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Hands-On Accelerator Physics Using MATLAB®, Second Edition, provides a broad introduction into the
physics and the technology of particle accelerators from synchrotron light sources to high-energy colliders.
It covers the design of beam optics, magnets, and radio-frequency systems, followed by a discussion of beam
instrumentation and correction algorithms. Later chapters deal with the interaction of beams with targets,
the emission of synchrotron radiation, and intensity limitations. Chapters discussing running and future
accelerators round up the presentation. Theoretical concepts and the design of key components are explained
with the help of MATLAB code. Practical topics, such as beam size measurements, magnet construction and
measurements, and radio-frequency measurements are explored in student labs that do not require access to
an accelerator. This unique approach provides a look at what goes on “under the hood” inside modern accel-
erators and presents readers with the tools to perform their independent investigations on the computer or in
student labs. This book will be of interest to graduate students, post-graduate researchers studying accelerator
physics, as well as engineers entering the field.

The second edition features a new chapter on future accelerators and several new sections on polar-
ization, neutrino beams, testing of superconducting cavities, and matching in longitudinal phase
space, among others.

The MATLAB code was updated to be consistent with the recent release of R2024a. All code is
available from the book’s GitHub site at https://github.com/volkziem/HandsOnAccelerators2nd.

Key features:

* Provides a broad introduction into physics of particle accelerators from synchrotron light
sources to high-energy colliders.

* Discusses technical subsystems, including magnets, radio-frequency engineering, instru-
mentation and diagnostics, correction of imperfections, control, vacuum, and cryogenics.

» Illustrates key concepts with sample code in MATLAB.
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Preface

TO THE SECOND EDITION

About five years after the first edition, my editor Rebecca Hodges-Davies at CRC Press
suggested to prepare a second edition. I happily agreed to fix some deficiencies, remove
some old and add some new material. In the process, I made sure that all MATLAB code
is up-to-date with release R2024a.

A little later, Rebecca contacted me about making the electronic version of this book
available as open access, sponsored by SCOAP3 (The Sponsoring Consortium for Open Ac-
cess Publishing in Particle Physics, https://scoap3.org). Of course I agreed, and Rebecca
suggested this second edition to SCOAP3, and then SCOAP3 approved. As a consequence
you can now check out https://oapen.org and pick up an electronic copy of this book,
but also other great books on accelerators, several of them named in the Bibliography.

But back to this book and the main changes compared to the first edition, which are:

* In Chapter 2 the six-dimensional equations of motion are consistently derived from
the Hamiltonian. In the process the dynamical phase space variables naturally appear
and are subsequently used in Chapter 3 to derive six-dimensional transfer matrices.

* | added new sections on

fragment separators (Section 3.7.10);

— matching in longitudinal phase space (Section 5.5);

— system identification of superconducting cavity parameters (Section 6.7.3);
— new diagnostics, for example, a Feschenko monitor (Section 7.3);

— radioactive ion beams (Section 13.2.5);

— neutrino beams (Section 13.2.6);

— generating, measuring, and transporting polarized beams (Section 13.3);
— CEBATF as additional example of an accelerator (Section 14.4).

* I added Chapter 15 on future accelerators with discussions of linear colliders, future
circular colliders, muon colliders, and plasma accelerators.

* The calculations to analyze transverse betatron coupling now use Sagan and Rubin’s
algorithm, which is more robust than the previously employed method of Edwards
and Teng, especially for strongly coupled beamlines.

* The transient beam loading calculations in Sections 6.6.3 and 6.6.4 now use the state-
space formalism which is very amenable to simulations in MATLAB.

* Throughout the book, I cleaned up the MATLAB code and made it consistent with
the most recent release at the time of writing, which was R2024a.

xiii
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* All dependencies on additional MATLAB toolboxes that had crept into the first edi-
tion are removed. All examples should now run in plain MATLAB and the PDE
toolbox. The latter is needed to calculate electro-magnetic fields in realistic geome-
tries.

* HEspecially the PDE toolbox had evolved over time and required some changes in the
syntax. For example, a few commands such as pdesurf () are no longer supported and
are replaced by equivalent commands. For magnetic calculations only, a new so-called
unified workflow is available. Despite being more intuitive, I decided not to include it
in the main text, because it does not support the eigenmode calculations in Chapter 6,
and I prefer to use a consistent workflow throughout the book. I do, however, include
examples using the new workflow in Appendix B.6, which is available online from this
book’s webpage at https://www.routledge.com/9781032726960 or from github at
https://github.com/volkziem/HandsOnAccelerators2nd.

* Many figures are now derived from three-dimensional models and are, hopefully, better
looking than those in the previous edition.

* All known typos and mistakes from the previous edition were corrected. I am partic-
ularly grateful to my students and colleagues for pointing them out.

* All software described in this book is freely available from my github site at https://
github.com/volkziem/HandsOnAccelerators2nd. Feel free to download and explore.

As before, there is a number of online appendices available as pdf, freely accessible from
this book’s webpage at https://www.routledge.com/9781032726960 or from github at
https://github.com/volkziem/HandsOnAccelerators2nd.

Solutions to the end-of-chapter exercises are available for qualifying teachers from this
book’s webpage at https://www.routledge.com/9781032726960.

TO THE FIRST EDITION

A little over 10 years ago I moved from our lab that operated the CELSIUS storage ring for
nuclear physics experiments to the high-energy physics department at Uppsala University.
There I followed a request to develop a course on Accelerator Physics. The main purpose at
the time was to teach graduate students in nuclear and high-energy physics how the accel-
erators, on which they perform the experiments for their theses, work. Of course, I was also
interested to attract students that are interested in my own field of research—accelerator
physics. When designing the course I had two types of students in mind, particle-physics
experimentalists and accelerator physicists, and what they should know after completing
my course.

As the archetypical high-energy or nuclear physics student, I visualized a detector-liaison
physicist, similar to the ones that populated the accelerator control-room of the SLAC
Linear Collider, where I used to work as a Post-Doc. At that time, in the early nineties, the
SLD detector “consumed” the beams and the detector collaboration deployed a physicist in
our control-room, where we, the accelerator crew, prepared the beams. The idea was to tell
us when our beams were not good enough for the detector or when we could experiment
with the beams ourselves, while they changed data collection tapes. These detector liaisons
were extremely beneficial for smooth operation and our interaction worked better as we
learned each other’s systems. In short, I want my students from high-energy physics to
have a sound understanding of the system, we accelerator physicists operate, in order to
efficiently interface the operation of detector and accelerator—a sort of survival guide for
detector liaisons. Over the years giving the course a variant of the liaisons, colleagues from
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neighboring departments, participated and I realized the course gives these experts in their
respective fields a wider perspective of accelerator physics and technology.

As to my prospective accelerator physics students, I visualized them marooned on an
island with a computer that is well-equipped with software to design accelerators and their
subsystems. Is there a better way to beat the boredom on a deserted island than to design
prototype accelerators? The software I selected at the time was the MADX code for beam
optics calculations, the student version of the Maxwell code from ANSYS for magnet calcu-
lations, and my own VAKTRAK for vacuum calculations. I used these codes on very simple
problems to teach how to get started designing beam optics, magnets, or vacuum systems.
This hands-on approach to really understand how to work with real-world, though simple,
problems was appreciated by the students, both with detector and with accelerator interest,
because they learned things useful beyond the direct use in accelerators. This worked quite
well for a number of years.

But over time, some of the software was not supported anymore and the installation
of large software packages took too much time to make it work for a number of students
with computers running all sorts of operating systems. Moreover, for some short examples,
learning an arcane input language distracts too much from the underlying physics. In the
past few years I therefore moved to using MATLAB® [1] and Octave [2] for a number
of topics. This had the additional benefit that the students could play with the software
more easily, add features and inspect what goes on inside the code. Moreover, only a single
software package, available on many operating systems, has to be installed and maintained.
Octave is open source and freely available, and most technical universities have site licenses
for MATLAB.

This book grew out of the move towards MATLAB and Octave and teaches the core
topics of accelerator design, but not limited to beam optics, magnets, radio frequency and
vacuum systems with the help of small or moderately complex code examples—each dis-
cussed in detail. All MATLAB functions referred to in this book, to prepare figures or
otherwise, as well as an instructor’s manual with complete solutions to all exercises, are
available on the book’s web page at https://www.crcpress.com/9781138589940. Most
examples work equally well in MATLAB or in Octave. Only the examples to numerically
calculate electro-magnetic fields in Chapters 4, 6, and 7 require solving partial differential
equations and are based on MATLAB’s PDE toolbox. Furthermore, the interface to the
functions of the PDE toolbox (the workflow in MATLAB’s parlance) has changed. There-
fore, two versions are provided: one for R2018b, which is covered in the text; and one for
R2015b, which is explained in the online material.

The best way of learning about accelerators is to spend time in the control-room, observe
what goes on, and eventually turn knobs oneself. But that is unfortunately not always
possible; either there is no accelerator close by, or the one that is, is tied up running for users,
either high-energy physicists, users of synchrotron radiation, or for treating patients. A way
out of this dilemma is to use equivalent systems that show key features of the corresponding
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accelerator systems. I follow this approach in the lab sessions described in the appendix.
There I use a laser-pointer to illustrate beam size and emittance measurements, design and
measure magnets with small permanent magnets, and analyze a radio-frequency resonator
made of a closed metallic cylinder—a cookie-jar with antennas.

For product information on MATLAB, please contact:
The Mathworks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-607-7001
Email: info@mathworks.com
Web: www.mathworks.com
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CHAPTER 1

Introduction and History

Charged particle accelerators drive a large sector of modern research in sub-atomic physics,
in material, and in life sciences. Moreover, they play an ever-increasing role in medical
applications, both for therapy and for diagnostic purposes. Most of these accelerators are
large installations, but also smaller accelerators are used to modify material properties or
to sterilize medical waste. Even old-fashioned thick-screen TV sets accelerate and guide
charged particles, electrons, in an evacuated vessel and guide them to a screen, where they
produce light that we experience as TV images. In this book we answer the question why and
how accelerators acquired such a prominent role in modern society, and which technologies
are used to satisfy this role. But before discussing the scientific and technical aspects, we
briefly recall the history of charged particle accelerators. For a more detailed exposé the
reader is referred to [3].

The first technical device, which accelerated charged particles, electrons, is the cathode
ray tube, invented by Braun. Already in 1897, he used electric and magnetic deflecting fields
to make electrical oscillations visible by directing accelerated electrons, moving in a vacuum
tube, onto a luminescent screen. Figure 1.1 shows a sketch of such a tube. The electrons are
created in a thermionic cathode, shown on the left. It is basically a heated wire from which
electrons are extracted by the electric field caused by the voltage between the anode and the
cathode. A second voltage, which can be time-varying, is applied to deflection plates and
directs the beam to the luminescent screen, where the electrons are detected. The entire
setup is embedded in a vacuum tube to avoid collisions of the electrons with the residual gas.

Here we already have the essential ingredients of an accelerator present: particle creation,
acceleration, guide field, detection or diagnostic, and vacuum. Note that in a TV tube the
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Figure 1.1 Cathode ray tube.
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deflection plates are replaced by magnetic coils, deflecting the electrons both horizontally
and vertically. Cathode ray tubes were used in TV sets and oscilloscopes into the early years
of the third millennium, but they are largely superseded by systems based on flat-screen
displays.

The energy of the electrons in cathode ray tubes is rather modest after being acceler-
ated through voltages on the order of a few tens of kV, but this is sufficient to produce
images. The development of accelerators did not advance significantly until the late 1920s
when several new technologies, which dramatically increased the kinetic energy of charged
particles, appeared. Of course this development was stimulated, like so much else, by the
development of quantum and nuclear physics during the first three decades of the previous
century. In 1911, Rutherford used charged particles, emitted by a radioactive source, to
probe atoms located in thin foils. He detected very large deflection angles and inferred that
atoms are made up of positively charged nuclei and negatively charged electrons, an obser-
vation that led Bohr to publish his model of the atom two years later. Using high-velocity
charged particles to probe the substructure of the target material thus proved highly useful
and inspirational.

In 1913 father and son Bragg used x-rays in order to probe the structure of crystals
because the x-rays have a wavelength comparable to the distance between atoms in the
crystal and cause diffraction patterns on photographic plates. Earlier, Einstein and Planck
had postulated that photons, such as x-rays, can behave like waves or like particles, de-
pending on the experiment performed. By exploiting this analogy, de’Broglie suggested in
1924 that even electrons, or actually any matter, can behave like either wave or particle
with wavelength A, given by the momentum p of the particle

A s (1.1)
where h is Planck’s constant. This suggestion was picked up by Schrodinger, who used it to
develop wave mechanics and the equation that bears his name. The inverse proportionality
of the wavelength on the momentum indicates that high momenta are required to generate
the short wavelengths needed to obtain diffraction patterns from small structures, such as
atomic nuclei. The bottom-line is that nuclear probes with large momenta are needed. And
this resulted in the development of a number of different accelerators, all of which were
invented in the late 1920s.

In 1928 Widerge demonstrated a method to accelerate potassium ions using voltages
that reverse their polarity at very high radiofrequencies. Figure 1.2 illustrates the idea. A
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Figure 1.2 Widerge’s drift-tube linear accelerator.
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Figure 1.3 Van de Graaff accelerator.

drift tube is connected to a high-frequency oscillator that rapidly reverses the polarity to
create an alternating electric field between the drift tube and the adjacent tubes. In the
figure, the positively charged ions are accelerated by the electric field in the gap between
the source and the drift tube. The field between the drift tube and the following tube at
this instance points in the wrong direction and would decelerate the ions. But the length of
the drift tube is chosen such that the ions appear at the exit just as the field has reversed its
polarity and can accelerate the ions once again, thus doubling their energy. Repeating this
mechanism requires tubes of increasing length where the ions can “hide” while the polarity is
reversed, especially with the relative modest frequencies that could be reached at the time.
On the other hand, even today it is used to accelerate protons or heavier ions. An important
modification of Widerge’s principle of using drift tubes is due to Alvarez. In the late 1940s,
he embedded the drift tubes in a large tank and used high-frequency radio waves to excite
standing waves in the tank. The geometry was adjusted in such a way that the longitudinal
electric field components in the gap between adjacent drift tubes have opposite signs. In
this way particles “hide” in the drift tubes, while the standing wave reverses polarity before
they are accelerated again in the following gap. This method is used in early stages of linear
proton accelerators, such as the European Spallation Source.

From 1929 on, Van de Graaff developed the electrostatic accelerator, shown in Figure 1.3.
It is based on charge being deposited on a belt, made of isolating elastic material, such as
silk or rubber, by a corona discharge. The belt is mechanically moved by a motor driving
pulleys to transport charges to the upper platform where they are deposited at a higher
potential. ITons, created in a source at the high potential, are accelerated toward ground
potential in the accelerating column, where a resistor cascade ensures a linearly changing
potential and a constant accelerating field. Back at ground potential, the accelerated ions
impinge on a target that is part of an experimental station. A modern version of this
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Figure 1.4 Greinacher voltage multiplier that is the base of a Cockroft-Walton ac-
celerator.

device is called a Pelletron and is, for instance, used for experiments to determine the
surface properties of materials, but also in high-energy electron coolers. A tandem accelerator
uses the high voltage generated by a Van de Graaff accelerator twice, once to accelerate
negatively charged ions, strip one or several electrons from the ion, and then it uses the
same acceleration potential a second time to accelerate the, now positively charged ions,
toward the experiment that is conveniently located at ground potential.

A second method to generate constant high voltages was employed by Cockroft and
Walton. They used a cascaded network of capacitors and diodes, invented by Greinacher in
the 1920s, to reach very high accelerating voltages. Figure 1.4 explains the basic operating
principle of the voltage multiplier. The negative voltage of the AC voltage U, that is applied
at the left-hand side charges capacitor Cy to Ug and the positive voltage half an oscillation
period later charges Cs to 2U,. Cascading these units makes it possible to reach voltages into
the MV range. In 1932 Cockroft and Walton used their apparatus to impinge accelerated
protons on to a lithium target and induce the first artificial nuclear reaction: p + Li —
2 He. For this discovery they received the Nobel prize in Physics in 1951.

Sustaining high multi-MV constant voltages to accelerate particles, as used in both Van
de Graaff and Cockroft-Walton accelerators, is technologically demanding and limited by
the available insulation. In 1929 Lawrence had the ingenious idea to use alternating radio-
frequency voltages to accelerate protons in a wound-up drift tube linac. Figure 1.5 illustrates
the operating principle of the device, called the cyclotron. In the center a source creates
charged particles that are forced on a near-circular spiral trajectory by a static magnetic
field. At the same time they are accelerated by repeatedly changing the polarity of two
accelerating “dees,” which have the same role as the drift tubes. The particles “hide” in
the “dees,” while the polarity is reversed, such that they are accelerated once again in
the second gap. The increase of the radius of the particles must exactly compensate their
increased speed. For non-relativistic particles at radius p, the speed v, and revolution time
T are related by v = 2mp/T = 27 f p, where we introduce the revolution frequency f = 1/T.
Moreover, on the circular path, the centrifugal and centripetal forces must balance

2
— =evB . 1.2
5 (1.2)

Inserting the relation between speed v and frequency f in order to eliminate the radius p,
we find that choosing the frequency to be
eB
f=3
™m

(1.3)

guarantees synchronicity, independent of the radius and the speed of the particle. For ob-
vious reasons f is called the cyclotron frequency. Since the magnetic field is constant, the
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radius of the orbit increases as is indicated by the spiral drawn in Figure 1.5. Synchronism
is guaranteed as long as the particles move at non-relativistic speeds up to energies of a few
tens of MeV for protons.

The synchronous condition is violated, if the mass of the proton changes due to relativis-
tic effects as m = ymg, where myg is the particle rest mass, v = 1/4/1 — v?/c?, and ¢ is the
speed of light. At higher speed or energy the radio frequency needs to be reduced in order
to maintain synchronicity. In these so-called synchrocyclotrons, the frequency is modulated
in such a way to balance the relativistic increase of the mass. That the particles follow the
changing radio frequency in a stable fashion is a consequence of phase focusing, discovered
in the mid-1940s by Vecksler and McMillan; particles with speed too low arrive a little late
and are accelerated a bit more and consequently are pushed closer to their desired arrival
time. We will discuss phase stability in detail in Chapter 5. A consequence of modulating
the frequency is a pulsed emission of accelerated particles from the cyclotron, typically a
few hundred times per second. At some point in time the frequency is just right to cap-
ture particles in the center, but then it decreases to guide the captured particles to higher
energies. While one particle batch travels outwards in the cyclotron to higher energies, no
other particles can be captured in the center, because the frequency is non-synchronous.
Synchro-cyclotrons with specially shaped magnetic fields in addition to the modulating gen-
erators make it possible to reach moderately relativistic energies up to about 600 MeV in
the large cyclotrons at the Paul Scherrer Institute (PSI) near Ziirich, Switzerland and at
the Tri-University Meson Facility (TRIUMF) in Vancouver, Canada.

The magnetic field in a cyclotron is constant, and the accelerated particles circulate with
increasing radii, which requires huge magnets to produce high fields all the way from the
center. In 1942 Oliphant came up with a way to leave out the central part of a cyclotron.
He suggested to maintain a fixed radius by synchronously increasing the magnetic field and
the frequency of the RF system used to accelerate the particles. Phase stability or phase
focusing, as it is also sometimes called, guaranteed that such an accelerator operates stably;
particles with a slightly “wrong” arrival time or energy experience a force that pushes them
back toward the design values. Adjusting magnets and RF synchronously led to calling
these accelerators synchrotrons. Early machines were built for electrons and later, in the
1950s, for protons. The early synchrotrons such as the Cosmotron in Brookhaven, shown
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Figure 1.6 The Cosmotron was the first high-energy proton synchrotron.

in Figure 1.6, and the Bevatron in Berkeley, used specially shaped magnet poles to provide
focusing toward the particle’s design trajectory, which is called weak-focusing (more on that
in later chapters). In 1952, however, Courant and his colleagues found out that splitting the
magnets into functional blocks, dipole magnets to deflect, and quadrupole magnets to focus,
allowed a more compact construction of the accelerator. Since Maxwell’s equations force the
quadrupoles to focus in one plane, say the horizontal, and defocus in the other, vertical plane,
a sequence of focusing and defocusing magnets is needed, which led to the name alternating
gradient focusing. Moreover, the focusing magnets could use much stronger fields, which led
to calling this method strong focusing. The first large strong-focusing synchrotrons were the
Alternating-Gradient Synchrotron (AGS) in Brookhaven and the Proton Synchrotron (PS)
at CERN in Geneva, the latter designed to accelerate protons to 25 GeV, an energy that
corresponds to a little under 30 times the rest energy m,c? of the proton.

At this point, we need to look at the scientific output of the high-energy accelerators,
the developments of particle physics into the 1960s, and how that determined the further
development of accelerators. Life as a particle physicist was easy in the 1920s; only photons,
the carriers of light quanta, protons and electrons had to be considered. But in 1928 Dirac
predicted that the electron has an antimatter sibling, the positron, which can be considered
as its mirror image. Shortly afterward, in 1932, Anderson discovered the positron and in the
same year Chadwick and Urey discovered the neutron. By analyzing radioactive decay and
in order to explain the decay of the neutron, Pauli postulated the existence of yet another
particle, the meutrino. Further sub-atomic particles joined the zoo with the discovery of
the muon in 1936. Earlier, Yukawa had predicted the existence of elementary particles to
account for the stability of atomic nuclei, so-called pi mesons that were experimentally
discovered in the late 1940s. The number of elementary particles proliferated dramatically
after accelerators started producing them in abundance, and detection methods for new
particles improved. In the 1950s and 1960s, a veritable particle zoo emerged with a large
number of different mesons and heavier particles, the baryons. The abundant proliferation
of new particles initially had no discernable structure, but order was partially restored,
when Gell-Mann and Zweig identified underlying symmetries and proposed that mesons
and baryons are composed of more fundamental entities, the quarks. This discovery not
only explained the properties of the many recently discovered particles, but also predicted
new ones, which were promptly found. At this point the question arises how the quarks
interact with each other.

And this motivates a brief discussion of the fundamental forces that govern all inter-
actions. First known was the gravitational force, put on a sound theoretical foundation,
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first by Newton in 1687, and later by Einstein with the general theory of relativity in 1915.
The second type of fundamental forces known were electric and magnetic forces. In 1865,
Maxwell published a theory that explains these forces in a unified way as a single underlying
force, the electro-magnetic interaction. Later these forces were associated with the exchange
of particles, the photons. The fundamental force responsible for radioactive decay is called
the weak interaction and we now know that it is mediated by Z— and W—-bosons. The last
fundamental force is called the strong interaction and is responsible for the forces inside
the nucleus and between quarks. Since the 1970s we know that the strong interaction is
mediated by carriers called gluons. Here we already see another ordering scheme. There
are particles that constitute matter and there are force carriers, the interaction bosons
such as photons, Zs, or gluons. The theory that was developed during the 1960s and 1970s
that places the electro-magnetic, weak and strong interaction in a coherent framework is
called the standard model. This model was extremely successful in explaining and predicting
sub-atomic phenomena, culminating in the discovery of the Higgs boson in 2012.

The masses of the predicted particles were sometimes unknown and often beyond the
reach of existing accelerators. This triggered the construction of bigger accelerators to extend
the range toward higher energies in order to find the particles and probe their properties.
The accelerators dramatically grew in size because the field in conventional iron-dominated
electro-magnets is limited to approximately 2 T. This high-energy frontier was explored with
large synchrotrons in Serpukhov, Russia, the Super Proton Synchrotron (SPS) at CERN,
and the one at Fermilab near Chicago, which is shown in Figure 1.7. These accelerators
reached proton energies of several hundreds of GeV and had circumferences measured in
kilometers.

A second feature of the predicted particles is the very small probability to produce
them, which made it necessary to increase the collision rate of the accelerated particles with
a target. Moreover, when smashing particles into a fixed target, momentum conservation
dictates that some of the available energy is converted to the kinetic energy of the reaction
products. On the other hand, when colliding particles head-on, with momentum of equal
magnitude, but opposite direction, the total momentum is zero in both laboratory and
rest frame, such that all energy is available for the reaction products. Additionally, by
circulating two beams in opposite directions and repeatedly colliding them head-on increases
the collision rate, and thus the ability to observe rare reactions. This reasoning led to the
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concept of colliding beam storage Tings, which was first investigated with electrons in the
early 1960s with the small electron-positron collider ADA (Anello di Accumulazione) in
Frascati near Rome. In the following years, the concept was tested at the VEPP colliders
in Novosibirsk. For protons, the first collider was the Intersecting Storage Ring (ISR) at
CERN, where the ideas were tested further and the technology mastered throughout the
1970s.

Note that the ISR collided protons on protons due to the unavailability of a high-quality
source for antiprotons at the time. But the situation changed with the invention of stochastic
cooling by van der Meer, which greatly improves the beam quality of the antiprotons that
were generated by smashing high-energy protons into a target. Once the production of
high-quality antiprotons was under control, the large synchrotrons at Fermilab and CERN
were converted to colliders for protons and antiprotons, leading to the discovery of the
mediators of the weak force, the Z- and W-bosons at CERN in 1983 and the top quark in
1995 in the Tevatron at Fermilab. Figure 1.7 shows accelerator complex with the 6.3 km
Tevatron and its detectors CDF and DO as well as the area for fixed-target experiments.
More recently, in operation since the year 2000, the Relativistic Heavy Ton Collider (RHIC)
in Brookhaven collides, for example, gold ions to probe how matter behaved immediately
following the Big Bang. At CERN, the Large Hadron Collider (LHC), in full operation
since 2010, was instrumental in the discovery of the Higgs boson, which explains the masses
of elementary particles. The Facility for Antiproton and Ion Research (FAIR), based on a
large synchrotron, dedicated to many aspects of nuclear physics, is under construction at
GSI near Frankfurt.

Most of the accelerators discussed so far accelerate protons and sometimes heavier ions in
order to induce subnuclear reactions and discover new particles. The large mass of the proton
helps to reach high energies used to stimulate nuclear reactions in targets, either a fixed
target or the counter-propagating beam in a collider. The high energy density makes them
the perfect tool to discover new particles or excited states of known particles. Thus proton
accelerators can be considered discovery machines. They allow us to create energy densities,
not accessible in any other way. But carefully probing a target with protons is difficult,
because protons are composite particles made of quarks and gluons. Electrons, on the other
hand are, as far as we know today, point-like and are much better probes of the internal
structure of the targets, such as nuclei. Therefore, high-energy electron accelerators can be
considered as precision machines. A hybrid machine that uses electrons to probe protons
is the Hadron-Electron Ring Accelerator (HERA) that operated at Deutsches Elektronen
Synchrotron (DESY) in the 1990s. But now let us turn to plain electron or electron-positron
accelerators.

After the first electron accelerators, the cathode ray tubes, Kerst developed the beta-
tron in the 1940s. This accelerator uses the induction voltage generated by a time-varying
magnetic field. In this way the betatron resembles a transformer, where the magnet coil is
the primary winding and the accelerated electron beam the secondary winding. Betatrons
can accelerate electrons up to about 200 MeV but are not much used today, except in some
cases to generate x-rays by impinging the accelerated electrons on a target made of, for
example, tungsten.

As we saw earlier, electron accelerators were developed in parallel to the high-energy
proton machines, often as proof-of-principle prototypes. Examples comprise a small electron
synchrotron constructed as prototypes for the Bevatron and a small machine in Brookhaven
to explore the principle of alternating-gradient focusing. After starting their lives as pro-
totypes, many additional electron synchrotrons appeared throughout the 1950s. They were
mostly used for nuclear physics experiments. But the small mass of the electrons makes
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reaching high energies more difficult compared to protons. Moreover, it was already known
in the late 1940s that forcing electrons on a circular orbit causes them to emit synchrotron
radiation. The emitted energy is inversely proportional to the bending radius p and to the
fourth power of the mass of the radiating particle. Electrons therefore require either large
rings or a straight linear accelerators. But in linear accelerators, the acceleration structures
are used only once, and many of them are required in order to reach high energies. To
excite high accelerating fields in those structures, efficient sources of radio-frequency power
are needed. Luckily this technology was developed for radar applications during the Second
World War. In particular, power amplifiers for RF signals, called klystrons, became available
to generate radio-frequencies in the multi-MHz and even GHz range at MW power levels.
This development triggered a sequence of linear electron accelerators, culminating in the
3km linac at the Stanford Linear Accelerator Center (SLAC), under construction from 1962
onward. In the SLAC linac, 240 klystrons were used to accelerate electrons to a maximum
energy of 20 GeV.

The SLAC linac proved to be a precision probe for nuclear matter. It smashed point-like
electrons into target materials to probe the substructure of atomic nuclei. Their constituents
were originally called partons but could later be identified as quarks and gluons, thus proving
their existence. In the 1980s the acceleration system was upgraded to increase the maximum
beam energy to 50 GeV. This energy is suitable to probe the Z-bosons, earlier found in the
SPS, and the SLAC linac was converted to a linear collider. Both electrons and positrons
were first accelerated in the linac and then guided through two arcs to collide head-on with
micron-sized beams. In the collisions, the details of the Z-boson were investigated. In paral-
lel, also in the 1980s, a large synchrotron with a circumference of 27km to collide electrons
and positrons, named LEP, was built at CERN. It was also used for precision studies of
Z- and W-bosons. The copious amount of synchrotron radiation emitted by LEP, which is
proportional to E*/p where E is the beam energy and p the radius of curvature limited
the energy of the particles to 100 GeV, in which case the beam lost about 3 % of its energy
per turn. An electron collider at higher energies therefore needs to be straight—a linear
collider, or have a much larger circumference than LEP. There are several candidates for
accelerators to do precision measurements of the physics discovered at the LHC. One is the
International Linear Collider (ILC), a 30 km long linear accelerator that uses superconduct-
ing radio-frequency accelerating structures. The second candidate is the Compact Linear
Collider (CLIC). It uses normal-conducting structures, is up to 50 km long, but promises to
reach much higher energies than ILC. The third candidate is the Future Circular Collider
(FCQ), a ring with a circumference of close to 100 km that might first house an eTe™—
collider, later to be replaced by a proton collider, to repeat the trick to replace LEP with
LHC in the same tunnel. We will come back to these machines in Chapter 15.

Of course the large electron ring for the FCC is not the first of its kind; several electron
synchrotrons were constructed at DESY in Hamburg, among them DESY, DORIS, and
PETRA, to explore the physics of quarks. In Japan, the KEK laboratory was established
in 1971 and operated, among other machines, the TRISTAN synchrotron and the KEKB
B-factory. Even at SLAC the SPEAR and PEP colliders were in operation and some of them
live on in different incarnations as synchrotron light sources or as factories. Nowadays, we
call colliders with very high beam currents “factories,” because they allow us to probe
extremely rare events, involving charm-quarks at Daphne in Frascati, or bottom(B)-quarks
at KEKB, mentioned above, and PEP-II at SLAC.

Next to the colliders, where head-on collisions reach high reaction energies, a second
class of electron machines produces a continuous high-intensity stream of electrons that is
directed onto fixed targets. Microtrons, for example MAMI in Mainz, reach energies up to
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the GeV range. A close relative to microtrons and reaching energies of soon up to 12 GeV, is
the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab
in the US. Energy recovery linacs (ERL) are close relatives of microtrons. They use the
same structures that accelerate the beam, to later decelerate it, and thereby recover the
energy that is carried by the beam.

A further use of electron rings emerged from using the emitted synchrotron radiation in
material and life-science experiments. Electron rings, dedicated to this purpose, are called
synchrotron light sources and are nowadays custom-built whereas in the past high-energy
colliders were often refurbished colliders previously used for particle physics. As a prototyp-
ical example, let us consider SPEAR at SLAC, which went through several stages. It was
initially constructed as an electron-positron collider in which the J/v particle was discov-
ered in 1973. The spectrum of the synchrotron radiation emanating from the dipole bending
magnets extends into the x-ray regime and was used for material science and medical ap-
plications since the late 1970s. Thus SPEAR served as both a high-energy collider and as
a first-generation light source. Soon it was realized that the radiation can be dramatically
enhanced by placing special magnets, so-called undulator and wigglers, in the ring. They
just cause small sideways undulations of the particles without changing the overall geom-
etry of the ring. Yet, this sideways motion leads to an increased emission of synchrotron
radiation. Adding these specialty magnets transformed SPEAR into a second-generation
light source. In the 1990s SPEAR was completely rebuilt with a dedicated magnet sequence
to optimize the generation of synchrotron radiation, which turned it into a third-generation
light source. The expertise in using synchrotron radiation later led to the conversion of part
of the SLAC linac into the Linac Coherent Light Source (LCLS), the first free-electron laser
producing x-rays.

Worldwide, there are numerous third-generation light sources, specifically built to serve
a huge user base. Examples are ALS in Berkeley, BESSY-II in Berlin, the Shanghai Light
Source, the Swiss Light Source near Ziirich, Diamond near Oxford, NSLS in Brookhaven,
TPS in Taipeh, PLS in South Korea, the APS in Argonne, ESRF in Grenoble, and the
MAX IV laboratory in Sweden. Not only are the ring-based light sources proliferating, but
also more and more free-electron lasers (FELs)are appearing. Examples are FLASH and the
European XFEL in Hamburg, SACLA in Japan, SwissFEL in Switzerland, and at PLS in
Korea.

In life and material sciences, the photons, produced so copiously in synchrotron light
sources, are used to probe the distribution of electrons in matter. A complementary way
is provided by neutrons that mostly scatter from light atoms such as hydrogen. Moreover,
being electrically neutral, and, at the same time, carrying a magnetic moment, neutrons
are the perfect probes for magnetic properties of materials. Historically, many experiments
with neutrons were performed on nuclear reactors, but they only provide a comparatively
low neutron flux and the neutrons arrive continuously, making time-of-flight experiments
difficult or wasteful by chopping the neutron beam by periodically removing a fraction of the
neutrons with a shutter. A complementary approach is pursued by dedicated accelerator-
based neutron sources, such as ISIS near Oxford, the cyclotron at PSI near Ziirich, the
SNS near Oak Ridge, and soon the ESS in Sweden. These machines accelerate protons and
direct them onto targets, where they cause nuclear reaction cascades, resulting in a large
number of neutrons. These are moderated to low energies in a large block of hydrogen-rich
material, and they are directed to experimental stations. There, the arrival time of the
neutrons is related to their energy and a further selection is achieved by monochromators,
before directing the neutrons on a sample to probe its properties.
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Large numbers of accelerators are used for medical purposes. Small linear electron-
accelerators with energies of around 10 MeV operate in many hospitals, either to produce
high-energy photons or to directly irradiate tumors. Since in this case the depth-profile of
the deposited dose decays exponentially, nowadays even protons or heavier ions such as
carbon are used, because they deposit most of the dose at a certain depth, as we shall see in
Chapter 9. Protons with energies around 200 MeV deposit most of their dose at a depth of
about 28 cm, which allows them to irradiate tumors in any part of the human body. Since
the 1990s, dedicated cancer clinics using protons are in operation. Small proton accelerators,
often cyclotrons, are in use in order to produce radioactive isotopes for positron-emission
tomography or to produce medical tracers.

Apart from the larger groups of accelerators for sub-atomic research, synchrotron radi-
ation or medical applications, a wide variety of other specialty machines exist to sterilize
food, implant ions, and there is even one in the Louvre in Paris for analyzing works of art.
Van de Graaff Tandem accelerators probe surfaces by detecting particles ejected from the
surface.

Despite the huge difference in beam energies and sizes of accelerators, the basic physical
concepts that guide their design and operation are the same. In the following pages we
discuss these concepts in detail and illustrate the methods with MATLAB and Octave
code. We also discuss the technological choices to achieve certain performance goals, such
as why to use either normal- or superconducting technology for magnets or for accelerating
structures. We also address limits for different types of accelerators arising from achievable
fields in magnets that typically limit high-energy proton accelerators or radio-frequency
technology that may limit high-energy electron accelerators. But now we turn to a brief
outline of things to come.

In the next chapter we first discuss how to formulate design criteria for an accelerator
and define its geometry, which we illustrate with code to determine where to put magnets
and other accelerator components on the floor. We even produce input files for 3D model-
ing programs that allow us to visualize the layout of the accelerator. Dipole magnets and
the distance between them define the reference trajectory. We continue to introduce the
commonly used coordinate system relative to the reference trajectory. Deriving the Hamil-
tonian that describes the dynamics of charged particles in accelerators provides us with a
consistent framework to introduce the variables commonly used in the literature, both for
single particles and for ensembles of many particles, the beam.

In Chapter 3, we use the Hamiltonian formalism to derive six-dimensional transfer matri-
ces for beam optics. We illustrate their use with MATLAB code, first in one, the horizontal
plane, and then in both horizontal and vertical planes. We discuss concepts such as the
beam matrix, emittance and beta function, but also energy-dependent effects such as dis-
persion and chromaticity. Finally we apply the developed formalism to design simple beam
optical systems, also illustrated with MATLAB. In Chapter 4 we discuss methods to de-
sign the magnets needed to build the accelerator, designed in the previous section and also
illustrated with MATLAB to solve Poisson’s equation in simple geometries. We also dis-
cuss technological aspects pertaining to iron-dominated, superconducting, and permanent
magnets.

After having the magnets to guide and focus the beam, we discuss how to accelerate it
in Chapter 5. Here we discuss the concept of phase stability, alluded to above, and how to
accelerate in linear and in circular accelerators. After the beam physics, we turn to radio-
frequency technology in the next chapter, where we discuss power generation, transport in
waveguides and coax lines, couplers and antennas and the accelerating structures, sometimes
also called cavities, that transfer the power to the beam. For the analysis of the modes in
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waveguides and cavities, we use the MATLAB-PDE toolbox. Now that we have the basics
covered, we know how to accelerate and guide a perfect beam. But neither the world nor
accelerators are perfect, and we devote Chapter 7 to diagnostic methods to find out what is
wrong and Chapter 8 to imperfections and to correction methods to fix the imperfections.

At this point we can design, build, control, and operate an accelerator, and it is time to
use it for experiments. In Chapter 9, we discuss beam-physics issues arising from colliding
beams with targets or counter-propagating beams. In Chapter 10 we talk about the gen-
eration of synchrotron radiation, both about the amount and properties of the radiation
and how this affects the beam. We then cover the basic theory and technological aspects of
free-electron lasers. Chapter 11 introduces non-linear dynamics including Hamiltonians, Lie
methods, and normal forms, all illustrated with MATLAB code. In Chapter 12, we cover
intensity-dependent limitations of accelerators, and in Chapter 13 we consider many of the
technological subsystems that are needed to operate an accelerator. Here we treat, among
other topics, the control system, the particle sources, vacuum and cryogenics. In Chapter 14
we discuss a number of accelerators, such as the LHC, LCLS, and ESS, as well as medi-
cal and industrial accelerators. There we point out how the topics covered in the earlier
chapters are used to operate a real machine. Chapter 15 briefly describes future projects,
among them linear and muon colliders, the next generation of circular colliders, and plasma
accelerators.

Several student labs are discussed in the Appendix. Here we measure the beam profile
of a beam from a laser pointer and determine the emittance, or M? in laser parlance, of
the same laser beam. In the next labs, we calculate, build, and measure magnets, based
on small permanent magnet cubes inserted in 3D-printed frames. In the last lab, we use a
network analyzer to characterize a simple pill-box cavity made from a cookie-jar.

Several topics are relegated to online appendices, available from this book’s webpage at
https://www.routledge.com/9781032726960 or from https://github.com/volkziem/
HandsOnAccelerators2nd, which also contains the MATLAB source code that appears
in this book. The online appendices comprise an overview over methods from linear alge-
bra, essential for our discussion of beam physics, and a short MATLAB tutorial. A short
description of the relation between light optics and the optics of charged particles follows. A
further Appendix contains a very brief tutorial of OpenSCAD, the software used to design
3D models of beamlines and the 3D-printed frames for the magnets, followed by Appendix
B.5 that contains detailed descriptions of all MATLAB code used in this book, both in the
simulations and to generate the figures. Finally, a brief description of a new workflow to
calculate magnets with MATLAB’s PDE toolbox is provided.

After all the historical background and outline of things to come, let’s get down to
business.


https://www.routledge.com/9781032726960
https://github.com/volkziem/HandsOnAccelerators2nd
https://github.com/volkziem/HandsOnAccelerators2nd

CHAPTER 2

Reference System

2.1 THE REFERENCE TRAJECTORY

Let us start by discussing how to place our accelerator into the world. This depends of
course on the type of accelerator and the space available. Consider the task to place the
LHC in the 27 km tunnel originally occupied by LEP; it just had to fit. Another task could
be to fit an ion-implanter into the basement of the lab. A third task could be to figure out
whether the large parking lot in front of the office is big enough for a small synchrotron
light source. In any these cases, we need to find out how to match the accelerator to the
available space and where on the floor to put all those magnets and accelerating structures.
This is the first problem we address in this chapter.

For this purpose we employ a somewhat formal language to describe the accelerator with
its components and their relative positions. We give each element a code number, a repeat
count, a length, and an additional parameter that contains other descriptive numbers, such
as deflection angle or focusing strength. A line in our input file thus looks like

1 10 0.2 O

where the code is 1, indicating an empty piece of beam pipe that constitutes 10 segments that
are 0.2m long each. The fourth number, not used here, is set to zero. The reason we chose
this format is that it can be easily represented as a n x 4 matrix in MATLAB or Octave, and
concatenating is made trivial by using powerful built-in functions to manipulate matrices.
Moreover, reading from and writing to external files can be handled by built-in functions,
such as dlmread and dlmwrite, without having to spend many pages on the discussion of
elaborate, though probably much more convenient, input parsers. On the other hand, the
purpose of this book is to show the inner workings of beam dynamics codes. This helps us
to understand and to appreciate the power of other “big” programs, such as MADX [4] or
TRANSPORT [5, 6], the grand-daddies of most beam optics programs, and what goes on
under their hood.

We extend the number of codes to comprise several different elements in an accelerator,
but here we confine ourselves to those that predominantly determine its geometry, and those
elements are

Empty beam pipe with code number 1, the same element we discussed in the previous
paragraph.

Thin-lens focusing element with code 2.
- Finite-length quadrupole or focusing magnet with code 5.

Dipole or bending magnet with code 4 that changes the direction of the reference

This chapter has been made available under a CC BY NC license. 13
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trajectory. One line in the input file may look like “4 1 0.7 15,” which describes a
dipole with one segment of length 0.7 m, and deflection angle of 15 degrees.

- Coordinate rotation with code 20.

Additional elements can be easily accounted for by introducing additional codes. In the
context of this chapter, the reference beam goes straight through empty beam pipes,
quadrupoles, solenoids, and acceleration structures, and the only property we care about
is their length. In the dipole magnets, on the other hand, the reference trajectory changes
direction.

Here we always assume that the dipole magnets deflect in the horizontal plane, any other
angle can be handled by sandwiching a dipole between coordinate rotations. The bending
radius for a dipole with deflection angle ¢ and length L is given by p = L/¢. For a beam with
momentum p the magnetic flux density B in the dipole is then given by B = (p/e)¢/L. Note
that we can rewrite the definition of the bending radius as Bp = p/e and immediately see
that we obtain a convenient translation of physics units of momentum in eV /c to engineering
units in tesla-meters, or Tm. This is often used in beam physics, where the momentum is
given in units of Tm and voiced as “Bee-rho.” Remembering the conversion that 1Tm
corresponds to a momentum 300 MeV /¢ often proves useful in estimating the required field
and length of a magnet.

After these preliminary considerations we are ready to describe our first part of an
accelerator, a short section with one dipole and two quadrupoles, often called a FODO cell
for reasons that will become clear in the next chapter. The description of the beamline is
the following

fodo=[ 1 1 2.5 0 ;
5 1 1.0 0 ;
11 1.5 0 ;
4 1 2.0 60;
1 1 1.5 0 ;
5 1 1.0 0 ;
11 2.5 0]

where we simply define an array, called fodo, to describe the sequence of elements, first a
single drift section (code 1) followed by a long quadrupole (code 5) and then another drift.
Next comes a dipole magnet with a deflection angle of 60 degrees. Here we do not need to
specify the strength of the quadrupoles, they are considered drifts in the context of finding
the reference trajectory. Concatenating beamline sections is as easy as writing

ring = [fodo; fodo; fodo; fodo; fodo; fodo];

or, more compactly, as ring=repmat(fodo,6,1); by using the built-in function repmat.
In this way we define separate sections of a beamline and later combine them to a larger,
composite beamline. Here six cells with 60-degree bending magnets make up an entire ring.

Having the description of the beamline, we now turn to calculating where on the floor
we have to put the magnets. This is most easily done by following a Frenet-Serret tripod on
its journey along our beamline. This right-handed tripod rides on the reference trajectory
and is determined by a vector 1% pointing to the position of its origin and a matrix W
that describes its orientation in terms of three angles with respect to the orientation at the
coordinate origin.

All we have to do is to step through the beamline, calculate the vector dV that points
from the entrance of that element to its exit, and calculate the matrix dW that encodes
the change in orientation. Using these changes, we update V and W after each element
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Figure 2.1 Geometry of a single FODO cell (left) with a 60-degree bending magnet
and a ring that consists of six such cells (right).

and record the starting and end positions to tell us where the elements are and what their
orientation is. dV and dW for the straight elements are given by

dv=[0;0;beamline(line,3)]; dw=eye(3);
and in sector dipoles, we use

phi=beamline(line,4)*pi/180; 7 convert to radians
if abs(phi)>le-7
rho=beamline(line,3)/phi;
dv=[rho*(cos(phi)-1);0.0;rho*sin(phi)]; dw=wmake(0,-phi,0);
end

where the function wmake () creates the rotation matrix around the respective axis, here the
second, vertical axis. Once the changes in position dV and orientation dW are available, we
update V' and W with the following function

% wprop.m, updates the new vector vv and matrix ww, V. Ziemann, 240827
function [vnew,wnew]=wprop(vv,ww,dv,dw)

vnew=vv+ww*dv;

wnew=ww*dw;

These functions, along with routines to draw the magnets and the beam pipe, are coded in
the function layout.m. Inside the code, after some initializing tasks, a loop steps through
the beamline, determines dv and dw, depending on the type of element, and uses wprop to
update v and w. Then, again depending on the type of element, boxes and lines, representing
the magnets, are drawn on the image. Figure 2.1 shows the 2D rendering of a single FODO
cell on the left-hand side and a complete ring on the right-hand side. The layout script,
along with supporting functions, is described in detail in Appendix B.5 and is available
online from https://github.com/volkziem/HandsOnAccelerators2nd.

Running the layout script with a single FODO cell beamline=fodo; results in the
MATLAB plot shown on the left in Figure 2.1 with the dipole in the center that deflects
the trajectory and quadrupoles on either side of the dipole. Running the same program
again, but this time with six FODO cells beamline=repmat (fodo,6,1) ; results in the plot
shown on the right-hand side in Figure 2.1.


https://github.com/volkziem/HandsOnAccelerators2nd
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Figure 2.2 3D-view of the ring shown on the right-hand side in Figure 2.1.

Simultaneously with the 2D images, shown in Figure 2.1, the 1ayout () function produces
an input file for the 3D modeling program OpenSCAD [7]. In OpenSCAD simple geometric
objects, such as cubes and cylinders, are placed in a “3D world” using the same vector
V and matrix W, we used before to generate the plots in Figure 2.1. A brief introduction
into using OpenSCAD can be found in the online Appendix B.3, available at this book’s
webpage. The functionality to generate the 3D models is already built into layout, which
generates an output file layout.scad that can be directly loaded into OpenSCAD with the
command

openscad layout.scad

Figure 2.2 shows the 3D model of the ring with six FODO cells exported from OpenSCAD.
We see the dipole magnets and quadrupoles, all with their small pedestal, and the beam
pipe in the sections in-between magnets. This simple example illustrates how to determine
the reference trajectory and where to put all the magnets and other elements. The curious
reader is encouraged to add more, and nicer looking, elements as well as additional features
to the MATLAB script or port it to other programming languages. As a sidenote, we point
out that OpenSCAD can export the model in formats that are compatible with “slicer”
programs to prepare the model for 3D printing.

After having defined the reference trajectory, we know where particles should move in an
ideal world. But since the real world is not ideal, they only move in the neighborhood of the
reference trajectory. We therefore have to specify a coordinate system for this neighborhood.
We then use it to describe individual particles first, and later ensembles of particles.

2.2 COORDINATE TRANSFORMATIONS AND HAMILTONIANS

Since the beam particles move in the vicinity of the reference trajectory 7o, it is convenient
to describe their motion in a coordinate system that “rides on the reference particle.” A
natural choice for this coordinate system is the Frenet-Serret tripod, which is based on
three normalized unit vectors: the first is the tangent vector to the reference trajectory
t = diy(s)/ds. Here we assume that 7%(s) is parametrized by the arc length s, which
guarantees that ¢ has unit length. The second unit vector 7 is called the normal vector and,
for planar trajectories without torsion, it is proportional to the rate of change of the tangent
dt/ds. The factor that makes 7 a unit vector is the curvature k(s) or, equivalently, the inverse
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Figure 2.3 Reference trajectory and the co-moving tripod (left) that is used to define
the deviations (right) of particles with respect to the reference particle.

of the bending radius #(s) = 1/p(s), such that we obtain 7 = —xdt/ds. The minus sign
causes 71 to point away from the center of the deflection and ensures that the third unit vector
57 defined by b=1tx 77, points upwards. This construction causes the three vectors t. i, and b
to form the basis of a right-handed coordinate system. In a circular accelerator, for example,
¢ points along the direction of propagation of the reference particle, @ points toward the
outside of the ring, and b points upward. By convention, in the accelerator literature they
are often denoted by §, &, and ¥, respectively. The left-hand side in Figure 2.3 illustrates
their orientation.

The geometry of components, such as magnets or radio-frequency devices, which affect
the motion of beam particles, is normally specified in the laboratory system, and also
the forces that act on the beam are given in that frame. But now we transform these
forces, which determine the equations of motion, to the reference system that “rides on
the reference particle.” Since the particles move with relativistic velocities ¢ we start our
discussion with the relativistic invariant Lagrangian L(7,¥) of a point charge with charge
e, mass m, and coupled to electro-magnetic fields specified by their potentials ®(7,¢) and
A(7,t) [8, 9], which is given by L = —ymc? — e® 4 A with v = 1/1/1 — v2/c2. Hamilton’s
principle and the ensuing Euler-Lagrange equations then lead to the well-known Lorentz
force d(ym®)/dt = eE + e¥ x B, where the fields E and B are related to the potentials ®
and Aby E = —V® — §A/dt and B =V x A.

Instead of using the Lagrange function L(7,v), which depends on the positions 7 and
velocities U of a particle, it is often more convenient to use the Hamiltonian H (]3, 7), which
depends on positions 7 and the canonical momenta Pi defined by P = VzL. As an il-
lustration of the canonical momentum, we consider one dimension, where it is given by
P = OL/0v. The Hamiltonian H can be derived from the Lagrangian L by a Legendre-
transformation H = P - — L and the equations of motion are transformed to a set of
first-order differential equations—Hamilton’s equations [9].

The Hamiltonian in the previous paragraph still depends on the coordinates 7 in the
laboratory system, but we can transform it to the co-moving system z,y, s with the help of
a canonical transformation [9] with the generating function of type 3 [10] F3(13,a:, Y,8) =

-P. (f’o(s) + xii(s) + yg(s)) that depends on the momentum P in the laboratory frame

and the positions z,y, and s in the co-moving frame. The momenta in the co-moving frame
p are then given by the derivatives of the generating function Fi with respect to z,y, and s,
for example p, = —0F3/0s = (1 + ka)P - t, where we used dii(s)/ds = xt and db(s)/ds = 0,
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which is valid for planar reference trajectories. Note that p, is proportional to the projection
of the momentum in the lab frame P onto the tangent ¢ at s. The factor 1 + kz = 1 + x/p
accounts for the longer path s at larger horizontal position z in bending magnets, which
have p # 0. Transforming the Hamiltonian H to the new variables with H; = H 4+ 0F3/0t
and expressing it in terms of the new variables, we obtain

Hl(xapmvyvpyvsvps;t) = e(I)

— x/n)e 2 (2.1)
+C\/(pm —eAs)’ + (py —eAy)" + (ps (11:33//;) AS) +m2e2

where the potentials ® and A, = A - i’ depend on the positions 7 = 7(s) + 27i(s) + yb(s).
Hamilton’s equations in positions x,y, s and momenta p.., p,, ps then yield the equations of
motion in the variables of the co-moving frame: & = 0H /0p,, P, = —OH; /0z, and similarly
for y and s.

These equations of motion still depend on time as the independent variable, but using
the position on the trajectory s as the independent variable makes interpreting the location
of particles much more accessible. We do not want to know when they are somewhere,
but rather want to know their transverse position at a specific place, say, an experimental
station. Following [10], we solve Equation 2.1 for p, and can interpret Ho = —ps as a new
Hamiltonian, resulting in

x
HQ(vamvyapyvta _Hl;S) = — (]_ + p) eA,

H, — 2
—<1+z>\/(1626¢)—(pm—eAm)Q—(py—eAy)z—m%Q,

(2.2)

which depends on the variables z,p,,y, py,t, and —H;. Now s, the position along the tra-
jectory, is the independent variable.

In the next step we divide the momenta and the Hamiltonian Hy by the momentum of
the reference particle pg = Boyome and introduce the variables p, = pz/po, Py = Py/Po,
H, = Hy/po, and Hs = Hs/pg to arrive at [11]

T

= eAs
H3(xapx7y7pyat7Hl;8) = - <1 =+ >
P/ Po

x (ﬁl —ed/pp)? _ eA, 2 _ eA, 2 22
-1 + = 2 —\ Pz — — - py - - 2 .
P ¢ Po Po Po

This representation has the advantage that the new momenta are dimensionless and always
smaller than unity, which makes it later more amenable to a perturbative treatment. In
particular p, = p,/po is approximately equal to the angle x’ with respect to the center of
the beam pipe. A disadvantage, on the other hand, is the monotonously increasing inde-
pendent parameter s. Instead, it is more convenient to describe the position of a particle
by its deviation z with respect to the longitudinal position of the reference particle. This
is accomplished by yet another canonical transformation with a generating function. This
time it is of type F5 [9], depends on the old coordinates and the new momenta Px, Py, and
6, and is given by

1
FQ(I,Px,y,Py,t,(s; S) =xPx +yPy + (5 — 50(:15) <ﬁ2 + 6) (24)
0
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with the speed of the reference particle given by Syc. We address the physical relevance of
0 below. The relations between old and new coordinates are then given by

_OFy _O0Fy _0F
X_apx_x, Y——apy—y, P=5 =S Boct . (2.5)

Likewise, we obtain the relations for the momenta

~ aFQ ~ 8F2 ~ 8F2 1
Dz ax X Py 8y Y 1 Bt ,BOC Bg =+ ( )
and the new Hamiltonian Hy = Hs + 0F5/0s now reads
A, 1
H4(X5PXaKPY7275;S)——(1+x)6 +72—|—5
P Po 0
(2.7)

) 2 2 2 5 5
N e
p Bo  cpo Po Po 5

We note that Hy from Equation 2.1 represents the total energy £ = ymc? of the particle,
which makes Hy = Hy /po = ymc?/Boyome = ¢/ Boyo- Inserting in Equation 2.6 and solving
for § we obtain
s—Ly=% _1AE Ap
85 B3 Eo  po
which is the relative momentum deviation Ap/py of the particle with respect to the reference
particle.
In the next section we will relate the dynamical variables X, Px,Y, Py, z, and ¢ to those
commonly used in beam physics.

(2.8)

2.3 PARTICLES AND THEIR DESCRIPTION

From Equation 2.5 we know that X = x and Y = y such that we can write the Hamiltonian
as

+0
P/ Po

2 2 2
—(1+x>\/<ﬂo5+1+e¢> —(PX—eAI> —(Py—eAy) —%»
p Bo  cpo Do Po B576

where we also omitted the inconsequential constant term 1/32. The transverse coordinates
x and y have intuitively appealing interpretation of being the displacement of a particle with
respect to the reference particle, z = s — fyct is the deviation along the reference trajectory,
and § is the relative momentum deviation. The scaled transverse momenta Px = p./po
and Py = p,/po are related to the angles 2’ = dz/ds and y' = dy/ds with respect to the
reference orbit by

As
HS(%Pva,Py,Z,&s) = — <1+$> €

Px =sing’ ~2’ and Py =siny =y . (2.10)

In most cases, the transverse momenta p, and p, are much smaller than the total momentum
po, such that the sine of the angles 2’ and 3’ can be approximated by its argument. This
approximation is usually referred to as the paraxial approximation. The right-hand side in
Figure 2.3 illustrates x and 2.
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Thus we arrive at the following three position-like coordinates and three parameters re-
lated to momenta that are used to characterize particles in accelerators. Here we summarize
the parameters for convenience.
z, the horizontal distance to the reference particle;
2’ = Py, the horizontal angle with respect to the trajectory of the reference particle;
y, the vertical distance to the reference particle;

~ Py, the vertical angle with respect to the trajectory of the reference particle;

SR

, the longitudinal distance with respect to the reference particle, sometimes converted
to the “arrival time” 7 = z/fy¢;

0, the relative momentum difference with respect to the reference particle.

The parameters can be visualized as the differences of the particles’ coordinates to those of
a tripod that rides on the reference particle.

It should be noted that some programs, such as MADX [4], use slightly different vari-
ables, which, however, in the ultra-relativistic limit, agree with those mentioned here. An
advantage of the variables from the table is that they describe geometric concepts like dis-
tances and angles, as shown on the right-hand side in Figure 2.3. The arrival time is relevant
if time-varying electro-magnetic fields affect the particle, for example, in accelerating struc-
tures. The relative momentum difference § is convenient to use, because it describes the
relative deviation from the design deflection angles of dipole magnets that is due to the
deviation from the design momentum of the particles.

The longitudinal momentum is almost always much larger than the transverse momenta,
which causes the angles 2’ and y’ to be very small, and typical values are on the order
of milliradians. Many approximations, used when dealing with accelerators, therefore use
the paraxial approximation and expand variables in power series in the kinematic variables
z, 2’ y,y , z,0. As a matter of fact, the typical magnitude of these parameters is on the scale
of millimeters for z,y and z and 10~2 for the angles 2’,y’ and the momentum deviation 4.
Of course, under special circumstances, also substantially different values can occur.

All possible values of the kinematic variables are commonly denoted as the six-
dimensional (6D) phase space and a particular set of values are used to describe the state
of a single particle. Sometimes it is not necessary to consider the full 6D phase space, and
it is sufficient to only cover the horizontal phase space, comprising the subspace of = and
x’ or the vertical phase space comprising y and 3, respectively. The subspace spanned by z
(or Bper) and ¢ is denoted longitudinal phase space. In later chapters, we will often restrict
ourselves to these subspaces, which is possible because the dynamics of the different sub-
spaces is often independent (also called uncoupled). This allows us to focus on the essential
dynamics at hand without cluttering the notation. Occasionally, we will use a hybrid phase
space comprising z, z’ and 0 in order to account for momentum-dependent, also called chro-
matic, effects that mostly appear in the horizontal plane, because the deflection angle of
dipole magnets depends on the momentum of the particles.

So far, we have considered ways to describe the state of a single particle in an accelerator,
but in real accelerators large numbers of particles, often in the range 10° to 10'' or more,
propagate and we need efficient methods to describe these large ensembles of particles.

2.4 PARTICLE ENSEMBLES, BUNCHES

The simplest way to illustrate the distribution of a large number of particles is in the form
of a histogram. For the time being, we only consider a single variable, say the horizontal
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Figure 2.4 Histogram of the horizontal position of 1000 particles (left), where the
vertical axis is given by the number of particles having position values between x
and x + Az with Az = 0.02mm. A normalized Gaussian distribution is shown on
the right.

position x, and we plot the number of particles having positions between z and = + Ax with
Az = 0.02mm which yields the histogram shown on the left-hand side in Figure 2.4.

The values used in the histogram were chosen arbitrarily, but they show general features
of many distributions anyway. First, the number of particles N is finite, N = 1000 in this
case. This implies that the distribution can be normalized. Second, most particles have
positions x clustered around an average value, often denoted by (x). Finally, the distribution
has a width in values that we denote by o. It is illustrative to visualize such a distribution
as a collection of repeated measurements of the same quantity. In such cases, we calculate
the average value to represent the most probable value and the root-mean-square (rms)
deviation as the spread in measured values or the uncertainty of the measurement.

Let us consider a discrete distribution in a histogram that is given as a table of discrete
a-values, say x;, where the index i labels the bins, populations (the height) of the bins b;,
and a bin width Az. We calculate the normalization, the average and the width in an almost
self-evident way. First, the normalization N is given by the sum over all bin populations

N = Zbi , (2.11)

where the sum extends over all bins. For the average X = (z), we have to weigh the position
represented in bin ¢ at x; by its population

X =(z)= % Z b (2.12)

and normalize by using the normalization constant N. Another way to visualize this is that
in each bin at position x; the fraction b;/N of all particles resides and we weigh the z;-value
with that fraction. The spread or width ¢ of the distribution we calculate as the average of
the squared distance (x; — X)? from the average

o= %Z(m - X)%; . (2.13)

This quantity o is often called the rms of a distribution of values.
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In MATLAB or Octave, the built-in commands mean() and std() make it almost triv-
ial to calculate these values. But even calculating them directly is straightforward. We
assume that x and b are given as two column vectors that contain the values x; and b;
used in the previous paragraph. The vectors must have equal size, and running the com-
mand plot(x,b) would produce a plot similar to the one shown in Figure 2.4. In that
case N=sum(b) corresponds to Equation 2.11, Xavg=sum(x.*b) /N to Equation 2.12, and
sigma2=sum(b.*(x-Xavg) . "2) /N calculates o2. Note that we need to use the element-wise
operations prepended with a dot. See Appendix B.2 for a discussion of basic MATLAB
commands.

In the previous paragraphs, we calculated powers x of the variable x, weighted with
the bin populations. These quantities, calculated without subtracting the average value, are
called moments of the distribution and are defined by

(™) = %Zwmb : (2.14)

They will prove to be very useful in later chapters. This equation defines the angle brackets
to perform the average of the included quantity over the bin population. Note that the
average value is the same as the first moment and that o2 can be called the central second
moment because the average is subtracted. It can also be expressed through the moments
by

o? = {(z — X)?) = (2? — 22X + X?) = (2?) — X? (2.15)

which is the second moment minus the first moment squared.

The discrete distributions normally shown in a histogram have continuous equivalents,
the continuous probability distribution functions. Here “probability” essentially means that
the distribution is positive semi-definite—all values are larger than or equal to zero—and
it is normalized. Both requirements are obviously fulfilled for distributions that describe
physical quantities. A general one-dimensional distribution function ¢ (x) that depends on
the variable z has a simple interpretation in the sense that the number of particles N, (or
another quantity that the distribution function describes) in the interval between 2 and
x + Ax is given by

N, = ¢(x)Ax (2.16)

and we immediately see that the distribution function v (z) has physical units of the inverse
of its independent variable, here x.

The prototypical probability distribution function, which is only characterized by its
average value X and its width o, is the Gaussian distribution with its characteristic bell-
shaped curve shown on the right-hand side in Figure 2.4. Gaussians appear in many contexts,
because they are the limiting distributions of many, though not all, random processes, which
is a consequence of the central limit theorem. We explore this further in the exercises, but
here only point out that they are frequently used to describe the beams in accelerators.
Their functional form is given by

1 2 2
G(x; X,0) = ———e~ @=X)7 /207 2.17
(@ X.0) = —— (217)
which is represented as a MATLAB inline function with arguments specified via the @()—
construction in the following lines of code

x=-5:0.01:5;
G=0(x,X,sigma)exp(-((x-X)."2)/(2*sigma~2))/(sqrt(2*pi)*sigma) ;
plot(x,G(x,1.2,1),°k’);
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which produces the right-hand plot in Figure 2.4. The peak value lies between 1 and 2, and
the width of the Gaussian in Figure 2.4 appears to be around unity. But we can also prove
that this is the case by first verifying that the distribution in Equation 2.17 is normalized,
has average X, and rms o. For the normalization and the average, we need to show that

/ G(r; X,0)de =1, (2.18)

which is easily done by substituting y = (z — X)/o and looking up the resulting integral
in an integral table such as [12]. To verify that the average value is indeed X, we need to
show that
o0
/ 2G(x; X, 0)de = X | (2.19)
— 00
which is even simpler, because the substitution y = (z — X)/o leads to an integral that can
be reduced to an exponential by substitution. For the rms ¢ we need to show that

o0
/ (x — X)2G(z; X, 0)dx = o* | (2.20)
—00

which can be achieved by a similar substitution and subsequent inspection of an integral
table. In passing we note that all integrals of Gaussians with polynomials in z can be solved
by parametric differentiation with respect to B of the following generating function

Gp(z; X,0) = / G(x; X,0)eB%dx = X Bto’B?/2 (2.21)
— 00

and subsequently setting B = 0. Each differentiation with respect to B pulls one power of
x down. The integral in Equation 2.21 can be calculated by completing the square in the
exponent, which leads to an integral similar to the one we encountered for the normalization.
Note how the repeated differentiation of the generating function Gp(z; X, o) with respect
to B results in the moments of a distribution

(™) :/ G(x; X, 0)x™dx = (83) / G(z; X,0)eP%dx (2.22)
— 00 —00 B=0
after setting B = 0 at the end.

The purpose of sketching the mathematical manipulations to solve the integrals is to
indicate how Gaussians are rather benign integrands, even when considering Gaussian dis-
tributions of many variables, so-called multi-variate Gaussian distributions, which are often
good approximations for the distribution of particles in accelerators, expressed through their
phase space coordinates x,z’,y,y’, z,5. With a small abuse of notation, we denote the six
phase space variables collectively by the symbol Z with components x;. This allows us to
write the n-dimensional multi-variate Gaussian as

n

R SN (I B
\I’(x’X’G)_(Qﬂ)"/%/(mep 22( )m(z Xz)(] XJ) ) (2.23)

i,j=1

which describes distributions with average values X and covariance matriz 0;5. In the
one-dimensional limit, this definition reverts to Equation 2.17. In order to show that the
parameters X and o have the same interpretation as before, we need to have

/\I/(f; X,0)z;d"z = X; and /\I/(:E;X, o)(xi — Xi)(xj; — X)d"x =055, (2.24)
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which we state without proof. The calculations are lengthy and involve a multi-variate
generating function, the equivalent of Gp in Equation 2.21, and repeated parametric dif-
ferentiations. These tricks are used later on in the book.

Note that the averages X and the covariance matrix o uniquely specify the Gaussian
distribution, and we will later use these parameters as proxies to characterize beams of
charged particles. The parameters have succinct physical interpretations. X7 = (x) is the
horizontal position of the center of mass of all particles. It is a quantity that is experimentally
accessible with beam-position monitors. These monitors are normally not sensitive to the
positions of individual particles; they only sense averages. Likewise, X3 = (y) is the average
vertical position, and X5 and X, are the angles of propagation of the beam. Moreover,
X5 = (z) describes the average distance with respect to the reference particle. Xg = (J)
is the average momentum deviation of the beam. The parameters on the diagonal of the
covariance matrix are the squared beam sizes in the respective dimensions, such that o1
is the horizontal rms beam size squared and o295 is the angular divergence, also squared.
In the same way, o33 and o044 describe beam size and angular divergence in the vertical
plane. The fifth and sixth diagonal elements describe its bunch length and its momentum
spread, respectively. Note that a beam described by a six-dimensional distribution function
describes an entity that is confined in its phase space dimensions and can be visualized as a
package that travels along the accelerator. Such a package is commonly called a bunch. In
many accelerators, many bunches propagate largely independently and at the same time.

In order to visualize a multi-variate distribution, we consider a two-dimensional example

—

of a Gaussian that is centered at the origin (X = 0) and therefore has the covariance matrix

(x?)  (zy) ) ( 2 1 )
( o) () 11 (2.25)
where we choose some numerical values for the sake of definiteness. The MATLAB code to
generate the visualizations shown in Figure 2.5 is the following

sigma=[2,1;1,1]; siginv=inv(sigma);
psi=@(x,y)exp(-0.5%(siginv(1l,1)*x. 2-2*%siginv(1,2) .*x.*y ...
+siginv(2,2)*y."2)) ./ (2*pi*sqrt(det(sigma)));
[XX,YY]=meshgrid(-5:0.1:5,-5:0.1:5); ZZ=psi(XX,YY);
subplot(2,2,1); contour(XX,YY,ZZ)); xlabel(’x’); ylabel(’y’);
subplot(2,2,2); surfc(XX,YY,ZZ)); xlabel(’x’); ylabel(’y’);
subplot(2,2,3); plot(-5:0.1:5,0.1*sum(ZZ,1),’k’); xlabel(’x’);
subplot(2,2,4); plot(-5:0.1:5,0.1*sum(ZZ,2),’k’); xlabel(’y’);

where we use the continuation command ... in order to split up the long definition of
psi over two consecutive lines. At the top of the script we define the sigma matrix and its
inverse and simply code the distribution function from Equation 2.23 as the variable psi.
Then we define the meshgrid structure to represent the coordinates compatible with the
use of contour and surf to generate the contour and 3D-surface plots in the top row of
Figure 2.5.

The plots in the lower row of Figure 2.5 show the projections of the two-dimensional
distribution onto the x and y axes. We find that even the projections are Gaussian and their
respective rms widths are given by 02 =sigma(1,1) and 05 =sigma(2,2). We easily verify
this by analytically integrating over one of the variables in a two-dimensional Gaussian.
Integrating or summing over variables in a distribution function corresponds to not paying
attention to the integrated variables. The dependence on the remaining variables leaves the
projection of the original distribution function onto the space of the remaining variables.
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Figure 25 Contour (top left) and 3D surface (top right) plots of a two-dimensional
Gaussian distribution. The lower row shows the projections onto the x and y axes.

As an example, let us consider the distribution of a charged particle beam that depends
on its six phase-space coordinates x, 2, y,v’, z,, and 0. If the beam impinges onto a fluores-
cent screen, we observe a two-dimensional image ®(z,y) that depends on the two spatial
coordinates  and y, only. It corresponds to the projection of the six-dimensional distri-
bution ¥(z,2’,y,y’, z,0) and can be determined by integrating over variables that are not
observed

d(z,y) = /\If(x,:c’,y,y',z,é)dx/dy/dzd5 : (2.26)

The intensity of the image depends only on the number of particles that hit a particular
location on the screen, irrespective of their angle or arrival time 7 = z/c (within some limit
related to the integration time of the camera) or momentum deviation J.

At this point we know where to put the magnets and where the reference trajectory
and reference particle are. Moreover, we found a coordinate system whose origin “rides” on
the reference particle and that we use to describe individual particles. Since there are many
particles in a beam, we introduced distribution functions to describe large ensembles of par-
ticles. To avoid complex mathematical manipulations when handling distribution functions
we introduced the moments of the distribution as proxies for the essential characteristics
(average position, beam width) of a particle distribution. Finally, we spent some time on
Gaussian distributions. They are uniquely specified by their average and their width, or
for multi-variate distributions, by their averages and their covariance matrix. All this effort
provides us with a description of the particles and the distribution, the beam. But now is
the time to find out how the beam propagates along the accelerator and determine how the
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accelerator components such as magnets and accelerating structure affect the state of the
particles and consequently, also the beam.

QUESTIONS AND EXERCISES

1.

10.

11.

Build a ring with 12, 24, and 36 FODO cells respectively and prepare 2D plots and
3D images in OpenSCAD. Use the geometry defined in the array fodo[] on page 14,
but adjust the deflection angle appropriately.

. Build a racetrack ring with 12 equal FODO cells per arc and straight sections with 6

FODO cells each, based on the cells from the previous exercise. Prepare 2D plots and
3D images in OpenSCAD.

. You need to design a beamline that takes the reference trajectory 100 m ahead and

10 m horizontally to the left. You have four dipole magnets available with a length of
2m and quadrupoles with a length of 1 m, which should be spaced by approximately
5m. (a) Sketch the geometry first and then implement it in a beamline file; (b) generate
the 2D plots; (c) generate the 3D model and load it in OpenSCAD.

. You must build a transfer line to cross a road in an underground tunnel. Assume that

the road is 10m wide and you have four dipole magnets available, each 4 m long and
capable of deflecting the beam by 15 degrees. Assume that the spacing of quadrupoles
should be 5m. Hint: the syntax for a coordinate rotation by angle phi in degrees is
"20 1 O phi".

. Feel free to prepare nicer models for the magnets than the rectangular boxes.

. Prepare a model of your favorite section of accelerator in your home institute and

prepare 2D plots and 3D images. If you have access to a 3D printer, make a 3D
model.

Whenever you have difficulty visualizing a beamline later in this book, make a 3D
model and have a look.

. Derive the equations of motion for a particle in a field-free region.

. Calculate the zeroth (normalization), the first and the second moment and the “central

moment” (rms width around the center) of the following distributions: (a) Triangular
distribution: linearly rising from zero to unity for ¢ — w < x < ¢, continuous at ¢ and
linearly falling for ¢ < & < ¢+ w. It is zero everywhere else. Here ¢ is the center and
w the width of the box. (b) Lorentzian distribution f(z) = 1/(w? + 22) for all x; (c)
Gaussian distribution g(z) = e~ /2", What percentage lies between +w/2 for the
respective distributions?

Verify that the projections of the Gaussian with covariance matrix given by Equa-
tion 2.25 are Gaussians. What are the widths and how are they related to the elements
in Equation 2.257 (a) Calculate the integrals numerically with MATLAB’s integral ()
function. (b) Calculate the integral analytically.

Generate 27183 random numbers with the MATLAB function random() for a (a)
Uniform; (b) Exponential; (¢) Poisson with mean value 3; (d) Student’s ¢-distribution
with v = 2. Inspect the MATLAB help for the required parameters. Verify with the
hist () function that the distributions behave as advertised. Note that hist() also
returns arrays with the histogram data and the center positions of the bins.



12.

13.

14.

15.

16.

Reference System B 27

Generate (a) 314; (b) 3142; (¢) 31416 random numbers, sampled from a Gaussian
(normal) distribution with center at zero and o = 1. Then calculate the moments
from the random numbers and check how well you can recover the input values for
center and o.

You can also determine the four parameters p(1) to p(4) that parametrize a gaussian
by minimizing a cost function chisq_gaussian() with the help of the built-in function
fminsearch(). The following code snippet serves as an illustration where the raw data
are defined by via the arrays x and y.

gauss=0(p,x)p(1) .*xexp(-((x-p(2)).72)./(2*p(3).72))+p(4);
chisq_gaussian=0(p)sum((y-gauss(p,x))."2);
[pfit,fvall=fminsearch(chisq_gaussian, [max(y),0.1,1,0])
plot(x,y, ’k*’,x,gauss(pfit,x),’k’);

Explore the syntax as well as the different input and output parameters of
fminsearch() by running help fminsearch on the MATLAB command line. In
particular, the second argument contains reasonable initial guesses for the four fit
parameters. (a) Use this to fit Gaussians to the data from Exercise 12 and compare
the fit parameters b and ¢ with the moments you calculated there. (b) Analyze the
distributions from Exercise 11 by also fitting Gaussians. (¢) Implement fitting to a
Lorentzian distribution, defined in Exercise 9.

(Central limit theorem) Generate 10° random numbers sampled from a Gaussian
distribution with g = 0,0 = 1 and calculate the sum of 10 consecutive samples, such
that there are 10* samples left. Determine the zeroth, first, and second moments of
the reduced set of samples. What is the average? The width? How are these values
related to the original values?

(Central limit theorem) Repeat the previous exercise with a uniform distribution
between —1 and +1.

(Failed central limit theorem, but Levy-stable) Repeat the previous exercise with a
Lorentzian distribution, which in MATLAB is known as Student’s ¢-distribution with
v=1.



CHAPTER 3

Transverse Beam Optics

In the previous chapter we discussed the description of particles and beams. In this chapter
we describe how they are affected by the elements, for example, the magnets, in a beamline.
An important task will be to adjust the magnets in order to satisfy constraints on the beam
position, beam size, or angular divergence. These constraints often come from experiments
that require either particularly small beam sizes or particularly parallel beams. This requires
a thorough understanding of how the different components of an accelerator affect the beam
and how to combine them in a way to satisfy the requirements.

We start by breaking up a large accelerator into distinct elements and therefore need to
understand the effect of each beamline element on the particles. To simplify the discussion,
we start by considering a single particle only and how its phase-space coordinates & =
(x,2',y,y',2,0) change from the entrance of the element to its exit. Thus, we seek to find
a map M from the initial coordinates ¥y to those at the end Zs such that

By = M7 . (3.1)

The entire accelerator is then represented by the concatenation of these maps. In the fol-
lowing we see that for many, and arguably the most important, magnetic elements, the map
M is linear and can be represented by a matrix.

In order to simplify the presentation further, we focus on the horizontal phase space
with z and 2’ first, but later extend the discussion to comprise the vertical phase space and
the longitudinal phase space where the need arises. The first element is the space between
all other elements, where no external magnetic forces affect the particles. Such a section is
commonly called drift space but is essentially an empty piece of beam pipe. In these regions
the particle naturally travels on a straight line. If we assume that the drift has length L,
we can express the coordinates at the end as

ro = x1+ L1}
xh = 1} (3.2)

which is easy to understand from inspecting Figure 3.1. A particle comes from the right
and travels toward the left. Initially it has a distance x; with respect to the reference
trajectory and moves away from it with a positive angle z. During the passage, the angle
does not change, but the distance to the s-axis increases linearly, according to the first
line of Equation 3.2. We see that the final coordinates, bearing the subscript 2, are linear
combinations of the initial coordinates, bearing the subscript 1, and therefore we can write
Equation 3.2 in matrix form

(Z)‘((l)f)(ii) (3.3)

28 This chapter has been made available under a CC BY NC license.
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Figure 3.1 Particle trajectory in a drift space. The horizontal axis corresponds to the
reference trajectory.

It is easy to see that the map for a drift space of length L, followed by one with length Lo
is given by the matrix where the length is given by L 4+ Lo. Observe that in many pictures
the particles propagate from the right to the left, which makes writing down the equivalent
matrix equations easier, because matrices are usually multiplied from the left to a column
vector that represents the particle.

Following the intuitive derivation in the previous paragraph, we now turn to a more
formal treatment and determine the transfer map using the Hamiltonian from Equation 2.9.
In a drift space all fields A,, A, A,, and ® are zero and the reference trajectory is not curved,
which makes 1/p = 0. We will expand Hs to second order in the dynamical variables only,
which allows us to replace P, and P, by «’ and y’, respectively. This will cause the equations
of motion to be linear and amenable to the transfer-matrix formalism. For the Hamiltonian,
we thus find

1)° 1
H(z,2',y,y, 285 = 6— <ﬁ 5+> 2 2
( Y.y ) \/ 0 %o y 5878
= 5—\/1+25+B§52—1:’2—y’2- (34)

Expanding the square root to second order with /1 + z &~ 1 + /2 — 22 /8 then leads us to

62 1 1
H(xam/7y7y/aza(5; S) ~ -1+ ﬁ + 537,2 + 5:[//2 : (35)
0

We find the equations of motion from Hamilton’s equations

de’  OH dy'  OH s OH
P iy i N M R (39)

They tell us that the angles 2’ and 3’ as well as the momentum deviation § do not change
in the drift space, and we have a}, = z, vy, = v}, and d5 = 6;. The other set of Hamilton’s
equations read

dr.  OH dy OH , dz O0H 1

Fr A A v A N TRRRA 3.7)

Knowing that 2/, 3/, and ¢ are constant in the drift space, we can replace them by their
values at the entrance 2, y{, and ¢; and integrate the equations to find the values at the
exit

L
Ty = 1 + Laf, Yo =1 + Ly, 29 =21 + ?51 . (3.8)
0
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Focal
length

Lens

Figure 3.2 A thin focusing lens (left) deflects parallel rays to a focal point at distance
f downstream of the lens. In a magnetic lens, such as a thin quadrupole, this
demands the magnetic field to increase linearly with distance from the optical axis.

Where the last equation for z describes the fact that particles with different momenta have
different speeds and that changes their respective distance z with respect to the reference
particle.

As before, we assemble the equations that map the particle coordinates at the entrance
to those at the exit in a matrix

To 1 L 0 0 0 0 1
2 01000 0 2
Y2 o 0 0 1 L 0 0 U1
yé - 0 0 0 1 0 0 y’l ' (39)
2o 0 0 0 0 1 L/ 21
O 00 0 0 O 1 01

We observe that the upper two 2 x 2 blocks on the diagonal are just copies of the 2 x 2
matrix from Equation 3.3, whereas the 2 x 2 block on the lower right describes the change
of the distance to the reference particle z due to the energy deviation J.

In the following section we will determine the corresponding maps for quadrupole and
dipole magnets. It turns out that most of them can be represented by matrices.

3.1 MAGNETS AND MATRICES

Before deriving the transfer maps from the Hamiltonian in Equation 2.9, we use geometric
reasoning to introduce thin quadrupoles, the equivalent of thin lenses from light optics. This
will help us to develop some intuition about the dynamics in focusing magnets.

3.1.1 Thin quadrupoles

Thin quadrupoles are equivalent to thin lenses in light optics. They are often very useful
for estimating the beam-optical properties of beamlines, because they are specified by the
focal length, a geometrical quantity with the dimension of a length and given in meters. It
derives directly from the defining property of a thin lens; it changes the particle’s angle z’
proportional to its distance x from the center of the lens. This behavior is illustrated on
the left-hand side in Figure 3.2, where two particles come from the right and travel parallel
to the axis. They are represented by the solid and the dotted lines, respectively. At the
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lens they receive a downward kick, proportional to their respective distance from the axis,
which causes both particles to cross the axis at the same downstream location. This distance
from the lens to the crossing point is, of course, the focal length. On the right-hand side in
Figure 3.2, we show the linearly increasing magnetic field that causes the deflection. It is
zero on the reference trajectory and increases linearly with transverse position x such that
the force on a particle has the necessary linear dependence to cause parallel rays to cross
the reference trajectory—equivalent to the optical axis—at the same point.

A matrix Q that represents a transverse deflection Az’ proportional to the transverse
position z is the following

(23)-@(?) with Q_(_11 (1)> (3.10)
: : /1

The second equation reads x}, = 2} —x1/f, which shows the proportionality with the inverse
focal length as proportionality constant. The choice of sign depends on the convention to
assign positive focal length to focusing lenses. That the matrix @ has the advertised property
of directing all parallel rays to the focal point is easy to see by concatenating the matrix
for the quadrupole with that for the subsequent drift space. In that case we have

() = (o 1) 1))

< 1—_1%‘f ? ) ( i’i ) : (3.11)

such that all parallel rays coming from the right, having 2} = 0, have the transverse position
x3 = (1 — L/f)x; which is zero, independent of the transverse position x1, provided that
L = f. In other words, all parallel rays cross the optical axis, the reference trajectory, at a
distance equal to the focal length of the lens or the quadrupole. Similar to optical lenses,
there are both focusing and defocusing quadrupoles, and they differ by the sign of the focal
length. A defocusing lens has a negative sign, which is intuitively satisfying because the
intersection with the axis lies before the lens for a defocusing lens, and after the lens for a
focusing lens. We discuss the close analogy of light optics and charged-particle optics further
in Appendix B.4.

Optical lenses are often round and the focal lengths in the horizontal and vertical planes
are equal, even though there are exceptions, such as cylindrical lenses, which generate line
foci. In magnetic quadrupole lenses, the deflection is generated by the magnetic field which
has to obey Maxwell’s equations, especially V x B = 0. Inside the quadrupole we have
0B, /0x = 0B,/0y. This causes a magnetic field, linearly rising along the positive z-axis,
to decrease along the positive y-axis. Another way of visualizing this behavior is by looking
at the field lines (dotted) and the Lorentz force F' (solid) in the quadrupole shown in
Figure 3.3. A particle on the horizontal axis is kicked toward the center of the quadrupole
(focusing), whereas a particle on the vertical axis is deflected away from the quadrupole
center (defocusing). In summary, a quadrupole that focuses in one plane defocuses in the
other plane.

We can heuristically assemble a 6 x 6 matrix operating on the phase-space variables
x,x',y,1y , z,0 that reflects this behavior. It is given by

9 1 00000 a1
b -5 10000 a4
y2 | _] 0 0 1 00 0 i
v | | 0 0 £ 100 vi | (3.12)
22 000010 2
02 0 0 0 0 0 1 o1
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Figure 3.3 Forces in a quadrupole, if a positively charged particle moves into the
plane. Note that the force points inwards in the horizontal plane and outwards in
the vertical.

which consists of three 2 x 2 blocks on the diagonal. The upper two describe focusing
and defocusing in the transverse planes. The unit matrix at the lower right tells us that
longitudinal position z and the momentum deviation 6 do not change in a thin quadrupole.
By convention a quadrupole that focuses (f > 0) in the horizontal plane and defocuses in
the vertical is called a focusing quadrupole and defocusing otherwise. Note also that all off-
diagonal 2 x 2 blocks contain zeroes, which implies that normal quadrupoles do not couple
the horizontal, vertical, and the longitudinal planes.

As for the drift space, let us now use the Hamiltonian from Equation 2.9 to determine
transfer matrix for long, also called thick quadrupoles.

3.1.2 Thick quadrupoles

As we will see in Section 4.2, the longitudinal component of the vector potential A for a
quadrupole is given by

e 0B, 0By/0x

A — 2 2,2 h _
Ao =~/ —0?)  with g = <50 OB

(3.13)

Here B, is the vertical component of the magnetic field inside the quadrupole. The other
components A,, A,, and ® are zero, which turns the Hamiltonian into

k
H(valayaylvzvé;s) = 6 - \/1 + 25 + 5352 - IE’Q - y/2 + 51( 2 y2) . (314)

As for the drift space, expanding to second order, leads to the following Hamiltonian that
contains only quadratic terms

R B O
H(w,2' y,y 2,058) = —1+ a 57745y + S =) (3.15)
and Hamilton’s equations lead to
dx’ OH dy’ oOH do OH
==k ——=—5-=k —=——==0 3.16
ds Ox 1 ds oy LY ds 0z (3.16)
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and dr  OH dy OH d: OH 1
-z / y / z
B e - —— — == 3.17
ds o' ds o 17 ds 96 2 (3.17)
Here we observe that this set of equations separates into three groups of two equations, one
for (z,2'), one for (y,y’) and one for (z,d). The latter is the same as for the drift space and
leads to d3 = 81 and 2z = 21 + (L/3)d1. These equations can be combined in matrix R,

for the longitudinal phase-space coordinates

<§;)RL(§1) with RL((l)L/lﬁ’(%). (318)

The equation for the horizontal phase-space coordinate of a particle reads

2 +kiz=0. (3.19)

For ky > 0 this equation is solved by cos(v/k1s) and the corresponding sine function

2(s) = Ay cos(y/kys) + Agsin(y/kys) . (3.20)

The coefficients can be determined by matching to the initial values x1, 2] and we obtain

z(s) = 21 cos(\/k1s) + 5;%1 sin(v/kys) . (3.21)

At the end of the quadrupole we have s = L and can write for the 2 x 2 horizontal transfer-
matrix

( iz > = ( i’i ) with - @y = ( —j%iﬁj%m @:}%ﬁm ) (3.22)

that maps the initial coordinates 1,2} to those at the end of the quadrupole. Note that in
the limit of a thin quadrupole with L — 0, while keeping k; L constant, the transfer matrix
approaches that of a thin focusing quadrupole with focal length k1L — 1/f.

In the vertical plane the quadrupole is defocusing and the sign of k; in Equation 3.19
is reversed. In that case we can solve the differential equation in terms of hyperbolic sines
and cosines. The corresponding transfer matrix is then given by

y2 ) _ n\ B cosh(+/[k1|L) \/llk—llsinh(\/WL)
< Ya ) B Qd( n ) th Qa= ( V/|k1]sinh(y/]k1 [ L) cosh(y/]k1]L) (3.23)

and the 6 x 6 matrix can be built by placing the 2 x 2 matrices Q¢, Qq, and Ry on the
diagonal and 2 x 2 zero-matrices on the off-diagonal places to arrive at

€To Z1
! xh
v @r 02 02 "
/ - 02 Qd 02 / ) (3'24)
Yo 02 02 RL W
29 21
52 61

where Q7 is the 2 x 2 matrix from Equation 3.22, Q4 from Equation 3.23, and R; from
Equation 3.18. We denote the 2 x 2 matrix containing zeroes only by 0s. If the quadrupole
is defocusing, we need to exchange @)y and Qg in Equation 3.24.
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Now we could already build straight beamlines consisting of drift spaces and quadrupoles
to follow particles with different initial conditions on their way through the beamlines, even
for different excitations of the quadrupoles. We are, however, confined to straight beamlines.
In order to remedy this deficiency, we now turn to dipole magnets and how they affect the
phase-space variables of particles.

3.1.3 Sector dipole

The main task of the dipoles is to define the reference orbit as we have seen in the previous
chapter, but that is not all; they also affect the phase-space variables of the particle motion
relative to the reference trajectory. We can account for this by including the vector potential
Ain Equation 2.9 whose curl B=VxA produces a purely vertical magnetic field B. Here
the situation is a bit more complicated, because the reference trajectory is curved, where
the curl of A, and therefore the magnetic field B , are given by

1 (0hAy) 04, 1[04, d(hAy) (04, 04,
Bx_h( Ay _855)7 By_h((“)s Ox y Bs= Ox Ay (3:25)

with the abbreviation h = 1 + x/p. It is straightforward to verify that

2

A, =0, A, =0, and hA, =B (x + ;) (3.26)
p

cause B, and B, to vanish and B, = By.
Inserting the vector potential from Equation 3.26 and ® = 0 into the Hamiltonian from
Equation 2.9 and using the approximation from Equation 2.10 then leads to

EBO

2
H(z,z',y,y, 2,0;s :(x+x>+6_(1+x> 1425+ 5262 — a2 —y'2 . (3.27
(=, 2", 9,y ) o % ; \/ B y? . (3.27)

After first expanding the root and then keeping only terms up to second order results in
the approximate Hamiltonian
2 2
x ) 1 1 1
H(z, 2 y,y,2,0;5) ~ vl 1+ 22 + 5:0'2 + iylz - ;azé (3.28)

from which we derive the following equations of motion for the horizontal plane

dr’ OH 1 1 dv  OH
ar __YH = z5 d == =g 3.29
ds oz p2x + p an ds oz " (3:29)
For the vertical plane we obtain
dy’ oOH dy OH ,
ds oy ’ o s ox (3.30)
whereas the longitudinal motion is governed by
dd H d H 1 1
o8y g EoH 151 (3.31)

ds 0z ds 35 A2 p

The two equations for y and 3’ are the same as for a drift space. Integrating them leads
to y2 = y1 + Ly) and y, = y; where subscript 1 denotes the entrance of the dipole and
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subscript 2 its exit. Moreover, from the first of Equations 3.31 we find that ¢ is constant
and we have d2 = ;. The two parts of Equation 3.29 can be combined to

1 1
2(s)+ 5w =-=6 (3.32)
p*p
where we keep in mind that the right-hand side is constant. Thus it is easy to verify that
T = pd is one particular solution. Moreover, the homogenous equation with the right-hand
side set is zero, agrees with Equation 3.19 and has the solution given by Equation 3.20,
provided k; is replaced by 1/p?. Therefore the general solution is given by

x(s) = Aj cos(s/p) + Agsin(s/p) + pd (3.33)

with integration constants A; and As. Matching the initial conditions x(0) = z1 and 2/(0) =
/
x7 leads to

x(s) = cos(s/p)x1 + psin(s/p)x| + p[1 — cos(s/p)]d , (3.34)

where z’(s) follows from differentiating with respect to s. Setting s = L then describes the
position zo and 2% at the end of the magnet. We find the evolution of z through the dipole
by inserting x(s) in the second part from Equation 3.31 and integrating with respect to s.
This yields

22 = =sin(@)a1 — pl1 o) + ( 25 = o~ sin(o)]) o (3.35)

0

where the bending angle ¢ = L/p was introduced as an abbreviation. Finally we can as-
semble the transfer matrix that maps the phase-space variables at the entrance to those at
the end

cos ¢ psin ¢ 0 0 O p(1 — cos ¢)
—sin(¢)/p cos ¢ 0 0 0 sin ¢
0 0 1 L 0 0
Rs = 0 0 01 0 0 (3.36)
—sing  —p(l—cosg) 0 0 1 L/y2— p(¢—sing)
0 0 0 0 O 1

The 2 x 2 matrix in the upper left describes weak focusing of particles that move through
the magnet further outside. They experience a longer magnet and are therefore deflected
toward the reference trajectory. Conversely, particles on the inside experience a shorter
magnet and are deflected less. But both particles eventually converge toward the reference
as illustrated in Figure 3.4. The two matrix elements at the top of the sixth column describe
the spreading of trajectories due to non-zero momentum deviations §, which is illustrated
in Figure 3.5. They describe how well the dipole works as a spectrometer to select particles
according to their energy. The 2 x 2 matrix in the center of R illustrates that the magnet
behaves just like a drift space in the vertical plane. The matrix element Rsg describes the
variation of the path length z as a function of the momentum §. The first contribution L/~3
accounts for the change of speed and the remainder for the change in the trajectory that
particles with different values of § take. And finally, the entries in the first two columns of
the fifth row describe account for the lengthening of trajectories for particles with different
horizontal launch conditions x; and 2.
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Qutside path is longer and bends inwards

Inside path is shorter
and bends outwards

Figure 3.4 Top view of a sector dipole magnet that illustrates weak focusing. The
three trajectories have the same bending radius p.

Higher
-------------------------- —=energy

energy

Figure 3.5 Trajectories of particles with different energies deviate in a dipole magnet,
which acts like a spectrometer.

3.1.4 Combined function dipole

Apart from the horizontally weak-focusing dipole we just encountered, sector bends can have
a quadrupole-like gradient added and are then referred to as combined function magnets.
Their gradient can, for example, be generated by tilted pole faces, such as those shown
in Figure 3.6. We obtain their transfer matrices by deriving the equations of motion after
adding a quadrupole-like term from Equation 3.13 to A; from Equation 3.26

2

T 10B
A, =-B Sl R AT .

while we keep A, = 0 and A, = 0. Calculating the components of the magnetic field B
from Equation 3.25 then leads to
1 0B 0B 1 0B, 0B

Yo~ y _ 105y 0By .
T2/ 0z '~ oa y+0(2) and B, Byt —-tw ~ Byt = z+0(2) (3.38)

B, =

where O(2) denotes terms of order two or higher in = and y. They are beyond the linear
representation through transfer matrices, and we therefore do not carry them along in our
derivation.
After inserting hA, from Equation 3.37 in the Hamiltonian from Equation 2.9 and
expanding to second order, we obtain
2 1 52 1 1

x 1
H(z, 2" y,y,2,08) ~ — + k1 (2® —y?) — 14+ —5 + =2 + =¢y*> — =26 3.39
(z,x,y,y,z, 15) 2p2+2 1(I y) +2')/02+2x +2y pz ( )
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Figure 3.6 Side view of a combined function dipole. The inclined pole faces in the
magnet gap are responsible for a larger field to the right compared to the left, thus
causing an additional gradient on top of the dipole field.

with k1 = e(0B,/0x)/po defined in the same way as in Equation 3.13. Applying Hamilton’s
equations then leads to the following equations of motion in the horizontal plane

da’ 0OH 1 1 dx  OH ,
kel S - — = = . 4
ds oz (p2 - kl) T (340)

For the vertical plane we obtain

dy’ OH dy OH ,
. S Al A1
ds oy k1, and ds oz 0 (3-41)
whereas the longitudinal motion is governed by
dd OH dz O0H 1 1
—=——=0 d —=—=—=0—- 3.42
ds 0z o ds 06 2 p"T (342)

which is the same as Equation 3.31 for the plain sector dipole from Section 3.1.3. Also the
equations for the horizontal and vertical planes are very similar to those in Section 3.1.3
which allows us to solve them in the same way as before. We only need to keep track of
whether k = 1/p% + k; is positive or negative and whether k; is positive or negative. Here
we only consider k1 > 0 and leave the other cases for the exercises.
Following the procedure to solve Equation 3.29 in the previous section, we obtain
2(s) = cos(Vks)xy + = sin(Vks)z)| + S [1 - cos(\/lgs)} ) (3.43)
Vk kp

and 2/ (s) is found by differentiating Equation 3.43. Turning to Equation 3.41 for the vertical
plane, we exploit the fact that k; is positive. This implies that the equations are solved by
hyperbolic functions

y(s) = y1 cosh(y/kys) + \Q/UI;% sinh(y/k15) (3.44)

and y'(s) follows form differentiating y(s). Finally, from the first of Equations 3.42, we
deduce that § is constant and by inserting z(s) from Equation 3.43 in the second, we obtain

T, ) L L 1 )
= —— kL) — —[1 — cos(VkL — — — 4+ ——==5 kL)| 6 . 3.45
2= VR~ G = e VRDI+ | S VD 04
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Figure 3.7 Top view (left) of a rectangular bending magnet and three horizontal
trajectories. Side view (right) of a rectangular bending magnet and the vertical
magnetic field profile. Note the fringe field.

Introducing the abbreviations ¢ = VkL and ¢4 = v/k1L we find the transfer matrix R¢
which maps the phase-space coordinates from the entrance of the combined function dipole
to its exit

cos ﬁ sinv 0 0 0 %
—Vksiny cos Y 0 0 0 %
Re — 0 0 cosh i1 NG sinhyy 0 0 (3.46)
0 0 k1 sinh i, cosh 0 0
—sin _ 1l—cos® 0 0 1 L t—siny
Vkp kp 72 K3/2p2
0 0 0 0 0 1

Note that Rc reverts to Rg from Equation 3.36 in the limit k; — 0, because this implies
VE = 1/p.

Both dipoles in this and the previous section were sector dipoles, where the beam enters
and exits the magnet faces at right angles. But often rectangular dipoles are easier to
manufacture, but the beam enters such magnets at an angle, and that has ramifications for
the beam optics.

3.1.5 Rectangular dipole

Apart from sector bending magnets, such as that shown in the top view in Figure 3.4 there
are also rectangular bends, so-called RBENDs, which have parallel entrance and exit faces.
In such a magnet, the length of the trajectory does not depend on the horizontal offset,
as was the case for sector bends, discussed earlier in this section. Therefore, there is no
horizontal focusing in a rectangular bend. Of course, a quadrupole gradient can be added
by shaping the pole face (see Figure 3.6) or other means such as additional coils.

In a rectangular bend the particles enter the fringe field with a horizontal angle and can
interact with the longitudinal component of the B-field, which is present in the fringe-field
region, because the vertical component B, varies with s and due to 0B,/0s = 0Bs/0y
also the longitudinal component By varies with the vertical distance y to the center of the
magnet. A particle crossing the fringe-field region with a horizontal angle will therefore
experience a vertical component of the Lorentz force. Thus, we find a vertical force that
depends on the vertical position.
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We will now approximately calculate the magnitude of this effect by first observing that

0B, 0B, B,
=—r~ — A4
y Js g (347)

where g is the full gap height. We thus assume that the full vertical field inside the magnet
decays to zero over the longitudinal distance of one gap height. Moreover, here we assume
that this decay is linear, which is only a crude approximation that is convenient for the
calculations. Inside the fringe-field region, the longitudinal component therefore can be
approximated by Bs ~ yB,/g and points toward the magnet at its entrance face. The
vertical force that a particle experiences is given by the vertical component of the Lorentz-

force equation

dpy ¢ B

Wy _ mBs%_fiy , 3.48

ikl 20y Y (3.48)
where the angle between the particle trajectory and the By is negative and half the deflection
angle ¢. Changing the time derivative dt to the derivative along the beamline by ds ~ cdt,

we obtain, after integrating over the longitudinal extent of the fringe field,

Ap, = —gByy . (3.49)

Normalizing by the total momentum p/e = Bp results in

: 3.50
) 3 (3.50)

Rewriting this in terms of a transfer matrix, we find

1 0
Y2 Y1
= an , 3.51
(yé) (téﬁ”)l)(yi) (3:5)

where we replaced the approximate value of the deflection angle ¢/2 by tan(¢/2), which
follows from a more careful treatment that is, for example, shown in [13]. It turns out that
the 2 x 2 matrix for the horizontal plane has the sign of the matrix element in the lower
left reversed, such that we obtain

10 0 00 0
tan(¢p/2
tanlo/2) 0 00 0
0 0 1 00 0

Ry = tan(¢/2 (3-52)
0 0 =P g o0 0
0 0 0 01 0
0 0 0 00 1

The matrix Ry is the map from just outside the fringe field to just inside the magnet. The
same effect will affect the particle on its way out of the rectangular bend and therefore the
combined effect of a rectangular bend with matrix Rp is approximately given by Rp =
RyRsRy.

3.1.6 Coordinate rotation

The next, this time, “virtual element” is a coordinate rotation around the s-axis that we
use, for example, to create a vertically bending dipole magnet from a horizontally bending
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one. We can also create a so-called skew-quadrupole by rotating a normal quadrupole by
45 degrees, or m/4 radians, around the longitudinal s-axis. Rotating in the zy-plane with
an angle ¢ is simply achieved by a normal coordinate rotation

X9 =x1c08¢+yrsing and yo = x1(—sing) + y; cos ¢ (3.53)
and differentiating with respect to s we find
rh=1x)cosg+ysing and y,=2|(—sing)+y)cosg (3.54)

which leads to the 6 x 6 transfer matrix

To cos ¢ 0 sin ¢ 0 0 0 T1
b 0 cos ¢ 0 sing 0 O x)
y2 | | —sing 0 cos ¢ 0 0 0 Y1
vy | 0 —sing 0 cos¢p 0 O 4 ’ (3.55)
29 0 0 0 0 1 0 21
02 0 0 0 0 0 1 o1

The last two columns and rows simply state that the longitudinal phase-space variables z
and ¢ do not change. We can now use the transfer matrix R,(¢) from Equation 3.55 to
determine the transfer matrix Q5 for the above-mentioned skew quadrupole

Qr 02 02
Qs - Rr(*ﬂ-/4) 02 Qd 02 RT‘ (71-/4) ’ (356)
(053 0o Ry,

where @ and Qg are the 2 x 2 matrices from Equations 3.22 and 3.23 and Ry, is defined
in Equation 3.18. Moreover, vertically deflecting dipoles are described by sandwiching the
matrix for a horizontally deflecting dipole between coordinate rotations for angles of 7 /2
and —m/2. Note that the angle ¢ that appears in Equation 3.55 is often referred to as roll
angle.

3.1.7 Solenoid

In detectors for nuclear or high-energy physics experiments, a longitudinal magnetic field
is used to determine the momenta of the collision products. This magnet, creating this
longitudinal field By, is referred to as a solenoid. It also affects the beam particles, which,
if they enter the solenoid at an angle, will follow helical trajectories inside the magnet. The
reduction of the longitudinal field component B, near the magnet ends causes transverse
field components B, to appear that focus the beam particles. The combined effect of the
ends and the bulk of the magnet can be described [14] by a 4 x 4-transfer matrix that is the
product of a matrix that describes focusing with strength ks = Bs/Bp in both transverse
planes and coordinate rotation R,(¢s) with the magnet length L and ¢5 = ksL/2. For the
matrix we then find

enion (G §) o= (L M) e

Note that the matrices in the previous equation commute and their order does not matter.
Moreover, we observe that solenoids couple the transverse planes, just as skew quadrupoles
or coordinate rotations do.
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The transfer matrix R from Equation 3.57 is only the top left 4 x 4 matrix of the full
6 x 6 matrix operating on (x,z’,y,y’, z,9). We obtain the full matrix by adding R;, from
Equation 3.18 to the lower right corner. As before, it takes into account the effect of the
finite length of the solenoid on the longitudinal position z of a particle. For the full 6 x 6
transfer matrix, we finally obtain

Ry 02x4
Ry = . 3.58
( Osx2 R > (3:58)

Here 0%y, is a n X m matrix with zeroes everywhere.

3.1.8 Non-linear elements

Apart from the magnets that can be represented by matrices, there are magnetic fields that
have a non-linear dependence on the transverse coordinates x and y. Some of these fields
are due to errors in other magnets, and others are due to magnets deliberately installed in
the accelerator in order to correct perturbations. Like for the other magnets we can derive
the equations of motion for the non-linear elements from the Hamiltonian in Equation 2.9
and assume that the vector potential only has a non-zero longitudinal component As. The
other components A,, A, and ® are zero, which leaves us with

eA,

Do

H(z,2',y,y,2,0;5) = — +(5—\/1+25+5852—x’2—y’2. (3.59)

Expanding the square root to second order then results in

Ag | 1
s 14+ 2 4 s oy (3.60)

H / / (5 ~ —
(m7$7y7y>za ,S) Do 2,_)/3 2 2

and the following equations of motion

de'  OH e dA, dy OH edA, A5 OH

ds 0z  po Oz’ ds Oy po Oy’ ds 0z

0 (3.61)

and ) dy 0H d:  oH 1
ooy, Fomoy oo (3.62)
ds oz’ ds  0x' ds 90§
Solving these equations in general is not possible, but under the assumption that the magnet
is short, we can specify the action of a magnet by small changes in the angles ' and v/,
which are commonly referred to as kicks. Here short’ means that the length L of the magnet
is small in the sense that the transverse positions do not change dz/ds ~ 0, dy/ds ~ 0, and
dz/ds = 0, while the beam traverses the magnet. The first two equalities of Equations 3.61
can then be integrated with the result

Az’ = i%L
po Oz

and Ay = E%L
po Oy
where we assume that A L remains finite as L — 0. This implies that the kick from

Equation 3.63 is localized at a specific point along the beamline.
In Section 4.2 we shall see that Ag can be written as a power series expansion in x + iy
that is commonly referred to a multipole expansion given by Equation 4.12

z+iy\"
Ry

(3.63)

) > by + tam,
Ag(z,y) +iVi(w,y) = —BoRo - ( (3.64)

m=1
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where m denotes the multipole order. We will discuss V; further in Section 4.2. The trans-
verse components of the magnetic field B, and B, are then given by Equation 4.10 or
Equation 3.25 with A — 1 from which we obtain

e’} . m—1
By +iBy = Bo Y (b + i) <x; Zy) . (3.65)
0

m=1

Here By is some reference field, Ry is a reference radius, and the multipole coefficients b,,
for upright magnets and a,, for skew magnets. Here m = 2 characterizes upright and skew
thin-lens quadrupoles and m = 3 characterizes sextupoles, both upright (bs) and skew (a3).
Octupoles, decapoles and higher multipoles follow the same scheme. When a beam particle
traverses such a short magnet, it receives a transverse kick due to the Lorentz force given by
Az’ —iAy = +(B, +iB,)L/Bp, where Bp = py/e denotes the momentum of the particle,
and (B, + iB,)L is the field integrated over the length L. Moreover, the ambiguity of the
sign &+ represents the ambiguity originating from the charge of the particle; the same field
kicks electrons and positrons in opposite directions. Once, however, the charge of the beam
particle is known, a magnet that produces a negative kick Az’ < 0 at positive positions
x > 0 is referred to as horizontally focusing.

The kick that a particle receives is usually parameterized by a quantity k,L =
—(0"B,,/0x™ +i0" B, /0x™)L/Bp that can be related to Equation 3.65 and we find

_ koL, | ByL & , a4y
/ ’_ n __
Az’ —iAy' = fngo ?(x +iay)" = By mZ:l(bm + i) < e ) . (3.66)
Comparing coeflicients we obtain
knL By/Rj)L :
= *4( O/ O) (bn+1 + Zan+l) ) (367)

n! Bp

which facilitates translating between the different conventions to characterize non-linear
magnetic fields. The coefficients a,, and b,, are typically used by magnet builders and the
kicks Az’ and Ay’ parametrized by k,L derived from Equation 3.66 are commonly used
when simulating the behavior of particles in non-linear magnetic fields. We will later use
them in Chapter 11 to investigate the effect of the non-linear elements on the beam dynam-
ics.

Now we have a well-filled toolbox of maps, kicks for the non-linearities, but especially
matrices for most common elements in an accelerator. In the following section we will use
the latter to propagate particles and beams through beamlines.

3.2 PROPAGATING PARTICLES AND BEAMS

In Chapter 2 we found that well-behaved distribution functions can be efficiently described
by their first few moments, namely the zeroth moment, the particle number; the first mo-
ments, the centroids; and the second moments, the beam sizes. Here we discuss how the
moments of the beam distribution propagate through a beamline. Once we can do this we
have reasonably complete information about the behavior of the beam everywhere in the
accelerator.

We start by considering how a single particle propagates through a single element or
through an entire beamline, as described by a transfer matrix R, and then calculate the
moments of the beam distribution at the end of the beamline by averaging the final coordi-
nates over the initial distribution. To clarify this approach, we work this out in detail and
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describe the initial phase-space vector by & = (x1, - ,%,), where n can be any number,
but most often it will be 2, 4, or 6. We emphasize that the subscript is now used to denote
the phase-space variable rather than the location in the beamline. In particular x = z,
z' = x9, y = x3, and so forth. With this notation, the motion of a particle through a
beamline represented by the transfer matrix R is given by

j=1

which is written in component form. We mark the particle coordinates at the end of the
beamline with a bar and averages over the initial distribution function are denoted by angle
brackets. Averaging Equation 3.68 leads to

Xi=(z:) = O Riyz;) = > Rij(z;) = > Ry X, . (3.69)
j=1 J=1 J=1

The first equality is the definition of X; as the ensemble average of the final coordinates Z;.
In the second equality, we express it through the transfer matrix R and initial coordinates x;.
Since the transfer matrix is the same for all particles and the summing is a linear operation,
we can pull the sum and R from the average, such that only the average over the initial
coordinates x; is left. In summary, Equation 3.69 states that the centroids X; propagate
in the same way individual particles do, which is convenient, because we can use the single
particle dynamics to describe the behavior of averages of a large ensemble of particles. In
particular, the beam-position monitors, which we will discuss further later in Chapter 7,
are sensitive to the centroid of the beam motion, and we can model these measurements
using the transfer matrices that were originally derived to describe the motion of a single
particle.

We now turn to the second moments and how they propagate in a beamline defined by
transfer matrix R. The sigma matrix is in general defined by the central second moments
of the distribution. “Central” in this context means that the centroid motion is subtracted.
The sigma- or beam matrix is then given by

oij = ((x; — Xi)(z; — X)), (3.70)

which is consistent with Equation 2.24 on page 23. In the remainder of this section we
will, for the sake of simplifying the equations, assume that the centroid of the distribution
is located on the reference trajectory, i.e., X; = 0. The sigma matrix at the end of the
beamline & is then given by

0ij = <iifj> = <Z Rirxyg Z lel'l> = Z R Zle<xkxl> = Z ZRikleO'kl (3.71)
k=1 =1 =1

k=1 k=11=1

in terms of the initial sigma matrix ¢ and the transfer matrix R. The first equality is just
the definition of 7,5, and we exploit the fact that the transfer matrix is the same for all
particles and the sums are linear to pull them out of the average. Note that Equation 3.71
is given in component form. Written in matrix form we find

7 = RoR" | (3.72)

where R” denotes the transpose of matrix R. In the calculation we have, strictly speaking,
only shown that the sigma matrix propagates with Equation 3.72 if X = 0, but with a little
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more effort it is straightforward to show that Equation 3.72 also holds when using the full
definition of the sigma matrix from Equation 3.70.

Equations 3.69 and 3.72 enable us to propagate a beam, which is characterized by its
first and second moments, through any beamline that is defined by the transfer matrices for
all its elements. This method is implemented in many beam transport codes, starting from
TRANSPORT [5] and MADX [4] to many others. We stress the importance of the sigma
matrix, because it carries all the information about the beam properties such as beam size
o1 = ag or angular divergence 99 = Uﬁ/ throughout the accelerator.

After we know how to describe beamline elements by matrices and the particles and
beams by vectors and matrices, we are ready to simulate this motion of beams through
accelerators in MATLAB or Octave.

3.3 TWO-DIMENSIONAL

In this section, we confine ourselves to the horizontal transverse dimension and to very
simple elements. We illustrate all calculations with examples coded in MATLAB or Octave.

3.3.1 Beam optics in MATLAB

We start by analyzing a simple beamline that consists of 20 straight FODO cells, similar
to those we used in Chapter 2, but without dipole magnets. In order to simplify the cal-
culations, we use thin quadrupoles instead of long ones. In that case we only need 2 x 2
matrices for drift spaces and for thin quadrupoles. We therefore write MATLAB functions
that return the respective transfer matrices. The file for the drift space, we call it DD.m, is
particularly simple

% DD.m, drift space, V. Ziemann, 240827
function out=DD(L)
out=[1,L;0,1];

It only receives one parameter, the length of the drift space L, as input and returns the 2 x 2
transfer-matrix for the element as parameter out. The function that returns the matrix for
a thin quadrupole, named Q.m, is not much more difficult.

% Q.m, thin quadrupole, V. Ziemann, 240827
function out=Q(F)

out=eye(2);

if abs(F)<1le-8, return; end
out=[1,0;-1/F,1];

It works very similar to the one for the drift space, except that it receives the focal length F
as input and returns the thin lens matrix for a quadrupole in the variable out unless the
focal length is too small. In that case the unit matrix is returned.

Based on these functions for the transfer matrices, we are ready to build a first beam
transport code. We give it the name beamoptics.m.

% beamoptics.m, V. Ziemann, 240827
clear; close all
ndim=2; % 2 for 2x2 matrices
F=2.1; % focal length of the quadrupoles
fodo=[ 1, 5, 0.2, O0; % 5% D(L/10)
2, 1, 0.0, -F; % QD
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1, 10, 0.2, O0; % 10% D(L/10)
2, 1, 0.0, F; % QF/2
1, 5, 0.2, 0]; % 5% D(L/10)
beamline=repmat (fodo,20,1); % name must be ’beamline’
nlines=size(beamline,1); % number of lines in beamline
nmat=sum(beamline(:,ndim))+1; % sum over repeat-count in column 2
Racc=zeros(ndim,ndim,nmat) ; % matrices from start to element-end
Racc(:,:,1)=eye(ndim) ; % initialize first with unit matrix
spos=zeros(nmat,1); % longitudinal position
ic=1; % element counter
for line=1:nlines % loop over input elements
for seg=1:beamline(line,2) 7% loop over repeat-count
ic=ic+1; % next element
Rcurr=eye(2); % matrix in next element

switch beamline(line,1)
case 1 % drift
Rcurr=DD(beamline(line,3));
case 2 % thin quadrupole
Rcurr=Q(beamline(line,4));

otherwise
disp(’unsupported code’)

end

Racc(:,:,ic)=Rcurr*Racc(:,:,ic-1); % concatenate

spos(ic)=spos(ic-1)+beamline(line,3); % position of element

end

end
x0=[0.001;0]; % 1 mm offset at start
data=zeros(1,nmat) ; % allocate memory

for k=1:nmat
x=Racc(:,:,k)*x0;
data(k)=x(1); % store the position
end
plot(spos,le3*data,’k’,’LineWidth’,2);
xlabel(’s [m]’); ylabel(’ x [mm]’); x1lim([spos(1),spos(end)])
set(gca, ’FontSize’,16);

At the top of the script we clear the workspace, close all graphics windows, and define a
parameter ndim indicating that we work with 2 x 2 matrices. It is used to create arrays
with the right dimensionality. Next we define a parameter F that we use to set the focal
length of the thin quadrupole and define the lattice fodo using the same syntax we used
in Chapter 2, where we used the element code 2 to represent the thin quadrupole. It must
have length zero and the focal length is specified in the fourth column. Note the comments
following the % after each element description. MATLAB ignores everything following the
percent sign.

Following the definition of fodo, we make 20 consecutive copies of it with the repmat ()
function that concatenates 20 copies of fodo and copies it to the variable beamline. Once
the complete beamline is assembled, we need to allocate arrays to hold all quantities we
will calculate. For this we first determine how many elements the beamline contains and
store that in the variables nlines. Likewise, taking the repeat count of the elements into
account, we determine the total number of matrices nmap. The array Racc will contain all
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Figure 3.8 The transverse position of a particle that oscillates along the beamline.
On the left, we have a stable beamline with proper oscillations, and on the right
the oscillations are increasing, which indicates an unstable beamline.

transfer matrices from the start to immediately behind each element, such that R(:,:,1)
holds the transfer matrix from just before the start to itself and is initialized with the unit
matrix, eye (ndim). For example, R(:, : ,6) holds the matrix from the start of the beamline
to just after the element number 5, which is immediately upstream of the first quadrupole.
Note that the first drift space is sub-divided in five subsections such that it counts as 5.
The array spos holds the distance from the start of beamline to immediately after the
respective element. For example, spos(5) returns 0.8 m.

After initializing the element counter ic, we are ready to step through the beamline by
iterating over the lines and over the segments seg that represent the repeat count of the
elements. Inside the loop, we first increment the element counter ic and then switch ac-
cording to the element code stored in the first column of the beamline description beamline.
If it is 1, we use the previously defined function DD.m for a drift space with length defined
in the third column of the current line and assign the transfer matrix to Rcurr. Likewise,
if the element code is 2, we set Rcurr to the transfer matrix for a thin quadrupole with
the focal length specified in the fourth column of beamline. If a code is unknown, a short
message is printed. Later we will extend the list of known elements to comprise all those
discussed in the previous sections and will also extend the number of dimensions. At this
point in the code, we know the transfer matrix for the current segment and we use it to up-
date Racc, the array of accumulated transfer matrices. Here we left-multiply the previously
accumulated transfer matrix in Racc(:,:,ic-1) with the current transfer matrix Rcurr.
In the same way, we fill the next position in the array spos by adding the length of the
current segment.

As a first example, we simply launch a particle with a position offset of 1mm
(x0=[0.001;01), allocate an array in which to store the data, and loop over all positions.
Finally, we plot the positions after each location, and annotate the axes. The code is shown
in the last few lines of the example. Executing the script produces the plot shown on the
left-hand side in Figure 3.8. We observe an oscillation along the 20 FODO-cells with an
amplitude of up to 2mm, which is larger than the initial starting amplitude x0 because
the first quadrupole is defocusing and kicks the particle to larger amplitudes before it is
bent back towards the reference orbit in the following focusing quadrupole. In this way
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the particle receives one kick after the other in each quadrupole it traverses and oscillates
around the reference orbit until the end of the beamline.

On the left-hand side of Figure 3.8 the oscillation is stable, but if we decrease the focal
length in the example code from 2.1 m to 0.999 m and run the script once again we find the
oscillation with increasing amplitudes, shown on the right-hand side in Figure 3.8, which
indicates an unstable beamline. The lesson we pick up from this exercise is that it is possible
to set the quadrupoles in such a way that an accelerator is unstable and this normally leads
to beam loss. Exploring possible values for the focal lengths f further, we find that values
with f < —1m and f > 1m lead to stable oscillations.

3.3.2 Poincare section and tune

Let us continue to explore stable oscillations by observing the phase-space variables x and
z' after every traversal through the FODO cell. This leads to a stroboscopic view of the
particle motion, called a Poincare section or phase-space portrait. To do this we change the
example code to only use a single FODO cell, instead of 20, by changing the definition of
beamline near the top of the script to beamline=fodo; and replace the last three lines in
the code by the following

hold on; xx=[0.001;0]; % 1 mm starting position
for k=1:100
xx=Rturn*xx;
plot(le3*xx(1),1e3*xx(2),’.7);
end
xlabel(’x [mm]’); ylabel(’x’’ [mrad]’);

The command hold on allows us to add multiple data points in the same plot without
removing the old ones. Then we define the initial conditions for the particle in the array
xx[]. In the loop over k we map the phase-space state of the particle, as represented by xx,
from one turn to the next for 100 iterations. In each iteration we place a dot on the plot and
in the end, label the axes appropriately. We multiply the axes by 1000 in order to use the
more appropriate scales mm and mrad. After the loop, we correspondingly label the axes
and obtain the plot shown on the left-hand side in Figure 3.9, where we observe that the
phase-space coordinates of the particle all lie on an ellipse, and this is a strong indication
that the dynamics of particles in accelerators is very similar to that of harmonic oscillators,
well-known from elementary mechanics, whose phase-space portraits are also ellipses.
Since ellipses will play an important role further along in the discussion, we briefly
digress and discuss transforming them into a canonical form. Ellipses are conic sections
that can be represented by quadratic forms in the two phase-space coordinates x and 2/,
such that we can write
2J = yx? + 2axx’ + Ba? (3.73)

with, at present, arbitrary coefficients «, 8, and v to describe the shape and orientation
of the ellipse and a parameter 2J that describes its magnitude. Of course we choose a
nomenclature that is consistent with commonly used conventions. We now try to find a
linear transformation with a unit determinant that transforms the phase-space coordinates
z and 7’ to £ and 7', which transform the equation for the ellipse to that of a circle in the
new variables. For the transformation between the variables we assume the form

(=)= () o
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Figure 3.9 The phase space of a particle and the fast Fourier transform of the posi-
tion.

with determinant ac = 1. Inserting into Equation 3.73 leads to
2J = [ya® + 20ab + Bb°] 2 + 2 [aac + Bbc] 2F + [Bc*] &7 . (3.75)
The requirement that this equation describes a circle amounts to the three conditions
1=~a®+20ab+ Bb?, 0=oaac+ Bbc, and 1=pjc. (3.76)

Solving these equations for a, b, and ¢ leads to a = /3, b = —a/+/B3, and ¢ = 1/4/ and the
consistency condition v = (1 + a?)/3. The transformation matrix from Equation 3.74 that
transforms the ellipses to circles then assumes the form

(f’)_<—f¢ﬁ 1/3/3)@) (3.77)

In the literature, the parameters appearing in Equation 3.73 are known as Twiss parameters
a, B, and action, or Courant-Snyder invariant, J. Here the former describe the shape of
the ellipse that a particle traces out, and the latter describes the size of the ellipse. The
coordinate system in which the motion is confined to a circle is called normalized phase
space, a notion we will frequently encounter in the following sections. But let’s go back to
numerically investigating the motion.

Since harmonic oscillators are characterized by their frequency, it is prudent to determine
the oscillation frequency of our accelerator as well, and we do so by extending the loop over
N=1024 iterations and saving the position value xx(1) after every iteration in the array
xpos. After the loop, we calculate the fast Fourier transform (FFT), and plot the result
with

y=2xabs (fft (xpos)) /N;
plot ((1:N/2)/N,y(1:N/2),°k’);

which leads to the plot shown on the right-hand side in Figure 3.9, where a peak with
amplitude of 1.4 x 1072 is visible near 0.16. This indicates that a fraction of about 0.16 of
a full oscillation happens within one traversal of the FODO cell. The amplitude coincides
with the maximum excursion in x in the phase-space plot on the left-hand side in Figure 3.9.

We point out that harmonic oscillations are characteristic of slightly perturbed stable
systems in equilibrium. “Equilibrium” implies that all external forces are balanced and add
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up to zero. If we consider an equivalent mechanical system, this means that the system is
characterized by a potential function with zero first derivatives. The first non-zero term of
the Taylor-series expansion of the potential can only be quadratic. This, in turn, implies that
the motion derived from the potential is harmonic with system-specific eigenfrequencies. In
accelerators, these frequencies are called tunes.

3.3.3 FODO cell and beta functions

We continue the investigation by calculating the full-turn matrix R =Rturn for our simple
system by hand from the matrices, such that we have

R=D(L/2)Q(f)D(L)Q(~f)D(L/2) (3.78)

where D(L) is the matrix for a drift-space from Equation 3.3 and Q(f) for a thin quadrupole
from Equation 3.10. The same matrices are used in the scripts DD.m and Q.m, respectively.
Here we use L to represent the space between quadrupoles, such that the length of one
FODO cell is 2L. Inserting the matrices and evaluating the multiplications leads to

. 1L _ L or, — L
R( S - e, (3.79)
7 7T

which gives us a useful representation of the transfer-matrix for one cell in terms of geomet-
rical quantities, the length L and focal length f. Note that the determinant of the matrix
is unity, because the matrices D and @) have a unit determinant.

The observation that there is an oscillation at the bottom suggests to decompose the full-
turn transfer matrix R =Rturn into a matrix A that stretches and twists the coordinate
axes of the phase space, a rotation matrix @ and the inverse of A such that we write
R = A 'OA, where all matrices, including R, have a unit determinant. Therefore, only
three of four matrix elements are independent. Since the rotation matrix O depends on one
parameter, the rotation angle i, the matrix A depends on two more. Here we chose a form of
the matrix that is inspired by the discussion that led to Equation 3.77. That matrix already
maps a circle to an ellipse. Here we require the inverse operation, namely to map from the
regular phase space z and 2z’ to normalized phase space, where the motion is represented
by a circle. Therefore, we use the inverse matrix from Equation 3.77 on the right and the
matrix itself on the left of the following equation

R = A'0A

_ VB 0 oS [ sin,u> ﬁ 0
B <—\7§ ﬁ ) < —sinp  cosp i VB (3-80)

cos it + asin Bsin i
- _ta? — asi
F-sinp cosp — asinp

with the definitions

i 0
[ cosp  sinp -~
0= ( _sing cosp > and A= ( /B ) . (3.81)

The parameterization shown in the first line of Equation 3.80 has a simple interpretation.
First we apply a coordinate transformation by the matrix with « and 3, then we apply
a rotation, followed by the inverse coordinate transformation. The matrix A is thus just

Sk
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an affine transformation that rescales and changes the angle of the coordinate axis. Since
the motion in the new coordinate system is a circle, it is common to call this procedure
“transforming into normalized phase space.” Here 8 and « are the Twiss parameters and
1 is the phase advance. In particular, 8 is the ubiquitous beta function. It is a function
of the position s, because it has different values, depending on where we define the start
of the FODO cell. In this example we start in the middle of a drift space, but if we start
immediately after a quadrupole, its value will be different.

Now we have two ways to express the transfer-matrix through one FODO cell, either by
using the “hardware” parameters L and f from Equation 3.79 or by using the parameter-
ization using u, 8, and «. So, it is possible to express the latter parameters in terms of L
and f. Equating the matrices, we get

2 3 . .
1—%—2’:? 2L—4L? [ cosp+ asinp B sin p
L L 2 = 1402 o (3.82)
—% 1+ Fosinp cosp — asing

and from adding the diagonal elements, we find

12
cosp=1-— 27 (3.83)
Exploiting the trigonometric equation 1 — cos j = 2sin?(1/2) we obtain
) L
sin(p/2) = T (3.84)
From the difference of the diagonal elements, we arrive at
2ausin p = 2k or a=— L . (3.85)
/ [sinp
After some manipulations involving trigonometric functions, we find
O (3.86)

V11— L2/4f?

From comparing the 12-elements of the transfer matrices, we obtain

3

L
Bsinp = 2L — i (3.87)
which leads to 12/4f2
2— 4
B=rf (3.88)

V1—L%/af%
Note that o and § are calculated at the starting point, which also equals the end point of
the periodic cell, as given in Equation 3.78. This description is also consistent with the one
given by the array fodo in the MATLAB example.

In case we consider not only a single cell, but an entire circular accelerator, the full-turn
transfer matrix is composed of many individual matrices for the elements of the ring, but
we still have a full-turn matrix R available and can perform the analysis to determine «, 8
and the phase advance p from R. First, we calculate p from the trace of the matrix ]:2, then
f from Ry, and finally a from the difference of the diagonal elements as

Riu+R R Ri—R
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When R describes an entire ring, the phase advance p in units of 27 is called the tune
Q = p/27 of the ring. It describes the number of transverse oscillations performed by a
particle on its journey around the ring. Note, however, that we can only determine the
fractional part of the tune in this way. It is crucial for the stability and robustness of
operating a ring, and we will return to this topic later. On the other hand, since we only
have information about the position of particles once per turn, it is impossible to determine
the integer number of oscillations the particle performed.

Next, we relate these calculations to earlier observations from our numerical experiments.
We see that the beta function grows without bounds with increasing focal length which
describes increasingly weaker quadrupoles. Moreover, as f is smaller than L/2, the cosine
in Equation 3.83 is less than its smallest permissible value of —1 and the square root in the
denominator of Equations 3.86 and 3.88 become imaginary. This observation is consistent
with the finding that the oscillations become unstable if F becomes less than 1 in the script
and that is half the distance between quadrupoles in the beamline definition of fodo. We
thus conclude that a beamline is stable if the sum of the diagonal elements, the trace of the
full-turn matrix, lies between —2 and 2, which is referred to as the stability criterion for
transfer matrices describing rings.

It remains to compare the phase advance p to the numerical examples where we found
that the phase advance was around 0.16 if the focal length is f = 2.1 m. Inserting this value,
together with L = 2m in Equation 3.84 we obtain

p = 2arcsin(L/2f) = 2r x 0.158 (3.90)

which nicely shows the consistency of this analysis with the numerical experiments.

3.3.4 A complementary look at beta functions

We can exploit the view that there is “a harmonic oscillator at the bottom of every stable
system” by realizing the similarity of focusing in a periodic beamline as represented by
its focusing strength k;(s) = ki(s + L) with a harmonic oscillator that has a periodically
varying spring constant. Guided by this analogy, we may search for quasi-periodic solutions.
To do so, we start from the equation of motion for a single particle

2" +ki(s)z =0, (3.91)

where kq(s) is entirely determined by the magnetic setup, the lattice. We then make a
quasi-periodic Ansatz with functions u(s) and 1 (s) and integration constants A and ¢g

x(s) = Au(s) cos(¥(s) + ¢o) (3.92)
and calculate the derivatives

¥ = Au cos(¥(s) + ¢o) — Au’ sin(¢(s) + ¢o) (3.93)
o = Acos(¥(s) + ¢o) [u” — up] — Asin(¥(s) + ¢o) [2u"y)’ + ur)”]

and, after inserting in the equation of motion, we collect terms in front of the sine and
cosine

0 = Acos(¥(s)+ ¢o) [ — up + ki (s)u]
— Asin(v(s) + do) 200 + utt”] (3.94)
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which implies the following conditions among the functions u(s) and v (s)

0=u"—w)p? +ki(s)u and  0=2u'¢y' +up” . (3.95)
The second equation leads to
w// u/
— =-2— 3.96
'l,/]l U ( )
and integrating once leads to
1
Iny' = —2Inu=In(1/u?) or o = 3 (3.97)

Historically, u?(s) = B(s) is called the beta function, but it is essentially the amplitude of
the quasi-periodic oscillation which depends on the longitudinal position s in the beamline.
Moreover, instead of the constant A, often the Courant-Snyder invariant J = A?/2 is used.
We also note that the relation between u and v from Equation 3.97 can be written as

S ds/
a o B(s)
It implies that the phase advances by a lot at locations where 3(s) is small. Now rewrite
the equations for the trajectory x and z’ in terms of the beta function

¥(s) (3.98)

o 2J3(s) cos(p(s) + ¢o)
. 2J [ ;
o = — 5 [2 cos(1(s) + ¢o) +sin(y(s) + ¢o) (3.99)
= - % [a(s) cos((s) + ¢o) + sin(i(s) + ¢o)] ,

where the second equation follows by differentiating the first. The fact that the motion
is quasi-periodic and resembles a harmonic oscillator can be made explicit by solving the
previous equations for cos and sin with the result

x
V2Jp

Using the trigonometric identity

cos” (1(s) + o) + sin®(¢(s) + ¢o) = 1 (3.101)

and sin(1(s) + ¢o) = 1 Bz +ax] . (3.100)

cos(t(s) + do) = NoE

this leads to the expression

1+a? ,
B
= B(s)z + 2a(s)xx’ + v(s)x? (3.102)

2J = B+ 2azz’ +

which makes it obvious that the phase-portrait (Poincare-plot) of = and ' is an ellipse
that is parameterized in a way that is consistent with Equation 3.73. The orientation of
the ellipse varies along the lattice, because 3,a = 3'/2, and v = (1 + a?)/3 depend on the
longitudinal position s.
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Now, we reinvent transfer matrices by expressing the integration constants J and ¢q in
terms of the initial coordinates zo and (. At s = 0 we have

g = +/2JPycos g

Ty = —4f Qﬁ—j [cg cos ¢g + sin ] (3.103)

which we solve for cos ¢y and sin ¢y and replace the trigonometric functions in the general
equation for z and z’. We find

B

r = o [cos i + g sinv] g + /BB sin Y, (3.104)
0
¥ = L [(ag — ) costp — (1 + ag) sinp] zg + Bo [cos 1) — arsin ] @
5o 5 0

which is linear in the initial values z¢ and x{, and can be written as the following matrix

equation
T x
( o ) :R< xz ) (3.105)

where the matrix R can be written in the following form

i () (0 S (I B

which makes the dynamics obvious. First, the particle is mapped into normalized phase
space using [y and ag, followed by an oscillation. Finally, it is mapped from normalized
back to real space using  and «. If we calculate the matrix R at the end of the period
s = L, we recover the expression for the full turn matrix R in Equation 3.80 with ¥ = p,
ag = a, and By = 5.

3.3.5 Beam size and emittance

So far, we only analyzed the propagation of single particles, but now we will consider
how a beam, as characterized by its centroids X and its beam-matrix o, propagates along
a beamline. From general considerations, we already know that the averages, the beam-
centroids, behave just like a single particle, see Equation 3.69, whereas the beam-matrix
follows Equation 3.72, and our next task is to add the functionality to propagate beam-
matrices to the MATLAB script. The following few lines at the end of the MATLAB script
use Equation 3.72 to move the beam at the start of the beamline sigma0, here chosen
arbitrarily, to each position in the beamline and plot the beam size o, = /011 at each
position.

sigma0=[4,0;0,1];

for k=1:nmat
sigma=Racc(:,:,k)*sigmaO*Racc(:,:,k)’; % eq. 3.43
s11(k)=sigma(1,1); % record values for plotting

end

plot(spos,sqrt(sil)); xlabel(’ s[m]’); ylabel(’\sigma_x [mm]’)
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Figure 3.10 The beam size o, = /011 as a function of position s along the accelerator
for a mismatched (left) and a matched (right) beam.

This code snippet is all that is needed to propagate a beam with known initial beam matrix
sigma0 along a known beamline. Of course, normally we also want to know the other,
vertical beam sizes and the effect of momentum spread. We will address these points in due
time. For now we consider the plot for the above example. It is shown on the left-hand side
in Figure 3.10, where we observe that the beam size varies very irregularly and is at some
places much larger than the initial beam size of 2mm. This triggers the question whether
it is possible to find an initial beam size that propagates in a more regular pattern along
the beamline.

In order to find an initial beam matrix sigmaO that leads to a regularly oscillating beam
size, we observe that we can use the matrix A from Equation 3.81 to construct such a 2 x 2
beam matrix oq in the following form

g0 = e, AT (AT =, ( _Ba *70‘ ) (3.107)

with v = (1 + o?)/B and an undetermined parameter ¢,. The rationale behind this con-
struction is two-fold. First, all transfer matrices R have unit determinant det R = 1. This
implies that the determinant of beam matrices does not change, which follows from

det 5 = det(RoRT) = det(R) det(c) det(RT) = det(o) . (3.108)

It is therefore reasonable to give the conserved quantity a name, here emittance squared, or
det o = £2. Since the determinant of A is unity, the determinant of oy in Equation 3.107 is
chosen to be £2. The second reason to choose o in that form is that it reproduces after one
cell. This is easy to see by using the parameterization of the transfer matrix as R = A~t0A,
given in Equation 3.80. Calculating the beam matrix ¢ after one cell, we find
& = RooRT
T T
= A 'OAe, A7 (A_l) (.A_l(’)A)
T
= g Al0AAT? (Afl) ATOT (Afl)
T
= g, A7t (A_l)

00

’ (3.109)
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where we cancel terms whenever a matrix meets its inverse and we note that the inverse
of an orthogonal rotation matrix O equals its transpose, which allows us to cancel the
rotations. We thus find that the beam-matrix g, as defined in Equation 3.107, reproduces
itself after one cell. We immediately try this out and use Equation 3.89 to extract o and 3
from a transfer matrix and encapsulate the procedure in a function R2beta() that receives
a matrix R and returns the tune @, and the Twiss parameters «, 3, and ~.

% R2beta.m, V. Ziemann, 240827
function [Q,alpha,beta,gammal=R2beta(R)
mu=acos(0.5%(R(1,1)+R(2,2)));

if (R(1,2)<0), mu=2*pi-mu; end

Q=mu/ (2%pi) ;

beta=R(1,2)/sin(mu);
alpha=(0.5%(R(1,1)-R(2,2)))/sin(mu);
gamma=(1+alpha”2) /beta;

From the T'wiss parameters, we then construct the beam matrix according to Equation 3.107
eps0=1; sigmaO=epsOx[betald, -alphal; -alphaO,gammaO]

where we simply set the emittance to unity such that the 11-element of the sigma matrix
equals the beta function. Using this sigma0 and repeating the calculation of the beam sizes
along the beamlines results in the plot shown on the right-hand side in Figure 3.10, where we
observe a regularly oscillating beam size along the beamline, with much smaller excursions,
compared to the plot on its left. A beam matrix that repeats itself after one cell is called
a matched beam. On the other hand, sending an unmatched beam into a beamline results
in the very irregular beam sizes visible on the left in Figure 3.10. This is commonly called
beta beating.

Apparently there are two types of beta functions, matched and unmatched. The former
is defined by the requirement for periodicity for one cell, or more generally, a section of
a beamline, and the latter depends on an externally provided beam matrix, for example
generated in a particle source. In a straight beamline, the two types of beta functions do not
necessarily agree and this results in beta beating. In a circular accelerator there is a natural
periodicity requirement and the beta function is unique and given by the calculations leading
to Equation 3.89 on page 50. The two types of beta functions can also be categorized whether
they depend on the hardware of the beamline, which determines the periodic beta function,
or whether they depend on the beam matrix ¢ and we determine it from first calculating
the emittance from 2 = deto and then the beam’s beta function from 3 = o011/, and
« = —012/€;. This beta function we denote the beam beta function. It only provides a
convenient parameterization of the beam matrix. The two types of beta-functions agree if
the beam is matched to the lattice.

We also reiterate that matrix elements of the beam matrix are related to the beam size
by 02 = £,/ and angular divergence by 02, = £,7. The parameter « describes whether the
beam is convergent, if a > 0, or divergent, if a < 0. This is easy to see by considering the
definition of the off-diagonal element of the beam-matrix o153 = —e,a = (xz’) where the
second equation describes the matrix element as the average of the product of position and
angle over all particles in the beam. If the particles in the beam with positive position x point
downward, which means 2’ < 0, the particle trajectory points downwards and converges
toward the reference trajectory. Conversely, particles with z < 0 and positive angle 2’ > 0,
also move toward the axis. Thus if the average of the product zz’ is negative, most particles
converge to the axis and the beam is convergent. The minus-sign in the definition of «
therefore causes « to be positive for convergent beams.
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Figure 3.11 The solid line shows the horizontal beta function in one FODO cell
as a function along the position in the cell. The quadrupoles are located at 1
and 3m where the beta function changes significantly. The dashed line shows the
beta function after reversing the polarity of both quadrupoles, which corresponds
to the situation in the vertical plane.

When we design accelerators, we normally build small cells that are repeated many times,
with many magnets of the same type, which makes their production less expensive. These
small cells—our FODO cell is an example—are then characterized by the beta functions,
which gives an indication of the beam sizes. Figure 3.11 shows this for our FODO cell. The
solid line represents 3., and the dashed line 3,, the beta function in the vertical plane.
Note that the two lines are almost “mirror images” of each other, because the polarity of
quadrupoles in the two planes is reversed; quads are focusing in one plane and defocusing
in the other. Moreover, we find that the horizontal beta function £, is minimum in the
first quadrupole at s = 1m which is a defocusing quadrupole, and it is maximum in the
focusing quadrupole at s = 3m. The focusing quadrupole “bends the beta function back”
just as it is about to go through the roof. In the vertical plane, the situation is the converse.
The horizontally defocusing quadrupole focuses in the vertical plane, and the maximum
of the vertical beta function appears in the first quadrupole. Note that with the vertical
beta function 3, also the vertical beam size is maximum in the first quadrupole, where the
horizontal beam size is minimal as indicated by the minimum of the solid line in Figure 3.11.

What have we achieved so far? We started with a description of a beamline and explored
the motion of a single particle, or equivalently, the beam centroid and found that the motion
resembles a harmonic oscillator, as long as a stability criterion is satisfied. Then we explored
how to propagate beam matrices along the beamline and found parameterizations of the
transfer matrix and the beam matrix in terms of beta functions. This framework will give us
a solid base to describe and design beamlines and accelerators. But an extra ingredient that
is missing is the effect of momentum deviations of the beam, so-called chromatic effects,
and that is what we have to look at next.
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Figure 3.12 Effect of a quadrupole on particles with different energies. The focal point
of particles with higher energy is further downstream than that of the reference
particle and particles with lower energy.

3.4 CHROMATICITY AND DISPERSION

Here we consider two chromatic effects. First the effect of momentum-dependent focusing
in quadrupoles, called chromaticity, and then the effect of momentum-dependent bending
of dipoles, called dispersion.

3.4.1  Chromaticity

The first effect we discuss depends on the momentum-dependence of the focal length of
quadrupoles, the chromaticity. Recall that the inverse focal length is given by

l_gﬁBy_ e 0B, 1 Ni_i
fo fo

where § = (p — po)/po is the relative momentum offset of a particle with respect to the
reference particle. Apparently, the momentum error has the same effect as an additional
quadrupole with focal length — f,/d. Consequently the focusing is momentum dependent
and particles with different energies experience different focal lengths. This affects the lon-
gitudinal position of a focal point in a linear accelerator or the phase advance per cell and
thus the tune in a circular accelerator. Here we will consider the latter and explore the
effect of a single additional quadrupole of strength f = —fo/0 at a location where the beta
function is known to be 3. We assume a = 0 to make the calculation more traceable. Taking
it along it will drop out of the calculation in the end.

Adding an additional quadrupole to a ring that has tune @) starting at a location with
beta function B can be described by multiplying the transfer matrix of the quadrupole to
that of a ring with tune @ and is given by

B (L 1) (s Bczisngg)) (310

_ ( cos§27rQ) A Bsin(?wQ) A )
—sin(27Q)/f — cos(2wQ)/f cos(2mQ) — Bsin(27Q)/ f

f poxr  po(l+0) 0z fo(1+0)

(3.110)
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and we can now use Equation 3.89 to determine the new tune Q + AQ from R

2¢08(27(Q + AQ)) = Riy + Ray = 2c08(27Q) — ?sin(ZﬂQ) . (3.112)

Since we assume that the extra quadrupole is weak, we expect a small change in the tune
AQ and can rewrite cosine on the left-hand side as

cos(27(Q + AQ)) = cos(27Q) — 27 AQ sin(27Q) (3.113)
where we use that cos(2rAQ) =~ 1 and sin(2rAQ) =~ 27 AQ. Solving for AQ, we obtain
A= (3.114)
A f

which is a well-known (in accelerator circles) equation to describe the tune shift AQ as a
consequence of a quadrupole error of magnitude 1/ f . We notice that AQ is proportional to
the beta function B at the location of the error. This indicates that the beta function not
only describes the beam size, but also the sensitivity to quadrupole errors. Conversely, it is
important to pay special attention to the manufacturing tolerances of quadrupoles located
at positions where the beta functions are very large.

The tune shift AQ due to a momentum error § is found from realizing that f =—fo/o
and we find

B
AQ= ~drfo

which is the contribution of a single quadrupole with focal length fy to the chromaticity.
The chromaticity Q), = AQ/d for the entire ring is consequently given by summing over
the contributions of all quadrupoles

5 (3.115)

Bi
dmfi

Q. =AQ/s = —Z (3.116)

where the sum extends over all quadrupoles.
The quadrupole in the previous example is a thin quadrupole, but we can easily extend

the range of validity of Equation 3.114 to comprise long quadrupoles, which have an effective
focal length of 1/f ~ kyl. Thus we arrive at the tune shift from a long quadrupole as

Tt
AQ = 7/ B(s)inds | (3.117)
ar Jo
where k1 = (0B, /0x)/Bp is the normalized gradient of the quadrupole. For the chromaticity
due to long quadrupoles we have k; = —k1 and we obtain in the same way as before
1
Q. = 1 fﬁ(s)kl(s)ds , (3.118)

where the integral extends over the entire ring and picks up only contributions where ki (s)
differs from zero and that is in the quadrupoles.

For our simple FODO cell with thin quadrupoles, it is very easy to implement the
calculation of the chromaticity according to Equation 3.116 in a MATLAB script. We assume
that the calculation of the matched beam matrix and the beta functions is done previously,
and they are stored in an array beta(). Then, we only have to loop over all elements and
add the contributions from the thin quadrupoles in the following code snippet.
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xi=0;
ic=1;
for line=l:nlines
for seg=1:beamline(line,2)
ic=ic+1;
if beamline(line,1)==2
xi=xi-beta(ic)/(4*pi*beamline(line,4));
end
end
end
disp([’Chromaticity = ’ num2str(xi,4)])

In the end, the numerical value of the chromaticity is displayed. In case we have to deal
with long quadrupoles, we need to sum over their respective ki-values weighted by the beta
functions, but we leave that as an exercise.

A large value of the chromaticity is undesirable because it causes the tunes to vary
significantly with the momentum of the beam particles, and this has an important influence
on the stability of the beam. To alleviate this dependence we thus need to compensate the
chromaticity, but defer this task to Sections 8.4.4 and 8.5.4. Instead, we now turn to the
momentum-dependence of dipole magnets.

3.4.2 Dispersion

We already considered the momentum dependence of the deflection angle of dipoles in
Figure 3.5, which led to the transfer matrix for a dipole given in Equation 3.36 on page 35.
We see that a dipole magnet has the property of giving a particle a small horizontal change
in position and offset, which is proportional to the momentum offset § and is represented by
the sixth column of the transfer matrix in Equation 3.36. Even if the particle was initially
on-axis, it starts to deviate from the reference trajectory, and, provided the beamline is
stable, starts to oscillate. The amplitude of this oscillation is proportional to § and the
trajectory, normalized to 0, is called the dispersion, often denoted by D. In this way the
transverse offset T of the trajectory, due to the momentum offset, is £ = DJ. It thus describes
how much the trajectories are separated due to their momentum, and we may call it the
spectrometer function. Though this name is not commonly used, it describes the function
of the dispersion rather well.

We can treat this effect in our MATLAB simulation by including the momentum depen-
dence in the transfer matrix. In order to keep the discussion transparent, we only consider
the horizontal plane with z and z’ and assume that all dipoles have horizontal deflection
angles and affect the horizontal motion, only. We therefore can model this by extending
the previous simulation to 3 x 3 matrices where we place the entries in the sixth column
of Equation 3.36 into the third column of our reduced model. The transfer matrix for the
horizontally deflecting sector dipole magnet is then given by

cos ¢ psing  p(1 — cos @)
R=| —sin(¢)/p coso sin ¢ (3.119)
0 0 1

with the deflection angle ¢ = e BL/py and the radius of curvature p = py/eB. The MATLAB
function that implements this is the following

% SB.m, sector bend, V. Ziemann, 240828
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function out=SB(L,rho);

phi=L/rho;

out=eye (3);

if abs(phi)<le-8
out(1,2)=L;

else
out(1:2,1:3)=[cos(phi) ,rho*sin(phi) ,rho*(1-cos(phi));

-sin(phi)/rho,cos(phi),sin(phi)];
end

where we see that the matrix is a straight translation of the matrix in Equation 3.119. In
the same spirit, we update the transfer matrix for the drift space to 3 x 3 format by adding
a third row and column with unity on the diagonal.

% DD.m, drift space, V. Ziemann, 240828
function out=DD(L)

out=eye (3);

out(1,2)=L;

Likewise, we introduce the 3 x 3 transfer matrix for a thick quadrupole.

% QQ.m, thick quadrupole, V. Ziemann, 240828
function out=QQ(k,L)
ksq=sqrt (abs(k));
out=eye(3);
if abs(k) < 1le-6
out(1,2)=L;
elseif k>0
out(1:2,1:2)=[cos(ksq*L),sin(ksqg*L) /ksq;
-ksqg*sin(ksqg*L) ,cos(ksq*L)];
else
out(1:2,1:2)=[cosh(ksq*L),sinh(ksq*L)/ksq;
ksq*sinh(ksq*L) ,cosh(ksq*L)];
end

Note that only the transfer matrix for the dipole has non-zero entries in the third column.
This implies that only dipoles can change a zero dispersion to a non-zero value.

In the function calcmat.m that calculates the transfer matrices we account for the sector
dipole and the thick quadrupole by adding the appropriate case statements and call the
functions SB() and QQ (), respectively, as indicated in the following code snippet.

switch beamline(line,1)

case 4 % sector dipole
phi=beamline(line,4)*pi/180; % convert to radians
rho=beamline(line,3)/phi
Rcurr=SB(beamline(line,3),rho);

case 5 % thick quadrupole
Rcurr=QQ(beamline(line,3) ,beamline(line,4));
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Figure 3.13 The trajectory of a particle with momentum offset § = 1072 in a FODO
lattice with bending magnets.

After these updates, we are ready to explore what happens to a particle with a non-zero
momentum offset . We use the following beamline description for our exercise. It is based
on the example in Chapter 2 but with dipoles bending by 20 degrees only. In order to obtain
smoother graphics, we sub-divide the elements in short segments, and the entire beamline
consists of three FODO-cells.

fodo=[ 1 5 0.5 0 ;

5 5 0.2 -0.1799;
1 3 0.5 0 ;
4 10 0.2 20/10 ;
1 3 0.5 0 ;
5 5 0.2 0.1799;
1 5 0.5 0 1;

beamline=repmat(fodo,3,1);

We explore the dispersion generated by the dipole by launching a particle with initial
coordinates (x,z’,8) = (0,0,1073) and display its horizontal position along the beamline
in Figure 3.13. We observe that the particle, launched at the left stays on-axis until it
encounters the first dipole magnet at s = 5m, whence it starts to deviate from the axis.
Next it encounters a focusing quadrupole at s = 7.5 m that slightly bends the particle back
toward the axis, but not enough. The particle increases its distance from the axis, even
more so after passing the defocusing quadrupole at s = 15m, but eventually it is bent back
significantly by the focusing quadrupole at s = 22.5m and so forth. But it is apparent that
the orbit is non-periodic.

Note that we added a graphical representation of the magnets in the beamline lattice
at the bottom of the plot in order to aid interpretations of data on the plot. The function
drawmag() that accomplishes this is discussed in Appendix B.5. It simply loops through
the magnet lattice and draws rectangles of the magnets at the correct positions. We add
input parameters vpos and height to place the drawing vertically on the plot so that it
looks good.

But back to the dispersion. The question arises whether we can also find launch con-
ditions for the dispersion that causes it to be periodic. For this, we inspect the 3 x 3
transfer-matrix through a single FODO cell which for the above lattice file is
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Rturn=
1.1499 8.5130 1.5190
-0.2279 -0.8177 0.1619
0 0 1.0000

This matrix has the following structure

R 1?11 3;12 316
R = Ro1 Rz Rag (3.120)
0 0 1

and we ask ourselves whether we can find a launch vector (z,2’,d) in which we also require
z and z’ to be proportional to ¢ that reproduces after one period. Thus we want to find a
vector (x,2',0) = (D6, D’6,0) that fulfills the following periodicity condition

D 1:%11 1:%12 ]:%16 D
D’ = Rgl R22 RQG D’ . (3121)
1 0 0 1 1

The first two lines can be rearranged and lead to

1-— Rll *ng D Rlﬁ
. . = N . 3.122
( —Roy 1—Rzz>(D/> (Rzﬁ) ( )

Solving for the dispersion (D, D’) we find

D 1 1 — Ry Ris R16
) = _ § S R 2 A . (3.123)
D (1 — R11)(1 — Ra) — R12Ray Ray 1 - Ry Rae
which denotes the periodic, or equilibrium, dispersion values at the start of the periodic

beamline that is described by R. These manipulations are easy to implement in MATLAB
as shown in the following snippet:

D=(eye(2)-Rturn(1:2,1:2))\Rturn(1:2,3)
dd0=[D;1]; % initial periodic dispersion
for k=1:nmat

x(k)=Racc(1, :,k)*ddo0;
end
plot(spos,x,’k-.");

We show the plot of the periodic dispersion function D, together with the horizontal beta
function, in Figure 3.14. Particles with energy error § travel on periodic trajectories and
have horizontal positions DJ along the accelerator, where D, the dispersion. It is shown as
the dashed trace in Figure 3.14.

The finite dispersion can have a major influence on the beam quality. Particularly in
electron rings, it determines the emittance by a process we now turn to.

3.4.3 Emittance generation

In the previous sections we found that the dispersion trajectory D(s) is the closed orbit
of a particle with momentum offset 4. If we assume that a particle with energy offset d; is
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Figure 3.14 Matched dispersion (dashed) and horizontal beta function (solid).

initially on its equilibrium orbit, the dispersion trajectory DJ; is as shown in Figure 3.15. If
that particle loses energy by emitting a photon and has the new energy offset do < d; at a
position with non-zero dispersion, it will stay at transverse position DdJ; but has energy ds.
The equilibrium orbit of the particle with momentum 05 is, however, Dd, and the particle
finds itself away from its new equilibrium orbit and will therefore start oscillating around
the new equilibrium orbit. In summary, initially the particle is on its equilibrium orbit,
but through the energy loss, the equilibrium orbit has jumped away and the particle starts
betatron oscillations around the new equilibrium orbit. The same argument holds for D',
the derivative of the dispersion. Note that this process is the dominant mechanism that
determines the emittance in electron storage rings and synchrotron radiation sources. We
will discuss this topic in depth in Section 10.1.

The change in betatron state vector (x,2’) that the particle receives through a relative
momentum loss § at a position with dispersion D, is given by

< N ) = —5( 5, ) (3.124)

D3. Photon

"l------..’l

Figure 3.15 The mechanism that causes the excitation of betatron oscillations by a
random energy loss.
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or ¥ = —§D. On the m-th turn the particle experiences the momentum change §,, with
corresponding betatron state change & = (x,,2),) = (D, D')d,,. After n turns, we then
have to add all Z,,, over the previous turns with m <n

n

( i; ) =-> 5mR”—m( 3 ) . (3.125)
m=1

The Courant-Snyder invariant 2J, after n turns, as defined in Equation 3.73, is given by

2.J,, = yx2 +20x, 2,4+ B!, where a, 3, and v are the Twiss parameters at the location where

the momentum kicks 4,,, are applied. Expressing the transfer matrix R in Equation 3.125

by the representation from Equation 3.80 and after some algebra, we find for 2J,

2J, = (yD* + 2aDD’ + BD") > " 618, cos(2n(k — 1)Q) . (3.126)
k.l

The emission of photons is a random process, and we can therefore assume that the §,, from
different turns m are statistically independent. For the time being, we denote their rms value
by &,ms, but we will later calculate it from the spectrum of the emitted synchrotron radiation
in Section 10.1. For the sum in Equation 3.126, we then obtain

> 6k cos(2m(k — 1)Q) = 17,40k (3.127)

rms
k,l

where dy; is the Kronecker delta, which is unity for k£ = [, and zero otherwise. If we fur-
thermore assume that we take the average over a large number of particles, we use the
ensemble average ¢ = (J) over the Courant-Snyder invariants, which is the emittance & of
the ensemble. For the final result, we find

de  ~yD?+2aDD’'+ D"? ,

— = 1) 3.128

dt T ™ms ( )
where T is the revolution time. We find that the emittance growth de/dt is proportional to
H =~yD? +2aDD’ + D" (3.129)

and we immediately see that zero dispersion is desirable at locations, where the particles
change their momenta, as is the case in accelerating cavities and, especially important for
synchrotron light sources, in dipole magnets, where the beam loses energy due to syn-
chrotron radiation. The design of small emittance lattices is focused on designing magnet
configurations that have small beta functions and small dispersion, in particular in the
dipoles. We shall use this as a guideline when discussing different types of lattices in Sec-
tion 3.7.5 and return to the details of the emission of synchrotron radiation in Section 10.1.

3.4.4 Momentum compaction factor

The dispersion trajectory that we calculated in the previous section describes the orbit of
a particle with momentum offset §. If such a particle traverses a dipole magnet, it will lie
further on the outside or the inside, depending on the sign of the dispersion function at that
location and the sign of 4. If it lies further outside, it will have a longer path to travel and
therefore will arrive later at the exit of the dipole. The change in length Al with momentum
variation of the path in a single dipole with bending radius p is given by

Al [ D(s)
7_/0 s (3.130)
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In the case of a circular accelerator, we can sum the path-length changes over all dipoles and
normalize to the circumference C' of the ring to obtain the so-called momentum compaction

factor o defined by
o= ac = 1 wds (3.131)
Co C all dipoles 4
which gives the fractional change of the circumference normalized to the energy (AC/C)/4.
This quantity plays a central role for the stability of the longitudinal motion of the particles
in a storage ring, as we shall see in Chapter 5.

So far we have covered the motion of particles in one transverse plane and the momen-
tum dependence, but in general the motion in all three planes, horizontal, vertical, and
longitudinal, may be coupled and we address the motion in the two transverse planes in the
following section.

3.5 FOUR-DIMENSIONAL AND COUPLING

The first thing we have to do in order to consider the simultaneous effect of both transverse
planes simultaneously is to update the transfer matrices to four dimensions. This is rather
straightforward, and we do not show the code here but refer the reader to Appendix B.5.

Note that all 4 x 4 transfer matrices we encountered so far were block-diagonal and
this causes the motion in the two planes to be independent, or uncoupled in the sense
that a particle launched on a horizontal oscillation will always stay in the horizontal plane.
Conversely, a particle with a pure vertical oscillation stays in the vertical plane. In this
way we can treat uncoupled systems as two independent 2 x 2 systems and can apply the
analysis-methods from Section 3.3, once for the top left 2 x 2 block of the transfer matrix
and once for the block on the lower right. We can therefore apply the R2beta function to
calculate tunes and beta functions for systems in the same way as before. We just use the
top left or lower right 2 x 2 transfer matrix as input to R2beta.

This situation changes dramatically once we introduce coupling elements, such as
quadrupoles that are installed with roll angles. The matrix for a roll angle is given in
Equation 3.55 and the MATLAB function that returns it is the following:

% ROLL.m, roll-angle around s-axis, V. Ziemann, 240828
function out=ROLL(phi) % phi in degree

c=cos (phi*pi/180); s=sin(phi*pi/180);

out=zeros (4);

out(1,1)=c; out(1,3)=s; out(2,2)=c; out(2,4)=s;
out(3,1)=-s; out(3,3)=c; out(4,2)=-s; out(4,4)=c;

which is self-explanatory. We refer to this transfer matrix by the code 20 in the lattice file
and place the roll angle ¢, in degrees in the fourth column of the lattice description. Once
the function for the transfer matrix is written, we need to make the matrix calculation
routine calcmat.m aware of it by adding the following two lines to the switch statement

case 20 Y coordinate roll
Rcurr=ROLL (beamline(line,4));

such that it is automatically included in the calculation of the accumulated transfer matrices
stored in the array Racc. We illustrate the effect of coupling the planes by sandwiching the
focusing quadrupole in the FODO lattice between elements of opposite roll angle. This
introduces a rolled coordinate system for the traversal of the quadrupole. The lattice file
for the FODO cell is thus modified to look like
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Figure 3.16 The beta functions 3, and 3, along a beamline with a quadrupole in the
second FODO cell that is rolled by 5degrees. It causes the beta functions to beat
downstream.

1 5 0.2 0
2 1 0 -2.1
1 1 0.2 0
20 1 0 5
2 1 0 2.1
20 1 0 -5
1 5 0.2 0

We store this lattice description in a file named fodoroll.bl and load it with
fodor=dlmread(’fodoroll.bl’)

Calculating the transfer matrix from start to end of this file, we find that the matrix is no
longer block-diagonal, but has non-zero elements in the top right and lower left 2 x 2 blocks.

Let us explore what happens in a long beamline of eight FODO cells, where the focusing
quadrupole in the second cell is rolled by 5 degrees, but we enter the system with a beam ma-
trix that is matched to the unperturbed FODO cells. The script display_beta_beating.m
that accomplishes this can be found in the online documentation. In this script we first
load the unperturbed FODO cell and determine the matched beta functions with R2beta
and build the matched beam matrix sigma0. Then we change the beamline to consist of
an unperturbed FODO cell, one perturbed with the rolled quadrupole and six more normal
ones before updating the transfer matrices for the long beamline and plotting the beam
sizes 0, and o, along the beamline and show the result in Figure 3.16. Here we see the sizes
initially follow a regular pattern until they encounter the rolled quadrupole at s = 7m,
at which point the beam-sizes start to deviate from their regular oscillations. The rolled
quadrupole apparently causes a mismatch.

We explore this mismatch further by rolling both quadrupoles by the same angle and
also find that the off-diagonal blocks are populated with non-zero elements. So, the question
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arises: how do we calculate these quantities in a coupled beamline? Luckily, this problem
was solved before, and we discuss the method first introduced by Edwards and Teng [15] and
later refined by Sagan and Rubin [16]. They devised an algorithm to find a parameterization
of the transfer matrix R that brings it into block-diagonal form such that we can write

R=1"" < ]gz %2 )T (3.132)
Y

where 05 are 2 X 2 matrices containing only zeros and the 2 x 2 matrices Rl and Ry are the
transfer-matrices of two eigenmodes that can be written in the form given in Equation 3.80
such that we have R, = A;'0,A, and a similar expression for R,. The magic of [15, 16]
is the construction of the 4 x 4-matrix T that achieves the de-coupling. Here we do not
go into the details, but in Appendix B.5 we provide the MATLAB function sagrub.m that
implements the algorithm described in [16]. The function receives the 4 x 4 full-turn matrix
as input and returns 4 x 4 matrices A, O, and T as well as an array of parameters such that
we have

R=T'A'OAT (3.133)

(A, 0, [0, 0,
A= ( 0 A, ) and 0= < 0, O, > (3.134)

and the additional array makes the raw parameters such as eigentunes, eigenbeta functions,
and coupling parameters available to the calling program. For the order of the parameters
see Appendix B.5 but the first six parameters Q1, ay, 81, Q2, a2, and [ are the eigentunes
and the eigenbeta functions for the two eigenmodes.

We immediately use this to investigate the beamline with the rolled quadrupole that
led to the beam sizes shown in Figure 3.16 and assume that it represents a periodic lattice
such that it makes sense to display periodic eigenbeta functions. For this purpose we need to
calculate the full-turn matrix at every point along the beamline and then perform the Sagan-
Rubin decomposition to extract the eigenbeta functions and plot them. This is accomplished
by the following MATLAB script.

with

% display_sagrub_betas.m, V. Ziemann, 240828
clear; close all
fodo=dlmread(’fodo.bl’); fodor=dlmread(’fodoroll.bl’);
beamline=[fodo;fodor;repmat(fodo,6,1)];
[Racc,spos,nmat,nlines]=calcmat (beamline) ;
Rturn=Racc(:,:,end); % full-turn-matrix at start
betal=zeros(1,nmat); beta2=betal;
for k=1:nmat
R=Racc(:,:,k)*Rturn*inv(Racc(:,:,k)); 7% move FTM to point k
[0,A,T,pl=sagrub(R); betal(k)=p(3); beta2(k)=p(6);
end
plot(spos,betal,’k’,spos,beta2,’k-.",’LineWidth’,2);
xlabel(’ s[m]’); ylabel(’\beta_1, \beta_2 [m]’);
axis ([0, max(spos), 0, 1.05*max([betal,beta2])])
x1im([0, max(spos)]); ylim([0, 1.05*max([betal,betall])])
set(gca, ’FontSize’,16)

After loading the files with the beamline descriptions, we determine the full-turn matrix
Rturn at the start of the beamline. After allocating space for the beta functions betal and
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Figure 3.17 The periodic eigen beta functions along the beamline with one
quadrupole rolled by 5 degrees.

beta2, we loop over all positions k along the beamline and calculate the full-turn matrix
starting at that position. To do so we first apply the inverse of Racc(:,:,k) to move to
the start of the beamline, then we move forward through the entire beamline with Rturn
and then on to position k with Racc(:,:,k) in the following turn. In the next line we pass
this “moved” full-turn matrix R to sagrub and calculate the eigentunes and beta functions.
Those we save in betal and beta2 and later plot them in Figure 3.17. There we see that
now the beta functions are periodic, but they show a significant beating. The constraint
to maintain periodicity actually amplifies the effects of the rolled quadrupole compared to
simply plotting of beam sizes along the beamline with initial beam matrix held fixed, which
was earlier shown in Figure 3.16.

As a final example, we consider the effect of a rolled quadrupole on the eigentunes and
how well we can compensate the tunes with another upright quadrupole; a procedure that
is known as the closest-tune coupling measurement. This method is based on the idea that
the eigenfrequencies of two oscillators cannot coincide if they are coupled and the closest
difference between the eigentunes is proportional to the coupling constant. This idea is easy
to verify by calculating the eigenfrequencies of a system made of two pendula coupled with
an additional spring. We build an analogous system with the beamline we used before and
roll the quadrupole by only 1degree instead of the 5degrees we used earlier. The tunes
move from (Q1,Q2) = (0.2639,0.2639) to (0.2583,0.2694), and we now scan the focusing
quadrupole in the first FODO cell and record the eigentunes for all quadrupole settings.
The following MATLAB script

fodo=dlmread(’fodo.bl’); fodor=dlmread(’fodoroll_ldeg.bl’);
beamline=[fodo;fodor;repmat(fodo,6,1)];
k=0;
for ££f=1.85:0.01:2.3
k=k+1; xval(k)=ff;
beamline(4,4)=ff; % QF is 4th element and F is 4th column
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[Racc,spos,nmat,nlines]=calcmat(beamline); % update lattice
[0,A,T,pl=sagrub(Racc(:,:,end)); Q1(k)=p(1); Q2(k)=p(4);

end

plot(xval,Q1,’k*’,xval,Q2,’k*’); x1im([1.83,2.32]);

xlabel(’ Focal length [m]’); ylabel(’Eigen tunes Q_1, Q_2’)

produces Figure 3.18. In the script, we load the beamline as before, and loop over the desired
range of focal length values, update the correct slot in the beamline, recalculate the transfer
matrices with calcmat and determine the eigentunes with sagrub before storing the values
in the arrays Q1 and Q2. Finally we plot the values and annotate the axes. In Figure 3.18
we clearly see the tunes varying with the quadrupole strength, but they are unable to come
closer than |Q1 — Q2| &~ 0.013. It turns out that this smallest achievable difference can be
used as a measurement for the “strength” of the coupling and is commonly used to adjust
other skew-quadrupole correctors in order to minimize the coupling or the “closest tune.”
We will return to this topic in Chapter 8, where we will also discuss a method to compensate
the coupling.

But now we move on to discuss how to tailor beamlines to serve specific purposes, such
as having a certain phase advance or beam size at specific points.

3.6 MATCHING

In the previous sections we used beamline description files that were defined beforehand
without further discussion. But this is not always the case. Often we have to find quadrupole
settings or values of other elements such that a beamline fulfills a certain purpose. This is
actually the task we set out to address in the first paragraph of this chapter on page 28.
A typical example is adjusting the phase advance of a FODO or other cell to certain val-
ues or to find quadrupole values that cause the beam to have a certain beam-size at an
experimental station. There the experiment may either require a beam waist, a focus, or
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Figure 3.18 The eigentunes as a function of the focal length of the first focusing

quadrupole while the second focusing quadrupole is rolled by 1degree. Note that
there is a minimum separation of the eigentunes that can be achieved.
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maybe a particularly parallel beam. The procedure of adjusting magnet values in order to
achieve constraints is commonly called matching, and we explore a few simple examples in
this section before using it more extensively later on.

3.6.1 Matching the phase advance

The first example is to adjust the phase advance of a FODO cell to certain values, say
Q> =1/6 and Q, = 0.25. Since 1/6 of a full circle corresponds to 60 degrees, such a cell is
often referred to as a 60-90 degree FODO cell. Since we have two constraints to satisfy—
the phase advances—we need at least two parameters to vary and the obvious choices are
the two quadrupoles in a FODO cell. For convenience we just reproduce their beamline
description here

1 5 0.2 0
2 1 0-2.1
1 1 0.2 0
2 1 0 2.1
1 5 0.2 0

which is stored in the file fodo.bl. The parameters we want to vary are the focal lengths of
the quadrupoles, which reside in rows 2 and 4 and in column 4 in the beamline description.
Basically we need a program to adjust these values until the phase advances are those we
want. Luckily, we can use the MATLAB function fminsearch(), which has the purpose of
minimizing a function, to achieve this. All we have to do is to define a function that tells
fminsearch() how close we are to the desired values. That function we call chisq_tunes()
and it is defined by the following code:

% chisq_tunes.m, find focal length to set Qx and Qy of cell, VZ, 240828
function chisq=chisq_tunes(x)

global beamline % need info about the beamline

beamline(2,4)=x(1); % change quadrupole excitations

beamline (4,4)=x(2);

[Racc]=calcmat (beamline) ;

Rturn=Racc(:,:,end);

[Qx,alphalx,betalx,gammaOx]=R2beta(Rturn(1:2,1:2));
[Qy,alphaly,betaly,gammaly]=R2beta(Rturn(3:4,3:4));

chisq=(Qx-0.166666) "2+(Qy-0.25)"2; % desired tunes

This function receives an array x with focal length values for the two quadrupoles and
plugs them into the proper slot in the beamline description beamline that we pass to the
chisq_tunes function as a global variable. There are other, more robust, ways to pass
extra parameters to this function, but using global is the most transparent and least
clumsy. Once beamline is updated with the new values, we call calcmat to update the
transfer matrices and determine the phase advances with R2beta. This works well with an
uncoupled beamline, but in coupled beamlines we would need to use sagrub to calculate the
phase advances. Finally, we return the squared difference of the calculated to the desired
tunes as variable chisq.
We use the function chisq_tunes in the following example:

% match_phase_advance_and_display.m, V. Ziemann, 240828
clear; close all
global beamline
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beamline=dlmread(’fodo.bl’);

x0=[-3,3.]; 7% starting guesses
[x,fval]l=fminsearch(@chisq_tunes,x0) % matching
dlmwrite (’fodo6090.bl’ ,beamline,’\t’); % save to file
[Racc,spos,nmat,nlines]=calcmat (beamline) ;
Rturn=Racc(:,:,end);
sigmaO=periodic_beammatrix(Rturn,1,1);
plot_betas(beamline,sigma0l); set(gca,’FontSize’,16)

After clearing the workspace and declaring the beamline to be a global object, we de-
fine starting values for the focal lengths of the quadrupoles to be used in the search and
launch the minimizer fminsearch to minimize the function chisq_tunes. It returns the
final quadrupole values in the variable x and the achieved minimum values in fval. If the
matching was successful, fval should be very small, say 108 or less. Finally we save the lat-
tice description beamline, which now contains the updated values, to the file fodo6090.b1
such that we can retrieve it later to use in other contexts. At this point we use the function
periodic_beammatrix to calculate the periodic beam matrix, which is constructed from
the two 2 x 2 blocks on the diagonal of Rturn using R2beta. Consult Appendix B.5 for
the code and further explanations. Finally plot_beta() plots the beam sizes or the beta
functions in the matched FODO-cell. We do not reproduce the code here, but move on to
find quadrupole settings to make small beams for experiments.

3.6.2 Match beta functions to a waist

In this example, we use three FODO cells with 60- and 90-degree phase-advance from
the previous example and adjust the last four quadrupoles to create a double waist with
Bz = By = 1 m after an additional 1 m long drift space at the end of the beamline. We need
four quadrupoles in order to fulfill the requirements 3, = 8, = 1m and o, = oy = 0. The
latter requirement defines the waist and the requirement for the beta functions at the waist.
The MATLAB function used to define the beamline and engage the minimizer fminsearch
is the following:

% match_to_waist.m, V. Ziemann

clear all; close all

global beamline sigmaO
beamline=dlmread(’fodo6090.bl’);
[Racc,spos,nmat,nlines]=calcmat(beamline); Rturn=Racc(:,:,end);
sigmaO=periodic_beammatrix(Rturn,1,1); 7% epsx=espy=1
extra_drift=[1,5,0.2,0];

beamline=[repmat (beamline,3,1) ;extra_drift];
x0=[-1,2.,-2,2];

[x,fval]l=fminsearch(@chisq_waist,x0)
plot_betas(beamline,sigma0)

First we clear the workspace and define the beamline description beamline and the initial
beam matrix sigma0 as global variables because we will need them inside the x?—function
and this is the easiest way to make them accessible. Then we load the beamline description
of the FODO cell with a phase advance of 60 and 90 degrees that we saved in the previous
example and calculate the matrices for one FODO cell with calcmat. Passing Rturn and
the horizontal and vertical emittances to periodic_beammatrix returns the periodic sigma
matrix sigmaO that we use as initial beam matrix. We then define an extra drift space
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that we want to add to the end of the beamline, because that is where our experimental
station is located. Now we extend the beamline to contain three FODO cells and add the
extra drift space at the end before defining starting values x0 for the four quadrupoles we
want to vary. Finally, we call the minimizer and plot the beta functions with the function
plot_betas, which encapsulates the plotting and axis annotations in a separate function
and is also explained in Appendix B.5.

The x2-function that we pass to the minimizer and that will find the quadrupole values

is the following;:

% chisq_waist.m, find focal length to set waist at end, V. Ziemann, 240828
function chisq=chisq_waist(x)

global beamline sigmaO % need info about the beamline
beamline(7,4)=x(1); % set quadrupole focal lengths
beamline(9,4)=x(2);

beamline(12,4)=x(3);

beamline(14,4)=x(4);

[Racc,spos,nmat,nlines]=calcmat(beamline); Rend=Racc(:,:,end);
sigma=Rend*sigmaO*Rend’ ;
chisq=(sigma(1,1)-1)"2+(sigma(3,3)-1) "2+sigma(1,2) "2+sigma(3,4)"2;

As input parameters, we receive the vector x with the four quadrupole values and assign
them to the strength parameter, here the focal lengths, of the quadrupoles. The position of
the quadrupoles are easily determined from inspecting the array beamline. We pick the lines
with a code for a quadrupole. After the quadrupoles have their new values, we calculate the
beamline matrix with calcmat and propagate the beam matrix at the start of the beamline
sigmaO to the end and finally calculate the chisq as the sum of squares of the difference
of the beam matrix elements to their desired values which is also returned to the calling
program.

Running the MATLAB script match_to_waist.m will produce the plot on the left-hand
side in Figure 3.19. It shows that both beta functions at the end are very small and the
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Figure 3.19 Matching a beam waist of 3, = 3, = 1m at the end of the beamline.
The solid lines are the horizontal beta function and the dashed the vertical. The
left plot uses the regular quadrupole spacing of the FODO cells from the previous
example, and on the right plot the fifth quadrupole is moved closer to the final
quadrupole, which relaxes the vertical beta function significantly.
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Original

Figure 3.20 Point-to-point imaging with a lens.

x? at the end fval is on the order of 1072 which indicates that we actually fulfill the
requirements with the quadrupole settings x= -0.9315, 1.5834, -1.3585, 1.6292 albeit
at the expense of a rather large vertical beta function in the fifth quadrupole.

We explore to move quadrupoles around by moving the fifth quadrupole to be placed only
0.6 m upstream of the sixth to create a quadrupole doublet. We simply add the instructions

beamline(11,2)=13; 7% change quadrupole positions
beamline(13,2)=2;

just before calling fminsearch(), which changes the repeat count of the drift spaces such
that the first becomes a little longer and the second, in-between the quadrupoles, corre-
spondingly shorter. Running the minimizer with the changed geometry once again results
in the beta-functions shown on the right-hand side of Figure 3.19 with a significantly
relaxed vertical beta function.

3.6.3 Point-to-point focusing

In the next example, we consider a simple imaging system where we require to image one
focus to a second focus, which is commonly called point-to-point focusing, as illustrated in
Figure 3.20. The system is given by a lens with focal length f sandwiched between two
drift spaces of length b = 2m and ¢ = 1m, and we want to determine the required focal
length f. The point-to-point requirement implies that all rays starting in the middle of the
beam pipe with = 0 but having a non-zero angle 2’ to cross the center of the beam pipe
after the second drift space. This is illustrated by the solid ray starting at the foot of the
original image on the right which ends at the foot of the inverted image at the end of the
beamline. The requirement for point-to-point focusing is thus that all angles at the start of
the beamline are mapped to the same point on the optical axis at its end. But the matrix
element that maps angles, having index number 2 in the transfer matrix, to a position,
having number 1, is the Rys.

The y2-function to minimize therefore only contains the square of the R;5. The following
code simply assigns the new focal length £ to the entry in the beamline description that
holds the focal length of the thin quadrupole, calculates the transfer matrices and assigns
the square of the Ry2 at the end to the returned value chisqg.

% chisq_R12.m, fit for matrix element, V. Ziemann, 240828
function chisq=chisq_R12(f)
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global beamline

beamline(2,4)=f;
[Racc,spos,nmat,nlines]=calcmat (beamline) ;
chisg=Racc(1,2,end) "2;

We minimize this cost function, named chisq-R12(), in the following MATLAB script,
where we first define the beamline to be global in order to make it easily accessible inside
chisq_R12() before defining the beamline. After assigning a starting guess for the minimizer
fminsearch, we use the chisq R12() function and the starting guess as input argument.

% match_point_to_point.m, match the R12, V. Ziemann, 240828
global beamline
beamline=[1, 1, 1, O; % g
2, 1, 0, 3; % £
1, 1, 2, 0]1; % b
f0=3; 7 starting guess
[f,fval]l=fminsearch(@chisq_R12,f0)

Since we omitted the semicolon after the call to fminsearch, the final value for the focal
length f and the final value of the cost function fval are directly returned. For the focal
length we obtain £=0.6667 which is close to 2/3.

This example was deliberately chosen to be very simple, and we can also solve the
problem, quasi by hand, by explicitly calculating the matrix element R, and solving for
the focal length that makes it zero. For the matrix R at the end of the beamline we have

(3 DG D-( ) e

and the requirement that the R;i5 matrix element must be zero yields

bg 1 1 1

7 0 or b + PR 0 (3.136)
which returns the well-known imaging equation for lenses from light optics. Solving for the
focal length f and inserting values for b and g, we recover f = 2/3. Thus, we find that
the requirement for point-to-point imaging leads to the well-known imaging equation. In
this simple system we can perform the optimization analytically. On the other hand, if we
have to deal with a more complex beamline, of course this becomes rather clumsy and we
must resort to numerical solutions, which is much more convenient, especially if several
constraints have to be fulfilled simultaneously.

In this section we found out how we formulate requirements as cost functions and
use fminsearch to satisfy these requirements by varying a number of parameters such
as quadrupole values or, in fact, any parameter in the beamline description. This works
nicely for phase advances, for beta functions, and also for individual matrix elements. Gen-
eralizing from these simple examples is straightforward, and we will use that as a tool in
the next section, where we discuss a number of beam-optical modules that are frequently
used as the building blocks to construct larger systems, up to entire accelerators.

b+g—

3.7 BEAM-OPTICAL SYSTEMS

In this section we address several of the often-used beam-optical modules. One example
we encountered before, the FODO cell, is a module that is frequently used to cover long
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Figure 3.21 A telescope images the source plane to the image plane at the interaction
point (IP) with demagnification — fo/ f1.

distances with a simple magnet lattice. The arcs of the Large Hadron Collider (LHC) consist
of FODO cells with additional dipole magnets to force the particles on their circular path
along the 27km long beam pipe. Quadrupoles are used to focus deviating particles back
toward their design orbit and thereby ensure stable operation. While the FODO cells serve
to transport the beam through the approximately 3 km long octants, the beams need to be
focused to extremely small sizes inside the detectors, such as ATLAS and CMS, that are
located in straight sections between the octants. In order to demagnify the beams to sizes
of tens of microns, other optical modules are used, in this special case the telescopes.

3.7.1 Telescopes

We start by utilizing the imaging equation from Section 3.6.3 and build telescopes, which
are often used to obtain small beam sizes, as is the case in the collision or interaction points
(IP) of colliding-beam accelerators such as the LHC.

Using two lenses with a drift space between them, it is possible to build an optical
telescope that has the desired optical properties. It creates a point-to-point image of the
image plane (near the arc) to the IP, which means that the R;o and the R34 are made
zero. Moreover, we also require that the imaging is parallel-to-parallel, which means that
the Rsp and Ry3 are zero. Consider a simple one-dimensional optical system as indicated
in Figure 3.21, where the beam comes from the right and first passes through a lens with
focal length f; and then through a drift space of length f1 + f2, whence the beam passes
the second lens with focal length fo, and after another drift space of length fo, it arrives
at the IP. We can easily write down the transfer matrix for the first drift-lens-drift module
with index 1 with the result

ne (08 (o D))= (ol ) -

Since we have chosen [; = f; the matrix simplifies to

Ry = < 710/ B n ) (3.138)

and we have a similar matrix Ry for the second drift-quadrupole-drift system with index 2.
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Multiplying the two matrices with indices 1 and 2, we arrive at the following transfer matrix
R that represents the beam optical system between the source plane and the IP

—f2/fr 0 >
R=RyR = . 3.139
H ( 0 —f1/f2 ( )
Here we see that it describes a system that demagnifies the x coordinate by the factor
M = —f3/f1, the ratio of the focal lengths. The minus sign describes the inversion of

a picture that is commonly encountered in normal telescopes. In practice, we now have
to realize such a system with quadrupole magnets and the matching module discussed in
earlier sections is very handy to find the quadrupole values once the geometry, i.e., the
magnet lengths and distances, are known.

A small problem arises, because quadrupoles do not act like optical lenses that focus in
both planes. As discussed in Section 3.1.1, quadrupoles focus the beam in one plane and
they defocus in the other plane. We therefore have to combine several quadrupoles to obtain
a system that focuses in both planes. We address such a system, a quadrupole triplet, in
the next section.

3.7.2 Triplets

The telescope from the previous subsection represents a one-dimensional optical system
where the focal lengths in the horizontal and vertical planes are usually equal. Quadrupoles,
on the other hand, focus in one plane and defocus in the other. We therefore have to combine
quadrupoles in such a way that their behavior resembles that of lenses—they should focus in
both planes. One such combination of quadrupoles is a triplet that consists of three closely
spaced quadrupoles, where the central quadrupole has twice the strength and opposite
polarity of the two equally powered outer quadrupoles.

The following lattice file triplet_25.bl describes such a beamline. It consists of a 5m
long drift space, the three quadrupoles, separated by 1m long drift spaces, and another
5m long drift space. The outer quadrupoles have about twice the focal length of the inner
quadrupole: therefore, the inner quadrupole is twice as strong as the outer ones. Moreover,
it has the opposite sign.

1 10 0.5 0

2 1 0 3.219
1 5 0.2 0

2 1 0 -1.739
1 5 0.2 0

2 1 0 3.219
1 10 0.5 0

These quadrupole values were calculated with the function match triplet_tune.m. It uses
the x?~function chisq tune_triplet.m, which is similar to the one from Section 3.6.1 and
matches the phase advances of this triplet cell to 0.25 in both planes. Finally, it calculates
the transfer matrices with calcmat, determines the periodic beta functions and then plots
them, which results in Figure 3.22.

We see that the beta functions are periodic, and long sequences of triplet cells are used
in case equal beam sizes in long sections are required, such as long accelerating structures
with narrow apertures. In that case it is beneficial to use a triplet lattice, which provides
almost round beams with a rather constant and equal width in both planes. Only inside
the triplet, and especially inside the central quadrupole the beta functions, and thus also
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Figure 3.22 Beta functions for a triplet cell. Here the phase advance for the cell is
adjusted to p/27m = 0.25 in both planes.

the beam sizes, differ significantly. From their appearance, the triplet cell maps an almost
round beam from the entrance to an almost round beam at the exit of the cell and we may
use triplets to construct telescopes to demagnify the beta functions in order to achieve very
small and round beam spots for experiments.

We therefore use a system of three consecutive triplet cells. The first is only used to
define the input beta functions and the second and third triplets form a telescope that we
will adjust to obtain a small and round spot at the end of the beamline. To encode this
requirement, we define a y2-function that is very similar to the one from Section 3.6.2. It
requires o, and a, to be zero and requires 3, and 3, to have a small value. To fulfill these
requirements, we vary the quadrupoles in the last two triplets, but always power the outer
quadrupole pairs equally. The function chisq waist_triplet achieves this.

% chisq_waist_triplet.m, fit waist, V. Ziemann, 240828

function chisq=chisq_waist_triplet(x)

global beamline sigmaO % need info about the beamline
beamline(9,4)=x(1); beamline(11,4)=x(2); beamline(13,4)=x(1);
beamline(16,4)=x(3); beamline(18,4)=x(4); beamline(20,4)=x(3);
[Racc,spos,nmat]=calcmat (beamline); Rend=Racc(:,:,end);
sigma=Rend*sigmaO*Rend’ ;

chisq=(sigma(1,1)-0.5) "2+(sigma(3,3)-0.5) "2+sigma(1,2) "2+sigma(3,4)"2;

It is almost a straight copy of the function chisq_waist from Section 3.6.2, only this time we
assign the four values to the six quadrupoles. The positions 9,11, 13 of the quadrupoles in
the second triplet and 16,18,20 in the third can easily be found by inspecting the beamline
array. Running the matching code, we find that we have difficulties to achieve beta functions
at the end of the beamline much smaller than 1m. A way to achieve smaller spots is to
bring the final beam waist—the focus—closer to the final quadrupole. Basically, we need
to shorten the beamline, for example, by reducing the repeat count of the last drift in the
beamline array from 10 to 6. Another option is to add a drift space with a negative length
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Figure 3.23 Beta functions for a telescope made of triplets.

to the end of the beamline. This has the added bonus that we actually see the minimum of
the beta functions. The following code illustrates this method.

% match_waist_triplet.m, V. Ziemann, 240282
clear; close all

global beamline sigmaO
tl=dlmread(’triplet_25.bl’);
beamline=repmat(t1,1,1);
[Racc,spos,nmat,nlines]=calcmat (beamline); Rturn=Racc(:,:,end);
sigmaO=periodic_beammatrix(Rturn,1,1);
negdrift=[1,4,-0.5,0];
beamline=[repmat(t1,3,1) ;negdrift];
f0=[3.6,-1.8,3.6,-1.8]; % starting guess
[f,fval]l=fminsearch(@chisq_waist_triplet,f0)
drawmag(beamline,2,3)
plot_betas(beamline,sigma0);

set(gca, ’FontSize’,16)

This MATLAB script is based on the matching example from Section 3.6.2, but we also
define the drift space with the negative length negdrift to contain four segments of —0.5m
length and add it to the end of the beamline that already contains three triplet cells.
Then we provide starting guesses for fminsearch and call it to minimize the y2-function
chisq waist_triplet. Finally, we plot the beta functions and add the magnet lattice to
identify the positions of the quadrupoles.

Figure 3.23 shows the resulting plot. We see the three triplet cells, of which the last two
are detuned in order to achieve the small, and equal to 0.5 m, beta functions. The values for
the focal lengths of the quadrupoles are given by £=[6.5836,-3.1531,2.2944,-1.3211],
where we, again, find the pattern that the excitations of inner quadrupoles of each triplet
(second and fourth values) have a negative sign and have approximately half the focal
lengths of the corresponding outer quadrupoles (first and third values). The x? after the
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match is below 1079 indicating that the match completed successfully. By increasing the
number of negative drift-space segments to 9 and thus moving the s-position of the waist
to 0.5 m after the last quadrupole, we can even achieve beta functions at the waist of 0.1 m
in both planes.

Since the triplets treat both planes approximately equally, they can be considered as the
equivalent of spherical lenses and are often a good choice if both planes need to be treated
in a similar way, for example, if we require round spots at the experiment. If we, on the
other hand, deal with beams that have large aspect ratios 3,/8,, we can use quadrupole
doublets.

3.7.3 Doublets

A doublet consists of two closely spaced quadrupoles with opposite polarity. The transfer
matrix of such a system is given by

RD:<11/f ?)((1) i)(l}f ?)Z(l?/%f 1ll/f)’ (8.140)

where f is the focal length of the quadrupoles and [ the distance between them. The
matrix element Ro; = —I/f? that translates initial positions of final angles is responsible
for focusing. It is always negative, irrespective of the sign of the focal length f, which
implies that the doublet also focuses if we reverse the polarities of the quadrupoles. But
this describes the situation in the other plane.

The periodic lattice with a phase advance of 0.2 in both planes per doublet cell is shown
on the left-hand side in Figure 3.24, where we depict two consecutive cells such that the total
phase advance in both planes is 0.4. We find that the variation of the beta functions is rather
modest, only by a factor of two from 7 to 14 m. Moreover, the beta functions in one plane
are the left-to-right mirror image of those in the other plane. The large space between the
doublets makes this type of lattice suitable for systems that require free space for installation
of, for example, acceleration structures. Instead of using a sequence where focusing and

0 5 10 15 20 0 5 10 15 20
s[m] s[m]

Figure 3.24 Beta functions for two doublet cells. On the left, the cells are periodic
with alternating focusing and defocusing quadrupoles. On the right, two focusing
and two defocusing quadrupoles follow each other. In the configurations, the phase
advance in both planes is p/27m = 0.4.
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defocusing quadrupoles alternate, we can also use a sequence where two quadrupoles of a
kind follow one another. We show such a beamline and the corresponding beta functions on
the right-hand side in Figure 3.24. The total phase advance of the displayed sections with
two doublets is again 0.4 in both planes, but this time one beta function is large in the
space between the doublets, while the other one is small. The role of the planes alternates
in consecutive long drift spaces. Such a lattice is suitable, if we require a particularly small
beam size in one plane as is the case if we want the synchrotron radiation emitted by
electrons to be diffraction-limited in one plane.

We can also use doublets in telescopes but have to keep in mind that the focusing in
the two planes is different. We can use them if the beam at the IP has a large aspect ratio,
as is the case for the International Linear Collider (ILC), which uses a doublet as the final
focusing lens. The asymmetry between the planes is easy to understand by considering the
point-to-point focusing properties of a doublet which is important for using it in a telescope,
see Section 3.7.1. We calculate the transfer matrix for a beamline that starts with a drift
space of length 5L, followed by a doublet with focal length f and distance L between the
quadrupoles, followed by another drift space of length 5L. The resulting transfer matrix is

([ 1+L/f-5L%/f* 11L—25L3%/f?
R_< —L/f? 1—L/f—5L%/f? ) (3.141)

where we see that the focal length f = /25/11L makes the R;s matrix element zero, and
results in the transfer matrix

—0.5367 0
r= ( —0.44/L —1.8633 ) ' (3.142)

The transfer matrix for the other plane has the diagonal elements exchanged. And there
we have the case that the doublet demagnifies, here by —0.5367 in one plane but amplifies
by —1.8633 in the other plane. This is not surprising by considering the propagation of
rays in the doublet. The other plane has focusing and defocusing quadrupoles reversed,
but that corresponds to the rays going in the opposite direction through the doublet. If
it is demagnifying in one plane, it does the opposite when going in the other direction, or
equivalently, propagating in the other plane.

After the first optical building blocks that deal predominantly with imaging in the
transverse planes, we consider systems that are used to cancel the dispersion generated
when deflecting the beam with dipole magnets. Such systems are called achromats.

3.7.4 Achromats

Dipole or bending-magnets deflect particles with different energies by different deflection
angles and thereby sort the particles according to their energy. In other words they behave as
a spectrometer and generate dispersion, where dispersion D is defined through the trajectory
x = D¢ that a particle with non-zero momentum offset 6 = (p — po)/po follows. Since a
single dipole spreads the trajectories, we need at least a second dipole to collect the particles
again and put them back on the reference trajectory. The simplest system we can make
achromatic consists of two dipoles and a focusing quadrupole half-way between the dipoles.
Figure 3.25 illustrates this configuration. The first dipole on the left spreads the particles
according to their momentum such that they are sorted according to their momentum
when they arrive at the quadrupole, but the sorting is linear in the momentum offset and
the linearly rising off-axis field of the focusing quadrupoles deflects the particles with the
largest excursion the most. In this way all particles arrive at the second dipole on the
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Figure 3.25 Achromat with dipoles deflecting in the same direction.

reference trajectory, and by receiving the same momentum-dependent deflection as in the
first dipole, they are deflected back onto the reference trajectory. Note that this cancellation
of momentum-dependent deflections in the two dipoles only works if the quadrupole provides
point-to-point imaging between the centers of the dipoles. Here the focal length is a quarter
of the distance between the dipole centers. Note that point-to-point focusing corresponds
to a betatron phase advance of 180 degrees, and the particles arrive at the second dipole
with the opposite phase but receive the same deflection as in the first dipole such that the
deflections cancel.

The previous achromat works well with dipoles deflecting in the same direction, but how
many quadrupoles do we need and how do we excite them if the dipoles deflect in opposite
directions? This is, for example, the case, if the dipoles have to provide a parallel displace-
ment of the reference trajectory in order to deliver the beams to multiple experimental
areas, located side-by-side in a beam switchyard. Or to lift the reference trajectory from
the basement, where a cyclotron is located, to an upper level, where the experiment areas
are located. In the latter case, the dipoles are vertically deflecting, and we have to employ
the coordinate rotations from Section 3.1.6 to describe the vertically deflecting dipoles. But
to simplify the discussion, we stay with horizontally deflecting dipoles of opposite polarity.
In order to cancel the dispersion generated by the two dipoles, we would love to have them
at the same place because their effect would cancel locally. The next best thing is to have
them separated by a phase advance of 360 degrees. This can be accomplished by using two
point-to-point focusing quadrupoles, which is the configuration shown in Figure 3.26 where
the dipoles deflect in opposite directions and the two quadrupoles cause the dispersive or-
bit, denoted by a dashed line to perform a full 360-degree oscillation around the solid line
that denotes the reference trajectory. The angle between the reference trajectory and the
dispersive orbits in the two dipoles have equal magnitude, but opposite sign, whereas in the
previous example from Figure 3.25 both magnitude and sign are equal. These two examples
should serve as an intuitive guide on how to build achromatic systems, but in general more
constraints have to be fulfilled and more quadrupoles are part of the beamlines.

Dipole

Dipole

Figure 3.26 Achromat with dipoles deflecting in opposite directions.
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Figure 3.27 Double-bend achromat cell where the dashed line indicates the disper-
sion.

In those, more complex, cases the qualitative argument from the two previous paragraphs
can be generalized by observing that the momentum-dependent offset and angle are given
by the transfer-matrix elements Rig and Rog, such that we can use these quantities in a
fitting routine. The constraint is given by the requirement to make R4 and Rgg zero by
varying suitable quadrupoles within the beamline section under consideration.

Systems with two dipole magnets are the simplest achromatic systems, but more complex
ones are frequently found in synchrotron-light sources.

3.7.5 Multi-bend achromats

One of the important figures of merit for a synchrotron-light source is the achievable small
emittance. Moreover, they need moderately long straight sections with zero dispersion to
place the specialty magnets—undulators and wigglers—that produce the light. We thus need
sections, also called cells, that have zero dispersion at the entrance and exit of the cell as
well as the property to minimize the emittance. As discussed in Section 3.4.3, the emittance
is determined by the emission of radiation inside the dipole magnets and proportional to
H/|p|* ~ D?/|p|> where H is defined in Equation 3.129 and the inverse dependence on
the bending radius p will be discussed in Section 10.1. We thus need to ensure that the
dispersion D inside the dipoles is small, and that is the case in the achromat shown in
Figure 3.25 because the dispersion orbit starts in one dipole from zero and is returned to
zero in the next dipole. Adding quadrupole doublets before the first and after the second
dipole allows us to control the beta functions in both planes as well. The layout of such a
double-bend achromat (DBA), or Chasman-Green, cell is shown in Figure 3.27. DBA cells
are used in many synchrotron light sources, most notably the NSLS in Brookhaven, Elettra
in Trieste, and the ESRF in Grenoble.

The dependence of the emittance on the inverse bending radius p indicates that it is
advantageous to make the rings larger by increasing p and building achromats consisting of
weaker, but more dipoles. An example that uses three dipoles is the triple-bend achromats
(TBA). A sketch of the layout of one cell is shown in Figure 3.28. Examples of light sources

NV =i V)
ADipoIe U Dipole U Dipole A U

QF Q@D QF QF QD QF

Figure 3.28 Triple-bend achromat cell where the dashed line indicates the dispersion.
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Figure 3.29 Left: the lattice file tme.bl. Right: the corresponding horizontal beta
function (solid) and the dispersion (dashes) for one TME cell.

using this type of cell are the ALS in Berkeley, the TLS in Taiwan, and the first version of
the PLS in Korea. Making the rings very large by increasing the circumference allows the
combination of multiple dipoles to multi-bend achromats. For example, MAX-IV in Sweden
uses seven dipoles in a single achromatic cell. The dispersion has a minimum close to zero
in the many and very short dipole magnets such that the dispersion never has a chance to
grow very much. With this globally small dispersion the emittance-generating process from
Section 3.4.3 is minimized and MAX-IV has an extremely small emittance.

3.7.6 TME cell

If we relax the requirement for zero dispersion outside the cell, but emphasize the require-
ment for the smallest possible emittance achievable with a single cell, we arrive at the
theoretical minimum emittance (TME) cell. Since we do not have to cancel the dispersion,
we use a single dipole magnet and place quadrupoles in such a way that the dispersion
and H is minimum inside the dipole magnet. See Figure 3.29 for the lattice file and optical
functions. The two focusing quadrupoles adjacent to the dipole focus the dispersion down
to the smallest possible value at the expense of having non-zero dispersion outside the cell
because we can only manipulate a non-zero dispersion with quadrupoles alone. Moreover,
the quadrupoles are often very strong. TME cells are sometimes considered for damping
rings for linear colliders. Their sole requirement is to provide the smallest possible emittance
without concern for dispersion-free straight sections to place undulators or wigglers.
Figure 3.29 shows the lattice file and a plot of the dispersion and the horizontal beta func-
tion for a TME cell with a 10-degree dipole that has phase advances of 240 and 120 degrees
in the horizontal and vertical planes, respectively. Note the very small dispersion with scale
given in centimeters, rather than meters. We see that the lattice is similar to the doublet
lattice shown on the right of Figure 3.24 with a dipole sandwiched between the doublets
with focusing quadrupoles that have the purpose to minimize dispersion inside the dipole.



84 M Hands-On Accelerator Physics Using MATLAB®

25 T T T T

D, [m]

[EEEREEER [EERSEEE, CELL H (L1 EEE! EERE

0 . | | | |
0 5 10 15 20 25 30 35

s[m]

Figure 3.30 A dispersion suppressor in a 90-degree FODO lattice.

3.7.7 Dispersion suppressor

The dispersion in the interaction regions of storage-ring colliders must also be zero in order
to prevent the momentum spread o5 to increase of the beam size at the interaction point.
The dispersion that is inevitably generated by the dipole magnets in the arcs therefore has
to be canceled at the ends of the arcs. And this is the purpose of a dispersion suppressor
which is often implemented by reducing the excitation of the dipoles at the ends of the arcs.
Helm [17] determined patterns of dipole excitations that cancel the dispersion. Provided
that the phase advance in a FODO cell is a submultiple of 180 degrees horizontal phase
advance, it is possible to replace all dipoles within the last 180 degrees of the arc by dipoles
of half their normal length. This creates an interference pattern, opposite in phase to the
periodically oscillating dispersion in the arcs, which cancels the dispersion at the end of the
arc. Conceptually, this has a similar purpose as the “nose” at the bow of large ships, which
also creates an interference pattern that reduces the creation of waves. In the dispersion
suppressor, the dipoles with reduced excitation cancel the dispersion wave.

Figure 3.30 shows an example with a dispersion suppressor in a FODO arc with a
phase advance of 90 degrees per cell in both planes. On the left-hand side of the figure
the dispersion, shown as the solid line, starts with the periodic values for the arc, and the
first cell contains two long dipoles. The following two cells, covering a phase advance of
180 degrees, have the length of the dipoles halved and we see that the periodic dispersion
coming from the arcs is reduced to almost zero. Close observation shows that the dispersion
is not exactly zero, because the weak focusing of the shorter dipoles is different and slightly
changes the horizontal phase advance in the suppressor cells. This, however, is a small effect,
proportional to 1/p? where p is the bending radius of the dipoles, and is only visible in this
example, because we chose dipoles with small bending radii. In large storage rings with
large bending radii, the discrepancy is not important.

A dispersion suppressor is normally used to interface arcs of a storage ring to straight
sections, often called interaction regions, where the experiments with their detectors are
located.
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Figure 3.31 The conceptual layout of the SLC final focus. The beam travels from
right toward the IP at the left. Above the boxes are the nominal transfer matrices
for the respective sections displayed. M denotes the demagnification factor for the
telescopes.

3.7.8 Interaction region

The pm-scale beam sizes at the interaction point (IP) in the SLAC Linear Collider (SLC)
in the 1990s and the nm-scale sizes in future linear colliders such as the International Linear
Collider (ILC) or the Compact LInear Collider (CLIC) require extremely strong quadrupoles
very close to the IP. If the focusing is very strong and the beta functions §* at the IP are
very small, it is easy to show that at a distance s before or after the IP they assume the
value B(s) = B* + s?/B*. For very small values of 3*, say millimeters or less, the beta
functions at the closest quadrupoles, which typically are a few meters away, are on the
order of several kilometers. This is indicated by the dashed line, labeled 8 near the IP in
Figure 3.31. Moreover, since the focal lengths of quadrupoles depend on the momentum
of the particles, the finite momentum spread of the beam will increase the beam size at
the IP, because particles with different momenta have their waist at different longitudinal
positions. This longitudinal dependence of the focal point is also called chromaticity, just
like the chromaticity in a circular accelerator we discussed in Section 3.4.1, but here the
interpretation is different. But despite this difference the magnitude is also determined by
the product of quadrupole strength k7 and the beta function and the dominant contribu-
tion comes from the quadrupoles closest to the IP. In order to compensate this effect, we
need another momentum-dependent source of focusing, preferably close to the final focus
quadrupoles. Thus all linear collider final focus systems have to deal with correcting the
chromaticity, and in the following we discuss the solution that was implemented at the SLC.

The conceptual layout of the SLC final focus is shown in Figure 3.31. The beam comes
from the right and moves toward the left. It first passes through a matching section, which
contains a dispersion suppressor and several quadrupoles and skew quadrupoles in order
to match the beam matrix to the design values in the final focus. If a beam with design
parameters arrives, the transfer matrix through the matching section is a negative unit
matrix and will leave the sigma matrix untouched. The next section contains a telescope
that demagnifies the beam size by a factor M, = 8.5 in the horizontal and M, = 3.1 in
the vertical plane. Weak dipoles in the Chromatic Correction Section (CCS) generate some
dispersion, indicated by the dotted line. Sextupoles placed in this section act as momentum-
dependent quadrupoles and are used to compensate the chromaticity by the mechanism we
later discuss in Section 8.5.4. By placing equally powered sextupoles with phase advances
of 180 degrees apart, it is possible to cancel unwanted non-linear aberrations, a concept we
return to in Section 11.3. Two independently powered families of sextupoles, indicated by the
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solid and the hashed rhombs, are used to adjust the horizontal and the vertical chromaticity
independently. Finally, a second telescope, constructed using two triplets, demagnifies by
a factor of M = 4 in both planes, before the beam meets the other, counter-propagating
beam at the IP.

The correction of the chromaticity with a dedicated CCS with its four-dipole achro-
mat makes the entire final focus system extremely long, especially at high beam momenta
because the dipoles create very little dispersion in the sextupoles, needed to correct the
chromaticity. This problem can be alleviated by realizing that we only need to make the
dispersion D zero at the IP, but not necessarily the derivative of the dispersion D’. Thus
we can have significant dispersion near the IP and place sextupoles next to the final focus
quadrupoles and cancel the chromaticity where it is created. A highly flexible system can
be designed around this concept as is shown by Raimondi and Seryi [18]. Their design will
be used in future linear collider final focus systems because it shortens the length of the
system by kilometers besides having many other advantages [18].

The systems discussed so far dealt mostly with transverse properties of the beams. In
some cases, however, we need to address the longitudinal properties, for example to create
extremely short bunches. Examples are linear colliders and accelerators that drive free-
electron lasers such as LCLS, SACLA, or the European XFEL.

3.7.9 Bunch compressors

In a bunch compressor we seek to reduce the bunch length at the expense of the momentum
spread. This is achieved by accelerating the bunch off-crest in an accelerating cavity. In
this way the head of the bunch can be made to receive a lower energy than the tail of the
bunch. We now have to produce a device that translates momentum difference into arrival
time difference. A chicane is such a device, where four dipole magnets with bending angles
o, —@, —¢, and @, respectively, are arranged as is shown in Figure 3.32. The idea is to
give particles with different energies different path lengths. In particular, a particle with
higher energy will be deflected less in the dipoles and will take a shortcut on the inside of
the chicane, resulting in a shorter path length. This shortening can be calculated by first
considering the length of the unperturbed path

2L 2L ¢?
l= = ~2L(1+— ) . 14
cosp 1—¢?2/2 ( * 2> (3.143)

If the momentum offset is ¢, the bending angle will be reduced by ¢ — ¢/(1 + §), we find

1(6) =2L (1 + 2(1¢+25)2> ~ 2L (1 + dj) —2L¢*5 , (3.144)

where we observe that the first term is equal to [(0). The Rsg, which describes the path
length change as a function of momentum offset 4, is thus given by

1(6) = 1(0)

Rs6 = 5

~ —2L¢? (3.145)
which is proportional to the distance L between dipole magnets and the square of their
bending angle ¢.

In accelerators operating with low-energy beams, we can avoid using an accelerating
cavity and a chicane. Instead, the energy can be modulated by exciting a short, isolated
section of beam pipe by a time-varying voltage with respect to the adjacent beam pipe.
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Figure 3.32 Layout of a bunch compressor. A particle with higher momentum (dot-
ted) than the reference particle (solid) is deflected less and takes a shorter path
through the chicane and arrives earlier. A particle with lower momentum (dashed)
takes a longer path and therefore arrives later.
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Figure 3.33 Three particles with different momenta have a larger distance between
them before the chicane (upper). After the chicane, the late high-momentum par-
ticle has caught up with the reference particles because it takes a shortcut and,
conversely, the early low-momentum particle arrives later because its path is longer.
This leads to the reduced distance between the particles.

This produces an energy and also a velocity modulation of non-relativistic beams, such that
the fast beam particles catch up with their slower companions in a drift space and cause
the beams to be bunched after some distance. This method is called velocity bunching.

3.7.10 Fragment Separator

Fragment separators are used to filter isotopes with a particular charge Z and mass number
A from the debris created when crashing a high-energy beam into a moderately thick target.
The target material is chosen to produce many fission products with a large variety of values
of Z and A. Such systems give us a chance to discuss beam-optical systems that rely on
energy-loss mechanisms caused by deliberately inserting matter into the path of the beam.

Figure 3.34 shows the simplified layout of the fragment separator (FRS), which is part
of the GSI facility in Darmstadt. The FRS [19] consists of a chicane with four dipoles
and adjacent triplets to create the focal points, labeled F2 and F4. The first two dipoles
and associate quadrupoles are configured as a spectrometer. They create a large dispersion
and a small beam size at F2, such that the aperture immediately upstream of F2 selects a
particular momentum, or more precisely magnetic rigidity Bp, which depends on the charge-
to-mass ratio Z/A. Unfortunately, different isotopes can have very similar Z/A ratios. We
therefore insert a second target, called degrader and made of a material that minimizes
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Figure 3.3¢ The first spectrometer selects the reaction products coming from the
target according to their charge to mass ratio. Jointly, the degrader at F2 and the
second spectrometer make it possible to identify the particles by the mass and their
charge independently, once they pass the aperture at F4.

further fragmentation but, at the same time, reduces the energy of the passing particles.
As we shall see in Chapter 9 (Equation 9.6), the energy loss is proportional to Z?2 of the
beam. Thus particles with similar Z/A ratios before the degrader have different energies
and thus different momenta after the degrader. Therefore the magnets in the section with
the third and fourth dipole are configured as a second spectrometer to isolate a particular
momentum with the aperture at the focal point F4.

Remarkably, shaping the thickness of the degrader allows us to optimize the resolution
of the system [19]. In order to work out the details let us consider a simplified layout, where
the second spectrometer is the mirror image of the first one, which maps the state vector
at the target to the corresponding vector at F2. It is characterized by the 3 x 3 transfer
matrix

Rll R12 D
R*=|( Ry Ry D | . (3.146)
0o 0 1

In order to determine the transfer matrix for the second spectrometer it is more convenient

to write
) o Ri1 Ris €1 D
<z’2)_(R21 RQQ)(Z'1>+(D’)5' (3.147)

where #; = (x1,2]) describes position and angle at the target, Zy at F2. (D, D’) is the
dispersion at F2 and § is the momentum deviation. In the second spectrometer the same
sequence of magnets is traversed in the reverse direction; it maps Ty to Z1 or

T _ Ri1 Rio - T2\ D 5
.’K’l R21 RQQ .’EIQ .D/
Ry —Ryo T Ro2D — Ry2 D’
— . .14
( 7R21 R11 ) ( $/2 ) ( 7R21D +R11D ) 6 (3 8>
But we do not want to map Zs to &1 but to Z4 at F4. To do so we have to reverse the s-axis

which reverses the sign of all angles, because they are derivatives with respect to s, which
reverses the sign of the second column and then again the second row in the matrix and
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the vector with the dispersion. For example, the matrix element at the lower right has its
sign reversed twice. This leaves us with

4 \ _ [ Ra2 Ry 2o RysD — RyyD'
(m£1>_<R21 Rll)(x12>_<Rle—RnD’>6 (3.149)

that can be written as the 3 x 3 matrix

Ry Rizs —RoeD + RisD’
R'=| Ry Ry —RuD+RuD | . (3.150)
0 0 1

for the second spectrometer that maps the state vector at F2 to F4. Note that R is the
transfer matrix that describes the motion of a particle traversing the mirrored beamline
that was described by R®.

Let us now return to the fragment separator. Since we have a waist at F2, the transfer
matrix element R{, is zero and the demagnification from the target to F2 is given by
R{; = m. Making R3, = 1/m ensures that the determinant of the 2 x 2 matrix is unity.
Moreover, we assume that the derivative of the dispersion D’ is zero at F2 which gives us
the following transfer matrices

m 0 D 1/m 0 —D/m
R'=| a 1/m 0 and R’ = a m —aD , (3.151)
0 0 1 0 0 1

where a is the unspecified transfer matrix element R$, and R is derived with the help of
Equation 3.150.
We model the degrader by the 3 x 3 transfer matrix

D= (3.152)

> O =
o = O
o O O

where ¢ describes the change in momentum deviation due to the average thickness of the
degrader, and b describes the variation of its thickness, because a non-zero value of the
position x changes the momentum deviation proportional to b. Both b and ¢ can be related
to properties of the material chosen for the degrader and its thickness.

The transport from the target to the analyzing aperture at F4 is thus described by R*,
the product of the three matrices for the first and second spectrometer and the degrader

1-bD 0 LD(1-¢)—L0D?

R*=R'DR*=| am(2—-bD) 1 aD(1 —¢)— abD? . (3.153)
mb 0 c+bD

Provided that the initial beam matrix on the target o' = diag(c?i,, 0%y, 0ls) is diagonal, we
can calculate the beam matrix at F4 from o* = R*¢*R*T and find for the beam size o},

, 1 2
ot = (1—-bD)%0t, + ED(1 —¢) —bD?| oy . (3.154)

We can now minimize the beam size on the analyzing aperture at F4 by choosing b =
(1 — ¢)/mD which causes the square bracket to vanish and makes the beam size at F4
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independent of the initial momentum spread of the beam. This mode of operation is called
achromatic. Instead of minimizing the beam size, we can also minimize the momentum
spread ogg at F4. It is given by

0ge = (c+bD)3ag (3.155)

and selecting b = —c/D removes the influence of the initial momentum spread. This mode of
operation is called monochromatic. We point out that for the sake of simplicity we omitted
the transverse spreading of the beam and the increase of the momentum spread, called
straggling, from the degrader. We will consider both in Chapter 9. Note also that a taylor-
made degrader is only suitable to optimize one particular isotope. The choice of which type
to use—selecting a value of b, including zero—depends on the experimental circumstances.

All beam optics modules we discussed so far, except the degrader, rely on magnets to
deflect the trajectory and focus the beams. Now is the time to have a closer look at how to
design and build these magnets.

QUESTIONS AND EXERCISES

1. Determine the six-dimensional transfer matrix for a combined function dipole with
(a) k=1/p* + ki =0and (b) k=1/p*> + k; <O0.

2. Consider one transverse dimension only, such that you can use the 2D-version of the
software for this exercise. Prepare a FODO cell with thin-lens quadrupoles, having
the same absolute value of their focal lengths, that starts in the middle of a 5m long
drift space. Adjust the quadrupoles such that the phase advance is (a) 60 degrees; (b)
90 degrees; (¢) 77 degrees.

3. Use the 60-degree FODO cell from the previous exercise and replace the thin
quadrupoles by long quadrupoles with a length of 0.2, 0.4, 0.8 m. Adjust their strength
such that the phase advance per cell remains 60 degrees. By how much does the peri-
odic beta function at the start of the cell change? Express the change in percent.

4. Use the cells you prepared in Exercise 1 and (a) prepare phase-space plots by plotting
x versus x’ once per turn for 314 turns. Select a few different starting positions.
Discuss what you observe. (b) Build beamlines of 20 cells for each of the three phase
advances and display the position along the beamline when launching a particle with
an angle of x, = 1 mrad. (c¢) Unless you had already subdivided the drift spaces in
short segments, say 10, do so now and replot the orbit.

5. Still using the 2D software: (a) build a beamline of two 60-degree cells and one 90-
degree cell, then adjust the quadrupoles in the middle cell to match the Twiss param-
eters at the end of the first 60-degree cell to those of the 90-degree cell. (b) Replace
the 90-degree cell by the 77-degree cell and repeat the matching from part (a).

6. Use the FODO cells with the geometry from Exercise 1 and (a) determine their limit of
stability, i.e., for given cell half-length L, what values of f permit a periodic solution?
(b) What phase-advance per cell p corresponds to the limiting cases? (c¢) Calculate
the maximum Spax and minimum beta function S, within a cell as a function of
the phase-advance per cell pu. (d) Generate a plot of the Bpax/min versus .

7. You are responsible for a short beamline which has the layout shown on the left-hand
side in Figure 3.35 with 1 = L3 = 2m and L, = 1m and a quadrupole doublet
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Figure 3.35 The geometry of the beamline for Exercises 7 (left) and 8 (right).

10.

11.

12.

with two magnets of equal strength but opposite polarity. The first one is horizontally
defocusing, and the second is focusing. The colleague who works on the accelerator
upstream promises to provide a beam at the entrance of your section which has a
horizontal waist there and an rms width of 5mm and rms angular divergence of
2mrad. (a) What is the sigma matrix at the entrance of your section? (b) What is
the transfer matrix for your beamline? (¢) What beam size at the end of the beamline
do you find for f = 1m? (d) Your friends from the experimental group want a small
horizontal beam size at their target position at the left of your beamline. To what
strength do you need to adjust the quadrupoles? (e¢) What is the minimum achievable
beam size? (f) Assume that the incoming beam has the same vertical sigma matrix
as the horizontal. What is the vertical beam size on the target?

Use the doublet cell shown on the right-hand sides in Figures 3.24 and 3.35 and (a)
place one 4m long sector dipole with a bending angle of 12 degrees in the middle of
the drift space. Calculate the periodic dispersion and plot it. (b) Find out how the
dispersion differs depending on placing the dipole between the focusing or between
the defocusing quadrupoles. (¢) If this example describes a section of an electron ring,
in which case do you expect a smaller emittance? (d) Numerically evaluate H from
Equation 3.129 (inside the dipoles) for each of the different variants and find out which
one will have the lower emittance.

. Now use the 4D software, and prepare FODO cells with 60, 90 and 77 degrees in both

planes. (a) Then build a beamline to match the Twiss parameters from the 60-degree
cell to the 90-degree cell. How many intermediate cells do you need? explain why!
Then repeat part (a) by matching into a final 77-degree cell.

Use FODO cells with the same geometry as in the previous exercise and find the range
of focal lengths of the QF and the QD that permit stable periodic Twiss parameters.
The easiest way is to scan the quadrupole strengths 1/f for both quadrupoles within
reasonable limits and prepare a graph with the two 1/f on the axes and mark the spot
on the graph with an asterisk if the combination of focal lengths results in a stable
periodic lattice.

Design a ring that consists of 18 FODO cells with a length of 10 m having a phase
advance of 90 and 60 degrees in the horizontal and vertical plane, respectively. You
can use thin lens quadrupoles and place one 2 m-long sector dipole per cell in-between
the quadrupoles. (a) Find quadrupole values to adjust the tunes to @, = 4.27 and
@, = 3.38, respectively. (b) Prepare plots of the beta functions in one FODO cell,
and for the entire ring. (c¢) Calculate the chromaticities.

Repeat the previous exercise, but use the lattice with doublet cells, shown on the
right-hand side in Figure 3.24, instead. Use the doublet cell from Exercise 7 with the
4m long dipole. (a) Adjust the tune to @, = 7.27 and @, = 7.38 and (b) plot the
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13.

14.

15.

beta functions for one segment and for the entire ring. (c) Track particles, starting
with g = yg = 1 mm, for 1024 turns, record the positions, Fourier transform them,
and verify that the fractional values of the tunes are correct.

Your beamline needs to cross a highway in an underground tunnel. In order to trans-
port the beam downwards by approximately 4 m, as shown in Figure 3.26, you use two
1m long sector dipole magnets with a bending angle of 30 degrees, each. In-between
the dipoles, you place two quadrupoles. Adjust their focal lengths, such that the beam-
line from the entrance to the first dipole to the exit of the second is achromatic. You
can ignore the Twiss parameters in this exercise.

Two ultra-relativistic electrons, initially traveling together, but one of them having a
momentum 1% higher than the other one, pass a bunch compressor with four dipole
magnets, spaced by 1m. If each dipole deflects the electrons by 3 degrees, by how
much are they longitudinally separated after the bunch compressor?

In the ring with tunes @, = 4.27 and @, = 3.38, which you prepared in Exercise 11,
one of the horizontally focusing quadrupoles was accidentally mounted, such that it
is rolled by 5degrees around the beam axis. (a) Track particles with 1 mm initial
offsets, record turn-by-turn positions for 1024 turns, and make an FFT to determine
the tunes. By how much do they differ from the design values? (b) By changing the
excitation of all QF, try to make the tunes as equal as possible. You can use the
sagrub() function to determine the tunes directly from the transfer matrices. For
what focal length are the tunes closest? (c) Set the focal lengths of all QF to this
value and verify the tune with tracking and FFT. Make sure that the values agree
reasonably well.



cuarter 4

Magnets

In Chapters 2 and 3 we saw that dipole magnets define the reference trajectory in an
accelerator and that quadrupole magnets ensure that particles stay close to it. In this
chapter we will address the design and construction of those magnets.

4.1 MAXWELLS EQUATIONS AND BOUNDARY CONDITIONS

The dynamics of electro-magnetic fields in general, and of the magnets in particular, is
governed by Maxwell’s equations [20]

- .o OB

\4 p s VX T

.o - - - 0D

V-B=0 |, VXH:J—I—%. (4.1)

The two equations in the first line describe the dynamics of electric fields and the two
equations in the second line that of magnetic fields. Besides the above equations there are
relations among the four fields D,E,B, and H. In particular, the magnetic flux density B
is related to the magnetic field H by B = Mrﬂoﬁ and, the electric field E is related to the
displacement field D by D = g,50E. Here 1o is the permeability and ¢ the permittivity of
vacuum, whereas p, and ¢, describe material properties that differ from those in vacuum.
The fields are excited by the charge density p and the current density J.

In this chapter, however, we will neglect the electric fields E and 13, and focus on
the equations for the magnetic fields B and H and how they are excited by currents.
To understand how the currents excite magnetic fields, we consider the fourth equation
VxH= f, where we can ignore the displacement field oD /0t for constant fields. We now
use Stokes’s theorem to convert the equation to integral form

/f.dgz/(ﬁxﬁ).dgz i-d. (4.2)
s s as

Here the first identity follows from integrating the fourth of Equation 4.1 over a surface area
dS and the second identity follows from Stokes’s theorem. It allows us to express the integral
over S as a line integral of the field H along the perimeter 05 around S. An immediate
application is the calculation of the field around a wire. It is given by the enclosed current
1= fs J- dg, where S is a circle of radius r. Inserting in Equation 4.2, we recover Ampere’s
law I = 27rH(r) or B(r) = pol/2nr, which describes the magnetic fields caused by an
infinitely long wire. In the derivation we implicitly assumed that the space around the wire
does not contain material with relative permeability p, different from unity.

This chapter has been made available under a CC BY NC license. 93
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Figure 4.1 Boundary conditions for Maxwell’s equations. See the text for explana-
tions.

If, on the other hand, materials with dlfferent b [y and Er have a common interface, we
need to discuss the behavior of the fields D B E and H at those boundaries. If we use
Gauss’s law [20] to convert the two Maxwell equations for the divergence into integral form
and consider a small cylinder, as shown on the left-hand side in Figure 4.1, we find that the
normal component of the displacement current D flux density and the B have to obey

/ﬁ-ﬁzdS—/ﬁﬁldsz/pdv:asds and /ﬁ~§2d5—/ﬁ-§1d5:0, (4.3)

which leads to . . . .
i (D2 - D1> —0, and - (B2 - Bl) =0 (4.4)

in the limit of a vanishingly small cylinder with height h and cross-sectional area dS. Here
0 is the surface charge density. We then use Stokes’s theorem on the other two of Maxwell’s
equations and calculate the line integral of the tangential component of Hand E along the
contour shown on the right-hand side in Figure 4.1. This integral is equal to the surface
currents enclosed in the contour and we find [20]

x (E*2 - E}) =0 and Ax (ﬁg . Erl) . (4.5)

To summarize the discussion about the boundary conditions, we denote the normal compo-
nents by a subscript L, such that 71 - B = B, and the tangential by a subscript ||, such that
ixE = E). Using this notation, B, and Ej are continuous across the boundary and we
have AD | = o5 and AH|| = js. If one of the materials is metallic with infinite conductivity,
we additionally find £ =0 and B, = 0.

After understanding how to generate magnetic fields with currents and how the fields
behave at boundaries, we need to understand the dynamics in materials. As before, we con-
sider magnetostatic fields only and can therefore assume that E and D are zero. Maxwell’s
equations for the flux density B then reduce to

V-B=0 and VxB=0. (4.6)

The first of these equations allows us to express the flux density B as the curl of a vector
potential [f, such that B = V x A. The second of these equations permits a complementary
description of the fields in vacuum and is given in terms of the gradient of a potential ®
through B = —V®. For the characterization of the fields, it is most convenient to use the
second description and inserting in the first equation leads to

AD =0, (4.7)
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which implies that the magnetic potential ® has to fulfill the Laplace equation. Finding
the magnetic fields therefore reduces to solving the Laplace equation subject to suitable
boundary conditions.

After these general results that are valid in three dimensions, we will simplify the sit-
uation further by considering long magnets. Their fields can be derived by studying the
two-dimensional (2D) transverse geometry, only.

4.2 2D GEOMETRIES AND MULTIPOLES

For long magnets, it suffices to only consider transverse components of the magnetic flux
density B in the two transverse directions = and y, only. Here we denote them by v = B,

and v = —B,. For these components, the equations in Equation 4.6 reduce to
ou v ou v
— == d — = 4.8
dr Oy a Qy or (48)

These equations we recognize as the Cauchy-Riemann equations for a complex function
w(z) = u(z,y) + w(z,y) = By(x,y) — iBy(x,y) of a complex variable z = = + iy. Since
any complex function w(z) can be expressed as the derivative w(z) = i dF'/dz of another
complex function

F(z) = Az, y) + iV (z,v), (4.9)
we find o 94 oV A

where we identify V(z, y) as the two-dimensional analogons of the three-dimensional poten-
tial ® and A(z,y) as the out-of-plane component of the vector potential A. This is the same
component that was denoted by A, in Equation 2.2. Realizing that Maxwell’s equations in
two dimensions are closely related to the theory of complex functions makes it possible to
employ powerful methods such as conformal mapping and the existence of all derivatives of
analytic functions, namely, those that obey the Cauchy-Riemann equations.

A special potential is that of a filament that carries a current I, which is given by
F(z) = (—pol/27)log(z). The magnetic flux density derived from it is

. pol
B, —iB, = 22 (4.11)

with z = x +4y. We observe that by taking the modulus on both sides we recover Ampere’s
law. The existence of all derivatives permits us to write the complex potential F(z) as a
Taylor series in z = x + 1y

> by tiam [ 2\
F(z) = =BoRo » , " () (4.12)
oo m Ro

where By is a suitably chosen reference field and R a reference radius. The coefficients b,,
and a,, are commonly called multipole coefficients and are defined to be consistent with [14]
and lead to

' . dF [e'e] . P m—1

Z’IU(Z) = By + ’LBx = _E = BO n;l(bm + Zaqn) <&)> . (413)
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Figure 42 Equipotential lines and field vectors for an upright quadrupole (left) and
an upright sextupole (right).

The first non-trivial coefficient is the dipole coefficient with m = 1, and we consider the
power series that truncates after the first term, which results in Fp(z) = —Bo(by +ia1)(z +
iy). Using Equation 4.10, we find the components of the flux density to be B, = a; By and
B, = b1By. We can thus describe a dipole with a purely (by = 1,417 = 0) vertical field
component By by the complex potential Fp = —Bg(z + iy). According to Equation 4.9 the
imaginary part of Fp defines the potential V(z,y) = —Bpy and we immediately see that the
equipotential lines are given by V' (x, y) = Vj with some constant V{ or equivalently Vi = Boy
which implies that the equipotential lines are given by y = Vi/ By which is constant and are
thus parallel to the horizontal axis. Since the pole faces of magnets are equipotential lines,
we find the expected result that a dipole with a vertical field has horizontal pole faces.

The second non-trivial coefficient with m = 2 is called the quadrupole coefficient and
the potential is given by Fg(z) = —(By/2Ro)(bs + iaz)(x + iy)? from which we derive the
magnetic flux densities with the help of Equation 4.10 and obtain

Bﬂc = (Bo/RO)((IQI + bgy) and By = (Bo/Ro)(bQSC — agy) (414)

where we see that the components of the flux densities B, and B, grow linearly with x
and y, just as we required for a quadrupole in Chapter 3. In particular, for an upright
quadrupole (b = 1,as = 0) the gradient is given by g = 0B, /0xr = By/Ry. The potential
then becomes F = —(Bo/2Ro)(z + iy)? and the equipotential lines—they also define the
pole faces—are given by Vyxy with V; being the value of the potential. Apparently, here the
choice of the reference field By is the field on the pole-tip and Ry is the pole-tip radius. We
show the equipotential lines as well as the flux-density vectors for the upright quadrupole on
the left-hand side in Figure 4.2. Note that the field along the horizontal axis grows linearly.
For the upright quadrupole, only by is non-zero. If, on the other hand, only as is non-zero,
the equipotential lines are rotated by 45 degrees and the corresponding magnet is called a
skew quadrupole.

The next multipole with m = 3 is a sextupole. It is characterized by a complex potential
Fs(2) = —(Bo/3R2)(bs +ia3)(z +iy)3. If only az is non-zero, it is called skew sextupole. If
only b3 is non-zero, the magnet is called “upright”, and its equipotential lines are given by
Vo = (Bobs/(3R3)(y® — 322y), according to Equation 4.9. They are shown, together with the
flux-density vectors, on the right-hand side in Figure 4.2. The vertical component B, along
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Figure 4.3 Geometry of a C-shaped dipole.

the horizontal axis points upward on either side of the origin, consistent with a quadratic
dependence on .

In the same manner, the equipotential lines for higher multipoles, such as octupoles,
decapoles, and do-decapoles are defined by their complex potentials. Occasionally, it is
desirable to combine several multipoles in one magnet. The most common combination
is a dipole magnet with a quadrupolar component added in order to provide additional
focusing, Figure 3.6 in Section 3.1.4 shows an example. The shape of the pole faces for
such magnets is determined, as before, by the complex potentials. In this case, we need to
add the potentials for a dipole with field By and for a quadrupole with gradient g, which
yields V(z,y) = —Boy — gxy. Note, that in combined function magnets, the quadrupolar
component is rigidly linked to the dipole field and cannot be adjusted independently. One
is not limited to combining dipoles and quadrupoles. In the arcs of the SLC the very tight
bending radius made it necessary to combine even sextupoles for chromatic correction on
top of the dipole and quadrupolar fields, because there was not enough space available for
separate magnets.

So far, we addressed the admissible potentials and fields. Next we need to address how to
excite the fields, and first we consider iron-dominated magnets that are excited by driving
currents through coils.

4.3 |RON-DOMINATED MAGNETS

The magnetic fields in iron-dominated magnets are predominantly defined by the shape
of the pole faces, which define the equipotential lines of a multipole, or combination of
multipoles. These magnetic poles are excited by coils that are wound around them, and our
task is to determine the magnitude of the fields as a function of the current in the coils.

4.3.1 Simple analytical methods

First we consider a C-shaped dipole magnet as shown in Figure 4.3 that is driven by two
pairs of coils which consist of N turns that each carry a current I. We now use Stokes’s
theorem from Equation 4.2 to relate the enclosed current in the contour, shown as a dashed
line in Figure 4.3, to the line integral of the magnetic field H along the perimeter, which is
the contour itself. For the total current we find |, S J-dS = 2NT where we have to add NI
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Figure 4.4 The contour used to determine the excitation of a quadrupole.

from the upper and NI from the lower coil. For the line integral along the contour, we have

B Biron B,h
ONT = [ Hydy+ / Hivondl = / Zugy4 [ Biromgy o St (4.15)
gap iron gap Ho iron HOMr Ho

Here we split the contour into one part across the magnet gap and a second part through
the iron where the relative permeability is much larger than unity w, > 1, such that in the
limit p, — oo we can neglect this contribution to the integral, which remains the integral of
the magnetic field H, = B,/ across the gap of height h. Solving for the flux density B,,

we find o]
B, = % . (4.16)

As an example, we consider a dipole with a gap of h = 0.1 m and that is excited by coils
with N = 40 windings that are driven by I = 1kA. This results in a magnetic flux density
B, ~ 1T. We observe that B, is inversely proportional to the gap height h such that
magnets with large gaps either require large currents I or many turns IN. Essentially, dipole
magnets with a large gap require many Ampere-turns NI to achieve a high field. Conversely,
in order to operate economically, the magnet designer should strive to design magnets with
the smallest gap that is compatible with other constraints. After the coarse design of a
dipole, let us move on to the design of a quadrupole magnet.

Normal-conducting quadrupole magnets are excited by coils that are wound around their
poles. The top right pole shown in Figure 4.4 is excited by the coil in which current flows
into the paper through the right conductor on the top and return through the upper coil
on the right. In the same way, the other poles are excited and the resulting field pattern is
shown on the left in Figure 4.2. If we now apply Stokes’s theorem to the contour shown as
a dashed triangle in Figure 4.4, we see that the enclosed current is given by the number of
Ampere-turns NI in the coil, and the line integral has three contributions: the horizontal
path from the center of the magnet to the right edge of the magnet, the path inside the
iron, and the path from the center of the magnet to the pole face radius a.

Bdl Bdl * grd 2
NI = —+/ +/ T 2 (4.17)
horiz MO0 iron HOMr 0 Ho 2#0

The first integral is zero, because the magnetic flux only has a vertical component on the
center line and the second integral vanishes in the limit of infinite permeability p, — oo.
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Along the path from the center of the quadrupole to the pole face, Figures 4.2 and 4.4
illustrate that the field is parallel to the path of integration and increases linearly with the
radius. Evaluating the integral, and solving for g, we arrive at

OB,  2uoNI

o - (4.18)

We realize that the gradient is inversely proportional to the square of the pole-face radius a.
This implies that large currents are needed to power strong quadrupoles with a large bore,
such as those closest to the interaction points of colliders, where the beta functions are very
large, as discussed in Section 3.7.8.

The relation between exciting current and the resulting field for other multipoles can
be derived in the same way. We choose an integration path around one coil that has two
contributions that vanish. On the horizontal leg, the field is perpendicular to the integration
path, and the leg that passes through the iron vanishes in the limit p,. — co. The only non-
zero contribution comes from the leg between the center of the multipole and the pole-tip
at radius a. Along this path, the field is parallel to the integration path and grows as r™.
The resulting field gradient thus becomes

9" 'By,  nugNI

axn—l an

(4.19)

Here we see that the multipole gradient scales inversely with the nth power of the pole-tip
radius and high gradients require large currents I or many winding turns N. Both quantities
are limited by the available space, the current carrying capability of copper and the ability
to remove the heat that is generated due to the finite resistance of the coils.

The equations in this section often serve as a first estimate of design parameters for
multipole magnets. Note, however, that the equations are only valid in the limit of infinite
permeability p, and under the assumption that the pole faces are perfect and extend in-
finitely. To improve the magnet design we have to resort to numerical methods, and for this
task we employ the MATLAB PDE toolbox to solve the partial differential equations.

4.3.2 Using the MATLAB PDE toolbox

Here we use numerical methods to address the following topics: finite permeability .,
finite size pole faces, and saturation of magnetic flux in the iron. As a tool, we employ the
MATLAB PDE toolbox, which uses a finite-element algorithm to solve Maxwell’s equations
in discretized form on a mesh. Since the magnetic flux density Bis divergence-free, we can
derive it from a vector potential A by B =V xA and inserting in Maxwell’s Equations 4.1
we find

. 1 . o .
v x (v x A> = poJ . (4.20)

If we use the Lorentz gauge V-A = 0 and we confine ourselves to two-dimensional problems,
this implies that we only have to consider one component of the vector potential A, and
one component of the current density J,. The equation for A, then becomes

L /1 o
—V. (MVAZ) = poJ. (4.21)

which reduces to the two-dimensional Poisson equation if p, is constant. It is this equation
that the PDE toolbox solves after we provide the permeability p, and the current .J, in
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various subdomains of our problem. Once MATLAB has solved the previous equation, we
can determine the transverse components of the magnetic flux density B, and B, from
B, = 0A./0y and B, = —0A,/Ox in much the same way as in Equation 4.10. Apart from
specifying the material properties p, and J, in the subdomains, we need to specify the
boundary condition on the outer boundaries of the integration volume. We can specify the
value of the potential, which is called a Dirichlet boundary condition. A common example
is setting the value to zero far away from the regions with currents. The other alternative
is to specify the normal component of the potential, which is called the von Neumann
boundary condition. A common example is setting the normal derivative to zero, which
implies that the tangential component of the magnetic field H=VA, /i vanishes. We
frequently encounter this at symmetry planes.
Equation 4.21 is a PDE, and MATLAB refers to it using the generic notation

0%u ou = -

Mo + da -V (cVu) +au=f (4.22)
and uses the generic names m, d, ¢, a, and f to define the coefficients of the PDE and u to
refer to the solution itself and to formulate boundary conditions. Generalized von Neumann
conditions are of the form B

- (cVu)+qu=yg (4.23)

where 77 is the normal vector on the boundary and we need to specify ¢ and g. Dirichlet
boundary conditions have the form
hu =r (4.24)

and we specify either h and 7 or set u to a fixed value. Comparing with Equation 4.21 we
see that u corresponds to A,, that ¢ corresponds to 1/u,., and that f corresponds to pgJ>,
while m, d, and a are zero.

In order to use the PDE solver, we have to follow a number of steps that are common
to most numerical solvers:

1. define the geometry;
discretize the geometry on a mesh;
define boundary conditions;
specify material properties;

DA

solve the differential equations;
6. post-process the solution to extract physically relevant properties.

Let us start with the definition of the geometry. MATLAB allows us to define basic shapes
such as circles, ellipses, rectangles, and polygons from which we build our model of the
magnet. We first define the basic shapes in the form of a column vector and then define
the geometry as sums, differences, or intersections of the basic shapes. In order to illustrate
the procedure, we consider a simple example: the C-shape dipole magnet discussed in the
previous section. We assume that the magnet yoke has width and height of 1.6 m. The gap
is h = 0.1m, and the coils are rectangular with a width of 0.3 m and height of 0.2m. The
first component is the yoke, which we define as a polygon. It is advisable to first sketch the
shape on a piece of paper and note the edges of the polygon; the xz-values in the first row
and the y-values immediately below. Once this table is complete, we transfer the data to
the MATLAB file and define the yoke as a column vector whose entry in the first row is the
code, here 2, for a polygon, followed by number of points, here 13. Then follows the list of
13 z-values and then the 13 y-values.



Magnets B 101

yoke=[2; 13;
0;0;0.3;0.3;1;1;-0.6;-0.6;1;1;0.3;0.3;0;
0;0.3;0.3;0.05;0.05;0.8;0.8;-0.8;-0.8;-0.05;-0.05;-0.3;-0.3];

After the yoke is defined, we enter the definitions of the coils C1 to C4 in the same way and
finally the enclosing World that envelops the whole integration volume

C1=[3;4;0;0;0.3;0.3; 0.1;0.3;0.3;0.1;zeros(18,1)];

World=[3;4;-1.8;1.8;1.8;-1.8;-1.2;-1.2;1.2;1.2;zeros(18,1)];

Here we use the code 3 to define a rectangle. The meaning of the other entries is the same
as for the polygon. Note that the definitions for the geometric shapes all need to have the
same number of rows, which explains their padding with zeros. Note that the shapes are
plain MATLAB arrays and, instead of using numbers, we can also use variables or functions
to generate the various shapes. This makes parametric studies very easy to implement.

Once the basic shapes are defined, we can assemble the model, give names to the shapes,
and define their relation with the following commands:

gd=[World,yoke,C1,C2,C3,C4]; % assemble geometry
ns=char (’World’,’yoke’,’C1’,°C2’,°C3?,°C4°)’; % names of the shapes
sf=’World+yoke+C1+C2+C3+C4’ ; % relation

g=decsg(gd,sf,ns);

First we assemble the column vectors for each of the shapes into one matrix gd for “geometry
descriptor” before assigning names to the shapes in the variables ns. The use of the char ()
function ensures the names all have the same length and that ns becomes an array of
characters. In the next line we define sf to hold the relation of the different shapes. Here
we only use the + operator, but we can also use - to define, for example, holes, such that
R-C describes a circular hole defined by C in a rectangle R. Using * allows us to define
regions that are part of two shapes. For example R*C describes the region that is both in
R and in C. But for the C-shaped dipole we only need to add the shapes. Finally, we are
ready to assemble the full geometry description with the decsg() function in the variable g.
Admittedly, this way of entering the geometry is somewhat arduous, but it gives the highest
flexibility in defining the geometry and later in post-processing the results.

With the definition of the geometry completed, we add it to the model, which is a
data structure that holds all information about the simulation. We create an empty model
with the createpde() function and since we only have a single variable A, in the PDE
Equation 4.21, we use 1 as the argument and we add the geometry description g to the
model in the call to the geometryFromEdges () function.

model=createpde (1) ;

geometryFromEdges (model, g) ;

figure(’Name’,’Edgelabels’); pdegplot(model,’EdgeLabels’,’on’)
figure(’Name’,’Domainlabels’); pdegplot(model,’SubDomainLabels’,’on’);

And then we are ready to inspect the geometry with the pdegplot() function; once to
show the EdgeLabels and once to show the SubDomainLabels. The corresponding plots are
shown in Figure 4.5. These two plots give us the labels that describe the edges and domains
of the geometry. Later we need them to specify the boundary conditions on the edges and
the material properties within the domains.

The next task is to discretize the geometry with a call to the generateMesh() function
and to show the result with the pdemesh() function.
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Figure 45 The subdomains and edges of the C-shaped dipole magnet.

generateMesh(model); J or generateMesh(model,’Hmax’,0.02);
pdemesh (model) ;

The resulting mesh is shown on the left-hand side of Figure 4.6. In the figure, MATLAB
chooses the default mesh size, but we can also require a mesh with smaller triangles by
specifying the maximum edge of a triangle with the Hmax argument. In the remainder, we
set Hmax equal to 0.02.

At this point we are ready to specify the boundary conditions on the outer edges of
geometry. They have the edge labels 1, 2, 25, and 26. with the following call

applyBoundaryCondition(model, ’Edge’, [1,2,25,26],°u’,0);

which is fairly self-explanatory; on edges with labels 1,2,25, and 26 we require the value
of the solution u to be zero.

In the next step we specify the material properties in the subdomains. We refer to
the right image in Figure 4.5, where we find the labels for the subdomains. In particular,
1 labels the outside of the magnet, 2 to 5 the coils and 6 the magnet yoke. Next, we

1 1 0.8
0.5 0.5 0.6

0 0 0.4
0.5 7 -0.5 0.2

-1
1 0
1 0 1
-1 0 1

Figure 4.6 The mesh (left) with the default mesh size that is refined by adjusting
Hmax to 0.02 to generate the solution (right).
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enter the values m, d, c, a and f for the respective subdomains in multiple calls to the
specifyCoefficients() function. We remember that ¢ = 1/u, and therefore we specify
¢ = 1 everywhere, except the yoke, where we set ¢ = 1/u, = 1/5000. Likewise, a is zero
everywhere, but we assume the coils to carry NI = 40kA-turns. This causes f to be
f = poNI/A where A = 0.2 x 0.3m? is the cross-section of the coils. For f we thus find the
numerical value 0.8378, which we assign to the left coils with one sign, and the other coils
with the opposite sign.

specifyCoefficients(model,’m’,0,’d’,0,’c’,1,’a’,0,°£f’,0,’Face’,1);
specifyCoefficients(model,’m’,0,°d’,0,’c’,1,’a’,0,’£°,0.8378, ’Face’, [2,4]);
specifyCoefficients(model,’m’,0,’d’,0,’c’,1,’a’,0,’f’,-0.8378, ’Face’, [3,5]);
specifyCoefficients(model,’m’,0,°d’,0,’c’,1/5000,’a’,0,’£f’,0,’Face’,6);
result=solvepde (model) ;

figure(’Name’, ’Magnetic Potential’);

pdeplot (model, ’XYdata’,result.NodalSolution, ’contour’,’on’);

hold on; pdegplot(model);

Then we solve the PDE with a call to solvepde (), which sets up the system of equations,
solves it, and returns a structure containing the solution as result. In particular, A, is
referred to as u=result.NodalSolution. We immediately plot it on the right-hand side in
Figure 4.6 to inspect the solution. Note that we plot both u and the contour lines. Here
hold on and the call to pdegplot () superimposes the geometry on the plot.

With the solution u = A, available, we can proceed to extract other physical quantities,
such as the magnetic flux density (B, B,) = (0u/dy, —0u/dz). Both gradients are already
provided in result as Bx=results.XGradients and By=results.YGradients and we can
therefore proceed to calculate the magnitude of the field with the hypot () function. A call
to the pdeplot () function then displays the magnitude of the magnetic flux density Bmag.
The second argument Flowdata produces small arrows indicating the direction of the flux.
Finally, the geometry is superimposed.

figure(’Name’,’Flux density B’);

Bx=result.YGradients; By=-result.XGradients; Bmag=hypot (Bx,By);
pdeplot(result.Mesh,XYData=Bmag,FlowData=[Bx,Byl) ;

hold on; pdegplot(model);

The left-hand side in Figure 4.7 shows this plot. We immediately observe on the color bar
that values above 5T occur in the iron, especially close to the coils. This causes saturation
of the iron, and we will later improve the solution by taking magnet saturation into account.
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Figure 47 The magnetic flux density distribution (left) and the values in the mid-
plane of the gap (right) for u, = 5000 (solid) and u, = 500 (dashes).
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But we first explore the present solution further by plotting the flux density on the mid-
plane of the magnet gap. First, we create arrays x and y to describe the path along which
we seek to calculate the magnetic field. Then we employ the evaluateGradient () function
to determine the gradients along this path, use Equation 4.10 to ensure the fields have the
correct sign, and calculate the magnitude of the magnetic flux density B.

figure(’Name’,’Field in gap’);

x=0.05:0.01:1.4; y=zeros(l,length(x));

[dAx,dAy]l=evaluateGradient (result,x,y); Bx=dAy; By=-dAx; B=hypot(Bx,By);
plot(x,B,’k’,’LineWidth’,2); xlabel(’x [m]’); ylabel(’B [T]’);
y1lim([0,1.1]); set(gca,’FontSize’,16);

The solid line in the plot on the right-hand side in Figure 4.7 displays this absolute value
of the magnetic flux density B. We note that the field in the middle of the gap is around
1T, in agreement with the estimate using Equation 4.16. But we see that the field rolls off
at both ends of the magnetic gap near z = 0.3m and x = 1m, an effect we will consider
more closely below.

But first we investigate the effect of bad iron with a much lower permeability of p,, = 500
instead of 5000, which is as easy as changing the definition of the parameter ¢ inside the
yoke (Face 6) in a call to the specifyCoefficients() function, before solving the PDE
with solvepde (). The resulting flux density in the gap is shown as the dashed line on the
right-hand side in Figure 4.7. Apparently, the field in the gap is much lower.

In the first example we simulated the field in the entire magnet, which is redundant,
because the magnet has a mid-plane symmetry, and it is sufficient to model only the upper
half and adjust the boundary conditions accordingly. All we have to do is change the polygon
that describes the yoke to

Cmag=[2; 8;
0;0;0.3;0.3;1;1;-0.6;-0.6;
0;0.3;0.3;0.05;0.05;0.8;0.8;0];

and only define the two upper coils before defining the boundary conditions with the fol-
lowing code

applyBoundaryCondition(model, ’Edge’,1:3,’u’,0);
applyBoundaryCondition(model, ’Edge’,8:10,°q’,0,’g’,0);

where the first line defines the Dirichlet boundary conditions on the left, right, and upper
outer boundary. The second call defines von Neumann boundary conditions on the edges
on the mid-plane. The numbers we obtain by inspecting the EdgeLabels that are shown on
the left-hand side in Figure 4.8. Moreover, we only have to specify the coefficients m, d,
c, a, and f in four subdomains: the yoke, two coils, and the rest of the integration volume.
On the right-hand side in Figure 4.8, we show the solution u returned by solvepde () that
corresponds to the right-hand side in Figure 4.6. It is easy to verify that the magnetic field
in the gap equals that calculated with the full model we used before. Note that the number
of nodes for Hmax=0.02 is only 30377 as opposed to 99945 that were used before when
simulating the magnet without symmetries taken into account. Normally, it is advisable
to exploit symmetries, because fewer resources are required. This often results in faster
execution time and the ability to decrease the mesh size in order to solve more complex
problems.

With this more efficient simulation model, we investigate the roll-off of the magnetic flux
density at the ends of the magnet gap. A common way to improve the field in this region is
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Figure 48 The geometry and magnetic flux density of the magnet when exploiting
the mid-plane symmetry of the C-shaped dipole magnet.

called shimming. It is based on adding small pieces of iron near the end of the poles. In the
model, we simply add small, 5 mm-wide rectangles just below the pole ends, as shown on the
left-hand side in Figure 4.9, where the labels 4 and 6 indicate the position of the shims on
either end of the upper pole face. The magnetic flux density in the mid-plane of the magnet
gap is shown on the right for shim heights of 0, 1, and 2mm as the dot-dashed, solid and
dotted line, respectively. We find that the 1 mm shims clearly extend the good-field region
by about 0.05m on both sides of the magnet gap, while a 2mm shim obviously causes a
significant overshoot at the ends. We point out that the shim height depends on the magnet
gap h.

So far, we did not take saturation of iron into account, which starts around 1.5 to 2T,
depending on the quality of the iron or steel used when manufacturing the magnet. Adapting

08 F1 1
----- no shim
e :0.98 ——1 mm shim
) = e 2 M shim
s8]
04 0.96
0.2 } 0.94
i . 0.6 0.8 1
-1 0 1 x [m]

Figure 4.9 On the left, the shims are added to the magnet geometry as 5 mm wide
iron pieces with a height of 1 or 2mm. On the right, the magnetic flux density in
the gap is plotted for a magnet without shims (dot-dashed), with a 1 mm high shim
(solid) and with 2 mm shims (dotted).
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Figure 410 The magnetic flux density (left) and the field in the middle of the gap
(right) for a magnet with saturation taken into account. Note how the scale on the
colorbar indicates that the maximum field stays below 2T.

the simulation in order to take saturation into account is as easy as defining the relative
permeability u, to depend on the magnetic flux density. Here we will use the following
dependence for the relative permeability

Lty = 5000 [0.01 + %erfc (%)} (4.25)
which approximates an example for a magnetostatic problem in the documentation of the
MATLAB PDE toolbox [21]. Here erfc() is the complementary error function [22], the
numerical value 1.5 defines the value of B [T] where p, is halved, and 0.3 defines the width
in T of the transition from the maximum value of 5000 to close to zero. The small value of
0.01 ensures that 1/, stays finite. We now can accommodate saturation by changing a few
lines of code; first we define the function muR() that encodes Equation 4.25 and then the
function mufun() that inverts muR and provides the magnitude of the magnetic flux density,
given by hypot(state.ux,state.uy), as input parameter. Finally mufun is supplied as
parameter ¢ in the call to specifyCoefficients() pertaining to the domains of the model
that are affected by saturation.

muR=0(B)5000% (0.01+0.5%erfc((B-1.5)/0.3));
mufun=@(location,state)l./muR (hypot(state.ux,state.uy));
specifyCoefficients(model,’m’,0,’d’,0,’c’ ,mufun,’a’,0,’f’,0, ’Face’,4);

Though not used in this example, we briefly note that state.u refers to the potential itself
and, for example, location.x to the z-position in the domain of integration'. The rest of
the script remains the same as in previous examples.

The left-hand side in Figure 4.10 shows the magnetic flux density B, where the colorbar
on its right indicates that it indeed remains below 2 T. Compare this to the maximum field
on the right-hand side in Figure 4.8, which exceeds 5T because saturation effects were
ignored. The right-hand side in Figure 4.10 shows the mid-gap field for a magnet with a

IExecuting help FunctionCoefficientFormat in MATLAB displays the available information.
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Figure 411 The domains (left) and edges (right) for a quarter of a quadrupole.

constant value of pu, (solid) and with saturation taken into account (dotted). The field in
the latter case is indeed reduced by about half a percent.

With these tools at hand, it is possible to explore many other dipole geometries, such
as H-magnets, but we leave that as an exercise and explore quadrupoles instead.

4.3.3 Quadrupoles

Quadrupoles can be treated in much the same way as dipoles. We realize, however, that
quadrupoles have a four-fold symmetry, and we therefore only need to model one quadrant,
if we treat the symmetry axes suitably by specifying von Neumann boundary conditions.
The quadrupole has width and height 0.6 m and a pole-tip radius of 53 mm. We show the
geometry with the subdomains specified on the top left plot in Figure 4.11. We see that
the iron yoke, labeled by index 1, the coils by indices 3 and 4, and the extra space by
indices 2 and 5. The iron yoke and the coils are specified by polygons, and the edges or
segments of the polygons are shown on the right plot at the top in Figure 4.11. Note that we
subdivided the hyperbolic pole-tip into a number of shorter segments, and we also added a
short segment, labeled 3, in the origin. This was necessary to avoid an ambiguity with the
von Neumann boundary conditions on the left boundary where the tangential component
is vertical and on the bottom boundary, where it is horizontal. We simply added a short
diagonal segment near the origin where we enforce zero Dirichlet boundary conditions. We
set the current density in the coils with cross-section 87.5cm? to be J, = 10° A/m? which
results in a total current of 8750 A-turns.

The rest of the simulation code follows the previous examples and after specifying the
boundary conditions, we generate the mesh, specify the coefficients m,d, c,a, and f, and
solve the equations with solvepde (), which returns the vector potential u = A, from which

we calculate the magnetic field components B, and B,,. Their modulus B = /B2 + BZ is

shown on the left-hand side in Figure 4.12 where the strongest field appears near the neck of
the pole-tip. There the iron will saturate first, if we increase the current in the coils further.
In the present scenario, the field on the pole-tip is approximately 0.4 T. We read this value
off of the right plot in Figure 4.12, which shows B along the diagonal from the origin toward
the pole-tip center. We determine the gradient from a linear fit to be 7.7T/m, which we
compare to the estimate from Equation 4.18 which results in gradient of 7.8 T/m. After
these initial simulations of the base performance of the quadrupole, we can start optimizing
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Figure 4.12 The magnetic flux density in one quarter of a quadrupole (left) and along
a line from the origin to the pole-tip center (right).

it by including saturation of the iron in our modeling, change the shape of the pole-tip, add
shims, or round the corners near the neck of the pole-tip, where we observe high magnetic
flux densities. We may also investigate iron or steel with different permeabilities u,. And
this brings us to the technological aspects of iron-dominated magnets.

4.3.4 Technological aspects

One particular aspect of iron-dominated magnets is the dependence of the relative perme-
ability u, on the magnetic flux density B, which is shown on the left-hand side in Figure 4.13
which is given by Equation 4.25. At low fluxes, the value of p,. is large—we used p,. = 5000 in
the simulations—whereas it decreases toward zero as the saturation limit of iron—typically
around 2 T—is approached. The right-hand plot shows the magnetic flux B as a function
of the filed H = B/popu,. We observe that for large values of H, the values of B are limited
to the saturation value of about 2T. They typically range from 1.5 to somewhat over 2T,
but in any case the data sheets of the manufacturers must be consulted to obtain accurate
descriptions. We point out that specially manufactured mu-metal sheets are available to
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Figure 4.13 The relative permeability u, as a function of the magnetic flux density
defined by Equation 4.25 (left) and magnetic flux B as a function of the magnetic

field H = B/pop(B) illustrating the hysteresis of iron (middle). The plot on the
right illustrates hysteresis.
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Figure 4.14 Sandwich of conductor coils with water-cooling channels.

shield magnetic fields. They typically reach values of u, about ten times (or more) higher
than conventional iron.

In the previous sections and also in the two plots on the left and middle in Figure 4.13,
we assume a one-to-one relationship between the magnetic field H and the flux density
B, which is not always true. This relationship shows hysteresis and is multi-valued. When
increasing the excitation of a magnet to saturation, the B — H relationship differs from
the one when decreasing the excitation as shown on the right-most plot in Figure 4.13.
The reason for this behavior is the reluctance of magnetic domains in the iron to change
orientation. In this way the magnet “remembers” its previous excitation levels and, as a
consequence, exhibits hysteresis. In practice, this implies that occasionally the magnets have
to be demagnetized or, as it is often called, standardized. This is achieved by cycling the
power supplies of the magnet, initially between the maximum and minimum values, and then
repeating the procedure with successively decreasing amplitudes. In this way, the magnet
iron is forced to follow a gradually diminishing hysteresis curve until it cycles around zero
excitation, at which point the magnet has “forgotten” its history and almost no residual
magnetization remains. This procedure results in a well-defined initial state from which the
desired magnetic flux density can be reached in a reproducible way.

Another reason why the excitation of iron-dominated magnets depends on their history
are eddy-currents that are excited by quickly changing currents. This normally happens
in accelerator magnets used in rapidly cycling synchrotrons that cycle their magnetic field
several times per second. A common way to avoid excessive eddy-currents is to assemble the
magnets from laminated sheets of metal that prevent large current-loop to develop inside
the iron. The same principle is used for the construction of voltage transformers. Building
magnets from stacks of laminations has another advantage for large series of equal magnets,
because the stencil to stamp out the laminations from the sheet metal only needs to be
paid for once. Henceforth a large number of laminations can be stamped at moderate cost.
Moreover, in this way, only moderately lightweight laminations need to be assembled, rather
than large blocks of iron.

The magnets are excited by driving a current through the coils and the ohmic losses due
to the finite resistance of the conductor limit the maximum current. A common limit for
the current density is about 10 A/mm?, provided that the coils are water-cooled and the
pressure drop across the coils is sufficiently large to ensure the flow to be turbulent [23].
Under these circumstances, the conductors are insulated by epoxy and have a hole in their
center through which the water flows. Figure 4.14 illustrates the cross-section through such
a “sandwich” of 3 x 4 conductors with embedded water channels.
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In small magnets, such as those used as steering correctors, only moderate currents are
needed to excite the magnet. If the current density in the coils stays below approximately
1 A/mm?, cooling by air-convection is sufficient, and we can avoid the additional complexity
of installing a water-cooling system.

Iron-dominated magnets are the most common magnets in accelerators, and their design
and manufacturing is well understood. This makes them the first choice unless one wants to
use permanent magnets to avoid electricity costs or magnetic flux densities above 2T are
required. In the latter, the high-field regime, superconducting magnets are the only choice.

4.4 SUPERCONDUCTING MAGNETS

In superconducting magnets, the flux densities are almost entirely determined by the dis-
tribution of currents in the system, and in the basic configuration, no iron is used to shape
the field. In this way, the achievable flux densities are not limited by saturation of the iron,
and superconductors permit extremely large current densities, because there are no ohmic
losses. The disadvantage is, however, that superconducting magnets need to be cooled to
temperatures close to absolute zero by embedding them in a bath of liquid Helium at 4.2 K,
and in special cases even to 1.9 K, where Helium becomes super-fluid.

The wires used to power the magnets are made of superconducting material that ex-
hibits a vanishing electrical resistance to direct currents near zero absolute temperature.
In certain materials, two electrons interact through phonons, which are lattice vibrations
of the crystal, and form bound states, so-called Cooper pairs, which can travel unimpeded
through the material [24]. When exposed to a magnetic fields, Type-I superconductors expel
the magnetic fields, provided it is below a critical field strength H.. Unfortunately, their
H., is too low to use this type of material for magnets. Instead, one uses Type-II supercon-
ductors. They completely expel magnetic fields below the first critical temperature H.; and
partially expel it in a range between H.; and the second critical field H.o, before completely
losing superconductivity at fields above H.s. The field H.o depends on the material and
notably on the temperature to which the material is cooled. H.s is higher for lower temper-
atures, which explains why high-field magnets are often cooled with super-fluid Helium at
1.9K, rather than the more easily accessible liquid Helium at 4.2 K. The ability of Type-II
superconductors to support superconducting currents makes them the material of choice
for the wires.

The most common material for the wires is Nb-T1i, an alloy with approximately equally
shared weight of niobium and titanium. It consists of filaments of Nb-Ti, extruded to a
diameter of several microns. A few thousands of the filaments are embedded in a copper
matrix to form strands with a diameter of about 1 mm. The copper matrix is needed to carry
the large currents and dissipate heat that is generated when the wire loses superconductivity
and quenches. Several tens of the strands are assembled to form the wires that are finally
used to wind the coils. Nb-Ti is widely used, because it can carry current densities between
1000 and 2000 A /mm? and it has good mechanical properties. For example, it can be easily
extruded. Other materials, such as Nb3Sn, can be used to reach higher fields, but it is very
brittle and the manufacturing process is very complex and expensive.

These superconducting wires form the base for the current-dominated dipole and
quadrupole magnets, which we will consider in the following section.
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Figure 4.15 Two intersecting cylinders cause a dipolar field in the inner region (left)
and intersecting ellipses cause a quadrupolar field (right).

4.41 Simple analytical methods

If we apply Equation 4.2 to the inside of a cylinder with a homogeneous current density J,
we find

J.
nr?J, = 2mrH(r) or B(r) = poH(r) = ”O?T

(4.26)
The field grows linearly with radius r. Since the flux density has only an azimuthal compo-
nent, we obtain for the components in the horizontal and vertical direction

,U/OJz
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2

B, =
2

and B, = (4.27)
If we superimpose two cylinders separated horizontally by a distance dx, as shown on the
left-hand side in Figure 4.15, the currents with opposite current density simply superimpose

and cancel in the inner region. The fields superimpose as well, such that B, = 0 and

HoJzdz

B, = 10T (o) 4 10 () = BT

5 (4.28)

which is purely vertical and constant in the inner region, just what is required for a dipole.
We can treat quadrupolar fields in a similar way if we observe that the field components
in an elliptic cylinder with homogeneous current density are given by [25]

. NOJza

oz b
a+by

a+b

and B, =

(4.29)

where a and b are major and minor axes of the ellipse. Summing contributions from two
ellipses with opposite current densities and rotated by 90 degrees, we obtain for the flux

densities
_ a — a
B, d B,
MoJ T an MOJ bt a

which grow linearly with distance from the origin, just as a quadrupolar field should.
Since the magnetic flux densities are generated by the distribution of currents, it is

prudent to investigate the contribution of a current filament at position zg = z¢ + iy to

the multipoles at position z = = + iy. We already know from the discussion at the end of

, (4.30)
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Section 4.2 that the potential of a current filament can be written as F(z) = (uol /2m) log(z—
z0), and that the corresponding flux density is given by

A% A wol 1 —ipol = [ z\"
B =B, —iB, =7~ = —) 4.31
- "By 2Tz — 2o 21z Z <z0> ( )

Here we introduce the abbreviation B = B, + 7B, and use the asterisk to denote the
complex conjugate. In the last equality, we first extract zg from the denominator and then
write the resulting expression as a power series in z/zg, which is permissible for |z/zo| < 1,
the region inside the current distribution. Comparing this expression with Equation 4.13,
we see that n = 0 corresponds to the contribution to the dipole component and n = 1 to
the quadrupole component.

The question of how to place the current filaments in such a way that the combined
effect of all filaments only produces a single multipole can be addressed by introducing
polar coordinates with z = re’® and zy = roe’®® which allows us to rewrite the previous
equation as

., —iunl 0o no '
E ((]50) _ 20 Z (’I") eznqﬁe—z(n-i-l)d)o (432)
no

27ry o

where we added the argument ¢g to the left-hand side in order to make the dependence of the
magnetic flux density B on the location of the current filament obvious. Now, if the current
filaments have an azimuthal current distribution that follows dI/d¢y = I cos(maog + qAS), we
see that integrating over all current filaments

B — —ipol (r

n 27
= ) emgﬁ/ e~ %0 cos(meg + ¢)deo (4.33)

27rg \ 1o 0
extracts a single Fourier harmonic with m = n + 1. Here g{) describes the orientation and
distinguishes between upright and skew multipoles. We thus find that an azimuthal current
distribution with a cos(meg)-dependence creates as pure multipole of order n+ 1. In partic-
ular, a cos(¢g)-dependence results in a dipolar field distribution and a cos(2¢g)-dependence
in a quadrupolar field distribution.

After the basic layout, we use the MATLAB PDE toolbox to verify the design and then
progress to construct the coils from more convenient rectangular current leads, rather than
the crescents shown in Figure 4.15 or filaments with a current distribution with a cos(may)
dependence.

4.4.2 PDE toolbox

We first verify that intersecting ellipses with homogeneous current densities generate a
dipole field as given by Equation 4.28. Since the geometry is particularly simple, we use the
interactive mode of the PDE toolbox and define the geometry with the following sequence
of commands:

pderect([-1,1,-1,1],°W’)
pdecirc(0.05,0,0.4,°C1°)
pdecirc(-0.05,0,0.4,°C2’)

which causes the window with the pdeModeler, shown in Figure 4.16, automatically to
appear on the screen. The large rectangle, labeled W, denotes the integration volume and
the two circles, labeled C1 and C2 define the coils of the dipole magnet. First we change the
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Figure 416 The interactive PDF toolbox interface with two intersecting circles shown
that will produce a dipolar field.

type of problem in the middle of the toolbar from “Generic Scalar” to “Magnetostatics,”
then we select the boundary condition mode by pressing the button with 2. This changes
the display to highlight the boundaries, and double-clicking the boundaries opens a window
in which to enter values. In this problem we use Dirichlet boundary conditions with v = 0
on the boundary, which is the default, and we do not have to change anything. Next we
select “PDE Mode” and “Show Subdomain Labels” from the “PDE” menu. This causes the
display to show the labels of the subdomains, and double-clicking on the number opens a
dialog box in which we enter u,. and poJ, for the respective subdomains. In this case u, = 1
everywhere, and the right crescent has positive current, say pgJ, = 1, and the left crescent
has poJ, = —1. The other subdomains carry no current, and we set pJ, = 0. Once the
geometry, boundary, and material properties are defined, we create a mesh by pressing on
the button with the triangle and then refine it by pressing the button immediately to its
right. Pressing the next button with du/dt and the small green triangle solves the system,
and, after a short while, displays the solution, here the potential, in the same window. The
button to the right of the equal sign opens a post-processing dialog, where we select to
display the “magnetic flux density” with “Arrows.” The display then changes to reflect this
choice. If we want to manipulate the data further, we can export the data structures to
the MATLAB workspace for the mesh p, e, and t and the solution u from the “Mesh”
and “Solve” menu, respectively. Then we can use the commands we used before to plot the
solution along a line or other subdomains.

In practice it is very expensive to manufacture crescent-shaped coils, and basing the
design of the magnet instead on coils with simple geometries, such as a square blocks,
is highly desirable. We already know from the discussion in the previous section that a
cosine-like azimuthal current distribution results in a dipolar field distribution. We therefore
investigate, whether we can find simple current distributions that can generate a dipole field
near the center of the magnet. We start by approximating the cosine by a distribution with
constant current density over a given azimuthal range, where we have positive current
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Figure 4.17 The geometry, lines of constant |B|, and arrows indicating the flux den-
sity for a superconducting dipole (left), and the magnitude of the flux density along
a horizontal line in the mid-plane of the magnet (right).

density for ¢ = +a and negative density for ¢ = 180° 4+ .. Experimenting with varying o,
it quickly becomes obvious that a = 60° produces the most homogeneous flux density near
the center of the dipole.

The left-hand side in Figure 4.17 shows the geometry, the equipotential lines and the
magnetic flux density as arrows. We approximate the square blocks by a polygon that
closely follows two concentric circular arcs of radius 5 and 7cm. We refer to Appendix B.5
for a detailed description of the MATLAB code. The current density we use is 500 A /mm?.
Using the same functions as in previous sections to calculate the flux density along a line,
we find that this configuration results in a fairly homogeneous flux density with magnitude
B = 6.4T, shown on the right-hand side in Figure 4.17. Of course, we can try to improve
the quality of the field by distributing the current blocks in different ways and increase the
field by adding a second layer of current blocks at larger radii, but that is left as an exercise.
Instead we consider a current density distribution that results in a quadrupolar flux density.

Stimulated by the success of the simple current distribution that resulted in a fairly
homogeneous dipole field, we try an equally simple distribution to generate quadrupolar
fields. A little experimenting with the angular width 4+« of the current blocks results in
a = 307 that produces a rather linear increase of the vertical flux density component B,
along the horizontal axis with y = 0. Figure 4.18 shows the geometry, the equipotential
lines, and the flux density, shown as arrows. From a fit of a straight line to the plot of B,
versus horizontal position z we find the gradient to be g = 114.8 T/m. Even here we can
improve the current distribution by placing the current blocks in different ways and increase
the gradient by adding layers of current blocks, but we leave that as an exercise, as well.

Superconducting magnets are the only magnets to reach flux densities of several Teslas,
but occasionally, there are other requirements to fulfill, such as moderately high fields in
very tight spaces, or the need to avoid power supplies that drive currents through coils
altogether. This is the realm of permanent magnets.

4.5 PERMANENT MAGNETS

Permanent magnets are blocks of magnetized material that act as “flux pumps” for magnetic
field lines without the need for external excitation by electric currents. Moreover, the flux
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Figure 4.18 The geometry, lines of constant | B|, and arrows indicating the flux den-
sity for a superconducting quadrupole.

density they provide is independent of their size, which makes it possible to use them in
situations where moderately high flux densities, on the order of one Tesla, are needed in very
tight spaces. Today they are frequently found in electric motors, on physicists’ whiteboards,
and in magnets used to guide the beams in particle accelerators, where they are heavily
used for specialty magnets, undulators and wigglers, to produce synchrotron radiation and
in strongly focusing machines, such as CBETA [26]. The latter uses magnets that are based
on design ideas presented by Halbach [27] on which we also base the following discussion.

There are several types of permanent magnets available, often made of Samarium-Cobalt
or Neodym-Iron. The process in which they are produced consists of rapidly cooling a molten
mixture of the ingredients and then grinding the cold material to a very fine powder. The
powder is subsequently exposed to a strong magnetic field under high pressure, which aligns
the grains to their preferred magnetic orientation. In a second step the blocks are heated
and compressed further in a process called sintering, before machined to their final form as
blocks or disks. In a last step, the material is subjected to an even higher magnetic field than
before. This process imprints the large remanent magnetic flux density B, on the magnet,
which can exceed 1T for some materials. The direction in which the field is imprinted is
commonly called the easy azxis of the magnet.

The main properties of permanent magnets are summarized in the relation of an exter-
nally generated magnetic field H to the flux density B

BH = /-‘LT/’[’OHH + B, and B, = purpoHy (434)

where B|| denotes the flux density parallel to and B perpendicular to the easy axis. B,. is the
remanent field due to the magnetization of the material. It only has a non-zero component
B, along its easy axis. Moreover, p, is very close to unity, such that we will assume u, = 1
in the following. This has the remarkable property that the fields generated by permanent
magnets linearly superimpose, provided no other materials with large permeabilities are
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Figure 4.19 Homogeneous permanent magnets can be described by either surface
charges (Equation 4.35) or by surface currents (Equation 4.36) perpendicular to
the paper.

nearby. The permanent magnets are transparent to external fields H, but they contribute
by virtue of their remanent field B,..

Equation 4.34 can be written in vectorized form as B = ,uoﬁ + é,. where BE',, points
along the easy axis. The magnetic flux density B has to fulfill Maxwell’s Equations 4.1,
with V- B = 0 and V x H = 0 in the absence of external currents or electric fields. The
first equation leads to o =

poV-H=-V-B, =p, (4.35)

where we observe that the divergence of the remanent field B, behaves just like a source-
term p, for the magnetic field H. If we derive the magnetic field from a scalar potential
H = —VV we obtain the Poisson equatlon for the potential AV = —p,./uo that we can
solve for V. The second relation V x H = 0 leads to

-

VxB=VxB,=u, (4.36)

such that the curl of the remanent field behaves analogously to a source current J,.. This
allows us to use Equation 4.11 to calculate the magnetic flux for two-dimensional geometries,
to which we confine ourselves in the remainder.

If the permanent magnet blocks are homogeneous, the curl or divergence of the remanent
field in Equations 4.35 and 4.36 only change on the surface of the material. This immediately
leads to a description of the permanent magnets in terms of surface charges or currents, as
shown in Figure 4.19. We can therefore model their behavior in the MATLAB PDE toolbox
by adding, for example, thin layers of width w with current density J, = B, /wpug to the sides
of the magnets that are parallel to their easy axis. The corresponding currents are enormous;
the current density in a 0.1 mm layer of a magnet with B, = 1T is about 8 x 108 A/m?
and the total current I = J,wh in a block with height A = 50 mm corresponds to 40 kA! A
description, complementary to the one using currents, is based on using magnetic surface
charges and is also useful in some circumstances. Note that this does not imply the existence
of magnetic monopoles; it is just a convenient description of the string of dipoles, aligned
with the easy axis in the material, that show one end on the surface. Here we do not pursue
numerical simulations further, but we use the special properties of the permanent magnet’s
material (p, = 1, linear superposition of fields) to calculate the fields by analytical methods
instead.
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Equation 4.36 implies that we can determine the flux density B from a distribution of
sources that are equivalent to electrical currents. Therefore, we use Equation 4.11, which
describes the flux density of a current filament, and the fact that the fields superimpose
linearly, to obtain the flux density due to all currents by convoluting with the current
density. In two-dimensional geometries this yields

B*(%) = ﬂ/ﬂ I ey = - i [8(Br)y/8x — 8(%)"’”/6‘”} dzdy (4.37)

271 Z—z 271 Z—z Z—z

where the integration extends over a volume {2 containing the permanent magnet material
with z = x + iy, and we use the abbreviation B* = B, — iBy. The first expression in the
square bracket can be transformed with the help of partial integration over the variable z

/Qa(BiT)y/a:Edar:dy:/6Q %dy—/gl(BT)l/zdxdy_ (4.38)

22—z 22—z (2—2)

The first integral vanishes, because it extends over a region just outside the permanent
magnet material where B, is zero. The second integrand in Equation 4.37 can be treated in
a similar way and after assembling the contributions, we finally obtain for the field outside
the permanent magnet material

. 1 B,
B*(2) = %/dexdy (4.39)
with B* = B, — iB,. The right-hand side does not contain derivatives of B, but instead
(2 — 2)? in the denominator, which is the same that appears in the Green’s function for
elementary dipoles. Equation 4.39 thus tells us that the field outside the permanent magnet
material at point Z is given as the distribution of dipoles at points z = x + iy inside the
permanent magnet that is convoluted with the Green’s function for dipoles.

4.5.1 Multipoles

We note the resemblance of Equation 4.39 with the second equality in Equation 4.31, where
we calculated the contributions of each current filament to the multipole coefficients. Here
we do the same, but instead of distributions of filaments, we have to deal with distributions
of magnetic dipoles and instead of a Green’s function 1/(% — z) in Equation 4.31, we have
to use the dipolar Green’s function 1/(Z — 2)2. For positions 2 < z we have

1 d 1 d [ sn-1 0 sn—1
S L\ )= =) —. 4.4
(2-2)2 dz (2— z> dz (Z n ) Z o+l (4.40)

n=1 n=1

Inserting in Equation 4.39 we finally obtain an equation in which the expression in the
square brackets describes the contribution of B,. in the permanent magnet to the multipole
coefficient of order m =n — 1

* (2 - m+ 1 Br sm
B*(2) = Z [ o /szwda:dy} zm . (4.41)

m=0

In particular, m = 0 describes the contribution to the dipole and m = 1 to the quadrupole
component. In Section 4.4.1, we sought current distributions that led to a single non-zero
multipole coefficient and found the cos(n¢) distribution for the currents. Here we seek an
angular distribution of remanent fields that results in a single multipole coefficient as well.
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Figure 420 The easy axis of the permanent magnet material continuously rotates in
order to provide a horizontal dipole field in its center (left) and a rendition with
discrete trapezoidal blocks (right).

First, we consider a dipole magnet with a horizontal field in which the permanent magnet
material is distributed in a ring around a region in which we desire the dipole field with
m = 0. Figure 4.20 shows the geometry, where we assume that the beam moves into the
paper inside the inner region. It is easy to understand that the easy axis of the permanent
magnet material, both on the left and on the right, point toward the right, because that
will pump field lines from the left to the right through the inner region. Likewise, the easy
axis on the top and bottom should point right to left, because that will pump the field lines
back to the left again. In-between these regions we interpolate. In this way the easy axis
appears to “tumble around” twice if we go around the ring once. Let us therefore assume
that the angle of the easy axis with respect to the horizontal axis a is given by a = 2¢
where ¢ is the azimuthal position around the ring, such that we can describe each position
in the ring by z = = + iy = re'®. We thus have

B, = B,e'" = B,e* . (4.42)

Inserting this expression into Equation 4.41, rewriting dzdy = rdrd¢ in cylindrical coordi-
nates, and integrating from inner radius r; to outer radius r, we find

o0 1 2 To ) 1 .
B = Y [m; | oo rdrBreM’rmHe_L(m“W]

m=0

[e'e) r 27
m-+1 (" dr Qid—i
B, ) ip=im+2)¢ g | zm 4.43
m_o[% / rm“/o ‘ 4k (4:43)

= B,log(r,/ri) ,

where we use that the integral over d¢ is 27 if m = 0 and is zero otherwise. Apparently,
the rule that the easy axis rotates twice a = 2¢ leads to a configuration in which only the
m = 0 Fourier-harmonic is non-zero, and the flux density in the inner region is that of a
dipole with strength B, log(r,/r;), pointing toward the positive horizontal axis.
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Figure 421 Two trapezoidal segments of permanent magnet material.

Encouraged by the success with the dipole we generalize the “tumbling law,” by how
many times k the easy axis rotates, while it moves around the ring once, to

a=k¢  suchthat B, = B.e*? (4.44)

and insert this expression into Equation 4.41, whence we obtain

. o [m+1 [T dr [T i) ] am
B (Z) = Br Z |: o2 / T7n+1 /0 € ( ) d¢ z
m=0 Ti
1B, m
- m;r(l—:m>zm for k=m+2. (4.45)

Again, the integral over the angle ¢ is 27 only for £ = m + 2 and zero otherwise. In order to
obtain a multipole of order m, the easy axis needs to tumble m + 2 times around the ring.
For a quadrupole with m = 1 we therefore need three tumbling rotations of the easy axis. It
is noteworthy that the pole-tip field at radius |2| = r; can exceed B,. If the outside radius
of the ring r, becomes very large, r, > r;, the ratio by which it exceeds B, approaches
(m+1)/m.

4.5.2 Segmented multipoles

We have shown that the “tumbling law” from Equation 4.44 results in multipolar fields of
order m, but it required the easy axis to rotate continuously as a function of angle ¢, which
is very difficult to manufacture. It is therefore prudent to investigate configurations where
the ring is made of a number of trapezoidal segments that have a constant easy axis within
each segment. On the right-hand side of Figure 4.20 we show a magnet that is made of
eight trapezoidal segments and approximates the magnet with the continuous rotation of
the easy axis shown on the left-hand side. In the following, we assume that the number of
segments M is arbitrary.

To calculate the contribution of all segments, we start by calculating the contribution of
a single segment, shown to be located symmetrically around the z-axis in Figure 4.21, and
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then determine how its contribution changes when rotated by an angle ¢. Note that the easy
axis for the different segments also rotates, albeit determined by the desired multipolarity
of the magnets according to Equation 4.44. But let us first calculate the contribution to
the magnetic flux density B around the origin of the horizontally placed segment by using
Equation 4.41 and use the fact that the easy axis is constant throughout the integration
volume €2, shown as the lower shaded region

o “ [m+1 dzxdy | .,
B =8Y [ . /szﬁ} s (4.46)

m=0

We now evaluate the integral only over Q with z = x + iy and obtain

dl‘dy x tan o
— s = dx
/Q (‘T + Zy>m+2 / /artana CL' + Zy)erz

1 /T" dx
m+1 (1—|—ztana)m+1 (1—itana)mtt] /. amtl

= ﬁ(cosa)m'*‘l sin((m + 1)a) Fou (75, 70) (4.47)

where we introduce the abbreviation o = 7 /M for half of the opening angle of the trapezoid
and then use it to parameterize the upper and lower boundary of the integration of dy by
y = +x tan a. For the integral over dx, we introduce the abbreviation

"o dx log(ro/73) form=0
Fm(rivro) = (m + 1) /m merl = { mTH TL’” _ T%) otherwise. (448)
Inserting in Equation 4.46, yields
~x 2. [(cos )™ sin((m 4 1)a) .
B =B EFo(ri,re)| 2™ . 4.4
B(-p Yy [l sl GESIE (1.49)

Here B* describes the contribution from the single horizontally placed segment. The con-
tribution from a second segment that is rotated by an angle ¢ with respect to the first
segment, is shown in Figure 4.21. Here we can proceed in the same way as for the first
segment, but we need to take into account that the easy axis has rotated by k¢ according
to Equation 4.44 and that the integration must be done over the coordinates z’ and 7.
Those, however, are related to the coordinates x and y by 2’ + iy’ = ?(z +iy). Since there
is a factor (z' +4y’)™*? in the denominator of the integrand, the contribution of the second
segment is given by

B'(2) = B (2)e*te im0 (4.50)

and we observe that the contribution from the second segment is only phase shifted by the
angle (k — m — 2)¢ with respect to the contribution from the first segment. Therefore the
flux density B from M segments, rotated by an angle ¢ = 27 /M with respect to each other,

is given by
M-1
B* _ B* egm'(k—m—2)j/M , (4_51>

Jj=0

with B given by Equation 4.49. The sum is only non-zero if (k —m — 2)/M is a positive
or negative integer v, in which case it equals M. We therefore only have contributions to
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Figure 422 The geometry of an undulator in the Halbach geometry. In the limit of
r; — oo the parameter ¢ is the half-gap, and the A is the height of the permanent
magnet blocks.

harmonics m that fulfill m = k — 2 4+ v M. For the segmented dipole shown on the right of
Figure 4.20 we have k = 2 and M = 8, such that this dipole also has harmonics m = 8, 16, . ..
other than the wanted dipole harmonic m = 0.

Finally we collect all terms and find for the flux density of a segmented multipole

B*<2) = Br Z |:COS(7T/M)m+1 Sln((,,;m+—~_l)1ﬂ)_7/r]<4M> X Fm(ri; ro)ém(sm,k72+ulw (452)

v=0

where the 0, p—24,0 describes the harmonics that are caused by the segmentation. The
difference from the perfect multipoles described by Equation 4.43 and 4.45 are the additional
harmonics and a reduction of the excitation, which is described by the factor in the square
brackets. Appendix A.3 adapts the calculations to cubic magnetic blocks and describes the
construction of small magnets by inserting the magnet cubes in 3D-printed frames.

4.5.3 Undulators and wigglers

Synchrotron radiation sources and free-electron lasers rely heavily on undulator and wiggler
magnets to provide transversely oscillating trajectories for the charged particles to emit
synchrotron radiation. In order to emit large intensities of short-wavelength radiation, these
magnets must reach very high magnetic fields and very short oscillation periods, which
requires using permanent magnets to construct them.

It turns out that the magnetic fields of undulators are closely related to those of multipole
magnets with high multipolarity as is apparent from considering Figure 4.22, which shows a
weakly curved segment of a multipole with very large inner radius r; and four segments per
azimuthal distance . If we consider the flux density along the dashed line a distance g below
the magnets, we immediately see that the radial field component oscillates between pointing
toward the magnets and in the reverse direction with period A. It is easy to understand
that increasing the radius r;, while also increasing the multipolarity m in such a way that
the period length A is kept fixed, will, in the limiting case, result in a planar undulator. To
formalize this idea, we introduce the scaling variable p, which scales the number of periods
of length A\ around the circumference of length according to 27r; = 2pA. When applying
this scaling to the segmented dipole on the right-hand side in Figure 4.20, we find that
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it consists of p = 2 four-segment periods with a total number of M = 4p segments while
the multipolarity is given by m + 1 = 2p. Using the dipole as a reference, we calculate the
flux density on the dashed line that lies a distance g below the segments with the help of
Equation 4.52. For convenience, we summarize the scaling of the variables with p here

m+1=2p, r; = pA/T, M = 4p, Z=i(r, —g)+z (4.53)

and proceed to address the parts of Equation 4.52 one at a time. Inserting these scaling
relations into the expression in the square brackets and taking the limit of p — oo, we
find that the square bracket reduces to the constant sin(w/4)/(w/4) ~ 0.9. The expression
E,(ri,m0)2™ we rewrite as

1 my gm
Fo(ri ro)5™ = 22 (1 - r) - (4.54)
T

m
m To i

and treat each of the factors independently. The factor (m +1)/m = 2p/(2p — 1) obviously
approaches unity in the limit p — co. The second factor becomes

- ri2p—1 o p)\/7r 2p—1 L 1 2p
p2pt ) pAN/T+h B 1+ mh/pA

1— (1 —wh/pA)?P — 1 — e 2™h/A (4.55)

Q

where we used 7, = r; + h. In the last step, we use the representation (1 —x/p)? — e~ for
the exponential function and see that the expression approaches 1 — e=2™*/ in the limit
p — o0. In a similar fashion we obtain for the last factor in Equation 4.54

o T PA
where we tacitly assume that p is even to fix the sign before the imaginary unit. Finally we
realize that the effect of the second assembly of permanent magnets, the lower yoke, can be
visualized as lying on a similar circle with radius increasing with p. The insert on the lower
right of Figure 4.22 illustrates this. We need to note, however, that the variable z has the
opposite sign on the second circle. Since the fields from the permanent magnets on both
circles superimpose linearly, the flux density around the dashed mid-gap line is given by

2m S _ 2p—1 .
m_iri—g)+= _ 21 (1 _ M) —s je2m(g=iz)/A (4.56)

s o Sin(ﬂ’/4) —27h/\ —2m(g—iz)/A —2m(g+iz) /A
B (Z) = 7/.37”7.[_7/4 (1 — € ) (6 + e >
_ . Sin(ﬂ-/4) —27h/\ —2mg/\ .
= 2B, /4 (1 —e ) e cos(2mz /) , (4.57)

where we only took the lowest harmonic into account. Note that in the mid-plane of the
gap the field oscillates with period length A and it is purely vertical. The field decreases
exponentially with increasing half-gap ¢g. Increasing the height h of the permanent magnets
beyond A/2 increases the peak field only marginally. In that case, the field is given by
B’ (%) = 1.723iB,.e~ 279/ cos(2m2 /). Equation 4.57 is commonly used to design permanent
magnet undulators in the described permanent magnet configuration, which is referred to
as the Halbach configuration.

The manufacture of the magnet assembly with the very strong permanent magnets
requires special care, because the magnet blocks have the tendency to align along their
easy axes, rather than following the pattern with easy axes rotating by 90 degrees from
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Figure 4.23 Hall sensor (left) and its use on a magnet measuring bench (right).

block to block. Often they are fixed in a rigid aluminum frame. The frames for upper and
lower magnet assembly are often movable in the vertical direction in order to adjust B, in
the mid-plane due to the exponential dependency on the half-gap ¢g in Equation 4.57. We
refer to Appendix A.3 for the construction of undulators from magnetic cubes inserted in
3D-printed frames.

At this point, we have the tools available to make a first design of iron-dominated,
superconducting, and permanent magnet-based systems. Of course, once the magnets are
built, they will differ from the design, either due to the used approximations or due to
manufacturing tolerances. In either case, however, we need to verify their performance,
before installing them in an accelerator. And this brings us to measuring the magnets.

4.6 MAGNET MEASUREMENTS

When measuring magnets we distinguish methods that locally measure the magnetic flux
density at one or several points or methods that determine global quantities such as field
integrals or multipole coefficients. Here, we first discuss local measurements using sensors
based on the Hall effect.

4.6.1 Hall probe

Hall sensors are based on semiconductor materials, such as GaAs or InSb, that have a high
mobility of charge carriers. The Lorentz-force due to a magnetic flux density, perpendicular
to the direction of the current flow through the semiconductor, causes the charge carriers
to deflect sideways and accumulate on electrodes. The schematics on the left-hand side in
Figure 4.23 illustrates the geometry. The accumulated charges cause a transverse electric
field that compensates the Lorentz-force such that subsequent charge carriers can travel
unimpeded. The potential difference between the two electrodes Uj is proportional to the
magnetic flux density B and can be amplified and measured with a voltmeter, resulting in a
signal that is proportional to B. Note that only the flux density perpendicular to the plane
of the sensor can be detected. Three sensors, mounted in orthogonal directions are, however,
capable of measuring all three components of the flux density, albeit not at exactly the same
location, because the center positions of the sensors are separated by small distances that
depend on the design of the device. For precision measurements, one has to keep in mind
that the ambient temperature affects the semiconductor sensors, and precautions need to be
taken to compensate temperature variations electronically or by keeping the measurement
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Figure 4.24 Rotating coil (left) with positions of radial and tangential coils shown
as dashed lines. The sketch on the right shows operating the rotating coil on a
measuring bench.

setup in a temperature-controlled environment. A package of one or several sensors, with
appropriate temperature compensation, is often called a Hall probe.

A typical setup to move the Hall probe around inside a measuring volume, here a C-
shaped dipole magnet, is shown on the right-hand side in Figure 4.23. The Hall probe
can consist of one or several individual sensors for the three components of the magnetic
flux density and is mounted on a translation stage that allows the probe to be moved
around inside the measurement volume, for example the gap of the dipole in Figure 4.23.
For obvious reasons special care must be taken to avoid vibrations when designing the
mechanical translation stage. The output of such a measurement is a table of the magnetic
flux densities for each position where the probe is read out. This data can subsequently be
analyzed further in a spreadsheet or in MATLAB. In Appendix A.4, we describe a simple
measuring bench with a Hall sensor mounted on a translation stage and use it to measure
the magnets built in Appendix A.3. Special care must be taken when using the measured
field map in beam-transport calculations. This may lead to unphysical results, because the
three components of the flux density are not measured at the same position and even the
interpolated fields do not necessarily satisfy Maxwell’s equations. Normally, one should try
to fit the field map to analytical expressions that implicitly fulfill Maxwell’s equations.

While Hall probes are the standard device to perform local field measurements, rotating
coil measurements are the normal method to determine integral quantities of magnets.

4.6.2 Rotating coll

Rotating a coil with cross-section A and normal vector 74 in a magnetic field the flux
® = Afiy - B enclosed by the coil changes with time and induces a voltage U = —d®/dt
in the coil. The basic geometry is shown on the left-hand side in Figure 4.24, where we
indicate that both radial and tangential coils can be used. It is easy to see that in the field
of a dipole the coil, rotating with angular frequency w, causes both flux ® and voltage U
to oscillate with the same frequency w. On the other hand, in a quadrupolar field, positions
180 degrees apart, will cause the same ® and the resulting voltage will oscillate with 2w.
Sampling the voltage at a rate much higher than w and subsequently Fourier-transforming
the signal will reveal harmonics that are related to the multipolarity. For example, a coil
that is not properly centered in a quadrupole will also show a first harmonic and reducing
it allows us to find the magnetic center of the quadrupole. The voltage caused by each
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multipole component of the field will depend on the magnetic flux density integrated over
the coil but is straightforward to calculate given the magnetic potential in Equation 4.12
and the fields resulting from it, but we leave this as an exercise.

The mechanical setup is shown on the right-hand side of Figure 4.24, where we see that
the motor on the right will turn the axis with a long and a short coil attached to it. The long
coil provides information about the integral multipole components of the magnet, including
those coming from the fringe fields, whereas the short coil will allow us to probe a subsec-
tion of the magnet and probe for inhomogeneities of the field. The practical difficulties of
performing rotating-coil measurements are knowing the area of the coil, limited mechanical
rigidity of the coil which might cause it to sag, and sliding contacts to bring the electrical
signals from the coil, which rotates, to the digitizer, which normally stands on the floor.

Despite these difficulties, rotating-coil measurement systems are widely used to rapidly
measure and characterize large numbers of conventional multipole magnets. Undulators,
however, require additional considerations.

4.6.3 Undulator measurements

Undulators are straight devices and they should only produce a wiggling particle motion
inside the undulator, but they should neither change angle nor position of the beam par-
ticles at the exit. We only consider the horizontal motion here and the deflection angle is
proportional to the vertical field B, the particle experience. The total deflection angle for
the entire device is thus proportional to the integral of B, along the undulator, and this

quantity I, = fOL Byds is called the first field integral. The integral extends over the entire
device, including the end-fields. The position at the exit can be calculated by integrating
the angle at longitudinal location s, which is proportional to fos By(s')ds’ along the whole

device. This quantity I, = fOL ds fos By (s")ds' is called the second field integral. In order
to verify that an undulator magnet does not perturb the orbit of an accelerator, we must
measure the two field integrals. In most undulators the first integral is close to zero, but
for a pure sine or cosine-like field there is a systematic non-zero contribution due to the
fields at the ends of an undulator. They can, however, be approximately compensated by
tapering the periods at the entrance and exit of an undulator with an excitation pattern of
1/4,-3/4,1,....

It is of course possible to measure the vertical flux density B, along an undulator with a
Hall probe and integrate numerically, but we can also use the stretched wire method [28]. It is
based on a wire that is mounted on translation stages on either end of the undulator, and the
coil is completed with a wire in the field-free region. When moving both translation stages
in parallel, the enclosed flux of the coil changes proportional to B, along the wire, which
is precisely the first field integral. By moving the translation stages in opposite directions,
the flux changes in a way that is related to the second field integral.

There are other methods as well, but we leave them to the specialized literature. We move
on to address the problem of how to accelerate particles in linear and circular accelerators.

QUESTIONS AND EXERCISES

1. Calculate the Ampere turns NI for a dipole with a field of 1.5 T. The dimensions of
the coil are 15 x 8 cm, and the gap is 12 cm. Do you need to use water cooling, or does
air cooling suffice?

2. Determine the number of Ampere turns for a quadrupole with pole-tip radius of 5 cm
and a gradient of 0B,/0x = 20T/m. If your power supplies are limited to operate
below 100 A, how many turns in the magnet coils are suitable?
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Figure 4.25 Sketches of the dipoles with the bad iron and the knocked-out corner.

10.

. It turns out that the dipole magnet shown in Figure 4.5 was built with substandard

iron. There is a square region, 20 cm %20 cm, located directly above the gap in which
pr = 50. See Figure 4.25 for an illustration. (a) Model the geometry and determine
the fields and, in particular, the field in the mid-plane of the gap, as shown on the
right-hand side in Figure 4.9; (b) try to salvage the magnet by restoring the field
quality with shims. Document your success by showing the field in the gap; (c) find
out whether saturation of the iron changes this result; (d) how bad would the magnet
be, if the bad iron has p, = 17

In a second magnet, the area with u, = 50 is located in the top right corner of the
magnet, as shown in the middle of Figure 4.25. Explore, by how much the field in the
mid-plane of the gap is affected.

. Somebody mishandled a crane and badly bumped with a second magnet into your

dipole. The impact knocked out a triangular wedge that extends 50 cm in the vertical
and horizontal directions at the top left corner, as shown on the right-hand side in
Figure 4.25. Analyze the problem and figure out by how much the vertical field in the
gap is affected.

. The other magnet that was hanging on the crane is of the same type and has a similar

wedge knocked out from its lower right corner. Analyze this magnet as well.

It turned out that the quadrupole shown in Figures 4.11 and 4.12 is too large for your
project. The width of the magnet must be reduced to 0.5m. You therefore need to
redesign the quadrupole, such that the pole-tip radius remains 5 cm, but its half-width
is reduced from 0.3 to 0.25m. Prepare a plot, similar to the one on the right-hand
side in Figure 4.12 to document how well this is possible. Can you reduce the size of
the magnet even further without sacrificing the achievable gradient? Investigate!

. Design a sextupole magnet with a pole-tip radius of 5c¢m and a maximum outer

diameter of 40 cm. Determine the gradient 8% B,,/0x? that is achievable with air-cooled
coils.

. Place four current filaments with a current of 1kA at the corners of a square with

10 c¢m to a side, as shown in Figure 4.26. (a) Powering the two right filaments with the
same polarity produces a dipole field. Use Equation 4.11 to calculate B, in the mid-
plane. Apart from the dipole, what other multipoles appear? What is their magnitude?
(b) Calculate the field gradients 0B, /0x, if the filaments are powered as shown in the
middle image in Figure 4.26. What is wrong with this quadrupole? (c¢) Place the
filaments in such a way that you obtain a quadrupole.

When the coils for the superconducting dipole magnet shown in Figure 4.17 were
delivered, you found out that the outer radius of the left coil is 1 mm larger than that
of the right coil. Assume that the position of the inner radii of the coils are fixed.
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Figure 426 The current filaments are arranged in a square and powered to generate
dipole (left) and quadrupole (middle) field. A sketch to illustrate the bad coils from
Exercises 10 and 11.

11.

12.

13.

14.

15.

16.

Moreover, the coils are powered in series, such that the total current in both coils is
equal. Determine the quadrupole gradient that this asymmetry causes.

You cannot move the left coil, but please explore if you can move the right coil
further to the right to salvage the magnet. Can you reduce the gradient? Quantify the
multipoles that arise in the process.

One of the segments in an M=8 dipole from Section 4.5.2 has only 90 % of the remanent
field B, of the other magnets. How large is the ensuing gradient?

Design an permanent magnet undulator with a period of 8 cm and a peak field of 0.4 T
on the beam axis. Assume that you can obtain good-quality magnets with B, = 1.2 T.
(a) plot By and B, on the beam axis along the undulator; (b) plot B, and B, along
a vertical line at a longitudinal position where the vertical field on-axis is maximum;
(c) repeat this at a location where the vertical field is zero.

For the construction of an undulator, you had ordered square blocks of permanent
material. After their arrival you find out that the remanent field is only 70 % of the
specified value. Can you recover field on the beam axis by redesigning the undulator
and placing two magnets on top of each other?

Calculate the induced voltage when rotating the radial coil with radius r, shown on the
left-hand side in Figure 4.24 with angular frequency w in a (a) dipole; (b) quadrupole;
and (c¢) quadrupole, horizontally displaced by a small amount d,.

Repeat the calculations from the previous exercise for the tangential coil, also shown
on the left-hand side in Figure 4.24. The end points of the coil lie on a circle with
radius 7.



CHAPTER 5

Longitudinal Dynamics and
Acceleration

In the previous chapters we discussed magnets to guide and focus particles with a given
momentum pg or energy. We noted that static magnetic fields do not change the energy of
moving particles, only their direction of propagation. In order to accelerate the particles
and change their energy, we need electric fields in the direction of propagation. The fields
are given by the derivatives of the potential ¢ in Equation 2.1. Changing the energy of
the particles also changes their speed and thus their arrival time at a given location, at
least at low, non-relativistic energies. At high energies, the trajectory of the particles may
change, and this may also change the arrival time of the particles as described by the
momentum compaction factor « that we discussed in Section 3.4.4. If the electric field
is time-varying, particles will gain different energies, depending on the arrival time. The
interplay of energy gain and arrival time will determine the dynamics of their particles in
the so-called longitudinal phase space, which is described by the arrival time 7 = z/8yc and
the relative momentum offset 6 = (p — po)/po, the latter is often used instead of the energy,
as discussed in Sections 2.2 and 2.3.

In this chapter, we will discuss simple acceleration structures and the beam dynamics,
both in circular and in linear accelerators. Various technological aspects, such as the gen-
eration, transport, and control of power are deferred to the next chapter. Here we start
by considering methods to use electrical fields to transfer energy to the beam. Static fields
beyond a few MV /m, such as those used in Van de Graaff and Tandem accelerators, lead to
problems with the high-voltage insulation. Therefore, electro-magnetic fields in the radio-
frequency range are used to reach higher energies. The drift tube linear accelerator, shown
in Figure 1.2, is one example. It is based on “hiding” the particles in drift tubes, while the
polarity of the accelerating field is reversed, such that the particle experiences a longitudinal
field with the correct polarity, the next time it crosses the gap between drift tubes. In the
limiting case, we may consider a single acceleration gap and regard the beam pipe as the
drift tube. If the accelerator is circular, we often use individual accelerating gaps; and they
are typically located in resonant structures, the acceleration cavities. Since cavities play
such a central role in charged particle accelerators, we will look at a simple prototype—
the pill-box cavity—more closely, and we will analyze the electro-magnetic fields that can
oscillate inside the cavity in the following sections.

128 This chapter has been made available under a CC BY NC license.
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Figure 5.1 Pill-box cavity with the longitudinal electrical field vector indicated.

5.1 PILL-BOX CAVITY

The geometry of the pill-box cavity is shown in Figure 5.1 as the darker cylinder with
length L and radius R. The beam pipe extends from the left- to the right-hand side and
normally has a diameter much smaller than R. The dynamics of the electro-magnetic fields
is governed by Maxwell’s equations in vacuum with no charges or currents present. The
general form of these equations, shown in Equation 4.1, in Chapter 4 then simplifies to

Lo L. oH
V-E=0 VXE=—uy—
) X Hoata
Lo L OF
V-H=0 |, VXHZEOa. (5.1)

The inside of the cavity is evacuated and both permeability and dielectric constants are
those of vacuum. Furthermore, we assume that the metallic walls of the cavity have infinite
conductivity, and, following the discussion in Section 4.1, this implies that the normal
component of the flux density 7i - H and the tangential component of the electric field 7 x E
are zero. Here 7 is a vector, normal to the surface.

We now have to solve the set of Equations 5.1 with the boundary conditions fulfilled
on the metallic walls of the cylindrical pill-box cavity. Taking the curl on both sides of the
second equation for E in Equation 5.1 we obtain

Lo 2\ wom O°E
V(V-E) - V2B = —puoso oy 5.2
HoS0 575 (5:2)
where we expressed the curl of B by the tempoaal derivative of E. The first term on the
left-hand side is zero, because the divergence of E vanishes and this leaves us with
oo OB
V’E — ~—— =0, 5.3
Ho€o 912 (5.3)
which is the wave equation. We thus find that the fields in the cavity propagate as waves
and that the propagation speed is given by ¢ = 1/poe0, the speed of light in vacuum. Since
these waves will be reflected from the walls of the cavity we expect standing-wave patterns
to emerge.
We are mostly interested in field patterns, or modes, that have an electric field component
E. in the beam’s direction of propagation. We assume that this can be described by a wave
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propagating in the z-direction with frequency w and the wave vector, often also called

propagation constant k.,

—

E— Eei(wt—kzz)

—

and H = Helwth=2) | (5.4)

where E = E(m, y) and H=H (z,y) depend on the transverse coordinates, only. Inserting
into Equation 5.1 and sorting the eight independent components, we obtain

0E, 0E, ‘
— = szz
ox y !
0E. 9E, _ OE. .
e = By +ik.E, = —iwuoH,
0E, OE. OE.
B or kB = —iwnol,
0E, OE, .
Sy =  —iwuoH. .
B 3y Wlko (5.5)
OH, OH, )
z = ik H.
ox dy !
OH, OH, OH, .
— = ZH - Ea:
99 % a9 + ik 1WpEQ
oH, OH., OH,
o or = el 7 = iwosok
oH, OH, .
_ = E. .
ox oy 100z

It now turns out that we can express all transverse components of the electric and magnetic
fields through the longitudinal component F, and H.. For example, eliminating F, from
the second and seventh equations, we get

oE 0H w?
L B =i(kl-— |H, 5.6
Wo€o ay B o ( z CQ) ) ( )
where we used ppgo = 1/¢2. Introducing k2 = w?/c? — k2 and solving for H, leads to
i OE, 0H,
H,=— —k, . 5.7
iz (=% %) 57

We observe that the transverse component H, can be expressed through derivatives of
the longitudinal component E, and H,. Likewise, the other transverse components can be
expressed in a similar way by eliminating the one transverse component without a derivative.

We find
E, = % (k 88% +wyaaHyz> (5.8)

At this point we have expressed all transverse field components through the longitudinal
ones, but we still have the freedom to specify either E,, or H,, or both. The special case with
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E. = 0 describes transverse electric (TE) waves, but they are obviously unsuitable to accel-
erate particles along the z-direction. Instead, we choose transverse magnetic (TM) waves,
by requiring H, to be zero, in which case the four equations depend on the longitudinal
field components F, and from Equations 5.7 and 5.8, we obtain

iwe OF, iwe OF, ik, OF, ik, OF,

H, = — H,=—— E,=— E,=—- . 5.9
k2 oy v k2 o0z = " k2 ox @ Y k2 oy (5:9)

Now we know how to calculate the transverse field components from the longitudinal, but
still have to find the longitudinal components E,. And this we can do by inspecting Equa-
tion 5.3, which is actually three equations, one for each component of the vector E and in
particular also for the longitudinal component

w2
AE: + 5E. =0, (5.10)

where we assume a harmonic time-dependence proportional to e,
The cylindrical symmetry of the pill-box cavity suggests that using cylinder coordinates

will later facilitate to satisfy the boundary conditions. This transforms Equation 5.10 into

19 ( 8EZ) 1 0°E, O%E, w?

- — —F.=0. 5.11
rar " or 2 O¢? * 072 + c? ( )
We attempt to solve this linear partial differential equation with the separation Ansatz
E. = f(r)g(¢)h(z). Inserting it into Equation 5.11, we obtain

1 8(rf’) 19” h w?

4 47 0. 12
rf Or r29+h+02 0 (5.12)

Obviously, h”/h only depends only on z and all the other terms depend on r,¢, or are
constant. Therefore h”/h must be a constant, which we call —k? in order to be consistent
with Equation 5.4, and find

"
% +k2=0 or h'(2)+k*h(z)=0, (5.13)

which is solved by 4
h(z) = Egetik== (5.14)

The value of —k2 will be determined later by the boundary conditions. The remaining
equation still depends on f and on g. It is given by

Lo(rf) 1g" w?
Far tag = ijkg =—k2 (5.15)

with k2 = w?/c? — k2 introduced as an abbreviation. This equation can be rewritten as

r(rf’) 2.2 g’
7 or +kirt = g

(5.16)

Again, since the left-hand side only depends on r and the right-hand side only on ¢, each
side must be independently constant and equal to some constant k2. We thus obtain the
two equations

P2 4 f () + (k22 = k) f(r) =0 and  g"() + k7g(¢) =0 (5.17)
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The second equation is either solved by exponentials or by sine and cosine functions with
argument k,¢. Periodicity in ¢ implies that 27k, = 2mm or, equivalently, that k, needs to
be an integer. For g(¢) we then obtain

g(¢) = e=me (5.18)

We now insert k. = m into the first equation and make a variable substitution s = k.r.
This leads to
S 4 sf + (2 —mHf=0, (5.19)

which is just the defining equation for the Bessel functions of integer order [22], denoted by
Jim(s). For f(r) we therefore obtain

f(r) = Jm(ker) , (5.20)

where we have substituted back the original variable r. Collecting the solutions for f, g, and
h we find the solution for the longitudinal electric field component

E.(r, ¢, 2,t) = EgJy (ker)eTimeetikszgivt (5.21)

inside the cavity. Here Fj is a constant amplitude.

If we assume that the cavity boundaries are perfectly conducting, we have E, = 0
at r = R and this implies that J,,(k.R) = 0 and we conclude that the Bessel function
must have a zero on the surface of the cavity. If we denote the n-th zero of the Bessel
function J,,, by vymn we must have k. R = 7,,,,,. For example, the mode with m = 0 therefore
requires k.R = 2.405 where 2.405 is approximately the first zero of Jy. The requirement
that the electric field vanishes at z = 0 and at z = [ can be fulfilled by combining the two
exponentials with argument +ik.z to a cosine with the same argument that vanishes at
z = 0 and [ whereby we get k.l = pr with integer p. Collecting these constraints for k, and
k. we obtain a dispersion relation for the resonance frequencies

= CR) () o

with integers m, n, and p. Obviously, if the geometry of the cavity is given through its radius
R and length [ the admissible frequencies are given by frinp = Wmnp/27 in Equation 5.22.
Only these frequencies satisfy the boundary condition of vanishing fields on the metallic
boundaries.

We can turn the argument around and use Equation 5.22 to design a cavity that has the
desired frequency that we deem useful for our accelerator. A value for the frequency that is
often chosen is 500 MHz and we now have to choose R and [ suitably. We also require that
500 MHz is the fundamental mode, or the lowest possible eigenfrequency. We therefore pick
m =0 and n = 1, the first zero of the zeroth Bessel function. Solving Equation 5.22 for R,

we obtain
2.405)\

ey Yo

where we introduced the wavelength A = ¢/ f = 0.6 m. If we select p = 0, we find the relation
between the radius and the wavelength

(5.23)

2.4
n_ 05\
2

=0.23m (5.24)
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for the mode characterized by (mnp) = (010). It is usually denoted the TMp1p mode. It
has a non-zero longitudinal field component ., which is used to accelerate particles. The
longitudinal magnetic field component is zero, and the other components can be derived
from Equation 5.9 with E, from Equation 5.21. Note that the dimensions are of similar
magnitude to those of a cookie-jar, whose modes we will analyze in Appendix A.5.

In order to accelerate particles, we externally excite the TMy1g mode with a radio-
frequency generator, but all the other modes are still present and it happens that the beam
itself excites these modes, which may lead to instabilities, a topic we return to in Chapter 12.
For the time being, we consider the cavity solely as a device that periodically provides a
longitudinal electric field and will now focus on how it affects the beam. Other aspects, such
as the generation of the radio-frequency power needed to excite the fields in the cavities is
deferred to Chapter 6.

We continue by observing that the accelerating cavity has a finite length [ and the
finite velocity of the particles implies that a given particle cannot receive the maximum
acceleration voltage all the time during its traversal of the cavity. The effective voltage
“seen” by the particle is reduced by the so-called transit-time factor.

5.2 TRANSIT TIME FACTOR

The energy gain AW of a particle with charge ¢ that arrives in the center of the cavity with
phase ¢ is given by

1/2

AW =gq E, cos(wit + ¢)dz (5.25)
—1/2

with ¢(z) = z/Be¢, where fc is the velocity of the particle and E, is the peak longitudinal
electric field in the pill-box cavity. The integral boundaries extend from the position the
particle enters the cavity on one side until its exits on the other. Evaluating the integral,

we find
sin(w,¢l/28¢)
wyel /2P¢

The expression in the square brackets is the energy gain the particle had received during the
traversal, had it been exposed to the peak field the whole time. Since the field varies during
the traversal, it is reduced by the transit-time factor T'(x) = sin(z)/x with © = wyl/28¢.
Considering the 500 MHz cavity from Equation 5.24 with a length of [ = 0.2m, for rela-
tivistic electrons with 8 close to unity, we find 7'~ 1, whereas for low-energy protons with
8 =10.1 we find T = 0.6. This inefficiency motivates the use of special accelerating cavities,
such as half-wave resonators or spoke cavities, for low-energy particles. These special cavities
are adapted to minimize the distance across which the particles experience the accelerating
field—the accelerating gap.

We now turn to the dynamics of beams in circular accelerators, where the cavities affect
the energy of the particles, but the travel time for one turn affects the arrival phase of a
particle in the cavity, and it needs to be synchronized with the frequency of the cavity. If
done correctly, the particles will perform stable oscillations, a subject we investigate in the
following section.

AW = {qEzl cos(gzﬁ)} (5.26)

5.3 PHASE STABILITY AND SYNCHROTRON OSCILLATIONS

The energy gain in an accelerating cavity AW depends on the arrival time of the particles
or, equivalently, their arrival phase ¢. In a circular accelerator, such as a storage ring, the
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Figure 5.2 The energy AF gained by a particle in a cavity as a function of the arrival
time 7 or phase ¢ = wy¢T.

RF frequency fif = wy/27 of the cavity must be chosen to be an integer multiple of the
revolution frequency fo = 1/Ty, where Tj is the revolution time for one turn. This integer
h = fit/ fo is called the harmonic number of the RF system.

The synchronous phase ¢ of the RF cavity at which the reference particle should arrive
is determined by external requirements, such as to achieve maximum acceleration, which
is indicated by the particle located at the crest of the oscillation in Figure 5.2. In other
accelerators the design phase may be determined by the requirement to replenish the losses
from the emission of synchrotron radiation or the interaction with a target. Increasing the
energy of the beam during an energy ramp is another example that we address in Section 5.7.
To be specific, we consider a storage ring, where the energy U,; must be delivered to the
beam every turn, and this needs to be provided by the accelerating cavity. The synchronous
phase ¢, at which the beam receives this energy is then given by

Uy = qVsin g, , (5.27)

where V is the peak acceleration voltage that a particle can experience in the cavity. It is
determined by the peak longitudinal electric field, the length of the cavity, and the transit-
time factor as given in Equation 5.26. A second particle, arriving at a slightly different
time 7, will then experience the following energy gain in the cavity

AE = qV [sin(wy7) — sin ¢] . (5.28)

This situation is illustrated on the right-hand side in Figure 5.2, where the reference particle
is located at the phase ¢, and an early and a late particle are also shown. They experience
an energy kick with respect to the reference particle given by the previous equation. We note
that it is convenient to use the phase variable ¢ instead of arrival time 7. These variables
are related by ¢ = wysT.

We relate the change in energy to the change in the phase-space variable § = Ap/p with

AE_ QAP_ 2
F=rl=p, (5.29)

which follows from differentiating £ = /m?2c* + p2c?, known from relativistic kinematics.
In most circumstances, the change of energy AE is small compared to the total energy of
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the particle, and we can replace the derivative with respect to time d/dt by averaging the
change over one revolution period Ty. For the temporal variation of §, we then find

o 1 AB_
dt ~ Tof2 E ~ ToB%E

[sin ¢ — sin ¢ (5.30)

which relates the change in relative momentum per revolution period dé/dt to the arrival
time 7, here expressed in terms of the phase variable ¢ = wr.

After analyzing what happens to the particles in the cavity, we need to investigate how
the travel time through the arcs of the ring is affected by the momentum deviation ¢ and on
the magnetic field in the dipoles AB/B. The latter is relevant, because changing the field
in the dipoles changes the length of the orbit such that the arrival phase of the particles is
systematically shifted to one side, causing them to systematically gain or lose energy. This
mechanism is used to accelerate the beams—just increase the dipole field and the beam
moves to a new arrival phase in the cavity to receive the right energy to stay synchronous.
This, of course, requires the motion to be stable, as shown in later parts of this section.

The dependence of the arrival time at the cavity on the magnetic field in the dipoles is
discussed in Section 3.4.4 and is given in terms of the momentum compaction factor o by
AT1/Ty = —aAB/B. Therefore, we find for the dependence of the circumference on § and

AB/B
ac <5 _ AB) , (5.31)

The time for one revolution is given by Ty = C/v where v is the speed of the particle. From
p = Byme we find dv/v = dB/B8 = (1/4?)dp/p = §/7° and for the relative change of the
revolution time AT/Ty, we obtain

AT AC Av 1 AB AB

where we introduce the phase-slip factor n = a — 1/~42. It describes the dependence of the
revolution time, or equivalently revolution frequency, on the momentum deviation §. There
are two contributions: the change of the circumference with momentum, as described by
«, and the change in the speed of the particle. The latter effect is mostly important in
low-energy rings. Note, however, that 1 can change sign as the particles are accelerated and
~ increases. The energy yr = 1/4/a, at which 7 is zero, is called the transition energy, and
it has an important influence on the stability of the particle’s motion, as we shall shortly
see.

The change in revolution time AT/Ty in Equation 5.32 can be interpreted as the change
of arrival time in the cavity dr /Ty = AT /T; of a particle with momentum deviation 6. The
factor proportional to AB/B describes the variation of the phase with the field B in the
main dipoles of the ring. For the change in arrival phase, we then obtain

Cé—(f ~ wrjijT = wynd — wrfaA?B ) (5.33)
Equations 5.33 and 5.30 jointly describe the dynamics of particles in the longitudinal phase
space ¢ = wyT and J. Equation 5.30 describes the effect of arrival phase ¢ on the change of
momentum in the cavity dé/dt, and Equation 5.33 describes the change of arrival phase as
a function of the momentum §. Differentiating the latter equation with respect to time and
inserting in the first, results in

it AV 16— sin ] = 0 . (5.34)

. q/\
¢7T0ﬂ25



136 W Hands-On Accelerator Physics Using MATLAB®

For small phase deviations ©» = ¢ — ¢ from the design phase ¢s Equation 5.34 can be
rewritten by using sin ¢ — sin ¢s &~ 1 cos ¢,. This allows us to express it in the following
form .

. W €oS ¢ eV

P+ =0  with Qg:_‘%ﬁ;§f”
valid for small oscillations. Equation 5.35 is the differential equation for a harmonic oscillator
and describes oscillations with the synchrotron frequency 2. These oscillations in the phase-
momentum phase space are called synchrotron oscillations. The motion of the phase ¢ and
momentum offset § will be harmonic with ¥ = 1/) sin Q,t and § = 6 cos Q,t where w and 6 are
the maximum amplitudes of the phase and the momentum offset. Note that Equation 5.33
for AB/B = 0 implies that ) and § are related by ¢ = (wyn/Qs)d.

The oscillations described by Equation 5.35 are only stable if Q2 is positive, which implies
that the product of 7 and cos ¢s must be negative. Considering the definition of the phase
slip factor 7 = o — 1/4? in terms of the momentum compaction factor a and the kinematic
factor v we see that for low energies the v-factor dominates and makes 7 negative which
implies that cos ¢s must be positive. The transition energy where 7 is zero separates the
low-energy regime where a storage ring operates, colloquially speaking, below transition,
from the high-energy regime, where rings operate above transition. In the latter case we
find that cos¢s; must be negative, and therefore the phase must be close to 180 degrees,
near the point where the RF voltage crosses zero from positive to negative voltages. This
is the case for practically all electron accelerators. Normally, the particles will assemble at
the design-phase, where the motion is stable: below transition around zero phase, where
the slope of AE versus 7 is rising and shown in Figure 5.2, and above transition around
180 degrees, where it is falling. Around these phases the particles perform stable oscillations.

We now return to Equation 5.34 and the motion of particles with large amplitudes, as
might occur when injecting particles with too high energy into a ring.

(5.35)

5.4 LARGE-AMPLITUDE OSCILLATIONS

When injecting new particles into a ring, normally the energy and phase of the new particles
should be adjusted to arrive near the point where stable oscillations occur. If, however, the
timing or the energy is wrong, the particles are still governed by Equation 5.34, but the
small-angle approximation, which led to Equation 5.35, is no longer valid. We therefore use
Equation 5.34, but with the simplifying assumption ¢, = 0, and we arrive at the equation
of a mathematical pendulum

b+ 02sing=0. (5.36)
By multiplying this equation with qS we see that it gives rise to an integral of motion
d 2 L.y 2
pn (;5 —QZcosp| =0 or §¢ —Qlcosp=A. (5.37)

The constant A can be expressed in terms Qf the maximum phase excursion <z§ because at
¢ = ¢ we have ¢ = 0 and find A = —Q2 cos ¢. Inserting into the previous equation yields

%gﬁQ + 02(cos ¢ — cos ) =0 . (5.38)

Introducing the maximum amplitude gf) characterizes the trajectories in much the same
way as we can distinguish different oscillations of a children’s swing by their maximum
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Figure 5.3 Phase portrait of the longitudinal phase space (left) and the oscillation
period as a function of the amplitude ¢.

amplitude. Note that another option would be to describe the trajectories by their total
energy. _
We can now solve Equation 5.38 for ¢ and plot it as a function of ¢ and obtain

¢ = Q\/2(cos ¢ — cos §) (5.39)

and plot ¢ as a function of ¢ for parameter values (]B =m/5,27/5,..., 7. We show the plots
in the d),q-S phase plane on the left-hand side in Figure 5.3 and observe that for small ngS the
trajectories follow ellipses, but as the amplitude increases, the phase space is increasingly
distorted up to a limiting curve for é = 7. It is drawn as a solid line and is called the
separatriz, because it separates stable oscillations from unbounded trajectories.

Note that QS is related to the energy deviation § = Ap/p by Equation 5.33, which implies
that the vertical axis in Figure 5.3 is actually just a rescaled § where the rescaling is given
by (b = nwysd. This implies that there is a maximum momentum acceptance 6y, q,, namely
the height of the separatrix, which is often called the bucket half-height. 1t is given by

20, [ 1 eV
6maa: = L = 2 - 5.40
Ny nwee 32Ty E (5.40)

which clearly shows that the momentum acceptance is proportional to the root of the cavity
voltage V. If a particle is badly injected or suffers a very large energy loss, it can end up
outside the separatrix, where it will not perform stable synchrotron oscillations.

We found that the particles with small phase angles ¢ perform harmonic synchrotron
oscillations. This will, however, change as the amplitude increases and the motion becomes
increasingly non-harmonic. To illustrate this, we calculate the oscillation period T, as a
function of the amplitude by rearranging Equation 5.39 in the following way

0L, _

T, /4 é do 1 /% do
gt — == )
oo [ | J2(con s —cond) ., Vsi?(6/2) = sin(9/2)

where we calculate the time to get from ¢ = 0 to the extreme phase ¢ = qAb, which cov-
ers a quarter of the oscillation period T,/4. The integral on the right-hand side can be

(5.41)
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brought into the standard form of a complete elliptic integral K(z), as defined in [22], by
the substitution sin v = sin(¢/2)/sin(¢/2), whence we arrive at

/2 R
Q;Tp = 2/ dzf = 2K (sin(¢/2)) . (5.42)
0 \/1 — sin?(¢/2) sin® v
Solving for the oscillation period 7},, we obtain
4 L 2 .o
T, = @ (sing/2) = Ty () K(sing/2) (5.43)
s 0

with the small-oscillation amplitude revolution period Ty = 27 /€. The right-hand side in
Figure 5.3 shows the revolution period T},, normalized to the small amplitude period T, as
a function of the amplitude qg in the range 0 < qg < 7. The oscillation period diverges as the
amplitude ngS approaches 7 which corresponds to a starting phase close to one of the nodes
of the separatrix.

In the following paragraphs we determine transfer maps [29], non-linear variants of the
transfer matrices from Chapter 3, that allow us to map starting positions ¢o and ¢ to final
positions ¢(t) and (b(t) after an arbitrarily long time ¢. To find this map, we use the initial
values of ¢g and ¢g to express the integration constant A, which appears in Equation 5.37,
instead of the maximum amplitude gZ; to arrive at

%(;.52 —Q%cosp=FE = %q&% — Q% cos ¢y . (5.44)

Later on, it will be convenient to express the cosine in terms of the square of a sine with
half-angle as argument. We therefore use the trigonometric identity cosy = 1 — 2sin*(y/2)
and rewrite the previous equation as

$% = 2[E + Q2 cos ¢] = ¢ + 402 sin?(¢/2) — 402 sin?(¢/2) (5.45)

and, after introducing the abbreviation k2 = (¢2/20Q,)? + sin?(¢o/2), we obtain

P = (20,k)? {1 — ];sinz(¢/2)] , (5.46)

which is the starting point for our further investigations.

First, we note that k% = 1 defines a boundary between a region where the sign of the
expression in the square brackets may change (k* < 1) and where the sign is always the
same (k? > 1). The boundary is the separatrix and given by

b =20\/1 —sin(¢/2) = 29, cos(¢/2) , (5.47)

which, after using some trigonometric identities, is the same as given in Equation 5.39 for

¢ =m.
If k2 > 1 the expression in the square brackets in Equation 5.46 never changes sign and
we solve the expression for dt

d¢’

1 @
dt =
20k /¢0 \/1 — (1/k2) sin®(¢'/2)

. (5.48)
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With the substitution y = ¢’'/2 we transform the integral to the standard form for the
incomplete elliptic integral of the first kind [22]

Qg kt = /¢/2 =F(¢/2,1/k) — F(¢o/2,1/k) . (5.49)
b0/2 /1 —( 1/k2)sm y

The elliptic integrals have inverses, which can be expressed in terms of the Jacobi elliptic
functions sn, cn, and dn [22]. In particular, for F(x,1/k) = w, the inverse is given by
sin(z) = sn(w, 1/k). Applied to the previous equation, we find

sin(¢/2) = sn (Qskt + F(¢0/2,1/k),1/k) , (5.50)

which gives us the phase of a particle with known initial coordinates ¢o and qi)o after an
arbitrary time ¢. The other phase-space coordinate ¢ after time ¢ can be found from Equa-
tion 5.46. Inserting sin(¢/2) from Equation 5.50 leads to

P = (200,k)? (1 — % sn(w, 1/k)2) = (2Qk)? dn(w, 1/k)? (5.51)

with the abbreviation w = Qgkt + F(¢o/2,1/k). Taking the square root results in b =
20k dn(w, 1/k), the other phase-space coordinate. To summarize, the two equations
sin(¢/2) sn (Qskt + F(é0/2,1/k),1/k)
¢ = 2Q.kdn (Qkt + F(¢o/2,1/k),1/k) (5.52)

with k2 = (¢2/2Q)% + sin?(¢/2) map the initial phase-space coordinates ¢o and ¢o to
those after an arbitrary time ¢. The Jacobi elliptic functions sn and dn take the place of the
trigonometric functions we normally encounter for small-amplitude oscillations. The case
with k2 > 1 corresponds to points inside the separatrix, and next we consider points outside
the separatrix.

For k? < 1 we transform Equation 5.46 to

1 [ de’ z dz
2/¢0 \/kQ—sin2(¢’/2) /ZO \/1—k25in2(z)

where the second equality follows from the substitution sin(¢’/2) = k sin z, which transforms
the integral to the standard form of the incomplete elliptic integral with suitably transformed
integral boundaries z and zy with sinzy = sin(¢g/2)/k. Using the inverse of the elliptic
integral in terms of Jacobi elliptic functions, and using Equation 5.46 to calculate the other
phase-space coordinate gi), we find the map from initial to final coordinates for k? < 1

Flz.k),  (5.53)

sin(¢/2) = ksn(Qt+ F(z0,k), k)
¢ = 2Q.ken (Qut+ F(z, k), k) . (5.54)

Equations 5.52 and 5.54 are straightforward to code in MATLAB in the function named
pendulumtracker.m, given in Appendix B.5. Given the small amplitude synchrotron fre-
quency 2s and the time to integrate ¢ as well as the initial phase space coordinated ¢y and
o it returns ¢ and ¢ at the end of the integration time. We now use this function to explore
the dynamics of particles inside and outside a radio-frequency bucket. For all simulations,
we choose the numerical value Q, = 27 /T, = 0.25.
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Figure 5.4 Trajectories of six particles (dots) starting at ¢ = 0 and ng =
0.09,0.19,...,0.59 for one small-amplitude synchrotron period Ts = 27/Q,. Note
that particles starting with larger amplitudes fall increasingly short of completing
a full turn.

In Figure 5.4 we follow six particles that start at ¢ = 0 with QS = 0.09,0.19,...,0.59
for 100 time steps, each having the duration of T,/100. We observe that the particle with
the smallest amplitude actual