lengthy evaluations by calculating Equation 6.76 recursively. With the def-
inition P−1

T = U⊤
T UT , its initial value P0 = p01, and the definition of UT from Equation 6.75

we express PT+1 through PT in the following way

P−1
T+1 = U⊤

T+1UT+1 = p01+G⊤
1 G1 +G⊤

2 G2 + · · ·+G⊤
TGT +G⊤

T+1GT+1

= P−1
T +G⊤

T+1GT+1 . (6.77)

Here we observe that G⊤
t Gt = (V 2

r + V 2
i )t1 = V⃗ 2

t 1 is proportional to the unit matrix 1 for
all time steps t, and this allows us to introduce the scalar quantity pT with PT = pT1 that
obeys p−1

T+1 = p−1
T + V⃗ 2

T . Taking the reciprocal leads to an equation that updates pT from
one time step to the next

pT+1 =


1

1 + pT V⃗ 2
T


pT . (6.78)

Note that we need to initialize this recursion with an initial non-zero value and set p0 = 1 in
the simulations. Despite being numerically unity, we carry p0 through all equations, because
it carries the inverse units of V⃗ 2

T .
We now turn to finding q⃗T+1 by writing Equation 6.76 for T + 1

q⃗T+1 = pT+1

�
G⊤

1 y⃗2 +G⊤
2 y⃗3 + · · ·+G⊤

T y⃗T+1 +G⊤
T+1y⃗T+2



=


1

1 + pT V⃗ ′2
T


pT


T

t=1

G⊤
t y⃗t+1 +G⊤

T+1y⃗T+2


(6.79)

=


1

1 + pT V⃗ ′2
T

 �
q⃗T + pTG

⊤
T+1y⃗T+2


.

Equations 6.78 and 6.79 constitute the algorithm to continuously update estimates for the
two components of q⃗ = (ω12∆t,∆ω∆t) as new voltage and current measurements—both
enter in GT+1 and y⃗T+2—become available.

In Equations 6.78 and 6.79 new information from measurements are used to continuously
improve the estimate of the fit parameters, but in situations where they change, we have
to introduce a way to forget old information. Therefore, in order to emphasize newly added
information and introduce a “forgetting factor” α = 1− 1/Nf where Nf is the time horizon
over which old information is downgraded in the last equality of Equation 6.77, which now
reads P−1

T+1 = αP−1
T + G⊤

T+1GT+1. We see that we only have to replace PT by PT /α, or
equivalently pT by pT /α, in the derivation of Equations 6.78 and 6.79 and find

pT+1 =
1

α


α

α+ pT V⃗ ′2
T


pT . (6.80)
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Figure 6.18 System identification of a cavity that experiences doubling of its band-

width after 0.5ms and whose detuning is oscillating. The top left plot shows the

real and imaginary part of the current that excites the cavity. The plot below dis-

plays the resulting voltage in the cavity. The larger plot on the right shows the

reconstructed bandwidth (black) and detuning (gray).

Likewise, for the update of the estimated parameters q⃗T we obtain

q⃗T+1 =

[
α

α+ pT V⃗ ′2
T

](
q⃗T +

1

α
pT Ĝ

⊤
T+1y⃗T+2

)
. (6.81)

These two equations are now capable of following slowly-varying parameters in q⃗T .
We illustrate the algorithm with a simulation that iterates Equation 6.57 for 104 itera-

tions. With a sampling rate of 10Msamples per second this corresponds to 1ms of real time.
At each iteration we sample the voltage V̂t and the current I⃗+t for a superconducting cavity
operating at 1GHz, whose bandwidth is dominated by the external QE = 5× 105 ≈ QL. In
the simulation we normalize the currents and voltages to their maximum values, and refer
to the MATLAB script in Appendix B.5 for details. The resonance frequency ∆f = ∆ω/2π
is assumed to oscillate with 2 kHz to simulate the Lorentz-force detuning. Moreover, after
0.5ms, we double the bandwidth ω12 to simulate a quench.

The left-hand plots in Figure 6.18 show the real and imaginary parts of the current in
the upper plot. We observe that the real parts of the current increases shortly after the
simulation starts, while the imaginary part remains zero. The lower plot shows real and
imaginary part of the normalized voltage in the cavity. The real part (black) increases with
a time constant defined by the initial bandwidth ω12 until 0.5ms and rises more rapidly after
the bandwidth doubles. The imaginary part (gray) shows a distinct oscillation that is caused
by the varying detuning ∆ω. The right-hand plot in Figure 6.18 shows the reconstructed
bandwidth and detuning that were determined with the help of Equations 6.80 and 6.81
with a forgetting factor of Nf = 100 iterations. We display the fit results as frequencies
∆f12 = q(1)/2π∆t and ∆f = q(2)/2π∆t. The dark trace showing ∆f12 clearly identifies the
doubling of the bandwidth after 0.5ms, while the gray trace accurately tracks the oscillating
detuning. Note that both traces need some time at the beginning, which depends on Nf ,
to identify the correct values.
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Since only Equations 6.80 and 6.81 need to be calculated in each iteration, this system
identification algorithm is very fast and can operate in real time. It can even be modified
to identify Q0, but in that case the calibration is extremely demanding, and we leave the
discussion to the specialized literature [45].

After discussing the hardware to accelerate the beams, we turn to figuring out how the
beam behaves in the accelerator, and that is the task of the instrumentation and diagnostics
system, discussed in the following chapter.

QUESTIONS AND EXERCISES

1. What is the cutoff frequency for a rectangular waveguide with a = 2b = 10 cm (a) for
a TE10 mode; (b) for a TE01 mode?

2. Argue, why square waveguides are very unusual.

3. Display the longitudinal magnetic field Hz of the following modes using MATLAB’s
surf() function: (a) TE00; (b) TE10; (c) TE20.

4. Calculate the transverse fields Hx, Hy, Ex, and Ey: (a) for TE10 mode; (b) for a TE20

mode and display them using MATLAB’s surf() and quiver() functions.

5. How does the cutoff frequency of the fundamental TE mode in a WR-340 waveguide
change, if the top right corner is dented. You can assume that the dent cuts off an
equilateral triangle at half the height, as shown here . Simulate this geometry with
the PDE toolbox and show the transverse fields Hx, Hy, Ex, and Ey in the way shown
in Figure 6.1.

6. Use the PDE toolbox to calculate the TM modes in a triangular waveguide with equal
sides having a length of 10 cm. What are the cutoff frequencies? Use pdeplot() to
display Ez for the two modes with the lowest cutoff frequencies.

7. Calculate the impedance of a network with a Z0 series impedance, and two blocks of
1/n transformers with output shunted by Z0 in series.

8. Network analyzers can measure the reflection coefficient Γ = S11 and display the
absolute value of S11 in decibels. To better understand these measurements, prepare
plots showing 20 log10(|Γ|) as a function of frequency f = ω/2π (a) for a normal-
conducting cavity with Q0 = 50000 for values of the coupling β = 0.05, 0.5, 1, 2. (b)
Repeat for a superconducting cavity with Q0 = 109.

9. You are worried that the barometric pressure buckles the vertical faces of the cavity
in Figure 6.8 and detunes the cavity. Assume that the points at R/2 are displaced by
1 to 5mm and determine the change of frequency with indentation.

10. For shunt impedance R = 1MΩ and cavity voltage V̂ = 1MV calculate the required
generator current Ig and phase ψg as a function of the beam current Ib when operating
the system in steady-state at the synchronous phase ϕs = −15o. (a) What are the
values Ig0/n and ψg0 in the zero-current limit? (b) Plot the normalized generator
current (Ig/n)/(Ig0/n) and the generator phase ϕg as a function of the normalized
beam current Ib/(Ig0/n). (c) Plot the corresponding values for the coupling β and
detuning angle ψ.

11. Consider the transient beamloading.m MATLAB script that was used to prepare
Figure 6.12 and implement the P-controller, discussed in Section 6.6.4, in the simula-
tion.



C H A P T E R 7

Instrumentation and
Diagnostics

In the previous chapters we discussed how to guide and accelerate particles. In this chapter
we describe devices and methods to verify that the accelerator behaves as intended and
therefore ways to measure the intensity of beams, their position, and their size. In Chapter 2
we found that the distribution of particles in beams is usually described by their moments,
and we often use their zeroth, first, and second moments to approximate the distribution
by a Gaussian. Therefore, let us now turn to instruments to measure the moments and start
with devices to measure the total charge, equivalently, the beam current.

7.1 ZEROTH MOMENT: CURRENT

The simplest method to measure the beam current, provided the beam power is sufficiently
low, is to just dump the beam into a metal block that is connected via an Ampere-meter to
ground. If positively charged ions are diagnosed, electrons from the absorber material will
rush toward the ions and try to compensate their charge, thus constituting an electronic
current that is measured. Just using a metallic block is not very accurate and the more
refined version, called Faraday cup, shields secondary electrons by magnetic fields, biasing
the absorber with positive voltages, or a negatively biased suppressor ring to reflect the
escaping electrons back into the cup. A sketch is shown on the top of the left-hand side
in Figure 7.1. If very short particle bunches or other rapidly changing currents need to be
analyzed, careful attention must be paid to stray capacitances and inductances. At higher
beam currents and beam powers, the absorber must be cooled, and one must ensure that
the beam is really stopped inside the absorber. This type of beam current measurement
device is invasive, because it stops the beam. Therefore, Faraday cups are often retractable
and only inserted into the beam path at times the current needs to be measured.

Another device to measure the current is a wall-gap monitor, shown on the bottom of
the left-hand side in Figure 7.1. It is based on measuring the image currents in the beam
pipe. The vacuum chamber shields the magnetic fields that the beam generates, such that
no magnetic fields are detectable outside the pipe. Inside the vacuum chamber the magnetic
field is given by Ampere’s law

∮
B⃗d⃗l = µ0Ibeam, which implies that in the vacuum chamber

a current propagates, equal in magnitude, but with the opposite polarity. This wall current
can be measured by inserting a ceramic in the beam pipe and bypassing the ceramic with
resistors such that the wall currents are forced to travel through the resistors. Across these
resistors a voltage drop develops, which is measured with a sensitive voltmeter. Provided
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Figure 7.1 A Faraday cup is based on stopping the beam in a target and measuring

the current flowing back to ground (top left). A wall-gap monitor (bottom left)

blocks the image currents with a ceramic and measures the voltage drop across a

bypass resistor. The operation of current transformers (right) is explained in the

text.

that careful attention is paid to shielding and electrical design, very fast signals into the
GHz range can be resolved. They correspond to a time resolution even below the nano-
second time scale. Note that wall-gap monitors do not intercept the beam and are therefore
non-invasive current measurement systems.

In the wall-gap monitor, we picked up the image currents with a resistor, but we can also
directly detect the magnetic field of the beam by placing a circular ferrite core encircling
beam inside the beam pipe. A bunched beam induces a temporally varying flux inside the
ferrite core that can be detected by winding several turns of wire around it, which act as
secondary windings of a transformer, hence the name current transformer. This is illustrated
on the right-hand side in Figure 7.1, where a bunch, passing from left to right through the
toroidal ferrite core, induces a voltage in coil B, that is subsequently amplified and made
visible on, for example, an oscilloscope.

Note that current transformers are sensitive to the magnetic field from temporally chang-
ing beam currents, which works well for bunched beams, but does not work for unbunched,
so-called coasting beams. They are common in nuclear physics rings that are equipped with
an electron cooler. A device to measure the average or direct current (DC) component of
the current is the direct current charge transformer (DCCT). The operation method is also
illustrated on the right-hand side in Figure 7.1. Similar to the normal beam transformer
discussed in the previous paragraph, a ferrite toroid encircles the beam. In a DCCT, two
coils are wound onto the ring. Coil A is coupled to an oscillator which excites the toroid
with a sinusoidal current at a frequency of typically 10 kHz, such that the magnetic field
inside the ferrite saturates. The voltage that is induced in coil B then contains not only the
fundamental harmonic from the oscillator, but also harmonics at higher frequencies. Since
the hysteresis curve is antisymmetric, only odd harmonics are present. If, on the other hand,
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a beam current is passing through the toroid, the hysteresis curve will be shifted upward
or downward and will not be antisymmetric anymore. Therefore, even harmonics appear in
coil B. If a second wire, carrying a current Ic, is passed through the toroid, and adjusted
to cancel the second harmonic, we can very accurately measure the compensating current.
The measurement is thus based on a null measurement, which is typically very accurate.
Note, however, that the bandwidth of the DCCT is limited by the exciting frequency of the
driving oscillator.

Now that we know the number of particles in the beam, let us find out where they are
and when they arrive.

7.2 FIRST MOMENT: BEAM POSITION AND ARRIVAL TIME

Most position monitors are based on the detection of the electro-magnetic fields that the
beam produces. In the beam’s frame of reference, the charges are at rest and the electric field
that a particle generates is purely radial and given by E⃗b = (Eb

x′ , Eb
y′ , Eb

z′) = er⃗′/4πε0|r⃗′|3,
where r⃗′ is the vector pointing from the particle that creates the field to the observation
point of the field. Since the particle is at rest in its own rest frame, it does not create a
magnetic field. In the laboratory frame, which moves with relative speed β = v/c with
respect to the beam’s rest frame, we need to Lorentz-transform the fields and find for their
components in the lab frame

Ex = γEb
x′ , Ey = γEb

y′ , Ez = Eb
z′ , Bx = −βγEb

y′/c, By = βγEb
x′/c, Bz = 0,

(7.1)
where we assume that the beam moves in the z-direction. We see that the field components
in the direction of motion remain unaffected, but the transverse components increase by
the relativistic factor γ = 1/

√
1− β2, such that in the ultra-relativistic limit, the fields are

predominantly transverse. Moreover, the magnitude of the electric and magnetic compo-
nents are approximately equal with |Ex| ≈ |cBy| and |Ey| ≈ |cBx|, such that the fields in
the laboratory frame closely resemble a TEM-wave.

Since the fields are purely transverse in the ultra-relativistic limit, we can determine
them from two-dimensional calculations of quantities that obey Maxwell’s equations and
by solving an equivalent planar electro-static problems. First, we consider so-called button
beam-position monitors (BPM), shown on the left-hand side in Figure 7.2. They consist of
four small isolated button electrodes, mounted in the vacuum chamber, that pick up part
of the wall currents. The buttons act similar to capacitors that are charged by the wall
currents. The BPM therefore only measures the alternating current (AC) component of the
beam current, which makes it especially suitable for short bunches. Since the buttons are
small and intercept only a small portion of the fields, they are especially suitable for intense
bunches. The positions can be deduced from the signals in the four buttons in the following
way

x = kx
(Sa + Sd)− (Sb + Sc)

Sa + Sb + Sc + Sd
, y = ky

(Sa + Sb)− (Sc + Sd)

Sa + Sb + Sc + Sd
(7.2)

where kx and ky depend on the geometry of the beam pipe where the BPM is located.
For a round beam pipe, the proportionality constants kx and ky can be analytically

calculated from the normal components of the electric field on the surface of the beam pipe.
This normal component draws charges from the conducting material and accumulates them
on the wall nearest to the beam. These charges co-propagate with the beam and constitute
the wall currents. The normal component of the electric field, or, equivalently, the wall
currents at the locations of the buttons are proportional to the signals Sa, Sb, Sc, and Sd

in Equation 7.2. We calculate them using the method of image charges by considering
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Figure 7.2 A button beam-position monitor (left) intercepts the image currents flow-

ing in the beam pipe, and a strip-line monitor (right) detects the voltages induced

by the magnetic field, which accompanies the beam, in the small area between the

strip-line and the beam-pipe walls.

the geometry in Figure 7.3. We note that the potential of a point charge in two dimensions
z = x+iy is given by V (x, y) = ln(z)/2πiε0, in analogy to the potential of filament currents,
we found in Section 4.2, such that the fields are Ey + iEx = 1/2πiε0z. The contribution of
a charge, displaced by d1 from the center of the pipe, to the electric potential at point P
is log(r1)/2πε0 and a similar expression for the contribution from the image charge with
opposite polarity. The sum of these expressions determines the total potential V (x, y) at
any point x+ iy = Reiθ on the beam pipe

V (x, y) =
1

4πε0
ln

[
(x− d1)

2 + y2

(x− d2)2 + y2

]
=

1

4πε0
ln

[
d21

(
1 + (R/d1)

2 − 2(R/d1) cos θ
)

R2 (1 + (d2/R)2 − 2(d2/R) cos θ)

]
(7.3)

and we observe that the expressions with the angle θ cancel, provided that we have R/d1 =
d2/R. Thus, if we place the image charge at d2 = R2/d1 the beam pipe is an equipotential
surface because the potential does not depend on θ anymore.

The combined electric field Ê = Êy + iÊx at a point on the beam pipe we calculate by
adding the contributions from the two charges Ey + iEx = λ/2πε0i(z − dj), where λ is the

Figure 7.3 The geometry to calculate the fields in the presence of a beam pipe.
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longitudinal charge density that is related to the beam current by I = λβc. For Ê we find

Êy + iÊx =
λ

2πε0i

[
1

(x− d1) + iy
− 1

(x− d2) + iy

]
=

λ

2πε0R

[
−ie−iθ(R2 − d21)

R2 + d21 − 2Rd1 cos θ

]
(7.4)

where we used d2 = R2/d1. We see that Ê is horizontal at θ = 0 and points in the vertical
direction at θ = π/2. Moreover, the field is normal to the surface at every point on the beam
pipe, as it should. Note that placing the charges on the horizontal axis does not restrict the
generality, because the geometry is rotationally symmetric. The field of a charge, located
at d1(cosϕ+ i sinϕ) is given by the expression in Equation 7.4 with θ replaced by θ − ϕ.

Since the signals S on the four buttons in the BPM shown in Figure 7.2 are proportional
to the field at the location of the button, we use Equation 7.4 to calculate them. For sim-
plicity, we assume that the beam is only displaced horizontally by d1 ≪ R and the buttons
are located at θ = π/4, 3π/4, 5π/5 and 7π/4. Keeping only linear terms in Equation 7.4, we
find that the signals are approximately given by S = 1+2(d1/R) cos θ, such that we obtain

Sa + Sd − Sb − Sc

Sa + Sd + Sb + Sc
=

−(8/
√
2)d1/R

4
= − d1

R/
√
2
. (7.5)

Comparing with Equation 7.2 we see that we have |kx| = R/
√
2. In a similar fashion, we can

determine |ky| = R/
√
2. The response of the BPM is only linear for small deviations d1 from

the center of the beam pipe. For large deviations and general positions d1(cosϕ + i sinϕ),
we can still use Equation 7.4 with θ replaced by θ−ϕ to calculate the fields on the buttons
and generate a linearity map of the BPM response, but we leave this as an exercise.

For round beam pipes, it was possible to analytically calculate the fields on the beam pipe
using the method of image charges. If, on the other hand, the geometry is more complicated,
we have to resort to numerical methods. The MATLAB PDE toolbox allows us to calculate
the two-dimensional fields from a point charge in a beam pipe that is defined by a polygon.
Such a MATLAB script closely resembles those to calculate magnetic fields. We first have
to define the geometric objects, here the octagonal shape of the vacuum chamber and the
round beam, and assemble them to a single geometric object. In the next step we mesh
the geometry and then define the boundary conditions, here Dirichlet conditions on the
vacuum chamber. Then we define the coefficients of the partial differential equation, m, d,

c, a, and f in MATLAB’s generic representation of PDEs, Equation 4.22, and solve the
equation for the scalar potential. We find the electric field from calculating the gradient
and then determine its value at the location of the electrodes, indicated by asterisks on
the left-hand side in Figure 7.4, which also shows the field lines. The figure on the right-
hand side in Figure 7.4 shows the signal that is proportional to the horizontal position
(Sb + Sc − Sa − Sd)/(Sa + Sd + Sb + Sc) as function of the real position while moving the
test charge along a line in the mid-plane of the BPM. We see that the response of the BPM
is only linear for positions below 1 cm and saturates for larger positions. This non-linearity
can, however, be taken into account numerically. For small deviations, we can determine
the value of kx from a linear least squares fit to the points in the range |x| < 1 cm shown in
Figure 7.4 as the solid straight line. The resulting kx in this case is kx = 1/63.2 = 0.0158m.
The MATLAB file for the simulation can be found in Appendix B.5.

In button BPMs, only a small portion of the fields, or wall currents, contribute to the
signal. This implies that the signal induced in the buttons is rather small and makes these
BPMs mainly suitable for high-intensity beams. Button BPMs normally are the preferred
choice for synchrotron radiation sources with their short high-intensity bunches. On the
other hand, in accelerators with very low-intensity beams, the sensing electrodes are made
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Figure 7.4 The field pattern in an octagonal BPM with four electrodes indicated by

asterisks on the left-hand side. The figure on the right-hand side shows the derived

signal (Sb + Sc − Sa − Sd)/(Sa + Sd + Sb + Sc) while moving the test charge along

a horizontal line in the mid-plane of the BPM.

much larger and one often uses a diagonally sliced box inside the beam pipe. It has the
advantage that the sense electrodes are particularly large, making these BPMs suitable for
heavy-ion storage rings with low-intensity beams or for beams of rare isotopes. Furthermore,
their signal-response from the transverse position is highly linear, even at large displace-
ments, because the signal intensity is directly given by the fraction of the electrode exposed
to the wall current, and that is linear due to the diagonally and linearly cut shoe box. As
in other position-sensitive devices, the position is then deduced from ratio of the difference
to the sum of the signals from the two electrodes. A sketch of such a shoe-box position
monitor is shown on the left-hand side in Figure 7.5. Normally one box, which can either
have rectangular or round cross-section, is used for the horizontal and another one for the
vertical direction.

Where button BPMs predominantly couple to the electric field that accompanies the
bunches, strip-line BPMs, shown schematically on the right-hand side in Figure 7.2, couple
to the accompanying magnetic fields. A conducting strip-line is mounted isolated on the
inside of the vacuum chamber. Its width and height above the vacuum chamber determine
its impedance, and it must be properly matched to the terminating resistors, also shown
in Figure 7.2, in order to avoid reflections. When the beam passes under the strip-line,
part of the accompanying magnetic field enters the region between strip-line and beam
pipe. The changing flux induces a voltage pulse, one of them traveling upstream towards
port 1. A second pulse travels downstream along the strip-line, and parallel to the bunch,
towards port 2. When the bunch arrives at port 2, it will induce a second voltage pulse
with opposite polarity, because the enclosed flux now decreases. One-half of this voltage
pulse travels upstream toward port 1, where it will be recorded at a time, determined by
the length of the strip-line. In the downstream port 2, the pulses from the beam entering
and exiting the region with the strip-line cancel, provided the signal speed on the strip-
line and the bunch are equal. Thus, we can record a signal on the upstream port 1, but
the signals on the downstream port 2 cancel, which makes strip-line monitors directional;
they can discriminate beams going one way from those going in the opposite direction.
This capability makes them particularly useful near interaction points of colliding beams
facilities with counter-propagating beams. The signals from four strip-lines arranged in
much the same way as in button BPMs allows us to extract the beam position with the
help of Equation 7.2.
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Figure 7.5 The large electrodes of a shoe-box BPM (left) allow us to detect the

position of low-intensity beams, whereas cavity BPMs (right) allow us to detect the

positions of very short and intense bunches.

Yet another position-sensitive device is a cavity BPM which is based on a resonating
structure, a pill-box cavity is shown on the right-hand side in Figure 7.5 that supports a
spatially antisymmetric mode that has a zero on the beam axis, such as a TM110 mode. We
refer to Section 5.1 regarding the labeling of the modes. The geometric size of these BPMs
is typically several centimeters, such that the frequencies are in the GHz range. If the beam
is centered, it does not couple to this mode and does not excite it, but if it is off-center, the
beam couples to the electric field and thereby excites the mode. The excited mode can then,
in turn, excite the electrons in the two antennas. The information whether ∆y is positive or
negative is obtained by comparing the phase of the signals from the antennas with that of
the TM010 mode. Cavity BPMs can achieve very good position resolutions in the µm range
and are, for example, used in the European XFEL, where the bunches in a bunch train are
only separated by about 220 ns. In this case, the modes in the cavity BPM are strongly
damped in order to be able to independently determine the positions of successive bunches.

All of the above position monitors generate short electric pulses on their output ports.
These pulses depend on the length of the bunches but are also affected by the monitor itself.
This can most easily be understood by realizing that, for example, a button of a button BPM
has a capacitance C, shown on the top right in Figure 7.2, against the surrounding beam
pipe. This capacitor is charged by the passing beam and discharged through the terminating
resistor R. This setup constitutes a high-pass filter with cutoff frequency ωc = 1/RC through
which the signal from the beam is passed. In the next stage, often a hybrid is used to
generate the sum and difference of the signals from the electrodes. A hybrid is a passive
high-frequency device in which one of the signals from two input ports is inverted and added
to the input from the other. One output port carries the sum and a second the difference
of the input signals. After amplification and low-pass filtering, the signals are digitized and
all further processing is done digitally.

The averaged beam position of a long sequence of repetitively arriving bunches, as they
occur in storage rings, generates signals at harmonics ωn of the repetition frequency. A slowly
varying position shows up as amplitude modulation. Extracting the slowly varying position
information uses the super-heterodyne method, which is also used in old-fashioned radios.
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Here the signal from the BPM is mixed (multiplied) with an externally generated frequency
ω̃ from a local oscillator, and this leads to the appearance of sum and difference frequencies
ωn+ ω̃ and ω̂ = ωn− ω̃. After low- or band-pass filtering, only the intermediate frequency ω̂
is left. It still carries the information about the slowly varying position as modulation. Since
the frequency ω̂ is much more slowly varying than the original, we can use slower and less
expensive digitizers. Moreover, by reducing the bandwidth, or equivalently, averaging over
longer times, the position resolution is much improved. Systems to determine the closed
orbit in rings often use these narrow-band methods.

Beam position monitors are arguably the most important diagnostic devices in any
accelerator. They are used to verify that the beam passes through the center of the beam
pipe, which minimizes beam losses. Moreover, connecting the raw difference signal from
a position monitor to a spectrum analyzer, often in conjunction with exciting the beam
with a short-pulsed kicker magnet. The analyzer directly shows the transverse betatron
oscillation frequency around the harmonics of the revolution frequency, which can be used
to determine the tune. This is only the crudest, but very direct method, to determine an
equally crude estimate of the tune, and more elaborate methods are available. But more on
that is discussed in later sections.

After the instrumentation for position measurements, let us briefly discuss diagnostics
to determine the beam energy and the arrival time. The average energy of the beam can
be inferred from its position on a position monitor or a screen at a location with a large
dispersion functionDs. If, in the latter case, the beta function βs at the screen is deliberately
made small, the energy sensitivity is maximized provided the figure of merit, given byDs/βs,
is maximized.

The arrival timing of bunches in the range up to a little better than a nanosecond can be
done by observing the sum signal from a position monitor on an oscilloscope with an analog
bandwidth of several GHz. The timing requirements for modern free-electron lasers (FELs)
are, however, four to six orders more stringent. They lie in the femtosecond (fs) range, and
we need to employ optical methods, inspired by developments in the laser community. This is
additionally attractive, because the ultra-fast synchronization is needed to facilitate pump-
probe experiments of the FEL pulse in conjunction with an external laser. One method to
synchronize an electron beam with an external laser is based on lengthening a very short
(fs range) laser pulse with an optical grating, which leads to a long (picosecond range)
light pulse with a longitudinal correlation of wavelength inside the laser pulse, called chirp.
On a grating spectrometer, the laser pulse then shows a very broad spectrum, with short
wavelength on one side and long on the other. Coupling to the electron bunch is achieved
by placing an bi-refringent crystal between a crossed pair of a polarizer and an analyzer,
such that no laser pulse actually reaches the spectrometer. The electric field of a passing
bunch affects the crystal in such a way that it rotates the polarization of the simultaneously
passing laser pulse, such that only a short fraction of the lengthened laser pulse now passes
the second polarizer. The relative arrival time between electrons and lasers is encoded in
the part of the spectrum visible on the spectrometer on a shot-by-shot basis.

After this brief overview of diagnostics of the first moment, we turn to beam-size mea-
surements.

7.3 SECOND MOMENT: BEAM SIZE

We now turn to the discussion of devices to measure the transverse and longitudinal size of
the beam. Of course, the most straightforward way of measuring the transverse beam size
is by placing a luminescent screen into the beam and observing the emitted light with a
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Figure 7.6 The beam position and size are often determined by observing the image

on a screen (left) or by measuring the currents caused to replenish the knocked out

electrons from a secondary-emission grid (right).

video camera and digitizing the picture on a computer as is shown on the left-hand side in
Figure 7.6. This is obviously an invasive measurement, especially at low energies, where the
beam is absorbed in the screen. There are often problems with these types of screens due to
blind spots where the screen material is not as effective as on the surrounding area. Limited
dynamic range and saturation of the intensity are other problems as well as cameras failing
due to high radiation doses.

A variant of the luminescent screen is a screen based on optical transition radiation
(OTR) where the screen is made of a very thin foil of, for example Al2O3, which disturbs
some beams, such as high-energy electron beams, only modestly. The beam pushes the
electrons in the screen out of the way, and after the beam has passed the electrons relax
back to their original positions. These electrons experience an acceleration and therefore
emit electro-magnetic radiation, which is then picked up by a camera, possibly after being
transported in an optical beamline made of lenses and mirrors to a distant and well-shielded
camera.

Another monitor is based on the ionization of very thin, typically a few µm, thick wires,
as illustrated on the right-hand side in Figure 7.6, which is called a secondary emission
monitor (SEM) grid. The electrons are knocked out of the wire by the intercepted beam and
cause a small current to flow back to the wires that is first amplified and then measured in an
ampere meter. Reading all currents simultaneously makes SEM grids capable of measuring
the profile of individual pulses. Of course all wires must be read out in parallel, which
requires one amplifier per wire and they must be well-balanced. Moreover, a large number
of wires must be passed from the inside of the beam pipe, where the SEM grid is located
to the outside, where the amplifiers are located, which requires vacuum feedthroughs with
many connectors. All of this makes SEM grids rather expensive. The recorded profiles
are normally displayed as a histogram of the current in the wires as a function of the wire
position from which the center and the width of the distribution then are easily determined.

Instead of placing a large number of wires permanently in the beam, we can use a wire-
scanner, which consists of a fork that quickly moves a thin wire through the beam. In this
case only a single amplifier for the wire is needed, but some mechanical devices such a
stepper-motors or a pneumatic piston are required in order to move the wire. Of course,
the position of the wire must be known while it traverses the beam, which is usually done
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by resistive or optical position encoders. Often it is possible to avoid electronic readout of
the secondary emission current from the wire but observe nearby fast ion chambers. They
will generate a signal related to the number of beam particles hitting the wire. It should
also be noted that the wires are normally only several micrometers thick but nevertheless
represent a thick target for the beam and perturb it, which can be critical and even kill the
beam, especially in circular accelerators.

A variant of the wire scanner is the magnesium jet profile monitor, developed in Novosi-
birsk for VEPP-3 with a copy installed in CELSIUS in Uppsala. In the Magnesium Jet
profile monitor, the wire is replaced by a thin stream of Magnesium vapor that is trans-
versely swept across the beam while the position of the nozzle is recorded. The Magnesium
is ionized by the beam, and the electrons are attracted by a transverse electric field to-
ward a photo-multiplier, which produces a signal proportional to the number of Magnesium
atoms hit by the beam. A variant of the same theme is the residual gas monitor where the
Magnesium Jet is replaced by the residual gas that is normally present in the beam pipe
to some extent. The gas is ionized, and the electrons are guided by magnetic fields onto
a position-sensitive multi-channel plate, thus providing information about the transverse
beam size.

Instead of moving a wire or gas into the path of an electron beam, in laser-wire scanners
a tightly focused laser beam is transversely scanned across the beam. The fundamental
interaction is Compton scattering of the laser photons and electrons. The photons, scattered
in the forward direction of the beam, are detected by a scintillating crystal with a photo-
multiplier tube and displayed as a function of the position of the laser-wire. In an installation
in the PETRA ring at DESY [46], the laser is a pulsed and frequency-doubled Nd:YAG
laser with about 60mJ in a 5 ns long laser pulse that is focused to an rms spot size of about
4.5µm. A piezo-controlled rotating mirror is used to scan the laser across the electron beam
once every 50ms. Since integrating the scarce Compton-scattered photons for some time is
necessary, a full scan of the electron beam profile takes about a minute.

Electrons and positrons at high energies emit synchrotron light in bending dipole mag-
nets, which can be imaged onto a camera with, for example, a pinhole or a lens and thereby
provide a direct image of the transverse electron beam distribution. In modern synchrotron-
light sources, the beam size is often too small to be directly observed. Instead, interferomet-
ric methods are used, which is illustrated in Figure 7.7. As we shall see in Chapter 10, the

Figure 7.7 In a beam size interferometer, the horizontally polarized radiation is re-

moved by an absorber. The vertically polarized radiation continues and is focused

by a lens onto a detector. An example of the resulting interference pattern is shown

in the inset.
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emitted radiation, observed in the horizontal plane, is entirely horizontally polarized. This
component is blocked by an absorber. On the other hand, at a vertical angle θ from slightly
above or below a vertically polarized component is observable, where the light above the
mid-plane is 180 degrees out of phase with the light below the mid-plane. After filtering the
light and imaging with a lens onto a detector, an interference pattern appears that has a
minimum on the mid-plane where light interferes destructively. This is shown by the gray
trace in the small inset in Figure 7.7. This cancellation on the mid-plane is only perfect for
a point-like source point. A beam with a finite vertical size σy, on the other hand, smears
out the minimum, which is shown by the dashed dark trace. Carefully calibrating the ratio
of the minimum and the maximum of the intensity makes it then possible to determine
vertical beam sizes [47] on the order of a few µm.

If even smaller beam sizes, on the order of 100 nm or below, need to be determined,
we can use a so-called Shintake-monitor [48]. It is based on splitting a laser beam and
guide the two parts to counter-propagate. The resulting standing-wave pattern acts as a
“quasi-photon-grid.” Transversely moving the high-energy electron beam across it, results
in a varying number of scattered Compton photons. The modulation depth of the counted
photons in turn depends on the electron beam-size and is used to determine it.

Now we have covered a number of monitors to determine the transverse beam size, even
below the µm-range and need to turn our attention to the determination of the longitudinal
beam size. If it is on the order of nanoseconds, observing the sum signal from a position
monitor on an oscilloscope gives an indication of the bunch length. We have, however, to
keep in mind that the signal is modified by the frequency response of the monitor and
processing electronics. For button pickups, it is that of a high-pass filter, and the signal
on an oscilloscope is a mixture of the bunch profile and its derivative. It is possible to
compensate this effect numerically by deconvolution.

Much shorter electron bunches down to the picosecond range (bunch length in the mil-
limeter range) can be measured with a streak camera, which is based on the conversion of
synchrotron-light pulses to electrons on a photo cathode. The electrons are subsequently
accelerated and transversely deflected in a rapidly varying electric field. This “smears” or
“streaks” the electrons transversely onto a multi-channel plate to increase the intensity be-
fore an image is created on a phosphorous screen that is observed with a CCD camera. The
longitudinal intensity distribution of the light pulse is thus converted to a transverse dis-
tribution on the screen. Synchronicity is guaranteed by locking the transversely deflecting
voltage to the radio-frequency system and thus the arrival time of the bunches. Orthogonal
to the fast deflecting plates, some systems have a second pair of slower-deflecting plates
installed. They permit to simultaneously observe the variation of the bunch length on a
longer, typically µs, time scale.

Instead of streaking secondary electrons emitted by a photo-cathode, we can use a trans-
versely deflecting structure (TDS) to “streak” the primary electron beam directly, albeit at
the expense of using a much larger RF structure and an additional klystron [49], both of
which incur significant additional costs. The benefit, on the other hand, is that the range
to which longitudinal profiles can be determined is extended down to the fs-range, where
the bunches are only µm long. This is important to verify the stringent requirements on
the bunch length and peak current for free-electron lasers, discussed further in Section 10.5.
A TDS is based on a cavity with a transversely deflecting mode, such as TM110. Timing
the TDS in such a way that the electron bunches arrive near the zero crossing of the field,
deflects the head of the bunch to one side and the tail to the other. On a downstream screen,
observed by a camera, the longitudinal profile appears converted to the transverse plane.
Longer bunches produce a wider spot.
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Figure 7.8 In a Feschenko monitor the electrons emitted from an ion beam hitting

a wire are counted in a detector mounted after a slit. A deflector, operated syn-

chronously with the accelerating frequency selects different sections of the beam

that pass the slits. By varying the phase, the longitudinal profile of the bunch is

obtained.

A particular difficulty arises when intercepting the electro-magnetic fields of proton or
ion beams at very low, non-relativistic, energies, because the fields are not relativistically
contracted, as discussed at the beginning of Section 7.2. Instead of detecting the electro-
magnetic fields, a so-called Feschenko monitor is based on inserting a wire into the beam
pipe and detecting secondary electrons in a detector as shown in Figure 7.8 [50]. The beam
intercepts the wire that is biased at several kV negative voltage with respect to the deflector
that is additionally excited by a voltage U(t) that phase-locked to the accelerating frequency
ωrf . Only those electrons, emitted at a time when the field in the deflector is zero, can travel
through the slit before the detector. By varying the phase φ0 different longitudinal parts of
the bunch then contribute such that plotting the intensity versus φ0, as shown in the inset,
provides the longitudinal bunch shape.

The momentum spread of a beam can be determined from the transverse beam size on a
screen or wire scanner at a location with dispersion, provided the ratio D/β of dispersion D
and beta function β is large, as already discussed near the end of the previous section. In a
synchrotron or a storage ring, we found near the end of Section 5.3 that the maximum phase
excursion ϕ̂ and momentum offset δ̂ of a particle are related by ϕ̂ = (ηωrf/Ωs)δ̂. For the
bunch length σs and the momentum spread σδ it therefore follows that σs = (ηωrf/Ωs)σδ,
such that an observation of the bunch length directly infers the momentum spread.

Let us now return to transverse beam size measurements and use them to determine the
emittance and the beta functions.

7.4 EMITTANCE AND BETA FUNCTIONS

In low-energy accelerators the beam matrix as well as the emittances and Twiss parameters
are determined with a pepper-pot, which uses an absorber with a number of small holes,
very similar to the lid of a pepper-dispenser to spice one’s dinner, and, after a distance L, a
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Figure 7.9 The emittance can be determined by passing the beam through a plate

with small holes, the pepper-pot, and observing spots on a screen. Their position

reveals information about the beam size on the plate and the widths about the

angular divergence.

luminescent screen. Most of the beam incident on the pepper-pot is absorbed, but a small
fraction, proportional to the local beam intensity at location x, passes through the holes and
impinges on the downstream screen, where it forms an image of the holes on the pepper-pot.
These image spots on the screen can be characterized by their intensity, their displacement
x′L from a fiducial mark, and their width, which is approximately proportional to the
angular divergence of the incident beam at position x. Figure 7.9 illustrates the geometry
in one dimension. The position x of the hole and the displacement x′L determine the position
in the phase-space diagram, shown on the right, and the width, together with the intensity
of the spot, determines the angular distribution at one slice. Repeating this analysis for
each hole results in a reconstructed phase space of the beam incident on the pepper-pot. A
real device has a two-dimensional array of holes and is commonly used to measure the beam
matrix in both transverse directions. Pepper-pots are only used in low-energy accelerators,
because they absorb most of the beam’s energy.

A common way to experimentally determine the emittance and beta function is by using
a number of beam size measurements, either by varying a quadrupole, or by observing the
beam size on a number of screens or wire scanners. We will restrict ourselves to the one-
dimensional case where the beam sigma-matrix is a 2×2 matrix that has three independent
parameters, either σ11, σ12, and σ22 or ε, β, and α. All we can directly measure is the beam
size, but we still want to be able to determine the other parameters such as emittance ε or α
as well. We obviously need at least three measurements to determine the three independent
parameters. We start by determining the moments first and later calculate the emittance
and Twiss parameters, such as α and β.

Figure 7.10 shows the spot on a luminescent screen for two different settings of an up-
stream quadrupole. On the left-hand side, the quadrupole is focusing weakly and the beam
is horizontally wide, but vertically small. If we increase the quadrupole excitation, the hor-
izontal beam size will shrink, but the vertical beam size will increase, because quadrupoles
focus in one plane but defocus in the other. We will now see how the horizontal beam size
will change as a function of the quadrupole excitation for an input beam specified by its
moments. For this we need the transfer matrix from the entrance of the quadrupole to the
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Figure 7.10 In a quadrupole scan, the beam size, measured on a screen or with a wire

scanner, is changed by varying the excitation of a quadrupole. The beam matrix

σ0 before the quadrupole can be determined by correlating the beam-size changes

with the excitations.

screen. It is given by that of a thin quadrupole and a drift space

R =

(
1 l
0 1

)(
1 0

−1/f 1

)
=

(
1− l/f l
−1/f 1

)
, (7.6)

where l is the distance from the quadrupole to the screen and f is the focal length of
the quadrupole. We now transport the input beam σ with the transfer matrix R from
Equation 7.6 to the screen by σ̄ = RσRt and obtain for σ̄11 = σ̄2

x, which equals the beam
size squared on the screen

σ̄11 = R2
11σ11 + 2R11R12σ12 +R2

12σ22

= (1− l/f)2σ11 + 2l(1− l/f)σ12 + l2σ22 (7.7)

=

(
l

f

)2

σ11 −
(
l

f

)
(2σ11 + 2lσ12) + (σ11 + 2lσ12 + l2σ22) ,

which shows that the squared beam size on the screen is a quadratic function, a parabola,
of the relative quadrupole excitation l/f. The coefficients of the parabola are related to
the beam parameters of the incoming beam. By setting the quadrupole to at least three
different values and recording the corresponding beam sizes on the screen, we can therefore
determine the three parameters of the sigma matrix σij of the input beam. And from those
three moments, we can in turn determine the emittance and the Twiss parameters α and
β from

ε =
√
detσ =

√
σ11σ22 − σ2

12 , β =
σ11

ε
, and α = −σ12

ε
, (7.8)

which follows directly from Equation 3.107.
Instead of measuring the emittance in a quadrupole scan, we can measure the beam size

in at least three different locations, where the intermediate transfer matrices must be known.
The transfer matrices from the start location to the screens or wire scanners labeled n are
denoted by a superscript n such as Rn. The measured beam size squared at screen n we
denote by σ̄2

n. The dependence of the measurements on the incoming beam matrix σij at
an upstream location, is then determined by the following set of equations

σ̄2
1 = (R1)211σ11 + 2R1

11R
1
12σ12 + (R1)212σ22

σ̄2
2 = (R2)211σ11 + 2R2

11R
2
12σ12 + (R2)212σ22 (7.9)

σ̄2
3 = (R3)211σ11 + 2R3

11R
3
12σ12 + (R3)212σ22 ,
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which can be written in matrix form as



σ̄2
1

σ̄2
2

σ̄2
3


 =




(R1)211 2R1
11R

1
12 (R1)212

(R2)211 2R2
11R

2
12 (R2)212

(R3)211 2R3
11R

3
12 (R3)212







σ11

σ12

σ22


 . (7.10)

We can solve for the unknown input beam σij by simple matrix inversion of the matrix that
appears in Equation 7.10 and that we denote by A. If there are more measurements on one
or more additional screens, we just add one or more equations to Equation 7.9, which leads
to more rows in the corresponding matrix Equation 7.10 which then is over-determined and
we can solve it in the least-square sense using the methods discussed in Appendix B.1.

We can easily take measurement errors for the beam size measurements into account and
use them to determine error bars for the derived input-beam matrix elements σij .We observe
that each individual beam-size measurement σ̄k is afflicted by a measurement error ∆σ̄k,
such that the measurement error Ek of σ̄2

k is Ek = 2σ̄k∆σ̄k. Left-multiplying Equation 7.10
with the diagonal matrix that contains the inverse measurement errors 1/Ek on the diagonal
gives the proper weight, dependent in the measurement error ∆σ̄k, to each measurement.
Both the measurements σ̄2

k and the matrix elements of Akj are divided by the corresponding
Ek leading to σ̄2

k/Ek and Bkj = Ak,j/Ek. Solving for the input matrix σij proceeds in the
same way by using the pseudo-inverse, but now using the matrix B. Following the discussion
in Appendix B.1, the error bars of the fit parameters σij are given by the square-root of

the diagonal elements of the covariance matrix C, given by C = (BtB)
−1

.
These measurements can be extended to determine the coupled 4 × 4 beam matrix if

there are either skew quadrupoles available to change the coupling or ways to measure the
correlation σxy. The latter we can determine from a spot on a screen or from a wire scanner
oriented diagonally in the xy-plane.

7.5 SPECIALTY DIAGNOSTICS

BPMs and screens constitute the work-horse diagnostics of most accelerators, but there are
a number of special diagnostic methods that were developed for special purposes. We start
with the ability to record beam positions on a turn-by-turn basis.

7.5.1 Turn-by-turn position monitor data analysis

The ability to record transverse beam positions on many successive turns in a storage ring,
often for several bunches independently, enables a number of very attractive diagnostic
opportunities. The most obvious is to simply pass the positions x from a successive number
of turns to a Fast Fourier transform (FFT), just as we did in Section 3.3.2. In MATLAB,
the command

plot((0:N-1)/N,2*abs(fft(x))/N)

achieves this and produces a figure with the fractional part of the tune on the horizontal
axis and oscillation amplitudes on the vertical axis. The latter is properly normalized and
has the same scale and units as the positions x. Note that the spectrum above Q = 0.5 is
the mirror image, or alias, of the spectrum in the range 0 < Q < 0.5, which is a consequence
of sampling only once per turn and the Nyquist theorem, such that all frequencies appear
aliased into the frequency range between 0 and 0.5, called the baseband. Therefore, usually
only that range is shown when displaying the spectra of sampled data. The fractional tunes
Q and 1−Q are therefore indistinguishable but can be disentangled by changing a focusing
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quadrupole by a small amount. If the tune spectrum moves to higher values, the original
tune is between 0 and 0.5; if it moves to smaller values, it lies between 0.5 and 1, where it
actually increases. Only its alias in the baseband moves in the other direction.

Instead of passing positions from many turns to an FFT routine it is possible to obtain
an estimate for the tune from only three consecutive turns xn, xn+1, and xn+2. If we denote
the transfer matrix for one turn and starting at the BPM by R, we use the inverse of R to
express the angle at turn n+ 1 by R12x

′
n+1 = R22xn+1 − xn. Moreover, the position xn+2

is given by position and angle from the turn before xn+2 = R11xn+1 + R12x
′
n+1. Inserting

R12x
′
n+1 from the previous equation yields a linear relation among the positions from three

consecutive turns

xn+2 + xn = (R11 +R22)xn+1 = 2 cos(2πQ)xn+1 , (7.11)

where we use Equation 3.89 to express the trace of the transfer matrix by an estimate for the
fractional tune Q. A note of caution on the use of this equation is in order: if the dynamics
is purely linear, the equation is correct, but using it to estimate an instantaneous tune from
beam positions whose dynamics is governed by other, and possibly non-linear forces, violate
its validity, and using it may be afflicted by systematic errors. This caveat notwithstanding
we may use Equation 7.11 repeatedly for a number of consecutive turns and obtain a linear
system of equations we can use to determine the trace of the transfer matrix R




...
xn+1 + xn−1

xn+2 + xn

...




=




...
xn

xn+1

...




(R11 +R22) (7.12)

and using the pseudo-inverse (AtA)−1At from Appendix B.1 to solve it for R11 + R22 =
2 cos 2πQ. The estimate of the error bars for the derived tune is left as an exercise.

In order to obtain sufficient signal amplitude for either the FFT or the three-turn equa-
tion, the beam is often excited with a pulsed magnet to initiate the betatron oscillations.
But it turns out that the oscillation amplitude decreases over a moderate number of turns.
The reason is that the kicked bunch is an ensemble of many particles, each performing free
betatron oscillations, albeit at slightly different frequencies, either due to the finite chro-
maticity and momentum spread or due to the amplitude-dependent tune shift caused by
non-linear magnets, a topic we return to in Section 11.7. Here we only consider the effect
of the chromaticity µ′ = 2πQ′ and note that the linear motion of particles in normalized
phase space (x̃, ỹ) can be succinctly written as

x̃n+1 + iỹn+1 = ein(µ+µ′δ)(x̃0 + iỹ0) , (7.13)

where the particle is assumed to have the momentum offset δ and the distribution ψ(δ) of

the momentum offset can be described by a Gaussian ψ(δ) = e−δ2/2σδ/
√
2πσδ with rms

width σδ. Since BPMs only observe the average position of the entire ensemble of particles,
we need to average Equation 7.13 over the distribution of momenta and find the average
position ⟨x̃n + iỹn⟩ to be

⟨x̃n + iỹn⟩ = e−(µ′σδ)
2n2/2einµ(x̃0 + iỹ0) . (7.14)

Here we observe that all particles, after having received an initial amplitude x̃0 + iỹ0 per-
form free oscillations with phase advance µ, but the amplitude is reduced by the factor
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e−(µ′σδ)
2n2/2. This factor has a quadratic dependence on the number of turns n and thus

does not describe exponential damping, but the loss of coherence due to the differing oscilla-
tion frequencies. The amplitude of each individual particle remains constant, but the average
motion of the whole ensemble de-coheres, and this is what BPMs observe; the particles get
out of step, similar to what we found for the longitudinal motion, illustrated in Figure 5.5.
The characteristic number of turns nc over which this de-coherence becomes important is
given by nc = 1/µ′σδ. We see that small chromaticities µ′ = 2πQ′ and small momentum
spreads σδ are beneficial for experiments based on observing turn-by-turn position data of
kicked beams.

So far, we only used the recorded positions from a single BPM, but adding a second
one, with known transfer matrix R̃ between the two BPMs, allows us to reconstruct the
phase-space coordinates at one, here the first, BPM x1 and x′

1 = (x2 − R̃11x1)/R̃12 and
experimentally determine the Poincare plot of the dynamics in the ring by plotting the
reconstructed phase-space coordinates turn-by-turn. Note that a large value of R̃12 is ad-
vantageous to accurately determine x′

1. This formalizes the common-sense approach to use
two BPMs “with a 90o phase-advance between them.” The pioneering experiment to do
so was E778 [51] at Fermilab, where the dynamics in the presence of strong sextupoles
was experimentally investigated and compared to simulations. In particular, the amplitude-
dependent tune shift was measured, and trapping of particles in resonance islands was
observed.

We can determine the betatron phase-advance between two BPMs [52] by first determin-
ing the betatron tune Q with a FFT or any other method and then “mixing” the positions
xa at BPM a with both phases (sine and cosine) of the oscillation frequency

Ca =

n∑
k=1

xa
k cos(2πkQ) and Sa =

n∑
k=1

xa
k sin(2πkQ) (7.15)

to obtain a phase value ϕa = arctan(Sa/Ca)+ϕ0 with an unknown phase offset ϕ0. Repeating
the analysis with position from another BPM b, taken concurrently with BPM a in order to
have the same ϕ0, we obtain the phase at the second BPM as ϕb = arctan(Sb/Cb)+ϕ0 such
that the phase difference between the two BPMs is given by ∆ϕba = ϕb − ϕa. Comparing
the measured phase-advance differences ∆ϕba to those derived from a computer model,
reveals locations with potential errors in the linear optics, such as quadrupole-gradient
errors. Correlating measured phase advances from many or all BPMs in a ring allows us to
determine [53] beta functions with good accuracy.

The next topic is based on utilizing the beam-beam interaction of colliding bunches
at the interaction point for diagnostic purposes, which is used both in circular and linear
colliders.

7.5.2 Beam-beam diagnostics

In order to maximize the luminosity, the beams in colliders are squeezed to very small
transverse dimensions at the interaction point. This causes very high charge densities and
corresponding electro-magnetic fields that affect the counter-propagating beam, and, since
the beams move in opposite directions, the effects of electric and magnetic field components
deflect in the same direction and need to be added. The transverse radial electric field Er

of a round beam with Gaussian charge density e−r2/2σ2

/2πσ2 is given by Gauss’s law

2πrEr =
N

2πσ2ε0

∫ r

0

e−r′2/2σ2

r′dr′dϕ =
N

ε0

(
1− e−r2/2σ2

)
(7.16)
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where N is the number of charges in the beam, and σ is the radial rms size. For electrons

with energy γmc2, this leads to the deflection angle ∆θ = −(2Nre/γ)
(
1− e−r2/2σ2

)
/r for

a single particle. Here re = e2/4πε0mec
2 is the classical electron radius. In Section 9.7 we

will see that averaging over all particles of the counter-propagating beam with beam size σ̃
gives the (round-beam) beam-beam deflection angle for the whole beam, which is observable
on position monitors in the vicinity of the interaction point

⟨∆θ⟩ = −2Nre
γ

1− e−∆r2/2(σ2+σ̃2)

∆r
. (7.17)

This expression strongly resembles the deflection angle of a single particle; only the beam
size is replaced by sum of the squares of the beam size, both for the field-producing and the
deflected beam. Furthermore, the radius vector r is replaced by the displacement ∆r of one
beam with respect to the other. By transversely scanning one beam across the other and
thereby changing ∆r, while simultaneously recording the deflection angle ⟨∆θ⟩ allows us to
determine the initial displacement and σ2 + σ̃2 from a least-squares fit. This method was
very successfully used in the SLC [54] to center the beams and use the beam sizes as estimate
for the luminosity. Note that only the sum of squares of the beam sizes can be determined
in this way, which is generally valid, even for elliptic or non-Gaussian beams [55].

Apart from deflecting the opposing beam as a whole, the deflection of the individual elec-
trons or positrons causes them to emit synchrotron radiation, so-called beamstrahlung [56].
The number of photons is rather low, but they are highly energetic, because the deflect-
ing fields are very strong. A monitor system [57] was installed adjacent to the interaction
region in the SLC. It was based on first converting the beamstrahlung photons into electron-
positron pairs that pass through a low-density gas where they produce Cerenkov photons,
which are subsequently recorded by photo-multiplier tubes. The Cerenkov effect discrim-
inates the few, but high-energy, beamstrahlung photons from the abundant low-energy
photons. We will return to the discussion of beamstrahlung in Chapter 9 and now turn to
the use of beam-beam diagnostics in circular colliders.

Expanding the beam-beam deflection angle in Equation 7.17 for small displacement ∆r
shows that the deflection angle has a linear dependence and thus behaves like a quadrupole;
and that affects the tunes of the beams in a storage ring. Since the slope of the deflection
curve is maximum near the origin, maximizing the beam-beam tune shift will center the
beams on top of each other and will maximize the luminosity. In colliders, the tunes of the
two rings are often equal and the beam-beam interaction couples their betatron oscillations,
such that the coupled system will cause the oscillation frequencies to split into two modes
and their separation directly gives the tune shift, as we will discuss in detail in Section 9.7.
Scanning one beam across the other is often called a van der Meer scan and extending
the scan range while recording the tune shift and, if possible, a subnuclear reaction, gives
information about the beam size directly at the interaction point. Displacing one beam
versus the other one causes the “quadrupole” to be offset, and that will affect the closed
orbit [58], which is visible on BPMs throughout the ring and can be used to determine the
beam-beam deflection angle in the same way it is done in a linear collider.

7.5.3 Schottky diagnostics

The beams in proton or ion storage rings contain a large number of discrete particles, and
the finite momentum spread causes the particles to have slightly different revolution times
that is according to Equation 5.32 given by ∆f/f = ησδ. Each of the particles therefore
produces a very weak “ping” on a detector such as a BPM. Sometimes, for intense beams,
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Figure 7.11 A pulse train of a periodically arriving single particle (left) and the

spectral power density of an ensemble of many particles (right).

conventional BPMs are sufficient, but normally special monitors, often cooled to cryogenic
temperatures in order to minimize thermal noise, are used to pick up the distribution of
“pings.” These are called Schottky signals because they resemble the noise generated by
the individually arriving electron on the anode of vacuum-tubes, originally analyzed by W.
Schottky in 1918. Using Schottky signals for diagnostic purposes to determine momentum
spread, tune, and chromaticity is essentially non-invasive, which is often advantageous.

In order to quantitatively analyze the signals, we consider a single particle p, which takes
the time Tp for one revolution [59] and has a starting time tp. An illustration is shown on
the left-hand side in Figure 7.11. The current ip(t) that is detected by a monitor is then an
infinite sequence of delta-function pulses with charge e, spaced by Tp

ip(t) = e
∞∑

k=−∞

δ(t− tp − kTp) =
e

Tp

∞∑
m=−∞

eimωp(t−tp)

=
e

Tp
+

2e

Tp

∞∑
m=1

cos(mωp(t− tp)) . (7.18)

Here the periodicity of the first equation implies that the second one can be written as a
Fourier series with harmonics of the fundamental frequency ωp = 2π/Tp with all Fourier
coefficients evaluating to 1/Tp. The third equality follows because the coefficients of negative
and positive m are equal. Using the second equation to Fourier transform ip(t) we find
ĩp(ω) = (2πe/Tp)

∑∞
m=−∞ δ(ω−mωp) where we use the tilde to denote Fourier transforms.

We find that a sequence of equally spaced delta pulses generates a frequency comb that
contains all harmonics mωp of the fundamental frequency ωp.

To observe longitudinal Schottky spectra we connect, for example, the sum signal of a
BPM to a spectrum analyzer. An unbunched, often called “coasting” beam withN randomly
distributed particles along the circumference, the starting times tp are randomly distributed
over the revolution period, and averaging causes only the constant term to survive. It
represents the average current I0 = Ne/T0, where we assume that the spread in revolution
times is small and Tp ≈ T0. On the other hand, the power, deposited by the current that
fluctuates due to its granularity, is proportional to the square of the current variation
i2r = ⟨(ip−e/Tp)

2⟩. Here the angle brackets denote averaging over the starting times tp that

appear in the definition of ip(t) in Equation 7.18. It is given by ir ≈ (2e/T0)
√
N/2, which

increases with the square root of the number of particles, indicating the incoherent addition
of the phase-averaged current pulses. It is independent of the harmonic m and therefore
the same for all harmonics. The spectral power density per frequency band of width df
is proportional to i2r/df , which is the quantity displayed on a spectrum analyzer. This is
sketched on the right-hand side in Figure 7.11. The total power per band is equal, and
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since the bandwidth increases the peak value decreases. The width of the peak (∆f/f)m of
harmonic m is related to the momentum spread σδ of the beam by (∆f/f)m = mησδ.

Transverse Schottky spectra are observed by connecting the BPM difference signal or
dedicated Schottky monitor to a spectrum analyzer. This signal is proportional to the
current ip of the periodically arriving particle, that is modulated by the transverse position
xp(t) = ap cos(Qpωpt + ϕp), where Qp denotes the fractional part of the tune, ap is the
amplitude of the transverse oscillation, and ϕp is the random starting phase of the transverse
oscillation. The frequency spectrum, we find from the dipole moment dp(t)

dp(t) = ip(t)xp(t) =
eap
T0

Re

( ∞∑
m=−∞

ei(m+Qp)ωpt+ϕp

)
, (7.19)

which shows that there are now spectral lines at ω = (m ± qp)ωp. Similar to the previous
paragraph, the spectral power density is proportional to ⟨d2⟩ = ⟨a2p⟩(e/T0)

2N/2, which is,
again, independent of the harmonic m and therefore equal for all harmonics. Note that
it is proportional to the square of the oscillation amplitudes ⟨a2p⟩, which is proportional
to the emittance of the beam. The width of the spectral lines is now determined by the
spread in revolution frequencies ωp, but also the spread in the tunes Qp among the different
particles, for example, due to a finite chromaticity Q′. For their width, we find ∆f/f =
[η(m±Q)±Q′]σδ to first order in the momentum spread. Here we see that the tune Q can
be determined by the difference of the central frequencies of the betatron sidebands.

If the beams are bunched by an RF system, the arrival times of the particles are no
longer evenly distributed, but they will all appear approximately simultaneously in time,
determined by the RF-frequency, rather than the energy of the particles. Moreover, the
revolution time T0 = 2π/ω0 of all particles is the same, and this gives rise to a much stronger
coherent signal at the revolution harmonics that swamps all other, often minute signals.
Despite a difficult signal acquisition and processing, such systems were successfully used
at Fermilab [60] and LHC [61]. Furthermore, with RF present, the particles may perform
synchrotron oscillations that modulate their arrival time, represented by the additional
term τp = τ̂p sin(Ωst+ψp). Here Ωs is the synchrotron frequency, τ̂p is the amplitude of the
particle p, and ψp its starting phase. The current ip for particle p is then given by

ip(t) = e
∞∑

k=−∞

δ(t+ τ̂p sin(Ωst+ ψp)− kT0) =
e

T0

∞∑
m=−∞

eimω0(t+τ̂p sin(Ωst+ψp)) (7.20)

and with the relation eiz sinϕ =
∑∞

n=−∞ Jn(z)e
inϕ from [22] we find

ip(t) =
e

T0
+

2e

T0

∞∑
m=1

Re

[ ∞∑
n=−∞

Jn(mω0τ̂p)e
i(mω0+nΩs)t+inψp

]
, (7.21)

where the sum over m extends over the revolution harmonics mω0 and the index n describes
the so-called Bessel sidebands, characteristic of frequency-modulated signals. Note that for
the sideband with n = 0 the dependence on the random starting phase ψp drops out, and all
particles contribute in phase such that the power spectrum has a N2-dependence, whereas
for all sidebands with n ≥ 1 the contribution to the power spectrum is proportional to N/2
instead, because averaging over the phases gives a vanishing contribution, but averaging
the square of the current contributes to the spectral density. Furthermore, owing to the
fact that Jn(x) decreases with increasing sideband order n, the amplitude decreases as
well.
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Figure 7.12 The longitudinal Schottky spectrum of a bunched beam (top) and the

transverse Schottky spectrum (bottom) of the m-th revolution harmonic.

The transverse spectrum of bunched beams, observed by connecting the difference signal
of a BPM to a spectrum analyzer, is given by

dp(t) = eap cos(Qω0t+ ϕp)
∞∑

k=−∞

δ(t+ τ̂p sin(Ωst+ ψp)− kT0) , (7.22)

where ϕp and ψp are random starting phases of the transverse and longitudinal oscillations,
respectively. After expressing the infinite sequence of delta functions by its Fourier series
and by using trigonometric and the Bessel-function identities, we obtain for particle p

dp(t) =
2eap
T0

∞∑
m=1

Re

[ ∞∑
n=−∞

Jn ((m±Q)ω0τ̂p) e
i((m±Q)ω0t+nΩst+nψp+ϕp)

]
. (7.23)

This expression shows that we can expect a comb of synchrotron sidebands separated by
±nΩs around the upper and lower sidebands at ±ω0Q of the revolution harmonics mω0,
which is illustrated in the lower plot in Figure 7.12. As is the case with unbunched beams,
the tune is encoded in the separation of the tune sidebands, and if we can identify two
sidebands belonging to the same revolution harmonic m, the tune is given by Q = m(ω+ −
ω−)/(ω++ω−). In the following, we assume that the synchrotron sidebands around the tune
sidebands are small, but the beam has, on the other hand, a significant momentum spread
and, moreover, the chromaticity Q′ is non-zero. With these assumptions and realizing that
both the tune Q and the revolution frequency ω0 then depend on the momentum δ, we can
estimate the width of upper and lower tune sidebands to be ∆ω+ = ω0[(m + Q)η + Q′]σδ

and ∆ω− = ω0[(m−Q)η−Q′]σδ. Solving for the chromaticity Q′ by adding and subtracting
ω+ and ω− we obtain

Q′ = η

[
m
∆ω+ −∆ω−

∆ω+ +∆ω−
−Q

]
. (7.24)

We thus have to determine the tuneQ first and then can determine the chromaticity from the
difference of the widths of the tune-sidebands. Recently [61], this method was successfully
tested in the LHC.
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After this discussion of devices and methods to diagnose the beam quality, we turn
to using them in order to analyze the correct the various imperfections that cause a real
accelerator to behave differently from the prototype designed on a computer.

QUESTIONS AND EXERCISES

1. In a quadrupole-scan emittance measurement the following rms beam sizes σx were
measured with a wire scanner 5m downstream of a (thin) quadrupole, when the inverse
focal length had the values indicated in the following table:

1/f [1/m] 0.1 0.2 0.3 0.4 0.5
σx [mm] 6.0 3.5 2.5 4.3 7.0

(a) Determine the horizontal beam matrix of the beam immediately before the
quadrupole. (b) Deduce the emittance, beta function and α from that.

2. You are responsible for a transfer line that consists of FODO cells where the (thin-
lens) quadrupoles have a focal length 4m, and the distance between quadrupoles is
5m. In the line, there is a wire scanner installed very close after each of three con-
secutive quadrupoles with polarity QF,QD,QF. (a) The three wire scanners measure
horizontal beam sizes σi, with i = 1, 2, 3 with values 4.5, 2.5, 4.6mm. Please design a
measurement system that relates the measured beam sizes to the sigma matrix at the
first wire scanner and derive the emittance, beta function β, and α of the beam at
the first wire scanner. (b) If the beam size measurements have an error bar of 0.1mm,
what are the error bars of the derived sigma matrix? (c) What are the error bars of
the derived emittance, β, and α?

3. Expand the algorithm to include a fourth wire scanner downstream of the next
quadrupole in the FODO beamline and repeat the analysis.

4. Assume that three wire scanners are placed at locations, separated by phase advance ϕ,
all with β = 1m and α = 0, such that all transfer matrices are rotation matrices with
angles that are multiples of ϕ. Calculate the determinant of the matrix in Equa-
tion 7.10 to determine which phase advance leads to the most robust measurement
system.

5. Consider the horizontal motion in a ring with tune Q = 0.61 and a position monitor at
a location with β = 5m and α = 0. Iterate the motion of a particle for 1024 turns and
determine the tunes (a) by Fourier transformation and (b) by using Equation 7.12.
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Imperfections and Their
Correction

Imperfections are the discrepancies of a real, as-built accelerator from the ideal computer
model we discussed in Chapter 3. The model typically describes a lattice in which all
magnets are perfectly placed at their reference location, and all magnets are powered with
their design currents. Moreover, typically only beamline elements for the accelerator are
taken into account, and magnetic fields that are not part of the bare lattice are omitted;
examples for the latter are the solenoid magnets that are part of the detectors in high-energy
accelerators or in electron coolers, but also the additional fields from undulator magnets
in synchrotron light sources. In short, all influences that make a real accelerator deviate
from its ideal behavior we call “imperfection.” In the section on corrections, we also address
the compensation of chromatic effects, even though they are inherently caused by the finite
momentum spread of the beam, rather than imperfections.

The main topic of this chapter, however, is the effect of undesired magnetic fields, those
that are in the wrong place, on the reference trajectory of the beam. Figure 8.1 shows
the types of fields we will consider. On the left-hand side, the vertical component of the
magnetic flux density By is constant across the beam, and all particles in the beam receive
the same kick ∆x′. This effect is similar to that of a dipole corrector magnet, which also
deflects all particles equally, irrespective of their position. If, on the other hand, By varies
linearly as we move from one side of the beam to the other, as shown in the middle of
Figure 8.1, the field behaves like an additional quadrupole and will change the focusing
of the beam and thus will change the beam sizes. In particular, a horizontally focusing
force is accompanied by a vertically defocusing force, just as in conventional quadrupole
magnets. Likewise, a vertically varying By, as shown on the right-hand side in Figure 8.1,
characterizes skew-quadrupolar field, which couples the horizontal and vertical motion. In
addition to the fields sketched in Figure 8.1, there are solenoids in detectors or coolers with
a longitudinal component Bs of the magnetic flux. Particles entering the magnet with a
horizontal angle receive a vertical kick, which also couples the two transverse degrees of
freedom.

In the following section we will briefly name a few of the most common sources that
create these fields and how to include them in computer models.

212 This chapter has been made available under a CC BY NC license.
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Figure 8.1 Types of fields that cause imperfections, which can be constant across the

beam (left), show a gradient (middle) or a skew gradient (right).

8.1 SOURCES OF IMPERFECTIONS

Often imperfections have trivial causes, such as magnets with swapped power leads such
that the magnetic field has opposite polarity, or power supplies that have small calibration
or read-back errors, such that the magnets are incorrectly excited. Exciting magnets close
or beyond the specified maximum may lead to saturation of the iron and corresponding
deviations from the expected fields. Two magnets in close proximity may influence one
another, because the fringe field of one magnet affects the saturation of the iron in an
adjacent magnet. Incorrectly chosen shims are another source of potentially incorrect fields.
In low-energy beamlines the magnetic field of the Earth, having an order of magnitude of
50µT, can affect the orbit and may need to be taken into account. In the LEP coolider at
CERN the solder used when brazing the vacuum chamber contained an alloy with nickel,
which is ferromagnetic and caused unwanted magnetic field components that had to be
corrected [62].

But by far the most common imperfections are due to misaligned magnets, and we
consider how to understand and simulate their effect next.

8.1.1 Misalignment and feed-down

Longitudinally misaligning a magnet or other component by ds in an accelerator is easily
accomplished by adding a drift space of length ds before the component and subtracting
one with the same length immediately following the component. Misaligning transversely is
equally easy to implement. For example, an element horizontally displaced by dx is treated
by adding dx before entering the element and subtracting dx after exiting it, as should be
evident from the left-hand side of Figure 8.2. First, we consider a beamline component,
represented by a transfer matrix R̃, and horizontally displace it by dx. In one transverse
dimension, its overall effect on the beam, entering with initial phase-space coordinates
(xi, x

′
i), is given by

(
xf

x′
f

)
=

(
−dx
0

)
+ R̃

[(
dx
0

)
+

(
xi

x′
i

)]
= R̃

(
xi

x′
i

)
+
[
R̃− 1

]( dx
0

)
, (8.1)

where the subscript f denotes the final positions. We find that the component still behaves
in the same way as the undisplaced one, as represented by the operation of R̃ on the
incoming beam. There is, however, the additional perturbation that is added to the phase-
space coordinates of the beam q⃗ = [R̃ − 1]m⃗ with misalignment vector m⃗ = (dx, 0)

t. It is
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Figure 8.2 A component with a parallel displacement dx (left) and a tilt angle d′x
(right) with respect to the direction of propagation of the beam.

instructive to consider the perturbation from a thin-lens quadrupole with transfer matrix
R̃ given in Equation 3.10 for which we obtain

q⃗ =
[
R̃− 1

]( dx
0

)
=

(
0 0
− 1

f 0

)(
dx
0

)
=

(
0

−dx

f

)
, (8.2)

which represents a change in the angle—a dipole kick. We thus find that a displaced thin
quadrupole causes an additional dipole kick. The quadrupole does, however, focus equally
well as one placed on the beam axis. This appearance of lower multipole kicks—the dipole
kick—due to a displaced higher multipole—the quadrupole—is called feed-down and is one
of the most common sources of imperfections in accelerators.

Higher multipoles are used for several purposes in accelerators. For example, sextupoles
are used to correct the dispersion. These magnets are often short and of moderate strength,
such that the transverse position of the beam does not change within the multipole. We
therefore can approximate the effect of these multipoles on the phase-space coordinates
of the beam by a thin-element kick approximation, which is given by selecting a single
multipole n in Equation 3.66

∆x′ − i∆y′ = −knL

n!
(x+ iy)n , (8.3)

where L is the length of the multipole and knL is the integrated magnetic gradient, nor-
malized to the beam energy. For n = 1 we recover the map of a thin-lens quadrupole
∆x′ = −k1Lx and ∆y′ = k1Ly. The kick from a horizontally displaced multipole is then
given by changing x to x+ dx in Equation 8.3 with the result

∆x′ − i∆y′ = −knL

n!
(x+ dx + iy)n = −knL

n!
(x+ iy)n − knL

n!

n−1∑
k=0

(
n

k

)
dn−k
x (x+ iy)k . (8.4)

We find the same behavior as before: the displaced multipole acts in the same way as the un-
displaced one, but multipoles of lower orders k < n are produced with their strength given
by (knL/n!)

(
n
k

)
dn−k
x . Displacements in the vertical direction or simultaneous displacement

in both directions are handled in the same way.
As an example, we consider a sextupole with n = 2, horizontally displaced by dx. Its

kick is given by

∆x′ − i∆y′ = −k2L

2

[
(x+ iy)2 + 2dx(x+ iy) + d2x)

]
(8.5)
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Figure 8.3 The kick ∆x′ from a sextupole, horizontally displaced by dx = 1mm

(solid). A transversely small beam, indicated by the Gaussian, experiences an av-

erage deflection (dot-dashed) and a gradient (dashed), which illustrates feed-down

of the sextupolar field to the lower multipoles.

and we find an additional term describing an upright quadrupole with magnitude k2Ldx
and a dipole kick with magnitude k2Ld

2
x/2. Figure 8.3 illustrates these contributions by

showing the kick ∆x′ from sextupole displaced by 1mm. A beam, sketched as a solid
Gaussian, experiences an average kick with magnitude, indicated by the vertical dot-dashed
line at x = 0. Furthermore, the beam experiences a linearly varying kick, shown as the
dashed line, that resembles a quadrupolar kick.

Displacing the sextupole vertically, we find

∆x′ − i∆y′ = −k2L

2
(x+ iy + idy)

2 = −k2L

2

[
(x+ iy)2 + 2idy(x+ iy)− d2y)

]
. (8.6)

We see that the term linear in (x + iy) describes a skew quadrupole, because, owing to
the factor 2idy, a purely horizontal position x produces a vertical kick ∆y′. Generating a
skew quadrupolar field will cause cross-plane coupling. When operating with flat beams,
this might cause the smaller beam size to increase significantly. If very flat beams are
important, as they often are in synchrotron light sources, special care should be taken to
vertically center the orbit in the sextupoles.

Displacing components parallel to the direction of the beam is not the only misalignment.
If the component is extended, it can also be rolled or tilted. An example is a girder, installed
with an incorrect horizontal angle with respect to the direction of the beam.

8.1.2 Tilted components

The right-hand side in Figure 8.2 shows a component with length L that is horizontally
tilted by an angle d′x. If its effect on the beam is characterized by a transfer matrix R̂, we
can describe the beam moving with an angle d′x through the tilted section by adding an angle
d′x to the phase-space coordinate x′, but we also need to translate it by a distance −d′xL/2
transversely as shown on the right-hand side in Figure 8.2. After propagating through the
component, we have to subtract the tilt angle d′x but also need to move in the same direction
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as before. For the combined effect we obtain
(

xf

x′
f

)
=

(
−d′xL/2
−d′x

)
+ R̂

[(
−d′xL/2

d′x

)
+

(
xi

x′
i

)]
(8.7)

= R̂

(
xi

x′
i

)
+

[
R̂+

(
1 0
0 −1

)](
−d′xL/2

d′x

)
.

Again, we find the displaced component to behave in the same way as the properly placed
one, but with an additional dipolar orbit perturbation

q⃗ =

[
R̂+

(
1 0
0 −1

)](
−d′xL/2

d′x

)
(8.8)

added to the particle’s phase-space coordinates. Generalizing to misalignments in two trans-
verse directions is straightforward.

8.1.3 Rolled elements and solenoids

Elements, rolled with respect to the beam’s direction of propagation, can be easily described
by sandwiching the element between coordinate rotations, already discussed in Section 3.1.6.

Source of longitudinal fields Bs are often solenoids, and their transfer matrix is given
in Equation 3.58. In order to take their effect on the beam into account, we simply replace
the matrix for the drift space at the location with the solenoid by the matrix for a solenoid
with the appropriate field.

8.1.4 Chromatic effects

Any unwanted effects that are due to the finite spread in particle momenta are called
chromatic. The dispersion D causes a finite momentum spread σδ to increase the beam
size to σ2 = εβ + D2σ2

δ . We therefore often seek to minimize the dispersion at strategic
locations, such as the interaction point of a collider.

The momentum-dependence of the focusing from quadrupoles causes the longitudinal
position of the focal point, the waist, to depend on the particle momentum, and this dilutes
the minimum achievable beam size. In linear accelerators, this effect is called chromatic-
ity. In a ring, chromaticity has a different meaning, namely the dependence of the tune
on momentum, we denoted by Q′

x and Q′
y in Section 3.4.1. Of course, the origin is the

momentum-dependence of the quadrupole focusing, as well. In rings, a finite chromaticity
therefore causes the tunes to spread out in the tune diagram and may approach resonance
lines, which perturbs the beams and may lead to increased emittances and even beam loss.
Therefore, we need to correct the chromaticities Q′

x and Q′
y. Some intensity-dependent

instabilities depend on the chromaticity and require their adjustment to values close to
zero.

8.1.5 Consequences

The consequence of all these unwanted additional fields due to misaligned components is
a trajectory of the beam centroid that is bouncing back and forth due to the additional
dipolar kicks and a beam envelope—the sigma matrix—that differs from the design, usually
in an unfavorable way. In particular, a non-centered trajectory causes colliding beams to
miss one another and thus reduces the luminosity. In a linear collider, non-zero trajectories
can cause so-called wake-field kicks, discussed in Chapter 12, lead to increased emittance
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and a reduced luminosity. In synchrotron light sources, the emitted light may miss the
experimental station with monochromators at the end of very long synchrotron light beam-
lines.

The quadrupolar fields cause the beam sizes to differ from the design, and this will
normally degrade the luminosity of a collider. Injecting mismatched beams into a hadron
accelerator leads to an increase in the emittance due to filamentation. Large beam sizes
in synchrotron light sources reduce the transverse coherence of the emitted light, and in
free-electron lasers this may prevent lasing at all. These are just a few consequences, but
the effects are rather generic and we need to understand their generation in more detail,
which is the topic for the next two sections. First, we look at beamlines.

8.2 IMPERFECTIONS IN BEAMLINES

In this section we consider single-pass, or non-periodic, beamlines in which the beam enters
at one end and exits at the other. Examples are transfer lines between accelerators, but
also linear accelerators. We start by looking at the results of a number of dipolar kicks in a
beamline.

8.2.1 Dipole kicks and orbit errors

In Section 8.1, we found that dipolar kicks due to transverse misalignment (Equation 8.1)
and tilt (Equation 8.7) are described by adding a constant displacement vector q⃗ = [1−R]m⃗

to all particles of the beam and therefore also to the centroid of the beam X⃗. Here m⃗ is
the misalignment vector introduced in the previous section. Now we introduce the operator
q⃗+R, which acts on a phase-space vector x⃗ by first multiplying x⃗ by R and then adding q⃗ to
the result. In this way we obtain for the cumulative effect of all misalignments q⃗j upstream
of an observation point labeled n

x⃗n = Rn · · · (q⃗k+1 +Rk+1)(q⃗k +Rk) · · · (q⃗1 +R1)x⃗0

= Rn · · ·R1x⃗0 +
n−1∑
j=1

(Rn · · ·Rj+1)q⃗j (8.9)

where the interpretation is very simple. A particle with initial phase-space coordinates x⃗0

has the final coordinates x⃗n that are given by the transfer matrix Rn · · ·R1 from start
to point n. Additionally, each misalignment vector q⃗j is propagated to the observation
point by multiplying it with the transfer matrix Rn,j+1 = Rn · · ·Rj+1 from the misaligned
component to the observation point. Finally, the contributions of all misalignment vectors
are added. Conversely, in order to calculate the effect of a misalignment of component j,
we first need to calculate the misalignment vector q⃗j and the transfer matrix Rn,j+1 from
the exit of component j to the observation point n. Then Rn,j+1q⃗j gives the contribution
of misalignment j to the observation point n. If we have a BPM at the observation point,
the first and third components of x⃗n will show the position change due to misalignment j.

After being able to predict the result of dipolar errors and their misalignment vectors
q⃗, let us look at the consequences of quadrupolar errors.
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8.2.2 Quadrupolar errors and beam size

A quadrupolar error will cause the sigma matrix to deviate from its design value σ, and the
changed sigma matrix σ̂ is given by σ̂ = QσQt, where Q is the transfer matrix describing
the added quadrupolar field. Often it can be approximated by a thin-lens quadrupole with
a transfer matrix given by Equation 3.12. The beam matrix σ̄ at an arbitrary downstream
location is then given by σ̄ = Rσ̂Rt where R is the transfer matrix from the location with
the perturbing quadrupolar field to the screen. Now we confine ourselves to the 1D motion
in the horizontal plane in order to keep the algebra manageable, and instead of writing
2× 2 matrix equations, we treat the three independent components of the sigma matrix as
a column vector. Multiplying the 2× 2 matrices of σ̄ = Rσ̂R̂t for the horizontal plane and
comparing terms, we find




σ̄11

σ̄12

σ̄22


 =




R2
11 2R11R12 R2

12

R11R21 R11R22 +R12R21 R12R22

R2
21 2R21R22 R2

22







σ̂11

σ̂12

σ̂22


 (8.10)

and will denote the 3× 3 matrix by (RR) henceforth.
It is instructive to express both the transfer matrix and both sigma matrices σ̄ and

through Twiss parameters, where we employ Equation 3.106 to the transfer matrix. First,
we rewrite R = Ā−1OA in terms of 3× 3 matrices

(RR) =




β̄ 0 0
−ᾱ 1 0
ᾱ2

β̄
−2 ᾱ

β̄
1
β̄


 (8.11)




cos2 µ 2 cosµ sinµ sin2 µ
− cosµ sinµ cos2 µ− sin2 µ sinµ cosµ

sin2 µ −2 sinµ cosµ cos2 µ







1
β 0 0
α
β 1 0
α2

β 2α β


 ,

where the Twiss parameters without a bar are the design beta functions at the location of
the perturbing quadrupole, and those with a bar refer to downstream location, while µ is
the phase advance between these locations. We introduce the following shorthand notation
(RR) = (ĀĀ)−1(OO)(AA) for the 3×3 matrices appearing in Equation 8.11. In particular,
the matrix with the phase advance µ we call (OO) and rewrite it as

(OO) =
1

2




1 0 1
0 0 0
1 0 1


+

1

2




cos 2µ 2 sin 2µ − cos 2µ
− sin 2µ 2 cos 2µ sin 2µ
− cos 2µ −2 sin 2µ cos 2µ


 . (8.12)

We see that it has a constant contribution and a contribution that oscillates with twice the
betatron phase advance. We thus expect the beam envelope, as given by the sigma matrix, to
oscillate with twice the betatron phase advance around a baseline value that is determined
by the constant term. Let us investigate this constant term further and apply (AA) to the
mismatched beam matrix σ̂, expressed through the mismatched Twiss parameters

(AA)




εβ̂
−εα̂
εγ̂


 = ε




β̂/β

αβ̂/β − α̂

α2β̂/β − 2αα̂+ βγ̂/β̂


 = ε




a
b
c


 . (8.13)
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Here we introduced the abbreviations a, b, and c for the components of the vector with the
Twiss parameters. Multiplying this expression from the left with OO, we obtain

ε






1
2 0 1

2
0 0 0
1
2 0 1

2


+




1
2 0 − 1

2
0 1 0

− 1
2 0 1

2


 cos 2µ+




0 1 0
− 1

2 0 1
2

0 −1 0


 sin 2µ






a
b
c




= ε






a+c
2
0

a+c
2


+




a−c
2
b

−a−c
2


 cos 2µ+




b
−a−c

2
−b


 sin 2µ


 (8.14)

= ε






Bmag

0
Bmag


+


B2

mag − 1




cos(2µ− φ)
sin(2µ− φ)

− cos(2µ− φ)




 with tanφ =

2b

a− c
.

Here we introduce the beta-beat mismatch factor Bmag = (a+ c)/2, given by

Bmag =
1

2


β̂

β
+

α2β̂

β
− 2αα̂+

βγ̂

β̂


=

1

2


β̂

β
+

β

β̂


+ ββ̂


α

β
− α̂

β̂

2


. (8.15)

The beam size σ̄2
x at locations downstream of the perturbation are then given by multiplying

the first component by the beta function β̄ at the downstream location

σ̄2
x = εβ̄


Bmag +


B2

mag − 1 cos(2µ− φ)

, (8.16)

which shows that the beam size oscillates with an amplitude given by


B2
mag − 1 at twice

the betatron phase advance µ around an average value that is increased by Bmag. This
oscillation is the so-called beta beat, because it shows up as a modulation of the beta functions
at places where they should be equal.

It is remarkable that both increase and oscillation amplitude only depend on the single
parameter Bmag and therefore we investigate its magnitude for a quadrupole error that is
characterized by its focal length f. We calculate the beam matrix after the quadrupole error
σ̄ and compare it to the beam matrix σ that had not experienced the quadrupole error. For
σ̄ we have

ε


β̂ −α̂
−α̂ γ̂


=


1 0

−1/f 1


ε


β −α
−α γ


1 −1/f
0 1


. (8.17)

Evaluating the matrix multiplications we find β̂ = β and α̂ = α + β/f. Inserting β̂ and
α̂ into the expression for Bmag in Equation 8.15 we find that a localized quadrupole error
causes a phase shift of tanφ = 2f/β and a beta mismatch of

Bmag = 1 +
β2

2f2
. (8.18)

This allows us to rapidly evaluate the effect of a quadrupolar perturbation on the beam
sizes at downstream locations.

After having analyzed the effect of quadrupolar perturbations, we turn our attention to
that of skew quadrupolar perturbations.

8.2.3 Skew quadrupolar perturbations

Skew quadrupolar errors in a beamline are most severe for very flat beams with a large
emittance ratio εx/εy where they couple the large amplitude oscillations in one plane into the
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Figure 8.4 Horizontal phase space at the injection point with the matched beam in

the ring shown as the shaded ellipse. The dashed ellipse shows the phase space of

the injected beam with a small fraction denoted by the dark spot.

plane with the smaller emittance and severely increase the smaller emittance. We therefore
consider an initially uncoupled 4× 4 beam matrix σ and a thin skew quadrupole with focal
length f whose transfer matrix is given by evaluating Equation 3.56, which leads to

S =




1 0 0 0
0 1 1/f 0
0 0 1 0

1/f 0 0 1


 . (8.19)

After passing through the skew quadrupole, the 2× 2 vertical beam matrix σ̂ is


σ̂33 σ̂34

σ̂34 σ̂44


=


σ33 σ34

σ34 σ44 + σ11/f
2


. (8.20)

Calculating the projected vertical emittance ε̂y of the perturbed beam by the determinant,
we find

ε̂2y = ε2y +
σ11σ33

f2
= ε2y


1 +

εx
εy

βxβy

f2


. (8.21)

We see that the vertical projected emittance ε̂y increases significantly if the initial emittance
ratio εx/εy is large. Moreover, the coupling is proportional to the ratio of both beta func-
tions, normalized to the focal length of the skew quadrupole. Thus we need to pay special
attention to skew quadrupolar fields, often arising from quadrupoles misaligned with a roll
angle, if we intend to transport very flat beams.

Often, at the end of a transfer beamline waits a circular accelerator, and next we consider
what happens if we inject a misaligned or mismatched beam into a ring.

8.2.4 Filamentation

The unavoidable momentum spread and the momentum dependence of the tune in a ring,
due to a finite chromaticity, will cause any misaligned or mismatched beam to smear out
in phase space. This causes its emittances to increase, which is particularly undesirable in
hadron rings that do not have an inherent damping mechanism, as electron rings do. The
smearing out is called filamentation and illustrated in Figure 8.4 where the shaded ellipse
denotes a matched beam in the ring. The dashed line shows the phase-space ellipse of the
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injected beam with a spot highlighted to the top right. Since the spot contains particles
with many different momenta and therefore different tunes due to the chromaticity, the
particles of the spot will smear out along the dotted ellipse, which has the same orientation
as the shaded ellipse, but a larger area. Qualitatively, this leads to an increased emittance
of the injected beam after many turns when the filamentation is complete.

To investigate this process quantitatively, let us consider the horizontal plane at the
injection point and assume that the beam coming from the transfer line has emittance ε
and Twiss parameters β̂ and α̂. Also in this case, we can use Equation 8.16 to describe the
beam size after n revolutions σ2

n in the ring

σ2
n = εβ̄

[
Bmag +

√
B2

mag − 1 cos(4πn(Q+Q′δ)− φ)
]

(8.22)

where Bmag is given by Equation 8.15 and must be calculated from the Twiss parameters
of the injected beam and the periodic Twiss parameters of the ring at the injection point
β̄ and ᾱ. We replaced the phase advance µ in Equation 8.16 by the betatron tune Q of
the ring and the chromaticity Q′ and insert µ = 2π(Q+Q′δ). If the incoming beam has a
normalized Gaussian momentum distribution

ψ(δ) =
1√
2πσδ

e−δ2/2σ2
δ , (8.23)

we easily obtain the beam size after n turns by averaging over the momentum distribution
and obtain

σ2
n = εβ̄

[
Bmag + e−2(2πQ′σδ)

2n2
√
B2

mag − 1 cos(4πnQ− φ)
]
. (8.24)

The beam size oscillates with a frequency given by twice the tune. Moreover, the oscillation is
damped by a factor e−2(2πQ′σδ)

2n2

, which has a quadratic dependence on the turn number n
in the exponent. Thus the temporal evolution of the beam size shows a Gaussian dependence
on the turn number n, rather than an exponential dependence. We can estimate the time
scale of the damping to be n̂ = 1/(9Q′σδ). After n̂ turns, the amplitude is halved from its
initial value and after a few times n̂ turns the transient oscillations at twice the betatron
tune will be damped, and the beam will settle to an beam size whose increase is determined
by Bmag. Here we only discussed the temporal evolution of the beam size after injection,
but the other parameters in the beam matrix show the same increase, such that the net
effect of a mismatched injected beam is an increase of the emittance of the stored beam,
and the increase is described by Bmag. We need to point out that the injected beam after
filamentation is not Gaussian [63] if Bmag is large. The left-hand plot in Figure 8.5 shows
that for Bmag = 3 the tails are more heavily populated with particles (solid) compared to
the matched Gaussian (dashed).

Not only mismatched Twiss parameters of the injected beam cause the stored beam
to filament due to its momentum spread, but also a “wrong” transverse position or angle
causes filamentation and increases the emittance. Moreover, the transverse distribution,
shown in Figure 8.5, is very different from a Gaussian. If the beam has a large emittance
ratio εx/εy injecting a coupled beam will lead to an increased emittance. The increase can
be described by Equation 8.21 with f2 replaced by 2f2 as a consequence of the averaging
over the momentum spread.

In this section we discussed how the imperfections affect the beam in the beamline itself
and after injecting into a ring. Next we turn to imperfections in the ring itself.
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Figure 8.5 The left plot shows a matched beam (dashed) and the distribution after

filamentation (solid) of a mismatched beam with Bmag = 3. The right plot shows

the injected beam (dashed) with an rms beam size of 1mm and injected displaced

by 3mm. After filamentation, it becomes the double-humped distribution (solid).

8.3 IMPERFECTIONS IN A RING

In contrast to a beamline, where imperfections only affect the beam downstream of the
perturbation, the imperfections in a ring affect the beam everywhere. In equilibrium, after
injection transients such as filamentation, have died away, the trajectory and the sigma
matrix must be periodic, and that poses additional constraints on the analysis.

The periodic trajectory in a ring is called the closed orbit, and we first investigate how
misalignment of elements affect it.

8.3.1 Misalignment and dipole kicks

We consider a single component that produces a misalignment vector q⃗, which we discussed
in Sections 8.1.1 and 8.1.2. For the time being, we assume q⃗ to be general and adds a
constant value to the four transverse phase-space coordinates x⃗ = (x, x′, y, y′). For example,
a horizontal steering magnet only adds a constant value—its kick angle—to x′. We label
the position at the location of the perturbation by the index j, and the requirement for the
closed orbit to be periodic leads to

x⃗j = Rjj x⃗j + q⃗j , (8.25)

where Rjj denotes the 4 × 4 transfer matrix for one turn in the ring that starts and ends
immediately after location j of the perturbation, and xj is the closed orbit immediately
after the perturbation. The first superscript labels the location of the end point and the
second that of the starting point for the transfer matrix. Solving for x⃗j , we obtain

x⃗j = (1−Rjj)−1q⃗j , (8.26)

where 1 denotes the 4 × 4 unit matrix. The closed orbit at any other location denoted by
the label i can be calculated by propagating x⃗j by the 4× 4 transfer matrix Rij from point
j to point i and get

x⃗i = Rij x⃗j = Rij(1−Rjj)−1q⃗j = Cij q⃗j , (8.27)
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where we introduced the 4× 4 response matrix Cij between location j and i defined by

Cij = Rij(1−Rjj)−1 . (8.28)

This expression allows us to calculate the closed orbit at any location i in the ring for any
perturbation at location j, provided we have access to the transfer matrices. The expression
is valid for 1D or 2D systems with and without coupling. Note also, that the response matrix
between points j and i has the same functionality as the transfer matrix Rij in a beamline;
it relates changes in phase-space coordinate at position j to those observable at position i.
Only, the Cij have the periodicity requirement quasi “built-in” with the help of the term
(1−Rjj)−1.

If we only consider one dimension, say horizontal, and find out the effect of a steering
magnet with a horizontal kick angle θ, we use Equation 3.106 to write Rjj = A−1

x OjjAx,
where Ojj is the rotation matrix with phase advance µ = 2πQ and Ax contains the Twiss
parameters at the location of the steering magnet. Furthermore, we have Rij = Ā−1

x OijAx,
where Oij is the rotation matrix with phase advance µij from the steering magnet to
the position monitor, and Āx contains the Twiss parameters at the location of the BPM.
Inserting these representations in Equation 8.28 and after some algebra, we find the change
of the closed orbit xi at the location of the BPM

xi =

[ √
βiβj

2 sin(πQ)
cos(µij − πQ)

]
θ . (8.29)

We identify the expression in the square brackets as the response coefficient Cij
12 of the

horizontal position at position i (first super- and subscript) on the angle at position j
(second super- and subscript). Apart from the obvious divergence at integer tunes Q, we
find the response coefficient to be proportional to the square root of the beta functions at
the location of the steering magnet and the observation point.

In the previous paragraph we neglected that a ring, which operates with a radio-
frequency system, forces the beam to maintain a constant revolution time. On the other
hand, a corrector, which is located at a point j with non-zero horizontal dispersion Dj ,
causes the circumference to change by ∆C = Djθ. Since the RF system constrains the
revolution frequency, according to Equation 5.32, the relative momentum of the particle
must change by δ = −Djθ/ηC, and the particle moves on a trajectory that depends on the
dispersion. At a BPM, located at position i with horizontal dispersion Di, the beam position
additionally moves by Diδ. For the horizontal response coefficient we therefore obtain

Cij
12 =

[ √
βiβj

2 sin(πQ)
cos(µij − πQ)− DiDj

ηC

]
. (8.30)

For a generalization to coupled lattices and general misalignment vectors q⃗ see [64].
After this discussion of the consequences of imperfections that give rise to dipolar errors,

we will look at the consequences of quadrupolar, or gradient errors in general.

8.3.2 Gradient imperfections

Gradient errors can be analyzed numerically by adding the perturbing quadrupoles to a
lattice file and calculating the tunes and beta functions. If the ring is uncoupled, we can
use the function R2beta, or, if the ring is coupled, because it contains skew quadrupoles or
solenoids, we use sagrub().We then inspect the results graphically, as we did in Figure 3.17
in Section 3.5.
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A deeper understanding, however, can be achieved by considering a simple one-
dimensional model of a ring with tune Q = µ/2π and adding a single, thin quadrupole
at a location with Twiss parameters α, β, and γ. Using the parameterization from Equa-
tion 3.80 for the unperturbed one-turn transfer matrix R̂, and the transfer matrix from
Equation 3.10, we call it RQ, to describe the quadrupole, we obtain for the perturbed
one-turn matrix

RQR̂ =

(
cosµ+ α sinµ β sinµ

−(cosµ+ α sinµ)/f + γ sinµ cosµ− α sinµ− (β/f) sinµ

)
. (8.31)

Using Equation 3.89, we find the perturbed tune Q̄ = Q+∆Q from the trace of a transfer
matrix. This leads to

2 cos(2π(Q+∆Q)) = 2 cos(2πQ)− β

f
sin(2πQ) . (8.32)

For weak perturbations we have β/f ≪ 1 and ∆Q ≪ 1, such that the tune shift ∆Q is then
given by

∆Q ≈ β

4πf
=

1

4π

∮
β(s)∆k1(s)ds . (8.33)

In the second equality we assumed that distributed gradient errors are described by a fo-
cusing function ∆k1(s) with a azimuthally varying focal length 1/f ∼ δk1(s)ds. Integrating
around the ring then yields the tune shift ∆Q, which is proportional to the unperturbed
beta function β at the location of the perturbation. This suggests to pay extra attention to
the tolerances of components located near points where the beta function is large, such as
the final focus quadrupoles.

A gradient perturbation not only generates a tune shift, but it also changes the beta
functions. We therefore use Equation 3.89 to calculate the perturbed beta functions β̄ from
the elements of the matrix in Equation 8.31 and find

β̄ =
β sin(2πQ)

sin(2π(Q+∆Q))
≈ β [1 + 2π∆Q cot(2πQ)] . (8.34)

For the relative change of the beta function ∆β/β = (β̄ − β)/β

∆β

β
= 2π∆Q cot(2πQ) ≈ β

2f
cot(2πQ) , (8.35)

which makes it obvious that the beta function diverges at half-integer values of the tune,
because the cotangent has singularities at integer multiples of π. Note that here the argu-
ment of the cotangent is 2πQ, whereas it was πQ in Equation 8.29 for the effect of dipole
imperfections on the closed orbit. This is a first indication that the multipolarity of the
imperfection causes divergences at certain values of the fractional tune, here, for example,
at integer and half-integer values.

To answer the question of how close to a half-integer tune we can operate the ring for a
given gradient imperfection, we note that the cosine on the left-hand side of Equation 8.32
must stay in the range ±1. This implies for the right-hand side that

∣∣∣∣cos(2πQ)− β

2f
sin(2πQ)

∣∣∣∣ ≤ 1 . (8.36)
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Figure 8.6 A beamline with a single skew quadrupole (left) and a tune diagram with

stop bands caused by quadrupoles and a single skew quadrupole (right).

Equation 8.36 describes the limit of stable operation and values of Q outside this range
lead to an unstable ring. These forbidden values for the tune are called a stop bands and
are often shown as the width of resonance lines in the tune diagram. In a tune diagram, we
display the tunes as a point (Qx, Qy) in a two-dimensional plane with axes extending from
the integer just below a tune value to the next integer. The right-hand plot in Figure 8.6
shows an example, where values outside the range of Equation 8.36 appear as the horizontal
or vertical lines. Note that here we only calculated the effect of a single gradient errors in
order to show qualitatively that gradient imperfections in a ring shrink the accessible range
of tunes.

8.3.3 Skew-gradient imperfections

To analyze the consequences of skew gradients, we consider a single skew quadrupole and
calculate the one-turn transfer matrix for a ring that is shown on the left-hand side in
Figure 8.6. Start and end-point of the ring, having tunes Qx and Qy, are chosen as reference
points, and we assume that phase-space variables of the reference point are expressed in
normalized phase-space coordinates with Twiss parameters factored out. Then the transfer
matrices Ra and Rb are rotation matrices with the phase advances only. The phase advance
from the skew quadrupole to the end is given by µx and µy and the beta functions at the
skew quadrupole are βx and βy, respectively. If we use the matrices A from Equation 3.80

to map from normalized to real phase space, the corresponding matrix S̃ for the skew
quadrupole from Equation 8.19 that acts on normalized phase-space variables is then given
by

S̃ =

(
12 Q̃

Q̃ 12

)
with Q̃ =

(
0 0√

βxβy/f 0

)
(8.37)

where we introduce the 2× 2 unit matrix 12. For the one-turn transfer matrix R̂ we write

R̂ = RbS̃Ra =
(
RbS̃R

−1
b

)
(RbRa) , (8.38)

which shows that the left bracket contains a similarity transformation RbS̃R
−1
b that moves

the effect of the skew quadrupole to the reference point, and the right bracket contains the
unperturbed transfer matrix for the ring. For the similarity transformation, we obtain

RbS̃R
−1
b =

(
Ox 0
0 Oy

)(
12 Q̃

Q̃ 12

)(
Ot

x 0
0 Ot

y

)
=

(
12 OxQ̃O−1

y

OyQ̃O−1
x 12

)
, (8.39)
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where we introduce the rotation matrices for the horizontal phase advance Ox = Ox(µx)
and the corresponding one for the vertical plane and 12 is the 2 × 2 unit matrix. We note
that RbS̃R

−1
b = 1 + P̃ can be written as a small perturbation P̃ to a 4 × 4 unit matrix.

Moreover, P̃ has only non-zero entries in the coupling part of the transfer-matrix that
contain OxQ̃O−1

y for which we then find

OxQ̃O−1
y =

√
βxβy

f

(
sinµx cosµy − sinµx sinµy

cosµx cosµy − cosµx sinµy

)
(8.40)

=

√
βxβy

2f

(
sin(µx − µy) + sin(µx + µy) − cos(µx − µy) + sin(µx + µy)
cos(µx − µy) + cos(µx + µy) sin(µx − µy)− sin(µx + µy)

)

and for OyQ̃O−1
x we only need to exchange µx and µy. Here we observe that there are four

independent coefficients: sine and cosine for µx − µy and µx + µy, respectively.
If the ring contains several skew quadrupoles, they can be treated in the same fashion;

we first move the one closest to the reference point, then the next one until the last skew
quadrupole, which was originally closest to the right-hand side of the ring, is moved to the
reference point. We then represent the transfer matrix for the entire ring with multiple skew
quadrupoles by

R̂ = (1 + P̃1)(1 + P̃2) · · ·R0 ≈ (1 + P̃1 + P̃2 + · · · )R0 (8.41)

with the unperturbed one-turn transfer matrix R0. The approximation violates the symplec-
ticity of the transfer matrix but shows that the four coefficients in P̃ add up to first order
in the strength of the skew quadrupole excitation

√
βxβy/f. Assembling each of the two

phases into an exponential, we see that the cumulative “strength” of all skew quadrupoles
is proportional to

F± =
∑
j

βx,jβy,j

2fj
ei(µx,j±µy,j) , (8.42)

where the sum extends over all skew quadrupoles in the ring. The beta functions are those
at the skew quadrupoles, and the phases µx and µy are between the skew quadrupole and
the reference point. If the F± are zero, the ring is globally uncoupled at the reference
point. Conversely, the coupling parameters F± can become large in rings that consist of
a large number of equal cells in a constant relative phase relation, such that systematic
imperfections have a fixed-phase relation µx ± µy and coherently add up.

So, why is coupling bad for a ring? In planar rings the emittance is predominantly
generated in the horizontal plane, and ideally the vertical beam size is negligibly small. In
the presence of coupling, however, the horizontal oscillations are coupled into the vertical
plane and cause the vertical emittance to become non-zero. In synchrotron light sources this
effect spoils the coherence properties of the emitted synchrotron radiation. But the most
detrimental property is that it introduces stop bands into the tune diagram in much the
same way quadrupoles introduce half-integer stop bands, as described by Equation 8.36.
To understand this, we model the ring by rotation matrices with tunes Qx and Qy with
equal beta functions βx = βy = β at the location with the quadrupoles, where we add an
upright and a skew quadrupole with equal normalized strength β/f = 0.1. Scanning the
tunes and plotting a plus sign, whenever one of the eigenvalues of the one-turn map exceeds
unity, we obtain the stability diagram shown on the right-hand side in Figure 8.6. We see
vertical and horizontal lines indicating the stop bands caused by the upright quadrupole,
but also along the diagonal line Qx + Qy = p where the motion becomes unstable around
the sum resonance. This shows that skew quadrupoles indeed shrink the available space
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Figure 8.7 Two steering magnets change the position by ∆x0 and the angle by ∆x′
0.

in the tune diagram. The situation is aggravated if non-linear elements such as sextupoles
are present, with upright sextupoles exciting one type of resonances and skew-sextupoles
exciting others. If however skew quadrupoles couple the planes, both types of resonances
are driven, and this will generate additional forbidden lines in the tune diagram. We will
return to these matters in Chapter 11.

Now that we have seen in what way imperfections deteriorate the performance of accel-
erators, we will turn to correction methods that allow us to alleviate their impact.

8.4 CORRECTION IN BEAMLINES

We start by looking at correction algorithms for beamlines. They are conceptually simpler
than rings, because correction elements only affect the beam downstream of the correction
element. Often one only needs to correct the trajectory at one particular point of interest.

8.4.1 Trajectory knobs and bumps

We use steering magnets that control the angles of the beam trajectory. For example, we
might change the horizontal position at a reference point by ∆x0 or the horizontal angle
by ∆x′

0. A simple example is shown in Figure 8.7, where we use two steering magnets to
change position and angle at a downstream point. Such a configuration is used to adjust the
trajectory at the injection point into a ring. If there are only drift spaces of equal length L
between the correctors and the reference point, the effects of the steering magnets on ∆x0

and ∆x′
0 are: ∆x0 = 2Lθ1 + Lθ2 and ∆x′

0 = θ1 + θ2. Requiring the position to change by
∆x0 but the angle to stay the same (∆x′

0 = 0) implies that we need to use the following
linear combination of steering magnet excitations (θ1, θ2) = (1/L,−1/L)∆x0. Such a linear
combination of actuators—here steering magnets—that fulfill certain constraints (change
∆x0 but not ∆x′

0) is often called a knob, because changing a single parameter causes the
actuators to proportionally follow the set value of the parameter. Using the two steerers,
we can also require to change the angle, but leave the position unaffected. This leads to
a second knob: (θ1, θ2) = (−1, 2)∆x′

0. Since the knob that changes the position leaves the
angle unaffected and vice versa, the two knobs are called orthogonal knobs.

If the beamline between the first steerer and the reference point is more complex than just
drift spaces, we need to take the respective transfer matrices into account. We proceed by
determining one equation for each constraint: one for ∆x0 and another for ∆x′

0 and describe
how each of the actuators affects the constraint. Assembling the equations in matrix form
results in (

∆x0

∆x′
0

)
=

(
R01

12 R02
12

R01
22 R02

22

)(
θ1
θ2

)
. (8.43)

The superscripts of the transfer matrices denote the end and start points, such that R01

denotes the transfer matrix from steering magnet labeled by 1 to the reference point, labeled
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Figure 8.8 A closed bump with four steering magnets.

by 0. The subscripts have the usual meaning, such that R01
12 describes the influence of the

angle from steering magnet 1 on the position at the reference position and R01
22 describes

the influence of the angle change from steering magnet 1 on the angle at the reference point.
One may call the matrix the response matrix of the actuators on the constraints. Inverting
the equations yields 

θ1
θ2


=


R01

12 R02
12

R01
22 R02

22

−1 
∆x0

∆x′
0


(8.44)

and the columns of the inverse of the response matrix are the knob coefficients that will
allow us to change one constraint without affecting the other.

In the previous example, the trajectory fulfills the constraint at the reference point, but
it will oscillate further downstream in an uncontrolled way. To avoid this and only affect the
trajectory locally, we add two additional steerers downstream of the reference point to steer
the trajectory back onto the reference orbit. Figure 8.8 illustrates this configuration. The
first two steerers, labeled 1 and 2, at the right adjust the orbit to change the position and
angle by ∆x0 and ∆x′

0, at the reference position. The following two correctors, labeled 3
and 4 later undo the changes to the trajectory, such that the changes to ∆x0 and ∆x′

0, are
no longer visible downstream of the last steerer. Such a configuration is called closed bump,
or just bump.

To calculate the required excitations of the steerers for such a bump, we follow the
same procedure as in the previous example. We only have two additional steerers and two
additional constraints, namely that the combined effect of all four correctors causes the
trajectory to be back on the reference trajectory. We denote the kick angles of the steerers
by θj and the transfer matrix between corrector j and the reference point by R0j and to the
final point immediately after the last steerer by Rfj . Then we write down the four equations
that describe how each corrector affects the four constraints—the position and angle at the
respective points. The four equations are assembled in the following matrix-valued equation:




x0

x′
0

xf = 0
x′
f = 0


 =




R01
12 R02

12 0 0
R01

22 R02
22 0 0

Rf1
12 Rf2

12 Rf3
12 Rf4

12

Rf1
22 Rf2

22 Rf3
22 Rf4

22







θ1
θ2
θ3
θ4


 . (8.45)

The interpretation of this equation is very intuitive. Consider the first equation, that defines
the upper row of the matrix appearing in Equation 8.45. We want to change the position by
∆x0 at the reference point and only the upstream correctors 1 and 2 can affect it. The next
line does the same for the change of angle ∆x′

0. The third and fourth rows come from the
requirement that the position and angle at the end of the bump must be zero, colloquially
referred to as “closing the bump.” As before, the knob coefficients are given by columns
of the inverted matrix from Equation 8.45. In this case, only the first two columns that
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describe the dependence of the θ are meaningful. They give us the knobs for position and
angle. The constraints to close the bump are fulfilled automatically.

The procedure to generate trajectory knobs can be easily extended and used to calculate
knobs to change the position at several places simultaneously and synchronously, or to only
change the position, without caring about the angle. If the beamline contains coupling
elements, such as skew quadrupoles, we have to use off-diagonal transfer-matrix elements,
for example R14, that describe the dependence of the horizontal position on a vertical change
of the angle at an upstream location. One of the most common requirements is to steer the
trajectory to the center of all beam position monitors, and that is called orbit correction.

8.4.2 Orbit correction

Let us assume that we have n position monitors, and they report positions xi for i = 1, . . . , n.
Our task is to adjust the kick angles θj for j = 1, . . . ,m of a number m of steering magnets
such that the monitors ideally all report zero. To be specific, here we consider the horizontal
plane, but generalizations to the vertical plane and for coupled lattices follow the same
pattern. In the spirit of the previous section, we interpret the required change of positions on
the monitors as constraints to change the trajectory by −xi and use the m steering magnets
to achieve this objective. In order to calculate the changes in kick angles θj , we construct
the BPM-corrector response matrix in which each row corresponds to one constraint, each
associated with one monitor. It is given in the following equation:




−x1

−x2

...
−xn


 =




R11
12 R12

12 . . . R1m
12

R21
12 R22

12 . . . R2m
12

...
...

. . .
...

Rn1
12 Rn2

12 . . . Rnm
12







θ1
θ2
...
θm


 . (8.46)

Obviously a steering magnet can only affect the reading of monitors downstream, and all
transfer matrices relating a steerer to an upstream monitor are zero. Once this response
matrix is assembled, determining the θj from Equation 8.46 involves solving a set of linear
equations.

Occasionally, some position monitors are more reliable than others, and we can quantify
the level of reliability by assigning BPM error bars σi to a BPM labeled i. If the error bar
is small, the BPM is reliable and if it is very large, we do not trust the BPM very much. It
is now straightforward to assign 1/σi as a weight to each of the measurements, represented
by a row in Equation 8.46. In practice, one constructs a matrix W = diag(1/σi) with the
inverses of the BPM error bars on its diagonal and multiplies Equation 8.46 from the left by
W. This changes all the entries on the left-hand side from −xi to −xi/σi and the transfer
matrix elements from Rij

12 to Rij
12/σi. The resulting equation has the same structure as

before, but each measurement is weighted by the appropriate BPM error bar.
Before discussing different methods to solve Equation 8.46, we consider a short beam-

line with three interleaved position monitors and steering magnets. Figure 8.9 illustrates
the geometry and the reasoning. The beam enters the beamline section from the right and
a misaligned quadrupole causes the trajectory, shown as a dashed line, to deviate from
the reference orbit, shown by the solid horizontal line. The first steering magnet applies a
deflection angle θ1 to steer the beam through the center of monitor 1 and makes x1 zero.
In the same way, steerer 2 adjusts the trajectory to make x2 zero and steerer 3 zeroes x3.
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Figure 8.9 One-to-one orbit correction.

The corresponding set of equations then has the following form




−x1

−x2

−x3


 =




R11
12 0 0

R21
12 R22

12 0
R31

12 R32
12 R33

12







θ1
θ2
θ3


 , (8.47)

which, given initial monitor readings xi will force them to zero after applying the calculated
angles θj . In this beamline, steerers 2 and 3 cannot affect the position on monitor 1. This
explains the zeroes in the first row. In a similar fashion, the zero in the second row is
explained by steerer 3 being unable to affect the upstream monitor 2. The lower triangular
shape of the matrix allows successively solving one equation at a time, starting from the
first. And this corresponds to using steerer 1 to fix monitor 1, then, given that monitor 1 is
already corrected, adjust steerer 2 to fix monitor 2, and so on. The method of successively
correcting the trajectory one monitor at a time is called one-to-one orbit correction. Note,
however, that despite all BPMs showing zero, the orbit, shown by the dashed line, is not
zero everywhere, but only at the BPMs. In cases, as our example, where the number of
steerers and monitors is equal, the linear equations can be easily solved by inverting the
response matrix.

In situations with more monitors than steerers, we have n > m and the set of system
of linear equations is over-determined. The standard way to solve it is in the least-square
sense by minimizing χ2 = | − x⃗ − Aθ⃗|2, where we denote the matrix in Equation 8.46 by

A, the column vectors with xi by x⃗, and the column vector with θj by θ⃗. Minimizing χ2

with respect to the components of θ⃗ leads to 2At(−x⃗−Aθ⃗) = 0 and solving for θ⃗ yields the
so-called pseudo-inverse

θ⃗ = −(AtA)−1Atx⃗ . (8.48)

This allows us to correct the orbit in the least-squares sense, if there are fewer steerers than
monitors available. In the special case that A is square and non-degenerate (AtA)−1At

reverts to the conventional matrix inverse.
In situations where we have more steerers available than monitors n < m, there are more

columns than rows in the matrix A and we have too few constraints to uniquely determine
the steerer excitations θ⃗. Imagine a single BPM and many correctors; in that case the
matrix A is one long row vector, which cannot be “inverted” in the normal sense, because it
is highly degenerate. Under such circumstances singular value decomposition (SVD) comes
to the rescue.

SVD is a linear algebra algorithm, which explicitly constructs three matrices O,Λ, and
U to write any matrix A, suitably augmented by zeroes in order to make it square, as the
product of these matrices in the following way

A = OΛU t , (8.49)
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Figure 8.10 Four quadrupoles are needed to independently adjust αx, βx, αy, and βy

in an uncoupled beamline.

where Λ is a diagonal matrix with “eigenvalues” λ on the diagonal, and O and U are
orthogonal matrices that have the property that their inverse equals their transpose.

The SVD decomposition has an intuitive interpretation. The effect of a matrix A on any
vector is to apply the orthogonal matrix U t first, which is just a rotation into a different
coordinate system. Then the diagonal matrix Λ stretches the respective axes in the new
coordinate system by the eigenvalue, and finally the matrix O rotates the stretched vectors
into some other direction. This intuitive view aids us in calculating the “inverse” of A. The
“inverse” of A in terms of the matrices O,U, and Λ is simply given by

“A−1” = U“Λ−1”Ot . (8.50)

Here “Λ−1” is a special inverse of the diagonal matrix Λ, which is normally done by inverting
the entries on the diagonal. But if one eigenvalue, say λk, is actually zero, we have to
calculate 1/0, which would lead to a meaningless result. On the other hand, the intuitive
interpretation guides us to the realization that the problem is located in the subspace
spanned by the eigenvectors (columns) of O and U. The rule we apply is thus to invert
the matrix where we can (where the eigenvalues are different from zero) and remove any
projection onto the subspace where the eigenvalues are zero. This leads to the strange
recipe [65] to set 1/0 to zero when calculating Λ−1. As a byproduct, this recipe minimizes
the norm of the solution vector, such that we achieve our objective, to minimize the xi,
with the least possible rms change of corrector excitations.

Now that the trajectory is corrected, we need to adjust the beam- or sigma-matrix.

8.4.3 Beta matching

In Sections 8.2.2 and 8.2.4 we found that gradient errors lead to the undesirable beta beating
and filamentation with increased emittances. In order to adjust the sigma matrix elements,
or equivalently the Twiss parameters α and β in both transverse planes, we need four
quadrupoles to independently adjust αx, βx, αy, and βy. Since a quadrupole always acts in
both planes, we need to consider both planes simultaneously. An additional difficulty is that
the Twiss parameters or the sigma-matrix elements depend non-linearly on the quadrupole
excitations and additionally on the sigma matrix of the beam that arrives from upstream.

As a specific example, let us consider the beamline shown in Figure 8.10, where the
control location on the left-hand side can be envisioned as the injection point into a ring at
which we need to match the phase-space ellipse of the injected beam to that of the stored
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Figure 8.11 Correcting the chromaticity by placing sextupoles at locations with non-

zero dispersion.

beam. Furthermore, we have four quadrupoles at our disposal to adjust αx, βx, αy, and βy

at the control location. If we have an emittance measurement system available, based, for
example, on quadrupole scans from Chapter 7, we can experimentally determine the Twiss
parameters at the reference location. Knowing the four Twiss parameters at this location,
we then use the matching procedure from Section 3.6.2 to adjust the four quadrupoles that
result in αx, βx, αy, and βy at the control location.

If we have no diagnostic equipment to determine the Twiss parameters upstream of the
matching section with the four quadrupoles, we can still calculate orthogonal knobs that
change one of the four constraints αx, βx, αy, and βy at a time without affecting the others.
We base their calculation on the assumption that the beam at the reference location is
the design beam from an optics code. This will cause the knobs to be only approximately
orthogonal, and we may have to iterate their application. The procedure to empirically
optimize some observable, say the stored current, is based on optimizing with respect to
one knob at a time, and once the maximum is reached, start to optimize with respect to
the next knob. After a few rounds of applying the four knobs, the stored current should be
maximized.

A change of α in the vicinity of a beam waist has an intuitive interpretation, because
α changes linearly with the distance from the waist with β = β0 such that changing α is
equivalent to changing the longitudinal position ∆s of the beam waist by ∆s = −αβ0.

8.4.4 Dispersion and chromaticity

In beam transport lines, the dispersion is usually measured by slightly changing the energy
of the incoming beam and observing the trajectory change on position monitors. Often
quadrupoles in a section of the transport line, in which the dispersion is non-zero by design,
are used to adjust the dispersion to become zero in the final dipole of that section.

The momentum-dependent focusing plays an important role in transport lines with very
large beta functions in very strong quadrupoles as is common in final focus systems. To com-
pensate the chromaticity from the final-focus quadrupoles we need other, easily controllable,
and momentum-dependent quadrupolar fields. For this purpose we place sextupoles at a lo-
cation with horizontal dispersion Dx, as illustrated in Figure 8.11. There, the particles are
sorted by their momentum offset δ and experience a different slope—the gradient varies
with momentum—of the sextupolar field. Here we assume that the dispersion shows up
predominantly in the horizontal plane. We can therefore use Equation 8.5 and replace the
transverse displacement dx by Dxδ

∆x′ − i∆y′ = −k2L

2

[
(x+ iy)2 + 2Dxδ(x+ iy) +D2

xδ
2)
]
, (8.51)
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where k2L is the integrated strength of the sextupole. The second term describes a
quadrupolar field with strength, or inverse focal length, that is proportional to the rela-
tive momentum offset δ

1

fδ
= k2LDxδ . (8.52)

We see that changing the sextupole strength k2L changes the strength of these momentum-
dependent quadrupoles. Final focus systems therefore contain a section with dispersion
deliberately made large. Sextupoles are placed in this section in order to compensate the
large chromatic effects from the final focus quadrupoles.

After having corrected the beamlines, we now turn to rings.

8.5 CORRECTION IN RINGS

Here we will correct the problems that imperfections in a ring cause, and we start with the
closed orbit.

8.5.1 Orbit correction

The closed and local trajectory bumps from Section 8.4.1 do not disturb the orbit outside
the range of the bump, possibly except for a small change in the revolution frequency
as discussed near the end of Section 8.3.1, and they can equally well be used in a ring.
Bumps, for example, are used to center the beams in collimators without perturbing the
trajectory outside the collimation section. A second application is steering the beam orbit
in a way that the synchrotron radiation hits the monochromator of an experiment as shown
in Figure 8.12. The angles x′ and y′ at the source point of the synchrotron radiation inside
a dipole magnet will, owing to the often large distance L, significantly move the photon
beam on the monochromator. Including the location of the monochromator is trivially
accomplished by adding two drift spaces with lengths L and −L at the source point and
placing a “virtual position monitor” in-between these two drift spaces. This addition will
not affect the particle optics, but will allow us to include constraints and control points for
the monochromator.

The global correction of the closed orbit in a ring follows the same general idea as
trajectory correction in a beamline. We use the position monitor readings −xi as constraints
to calculate the steering magnet excitations θj . To set up the systems of equations that relate
how each steerer affects each monitor, we use the response coefficients, either calculated from

Figure 8.12 The angle of the source point of the emission of synchrotron radiation

must be adjusted such that the photon beam (dashed) hits the monochromator at

the end of an often long synchrotron radiation beamline.
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Equation 8.28 or 8.30, and obtain



−x1

−x2

...
−xn


 =




C11
12 C12

12 . . . C1m
12

C21
12 C22

12 . . . C2m
12

...
...

. . .
...

Cn1
12 Cn2

12 . . . Cnm
12







θ1
θ2
...
θm


 , (8.53)

which is entirely analogous to the construction of Equation 8.46. The only difference is
that here we need to use the response coefficients Cij that fulfill the periodicity constraint.
Moreover, all entries in the matrix can be non-zero, because in a periodic system, any steerer
can affect the position reading of every monitor. Adding constraints to leave the photon
beam on the monochromators unaffected can be implemented by adding a line with the
constraint not to change the position on a “virtual monitor” at the monochromator. The
large matrix containing the response coefficients Cij is usually referred to as orbit response
matrix.

Weighing the BPMs by their respective error bars is handled in the same way we dis-
cussed in Section 8.4.2. Likewise, solving Equation 8.53 to find the steering magnet excita-
tions that null the monitor readings involves the same linear algebra operations we discussed
in Section 8.4.2, depending on whether we have more monitors than steerers or vice versa.
Also here, SVD is commonly used for degenerate or near-degenerate orbit response matri-
ces. Another often used algorithm to solve Equation 8.53 is the MICADO algorithm [66],
which is especially suitable for rings with many monitors and correctors, such as LHC with
several hundreds of each. MICADO operates according to the following principle: first pick
the corrector that improves the orbit the most and apply the correction. Then repeat this
procedure with the remaining orbit and correctors. This appears like a lot of searching,
but the algorithm can be very efficiently coded using Householder-transformations of the
response matrix [66].

8.5.2 Dispersion-free steering

The steering magnets we use to correct the trajectory are small dipole magnets and as
such also change the dispersion in the same way as large dipole magnets do, discussed in
Section 3.1.3. From the sixth column of the transfer matrix from Equation 3.36, we find that
to first order in l/ρ ≪ 1, only R26 assumes the value ϕ = l/ρ, which is the deflection angle.
Transferring this observation to steering magnets, which change the direction of the beam
by the angle θ, we conclude that also steering magnet changes the angle of the dispersion
D′ by θ = ϕ at the location of the steering magnet.

The dispersion can be measured by changing the energy of the beam and observing
the position change on position monitors. In a linac the injection energy can be changed,
and in a ring changing the frequency ωrf of the RF-system causes the beam to adjust its
momentum offset by δ = −(∆ωrf/ωrf)/η in order to maintain synchronicity with the RF.

The purpose of dispersion-free steering is to simultaneously adjust the position and the
dispersion at the BPMs. The method is based on numerically calculating the dispersion
response matrix Sij = dDi/dθj and correcting the position xi and the dispersion Di at the
same time, by solving




...
−xi

...
−Di

...




=




...
...

...
Ci1

12 Ci2
12 . . . Cim

12
...

...
...

Si1
12 Si2

12 . . . Sim
12

...
...

...







θ1
θ2
...
θm


 . (8.54)
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The upper n rows are the same as those in Equation 8.53, and the second set of n rows
contain the dispersion response coefficients. Again, handling the BPM error bars is done
in the same way we discussed in Section 8.4.2, and solving Equation 8.54 is done using
standard methods, such as pseudo-inverse, SVD, or MICADO, we discussed previously.

Apart from correcting the orbit in a ring, the next most frequently corrected parameter
is the tune.

8.5.3 Tune correction

We now assume that we have a system that measures the fractional tunes Qx and Qy and
two independently powered quadrupoles, for simplicity assumed to be thin quadrupoles
characterized by their focal lengths f1 and f2. If the quadrupoles are not thin, we use the
corresponding integrated and normalized gradient k1l instead of 1/f. In any case, changing
the gradient of the quadrupole adds just another gradient perturbation, as described by
Equation 8.33, and the effect of quadrupole 1 on the tunes is given by

∆Qx =
β1x

4πf1
and ∆Qy = − β1y

4πf1
(8.55)

where β1x and β1y are the horizontal and vertical beta functions at the location of
quadrupole 1. Corresponding equations are valid for quadrupole 2. Note the minus sign
in the second equation, because the quadrupole is focusing in one plane and defocusing in
the other. If the changes are small, the tune changes from the two quadrupoles can be added
with the result

∆Qx =
β1x

4πf1
+

β2x

4πf2
and ∆Qy = − β1y

4πf1
− β2y

4πf2
, (8.56)

which can be written in matrix form
(

∆Qx

∆Qy

)
=

1

4π

(
β1x β2x

−β1y −β2y

)(
1/f1
1/f2

)
. (8.57)

The desired correction strengths 1/fi can be obtained by inverting the 2 × 2 matrix. The
correction is well-behaved, if the determinant of the matrix is large, which requires the
beta functions at the two quadrupoles to differ significantly. Normally this is guaranteed by
choosing βx to be larger than βy in one quadrupole and vice versa in the other. Note that
sometimes several quadrupoles are powered in series by a single power supply. In such cases
we need to use the sum of the respective horizontal and vertical beta functions in these
quadrupoles. Inverting the 2× 2 matrix in Equation 8.57 is trivial and gives the changes of
the quadrupole excitations as a function of the desired tunes changes ∆Qx and ∆Qy.

This correction only fixes the average tune, but the momentum spread causes a spread in
tunes, because the focusing of the quadrupoles is momentum dependent and, as we discussed
in Section 3.4.1, leads to a finite chromaticity.

8.5.4 Chromaticity correction

Before correcting the chromaticities Q′
x and Q′

y in a ring, we measure it through changing
the momentum offset δ = −(∆ωrf/ωrf)/η by changing the RF frequency ωrf and measuring
the tunes at different set points. The thus observed momentum dependence of the tune is
caused by the same momentum dependence of the quadrupoles that causes the dilution of
the spot size in final focus systems we discussed in Section 8.4.4. Thus, even in rings, we
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need controllable, and momentum-dependent quadrupolar fields, and we also use sextupoles
placed at locations where the dispersion is non-zero. They provide momentum-dependent
focusing as described by Equation 8.52 and therefore change the tunes by

∆Qx =
k2LDxβx

4π
δ and ∆Qy = −k2LDxβy

4π
δ . (8.58)

With two sextupoles, or independent families of sextupoles powered in series, we can adjust
the natural chromaticities Q′

x and Q′
y discussed in Section 3.4.1. The response matrix that

relates the excitation of the chromaticity-correction sextupoles to the change in chromatic-
ities ∆Q′

x = ∆Qx/δ and ∆Q′
y = ∆Qy/δ is very similar to the one for the tune correction

in Equation 8.57 and reads


∆Q′

x

∆Q′
y


=

1

4π


D1xβ1x D2xβ2x

−D1xβ1y −D2xβ2y


(k2L)1
(k2L)2


, (8.59)

where Dix is the horizontal dispersion at sextupole i. Inverting the matrix gives us the
required excitations (k2L)i for the two sextupoles to change the chromaticities by desired
values ∆Q′

x and ∆Q′
y.

In this and the previous section, we considered corrections of gradient imperfections. In
the next section we will deal with skew gradients that couple the transverse planes.

8.5.5 Coupling correction

In Section 8.3.3 we found that there are four different parameters that characterize the
strength of the difference and sum resonance, each having a sine and a cosine-like phase.
We therefore need four independently powered skew quadrupoles to correct these terms
independently. Sometimes, if tunes are chosen close to the diagonal of the tune diagram,
mostly the difference resonance plays a role and needs to be compensated. In that case,
two skew quadrupoles suffice. In the following, we consider, however, the general situation
where all four resonance-driving terms need to be compensated. As with most correction
algorithms, we construct a response matrix of the parameter that needs to be corrected to
the device that affects it—here the correction skew quadrupoles.




Re(F−)
Im(F−)
Re(F+)
Im(F+)


 =




cos(µx1 − µy1) . . . cos(µx4 − µy4)
sin(µx1 − µy1) . . . sin(µx4 − µy4)
cos(µx1 + µy1) . . . cos(µx4 + µy4)
sin(µx1 + µy1) . . . sin(µx4 + µy4)







κ1

κ2

κ3

κ4


 (8.60)

with the normalized skew quadrupole strengths κi =

βxiβyi/2fi. The phase advances µ

are those from the skew quadrupoles to a reference location.
If we can experimentally determine coefficients F±, for example, with turn-by-turn mea-

surements of the lattice with skew-quadrupolar correction magnets turned off and then
insert −F± on the left-hand side in Equation 8.60 and invert it to give us the required
skew quadrupole excitations κi that compensate the measured coupling. Alternatively, if
we only determine the coupling by a closest tune measurement, as described in Section 3.5,
we construct knobs to adjust one coefficient of the F± at a time and empirically tune the
skew quadrupoles to minimize the measured tune separation.

Inverting matrices can fail or leads to magnet excitations, where two magnets “fight
each other” and mostly even out their corrections. In such cases, the matrix is degenerate
or near-degenerate. Conversely, the matrix is well behaved, if its condition number, the ratio
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between the maximum and minimum eigenvalue, is close to unity, and, in the optimum case,
all eigenvalues are the same [67]. This also implies that the four independent parameters of
F± can be controlled equally well. Experimenting with the phase advances, we find that an
optimum set of phase advances, one that gives unit condition number, is µx = 360, 270, 90, 0
and µy = 270, 180, 90, 0 degrees. Such a placement of correction magnets results in a robust
correction scheme with, additionally, the smallest magnet currents.

All the correction schemes so far address one particular parameter at a time. In the next
section we will discuss a method to globally debug the linear optics of a storage ring.

8.5.6 Orbit response-matrix based methods

The basic idea is to compare the orbit response coefficients—all the elements Cij in the
matrix in Equation 8.53—expected from a computer model to measured values Ĉij . The
latter are easily determined by observing the orbit to move on n position monitors when
changing one of m steering magnets at a time. This is often referred to as recording dif-
ference orbits. We do not write subscripts to avoid cluttering the equations; normally one
considers all horizontal response coefficients with subscript 12 and vertical with subscript
34 simultaneously. Given the measured values, the method then tries to explain the discrep-
ancies between predicted and measured values by gradient errors ∆gk of all quadrupoles in
the ring. In the simplest incarnation of the algorithm, we consider

Ĉij = Cij +
∑
k

∂Cij

∂gk
∆gk , (8.61)

where the change of response coefficients with the quadrupole gradients ∂Cij/∂gk is calcu-
lated from two simulation runs with a small difference in gradient excitation, and repeating
this one quadrupole at a time. The method is very powerful, because the number of response
coefficients Cij is very large, typically 2×n×m, half of them horizontal and the other half
vertical, and we only try to determine nq gradients gk, a much smaller number. The linear
system of equations is thus vastly over-determined and can be solved by the usual least
square methods, even giving an estimate of the error bars for the determined gradients.

Equation 8.61 only describes the very basic idea. First proof-of-principle tests on
SPEAR [68] also determined scale errors of position monitors 1 + ∆xi and of steering
magnets 1 + ∆yj at the same time the gradients were determined. Later, the algorithm
was refined at NSLS [69], and a modern implementation, called LOCO, is used at many
synchrotron light sources. It is based on the following equation

Ĉij = Cij +
∑
k

∂Cij

∂gk
∆gk + Cij∆xi − Cij∆yj +

∑
l

∂Cij

∂pl
∆pl (8.62)

where ∆xi is the amount that the reading of monitor i differs from unity and ∆yj the
scale error of steering magnet j. Additional parameters pl that can be accounted for by
numerically determining the derivative ∂Cij/∂pl and including parameter variations ∆pl
in the fitting procedure. Examples for these parameters are systematic orbit displacements
in sextupoles, which cause additional quadrupole fields by feed-down, as discussed in Sec-
tion 8.1.1. Furthermore, including cross-plane response coefficients, such as Cij

14 or Cij
32, in

the algorithm, permits to determine spurious sources of skew gradients or solenoidal fields.
Once all sources of discrepancy between the measured and modeled response coefficients

are identified, the opposite of the found quadrupole gradient errors can be added to the
set values of the quadrupoles. This normally leads to a ring whose lattice is much closer to
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the model than before the correction. Since Equation 8.62 only uses first-order terms in the
Taylor expansion of the response coefficients in the sought parameters, several iterations
of the correction are required, until the algorithm converges, leading to equal model and
measured response coefficients within the error bars.

All correction methods we discussed so far are slow or quasi-static, and the time behavior
of monitors and correction elements are not taken into account. If very fast and automatic
corrections are required, we need to use feedback systems.

8.5.7 Feedback systems

Feedback systems are normally used to match the correction speed to rapid changes of the
sources of perturbations. Examples are ground vibrations due to environmental noise such as
heavy trucks or subways passing nearby. Time-dependent eddy currents in superconducting
magnets are another example. In such cases, fast monitors of the orbit or the tune are needed
and equally fast actuators, steering and quadrupole magnets, are required. The correction
algorithms are the same as we discussed in earlier sections of this chapter. In feedback
systems, they just operate at a higher update rate.

All modern synchrotron light sources with their extremely small beam sizes must sta-
bilize the beam positions, and their orbit feedback systems typically run with a bandwidth
of several tens of Hz. Considering the large number of position monitors and steerers im-
plementing the high rates normally requires dedicated processing hardware, such as digital
signal processors (DSP) or custom-programmed field programmable gate arrays (FPGA).

In order to guarantee the stability of the beams in LHC, having huge stored energies,
the tune, chromaticity, and coupling are continuously observed and immediately corrected.

QUESTIONS AND EXERCISES

1. Consider the part towards the right from the IP of the beamline in the figure below.
The total length of the section from corrector C1 to the IP has a length 2L, and
halfway there is a (thin lens) horizontally focusing quadrupole with focal length f .
Immediately downstream of the thin quadrupole, a second corrector C2 is located.
You can assume that the distance from C2 to the IP is equal to the distance from
the quadrupole to the IP. (a) Calculate the multi-knob for horizontal position at
the IP that leaves the angle at the IP unaffected. (b) Calculate the multi-knob for
horizontal angle at the IP that leaves the position at the IP unaffected. (c) Calculate
the corresponding vertical knobs.

2. Start from the same geometry as used in the previous exercise, but assume that there
is another corrector C3 a distance L downstream of the IP with no extra magnets
in-between. In this exercise, we ignore the angle at the IP. For the calculation you
can assume that the focal length f is equal to the distance of the quadrupole to the
IP. (a) Calculate the multi-knob for horizontal position at the IP, but make sure that
the bump is “closed” and the orbit is unperturbed after the last corrector C3. (b)
Calculate the corresponding vertical knob.



Imperfections and Their Correction ■ 239

3. Correct the orbit in a straight beamline with five of the double cells, described in
the file doublet.bl, available from this book’s webpage. Place steering magnets in
the focusing quadrupole (QF) and position monitors in the defocusing quadrupole
(QD). (a) First generate a “bad” orbit by sampling uniformly-distributed random
displacements for quadrupoles with −1 < dx < 1mm and determine the positions on
the monitors. (b) Devise an orbit correction system and use it to correct the positions
on the monitors. (c) Instead of displacing the quadrupoles independently, now move
the two adjacent quadrupoles of a doublet by the same amount, because they sit on
the same girder. Is the orbit distortion smaller or larger? Discuss your observation!

4. Use the ring from Exercise 11 in Chapter 3 and assume that there are position monitors
and steering magnets installed immediately downstream of the focusing quadrupoles,
only. (a) Prepare a function that receives the positions of monitor and perturbing
element as input and returns the 4× 4 response matrix. You can ignore the effect of
the radio-frequency system in this exercise. (b) One of the defocusing quadrupoles is
displaced by dx = dy = 1mm in both planes. What orbit do the BPMs show? (c) If the
displacements of all quadrupoles are uncorrelated and random with rms displacement
⟨d2x⟩ = (0.5mm)2, what rms orbit do you expect to observe on the BPMs? (d) Repeat
the previous exercise in the vertical plane with ⟨d2y⟩ = (0.5mm)2. (e) Calculate all

orbit response coefficients Cij and design an orbit correction system to correct (f)
the horizontal orbit and then (g) for the vertical orbit. Use uniformly distributed
displacements and explore how well the respective orbit correction systems reduce the
orbit.

5. In the ring from Exercise 4, add a single horizontal steering magnet just upstream of
the first focusing quadrupole in (a), and re-design the orbit correction system. Since
you have one additional steering magnet to correct the orbit at the same number of
position monitors, the correction should work better, right? (b) Does it? (c) Analyze,
(d) fix, and (e) discuss the problem!

6. How do you have to change the code to account for displacements of long quadrupoles?

7. Assume that all quadrupoles have random errors in their strength of 1% (rms) in
the ring from Exercise 4. (a) Write a Monte-Carlo simulation to randomly assign
focusing errors to them and generate a histogram of tunes for 1000 seeds. (b) Make
an analytic estimate of the rms width of the tunes. Do they agree with the width of
the histograms? (c) Single out two quadrupoles and use them to correct the tunes of
one random seed of quadrupole-excitation errors.

8. (a) Calculate the chromaticity of the ring from Exercise 4 unless you have already
done so in Exercise 11 in Chapter 3. (b) Correct the chromaticity to Q′

x = Q′
y = 0

with two sextupoles. Find their excitations, if one is located adjacent to a focusing
quadrupole and the other adjacent to a defocusing quadrupole.

9. Draw a tune diagram with all resonance lines, defined by nQx ± mQy = 1 with
n+m ≤ 3. Then add a dot for the tunes Qx = 0.28 and Qy = 0.31 to the diagram.

10. You are in charge of a small (unrealistic) ring with only three FODO cells, each having
the same geometry as the cells used for Exercise 4, but omit the dipole magnets (I told
you it is unrealistic!). (a) Adjust the phase advance of the cells to a little under 90o per
cell, such that the design values of the tunes are Qx = Qy = 0.72. When operating the
accelerator, you observe that the horizontal tune is a little off and you suspect that a
quadrupole might have shorted coil windings. You therefore plan to use Equation 8.61
and compare the ideal to the measured horizontal response coefficients one quadrupole
at a time. (b) First, calculate the unperturbed horizontal response coefficients Cij

12.
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(c) Then simulate a bad ring by changing the focal length of the first quadrupoles by
0.2m and calculate the response coefficients Ĉij

12 for the perturbed ring. (d) Calculate
the derivative of the response coefficients ∂Cij/∂gk, where gk = fk is the focal length
of the quadrupoles. (e) Test one quadrupole at a time. Which one best explains the
difference Ĉij −Cij between the measured and design response coefficients? Can you
find the 0.2m change in the focal length? (f) Stimulated by your success, you next
try to fit for all quadrupole errors ∆gk simultaneously by expressing Equation 8.61
in matrix form and solving the over-determined system using standard linear algebra
techniques. (g) Inspect the covariance matrix in order to understand the error bars of
your fit parameters.

11. In CELSIUS, with a circumference of 82m, and momentum compaction factor α =
0.123, the typical magnitude of the response coefficients was Cij ≈ 10m and about
Dx ≈ 4.5m for the horizontal dispersion. The operating range of the kinetic energies
for protons was from 50 to 1360MeV. At what energies do you expect the change in
η to change the response coefficients by 10%?



C H A P T E R 9

Targets and Luminosity

In this chapter, we discuss the interaction of the beam with a target, which is the prime
reason for the existence of many accelerators. We will discuss the relation between the count
rate in experiments and the microscopic cross-section, which is given by the luminosity. We
will see how the reactions lead to reduction of the beam current that will reveal itself as a
finite lifetime. Apart from the desired losses due to nuclear reaction, there are detrimental
effects due to electro-magnetic interactions with the target material that will perturb the
beam. In the first part, we will deal with fixed targets, where these detrimental effects are
energy loss due to ionization of the target atoms and transverse Rutherford scattering from
the target nuclei. In the second part, we consider colliding beams, where the beams are
often squeezed to small beam sizes with extreme electro-magnetic fields that perturb the
counter-propagating beam.

We start by considering the count rate and its relation to the cross-sections.

9.1 EVENT RATE AND LUMINOSITY

In a nuclear or high-energy physics experiment, one often tries to determine count rates
of events with a particular signature. Examples are the creation of two oppositely charged
muons, leaving the interaction region in a collider in opposite directions, or the occurrence of
a number of jets, or three pions. Since these events are compared with other, more frequent
events, a high count rate R is desirable in order to achieve high statistical significance of
the findings. Note that a count rate R has units 1/s.

Of course, the count rate is also determined by the nuclear cross-section σ, which has
units of an area [m2] and can be visualized as a small area that causes an event to happen,
if it is hit by a particle from the beam. The cross-section is commonly expressed in units of
[cm2] rather than [m2] and another frequently used unit is the barn, which equals 10−24 cm2

or 10−28 m2 or 100 fm2, where one femtometer is roughly the diameter of a nucleon.
The constant of proportionality that relates the microscopic cross-section σ to the ex-

perimental count rate R is the luminosity L, which thus fulfills

R = σL with L = Nbf0
Nt

A
(9.1)

for a fixed-target experiment. It quantifies the performance of the accelerator and the target
system. It depends on the number of beam particles Nb incident on the target with frequency
f0. Moreover, it depends on the area density Nt/A of the number of target atoms Nt per
unit area A. Note that the luminosity is conventionally expressed in units of 1/cm2s.

This chapter has been made available under a CC BY NC license. 241
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For illustrative purposes let us consider a solid target of Lithium (Li) that is used for the
production of neutrons in the p + 7Li → 7Be+n reaction. The target thickness Nt/A can be
calculated from the mass density ρLi = 0.534 g/cm3, the geometric thickness dx of the target
material, and the mass of a Lithium atom mLi = 7mu with the mass of a nucleon given by
mu = 1.66 × 10−24 g. For dx = 0.1 cm we find Nt/A = 4.6 × 1021 /cm2. Beryllium (Be) or
Carbon (C) are used as target material for experiments to produce neutrinos. The European
Spallation Source will produce neutrons by impinging protons onto a fast-rotating wheel
made of Tungsten (W). The solid targets will either stop the beam entirely or significantly
perturb the beam such that it is discarded immediately after the target.

In some storage rings, moderately dense targets, so-called internal targets, are placed in
the path of the circulating beam. The target can be either a jet of gas, a stream of clusters
of the target material, or a stream of microscopic pellets. The latter are created by injecting
hydrogen, prepared to have temperature and pressure close to the triple point, through an
oscillating vacuum injection capillary, which freezes the stream of hydrogen into micron-
sized spheres of frozen hydrogen. Pellets or clusters provide thicker targets compared to gas
jets and make it easier to remove the gas after the collisions with the beam. Typical target
densities Nt/A encountered in nuclear storage rings are about Nt/A ≈ 1014 /cm2 for gas jet
targets and a few times 1015 /cm2 for pellet targets, which also makes it an option for the
target in the HESR antiproton ring that is part of the FAIR facility. The first pellet target
was operated in CELSIUS, the now defunct storage ring for nuclear physics experiments
in Uppsala. Typically Nb = 1010 protons were stored at a revolution frequency of about
f0 = 3MHz, resulting in a current of I = Nbef0 ≈ 5mA. The number of particles impinging
on the target per second is therefore given by Nbf0. Achievable target density was about
Nt/A ≈ 3× 1015/cm2, resulting in a luminosity of L ≈ 1032 /cm2s.

In a storage ring, the beam particles that participate in the wanted nuclear reactions
with cross-section σ are of course lost from the beam. The loss rate is given by Equation 9.1
as well as

dNb

dt
= −σL = −σNbf0

Nt

A
= − 1

τL
Nb , (9.2)

which is obviously proportional to the number of beam particle Nb and leads to an ex-
ponential reduction of the number of beam particles with a time constant τL given by
1/τL = σf0Nt/A, which is called the luminosity lifetime. If multiple reaction channels with
different cross-sections are involved, the cross-sections of the respective reactions must be
added.

These losses from the nuclear reactions are normally small, because the nuclear cross-
sections are very small. On the other hand, the cross-sections for the electro-magnetic
interactions with the electrons and target material are orders of magnitude larger and
perturb the circulating beam much more. One of the main effects is the ionization of the
target material, which leads to a random energy loss of the beam. And that is the topic of
the following section.

9.2 ENERGY LOSS AND STRAGGLING

The energy of the beam (MeV to TeV) is normally much higher than the binding energy of
the electrons (eV to keV), and we can assume that a beam particle passes through a sea of
free electrons. The electro-magnetic field created by the beam particle transfers momentum
from the beam to the electrons, which acquire kinetic energy that the beam particle has lost.
We describe this process quantitatively for a beam of protons by calculating the momentum
transfer from a single proton traveling along the z-axis with velocity v to an electron that has
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Figure 9.1 The proton moves along the z-axis and gives a kick to the electron, which

carries away some of the energy provided by the proton.

a minimum distance, or impact parameter, b with respect to the proton. Figure 9.1 illustrates
the geometry. Only the transverse momentum transfer of the electron ∆p⊥ =

∫∞
−∞ F⊥dt is

non-zero, because the electron moves very little during the passage of the proto,n and the
longitudinal transfer in the z-direction cancels. The force F⊥ = Fcb/r = e2b/4πε0r

3 is
simply the transverse component of the Coulomb force Fc = e2/4πε0r

2 between proton and
electron. With F⊥ given and with dt = dz/v and r2 = z2 + b2 we calculate ∆p⊥ and find

∆p⊥ =
e2b

4πε0v

∫ ∞

−∞

dz

(z2 + b2)3/2
=

e2

2πε0bv
, (9.3)

where we make the approximation that the speed v of the proton does not change appre-
ciably. The impact from the beam particle, on the other hand, transfers the momentum
∆p⊥ to the electron, which then carries the kinetic energy Te = ∆p2⊥/2me. And this is
energy lost by the beam particle. In order to calculate the energy loss of the beam due to
all electrons, we have to sum over all of them. There are Ne(b) = ρe2πbdbdx electrons with
impact parameters between b and b+db, where ρe is the density of the electrons. Integrating
over b thus yields the energy loss per unit length dE/dx of the proton beam

dE

dx
= 2πρe

∫
∆p2⊥
2me

bdb =
e4ρe

4πε20mev2

∫
db

b
=

e4ρe
4πε20mev2

log

(
bmax

bmin

)
. (9.4)

Here we encounter the Coulomb-logarithm that depends on two artificially introduced cutoff
parameters bmin and bmax. The former is necessary, because very small impact parameters b
lead to divergent momentum transfers and the latter is necessary because the number
of electron grows more rapidly than the electro-magnetic force drops off at large impact
parameters. One therefore needs to heuristically determine the range of impact parameters
relevant to the problem. Here we use the properties of the target material to find reasonable
values for bmin and bmax. Following [70], we realize that for very large impact parameters
the proton fly-by takes a time ∆t and only weakly pushes the far-away electrons. In order to
knock them out from the target atom, the impact must be short and intense. If the electron
is in a bound state with an equivalent orbital frequency ν we expect ionization to occur,
provided that the duration of the impact has the order of magnitude ∆t = bmax/γv < 1/ν,
where γ takes care of the relativistic contraction of time. Solving for bmax, we obtain bmax =
γv/ν. The lower value of impact parameters bmin, we obtain from Heisenberg’s uncertainty
principle, because the electron can only be localized to ∆x ≈ h/γmev which we take as a
reasonable estimate for the lower bound for the impact parameter and get bmin ≈ h/γmev.
Inserting these heuristic values for bmin and bmax in Equation 9.4, we get

dE

dx
=

e4ρe
4πε20mev2

log

(
γ2mev

2

hν

)
=

e4ρe
4πε20mev2

log

(
2γ2mev

2

I

)
, (9.5)
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Figure 9.2 The left graph shows the energy loss dE/ρdx of protons as a function of

the normalized beam momentum βγ for targets made of frozen hydrogen, lithium,

and tungsten. The right graph shows the deposited energy (solid) and remaining

beam energy (dashes) of a proton beam in water as a function of depth z in the

target material.

where we estimate the characteristic frequency ν from the ionization potential I = 2hν of
the target material.

Equation 9.5 is a much simplified version of the Bethe-Bloch equation for the energy loss
of charged particles in matter. The average energy loss per meter of a beam of particles
with charge Zb and mass M with momentum βγMc is given by

dE

ρdx
= −KZ2

b

Zt

At

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax

I2

)
− β2 − δ

2

]
(9.6)

with K/A = 4πNAr
2
emec

2/A = 0.307 cm2/g for A=1 g/mol and

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(9.7)

is the maximum kinematically achievable kinetic energy of the ionized electron with mass
me. The target atoms are described by their Charge Zt, their atomic mass number At,
and their ionization potential. The small factor δ in Equation 9.6 describes volume effects.
Details can be found in section 33 of [71] entitled “Passage of particles through matter.”

On the left-hand side in Figure 9.2, we show the energy loss scaled by the density
dE/ρdx of the target material ρ as a function of the normalized momentum βγ for protons
impinging on targets of frozen hydrogen, lithium, and tungsten. Despite widely different
densities of the target material, the normalized energy loss for the different materials turns
out to be close to 2MeV/(g/cm2) for values of βγ > 5, only hydrogen shows twice that
value. We also note that for small momenta, the energy loss grows rapidly due to the inverse
dependence on the speed v or β = v/c of the protons in Equation 9.6. This implies that
once a particle has lost most of its kinetic energy, the remainder is lost very rapidly. This
is illustrated on the right-hand side in Figure 9.2, where the solid line shows the deposited
energy per unit length (not normalized to the density ρ) for a proton beam with initial
kinetic energy T = 200MeV impinging on a target made of water. The dashes show the



Targets and Luminosity ■ 245

Figure 9.3 The Landau probability distribution pL(λ) (left) and the energy distribu-

tion of an initially mono-energetic proton beam with kinetic energy T = 100MeV

after passing a 2mm thick lithium target (right).

remaining kinetic energy T (divided by 20) that the beam has at depth z in the target
material. Near z = 28 cm it drops to zero, and the protons are stopped. Initially the energy
losses near z = 0 are on the level of 0.5MeV/mm, but they grow to almost 10MeV/mm
after 25 cm. This final peak of the deposited energy is called the Bragg peak. The fact that
most of the energy is deposited close to the end of the path in the target material is used in
cancer proton therapy. In particular, a proton beam with a kinetic energy of T = 200MeV
deposits most of its energy at a depth of around 28 cm in water or in human tissue while
the tissue before the Bragg peak is exposed to much less ionization losses.

The Bragg peak on the right-hand plot in Figure 9.2 is very narrow, because in the
simulation we used a mono-energetic proton beam and neglected the statistic nature of the
ionization processes, where both effects broaden the peak. Broadening due to the latter
effect for moderately thick targets is described by the Landau theory [72], which gives the
distribution Ψ(E,∆x) of the energy loss E after traversing a target of thickness ∆x as

Ψ(E,∆x) =
1

ξ
pL(λ) with pL(λ) =

1

π

∫ ∞

0

e−t log(t)−λt sin(πt)dt . (9.8)

Here λ is given by λ = (E −∆EBB)/ξ − 1 + γE − β2 − log(ξ/Tmax) with Euler’s constant
γE ≈ 0.577215 and ξ = 0.1534(Z2/β2)(Zt/At)ρ∆x describes the thickness of the target.
Here ξ is given in units of MeV and ρ∆x in units of g/cm2. Moreover, ∆EBB is the average
energy loss in the target as described by Equation 9.6. The universal Landau distribution
pL(λ) is shown on the left-hand side in Figure 9.3. We observe that the distribution has a
distinct tail toward large values, which causes many beam particles to experience an energy
loss much larger than the one described by the Bethe-Bloch equation. The right-hand side
in Figure 9.3 shows the energy distribution of a proton beam with initial kinetic energy
T = 100MeV after passing through a 2mm thick lithium target. The energy loss from the
Bethe-Bloch equation ∆EBB is indicated by the horizontal arrow that starts at the initial
energy T = 100MeV. The shape of the distribution is given by the Landau distribution
function pL(λ) and shows again the extended low-energy tail. We point out that Landau’s
theory is valid only for a thin target, a limit that we violate to some extent in the above
example, and a more elaborate theory, due to Vavilov [72], covers thicker targets.
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Figure 9.4 A beam particle, closely passing the nucleus of a target, is transversely

deflected by its electric potential, where the underlying process is Rutherford scat-

tering.

The discussion in the previous paragraphs described the energy loss of protons or other
heavy beam particles. For the energy loss of electrons, a few additional aspects, especially
at high energies, are important. Low-energy electrons also lose most of their energy by
ionizing the target material. In thin targets the dominant effect is ionization and a slightly
modified version [71] of Equation 9.6 can be used to calculate the loss. At higher energies,
the electrons lose most of their energy by the emission of bremsstrahlung. It depends on
the square of the nuclear charge Z2

t of the target material and explains the use of heavy,
high-Zt materials, such as tungsten or tantalum, as targets for the production of x-rays.
Electrons with ultra-relativistic energies exhibit an increased production of e+e−–pairs.
At these energies, both electrons or photons cause electro-magnetic cascades in the target
material, which are characterized by the radiation length X0, the exponential attenuation
length of the incident particle’s initial energy. Values of radiation lengths for many materials
are tabulated in [71], and a few selected values are given below in Table 9.1.

After discussing the effect of the targets on the beam energy, we will consider transverse
scattering of beam particles for the nuclei of the target atoms.

9.3 TRANSVERSE SCATTERING, EMITTANCE GROWTH, AND LIFETIME

Apart from the energy loss due to ionizations, the charged beam particles will be elastically
deflected by the nuclei of the target material, which is given by the Rutherford scattering
cross-section

dσ

dΩ
=

(
ZbZte

2

8πε0βpc

)2
1

sin4(θ/2)
. (9.9)

It describes the probability to deflect a particle into an angular range dΩ = sin θdθdϕ
and has the well-known 1/θ4 dependence for small angles, which implies that most particles
experience small deflections. The small deflections are due to large impact parameters of the
beam particle with respect to the scattering nucleus. Averaging over all impact parameters
leads to the rms scattering angle, which can be estimated from a slightly simplified equation
from [71]

θrms ≈ Zb
13.6MeV

βpc

√
∆x

X0
, (9.10)

where Zb is the charge of a beam particle with momentum p and ∆x is the thickness of the
target material with radiation length X0. It is tabulated for various materials in [71], and
we quote a few common values in Table 9.1. Considering, for example, a proton with kinetic
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Table 9.1 Radiation length of several materials [71]. The values X0 in the upper row

are normalized to the material density ρ, and the values x0 in the lower row are

given as a distance.

Material H2O H2(liq.) C Fe Cu Al W Li
X0 [g/cm2] 36.1 63.1 42.7 13.8 12.86 24.1 6.76 82.8
x0 [cm] 36.1 891 18.8 1.76 1.44 8.9 0.35 155

energy T = 100MeV that passes through a 2mm lithium target already discussed in the
previous section. We find its rms scattering angle θrms ≈ 2.6mrad. On the other hand, a
proton with momentum p = 1GeV/c traversing a frozen-hydrogen pellet with a diameter
of d = 30µm only experiences an rms deflection angle of θrms ≈ 3.4µrad.

If an internal target is installed in a storage ring, the beam particles repeatedly receive
random deflection angles and since all particles will be kicked independently this will cause
the emittance to grow. We analyze this effect with a simple model, in which we assume
that the target is located at a waist with α̂ = 0. The beta function at the target is β̂ and
the tune of the ring is Q = µ/2π, such that we construct the one-turn transfer matrix R̂
from Equations 3.80 and 3.81. At the target, a particle receives the transverse kick θk on
turn number k, where the angles at different turns have average zero, such that we have
⟨θk⟩ = 0. Moreover, they are statistically independent, which implies ⟨θkθm⟩ = θ2rmsδkm
with the Kronecker symbol δkm that is unity for k = m and zero otherwise. This allows
us to calculate the particle’s phase-space coordinates in normalized phase space x̃n and x̃′

n

after n turns by summing up all the kicks at turns m and propagating them through the
remaining n−m turns

(
x̃n

x̃′
n

)
= A

n∑
m=1

R̂n−m

(
0
θm

)
=

n∑
m=1

On−m

(
0√
β̂θm

)
, (9.11)

where we used the definitions of A and O from Equation 3.81. After n turns, the Courant-
Snyder action variable 2Jn = x̃2

n + x̃′2
n of the particle is then given by

2Jn =
n∑

k=1

n∑
m=1

(0,

√
β̂θk)

(
On−k

)T On−m

(
0√
β̂θm

)
= β̂

n∑
k=1

n∑
m=1

cos((k −m)µ)θkθm .

(9.12)
Averaging over many realizations of kick angles θk and all particles of the beam, we obtain

⟨2Jn⟩ = β̂
n∑

k=1

n∑
m=1

cos((k −m)µ)⟨θkθm⟩ = β̂
n∑

k=1

cos(0)θ2rms = nβ̂θ2rms , (9.13)

where we used the statistical properties of the kick angles from above. Since the emittance
ε = ⟨J⟩ of the ensemble of many particles is defined as the Courant-Snyder invariants J

of the individual particles averaged over the beam distribution, we find that ε = nβ̂θ2rms/2
grows linearly with the number of turns. We therefore obtain

dε

dn
=

β̂

2
θ2rms or

dε

dt
=

β̂

2T0
θ2rms (9.14)

with the revolution time T0 for the growth rate of the emittance dε/dt. We observe that it is

proportional to the beta function β̂ at the target, where it is normally made small in order
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to maximize the luminosity. This has the additional benefit that the emittance growth is
small.

The emittance growth described by Equation 9.14 is rather slow and can sometimes be
compensated by some beam cooling or damping mechanism. This can either be damping due
to synchrotron radiation, a topic we will discuss in detail in Chapter 10, by stochastic cooling
or by electron cooling, topics we will briefly mention in Section 13.5. Typical damping times
τd are in the range of milliseconds to seconds. We add this damping heuristically to the right
equation in Equation 9.14 by adding a term −ε/τd to arrive at

dε

dt
= − ε

τd
+

β̂

2T0
θ2rms , (9.15)

such that the scattering angle θrms will cause the emittance to assume an equilibrium value
ε0 = τdβ̂θ

2
rms/2T0 after a few damping times τd, which is a slow process on the time scale

of the revolution time T0.
The previous paragraph discussed distant target nucleus fly-bys of beam particles, which

causes the emittance to grow. If, on the other hand, the fly-by is very close, the beam
particle is deflected to such an extent that it is very quickly lost during the next turn,
because its amplitude exceeds the beam-pipe aperture ra at some point in the ring and the
above damping mechanisms act on too long time scales to be able to counteract this. The

maximum angle θa is given by ra =

√
βaβ̂θa, where

√
βaβ̂ is the maximum transfer matrix

element R12 that relates the scattering angle to the position ra with beta function βa at

the aperture limit. The cross-section σ(θ > θa) to exceed a scattering angle θa = ra/

√
βaβ̂

then follows from integrating the differential cross-section from Equation 9.9 for all angles
θ > θa with the result

σ(θ > θa) =

∫ 2π

0

dϕ

∫ π

θa

â2 sin(θ)dθ

sin4(θ/2)
= 8πâ2

∫ π

θa

cos(θ/2)d(θ/2)

sin3(θ/2)
=

4πâ2

tan2(θa/2)
, (9.16)

where we introduced the abbreviation â = ZbZte
2/8πε0βpc to describe the factor in brackets

in Equation 9.9 and used the substitution z = sin(θ/2) when evaluating the integral.
The cross-section σ(θ > θa) describes almost immediate beam loss, and the rate is given

by Equation 9.2

dNb

dt
= −σ(θ > θa)L = − 4πâ2Nbf0

tan2(θa/2)

Nt

A
= − 1

τs
Nb , (9.17)

which defines the lifetime due to large-angle scattering off of the target atoms as 1/τs =

(4πâ2Nbf0/ tan
2(θa/2))(Nt/A) with θa = ra/

√
βaβ̂. Note that any other atoms or molecules

in the path of the beam particles, such as the residual gas in the beam pipe, cause additional
losses and reduce the lifetime of the beam, a topic we will return to when discussing vacuum-
related issues in Section 13.6.

So far, we have discussed the consequences of a fixed target on the dynamics of the beam.
In the next sections, we will consider what happens when the target is a counter-propagating
beam.

9.4 COLLIDING BEAMS

The reason to use counter-propagating colliding beams is the much higher energy
√
s = Ecm

available in the center-of-mass system compared to fixed-target experiments. We calculate
Ecm from the relativistic four-momenta P1 = (E1, p⃗1c) and P2 = (E2, p⃗2c) of two colliding
particles as the invariant

s = E2
cm = (P1+P2)

2 = (E1+E2)
2−(p⃗1c+p⃗2c)

2 = m2
1c

4+m2
2c

4+2E1E2−2c2p⃗1p⃗2 , (9.18)
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Figure 9.5 Sketch to illustrate the calculation of the luminosity in beam-beam colli-

sions (left) and the luminosity loss as a function of the tilt angle ϕ for beams with

aspect ratio r = 3 (solid) and r = 10 (dashes).

where we used E2
1 = m2

1c
4 + c2p⃗1p⃗1 and E2

2 = m2
2c

4 + c2p⃗2p⃗2. In a fixed-target experiment,
one of the particles is at rest, say particle 2, with p⃗2 = 0 and the energy available to create
new particles is E2

cm,f = m2
1c

4 + m2
2c

4 + 2m2c
2E1. In a colliding-beams experiment with

counter-propagating beam particles of equal mass m1 = m2 the momenta are equal, but
have opposite sign p⃗1 = −p⃗2, such that the available energy in the center-of-mass system
is E2

cm,c = (E1 + E2)
2 = 4E2

1 which is always larger than E2
cm,f , because momentum

conservation dictates that part of the energy is needed to maintain the center-of-mass
motion.

This higher available energy, however, comes at the price of higher technical complexity
and price, because two beams need to be produced and stored. Moreover, the luminosity is
significantly smaller, because there are fewer collision targets with the counter-propagating
beam than there are in a solid target. In colliders with particles and their antiparticles,
it is possible to store both beams in the same magnetic structure, because the sign of
the charge and the velocity in the Lorentz-force equation cancel and the beams follow the
same trajectory. One has, however, to pay special attention to prevent multiple bunches
to collide outside the detector. Moreover, the production of antiparticles is often difficult
and expensive. Therefore, in LHC two proton beams are brought into collisions. Since the
two beams have the same charge, two independent magnet systems to guide the two beams
around the ring are required.

But if the highest possible center-of-mass energy Ecm is the objective of an accelerator,
a collider is the machine of choice, and we therefore need to determine its luminosity.

9.5 BEAM-BEAM LUMINOSITY

In contrast to the calculation of the luminosity in fixed target experiments, where we as-
sumed that the target material had a uniform density of scattering centers Nt/A, the two
beams in colliding-beam experiments have a transverse distribution, often assumed to be
Gaussian, N1ψ1(x, y) and N2ψ2(x−X, y−Y ). Here N1 and N2 are the number of particles
in beams 1 and 2, respectively, and X and Y describe the relative displacement of the second
beam’s center with respect to the first. Figure 9.5 shows the one-sigma contours of the two
beams as solid and dotted ellipses. In order to calculate the contribution of the shaded patch
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of width dxdy to the total luminosity, we realize that the number of particles in beam 1
within the patch is dN1 = N1ψ1(x, y)dxdy. The target density Nt/A of scattering centers
in the second beam is Nt/A = N2ψ2(x−X, y − Y ). For the contribution to the luminosity
of the shaded area L(x, y) we then obtain L(x, y) = fcN1N2ψ1(x, y)ψ2(x−X, y − Y )dxdy,
and for the total luminosity we have to integrate over x and y with the result

L = fcN1N2

∫ ∞

−∞

∫ ∞

−∞
ψ1(x, y)ψ2(x−X, y − Y )dxdy , (9.19)

where fc is the repetition frequency of the collisions. Here we observe that the luminosity L
is given as the convolution of the transverse distributions of the two beams. In particular,
if the two distributions are Gaussian with beam-matrices, restricted to the two spatial
transverse directions σa and σb, the convolution is characterized by Σ = σa + σb or

(
Σxx Σxy

Σxy Σyy

)
=

(
σa
xx σa

xy

σa
xy σa

yy

)
+

(
σb
xx σb

xy

σb
xy σb

yy

)
(9.20)

and the luminosity L given by

L(X,Y ) =
N1N2fc

2π
√
detΣ

exp

[
−1

2
(X,Y )Σ−1

(
X
Y

)]
. (9.21)

For round (σa
xx = σa

yy = σb
xx = σb

yy = σ2
r) beams with equal rms beam size σr, Equation 9.21

reduces to the well-known expression Lr = (N1N2fc/4πσ
2
r)e

−(X2+Y 2)/4σ2
r . Obviously, it

is proportional to the number of particles in each beam and the collision frequency fc.
Moreover, the larger the luminosity is, the smaller the beam size σr at the interaction
point. From the exponential dependence on the beam-center displacements X,Y , we see
that the luminosity is reduced by 22% if the beams miss each other by

√
X2 + Y 2 = σr,

whereas for 0.2σr the reduction is only 1%, which may be used to define tolerances for the
alignment of the respective beams.

For beams with large aspect ratios r = σx/σy the relative tilt angle ϕ between the major
axes of the beams has a significant impact on the luminosity. We calculate it by considering
diagonal matrices with σa

xx = σb
xx = σ2

x and σa
yy = σb

yy = σ2
y in Equation 9.20 and then

rotate σb by the tilt angle ϕ. For detΣ we obtain detΣ = 4σ2
xσ

2
y + (σ2

x − σ2
y)

2 sin2 ϕ. The

luminosity for centered beams is, according to Equation 9.21, proportional to 1/
√
detΣ.

The right-hand side in Figure 9.5 shows the luminosity, normalized to the value at ϕ = 0,
as a function of the tilt angle ϕ. The solid line shows the luminosity loss for a beam with
aspect ratio r = 3 and the dashed lines for r = 10. Apparently, beams with a large aspect
ratio are very sensitive to the tilt angle and require careful compensation of the cross-plane
coupling, in particular, from the solenoidal fields that are often part of the detector.

In the previous paragraphs, we assumed that the transverse beam size during the col-
lision does not change, which is a valid assumption, provided the bunch length σs is small
compared to the beta function β∗ at the interaction point. If, on the other hand, σs ap-
proaches β∗, different longitudinal slices of the bunches have different transverse beam sizes
during the interaction and the luminosity is reduced. This is called the hourglass effect [73].
It is illustrated on the left-hand side in Figure 9.6 which shows the vertical beam size σy/σy0

in the vicinity of the interaction point at s = 0 as the solid line for β∗
y = 1 cm. The dashed

and dot-dashed lines denote the longitudinal distribution of one beam moving towards the
right and one moving towards the left, immediately before the centers of the beams meet
at s = 0. The shaded areas denote longitudinal slices of beams that contribute to the lu-
minosity, where the transverse beam size σy of the dark area is only about half that of the
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Figure 9.6 Two bunches (dashes and dot-dashes), with bunch length σs comparable

to the minimum β∗
y (solid), colliding head-on at s = 0. The transverse beam sizes

of the longitudinal bunch slices are larger for s ̸= 0 (light gray) than they are for

s = 0 (dark gray), which reduces the luminosity and depends on the ratio σs/β
∗
y

(right).

lightly shaded slices. If the bunch length σs were much smaller than the rate of growth of σy,
which is β∗

y , all slices had transverse beam size σy0. In order to quantitatively evaluate the
reduction in luminosity, we consider the distributions of two counter-propagating beams,
ρ+ and ρ−, given by

ρ±(x, y, s, t) =
N±

(2π)3/2σx(s)σy(s)σs
exp

[
− x2

2σ2
x(s)

− y2

2σ2
y(s)

− (s± ct)2

2σ2
s

]
. (9.22)

For simplicity, we assume that their speed in the laboratory frame can be approximated by
the speed of light c, the beams collide head-on, and their beam sizes are equal, but vary with
longitudinal position s according to σ2

x(s) = σ2
x0(1 + s2/β∗2

x ) and σ2
y(s) = σ2

y0(1 + s2/β∗2
y ).

With the bunch collision frequency fc, we thus obtain for the luminosity

L = 2cfc

∫ ∞

−∞
ds

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dt ρ+(x, y, s, t)ρi(x, y, s, t) . (9.23)

Inserting the distributions from Equation 9.22, we find that the integrals over t, x, and y
are Gaussian and can be evaluated trivially with the result

L =
N+N−fc
4π3/2σs

∫ ∞

−∞

e−s2/σ2
sds

σx(s)σy(s)
=

N+N−fc
4π3/2σsσx0σy0

∫ ∞

−∞

e−u2

du√
1 +

σ2
su

2

β∗2
x

√
1 +

σ2
su

2

β∗2
y

. (9.24)

For vanishingly short bunch length σs → 0 the integral evaluates to
√
π and we find

L = N+Nifc/4πσx0σy0 which is the same as we find from Equation 9.21 for equal beams.
The reduction from this value due to finite σs/β

∗
x/y is described by the reduction factor

R(σs/β
∗
x, σs/β

∗
y) that we define by

R(σs/β
∗
x, σs/β

∗
y) =

1√
π

∫ ∞

−∞

e−u2

du√
1 +

σ2
su

2

β∗2
x

√
1 +

σ2
su

2

β∗2
y

. (9.25)
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In many colliders, especially for e+e−, the vertical beta function and beam size are much
smaller than the horizontal, and often the luminosity is maximized by decreasing the vertical
beta function β∗

y at the interaction point, such that we can ignore the horizontal plane when
evaluating the reduction factor and we have to evaluate R(0, σs/β

∗
y). On the right-hand

side in Figure 9.6, we show it as a function of σs/β
∗
y calculated in a MATLAB script that

numerically evaluates the integral. The reduction is about 14% for σs ≈ β∗
y . Note that

decreasing the beta function still increases the luminosity, but simply not as much as one
can expect from Equation 9.21.

In order to understand subnuclear reactions with very small reaction cross-sections,
dedicated colliders, so-called factories, seek to reach the highest luminosities by colliding a
large number of very intense and closely spaced bunches. They are used to investigate rare
decays of Φ or B-mesons in order to reveal the secrets of CP violation or to find Higgs bosons
in order to understand the origin of the mass of sub-atomic particles. For example, in LHC
the bunches are spaced by about 8m. These closely spaced bunches not only collide at the
IP, but also at several longitudinal positions adjacent to the IP. In these parasitic crossings
the beams will perturb each other, unless the transverse distance between the counter-
propagating bunches is made large. And this requires the bunches to collide with a crossing
angle at the IP at the expense of a reduced luminosity, because different longitudinal slices
of the colliding bunches are transversely offset with respect to each other. This leads to a
reduction of the luminosity, which can be recovered by turning the bunches in the plane
where they cross, such that the slices are lined up properly. This scheme is called crab
crossing and requires special radio-frequency deflectors, so-called crab cavities.

Decreasing the transverse beam sizes by decreasing the beta function at the interaction
point we already discussed, but increasing the number of particles within each bunch is yet
another method to increase the luminosity. At some point, however, the electro-magnetic
fields that the many particles, compressed to small transverse sizes, create, are so strong that
they perturb the other beam and limit the luminosity. We will consider the consequences
of these fields in the next section.

9.6 INCOHERENT BEAM-BEAM TUNE SHIFT

The electric field E⃗ generated by an ultra-relativistic beam of particles only has transverse
components when observed in the laboratory frame. Moreover, it is accompanied by trans-
verse magnetic fields, given by B⃗ = (v⃗0/c

2)× E⃗, where v⃗0 = β⃗0c is velocity of the particles.
A particle with opposite charge and moving in the opposite direction −v⃗s experiences the
Lorentz force F⃗ = −e[E⃗ − v⃗0 × B⃗] = −e[E⃗ − β⃗0 × (β⃗0 × E⃗)] = −e[E⃗ + β⃗2

0E⃗] ≈ −2eE⃗. Thus

we only need to calculate the electric field E⃗ of a given transverse charge distribution. In
the ultra-relativistic limit, the magnetic field adds the same contribution.

We start by calculating the electric field of a round Gaussian charge distribution mov-
ing toward the negative s-axis and having transverse rms beam size σr, which has the
charge density ρ(r, s, t) = (Ne/(2π)3/2σ2

rσs)e
−r2/2σ2

re−(s+ct)2/2σ2
s . We derive the electric

field E(r, s) at radius r from applying Gauss’s law to a cylinder with radius r at lon-
gitudinal position s with length ds. Here ε0 times the integral of the electric field on
the surface is 2πε0rE(r, s)ds, and this is equal to the integral over the enclosed charges

Neds
∫ 2π

0
dϕ

∫ r

0
dr′r′ρ(r′, s, t) = (Neds/

√
2πσs)

(
1− e−r2/2σ2

r

)
e−(s+ct)2/2σ2

s . Solving for

E(r, s) we find E(r, s) =
(
Ne/(2π)3/2σsε0

)
e−(s+ct)2/2σ2

sd(r, σr), where we introduce the de-

flection function d(r, σr) = (1− e−r2/2σ2
r )/r. The force F⃗ is purely radial and its magnitude

Fr is given by Fr = −2eE(r, s) = −(2Ne2/(2π)3/2ε0σs)e
−(s+ct)2/2σ2

sd(r, σr). A particle,
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Figure 9.7 Left: The distribution function ρ(r) (dashes) and the transverse deflection

function d(r, σr) = (1− e−r2/2σ2
r )/r (solid) for round Gaussian beams. The dotted

line indicates the slope of the deflection function at the origin. Right: the amplitude-

dependent tune shift for round beams given by Equation 9.27.

moving in the opposite direction has the longitudinal position s = ct, and experiences a
radial momentum transfer ∆pr =

∫∞
−∞ Frdt where we must evaluate Fr at s = ct. After

a little algebra we find ∆pr = −
(
Ne2/2πε0c

)
d(r, σr). Dividing ∆pr by the longitudinal

momentum of the deflected particle, p0 ≈ γ0mc in the ultra-relativistic limit, we find the
radial angular deflection ∆r′ = ∆pr/p0 = −(2Ne2/4πε0mc2γ0)d(r, σr). After introducing
the classical particle radius rp = e2/4πε0mc2, we obtain the relation for the beam-beam
deflection angle for round beams

∆r′ = −2Nrp
γ0

1− e−r2/2σ2
r

r
and ∆x′ =

x

r
∆r′, ∆y′ =

y

r
∆r′ . (9.26)

Here the minus sign applies to colliding beams of opposite charge and, for example, for
electrons and positrons, in that case the classical particle radius rp is the classical electron
radius rp = re = 2.818× 10−15 m.

Figure 9.7 shows the transverse Gaussian charge distribution as a dashed line and the
deflection function d(r, σr) as a solid line. The latter is antisymmetric and assumes its
maximum near r/σr ≈ 1.6. For large r, it has a 1/r-dependence and close to the origin
it has the linear dependence r/2σ2

r , which is indicated by the dotted line in Figure 9.7.
For the change of the horizontal deflection angle, we likewise obtain a linear dependence
∆x′ = −(Nrp/σ

2
rγ0)x = −x/fr and in the vertical plane ∆y′ = −y/fr with an effective

focal length fr. Particles crossing an oncoming bunch thus experience a focusing force in
both planes that is characterized by the focal length 1/fr = Nrp/σ

2
rγ0. Following the

reasoning from Section 8.3.2 an additional quadrupolar field in a ring causes the tunes Qx

and Qy to differ from their unperturbed values by ∆Qx = βx/4πfr and ∆Qy = βy/4πfr.
They are commonly denoted incoherent beam-beam tune shift parameters for round beams
ξx = Nrpβx/4πσ

2
rγ0 and ξy = Nrpβy/4πσ

2
rγ0. These are the tune shifts that individual

particles with small betatron amplitudes experience, hence they are called “incoherent.”
In Figure 9.7 we see that the slope is linear for small deviations near the origin, but

particles with betatron amplitudes larger than σr will experience the linear part of the
beam-beam force only a fraction of the time. The tune shift will therefore depend on the
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amplitude of the particle and is derived in [74] with the result

ξ = ξ0
1− e−α/2I0(α/2)

α/2
. (9.27)

ξ0 is the tune shift close to the origin, and α is the ratio of the square of the betatron
amplitude 2Jx,yβx,y and the beam size α = 2Jx,yβx,y/2σ

2
r for the horizontal and vertical

plane. On the right-hand side in Figure 9.7 we show ξ/ξ0 as a function of the betatron
amplitude normalized to the beam size

√
2Jxβx/σr. Clearly the particles with amplitudes

exceeding σr experience a significantly reduced tune shift, which is intuitively clear, because
the beam-beam force decreases with 1/r for large amplitudes, and large-amplitude particles
spend the dominant fraction of their oscillation periods in the region with weak fields. As a
consequence their tune shift is reduced. This amplitude-dependence of the tune shift causes
a tune spread among the particles in a beam, which extends all the way from the bare
tune of the particles with very large amplitudes to the tune shift ξ0 of the particles at the
center. Large bunch populations N1 and N2 cause the tune spread to grow significantly
and may cover destructive resonance lines in the tune diagram. This can cause the beam
size to increase and even cause particle losses. Moreover, the non-linear dependence of the
deflection angle on the radial position r makes the beam-beam force highly non-linear. It
can therefore excite many non-linear resonances [74]. The particle intensities or the beam
currents at which the performance of the collider deteriorates, either by increased back-
ground in the detector, or increased beam size such that the luminosity no longer increases
linearly with the number of stored particles, is referred to as beam-beam limit [75]. Colliders
usually operate just below this limit and typical values for hadron colliders, summed over
all interaction points, are ξ ≈ 0.003, whereas electron-positron colliders achieve about ten
times higher values ξ ≈ 0.03.

In the previous paragraphs we focused on round beams, which mostly pertain to hadron
colliders, because the, normally equal, emittances are determined at the particle source and
then maintained during acceleration. In e−e+ colliders, the horizontal emittance is usually
much larger than the vertical, and the beams are very flat at the interaction point. We
will therefore briefly discuss the incoherent tune shifts and the fields generated by beams
with a transversely elliptic cross-section. The fields were derived for upright elliptic beams
with a Gaussian distribution by Bassetti and Erskine [76]. For arbitrarily oriented elliptic
Gaussian beams, the deflection angles ∆y′+ i∆x′ = (2rpN/γ0)F0(x1, x3, σ) are derived [55]
with F0 given by

F0(x1, x3, σ) =

√
π√

2(σ11 − σ33 + 2iσ13)

{
w(z1)− e−gw(z2)

}
(9.28)

with the complex error function w(z) = e−z2

(1− erf(−iz)) from [22] and the abbreviations
g = 1

2

∑
j,k=1,3 σ

−1
jk xjxk,

z1 =
x1 + ix3√

2(σ11 − σ33 + 2iσ13)
and z2 =

(σ33 − iσ13)x1 + i(σ11 + iσ13)x3√
σ11σ33 − σ2

13

√
2(σ11 − σ33 + 2iσ13)

.

Here we use the notation x1 = x and x3 = y. In the limit σ13 → 0 and σ11 = σ33 → σ2
r ,

the function F0 reduces to the deflection function d(r, σr) from the previous paragraph [55].
From a Taylor-expansion of F0 around the origin, which results in F0 ≈ −y/σy(σx + σy)−
ix/σx(σx + σy), we determine beam-beam tune shift for elliptic beams. The focal lengths
become 1/fx = 2Nrp/σx(σx + σy)γ0 and 1/fy = 2Nrp/σy(σx + σy)γ0. With these values
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the tune shift parameters for elliptic beams become ξx = Nrpβx/2πσx(σx + σy)γ0 and
ξy = Nrpβy/2πσy(σx + σy)γ0.

Treating the beam-beam interaction as a linearly focusing element that causes a tune
shift of a particle is only a first approximation. In order to take the non-linear character
of the beam-beam force into account, one has to resort to multi-particle simulations. In
weak-strong simulations, one of the beams, the “strong” one, is assumed to have a much
higher intensity than the other one and remains unaffected by the beam-beam interaction.
Therefore, its electric field is constant and is treated as a non-linear lens, by using either
Equation 9.26 or Equation 9.28 to describe the deflections of particles of the other, the
“weak,” beam. In these models, only the stability of the weak beam can be analyzed. If, on
the other hand, both beams carry a large charge, strong-strong simulations are employed.
Here, both beams are simulated by a large number of sample particles and in this way can
represent any distribution. In order to maintain self-consistency, we have to calculate the
electro-magnetic fields responsible for the deflections from solving the Poisson equation,
which, however, is computationally expensive and leads to long simulation times.

In this section we described the effect of one beam on the individual particles of the
other beam. In the coming section, we analyze how the center of mass of the beam—the
centroid—is affected, which is commonly referred to as coherent beam-beam interactions.

9.7 COHERENT BEAM-BEAM INTERACTIONS

Here we consider that beam 1 with transverse distribution ψ1 creates the field that deflects
beam 2, which has distribution ψ2. We proceed to calculate the change of the centroid angles
∆X ′ and ∆Y ′ of beam 2 by averaging the deflections angles of the individual particles ∆x′

2

and ∆y′2 over their distribution function ψ2. Instead of explicitly averaging over the electric
field, which is proportional to F0 in Equation 9.28, we note that the deflection angles of
individual particles can be written by the convolution of the field-generating distribution
ψ1(x⃗1−X⃗1) with a center displaced by X⃗1, and a Green’s function G(x⃗) = 2iN1rp/γ(x+iy).
For a particle at position y⃗ in beam 2, this representation yields the following deflection
angles

∆y′2 + i∆x′
2 =

∫
d2xG(y⃗2 − x⃗1)ψ1(x⃗1 − X⃗1). (9.29)

All integrals extend over the two transverse—horizontal and vertical—directions and all
quantities that are ornamented with a vector arrow are assumed to have a horizontal and
a vertical component. Averaging ∆y′2 + i∆x′

2 over the distribution ψ2(y⃗2 − Y⃗2) gives us the
centroid deflection angle of beam 2

∆Y ′
2 + i∆X ′

2 =

∫
d2y2 ψ2(y⃗2 − Y⃗2)

∫
d2x1 G(y⃗2 − x⃗1)ψ1(x⃗1 − X⃗1)

=

∫
d2y G(X⃗2 − X⃗1 − y⃗)

∫
d2xψ2(x⃗− y⃗)ψ1(x⃗) , (9.30)

where we changed the order of integration in the second equality. We now recognize the
second integral over d2x as the convolution of the distributions of the field-producing beam 1
and the deflected beam 2. Comparing with Equation 9.19 we note that this convolution is
proportional to the luminosity. And finally, comparing the second line with Equation 9.29,
we observe that the centroid-deflection angles ∆Y ′

2+i∆X ′
2 are given as the “electric field” of

the convolution of the two distributions. This result holds for any distribution, and especially
for Gaussians, for which convolutions can be calculated by adding the covariance or sigma
matrices, as shown in Equation 9.20.
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In order to explicitly calculate the centroid-deflection angle from the collision of two
Gaussian distributions, we can use the equations for the electric field, either for a round
beam in Equation 9.26 or for elliptic beams in Equation 9.28 after replacing the individual
transverse sigma matrices by their sum as shown in Equation 9.20. We immediately use
this insight and calculate an estimate for the coherent beam-beam tune shift Ξx and Ξy for
colliding beams with equal beam sizes in both planes, such that we find Σx =

√
2σx and

Σy =
√
2σy. Calculating the first-order Taylor expansion of F0 with Σx,y instead of σx,y, we

find Ξx = Nrpβx/2πΣx(Σx+Σy)γ0 = ξx/2 and Ξy = ξy/2. The coherent tune shifts appear
to be only half of the incoherent values within the limit of our theory that assumes rigid
bunches. A more refined analysis [77] finds values between 1.21 and 1.33 instead of 2 for
beams of different aspect ratios σx/σy. The smaller values indicate that only a fraction of
particles near the core of the distribution oscillate, rather than the entire bunch oscillating
rigidly.

In Section 7.2 we found that centroids of the beam distribution are detectable on beam
position monitors, and we can therefore use them to observe the consequences of the beam-
beam deflections. Since the oscillations on the two colliding beams are coupled by the
beam-beam interaction, this will affect the tunes of the two rings. Moreover, the additional
deflection angles at the interaction point are visible as a change in the closed orbit, as we
saw in Section 8.3.1. To probe the beam-beam deflections, usually one beam is transversely
scanned across the other beam with a closed bump, such as shown in Figure 8.8. Such a scan
is commonly named after Simon van der Meer who first used it to maximize the luminosity
in the ISR at CERN. In colliders with separate rings, such as the ISR or LHC, magnetic
deflectors in regions where the beams are separated are used. On the other hand, in colliders
where both beams are guided in a common magnetic structure, which is often the case in
e−e+–colliders, electro-static deflectors are used. Using either type of deflector to implement
the bump, one simultaneously observes the tunes with a system discussed in Section 7.5.1
and observes changes of the closed orbit. Using as many position monitors as possible is
advantageous to increase the sensitivity to detect the often small beam-beam deflection
angles. In the companion software for this book, a simple MATLAB simulation is available
to illustrate the methods. The parameters are loosely based on an early design of the B-
factory at SLAC, and more details can be found in [78]. In the code, first the fixed point of
the closed orbit with beam-beam deflections is found by iterating a variant of Equation 8.27.
The iterations are required, because the beam-beam deflection angle from Equation 9.28 is
non-linear, but a few iterations usually suffice for normal operating parameters. The upper
plots in Figure 9.8 show the angle of the closed-orbit while scanning a horizontal (upper
left) and vertical (upper right) bump. The amplitude of 50 to 100µrad will lead to orbit
changes on position monitors in the ring of a several 100µm which is visible on modern
position monitors. This information can then be used to find the bump amplitude at which
the beams are centered, which also maximizes the luminosity. Moreover, it is possible to
determine the convoluted beam sizes Σ, as defined in Equation 9.20, from the shape of the
deflection curves. In addition to analyzing the closed orbit itself, slightly perturbing the
closed orbit allows us to find the tunes by Fourier-transforming recorded positions. The
lower plots in Figure 9.8 show the horizontal (lower left) and the vertical (lower right) tunes
as a function of the bump amplitude. For large bump amplitudes, the tunes of the two rings
are not coupled and therefore equal. Decreasing the amplitude, we observe that the two
tunes split and that one mode stays at the unperturbed tune and does not change. This
mode is characterized by the two beams oscillating in phase and is called the σ-mode. The
other mode is characterized by both beams oscillating with opposite phase and is commonly
called π-mode. The maximum separation between σ and π-mode coincides with centered
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Figure 9.8 The centroid deflection angles (top) for electron and positron beams and

the tunes of the coupled system of the two rings (bottom). The horizontal plane is

shown on the left and the vertical on the right.

beams, and the separation of the tunes in this simplified model with rigid bunches is given
by Ξx and Ξy. Maximizing the tune split between the two modes will also cause the beams
to collide head-on and be well-centered.

The beam-beam collisions cause the betatron oscillations of the two rings to couple,
which showed up as the tune split into σ and π-modes in Figure 9.8. If the beams are
colliding head-on, the linear slope of the beam-beam deflections causes this coupling. It is
qualitatively similar to the coupling between horizontal and vertical betatron oscillations
discussed in Section 8.3.3 and, likewise, can cause stop bands. If the two beams collide at
several interaction points, for example at the ATLAS, CMS, LHCb, and ALICE detectors in
LHC, many different bunches couple and the mode spectrum becomes very complex. In [79]
the stability of these modes is investigated by constructing coupled matrix models of the
interacting bunches and analyzing their eigenvalues as a function of the unperturbed tunes
and identifying stop bands—regions in which the eigenvalues are complex-valued.

After the discussion of the beam-beam interaction in circular colliders, we will briefly
touch upon the special features of linear colliders, caused by the extremely small beam sizes
in the range of nanometers to microns at the interaction point.

9.8 LINEAR COLLIDERS

Already the first linear collider, the Stanford Linear Collider (SLC), which operated from
1988 until 2002, achieved beam sizes at the interaction point below 1µm. The beam sizes in
two proposed machines, the ILC [80] and CLIC [81], will be two to three orders of magnitude
smaller. The electro-magnetic fields created by the large number of charges squeezed to
nanometer sizes are enormous and cause the emission of extremely energetic photons and
furthermore perturb the “other” beam by focusing it with a focal length comparable to the
length of the bunch.

It is instructive to calculate the focal length due to the electro-magnetic field. Near the
end of Section 9.6, we found that, in the vertical plane, it is given by 1/fy = 2Nrp/σy(σx+
σy)γ0. For the SLC, which operated at energies of 45GeV with round beams of about
σr = 1µm and intensities around N = 3 × 1010 particles per bunch, we find f ≈ 1mm
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which is approximately equal to the bunch length σs. We therefore expect the beam size to
decrease during the collision, which causes the luminosity to slightly increase. The parameter
that quantifies this process is the disruption parameter Dy = σs/f = 2Nrpσs/σy(σx+σy)γ0,
here written for the vertical dimension where the effect is often stronger due to the smaller
vertical beam size at the interaction point. For CLIC at 1.5TeV with 3.72 × 109 particles
per bunch and beam sizes of σx = 40nm, σy = 1nm, and σs = 44µm we find Dy = 3.8.

In order to investigate the effect on the luminosity, we prepare a MATLAB script called
disruption.m. It simulates the collision of two bunches that are subdivided into 100 longi-
tudinal slices, and we collide all pairs of slices. For the deflections we make the simplifying
assumption that the force is purely linear and can be described by the horizontal and ver-
tical focal lengths and is therefore modeled by matrices. In the simulation we first define
parameters for CLIC with 1.5TeV beam energy and initialize arrays to hold the beam ma-
trices siga and sigb and the centroids Xa, Xb for all slices of the two beams. The main part
of the simulation is the loop over time and the slices that actually meet. It is reproduced
here:

for t=0:2*Nslices-2 % loop over time steps

disp([’at time step t=’ num2str(t)])

for j=1:Nslices % loop over the slices that meet at time t

k=t+2-j; % index in the other beam

if ((k<1) || (k>Nslices)) continue; end % slices do not meet

disp([’ slice ’ num2str(j) ’ meets slice ’ num2str(k)])

[sa,xa,sb,xb,lumi]=collide_slices(siga(:,:,j),Xa(:,:,j),Na(j), ...

sigb(:,:,k),Xb(:,:,k),Nb(k),dz,gamma);

siga(:,:,j)=sa; Xa(:,:,j)=xa; % copy back updated values

sigb(:,:,k)=sb; Xb(:,:,k)=xb;

lumi_total=lumi_total+lumi; % sum the luminosity per slice

end

% display result for this time step

:

end

In the function collide slices() first the focal lengths and the length of the drift spaces
between slices are constructed and then used to propagate the centroids and beam matrices.
Please inspect the MATLAB code that accompanies this book and is available at this book’s
webpage.

On the left- and right-hand side in Figure 9.9, the bunch intensities (top), the horizontal
(center) and vertical (bottom) beam sizes are displayed at 271 fs (left) and 582 fs after the
simulation started. The solid lines pertain to the left-moving bunch and the dashed lines for
the bunch moving toward the right. The left plots show the parameters after the heads of the
two bunches start to overlap. The two lower plots show the beam size along the bunches and
we find that the respective heads of the bunches are already starting to decrease due to the
mutual focusing. The plot on the right shows the situation after the centers of the bunches
have already passed each other, and the horizontal beam size of the head of the bunches is
reduced from its initial value of 40 nm to about 30 nm. The vertical beam size on the lower
plot shows several intermediate waists within the bunch. This indicates that a number of
slices are focused within the bunch and then overshoot before being refocused into the next
waist. This is a clear indication of disruption. That the beam size is squeezed to smaller
values is often referred to as the pinch effect. The luminosity calculated by summing over
all colliding slices is about twice the value calculated with hourglass effect for σs/βy ≈ 0.65
taken into account.
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Figure 9.9 The longitudinal distribution (top) of two colliding beams (solid is moving

to the left, dashed to the right), the horizontal (middle) and vertical (bottom) beam

size for two instances during the collision.
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The second consequence of significantly deflecting the particles during the course of the
collision is the emission of synchrotron radiation, in this case called beamstrahlung. It turns
out that the recoil from the emission of photons with very high energies significantly affects
the momentum distribution of the beams, which makes the interpretation of the events
recorded in the detector difficult. Let us look into this topic further. In Chapter 10 we will see
that the critical energy εc = 3γ3

0ℏc/2ρ̂ of the emitted photons depends on the energy of the
emitting electrons γmc2 and the bending radius ρ̂ of the deflection. A particle, transversely
displaced by y = σy, is deflected by θ = σy/fy over the distance of the bunch length,
which we use to estimate the bending radius ρ̂ ≈ σs/θ = γσs(σx + σy)/2Nrp ≈ 0.25m.
Here we used the parameters for CLIC from page 258. From this bending radius, we obtain
for the critical energy εc ≈ 30TeV, which is significantly higher than the particle’s energy
E0 = 1.5TeV. Despite the large value of εc, energy conservation dictates that the spectrum
is truncated at the beam energy. Nevertheless, a considerable number of photons are emitted
with energies comparable to the beam energy. Therefore the initially almost mono-energetic
beam develops a considerable low-energy tail during the collision, and the luminosity comes
from a very wide distribution of particle energies and complicates the interpretation of the
events recorded in the detector.

It is common to characterize the emission of beamstrahlung, especially in extreme
regimes, by the parameter Υ = 2εc/3E0. It is used to describe the interaction of beam-
strahlung photons with the remainder of the counter-propagating bunch, where the pho-
tons create e+e−-pairs in the process. These additional particles have low energies and will
contribute to the background in the detector. If the collision is characterized by Υ < 0.6,
beamstrahlung photons generated early on during the collision interact with individual par-
ticles in the tail of the bunches and create incoherent e+e−-pairs. One fundamental process,
among several others, is the Bethe-Heitler process e±γ → e±e+e−. On the other hand, for
values of Υ larger than about 0.6, the beamstrahlung photons produce large numbers of so-
called coherent e+e−-pairs by interacting with the collective field of the counter-propagating
beam. In both cases, one half of a pair has the “wrong” polarity and will be deflected into
the detector where it contributes to the background.

Beamstrahlung photons are extreme examples of synchrotron radiation, the topic of our
next chapter.

QUESTIONS AND EXERCISES

1. You want to investigate a nuclear reaction with Uranium that has a cross-section of
σ = 1µbarn. The cyclotron produces protons with a kinetic energy of 100MeV with
a constant current of 100µA. The data acquisition system of your experiment has
an efficiency of η = 1.7 × 10−3 to detect the nuclear reaction, and you need a count
rate of at least 20 kHz in order to get enough data over the weekend to complete your
thesis. At what rate (particles/second) do protons impact the target? How thick must
the target at least be?

2. Calculate the energy loss of a proton beam with kinetic energy of (a) 100MeV and (b)
180 MeV in a 28mm thick lithium target. By how much do the angular divergences
of the respective proton beams increase when passing the same target?

3. Analyze the dependence of the luminosity on the aspect ratio r = σx/σy for two
colliding beams with otherwise equal beam parameters. To make the different con-
figurations commensurable, ensure that the cross-sectional area A = πσxσy stays the
same for all configurations.



Targets and Luminosity ■ 261

4. Find expressions for the beam-beam deflection angle for the center of mass ∆X ′ and
∆Y ′ of (a) round beams; (b) beams with arbitrary transverse aspect ratios. Implement
them in a MATLAB script, such that you can specify the beam parameters (sizes,
intensities, energies) and the script generates a plot of the respective deflection angles
for the two beams in both planes.

5. Write a weak-strong beam-beam simulation by representing the ring by a single trans-
fer matrix from IP to IP and a single non-linear lens that represents the kick from
the beam-beam interaction (a) for a round kick-producing beam and (b) calculate the
amplitude-dependent tune shift. Is it consistent with Equation 9.27?

6. Add treating the displacement Xa and Xb of the centroids to the collide slices()

function, used in the disruption.m script. (a) What is the limit of validity of using
the linearized focusing? (b) Explore the reduction in luminosity as the beams collide
with an offset of σy/2.



C H A P T E R 10

Synchrotron Radiation and
Free-Electron Lasers

While all charged particles emit electro-magnetic radiation, only electrons and positrons
do so in appreciable quantities, because the emitted power is inversely proportional to the
fourth power of the mass of the particles. Therefore, it is strongly suppressed for heavier
particles, although LHC is an exception we will discuss in Section 14.1. As a consequence,
in this chapter, we will focus on electrons.

Already a few decades after Maxwell formulated his theory, Larmor derived expressions
that describe the emission of radiation from non-relativistic electrons. Later, Liénard gener-
alized them to electrons at relativistic velocities and found that the power Pγ emitted from

an electron with velocity v⃗ = β⃗c and acceleration
˙⃗
β is given by

Pγ =
e2γ6

6πε0c

(
˙⃗
β2 −

(
β⃗ × ˙⃗

β
)2

)
and P̂ =

e2γ4

6πε0ρ2
=

CγcE
4

2πρ2
=

Cγe
2c3

2π
B2E2 (10.1)

with Cγ = e2/3ε0(mc2)4 = 8.846 × 10−5 m/GeV3 for electrons. We will assume that the

motion is ultra-relativistic with β ≈ 1 henceforth. Here, P̂ is the power emitted by a particle
with energy E = γmc2 that follows a circular path with radius ρ in a constant magnetic
field with flux density B, which, for example, is produced by a dipole magnet in a storage
ring. The energy U0, emitted in one turn by a particle with the reference energy E0, is given
by U0 = (CγE

4
0/2π)

∮
ds/ρ2 = (CγE

4
0/2π)I2, where we introduce the second radiation

integral I2 =
∮
ds/ρ2. For an isomagnetic ring ρ is constant, and we obtain for the total

emitted power U0 = CγE
4
0/ρ with

∫ C

0
ds/ρ = 2π. The emission of this synchrotron radiation

has a profound influence on the properties of the electron beam, both through its energy
dependence and the fact that the radiation is emitted as photons in a quantum-mechanical
process, which is inherently random. We therefore briefly state the spectral properties of
the radiation from dipole magnets, from which the relevant statistical properties of the
radiation can be determined.

The radiation emitted by ultra-relativistic electrons in a dipole magnet was first analyzed
by Schwinger [82]. He found that the total emitted power Pγ from Equation 10.1 has the
spectral distribution dP/dω given by

dP

dω
=

Pγ

ωc
S

(
ω

ωc

)
with S(y) =

9
√
3

8π
y

∫ ∞

y

K5/3(x)dx and ωc =
3γ3

0c

2ρ
. (10.2)
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Here ωc is the critical frequency and εc = ℏωc is the critical energy of the photon spec-
trum. Half the power is emitted at frequencies below ωc and the other half above. We
find the number spectrum of the photons dṄ/dω, emitted with a given frequency ω,
from dividing the power spectrum dP/dω by the photon energy ℏω. Subsequently inte-
grating over all frequencies ω yields the number of photons Ṅ emitted per unit time
Ṅ = (15

√
3/8)Pγ/ℏωc = 5αcγ0/2

√
3ρ with the fine-structure constant α = e2/4πε0ℏc.

Likewise, by averaging the photon energy ε = ℏω over the number spectrum dṄ/dω, we
find the mean energy of the photons ⟨ε⟩ = (8/15

√
3)εc and the second moment of photon

energies ⟨ε2⟩ = (11/27)ε2c .
With the average energy loss due to synchrotron radiation described by Equation 10.1

and the statistics of the photon emission by Ṅ , ⟨ε⟩, and ⟨ε2⟩, we are ready to determine
their influence on the beam.

10.1 EFFECT ON THE BEAM

First we discuss how the longitudinal motion, previously discussed in Section 5.3, is affected,
followed by the transverse motion and implications for the lifetime of the beams.

10.1.1 Longitudinally

Here, we assume that the energy loss Ud(E) in Equation 5.27 is caused by the energy loss
from synchrotron radiation, which, according to Equation 10.1, depends on the magnetic
flux density field and on the energy as B2E2. We therefore expand Ud(E0+∆E) = Ud(E0)+
(∂Ud/∂E)∆E around the reference energy and use Equation 5.29 to express ∆E = β2

0E0δ.
Inserting into Equation 5.30 and using Equation 5.27, we obtain

dδ

dt
=

eV̂

T0E0
sinϕ− 1

T0E0

(
Ud +

∂Ud

∂E
∆E

)
=

eV̂

T0E0
(sinϕ− sinϕs)−

1

T0

∂Ud

∂E
δ (10.3)

where, compared to Equation 5.30, an additional term, proportional to δ, appears. It is
negative and describes damping, which should be intuitively clear, because higher-energy
particles radiate more and thereby lose more energy than particles with the reference energy,
whereas lower-energy particles radiate less. In both cases, the radio-frequency system seeks
to restore the particle’s reference energy. The net effect is damping the longitudinal motion
with time constant 1/τE = (∂Ud/∂E)/2T0.

It remains to calculate ∂Ud/∂E, where we have to keep in mind that, for constant
magnetic flux density B, particles with higher energy not only radiate more, but also move
on a trajectory with dispersion Dx. The latter effect causes the trajectory in dipole magnets
to be longer by a factor (1 + xE/ρ) with xE = Dx∆E/E0. Moreover, if the dipoles have an
embedded gradient dB/dx, the radiation emitted during one turn is

Ud(E) =

∮
P̂
ds

c
≈

∮
P̂0

(
1 +

2

B

∂B

∂x
xE +

xE

ρ

)
ds

c
, (10.4)

where P̂0(E) is power emitted by particles moving on the reference trajectory with energy E.
Differentiating Ud(E) with respect to E leads to

∂Ud

∂E
=

∮ (
2P̂00

E0
+

2P̂00Dx

BE0

∂B

∂x
+

DxP̂00

ρE0

)
ds

c
, (10.5)
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where P̂00 = P̂0(E0) = CγcE
4
0/2πρ

2 is the power radiated by particles having the reference

energy E0. Furthermore, the integral of P̂00 over one turn is the total energy radiated
U0 =

∮
P̂00ds/c

∂Ud

∂E
=

U0

E0

[
2 +

1

U0c

∮
P̂00Dx

(
1

ρ
+

2

B

∂B

∂x

)
ds

]
. (10.6)

For the damping time for energy oscillation 1/τE , we then obtain

1

τE
=

U0

2T0E0
(2 +D) with D =

I4
I2

and I4 =

∮
Dx

ρ

(
1

ρ2
+ 2k1

)
ds , (10.7)

where we substitute the normalized gradient k1 = (∂B/∂x)/Bρ from Equation 3.13 for
∂B/∂x. D is the damping partition number, and I4 is the fourth synchrotron radiation
integral, which is often small. We therefore find that the ratio τE/T0 ∝ E0/U0 of the
longitudinal damping time τE and the revolution time T0 is mainly determined by the ratio
of the beam energy E0 and the radiated energy U0. This ratio is often on the order of 103,
such that the damping time τE corresponds to a few thousand turns in the ring.

Radiation damping alone would cause the momentum spread to shrink to zero, but this
is prevented by the stochastic emission of the radiation which acts like a source of noise and
“heats” the distribution of particles. The balance of damping and excitation then determines
the momentum spread. Typically the damping time τE is much slower than the synchrotron
oscillation period, and since the time scales differ significantly, we can treat the effect of
damping and excitation as small perturbations on the dynamics of the scaled momentum
δ. From turn number n to n+ 1 the momentum δ changes according to

δn+1 =

(
1− 2T0

τE

)
δn +

û

E0
= ξδn +

û

E0
, (10.8)

where û is a random process that describes the fluctuations of the energy loss from emitting
synchrotron radiation and ξ = 1−2T0/τE . If we denote the average of the momentum width
δ2 over the beam by ⟨δ2⟩ we find

⟨δ2n+1⟩ = ξ2⟨δ2n⟩+ 2ξ⟨δnû/E0⟩+ ⟨û2/E2
0⟩ = ξ2⟨δ2n⟩+ ⟨û2⟩/E2

0 . (10.9)

Here ⟨δnû⟩ averages to zero, because the momenta δn and û are uncorrelated. We can now
calculate ⟨û2⟩ as the integral of the photon emission rate Ṅ multiplied by the second moment
of the photon energy distribution ⟨ε2⟩ = (11/27)ε2c , which yields ⟨û2⟩ =

∮
Ṅ ⟨ε2⟩ds/c =

(55αℏ2c2γ7
0/24

√
3)

∮
ds/|ρ|3. This allows us to determine the equilibrium momentum spread

σ2
δ from requiring σ2

δ = ⟨δ2n+1⟩ = ⟨δ2n⟩ and find

σ2
δ =

τE
4CE2

0

∮
Ṅ ⟨ε2⟩ds = Cqγ

2
0

I3
I2(2 +D)

(10.10)

with Cq = (55/32
√
3)(ℏ/mc) ≈ 3.83× 10−13 m and the third synchrotron radiation integral

I3 =
∮
ds/|ρ|3. For reference, we mention that for most electron or positron rings the

momentum spread σδ turns out to be on the order of 10−3. From the momentum spread
and the assumption that the beam is matched in the longitudinal phase space, we find the
longitudinal equilibrium size to be

σϕ =
ωrf |η|
Ωs

σδ =
h|η|
νs

σδ (10.11)

with the harmonic number h and the synchrotron tune νs. The physical bunch length σs is
related to the length in phase σϕ by σs = σϕλrf/2π. Now that we know the longitudinal
equilibrium beam size, it is time to look at the transverse sizes.
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10.1.2 Vertically

Synchrotron radiation is emitted in the particle’s forward direction and decreases both
the transverse and longitudinal momenta. Only the latter is restored in the radio-frequency
cavities, while the transverse momenta remain unaffected. On average, the total momentum
lost in one turn U0/c is added to the longitudinal momentum of the electron, only. Since
the transverse angles are the ratio of transverse to the longitudinal momenta, we find the
vertical angles y′ to be reduced by ∆y′ ≈ −y′U0/E0. Inserting y′ +∆y′ into the definition
of the Courant-Snyder invariant from Equation 3.73 yields ∆Jy = −(αyy′ + βy′2)U0/E0.
Averaging over the particle distribution results in ∆εy = ⟨∆Jy⟩ = −εyU0/E0, which follows
from Equation 3.107 with ⟨yy′⟩ = −εyαy and ⟨y′2⟩ = εyγy. Since U0 is radiated during one
turn, we obtain the vertical damping time τy from

dεy
dt

≈ ∆εy
T0

= − U0

T0E0
εy = − 2

τy
εy with

1

τy
=

1

2T0

U0

E0
, (10.12)

where the damping time of the emittance is twice as fast as that of individual particles,
hence the factor 2 in the definition of the damping time. Comparing with Equation 10.7,
we note that the vertical damping time τy is approximately twice the longitudinal damping
time τE .

Most storage rings are designed to be planar, and therefore the vertical dispersion is
zero, which implies that no vertical oscillations are excited by the mechanism discussed in
Section 3.4.3, and the vertical emittance is ideally zero. Apart from a very small contribution
due to the small spread of emission angles of synchrotron radiation, vertical oscillations and
consequently the vertical emittance εy is caused by coupling of horizontal oscillations into
the vertical plane and other imperfections. By carefully correcting these imperfections, εy
can usually be reduced to below 1% of the horizontal emittance εx.

10.1.3 Horizontally

Already in Section 3.4.3 we found that betatron amplitudes are excited when a particle
changes its energy at a location where the dispersion is non-zero, because after the change,
the equilibrium trajectory “jumps away” from the particle, and the particle starts oscillating
around the new trajectory. This process is illustrated in Figure 3.15. When the change of
energy is caused by the emission of synchrotron radiation, there are two contributions to the
change: as before, the average energy loss is responsible for damping and the fluctuations
around the average stochastically excite oscillations.

We address the damping process first and note that the change of the betatron motion
(dx, dx′) due to the change of the particle momentum dδ as a consequence of the emission
of radiation in a short section ds of a combined function dipole magnet is

(
dx
dx′

)
= −

(
Dx

D′
x

)
dδ with dδ ≈ − P̂00

cE0

(
1 +

2

B

∂B

∂x
x+

x

ρ

)
ds (10.13)

with the horizontal dispersion Dx and its derivative D′
x. The emitting particle loses energy,

which accounts for the minus sign in the right equation. Furthermore, the particle’s position
does not change in the emission process; it is the equilibrium orbit that changes. This
accounts for the minus sign in the left equation. Moreover, we point out that the expression
in the bracket in the equation for dδ closely resembles the integrand of Equation 10.4,
because in both cases, it describes the increased emission from particles that slightly deviate
from their reference orbit. Just as in the previous section, we now calculate the change of
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the action variable ∆Jx due to the emission of radiation and find

dJx = γxxdx+ αx(xdx
′ + x′dx) + βxx

′dx′ (10.14)

and after first inserting dx, dx′ and dδ from Equation 10.13. Subsequently averaging over
the particle distribution, we obtain

dεx = ⟨dJx⟩ = εx
P̂00Dx

cE0

(
2

B

∂B

∂x
+

1

ρ

)
ds (10.15)

for the horizontal emittance growth in the short section with length ds of a dipole magnet.
Furthermore, we used ⟨x⟩ = 0, ⟨x′⟩ = 0, ⟨xx′⟩ = −εxαx, and ⟨x2⟩ = εxβx. After integrating
over all dipoles in one turn, we arrive at the following expression for the variation of the
emittance

∆εx = εx

∮
P̂00Dx

cE0

(
2

B

∂B

∂x
+

1

ρ

)
ds = DU0

E0
εx . (10.16)

The last equality follows from recognizing the integral to be the same that appeared in
Equation 10.6 and following the same steps to express it through the synchrotron radiation
integrals I2 and I4 as well as D = I4/I2. Here we find that the sign of the right-hand side is
positive, which indicates that the emittance grows. Luckily, it is also damped through the
acceleration in the acceleration cavities in the same way as the vertical motion, described in
the previous section. As a consequence the horizontal emittance experiences net damping
according to

dεx
dt

∣∣∣∣
d

= − U0

T0E0
εx +D U0

T0E0
εx = − 2

τx
εx with

1

τx
=

1

2T0

U0

E0
(1−D) . (10.17)

We observe that the sum of the inverse damping times 1/τE + 1/τy + 1/τx = 2U0/E0T0,
which is Robinson’s damping criterion [83]. It is valid under very general assumptions and
one can exploit it, for example, to reduce the horizontal damping time τx at the expense
of the longitudinal τE by varying the frequency of the RF-system. This forces the particles
to circulate on a dispersion orbit and experience additional dipole fields in all quadrupoles
with dispersion, which will affect I4 and thereby D in Equations 10.7 and 10.17. In passing,
we note that the quantities Jx = 1 − D, Jy = 1, and Jz = 2 + D are often referred to as
damping partition numbers. Robinson’s criterion then reads Jx + Jy + Jz = 4.

We already discussed in Section 3.4.3 how the emission of photons as a stochastic process
excites betatron oscillations. We recognize the magnitude of the excitation δ2rms in Equa-
tion 3.128 as that of a short section ds of a magnet with δ2rms = Ṅ ⟨ε2⟩ds/cE2

0 such that we
obtain the emittance growth rate to be

dεx
dt

∣∣∣∣
ex

=
2

3
Cqreγ

5
0I5 with I5 =

∮
γxD

2
x + 2αxDxD

′
x + βxD

′2
x

|ρ|3
ds , (10.18)

where we introduce the fifth synchrotron radiation integral I5.
We find that the horizontal emittance is subject to damping (Equation 10.17) and to

excitations (Equation 10.18). The balance of both effects determines the horizontal equilib-
rium emittance εx0 that is determined from 0 = dεx/dt = −2εx/τx+ dεx/dt|ex . Solving for
εx yields

εx0 =
1

3
Cqreγ

5
0τxI5 = Cqγ

2
0

I5
I2 − I4

, (10.19)

which indicates that for a given magnetic structure the horizontal emittance grows with the
square of the energy. All information about the details of the beam optics, such as the beta
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functions and the dispersion, is encoded in the radiation integrals. It is also noteworthy,
that the horizontal emittance in an electron or positron ring is completely determined by
the magnets through the radiation integrals and the energy at which the ring operates.

In the previous sections we only calculated the second moments or rms quantities, but
the central limit theorem actually guarantees that the limiting distribution after being
subjected to a large number of random events turns out to be Gaussian. But Gaussian
distributions extend to very large amplitudes and if the size of the beam pipe is finite, a few
particles will be lost at aperture limits. This will have an influence of the stored current as
a function of time, the quantum lifetime that we will determine in the next section.

10.1.4 Quantum lifetime

We saw that the equilibrium beam sizes in electron rings are determined by the balance of
damping and excitation. In the presence of an aperture limit, the latter process will transport
particles to larger amplitudes such that they are eventually lost. In order to calculate the
rate of particle loss dN/dt, let us assume that we can describe the horizontal distribution of

N particles in the variables of normalized phase space by dN/rdrdϕ = (N/2πσ̃2)e−r2/2σ̃2

where we use the variables r, ϕ instead of x̃ and x̃′. The variable σ̃ denotes the equilibrium
transverse rms beam size in normalized phase space, which is related to the real beam size
σx by σ2

x = βxσ̃
2. Integrating over ϕ and introducing ξ = r2 as a new variable, we find

dN/dξ = (N/2σ̃2)e−ξ/2σ̃2

. Now we assume that the aperture limit only intercepts very few
particles and leaves the equilibrium distribution mostly unaffected. In equilibrium, there
is a balance of the inward flow of particles due to damping and the outward flow due
to the excitation. In the presence of an aperture limit only the outward flow is left. We
can, however, estimate it by the inward flow, which allows us to use the damping rate
dξ/dt = −2ξ/τx, and we obtain dN/dt = −(Nξ/τxσ̃

2)e−ξ/2σ̃2

. If we now specify ξ at the
aperture limit ã as ξ = ã2, we find for the loss rate

dN

dt
= −Nã2

τxσ̃2
e−ã2/2σ̃2

= −N

τq
with τq = τx

σ̃2

ã2
eã

2/2σ̃2

, (10.20)

where τq is the quantum lifetime. Note that the ratio of aperture limit and beam size in
normalized phase space equals the ratio in normal space, and we can replace ã/σ̃ by ax/σx,
where ax is the physical size of the aperture limit.

Calculating the quantum lifetime τq for several values of ax/σx, we find for ax/σx ≈ 7
the lifetime τq to be about 109 longer than the damping time τx, which is on the order
of several hundred hours. This leads to the requirement to make the beam pipe radius or
any other limiting apertures at least seven times as large as the rms beam size in order to
prevent the quantum lifetime from becoming a significant limitation.

10.2 CHARACTERISTICS OF THE EMITTED RADIATION

We now turn to the discussion of the emitted radiation itself and will first discuss two key
parameters qualitatively: the angular distribution, the critical frequency, and the emitted
power. These quantities can be estimated from very basic assumptions [84]. Let us therefore
consider an electron moving with velocity v0 in the z-direction, that, in its rest frame, emits
a photon toward the x-direction. This photon has the velocity vx = c and vz = 0. We can
now ask ourselves at which angle Θ′ we observe this photon in the laboratory frame and



268 ■ Hands-On Accelerator Physics Using MATLAB®

Figure 10.1 The duration between first and last rays, emitted by electrons with en-

ergy γ0mec
2 and traveling on a circular path with radius ρ, determines the duration

of the observed light pulse and thus the typical frequency of the emitted radiation.

calculate the velocities v′x and v′z with the Lorentz transformation [85]

v′x =
vx

γ0(1 + vzv0/c2)
=

c

γ0
and v′z =

vz + v0
1 + vzv0/c2

= v0 (10.21)

such that we obtain for the angle Θ′ = v′x/v
′
z = c/γv0 ≈ 1/γ0, where we assume that

the speed of the electron is ultra-relativistic v0 ≈ c. We find that all radiation emitted
into the forward hemisphere is compressed towards the forward direction with an opening
angle ±1/γ0.

From the width of the opening angle, we can estimate the duration ∆t of a flash of light
an observer detects by calculating the difference in time the first ray is emitted and the time
the last ray is emitted in a dipole magnet with bending radius ρ. Figure 10.1 illustrates the
geometry with an electron moving along the arc with energy E0 = γ0mc2. The first and
last rays are denoted by solid arrows, and they deviate from the direction of the electron
by ±1/γ0. The time between the emissions is the difference of the time ∆te the electron
follows the circular path and the time the photon follows the sagitta. The electron’s path
length is ∆le = 2ρ/γ0, and the time to traverse the arc is ∆te = ∆le/β0c. The length of the
sagitta is ∆lp = 2ρ sin(1/γ0) and the time the photon needs to traverse it, is ∆tp = ∆lp/c.
The time difference ∆t then follows from

∆t = ∆te −∆tp =
2ρ

γ0β0c
− 2ρ sin(1/γ0)

c
≈ ρ

γ3
0c

and ωtyp ≈ 1

∆t
=

γ3
0c

ρ
, (10.22)

where we used 1−β0 ≈ 1/2γ2
0 . This reasoning leads to an estimate for the typical frequency

ωtyp that is rather close to the critical frequency ωc = 3γ3
0c/2ρ from Equation 10.2. For

convenience, we also report the critical energy εc = ℏωc given in engineering units εc[keV] =
0.665E2

0 [GeV]B[T].
The emitted power can be derived from the last equality in Equation 10.1 by integrating

the instantaneously emitted power P0 over the length L of the magnet and multiplying with
the number of emitting electronsNe. Recasting the equation into engineering units we obtain
for the power Pd, emitted in a dipole magnet, Pd[kW]= 1.266E2

0 [GeV]B2[T]L[m]I[A]. The
latter equation is useful to estimate the heat load deposited in the beam pipe or delivered
to the experimental stations, especially the monochromators. In both cases, active cooling
might be necessary.

These three parameters allow a rapid assessment of the radiation emitted from an elec-
tron or positron storage ring, but in order to plan an experiment, more information about
the spectrum of the radiation is needed.
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Figure 10.2 The spectral power (solid) and photon number (dashed) shows as a func-

tion of the scaled frequency y = ω/ωc, normalized to the critical frequency ωc.

10.2.1 Dipole magnets

We already mentioned the power spectrum S(ω/ωc) emitted from electrons with energy E0

in dipole magnets with bending radius ρ in Equation 10.2. Figure 10.2 shows S(ω/ωc) as
a function of ω/ωc as the solid line on a double-logarithmic scale. The critical frequency
ωc is indicated by a dotted line. Half of the power Pd, where Pd is given at the end of the
previous section, is radiated above ωc and the other half below.

In most experiments, monochromators are used to select small ranges of frequencies
∆ω/ω before impinging the radiation onto experimental samples. Most of the radiation is
emitted into a small angular region ∆θ∆ψ around the forward direction with θ = 0 and
ψ = 0. Here θ is the angle with respect to the horizontal and ψ with respect to the vertical
direction. For an experiment, it is important to know the number of photons Ṅp that are
radiated per unit of time into the opening aperture of the monochromator ∆θ∆ψ and into
the spectral range ∆ω/ω. In practical units, it is given by [86]

Ṅp = 1.327× 1016E2[GeV]I[A]H2(ω/ωc)∆θ[mrad]∆ψ[mrad]

(
∆ω

ω

)
, (10.23)

where ∆ω/ω = 10−3 is often quoted in the literature as 0.1%BW, or 0.1% of the band-
width. The dependence on the frequency through the function H2(y) = y2K2

2/3(y/2), with

the modified Bessel function of the second kind K2/3 [22], is shown as the dashed line in
Figure 10.2. Like the power spectrum S(y), it peaks near the critical frequency ωc. Note that
∆θ∆ψ is the angular size of the monochromator slits. Equation 10.23 allows us to estimate
the number of photons that pass a monochromator with a bandwidth of ∆ω/ω = 10−3 and
impinge per second on a sample.

It is worth pointing out that the radiation, emitted near θ = ψ = 0, is linearly polarized
in the bending plane, which is, in most accelerators, horizontal. The radiation emitted above
or below the bending plane shows elliptic polarization. Dipole magnets were the first sources
of synchrotron radiation used for experiments, but soon special insertion devices, such as
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λu=βzc∆t

λγ

c∆t

θ θ

Figure 10.3 Radiation emitted at an angle θ from two consecutive periods of an

undulator interferes constructively, provided the wavelength of the radiation λγ

satisfies Equation 10.25.

undulators and wigglers, were installed in storage rings. In the next section we will briefly
describe the radiation they produce.

10.2.2 Undulators and wigglers

We already encountered the magnetic structure of undulators and wigglers in Section 4.5.3
and build small prototypes in Appendix A.3. These magnets are constructed as a sequence
of short dipole magnets with alternating polarity, which force the electrons to follow a
sinusoidally oscillating trajectory. The total deflection of these devices is zero and they can
therefore be inserted in a straight section of an accelerator, hence they are often referred
to as insertion devices. In many cases one transverse component, here the vertical By, of
the magnetic flux density varies sinusoidally By(z) = B0 cos(2πz/λu) with peak value B0

and period λu = 2π/ku along the length of the device as described by Equation 4.57. From
integrating the equations of motion once, we obtain for the velocities

vx = −β0c
K

γ
sin(kuz) , vz = β0c

[
1− K2

2γ2
0

sin2(kuz)

]
with K =

eB0λu

2πmec
, (10.24)

ku = 2π/λu, and suitably chosen initial conditions. Here β0c is the reference velocity of the
electrons, and this equals the longitudinal velocity component in the middle of a magnet
pole. The electrons assume their maximum transverse velocity at kuz = π/2 where the
trajectory has an angle vx/vz ≈ K/γ0 with respect to the axis of the device. Since the
natural opening angle of the radiation emitted in the forward directions is Θ ≈ 1/γ0, we
observe a weakly modulated intensity from devices if K ≈ 1. In this case the magnets are
referred to as undulators. In contrast, devices with K ≫ 1 are called wigglers. The radiation
they emit appears in short bursts at the instances when the direction of emission coincides
with the line of sight to the observer.

In order to determine the spectral characteristics of undulators, we observe that the
average longitudinal component of the velocity is given by the average of vz from Equa-
tion 10.24 over one period with the result β̄z = β0(1 −K2/4γ2). With this average speed,
the time it takes for an electron to travel the distance λu, is given by ∆t = λu/β0c. During
this time, the radiation emitted one oscillation period earlier, has traveled by s = c∆t. The
radiation with wavelength λγ from the two periods interferes constructively, provided it is
emitted in phase, which implies that

λγ = c∆t− λu cos θ ≈ λu

2γ2
0

(
1 +

K2

2
+ γ2

0θ
2

)
, (10.25)

where we refer to Figure 10.3 to illustrate the geometry. Note that the wavelength λγ is given
by the undulator period divided by the square of γ0. Moreover, it is increased by the mag-
netic field through the term proportional to K2. The radiation emitted off-axis with θ ̸= 0
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has a longer wavelength as well. Therefore, the spectral lines, integrated over a finite verti-
cal angle, are widened toward longer wavelengths, or equivalently, toward lower frequencies.
Note also that the spectrum predominantly contains odd harmonics of the wavelength given
by Equation 10.25, due to mixing the transverse oscillations at the first harmonic with the
even harmonic from the longitudinal oscillations described by the sin2(kuz)-dependence of
vz in Equation 10.24. The finite number of periods Nu of the undulator causes the emitted
radiation pulse to have the same number of periods. Fourier transforming a wave train with
Nu periods shows that the width of the spectrum is approximately ∆ω/ω ≈ 1/Nu for the
fundamental harmonic, and 1/nNu for the n-th harmonic. In order to plan experiments with
radiation from undulators, the number of emitted photons Ṅp in a bandwidth of typically
∆ω/ω = 10−3 is a key quantity. In engineering units and at harmonic n, it is given in [86]
by the expression

Ṅp = 1.744× 1017N2
uE

2[GeV]I[A]Fn(K)∆θ[mrad]∆ψ[mrad]

(
∆ω

ω

)
, (10.26)

where the Fn(K) assume a maximum of approximately 0.4 for harmonics n = 1, 3, 5, 9 and
for values of K in the range 1 < K < 3. We refer to [86] for the definition of Fn(K) and
further details.

The spectrum from a wiggler shows a significantly longer wavelength of the first har-
monic due to the K2-dependence, but contains many short-wavelength harmonics due to
the emission in short bursts along the line of sight to an observer. As a consequence,
the spectrum in the limit of large K closely resembles that of a dipole magnet shown
in Figure 10.2 with the maximum critical energy of the emitted photons [86] given by
εc,max[keV] = 0.665E2

0 [GeV]B0[T] with the peak field B0.
The total power Pu, emitted from either undulator or wiggler, is given by the

same expression as for a dipole magnet, but with rms value of the magnetic field
B0/

√
2 used instead of the dipole field. In engineering units, it therefore reads Pu[kW]=

0.633 E2
0 [GeV]B2

0 [T]Lu[m]I[A], where Lu = Nuλu is the length of the undulator or wiggler
with Nu periods and I is the beam current.

Experiments to determine the structure of crystals are based on recording diffraction
patterns from samples irradiated with synchrotron radiation, which requires a high degree
of transverse coherence of the radiation. This, in turn, implies that the radiation must
not only be emitted with a small angular divergence, but also from a source with small
transverse size. In an accelerator, the latter requirement implies that the emitting elec-
trons must have small emittances. The figure of merit for the transverse coherence is the
brilliance B, which is given by the number of photons emitted per second and 0.1%BW
and per area and angular divergence. It is thus given by Ṅp from Equation 10.23 or 10.26,
divided by (2π)2ΣxΣyΣx′Σy′ where the Σ denote the convolution of electron beam size and
divergence with the corresponding quantities of the diffraction limited radiation [86]. Maxi-
mizing the brilliance is the major incentive to minimize the emittances in synchrotron light
sources.

In this section we treated the spontaneous emission, where the electrons emit radiation
independently of each other and hence with random phases. This causes the radiation to
be incoherent and the intensity to be proportional to the number of electrons. A dramatic
increase of the intensity and consequently, the brilliance, can be achieved by causing all
electrons to emit radiation with the same phase. In that case, the electric fields add in
phase, and the intensity will be proportional to the square of the number of electrons,
which results in a huge gain. Free-electron lasers, the topic of the next sections, provide a
mechanism to achieve this.
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10.3 SMALL-GAIN FREE-ELECTRON LASER

Apart from the small recoil from the emission of synchrotron radiation that affects the
emittance through damping and quantum excitation, as described in Section 10.1, we have
neglected any reaction of the radiation on the motion of the electrons. On the other hand, in
the presence of strong coherent electro-magnetic radiation, polarized in the plane of electron
oscillation in the undulator, energy can be systematically exchanged between radiation and
electrons. The radiation can be either emitted by the electrons themselves or provided
externally.

10.3.1 Amplifier and oscillator

In order to understand the transfer of energy, let us assume for the moment that the
radiation is provided by an external laser, is horizontally polarized, and has wavelength
λl = 2π/kl = 2πc/ωl. The horizontal component of the electric field is then given by
Ex(z, t) = Ê cos(klz−ωlt+ψ0) with peak value Ê and phase ψ0. Since the electron motion
has a transverse velocity component, given by Equation 10.24, it has to work against the
electric field of the laser and the energy exchange is given by dW = −eEx(z, t)vx(t)dt. After
inserting Ex and vx we find

dW

dt
= −ecKÊ

2γ0
(sinψ+ − sinψ−) with ψ± = (kl ± ku)β̄zct− ωlt+ ψ0 (10.27)

and the average longitudinal position of the electron z = β̄zct. The second term, proportional
to sinψ−, is rapidly oscillating and averages to zero. The first term with ψ+, however, can be
made constant and thus guarantees a constant sign of the energy exchange. The requirement
for the constancy of ψ+, the so-called ponderomotive phase, is 0 = dψ+/dt = (kl+ku)β̄zc−ωl

and leads to the resonance condition

λl =
λu

2γ2
0

(
1 +

K2

2

)
, (10.28)

where we used β2
0 = 1 − 1/γ2

0 and β̄z = β0(1 − K2/4γ2
0) ≈ 1 − (1 + K2/2)/2γ2

0 , which
follows from Equation 10.24. This equation describes a constraint between the electron
energy γ0, the laser wavelength λl and the undulator parameters λu and K that ensures
dW/dt to have a constant value for a given electron during its passage through the undulator.
Figure 10.4 illustrates this resonance condition. During the time that the electron performs
one oscillation in the undulator, the radiation must overtake the electrons by the distance
of one laser wavelength. If this condition is fulfilled the relative sign of horizontal velocity vx
and electric field Ex is always the same. Note that different electrons have different starting
phases ψ0 and their dW/dt may be different, though constant during the passage through
the undulator.

Equation 10.28 describes a situation, where the energy exchange dW/dt for each electron
with γ0 does not change with time. But since the electrons in a beam usually have a
distribution of energies, it is important to understand the dynamics of electrons with energy
deviation δ = (γ − γ0)/γ0. Using dδ/dt = (1/γ0mec

2)dW/dt and only taking the term with
ψ+ in Equation 10.27 into account, we obtain

dδ

dt
= − eÊK

2mecγ2
0

sinψ+ and
dψ+

dt
=

klc

2

(
1 +

K2

2

)(
1

γ2
0

− 1

γ2

)
≈ 2kucδ , (10.29)
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Figure 10.4 The electron (dark dot) always gains energy proportional to vxEx, if

it passes one period of the undulator (dark gray), while a transversely polarized

electro-magnetic wave (light gray) with electric field Ex overtakes it by one period

of its wavelength λl. This defines the resonance condition from Equation 10.28.

where the second equation follows from the definition of ψ+ in Equation 10.27 and expressing
β̄z through the deviation to its value on resonance. Differentiating the equation for ψ+ with
respect to time and inserting dδ/dt, we find

ψ̈+ + Ω̂2 sinψ+ = 0 with Ω̂2 =
eÊKku
γ2
0me

. (10.30)

This is the same equation we found in Section 5.4 to describe the motion of particles in the
potential of a radio-frequency system, with the phase space of the latter system shown in
Figure 5.3 on page 137. Here the peak field Ê takes the place of the radio-frequency voltage
V̂ and Ω̂ the place of the synchrotron frequency Ωs from Section 5.4. Therefore, we can also
use the MATLAB function pendulumtracker.m to numerically analyze the dynamics of
electrons in a free electron laser (FEL). In order to simplify the notation, we omit the plus
sign in subscript of ψ+ in the following. Since the ponderomotive phase ψ changes over a
distance of one laser wavelength, we can assume that the electrons are evenly distributed in
phase. This is shown by the two distributions with constant initial energy offset δ = ψ̇/2kuc
for ψ̇0 = 0 and ψ̇0 = 0.4 shown as horizontal lines with plus signs and asterisks on the
left-hand side in Figure 10.5. When tracking electrons that start on the resonance energy
ψ̇0 = 0 over 0.1 times the oscillation period T = 2π/Ω̂, we observe that of the electrons
with ψ < 0 slightly move upward, toward positive ψ̇. Conversely those starting with ψ > 0
move downward, toward negative ψ̇. Since the curve is antisymmetric, half the electrons
lose energy and the other half gain energy, such that the beam as a whole does not change
its average energy. The situation is slightly different for electrons that start with ψ̇0 = 0.4
shown as the S-shaped curve displayed with asterisks which shows a small asymmetry. The
energy gained by electrons moving above their initial value of ψ̇0 = 0.4 is slightly different
to those below.

We now repeat this simulation for a number of starting values ψ̇0, and calculate the
average of the difference of final ψ̇f and starting values ⟨∆ψ̇⟩ = ⟨ψ̇f − ψ̇0⟩. The right-hand

side in Figure 10.5 displays ⟨∆ψ̇⟩ as a function of ψ̇0, which is the typical gain curve of a
small-gain FEL. For a given undulator with λu and K and fixed laser wavelength λl, varying
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Figure 10.5 The evolution of electrons, initially evenly distributed in phase ψ0, for

energy offsets proportional to ψ̇0 = 0 and 0.4 (left). In the latter case an asymmetry

develops, which causes the average of ⟨ψ̇⟩ to slightly increase. Plotting ⟨ψ̇⟩ as a

function of ψ̇0 results in the well-known FEL-gain curve (right).

the energy of the electrons will cause them to lose or gain energy proportional to this gain
curve. Since energy is conserved, the energy lost by the electrons increases the amplitude
of the electro-magnetic field of the laser. In the simulation we used an initial distribution of
electrons, all having the same energy δ ∝ ψ̇. The finite energy spread of realistic beams can
be taken into account by averaging over the gain curve. The small inset dashed curve on
the right-hand side in Figure 10.5 illustrates this, and we immediately see that an energy
spread that is wider than the maximum of the gain function will significantly deteriorate
the average gain of the beam.

In the previous paragraph, we numerically evaluated the energy exchange between elec-
trons and laser. From a perturbative expansion of the first integral of Equation 10.30

ψ̇ = ψ̇0

√
1 + 2(Ω̂2/ψ̇2

0)(cosψ − cosψ0) in the parameter ε = Ω̂/ψ̇0, which is small for mod-

erate laser power, we can calculate ⟨∆ψ̇⟩ up to second order and find

⟨∆ψ̇⟩ = −Ω̂4 1− cos(ψ̇0t)− (ψ̇0t/2) sin(ψ̇0t)

ψ̇3
0

=
Ω̂4t3

16

d

dξ

(
sin2 ξ

ξ2

)
(10.31)

with the abbreviation ξ = ψ̇0t/2. Note that change of energy ⟨∆ψ̇⟩ is proportional to the
energy density of the laser, because we have Ω̂4 ∝ Ê2 from Equation 10.30. Moreover, it is
proportional to the third power of the length Lu = Nuλu of the undulator, because t3 ∝ L3

u.
Being able to write the energy loss as the derivative of sin2 ξ/ξ2 constitutes the essence of
Madey’s theorem [87], which relates the energy loss of electrons in an FEL to the power
spectrum of the spontaneously emitted synchrotron radiation in the undulator magnet. The
latter can be expressed by the square of the Fourier transform of a sine with Nu periods,
which has the characteristic sin2 ξ/ξ2–dependence.

The transfer of energy from the electrons to the laser is usually rather modest, on the
order of a few percents, but enclosing the undulator in a collinear optical resonator allows
us to repetitively amplify the same pulse and operate the system as an oscillator. Such an
oscillator normally can seed itself, because the fundamental wavelength of the spontaneous
radiation emitted on-axis, given by Equation 10.25, coincides with the resonance condition
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for the FEL from Equation 10.28. In such systems the distance between the mirrors, which
determines the length of the optical resonator, must be carefully adjusted to guarantee
synchronicity between the arrival of electrons and the light pulses. The FEL process provides
a mechanism that locks the longitudinal resonator modes in such a way that short light
pulses emerge with lengths in the picosecond range and pulse energies of µJ to mJ. Part of
the light trapped in the resonator is usually coupled out from the resonator and used for
experiments.

A number of FELs were installed in storage rings, but their output power is limited, be-
cause the FEL process significantly disturbs the electron beam and increases the momentum
spread to exceed the width of the gain curve, such that light pulses are no longer amplified.
With light pulses gone, the beam recovers due to damping described by Equation 10.7 until
the momentum spread is small enough to be able to amplify light pulses again. The average
power that can be extracted from a storage-ring FEL P̄ is determined by the balance of
increasing the momentum spread by the FEL and damping by synchrotron radiation. It is
given by the Renieri limit, P̄ = Psr/2Nu, where Psr is the power emitted by synchrotron
radiation and Nu is the number of undulator periods.

Operating FEL oscillators at wavelengths significantly below the visible range is ham-
pered by the limited availability of high-reflectivity mirrors. Moreover, the photon energies
below this regime are a few eV—in the same range as the binding energies of chemical
bonds—such that color centers, which reduce the reflectivity further, are easily created. In
order to reach shorter wavelengths, other operating regimes are needed, and it turns out
that electron beams with extremely high peak currents of thousands of amperes passing
through very long undulators exhibit a collective instability that allows the radiation to
grow exponentially. This is the topic of the next section.

10.4 SELF-AMPLIFIED SPONTANEOUS EMISSION

A closer look at the FEL process reveals that it consists of five mechanisms. First, when
operating the FEL as an oscillator, the spontaneous radiation provides the “seed” that is
subsequently amplified. Second, the undulator couples the transverse motion of the elec-
trons to the electric field of the radiation as described by Equation 10.27. Third, since the
energy exchange depends on the relative phase of the electron motion and the radiation,
the energy of the electrons is modulated on the length scale of the radiation wavelength.
Fourth, each half-period of the undulator acts as a small bunch compressor chicane, as
described in Section 3.7.9, and causes the energy modulation to give rise to a longitudinal
density modulation. The period of this micro-bunching is the radiation wavelength as well.
Fifth, the micro-bunched electrons radiate coherently and thus increase the intensity of the
radiation.

In Section 10.3 we assumed that electron current was modest, and the amplitude of
the radiation was assumed to stay approximately constant during the electron’s passage
through the undulator. If, on the other hand, the peak current is very high and a large
number of electrons are micro-bunched and start radiating coherently, the intensity of the
radiation grows along the undulator. This, in turn, increases the energy modulation and the
ensuing micro-bunching causes the radiation to grow even more. The process can become
unstable and leads to an exponential growth of the radiation [88, 89]. Since the growth is
initiated by the spontaneously emitted radiation in the undulator, it is called self-amplified
spontaneous emission (SASE).

The detailed analysis of the SASE process can be found in the original publications [88,
89] and textbooks [90, 91], but here we follow [92], where a very illustrative approach
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is presented that describes all relevant features. The dynamics of the coupled system of
electrons and radiation is described by Equation 10.30 in rescaled variables with the time
replaced by the fractional distance along the undulator τ = cβ̄zt/Lu, the phase ζ = ψ++π/2,
and its derivative ν = dζ/dτ, which is proportional to the deviation of the electron energy to
the resonant energy by virtue of the right equation in Equation 10.29. These transformations
lead to the left of the following equations

d2ζ

dτ2
=

dν

dτ
= |a| cos(ζ + ϕ) and

da

dτ
= −j⟨e−iζ⟩ , (10.32)

where a is the normalized electric field a = |a|eiϕ with amplitude |a| = Ω̂2 = eÊKku/γ
2
0me,

already defined in Equation 10.30. The right equation in Equation 10.32 describes the change
of both amplitude |a| and phase ϕ of the radiation along the undulator. It is proportional to
the scaled electron beam current j = 2πNu(eKNuλu)

2ρe/ε0γ
3
0mec

2 and to the average of
the ponderomotive phases ⟨e−iζ⟩. The average needs to be taken over the evenly distributed

initial phases ζ0 given by ⟨g(ζ0)⟩ = (1/2π)
∫ 2π

0
g(ζ0)dζ0. The average over the exponential

with the phase ζ0 thus equals the Fourier-harmonic of the electron distribution at the
resonant wavelength and describes the micro-bunching mentioned in the previous paragraph.

In Appendix B.5, we discuss scripts sase simulation.m to numerically simulate Equa-
tion 10.32 for SASE and oscillator.m for oscillator configurations. Here, on the other
hand, we analyze the startup of the FEL process under the assumptions that the beam
current j is large but the radiation amplitude a is small. This allows us to write a per-
turbative expansion, in powers of a, of the electron beam variables. To first order in a, we
write ζ = ζ0 + ν0τ + ζ1 where ζ1 is proportional to a. Inserting this in Equation 10.32,
we find d2ζ1/dτ

2 = |a| cos(ζ0 + ν0τ + ϕ) and da/dτ = ij⟨e−i(ζ0+ν0τ)ζ1⟩ where we used
⟨e−i(ζ0+ν0τ)⟩ = 0. For simplicity, we choose the initial energy of the electron beam to equal
the resonance energy, such that we have ν0 = 0. Differentiating da/dτ two more times and
inserting the ζ̈1 we obtain

d3a

dτ3
= ij|a|⟨e−iζ0 cos(ζ0 + ϕ)⟩ = ij

2
a leading to α3 =

ij

2
, (10.33)

where we use the Ansatz a = Aeατ for the growth rate α. This cubic equation for α has
three roots, one of which has a positive real part and is given by α = (j/2)1/3(

√
3 + i)/2.

Thus, the radiation exhibits exponential growth proportional to e(j/2)
1/3(

√
3+i)τ/2. Naturally,

this exponential growth cannot continue indefinitely and once the electrons have completed
approximately one oscillation, half the electrons donate energy to the radiation and the other
half receive energy from the radiation. At this point the process saturates. Most SASE FELs
are based on undulators long enough to allow the radiation to reach saturation.

Instead of parameterizing the growth rate by using the scaled beam current j, another
commonly used parameter is the Pierce parameter ρ̂ = (j/2)1/3/4πNu, which typically has
the order of magnitude of 10−3. It conveniently characterizes several phenomena. First, as j
before, it defines the exponential e-folding length, the power gain length Lg = λu/4π

√
3ρ̂., of

the radiation along the undulator. Second, the saturation of the FEL occurs afterNsat ≈ 1/ρ̂
undulator periods. Third, it describes the efficiency of the FEL process. The power that can
be extracted from the FEL is given by PFEL ≈ ρ̂Pbeam. The properties of this radiation,
which leaves the FEL after the end of the undulator, will be our next topic.

SASE FELs start from spontaneously emitted radiation in early sections of the undu-
lator. Initially the electrons are uncorrelated and so are the photons, causing them to be
emitted with random phases. For the micro-bunching process to start, on the other hand,
a sizeable radiation intensity with a well-defined phase, must be present. So we calculate
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the probability for a large number of plane waves with equal amplitudes a but with ran-
dom phases ϕk to form a plane wave AeiΦ = Σkae

iϕk with some phase Φ and amplitude
A [91] and output intensity proportional to A2. Adding random complex numbers of equal
magnitude is equivalent of a random walk in two dimensions with constant step size a
and random direction given by ϕk. We note in passing that this describes a diffusion pro-
cess. Writing xk = a cosϕk we find that the mean squared deviation of the xk is given by
⟨x2⟩ = a2⟨cos2 ϕ⟩ = a2/2 and likewise for ⟨y2⟩ = a2/2 and after adding N random com-
plex numbers the mean squared deviation is σ2 = Na2/2. Therefore, the distribution in

the x and y is given by a Gaussian distribution ψ(x, y) = (1/2πσ2)e−(x2+y2)/2σ2

. Since we
are interested in the power level of the radiation, which is proportional to A2, we find the
average power to be ⟨A2⟩ = ⟨x2 + y2⟩ =

∫
(x2 + y2)ψ(x, y)dxdy = 2σ2. Experimentally,

one typically measures the distribution of the radiation normalized to its average value
u = A2/⟨A2⟩ = A2/2σ2 and transforming the distribution function ψ(x, y) to the new
variable, we obtain the exponential distribution Ψ(u)du = e−udu, which indicates that the
most probable power is zero. This coincides with the expected deviation of a random walk
from the starting point, which is also zero. We thus find that the power distribution of the
radiation that seeds the exponential gain phase of the FEL is an exponential distribution.
Since the radiation slips ahead of the electrons by one wavelength per undulator period
(the resonance condition), only the radiation from nearby electrons can overlap. Therefore,
only nearby longitudinal slices of the electron bunch are responsible for the startup of one
particular FEL pulse; conversely several slices of a bunch can radiate simultaneously and
independently. The intensity of each of these radiation pulses, or modes, is sampled from
an exponential distribution and the sum of energies U =

∑M
m um then can be shown [91]

to have the probability distribution function pM (U)dU = UM−1e−U/Γ(M) with the gen-
eralized factorial, the Gamma function Γ(M) [22]. It turns out that the experimentally
accessible quantity is not the total energy emitted per pulse U , but U normalized to its av-
erage ⟨U⟩, thus v = U/⟨U⟩ = U/M. Changing the variables in the probability distribution
function then leads to

pM (v)dv =
MMvM−1

Γ(M)
e−Mvdv with v =

U

⟨U⟩
. (10.34)

Figure 10.6 shows the distribution of pulse energies, normalized to their average, for M =
1, 3, and 10. We observe that for M = 1 the distribution is exponential, as discussed
previously, and for larger M the peak of the distribution shifts closer towards its average
value at v = 1. This spread in intensities then seeds the FEL process and is exponentially
amplified, but the stochastic nature of the seed intensities is reflected in statistical variations
of the intensities of the FEL pulses delivered to user experiments. From a histogram of the
measured pulse energies of a large number of FEL pulses, the number of simultaneously
radiating modes M can be determined by fitting Equation 10.34 to the histogram. Apart
from the variation in pulse energy, the wavelength of the radiation varies stochastically as
a consequence of being the offspring of spontaneously emitted radiation.

In order to overcome the startup of the SASE FEL from noise and the ensuing ran-
domness of the output power and wavelength of the radiation, different schemes have been
proposed to seed a FEL and thereby provide stable conditions for the laser to start the ex-
ponential gain phase. For very short wavelengths there are, however, no sufficiently strong
coherent sources available and one has to resort to other methods. One method is based on
several optical lasers to prepare a coherent micro-bunched structure [93] in the bunch that
will radiate in later sections. An ingenious method [94, 95] is based on filtering the radiation
emitted from an early part of the undulator. This stretches the length of the radiation pulse
and allows the filtered wavelength to seed trailing electrons in the same bunch.
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Figure 10.6 Distribution of pulse energies in a SASE pulse, normalized to its average,

for M = 1, 3, and 10 independently radiating modes.

10.5 ACCELERATOR CHALLENGES

The radiation that is spontaneously emitted and subsequently amplified by a short longitu-
dinal slice of an electron bunch is slightly faster than the electrons and can only affect other
electrons over a distance Nuλ ahead in the bunch. This implies that only electrons within
a short slice cooperate to form the instability that leads to the exponential gain. Moreover,
the exponential gain is proportional to the electron density, and we therefore need as many
electrons as possible in a short longitudinal slice of the bunch which explains the need for
extremely large peak currents, rather than total number of electrons in a bunch. The cur-
rents need to be on the order of several thousands of amperes which can, for example, be
achieved with a bunch charge of 100 pC and a bunch length of 20 fs. Since the bunch length
directly after the cathode is limited by space charge to a few picoseconds, the bunches must
be longitudinally compressed a few hundred times. For this purpose several stages of bunch
compressors, as discussed in Section 3.7.9, are installed in the accelerator. The resulting
high peak currents make the beam susceptible to a number of instabilities, discussed in
Chapter 12, and mitigating methods are required, such as laser heaters.

The transverse coherence of the radiation, especially at very short wavelengths, requires
beams with extremely small emittances. These beams must be created with a very small
emittance in the electron gun and then the growth of the emittance must be prevented
along the accelerator. Immediately after the gun, space-charge compensation schemes and
the focusing at low energies are of particular importance. The electron beams have a very
small momentum spread σδ that makes the beams susceptible to so-called micro-bunching
instabilities along the linear accelerator, and especially in the bunch compressors. Increasing
σδ in a controlled way in a laser heater is one way to alleviate this problem.

In order to synchronize pump-probe experiments, where the FEL and external lasers are
used to excite, and subsequently probe samples, the timing of the entire accelerator complex
must be controlled to a level of tens of femtoseconds. This is particularly demanding for
the low-level radio-frequency system that adjusts the fields in the acceleration structures.
These challenges were met with SASE FELs operating in the visible and ultraviolet spectral
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range at Argonne National Laboratory [96], later extended to shorter wavelengths at DESY
in TTF-FEL, now FLASH [97], in Hamburg. Angström wavelengths were reached in 2009
at LCLS in the US [98] and later also at SACLA in Japan [99].

QUESTIONS AND EXERCISES

1. Calculate the energy that every electron radiates in every revolution (a) in LEP with
a circumference of 27 km and a bending radius of ρ = 3km at beam energies of 50
and 100GeV; (b) in a 3GeV synchrotron light source with a circumference of 200m
and a bending radius of ρ = 10m. (c) What are their approximate longitudinal and
transverse damping times? (d) What is the critical energy εc of the emitted radiation?
(e) What is the angular width of the emitted radiation?

2. Numerically evaluate the five synchrotron radiation integrals I1 =
∮
(D/ρ)ds, I2 =∮ (

1/ρ2
)
ds, I3 =

∮ (
1/|ρ|3

)
ds, I4 =

∮
(D/ρ)

(
1/ρ2 + 2k1

)
ds and I5 =

∮ (
H/|ρ|3

)
ds,

for the ring consisting of eighteen FODO cells, discussed in Exercise 11 of Chapter 3.D
is the horizontal dispersion and H is defined in Equation 3.129. Derive the momentum
compaction factor, the equilibrium momentum spread and the horizontal equilibrium
emittance assuming the beam energy is 1GeV.

3. Repeat the previous exercise for the doublet ring from Exercise 12 of Chapter 3.

4. For an experiment with a 160MeV electron beam, you need to design an undulator
with K ≈ 2 that needs to be resonant at a wavelength λ = 880 nm. What undulator
period λu do you need to specify? What is the peak field B0? Does a beam pipe with
outer diameter of 30mm fit in the gap?

5. The long undulators in SASE FELs consist of about 5m long undulators with inter-
leaved phase shifters to ensure the constancy of the phase ϕ in Equation 10.32. Based
on the sase simulation.m script with j = 200 and a0 = 10−2 from Appendix B.5,
investigate the dependence of the amplitude |a| at the end of the undulator on the
tolerance of the phase-shifter settings. Assume that, at 50 evenly spaced times in the
simulation, uniformly distributed random phases are added to a.

6. Qualitatively explore the influence of the momentum spread on the oscillator FEL,
discussed in Appendix B.5, by increasing the initial momentum spread dx(2) in the
range from 0.1 to 10. Use the scaled current j = 1 and initial amplitude a0 = 10−8

and display the final amplitude |a| as a function of the initial momentum spread. Feel
free to explore the dependence on other parameters as well.
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Non-linear Dynamics

In most of Chapter 3 we discussed accelerator components that were represented by matri-
ces. There, we also found the focal length of quadrupoles to depend on the momentum offset
and cause the chromaticity to become non-zero. This effect becomes more important, the
stronger the quadrupoles are. Therefore, in most accelerators, the chromaticity is corrected
by adjusting sextupoles that are installed at locations with non-zero dispersion. This was
described in detail in Section 8.5.4. We found that compensating the chromaticity depends
on the product of the integrated sextupole strength k2L and dispersion Dx and correcting a
large chromaticity requires strong sextupoles. This is particularly relevant for linear collid-
ers with strong quadrupoles adjacent to the interaction point where the beta functions are
extremely large. A second example is modern synchrotron light sources with their strongly
focusing quadrupoles to keep the beta functions and dispersion small in order to minimize
the emittance. Since the dispersion is small, the sextupoles must be very strong. But these
very strong sextupoles do not only compensate the chromaticity, they also give non-linear
kicks to particles with the correct momentum and thus distort their transverse motion, our
topic for this chapter.

To do so, we will later use modern methods in a framework of Hamiltonians and Lie-
maps, but we start by exploring the motion qualitatively with a very simple one-dimensional
model of a ring with a single sextupole.

11.1 ONE-DIMENSIONAL TOY MODEL

We assume the transfer matrix of the ring to be given by the parameterization from Equa-
tion 3.80 and the kick of the sextupole by ∆x′ = −(k2L/2)x

2 from Equation 3.66, such that
we can describe the map from one turn, labeled n, to the next by

(
xn+1

x′
n+1

)
= A−1

(
cosµ sinµ

− sinµ cosµ

)
A
(

xn

x′
n − k2L

2 x2
n

)
, (11.1)

where A is defined in Equation 3.81. Expressing this equation by variables in normalized
phase space, denoted by a tilde, we find

(
x̃n+1

x̃′
n+1

)
=

(
cosµ sinµ

− sinµ cosµ

)(
x̃n

x̃′
n − k2L

2 β3/2x̃2
n

)
. (11.2)

The factor before the quadratic kick can be transformed to unity by using scaled variables
x̂ = (k2L/2)β

3/2x̃, resulting in an equation with a single free parameter, the phase advance

280 This chapter has been made available under a CC BY NC license.
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Figure 11.1 Phase-space portrait for the map given by Equation 11.3 for phase ad-

vances µ = 2πQ for Q = 0.31 (left) and Q = 0.2526 (right).

for one turn µ (
x̂n+1

x̂′
n+1

)
=

(
cosµ sinµ

− sinµ cosµ

)(
x̂n

x̂′
n − x̂2

n

)
, (11.3)

where we can express µ = 2πQ by the tune Q. We now use this map to follow a particle for
a large number of turns, a process called tracking, and display the phase-space coordinates,
once per turn, in a so-called Poincare plot.

Figure 11.1 shows such a phase-space plot of x̂′ versus x̂ when iterating the map with
starting coordinates x̂′

0 = 0 and varying x̂0 from 0.05 to 1.5 in steps of 0.05. With these
starting coordinates we iterate 1024 times and plot (x̂, x̂′) in every iteration. Each trajectory
thus consists of 1024 points, unless the point lies outside the visible area of the plot in
which case the iteration stops. On the left, the trajectories for Q = 0.31 are shown. Near
the origin the trajectories are almost circular, but progressively deform toward a triangular
shape for larger starting coordinate x̂0, because the tune is close to 1/3. The innermost
trajectories appear to be contiguous, but at some amplitude break up and all trajectories
further outside become chaotic. For starting coordinates larger than x̂0 = 1.1 the trajectories
diverge, indicating the limit of stability, called the dynamic aperture. It is not an immediate
physical boundary, but once a particle exceeds this limit, its amplitude increases without
limit, and the particle eventually hits a physical aperture: the beam pipe or a collimator.

Roughly the same behavior is visible on the phase-space plot for the tune Q = 0.2526,
shown on the right-hand side in Figure 11.1. Here the tune is close to 1/4, which explains
the four-fold periodicity. Again, almost circular trajectories near the origin are distorted
as the starting coordinates for the trajectory increase. From the fourth trajectory to the
tenth, the trajectories are confined to the islands, and for larger starting coordinates the
trajectories become chaotic and eventually unstable. The existence of islands with a four-
fold periodicity indicates that the tune is even closer to 1/4 than the bare tune Q = 0.2526
and the tune appears to depend on the amplitude of the oscillations. We thus find amplitude-
dependent tune shift that is entirely due to the dynamics defined by the sextupole added to
the otherwise linear ring. It provides a non-linear force that affects the particles, similar to
the sinusoidal restoring force that appeared in the description of the longitudinal motion in
Equation 5.36 and resulted in the amplitude-dependence of the synchrotron tune shown on
the right-hand side in Figure 5.3.
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From an operational point of view, the dynamic aperture is the most serious limitation,
because it constrains the space available for the transverse oscillations and, if it is too small,
can cause beam loss.

11.2 TRACKING AND DYNAMIC APERTURE

Our task is thus to determine the dynamic aperture of a ring often consisting of many
thousand elements, some of them represented by transfer matrices and many others by non-
linear kicks. Since systems with non-linear forces, such as the sextupoles, are in general non-
integrable, there are no generally applicable theoretical methods to calculate the dynamic
aperture. We therefore have to resort to numerical methods and simply use tracking to follow
particles with different starting conditions to see whether they are stable or whether they
follow divergent trajectories. Here the question arises of how long to follow the particle?
Normally, one takes a pragmatic approach and chooses a maximum number of turns to
follow and chooses a maximum amplitude at which the particle is considered lost; typically
on the order of the beam pipe radius. For the number of turns to follow, often a few thousand
turns is a good choice to determine the so-called short-term dynamic aperture. For electron
accelerators, it is often the relevant quantity, because damping from synchrotron radiation
operates on a similar time scale and counteracts slowly diverging particle trajectories. For
accelerators without damping, the number of turns is often chosen to be on the order of
105 to 106 turns. Since many sample particles with different starting positions are followed
for a large number of turns, these calculations are very time-consuming and rely on highly
optimized computer codes.

We illustrate these methods by extending the toy model with a single sextupole to two
transverse dimensions, such that the map from one turn to the next now reads




x̂n+1

x̂′
n+1

ŷn+1

ŷ′n+1


 =




cosµx sinµx 0 0
− sinµx cosµx 0 0

0 0 cosµy sinµy

0 0 − sinµy cosµy







x̂n

x̂′
n − (x̂2

n − ŷ2n)
ŷn

ŷ′n + 2x̂nŷn


 , (11.4)

where we assume that the beta functions in both planes are equal. Iterating this equation
from given starting positions and testing in the routine whether a boundary is exceeded is
easily encoded in a routine that we call survived turns()

function out=survived_turns(N,R,x0,y0,dx,dy)

x=[x0;0;y0;0]; out=N;

for k=1:N

thetax=(x(1)-dx)^2-(x(3)-dy)^2; thetay=-2*(x(1)-dx)*(x(3)-dy);

x=R*[x(1);x(2)-thetax;x(3);x(4)-thetay];

if ((abs(x(1))>3) || (abs(x(3))>3)), out=k; return; end

end

It receives the requested maximum number of iterations N, the linear transfer matrix R,
the starting positions x̂0, ŷ0 and the misalignment of the sextupole d̂x, d̂y as input, and
returns the survived number of turns in the variable out. We use this function to probe
the dynamic aperture along rays extending with angle ϕ from the origin with a bisection
method. The following code fragment implements this

for phi=0:pi/100:pi

nmax=12; dr=10; r=dr;
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Figure 11.2 On the left, the dynamic aperture for the map given by Equation 11.4 is

shown for tunes Qx = 0.31 and Qy = 0.28. The sextupole is horizontally misaligned

by d̂x = 0 (asterisk), d̂x = −0.05 (plus sign), d̂x = −0.1 (cross). The plot on the

right shows the survived number of turns as a function of the distance r of the

origin from the starting position x̂0 = r cosϕ and ŷ0 = r sinϕ with ϕ = 45o for

configurations with the same misalignments.

while (nmax)

nmax=nmax-1; x0=r*cos(phi); y0=r*sin(phi); dr=0.5*dr;

if (survived_turns(NN,R,x0,y0,0,0)==NN) r=r+dr; else r=r-dr; end;

end

plot(x0,y0,’k*’);

end

The outer loop iterates over the angles ϕ, and in the loop we initialize the requested number
of bisections nmax, the maximum amplitude to probe dr and the starting radius r. The
bisection proceeds until nmax is zero, and in each iteration the starting position x0 and y0 is
initialized and the size of the search interval dr is halved. Then, depending on whether the
particle survives the requested iterations, the starting radius is reduced or increased. After
the requested number of bisections, the final positions, which define the dynamic aperture,
are plotted.

The left-hand side in Figure 11.2 shows the resulting dynamic aperture for a perfectly
aligned sextupole with d̂x = d̂y = 0 by the curve with the asterisks. Under this curve the
starting positions lead to stable motion, and those outside lead to divergent motion. If the
sextupole is misaligned by d̂x = −0.05, the dynamic aperture is reduced to the region under
the curve defined by the plus signs and for d̂x = −0.1 to that under the crosses. Apparently,
misaligned magnets have a significant influence on the dynamic aperture. The reason is,
of course, feed-down, which causes multipoles of lower order to appear, as discussed in
Section 8.1.1. And these affect both the linear optics and they can also produce additional
non-linearities.

The right-hand side in Figure 11.2 shows the number of survived turns as a function
of the starting position along the dotted line shown in the graph on the left-hand side and
defined by x̂0 = r cosϕ and ŷ0 = r sinϕ for ϕ = 45o for the three configurations with
the misaligned sextupole. This type of presenting the dynamic aperture is called a survival
plot. Here, the configuration with the aligned magnet is shown by the solid line and for
large amplitudes the number of surviving turns is very small but with decreasing starting
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positions and starting radius r the surviving number of turns increases, until it rather
abruptly reaches the maximum number of turns, here 1000. This abrupt change defines the
dynamic aperture. Repeating the same simulation with a misaligned sextupole shows the
abrupt transition to the maximum number of turns occurring at a smaller starting radius,
which is consistent with the observation on the graph on the left-hand side.

Preparing plots of the dynamic aperture and survival plots, similar to those shown in
Figure 11.2 for other accelerators is straightforward and usually extensively done during
the design phase for a new accelerator. Usually, the non-linear elements are represented
by a sequence of thin-lens kicks and drifts spaces, despite having a finite length. This has
the advantage that the map for the element is symplectic and does not lead to unphysical
artefacts. Moreover, also the longitudinal motion is taken into account when tracking the
particles and often many different random configurations of misalignments are analyzed
in order to understand the robustness of the accelerator against perturbations. A major
problem is the computing speed, especially for large accelerators with thousands of magnets
and other components. Therefore methods were invented to concatenate the many elements
to a compact representation to describe the map from one turn to the next.

One method is based on the realization that the concatenation of linear and non-linear el-
ements involves the substitution of multi-variate polynomials of the phase-space coordinates
into other polynomials. This process is based on manipulating mathematical structures,
called differential algebras. It can be coded efficiently and is used to compute transfer maps
to arbitrary order [100]. The order of the maps is only limited by the available computer
memory, but still, for large accelerators the maps must be truncated, an approximation that
is called truncated power series algebra (TPSA). Since the truncated maps are not necessar-
ily symplectic, they can lead to unphysical results, such as spurious damping or growth of
oscillations. This limits their use in determining the dynamic aperture, and nowadays the
standard method, facilitated by the ever-increasing speed of the computers, is still used to
track particles element-by-element.

On the other hand, the map-based methods allow us to efficiently extract physical quan-
tities, such as high-order chromaticities or the dependence of the tune on the misalignment
of octupoles. Both tracking and TPSA provide a global assessment of a given accelerator,
even an extremely large one, but their use in finding out where to place correction mag-
nets or how cancellations of perturbations occur, is limited. We therefore describe a second
method in the following sections. It is based on associating a Hamiltonian or Lie-generator
with each non-linear element and then concatenating and analyzing the Hamiltonians.

11.3 HAMILTONIANS AND LIE MAPS

In mechanical systems, already discussed in Section 2.2, the Hamiltonian H(q, p) depends
on the phase-space coordinates q and p and describes the forces that determine the temporal
evolution of the system [9] via Hamilton’s equations: dq/dt = ∂H/∂p and dp/dt = −∂H/∂q.
They are straightforward to generalize to several degrees of freedom. Moreover, we assume
that the Hamiltonian does not explicitly depend on time and therefore describes time-
invariant dynamics. The temporal derivative of an arbitrary function f(q, p) is then given by

df

dt
=

∂f

∂q

dq

dt
+

∂f

∂p

dp

dt
=

∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
= [f,H] = [−H, f ] =: −H : f , (11.5)

where we used Hamilton’s equation in the second equation to replace dq/dt and dp/dt by
partial derivatives of the Hamiltonian. Furthermore, we use the definition of the Poisson
bracket of two functions f and g as [f, g] = (∂f/∂q)(∂g/∂p) − (∂f/∂p)(∂g/∂q) = −[g, f ].
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In the last equality in Equation 11.5 we introduce a new notation to denote the Poisson
bracket, which, however, clearly exhibits the character of the Hamiltonian as an operator to
implement an infinitesimal propagation in time. This motivates the name Lie generator, in
resemblance to the infinitesimal generators of groups that depend on continuous parameters,
named Lie groups. Pauli-matrices, as the infinitesimal generators of the rotation group, may
serve as an example.

The infinitesimal step in time, described by Equation 11.5, can be generalized to
finite time steps by first realizing that we can express multiple derivatives by it-
erated Poisson brackets, or, equivalently, as powers of Lie operators by dnf/dtn =
[−H, [−H, . . . , [−H, f ] . . . ]] =: −H :n f. In a second step we write the function f(t + ∆t)
as a Taylor-series

f(t+∆t) =

∞∑
n=0

∆tn

n!

dnf

dtn
=

∞∑
n=0

∆tn

n!
: −H :n f = e:−H:∆tf . (11.6)

In the third equality, motivated by the fact that the infinite sum is just a representation
of the exponential, we introduce the short-hand notation for the Lie map e:−H:∆t to avoid
writing many infinite sums. When forced to explicitly calculate e:−H:∆tf, we have to use,
however, the representation by infinite sums and multiple-iterated Poisson brackets.

From Section 2.2 we know that, instead of the time t, we normally use the longitudinal
position s as the independent variable, but the equations that correspond to Equation 11.5
are (formally) the same with the substitution t → s. Moreover, the Hamiltonians that
describes thin-lens multipole magnets turn out to be related to As in Equation 2.2 and to
the complex potentials from Equation 4.12. For example, the Hamiltonian of an upright
sextupole is

H̃S = HS(x, x
′, y, y′)∆s = Re[−FS(x+ iy)L/Bρ] = (k2L/6)(x

3 − 3xy2) , (11.7)

where FS was defined in Section 4.2. Similarly, the imaginary part of −FS(x + iy)L/Bρ
describes the Hamiltonian for the corresponding skew-magnet. Since the Hamiltonian de-
scribes the propagation of any function of the phase-space coordinates, it also describes the
propagation of the coordinates themselves and, for example, the horizontal position xa after
the sextupole is given by

xa = e:−H̃S :x =
∞∑

n=0

1

n!
: −H̃S :n x = x+ [−H̃S , x] +

1

2
[−H̃S , [−H̃S , x]] + · · · = x , (11.8)

because explicitly calculating the Poisson bracket shows that [−H̃S , x] = 0. We thus find
the expected result that the transverse position does not change in a thin-lens sextupole.
Likewise, the transverse angle x′

a after the sextupole is given by

x′
a = e:−H̃S :x′ = x′ + [−H̃S , x

′] +
1

2
[−H̃S , [−H̃S , x

′]] + . . . (11.9)

and we have to evaluate the Poisson brackets, which leads to

[−H̃S , x
′] = −

[
∂H̃S

∂x

∂x′

∂x′ −
∂H̃S

∂x′
∂x′

∂x
+

∂H̃S

∂y

∂x′

∂y′
− ∂H̃S

∂y′
∂x′

∂y

]

= −∂H̃S

∂x
= −k2L

2
(x2 − y2) (11.10)



286 ■ Hands-On Accelerator Physics Using MATLAB®

� ��
x̄ = Rx

H̃(x̄) H̃(x)

Figure 11.3 Pushing Hamiltonians to the end of the beamline.

because the only non-zero derivative of a coordinate is ∂x′/∂x′ = 1. Moreover, all higher
Poisson brackets vanish, because the first Poisson bracket −∂HS/∂x only depends on the
spatial phase-space coordinates x and y, and the Poisson bracket of two functions that only
depend on spatial coordinates always vanishes. Therefore, we have [−H̃S , [−H̃S , x

′]] = 0.
For the change in angle, we thus recover the result we already used in Equation 11.4,
x′
a = x′− (k2L/2)(x

2−y2). In a similar way we find the vertical position unchanged ya = y,
and the vertical kick to be y′a = y′ − ∂H̃S/∂y = y′ + (k2L/2)2xy.

It is straightforward to convince oneself that for any thin multipole defined through
a complex potential F (z) and Hamiltonian H̃ = Re[−F (x + iy)L/Bρ] the phase-space
coordinates after the magnet xa, x

′
a, ya, and y′a are given by

xa = x, x′
a = x′ − ∂H̃

∂x
, ya = y, and y′a = y′ − ∂H̃

∂y
. (11.11)

The imaginary part of F (z) describes the effect of the corresponding skew magnet. Using
the Hamiltonian formalism is not restricted to thin-lens magnets. It is easy to see that
H̃ = (L/2)(x′2 + y′2) results in the map for a drift space and after some lengthy algebra
H̃ = (L/2)(x′2 + k1x

2 + y′2 − ky2) reproduces the map for the thick quadrupole from
Equation 3.24, where the calculation of iterated Poisson brackets leads to a Taylor-series
expression for sine and cosine.

11.3.1 Moving Hamiltonians

At this point, we observe that a Hamiltonian depends on the phase-space variables at the
location where the corresponding magnet is placed. Two magnets at different places depend
on different variables, and, in order to make their effect on the beam commensurate, we have
to transform the variables, or, somewhat sloppily expressed as “moving the Hamiltonian,”
such that both Hamiltonians depend on the same variables. To illustrate how this is done,
we consider Figure 11.3 in which the beam propagates from right to left and first meets
a magnet with Hamiltonian H̃(x) that depends on the phase-space coordinates x on the
right-hand side in the figure. Then the beam passes through a linear beamline, represented
by a transfer matrix R, which maps phase-space variables x to those on the left-hand side

x̄. The combined action of the Lie map e:−H̃(x): first and subsequent linear transport by R,
we denote by the map M, which is given by

M = Re:−H̃(x): = Re:−H̃(x):R−1R = e:−H̃(Rx):R = e:−H̃(x̄):R , (11.12)

where we insert R and its inverse on the right-hand side and then use the non-trivial

identity, proven in [101], Re:−H̃(x):R−1 = e:−H̃(Rx):, which describes the so-called similarity
transform. It states that a Lie map, sandwiched between a matrix R and its inverse, can
be simplified by transforming the variables of the Hamiltonian using the same transfer
matrix R. Comparing the first and last equality in Equation 11.12 shows that we can
exchange the operation of the Lie map and the linear transport, provided that we change
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Figure 11.4 Pushing multiple Hamiltonians to the end of the beamline that optionally

lies in normalized phase space.

the variables of the Hamiltonian to the variables at the location. Thus, all we have to do in
order to move a Hamiltonian from one place to the other is to change its variables to those
of the new location.

We need to point out that Equation 11.12 should be understood as a short-hand notation
for the sequence of elements with each operator describing the respective element. We use
Lie maps for some elements and transfer matrices for others. The equation is a mnemonic
representation of the beamline. We also use the convention that the operations are applied
from right to left, much like matrix multiplications work. This differs from much of the
literature on Lie methods, but visualizing beamlines becomes easier, even though we have
to pay special attention to signs when concatenating elements.

In order to understand the joint action of all elements in a beamline and the cancellations
of aberrations, we move all Hamiltonians to the same reference point. Let us assume for
the moment that it is the end point of a beamline. Optionally, we may left-multiply the
last transfer matrix by a matrix, given by AT from Equation 3.133 and [15, 16] to map the
reference point to normalized phase space (NPS). This will prove particularly useful when
describing rings. In the following sections, we tacitly absorb this transformation into R2.
To calculate the map M for the entire beamline, depicted in Figure 11.4, we first transport
the Hamiltonian H2, which is closest to the reference point, to the reference point, then
the second, and so forth, such that we only have linear transport between the Hamiltonian
to transport and the reference point. Finally, we have all Hamiltonians in the beamline
located at the reference point. Moreover, all moved Hamiltonians are expressed in terms
of the coordinates at the end of the beamline (and, optionally, in normalized phase space)
such that all Hamiltonians are now commensurate.

Let us illustrate the method by closely analyzing the system shown in Figure 11.4. The
beam propagates from right to left and first encounters Hamiltonian H1(x⃗1), then it passes
through linear transport with transfer matrix R1, followed by a second Hamiltonian H2(x⃗2)
and matrix R2. The matrix R1 maps coordinates x⃗1 to x⃗2 = R1x⃗1. The map M for the
entire beamline and the subsequent manipulations in order to transport the Hamiltonians
to the end of the beamline is shown in the following equation

M = R2e
:−H2(x⃗2):R1e

:−H1(x⃗1):

= R2 e:−H2(x⃗2):

=1︷ ︸︸ ︷
R−1

2 R2 R1 e:−H1(x⃗1):

=1︷ ︸︸ ︷
R−1

1 R−1
2 R2R1

= R2 e:−H2(x⃗2):R−1
2︸ ︷︷ ︸

e:−H̃2(x⃗0):

R2R1 e:−H1(x⃗1):R−1
1 R−1

2︸ ︷︷ ︸
e:−H̃1(x⃗0):

R2R1 (11.13)

= e:−H̃2(x⃗0):e:−H̃1(x⃗0):R2R1 .

In the first equality we insert unit matrices of the type R−1R in order to obtain similarity
transformations of the type R2e

:−H2(x⃗2):R−1
2 . In the second equality, they are simplified to

e:−H̃2(R2x⃗2): = e:−H̃2(x⃗0):. Finally, we obtain a description of the beamline with all linear
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transfer matrices traversed first, followed by the sequence of Hamiltonians that are now
expressed in the coordinates of normalized phase space at the end of the beamline.

11.3.2 Concatenating Hamiltonians

In order to understand cancellations of aberrations caused by the individual non-linearities,
we need to concatenate the Hamiltonians to form a single one that represents the cumulative
effect of all non-linearities. Since each coefficient represents an independent aberration, we
have a non-redundant representation of the effect of all non-linearities. The concatenation
is accomplished by the Campbell-Baker-Hausdorff (CBH) [101] formula

e:H:e:K: = e:H:+:K:+(1/2)[:H:,:K:]+(1/12)[:H:−:K:,[:H:,:K:]]+... , (11.14)

where the order shown is sufficient for a consistent treatment of up to decapole order. In
Equation 11.14 we follow the literature [101], and H is traversed before K. We need to keep
this in mind when later implementing the algorithm in software.

An immediate consequence of Equation 11.14 is that aberrations from two sextupoles,
H1 and H2, located at positions with equal beta functions and separated by phase advances
of ϕx = ϕy = 180o, cancel to all orders, because the transfer matrix between the two
sextupoles reverses the sign of all phase-space coordinates, such that H2 = −H1. Choosing
the reference point at the location of the second sextupole, we find that the first order in
Equation 11.14 cancels, but also all Poisson brackets [H2, H1] = [−H1, H1] = 0 vanish, such
that the joint effect of the two sextupoles cancels. Note that this cancellation pertains to
the geometric aberration, not to the dispersion. In many accelerators, the SLC final focus
system is an example, this method of placing chromaticity-correction sextupoles 180o phase
advance apart, is used.

The main result of this section, however, is that transporting all Hamiltonians to a refer-

ence point and concatenating them to a single “Super-duper-pop-up-kick” e:−Ĥ:, preceded
by the linear transport R, is the map M, given by

M = e:−Ĥ:R . (11.15)

Here we use the convention of matrices, such that elements are traversed from right to
left. The procedure described above thus cleans the beamline of non-linearities and collects
them at the reference point. Adding the map into normalized phase space at the end allows
us later to directly introduce action angle variables in a natural way. We also note that
the transfer matrix R is block-diagonal with two 2 × 2 rotation matrices on the diagonal,
because it maps from normalized phase space at the start of the beamline to normalized
phase space at the end of the beamline.

In the next section we illustrate the algorithm by developing MATLAB code to analyze
beamlines with non-linearities up to octupole order. We confine ourselves to one dimension
in order not to clutter the discussion with excessive indices.

11.4 IMPLEMENTATION IN MATLAB

There are 14 monomials in the one-dimensional phase-space variables x and x′ up to fourth
order in the Hamiltonian. Note that fourth order is sufficient to describe octupoles. We
denote the two first-order monomials by m⃗(1) = (x, x′), the three second-order monomials
by m⃗(2) = (x2, xx′, x′2), the four third-order monomials by m⃗(3) = (x3, x2x′, xx′2, x′3), and
the five fourth-order monomials by m⃗(4) = (x4, x3x′, x2x′2, xx′3, x′4). Here the superscript
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in brackets denotes the order. Within a given order, the ordering is defined by starting
with the highest power of x and then reducing it by one power at a time while increasing
the power of x′ correspondingly. The coefficients before the monomials therefore define 14
independent aberrations up to the fourth, or octupolar, order. They are given by the arrays
h⃗(1), h⃗(2), h⃗(3), and h⃗(4) with sizes corresponding to the monomials of the same order. A
Hamiltonian H(x, x′) can thus be written as a scalar product of the aberrations h(n) and
the monomials m(n)

H(x, x′) = h⃗(1)m⃗(1) + h⃗(2)m⃗(2) + h⃗(3)m⃗(3) + h⃗(4)m⃗(4) = H⃗M⃗ , (11.16)

where we also introduce the array of all monomials M⃗ and all aberrations H⃗ to represent
the sum of the scalar products in the respective orders. The dimension of M⃗ and H⃗ is
thus 14 and M⃗ = (x, x′, x2, . . . , x′4).

In the above sequence of monomials, it is straightforward to construct Hamiltonians by
simply placing the strength in the appropriate element of an array. The function thamlie()

receives the strength and order of the multipole and returns the Hamiltonian H0

function H0=thamlie(strength,M) % Constructs Hamiltonian

H0=zeros(14,1);

switch (M)

case 3 % sextupole

H0(6)=strength/6; % x^3

case 4 % octupole

H0(10)=strength/24; % x^4

end

Note that x3 appears as the sixth element and x4 as the tenth element in the sequence of
monomials x, x′, x2, . . . , x′4. The numerical factor 1/6 is taken from Equation 11.7.

Using the array H⃗ to represent the Hamiltonian coefficients, we now need to implement
similarity transformations, Poisson brackets, and the Campbell-Baker-Hausdorff equation
in order to push the Hamiltonians around and then concatenate them. These manipulations
require information about the location of the monomials in the array H⃗, and we therefore
introduce two bookkeeping arrays. The first one, MO, returns the power n of variable xn in
the Hamiltonian coefficient Hj , such that n=MO(j,1), while m=MO(j,2) returns the power
m of x′m in the same coefficient. The second array MM returns the position j in which
the coefficient for monomial xnx′m is stored, such that j=MM(n+10*m). A negative returned
value j indicates the absence of the monomial. This form of specifying n and m is determined
by MATLAB’s inability to handle zero-based arrays. The arrays MO and MM are computed
prior to using any other function in a function called hamini. The following code snippet
illustrates this for the second order.

for i1=1:N % loop boundaries defines

for j1=i1:N % ordering of monomials

ii=ii+1; % next slot in Hamiltonian

M0(ii,:)=0; % init to zero

M0(ii,i1)=M0(ii,i1)+1; % increment if i1, j1 occurs

M0(ii,j1)=M0(ii,j1)+1;

MM(M0(ii,1)+10*M0(ii,2))=ii; % store where?

end

end
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All other orders work in the same fashion; only the number of iterated loops differs. The
arrays MO and MM play a central role in implementing the similarity transformations to move
the Hamiltonians to the reference point.

First, we refer to Figure 11.3 to illustrate the transformation of the first-order Hamil-

tonian H(1) =
2

j=1 h
(1)
j xj with coefficients that are linear in the coordinates xi. The

coordinates x̄i at the reference point are given by x̄i =
2

j=1 Rijxj , such that we find

H(1) =
2

j=1

h
(1)
j xj =

2
j=1

h
(1)
j

2
i=1

R−1
ji x̄i =

2
i=1

h̃
(1)
i x̄i with h̃

(1)
i =

2
j=1

h
(1)
j R−1

ji . (11.17)

Here we note that we can write this equation in matrix form as

h̃(1) =
�
R−1

T
h(1) = S(1)h(1) (11.18)

and we find that we change the coefficients of the Hamiltonian from being expressed in

variables xj to x̄i by multiplying the first-order coefficients h(1) by S(1) =
�
R−1

T
, the

transpose of the inverse of the linear transfer matrix.
It can be easily shown that transforming the second-order monomials is accomplished

in the same way as transforming the sigma-matrix elements in Equation 3.72, which can be
rewritten as




x̄2
1

x̄1x̄2

x̄2
2


 =




R2
11 2R11R12 R2

12

R11R21 R11R22 +R12R21 R11R21

R2
21 2R21R22 R2

22







x2
1

x1x2

x2
2


 . (11.19)

If we denote the matrix in the previous equation by RR and vector of the second-order
monomials by (xx)i and (x̄x̄)j , we write for the second-order Hamiltonian H(2)

H(2) =

i

h
(2)
i (xx)i =


i


j

h
(2)
i (RR−1)ij(x̄x̄)j =


j

h̃
(2)
j (x̄x̄)j (11.20)

and we find that the Hamiltonian coefficients transform according to

h̃(2) =
�
RR−1

T
h(2) = S(2)h(2) . (11.21)

Again, the coefficients of the Hamiltonian transform by multiplying it with the transpose

of the inverse of RR, the matrix that maps the monomials, or S(2) =
�
RR−1

T
. The same

reasoning applies for higher orders.
The matrices S(2), S(3), and S(4) can be easily generated using the bookkeeping arrays

M0 and MM. Here we only illustrate the algorithm for the second order. The complete code
is available in Appendix B.5.

R=sinv(R); %........the inverse and..(#)

S2=zeros(3); %........second order (x^2,x*x’,x’^2)

ii=0;

for i1=1:N % ordering of monomials

for j1=i1:N

ii=ii+1; % column index

for i2=1:N

for j2=1:N

IR(:)=0; IR(i2)=IR(i2)+1; IR(j2)=IR(j2)+1;
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jj=MM(IR(1)+10*IR(2))-N1; % row index

S2(ii,jj)=S2(ii,jj)+R(i1,i2)*R(j1,j2);

end

end

end

end

S2=S2’; % (#)..the transpose

The function sinv() is a simplified matrix inversion for matrices with unit determinant.
We use it to invert the transfer matrix R and then find two double loops over the different
monomials in the prescribed order. Note that in the loops we construct double-character
indices ii and jj. They define the ordering of the monomials and are in the following used
to address the components of a Hamiltonian, which follow the same ordering. The first
double loop over i1 and j1 thus determines the column-index ii of the matrix S2, and
the second double loop determines the powers of x1 and x2 and stores that in the array
IR. Then MM finds the column of S2 in which to store the appropriate product of transfer
matrices R. The matrices for higher orders are generated in the same way. Using these
matrices the Hamiltonian is then transformed to the variables x̄i in the function propham()

that receives a Hamiltonian H0 and the inverse of a transfer matrix as input, calculates the
matrices S(n), multiplies the section of H0 that corresponds to a specific order, and finally
returns the Hamiltonian H1 expressed in the new variables.

% Propagates a Hamiltonian through transfer matrix R

function H1=propham(R,H0)

N=2; N1=N; N2=N*(N+1)/2; N3=N2*(N+2)/3; N4=N3*(N+3)/4;

NM=length(H0); H1=zeros(NM,1);

[S1,S2,S3,S4]=adjoint3(R);

H1(1:N1)=S1*H0(1:N1);

H1(N1+1:N1+N2)=S2*H0(N1+1:N1+N2);

H1(N1+N2+1:N1+N2+N3)=S3*H0(N1+N2+1:N1+N2+N3);

H1(N1+N2+N3+1:N1+N2+N3+N4)=S4*H0(N1+N2+N3+1:N1+N2+N3+N4);

Here the variables N1, N2,... denote the number of monomials in the respective order.
Applying this function to each Hamiltonian in the beamline results in all Hamiltonians
being expressed by the variables of the reference point.

Having “pushed” all Hamiltonians to the reference point, we now need to implement the
Poisson bracket and first calculate the Poisson bracket for two Hamiltonians f = hiix

i1x′i2

and g = hjjx
j1x′j2 each with a single coefficient. Here, for example, the exponents i1

and i2 are related to the double-character subscript ii through the indexing array M0 by
i1=M0(ii,1) and i2=M0(ii,2)

[f, g] =
∂f

∂x

∂g

∂x′ −
∂f

∂x′
∂g

∂x

= hiihjj

(
i1x

i1−1x′i2xj1j2x
′j2−1 − xi1i2x

′i2−1j1x
j1−1x′j2

)
(11.22)

= hiihjj(i1j2 − i2j1)x
i1+j1−1x′i2+j2−1 .

We find that both terms yield the same monomial xi1+j1−1x′j1+j2−1 with the coefficient
hiihjj(i1j2 − i2j1). The MATLAB code to implement this result is the following:

function H3=PB(H1,H2) % Poisson bracket

global M0 MM
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NM=length(H1); H3=zeros(NM,1);

for ii=1:NM % index for H1

if abs(H1(ii))<1e-10, continue; end

i1=M0(ii,1); i2=M0(ii,2);

for jj=1:NM % index for H2

if abs(H2(jj))<1e-10, continue; end

j1=M0(jj,1); j2=M0(jj,2);

x12=H1(ii)*H2(jj); l1=i1*j2-i2*j1;

if (l1==0), continue; end

k1=i1+j1-1; if (k1<0 || k1>4), continue; end

k2=i2+j2-1; if (k2<0 || k2>4), continue; end

if (k1+k2>4), continue; end % limit to octupole order

kk=MM(k1+k2*10); H3(kk)=H3(kk)+x12*l1;

end

end

In this function, we loop over all coefficients of H1 and over H2 and abort if the coefficient
is very small. Otherwise, we use the array M0 to find the powers of x and x′, calculate the
new coefficient, and use the array MM to find where to place it in the result H3. Much of the
code is needed to catch conditions that lie outside the chosen order.

Using the function for the Poisson bracket PB(), it is trivial to implement the Campbell-
Baker-Hausdorff equation as

function H3=CBH(H1,H2) % Campbell-Baker-Hausdorff

H3=H1+H2+0.5*PB(H1,H2); % +PB(H1-H2,PB(H1,H2))/12;

which is sufficient up to octupolar order. These functions to move and concatenate Hamilto-
nians are sufficient to calculate the Hamiltonian H0 that represents the cumulative effect of
all non-linearities in the beamline up to fourth order, which is accomplished in the function
fulham()

function H0=fulham3(beamline)

nlines=size(beamline,1); H0=zeros(14,1);

for k=nlines:-1:1

if (beamline(k,1)==1003) % it is a sextupole

Htmp=thamlie(beamline(k,4),3); % strength, multipolarity

R=TM(k,nlines); % transfer matrix to the end

Htmp=propham(R,Htmp); % propagate hamiltonian

H0=CBH(Htmp,H0); % concatenate with what is already there

else if (beamline(k,1)==1004) % octupole

:

end

end

The function receives the beamline description beamline and returns the Hamiltonian H0.
In the code, it loops backward over all elements, and if it encounters a sextupole, marked
by code 1003, it constructs the Hamiltonian Htmp in the function thamlie, calculates the
transfer matrix from the non-linearity to the reference point at the end of the beamline with
the function TM, and uses it to propagate the Hamiltonian to the reference point. Finally
the current Hamiltonian Htmp is added to the previously accumulated H0. Note that here
we need to obey the conventional ordering of Lie generators, because that is used in the
function CBH().
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11.5 TWO-DIMENSIONAL MODEL

In the one-dimensional toy model from the previous section, there are only two phase-space
variables x and x′ and a Hamiltonian up to fourth order contains only 14 elements. In
this section we extend the discussion to two dimensions and four phase-space variables
x, x′, y, and y′. The number of aberrations in first order is four, because there are only four
monomials in that order. This corresponds to four degrees of freedom that can be globally
corrected in a beamline or ring, namely the two transverse positions and two angles.

In second order, there are ten monomials x2, xx′, xy, xy′, x′2, x′y, x′y′, y2, yy′, y′2 and
three of them, x2, xx′, x′2, can be attributed to the horizontal phase space and are related to
the horizontal values of Qx, βx, and αx. Likewise, y

2, yy′, y′2 are related to the corresponding
vertical parameters. The four monomials xy, xy′, x′y, and x′y′ are related to four degrees of
freedom that describe coupling between horizontal and vertical plane. As a corollary, we find
that four independently powered skew quadrupoles are sufficient to correct the coupling,
corroborating our finding from Section 8.5.5.

In third order, there are 20 monomials, and, if the beamline in not coupled, only ten
of them occur as a consequence of upright sextupoles. The other ten monomials are due
to skew sextupoles. This separation into two groups of ten monomials is a consequence
of deriving the Hamiltonians from the real or imaginary part of the complex potential of
the magnetic field, given, for example, by Equation 11.7 for an upright sextupole. Here the
power of x is odd in each monomial, while the power of y is even. This remains the case, even
if we move the Hamiltonian to the reference point with an uncoupled transfer matrix; the
powers of x and x′ add up to an odd integer and for y and y′ to an even integer. Since there
are 10 monomials with this property, we need a maximum of 10 sextupoles to compensate
all aberrations, generated by other sextupoles, provided the beamline is uncoupled. Skew
sextupoles, on the other hand, generate 10 additional aberrations that are described by
monomials with even powers of x and x′ and require up to 10 skew sextupoles to correct.
We will see in the next section that this splitting of the monomials causes only certain
resonances to be excited, rather than all possible.

In fourth order, there are 35 monomials that split into two groups of 16 monomials, half
of them excited by octupoles and the other half by skew octupoles. Three monomials are
special, and in Section 11.7, we will find that they are closely related to amplitude-dependent
tune shift. In fifth order, there are 56 monomials in N = 4 variables, and, similar to the
third-order case, they fall in two groups of 28. We will not dwell on this further but provide
an expression for the number of different monomials (or aberrations) M(m) in order m

M(m) = N

(
N + 1

2

)(
N + 2

3

)
. . .

(
N +m− 1

m

)
(11.23)

where N is the number of phase-space variables. For N = 4 and order m = 4 and 5, we
indeed find M(4) = 35 and M(5) = 56 in fifth order.

In the next section we will use the Hamiltonian description to find methods to correct
the potentially detrimental effect of non-linearities.

11.6 KNOBS AND RESONANCE-DRIVING TERMS

In this section, we generalize the concept of linear knobs, previously introduced in Sec-
tion 8.4.1, to the correction of non-linear aberrations. Instead of constructing knobs to
change the trajectory, we now seek to change individual coefficients in a Hamiltonian, with-
out perturbing others. Using Hamiltonians has the distinct advantage that the description is
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non-redundant and each coefficient describes an independent aberration. Moreover, the low-
est order in the Campbell-Baker-Hausdorff formula is given by the sum of the contributing
Hamiltonians, each of which contributes proportionally to its excitation knL.

To illustrate this method, we restrict ourselves to one dimension, in which case, there
are four third-order monomials, and consequently four independent aberrations. We assume
that there are four independently powered sextupoles located near the start of the beamline
and several other sextupoles. Following the procedure from Equation 11.13 to move the
sextupoles to the reference point, we find that the Hamiltonian Hf for the full system can
be written as

Hf = H(3)
o +H

(3)
1 +H

(3)
2 +H

(3)
3 +H

(3)
4 +H(>) , (11.24)

where H
(3)
o is the contribution of the other sextupoles to the third order of the full Hamil-

tonian. H
(3)
1 , . . . , H

(3)
4 are the Hamiltonians of the correction sextupoles already moved to

the reference point. H(>) describes the higher-order terms in the full Hamiltonian that
arise as a consequence of the Campbell-Baker-Hausdorff formula. We ignore them for the
moment and use our four correction sextupoles to compensate the four aberrations in third
order, only. We can use the software from the previous section to numerically calculate the
contribution of each sextupole, but in this case it is instructive to calculate contribution by
hand. Sextupole i is characterized by the Hamiltonian (k2Li/6)x

3, and we need to express
x3 in terms of the coordinates at the reference point x̄ and x̄′. They are related through the
transfer matrix Ri from the sextupole to the reference point, such that we can write

(k2Li/6)x
3 = (k2Li/6)

�
Ri

22x̄−Ri
12x̄

′3 (11.25)

= (k2Li/6)
�
(Ri

22)
3x̄3 − 3(Ri

22)
2Ri

12x̄
2x̄′ + 3Ri

22(R
i
12)

2x̄x̄′2 − (Ri
12)

3x̄′3 ,

which defines one column in the matrix in Equation 11.26. Adding the contributions from
the four correction sextupoles to the third order in the full Hamiltonian at the reference
point is given by the right-hand side of the following equation




hx̄3

hx̄2x̄′

hx̄x̄′2

hx̄′3


 = −1

6




(R1
22)

3 (R2
22)

3 (R3
22)

3 (R4
22)

3

−3(R1
22)

2R1
12 −3(R2

22)
2R2

12 −3(R3
22)

2R3
12 −3(R4

22)
2R4

12

3R1
22(R

1
12)

2 3R2
22(R

2
12)

2 3R3
22(R

3
12)

2 3R4
22(R

4
12)

2

(R1
12)

3 (R2
12)

3 (R3
12)

3 (R4
12)

3







k2L1

k2L2

k2L3

k2L4




(11.26)

and the coefficients h on the left-hand side of the equation describe the contributions of
all the other sextupoles that we try to compensate, which accounts for the minus sign
on the right-hand side. Finding excitations k2Li to do so is then a matter of a simple
matrix inversion. Once the excitations of the four sextupoles are found, we can calculate
the cumulative effect of all sextupoles, which results in a compensated third order but with
fourth and higher order taken into account properly. At this point we could select five
octupoles and repeat the exercise to compensate the fourth order aberrations.

Note that correcting all aberrations in third order only requires four sextupoles in one
dimension, but up to 20 in two dimensions. Adding such a large number of sextupoles
is rarely done, and one has to identify relevant aberrations and only correct those with
a limited number of sextupoles. But which aberrations are relevant? This question can be
answered for periodic systems, for example storage rings, that are sensitive to perturbations
that are resonant with natural oscillation frequencies of the system—the tunes.

To illustrate how to find the resonant-driving terms in a given Hamiltonian, we restrict
ourselves again to the one-dimensional case and assume that the reference point was chosen
to use variables of normalized phase space x̃ and x̃′. They are related to the physical
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coordinates by A from Equation 3.81. Then we can express x̃ and x̃′ through the action
Jx and angle ψx by x̃ =

√
2Jx cosψx and x̃′ =

√
2Jx sinψx, such that the powers of x̃

and x̃′ can be expressed by, for example, x̃3 = (2Jx)
3/2 (3 cosψx + cos 3ψx) /4 and x̃2x̃′ =

(2Jx)
3/2 (sinψx + sin 3ψx) /4. In this way we change the basis to express the Hamiltonian.

We find



C

(2Jx)

3/2 cosψx


C

(2Jx)

3/2 sinψx


C

(2Jx)

3/2 cos 3ψx


C

(2Jx)

3/2 sin 3ψx




 =




3/4 0 1/4 0
0 1/4 0 3/4

1/4 0 −1/4 0
0 1/4 0 −1/4







C[x̃3]
C[x̃2x̃′]
C[x̃x̃′2]
C[x′3]


 , (11.27)

where C[·] denotes the coefficient of the term in the brackets. The coefficients on the left-
hand side are thus simply determined by the coefficients of the Hamiltonian in normalized
phase space by left-multiplying with a matrix, which depends on the numerical coefficients
derived by expressing powers of trigonometric functions by those of multiple angles.

This way of expressing resonance driving terms can be illustrated by revisiting the
example with two sextupoles discussed at the end of Section 11.3. After “pushing” the first
Hamiltonian to the location of the second and concatenating them up to third order, we
obtain H(3). After being normalized by the excitation k2L, we find

H(3)/k2L = x3
2 + x3

1 = x3
2 + (x2 cosϕ− x′

2 sinϕ)
3 = (2J)3/2


cos3(ψ) + cos3(ψ + ϕ)



= (2J)3/2

3
cos(ψ) + cos(ψ + ϕ)

4
+

cos(3ψ) + cos(3ψ + 3ϕ)

4


. (11.28)

In the second equality, we expressed the coordinates x1 and x′
1 at location of the first

sextupoles by those of the second, before expressing it by action and angle variables J, ψ
in normalized phase space as x2 =

√
2J cosψ and x′

2 =
√
2J sinψ. The last equality shows

driving terms of the integer resonance, dependent on ψ, and of the third integer resonance,
dependent on 3ψ. It is trivial to see that choosing ϕ = 180o cancels both terms, consistent
with earlier observations. On the other hand, choosing 3ϕ = 180o or ϕ = 60o will cancel the
second term, but not the first, and this configuration will only drive the integer resonance,
but not the one at a fractional tune of 1/3. With only two sextupoles, we are unable to
independently control the integer resonance, because it requires ϕ = 180o and that also
implies that the third order is canceled. Using four independently powered sextupoles with
suitably chosen phase advance ϕ between them, it is possible to control all four aberrations
shown on the left-hand side in Equation 11.27.

In these simple, one-dimensional examples we derived the relations to relate the mono-
mials in x and x′ to the action and angle variables J and ψ by hand, but it is straight-
forward to generalize to higher orders and to more dimensions. For example, x̃2ỹ =
2Jx cos

2(ψx)

2Jy cos(ψy) = 2Jx


2Jy [cos(ψy)/2 + cos(2ψx + ψy)/4 + cos(2ψx − ψy)/4]

and we find that this term contributes to the integer resonance Qy and those at 2Qx +Qy

and 2Qx −Qy.
In the discussion, so far, we found a way to express the cumulative effect of all non-

linearities through Equation 11.15 as a “super-duper-pop-up kick” e:−Ĥ: and transfer matrix
R and how to interpret the coefficients of the Hamiltonian Ĥ with the help of introducing
action and angle variables in terms of resonance driving terms. Equation 11.15 does not,
however, explicitly show the periodicity of the beamline and in the following section, we
will discuss a method to make this periodicity obvious. A first-order analogy that illustrates
the idea is based on writing all kicks as a super-kick q⃗ (in the sense of Section 8.3.1) that
contains offset dx and angle offset d′x at the end of the beamline after passing through the
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beamline once. It does not, however, respect the periodicity of the beamline, which, on the
other hand, is done by the closed orbit as given by Equation 8.26. In the next section we will
introduce the equivalent mechanism for non-linearities, which is based on so-called normal
forms.

11.7 NON-RESONANT NORMAL FORMS

To convert the map M from Equation 11.15 to a form that explicitly obeys the periodicity
of the beamline, we try to find a map e:−K: that transforms it into the following form

M = e:−Ĥ:R = e:−K:e:−C:Re:K: , (11.29)

where we require the map e:−C: to depend only on the action variables Jx = (x̃2+x̃′2)/2 and
Jy = (ỹ2+ ỹ′2)/2. This is similar to eigenvalue transformations. They use a map that brings
a matrix into a particularly simple form, the diagonal form. Here, we require the map e:−K:

to transform the map into a form that only depends on the action variables and a rotation,
but that means that it turns the complicated phase space, visible on a Poincare plot, into
circles. Through e:−C:, the oscillation frequency now depends on the action variable and
therefore on the amplitude of the oscillation. It thus describes the amplitude-dependent
tune shift.

To simplify the notation, we omit the colons in the following discussion. Starting from
Equation 11.29 and right-multiplying by e−KR−1, we obtain

e−HRe−KR−1 = e−Ke−C (11.30)

but Re−KR−1 is a similarity transformation of the map Hamiltonian K by the linear trans-
port matrix S that we use to propagate Hamiltonians. We therefore use Re−KR−1 = e−SK

and arrive at
e−He−SK = e−Ke−C , (11.31)

which we now solve order-by-order. To this end, we write all involved entities as a series in
the order and label the order by a superscript in brackets

H = H(3)+H(4) , K = K(3)+K(4) , C = C(4) , SK = S(3)K(3)+S(4)K(4) , (11.32)

whereH(n) andK(n) are the polynomial coefficients of order n and all tune shift polynomials
C(2m+1) are zero, because terms in the Hamiltonian, which only depend on the action
variables, but not on the phases, can only appear in even orders.

In third order we keep only terms of that order and have

e−H(3)

e−S(3)K(3)

= e−K(3)

. (11.33)

Application of the Campbell-Baker-Hausdorff formula results in

H(3) + S(3)K(3) = K(3) + higher orders (11.34)

where we neglected terms such as [H(3),K(3)]. They are of order 3 + 3 − 2 = 4, which is
octupolar order, or even higher. Solving for K(3) results in

K(3) = (1− S(3))−1H(3) , (11.35)

where H(3) is the column vector of the third-order coefficients and S(3) is the matrix that
transforms the third-order coefficients, such that the operation results in a column vector
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containing the coefficients of K(3). They define the map that, for example, removes most of
the triangular shape of the phase-space trajectories in a Poincare plot close to a third-order
resonance, visible on the left-hand side in Figure 11.1.

In order to calculate the map K(4) and tune shift polynomial C(4) up to fourth order,
we keep terms to fourth order in Equation 11.31

e−H(3)−H(4)

e−S(3)K(3)−S(4)K(4)

= e−K(3)−K(4)

e−C(4)

(11.36)

and apply CBH to obtain a single expression in the exponent. We obtain

H(3) +H(4) + S(3)K(3) + S(4)K(4) − 1

2
[S(3)K(3) + S(4)K(4), H(3) +H(4)] + . . .

= K(3) +K(4) + C(4) − 1

2
[C(4),K(3) +K(4)] + . . . . (11.37)

Here we need to remember to reverse the order of the CBH and Poisson brackets, because
the elements are traversed from right to left. Collecting terms of fourth order only, we find

H(4) + S(4)K(4) − 1

2
[S(3)K(3), H(3)] = K(4) + C(4) (11.38)

and we assemble the terms containing the unknown K(4) and C(4) on the left-hand side

(1− S(4))K(4) + C(4) = H(4) − 1

2
[S(3)K(3), H(3)] . (11.39)

Here we realize that we cannot invert (1−S(4)), because it has zero eigenvalues; one eigen-
value in one dimension and three in two dimensions. Note that S(4) is based on a pure
rotation matrix R, and inspecting the eigenvalues reveals that they correspond to the eigen-
vector monomials (x2 + x′2)2, (y2 + y′2)2, and (x2 + x′2)(y2 + y′2). But these monomials
are just proportional to J2

x , J
2
y , and JxJy, respectively. This observation provides us with

a method to separately determine the transformation K(4), and the tune shift polynomial
C(4). We use singular value decomposition of the matrix (1− S(4)) to find the eigenvalues
and eigenvectors

(1− S(4)) = UΛV T =
∑
i

λi |ui⟩ ⟨vi| (11.40)

where Λ is a diagonal matrix containing the eigenvalues, whereas U and V are orthogonal
matrices that contain the respective eigenvectors |ui⟩ and |vi⟩ . Here we borrow the notation
with bra and ket vectors from quantum mechanics to visualize the construction of the
projection operator P̂j onto the subspace for λj . It is given by

P̂j =
|vj⟩ ⟨uj |
⟨uj |vj⟩

such that P̂ 2
j = P̂j . (11.41)

We then use this projector onto the null-space to project the right-hand side in Equa-
tion 11.39 onto the eigenspace of the zero eigenvalues to obtain the tune shift polynomial

C(4) = P̂λ=0

(
H(4) − 1

2
[S(3)K(3), H(3)]

)
. (11.42)

Next, we invert the rest by using the inverse on the subspace spanned by the non-zero
eigenvalues

K(4) = V “Λ−1′′UT

(
H(4) − 1

2
[S(3)K(3), H(3)]− C(4)

)
, (11.43)
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where U, V and Λ are the matrices from the SVD decomposition of (1−S(4)). The expression
“Λ−1” denotes the inverse of Λ, but applying the “rule” 1/0 → 0 for the zero eigenvalues,
as already used in Equation 8.50 in Section 8.4.2. We note that there is an ambiguity
in the decomposition, because adding any Hamiltonian K ′ that is part of the null space
(or, equivalently, depending on the action variables only) to the map K(4) will also fulfill
Equation 11.39. We resolve this ambiguity by requiring that the projection of K onto
the null-space of (1 − S(4)) must be zero, or P̂λ=0K

(4) = 0. This ambiguity is sometimes
referred to as gauge invariance and resolving it is called “fixing the gauge.” The method
can be extended to calculate higher orders by following the previous steps order-by-order,
but this is beyond our scope.

We can easily add the functionality to find the normal forms to our one-dimensional
MATLAB model from Section 11.4 up to fourth order. We therefore seek to determine
K(3),K(4), and C(4) from the transfer matrix R and the Hamiltonian Ĥ in Equation 11.15.
From R we first calculate the matrices S(3) and S(4) and then use Equation 11.35 to obtain
K(3). Then we calculate the right-hand side of Equation 11.39 and use SVD to decompose
S(4) according to Equation 11.40. The following function called nrnf() implements this.

% non-resonant normal forms

function [K,C]=nrnf(H0,R)

N=2; N1=N; N2=N*(N+1)/2; N3=N2*(N+2)/3; N4=N3*(N+3)/4; % subspace size

MM3=N1+N2+1:N1+N2+N3; MM4=N1+N2+N3+1:N1+N2+N3+N4; % index ranges

K=0*H0; C=0*H0; % initialize output arrays

[S1,S2,S3,S4]=adjoint3(R); % calculate the S matrices

K(MM3)=inv(eye(N3)-S3)*H0(MM3); % calculate K^(3)

S3K3=0*K; S3K3(MM3)=S3*K(MM3); % calculate S^(3)*K(3)

H3=0*H0; H3(MM3)=H0(MM3); H4=0*H0; H4(MM4)=H0(MM4); % init H^(3), H^(4)

H4tmp=0*H0; H4tmp=H4-0.5*PB(-S3K3,-H3); % minus flips Poisson bracket

[U,LAM,V]=svd(eye(N4)-S4); % svd of 1-S^(4)

[val,pos]=min(diag(LAM)); % find position of smallest eigenvalue

P0=zeros(N4);

if (abs(val)< 1e-10) P0=V(:,pos)*U(:,pos)’/(U(:,pos)’*V(:,pos)); end;

C(MM4)=P0*H4tmp(MM4);

H4tmp(MM4)=H4tmp(MM4)-C(MM4); % subtract from fourth order

for j=1:N4 % invert where you can..

if abs(LAM(j,j))>1e-10 LAM(j,j)=1/LAM(j,j); else LAM(j,j)=0; end

end

K(MM4)=V*LAM*U’*H4tmp(MM4); % calculate K^(4)

The function receives the Hamiltonian H0 and transfer matrix R as input variables and
returns the Hamiltonians for the phase-space distortion K and the amplitude-dependent tune
shift C. The code follows the description in a straightforward fashion. One must, however,
pay attention to the ordering of Hamiltonian when concatenating them.

The most important result of the normal-form procedure is the amplitude-dependent
tune shift encoded in the Hamiltonian C. By construction, C only depends on the action
variable J2

x in fourth order which implies that the coefficients hx4 of x4 and x′4 are equal
and half the magnitude of the coefficient of x2x′2. This in turn implies that we can write
the fourth order of the tune shift Hamiltonian C(4) = 4hx4J2

x and the amplitude-dependent
tune shift becomes ∆Q = (1/2π)∂C(4)/∂Jx = (4/π)hx4Jx. It is a straightforward exercise
to verify that this tune shift agrees with that derived from Fourier-transforming tracking
data. Moreover, deriving a Taylor-map from the K allows us to approximately transform
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the triangular-shaped phase portrait shown on the left-hand side of Figure 11.1 into circles.
But this is left as an exercise.

In this chapter we considered the motion of individual particles under the influence of
non-linear forces where the particles propagate independently of each other. In the following
chapter we will instead look at the interaction of the same-charge particles in a beam among
themselves—the so-called collective effects.

QUESTIONS AND EXERCISES

1. Determine the amplitude-dependent tune shift for the model with a single sextupole
from Equation 11.3 for the tunes (a) Q = 0.31 and (b) Q = 0.2526. To do so, launch
particles with x̂′

0 = 0 and starting amplitudes x̂0 in the range 0.01 < x̂0 < 0.15 in
steps of 0.01. Track for 16× 1024 turns and, for each amplitude, determine the tunes
by (a) Fourier transforming the recorded positions, and (b) by using the three-point
method from Section 7.5.1. Finally plot the tunes either versus the starting positions
x̂0, or the initial action variable J0 = (x̂2

0 + x̂′2
0 )/2.

2. Replace the sextupolar kick in Equation 11.1 with that (a) for an octupole with
(k3L/6)x

3
n, and (b) for a decapole with (k4L/24)x

4
n, transform the map to scaled

variables, and prepare the Poincare plots corresponding to those shown in Figure 11.1.

3. Plot the 1000-turn dynamic aperture in the normalized variable x̂ as a function of the
tune Q = µ/2π in the range 0 < Q < 1 in steps of 0.01. (a) Do this for a sextupole,
(b) octupole, (c) decapole.

4. Generalize the maps from Exercise 2 to two transverse dimensions and follow the steps
outlined in Section 11.2 to prepare a survival plot, as shown Figure 11.2. Use the tunes
Qx = 0.31 and Qy = 0.28.

5. What is the Hamiltonian H̃ of a thin (a) dipole corrector, (b) skew quadrupole, (c)
skew sextupole, (d) skew octupole?

6. Determine the kick that each of the elements from the previous exercise produces by

calculating e−:H̃:x, e−:H̃:x′, e−:H̃:y, and e−:H̃:y′.

7. A beamline consists of a dipole corrector that kicks the beam by an angle θ, a drift
space with length L, and a second corrector that kicks the beam by −θ. Express
the correctors by their Hamiltonians, push the upstream corrector to the end of the
beamline, and use the CBH formula to determine their joint action.

8. In Exercise 7, replace the dipole correctors by (a) skew quadrupoles, (b) (one-
dimensional) sextupoles, and repeat the analysis. What additional terms (monomials)
appear when calculating the Poisson brackets in the CBH formula? What types of
magnets would cause the same type of terms?

9. Implement the beamline with two (one-dimensional) sextupoles from Exercise 7 in
the MATLAB code, available from this book’s webpage. Verify that you obtain the
Hamiltonian after concatenation with the CBH formula you calculated in Exercise 7.

10. Discuss extending the code to handle transverse displacements of multipoles.

11. Build a beamline with three (one-dimensional) octupoles, all having the same ex-
citation, placed at positions with equal beta functions, and mutually separated by
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∆µ = 60o phase advance. Move all magnets to the same reference point, inspect the
first-order Hamiltonian, and find out which resonances are excited.

12. Calculate the amplitude-dependent tune shift for the ring from Exercise 1 using the
MATLAB function nrnf() to determine the non-resonant normal form of the Hamil-
tonian describing the beamline. Use the same tunes and compare with the tune shift
determined earlier.
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Collective Effects

By collective effects, we denote the interaction among the many particles that make up
a beam. For one, they repel each other by so-called space-charge forces, because they all
carry the same electrical charge. Moreover, the particles scatter from each other—in much
the same way as beam particles scatter from gas particles—and this may lead to particle
losses by the Touschek effect or to emittance growth by intrabeam scattering. But beyond
interacting among themselves, the beam particles interact via their environment by exciting
electro-magnetic fields that affect later arriving parts of the beam. These so-called wake fields
can act within a single bunch and also on other bunches. This interaction of the beam with
its environment can form a system that feeds back on itself and can become unstable. These
mechanisms are called single-bunch instabilities, if the wake fields have a very short range,
and they are called coupled-bunch instabilities, if the range covers consecutive bunches. In
the early sections of this chapter, we will discuss the mechanisms of these different collective
effects and later briefly address mitigating measures. But first, we cover space charge.

12.1 SPACE CHARGE

We already calculated the electro-magnetic fields from one beam on a counter-propagating
beam in the first paragraph of Section 9.6 and found there that the forces from the electric
and the magnetic fields add, because the field-producing beam and the deflected beam
moved in opposite directions. On the other hand, for co-moving particles with the same
charge, the forces of the electric and magnetic fields oppose each other and we find F⃗ =
dp⃗/dt = e(1− β⃗2

0)E⃗ = eE⃗/γ2
0 , such that space-charge forces are proportional to 1/γ2

0 , which
makes them mostly important at low beam energies. From the change of a particle’s angle
dr⃗′/dt = (dp⃗/dt)/p0 with p0 = β0γ0mc, we find dr⃗′ = eE⃗dt/β0γ

3
0mc = eE⃗ds/β2

0γ
3
0mc2,

where we used that ds = β0cdt. Following the discussion from Section 9.6, the magnitude of
the electric field for a round Gaussian beam is given by E(r) = (Ne/(2π)3/2σsε0)d(r, σr).
For small deviations from the origin r ≪ σr we obtain E(r) = (Ner/

√
2πσs)/4πε0σ

2
r ,

which is linear in r. Hence, we obtain dr′ = Nrprds/β
2
0γ

3
0

√
2πσsσ

2
r = −r∆k1(s)ds where

we introduce the focusing function ∆k1(s) = −Nrp/β
2
0γ

3
0

√
2πσsσ

2
r . From Equation 8.33 we

find that this defocusing leads to a lowering of the tune with the tune shift

∆Q =
1

4π

∮
β(s)∆k1(s)ds = − Nrp

4πβ2
0γ

3
0εr

(
C√
2πσs

)
, (12.1)

where σ2
r = εrβ(s) and C is the circumference. rp = e2/4πε0mpc

2, is the classical radius
of a particle with mass mp. The factor C/

√
2πσs accounts for the ratio of peak to average

current in a ring, if the beams are bunched and have bunch length σs.
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For a Gaussian distribution with elliptic cross-section, the electric field is given by Equa-
tion 9.28. Expanding it for small x and y leads to the following focusing functions ∆k1x
and ∆k1y in the horizontal and vertical direction

∆k1x = − 2Nrp√
2πσsβ2

0γ
3
0

1

σx(σx + σy)
and ∆k1y = − 2Nrp√

2πσsβ2
0γ

3
0

1

σy(σx + σy)
, (12.2)

respectively. Here the beam sizes σx and σy depend on the longitudinal position s. The
corresponding tune shifts ∆Qx and ∆Qy follow from Equation 8.33. For convenience, we

rewrite Nrp/
√
2πσs = Î/β0Ic with the peak beam current Î = Neβ0c/

√
2πσs and the Alvén

current Ic = 4πε0mpc
3/e = 17045A for electrons with mass mp = me. This allows us to in-

troduce the perveance K = 2I/β3
0γ

3
0Ic = 2Nrp/

√
2πσsβ

2
0γ

3
0 , which simplifies Equation 12.2

to ∆k1x = −K/σx(σx + σy) and ∆k1y = −K/σy(σx + σy).
Instead, basing the discussion of space-charge effects on Gaussian distributions, the

Kapchinsky-Vladimirsky, or KV-distribution, in the action Jx, Jy and angle ψx, ψy variables

Ψ(Jx, ψx, Jy, ψy) =
1

(2π)2Jx0Jy0
δ

(
1− Jx

Jx0
− Jy

Jy0

)
(12.3)

is often used in the literature [11, 102, 103]. It is normalized to unity and the projections
onto the real space coordinates x =

√
2Jxβx and y =

√
2Jyβy results in a homogeneously

filled ellipse, defined by its boundary x2/a2x + y2/a2y = 1 with half-axes ax =
√
2Jx0βx

and ay =
√

2Jy0βy, and constant density ρKV = 1/πaxay. The rms beam sizes are then
given by σ2

x,KV = ⟨x2⟩ = a2x/4 and σ2
y,KV = ⟨y2⟩ = a2y/4. When comparing tune shifts

derived from the KV distribution and Gaussians, we have to keep in mind that the density
ρKV = 1/4πσx,KV σy,KV in the center of the distribution is only half of that of an equivalent
Gaussian, which is ρG = 1/2πσx,KV σy,KV . The tune shifts derived from the KV-distribution
are therefore half that of an equivalent Gaussian. We need to keep this in mind when
interpreting the quantities quoted in the literature.

In order to find out how space-charge forces affect the beam sizes, we follow Sacherer and
derive envelope equations for the beam sizes starting from Equation 3.91 in Section 3.3.4 that
describes the dynamics of a single particle. With the Ansatz from Equation 3.92, we derived
the first of Equations 3.95, which reads u′′ + k1(s)u − 1/u3 = 0 after using Equation 3.97
to replace ψ′. Realizing that u =

√
β(s) and after multiplying the equation with the square

root of the emittance
√
ε we obtain the envelope equation σ′′ + k1(s)σ − ε2/σ3 = 0, where

we identified σ =
√

εβ(s). Including space-charge forces is now easily accomplished by
adding the corresponding defocusing functions ∆k1x and ∆k1y to the focusing functions
k1(s) → k1(s)−∆k1 with the result

σ′′
x + k1(s)σx − ε2x

σ3
x

− K

σx + σy
= 0 and σ′′

y − k1(s)σy −
ε2y
σ3
y

− K

σx + σy
= 0 , (12.4)

where the opposite signs of k1(s) describe the focusing of the quadrupoles in the acceler-
ator, which are focusing in one and defocusing in the other direction. Note also, that the
interpretation of the perveance K pertains to the center of a Gaussian distribution with
beam sizes σx and σy.

Integrating Equations 12.4 numerically is straightforward in MATLAB for a beamline
with ten 60o FODO cells, each 10m long, and with one-meter-long quadrupoles. The two
second-order equations need to be transformed into a system of four first-order differential
equations, and the following lines encode the derivatives within a function called sachfun()
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Figure 12.1 The beam sizes σx and σy in 10 FODO cells with K = 0 (left) and

K = 5× 10−8 (right). The initial values are equal in both cases.

% variables: x(1)=sigx, x(2)=sigx’, x(3)=sigy, x(4)=sigy’

dxds(1)=x(2); dxds(2)=-k1(s).*x(1)+epsx^2./x(1).^3+Kperv./(x(1)+x(3));

dxds(3)=x(4); dxds(4)=k1(s).*x(3)+epsy^2./x(3).^3+Kperv./(x(1)+x(3));

that is passed to the Runge-Kutta integrator ode45, which integrates the system of differ-
ential equations and returns the variables along the beamline in the range from 0 to 100m
with the following call

[s,x]=ode45(@sachfun,[0,100],x0,odeset(’MaxStep’,1e-2));

Here x0 contains the four initial values, obtained by calculating the beta functions with the
functions from Chapter 3. Moreover, we restrict the step size to 1 cm in order to achieve
adequate accuracy. The function k1(s) returns the quadrupole gradients as a function of
the position s along the beamline. Figure 12.1 shows the horizontal and vertical beam sizes
for the beamline with for εx = εy = 10−6 m-rad and K = 0 on the left-hand side and for
K = 5 × 10−8 on the right-hand side, which corresponds to 10mA protons with a kinetic
energy of 25MeV. We observe a distinct beating of the beam sizes, similar to that from
mismatched quadrupoles.

So far, we discussed space-charge forces that act directly between particles, but the par-
ticles in a beam also induce image charges in the beam pipe, we employed them earlier
for diagnostic purposes in Chapter 7. The image charges, in return, exert so-called indirect
space-charge forces on the beam particles. To analyze this system, we consider a beam with
line density λ(s) = dN/ds centered between two parallel horizontal plates, separated by
2h. They represent the vacuum chamber. On their surface, the electric field lines must be
perpendicular in order to satisfy the boundary conditions on perfectly conducting metallic
surfaces. This is achieved by introducing a hierarchy of image charges. The boundary condi-
tion on the upper wall is satisfied by an image charge at +2h. But now we have two charges
to compensate on the lower wall. This is accomplished by introducing an additional image
charge at −4h that assures that the field lines emanating from the image charge at 2h is
perpendicular on the lower wall. The same argument holds for the image charges at −2h
and 4h. Of course the charges at ±4h require compensating charges at ±6h and so forth.
We therefore arrive at an infinite sequence of image charges with alternating polarity. The
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electric field Ey at a vertical distance y from the center of the beam, is then given by

Ey =

∞∑
n=1

(−1)n
λ

2πε0

(
1

2nh+ y
− 1

2nh− y

)
=

λ

4πε0h2

π2

12
y , (12.5)

where we used
∑∞

n=1(−1)n/n2 = π2/12. We therefore find a vertical force, linear in the
distance y from the center of the beam pipe, that is focusing in the sense that it points back
towards the center of the beam. The horizontal component of the force can be found from
div E⃗ = 0. It has the opposite sign but equal magnitude and is therefore defocusing. The
focusing and defocusing forces due to these indirect space-charge forces lead to tune shifts,
first discussed by Laslett for a number of different beam pipe geometries [104] and referred
to as Laslett tune shifts. Note that the indirect space-charge forces from a displaced beam
will alter the image charges and thereby the fields. In this way the beam as a whole can
affect its own centroid motion, and is therefore a coherent tune shift, that will be visible on
beam position monitors.

12.2 INTRABEAM SCATTERING AND TOUSCHEK-EFFECT

The particles in a beam are not only affected by their average field, as covered in the
previous section. They also perform longitudinal and transverse oscillations and will scatter
from each other. For electrons, this process is called Møller scattering. Modern synchrotron
light sources operate with very small bunch sizes and a large number of particles per bunch,
which makes the probability for scattering among particles within a bunch very large and
constitutes a limiting factor for their performance. Most scattering events only change the
momentum of the participating beam particles by a small amount, and, since the events are
random, they increase the emittances. This process is referred to as intrabeam scattering.
The growth rates were first calculated by Piwinski [105] who showed that in storage rings
operating below transition, mostly proton or heavy-ion storage rings, intrabeam scattering
increases the emittances in all there dimensions toward an equilibrium. On the other hand,
in rings operating above transition, the emittances can grow indefinitely. The reader is
referred to the original literature [105, 106] and a recent comparison in [11] for the formulae
to evaluate the growth rates.

Occasionally, in a scattering event, the momenta may change by a large amount, and
this can lead to particle losses. In most storage rings, the betatron tunes are much larger
than the synchrotron tune and the transverse momenta are therefore much larger than the
longitudinal momenta in the beam’s reference frame. Now, if a scattering event deflects
a fraction of the large transverse momenta into the longitudinal phase space, where the
particle is lost if it exceeds the momentum acceptance δmax, the height of the separatrix
from Equation 5.40 in Section 5.4. This process is called the Touschek effect. The detailed
derivation of the Touschek lifetime τT is beyond the scope of this book, and we only quote
the result, slightly adapted from [11]

1

τT
=

Nbβ
3
0r

2
pcD(ξ)

8πγ2
0σxσyσsδ3max

with D(ξ) = ξ1/2
∫ 1

0

[
1

u
− 1− 1

2
log

(
1

u

)]
e−ξ/udu (12.6)

and ξ = δ2maxβx/β
2
0γ

2
0εx. The reason for a short Touschek lifetime is a high charge density

Nb/σxσyσs, which makes collisions, also those with large momentum transfer, very frequent.
The problem can be alleviated by increasing the bunch volume, often by increasing the bunch
length σs. A second option is to increase the momentum acceptance δmax by increasing the
accelerating voltage V̂ in Equation 5.40. Evaluating the lifetime in Equation 12.6 is rather
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Figure 12.2 On the left-hand side a bunch (gray) passes a cavity-like structure, where

it excites longitudinal fields, shown as dashed lines. On the right-hand side, the

longitudinal fields, excited by a single particle, in resonating structures with Qr = 1

and Qr = 3 are shown.

simple, after defining the parameters the integral D(ξ) is evaluated numerically with the
following lines of code

f=@(u)exp(-xi./u).*(1./u-1-0.5.*log(1./u));

D=integral(f,0,1)*sqrt(xi)

For a rapid estimate of the lifetime, we can use average values for the beam sizes σx

and σy and the beta function βx, but for a more realistic estimate a weighted average∮
(1/τT (s))ds/C of the lifetime τT (s) at every longitudinal position s in the ring should be

evaluated.

12.3 WAKE FIELDS, IMPEDANCES, AND LOSS FACTORS

The indirect space-charge forces, discussed at the end of Section 12.1, are caused by the
beam’s interaction with its environment. First, the beam excites fields in the beam pipe
that in turn act back on the beam. Beam loading, discussed in Section 6.6, is another
example where the beam excites fields in a cavity that act back on particles arriving later.
This mechanism is the generic feature: the leading particles excite fields that act back on
particles arriving later. Often resonant structures in the beam pipe, such as the accelerating
cavities, bellows, or steps in the cross-section, are responsible for it. The fields that the beam
“leaves behind,” are called wake fields, because they resemble the wave pattern, called the
“wake,” behind a boat moving through water. We will base the discussion on a resonator
wake, which is the impulse response of a damped harmonic oscillator, or equivalently, of the
RLC circuit shown in Figure 6.7. The image on the left-hand side in Figure 12.2 illustrates
the concept; the bunch, shown as the gray ellipsoid, moves toward the left, and the head
excites fields in the cavity-like structure that subsequently act back on the tail of the same
bunch. The excited fields can be either transverse or longitudinal and we will mostly discuss
the latter.

We already calculated the impedance Z(ω), which is the response to a harmonic excita-
tion with frequency ω, of the RLC circuit in Section 6.3 and gave the result in Equation 6.19.
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Setting the n2 = 1 and multiplying numerator and denominator with ωωr/iQr, we arrive
at

Z∥(ω) =
Rsωωr/iQr

ω2 − iωrω/Qr − ω2
r

=
Rs

i
√

4Q2
r − 1

[
ω+

ω − ω+
− ω−

ω − ω−

]
(12.7)

where ω± = (ωr/2Qr)
[
i±

√
4Q2

r − 1
]
are the roots of the denominator in the first equality.

The second equality follows from a partial-fraction decomposition. Note that ω− = −ω∗
+

and this implies that the second term in the last equation is the complex conjugate of the
first one. Therefore, the wake function is causal and only has non-zero values for t > 0;
only particles arriving later than the particle that excited the wake field are affected. The
impulse response W (t) of the resonator, often called the wake potential, is given by the
Fourier transform of the harmonic response, the impedance, and for positive times t, which
is behind the source particle, we obtain

W (t) =
1

2π

∫ ∞

−∞
Z∥(ω)e

iωtdω =
Rs√

4Q2
r − 1

[
ω+e

iω+t − ω−e
iω−t

]
(12.8)

=
2Rs√
4Q2

r − 1
Re

[
ω+e

iω+t
]

=
ωrRs

Qr
e−t/τ̂d

[
cos ω̂t− 1√

4Q2
r − 1

sin ω̂t

]

with the abbreviations τ̂d = 2Qr/ωr and ω̂ = ωr

√
1− 1/4Q2

r. On the right-hand side in
Figure 12.2, we show W (t) as a function of time t for values of Qr = 1 and Qr = 3.
Discontinuities in the beam pipe are often modeled by a fast-decaying wake field with
Qr = 1 and a frequency ωr ∼ 1/σt = c/σs, determined by the bunch length σs. Only
particles arriving a time t after the excitation experience a change of its energy proportional
to W (t).

In a bunch with finite length, a particle at some position t in the tail will expe-
rience the superposition of all the fields excited by the particles at t′ < t that are
ahead of it, G(t) =

∫∞
0

ψ(t − t′)W (t′)dt′, which is commonly called the wake function
of a bunch with longitudinal distribution ψ(t). For a bunch with a Gaussian distribution

ψ(t) = e−t2/2σ2
t /
√
2πσt, we obtain

G(t) =
1√
2πσt

∫ ∞

0

e−(t−t′)2/2σ2
t

2Rs√
4Q2

r − 1
Re

[
ω+e

iω+t′
]
dt′

=
Rs√

4Q2
r − 1

e−t2/2σ2
t Re

[
ω+w

(
ω+σt√

2
− i

t√
2σt

)]
, (12.9)

where we use the following representation of the complex error function [22] w(z) =

(2/
√
π)

∫∞
0

e−α2+2iαzdα in the evaluation of the integral. On the left-hand side in Fig-
ure 12.3, we show the longitudinal particle distribution ψ(t) (solid) and G(t) for two broad-
band resonators. Both have Qr = 1, but one is characterized by a very low frequency
(dashed), such that ωrσt = 0.2π and the other (dotted) by a ten times higher ωr. We see
that the low-frequency wake function almost follows the bunch profile (dots) and all the
trailing particles are expected to lose energy, whereas the high-frequency wake shows an
oscillation within the bunch, and some particles will lose energy and others will gain energy.

The average energy loss of the entire bunch is given by the wake function G(t) averaged
over the bunch distribution ψ(t) is described by the loss factor k∥(σt) =

∫∞
−∞ ψ(t)G(t)dt.

Evaluating the integral by first expressing the complex error function in G(t) by its integral
representation, exchanging the order of integration, evaluating the integral over t, and,
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Figure 12.3 The wake fields W (t) (left) caused by a bunch with Gaussian distribution

for low (dashed) and high (dotted) frequencies and the loss factor k∥ (right) as a

function of the frequency ωrσt normalized to the bunch length σt.

finally, using the integral expression once again, we find

k∥(σt) =
Rs√

4Q2
r − 1

Re [ω+w(ω+σt)] with ω+ =
ωr

2Qr

(
i+

√
4Q2

r − 1
)

. (12.10)

On the right-hand side in Figure 12.3, we display Re [ω+w(ω+σt)] as a function of ωrσt and
observe that long bunches cause much smaller losses than short ones, because the oscillations
of the wake function within the bunch, mentioned at the end of the previous paragraph,
will cancel and thus reduce the average energy loss.

Instead of calculating the loss factor in the time domain by first convoluting the bunch
distribution ψ with the wake potential W (t) and then once again with ψ, we can write the
loss factor in terms of the Fourier transforms and find

k∥(σt) =
1

2π

∫ ∞

−∞
Z∥(ω)ψ̃

2(ω)dω , (12.11)

where ψ̃(ω) is the Fourier transform of the longitudinal bunch profile ψ(t) and ψ̃2(ω) =

e−ω2σ2
t is the spectral power density of the bunch. Equation 12.11 shows that the energy

loss can be written as the overlap of the spectrum of the impedance Z(ω) and power
spectrum of the bunch ψ̃2(ω). Conversely, if the spectra do not overlap, there is no energy
loss or other interaction between bunch and impedance, a theme we will meet again in later
sections. Note that k∥ denotes the energy lost by a single particle. In the literature, it is
often given in the units of V/pC, such that the energy lost by a bunch can be obtained by
multiplying the loss factor by the bunch charge Ne.

Maxwell’s equations intricately relate the transverse and longitudinal components of
the electro-magnetic fields that transfer momentum to the beam. One consequence is
the Panofsky-Wenzel theorem, which states that change of the transverse forces along
the beamline equals the negative of the transverse changes of the accelerating forces
∂F⊥
∂s = −∇⊥Fs. This relation links the longitudinal and transverse wake fields, or equiva-
lently, the impedances. For the transverse impedances, this implies Z⊥(ω) = (c/iω)Z∥(ω),
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and for the resonator from Equation 12.7, we obtain

Z⊥(ω) =
(c/iω)Rs

1 + iQr

(
ω
ωr

− ωr

ω

) and W⊥(t) =
cRs/Qr√
1− 1/4Q2

r

e−t/τd sin(ω̂t) , (12.12)

where the wake function W⊥(t) is the Fourier transform of Z⊥(ω). For transverse
impedances, one usually quotes R⊥ = (c/ωr)Rs instead of the longitudinal shunt
impedance Rs.

The finite resistivity of the beam pipe material causes the electro-magnetic fields, es-
pecially those with high frequencies caused by very short bunches, to penetrate into the
walls as a consequence of the skin effect. The energy dissipated causes additional losses that
are due to the longitudinal resistive wall impedances. The associated wake fields that trail-
ing particles experience. The longitudinal impedance is given [14] by Z∥,rw = µZ0δs/2µ0b

with the skin depth δs =
√

2/σcµω and the conductivity σc, the beam pipe radius b, the
permeability µ, and the impedance of free space Z0 = µ0c.

We saw that the discontinuities in the beam pipe and its finite resistance give rise to
impedances that cause bunches to leave behind energy in the form of wake fields that acts
back on later portions of the bunch. In some circumstances, this may lead to a feedback
mechanism that can become unstable, even if the beam is unbunched, as we shall see in the
next section.

12.4 COASTING-BEAM INSTABILITY

In the absence of a radio-frequency system, the beam in a storage ring is not bunched, but
evenly smeared-out around the circumference C. It is often referred to as a coasting beam.
Its distribution function ψ(Θ, δ) in the variables θ = 2πs/C and δ therefore only depends
on δ and is denoted by ψ0(δ). After such a beam is perturbed, we assume the perturbation
to behave like a harmonic wave einθ−iΩt with n-fold periodicity and frequency Ω traveling
around the ring. The distribution function ψ(θ, δ, t) then assumes the form

ψ(θ, δ, t) = ψ0(δ) + ψn(δ)e
inθ−iΩt (12.13)

with a perturbation ψn, assumed to be small compared to ψ0. The current I(t) caused by
the perturbed distribution is Ine

inθ−iΩt with the Fourier transform Ĩn = 2πIne
inθδ(ω−Ω).

In conjunction with the impedance Z∥(ω) it causes the energy offset δ to change by dδ/dt =

−(e/β2
0E0T0)

∫∞
−∞ Z∥(ω)Ĩn(ω)e

−iωtdω/2π. The equations of motion for a particle in the
coasting beam then become

dθ

dt
= ω0 − ω0ηδ and

dδ

dt
= − e

β2
0E0T0

InZ∥(Ω)e
inθ−iΩt . (12.14)

In order to find the frequencies Ω and in particular their imaginary part, which deter-
mines the growth rate of an instability, we will determine self-consistent solutions for the
distribution function with the help of the Vlasov equation

∂ψ

∂t
+

∂ψ

∂θ

dθ

dt
+

∂ψ

∂δ

dδ

dt
= 0 . (12.15)

It follows from the conservation of particles dψ/dt = 0 in time. Inserting the equations of
motion from Equation 12.14 and integrating over δ leads to a requirement for self-consistency
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for the perturbing current In(δ). After canceling In from both sides of the equation, we find
the dispersion relation

1 = −i
e2Z∥(Ω)

β2ET 2
0

∫ ∞

−∞

∂ψ0(δ)/∂δ

nω0(1− ηδ)− Ω
dδ , (12.16)

where we neglected ∂ψn/∂δ ≪ ∂ψ0/∂δ. If the unperturbed momentum distribution is Gaus-

sian with ψ0(δ) = (Nb/
√
2πσδ)e

−δ2/2σ2
δ , the equation becomes after substituting ξ = δ/σδ

1 = −i
I0Z∥(Ω)/n

2πβ2(E/e)ησ2
δ

ID(Ω) with ID(Ω) =
1√
2π

∫ ∞

−∞

ξe−ξ2/2dξ

ξ −
(
1− Ω

nω0

)
/ησδ

, (12.17)

where I0 = Nbe/T0 is the macroscopic beam current. With the abbreviation

ξ1 =
(
1− Ω

nω0

)
/ησδ, we solve the dispersion integral ID by writing 1/(ξ − ξ1) =

i
∫∞
0

e−iα(ξ−ξ1)dα and add a term ebξ to the integral in order to use parametric differentia-
tion with respect to b to replace the linear term in ξ in the numerator under the integral.
The integral over ξ then has the form of a shifted Gaussian in ξ that can be integrated
by completing the square. The remaining integral over α is solved by using the following
representation of the complex error function w(z) = (2/

√
π)

∫∞
0

e−α2+2iαzdα, resulting in

ID(Ω; b) = i

√
π

2
eb

2/2w

(
ξ1 − b√

2

)
, (12.18)

where the auxiliary argument b in ID refers to the additional parameter introduced for
parametric differentiation. Thus, differentiation ID(Ω, b) once with respect to b and then
setting b = 0 results in the sought integral

ID(Ω) = 1 + i

√
π

2
ξ1w

(
ξ1√
2

)
with ξ1 =

1

ησδ

(
1− Ω

nω0

)
, (12.19)

where we evaluate the derivative of the complex error function with the relation [22] w′(z) =
2i/

√
π − 2zw(z).

Even with ID(Ω) given as a function of Ω, it is very difficult to solve Equation 12.17
for a given impedance Z∥ for the, in general complex, frequency Ω. Instead, we introduce
the scaled impedance U + iV = (I0/2πβ

2
0(E0/e)ησ

2
δ )(Z∥(Ω)/n), such that Equation 12.17

now reads (U + iV ) = i/ID(Ω). Displaying the real and imaginary parts of i/ID(Ω) as a
function of Ω yields the onion-shaped curves, shown in Figure 12.4. For Im(Ω) > 0 (dashed
curve) they lie inside the solid line, and for negative values they lie outside. This indicates
that the solid line, drawn for purely real Ω, separates the complex plane into the inside
region, where the beam is damped, and the outside region, where the instabilities grow.
The shape of the curve that separates the stable from the unstable region depends on the
unperturbed momentum spread ψ0(δ), but the circle with unit radius, shown as the dotted
line in Figure 12.4, serves as a conservative guess for stability. Thus, if the scaled impedance
|U + iV | < 1 lies inside the unit circle, we expect the beam to be stable and we therefore
obtain the Keil-Schnell stability criterion

∣∣∣∣
Z∥(Ω)

n

∣∣∣∣ <
2πβ2

0(E0/e)|η|σ2
δ

I0
F , (12.20)

where the impedance Z∥(Ω) needs to be evaluated at harmonics of the revolution frequency
Ω = nω0. It is noteworthy that a larger beam current I0 requires a smaller impedance for
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Figure 12.4 The complex impedance plane U + iV with the solid line indicating the

limit of stability. The dashed line indicates stable conditions, and the dotted circle

shows the conservative estimate from Equation 12.20, the Keil-Schnell stability

criterion.

the beam to remain stable. Moreover, a larger momentum spread σδ helps to sustain a larger
impedance; this stabilizing effect of a finite momentum spread is the classical application (in
beam physics) for Landau damping. F is a form factor that varies for different momentum
distributions and is unity for a Gaussian distribution.

12.5 SINGLE-BUNCH INSTABILITIES

In this section we will consider very short-range wake potentials that act back on the same
bunch. In order to investigate the effect of the wake potential on the bunch length and
momentum spread, we follow [107] and construct a simplified model of the longitudinal
dynamics. As dynamic variables of the longitudinal phase space, we use the scaled arrival
time x1 = Ωst/α, and the momentum deviation x2 = δ. Here Ωs is the synchrotron frequency
and α is the momentum compaction factor. For two-dimensional Gaussian distributions,
given by Equation 2.23, we then construct maps for the centroids Xi and the sigma matrix
σij for i, j = 1, 2. The motion, unperturbed by wake fields, is characterized by synchrotron
oscillations, modeled by a rotation matrix U(νs) that only depends on the synchrotron
tune νs = ΩsT0. Radiation damping and excitation affect the momentum, given by x′

2 =

ξx2 +
√

1− ξ2σ0P̂ with the damping decrement ξ = e−T0/τE , where τE is the synchrotron

radiation damping time from Equation 10.7, and P̂ is a “random number generator,” defined
through its averages ⟨P̂ ⟩ = 0 and ⟨P̂ 2⟩ = 1. The equilibrium bunch length σ0 results
from the joint action of oscillations, damping and radiation excitation. Moreover, if the
bunch length is very short, such that ω0σt ≪ 1, we can approximate the wake potential
by a constant W (x1) = W0H(x1)/E0 with the Heaviside function H(x), which is unity for
positive arguments and zero otherwise. E0 is the beam energy. For the change in x2 we
thus have x′

2 = x2− f(x1) with f(x1) = (f0/
√
2πσ11)

∫ x1

−∞ e−z2/2σ11dz and f0 = NeW0/E0.
The integral can be expressed in terms of error functions [22]. From these assumptions,
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Hirata [107] constructs maps for the Xi and σij for synchrotron oscillations

X ′
i =

2∑
j=1

UijXj and σ′ = UσU t , (12.21)

for radiation excitation and damping

X ′
1 = X1, X ′

2 = ξX2, σ′
11 = σ11, σ′

12 = ξσ12, σ′
22 = ξ2σ22 + (1− ξ2)σ2

0 , (12.22)

and for the wake field

X ′
1 = X1, X ′

2 = X2 −
f0
2
, σ′

11 = σ11, σ′
12 = σ12 −

f0
√
σ11

2
√
π

,

σ′
22 = σ22 −

f0σ12√
πσ11

+
f2
0

12
. (12.23)

In [107], the equilibrium configuration, which is the period-1 fixed point of the concatenation
of these three maps, is calculated analytically. Here, we use MATLAB instead to encode the
three maps and to iterate for a few damping times to find the equilibrium bunch parameters
numerically. We use the following function

function [X,sigma]=hirata_iterate(N,U,xi,sig0,f0,X,sigma)

for k=1:N

[X2,sigma2]=hirata_synosc(U,X,sigma);

[X3,sigma3]=hirata_radamp(xi,sig0,X2,sigma2);

[X4,sigma4]=hirata_wake(f0,X3,sigma3);

X=X4; sigma=sigma4;

end

which returns the bunch centroid X and sigma matrix sigma after N turns. Inside the func-
tions hirata xxx Equations 12.21 to 12.23 are implemented. In Figure 12.5, we show the
equilibrium bunch length and energy spread as a function of the strength of the wake f0.
We observe that the bunch length initially shrinks before exceeding its equilibrium value.
This shrinking may be attributed to modified longitudinal fields caused by the bunch itself
and is called potential well distortion. The wake fields also cause the momentum spread to
increase, which is eventually responsible for increasing the bunch length. This effect is called
turbulent bunch lengthening, because the wake fields increase the momentum spread and
this translates into an increased bunch length. The MATLAB functions for this simulation
are discussed further in Appendix B.5.

Turning briefly to transverse wake fields, we note that they are excited by particles
passing discontinuities in the beam pipe with transverse offsets ∆x or ∆y. The excited
fields are transverse and will transversely kick trailing particles. In an ultra-relativistic
linear accelerator, where the particles maintain their longitudinal position, a transversely
oscillating particle at the head will resonantly excite the particle at the tail, because both
have the same betatron oscillation frequency. It is easy to show [13, 109] that the amplitude
of the trailing particle will grow linearly with time and is lost in this mechanism, called beam
break-up. By operating a few accelerating structures at the beginning of the accelerator off-
crest, it can be mitigated. In the structures, the head and the tail of a bunch receive different
energies through the linear energy variation—a chirp—along the bunch. The momentum
dependence of the quadrupole focusing then causes the betatron frequencies to vary along
the bunch and thus will reduce the resonant excitation of the trailing particles. The spread of
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Figure 12.5 The bunch length and momentum spread as a function of the strength

f0, which is proportional to the charge per bunch (left) and the mode spectrum of

the transverse mode-coupling instability (right, from [108]).

oscillation frequencies causes the particles to decohere, another example of Landau damping.
In this particular case, it is called BNS damping, after the first letter of the names of the
inventors [110].

In the free-electron lasers based on linear accelerators, the peak currents can reach several
thousands of amperes and very high-frequency wake fields can cause density modulations at
optical wavelengths with µm periodicity. This self-modulating of the electron bunch is called
micro-bunching instability, which can drastically increase the momentum spread and the
emittance of the beam, which may prevent lasing and even cause beam loss. This instability
can be usually prevented with a laser heater, in which the momentum spread of the beam
is slightly increased in order to provide Landau damping to mitigate the growth of the
instability.

In storage rings, the longitudinal positions of particles constantly change due to syn-
chrotron oscillations. Even this system can be analyzed with a two-particle model [11, 13,
109]. Here, we will instead briefly mention a complementary approach [108], which is inspired
by [107]. We consider a transverse wake potential, where a particle with transverse offset
x̂ and longitudinal position ẑ gives a transverse kick to a particle at position z. For very
short bunches, it has the form W⊥(z) ∝ x̂(ẑ − z). From this potential we determine a map
for the centroid and sigma matrix of a six-dimensional Gaussian distribution, described by
Equation 2.23. The transverse kick ∆x′ = ∆x2 ∝ f(x5) of a particle at longitudinal position
z = x5 is then given by integrating over all particles ahead with the result

f(x5) ∝ exp

[
− (x5 −X5)

2

2σ55

]{
X1

√
2σ55

π
+ [X1(x5 −X5)− σ15]w

(
−i

x5 −X5√
2σ55

)}
,

(12.24)

where we use the canonical naming of the phase-space variables introduced in Section 2.3
and w(z) is the complex error function [22]. From f(x5) we then derive the maps for centroid
and sigma matrix. After adding maps for betatron and synchrotron oscillations as well as
for radiation damping and excitation in order to determine the equilibrium beam sizes,
we numerically deduce equilibrium beam parameters in the same way we discussed earlier
in this section. From slightly perturbing the equilibrium, we then derive a linearized map
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Figure 12.6 Illustration of the mechanism that causes the head-tail instability. See

the text for an explanation.

from which we deduce the perturbed tunes. On the right-hand side in Figure 12.5, taken
from [108], we show the tunes and the growth rates as a function of the particles stored in a
single bunch for a simulation of LEP at 20GeV. At Nb ≈ 45× 1010 two frequencies merge,
which causes this mechanism to be called mode coupling instability. A careful analysis shows
that the tune merges with its lower synchrotron sideband. In our model, the latter is related
to the dynamics of the correlations between transverse and longitudinal degrees of freedom,
σ15 and σ25, which can be visualized as the head moving opposite to the tail of the bunch
and leads to coining this particular instability fast head-tail instability. Fast, because the
growth rate, visible in the lower plot, increases dramatically.

Besides the fast head-tail instability, which has a distinct threshold for its growth rate,
the “normal” head-tail instability additionally depends on the chromaticity Q′ of the storage
ring, and its growth rates are proportional to Q′. This instability is one of the main reasons
for using sextupoles to adjust Q′ = µ′/2π to values close to zero. The physical reason for
the instability can be traced to a systematic non-zero betatron phase between leading and
trailing particles in the bunch [111]. This can be explained with the help of Figure 12.6,
which shows two particles (black and shaded) with opposite phases of their synchrotron
oscillations in the phase space of arrival time τ and momentum offset δ. We assume that
they initially (left image) have the same longitudinal position cτ and additionally have the
same transverse phase, shown on the lower sketch. During the first quarter of the synchrotron
oscillation, the black particle is ahead of the shaded particle but has lower energy. Therefore,
it lags behind in the betatron phase proportional to µ′δ, which is indicated on the lower
sketch. During the next quarter, from the middle to the right image, the black particle has
higher energy and its betatron phase will increase, until it is equal to that of the shaded
particle, once the situation on the right is reached. In the next two quarters (not shown)
the shaded particle is ahead in cτ but lagging in betatron phase. So, the leading particle
always lags in betatron phase. This is important, because only the leading particle affects
the betatron motion of the trailing particle via transverse wake fields, and if the relative
betatron phase is always the same, the energy change of the trailing particle will always be
the same. Imagine pushing a child on a swing; pushing a little ahead of the turnaround point
will reduce the amplitude, pushing a little after it will increase the amplitude. We also point
out that there is a second out-of-phase betatron mode which has just the inverse behavior.
It is damped if the in-phase mode, described above, is excited and vice versa. In summary,
the chromaticity is responsible for this instability method and needs to be compensated to
small values. We refer the reader to [112] for a thorough analysis of this effect.
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The short-range wake fields were responsible for the single-bunch instabilities discussed
in this section. In the next, we will consider long-range wake fields due to narrow-band
resonating structures that can couple the motion of multiple bunches in a storage ring.

12.6 MULTI-BUNCH INSTABILITIES

Most storage rings operate with a large number of stored bunches, for example, almost
3000 in LHC. Any narrow-band resonant structure with a large quality factor Qr have
long decay times τr = 2Qr/ωr and, once excited by one bunch, affect many later-arriving
bunches. This configuration resembles a system of weakly coupled oscillators, in which the
slowly decaying, also called long-range wake fields, provide the coupling mechanism. In the
following, we will consider transverse wake fields, for which the equations of motion for the
horizontal position xn of bunch number n can be written as

ẍn + ω2
βxn = −e2Nbc

2

E0C

∞∑
k=0

M−1∑
m=0

W⊥

(
n−m

M
C + kC

)
xm

(
t− n−m

M
T0 − kT0

)
(12.25)

where C is the circumference, T0 the revolution time in the ring, and ωβ is the betatron
frequency. The term on the right-hand side describes the force due to the wake field that
bunch m, having had transverse position xm(t −∆t) at a time ∆t = (n −m)T0/M + kT0

earlier. Here (n−m)T0/M is the difference in travel time of bunch n and m, and kT0 takes
into account very long range wakes from earlier turns k. If the bunch m excites a wake
at this time, it starts oscillating and the argument of W⊥(c∆t) describes the amplitude of
the wake field a distance s = c∆t after it was excited. Since Equation 12.25 is linear in
the transverse position, we attempt to solve it with an exponential xn = Ane

−iΩt+2πipn/M .
The phase 2πipn/M describes the relative phase of individual bunches. For example, for
p = 0 they all oscillate in phase, and for p ̸= 0 a snapshot in time will show an oscillation
around the ring with p periods. Inserting this trial for xn into Equation 12.25 and after
replacing the wake function W⊥ by its Fourier transform, the impedance Z⊥, we obtain for
the eigenfrequency Ω

Ω = ωβ − i
Me2Nbc

4πE0T0Qx

∞∑
q=−∞

Z⊥ (ωβ + (p− qM)ωr) . (12.26)

Here we see that the real part of the impedance Re(Z⊥), evaluated at the betatron sidebands
ωq = ωβ + (p − qM)ω0 at multiples of the revolution harmonic ω0, causes an imaginary
contribution to the eigenfrequency Ω and thus may lead to exponential growth or damping
of the mode, depending on the sign. Similarly, longitudinal narrow-band impedances Z∥
cause longitudinal coupled-bunch modes by slowly decaying wake fields that couple the
synchrotron oscillations of multiple bunches, but we refer the reader to the specialized
literature [112, 113].

A common source of spurious narrow-band impedances are higher-order modes in accel-
erating structures. For example, the pill-box cavity from Section 5.1 does not only support
the “wanted” accelerating TMmnp =TM010 mode, but also all modes with larger mnp, and
even TE modes with many different eigenfrequencies. Any one of them may overlap with
a betatron sideband and potentially lead to an unstable mode. Therefore, one normally
tries to prevent these modes by increasing the losses of these modes by adding higher-order
mode dampers. These are antennas that extract the power deposited by the beam into these
modes, reduce the Qr value of the modes, and causes them to decay before the next bunch
arrives.
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In electron or positron storage rings, the instabilities can only grow if their growth rate
exceeds the damping rate due to synchrotron radiation. Furthermore, if damping higher-
order modes is insufficient, an active damping system such as a feedback systems is used. It
senses the growth of individual modes p and uses a pulsed magnet, a kicker, to provide kicks
to the beam that counteract the instability. In recent years, the rise in computing speed of
digital signal processors made it possible that most modern feedback systems monitor the
oscillations of individual bunches and act back on them bunch-by-bunch [113].

Even for coupled-bunch instabilities, a spread in oscillation frequencies helps to reduce
the growth rates, because the resonant coupling of the individual oscillators is reduced.
We already encountered this mechanism, Landau damping, in previous sections. Sometimes
octupoles are used to provide amplitude-dependent tune shifts, which, in conjunction with
a finite emittance, cause a spread of the betatron frequencies.

QUESTIONS AND EXERCISES

1. Injecting protons with a kinetic energy of 50MeV into CELSIUS with a circumference
of 82m, we used to store a beam current of 10mA in a single RF-bucket. The bunch
length was on the order of 10m, average beta functions of 10m, and transverse rms
beam size on the order of 5mm. Estimate the space-charge tune shift.

2. How do you have to adjust Equation 12.1 to calculate the space-charge tune shift for
highly charged ion beams, such Ar10+ or Pb82+?

3. Compare the two types of doublet lattice shown in Figure 3.24 and investigate which
one performs better in the presence of space charge. Use the same geometry as the
figures, but (a) replace the thin quadrupoles by 0.6m long ones and rematch the phase
advances in both planes to µ/2π = 0.4. (b) Use three copies of the thus prepared
beamline and prepare functions k1(s) to return the quadrupole gradients along the
long beamline, such that you can base your code on the MATLAB script sacherer.m.
(c) Run the simulations for both configurations and prepare plots of the beam sizes
along the beamline. (d) Extract the Twiss parameters βe and αe at the end and
calculate Bmag with respect to the zero-current Twiss parameters to quantify the
mismatch. (e) Which configuration is better?

4. The MATLAB simulation to integrate Equation 12.4, discussed in Section 12.1 and
used in the previous exercise, requires initial Twiss parameters to be specified. In
order to be able to use the equations for a ring, on the other hand, we have to find the
periodic initial conditions by minimizing a suitable chisq() function, which returns
a value characterizing the difference of the initial Twiss parameters and those at the
end of the beamline. Implement this and test it with a beamline consisting of three
copies of the doublet configurations from the previous exercise, such that the tune of
the periodic system is 3 × 0.4 = 1.2. Inspired by Equation 3.98, devise a method to
extract the tune with space charge from the simulations.

5. (a) Prepare a plot of D(ξ) from Equation 12.6. (b) Find the beam parameters of your
favorite light source and estimate its parameter ξ and Touschek lifetime τT .

6. (a) Show that the following description of the wake function G(t) =
∫ t

−∞ ψ(s)W (t−
s)ds is equivalent to the one given in Section 12.3. For the wake potential W (t) from
Equation 12.8, calculate and display the (b) longitudinal wake function G(t) and (c)
the loss factor k∥ for a bunch with the normalized box distribution ψ(t) = 1/2a for
−a < t < a.
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7. Repeat the previous exercise for a bunch with a parabolic distribution ψ(t) = 3(a2 −
t2)/4a3 for −a < t < a and ψ(t) = 0 otherwise.

8. Consider Equation 12.16 and determine the limit of stability for the parabolic distri-
bution ψ0(δ) = 3(a2 − δ2)/4a3 for −a < δ < a and ψ0(δ) = 0 otherwise. Display the
limit in the representation used in Figure 12.4.

9. Use the Keil-Schnell criterion to find a limit for the longitudinal impedance for the
ring you considered in Exercise 5.

10. Use the simulation from Section 12.5 and plot the shift of the equilibrium arrival time
X(1) as a function of f0, or equivalently, the current dependence of the synchronous
phase.

11. Use the simulation from Section 12.5 and start from slightly perturbed equilibrium
beam parameters X, and sigma and record X(1) for 1024 turns. Fourier-transforming
the values recovers the bare synchrotron tune in the zero-current limit f0 → 0. Find
out whether the synchrotron tune depends on the beam current by varying f0 and
extracting the synchrotron tune by Fourier-transforming the turn-by-turn data.

12. Equation 12.25 is amenable to a numerical treatment by observing that it can be cast
into the form

ẍn + ω2
βxn = −ξ

∑
earlier m

Wn−mxm , (12.27)

where Wn−m describes the wake, seen by bunch n, but left behind by all bunches m
over multiple turns, including bunch n itself. ξ is proportional to the beam current
and the impedance of the wakes. (a) Based on the transverse resonator wake from
Equation 12.12, determine Wn−m. You may need to “wrap around” the wake over
multiple turns, if Qr is large. If we consider N equidistant bunches, WN is the sum
of all wakes a bunch caused on previous turns and “sees” itself. (b) Use the Ansatz
xn = Ane

iωt to obtain the following set of equations

ω2A1 = ω2
βA1 + ξ [W1AN +W2AN−1 + . . .WNA1]

... (12.28)

ω2AN = ω2
βAN + ξ [W1AN−1 +W2AN−2 + . . .WNAN ] ,

which have the form of an eigenvalue equation for the eigenvalue ω2. (c) Turn these
equations into matrix form, determine the eigenvalues, and plot them as a function
of the current ξ. (d) How do you recognize an instability?
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Accelerator Subsystems

This chapter discusses several subsystems that are essential for operating accelerators: the
control system, particle sources, the vacuum system, and, if the accelerator uses supercon-
ducting components, the cryogenic system. The accelerated beams are highly ionizing and
we therefore discuss radiation protection issues and round up with mentioning the conven-
tional facilities, such as the electricity, cooling water, and air-conditioning, as well as civil
engineering.

13.1 CONTROL SYSTEM

A computerized control system makes all diagnostic devices, all magnets, and all other actu-
ators accessible, under a common user interface, to the human operators of the accelerator.

13.1.1 Sensors, actuators, and interfaces

Instrumentation and diagnostic devices can be classified as sensors, because they intercept
signals from the beam, such as BPMs, perform signal conditioning of the analog signals,
and make them available as voltages or currents. Frequently, analog-to-digital converters
(ADC) are used to convert the signal to a computer-readable form. In particular, this sig-
nal chain is used to monitor beam currents, positions, and sizes. Other sensors measure
temperatures, radiation levels, and flow rates of liquids or gases. Also digital signals, such
as the state of limit switches, or other status information, for example, fault indication,
are made available to computers. Once the signals are available in digital form, they are
prepared by a micro-controller, programmable-logic controller (PLC), or other front-end
computer, and, once converted to a standard format, passed on to other computers. Most
test and measurement equipment, such as fast digitizers to record transient waveforms, oscil-
loscopes, spectrum and network analyzers support computer interfaces, historically GPIB,
and, nowadays, its modern Ethernet-based variants, LXI or VXI. The communication to
these devices is usually based on a standardized language, called Standard Commands for
Programmable Instruments, (SCPI).

The second class of devices are actuators which comprise all power supplies for magnets
and for motors, but also switches to turn on or off some device or functionality. The latter
are easily interfaced by simply toggling an output pin on a micro-controller and connecting
the pin to suitable circuitry to adapt voltage and power levels. Most modern power supplies
are already equipped with standardized interfaces, often RS-232, USB, or Ethernet, that
allow interfacing to the control-system computers. Stepper motors, used for precision posi-
tion control of, for example, wire-scanners, require special controllers, most of which have
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Figure 13.1 A typical control-system architecture.

standard interfaces or require only few digital control lines. Often ready-made modules for
PLC systems are available to control them. Likewise, many synchronous motors, used, for
example, to adjust the gap height of undulators, come with their dedicated controllers.
These controllers sense the current in the motor windings and other position sensors to
control the position and speed in a closed-loop feedback. Many other devices with an elec-
tronic interface are straightforward to interface with a dedicated micro-controller, but often
industrial solutions, based on PLC systems, are preferred.

A particular device, sensor or actuator, needs to communicate with some other com-
puter systems, such as micro-controllers or PLCs, and there are a number of interfaces,
called buses, available. They are based on physical transmission media and on protocols of
how to encode the information. Devices on the same circuit board as the micro-controller
often communicate via serial bus systems, called I2C or SPI. The physical media are wires
that carry electrical signals of a few volts. Data are transmitted with a synchronous serial
protocol and follow a convention of how to encode the information in a transmission. The
micro-controller then translates this information into a format that can be transported over
larger distances using a field bus. Examples are RS-232, RS485, CAN, Modbus, ProfiBus,
or Ethernet. Similar to the other buses, they are based on various choices of the physical
media and protocols of how to encode the information sent from a computer to the next
higher level. And that brings us to the overall architecture of control systems.

13.1.2 System architecture

A typical control-system architecture is shown in Figure 13.1. At the bottom we see the
sensors and actuators that are connected to micro-controller or PLC systems, as discussed
in the previous subsection. Power supplies or motor-controllers with built-in bus interface
belong to this category as well. The controllers, in turn, communicate with control-system
servers via field-buses, Ethernet or USB, as mentioned before. The servers are directly
connected to a control-system network, which is usually Ethernet-based, from which the
high-level clients obtain their information. In the decades before the change of the millen-
nium, the low-level controllers were often VME computers and the servers used workstations
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such as VAX or Unix computers. Modern commercial systems are based on PLC systems
and the WinCC software. In accelerator laboratories, a number of systems are in use, one
of which is EPICS. The latter is centered around a server which is called the input-output
controller (IOC). It provides many interfaces to the lower layers with micro-controllers and
PLCs, while exposing a unified interface to the higher levels of the control system.

One of these upper-level clients is an alarm manager, which monitors status information
of critical parameters and raises an alarm if a fault is detected, either acoustically or visu-
ally on an alarm console. Some alarms, such as those requiring rapid attention, are usually
handled automatically as part of the alarm system. The second important functionality is
logging of system parameters. This functionality is important to analyze long-term drifts
of parameters that affect the performance of the accelerator, or to perform a post-mortem
analysis after a fault. The set parameters of magnets and other actuators, needed to con-
figure the accelerator, are stored in a database which is used to initialize all magnets and
motors when starting up the accelerator. After tuning the performance, new configura-
tions are saved in this database. Often, online modeling software for beam optics and beam
physics calculations is part of the control system. It is important for the understanding of
the performance of the running accelerator and to find configurations with new features.
The modeling software obtains its input data either from the database, or from the hard-
ware by directly querying the control-system servers for current values. Operator consoles
usually run a graphical user interface with a visual representation of the accelerator sup-
porting point-and-click access to all control-system parameters. In order to obtain a rapid
overview of the status of the accelerator, status displays are shown in the control room and
in other locations throughout the laboratory.

The layout shown in Figure 13.1 provides the basic functionality of the control system,
but often additional interfaces to the control system servers from a number of programming
languages, including Python and MATLAB, are available. This functionality is essential
for rapid development of additional features to extend the functionality of the accelerator.
Other extensions are possible through gateways to non-native communication channels, such
as MQTT, a protocol commonly used to interface distributed sensors.

13.1.3 Timing system

A number of devices, such as pulsed magnets, must receive trigger information at very pre-
cise moments in time, synchronized with many other devices that are equally time-critical.
The orchestration of this synchronized operation is handled by the timing system. A cen-
trally located timing controller dispatches messages to timing-receivers that are usually
placed close to, or as part of, the power supply for the time-critical device, for example,
a kicker magnet. Part of the receiver is a very accurate clock that is periodically synchro-
nized very accurately to the central timing controller. Each receiver contains tables of time
delays with respect to a repetitive time-stamp, at which devices are triggered. For a pulsed
accelerator, this time stamp would signal the start of the pulse, and each timing receiver
then triggers its device with respect to it.

13.1.4 An example: EPICS

In the spirit of the hands-on approach, we briefly discuss the lower levels of the EPICS
control system by making the analog and digital pins of an Arduino UNO micro-controller
available to an IOC running on a Raspberry Pi, which, in turn, exposes an interface for the
Arduino to the higher layers of the control system. A detailed discussion of such a system
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can be found in [114]. Here we only outline the basic functionality, but we provide all code
on the website for this book.

We assume that the Arduino is connected via its USB interface to the Raspberry Pi
that runs the EPICS software; see [114] for instructions on how to set this up. The Arduino
is programmed to respond to a very simple protocol. Turning on or off digital output pin
DO5, is done by sending the command DO5 1 or DO5 0 to the Arduino via the serial line
over the USB connection. Here we use pin 5 as an example. Reading digital input pin 4 is
done by sending DI4? at which the Arduino responds with DI4 1 or DI4 0, depending on
whether the voltage level on the input pin is high or low, respectively. In the same fashion,
A0? requests the analog voltage on analog pin 0, and the Arduino responds with A0 1.54,

where 1.54 is the voltage level on the pin in this example.
On the EPICS IOC, running on the Raspberry Pi, the communication exchange de-

scribed in the previous paragraph is defined in a protocol file arduino.proto that is par-
tially reproduced here:

set_bit {out "DO\$1 %u"; ExtraInput = Ignore;}

get_bit {out "DI\$1?"; in "DI\$1 %u"; ExtraInput = Ignore;}

get_analog {out "A\$1?"; in "A\$1 %f"; ExtraInput = Ignore;}

Here $1 is a wildcard symbol that can assume any value. The protocol file defines the com-
munication from the IOC to the lower layer, the Arduino. If several Arduinos are connected,
we can use the same protocol file, provided the Arduinos are programmed with the same
firmware. The interface towards the higher levels is defined by connecting the protocol file
to a so-called database file arduino.db, which is partially reproduced here:

record(ai, "$(USER):A0") {

field(SCAN, "1 second")

field(DTYP, "stream")

field(INP, "@arduino.proto get_analog(0) $(PORT)")

}

Here $(USER) and $(PORT) are placeholders for the high-level control-system name of the
device that we discuss further below. The database record is of type ai or analog input,
and the Arduino is of type stream and read one per second by using the input INP function
get analog(0) that is specified in the file arduino.proto. The Arduino is connected to
the port specified in the variable $(PORT). The IOC process is configured and started from
a command file, called st.cmd, which contains the following lines

drvAsynSerialPortConfigure("SERIALPORT","/dev/ttyACM0",0,0,0)

asynSetOption("SERIALPORT",-1,"baud","9600")

:

dbLoadRecords("db/arduino.db","PORT=’SERIALPORT’,USER=’ARDUINO’")

The first command defines the name SERIALPORT and connects it to the USB device
/dev/ttyACM0 to which the Arduino is connected, before defining the communication pa-
rameters, such as the baudrate in the subsequent lines. Finally, the connection between
the USB port and the protocol file with the available high-level commands is established
in the call to the dbLoadRecords() function, which also defines the $(PORT) and $(USER)
variables referred to earlier. Once the IOC process is started, the pins of the Arduino are
accessible from the control system, for example from the command line of the Raspberry Pi,
by executing caget ARDUINO:A2. This call then returns the voltage on pin 2. Setting pins
is done with a call to caput, again, see [114] for a more detailed discussion. Adding further
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Figure 13.2 A thermionic electron gun (left) with the density of states Nε shown to

the left of the cathode. At higher temperatures a few electrons in the cathode reach

energies above the Fermi level Ef and even exceeding the binding energy Wf such

that they escape the cathode and are accelerated toward the anode. In an RF photo

cathode (right), a laser provides the energy to overcome the work function and the

RF fields accelerates the escaping electrons.

Arduinos that are connected to other USB ports only requires to repeat the lines in the
command file. When building or buying a new device that must be connected to EPICS, it
often suffices to prepare protocol and database files, and hand them over to the person in
charge of the IOCs.

Controlling all devices is a necessary prerequisite to operate accelerators, but we also
need beams, and their generation in the different particle sources is the topic of the next
section.

13.2 PARTICLE SOURCES

In this section we briefly discuss the basic physical processes that govern the creation and
initial acceleration of electrons, protons and ions. First we consider electrons.

13.2.1 Electrons

Probably the simplest way to obtain electrons is to pass an electric current through a
filament to heat the cathode and extract the electrons with a positive voltage towards the
anode. This configuration is often referred to as a diode gun. Adding a control grid, which
can modulate the current, turns it into a so-called triode gun. The geometry is illustrated
on the left-hand side in Figure 13.2. At low temperatures, electrons fill all states in a
conductor up to the Fermi-level Ef [24] with a density of state proportional to Nε ∝

√
E,

which is indicated by the thick dashed line in Figure 13.2. At higher temperatures, electrons
acquire higher energies, as indicated by the thin dashed line. At very high temperatures
they even exceed their binding energy, the work function Wf . Thus they can escape the
conductor and are then attracted by the positive potential of the anode. The cathode
material must withstand very high temperatures and, preferably, should have a low work
function Wf . Values for commonly used metals, such as for tungsten (W) is Wf ≈ 4.5 eV,
and for lanthanum-hexaboroid (LaB6) it is Wf ≈ 2.5 eV. The number of electrons within
the cathode that have energies exceeding Wf can escape and give rise to an extracted
current density jc, given by the Richardson-Dushman equation jc = AT 2e−Wf/kT with



322 ■ Hands-On Accelerator Physics Using MATLAB®

A = 4πemek
2/h3 = 120A/cm2K2, where k is Boltzmann’s constant and h is Planck’s

constant.
Once the electrons have left the solid and are in the region between cathode and anode,

they are accelerated toward the anode. If the extracted number of electrons is large, their
negative charge shields the electric field, and the effective voltage “seen” by the extracted
electrons that are close to the cathode is reduced, which results in a space-charge limited
electron gun. In a one-dimensional model, we describe the current density jc = en(s)v(s)
through the electron density n(s) and their velocity v(s) =

√
2eU(s)/me and the electric

potential U(s). Solving for n(s), we find n(s) = jc/e
√
2eU(s)/me. Moreover, the potential

U(s) must obey Poisson’s equation d2U/ds2 = en(s)/ε0 in the region between cathode and
anode. After inserting n(s) we obtain U1/2d2U/ds2 = jc/ε0

√
2e/me, which is solved by

U(s) = Ua(s/d)
4/3 with the anode voltage Ua and the distance between cathode and anode

d. Solving for jc we obtain the Child-Langmuir law jc = (4ε0/9d
2)
√
2e/meU

3/2
a . We thus

find that in space-charge limited guns, the current density is proportional to the anode

voltage Ua, raised to the power of 3/2, or U
3/2
a . The constant of proportionality is called

the perveance and depends on the geometry of the electron gun. The value we derived is
only valid for the planar geometry in our one-dimensional model.

In practice the anode voltage Ua is applied constantly, and the electrons are therefore
extracted continuously. If we later want to accelerate the beams with a radio-frequency
system, we need to bunch the continuous stream of electrons on the time scale given by
the frequency of the system. For this, one often uses one or several low-frequency buncher
cavities to modulate the speed of the electrons while they are not yet relativistic and rely
on the faster electrons to catch up with the slower ones, which is called ballistic bunching.

One method to create very short electron bunches already at the cathode uses lasers and
employs the photo effect to knock out electrons from the cathode. The duration, or bunch
length, of the electrons then follows that of the laser pulse. The cathode is often made of
cesium-based alloys and requires photon energies larger than the work function WF . The
latter is typically on the order of a few eV and thus requires photons in the ultraviolet (UV)
range. In order to obtain bunch charges of nC, very intense UV laser pulses are needed,
also because the so-called quantum efficiency—the number of electrons per photon—is only
a few percent. A common way to produce these laser pulses is to triple the frequency of
high-intensity infrared laser pulses from Titanium-Sapphire lasers with pulse energies in
the millijoule range. The frequency-tripling is based on non-linear optical crystals that,
simply speaking, combine three infrared photons to form a single ultraviolet photon. The
conversion efficiency is limited and yield ultraviolet pulses with energies about a third of
the infrared pulse energies. Typical pulse lengths are on the order of several picoseconds.

The electron bunches created in such a gun are often very dense, and the high charge den-
sity makes them susceptible to the transverse space-charge forces, discussed in Section 12.1,
and that will increase the emittance. This can, however, be avoided, provided that the
electrons are rapidly accelerated to relativistic energies, where, according to Equation 12.2,
the space-charge defocusing forces are suppressed by 1/γ3

0 . To achieve this acceleration to
relativistic energies, the cathode is embedded in an accelerating radio-frequency cavity and
the timing of the laser is adjusted, such that the laser pulse impinges on the cathode when
the accelerating field is maximum. Since the accelerating gradients are on the order of tens
of MV/m, the electrons reach relativistic energies of 10MeV already within the first 10 to
20 cm. A challenge for the design is the thermal loads on the accelerating structure resulting
from the high fields and may require to operate the gun in a pulsed mode.

The positrons needed for colliders are typically created by impinging a high-energy elec-
tron beam onto a tungsten target, which causes a bremsstrahlung and e+e− pair-production
cascade, already mentioned in Section 9.2. A magnetic collection system then concentrates
the flux of positrons to produce smaller transverse cross-sections. Accelerating them will
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Figure 13.3 In a Penning source (left), electrons are trapped longitudinally by cath-

ode and anticathode and radially by magnetic fields. At the same time, the potential

difference between cathodes and anode accelerates them to energies that allow them

to ionize gas. In an ECR source (right), the electrons are accelerated to higher en-

ergies by RF fields at the cyclotron frequency.

reduce the beam size and emittances further by adiabatic damping. After injecting the
positrons into a storage ring, radiation damping, discussed in Section 10.1, will reduce the
beam sizes further.

13.2.2 Protons and other ions

Most ion sources are based on trapping electrons in a variety of magnetic and electric fields,
such that they have a high probability of colliding with gas ions, thereby ionizing them. In
a hot cathode ion source, the electrons are created in a hot filament and accelerated toward
the anode. The density of the gas has to be in an intermediate range of densities, as given by
the Paschen curve; the density must be high enough to allow sufficiently many gas atoms to
be ionized and not too high, to allow the electrons to gain sufficient energy, before impacting
with the next gas atom or molecule. Placing this ion source on a high-voltage platform allows
us to extract the ions with a well-defined energy. The ionized gas forms a plasma that is
usually contained in magnetic fields. Both solenoidal and so-called multi-cusp configurations
are used. The latter use permanent magnets, arranged with alternating polarity around the
perimeter of the plasma chamber to create magnetic fields that deflect the electrons back
into the chamber and prevents them from touching the walls. Many geometries, optimized
for particular ion species, are used to provide the beams for experiments with ions, but
also for industrial accelerators, such as ion implanters used for doping materials in the
semiconductor industry.

A variant of a hot cathode ion source is the duoplasmatron, where a moderately intense
electron beam is guided by an intermediate electrode toward the anode. The electrons, as
well as gas leaked into the chamber, pass through the same narrow orifice, such that the
electrons have an increased probability of ionizing the gas and creating a plasma from which
the ions are extracted and accelerated further. Duoplasmatrons are used to create protons,
but also ions of other gases, such as helium or oxygen.

A Penning source, shown on the left-hand side in Figure 13.3, can operate either with
a heated filament or as a cold cathode ion source. In either case, electrons are trapped
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by a solenoidal magnetic field between a negatively charged cathode and an anticathode.
This configuration prevents the accelerated electrons from actually reaching the anode,
and, instead, bounce between the cathodes and ionize gas that is leaked into the chamber.
Positively charged protons are accelerated toward the cathode and can be extracted from
the source to be accelerated further. Apart from producing protons, Penning sources can
also create moderately charged ions of other gases. For additional discussions of ion sources,
see the comprehensive overview [115] and a recent review [116].

The antiprotons used in pp̄ colliders, or in dedicated experiments with antiprotons, are
created by impinging protons with multi-GeV energies onto a target and extracting them
from the reaction products of the nuclear reactions. They are first focused by a magnetic
horn or a so-called lithium lens and subsequently passed to a storage ring in which their
momentum spread and their emittances are reduced by either stochastic cooling or by
electron cooling.

13.2.3 Highly charged ions

In order to obtain highly charged ions, the electrons needed to ionize the low-lying orbitals of
the gas must have sufficiently high energies. In an electron cyclotron resonance, or ECR ion
source, the energy for the electrons, trapped in a longitudinal solenoidal Bs and transverse
sextupolar fields, is provided by an external radio-frequency source, tuned to cyclotron
frequency ωc = eBs/me. This causes the electrons to move very rapidly and ionize the
gas, which causes even more electrons to be present that can ionize more gas. Whereas
the electrons are confined by the magnetic fields, the ions can escape the plasma volume
by diffusion. They are subsequently accelerated by a moderate voltage of about 20 kV and
then guided to experiments or accelerated further, for example, in a cyclotron.

Ions with very high positive charge states, and even fully stripped states, are available
from electron beam ion sources (EBIS). Here a highly intense electron beam, with currents in
the range of ampere and energies up to 100 keV, serves the dual purpose. First, it ionizes the
gas atoms and then transversely traps the positive ions in its negative electrostatic potential
well. Longitudinally, the ions are initially trapped by electrodes on positive potential and,
once a sufficient number of highly ionized ions is available, the electrode potential is lowered
to allow the ions to escape. From the escaping ions, which have a mixture of charge states,
a particular one can be selected by passing the ions through a Wien filter, consisting of
crossed electric and magnetic fields that deflect most charge states away from a narrow
aperture. Only for a particular combination of velocity and charge state the forces cancel,
and thus permit the ions to pass the aperture.

In the ion sources discussed so far, only gases were ionized. Solid materials can, however,
also be converted to ions in a sputtering ion source, where an ion beam with energies of
a few keV impinges on a solid surface and knocks out ions from the surface by a process
called sputtering. Positively charged ions can be extracted and further accelerated.

13.2.4 Negatively charged ions

A source of negative ions by cesium sputtering (SNICS) is based on first creating neutral
cesium atoms in gaseous form that are subsequently positively ionized on a hot cathode at
lower negative potential than a second cold cathode. The cesium ions, impinging on the cold
cathode, sputter positively charged beam ions from the cathode material. The beam ions
subsequently have to pass through a cloud of the neutral gaseous cesium, where they pick up
electrons from the cesium, which is a generous electron donor. This process leaves positive
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cesium ions behind. They sputter further beam ions. The beam ions become negatively
charged and can be accelerated further.

If the primary beam ions are already available in a positively ionized charge state, passing
them through a charge exchange cell, filled with neutral cesium or potassium gas transfers
electrons from the gas to the beam ions, thus creating negatively charged beam ions, that
can be used in tandem Van de Graaff accelerators or used in charge-exchange injection
schemes, covered in Section 13.4.

13.2.5 Radioactive ion beams

Radioactive ion beams play a vital role for our understanding of the creation of heavier
elements inside stars and supernovae, a process called “nucleosynthesis”. Measuring their
masses and lifetimes helps us to infer the relative abundance of different elements in our
universe.

One way to generate radioactive beams, especially those made of very short-lived iso-
topes, is based on directing a primary beam, often protons, onto a thin target and filtering
out the desired isotopes with a fragment separator (Section 3.7.10). The isotopes inherit
the velocity from the primary beam and need no post-acceleration. Moreover, they can be
manipulated with conventional magnets that guide them to experimental stations.

The second method, called Isotope Separation OnLine (ISOL), is based on directing
the primary beam onto a thick target where the radioactive isotopes are created almost
at rest. Heating the target to high temperatures causes the isotopes to diffuse out of the
target and into an ion source, where either an ECR (Section 13.2.3) or a laser ionizes them.
After extracting the ionized isotopes from the source, a dipole magnet filters out the desired
species that is subsequently accelerated and directed to the experimental stations with the
help of magnets.

13.2.6 Neutrino beams

In the early 1970s beams of muon neutrinos were instrumental in the discovery of weak
neutral currents, crucial for the unification of the electro-magnetic and weak interactions.
Today they are needed to shed light on neutrino oscillations and the mass of neutrinos, as
well as the preponderance of matter over antimatter in our universe, some pressing examples
of open questions in particle physics.

In order to create muon neutrinos a high-intensity proton beam is smashed into a target
made of, for example, carbon. It is shown on the left in Figure 13.4. The debris escaping
from the target contains a large number of positive and negative pions. These pions subse-
quently decay into muons and muon neutrinos in an evacuated decay tube that is several
100m long before a large absorber catches anything that has not decayed; only muons and
muon neutrinos can penetrate it. But before the muons are absorbed in the rock behind
the absorber, they are detected in so-called muon chambers. After another km of rock,
only muon neutrinos are left to continue their journey to a detector, often several hundred
km away, where a few of them cause nuclear interactions that are observed by elaborate
electronics.

As described in the previous paragraph, only very few neutrinos would arrive at the
faraway detector, because the pions have a very large angular spread. Moreover, neutrinos
are created by decaying positive pions and antineutrinos by decaying negative pions, but the
experimentalists require only one or the other to arrive at their detector, but not both. Both
issues are addressed bymagnetic horns, which are made of two concentric hollow conductors,
thus resembling a coaxial conductor. Just as the pions arrive, a huge current pulse with a



326 ■ Hands-On Accelerator Physics Using MATLAB®

Figure 13.4 Neutrino beams are produced by directing a high-intensity proton beam

onto a target, which produces positive and negative pions. Only pions of one polarity

are focused by the magnetic horn and reflector before they decay into muons and

neutrinos in the following decay tube. All other particles get stuck in the following

absorber, only the muons and neutrinos can penetrate it, such that the muons are

counted in a muon chamber, and the neutrinos continue their journey to detectors

further away.

magnitude exceeding 100 kA is passed through the conductors and generates an azimuthal
magnetic field that focuses one type pions and defocuses the other. In this way, the flux
of one type of pions and subsequently neutrinos is approximately enhanced by an order of
magnitude. In practice, two such magnetic horns are operated simultaneously. The first one
provides point-to-point imaging from the target to an intermediate focus and the second
horn, called the reflector provides point-to-parallel imaging from the intermediate focus to
the faraway detector. Switching the polarity of horn and reflector will select either positive
pions or negative pions to be focused and thereby sending either neutrinos or antineutrinos
to the faraway detector.

13.2.7 Radio-frequency quadrupole

In order to mitigate the effect of space charge, discussed in Section 12.1, the beams created
in the ion sources must be accelerated as quickly as possible. Simultaneously, they need
to be strongly focused transversely. Finally, they must be longitudinally bunched in order
to efficiently accelerate them further in later stages of the accelerator. In the late 1960s
Kapchinskii and Tepliakov first discussed the radio-frequency quadrupoles (RFQ) to satisfy
these requirements. RFQs are based on exciting a TE210 mode in a circular waveguide,
which is loaded by quadrupolar electrodes, as shown on the left-hand side in Figure 13.5.
The electric field vector of this mode has an azimuthal cos 2ϕ dependence and a linear ra-
dial dependence, such that it is zero in the center, which is the behavior one expects for a
quadrupole. Moreover, this mode excites facing electrodes to the same and adjacent elec-
trodes to opposite polarities. Every half-period of the RF the polarity of the quadrupolar
force reverses, such that the ions experience an alternating sequence of focusing and defo-
cusing fields, resembling that of FODO cells. High RF power thus provides strong transverse
focusing. By longitudinally modulating the transverse distance between the electrodes, the
electric field E acquires a longitudinal component Ez, as shown on the right-hand side in
Figure 13.5. The period of the modulation is chosen to equal β0λ, where λ is the wavelength
of the RF, such that the direction of Ez reverses after a distance β0λ/2. The magnitude of
Ez is adjusted by varying the modulation m of the pole-tip radius, which varies between a
and ma. In early parts of the RFQ, the modulation is small and the RFQ mostly focuses
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Figure 13.5 Left: the view onto the front of a radio-frequency quadrupole with the

dotted lines indicating the extreme pole-tip radii due to their longitudinal modula-

tion, shown on the right for facing electrodes. Note how the modulation is respon-

sible for a non-zero longitudinal component Ez of the electric field, which bunches

and accelerates the beam. The modulation of adjacent poles (not shown) is shifted

by 90o.

transversely, while the longitudinal field only slightly modulates the energy of the ions, such
that they will slowly bunch. In later stages, the modulation depth is increased, which also
increases the accelerating field Ez. With increasing energy of the ions, also their speed β0

increases and the period β0λ must be adjusted accordingly.
RFQs are used as the first acceleration stage in many proton and ion accelerators. They

are specifically designed for one ion species, but then they can capture around 90% of the
ions in bunches. The beam energies at the exit from the RFQ are in the range of a few
MeV.

13.3 POLARIZED BEAMS

Using polarized beams, having the spins of the beam particles aligned, permits experi-
menters to access spin-dependent properties of the subnuclear world that are otherwise
unaccessible. Luckily, such beams of electrons and protons can be prepared, often with high
degrees of polarization.

13.3.1 Electrons

Longitudinally polarized electrons are created by shining a helically polarized laser onto
specially prepared cathodes [117] often based on gallium-arsenide (GaAs). The wavelength
of the laser is chosen to preferentially lift electrons with one particular spin state into the
conduction band of the cathode material. The efficiency can be enhanced by preparing a
so-called strained superlattice of very thin alternating layers of GaAsP and GaAs. Finally,
the cathode is activated by adding an oxidant and a monolayer of cesium, which is a gener-
ous electron donor, on top. Polarization levels around 85% can be reached with a quantum
efficiency QE≈ 1%, where QE is the number of electrons produced per incident laser pho-
ton. Unfortunately, the QE deteriorates over time, often caused by bad vacuum conditions,
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but also dependent on the total extracted charge, such that cathodes have to be reactivated
from time to time.

The orientation of the longitudinal polarization can be adjusted by reversing the helicity
of the incident laser with a so-called Pockels cell. This is a birefringent electro-optical device
with different refractive indices in orthogonal directions, just like quarter-wave plate in
optics. Moreover, its birefringence can be adjusted electrically, which makes it possible to
change the polarization of the laser very rapidly, which is important to compare different
polarities without being susceptible to systematic errors, such as slowly varying parameters
that affect the accelerator or the experiment.

Once the longitudinally polarized electrons leave the cathode, the direction of polariza-
tion can be manipulated with magnetic fields that exert a torque

τ⃗ =
dµ⃗

dt
= µ⃗× B⃗ with µ⃗ = g

e

2m
s⃗ (13.1)

on the magnetic moment µ⃗ that accompanies the spin s⃗ of the electrons [118]. Here g =
−2.0023 . . . is the g-factor of electrons. Thus a horizontally oriented magnetic field can be
used to rotate the spin into the vertical direction. The simultaneous vertical deflection of
the electrons caused by the magnetic field |B⃗| can be compensated by a vertical electric

field E⃗ with magnitude |E⃗| = |v⃗ × B⃗| where v⃗ is the longitudinal velocity of the electrons.
Such a configuration is commonly referred to as a Wien filter, named after its inventor. It
rotates the spin, but it does not affect the trajectories of the electrons. It is also obvious
that a magnetic field that is parallel or antiparallel to the spin will not change the direction
of the spin. In other words, one normally adjusts the spin-polarization to be parallel to the
magnetic fields in the accelerator and uses specially designed spin-rotators to turn it in the
direction that the experiments require.

A complementary way to obtain spin-polarized electrons in storage rings is based on a
small imbalance in the emission of synchrotron radiation for electrons. Electrons with spin
parallel to the magnetic field have a higher probability to flip their spin than the electrons
with antiparallel spin. Thus electrons have a higher probability to end up in the antiparallel
state, a process that is referred to as Sokolov-Ternov radiative polarization. If we denote the
number of electrons in the parallel state by n+ and those in the antiparallel state by n−,
a detailed analysis shows that the average polarization P = (n+ − n−)/(n + +n−) slowly
builds up according to

P (t) = − 8

5
√
3

(
1− e−t/τp

)
with

1

τp
=

5
√
3

8

ℏreγ5

meρ3
, (13.2)

where re = 2.81× 10−15 m is the classical electron radius and ρ is the bending radius of the
magnet. Typically the time constant τp is on the order of minutes to hours, depending on the
energy and the bending radius of the storage ring. The constant 8/5

√
3 ≈ 0.924 = 92.4%

determines the ultimately achievable polarization. Maintaining a high degree of polarization,
on the other hand, is very difficult, because imperfections, such as misaligned magnets cause
magnetic fields that periodically affect the polarization and cause resonant depolarization.

Since maintaining the polarizations of beams is a very delicate process, actually mea-
suring and thereby verifying it is important. At low beam energies up to a few MeV,
Mott polarimeters are typically used [119]. They work by directing the transversely (here
we assume vertically) polarized electrons onto an unpolarized target consisting of large-Z
material. Counting the number of electrons deflected to the left NL and to the right NR

then provides asymmetry (NR − NL)/(Nr + NL) which is proportional to the degree of
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Figure 13.6 Hyperfine-splitting of energy levels in hydrogen as a function of the mag-

netic field that is essential to polarize protons in an Atomic Beam Source. Here we

assume that the orbital angular momentum L is zero and F = I + S.

polarization P via
NR −NL

NR +NL
= AP (13.3)

where A is the analyzing power of the reaction; for Mott polarimeters it is also referred
to as Sherman function. It needs to be determined in simulations or must be calibrated
experimentally.

The moderate-energy range of up to a few GeV is the domain of Møller polarimeters.
They are based on measuring the left-right asymmetry by directing polarized electrons onto
a ferromagnetic foil immersed in a strong magnetic field, which has completely polarized the
electrons in the target material. As before, the asymmetry (NR −NL)/(Nr +NL) provides
a measure of the polarization. A big advantage is that the analyzing power A that appears
in Equation 13.3 can be calculated from first principles and is therefore known with high
precision.

At even higher energies, Compton polarimeters provide a measure of the polarization
by head-on colliding the polarized beam and a circularly polarized laser beam, where the
back-scattered photons have a very high energy. Since Compton scattering is a fundamental
process, the analyzing power A can be calculated from first principles as well, both for
longitudinally and transversely polarized electrons, where the latter require knowledge of
the direction of the scattered electron and is therefore experimentally more demanding.

13.3.2 Protons

Polarized protons are produced in two ways. The first type of source is an Atomic Beam
Sources (ABS) that exploits the hyperfine interaction of the nuclear spin I = 1/2 and the
electron spin J = L + S, where S = 1/2 is the electron spin and L is the orbital angular
momentum. In an ABS, L is usually zero such that the system is characterized by the
quantum number F = I + S. Since both the nuclear proton and the electron have spin
1/2 the four states shown in Figure 13.6 have quantum numbers F = 1 and F = 0. This
splitting of energy levels as a function of the magnetic field is commonly referred to as the
Zeeman effect. In the two upper states, the electron spin is parallel to the magnetic field
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Figure 13.7 In an Optically Pumped Polarized Ion Source (OPPIS), the polarization

of rubidium atoms, created with a polarized laser beam, is transferred to previously

unpolarized protons created in an ECR with the help of so-called Sona solenoids.

See the text for more details.

and we have mS = 1/2. In the two lower states, it is antiparallel with mS = −1/2. The
task of an ABS is now to ensure that all states are empty, except the one labeled |1⟩, which
has both nuclear and electron spin pointing parallel to the magnetic field: mF = +1 implies
mI = +1/2 and mS = +1/2. We also introduce the short-hand notation |1⟩ = |↑↑⟩, where
the first position indicates the nuclear spin, and the second position denotes the electronic
spin.

The emptying of the “unwanted” states proceeds as follows: after a radio-frequency
discharge dissociates H2-gas into atomic hydrogen, the H atoms are passed through a cold
nozzle to form a low-velocity stream of atoms that is guided through a sextupole magnet.
There the inhomogeneous magnetic field causes the two upper states (solid) with mS =
+1/2 to spatially separate (Stern-Gerlach effect) from the two lower states (dashed) with
mS = −1/2 which are subsequently removed. This leaves only the two upper states behind.
They enter a radio-frequency transition unit, which is tuned (gray vertical lines) to exactly
exchange the electrons populating state |2⟩ with those in state |4⟩. But state |4⟩ is already
empty, such that only those in state |2⟩ are transferred to state |4⟩, which has mS = −1/2. A
second sextupole magnet then removes the electrons in state |4⟩ leaving only the electrons
in state |1⟩ behind. And those are finally ionized, either by electron bombardment or in
an ECR (Section 13.2.3). The protons, however, are still oriented parallel to the magnetic
field. In other words, they are polarized and can be transported to experimental stations.
However, they have rather low (thermal) velocities, which makes it difficult to obtain high
beam qualities. This difficulty is addressed with the second type of source.

The second type of source is an Optically Pumped Polarized Ion Source (OPPIS) that
is schematically shown in Figure 13.7. Positively charged hydrogen (protons) are extracted
from an ECR with an energy of a few keV and pass through a gas cell containing, for
example, rubidium vapor that is exposed to light from a circularly polarized laser. The laser
excites electrons in the rubidium atoms and ensures that they are longitudinally polarized
in the direction the protons move. A strong longitudinal magnetic field guarantees that the
spin is then faithfully transferred to the protons, as they pick up such electrons on their
way through the vapor cell and become neutral hydrogen atoms H0. Their electron spin
has a definite direction, but the spin of the proton is unknown, such that the two upper
states in Figure 13.6 are equally populated, and we again have to remove the electrons from
state |2⟩.
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Instead of using RF transitions, the moderately high velocity of the hydrogen atoms
makes it possible to use a so-called Sona transition unit, named after its inventor. It is
consists of two closely spaced and oppositely powered solenoids that causes a zero-crossing
of the longitudinal magnetic field. This transition does not affect atoms in state |1⟩, but
exchanges the electronic and the nuclear spin of atoms in state |2⟩, because the former is a
pure state |1⟩ = |↑↑⟩, whereas the latter is a mixed state |2⟩ = a |↑↓⟩+b |↓↑⟩ with a2+b2 = 1.
In particular, a and b depend on the magnetic field and at large positive fields b ≈ 1 while
at large negative fields a ≈ 1 such that a fast, so-called non-adiabatic, transition causes |↓↑⟩
to change into |↑↓⟩. Note that after the transition, the first position, denoting the nuclear
spin, agrees for |1⟩ and |2⟩ and all atoms turn out to have the same nuclear spin. After the
Sona transition, a second ECR is often used to ionize the atoms, leaving only the polarized
protons to proceed to the experiments. In passing, we mention that specialized sources for
polarized deuterium and other elements as well as for negatively charged ions, for example
H−, have been built.

The polarization of the protons created at very low energies in an ABS can be determined
with a Breit-Rabi polarimeter. It is based on measuring the number of atoms occupying
states |1⟩ and |2⟩ after RF-transition units, similar to those used in an ABS, reshuffle the
four states and then removing those with mS = −1/2 with a sextupole. Repeating this for
several different “reshuffling transitions” provides a set of equations that can be solved for
the occupancies ni of the four states i = 1 to 4, from which the polarization can be deduced.

At higher energies, one often scatters the polarized protons from carbon atoms and
measures the left-right asymmetry of the scattered protons, from which the polarization P
can be deduced with the help of Equation 13.3, because the analyzing power A for this
reaction is known for a wide range of energies.

13.3.3 Transport of polarized beams

Any magnetic fields encountered by polarized particles with charge q and mass m will
affect their spin according to Equation 13.1. In the frame of reference that moves with the
particles, this equation transforms into the Thomas BMT equation [118]

dS⃗

dt
=

q

γm
S⃗ ×

[
(1 + aγ)B⃗⊥ + (1 + a)B⃗∥

]
, (13.4)

where the spin S⃗ is expressed in the co-moving frame. The time t and the magnetic field
B⃗ = B⃗⊥ + B⃗∥ are expressed in the laboratory frame. B⃗⊥ is the field perpendicular to the

direction of motion, and B⃗∥ is the field parallel to it. Furthermore, a = (g − 2)/2 is the
gyromagnetic anomaly; it is a ≈ 1.159× 10−3 for electrons and a ≈ 1.793 for protons.

Equation 13.4 is the basis to analyze the propagation of spin in accelerators. Let us
consider a horizontal dipole magnet with constant vertical field B⃗y. With dt ≈ dl/c we find

dS⃗ ≈ S⃗ × qB⃗ydl

γmc
(1 + γa) ≈ S⃗ × dϕ⃗y(1 + γa) , (13.5)

where dϕ⃗y = qB⃗ydl/γmc is the vector that describes a rotation with angle |dϕ⃗y| around
the vertical direction. Incidentally, it is also the deflection angle in a thin slice of the dipole
with length dl. We thus find that the spin S⃗ precesses 1 + γa times more than the particle
is deflected. In a planar ring with constant vertical field, the particle is deflected by an
angle of 2π, whereas the spin precession angle differs by 2πγa. At special energies γ, where
γa is an integer n, the spin angle is the same every time the particle comes around to the
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Figure 13.8 Using a static dipole field to deflect an incoming beam onto the closed

orbit does not work, because on the next turn the field would deflect the returning

beam into the wall (left). If, on the other hand, the polarity of the incoming beam

is changed, for example by reversing the polarity of negatively charged ions in a

stripper foil, the returning beam is deflected in the opposite direction and stays on

its closed orbit (right).

same location in the ring such that perturbing fields coherently add up. This reminds us
of the effect of a dipole perturbation on the closed orbit from Equation 8.29 which causes
the closed orbit to diverge at integer betatron tunes. Analogously νS = ga is called the
spin tune. When accelerating particles in rings, apparently a number of spin resonances are
crossed at energies whose spacing is given by ∆γ = 1/a that potentially lead to a significant
loss of polarization. For protons, this spacing is ∆E = 938MeV/a = 523MeV.

In 1959 Froissard and Stora analyzed the dynamics of a polarized beam that crosses an
isolated resonance [120] whose strength is parametrized by a parameter |εn|2. They found
that the polarization P , defined as an average over the individual spins of the particles in
the beam, changes from the initial value Pi to the final value Pf according to

Pf =
[
2e−π|εn|2/2α − 1

]
Pi , (13.6)

where α parametrizes the speed with which the resonance is crossed. For strongly excited
resonances that are crossed slowly, the ratio εn|2/α is large and the exponential term be-
comes very small, which results in a full reversal of the polarization Pf ≈ −Pi. On the other
hand, if a weakly excited resonance is crossed quickly, the exponential term approaches
unity, causing the polarization to remain unchanged with Pf ≈ Pi. The polarization can
only be preserved in these limiting cases. Crossing a resonance with intermediate parameters
will spoil the polarization.

13.4 INJECTION AND EXTRACTION

Injecting a beam from a transfer line into a storage ring and later extracting it from the
ring to direct it to an external experiment or yet another ring for further acceleration is a
common exercise in many accelerator complexes. Unfortunately, it is not possible to inject
with static magnetic fields only. See, for example, the left-hand graphics in Figure 13.8,
which shows the beam coming from a transfer line as a thin dashed line that is deflected
toward its left by the dipole magnet onto the closed orbit in the ring. After one turn, the
stored beam returns to the injection position, and the same dipole used for injection, again
deflects the beam toward its left and thereby guides it into the beam pipe. In order to
overcome this problem, we can either change the type of particle from, for example H− to
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Figure 13.9 A septum magnet (left) provides a strong magnetic field on one side of

the “septum blade,” while maintaining a field close to zero on the other side, where

the stored beam circulates. It is used in conjunction with pulsed kicker magnets

(right) to deflect the incoming beam onto the closed orbit.

a proton, use pulsed magnets, or inject off-orbit and rely on dissipative forces to move the
beam onto its closed orbit.

Let us first consider charge-exchange injection based on passing an H− beam from the
ion source through a very thin carbon stripper-foil, embedded in a dipole magnet, as shown
on the right-hand graphics in Figure 13.8. The foil removes both electrons from the H− ions
with very high efficiency and turns them into protons. Since the dipole magnet deflects the
protons and H− in opposite directions, the protons can continue to circulate in the ring.
In order to avoid heating the foil by excessive traversal of the protons, the closed orbit in
the ring is only temporarily placed onto the foil during the injection and retracted once the
injection has ended. The stored beam then circulates unimpeded by the foil, which prevents
the beam from continuously losing energy in the foil. Apart from placing the injected beam
onto the closed orbit, its phase-space ellipse must match that of the stored beam. In short,
the beta functions of the injected and stored beam must match in order to prevent the
emittance from increasing due to filamentation, as discussed in Section 8.2.4.

Another option to inject into a ring is based on using very fast pulsed magnets, so-called
kicker magnets, with the ability to increase and decrease their maximum field in times much
shorter than the revolution time in the ring. In this way, the magnetic field that deflects the
injected beams onto the closed orbit is gone, once the stored beam returns after one turn.
This method is often referred to as single-turn injection. Since the kickers must have very
rapid rise and fall times of the fields, their amplitude is usually small and septum magnets
with static magnetic fields are used to provide most of the required deflection angle and
make the injected beam almost parallel to the stored beam, often aided by a defocusing
quadrupole of the ring lattice. A septum magnet, shown on the left-hand side in Figure 13.9,
provides a large magnetic field in the region where the injected beam passes. At the same
time the field is close to zero where the stored beam passes, because a so-called septum
blade carries a large current that shields the region with the stored beam. Matching the
transverse beta functions of injected and stored beams is also necessary in this mode of
operation.

If the injected beam has a much smaller emittance than the desired emittance of the
stored beam, instead of a single and very fast kicker magnet, one can use a moderately fast
closed bump, as discussed in Section 8.4.1. The injected beam then fills different parts of
the transverse phase space of the stored beam on consecutive turns and therefore the final
emittance of the stored beam, in this multi-turn injection mode, is larger compared to the
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single-turn mode from the previous paragraph. Nevertheless, multi-turn injection is often
used if dissipative forces, for example due to the emission of synchrotron radiation, damp
particles with large betatron amplitudes back towards their equilibrium positions around
the closed orbit, as discussed in Section 10.1.

Extracting the stored beam from a ring is normally based on operating the single-turn
injection mode in the reverse order; a fast kicker magnet, aided by a defocusing quadrupole,
deflects the beam into a septum magnet that increases the separation of stored and extracted
beam further. At this point normal-sized dipole and quadrupole magnets can be used to
guide the beam to its new destination, either an experiment or the next accelerator. This
mode extracts the entire beam during a very short time.

If, on the other hand, an experiment, for example, to slowly irradiate some sample,
requires a slowly extracted beam, it is possible to operate the storage ring close to a third-
order resonance, such that the transverse phase-space exhibits the triangular shape shown
in Figure 11.1. Operating even closer to the third-order resonance makes the escaping tails
more pronounced. Properly adjusting the sextupoles that drive this resonance then causes
one of the tails to pass the blade of a septum such that the extracted beam particles can
subsequently be guided to the experiment.

13.5 BEAM COOLING

In Chapter 10, we found that the emission of synchrotron radiation provides a friction force
that damps oscillations of the beam and thus “cools” the electrons. This process, does not,
however, work for protons or other ions. Therefore, other methods of cooling were invented
to improve the beam quality, for example, to reduce the momentum spread in ion storage
rings used to study narrow nuclear resonances. Another application, stochastic cooling, is
the reduction of the emittance of antiproton beams. This reduces the transverse beam sizes
and makes reasonable luminosities in a collider feasible.

Stochastic cooling [121] of the transverse motion is based on detecting the position of an
ensemble of oscillating particles in an unbunched beam with a transverse Schottky monitor.
After amplifying and filtering this signal, it is applied to a kicker, placed at a location
90 degrees different in betatron phase, which gives a kick to the same ensemble in order
to reduce the oscillations. Since the particles within such an ensemble should stay close
together, the kick must be applied as soon as possible. Therefore, the correction signal
takes a shortcut across a ring to the diametrically placed kicker. Since the ensembles are
longitudinal slices of an unbunched beam, both the position monitor and the kicker must
be sufficiently fast—having a large bandwidth—in order to distinguish the different slices.
The cooling times are rather large, starting from seconds for low-intensity beams but can
also exceed several minutes for higher intensities. The discovery and implementation of
stochastic cooling made the accumulation of antiprotons possible, which subsequently led
to the discovery of the W–bosons; and, soon after, both discoveries were jointly honored with
a Nobel Prize. Initially developed for unbunched beams, today it is also used for bunched
beams.

A second method to improve the beam quality in ion storage rings is electron cool-
ing [122]. It is based on superimposing a high-intensity electron beam with the ion beam,
which transfers kinetic energy from the random motion of the protons to the electrons,
provided the electron velocity spread is much smaller than that of the ions. Calculating the
friction force closely resembles the derivation of the energy loss, described by the Bethe-
Bloch equation in Section 9.2, but with a different Coulomb logarithm. In the derivation of
the Bethe-Bloch equation, the electrons are at rest, whereas in a cooler they move with a
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velocity, given by the acceleration voltage of the cooler. If the electrons are slower than the
ions, they reduce the velocity of the ions, if they are faster, the ions appear to come from the
opposite direction and are again forced to match the velocity of the electrons. The range of
relative velocities over which cooling is efficient, is rather narrow, and is determined by the
velocity spread of the electrons. This spread is a consequence of the finite temperature of the
cathode in which the electrons are generated. The typical magnitude of energy that an ion
exchanges with the electrons is on the order of eV for protons and increases quadratically
with the charge state of the ions. In small rings, typical cooling times are on the order of
milliseconds to seconds.

Ionization cooling is based on alternating ionizing material with accelerating cavities in
a moderately long, say tens of meters long, section. Beam particles with large transverse
momenta px or angles x′ ≈ px/pz lose momentum in their forward direction, which reduces
both px and pz, but the cavity only restores the longitudinal momentum pz, such that the
particle’s x′ is reduced. The mechanism is similar to damping by synchrotron radiation,
discussed in Section 10.1.2. Ionization cooling is the only known method to prepare the
muon beams for muon colliders (Section 15.3).

13.6 VACUUM

The charged particles in accelerators always travel in an evacuated beam pipe in order
to avoid collision with gas atoms, because the residual gas behaves just like a spread-out
target. In Chapter 9 we found that the beam loses energy by ionizing the target material.
This increases the beam’s momentum spread and creates positive ions that may accumulate
in an electron beam and cause a much higher ion density than the original gas density of
the neutrals. The second effect is transverse Rutherford scattering of the beam particles
on gas atoms or ions. If the minimum distance between beam particle and gas atom—
the impact parameter—is small, this leads to large deflection angles that may lead to an
immediate loss of the beam particle. Much more often the impact parameter is large, and
the deflection angle is small and randomly distributed. This leads to an increase of the
oscillation amplitude of the individual particle and increases the emittances of the beam.

In order to minimize these detrimental consequences of gas atoms, a large number of
pumps are connected to the beam pipe to provide high or ultra-high vacuum conditions. In
the following subsections, we will discuss the basics of gas dynamics, pumps, gauges, and a
method to simulate vacuum systems.

13.6.1 Vacuum basics

We assume that the atoms or molecules, having mass M, that are left in the beam pipe, are
in thermal equilibrium with the environment at temperature T. Since each degree of freedom
in equilibrium on average carries energy kBT/2, with the Boltzmann constant kB , the rms
velocity of the gas molecules in three dimensions is given by Mv2rms/2 = 3kBT/2, or v

2
rms =

3kBT/M. The gas particles follow a Maxwell velocity distribution and conventionally the
mean velocity v̄, rather than the rms velocity, is used. They are related by v̄ = (8/3π)vrms.
For H2 molecules at T = 300K the mean velocity is v̄ = 1850m/s, and for N2 molecules
we find v̄ = 475m/s, which is a value we use for estimating vacuum-related quantities.

The mean free path l̄ between collisions among gas particles is a characteristic number for
the density N/V of the gas, where N is the number of gas molecules in a volume V. During
the traversal of the distance l̄ a gas molecule with diameter d sweeps through a volume δV =
πd2 l̄, and, on average, takes part in one collision. Thus, we expect N/V = 1/δV = 1/πd2 l̄,
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and, after solving for l̄ we find for the mean free path l̄ = 1/πd2(N/V ). For rarefied gases
we can use the equation of state PV = NkBT of an ideal gas to relate the density N/V
to the pressure P. Diatomic nitrogen molecules N2 have a diameter of d ≈ 3.7 × 10−10 m
and the mean free path at atmospheric pressure becomes l̄ ≈ 60 nm, while, at a pressure of
10−6 mbar, it is l̄ ≈ 60m. In accelerators the pressure is almost always in the latter range, or
even lower, such that the mean free path l̄ of the gas molecules is larger than the size of the
vacuum enclosure, such as the beam pipe. The dynamics is therefore entirely determined
by collisions with the walls of the container and its geometry.

In the framework of the international system of units the fundamental unit of pressure
is the Pascal, defined by 1Pa = 1N/m2. Historically, also bar and torr were used as a unit
of pressure, where one bar equals 105 Pa and 1 torr=133Pa. A third commonly used unit
is based on the ambient pressure at sea level, which is approximately 1 bar or 1000mbar,
which equals 105 Pa or 1000 hP (hecto-Pascal). The mbar is commonly used when discussing
technical vacuum systems, such as those found in particle accelerators. Pressure ranges
that occur in a technical context are rough vacuum in the range of 1000 to 1mbar, medium
vacuum in the range of 1 to 10−3 mbar, high vacuum in the range of 10−3 to 10−7 mbar, and
ultra-high vacuum (UHV) in the range below 10−7 mbar, the pressure range almost always
found in beam pipes of accelerators.

From the equation of state, PV = NkBT, we see that the product of pressure P and
volume V is proportional to the number of particles in the volume N, provided the temper-
ature T is constant, which we always assume here. The rate of moving gas molecules around
is thus characterized by the gas flow Q = d(pV )/dt which is proportional to dN/dt. The
gas flow through a pipe with different pressure levels on the left PL and the right-hand side
PR is proportional to the pressure difference, such that we have Q = C(pR − pL) with the
proportionality constant C, called the conductance of the pipe, conventionally expressed in
units of l/s. Microscopically, the surface roughness of the pipe will cause molecules to scatter
with random angles. Therefore, their motion can be described as a diffusion process, with
the conductance C taking the role of the diffusion constant. For practical calculations with
N2 molecule at room temperature, the conductance Cp of a pipe with radius r, given in cm,
and length L, also given in cm, is approximately given [123] by Cp[l/s] ≈ 100 r3[cm]/L[cm],
an equation often used for estimates. Note that the conductance is large for short pipes
with large radius. Likewise, the conductance CA of an aperture with area A, given in cm2,
is given by [123] CA[l/s] ≈ 11.7A[cm2].

The gas molecules are originally adsorbed to the pipe walls, but are slowly released into
the volume of the pipe. This is called outgassing and depends on the preparation history
and storage of the pipe material, as well as the temperature or exposure to radiation, either
from the beam or from synchrotron radiation. The desorbed molecules constitute a gas load
∆Q which quantifies the number of molecules released from the walls per unit time. It is
given in the same units as the gas flow, in mbar l/s. Despite the strong dependence on the
preparation and cleaning of the pipe, we quote measured outgassing rates [124] for aluminum
and stainless steel to be able to estimate the performance of vacuum systems. There, the
outgassing rate of aluminum after one hour of pumping is given by 55×10−10 mbar l/s cm2.
After 10 hours of pumping, the rate is quoted to be reduced to one-tenth. Baking the pipe—
pumping, while heating it up to around 200 oC for a few hours—will reduce the outgassing
by a factor 105. The corresponding outgassing rates for stainless steel are reported to be
worse, but have corresponding orders of magnitude.

The gas molecules are removed from the vacuum system by pumps, which act as traps
for gas molecules. The latter diffuse toward the pump, but once captured in the pump,
do not return to the gas volume. The number of gas molecules captured constitutes a gas
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flow Qp that is removed from the vacuum system and moved to a gas reservoir at higher
pressure. This could be the entrance of another pump or ambient pressure. The ratio of
the pressure at the outlet-port to that at the inlet port is called the compression ratio of
the pump. Furthermore, the number of removed molecules is proportional to the pressure
P at the inlet-port of the pump, such that we have Qp = −SP, with the pump speed S as
proportionality constant. It is commonly given in units of liters per second [l/s]. The minus
sign indicates that the gas molecules are removed from the system. In the next subsection
we will have a closer look at the pumps used in accelerators.

13.6.2 Pumps and gauges

In order to reach rough-vacuum conditions above 1mbar, roots or screw pumps are used.
They move gas volumes mechanically and are constrained by limited sealing capabilities;
gas returns from the high- to the low-pressure side, which limits their compression ratio to
below 100. These pumps are used as fore pumps for other pumps that reach lower pressure
levels and are sometimes referred to as roughing pumps.

In oil diffusion pumps, vaporized oil drags gas molecules from the inlet port towards the
high-pressure side, where it is removed with, for example, root pumps. The operating range
of these pumps covers 10−3 to 10−7 mbar. Their disadvantage is that the oil can contaminate
the low-pressure side.

This contamination is avoided by entirely mechanical turbo-molecular pumps. They are
based on fast-rotating inclined turbines that knock the gas molecules toward the high-
pressure side. The speed of the blades must be comparable to the mean velocity of the
gas molecules, despite operating with rotation speeds of up the 105 revolutions per minute.
These pumps operate in the range of 10−4 to 10−10 mbar. They work better for heavier
gases. Conversely, the small mass of H2 molecules and their therefore large mean velocities
makes pumping of hydrogen difficult.

Sputter-ion pumps are based on Penning traps with two titanium cathodes on either
end of a cylindrical anode at high positive potential. The configuration resembles the one,
shown on the left-hand side in Figure 13.3. Trapped electrons ionize the gas molecules
that enter the pump volume and the positively charged ions subsequently impact on the
cathodes, where they are either buried or sputter titanium. The titanium is deposited as a
chemically highly reactive thin film on the anode, where it adsorbs gas molecules, which is
one pumping mechanism. The other is directly burying the gas ions deep in the cathode.
The pump speed of ion pumps depends on the type of gas, where CO, N2, and O2 are
among the “getter-able” gases. The operating range of ion pumps starts around 10−4 mbar
and extends to 10−11 mbar. The pump speed depends, however, on the pressure range.

Non-evaporable getter (NEG) pumps are based on sputtering a highly porous zirconium-
aluminum alloy on the inner walls of a pipe, which creates a labyrinth in which gas molecules
are trapped and thus removed from the beam pipe. Since sputtering then happens at ambient
pressure, NEG pumps need to be activated by heating the material while pumping the
released gas. This process must be repeated once the NEG material is “full,” either after
long use or accidentally venting the vacuum system. In many accelerators with extremely
small vacuum chambers, the entire inner beam pipe walls are covered with NEG material
and provide pumping to reach low pressure levels. This would be impossible with localized
pumps, because the gas molecules would only very slowly diffuse to the pumps through the
small pipes with their limited conductance.

Cooling surfaces to very low temperatures reduces their probability to desorb gases
and therefore traps gas molecules. This is the operating principle of cryogenic pumps. As a
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matter of fact, all superconducting elements in an accelerator, either magnets or accelerating
structures, act as pumps and adsorb gas molecules, which is especially undesirable in the
latter, because it may create field-emitting sites that may cause quenches. After this brief
discussion of commonly used pumps in accelerators, we turn to the gauges. They tell us
about how well the pumps work by reporting the measured pressure level.

Pirani gauges operate in rough and medium vacuum, down to the 10−4 mbar range. They
are based on measuring the resistance of a heated wire, which is cooled by transferring energy
to the gas molecules. In equilibrium the resistance is related to the density of molecules, or,
equivalently, the pressure.

Ionization gauges are the standard pressure measurement device at pressure levels in the
high and ultra-high regime below 10−3 mbar and down to 10−12 mbar. Their principle of
operation is based on ionizing the gas and measuring the current of the ionization products.
On the one hand, the ionization is done with an external electron source, in which case the
gauge is called a hot-cathode gauge. On the other hand, the gas is ionized in a Penning-trap
with electric and magnetic fields in which a plasma burns and results in measurable currents
that are proportional to the pressure. The latter are called Penning or cold-cathode gauges.

The composition of the gas in a vacuum system—or the partial pressures—is measured
with a residual gas analyzer. One operating principle is based on accelerating ionized gas
molecules or atoms and passing them through a long electro-static quadrupole that is excited
by a sinusoidal voltage on top of a constant voltage. The motion of the gas ions with a
specific mass is only stable for certain excitation frequencies and measuring the current
exiting from the quadrupole as a function of the frequency contains information about the
gas composition.

After having discussed the basic concepts and the hardware, we now turn to calculating
the pressure profile for a given set of pipes, pumps, and outgassing sources.

13.6.3 Vacuum calculations

In order to simulate a linear array of pipes, pumps and gas sources, we split the system into
small longitudinal slices and consider how the number of gas particles in each slice changes
with time. If the temperature is constant, the number of particles in each slice is related to
the pressure and volume by the ideal-gas law PV = NkBT and for each slice we find

v
∂P

∂t
=

∂

∂z
c
∂P

∂z
− sP + q , (13.7)

where we introduce the per-unit-length quantities for the conductance c = CL, the pump
speed s = S/L, outgassing q = ∆Q/L, and the volume v = V/L, which is also the cross-
section of the pipe. The interpretation of the terms is straightforward. On the left-hand side
v∂P/∂t is the change of the number of particles in the slice, q is the rate per unit length by
which gas molecules are injected, and sP is the number of particles removed by a pump.
The first term on the right-hand side describes the diffusion into adjacent slices, because
c ∂P/∂z is the gas flow in the slice, as discussed in Section 13.6.1, and its derivative denotes
the difference of the flow toward the right and toward the left, which is just the change of
the number of particles due to diffusion. If we assume that the coefficients are piecewise
constant, we can integrate this partial differential with standard methods [125] and obtain
the temporal evolution of the system. We leave the general treatment to the specialized
literature and consider a very simple system only.

That system consists of a pump with pump speed S = sL connected to a volume V = vL.
We assume that all gas is already in the volume V , and we can neglect further outgassing
(q = 0). Furthermore, the volume is directly connected to the pump, such that we can
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ignore diffusion (c = 0). We thus find that the pressure P is determined by V dP/dt = SP
or P (t) = P0e

−t/τ with τ = V/S and the pump-down time scale is given by the ratio of the
volume, given in liters, and the pump speed S, given in liters per second.

Since the time scale τ is often very small, equilibrium conditions are reached within a
very short time, such that the equilibrium pressure is the important quantity. It is given by
Equation 13.7 where the temporal derivative on the left-hand side equals zero. Rewriting
the equation for a pipe of finite length L we find

0 = c
d2P

dz2
− sP + q . (13.8)

We assume piece-wise constant values for the conductance c, the pump speed s and out-
gassing q. Then Equation 13.8 becomes an ordinary differential equation with piece-wise
constant coefficients, which can be solved by exponential functions. From the solutions,
we derive transfer matrices that relate the pressure PR and its derivative dPR/dz on the
right-hand side of the pipe to the values PL and dPl/dz on the left-hand side. Here we use
the gas flow Q = CdP/dz instead of the derivative and, furthermore, add a third column to
account for the inhomogeneous term, the outgassing rate q. A little algebra results in the
general transfer matrix in the following equation
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(13.9)
A vacuum system containing many elements is then described by the multiplication of the
matrices for the respective elements. Note that for short elements, the conductance becomes
very large, which allows us to simplify the matrices for such elements. Once we have calcu-
lated the transfer matrix for the vacuum system we find that we have two equations relating
the four unknown quantities PR, QR, PL, and QL. In order to determine these quantities
uniquely, we need to specify boundary conditions. The simplest, and most frequently used,
is to flange off the ends of the vacuum system, which implies QR = QL = 0. No gas flows
into or out of the vacuum system at the ends. The computer program vaktrak, which imple-
ments this method, is described in [126]. In the software accompanying this book we provide
a simplified version using MATLAB, which follows the same strategy as the beam optics
code from Chapter 3. Figure 13.10 shows the pressure profile in a system with leaks and
pumps connected by 10m long pipes. The geometry and component values can be found in
the MATLAB file. An important observation from Figure 13.10 is that the pressure varies
considerably and is lowest near the pumps, and that is where the gauges are frequently
located. This may lead to an underestimate of the true pressure in the system.

A useful relation immediately follows from analyzing the matrix for pure conductance,
which is given by the matrix in Equation 13.9 in the limit q → 0 and s → 0, which has the
same form as the matrix of a “drift space” with a “length” of −1/C. Analogous to the way
drift spaces are concatenated by adding the lengths, the conductance Ct of two pipes with
conductances C1 and C2 is given by adding the inverse conductances 1/Ct = 1/C1+1/C2. A
second useful relation follows from inspecting the matrix for a short pump and concatenating
it with a conductance
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Figure 13.10 The pressure profile (top) and the gas flow (bottom) as a function of

the longitudinal position z for a vacuum system with gas sources at z = 0, 20, and

40m and 200 l/s pumps at z = 10 and 30m. The 10m long pipes have a specific

conductance of c = 10m l/s.

where we used the reduced 2× 2 transfer matrices, and assume that the right-hand side is
flanged off (QR = 0). If we furthermore assume that the pressure on the left-hand side PL

is known, we can solve for the effective pump speed 1/Seff,L = −PL/QL = 1/S+1/C. This
implies that connecting a pump through a pipe with conductance C to the point where we
need to pump, reduces the effective pump speed, and if C ≪ S the effective pump speed
will be determined by the conductance of the pipe C and not by the pump speed S.

In passing, we point out that the equations that govern vacuum systems closely resemble
those that describe electric circuits, where the pressure P takes the role of the voltage and
the gas flow Q that of the electric current. The analogy is apparent, when comparing
Equation 13.10 with Equation 6.15, and can be used to employ electric circuit codes to
simulate vacuum systems [127]. The analogy even extends to Kirchhoff’s laws. In multiple-
connected vacuum systems with a number of pipes connecting multiple nodes, the sum of
the gas flow into a node must add up to zero, and the pressure difference around a circular
loop of pipes must add up to zero. These laws allow us to uniquely calculate the pressure
in complicated vacuum systems [126].

Whereas the vacuum system is present in every accelerator, a cryogenic system is only
needed if superconducting components, such as magnets or accelerating structures, are used
and require cooling by liquid helium. Such refrigeration systems are the topic of the next
section.
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Figure 13.11 Left: the water-cooled compressor pushes helium through the high-

pressure branch that contains heat exchangers, a turbine, and an expansion valve

before the cryostat. The returning cold gas also passes the heat exchangers on the

low-pressure side and thereby cools the helium on the high-pressure side. Right: the

same process shown on a temperature-entropy diagram with corresponding points

identified by numbers.

13.7 CRYOGENICS

The superconducting magnets and accelerating structures, used in some accelerators, are
cooled with liquid helium to temperatures of 4K or even below 2K. If liquid helium is
removed from the system, the system operates as a liquefier; if the helium circuit is closed,
it operates as a refrigerator. Here we consider the latter and, inspired by Chapter 6 in [128],
we sketch a refrigeration plant in Figure 13.11 with the components and their connections
shown on the left-hand side and the temperature-entropy phase diagram on the right-hand
side.

The mode of operation of this plant is based on the compressor receiving gas at its
low-pressure side, labeled by (1), and compressing it at constant temperature to a higher
pressure (2). Since gas normally warms up when compressed, the compressor is connected
to a water-cooled heat bath that keeps the temperature of the gas constant. The gas then
passes through a heat exchanger and enters a turbine (3) or other expansion engine, where
energy is extracted and the gas thereby cooled. The cooled gas is guided to the low-pressure
branch (7) and on its path back to the compressor (1), it is passed through the uppermost
heat exchanger in order to cool the high-pressure gas. This shortened cycle (1-2-3-7-1)
repeats until the gas is sufficiently cold, and a fraction is passed through the second and
third heat exchangers to an expansion valve, where the temperature is lowered further and
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liquid helium is produced to cool magnets or accelerating structures in a cryostat. Any
heat entering the system at low temperatures boils off some of the helium (6), which, still
very cold, is used in the middle and lower heat exchangers to cool down the gas before the
expansion valve.

The plot on the right-hand side in Figure 13.11 shows the corresponding operation
principle in the T −S phase diagram. On the top, at high temperature, the horizontal arrow
from (1) to (2) illustrates the isothermal compression of the gas. The turbine that connects
(3) and (7) ideally operates at constant entropy, but this would require very fast expansion
of the gas. Since this happens at finite speed, the line connecting (3) and (7) describes a
so-called poly-tropic mode that changes the entropy. The heat exchangers connect the left
and the right branches of the diagram and cause the cold gas returning to the compressor
in the right branch to pre-cool the gas coming from the compressor in the left branch. The
operation of the expansion valve keeps the enthalpy constant but increases the entropy.
In this process of cooling down, part of the gas becomes liquid at (5). Heat entering the
system boils off the liquid at constant temperature, resulting in a volume in the cryostat
where liquid and gaseous phases coexist.

We can estimate the efficiency of the refrigeration process by making the rough approxi-
mation that the heat bath in the compressor extracts the heat Qh from the process and that
operating the compressor requires the work W, which is normally needed to drive motors
in the compressor. Furthermore, we assume that the only place where heat Ql enters the
system is at low temperature. These approximations treat the process as a Carnot cycle
with heat Qh and Ql added and removed at constant temperature and the cooling process
approximated adiabatically—at constant entropy—such that the curved line segments (2-
4) and (6-1) in the phase diagram on the right-hand side in Figure 13.11 are replaced by
vertical lines that leave the entropy S unchanged. Since energy is conserved, the heat and
work entering and leaving the system must balance and we have W +Qh +Ql = 0, where
heat entering the process is positive and heat leaving the system is negative. Moreover, the
heat Qh exits the system at temperature Th and Ql enters at Tl. Since the heat Qh enters
at temperature Th, it changes the entropy by Sh = Qh/Th and likewise at low temperature
Sl = Ql/Tl. In our approximation, where all processes are assumed to be reversible, the en-
tropy must also balance, which leads to Qh/Th+Ql/Tl = 0. Inserting this equation into the
energy balance to eliminate Qh, and solving for the ratio of work W needed to remove heat
Ql from the low temperature, we find W/Ql = (Th − Tl)/Tl, the well-known efficiency ratio
for a Carnot cycle. Thus, for a process that cools from ambient temperature Th = 293K to
liquid helium temperature Tl = 4K we obtain W/Ql ≈ 73 and almost twice that value for
Tl = 2K. Even under the idealizing approximations any heat entering the system at low
temperature Tl = 4K requires more than 70 times that energy to drive the compressor W.
In practice, our idealizing approximations are violated by a significant margin and a rule of
thumb is that a kilowatt at high temperature is needed to remove one watt at liquid helium
temperature. Refrigeration plants are normally specified by their ability to cool the heat
entering per unit time, the power, at low temperatures, such as “100W at 4.2K.” Consid-
ering the latent heat of vaporization Q = 20.8 J/g of helium, we find that 100W evaporate
4.8 g/s of helium and with the density ρLHe = 0.125 g/cm3 we see that this corresponds to
evaporating 138 liters of liquid helium per hour.

Since the heat Ql entering the system requires a large expenditure in energy W, it is
mandatory to carefully insulate all components at low temperature. Cryogenic containers are
often dewars, which consist of an inner container with the cryogenic gas or liquid separated
by an evacuated volume from an outer shell, in order to minimize thermal contact between
inner and outer containers. At very low temperatures, even infrared radiation from the
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high-temperature outer walls will heat the inner, cold container. This can be prevented from
happening by adding one or several layers with multi-layer insulation in the space between
the containers. Finally, we need to consider the large difference in volume between the
liquid and gas phase of helium at room temperature. The latter requires a 770 times larger
volume, and appropriate safety measures need to be taken into account when designing the
containers.

13.8 RADIATION PROTECTION AND SAFETY

Accelerated beams are highly ionizing and therefore pose a significant threat to both per-
sonnel and the components of the accelerator. One reason is the creation of free radicals.
For example, in materials with a high content of water, OH− and H+ are created, both
of which are chemically very reactive and potentially damage cells in living organisms and
causes them to malfunction to the point of causing cancer. Moreover, if cells containing
hereditary information, DNA, are exposed, the reproduction of the organism is compro-
mised or results in misformed offspring. Materials used in accelerators, which are based on
hydrocarbons, may change their properties as a result of being exposed to radiation. Epoxy,
used to insulate coils in magnets, becomes brittle and must be replaced, if exposed to too
high doses.

We discuss the units to quantify the radiation and its effect on biological material in the
next section. To complement our brief discussion, we refer to section 36 on “Radioactivity
and Radiation Protection” in [71].

13.8.1 Units

The energy loss from ionizing the target material dE/dx, as described in Section 9.2, is
the fundamental process. The absorbed dose D is the deposited energy density, measured
in J/kg. The official unit for it is Gray (Gy), which is defined by 1Gy=1 J/kg. Historically,
the unit rad was used with the conversion 100 rad = 1Gy. Photons and electrons lose their
energy rather slowly compared to alpha particles (helium nuclei) or heavier ions. The latter
are characterized by a large linear energy transfer (LET) from radiation to target material.
The LET is typically measured in J/m or keV/µm and, for example, for protons is given by
Equation 9.6. In biological material, the high local energy deposition of high-LET radiation
is more damaging.

This variation in damaging effect of the absorbed dose on biological material is charac-
terized by a biological weighting factor w that depends on the specific type of organ and
describes the risks to develop cancer from long-time exposure to radiation. The product of
weighting factor w and absorbed dose D is denoted by equivalent dose H = wD and is mea-
sured in Sievert (Sv). Historically, the unit rem was used with the conversion 100 rem=1Sv.
Currently used values [71] for the weighting factors are w = 1 for photons and electrons,
w = 2 for protons, and w = 20 for high-LET particles, such as alpha particles or heavy
ions.

The natural background radiation level of the equivalent dose is on the order of 5-
10µSv/day and largely depends on the altitude, with minimum values below 2µSv/day
at sea level and several µSv/hour during airplane travel. On the ground, the main source
of radiation comes from natural sources, such as radon. The annual average dose for the
general population is 2.4mSv/year [71]. The annual permitted dose for radiation workers
is 20mSv/year in Europe and 50mSv/year in the US. The lethal whole body dose is on the
order of a few Gray, causing a 50% probability to die within a month.
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13.8.2 Range of radiation in matter

Keeping the ionizing radiation away from humans or sensitive equipment requires shielding,
and the necessary thickness of the shielding depends on the depth of penetration, or the
range of the radiation in matter.

The high nuclear charge Z of heavy ions limits their range to below a millimeter and
normally the beam pipe shields adequately and screens to view beam profiles, as discussed
in Section 7.3, stop the beams in most cases. Even alpha particles emitted by radioactive
material are mostly absorbed in the outer layers of the skin and pose only a moderate
risk, because the skin is replaced regularly anyway. On the other hand, alpha emitters that
enter the human body, either by breathing or by imbibing, are an extremely serious threat,
because this high-LET radiation is absorbed in small volumes deep inside the body and
causes severe local damage to the nearby tissue with a high probability to damage the cells
and cause cancer.

Protons lose their energy at a rate given by Equation 9.6, and, for example, with a kinetic
energy of 200MeV, they produce the Bragg peak, such as the one shown in Figure 9.2, at
a depth of about 28 cm in water or in human tissue, which is largely water-based. This
feature is used in accelerators for proton therapy, as already discussed in Section 9.2. From
Equation 9.6 we see that the energy loss per unit length dE/dx only grows logarithmically
for high energies, and that causes protons with very high energies to lose their energy only
slowly and they require very thick shielding. In LHC, even several meters of material in the
collimators do not completely stop the beam particles.

High-energy electrons and photons cause bremsstrahlung cascades and showers when
they impinge on an obstacle. Their attenuation in many materials can be characterized by
an exponential decay length, called the radiation length, and often denoted by X0. Values
of the radiation length are tabulated, for example, in chapter 6 of [71], and for water we
have X0 = 36 cm, for iron (Fe) X0 = 1.76 cm, and for shielding concrete X0 ≈ 11 cm.

When losing beam particles, even the shielding material can be activated and becomes
radioactive itself. Materials with a high nuclear charge Z can break up when hit by a
beam particle and form a multitude of fission products, some of which may be radioactive.
Materials with lower Z are therefore preferentially used in regions exposed to high beam
losses. Using an aluminum beam pipe instead of one made of stainless steel limits the
activation in exposed regions. Moreover, lost beam particles can excite giant photo-nuclear
resonances that produce neutrons, which are difficult to shield because they are electrically
neutral and difficult to stop. In concrete, their attenuation length for low energies is on the
order of 10 cm, which increases to about 50 cm for energies above 100MeV.

13.8.3 Dose measurements

The primary source of ionizing radiation close to the accelerator beam pipe is lost beam
particles and they are detected by beam loss monitors [129]. The main monitors are ion
chambers consisting of two electrodes at high voltage of several kilovolts, separated by a
volume containing an inert gas, such as argon. Charged particles or photons, passing the
volume, ionize the gas. The electrons then move to the anode, where their arrival is detected
as a current pulse. At intermediate voltages the pulse is proportional to the energy loss of
the passing radiation and saturates at high voltages, which defines the Geiger-Müller regime
of operating the ion chambers.

Another option to directly detect ionizing radiation is based on reverse-biased pin diodes
that produce a current pulse if hit by either electrons or photons, which causes a small
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current to flow. Operational amplifiers, operated with high amplification factors, provide
voltages that can can be detected and digitized.

Outside the accelerator enclosure, or with the accelerator turned off, only neutrons
and photons are present, where the latter are often detected with calibrated Geiger-Müller
detectors or ion chambers. Small hand-held devices are available for personal use. A further
detector for photons is based on a combination of scintillating crystals, such as NaI or CsI,
and photo-multiplier tubes.

Neutrons must be moderated with a hydrogen-rich material, such as polyethylene, to
low energies where their cross-section for nuclear reactions is large and causes secondary
and charged particles to be created. These reaction products are subsequently detected with
an ion chamber or scintillating crystals embedded within the moderator.

13.8.4 Personnel and machine protection

The exposure of personnel working in accelerator environments is typically monitored by
film badges with sensitive areas that are blackened, if exposed to radiation. They need to be
analyzed periodically, typically once every few months. A second type of monitor is track
etched detectors. Etching the detector material, after ionizing radiation and neutrons have
penetrated it, makes tracks left by the radiation visible. Later analysis under a microscope
allows us to correlate the track density with the exposure. Small handheld ion chambers
are used to monitor the radiation levels when working in exposed areas. Apart from period-
ically monitoring the accumulated dose levels of radiation workers, such as the accelerator
maintenance personnel, their health level is regularly monitored by medical personnel.

The accelerator enclosure is a controlled area, whose access is meticulously overseen by
interlock systems. Before the beam is allowed to enter a section of the accelerator, the
enclosure is searched to ensure that no colleague, who may have fallen ill and fainted, is
left behind next to the accelerator. Usually a number of switches, placed throughout the
enclosure, must be pushed in a particular order during the search procedure to ensure that
all hidden areas are checked. Once the accelerator is searched and the access interlock is
enabled, temporary access during periods, while beam is absent, is often controlled by key
banks. Colleagues who need temporary access remove a key from the key bank while they
work next to the accelerator, and operation of the accelerator is impossible until all keys
are returned to the key bank.

While these systems ensure that no personnel are harmed during the operation of the
accelerator, the machine protection system provides interlocks that prevent the accelera-
tor from harming itself by excessive beam loss or by sending beams to areas unsuited to
transport it. In order to monitor the losses, a number of beam loss monitors are installed
throughout the accelerator, and any excessive loss level will either dump the stored beam
or prevent the source from producing more beam. Other systems are based on measuring
the beam current at different positions along the accelerator and, if a significant discrep-
ancy is detected, disable further operation with beams. Finally, special diagnostics such as
diagnostic screens may be damaged if the beam current is too high and their insertion in
the beam path enables an interlock to limit the beam current to safe levels.

13.9 CONVENTIONAL FACILITIES

A sizeable fraction of the construction cost of accelerators is spent on the buildings and
other civil engineering, while operation costs are often dominated by the cost of electricity.
We therefore very briefly touch upon these points.
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13.9.1 Electricity

Magnets and the radio-frequency systems of accelerators are the main consumers of wall-
plug power that is provided by the power grid. The power levels range from below 1MW
for small accelerators, and large facilities with multiple accelerators, such as CERN, exceed
100MW. Often special agreements with utility companies exist in order to limit the cost,
but in return the accelerators may have to stop operation at times of high demand for
electricity from other customers.

13.9.2 Water and cooling

Many consumers of power, such as normal-conducting magnets and radio-frequency struc-
tures, generate a substantial amount of heat and must be water-cooled. Often de-ionized
water is required to prevent sparking due to the high voltages or creepage by large currents,
especially when cooling magnets by passing water through holes within the conductors,
shown in Figure 4.14, that make up the coils. Moreover, the temperature and the pressure
of the cooling water must be stabilized to prevent thermal drifts of components. Especially
radio-frequency components are prone to detune with varying cooling water temperatures.
Devices that cannot be water-cooled will deposit the heat they generate into the ambient
air and make an elaborate air-conditioning system necessary, which often has to deal with
a wide range of conditions.

Since only a fraction of the wall-plug power from the grid ends up in the beam, most of
the power will have to be removed by water cooling or air conditioning. In modern accel-
erators this has triggered investigations to find ways to recuperate some of the generated
heat, for example, to heat nearby buildings.

13.9.3 Buildings and shielding

Finally, the accelerator and personnel operating it must be housed. Large accelerators,
such as the LHC or the European XFEL are placed in deep underground tunnels that are
dug by special tunnel-boring machines, known as “moles”; a rather expensive method, but
unavoidable, if accelerators are placed in densely populated areas. On the other hand, if
placed above ground, significant shielding is required to prevent the radiation from reaching
personnel or users of the accelerator who occupy buildings adjacent to the accelerator.

QUESTIONS AND EXERCISES

1. Consider the thermionic electron gun from Section 13.2.1 and prepare plots of the
charge density n(s), the potential U(s), and the velocity v(s) of the electrons for
0 < s < d. Discuss the divergence of n(s) near the cathode.

2. You have a 100-liter pump connected through a 10m long round pipe with a diameter
of 10 cm connected to a large volume of 1m3 that contains gas that you want to
remove. (a) What is the conductance of the long pipe? (b) What is the effective pump
speed with which you actually pump the large volume? (c) What is the exponential
pump-down time scale? (d) How much more efficient would the pump be, if you
connect it directly to the large volume?

3. You need to expose a delicate sample directly to synchrotron radiation, such that
you cannot use a vacuum window in the 10m long photon beamline. Unfortunately,
the sample also outgasses significantly at a rate of 10−3 mbar l/s. Luckily, you have
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two large 200 l/s pumps at your disposal to design a differential pumping section and
ensure that the pressure at the shutter, close to storage ring, is below 10−8 mbar. Only
then are you allowed to open it and receive photons to expose the sample. Your plan is
to insert 1m long narrow pipes with a diameter of 1 cm into the 10m long line, which
otherwise has a diameter of 10 cm. (a) Test different sequences of wide and narrow
pipes and placement of pumps and find out whether you can achieve your goal. (b)
Can you reach the required pressure with smaller and therefore less expensive pumps?

4. Find out (a) the average received dose for the population in your country of residence;
(b) the dose received during a transatlantic 10-hour flight.
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Examples of Accelerators

After discussing many aspects of accelerators, let us look at examples of accelerators that
are presently in operation and are based on the principles and methods discussed in the
previous chapters. We refer to the relevant chapters by pointers in square brackets.

14.1 CERN AND THE LARGE HADRON COLLIDER

The European Organization for Nuclear Physics (CERN) was founded in June 1953 and
charged with the pursuit of the high-energy frontier of elementary particle physics. Over
the following decades, the proton synchrotron (PS) and the Super Proton Synchrotron
(SPS) were built. The latter discovered the force carriers of the electro-weak interaction,
the Z and W bosons. In the 1980s the e+e−–collider LEP with a circumference of 27 km
was constructed to carry out precision studies of the previously found bosons until 2002.
Almost simultaneously with the start of LEP’s construction, the idea was born to replace
the e+e−–collider with a proton storage ring to collide multi-TeV protons, the Large Hadron
Collider (LHC). By the time its construction began to replace LEP in the same tunnel, the
only missing particle within the so-called standard model of particle physics was the Higgs
boson, which indeed was found in the LHC by 2012.

The protons that eventually collide at high energy are created in a Duoplasmatron [Sec-
tion 13.2.2], placed on a high-voltage platform to provide protons with an energy of 90 keV
energy. The protons are further accelerated to 750 keV in an radio-frequency quadrupole
[Section 13.2.7], which simultaneously accelerates, bunches, and transversely focuses the
protons before injecting them into Linac 4, which is a drift tube linac [Figure 1.2]. In
Linac 4, the protons are accelerated to 160MeV before they are injected into the four rings
of the PS booster. These rings operate with harmonic number h = 1 [Section 5.3] with a
single, long bunch in each ring. Splitting the beam into four rings is necessary to mitigate
the large space-charge tune shift ∆Q [Equation 12.1] due to the very high charge per bunch
and low energy. After the four rings are filled, their energy is increased to 2GeV, and the
bunches are transferred to the PS in two batches of four. Two bunches each fill six of seven
available RF buckets in the PS. In the PS, an “RF gymnastics” scheme [Section 5.6] is used
to split the six long bunches into 18 shorter ones. Then, the energy is raised to 25GeV and
the bunch structure is adapted once again to create 72 shorter bunches with 25 ns spac-
ing. Before transferring the bunches from the PS to the SPS, the bunches are rotated by
90 degrees in longitudinal phase space [Section 5.6] in order to match the acceptance of the
RF system [Figure 5.5] of the SPS and to avoid emittance growth. Three or four consecutive
fills with 72 bunches each from the PS are then transferred to the SPS. There, their energy is
increased to 450GeV, before they are extracted, pass the 3 km long transfer lines from SPS

348 This chapter has been made available under a CC BY NC license.
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to LHC, and, after matching the transverse beta functions [Section 3.6], are finally injected
into the LHC. This procedure is repeated 13 times to fill 2808 bunches into the LHC, each
containing more than 1011 protons. The total stored current is on the order of 0.5A. All the
extractions from one accelerator and injections into the next one use single-turn injections
[Section 13.4] onto the closed orbit in order to maintain small emittances.

Once all protons are assembled in the two rings of the LHC, the fields in the magnets are
increased and the beams are accelerated [Section 5.7] in about 20 minutes to the collision
energy, presently up to 6.5TeV per beam. At this energy, the beams carry up to 350MJ
each, and the protons actually emit a few kilowatts of synchrotron radiation that must be
prevented from being deposited in the magnet cold mass at 1.9K, because that requires a
large cooling effort [Section 13.7]. Instead, the radiation is intercepted by so-called beam
screens at temperatures between 5 and 20K, which requires less power to cool. During
the ramp to the final energy, the beam optics is detuned to reduce the maximum beta
functions in the final focus quadrupoles and prevent excessive losses. But once the collision
energy is reached with beams circulating stably, the minimum beta functions at the collision
points are “squeezed” to small values. This also causes the maximum beta functions in the
adjacent quadrupoles to increase. With small beta functions at the interaction points, the
two counter-propagating beams are moved transversely and brought into collision. Now they
start producing luminosity [Section 9.5] at a level of L = 1034/cm2s per experiment and
the detectors start collecting data. Unless something unforeseen occurs, such as magnet
quenches, the beams stay in collision for about 12 hours before they are dumped, the
magnets are ramped down to injection energy, and the entire procedure to fill LHC starts
again at the proton source.

The LHC was conceived to reach the highest possible proton energy in the available
27 km long tunnel. Therefore, the crucial components are the dipole magnets that must
reliably reach the highest achievable fields. Moreover, the large number of superconducting
magnets [Section 4.4] requires them to be produced on an industrial scale. The 1232 dipoles,
installed in LHC today are 15m long, reach fields of 8.3T, and are cooled by super-fluid
helium at 1.9K. They have two apertures to guide the two counter-propagating proton
beams in the same magnet. In the LHC arcs, groups of three dipoles are interspersed
between alternating focusing and defocusing magnets to form FODO cells [Section 3.3.3]
with a cell length of 106.9m with 23 cells forming one of the eight arcs of LHC. In-between
two adjacent arcs are straight sections, four of them are occupied by the large experiments
ATLAS, CMS, LHCb, and ALICE. These straight sections consist of matching sections
with dispersion suppressors [Figure 3.30] to adapt the optics in the arcs to the telescopes
[Section 3.7.1] that demagnify the beams before the respective collision points. The close
temporal spacing of the bunches by 25 ns makes it necessary to collide with small crossing
angles [Section 9.5] in order to avoid excessive perturbations from the long-range collisions
between successive bunches in the two beams before and after their collisions. The crossing
angle reduces the luminosity but is necessary to ensure the stability of the beams. One of the
other four straight sections house the superconducting acceleration structures [Section 6.5.2]
needed to accelerate the beam and to provide longitudinal phase stability [Section 5.3]. The
large number of stored protons in many bunches makes the beam susceptible to multi-
bunch instabilities [Section 12.6] that are counteracted by feedback systems. The high per-
bunch current is responsible for a number of single-bunch instabilities [Section 12.5]. One
is based on ionizing the residual gas in the beam pipe. The electrons, accelerated in the
electrostatic potential of the beam, hit the beam pipe and desorb even more gas. This
and other perturbations cause the protons in the beam to stray away from their reference
orbit. Therefore, two straight sections are used to collimate stray particles and prevent
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them from hitting the cold mass of the magnets and causing quenches of superconducting
components. The last straight section contains the beam dump, which is needed to abort
the beams, either before ramping the magnets down for a new cycle, or if a quench or some
other fault happens. In order to dump the beams, a sequence of 15 kicker magnets deflect
a beam into a sequence of 15 septum magnets, before dilution kickers spread out the train
of bunches transversely. The beams then pass a composite-carbon window and are stopped
in a carbon-core beam dump shielded by concrete-filled iron yokes.

Apart from protons, the LHC also stores lead (Pb) ions that are brought into collision
and produce a plasma consisting of the constituents of atomic nuclei: quarks and gluons. In
this state, which resembles that of the universe immediately after the Big Bang, the quarks
and gluons are no longer bound inside the nuclei and therefore allow us to investigate their
coalescing into hadrons. The lead ions are produced by heating ultra-pure lead and sub-
sequentially ionize it in an ECR source [Figure 13.3] to produce Pb29+. These ions are
accelerated in an RFQ [Section 13.2.7] to 250 keV and injected into Linac 3 that accelerates
the lead ions to 4.2MeV per nucleon. The ions then pass a stripper foil to remove the
remaining electrons from the lead ions and produce the charge state Pb54+. These ions
are subsequently injected [Section 13.4] into the low-energy ion ring LEIR, where they are
accelerated to 72.2MeV per nucleon. After further acceleration and bunch manipulations
in the PS and the SPS, they are finally injected into the LHC, where they are brought into
collisions at beam energies of 2.75TeV per nucleon, mostly to provide luminosity for the
ALICE detector, which is dedicated to heavy-ion physics.

An ambitious upgrade program to increase the luminosity [Section 9.5], called High-
Luminosity LHC (HL-LHC), is ongoing. Already today, the injector chain of linacs, PS
booster, PS and SPS was upgraded to cope with higher beam currents [Sections 12.5
and 12.6]. In parallel, the beam safety system had to be adapted. Moreover, the beta
functions at the interaction point will be reduced [Section 3.7.8], which requires stronger
final-focus quadrupoles. Finally, crab cavities will be installed in order to compensate a
necessary increase of the crossing angle at the interaction points [Section 9.5]. Once HL-
LHC has operated for a number of years, a second major upgrade is under discussion: the
High-Energy LHC (HE-LHC) project envisions to replace all dipole magnets with new ones,
made with Nb3Sn wires (Section 15.2) and capable of almost doubling the achievable fields
and beam energies.

14.2 EUROPEAN SPALLATION SOURCE

Because neutrons are electrically neutral they can penetrate deep into samples, and because
they have magnetic moments they can probe magnetic properties of materials. Moreover,
with momentum p corresponding to ambient temperatures, their de Broglie wavelength λ =

probe properties of matter that are complementary to those probed by x-rays, having the
same ranges of wavelengths. Historically, the constant flux of neutrons from nuclear reactors
was used to analyze samples from material and life sciences. Later accelerator-based sources
provided neutrons delivered in short pulses, which allows us to select the neutron energy
with time-of-flight methods. As of 2024, the European Spallation Source (ESS) is still under
construction. It will deliver proton beams with a beam power of 5MW to the target where
nuclear spallation reactions will produce a large flux of neutrons. Once operational, it will
be the most powerful source of neutrons, worldwide.

The protons are created in an ECR source [Section 13.2.2] placed on a high-voltage
platform that causes the protons to be accelerated to a kinetic energy of 75 keV, before

h/p is on the order of one Angström, the typical spacing of atoms in matter. Thus, neutrons˚
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they are injected into an RFQ that increases their energy to 3.6MeV, followed by a normal-
conducting drift-tune linac [Figure 1.2] that brings their energy to 90MeV. In the next
section, 28 superconducting spoke cavities, optimized to accelerate protons at low veloci-
ties, increase their energy to 216MeV. From this point onward, they are accelerated with
superconducting elliptic cavities to their maximum energy of 2000MeV and are guided
onto the neutron-production target, a fast-rotating tungsten wheel. The neutrons, created
in nuclear spallation reactions, initially have the high energy of the incident proton beam,
but are slowed down, or moderated, in an enclosure made of hydrogen-rich material. The
neutrons escaping the enclosure through a number of holes have thermal energies, compa-
rable to kBT with T=300K, which causes their de’Broglie wavelength to be on the order of

m, the spacing of atoms in matter. Long transport lines then guide the neutrons
to experimental stations. Since neutrons with higher energies are faster than lower-energy
neutrons, their energy, and thereby their wavelength, is correlated with their arrival time.
This makes time-of-flight selection possible, because the accelerator operates in a pulsed
mode, which naturally defines a starting time. The beam pulses come 14 times per second
and are 2.86ms long.

Since high-intensity proton beams can also be used to produce neutrinos and to study
their properties—especially their oscillations—investigations are underway to double the
repetition rate of the linear accelerator and use every other pulse to produce neutrinos. For
this purpose, the “neutrino pulses” are directed into a small storage ring, where the 2.86ms
long pulses from the linac are compressed to about 1µs and subsequently extracted and
used to create pions. The pions then decay into muons, whose charge state can be selected
in a so-called magnetic horn, which, in turn, produces neutrinos or antineutrinos. There is
one detector for the neutrinos close to the accelerator and a second one several hundreds
of kilometers away. Comparing the number of detected neutrinos will then allow precision
measurements of neutrino oscillations.

14.3 SLAC AND THE LINAC COHERENT LIGHT SOURCE

Following the development of klystrons to produce high-power RF for radar applications
during the Second World War, a number of linear electron accelerators were constructed
at Stanford University. The first machines produced a few MeV but soon reached several
hundred MeVs in the late 1950s. Hofstadter used the accelerated electrons to determine
the charge distribution inside protons and other nuclei. Encouraged by these experiments, a
group around Wolfgang Panofsky proposed to build the largest linear accelerator that would
fit on university-owned lands. Thus, in the first half of the 1960s, a 3 km-long linear acceler-
ator for electrons was constructed. Around it a new national laboratory was established, the
Stanford Linear Accelerator Center (SLAC). During its first decades of operation, electrons
with maximum energy of 20GeV were used to probe the substructure of nucleons further,
eventually revealing evidence for the existence of quarks for the first time. In the 1980s a
novel scheme to multiply the power level from the klystrons increased the maximum energy
to 50GeV, which made it possible to create Z bosons, one of the carriers of the electro-weak
force, by accelerating and colliding electrons and positrons in the first linear collider, the
SLC. After completion of the program, part of the linear accelerator was turned into the
first x-ray free-electron laser, which started operation in 2009. The short wavelength and
the unprecedented intensity of the x-ray pulses makes it possible to obtain diffraction im-
ages from individual samples, rather than from crystallized assemblies of multiple samples.
And the ultra-short duration of the radiation pulses in the fs-regime allows us to collect
the diffraction patterns before the high-intensity pulse destroys the sample. By synchroniz-

1A= 10−10˚
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ing the radiation from the FEL with an external conventional laser, snapshots of chemical
reactions can be collected that are later sorted and assembled into movies.

At a rate of 120 times per second, electrons are created by an ultraviolet laser pulse
impinging on a photo-cathode that is embedded in a radio-frequency accelerating struc-
ture [Section 13.2.1]. In order to stabilize the transport of the bunch, having very small
momentum spread, through the linear accelerator, the spread is increased in a controlled
way with a laser heater [Section 12.5]. Two bunch compressors [Section 3.7.9] at locations
with beam energies of 250MeV and 3.4GeV compress the bunch to sub-picosecond lengths.
RF structures that operate at a frequency of 2856MHz [Sections 6.4.3 and 6.5.1] accelerate
the bunches up to their maximum energy of 16GeV. Diagnostic equipment [Section 7.3] is
installed in multiple locations along the linac to ensure the beam quality: wire scanners to
measure the emittances [Section 7.4] and transversely deflecting structures [Section 7.3] to
measure the bunch lengths. After accelerating bunches with intensities of several 100 pC to
16GeV, the bunch enters the undulator magnets [Section 10.2.2] that consists of 33 modules
with a fixed gap and a length of 3.4m each. While passing the undulator, the electrons incite
the SASE process [Section 10.4] and produce highly intense and ultra-short radiation pulses
with wavelengths down to 0.1 nm or 1A, the typical distance between atoms in matter.
The radiation is guided by mirrors to a number of different experimental stations. Several
novel schemes for arrival-time diagnostics on the femtosecond time scale and for self-seeding
[Section 10.4] were successfully implemented in LCLS.

Presently, commissioning of a second free-electron laser, LCLS-II, is underway at SLAC.
It uses superconducting acceleration structures [Section 6.5.2] in order to continuously ac-
celerate electron bunches with a charge of 100 pC at a rate of up to a million times per
second to an energy of 4GeV. A particular challenge will be to achieve high beam quality
at high repetition rate, as well as high gradients in the accelerating structure when operating
in a continuous mode. Moreover, three bunch compressors cause very high peak currents
that make the beam susceptible to micro-bunching instabilities. A beam switchyard will
send beams from both the already operating normal-conducting accelerator and the new
superconducting accelerator to two variable-gap undulators, one for the soft x-ray and the
other for the hard x-ray regime, expanding the spectral range.

14.4 CONTINUOUS ELECTRON BEAM ACCELERATOR FACILITY

The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson
National Accelerator Facility in Newport News provides a continuous stream of electrons to
experiments that probe the quarks and gluons inside nuclei, just as the earlier experiments at
SLAC did. Whereas the SLAC linac provided very few but rather intense bunches, CEBAF
delivers a continuous stream but at lower intensity. This is favorable for certain types of
experiments, especially those detecting the coincidence of multiple collision products.

Figure 14.1 shows the CEBAF accelerator consisting of two half-linacs that are connected
by recirculating arcs on either end. It is essentially a wound-up longer linear accelerator,
where the beam travels through the shorter linacs multiple times. In order to provide con-
tinuous beams without incurring excessive losses by heating the accelerating structures,
the linacs use superconducting cavities [Section 6.5.2] that are cooled by liquid helium at
2K. Eight five-cell cavities, similar to those shown in Figure 6.11, are assembled inside one
cryomodule. They operate at a resonance frequency of 1497MHz.

Following initial commissioning in 1994, the electron beam was “born” in a photo-
cathode gun [Section 13.2.1] in the injector building and accelerated to 50MeV before it
travels through the 240m long linac consisting of 20 cryomodules. After passing the north

˚
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Figure 14.1 In the CEBAF accelerator, electrons are created in the injector and

subsequently accelerated multiple times in two linacs that are linked by recirculating

arcs. They make it possible to use the linacs multiple times before the electrons are

directed to four experimental stations, labeled A through D.

linac for the first time, they have an energy of about 400MeV, such that on their first pass
the spreader magnet directs them into the uppermost recirculation arc labeled “1.” At the
end of the arc, which is configured to be achromatic and isochronous, a recombiner magnet
deflects the electrons into the south linac, where the electrons are accelerated by another
400MeV. At the end, a second spreader magnet directs the electrons into the uppermost
arc, labeled “2,” on the other side. Likewise, upon exiting the arc, a recombiner magnet
ensures that the electrons are launched into the north linac, where the electrons gain another
400MeV on their second pass through the linac, whereupon the spreader deflects them into
the second recirculating arc from the top. Following this scheme, the beam successively
passes five arcs on the left and four arcs on the right of Figure 14.1. In this way both linacs
accelerate the beam five times each to reach energies of up to 4GeV that can be delivered
to the experimental halls, labeled A, B, and C.

The injector and the beam delivery to the experimental halls is capable of providing
three different beam intensities at different energies. Three different lasers illuminate the
gun cathode to fill three consecutive buckets with different number of electrons such that
laser A provides the electrons for hall A and so forth. In this way three quasi-independent
beams are accelerated simultaneously. Extracting the beams at the end of the south linac and
at the desired energy is accomplished by a resonant kicker that operates at one-third of the
radio frequency. It can be tuned to kick adjacent bunches into the respective experimental
halls or lets them pass for another round through the linacs and thereby reaching higher
energies.

The linacs performed very well, and the design energy of 4GeV was reliably achieved in
1995. Many of the cavities, however, outperformed their specification and made higher ener-
gies possible. After a number of limitations were identified, many cavities were refurbished
over several years, and a peak energy of 6GeV could be reliably delivered to experiments by
2009. In the following decade, an ambitious upgrade program aimed to double the energy
again by installing additional cryomodules with higher-performing cavities in the free space
that was available inside the linac tunnels. At this point each linac increased the energy of
the beam by 1.1GeV. Moreover, a tenth recirculation arc, labeled “10” in Figure 14.1, was
added to those already present. This makes a sixth pass through the north linac possible and
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allows the beam to reach 12GeV before being directed to the newly erected experimental
hall D. Presently, plans are pursued to add an additional arc below those already present.
Using special magnets that can handle multiple beam energies simultaneously, the upgrade
will almost double the energy once again to reach 22GeV in the future.

14.5 MAX-IV

Max-IV is a third-generation synchrotron light source that is equipped with a number of
synchrotron-radiation beamlines, dedicated either to spectroscopy in wide spectral range
from UV to x-rays or to diffraction experiments to a determine the three-dimensional struc-
ture of proteins. In Max-IV, a normal-conducting linac provides electrons for two rings, one
operating at 1.5GeV to produce UV and soft x-ray photons, and a second one, operating
at 3GeV to produce harder x-rays.

A thermionic cathode [Section 13.2.1], embedded in a radio-frequency accelerating struc-
ture, generates the electrons for the rings. Up to one nC with a normalized emittance of
εn = 10µm-rad is accelerated in the normal-conducting linear accelerator that operates
at a frequency of 3GHz [Section 6.4.3]. After reaching the energy of 260MeV, the first
bunch compressor [Section 3.7.9] reduces the bunch length. After the bunch compressor,
the electrons are accelerated to an energy of 1.5GeV, where they are either injected into
the 1.5GeV ring, or accelerated further to 3GeV, to be injected into the 3GeV ring with
so-called top-off injection, where losses in the ring are continuously replenished by a new
beam from the linac. This larger ring has a circumference of 528m, and the magnet lattice
consists of multi-bend achromats [Section 3.7.5] with seven short dipoles and a number of
quadrupoles. Using a large number of short dipoles is beneficial to reach small emittances
[Section 3.7.5], and the horizontal emittance is as low as εx = 330 pm-rad. In order to keep
the circumference limited, strong combined-function dipole magnets are used in the achro-
mats. The strong fields are made possible by keeping the magnet gaps small, which, in turn,
requires distributed pumping with NEG pumps [Section 13.6.2]. Moreover, the iron yokes
for large sections of a multi-bend cell are prepared in numerically controlled milling ma-
chines (CNCs) and are internally aligned, which simplifies assembling the accelerator. The
equilibrium beam parameters, such as emittance, damping times, and momentum spread
are entirely determined by the magnet lattice [Section 10.1]. The RF system in the 3GeV
ring uses a 100MHz system, which causes the bunches to be fairly long in order to prevent
intra-beam scattering [Section 12.2]. This permits us to maintain small emittances, despite
large single-bunch beam currents. Undulators and wigglers [Section 10.2.2] generate the
synchrotron radiation to serve the users. The small vertical height of the beam pipe permits
using narrow gap undulators with high fields to generate photons into the hard x-ray regime.
Since the small emittances are only achievable with a well-corrected lattice, methods from
Section 8.5.6 are used to find deviations of the real accelerator from its model. Furthermore,
the synchrotron radiation is often focused to micro-meter spot sizes on to samples, and this
requires stabilization of the beam orbit with feedback systems [Section 8.5.7]. Moreover,
coupled-bunch instabilities [Section 12.6], which can arise due to the high current stored in
many bunches, are stabilized with the coupled-bunch feedback systems [Section 12.6].

The smaller 1.5GeV ring is designed following the same strategy as the 3GeV ring,
but has a 5 times smaller circumference and produces photons in the soft x-ray regime.
Since the linear accelerator is only used occasionally to top off the stored currents in the
two rings, the rest of the time, a so-called short-pulse facility passes the 3GeV beams at
the end of the linac through an undulator, where it produces very short light pulses. In
this mode, the electron bunches can have a smaller charge per bunch, but they must have
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smaller emittances than the beams that fill rings. Therefore, a second RF gun with a laser-
driven photo-cathode [Section 13.2.1] is installed next to the thermionic gun. The laser
cathode produces bunches with charges of about 0.15 nC and emittances of 1.5µm-rad.
Single bunches are produced at a rate of 100Hz, accelerated and compressed in the first
bunch compressor. Instead of directing them to the 3GeV ring, they pass a second bunch
compressor and are compressed further to sub-picosecond lengths, whence they enter an
undulator magnet [Section 10.2.2] to produce radiation in the soft x-ray regime with the
duration mimicking that of the compressed electron bunches.

14.6 TANDEM ACCELERATOR IN UPPSALA

Ions accelerated to a few MeV are wonderful probes of material composition, especially
of the near-surface region of materials. Accelerator mass spectroscopy (AMS) allows us to
detect the fraction of, for example, 12C in samples with a sensitivities better than 10−16.
Depth profiling of materials containing heavy atoms on the nanometer-scale is possible
using projectiles of light ions with Rutherford Backscattering (RBS). Conversely, heavy ions
are used to probe materials containing light atoms using Elastic Recoil Detection Analysis
(ERDA). Furthermore, ions excite the emission of specific x-rays (PIXE) or nuclear reactions
(NRA) that are specific to the target material and beam energy. The ions used for these
methods are often provided by a tandem accelerator, already mentioned in Chapter 1.

In the tandem laboratory in Uppsala, four ion sources provide the beams that are used as
projectiles. Two duoplasmatrons, one of which is equipped with a potassium-filled charge-
exchange cell [Section 13.2], generate beams from gaseous materials. Two sputtering sources
(SNICS) [Section 13.2.4] are available to provide beams from solids. The sources are placed
on a high negative potential, which causes the ions to be accelerated to an energy, typi-
cally between 20 and 40 keV. Dipole magnets, and for some low-energy beams, electrostatic
fields, then select the mass to charge ratio of the ions injected into the pelletron, a tandem
accelerator based on a Van de Graaff accelerating column [Figure 1.3]. In the center of the
tandem accelerator, located at high potential of up to 4.5MV, either a thin conversion foil
or a gas stripper converts the negative ions to positive ions. This makes it possible to use
the same acceleration voltage once again in order to reach energies of up to several tens
of MeV, provided several electrons are removed to create higher positive charge states. At
the exit of the pelletron, a triplet [Section 3.7.2] of electro-static quadrupoles is used to
transversely focus the beam. A carefully calibrated spectrometer-dipole magnet selects the
particle type and charge state that is directed to a switchyard used to distribute the beams
to the experimental stations, each devoted to one of the analysis methods mentioned above.
One of the beamlines is equipped with a micro-beam system that uses collimators and a
triplet [Section 3.7.2] to focus the ion beam down to spot sizes on the order of a micron,
which is used to analyze sensitive microstructures, often organic materials.

The second accelerator is a mini carbon dating system (MICADAS) [130], a compact
AMS system, dedicated to satisfying the high demand for radiocarbon dating. The beam is
produced as a negatively charged ion in a sputtering source [Section 13.2], located at a few
tens of kilovolts and the charge state is selected in a low-energy mass spectrometer with
a 90-degree bending magnet. It uses permanent magnets with superimposed electro-static
fields, which can be adjusted on a time scale of milliseconds and allows rapid switching
between 12C,13 C, and 14C in order to minimize systematic errors. Then the carbon ions are
accelerated in a tandem configuration, where 170 kV are provided by a commercial high-
voltage power supply. In this configuration, the negatively charged ions are accelerated
toward a gas stripper, located at high potential, where they are converted to positively
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charged ions and accelerated once again with the same acceleration voltage. The ions are
then analyzed in a 90-degree magnet and a second 90-degree electrostatic deflector, before
they are counted with a semiconductor detector.

A third accelerator is a 350 kV implanter that delivers beam currents of mA. It is used
for Medium Energy Ion Scattering, a technique similar to RBS, but provides better depth
resolution on the order of 0.5 nm, which allows us to analyze, for example, gate stacks for
transistors and other samples, such as thin films. Moreover, it is used to dope a substrate
or modify its conductivity, where the depth of the modification is energy-dependent and
therefore adjustable. This is a feature that is particularly attractive to develop pn junctions
in semiconductors. The ion implanter [131] is equipped with a commercial high-current
ion source that can produce beams of most elements by operating either in gas, oven, or
in sputter modes. The ion source is placed on a 20 kV high-voltage platform followed by
an dipole magnet to select the ion species and a Cockroft-Walton [Figure 1.4] accelerator
reaching voltages of up to 330 kV. The accelerated ions can be chopped with an electro-
static deflector and bunched with a drift tube buncher [Section 3.7.9] in order to produce
short, down to 0.3 ns long, bunches, which allow us to make time-of-flight measurements of
the back-scattered ions from a sample. The samples are mounted on a rotating stage inside
a scattering chamber with a two-dimensional position-sensitive detector that allows us to
record the arrival time of the scattered ions.

The fourth accelerator is also used for time-of-flight measurements with ions, accelerated
by even lower voltages of 0.5 to 10 kV, which improves the sensitivity to sample properties
near the surface. The beams are produced in a commercial ion source, followed by a Wien-
filter. It uses crossed electric and magnetic fields that deflect the particles, except for one
velocity, at which the electric and magnetic forces cancel. This device selects the velocity of
the beam particles that are chopped to produce short bunches that, after being focused in
so-called einzel lenses, directed onto a sample. The backscattered ions are post-accelerated
and guided to a detector.

14.7 ACCELERATORS FOR MEDICAL APPLICATIONS

A large number of accelerators, many more than those used in fundamental research, are
used in industrial and medical applications. Nowadays, many large hospitals operate facil-
ities to irradiate cancer patients with x-rays generated by electrons impinging on a target.
Figure 14.2 shows a sketch of such a system. The electrons are created in a thermionic
electron gun [Section 13.2.1] that is equipped with a control grid in order to modulate and
control the beam current. A small linear accelerator, often based on accelerating struc-
tures operating at 3GHz [Section 6.4.3], accelerate the electrons to energies of about 5 to
20MeV. At these energies, they can still be focused with solenoids [Section 3.1.7]. After
the linac, quadrupole and dipole magnets focus and deflect the electrons by 270 degrees. A
slit is used to define the momentum of the particles, before they are directed onto a target,
where they create x-rays [Section 9.2]. Following the target, a flattening filter scatters the
x-rays in such a way as to make the transverse distribution more homogeneous, apertures
and collimators define the lateral extent of the irradiation, and ion chambers measure the
dose [Section 13.8.3] before the radiation impinges on the patient. The whole linac assem-
bly is sufficiently small to be built into a so-called gantry that can be rotated around the
patient who remains fixed in order to prevent the patient’s organs and the tumor from mov-
ing. A second use of electron beams with energies of several MeV, albeit at much higher
beam intensities, is the sterilization of single-use materials in hospitals, such as disposable
syringes [132].
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Figure 14.2 Medical electron linac for the irradiation of tumors with x-rays.

Instead of irradiating tumors with x-rays, protons are used as well. They deliver the
highest dose at a certain depth in the Bragg peak [Section 9.2]. For protons with a kinetic
energy of about 200MeV, the maximum dose [Section 13.8.1] is deposited at a depth of 28 cm
in water-dominated material, such as human tissue. The protons are typically generated in
a Penning ion-source [13.2.2] in the center of a cyclotron [Chapter 1] that accelerates them
to their maximum energy in the range of 200 to 250MeV. After extracting the protons
from the cyclotron with an electrostatic deflector, they traverse a beamline to the patient
treatment room. The depth of the Bragg peak can be modulated by passing the protons
through a stack of Plexiglass or other water-rich material, where it loses part of its energy.
Collimators, specifically manufactured for each patient, define the transverse field of the
irradiation. The tumor adaptation stage with the range modulator and the collimator can
be either placed in a horizontally oriented beamline or built into a gantry that rotates the
beam around the patient. Since the rigidity Bρ ≈ 2.4Tm of 200MeV protons is much larger
than that of the electron with 20MeV or less, the gantries for protons require much larger
magnets and are very large, often weighing several hundreds of tons.

The width of the Bragg peak, caused by ions with higher mass number, for example,
carbon, is narrower than that of protons, and this stimulated the construction of centers for
ion therapy. The energy of carbon ions with a range of 30 cm in water is about 430MeV per
nucleon, which corresponds to a rigidity of Bρ = 6Tm. At these energies, synchrotrons are
more suitable to accelerate the ions and, additionally have the ability to vary the extraction
energy and thereby adjust the depth of the Bragg peak, albeit at the expense of higher
complexity of the accelerator. After the ion source [Section 13.2.2], an RFQ [Section 13.2.7]
accelerates the ions before injecting [Section 13.4] into the synchrotron that accelerates them
to the desired extraction energy. Carefully controlled resonance extraction [Section 13.4]
close to the half- or third-order resonance creates a constant flow of accelerated ions towards
the patient treatment rooms. Due to the higher rigidity of the beams, the gantries for carbon
ions are even a few times larger and heavier than those for protons.

Whereas synchrotrons and larger cyclotrons are used to treat patients, smaller cyclotrons
are used to create radionuclides that are used both for diagnostics and for patient treatment.
The latter is based on implanting radioactive material in the tumor. This treatment method,
called brachytherapy, uses iodine 125I, 103Pd,106Ru, and a number of other radio-isotopes.
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For diagnostic purposes, radioactive isotopes, such as 123I, can replace the stable isotope
127I and are used as tracers for metabolic pathways. 123I decays with the emission of a very
hard photon with energy 159 keV that is detected in Single Photon Emission Computed
Tomography (SPECT) cameras. They make it possible to reconstruct the location where
the isotope decays. Using isotopes that decay by emitting a positron, allows us to detect
photons created in the annihilation of the positrons with nearby electrons. Two photons with
an energy of E = 511 keV, equal to the electron’s rest mass, are emitted back-to-back and
from recording them in coincidence, the locus of the decay can be determined. This method
is called Positron Emission Tomography (PET). The needed isotopes are created in small
cyclotrons, typically producing protons with energies between 7 and 70MeV. Nowadays, the
Penning ion sources [13.2.2] in the center of the cyclotrons are optimized to produce H−

ions and the cyclotron accelerates them. Once they reach their maximum energy, a stripper
foil [13.4] converts the H− ions to protons that are deflected in the opposite direction and
easily extracted and guided to the target. The target material and beam energy determine
the type of radioactive isotope generated in the process. The high demand for radionuclides
caused more than 1000 of these small cyclotrons to be built and operate worldwide [132].

14.8 INDUSTRIAL ACCELERATORS

The vast majority of all accelerators are used in industry to manufacture, modify, and char-
acterize materials. The largest group with more than 10000 systems built are ion implanters,
similar to the one already mentioned in Section 14.6. They are the workhorse of the semi-
conductor industry, where they are used to implant dopants into the wafers from which
integrated circuits are manufactured. Not only the total number of systems but also their
variety are large with many different ion species, energies, and currents. Many different ion
sources [Section 13.2.2], usually based on a plasma column, where electrons are trapped
transversely by a magnetic field and longitudinally by negatively biased electrodes [Fig-
ure 13.3] create the ions that are implanted. The acceleration voltage then determines the
depth at which they are implanted. The current, jointly with the exposure time, determines
the density of the implants.

Electrons with energies up to a few 100 keV are used to locally deposit heat in a material
and thereby modify its properties. Hardening of some materials is accomplished by quickly
heating the surface locally, which forces the materials to undergo a phase transition to a
structure that is harder. Other materials are hardened by rapidly melting and re-solidifying
the surface, a process called glazing. The majority systems using low-energy electrons, how-
ever, are electron beam welding machines. They are able to locally melt two metals, even
different metals, and permanently join them upon solidification of the weld. Moreover, the
weld can be as deep as several tens of centimeters, which allows us to join rather thick metal
sheets, such as those used in the manufacture of large steam turbines [132].

Apart from heating, as mentioned in the previous paragraph, electrons also ionize the
material and thereby change its physical, chemical, and biological properties. One class of
examples comes from cross-linking polymer chains. This increases the heat resistance, for
example, of cable insulation, which is used to cure the polymers in tires for automobiles, and
to manufacture heat-shrinkable plastic tubing. We already mentioned its use in sterilization
of medical waste prior to its disposal, which requires very high doses. Similarly, irradiating
waste water decomposes toxic compounds and pathogenic microorganisms. Lower doses
are used to irradiate food products in order to kill dangerous bacteria. The range of the
charged electrons in matter is limited, and converting the electrons to x-rays in a target
increases their ability to penetrate thicker samples, which allows us, for example, to make
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Figure 14.3 Top view of a Rhodotron. See the text for an explanation.

x-ray photographs of entire trucks at customs stations in search for illicit materials. The
accelerators to produce electron beams with energies up to about 300 keV are based on
an acceleration gap connected to a high-voltage generator. For mid-range energies between
300 keV and 5MeV, for example, Cockroft-Walton generators [Chapter 1] and Dynamitrons
are used. The latter are based on transformers with primary windings at ground potential,
which are inductively coupled to the secondary windings with rectifiers, connected in series.
Above energies of 5MeV electron linacs are used at moderate currents. If, on the other
hand, high continuous currents of up to 100mA at energies of up to 10MeV are required,
Rhodotrons are used. They are based on a coaxial λ/2–resonator operated at frequencies in
the range 100 to 200MHz. Figure 14.3 illustrates their operation. The electrons are created
in a triode gun [Section 13.2.1] and focused into the coaxial [Figure 6.2] resonator. The inner
conductor is shown as the dashed small circle in the center, through which the electrons pass,
just as the radial electric field changes polarity. During their first traversal of the resonator,
indicated by the label “1,” the electrons are accelerated by the radial electric field E and
gain up to 1MeV of energy. Their direction is reversed in the first magnet, which deflects
and focuses the electrons. On its second traversal through the resonator on the trajectory
labeled “2,” the electrons gain 1MeV once again, as they do on the subsequent traversals.
Since the magnet on the bottom left is missing, the electrons are extracted and guided to
the site where they irradiate samples.

Neutron generators often use deuterium, ionized in a source [Section 13.2.2], and accel-
erated to moderate energies. Impinging the neutrons onto targets that contain deuterium
or tritium produces neutrons that are versatile probes to analyze materials. Low-energy
neutrons, captured and inelastically scattered, produce a characteristic γ-radiation that
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carries information about the elemental and isotopic composition of the irradiated sample.
Moreover, when using pulsed neutron sources, the time delay between the secondary γ-rays
and re-emitted neutrons carries information about fissionable materials. It is created as a
byproduct when treating radioactive waste or manufacturing nuclear weapons. Moreover,
probing for the ratios of C, N, H, and O in samples allows us to detect explosives, gives in-
dications about chemical weapons, and possibly narcotics. A large number of small neutron
sources are used in the exploration of oil fields. They are enclosed in the drilling assembly
deep down in the borehole, where the secondary γ-rays provide information about the sur-
rounding rock formation at great depths and the prospect to find oil or gas. These smaller
neutron generators use accelerating voltages in the 100 kV range and produce about 108

neutrons per second in pulsed mode. Larger systems, often several meters long, use RFQs
[Section 13.2.7] or Dynamitrons to accelerate much larger numbers of deuterium ions, and
produce rates above 1013 neutrons per second.

QUESTIONS AND EXERCISES

1. Let’s assume that you will visit an accelerator laboratory, either for research or to see
a friend, and you want to make yourself knowledgeable about the lab. Therefore, you
write a short two-page essay, similar in spirit and organization to the sections in this
chapter. You structure the essay by first discussing the purpose of the lab and the
research done there, then follow the beam from its generation to its destination—an
experiment. Exciting places you might visit (in real life or virtually on their websites),
are the

(a) Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory;

(b) Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt;

(c) nuclear physics facility Spiral-2 in Caen;

(d) microtron MAMI and the newer MESA facility in Mainz;

(e) Accelerator Test facility (ATF-2) in Tsukuba;

(f) third-generation synchrotron light sources, for example ALS, Bessy-2, SLS, PLS,
or their brethren operating at higher beam energies ESRF in Grenoble or APS
in Argonne;

(g) SASE FEL facilities SACLA in Harima and the SwissFEL near Zürich;

(h) Φ–factory Daphne in Frascati;

(i) B-factory KEKB in Tsukuba;

(j) Heidelberg Ion Therapy center (HIT);

(k) International Fusion Materials Irradiation Facility (IFMIF);

(l) large cyclotrons at TRIUMF in Vancouver or at PSI near Zürich;

(m) energy-recovery linac CBETA in Cornell.

Good places to search are the website www.jacow.org with proceedings of practically
all accelerator conferences that have ever taken place and inspirehep.net with a
vast database of research articles.

https://www.jacow.org
https://inspirehep.net


C H A P T E R 15

Future Accelerators

Many existing accelerator labs have plans for the future: CERN will first upgrade the
luminosity, and later the energy of LHC; Brookhaven National Laboratory will construct
an electron-ion collider; the European Spallation Source considers doubling up as a neutrino
factory; and practically all synchrotron light sources plan upgrades to implement multi-bend
achromats that will substantially improve their beam quality, unless they have already done
so. Moreover, industrial and medical accelerators will proliferate to enhance our wealth
and health in the foreseeable future. And once they operate, all these machines will be
continuously improved to enhance their capabilities.

But apart from these upgrades, there are several new projects, mostly dedicated to
explore the high-energy physics beyond LHC. Those are actively discussed and have a good
chance to play a big role in the coming decades. Let’s have a look at them.

15.1 LINEAR COLLIDERS

In the same way that the electron-positron collider LEP was built to analyze the Z and W
bosons that were previously discovered at the proton-antiproton collider SppS, an electron-
positron collider is needed for precision studies of the Higgs boson, which was discovered in
the proton-proton collider LHC at CERN. The most advanced project is the International
Linear Collider (ILC) [133], whose sketch is shown in Figure 15.1. The ILC is designed to
accelerate electrons (black) and positrons (gray) each to energies of up to 250GeV in two
linacs pointing at each other. The entire facility will have a length of 20 to 50 km, depending
on the final energy. The shortest version, reaching beam energies of 125GeV each, would
be suitable as a Higgs factory to carefully analyze the Higgs boson and its decay modes.

At the core of the ILC are two superconducting linear accelerators, which make it possible
to accelerate a large number of particles in long bunch trains and thereby achieving very
high luminosities; about 1300 bunches, spaced by 500 ns, contain up to 2 × 1010 particles
each. This makes luminosities in the range of L = 1034/cm2s possible. The linacs are based
on elliptic nine-cell cavities operating at 1.3GHz, similar to those shown in Figure 6.11.
They evolved from a shorter version of this type of cavity that was first used in CEBAF
(Section 14.4). Later the nine-cell cavities were optimized further for an earlier incarnation
of the ILC, called TESLA. Incidentally the same type of cavities became the standard
building block of several accelerator projects, among them the free-electron lasers XFEL
and earlier in TTF, the TESLA Test Facility that became FLASH in Hamburg. Having
shown its maturity in these accelerators, the technology is considered ready for the ILC.

In the ILC the electron beam is created in the electron source (Section 13.2.1), accel-
erated to a few GeV in a short linac, before they are injected into a damping ring where
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Figure 15.1 Sketch of the International Linear Collider. Electrons are created in a

source, and their beam quality is improved in a damping ring, before they enter the

electron linac at the far left on the plot. From there, they are accelerated towards

the detector in the center of the complex. A fraction of the electrons is used to

produce positrons, whose beam quality is likewise improved in a second damping

ring, before they are injected into the positron linac, where they are accelerated

toward the detector.

synchrotron radiation damping reduces the beam sizes (Section 10.1). After leaving the
ring, the electrons are transported to the end of the electron linac on the left-hand side in
Figure 15.1. There bunch compressors (Section 3.7.9) shorten the bunch. This improves the
beam stability in the linac and prevents the hourglass effect (Figure 9.6) to degrade the lu-
minosity at the collision point. After traversing a fraction of the linac, a part of the electrons
is deflected onto a target to create positrons. The remainder of the electrons continue on
a straight path toward the final focus system conceptually similar, though more elaborate,
than the one shown in Figure 3.31. The final-focus quadrupoles reduce the beam size to
about 700 nm ×7 nm before the electrons collide with the counter-propagating positrons
in the middle of the detector. The strong electro-magnetic fields that accompany the tiny
beams will help to reduce the beam sizes further and enhance the luminosity as discussed
in Section 9.8.

After the positrons are created in the positron target, they travel to the positron damping
ring. Once synchrotron radiation has reduced their beam sizes, they travel to the end of the
positron linac on the right-hand side of Figure 15.1. There, bunch compressors reduce their
length before the positrons are accelerated toward the detector, where they collide with the
electrons.

The second linear collider project, CLIC [134], intends to reach beam energies of up
to 1500GeV in a 50 km long facility, though shorter versions with lower energies are also
considered. CLIC will use normalconducting disk-loaded waveguides (Section 6.4.3) that
operate at 12GHz to make accelerating gradients on the order of 100MeV/m possible.
Compared to the superconducting ILC, this gradient is several times higher, but it can be
sustained only for much shorter durations, typically on the order of microseconds. Therefore,
fewer particles can be accelerated and brought to collide. As a compensation, the beam sizes
at the interaction point of CLIC need to be several times smaller than those in ILC, making
an even more sophisticated final focus system necessary.

Providing the RF power with a frequency of 12GHz to almost 50 km of linac would
normally require an enormous number of klystrons (Section 6.1). Instead, CLIC is based
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on an ingenious scheme where a high-intensity electron beam is first accelerated in a linac
operating at 1GHz and thus having a bunch spacing of 1 ns. Then the bunches are inter-
leaved in an elaborate sequence of delay loops and combiner rings. For example in the delay
loop, the first half of a bunch train makes a turn through the loop and is then superimposed
into the gaps between bunches in the later-arriving second half of the bunch train. In this
way the spacing between bunches is halved, yielding a 2GHz rate of arrival for the, now
only half as long, bunch train. Repeating this process with different combination factors
yields a bunch train with a 12GHz bunch arrival rate that forms the so-called drive beam
that is distributed in a beamline that runs parallel to the main linacs. The energy stored
in the drive beam is then extracted in so-called Power Extraction and Transfer Structures
(PETS). They are resonant at 12GHz and are optimized to decelerate the drive beam by
converting its kinetic energy into RF power at 12GHz that is passed to the accelerating
structures of the main beam.

At the time of writing, both linear collider projects are somewhat dormant for two
reasons. First, they await indications for “new physics beyond the standard model” from
LHC or other experiments to fine-tune their design once it is known what to look for.
Presently only the Higgs boson is a clear candidate to investigate and to do that, about
130GeV per beam is sufficient, given the mass of the Higgs. In a way, the community
awaits a clear signal of where to look further, and that has clear ramifications on the type
of accelerator to build in the future. The second reason is CERN’s ambitious program to
design a Future Circular Collider (FCC) to explore the Higgs boson and a number of other
processes.

15.2 FUTURE CIRCULAR COLLIDER

The FCC is based on the historic experience of first filling a long tunnel with the electron-
positron collider LEP and later replacing it with the hadron collider LHC. Only this time
with a circumference of 91 km, the tunnel for FCC is more than three times larger, which
makes reaching much higher energies possible. Constructing FCC in the vicinity of CERN
will make it possible to use all available accelerators, including LHC, as injectors.

The first occupant of the tunnel will be the electron-positron collider, labeled FCC-ee.
It will store up to 16000 bunches containing up to 2 × 1011 particles each in two separate
rings and provide luminosities of up to several times 1036/cm2s. Initially it will run with
beam energies of 45 to 80GeV to produce copious numbers of Z0 and W± bosons, just as
LEP did. The much higher luminosity, however, will vastly improve the accuracy of earlier
measurements. After upgrading the RF system, and running at 120GeV, large numbers
of Higgs bosons are produced to accurately determine its properties. Another upgrade will
bring the beam energies to the range of 180GeV, where pairs of the very heavy top quarks
are created. As the beam energy is increased, the beam intensity will be decreased to keep
the required power below 100MW for economical reasons. The physics program is expected
to keep FCC-ee busy for at least 15 years.

As with other high-energy electron rings, the RF system is the limiting factor, because
with a given bending radius the power of the emitted synchrotron radiation grows with the
fourth power of the beam energy (Equation 10.1). Much of the research toward FCC-ee is
therefore geared to improve the efficiency of the power generating klystrons (Section 6.1),
the superconducting cavities (Section 6.5.2), and the cryogenic system (Section 13.7) needed
to cool the huge number of cavities that fill a major fraction of the 91 km long tunnel. In
particular, the efficiency of liquefiers and the system to distribute the liquid helium must
be highly optimized. Moreover, the efficiency of the klystrons to turn wall-plug power into
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microwaves needs to be increased substantially, because a higher efficiency will allow higher
beam intensities and thus higher luminosities, while staying below the 100MW limit men-
tioned above. Likewise, developing superconducting cavities that operate at 4.5K, rather
than 2K, relieves the load on the cryogenic system, again saving power.

Apart from the technological challenges, there are many beam dynamics challenges to
address. The large number of bunches and the high bunch intensities will make the beam
susceptible to many intensity-dependent instabilities mentioned in Chapter 12. Multiple
feedback systems will help to maintain stability. Despite the huge amount of synchrotron
radiation blasting the beam pipe and desorbing much gas, the vacuum system must maintain
a low gas pressure to minimize its interaction with the beam that can lead to instabilities
of the combined system of electrons and gas ions. Once FCC-ee has completed its scientific
program, the electron rings will be dismantled and replaced by the hadron rings and the
accelerator will become the FCC-hh.

First the FCC-hh will store two counter-propagating proton beams, but later it will be
used, like LHC before, to store hadron beams of heavy ions. The FCC-hh will accelerate
protons to 50TeV—seven times their energy in LHC—reaching collision energies of 100TeV.
Each of the two beams will consist of more than 10000 bunches containing 1011 protons each
which will make luminosities in the range of 1034/cm2s possible. It is expected that evidence
of physics beyond the standard model becomes apparent under these conditions. Reaching
these energies, however, requires dipole magnets with fields of at least 16T. Developing
them constitutes one of the main research topics for FCC-hh.

The dipoles will be similar to those in LHC and will have two apertures, one for each of
the counter-propagating beams. But they will use wires made of Nb3Sn that are expected
to reach almost double the magnetic field strength. These magnets are also foreseen for
HE-LHC, mentioned at the end of Section 14.1. Developing wires made of the rather brittle
Nb3Sn, however, is challenging. Moreover, producing the several thousand tons of wire on an
industrial scale and then winding the more than four thousand dipoles is another challenge.
Like the cavities in FCC-ee, the magnets in FCC-hh must be cooled with liquid helium,
which requires optimizing the efficiency of the liquefaction process and helium delivery
system.

Controlling the beams with a stored energy exceeding 8GJ is of utmost importance.
Feedback systems will prevent the many bunches to develop multi-bunch instabilities (Sec-
tion 12.6), an elaborate collimation system will remove stray particles from the beam tails
before they crash into the superconducting magnets, and the beam dump system must re-
liably dispose of the entire beam in a single turn, should this become necessary in order
to protect the machine. At the extremely high energies, the protons will emit 5MW of
synchrotron radiation. A so-called beam screen, cooled to only 50K, intercepts it and thus
reduces the heat load on the cryosystem that cools the magnets to 1.9K.

It is foreseen to store Pb ions in FCC-hh thus making beam energies in the range of
4100TeV accessible. Colliding Pb ions with counter-propagating protons or Pb ions will
then create conditions last seen 10−12 seconds after the Big Bang when a plasma of quarks
and gluons started to form protons and neutrons. These experiments, however, have to wait
until FCC-hh starts its experimental program in the 2060s.

FCC-ee collides point-like particles which are perfect for precision studies, but it is
limited by the need to replenish the emitted synchrotron radiation with the RF system.
FCC-hh, on the other hand, collides protons that are composites of quarks and gluons
but reaches very high energies that are limited by the field in the dipole magnets. One
might ask whether there are point-like, yet heavy, particles. They would make precision
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Figure 15.2 Muon collider and the ionization cooling section. See the text for an

explanation of the components.

studies possible without emitting enormous amounts of synchrotron radiation. The answer,
of course, are muons, the heavier brethren of the electrons and positrons.

15.3 MUON COLLIDER

Muons are point-like and heavy, thus they promise to make possible precision experiments
at very high energies. The problem with muons, on the other hand, is that they only live
for about 2.2µs in their rest frame. The only way to increase the time for collisions is to
rapidly accelerate them to very high energies such that their lifetime in the laboratory frame
is increased by relativistic time dilatation. At 1 TeV beam energy they live for about 20ms,
which is enough for a few thousand revolutions in a collider ring.

Based on an earlier design of the Muon Accelerator Project (MAP), the recently (in
2021) constituted International Muon Collider Collaboration (IMCC) continues the work
towards a muon collider [135]. Their design, shown in Figure 15.2, is based on a proton linac
producing a beam of H− ions that is several milliseconds long and represents a beam power
of several MW. The H− ions are then injected into an accumulator ring in order to “wind-
up” the long beam from the linac. Here, stripping injection of H− ions helps to minimize
losses (Section 13.4). At this point the accumulator ring contains a bunch train with a
length of microseconds that is transferred into the compressor ring, where RF manipulations
(Section 5.5) produce bunches with a length of about 2 ns. These bunches are then directed
onto the target made of, for example, tungsten where they produce copious numbers of
pions. The pions subsequently decay into muons in a long decay tube. Neutrino beams
are created in much the same way (Section 13.2.6). Instead of using magnetic horns, the
pions and the muons are transversely confined by a very strong solenoidal field. Moreover,
a superimposed RF field captures the short bunch of pions with large momentum spread
into a sequence of bunches with smaller momentum spread that are suitable for further
manipulations. After a first cooling section, the positive and negative muons are separated
with a dipole magnet and enter their respective ionization cooling channels.

Ionization cooling is the only known method to operate sufficiently fast to be able
to cool the short-lived muons. It works by passing the muons through a lithium-hydrid
(LiH) absorber, shown in the inset in Figure 15.2, where the energy loss affects both the
longitudinal and the transverse momenta. Since in the following, RF cavity only increases the
longitudinal momentum, the overall effect is a relative reduction of the transverse momenta,
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thus the angle, and the emittance. The concept is similar to transverse damping through the
emission of synchrotron radiation (Section 10.1.2), only here the loss is caused by ionization.
Each of the absorber-RF units is expected to only halve the transverse momenta, such that
twenty or thirty of them are needed to reduce the initially rather large momentum spread
to a magnitude that makes the muon beams suitable for a collider.

After the beam quality of the muons is adequate, their moderate energy needs to be
increased as fast as possible. A possible scenario first uses a recirculating linear accelerator
(RLA), conceptually similar to CEBAF (Section 14.4) and a rapidly cycling synchrotron
with a circumference comparable to the 27 km of LHC. Once the muon energy reaches the
collision energy of a few TeV, the beams are transferred to a collider ring that must have the
smallest possible circumference, and therefore requires the highest magnetic fields possible.
This gives the muons the chance to collide a few thousand times inside two detectors before
they decay.

The IMCC is still in an early phase and decades away from delivering a compelling
engineering design that can be used to build the collider. Many components, including the
high-field magnets are an open issue, but backed by a solid development effort; also HE-LHC
and FCC-hh needs them. Another difficulty is the intense neutrino background from the
muons decaying in the collider ring. It is very strongly peaked in the forward direction and,
despite the low interaction rate of neutrinos, can exceed the legal limits at points where
they cross the surface of the earth. Moreover, ionization cooling, which is essential for the
viability of this concept, has only been tested experimentally on a limited scale and requires
much more work.

The Low Emittance Muon Accelerator (LEMMA) is a second project, backed by a large
collaboration. It is based on creating muon pairs by passing a 45GeV positron beam through
a thin target containing many electrons. The parameters can be chosen such that the muons
have a very low emittance and, without any ionization cooling, they can be directly accel-
erated and stored in the collider ring. The difficulty of this approach lies in the extremely
low probability to produce muons and therefore requires a very intense beam of positrons
which exceeds the current state of the art. Compared to the proton-based study, LEMMA
needs even more work to produce a convincing engineering design.

All accelerators we discussed so far use metallic structures, the cavities, to contain
the electro-magnetic fields that accelerate the beams. With increasing fields, electrons are
extracted from the inner surfaces and cause a discharge that creates a plasma. Whereas these
plasmas limit the performance of the conventional cavities, plasma accelerators exploit the
large fields between positive ions and electrons in a deliberately created plasma to accelerate
particles.

15.4 PLASMA ACCELERATORS

In order to estimate the achievable field levels in a plasma, let us consider the column of gas
with length d, shown on the left-hand side in Figure 15.3, in which all negatively charged
electrons are slightly displaced by x ≪ d to the right. In-between the charged blocks at the
ends, the gas is still neutral, but the two blocks contain the charge Q = enAx where e is
the elementary charge, n is the number density of gas molecules, and A is the cross-section
of the column. The separated charges constitute a capacitor with capacitance C = ε0A/d
that is charged by the voltage U = Ed where ε0 is the dielectric constant, E is the electric
field between the separated charges, and d is the distance between them. Thus we have
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Figure 15.3 Separating charges in a neutral plasma creates an electric field (left).

Once excited by a drive beam, the attractive force between the separated charges

leads to a wave-like perturbation inside the plasma with very high electric-field

strength (right), that can be used to accelerate a witness bunch to high energies.

Q = enAx = CU = (ε0A/d)Ed. Solving for the electric field E then gives us

E =
en

ε0
x . (15.1)

With nitrogen gas at atmospheric pressure having a number density of n ≈ 2.5 ×
1025 molecules/m3 and assuming that we only displace the charges by 10−9 m we find a
rather substantial electric field of E ≈ 450MV/m. Note that this value constitutes the
maximum if all electrons are displaced. If only a fraction is displaced, the field is corre-
spondingly smaller.

The displaced electrons with mass me are pulled back by the field toward their original
position and experience a restoring force meẍ = −eE which we rewrite as

ẍ+ ω2
px = 0 with ω2

p =
e2n

meε0
. (15.2)

We thus find that the perturbed electrons perform harmonic oscillations around their un-
perturbed position with the plasma frequency ωp. The positively charged ions are much
heavier, and we therefore neglect their motion.

The right-hand side in Figure 15.3 shows how the initial excitation of these oscillations
is, for example, caused by shooting either a high-power laser pulse or a high-energy electron
bunch with moderate intensity into the gas. Either type of drive beam excites the plasma
oscillations that are accompanied by the electric fields from Equation 15.1. Since the drive
beams travel with speeds close to the speed of light c, a plasma wave with wavelength

λp =
2πc

ωp
(15.3)

is created, which describes the density modulation of the electrons in the gas, also shown
on the right-hand side in Figure 15.3. For nitrogen gas at atmospheric pressure, we find
λp = 6.6µm. If we inject a to-be-accelerated, or so-called witness electron bunch, that is
much shorter than λp just ahead of the region with the enhanced plasma-electron density,
the electric field will accelerate the witness bunch.

The plasma oscillations from the previous paragraphs are characterized by the linear
harmonic oscillator from Equation 15.2. If we increase the drive-beam intensity substantially
and shorten its length, we leave the linear regime and expel all electrons from a small region
immediately following the drive beam, where a so-called plasma bubble forms that is shown
in Figure 15.4. In this so-called blowout regime, an electron sheath surrounds the positively
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Figure 15.4 In the so-called blowout regime, a very-high intensity drive beam creates

a plasma bubble by ejecting all electrons into a sheath and leaving only the positive

ions behind. After about one plasma wavelength, the electrons reassemble at the

tail of the bubble and an extremely high electric field between these electrons and

the positive ions emerges that can be used to accelerate electrons.

charged bubble. It consists of electrons that are first pushed out of the way, but later
reassemble in large numbers at the other end on the left-hand side of the bubble. Their
motion in the reference frame moving with the drive beam is indicated by the backward-
pointing arrows. Since the inside of the bubble is largely devoid of electrons, very large
electric fields develop that pull the electrons at the rear end of the bubble forward and
accelerate them. Note that in this process no externally injected witness beam is needed.
Here the accelerated electrons are self-injected from the systematically increased number
of electrons that assemble at the rear end of the bubble. Since the accelerated electrons
share the same starting point and only experience the electric field at the end of the bubble,
but not the drive beam itself, the quality of the accelerated electron beam is fairly good; a
relative momentum spread in the few percent range is possible.

A prerequisite for the blowout regime is the availability of high-power lasers that provide
pulses substantially shorter than the length of a plasma bubble, which is only a few microns
long. And this corresponds to a duration in the range of fs or 10−15 s. Such pulses would
normally damage the laser amplification medium (nowadays a titanium-sapphire crystal)
due to their high energy density. But the invention of chirped pulse amplification in the
1980s overcame this problem in a very elegant way. The large spectral bandwidth of ex-
tremely short pulses makes it possible to use a diffraction grating to separate the different
frequencies in space and in time. This stretches the pulse longitudinally and thereby re-
duces its intensity such that it can be safely amplified. A second grating then reassembles
the different frequencies into a, now amplified, short pulse.

Instead of using a laser, around the turn of the millennium, SLAC pioneered the use
of a 42GeV electron bunch to excite plasma oscillations in lithium vapor over length of
85 cm [136]. The intense 25µm long electron bunch excited plasma oscillations with ap-
proximately 200µm long plasma bubbles. With these parameters, the experiment operated
in the blowout regime such that a downstream spectrometer could observe a few electrons,
self-injected from the back of the bubble, that had doubled their original energy. The effec-
tive acceleration gradient experienced by these few lucky electrons was 52GV/m.

Later, with one-third of the SLAC linac devoted to LCLS, the remaining two-thirds were
reconfigured to become the Facility for Advanced Accelerator Experimental Tests (FACET)
that accelerated intense electron bunches to 20GeV that were split into two short bunchlets
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Figure 15.5 AWAKE experiment in which a rubidium plasma is prepared with a laser,

such that a co-propagating proton bunch develops a microstructure that excites

plasma waves. The electric fields in these plasma waves are then used to accelerate

an externally injected electron beam to high energies.

in the following way. By running the RF off-crest, a correlation between horizontal position
and energy was used to spread out the bunch horizontally inside the first leg of a chicane
where a thin absorber cuts out the central part of the bunch, leaving two bunchlets behind.
The second leg of the chicane was configured to put the two bunchlets back on axis, but
now longitudinally separated by a little less than the length of the plasma bubble. The
leading bunchlet serves as drive pulse and the trailing bunchlet as witness bunch that
is accelerated. FACET accelerated bunchlets containing more than 4 × 108 electrons and
having a momentum spread in the percent range with gradients exceeding 4GV/m [137].
The original FACET facility operated until 2016. Its upgrade FACET-II is as of this writing
in the commissioning stage.

The energy provided by a laser or electron drive beam is limited to a few joules. To reach
very high energies thus requires to daisy-chain multiple acceleration stages. Moreover, this
staging requires a timing precision that corresponds to a fraction of a plasma oscillation,
which is on the order of femtoseconds to which the arrival time of drive beams for successive
sections must be accurate. The Advanced WAKefield Experiment (AWAKE) [138] avoids
this problem by using a 400GeV proton bunch from the SPS at CERN instead. Such a
bunch carries the total energy of 19 kJ and can excite plasma oscillations all along the 10m
long rubidium vapor channel shown in Figure 15.5. With a length of several centimeters,
the proton bunch is much too long to efficiently excite plasma oscillations on its own, but an
external laser system helps in two ways. First, the 120 fs long laser pulse ionizes the rubidium
vapor to form a plasma. At the same time, it triggers a self-modulating instability that causes
density modulations in the proton bunch with a wavelength of a few millimeters. And these
resonantly interact with the concurrently developing plasma oscillations. The electron gun
and the 20MeV linac, also shown in Figure 15.5, provide a witness electron bunch that is
injected a few centimeters behind the laser pulse and is subsequently accelerated through the
plasma oscillations. A dipole magnet following the plasma channel deflects the accelerated
electrons onto a screen in order to determine their energy. Additional screens in the beamline
are used to diagnose the beam sizes of laser, electron, and proton beams as well as the micro-
bunching of the proton beam. In first experiments electrons gained more than 2GeV. After
upgrading the facility, however, the main focus lies on improving the reproducibility of the
plasma oscillations to reliably accelerate electrons to much higher energies in the coming
years.
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QUESTIONS AND EXERCISES

1. Calculate the energy loss due to synchrotron radiation in FCC-ee (a) when it operates
as a Higgs factory, (b) when it produces top pairs.

2. Calculate the amount of material that needs to be removed from the 91 km tunnel
with a diameter of 5m. (a) How high would a conical dirt pile be, containing all that
material? Assume it has a 40 degree angle at its base. (b) If you dump the material
into lake Geneva, by how much would its level rise?

3. Consider a muon, incident with a 5 degree angle and with a momentum of 250MeV/c,
that loses energy in a 30 cm long lithium absorber and is subsequently accelerated in a
1m long acceleration section with a gradient of 3MV/m. By how much does its angle
change?

4. Assuming that the maximum field in the dipole magnets is 16T, estimate the heat
load on the cryogenic system due to the emission of synchrotron radiation in a muon
collider ring operating at (a) 2TeV, (b) 10TeV beam energy.

5. In AWAKE, the plasma wavelength is on the order of 2mm. What is the density
of the (singly ionized) rubidium vapor? Estimate the electric field both from plasma
parameters and from the energy gained by the electrons.

6. There are more accelerators in the planning stages, and you might wonder what they
are about. Consider writing a short essay about them.

(a) Accelerator Driven Systems (ADS) to process nuclear waste;

(b) Minerva and Myrrha in Belgium;

(c) Electron-Ion Collider (EIC) in Brookhaven;

(d) the future Chinese Electron-Positron Collider (CEPC).

7. Find out how the particles found in cosmic radiation acquire their often enormous
energies.



A P P E N D I X A

Student Labs

In these student labs we describe a few experiments that illustrate activities, relevant to
building or operating accelerators, that can be done without access to a real machine. Most
are based on inexpensive and readily available components. Note, however, that the purpose
of the labs is to obtain hands-on experience with these topics and not so much to perform a
high-precision measurement. Keeping this in mind, we start with beam size measurements
and use a laser pointer as a substitute for a particle beam.

A.1 BEAM PROFILE OF LASER POINTER

In this lab we measure the transverse profile of the beam emitted from a laser pointer and
determine the beam profiles by recording the image on a screen with a camera, as discussed
in Section 7.3. We direct the laser pointer onto a sheet of paper and record it with a webcam.
The intensity of the laser is controlled with a pulse-width modulated supply voltage. In order
to reduce interference from stray light, we encapsulate this setup in a box. Before recording
the laser spot, we place a paper with markers with known distances between them on the
screen in order to determine the conversion from pixels on the camera to millimeters on the
screen. In our case, we found 6.6 pixel/mm horizontally and 7.7 pixel/mm vertically.

After recording the image, we can process it further with MATLAB, such that we can
cut out the region of interest with the spot, display the image as a contour plot, and show
the projections onto the horizontal and vertical axis. Figure A.1 shows the result of running
the following MATLAB script:

% analyze_image.m, V. Ziemann, 240829

clear; close all

im=rgb2gray(imread(’power1.jpg’));

subplot(2,2,1); roi=im(260:400,320:500);

roi=min(250,roi); imshow(250-roi);

subplot(2,2,4); contour(flipud(roi));

xlabel(’x [pixel]’); ylabel(’y [pixel]’)

subplot(2,2,2); plot(sum(roi,2),’k’); xlim([0,size(roi,1)]);

camroll(270); set(gca,’YTick’,[]); xlabel(’y [pixel]’);

title([’FWHM = ’,num2str(fwhm(sum(roi,2))),’ pixel’])

subplot(2,2,3); plot(sum(roi,1),’k’); xlim([0,size(roi,2)]);

set(gca,’YTick’,[]); xlabel(’x [pixel]’)

title([’FWHM = ’,num2str(fwhm(sum(roi,1))),’ pixel’])

This chapter has been made available under a CC BY NC license. 371
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Figure A.1 The image (top-left) and contour plot (bottom-right) of a laser spot

recorded with a webcam and the projections (top-right, bottom-left).

After reading the image with the imread() function, the rgb2gray() function converts it to
grayscale. We then cut out the region of interest, store the result in roi, and display it with
inverted grayscale and a 4-pixel baseline added in the top-left subplot. The bottom-right
subplot contains the same image, but displayed as a contour plot. The flipud() function
reverses the vertical axes, because images, by convention, have their origin in the top-left
corner. The other two axes show the projections within the region of interest onto the
respective axes. Note that the camroll() function rotates the axes in the top-right plot.
The fwhm() function determines the full-width at half-maximum (FWHM) of the profiles. It
is calculated by first finding the baseline and the maximum and the curve and then searching
to the left and to the right from the maximum until the half-height points are found. Their
difference serves as an estimate for the FWHM. An implementation in MATLAB is given
in [114] and also available from this book’s webpage. Using the FWHM is more robust than
calculating the central second moment, because the latter is easily biased by noise in the
tails of the curve, whereas the FWHM focuses on the central region. Using the FWHM in
pixels and the conversion factors from above, we find that the widths are 3.2 and 2.1mm,
respectively. Note, that the FWHM of a Gaussian distribution is 2.35 times its standard
deviation σ.

The image on which Figure A.1 is based already had the laser intensity at the lowest
possible value, and still the contour plot on the lower right shows a very rapid transition
between the lowest and the largest intensity levels in the center of the spot. This indicates
that the image is saturated and is not a faithful representation of the beam spot. This is
a common problem when recording images with cameras. Either attenuating the laser with
polarizers and neutral density filters or carefully adjusting the camera gain and shutter can
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Figure A.2 Measuring the width of a laser pointer by moving an opaque obstacle

across the laser. The obstacle obscures the light-sensitive resistor (LDR) that is

part of a voltage-divider resistor and changes the signal, which is recorded by an

Arduino micro-controller.

alleviate the problems with saturation. Adjusting the camera is unfortunately unavailable
on the inexpensive webcam used in this experiment, but inserting a polarizer and rotating it
to an angle that significantly reduces the laser intensity allows us to record profiles without
significant saturation. We do not dwell on this topic further but point out that they illustrate
the practical issues one often encounters when using cameras to record beam profiles.

Instead of improving this method, we consider a second method, which resembles the
operation of wire scanners, also mentioned in Section 7.3. But instead of a wire, we move
an obstacle across the beam and record the changing signal from a light-sensitive resistor
(LDR). The geometry is illustrated in Figure A.2. The laser module is powered by a pulse-
width modulated signal in order to adjust its intensity. The shaded obstacle is mounted on
a movable wagon, such that its position can be correlated with the signal from the voltage
divider on the left-hand side, consisting of a 10 kΩ resistor and the LDR. Building such a
setup with a salvaged chassis from an old CD drive, which contains a wagon driven by a
stepper motor and controlled with an Arduino, is described in [114]. We can, however, use
any linear actuator with a step size of 0.1mm or better to position the obstacle.

In the top plot in Figure A.3, we show the raw signal from the LDR as a function of
the horizontal position of the obstacle. The transition around 6mm from illumination on
the left-hand side to occultation on the right is clearly visible. After smoothing data with
the MATLAB function smooth(rawdata,3), which averages three consecutive points, we
calculate its derivative by calculating the difference between two adjacent points. On the
lower plot in Figure A.3, also taken from [114], we show the derivative, which reveals a
somewhat asymmetric profile of the laser beam. The width of the profile, here given as the
FWHM, is reported above the lower graph. Here the horizontal FWHM size is found to be
0.8mm.

This rather general setup allows us to address further questions: How does varying the
laser intensity by adjusting the PWM signal to power the laser change the beam size? Or,
does diffraction off the edge of the obstacle play a role? Do we find the same profile, when
crossing the laser from the opposite direction? Experiment with different methods to extract
the width. Compare different laser pointers. Compare with different methods to determine
the beam size.

Despite these open questions, which are left as suggestions for exercises, we will use the
scanner to determine the beam sizes while changing the focusing in order to determine the
“beam matrix” and the “emittance” of the laser in the next lab.
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Figure A.3 Top: The illumination of the LDR as a function of the position of the

obstacle. Bottom: The derivative of the upper curve, giving the beam profile.

A.2 EMITTANCE MEASUREMENT WITH A LASER POINTER

In the lab, we describe a method to measure the “beam matrix” of the laser. The method
resembles a quadrupole scan, described in Section 7.4, but instead of changing the excita-
tion of a quadrupole, we change the longitudinal position of a focusing lens, as shown in
Figure A.4. In this way, we vary the transfer matrices between the laser and the beam size
scanner and obtain independent constraints that allow us to determine σ̂xx, σ̂xx′ , and σ̂x′x′

at a reference plane from the horizontal beam size measurements. Of course, we need to
carefully align the lens on the optical axis, in order to avoid displacing the laser laterally,
when moving the lens. This was discussed in Sections 8.1.1 and 8.2.1.

In order to correlate the measured beam sizes σx(s) to the position s of the lens, we
need to determine the transfer matrix R(s) from the reference plane to the beam size
measurement as a function of s. Here we refer to Figure A.4 for the definition of the used
symbols. For R(s) we then find

R(s) =

(
1 L− s
0 1

)(
1 0

−1/f 1

)(
1 s
0 1

)
(A.1)

and, following the same strategy laid out in Section 7.4, we pretend to know σ̂xx, σ̂xx′ , and
σ̂x′x′ at the reference plane, and derive the measured beam sizes from it. We obtain

σ2
x(si) = R2

11(si)σ̂xx + 2R11(si)R12(si)σ̂xx′ +R2
12(si)σ̂x′x′ (A.2)

with the transfer matrix elements, found from evaluating Equation A.1

R11(s) = 1− L

f
+

s

f
and R12(s) = L− Ls

f
+

s2

f
. (A.3)



Student Labs ■ 375

Figure A.4 Emittance measurement of a laser pointer.

Measuring the beam sizes σx(si), while moving the lens to position si leads to the following
linear set of equations




...
σ2
x(si)
...


 =




...
...

...
R2

11(si) 2R11(si)R12(si) R2
12(si)

...
...

...







σ̂xx

σ̂xx′

σ̂x′x′


 , (A.4)

which are just multiple copies of Equation A.2, arranged in a convenient way. Since the
measurements σ2

x(si) and the corresponding transfer matrix elements are known, we can
determine the beam matrix elements at the reference plane σ̂xx, σ̂xx′ , and σ̂x′x′ by matrix
inversion or by using the pseudo-inverse discussed in Section 8.4.2 and given by Equa-
tion 8.48. Measurement uncertainties ∆σx(si) of the beam size measurements can be taken
into account in a straightforward fashion by dividing each one of the Equations A.2 by the
corresponding uncertainty, given by ∆σ2

x(si) = 2σx(si)∆σx(si), as previously discussed in
Section 8.4.2 as well. Moreover, the measured values σx(si) should comprise the minimum
beam size and significantly larger values on either side of the minimum in order to accu-
rately determine both the beam size and angular divergence. Finally, take notice that the
measure values σx are standard deviations, not FWHM.

Once the beam parameters at the reference point are known, we can calculate the “emit-
tance” of the laser beam ε̂ from Equation 7.8 and find ε̂2 = σ̂xxσ̂x′x′ − σ̂2

x′x′ , which can be
expressed in units of the “emittance” of a diffraction limited laser beam ελ as ε̂ = M2ελ
with ελ = λ/4π. The Twiss parameters β̂ and α̂, which can also be found from Equation 7.8,
are related to the Rayleigh length and the wave front curvature of the laser beam [139] at
the reference plane. We discuss the relation between light optics and charged-particle optics
further in Appendix B.4, available online from this book’s webpage.

A.3 HALBACH MULTIPOLES AND UNDULATORS

In this lab we build small magnets using readily available, and inexpensive, cubes of per-
manent magnet material. Despite their small size, these magnets produce remarkably high
magnetic fields. We base the design on the discussion of the Halbach multipoles from Sec-
tion 4.5, but we realize that we have to adapt the calculations for the trapezoidal magnet
shapes to the cubic shapes.

We follow the calculation from Section 4.5.2 but have to change the trapezoidal geometry
shown in Figure 4.21 to that shown in Figure A.5 with two cubes that rotate by a suitable
“tumbling angle” kϕ that depends on their azimuthal position ϕ. We first determine the
contribution of a single cube to the multipolar order, characterized by the exponent m, of
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Figure A.5 The geometry with the magnetic cubes.

the complex potential ẑm, by calculating the field B̃
∗
from Equation 4.46, but using the

square area Ω from Figure A.5 instead. The integral then becomes



Ω

dxdy

(x+ iy)m+2
=

 r+h/2

r−h/2

dx

 h/2

−h/2

dy

(x+ iy)m+2
=




2 arctan


h2

2r2


for m = 0

h2r
r4+h4/4 for m = 1.

(A.5)

The integrals are straightforward to evaluate and lead to the results shown for the dipolar
(m = 0) and quadrupolar (m = 1) component. Higher orders are straightforward to eval-
uate, but the expressions become rather lengthy, and we confine ourselves to dipoles and
quadrupoles.

Adding the contributions from M cubes, located at angles 2πj/M with j = 0, . . . ,M−1,
where each cube is rotated by its tumbling angle kϕ, gives us the contribution from all the

cubes to the field B̂
∗

B̂
∗
= B̃

∗
M−1
j=0

e2πi(k−m+2)j/M . (A.6)

Following the reasoning from the end of Section 4.5.2, the sum of the exponential factors
equals M, if (k−m−2)/M is an integer, and zero otherwise. For the dipole and quadrupole
fields we therefore obtain

B̂
∗

= Br

M

π
arctan


h2

2r2


for a dipole, (A.7)

B̂
∗

= Br

M

π

h2r

r4 + h4/4
for a quadrupole.

The achievable fields are rather impressive. For a dipole with M = 8 permanent magnet
blocks, similar to the one shown on the right-hand side in Figure 4.20, but made of h = 5mm
cubes and with r = 9.5mm. We find that the field is given by 0.35 × Br, and for NdFeB
magnets with Br ≈ 1.2T the dipole fields almost reach 0.42T. For quadrupoles with similar
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geometry, but different tumbling factor, gradients above 70×Br T/m can be reached, albeit
in small apertures, only.

We now use these parameters and design a frame to hold the 5mm permanent magnet
cubes with OpenSCAD. We base the design on a large cylinder and punch out the central
hole as well as small square holes to hold the magnets. The following MATLAB script
implements this.

% halbach_M8_simple.m, V. Ziemann, 240829

clear

M=8; % number of permanent magnet cubes

k=3; % tumble factor: k=2 -> dipole, k=3 -> quadrupole

h=5; % size of cube

h2=h+0.4; % little extra space for tolerances

fp=fopen(’test.scad’,’w’);

fprintf(fp,’difference(){\n’);

fprintf(fp,’ cylinder(h=%6.2f,r=14,$fn=120);\n’,h+1.5);

fprintf(fp,’ translate([0,0,-0.5]) {cylinder(h=%6.2f,r=4.5,$fn=120);}\n’,10*h);

for j=0:M-1 % loop over segments

phi=j*360/M;

psi=k*phi-phi;

fprintf(fp,’ rotate([0,0,%8.3f]) {translate([9.5,0,1.5]) {\n’,phi);

fprintf(fp,’ rotate([0,0,%8.3f]) {translate([-2.7,-2.7,0.2]) ...

{cube([5.4,5.4,5.4]);}\n’,psi);

fprintf(fp,’ translate([-0.25,%6.2f,%6.2f]) ...

{cube([0.5,0.5,10]);} }}}\n’,h2/2-0.02,h2-1);

end

fprintf(fp,’}\n’); fclose(fp);

system(’openscad test.scad &’);

After clearing the workspace we define the number M of cubes to use, the tumble factor
k to determine the multipolarity of the magnet, and the size of the cube. We define h2 to be
0.4mm larger to make the holes a little bigger to allow for finite tolerances. Then we open
the output file test.scad to which the OpenSCAD commands are written and immediately
write the command difference() and the definition of the large cylinder. We give it the
radius 14mm and make it 1.5mm higher than the size of the cube. From the first cylinder,
we subtract a displaced second cylinder with radius 4.5mm and large height to ensure that
it punches a hole into the larger cylinder. In the following loop over the M cubes, each
rotated by angle phi, we define the 5.4mm cubes and a smaller 0.5mm cube to indicate the
direction of the easy axis. Note that each cube is rotated by an additional angle psi with
respect to the rotation with phi. Finally, after the loop, we write the closing brace, close
the file, and automatically open the file in OpenSCAD with the system() function call.

Running the above MATLAB script with k = 2 and k = 3 to obtain frames for a dipole
and quadrupole magnet respectively produces the images shown in Figure A.6. We clearly
observe the different tumbling factors for the two cases. In particular, on the right-hand
side, the notch that indicates the easy axis points downward in the upper and lower cubes,
while the easy axis on the left- and right-most cube point upward. This is the same pattern
we already observed in Figure 4.20. The frame for the quadrupole is shown on the right-
hand side in Figure A.6. The easy axes of the cubes in the top left and the bottom right
are facing each other, just as expected for quadrupoles.

Running the script, pressing F6 in OpenSCAD to create the mesh and export the ge-
ometry as a .stl file from the File→Export menu point allows us to subsequently load the
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Figure A.6 Frames for a small dipole (left) and quadrupole (right) modeled with

OpenSCAD. The square holes have sides with a length of 5.4mm, the inner diameter

is 9mm, and the outer diameter is 28mm.

.stl file in a slicer program and create a 3D print of the frame. Examples are shown in
Figure A.7, for the dipole with permanent magnets installed on the left-hand side and a
quadrupole without magnets on the right. These magnets are very short, the length of the
magnetically active material—the permanent magnets—is only 5mm, but making the large
cylinder higher and subtracting higher cubes will give us a frame into which we can stack
several permanent magnets on top of each other. We must take care, however, that the easy

Figure A.7 Printed frame for a dipole with permanent magnet cubes inserted (left)

and the empty frame for a quadrupole (right). The side of a cube has a length of

5mm.
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axes in each stack point in the same direction. In this way we increase the magnetic length
in steps of 5mm.

Our next task is to build a small undulator magnet with two full periods and one tapered
entrance and one exit period to adjust the field integrals as discussed in Section 4.6. We will
use 5mm cubes of permanent magnet material and use four cubes per period λ and allow
for 1mm space between the magnets. This results in a period of λ = 24mm and the total
length of the undulator will be a little under 100mm. Equation 4.57 describes the magnetic
flux density for such an undulator, but only for permanent magnets that touch each other.
It turns out that additional space between permanent magnets can be accounted for by a
packing factor ε. It is given by the length of the permanent magnet material to the total
length of a period. Since there is one extra millimeter of space between adjacent magnets,
the packing factor is ε = 5/6 ≈ 0.83. Taking it into account turns Equation 4.57 to

B̂
∗
(ẑ) = 2iBr

sin(επ/4)

π/4

(
1− e−2πh/λ

)
e−2πg/λ cos(2πz/λ) . (A.8)

We recall that h is the height of the permanent magnet material, here the size of a cube,
and g is the half-gap of the undulator. We will assume it to be g = 5mm in the following
design. For the peak flux density Bp on the undulator axis, we then obtain Bp = 0.305×Br,
and for a half-gap of g = 10mm we find Bp = 0.083×Br.

Instead of writing the OpenSCAD input file with MATLAB, here we use the built-in
OpenSCAD programming language. The following OpenSCAD program designs the undu-
lator with half-gap g = 5mm:

// undulator10mm.scad, v. Ziemann, 240829

// run with "openscad undulator10mm.scad"

// Halbach undulator with 10mm gap, uncompensated field integrals

difference() {

union() {

cube([94,40,4]);

color("blue") {

translate([0,23,4]){cube([94,10,6]);}

translate([0,7,4]){cube([94,10,6]);}

}

}

for (i=[0:14]) {translate([4.95+i*6,27.5,8]) {

rotate([0,0,-90*i-90]) {

cube([5.4,5.4,6],center=true);

translate([2.75,0,6]) {cube([0.5,0.5,10],center=true);}

}}}

for (i=[0:14]) {translate([4.95+i*6,12.5,8]) {

rotate([0,0,90*i-90]) {

cube([5.4,5.4,6],center=true);

translate([2.75,0,6]) {cube([0.5,0.5,10],center=true);}

}}}

}

The undulator frame is constructed as the difference of the union of the base plate with the
blue blocks and the holes for the 5mm permanent magnet cubes. The hole is slightly larger
to ease insertion of the magnets. We also add the small square notches with 0.5mm long
sides to indicate the direction of the easy axis for each magnet. All we have to do now is
order the magnets, wait for their arrival, and insert them in their respective frames.
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Figure A.8 Frame for the undulator.

A.4 MAGNET MEASUREMENTS

Once the magnets from the previous lab are assembled, we need to characterize them. In
this lab, we determine the longitudinal variation of the magnetic flux density B along the
“beam axis” of the Halbach dipole, which is shown on the left-hand side in Figure A.7. We
therefore mount a A1302 Hall sensor onto the chassis of a salvaged CD drive and mount the
magnet onto the movable wagon. The left-hand side of Figure A.9 illustrates the setup. This
configuration resembles the profile measurement of the laser pointer in Appendix A.1, and
again, we use an Arduino to control the stepper motor on the CD drive. A limit switch on
the chassis allows us to always start a measurement from a well-defined reference position.
A measurement is initiated by sending the command SCAN? to the Arduino, which first
moves the wagon to the reference, or home, position, echos SCAN to the serial line, and then
slowly steps in the opposite direction, while simultaneously reading out the Hall sensor via
an analog input and sending the values, converted to Tesla, back across the serial line. The
code on the Arduino closely follows the discussion in [114] and is available from this book’s
webpage.

The protocol of sending SCAN? and receiving a known number of values is
easily implemented in MATLAB. We first have to define a serial device with

Figure A.9 Magnetic measurement system and vertical field in the dipole shown on

the left-hand side in Figure A.7.
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s=serial(’/dev/ttyUSB0’, ’BaudRate’,9600), open that device with fopen(s), before
initiating the scan, reading the magnetic field values from the serial line, and producing a
plot of the longitudinal field profile. The following code implements this

fprintf(s,’SCAN?’); fscanf(s); % read the "SCAN" echoed

Bfield=zeros(1,150);

for i=1:150 % loop over the data points

Bfield(i)=str2double(fscanf(s)); % string to double

end

xscale=0.18*(0:149); % 0.18 mm/motor step

plot(xscale,Bfield)

and produces the plot shown on the right-hand side in Figure A.9. We see that the peak field,
which occurs when the Hall sensor is inside the magnet, reaches 0.16T. With a commercial
Gaussmeter we measured about 0.14T. The discrepancy is likely due to the tolerance in
the sensitivity of the Hall sensor, which can vary between 1.0 and 1.6mV/Gauss, where we
used 1.3mV/Gauss in the Arduino sketch. The measured values, however, are consistent
with remanent fields in the range of Br ≈ 0.4 to 0.5T, according to Equation A.7. This
appears to be a reasonable value for the low-grade magnets used.

This lab illustrates the methodology of measuring magnets, but in order to make it use-
ful, the sensor must be calibrated properly, a sturdier translation stage and micro-stepping
controller should be used, but this is left as a project for the interested reader.

A.5 COOKIE-JAR CAVITY ON A NETWORK ANALYZER

In this lab we calculate and measure the frequency and Q-value of the fundamental TM010

mode of a tin can that, once upon a time, contained butter cookies. We use this cookie-jar
as a substitute for the pill-box cavity we theoretically analyzed in Section 5.1.

The height of our jar is approximately l = 65mm, and the radius is R = 95mm.
See the left-hand side in Figure A.10 for an illustration and compare to Figure 5.1. The
eigenfrequencies of the resonator are given by Equation 5.22. For the fundamental mode
with n = 0,m = 1, and p = 0 we find f010 ≈ 1.2GHz. Before measuring the resonance
frequencies, we need to couple power into the cavity. To this end, we drill holes into the
lid of the jar and install BNC connectors with their outer contact, the shield, electrically
connected to the metal of the jar. To its inner contact, we solder short wires with a length
of a few millimeters, shown below the BNC connectors on the top of the jar. One connector
(BNC1) is placed in the center of the lid. The longitudinal electric field in the cavity can
excite signals in the antenna, which can be detected on BNC1. The second BNC connector
(BNC2) serves as the “power coupler,” discussed in Section 6.3, to excite the fields in
the cavity through the small antenna, shown below BNC2. The antennas, which couple
power into the cavity and simulate the beam, interact with the electric field in the cavity,
whereas the loop couples to the magnetic field. The loop is electrically connected to the
inner wall of the jar and to the center connector of BNC3. The coupling factor β, introduced
in Section 6.3, can be adjusted by changing the length of the small antennas soldered to
BNC1 and BNC2, for example, by cutting off some of the wire of the antenna. The β of the
loop coupler can be changed by increasing or decreasing the size of the loop, for example
by bending the wire of the loop to a different shape.

We use a network analyzer (NA) to experimentally determine the resonance frequency
and other parameters. NAs have two or more connectors, referred to as ports, equipped
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Figure A.10 Cookie-jar used as a pill-box cavity.

with directional couplers, mentioned near the end of Section 6.2. Sensors, connected to the
couplers, measure the signals flowing out of and into the ports. Connecting the cookie-jar
and exciting one port, while simultaneously recording the signal reflected from the jar,
allows us to determine the reflection coefficient Γ defined in Equation 6.20. It is equal to
one of the S-parameters, S11, that is returned from the NA. Plotting S11, while varying the
excitation frequency f, the resonance frequencies of the jar will appear as dips, because on
resonance, the cavity absorbs the power and dissipates it in the cavity walls, as described
in Section 6.4.1. This determines the Q-value of the cavity, discussed both in Sections 6.3
and 6.4.1. On the right-hand side of Figure A.10 we show the measured values of the
fundamental mode of our cookie-jar as the crosses. The raw data was saved from the NA to
a USB stick as a text file and imported into MATLAB, where it is displayed and processed
further. From Figure A.10, we find the measured resonance frequency to be 1.153GHz,
which is in the vicinity of the value we earlier estimated from the geometry. The solid line
denotes a fit of the real part of Equation 6.20 to the raw data. It is calculated in the following
MATLAB script

% fit_resonance_gamma.m, V. Ziemann, 240829

clear; close all

d=importdata(’f1b.csv’);

f=d.data(:,1)/1e9; amp=d.data(:,2); phase=d.data(:,3);

g=@(p,x)20*log10(abs((p(3)-1-1i*p(2)*(x./p(1)-p(1)./x))./ ...

(p(3)+1+1i*p(2)*(x./p(1)-p(1)./x))));

chisq_g=@(p)sum((amp-g(p,f)).^2);

[pfit,fval]=fminsearch(chisq_g,[1.15,200,1.1])

figure(’Name’,’S11 versus frequency’)

plot(f,amp,’k*’,f,g(pfit,f),’k’);

xlabel(’f [GHz]’); ylabel(’S_{11} [dB]’); xlim([1.148,1.158])

legend(’Measurements’,’f_0=1.153 GHz, Q=100, \beta=1’)

set(gca,’FontSize’,16)

which determines the fit parameters f0, Q, and β, including their confidence intervals. After
importing the file f1b.csv with the raw data, we define the function g() to encode Equa-
tion 6.20. The three components of the array p contain the fit parameters f0, Q, and β.
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The function chisq g() returns the difference of the measured amplitudes amp and g(p)

as a function of p. Passing chisq g() to fminsearch() returns the parameters of the mini-
mization procedure pfit, which we subsequently plot. Using the provided input file, we find
that Q is around 100 and the coupling β = 1 equals the critical value, at which reflections
are minimized.

The quality of our makeshift cavity, the cookie-jar, is rather modest, but this is expected,
since we did not pay special attention to its design and we only removed the dielectric inside,
the cookies. Furthermore, the accuracy of the measurement can be improved. For high-
precision measurements, one must calibrate the NA by measuring the S-parameters close to
the cavity. This is done by terminating the connecting cable with an open connection, with
a short, and with a 50Ω resistor. This allows the NA to automatically remove the influence
of imperfect connectors and cables on the measurements.

This lab can be extended in multiple ways, for example, by varying the length of the
antenna to change the coupling β. Furthermore, the transmission coefficient from one BNC
connector on the cookie-jar to another one is described by the S21 and can be measured by
connecting two different BNC connectors to two ports on the NA. This simulates exciting
the cavity through one connector and extracting it from the second, thus mimicking the
power extracted by the beam.

ROUGH IDEAS FOR FURTHER LABS

1. Mount mirrors on stepper motors and use them for steering the beam from a laser
pointer.

2. Observe the laser spot on a screen and design a laser pointer orbit correction system
to move it in a controlled way on the screen.

3. Experiment with mirrors mounted on model servos. Investigate pointing stability and
reproducibility.

4. Design and build a Halbach dipole with two concentric dipoles, where a second “ring”
of magnet blocks is mounted outside the first eight magnet blocks and will increase
the field.

5. Make the outer ring such that it can be rotated with respect to the inner ring. This
allows you to continuously adjust the dipole strength. Verify this and calibrate the
magnet on the magnet test bench.

6. Design and build a variable permanent-magnet quadrupole with two concentric, but
movable, rings of magnet blocks, where the outer magnets can be rotated with respect
to the inner blocks.

7. Use a model-servo or stepper motor to press a lever against the bottom of the cookie-
jar in order to tune its frequency.
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