

The book provides an accessible, comprehensive introduction for beginners to machine
learning, equipping them with the fundamental skills and techniques essential for
this field.

It enables beginners to construct practical, real- world solutions powered by machine
learning across diverse application domains. It demonstrates the fundamental tech-
niques involved in data collection, integration, cleansing, transformation, development,
and deployment of machine learning models. This book emphasizes the importance of
integrating responsible and explainable AI into machine learning models, ensuring these
principles are prioritized rather than treated as an afterthought. To support learning, this
book also offers information on accessing additional machine learning resources such as
datasets, libraries, pre- trained models, and tools for tracking machine learning models.

This is a core resource for students and instructors of machine learning and data
science looking for a beginner- friendly material which offers real- world applications
and takes ethical discussions into account.

Practical Machine Learning

https://taylorandfrancis.com

Practical Machine Learning
A Beginner’s Guide with

Ethical Insights

Ally S. Nyamawe, Mohamedi M. Mjahidi,
Noe E. Nnko, Salim A. Diwani, Godbless G. Minja,

and Kulwa Malyango

Designed cover image: KHAIDARY HADAIKA

First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Ally S. Nyamawe, Mohamedi M. Mjahidi, Noe E. Nnko, Salim A. Diwani, Godbless G. Minja, and Kulwa
Malyango

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

The Open Access version of this book, available at www. taylorfrancis. com, has been made available under a Creative
Commons [Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND)] 4.0 license.

Any third party material in this book is not included in the OA Creative Commons license, unless indicated otherwise
in a credit line to the material. Please direct any permissions enquiries to the original rightsholder.

This work was carried out with the aid of a grant from the Artificial Intelligence for Development in Africa Program,
a program funded by Canada’s the International Development Research Centre, Ottawa, Canada and the Swedish
International Development Cooperation Agency.

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
Names: Nyamawe, Ally S., author. | Mjahidi, Mohamedi M., author. |
Nnko, Noe E. (Noe Elisa), author. | Diwani, Salim A., author. | Minja,
Godbless G., author. | Malyango, Kulwa, author.
Title: Practical machine learning : a beginner’s guide with ethical
insights / Ally S. Nyamawe, Mohamedi M. Mjahidi, Noe E. Nnko, Salim A.
Diwani, Godbless G. Minja, Kulwa Malyango.
Description: First edition. | Boca Raton, FL : CRC Press, 2025. | Includes
bibliographical references and index.
Identifiers: LCCN 2024034546 (print) | LCCN 2024034547 (ebook) |
ISBN 9781032782164 (hardback) | ISBN 9781032770291 (paperback) |
ISBN 9781003486817 (ebook)
Subjects: LCSH: Machine learning. | Artificial intelligence.
Classification: LCC Q325.5 .N93 2025 (print) | LCC Q325.5 (ebook) |
DDC 006.3/1--dc23/eng/20241119
LC record available at https://lccn.loc.gov/2024034546
LC ebook record available at https://lccn.loc.gov/2024034547

ISBN: 978-1-032-78216-4 (hbk)
ISBN: 978-1-032-77029-1 (pbk)
ISBN: 978-1-003-48681-7 (ebk)

DOI: 10.1201/9781003486817

Typeset in Times
by SPi Technologies India Pvt Ltd (Straive)

https://www.taylorfrancis.com
https://lccn.loc.gov/2024034546
https://lccn.loc.gov/2024034547
http://dx.doi.org/10.1201/9781003486817

v

Contents

About the authors vi
Preface ix
Acknowledgments x
Glossary xi

 1 Fundamentals of machine learning 1

 2 Mathematics for machine learning 18

 3 Data preparation 76

 4 Machine learning operations 95

 5 Machine learning software and hardware requirements 110

 6 Responsible AI and explainable AI 138

 7 Artificial general intelligence 152

 8 Machine learning step-by-step practical examples 162

Appendix: Machine learning resources 207
Index 210

vi

About the authors

Ally S. Nyamawe is a Computer Scientist with over 15 years
of experience in academia. He holds a PhD in Computer
Science and Technology from Beijing Institute of Technology
(2020), and his research interest mainly focuses on AI appli-
cations in Software Engineering. Nyamawe is a Senior
Lecturer in Computer Science at the University of Dodoma,
Tanzania. Nyamawe’s recent work focused on contributing
to developing AI- driven innovations that address social chal-
lenges and AI uptake for sustainable development in Africa.
Nyamawe has been working on different research projects
committed to fostering the application of AI for social good
and leveraging coding and algorithmic skills in addressing

real- world problems. Nyamawe has extensive experience in leading projects with sup-
port from the World’s renowned funders, including IDRC, Sida, UNESCO- TWAS, and
the EU Erasmus+ Program. Nyamawe actively contributes to the academic commu-
nity through publications and participation in renowned conferences and international
forums. He has served on the program committees for prestigious conferences, includ-
ing the 37th IEEE/ACM International Conference on Automated Software Engineering,
the 11th International Workshop on Software and Systems Traceability, and the 1st
International Conference on the Advancements of Artificial Intelligence in African
Context (AAIAC 2023). His recent recognition includes a 2022 recipient of the Seed
Grant for New African Principal Investigators awarded by The World Academy of
Sciences under UNESCO funding.

Mohamedi M. Mjahidi (PhD) is a Lecturer at the
Department of Computer Science and Engineering
(DoCSE), College of Informatics and Virtual Education
(CIVE), the University of Dodoma (UDOM), Dodoma,
Tanzania. He graduated from the University of Dar es
Salaam (UDSM) in 2006 with a BSc in Computer Science
and completed his MSc in Telecommunication Engineering
at UDOM in 2011. He then completed his PhD in Computer
Engineering at the Gazi University, Ankara, Turkey, in
2020. His research interests include Artificial Intelligence,
Machine Learning, and Computer and Mobile Networks. At

the time of writing this book, Mjahidi is serving as the Lab and Training Coordinator
for AI4D Research Lab.

About the authors vii

Noe E. Nnko currently serves as the Acting Director of
ICT at the University of Dodoma. He is an experienced
Cybersecurity, Artificial Intelligence (AI), and Data Science
Researcher/Engineer, boasting over 11 years of experience in
telecommunication, networking, software, and web applica-
tion security. He specializes in the design and implementation
of AI models, particularly for detecting anomalies in com-
puter networks. Additionally, he has expertise in using block-
chain technology to develop secure and privacy- preserving
decentralized systems. His PhD research at Northumbria

University, UK, focused on exploiting blockchain technology and Artificial Immune
Systems (AIS) to create a decentralized, secure, and privacy- preserving e- Government
system for enforcing data protection and trust. During his master’s degree studies in
India in 2014, he received professional training in ethical hacking, Linux server admin-
istration, Android mobile application development, CCNA, and web application pro-
gramming in JAVA. One of his notable contributions to AI and academic research is
the development of a new general- purpose multiclass classifier based on the Dendritic
Cell Algorithm (McDCA), which is currently under review by the IEEE Transactions
on Neural Networks and Learning Systems journal. His current research and practical
endeavors focus on leveraging African- origin datasets to develop AI- powered solutions
that address privacy concerns related to data breaches and unlawful access to personal
information.

Salim A. Diwani is a highly skilled and experienced
Lecturer at the University of Dodoma, specializing in
Machine Learning and Artificial Intelligence for more than
12 years. Diwani, acknowledged as a senior expert in various
fields, has made noteworthy contributions to both academia
and practical applications. At the University of Dodoma, he
has fostered a vibrant atmosphere in which students have
developed and put into practice cutting- edge artificial intel-
ligence solutions across various industries, including agricul-
ture and healthcare. Diwani not only holds a position at the
institution but also acts as the coordinator for the Healthcare
Coordination Unit at AI4D Research Lab. He is responsible
for supervising a group of committed professionals who

are dedicated to utilizing AI technologies to tackle urgent healthcare issues. Diwani’s
leadership includes the responsibility of hosting graduate students supported by AI4D
Research Lab. Diwani is leading the Healthcare Coordination Unit in developing AI
solutions specifically designed for the local requirements of the Anglophone region
in Africa. Diwani and his colleagues are closely collaborating with the Ministry of
Health in the Government of Tanzania to build an AI policy in the health sector. This
effort aims to establish a favorable setting for the acceptance and assimilation of AI
technologies in healthcare. Diwani and his colleagues are leading the way in utilizing
AI to transform healthcare delivery and address intricate healthcare issues in Africa
and beyond.

viii About the authors

Godbless G. Minja is an Assistant Lecturer in the
Department of Computer Science and Engineering
(DoCSE) at the University of Dodoma (UDOM) in
Tanzania. He completed his BSc in Computer Science at
the University of Dar es Salaam (UDSM) in Tanzania and
MSc in Cyber Security at the University of Birmingham
in the United Kingdom (UK). He is currently pursu-
ing a PhD in Information and Communication Science
and Engineering (ICSE) at the Nelson Mandela African
Institution of Science and Technology (NM- AIST) in
Tanzania.

Kulwa Malyango is a Research Assistant and Software
Developer at the AI4D Research Lab. He has a degree
in Computer Science from the University of Dodoma in
Tanzania. His research interests are in the application of arti-
ficial intelligence in the digital economy. Currently pursuing
a master’s degree in Computer Science, Kulwa is expanding
his expertise in software development and artificial intel-
ligence by working with esteemed researchers at the AI4D
Research Lab. His main goal is to contribute meaningful
research and practical solutions that can positively impact the

digital economy, both locally and globally. He envisions a future where AI technologies
are responsibly integrated into various sectors to improve people’s lives.

ix

Preface

Education is the most powerful weapon that you can use to change the world.
—Nelson Mandela

Machine learning is evolving rapidly, and its impact on our lives is profound. Machine
learning applications have seamlessly expanded beyond their initial domains, integrat-
ing into our daily lives in ways we might not consciously recognize. It is not always
apparent that machine learning algorithms drive commonplace activities such as using
virtual assistants for voice commands, relying on self- driving features in modern
 vehicles, benefiting from smart home devices like intelligent kitchen appliances, or even
experiencing personalized recommendations during online transactions. Machine learn-
ing is not just a tool, it is a force that shapes our future.

Acquiring machine learning knowledge and skills is crucial for staying relevant and
unlocking diverse career opportunities in, for example, agriculture, healthcare, engineer-
ing, and finance industries. The acquired skills are in high demand, offering a lucrative
career path with personal growth. Furthermore, machine learning contributes to effi-
ciency, creativity, and competitive advantages in business creation and optimization.

This book is a humble attempt to demystify the complexities of machine learning
while emphasizing the crucial role of ethics in this transformative field. Embarking on a
journey into machine learning can be both thrilling and daunting. This book serves as a
guide, simplifying concepts and providing practical examples to make the learning pro-
cess engaging and accessible. This book is tailored to varied readers, including students,
professionals exploring a new domain, or simply curious about the intersection of
machine learning and ethics.

In the following chapters, this book will delve into the fundamentals of machine
learning, explain the underlying algorithms, and explore real- world use cases of machine
learning. The ethical implications of AI are central to the discussions in this book. As we
unlock the potential of machine learning, we must also grapple with the responsibility it
places on our shoulders. Notably, the ethical dimension of machine learning cannot be
overstated. This book navigates the ethical considerations inherent in designing, deploy-
ing, and using machine learning models. From bias in algorithms to the societal impact
of automation, urging the readers to think critically and responsibly about the power
they wield as practitioners in this field. We encourage the reader to read the book with
curiosity, an open mind, and a keen interest in the ethical dimensions of artificial intel-
ligence. May this book empower the reader to delve into this transformative field
responsibly and ethically.

x

Acknowledgments

This book was prepared by the AfriAI Research Lab with the aid of a grant from the
AI for Development in Africa Program, a program funded by Canada’s International
Development Research Centre (IDRC), Ottawa, Canada and the Swedish International
Development Cooperation Agency (Sida).

The authors wish to extend their heartfelt appreciation to the University of Dodoma
(UDOM) and the Nelson Mandela African Institution of Science and Technology (NM-
AIST) for the support they extended to the authors during the preparation of this book.
Moreover, the authors acknowledge the support from other colleagues in the lab, as well
as all individuals and institutions not explicitly mentioned here, who have contributed to
the accomplishment of this book. Your invaluable contributions and efforts have been
highly beneficial and are greatly appreciated.

The authors would also like to express their sincere gratitude to Dr. Tegawende
Bissyande, Prof. Solomon Sunday Oyelere, and Dr. Ismaila Sanusi, who carefully
reviewed the early drafts of this book and suggested various improvements.

Finally, the authors thank their families for the wholehearted support they devoted
throughout the preparation of this book.

xi

Glossary

Algorithm: A set of instructions that a computer follows to solve a problem.
Artificial Intelligence: Mimicking human intelligence in machines designed to perform

tasks that usually require human intelligence.
Bias: A systematic error in a machine learning model that causes it to make incorrect

predictions.
Data Preprocessing: Preparing and cleaning raw data before feeding it into a machine

learning algorithm.
Feature Extraction: The process of selecting the most relevant features from the input

data to enable efficient and accurate learning.
Hyperparameters: Parameters that are not learned from the data but are set manually

before training a machine learning model.
Machine Learning: A branch of artificial intelligence that focuses on developing

 algorithms and models that enable computers to learn from data and make
predictions without being explicitly programmed.

Metadata: A set of details that provides information about the data, such as data
g eneration date, data source, data size, owner, and license agreement.

Model Development: Designing, building, and refining a machine learning model to
solve a specific problem or make predictions.

Model Deployment: Deploying a trained machine learning model into a production
environment.

Model Evaluation: The process of assessing the performance of a machine learning
model using various metrics to determine its effectiveness.

Neural Network: A network of artificial neurons or nodes that draws inspiration from
the structure and function of the human brain.

Noise: The presence of inaccurate or irrelevant variations in a dataset.
Overfitting: A phenomenon in machine learning where a model learns excessively well

from the training data and fails to generalize to new, unseen data.
Outlier: A single data point in a dataset that deviates noticeably from the rest of the

dataset.
Supervised Learning: A type of machine learning where a model is trained using

labeled data, meaning each data point has a corresponding target value.
The model learns to predict these target values for new, unseen data.

Testing Data: A set of data (different from the training data) used to evaluate the
 performance and generalization of a trained machine learning model.

Training Data: The labeled or unlabeled data used to train a machine learning model.

xii Glossary

Underfitting: A phenomenon that occurs when a machine learning model fails to capture
the underlying patterns in the training data, resulting in poor performance on
both the training and testing data.

Unsupervised Learning: A type of machine learning where the model learns from
unlabeled data, discovering hidden patterns and structures within the data
without predefined target values.

Validation Set: A set of data (different from the training and testing datasets) that is
used to fine- tune the performance of a machine learning model.

1DOI: 10.1201/9781003486817-1

1Fundamentals
of machine
learning

Upon completing this chapter, learners should be able to:

1. Define machine learning with a foundational understanding of its principles,
terminologies, and processes.

2. Articulate the importance of machine learning, its practical applications,
and growing relevance.

3. Differentiate between various types of machine learning algorithms, their
characteristics, and use cases.

4. Examine real- world applications of machine learning across diverse indus-
tries and their practical impact.

5. Understand the interdisciplinary connections of machine learning with other
computer science disciplines.

1.1 WHAT IS MACHINE LEARNING?

Machine learning is a field of science that utilizes data and algorithms to train computers
to mimic human learning processes, as illustrated in Figure 1.1. It involves learning
from data to acquire knowledge (i.e., what is learnt), understand the process (i.e., how
it learnt), and apply this knowledge to solve problems (i.e., reasoning and decision-
making) reliably.

Additionally, as summarized in Figure 1.2, machine learning can also be defined as
the science of creating autonomous software or models that learn from data to solve
problems and make predictions. Simply put, machine learning focuses on building mod-
els that improve automatically with experience. This approach offers greater flexibility
and efficiency, significantly reducing software developers’ need to manually program
machine instructions.

This chapter has been made available under a CC-BY-NC-ND 4.0 license.

http://dx.doi.org/10.1201/9781003486817-1

2 Practical Machine Learning

1.2 A BRIEF HISTORY OF MACHINE LEARNING

Machine learning has been evolving since its inception in the 1950s. In the 1970s and
1980s, the field of machine learning primarily revolved around the goal of decision-
making based on predetermined rules. However, in the 1990s, a notable shift occurred,
redirecting machine learning toward a more data- centric approach. During the 2000s,
there was a significant advancement in computer learning capabilities, particularly com-
plex and data- rich applications, for example, processing visual information. This progress
greatly contributed to the machines’ ability to learn and comprehend, mirroring the way
human brains work. In the 2010s, machine learning experienced remarkable progress,
marked by significant developments in voice assistants, self- driving technologies, rec-
ommendation systems, and the widespread adoption of spam filters and chatbots. In the
early 2020s, ongoing trends include the exploration of federated learning, allowing model
training across decentralized machines and an increased focus on ethical considerations.
Additionally, machines can learn and generate content in human- like language and cre-
ate original and creative outputs on their own, such as images, text, music, or even entire
realistic scenarios. Furthermore, the field continues to evolve, emphasizing responsible AI
practices, bias mitigation, and the development of models that align with ethical principles.

FIGURE 1.1 Machine learning overview.

Machine Learning

How is it learnt?What is learnt?

Learning Reasoning, Decision-making

How is it converted to action?

FIGURE 1.2 The meaning of machine learning.

1 • Fundamentals of machine learning 3

1.3 TYPES OF MACHINE
LEARNING ALGORITHMS

An algorithm is a set of mathematical instructions or rules that directs a computer
program to solve a specific problem or perform a task. In machine learning, an algo-
rithm enables a model to process data, identify patterns, and make predictions. It
is the fundamental building block that drives the learning process and allows the
model to generalize its knowledge to new, unseen data. There are four main types
of machine learning algorithms: Supervised Learning, Unsupervised Learning,
 Semi- supervised Learning, and Reinforcement Learning, which are discussed in the
following subsections.

1.3.1 Supervised learning

Supervised learning is a branch of machine learning wherein the algorithm learns from
input features associated with known output labels or target values, enabling it to predict
or classify new, unseen data. Supervised learning relies on a dataset containing input-
output pairs to train the algorithm. This concept can be likened to learning under the
guidance of a supervisor. Generally, supervised learning proves more effective when
labeled datasets are available than other learning methods. Its applications span various
real- life scenarios, including fraud detection (e.g., distinguishing between fraudulent
and legitimate transactions), sales forecasting (e.g., predicting high, medium, or low
sales), and email categorization (e.g., identifying spam emails). Table 1.1 depicts an
example of a labeled dataset containing the diabetes diagnostic measurements, where
the last feature (label) contains the values of 1 or 0, indicating that a patient is diabetic
or not, respectively.

1.3.1.1 Types of supervised learning

Supervised learning encompasses two primary types of problems: classification and
regression.

 • Classification entails assigning input data samples into predefined catego-
ries or classes. Drawing from previous learning experiences, a classifica-
tion algorithm typically identifies data samples within the input dataset

TABLE 1.1 An example of a labeled dataset

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE LABEL

0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1

4 Practical Machine Learning

and assigns them to specific classes. Common classification types include
binary and multiclass classification.
• In binary classification, an algorithm trains to classify data samples into

one of two potential classes, aiming to construct a model capable of
accurately assigning new samples to their respective classes. Examples
of binary classification applications include discerning whether an
email is spam or not and diagnosing whether an individual is diabetic
or not. Algorithms proficient in binary classification include Logistic
Regression, Support Vector Machine, k- Nearest Neighbors, Decision
Trees, Naive Bayes, and Random Forest.

• In multiclass classification, an algorithm trains to classify data sam-
ples into three or more classes, aiming to construct a model capable of
accurately categorizing new data samples into their respective classes.
Examples of multiclass classification applications include determin-
ing the genre of a movie into categories such as action, drama, comedy,
or fiction and classifying animals into categories like dog, cat, or tiger.
Algorithms proficient in multiclass classification include Decision Tree
and Artificial Neural Networks.

 • Regression involves predicting a continuous output or numerical value
based on input features. To develop a model, regression algorithms are
trained to understand the relationship between independent variables and
a continuous dependent variable. This model can then predict the outcome
of new, unseen input data. An example of a regression algorithm is Linear
Regression.
• In linear regression, an algorithm captures the relationship between a

dependent variable (the feature to be predicted) and one or more inde-
pendent variables (the predictor features) to develop a model capable of
accurately predicting the dependent variable based on at least one inde-
pendent variable. Linear regression algorithms are categorized into two
main types: simple and multivariate (multiple) regression. Simple linear
regression involves a dependent variable relying on a single indepen-
dent variable, while multivariate linear regression involves a dependent
variable relying on multiple independent variables. Linear regression is
extensively used for tasks such as estimating housing prices based on
factors like area, room count, and location.

1.3.2 Unsupervised learning

Unsupervised learning is a type of machine learning that does not require labeled
 datasets. Instead of being guided by predefined labels, the algorithm independently dis-
covers hidden patterns and insights within the data. Unsupervised learning is crucial
because obtaining unlabeled data is often easier than acquiring labeled data, which typi-
cally requires human annotators. Additionally, unsupervised learning can help identify
 features useful for categorization. Table 1.2 illustrates an unlabeled dataset containing
diabetes diagnostic measurements without a label feature.

1 • Fundamentals of machine learning 5

1.3.2.1 Types of unsupervised learning

Unsupervised learning techniques are categorized into clustering and association rules
as described in the following:

1.3.2.1.1 Clustering
This machine learning technique finds patterns or structures in a collection of unclas-
sified data and uses them to group similar data into clusters or segments. Common
categories of clustering algorithms include hierarchical, partitioning, and density- based
clustering.

 • Hierarchical clustering involves creating a hierarchical structure of clusters
by merging or splitting clusters based on the similarity of data points. The
application of hierarchical clustering spans various domains, including doc-
ument clustering and social network analysis. Notable examples of hierar-
chical clustering algorithms include agglomerative hierarchical clustering,
divisive hierarchical clustering, and Ward’s method.

 • Partitioning clustering algorithms organize a dataset into distinct, non-
overlapping groups or clusters, where each data point belongs to only one
cluster. Partitioning clustering is used in applications such as customer
 segmentation based on online purchasing behavior. Examples of partition-
ing clustering algorithms include K- means, fuzzy C- means (FCM), X- means,
and G- means.

 • Density- based clustering algorithms cluster data points according to their
density in the feature space. The algorithm identifies clusters as regions
with a higher density of data points, separated by areas of lower density.
This enables it to uncover clusters of diverse shapes and effectively handle
noise or outliers. In density- based clustering, clusters emerge around dense
regions, while data points in sparser regions may be classified as outliers.
Density- based clustering algorithms find applications in traffic analysis and
anomaly detection in network security. Examples of such algorithms include
Density- Based Spatial Clustering of Applications with Noise (DBSCAN)
and mean shift.

1.3.2.1.2 Association Rules
This technique is used to identify relationships or associations between variables in
a dataset based on predefined rules. The rules highlight patterns in the form of “if-
then” statements, indicating that the occurrence of one set of items is associated with

TABLE 1.2 An example of an unlabeled dataset

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE

0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32

6 Practical Machine Learning

the occurrence of another set of items. Applications of association rules are market
 basket analysis, online shopping customer behavior analysis, and inventory manage-
ment. In essence, association rules provide valuable insights into the relationships
between seemingly unrelated data points, facilitating data- driven decision- making in
diverse fields. For instance, businesses utilize association rules to understand patterns
of co- occurrence among products frequently purchased together (e.g., bread and jam,
book and pencil), informing decisions on product placement, targeted marketing, and
personalized recommendations. Examples of association rules algorithms are Apriori,
Eclat, and FP- Growth.

1.3.3 Semi- supervised learning

Semi- supervised learning provides the capability to train an algorithm using a combi-
nation of labeled data, consisting of a small number of examples with known labels,
and unlabeled data, which comprises a large number of examples without labels. In
situations where acquiring fully labeled data is challenging, unsupervised and semi-
supervised learning offers viable alternatives to supervised learning. The process of
creating labeled datasets can be time- consuming, labor- intensive, and costly, as it often
requires the involvement of domain experts for manual annotation. Various algorithms
can be employed in semi- supervised learning, including self- training, co- training, gen-
erative models, entropy regularization, graph- based methods, semi- supervised support
vector machines (S3VM), and transductive support vector machines (SVM).

1.3.4 Reinforcement learning

Reinforcement learning involves training a machine learning model to make a series of
decisions within a complex environment. The model perceives and interprets its surround-
ings, employing a trial- and- error approach to discover the optimal solution to a given prob-
lem. In reinforcement learning, the model receives rewards for desirable behaviors and
may face penalties for undesired ones. Several common reinforcement learning algorithms
exist, including Q- learning, deep Q- networks (DQN), policy gradient methods, actor-
centric methods, Monte Carlo methods, and deep deterministic policy gradient (DDPG).

1.4 RELATIONSHIP BETWEEN MACHINE
LEARNING AND OTHER COMPUTER

SCIENCE DISCIPLINES

This section describes the relationship between machine learning and artificial intelli-
gence, data science, traditional programming, deep learning, natural language process-
ing, computer vision, and generative AI.

1 • Fundamentals of machine learning 7

1.4.1 Machine learning and artificial intelligence

In brief, AI is a field within computer science, with machine learning under its umbrella.
While machine learning and AI are often used interchangeably, machine learning is a
subset of AI that enables systems to learn and refine processes without explicit program-
ming for each task. These systems ingest data, process it through algorithms, and learn
from it, discerning patterns or anomalies. In contrast, AI involves crafting systems to
think and behave in ways akin to humans, empowering them to undertake tasks typically
requiring human intellect. AI is characterized in two key ways: as the scientific endeavor
to design machines capable of decision- making like humans and as the manifestation
of intelligence in machines, distinct from natural human and animal intelligence. In
essence, machine learning outputs contribute to AI solutions. While both share simi-
lar goals and functions, AI covers various techniques such as computer vision, natural
 language processing, and robotics.

1.4.2 Machine learning and data science

Data science is a discipline that revolves around studying data and extracting valuable
insights from it. On the other hand, machine learning is a specialized field within data
science that focuses on comprehending and constructing models that leverage data to
enhance performance or make predictions. In simpler terms, data science aims to extract
actionable insights from data, while machine learning is concerned with developing
models that can automate predictive behavior by utilizing the available data. The rela-
tionship between machine learning, AI, and data science is illustrated in Figure 1.3.

1.4.3 Machine learning and traditional programming

Both machine learning and traditional programming serve as problem- solving tools,
each suitable for different types of challenges. Traditional programming excels in
 scenarios with well- defined rules and structures, where solutions can be articulated

FIGURE 1.3 The relationship between AI, machine learning, and data science.

Data scienceMachine
LearningArtificial

Intelligence

8 Practical Machine Learning

through logical statements and algorithms. Conversely, machine learning shines in
addressing problems characterized by complex and elusive patterns or relationships.
Inspired by human learning, machine learning empowers computers to glean insights
from examples and autonomously devise solutions. As depicted in Figure 1.4, tradi-
tional programming involves the computer processing data and programs to generate an
output. In contrast, machine learning entails the computer utilizing data and expected
output to generate the program.

1.4.4 Machine learning and deep learning

Both machine learning and deep learning reside under the umbrella of artificial intel-
ligence, yet they diverge in their learning methods and problem- solving approaches.
Deep learning, a subset of machine learning, is distinguished by its utilization of
 neural networks, inspired by the human brain, to learn and solve problems. In con-
trast, machine learning trains computer programs or systems to execute tasks without
explicit instructions. Machine learning excels in well- defined tasks with structured and
labeled data, typically involving lower data volumes. Conversely, deep learning thrives
in tackling complex tasks with unstructured and extensive data. Examples of machine
learning applications encompass spam filtering, image recognition, and product rec-
ommendation systems. In contrast, deep learning finds applications in self- driving
cars, speech recognition, medical image analysis, and generative AI applications like
chatbots (such as ChatGPT) and Google’s Gemini. Figure 1.5 delineates the relation-
ship between artificial intelligence, machine learning, and deep learning.

1.4.5 Machine learning and natural
language processing

Natural language processing (NLP) is a specialized field within machine learning
that focuses on the interaction between human language and computers. It recognizes
the abundance of valuable information in text and speech data, such as news articles,
customer reviews, and research papers. NLP provides computational tools to extract
insights and derive meaning from this unstructured data, making it a crucial component
of the machine learning toolbox for understanding and processing human language.

FIGURE 1.4 The relationship between machine learning and traditional programming.

Computer ComputerOutput

Output

DataData

Traditional Programming Machine Learning

Program

Program

1 • Fundamentals of machine learning 9

The applications of NLP are diverse and span across various industries. In healthcare,
NLP can be used for tasks like clinical text analysis and medical record extraction. In edu-
cation, it can aid in automated grading and intelligent tutoring systems. Communication
platforms like Google Translate and text auto- completion rely on NLP algorithms. In
business and marketing, sentiment analysis and chatbots employ NLP techniques. Also,
NLP contributes to entertainment applications such as social media feed recommen-
dations and voice assistants. Figure 1.6 illustrates the relationship between machine
learning and natural language processing, highlighting how NLP plays a vital role in
leveraging machine learning techniques to process and understand human language.

1.4.6 Machine learning and computer vision

Computer vision (CV) constitutes a subset of AI that empowers computers to compre-
hend visual information such as images and videos. Given the complex and variable
nature of visual data, traditional programming techniques often fall short in resolving
many computer vision tasks. Instead, machine learning methods, particularly deep learn-
ing, are leveraged to discern visual patterns from images autonomously. This progression
underlies the creation of applications like image classification (categorizing images),
object detection (locating specific objects within images), and facial recognition (match-
ing and identifying human faces). The relationship among artificial intelligence, machine
learning, and computer vision is succinctly depicted in Figure 1.7.

FIGURE 1.5 The relationship between artificial intelligence, machine learning, and deep
learning.

10 Practical Machine Learning

FIGURE 1.7 The relationship between artificial intelligence, machine learning, and
 computer vision.

FIGURE 1.6 The relationship between machine learning and natural language processing.

1 • Fundamentals of machine learning 11

1.4.7 Machine learning and generative AI

AI has made significant strides in recent years, showcasing mastery in various domains,
from complex games to language translation and disease diagnosis. However, what if
AI could transcend its current capabilities and become a creator? You may have encoun-
tered ChatGPT, a chatbot with human- like conversational abilities, or Midjourney, a
model capable of generating realistic images from textual prompts. These break-
throughs are powered by Generative AI, a subset of machine learning, particularly deep
learning, which focuses on generating novel content rather than just analyzing or acting
upon existing data. The following key advancements have propelled the evolution of
Generative AI:

 i. Transformers: These architectures revolutionized NLP, enabling AI sys-
tems to understand the relationships between words and the language con-
text more sophisticatedly. This paved the way for advanced conversational AI
applications.

 ii. GANs (Generative Adversarial Networks): These systems operate within a
framework where two deep neural networks engage in a competitive process:
a generator network strives to produce realistic data, while a discriminator
network differentiates between real and generated examples. This dynamic
competition fosters a cycle of continuous enhancement, driving improve-
ments in the quality and realism of the generated content.

 iii. Diffusion Models: These learn to create new data by gradually reversing
a process of adding noise to existing data. They have proven exceptionally
powerful in generating high- resolution images and other complex media.

1.5 THE IMPORTANCE OF MACHINE
LEARNING

Machine learning models streamline tasks that would typically demand manual effort
from humans. By harnessing machine learning, organizations can uncover valuable
insights from data, facilitating informed decision- making processes. Implementing
data- driven strategies enhances business efficiency, performance, and productiv-
ity and mitigates risks. The significance of machine learning extends across various
sectors and industries, enabling the anticipation of future risks and opportunities. In
healthcare, for instance, machine learning can scrutinize medical images, genomic
data, and electronic health records to aid physicians in making precise diagnoses and
recommending suitable treatments. Similarly, machine learning finds utility in crop
monitoring, yield prediction, pest detection, and soil analysis in agriculture. Machine
learning optimizes crop production and resource allocation by enabling farmers to
make data- driven decisions.

12 Practical Machine Learning

1.6 WHEN DO WE NEED MACHINE
LEARNING?

Machine learning is indispensable across various contexts and problem domains,
 especially where conventional rule- based programming or manual analysis falls short.
The following are several typical scenarios where machine learning proves exception-
ally beneficial:

 a. Handling of large and complex data: Machine learning algorithms excel at
revealing patterns, correlations, and insights that are challenging to discern
manually, especially when confronted with extensive datasets. With its capac-
ity to navigate complex data structures and high- dimensional data, machine
learning is well- suited for data mining, pattern recognition, and predictive
modeling tasks.

 b. Need for automation and efficiency: Machine learning can automate repeti-
tive tasks and boost efficiency across various domains. In customer service,
for instance, integrating chatbots driven by machine learning can efficiently
handle basic inquiries, allowing human agents to focus on more com-
plex issues.

 c. Prediction and forecasting: Machine learning algorithms can analyze his-
torical data patterns to forecast outcomes across various sectors, including
stock price movements, weather patterns, and disease outbreaks. By harness-
ing this capability, machine learning provides invaluable insights, enabling
informed decision- making grounded in past trends.

 d. Anomaly detection: Machine learning algorithms can detect anoma-
lies and recognize unusual patterns within data. This capability holds
 significant value across various domains, including fraud detection, cyber-
security, and network monitoring. By acquiring knowledge of normal
behavior through training, machine learning models can effectively iden-
tify deviations and anomalies that may indicate fraudulent activities or
security breaches. This enables prompt intervention and implementation
of mitigation measures to address potential risks and safeguard the system
or network.

 e. Personalization and recommendation systems: Machine learning empow-
ers personalized experiences and tailored recommendations by scrutiniz-
ing user preferences and behavior. This technology drives recommendation
engines across diverse domains like hospitality, content streaming, and social
media. By analyzing user data, machine learning models deliver personalized
suggestions for products, services, movies, or connections that resonate with
individual preferences.

 f. Computational linguistics: Machine learning is pivotal in computational
linguistic tasks, empowering machines to process, comprehend, and interpret
human languages effectively; this involves language translation, sentiment

1 • Fundamentals of machine learning 13

analysis, speech recognition, and chatbots. Through extensive training on
vast amounts of text data, machine learning models can grasp and generate
human language, facilitating seamless communication and language- based
interactions.

1.7 MACHINE LEARNING SKILLS

Given the interdisciplinary nature of machine learning, the requisite skills lie at the
intersection of various domains, including software engineering, data science, and com-
munication. These skills can be broadly categorized into technical and soft skills, as
elaborated in the following subsections.

1.7.1 Essential technical skills for machine
learning professionals

This refers to the technical skills spanning data science and software engineering, as
summarized in Table 1.3.

1.7.2 Essential soft skills for machine
learning professionals

Soft skills are what set apart effective machine learning professionals from those who
are ineffective. These skills are needed for the project’s successful completion and deliv-
ery. Such skills include communication, problem- solving, time management, teamwork,
and a thirst for learning.

TABLE 1.3 Essential technical skills for machine learning professionals

SKILL DESCRIPTION

Software Engineering Includes the ability to write computer programs,
understanding of algorithms and data structures, and
knowledge of computer architecture and organization.

Statistics and Mathematics This entails having proficiency in hypothesis testing, data
modeling, and a strong grasp of mathematical concepts
such as probability, statistics, and linear algebra. It also
involves the ability to devise an evaluation strategy for
predictive models and algorithms.

14 Practical Machine Learning

1.8 WHAT DO MACHINE LEARNING
PROFESSIONALS DO?

Machine learning professionals are responsible for designing, building, testing, deploy-
ing, and updating machine learning models. In particular, this involves:

 • Performing data analysis.
 • Running machine learning experiments.
 • Implementing machine learning models.
 • Optimizing the machine learning models.
 • Deploying machine learning models into production.

Additionally, a significant aspect of the role involves collaborating with various stake-
holders, including domain experts, data scientists, researchers, software engineers, and
product managers, to establish project objectives and roadmaps.

1.9 REAL- WORLD APPLICATIONS OF
MACHINE LEARNING

Machine learning finds applications across numerous domains: manufacturing, retail,
healthcare and life sciences, transportation, digital economy, agriculture, environmen-
tal conservation, and education. Table 1.4 provides real- world examples of machine-
learning applications in various fields.

1.10 MACHINE LEARNING AND
ETHICAL CONCERNS

The ethical considerations surrounding machine learning are increasingly paramount
as the technology progresses. Issues such as bias, explainability, privacy, transparency,
algorithmic fairness, safety, job displacement, and weaponization necessitate a compre-
hensive approach. Prioritizing fairness, accountability, and transparency entails invest-
ing in pertinent research, crafting supportive ethical frameworks, and implementing
requisite policies and regulations. These endeavors are vital to ensure that the potential
benefits of machine learning outweigh its potential harms. Moreover, raising public
awareness regarding the ethical implications of machine learning is pivotal in fostering
conscientious and informed utilization of this technology. Addressing these concerns
collectively will guarantee that machine learning evolves and is deployed to align with
societal values and ethical standards, ultimately serving the greater good.

1 • Fundamentals of machine learning 15

TABLE 1.4 A summary of some real- world applications of machine learning

APPLICATION DESCRIPTION

Image recognition Identification and classification of objects or patterns within digital
images. Application examples include labeling an X- ray image as
cancerous or not and assigning a name to a photographed face
(this is known as “tagging” on Facebook).

Speech recognition Translating speech into a readable text that the machine can
understand and work on. This results in applications capable
of responding to speech. Speech recognition is used for voice
search and dialing, and application control. Real- world speech
recognition applications include Google Home, Google Assistant,
Alexa, Siri, and Cortana.

Medical diagnosis Studying physiological data, environmental influences, and genetic
factors complements the decision- making by medical doctors
to diagnose diseases early and effectively. Examples of real- life
applications include Dr. Elsaa, CareAi, and Ada Healthb.

Agriculture Enabling accurate and efficient farming with less manpower for
high and quality yields. It can be used to predict crop yield as
well as detect and assess the impact of crop diseases. Application
examples include Plantixc, Trace Genomics, and Agriod.

Automotive industry Building self- driving cars integrated with various models and
algorithms that analyze data collected from cameras and sensors,
interpreting them, and making decisions accordingly. Common
examples include Google’s and Tesla’s self- driving cars.

Travel assistance Virtual travel agents that enhance the overall travel experience for
users. Examples of real- life applications include Google Maps,
commercial flights, and riding apps like Uber and Bolt.

Entertainment Recommending personalized entertainment content based on the
user's history. For example, Netflix recommends movies based on
users’ past behaviors. Facebook gathers behavioral information
for every user on social media platforms and uses it to predict
interests and recommends articles and notifications on news
feed.

Email Intelligence Enhancing intelligence capabilities of email applications. Examples
include email classification (e.g., spam filtering) and smart replies.

Cyber security Detecting and preventing security threats. Machine learning
applications in cybersecurity include intrusion detection, malware
detection, anomaly detection, vulnerability detection, and fraud
detection.

Surveillance Analyzing video or image data for object detection, tracking,
and behavior recognition. Examples of applications are video
surveillance, crowd monitoring, and real- time alert and response.

Notes:
a https:// www. elsa. health/
b https:// ada. com/
c https:// plantix. net/ en/
d https:// agrio. app/

https://www.elsa.health/
https://ada.com/
https://plantix.net/en/
https://agrio.app/

16 Practical Machine Learning

1.11 SUMMARY

This chapter introduces the fundamental concepts of machine learning, its relation-
ship with other related concepts, and its overall significance. Furthermore, the chapter
explores various scenarios in which machine learning is essential. It also presents the
crucial skills required for professionals in machine learning. Real- world examples are
offered, showcasing the practical applications of machine learning and highlighting its
relevance and impact. Different types of machine learning problems are discussed, and
lastly, the chapter concludes by briefly highlighting the ethical concerns of machine
learning.

Exercises

 1. With examples of any three industries in which machine learning is used,
give thorough descriptions of how it is used.

 2. Give descriptions of what machine learning models promise in software
development.

 3. With at least three algorithm examples for each, provide thorough descrip-
tions of the four main types of machine learning algorithms (and their
respective sub- types where applicable).

 4. Provide descriptions of the relationship between machine learning and the
following disciplines:

 a. Artificial Intelligence
 b. Data Science
 c. Traditional Programming
 d. Deep Learning

 5. In detail, describe the following terminologies:
 a. Generative AI
 b. NLP

 6. Explain the importance of machine learning.
 7. With examples, outline the scenarios in which machine learning is needed.
 8. Provide descriptions of the essential skills for machine learning

professionals.
 9. Explain any five real- world machine learning applications with at least two

examples for each.
10. Briefly explain the ethical concerns of machine learning.

1 • Fundamentals of machine learning 17

FURTHER READING

Dönmez, P. (2013). Introduction to machine learning, by Ethem Alpaydın. Cambridge, MA:
The MIT Press2010. ISBN: 978-0-262-01243-0. Natural Language Engineering, 19(2),
285–288.

Firican, G. (2023). The history of machine learning. Retrieved December 12, 2023, from
https:// www. lightsondata. com/ the- history- of- machine- learning/

Gonsalves, T. and Upadhyay, J. (2021). Integrated deep learning for self- driving robotic cars. AI
for Future Generation Robotics, Elsevier, pp. 93–118.

Gupta, S. (2021, June 14). What skills do you need to become a Machine Learning engineer?
Springboard. https:// www. springboard. com/ blog/ data- science/ machine- learning- skills/

Lateef, Z. (2021, December 19). Introduction to machine learning: All you need to know about
machine learning. Edureka. https:// www. edureka. co/ blog/ introduction- to- machine- learning/

Li, Y. F., & Liang, D. M. (2019). Safe semi- supervised learning: A brief introduction. Frontiers
of Computer Science, 13(4), 669–676.

Oracle. (2022). What is big data? Retrieved July 7, 2022, from https:// www. oracle. com/ in/
 big- data/ what- is- big- data/

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10), 1345–1359.

Rice University. (2022). Computer science Vs. Artificial intelligence/machine learning: What’s
the difference? Retrieved July 7, 2022, from https://csweb.rice.edu/academics/
graduate- programs/online- mcs/blog/computer- science- vs- artificial- intelligence- and-
 machine- learning

Salesforce Blog. (2022). Machine learning: 6 real- world examples. Retrieved July 8, 2022, from
 https://www.salesforce.com/eu/blog/2020/06/real- world- examples- of- machine- learning.html

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4(1), 1–103.

Yale University. (2022). Machine learning. Retrieved July 7, 2022, from https://cpsc.yale.edu/
research/machine- learning

https://www.lightsondata.com/the-history-of-machine-learning/
https://www.lightsondata.com/the-history-of-machine-learning/
https://www.springboard.com/blog/data-science/machine-learning-skills/
https://www.edureka.co/blog/introduction-to-machine-learning/
https://www.oracle.com/in/big-data/what-is-big-data/
https://www.oracle.com/in/big-data/what-is-big-data/
https://csweb.rice.edu/academics/graduate-programs/online-mcs/blog/computer-science-vs-artificial-intelligence-and-machine-learning
https://csweb.rice.edu/academics/graduate-programs/online-mcs/blog/computer-science-vs-artificial-intelligence-and-machine-learning
https://csweb.rice.edu/academics/graduate-programs/online-mcs/blog/computer-science-vs-artificial-intelligence-and-machine-learning
https://www.salesforce.com/eu/blog/2020/06/real-world-examples-of-machine-learning.html
https://cpsc.yale.edu/research/machine-learning
https://cpsc.yale.edu/research/machine-learning

18 DOI: 10.1201/9781003486817-2
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

2Mathematics
for machine
learning

Upon completing this chapter, learners should be able to:

1. Understand basic mathematics essential for comprehending machine learn-
ing concepts.

2. Master the concept of representing machine learning models mathemati-
cally, enabling good understanding and implementation.

3. Develop the capability of converting machine learning problems into formu-
lations for mathematical optimization.

4. Understand the working principles of machine learning algorithms by ana-
lyzing and comprehending mathematical expressions.

5. Apply mathematical representations to assess algorithmic performance,
model behavior, and problem- solving capability in machine learning
contexts.

2.1 LINEAR ALGEBRA

Linear algebra is a fundamental component of mathematics that is essential for machine
learning practitioners. It provides the theoretical foundation needed to understand and
work with various machine learning concepts. Mastery of linear algebra equips learn-
ers with the critical tools and arithmetic computations required for implementing and
optimizing machine learning algorithms. The following subsections present in detail
scalars, vectors, matrices, eigenvalues, and eigenvectors which are considered to be the
basic concepts of linear algebra.

http://dx.doi.org/10.1201/9781003486817-2

2 • Mathematics for machine learning 19

2.1.1 Scalars

In mathematics, a scalar is a measurement that has a magnitude without any associated
direction. Within the era of machine learning or data science, scalars might represent
various features of data points. For instance, residence datasets with the following fea-
tures: number of bedrooms, the total floor area, and the sale price of each house can
be represented as separate scalar numbers. Scalar values are fundamental units used to
create more complex mathematical models and are crucial for carrying out mathemati-
cal computations and analyses in machine learning algorithms. Scalars cover various
numerical values such as integers, decimals, fractions, and irrational numbers. However,
depending on their importance, scalars can be either positive, negative, or zero. Scalars
can be evaluated in mathematics using standard arithmetic operations such as addition,
subtraction, multiplication, and division.

For example, consider two scalars, 5a = and 3b = . The sum of these two scalars is
obtained by adding them together, 5 3 8a b+ = + = .

2.1.2 Vectors

A vector is a collection of numbers that are ordered consecutively. However, vectors are
quantities that can convey direction as well as magnitude. Equation (2.1) depicts this
concept, which can be identified as a row or column of numbers in lowercase characters,
such as v.

 ()= 1 2 3, ,v v v v (2.1)

where 1v , 2v , 3v are scalar values, often real values.
In mathematical operations, vectors can be calculated using standard arithmetic

operations such as addition, subtraction, and multiplication, as discussed in the subse-
quent sections.

2.1.2.1 Vector addition

Consider two vectors; ()= 1 2 3, ,a a a a and ()= 1 2 3, ,b b b b . Vector addition of “a” and “b”
is performed element- wise to produce a new vector of the same length as shown in
Equation (2.2).

 ()+ = + + +1 1 2 2 3 3, ,a b a b a b a b (2.2)

For example, let us say we have two vectors, ()= 2, 4, 6a and ()= 1, 3, 5b . To find the
sum of these vectors, corresponding components of the vectors will have to be added to
each other, as shown in the following:

 ()+ = + + +2 1, 4 3, 6 5 .a b

Thus a b+ is equal to (3, 7, 11)

20 Practical Machine Learning

2.1.2.2 Vector subtraction

Consider two vectors; ()= 1 2 3, ,a a a a and ()= 1 2 3, ,b b b b . Vector subtraction of “a” and
“b” is performed element- wise to produce a new vector of the same length as shown in
Equation (2.3).

 ()− = − − −1 1 2 2 3 3, ,a b a b a b a b (2.3)

For example, let us say we have two vectors, ()= 2, 4, 6a and ()= 1, 3, 5b . To subtract
vector “b” from “a”, the corresponding components will have to be subtracted from
each other as shown in the following:

()− = − − −2 1, 4 3, 6 5 .a b

Thus a b− is equal to (1, 1, 1)

2.1.2.3 Vector multiplication

It is worth noting that multiplication is typically defined for vectors of the same dimen-
sion when dealing with vectors. This is because certain operations, like the dot product
and cross product, require vectors of the same dimensionality to be performed. Given
two vectors ()= 1 2 3, ,a a a a and ()= 1 2 3, ,b b b b of equal length, the dot product and cross
product of “a” and “b” are given in Equations (2.4) and (2.5), respectively.

 ()⋅ = × × ×1 1 2 2 3 3, ,a b a b a b a b (2.4)

 ()× = × − × × − × × − ×2 3 3 2 3 1 1 3 1 2 2 1, ,a b a b a b a b a b a b a b (2.5)

Using the same vectors as before, ()= 2, 4, 6a and ()= 1, 3, 5b . The dot product and
cross product of these two vectors are:

 ()⋅ = × × ×2 1, 4 3, 6 5a b

 ⋅ = + + = ⋅2 12 30 44. Thus, is equal to 44.a b a b

 ()× = × − × × − × × − ×4 5 6 3, 6 1 2 5, 2 3 4 1a b

 () ()× = − − − = −20 18, 6 10, 6 4 2, 4, 2 .a b

Thus, a× b is equal to (), ,−2 4 2 .

2.1.3 Matrix

A matrix is a grid of numbers arranged in rows and columns. Each number in a matrix
is called an element. In machine learning, matrices are used to organize data, with each
row representing an individual item or sample and each column representing a feature

2 • Mathematics for machine learning 21

of that item. In addition, matrices serve as the foundational representation for datasets in
machine learning, facilitating efficient analysis and processing throughout the machine
learning workflow. A matrix is usually denoted by an uppercase letter (e.g., A), and each
element is referred to by its two- dimensional subscript of row (i) and column (j) such as
aij as represented in Equation (2.6).

11 12 13

21 22 23

a a a
A

a a a

=

(2.6)

Similar to vectors, matrices can be manipulated using standard arithmetic operations
such as addition, subtraction, and multiplication, as discussed in the subsequent sec-
tions. However, the division of a matrix can only be performed on each of its elements
by a scalar value.

2.1.3.1 Matrix addition

Matrix addition involves adding together corresponding elements of two matrices with
the same dimension to form a new matrix whose elements are the sum of the respective
elements from the two matrices being added together. In other words, the items in the
i- th row and j- th column of matrices A and B are added together to form a new matrix.
Given matrices A and B in Equations (2.7) and (2.8), respectively, the result of adding
the two matrices is shown in Equation (2.9).

=

11 12 13

21 22 23

a a a
A

a a a
(2.7)

=

11 12 13

21 22 23

b b b
B

b b b
(2.8)

11 11 12 12 13 13

21 21 22 22 23 23

a b a b a b
A B

a b a b a b

+ + +
+ = + + +

(2.9)

For example, given matrices A and B their sum is calculated as follows:

1 2 3

4 5 6
A

=

2 4 6

8 10 12
B

=

1 2 2 4 3 6 3 6 9

4 8 5 10 6 12 12 15 18
A B

+ + +
+ = = + + +

22 Practical Machine Learning

2.1.3.2 Matrix subtraction

Matrix subtraction can be performed between two matrices with the same dimension and
involves subtracting each element of the second matrix from its corresponding element
of the first matrix to produce a new matrix. In other words, an element in the i- th row and
j- th column of matrix B is subtracted from the corresponding element in the i- th row and
j- th column of matrix A. Given matrices A and B in Equations (2.10) and (2.11), respec-
tively, the result of subtracting matrix B from A is given as shown in Equation (2.12).

11 12 13

21 22 23

a a a
A

a a a

=

(2.10)

11 12 13

21 22 23

b b b
B

b b b

=

(2.11)

11 11 12 12 13 13

21 21 22 22 23 23

a b a b a b
A B

a b a b a b

− − −
− = − − −

(2.12)

For example, given matrices A and B the subtraction of matrix B from A is calculated
as follows:

3 5 7

2 4 6
A

=

1 2 3

1 2 3
B

=

3 1 5 2 7 3 2 3 4

2 1 4 2 6 3 1 2 3
A B

− − −
− = = − − −

2.1.3.3 Matrix multiplication

Matrix multiplication involves performing the dot product of the rows and columns of the
multiplied matrices. In multiplying two matrices, each element in the resulting matrix is
calculated by taking the dot product of the corresponding row of the first matrix and the
corresponding column of the second matrix. This process repeats for each element in the
resulting matrix. Given matrices A and B in Equations (2.13) and (2.14), respectively, the
result of multiplying matrices A and B is given in matrix C as shown in Equation (2.15).

11 12

21 22

a a
A

a a

=

(2.13)

11 12

21 22

b b
B

b b

=

(2.14)

11 12

21 22

c c
A B C

c c

× = =

(2.15)

2 • Mathematics for machine learning 23

where:

= +11 11 11 12 21. .c a b a b

= +12 11 12 12 22. .c a b a b

= +21 21 11 22 21. .c a b a b

= +22 21 12 22 22. .c a b a b

For example, given matrices A and B, their multiplication is calculated as shown in
matrix C as shown in the following:

=

1 2

3 4
A

5 6

7 8
B

=

 = × + × = + =11 1 5 2 7 5 14 19c

 12 1 6 2 8 6 16 22c = × + × = + =

 21 3 5 4 7 15 28 43c = × + × = + =

 22 3 6 4 8 18 32 50c = × + × = + =

× = = =

11 12

21 22

19 22
Thus,

43 50

c c
A B C

c c

Scalar multiplication can also be applied to a matrix, where a scalar value is multiplied
by each matrix element. Given matrix A in Equation (2.16) and a scalar value k, the
result of multiplying matrix A by the scalar value k is as shown in Equation (2.17).

a b c
A

d e f

=

(2.16)

a k b k c k
A k

d k e k f k

× × ×
× = × × ×

(2.17)

For example, given matrix A and a scalar value k = 3, their product is calculated as
follows:

1 2 3

4 5 6
A

=

1 3 2 3 3 3 3 6 9

4 3 5 3 6 3 12 15 18
A k

× × ×
× = = × × ×

24 Practical Machine Learning

2.1.3.4 Matrix transpose

Matrix transpose is an operation that produces a new matrix by flipping the rows and
columns of a matrix. It involves creating a new matrix by changing the rows of a matrix
into columns and its columns into rows. Given the matrix A in Equation (2.18), its trans-
pose is denoted by AT as shown in Equation (2.19).

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 =

(2.18)

11 21 31

T
12 22 32

13 23 33

a a a

A a a a

a a a

 =

(2.19)

For example, given matrix A, its transpose is as shown in the following:

1 2 3

4 5 6

7 8 9

A

 =

T

1 4 7

2 5 8

3 6 9

A

 =

2.1.3.5 Square and rectangular matrix

A square matrix is characterized by an equal number of rows (n) and the number of
columns (m), denoted as n = m. It is differentiated from a rectangular matrix, where the
number of rows and columns are not equal. Below is an example of a square matrix A,
where n = m = 3 and a rectangular matrix B, where n =2 and m = 3.

1 2 3

4 5 6

7 8 9

A

 =

1 2 3

4 5 6
B

=

2.1.3.6 Triangular matrix

A triangular matrix is a special type of square matrix where all the elements above or
below the diagonal are zeros. Depending on which side of the diagonal contains the
non- zero elements, it can be classified either as an upper triangular matrix or a lower

2 • Mathematics for machine learning 25

triangular matrix. As shown in the following, matrix A is an upper triangular matrix with
non- zero elements located above the diagonal; matrix B is a lower triangular matrix with
non- zero elements located below the diagonal.

1 2 3

0 4 5

0 0 6

A

 =

1 0 0

4 5 0

0 0 6

B

 =

2.1.3.7 Diagonal matrix

A diagonal matrix is a square matrix in which any value off the main diagonal is zero.
Elements from top left to bottom right make up the primary diagonal. In the following
example, the diagonal matrix is indicated by D.

2 0 0

0 3 0

0 0 4

D

 =

2.1.3.8 Identity matrix

An identity matrix is also a square matrix in which all elements along the diagonal
are equal to 1, and all other elements off the diagonal are equal to zero. Matrix I is an
example of the identity matrix.

1 0 0

0 1 0

0 0 1

I

 =

2.1.3.9 Matrix determinant

The determinant of a matrix is a scalar value that can be computed from the elements of
a square matrix. It offers essential details about the matrix, such as whether it is invert-
ible, singular, or neither. It is used in different fields of machine learning, data science,
data mining, mathematics, and science, to mention a few, such as computing eigen-
values and eigenvectors, computing systems of linear equations, calculating areas and
volumes, and analyzing transformations. The determinant of a square matrix A which is
denoted by ()det A or A can be evaluated differently depending on the dimension of a
matrix. The formula for determinants of 2 × 2 and 3 × 3 matrices is given in Equations
(2.20) and (2.21), respectively.

26 Practical Machine Learning

11 12

21 22

a a
A

a a

=

 () = × − ×11 22 21 12det A a a a a (2.20)

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 =

() () ()
()

= × − × − × − ×
+ × − ×

11 22 33 32 23 12 21 33 31 23

13 21 32 31 22

det A a a a a a a a a a a

a a a a a (2.21)

For larger matrices, the determinant can be calculated using different methods, such
as cofactor expansion, LU decomposition, or Gaussian elimination, depending on the
properties of the matrix and computational efficiency requirements.

As an example, given matrices ×2 2A and ×3 3B their determinants can be evaluated as
shown in the following:

2 3

1 4
A

=

 ()det 2 4 1 3 8 3 5A = × − × = − =

1 2 3

0 1 4

5 6 0

B

 =

 () () () ()= × − × − × − × + × − ×det 1 1 0 4 6 2 0 0 4 5 3 0 6 1 5B

 () () () ()= − − − + −det 1 0 24 2 0 20 3 0 5B

 () () () ()= − − − + −det 1 24 2 20 3 5B

 () = − + −det 24 40 15B

 () =det 1B

2 • Mathematics for machine learning 27

2.1.3.10 Adjugate of a matrix

The adjugate of a matrix, also known as the adjoint of the matrix (for matrix A, indicated
by adj(A)), can be created in various methods depending on the matrix’s dimension. In
the case of a 2×2 matrix, Equation (2.22) specifies that the elements along the main
diagonal are exchanged, and the signs of the elements off the main diagonal are modi-
fied. Conversely, for a 3×3 matrix, Equation (2.23) computes the cofactors (Cij) of the
matrix elements and proceeds to transpose the resulting matrix. Additionally, each ele-
ment of the 3×3 adjugate matrix is the result of computing the determinant of the 2×2
sub- matrix obtained by removing the row and column of the corresponding element of
the matrix multiplied by −1 if the sum of the row index and column index is odd, as
shown in Equation (2.24).

11 12

21 22

a a
A

a a

=

() 22 12

21 11

adj
a a

A
a a

−
= −

(2.22)

11 12 13

21 22 23

31 32 33

b b b

B b b b

b b b

 =

()
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

adj

T
C C C C C C

B C C C C C C

C C C C C C

 = =

(2.23)

where:

 () ()1 det
i j

ij ijC M
+

= − × (2.24)

where:

Mij is the resulting 2×2 sub- matrix after removing the i- th row and j- th column.
For example, given matrices 2 2A × and 3 3B × their adjugates are calculated as follows:

2 3

1 4
A

=

() 4 3

adj
1 2

A
−

= −

28 Practical Machine Learning

1 2 3

0 1 4

5 6 0

B

 =

() ()11

1 4
det 1 0 4 6 24

6 0
M

= = × − × = −

Since () ()21 1 2 1 1 1
+

+ = + = − = − =,
i j

i j , thus, () ()11 1 24 24= × − = −C

() ()

= = × − × = −

12

0 4
det 0 0 4 5 20

5 0
M

Since () ()31 2 3 1 1 1
+

+ = + = − = − = −,
i j

i j , thus, () ()12 1 20 20= − × − =C

() ()

= = × − × = −

13

0 1
det 0 6 1 5 5

5 6
M

Since () ()41 3 4 1 1 1
+

+ = + = − = − =,
i j

i j , thus, () ()13 1 5 5= × − = −C

() ()

= = × − × = −

21

2 3
det 2 0 3 6 18

6 0
M

Since () ()32 1 3 1 1 1
+

+ = + = − = − =, –
i j

i j , thus, () ()21 1 18 18= − × − =C

() ()22

1 3
det 1 0 3 5 15

5 0
M

= = × − × = −

Since () ()42 2 4 1 1 1
+

+ = + = − = − =,
i j

i j , thus, () ()22 1 15 15= × − = −C

() ()23

1 2
det 1 6 2 5 4

5 6
M

= = × − × = −

Since () ()52 3 5 1 1 1
+

+ = + = − = − = −,
i j

i j , thus, () ()23 1 4 4= − × − =C

() ()31

2 3
det 2 4 1 3 5

1 4
M

= = × − × =

Since () ()43 1 4 1 1 1
+

+ = + = − = − =,
i j

i j , thus, () ()31 1 5 5= × =C

() ()32

1 3
det 1 4 3 0 4

0 4
M

= = × − × =

2 • Mathematics for machine learning 29

Since () ()53 2 5 1 1 1
+

+ = + = − = − = −,
i j

i j , thus, () ()32 1 4 4= − × = −C

() ()33

1 2
det 1 1 2 0 1

0 1
M

= = × − × =

Since () ()63 3 6 1 1 1
+

+ = + = − = − =,
i j

i j , thus, () ()32 1 1 1= × =C

()
24 20 5 24 18 5

18 15 4 and adj 20 15 4

5 4 1 5 4 1

C B

− − −
 = − = − −
 − −

2.1.3.11 Singular and non- singular matrix

A singular matrix and a non- singular matrix are characterized by having determinants
of zero and non- zero values, respectively. Consequently, the inverse of a singular
matrix does not exist, whereas the inverse of a non- singular matrix exists. For exam-
ple, given a singular matrix A, there is no matrix A −1, such that − −1 1A× A or A × A= I,
where I is an identity matrix. However, if a matrix A is non- singular, there exists A−1
such that − −1 1A× A or A × A= I .

2.1.3.12 Matrix inversion

Matrix inversion is a process of finding the inverse for a square non- singular matrix.
Given matrix A, its inverse is denoted by A−1. The inverse of a matrix is computed by
dividing each element of the adjugate by the determinant of the matrix. The formula for
computing the inverse of a matrix A is given in Equation (2.25).

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 =

() () ()

11 21 31

1
12 22 32

13 23 33

1 1
adj

det det

C C C

A A C C C
A A

C C C

−

 = × = ×

(2.25)

For example, given matrix B, its inverse matrix is calculated as shown in the following:

1 2 3

0 1 4

5 6 0

B

 =

30 Practical Machine Learning

() () () ()det 1 1 0 4 6 2 0 0 4 5 3 0 6 1 5 1
0 (i.e., is a non singular matrix)

B
B

= × − × − × − × + × − × =
≠ −

()
24 18 5

adj 20 15 4

5 4 1

B

−
 = − −
 −

1

24 18 5 24 18 5
1

20 15 4 20 15 4
1

5 4 1 5 4 1

A−

− −
 = × − − = − −
 − −

2.1.3.13 Eigenvectors and eigenvalues

An eigenvector is a non- zero vector v that changes in magnitude but retains its direc-
tion when a square matrix is applied to it as a linear transformation (i.e., when mul-
tiplied by an eigenvalue). The eigenvalue is a scalar value that represents the scaling
factor of the eigenvector and indicates the extent to which the eigenvector has been
stretched. Eigenvectors and eigenvalues are used to identify directions and patterns
in data, reduce complexity, and make sense of information. Mathematically, given a
square matrix A, the relationship of an eigenvector v of matrix A and its corresponding
eigenvalue λ is shown in Equation (2.26). In addition, given a matrix A, the eigenvalue
can be computed using Equation (2.27), whereas the eigenvector can be computed
using Equation (2.28).

 Av vλ= (2.26)

 ()det 0A Iλ− = (2.27)

 () 0A I vλ− = (2.28)

For example, given matrix A, its eigenvalues and eigenvectors are calculated as follows:

2 1

1 3
A

=

2 1 1 0
det 0

1 3 0 1
λ

− =

2 1 0
det 0

1 3 0

λ
λ

− =

2 1
det 0

1 3

λ
λ

 −
= −

2 • Mathematics for machine learning 31

2 1
det 0

1 3

λ
λ

−
= −

()()() ()() ()2 22 3 1 1 6 5 1 5 5 0λ λ λ λ λ λ− − − = − + − = − + =

Finding the eigenvalue λ by using the quadratic formula:

2 4
2

b b ac

a
λ − ± −=

() ()25 5 4 1 5 5 25 20 5 5
2 1 2 2

λ
− − ± − × × ± − ±= = =

×

1 2

5 5 5 5
and

2 2
λ λ+ √ −√= =

Using Equation (2.28), the eigenvector for the eigenvalue 1
5 5

2
λ + √= can be computed

as follows:

() 1

1
2

2 1 1 05 5
0

21 3 0 1

v
A I v

v
λ

 + √− = − =

1

2

5 5
02 1 2 0

1 3 5 5
0

2

v

v

 + √
 − = + √

1

2

5 5
2 1

2 0
5 5

1 3
2

v

v

 + √− = + √ −

1

2

1 5
1

2 0
1 5

1
2

v

v

 − + √
 = + √

1 2

1 5
0

2
v v

− + + =

(2a)

1 2

1 5
0

2
v v

+ √+ =

(2b)

32 Practical Machine Learning

From Equation (2a):

2 1

1 5
2

v v
−=

(2c)

Substituting Equation (2c) in Equation (2b):

1 1

1 5 1 5
0

2 2
v v

 + √ −+ =

1 1

1 5
0

4
v v

−+ =

1 1

4
0

4
v v

−+ =

 1 1 0v v− =

 0 0=

This equation is always true, which means there are infinitely many solutions for 1v , any
non- zero value can be chosen for 1v and the corresponding value of 2v can be computed
by using Equation (2c). Suppose 1 1v = , then the value of 2v can be obtained as follows:

2 1

1 5 1 5 1 5
1

2 2 2
v v

− − −= = × =

Therefore, the possible value of the eigenvector with its corresponding eigen-

value 1
5 5

2
λ + √= is

1

1 5
2

−

.

In the same fashion, the possible value of the eigenvector for the eigenvalue

2
5 5

2
λ −√= can be calculated.

2.2 STATISTICS CONCEPTS

In machine learning, statistics is the application of statistical concepts and methods to
data analysis, prediction, and model performance assessment. Effective model training
and interpretation is made possible by its foundation in the understanding of uncer-
tainty, variability, and linkages within datasets.

2.2.1 Use of statistics in machine learning

In every aspect of machine learning, statistics plays an important role in algorithm
selections, developments, and real- world applications. The core of the machine learning
process is formed by practitioners’ ability to understand, assess, and extract insights

2 • Mathematics for machine learning 33

from data. Machine learning workflow begins with data preprocessing tasks such as
data cleaning, normalization, and modeling. However, advanced modeling techniques
such as regression, classification, and clustering statistics inform the entire spectrum of
machine learning processes. Furthermore, through statistical techniques, outliers and
extreme values are detected; missing values are substituted and normalized, therefore
guaranteeing the accuracy and dependability of the dataset.

Descriptive statistics and visualization techniques assist in exploring data charac-
teristics and relationships, thereby guiding feature selection and dimensionality reduc-
tion in datasets. Hence, statistical methods are used to build models for both supervised
and unsupervised learning tasks. Additionally, metrics are used to measure how well
models perform and generalize.

Statistics improves decision- making in complicated settings by enabling probabi-
listic modeling and uncertainty quantification. However, frameworks for representing
and arguing about uncertainty are provided by methods such as Bayesian inference and
probabilistic graphical models. Additionally, statistics guides feature selection and engi-
neering efforts, identifying informative features and reducing dimensionality while pre-
serving essential data structure. Furthermore, its holistic integration across the machine
learning pipeline empowers practitioners to unlock the potential of data across various
domains. Statistics is basically the base on which machine learning grows and develops.
It helps professionals find useful insights and make informed decisions in a world that
is becoming more and more data- driven.

2.2.2 Types of statistics

Statistics can be broken down into two types: descriptive statistics and inferential
statistics.

2.2.2.1 Descriptive statistics

Descriptive statistics is the study of how to organize, summarize, and show data in a way
that makes sense and gives us useful information. Its goal is to show the most important
features of a dataset, including trends, ranges, and patterns of distribution. At the cut-
ting edge of data analysis, descriptive statistics tries to turn complicated datasets into
concepts that are easy to understand and comprehend. Additionally, it is important to
note that descriptive statistics do not draw conclusions about the whole community or
anything bigger than the dataset it is looking at. Instead, it shows and summarizes the
dataset’s natural properties.

 i. Measures of Central Tendency
 • Mean

Mean is the most commonly used measure of central tendency. It is computed by
adding up all the values of the elements in the list and then dividing that number
by the number of elements. Equation (2.29) illustrates the computation of
the mean.

Sum of elements
Mean

Total number of elements
=

(2.29)

34 Practical Machine Learning

Consider a class whose students have obtained the following marks out of 100:
45, 55, 60, 75, 80, 55, 37, 39, 25, 48, 37, and 68. The mean is calculated as
shown in the following:
Sum of elements = 45 + 55 + 60 + 75 + 80 + 55 + 37 + 39 + 25 + 48 + 37 +
68 = 624
Total number of elements = 12.
Thus,

624
52

12
Mean = =

 • Median
The median of a set of numbers is the middle value when the numbers are
arranged in ascending or descending order. If the set contains an odd number of
values, the median is the middle number. If the set contains an even number of
values, the median is the average of the two middle numbers. This measure is
less sensitive to extreme values (i.e., outliers) compared to the mean.
Consider the same example of a class whose students have obtained the following
marks out of 100: 45, 55, 60, 75, 80, 55, 37, 39, 25, 48, 37, and 68. The median
is calculated as shown in the following.
First, arrange the values in ascending order:
25, 37, 37, 39, 45, 48, 55, 55, 60, 68, 75, 80
Since the number of elements is 12 (i.e., even), the median value will be the
average of the sixth (i.e., 48) and seventh (i.e., 55) elements.
Thus,

48 55 103
51.5

2 2
Median

+= = =

 • Mode
The mode is the value that appears most frequently in a set of data. The set of
data may have one mode, more than one mode (i.e., multimodal), or no mode at
all (i.e., when all values occur with the same frequency). The mode is useful in
filling the missing values for categorical data. Consider a class whose students
have obtained the following marks out of 100: 45, 55, 60, 75, 80, 55, 37, 39, 25,
48, 37, and 68. The mode is calculated as shown in the following. For simplicity
in identifying the mode, it is advised to arrange the values in ascending order as
follows:

25, 37, 37, 39, 45, 48, 55, 55, 60, 68, 75, 80

Since 37 appears most frequently (i.e., 2 times compared to others) in the set of
data, then the mode is 37.

 ii. Measures of Dispersion
Measures of dispersion provide insights into the variability of data from the
central tendency such as mean or median. They provide valuable insights into

2 • Mathematics for machine learning 35

how widely the values are spread from the center of the distribution, helping to
understand the distribution and potential outliers within the dataset.

 • Range
The range is a measure that indicates the extent of variation within a dataset by
quantifying the difference between the largest and smallest values. It is calcu-
lated by subtracting the minimum value from the maximum value. For example,
in a dataset of test scores {65, 72, 80, 85, 92}, the range would be 92 (i.e., the
largest value) minus 65 (i.e., the smallest value), resulting in a range of 27.

 • Percentiles
A percentile is a statistical measure that signifies the value below which a spe-
cific percentage of observations in a dataset lies. For instance, the 20th percentile
denotes that the value falls below 20% of the dataset. For example, if the 20th
percentile score is 35, it means that 20% of the total observations have a value
less than 35. Consider a dataset showing the heights (in inches) of ten individu-
als: {66, 75, 64, 65, 67, 72, 68, 70, 62, and 60}. The percentiles are calculated as
shown in the following steps.

 1. Sort the Data: Arrange the data in ascending order.

{60, 62, 64, 65, 66, 67, 68, 70, 72, 75}

 2. Calculate the Position: Determine the position of the desired percentile in
the dataset using the formula given in Equation (2.30).

()Position 1
100
P

n
 = × +

(2.30)

where:

P is the desired percentile (e.g., 25th percentile, 50th percentile, etc.), and
n is the total number of data points in the dataset.

For instance, the 25th, 50th, and 90th percentile positions are computed as follows:

25th Percentile:

() th25

Position 10 1 0.25 11 2.75 value.
100
 = × + = × =

50th Percentile:

() th50

Position 10 1 0.5 11 5.5 value.
100
 = × + = × =

90th Percentile:

() th90

Position 10 1 0.9 11 9.9 value.
100
 = × + = × =

36 Practical Machine Learning

 3. Interpolate if necessary: If the position is an integer, the percentile is
identified as the value at that position. However, if the position is not an
integer, interpolate between the values at the nearest lower and higher
positions to find the exact value of the percentile. Consider the integer
portion as R (i.e., the number to the left of the decimal point) and the frac-
tional portion as FR (i.e., the number to the right of the decimal point), the
value at the nearest lower position as L and the value at the nearest higher
position as H, the percentile can be computed using Equation (2.31).

()Percentile value FR H L L= − + (2.31)

 For the 25th percentile in a dataset with 10 data points is the 2.75th value,
making 2, 0.75, 64, and 62R FR H L= = = = , the 25th percentile is com-
puted as shown in the following:

() ()th25 Percentile 0.75 64 62 62 0.75 2 62 63.5= − + = + =

 For the 50th percentile in a dataset with 10 data points is the 5.5th value,
 making 5, 0.5, 67, and 66R FR H L= = = = , the 50th percentile is com-
puted as shown in the following:

() ()th50 Percentile 0.5 67 66 66 0.5 1 66 66.5= − + = + =

 For the 90th percentile in a dataset with 10 data points is the 9.9th value,
 making 9, 0.9, 75, and 72R FR H L= = = = , the 90th percentile is com-
puted as shown in the following:

() ()th90 Percentile 0.9 75 72 72 0.9 3 72 74.7= − + = + =

 • Quartiles
Quartiles are measures that divide a dataset into four equal parts, each contain-
ing approximately 25% of the data. In terms of percentiles, the first quartile
(i.e., Q1) corresponds to the 25th percentile, the second quartile (i.e., Q2) cor-
responds to the 50th percentile (i.e., median), and the third quartile (i.e., Q3)
corresponds to the 75th percentile. In order to calculate Q1, Q2, and Q3, refer to
the approach used to compute the percentiles.

 • Interquartile Range
In descriptive statistics, the interquartile range (IQR) is a measure of statistical
spread or dispersion. It is expressed mathematically as the difference between
the first (i.e., 25th percentile or Q1) and third (i.e., 75th percentile or Q3) quar-
tiles of the data. Figure 2.1 illustrates a box plot, which shows minimum value,
maximum value, IQR, lower quartile, and upper quartile. The box plot is used to
identify and handle outliers and extreme values in the datasets.

2 • Mathematics for machine learning 37

Equation (2.32) illustrates how to compute IQR by subtracting the first quartile
(Q1) from the third quartile (Q3).

 IQR 3 1Q Q= − (2.32)

where:

Q1 is the first quartile (25th percentile).
Q3 is the third quartile (75th percentile).

For example, given 1 6Q = and 3 13.5Q = , then IQR 13.5 6 7.5= − =

 • Mean Absolute Deviation
 Mean Absolute Deviation (MAD) is a statistical measure that describes the vari-
ability in a dataset. It measures how much of an average absolute difference each
data point has from the dataset average. Furthermore, MAD offers a reliable and
understandable measure of variability in a dataset. The computation of MAD
involves calculating the mean of all the data points, finding the absolute difference
between each data point and the mean, summing up all the absolute differences and
dividing the sum by the total number of data points, n, as shown in Equation (2.33).

1

mean
MAD

n

i
i

x

n
−

−
= ∑

(2.33)

where:

mean is the mean of the dataset.
n is the total number of data points.
xi represents each data point in the dataset.

FIGURE 2.1 IQR using a box plot.

38 Practical Machine Learning

For example, the MAD for the dataset {3, 7, 8, 5, 12, 14, 21, 13, and 18} can be
 calculated using Equation (2.33) as shown below:

3 7 8 5 12 14 21 13 18 101
mean 11.2

9 9
+ + + + + + + += = =

sum of absolute differences 3 11.2 7 11.2 8 11.2 5 11.2 12 11.2

14 11.2 21 11.2 13 11.2 18 11.2

= − + − + − + − + −
+ − + − + − + −

 sum of absolute differences 8.2 4.2 3.2 6.2 0.8 2.8 9.8 1.8 6.8 43.8= + + + + + + + + =

43.8
MAD 4.87

9
= =

 • Variance
 Variance measures the dispersion of data points from the mean. It is calculated by
finding the mean of all the data points, summing the squared differences between
the data points and the mean, and then dividing the sum by the total number of data
points, as shown in Equation (2.34). As opposed to MAD, variance uses the squares
of differences between the data points and the mean. The challenge with variance is
in its unit inconsistency due to squaring, which makes it less intuitive for interpreta-
tion. Consequently, the standard deviation is often preferred, as it provides a mea-
sure of dispersion in the same units as the original data. Variance is computed as
shown in Equation (2.34).

()2

1
mean

Variance

n

i
i

x

n
−

−
= ∑

(2.34)

For example, the variance for the dataset {3, 7, 8, 5, 12, 14, 21, 13, and 18} can be cal-
culated as follows using Equation (2.34).

3 7 8 5 12 14 21 13 18 101
mean 11.2

9 9
+ + + + + + + += = =

The sum of the squared differences between each data point and the mean:

() () () () ()
() () () ()

= − + − + − + − + −

+ − + − + − + −

2 2 2 2 2

2 2 2 2

sum 3 11.2 7 11.2 8 11.2 5 11.2 12 11.2

14 11.2 21 11.2 13 11.2 18 11.2

 () () () () () () () () ()2 2 2 2 2 2 2 2 2
sum 8.2 4.2 3.2 6.2 0.8 2.8 9.8 1.8 6.8= + + + + + + + +

sum 67.24 17.64 10.24 38.44 0.64 7.84 96.04 3.24 46.24 287.56= + + + + + + + + =

287.56
Variance 31.95

9
= =

2 • Mathematics for machine learning 39

 • Standard Deviation
 Standard deviation is a measure of dispersion of data points from the mean. It can
be calculated as the square root of the variance, as shown in Equation (2.35).
Therefore, it provides a measure of variability in the same units as the original
data. Additionally, for a data point, a higher standard deviation value indicates
greater dispersion from the mean, whereas a lower standard deviation value sug-
gests closer proximity to the mean. The standard deviation is computed as shown
in Equation (2.35).

()
−

−
= ∑ 2

1
mean

Standard Deviation

n

x

n

i
i

(2.35)

For example, the standard deviation for the dataset {3, 7, 8, 5, 12, 14, 21, 13, and
18} can be calculated using Equation (2.35) as follows:

Since the variance of the data is 31.95, then:

 standard deviation 31.95 5.65= =

 • Median Absolute Deviation
 The Median Absolute Deviation (MedAD) is a robust measure of the variability or
dispersion of a dataset. It is calculated as the median of the absolute differences
between each data point and the median of the dataset. However, MedAD is less
sensitive to outliers and extreme values compared to standard deviation, making it
suitable for evaluating datasets.

2.2.2.2 Inferential statistics

Inferential statistics is the process of making inferences about a broader population from
a sample of data that has been taken from that population. Additionally, insights are
gained and predictions that apply to the full population are established through statisti-
cal testing and analysis samples. Regression analysis, hypothesis testing, data manipu-
lation, and visualization are some of the approaches employed. This process assists in
identifying patterns and extracts valuable information. Even in cases where data avail-
ability is restricted, inferential statistics can be used to draw defensible inferences about
populations and make well- informed decisions.

2.2.3 Types of data

Data can be broadly categorized into two types, numerical and categorical as described
in the following subsections.

2.2.3.1 Numerical data

Numerical data consists of quantifiable data, such as height, weight, temperature, or test
results. Additionally, numerical data refers to quantities expressed as integers or decimal

40 Practical Machine Learning

numbers, often known as floating- point numbers. This data can be classified into two
primary categories:

 (i) Discrete numerical data are precise and separate quantities, typically indicat-
ing counts or categories. Examples include the rank of students in a class-
room or the number of faculties in a department.

 (ii) Continuous numerical values include values that can take on any real num-
ber within a certain range. Unlike discrete values, continuous values have an
infinite number of possible values. An example is the salary of an employee,
which can vary continuously within a certain range.

2.2.3.2 Categorical data

Categorical data represents qualitative values that are typically divided into categories
or groups. It is often expressed as strings or characters. Examples include names, col-
ors, or any type of non- numeric labels. This type of data is commonly categorized into
two main types: ordinal and nominal. Ordinal categorical values can be meaningfully
ranked or ordered, but the intervals between rankings may not be uniform. Examples
include student grades (e.g., A, B, C) and satisfaction ratings (e.g., high, medium, low).
Nominal categorical values can be represented in various groups or names, with no
intrinsic order or ranking. They are composed of distinct categories with no implicit
hierarchy. Examples include colors (red, blue, green), courses (math, science, history),
and fruit varieties (apple, banana, orange).

2.2.4 Data distribution

Data distribution refers to how a set of data is spread out and dispersed throughout a
range of possible values. It can be graphically represented using a histogram, frequency
polygon, or box plot. Understanding data distribution is crucial because it shows pat-
terns that are not immediately obvious when looking at the data itself. Data distribution
can reveal if the data is symmetrical, how densely the data is clustered, and whether the
data is skewed.

2.2.4.1 Normal distribution in statistics

Normal distribution is a type of data distribution that is also known as a Gaussian dis-
tribution. It is defined by its mean and standard deviation and is characterized by a
bell- shaped curve, as shown in Figure 2.2. Normal distribution is prevalent in many
datasets used in machine learning. For datasets that do not naturally follow this distri-
bution, efforts are often made to transform the data into a normal distribution due to
its favorable properties. Additionally, many machine learning algorithms perform opti-
mally on data that approximates a normal distribution as the distribution mirrors real-
world phenomena, such as salary distributions, where the majority of employees fall
within a medium range, with fewer at the extremes of low or high salaries. The normal
distribution aligns with the Empirical Rule, which states that about 68% of the data falls

2 • Mathematics for machine learning 41

within one standard deviation of the mean, 95% falls within two standard deviations,
and 99.7% falls within three standard deviations.

The normal distribution aligns with the Empirical Rule. The rule outlines the pro-
portion of data falling within specific ranges of standard deviations from the mean.
According to the rule, approximately 68% of the data lies within one standard deviation
of the mean. This means that the majority of observations in a normally distributed data-
set are clustered within a relatively narrow range around the mean, as shown in Figure 2.3.

The Empirical Rule also states that about 95% of the data falls within two standard
deviations of the mean. This wider interval encompasses a significant portion of the
dataset, indicating a broader dispersion of observations from the mean, as shown in
Figure 2.4. While there is greater variability within this range compared to the first
standard deviation, the majority of data points still exhibit a pattern consistent with the
normal distribution.

The Empirical Rule also asserts that nearly 99.7% of the data falls within three
standard deviations of the mean. This extensive range covers the vast majority of
 observations in a normally distributed dataset, reflecting the symmetrical nature of the
bell- shaped curve, as shown in Figure 2.5. The diminishing proportion of data beyond
three standard deviations underscores the rare occurrence of extreme values in a dataset
following the normal distribution.

2.2.4.2 Skewness

Skewness measures the asymmetry of distribution as depicted in histograms or
Kernel Density Estimation (KDE) plots and is usually characterized by a pronounced
peak toward the mode of the data. Skewness is commonly categorized into two

FIGURE 2.2 Normal distribution curve.

42 Practical Machine Learning

types: left- skewed (i.e., negative skewness) and right- skewed (i.e., positive skew-
ness) as shown in Figure 2.6. Additionally, some consider a third category: symmetric
distribution, which is indicative of a normal distribution. A right- skewed distribu-
tion is characterized by a long tail extending toward the positive axis. A suitable

FIGURE 2.3 68% of all values are within 1 standard deviation of the mean value.

FIGURE 2.4 95% of all values are within 2 standard deviation of mean value.

2 • Mathematics for machine learning 43

example of right- skewed data is wealth distribution, where only a small percentage
of individuals possess very high wealth, while the majority falls within the middle
range. On the other hand, a left- skewed distribution is marked by a long tail extend-
ing toward the negative axis. For instance, consider the distribution of grades among
students, where fewer students receive lower grades, while the majority of them fall
within the passing category.

2.2.4.3 Central limit theorem

The Central Limit Theorem (CLT) states that “regardless of population distribution, the
sampling distribution of the sample mean approaches a normal distribution as sample
size increases.” Figure 2.7 illustrates the theorem, which allows machine learning prac-
titioners to draw conclusions about population parameters based on sample means even
when the population distribution is unknown.

2.2.5 Applied statistical inference

This section looks into the practical applications of inferential statistics. The concept
entails drawing conclusions about a population using sample data. Applied statisti-
cal inference comprises utilizing statistical methods to assess data, derive meaningful
insights, and drive decision- making across a variety of domains. As a result, this part
focuses on the application of linear regression as a fundamental approach for predictive
modeling and statistical analysis.

FIGURE 2.5 99.7% of all values are within 3 standard deviation of mean value.

4
4

Practical M
achine Learning

FIGURE 2.6 Skewness.

2 • Mathematics for machine learning 45

2.2.5.1 Linear regression

Linear regression is a statistical technique that models the relationship between a depen-
dent variable and independent variables by fitting the regression line to observed data.
As a result, the relationship between the variables is thought to be linear, meaning that
changes in the independent variable produce changes in the dependent variable(s) at the
same pace. Additionally, it is one of the most basic and widely applied approaches in
statistical modeling and predictive analysis. However, the objective of linear regression
is to find the best- fitting line (or plane, in the case of numerous independent variables)
that minimizes the difference between the observed data points and the predicted values
provided by the linear equation. Hence, this line is then used to forecast the dependent
variable using the values of the independent variables. This section covers two types of
linear regression: univariate and multivariate linear regressions.

 i. Univariate linear regression
 Univariate linear regression or simple linear regression describes the relation-
ship between a single independent variable (X) and one dependent variable (Y).
Hence, the univariate linear regression model is described by Equation (2.36).

 0 1Y Xβ β ε= + + (2.36)

where:

0β is the intercept, representing the value of Y when X is zero.
1β is the slope, representing the rate of change in Y for a one- unit change in X.

ε is the error term, representing the difference between the observed and predicted
 values of ˆ(i iY Y Yε = −).

FIGURE 2.7 Demonstration of the Central Limit Theorem.

46 Practical Machine Learning

The goal of univariate linear regression is to estimate the values of 0β and 1β that
 minimize the sum of squared differences between the observed and predicted values
of Y, typically using the method of least squares. The estimation of coefficients can be
obtained through the following steps.

 a. Calculate the Mean: Compute the means of the dependent variable Y and the
independent variable X as shown in Equations (2.37) and (2.38), respectively.

 1

1
n

i

i

Y Y
n

=

= ∑

(2.37)

 1

1
n

i

i

X X
n

=

= ∑

(2.38)

where:

n is the total number of samples.

 b. Calculate Covariance and Variance: Compute the sample covariance
between X and Y and the sample variance of X as shown in Equation (2.39)
and (2.40), respectively.

() ()()

1

1
cov ,

1

n

XY i i

i

X Y S X X Y Y
n

=

= = − −
− ∑

(2.39)

() ()2

XX

1

1
Var

1

n

i

i

X S X X
n

=

= = −
− ∑

(2.40)

 c. Estimate Slope: To estimate the slope (1β) of the regression line, the covari-
ance of X and Y is divided by the variance of X, as shown in Equation (2.41).

()
()

XY
1

XX

cov ,

V
ˆ

ar

X Y S

X S
β = =

(2.41)

 d. Estimate Intercept: To estimate the intercept (0β) of the regression line, the
slope (1̂β) is used to estimate it as shown in Equation (2.42).

 0 1
ˆ ˆY Xβ β= − (2.42)

Upon the estimation of 0β and 1β , these coefficients can be used to make predictions
about the dependent variable Y for new unseen data values of the independent variable
X and modeled as shown in Equation (2.43).

 0 1
ˆ ˆŶ Xβ β= + (2.43)

2 • Mathematics for machine learning 47

 ii. Multivariate Linear Regression
 Multivariate linear regression involves more than one independent variable
(predictor variable) to predict a single dependent variable. The general form of
the multivariate linear regression model is shown in Equation (2.44).

0 1 1 2 2 k kY X X Xβ β β β ε= + + + + + (2.44)

where:

Y is the dependent variable.
1X , 2X , …., kX are independent variables (predictors).
0 1,β β , 2β , …., kβ are the coefficients (intercepts and slopes) representing the relationship

between each independent variable and the dependent variable.
ε is the error term, representing the difference between the observed and predicted
 values of ˆ(i iY Y Yε = −).

In the real scenario the dataset will have multiple k features with n records; it can be
modeled as shown in Equation (2.45).

1 0 1 11 2 12 1 1

2 0 1 21 2 22 2 2

0 1 1 2 2

k k

k k

n n n k nk n

Y X X X

Y X X X

Y X X X

β β β β ε
β β β β ε

β β β β ε

= + + + + +
= + + + + +

= + + + + +

(2.45)

These n Equations from Equation (2.45) can be written as shown in Equation (2.46).

 = +

1 0 1
11 12 1

2 1 2
21 22 2

1 2

1

1

1

k

k

n k n
n n nk

Y
X X X

Y
X X X

Y
X X X

β ε
β ε

β ε

(2.46)

In general, for a multiple linear regression, the model with k independent features
(variables) can be simply expressed as shown in Equation (2.47).

 y xβ ε= + (2.47)

where:

1

2

n

Y

Y

y

Y

 =

48 Practical Machine Learning

11 12 1

21 22 2

1 2

1

1

1

k

k

n n nk

X X X

X X X
x

X X X

 =

0

1

and

k

β
β

β
β

 =

1

2

n

ε
ε

ε
ε

 =

To estimate (predict) the value of a dependent variable from Equation (2.47), it’s nec-
essary to estimate the parameters (regression coefficients) using the Ordinary Least
Squares (OLS) method that minimizes the error term as shown in Equation (2.48).

() ()2

1

n

i

i

L y x y xε ε ε β β
=

= = ′ = − ′ −∑

(2.48)

The resulting least squares estimate is shown in Equation (2.49).

 () 1ˆ T Tx x x yβ
−

=

(2.49)

Since the estimation of dependent variable can be obtained by ˆŷ xβ= , then the equation
of a multivariate linear regression model can be obtained as shown in Equation (2.50).

 () 1
ˆ T Ty x x x x y

−
=

(2.50)

2.3 PROBABILITY THEORY

Probability theory is a branch of mathematics that studies random events and the
likelihood of their occurrence. It provides a mathematical framework for quantifying
uncertainty and predicting the probability of specific outcomes in events with multiple

2 • Mathematics for machine learning 49

possible results. Understanding probability theory is crucial for machine learning practi-
tioners, as it underpins many machine learning algorithms. The subsequent subsections
offer a comprehensive overview of key probability concepts, helping readers build a
solid foundation in probability theory and its applications in machine learning.

2.3.1 Sample spaces and events

Probability theory entails fundamental concepts like sample space, probability distribu-
tions, and random variables to calculate the likelihood of an event to occur. A sample
space is the collection of all conceivable experiment results. It comprises all possible
outcomes that could occur during an experiment. For example, when flipping a coin,
the sample space has two possible outcomes: heads or tails. An event is a subset of the
sample space that denotes specific outcomes or combinations of outcomes. Events can
range from basic (like flipping a coin) to compound (like flipping a coin twice and get-
ting heads both times). Understanding sample spaces and events is critical for compre-
hending probability and generating predictions in a variety of domains. This is where
probability theory is heavily used to quantify uncertainty and make decisions. The fol-
lowing are the types of events:

 i. Independent Events
 These are the events that occur without being influenced by other factors.

This implies that the outcome of one event does not affect the outcome of
another.

 ii. Dependent Events
 These are events that are influenced by prior outcomes. This suggests that the

occurrence of one event has a considerable impact on the probability of the
succeeding event.

 iii. Mutually Exclusive Events
 These are events that are characterized by their inability to occur simultane-

ously. When one of these events takes place, the occurrence of the others is
precluded.

 iv. Equally Likely Events
 These are events that share an identical probability of happening. This

implies that, under similar conditions, each of the events has an equal chance
of occurrence.

 v. Exhaustive Events
 These are events that encompass all possible outcomes within the sample

space of an experiment. They essentially account for every conceivable result
that could arise from the given set of circumstances.

2.3.2 Probability

Probability is defined as the ratio of the number of favorable outcomes to the total
number of possible outcomes. Suppose S is the sample space, representing the set of all
possible outcomes of an experiment and an event A is a subset of sample space S. Hence,

50 Practical Machine Learning

the probability of an event A denoted as P(A) is defined as the ratio of the number of
favorable outcomes for event A denoted as n(A) to the total number of possible out-
comes in the sample space denoted as n(S). Mathematically, P(A) is computed as shown
in Equation (2.51).

() ()

()
n A

P A
n S

=

(2.51)

2.3.3 Probability measures

A probability measure assigns numerical values to events within a sample space, reflecting
the likelihood of occurrence of those events. It provides a formal framework for quantify-
ing uncertainty and making predictions in various fields, including statistics and machine
learning. A probability measure P on a sample space S satisfies the following properties:

 i. Non- negativity
 This property states that the probability of an event A must be a non- negative

real number. In mathematical terms, the property is represented as () 0P A ≥
for all events A.

 ii. Normalization
 This property states that the total probability assigned to the entire sample

space is equal to 1. Mathematically, for a sample space S, the property is
represented as () 1P S = .

 iii. Additivity
 The additivity property of a probability measure applies to mutually exclu-

sive events. The additivity property states that the probability of the union of
two mutually exclusive events is equal to the sum of their individual prob-
abilities. If 1A , 2A , … are disjoint events (i.e., 0i jA A∩ = whenever i j≠),
then () ()1 2 i

i

P A A P A∪ ∪… =∑ .

2.3.4 Conditional probability

Conditional probability is a measure of the likelihood of an event occurring given that
another event has already occurred with a certain probability. It is denoted by (|)P A B ,
where A represents the event of interest and B signifies the condition under consid-
eration for evaluating the probability. Mathematically, conditional probability is com-
puted as shown in Equation (2.52).

()
()

(|)
P A B

P A B
P B

∩
=

(2.52)

where:

(|)P A B is the conditional probability of event A given event B has occurred.
()P A B∩ is the joint probability of events A and B occurring together. If the two events

(A and B) are independent (i.e., mutually exclusive events), then () () ()P A B P A P B∩ = .

2 • Mathematics for machine learning 51

Thus, the conditional probability becomes ()(|)P A B P A= . This is equivalent to stating
that the observation of B has no impact on the probability of A.
()P B is the probability of event B occurring.

2.3.5 Bayes’ theorem

Bayes’ Theorem is an important concept in probability theory that offers a method
for updating beliefs about the probability of an event occurring based on new evi-
dence. It is a cornerstone in various fields such as statistics, machine learning, and
AI. Mathematically, the theorem relates the conditional probability of an event
A given event B (i.e., the posterior probability) to the conditional probability of
event B given event A (i.e., the likelihood), along with the prior probabilities of
events A and B occurring independently. The formula of Bayes’ Theorem is given in
Equation (2.53).

()
()

(|)·
(|)

P B A P A
P A B

P B
=

(2.53)

where:

(|)P A B is the conditional probability of event A given event B has occurred.
(|)P B A is the conditional probability of event B given event A has occurred.
()P A is the probability of event A occurring.
()P B is the probability of event B occurring.

2.3.6 Random variables

A random variable is a mathematical function that assigns a numerical value to each
possible outcome of a random experiment. In simpler terms, a random variable is a vari-
able whose value is determined by the outcome of a random process. There are mainly
two types of random variables: discrete and continuous, as described in the following.

 i. Discrete Random Variables
 These are variables that take on a countable number of distinct values. The

possible values of a discrete random variable can be listed, and there are gaps
between them. Examples of random variables include the number of heads in
a series of coin flips or the count of emails received in a day.

 ii. Continuous Random Variables
 These are variables that can take any value within a given range. The pos-

sible values form a continuous interval, and there are no gaps between them.
Examples include the height of individuals in a population, the time it takes
for a reaction to occur, or the temperature at a specific location.

 Random variables are denoted by X and their possible values are often
denoted by lowercase letters, e.g., x. The probability distribution of a random
variable describes the likelihood of each possible value occurring.

52 Practical Machine Learning

2.3.7 Expectation

Expectation or mean represents the average value that one would expect the random
variable X to take over a large number of repetitions of an experiment. It is denoted by
()E x or µ and is a measure of central tendency.

For a discrete random variable X, with probability mass function ()iP X x= and
corresponding values ix , the expectation is denoted in Equation (2.54).

() ()·i i

i

E X x P X x= =∑

(2.54)

For a continuous random variable X, with probability density function ()f x , the
 expectation is denoted in Equation (2.55).

() ()·E X x f x dx

∞

−∞

= ∫

(2.55)

2.3.8 Variance

The variance of a random variable X is a measure of the spread or dispersion of its
values around the mean or expected value. It quantifies the degree to which individual
observations deviate from the average. Variance is denoted as Var(x) or 2σ .

For a discrete random variable X, with probability mass function ()iP X x= and
corresponding values ix and expected value µ , the variance is calculated as indicated in
Equation (2.56).

() () ()22Var or ·i i

i

X x P X xσ µ= − =∑

(2.56)

Whereas, for a continuous random variable X, with probability density function ()f x
and expected value µ , the variance is computed as shown in Equation (2.57).

() () ()22Var or ·X x f x dxσ µ

∞

−∞

= −∫

(2.57)

2.3.9 Standard deviation

The standard deviation is a statistical measure that quantifies the amount of variation
or dispersion within a set of values. Standard deviation is the square root of variance.
Additionally, it shows how individual data points deviate from the dataset’s mean. Hence,
a low standard deviation shows that the data points are close to the mean, whereas a high
standard deviation indicates more variability. Standard deviation is denoted by σ.

2 • Mathematics for machine learning 53

For a discrete random variable X, with probability mass function ()iP X x= and cor-
responding values ix and expected value µ , the standard deviation is given in Equation (2.58).

() ()

()2

2 1· or

n

i

i
i i

i

x

x P X x
n

µ
σ µ σ =

−
= − = =

∑
∑

(2.58)

Equation (2.59) denotes the variance for a continuous random variable X, with
probability density function f(x) and expected value μ.

() ()2
·x f x dxσ µ

∞

−∞

= −∫

(2.59)

A probability distribution is a mathematical function that describes the probability of
various outcomes in a random experiment. It offers a way for assigning probabilities
to the numerous outcomes that a random variable can have. Understanding probabil-
ity distributions is essential for probability theory, statistics, machine learning, and
data science. Furthermore, when describing probability measures linked with random
 variables, alternative functions such as cumulative distribution functions (CDFs),
probability density functions (PDFs), and probability mass functions (PMFs) are fre-
quently defined. These functions provide a straightforward approach to calculating the
probability measure that will lead an experiment.

2.3.9.1 Cumulative distribution function

The cumulative distribution function (CDF) depicts the probability distribution of a
random variable. It also provides the likelihood that the variable will have a value less
than or equal to a given value x. Consider the random variable X, which represents the
adult male height in a population as measured in feet. The CDF of X, denoted by f(x),
indicates the probability that an adult male is less than or equal to a given height, such
as 68 feet. Specifically, f(68) is the probability that an adult male is shorter than or equal
to 68 feet. For any random variable X, the CDF f(x) must meet the following conditions.

 i. Non- decreasing: This feature means that when x increases, the cumulative
probability does not decrease. If () ()1 2f x f x≤ , then 1 2x x≤ . Where ()1f x
and ()2f x denote the CDF values at two points 1x and 2x , respectively.

 ii. Right- Continuous: The probability of reaching any particular
value from the right is the same as approaching it from the left. It is
denoted as () ()

0
lim
h

F x F x h
+→

= + .

 iii. Limits at Infinity: The cumulative probability approaches 0 for values that
are extremely small and approaches 1 for values that are extremely large. It is
denoted as ()lim 0

x
F x

→−∞
= and ()lim 1

x
F x

→+∞
= .

54 Practical Machine Learning

2.3.9.2 Probability mass function

The probability mass function (PMF) represents the probability distribution of a discrete
random variable by assigning probabilities to all possible outcomes. Thus, the PMF is
denoted as P(X = x), and it reflects the probability that the random variable X will take
the value x. For a discrete random variable X, the PMF ()P X x= satisfies non- negativity

(i.e., () 0P X ≥) and summation to 1 (i.e., ()
all

1
x
P X x= =∑) property. The PMF is

 significant in machine learning because it provides a formal mechanism for describing
the probability distribution of discrete random variables. This allows machine learning
systems to represent and reason about uncertainty in discrete domains.

2.3.9.3 Probability density function

A Probability Density Function (PDF) defines the probability distribution of a continu-
ous random variable by assigning probabilities to groups of values rather than individual
values. Furthermore, the PDF, indicated as f(x), represents the likelihood that the ran-
dom variable X falls inside a specific range around x. Consider X, a continuous random
variable representing an adult male’s height in a population, measured in feet. Thus,
the PDF f(x) would represent the likelihood that an adult male’s height falls within a
specified range of x feet. A PDF f(x) must satisfy two conditions: non- negativity (f(x) ≥
0) and area under the curve (∫_(-∞)^∞ f(x)dx = 1). The PDF is significant in machine
learning because it allows for formal modeling and analysis of continuous random vari-
ables. This allows algorithms to understand uncertainty and make accurate predictions
in continuous domains.

2.3.9.4 Discrete distributions

Discrete probability distributions show the probabilities associated with discrete random
variables, which have separate and independent values. Discrete distributions include
the Bernoulli, Binomial, and Poisson distributions. These sorts are ideal for modeling
events with countable and accurate outcomes.

2.3.9.5 Bernoulli distribution

The Bernoulli distribution represents a random experiment with only two possible
 outcomes (1 for success and 0 for failure), making it ideal for representing binary
data. It is useful in machine learning, particularly for classification tasks. Furthermore,
Equation (2.60) defines the probability mass function, P(X = k), of a Bernoulli random
variable X. In addition, Equations (2.61) and (2.62) calculate the mean, E(X), and vari-
ance, Var(X), of the Bernoulli Distribution, respectively.

 () ()1· 1
kkP X k p p

−
= = − (2.60)

where:

k takes values 0 or 1, and

2 • Mathematics for machine learning 55

p represents the probability of success. The distribution is characterized by a single
parameter p, which is between 0 and 1.

 ()E X p= (2.61)

 () ()Var · 1X p p= − (2.62)

2.3.9.6 Binomial distribution

The number of successes in a fixed number of independently and identically distributed
Bernoulli trials is represented by a binomial distribution. Each trial either succeeds with
probability p or fails with probability (1 − p). Equation (2.63) describes the probability
mass function for a binomial random variable X. Equations (2.64) and (2.65) also
 provide the mean, E(X), and variance, Var(X), of a Binomial Distribution.

 () () ()· · 1
n kk k

nP X k p p
−

= = −

(2.63)

where:

n is the number of trials.
k is the number of successes.
p is the probability of success in a single trial.
()k

n is the binomial coefficient, representing the number of ways to choose k success
from n trials.

 ()E X np= (2.64)

 () ()Var 1X np p= − (2.65)

2.3.9.7 Poisson distribution

The Poisson Distribution represents the number of events that occur within a specific
time. This distribution is crucial in machine learning for modeling unusual event occur-
rences within a set period, which aids in tasks such as website traffic prediction and data
anomaly detection. Equation (2.66) calculates the PMF for a Poisson random variable
X. In addition, the mean E(X) and variance Var(X) of a Poisson distribution are equal to
the average rate parameter λ, as defined in Equation (2.67).

()

!

ke
P X k

k

λλ −

= =

(2.66)

where:

k is the number of events.
λ is the average rate at which events occur.

56 Practical Machine Learning

e is the base of the natural logarithm (i.e., 2.71828e ≈).

 () ()VarE X X λ= = (2.67)

2.3.9.8 Uniform distribution

The Uniform Distribution is distinguished by a PMF that is constant throughout a speci-
fied range. The distribution is uniform since all outcomes within the range have an equal
chance of occurring. Furthermore, in machine learning, the distribution is critical for
producing random samples with similar probability across a certain range and giving a
baseline comparison. As a result, it is critical in producing synthetic datasets for model
training and testing, as well as in assuring random selection process integrity. It can also
generate random starting settings for algorithms. Equation (2.68) computes the PMF for
a uniform random variable X on the interval [a, b]. For a uniform distribution, the mean
E(X) and variance Var(X) are also calculated using Equations (2.69) and (2.70).

() 1

1
iP X x

b a
= =

− +
(2.68)

where:

a is the minimum value in the range.
b is the maximum value in the range.

ix is a specific value in the range.

()

2
a b

E X
+=

(2.69)

() ()2

1 1
Var

12

b a
X

− + −
=

(2.70)

2.3.9.9 Continuous distributions

Continuous probability distributions describe the probabilities associated with continuous
random variables. Unlike discrete distributions, where the random variable can only assume
distinct values, continuous distributions deal with variables that can take on an uncountable
infinite number of values within a given interval. These distributions are vital for machine
learning in modeling real- world phenomena with continuous variables and facilitate tasks
such as regression, density estimation, and generative modeling. Types of continuous
probability distribution include Normal Distribution, Uniform Distribution, Exponential
Distribution, Log- Normal Distribution, Gamma Distribution, and Beta Distribution.

2.3.9.10 Normal distribution (Gaussian distribution)

The Normal Distribution, commonly referred to as the Gaussian distribution, is a foun-
dational probability distribution well- known for its symmetry about the mean. This
inherent symmetry implies that data points close to the mean are more prevalent than

2 • Mathematics for machine learning 57

those farther away, creating the distinctive bell- shaped curve appearance when visual-
ized graphically. This distribution is widely used for data analysis, anomaly detection,
and generating synthetic data in machine learning. The probability density function
for a Gaussian random variable X with a mean ()E X and standard deviation (σ) is
given in Equation (2.71). Moreover, the mean ()E X and variance ()Var X for a Normal
Distribution are calculated as shown in Equations (2.72) and (2.73), respectively.

()2
22

2

1
(| ,)

2

x

f x e
µ

σµ σ
πσ

−
−

=

(2.71)

where:

x is the random variable.
µ is the mean, determining the center of the distribution.
σ is the standard deviation, influencing the spread or dispersion of the distribution.
π is the mathematical constant (i.e., 3.14159π ≈).
e is the base of the natural logarithm (2.71828e ≈).

 ()E X µ= (2.72)

 () 2Var X σ= (2.73)

2.3.9.11 Uniform distribution

The Uniform Distribution is a probability distribution characterized by a constant PDF
over a specified range. In simpler terms, every outcome within the range has an equal
chance of occurring, making the distribution uniform. This distribution is important in
machine learning for fair random selection processes and a crucial tool in generating
random samples that can be used in algorithm training and testing. The PDF for a uni-
form random variable X over the interval ,a b is given in Equation (2.74). Moreover,
the mean ()E X and variance ()Var X for a uniform distribution are calculated as shown
in Equations (2.75) and (2.76), respectively.

 ()
1

(| ,)f x a b
b a

=
−

(2.74)

where:

a is the lower bound of the interval.
b is the upper bound of the interval.

()

2
a b

E X
+=

(2.75)

() ()2

Var
12

b a
X

−
=

(2.76)

58 Practical Machine Learning

2.4 CALCULUS

Calculus is essential in machine learning, particularly for optimizing algorithms and
understanding function behavior. Consequently, differentiation and integration are two
fundamental concepts that are often employed in machine learning.

2.4.1 Differentiation

Differentiation is used to determine the rate at which a function changes. In machine
learning, it is commonly used to optimize models by modifying parameters to reduce
or maximize a specific objective function. The derivative of a function f(x) with respect
to a variable x is represented by f′(x), which represents the rate of change of f(x) at a
particular position. The derivative is defined as the limit of the difference quotient as the
interval approaches 0, as shown in Equation (2.77).

() () ()

0
lim
h

f x h f x
f x

h→

+ −
′ =

(2.77)

Let us consider a simple function () 2f x x= . Its derivative ()f x′ can be computed using
the power rule of differentiation:

 () () 22 ,which is the derivative of .f x x f x x′ = =

2.4.2 Integration

Integration is the reverse process of differentiation; hence, it is used to calculate the area
under a function’s curve. In machine learning, integration is used in a range of situa-
tions, including predicting probabilities in statistical models. Equation (2.78) represents
the integral of a function f(x) with relation to the variable x.

 ()f x dx∫ (2.78)

Let us consider the function () 2g x x= . The area under the curve can be calculated by
integrating g(x) with respect to x.

 () 2f x dx x C∫ = +

where:

C is the integration constant.

2 • Mathematics for machine learning 59

To get the area under the curve of g(x) = 2x from x = 0 to x = 3, we use the definite
integral:

3
32 2 2

0
0

2 3 0 9xdx x = = − = ∫
So, the area under the curve of g(x) = 2x from x = 0 to x = 3 is 9.

2.4.3 Gradient

Gradients are a basic concept in calculus that play a significant role in model optimiza-
tion by providing information about the rate of change of functions. To improve a model’s
performance, a cost function that measures the difference between the model’s predic-
tions and the desired outcome is usually minimized. In addition, several machine learning
optimization approaches, such as gradient descent and its derivatives, iteratively update
model parameters using the gradient. As a result, in order to achieve optimal performance,
a model’s internal parameters must be modified so that the cost gradually decreases. Here
is when the concept of gradient comes into play. In mathematics, gradients are the vec-
tors of partial derivatives of a multivariable function with respect to its input variables.
Geometrically, the gradient indicates the direction of the steepest ascent of a function’s
surface at a particular point. Equation (2.79) defines the gradient of a function f(x).

 1 2

, , ,
n

f f f
f

x x x

 ∂ ∂ ∂∇ = … ∂ ∂ ∂
(2.79)

where:

i

f

x

∂
∂

 represents the partial derivative of f with regard to the i- th input variable, xi.

2.4.4 Linear function

A linear function is a mathematical relationship between two variables that can be repre-
sented visually by a straight line, with the dependent variable moving at a constant rate rel-
ative to the independent variable. Let us consider the simple linear function ()f x mx c= + ,
where m is the slope and c is the intercept. As a result, the gradient of f with respect to x
is constant, equal to the slope m across the domain. Hence, the gradient of f is ∇f = m.
For example, given a linear function () 2 3f x x= + , the gradient of f with respect to x is
constant and equal to 2m = across the domain. Therefore, f∇ equals 2 for all x.

2.4.5 Quadratic function

A quadratic function is a mathematical relationship between two variables that can be
graphically depicted as a curve in which the dependent variable increases or decreases
in proportion to the independent variable squared. Let us consider a quadratic function

60 Practical Machine Learning

() 2f x ax bx c= + + , where a, b, and c are constants. When partial derivatives are com-
puted, the gradient ∇f varies with x and is influenced by coefficients a and b. The gradi-
ent vector provides insight on the slope of the quadratic curve at various points within its
domain. Consider the quadratic function () 2 2 1f x x x= + + . Its gradient with respect to
x is 2 2f x∇ = + . At 0x = , the gradient is 2f∇ = , showing a positive slope. As x increases,
so does the gradient, which reflects the quadratic curve’s steeper slope.

2.4.6 Sigmoid function

A sigmoid function is a mathematical function with a distinctive S- shaped curve. It is
commonly used to model nonlinear interactions and map inputs to a range of 0 to 1.
In machine learning, the sigmoid function () ()1 / 1 xx eσ −= + is frequently employed
as an activation function. The gradient of the sigmoid function with respect to x has a
distinct S- shape, gradually shifting from big positive values to small positive values as x
changes. Let us get the gradient of the sigmoid function () ()1/ 1 xx eσ −= + with respect

to x. Calculating the derivative of ()xσ yields () () ()()1x x xσ σ σ′ = − . This gradient

goes smoothly from big positive values (i.e., for large positive x) to small positive values
(i.e., for large negative x), representing the sigmoid function’s characteristic of translat-
ing input values to the range (0, 1).

2.5 GEOMETRY AND TRIGONOMETRY

Geometry and trigonometry are fundamental mathematical principles with numerous
applications in machine learning, ranging from data representation to model develop-
ment. Understanding their applications is critical for developing efficient algorithms and
evaluating their outcomes. This section looks into the fundamental ideas of geometry
and trigonometry, emphasizing their application in the machine learning domain.

2.5.1 Geometry in data representation

Geometry provides a foundation for describing data in machine learning, especially
in high- dimensional domains. Distance metrics, inner products, and norms are impor-
tant concepts for assessing the similarities and differences between data points. For
example, the Euclidean distance metric calculates the straight- line distance between
points in a geometric space, making it easier to cluster, classify, and discover anomalies.
Consider a dataset with two- dimensional points reflecting the positions of houses in a
neighborhood. Each data point (x, y) represents the coordinates of a dwelling on a map.
Equation (2.80) is used to calculate the Euclidean distance between pairs of data points
to determine how similar dwellings are based on their locations.

 () ()2 2
2 1 2 1Distance x x y y= − + − (2.80)

2 • Mathematics for machine learning 61

Let us consider two houses with coordinates (2, 3) and (5, 7). The Euclidean distance
between them can be computed as follows:

 () ()2 2 2 2Distance 5 2 7 3 3 4 9 16 25 5= − + − = + = + = =

Therefore, the Euclidean distance between the dwellings is 5 units. This distance mea-
sure allows us to quantify the spatial links between dwellings and perform tasks like
clustering or identifying nearest neighbors for recommendation systems.

2.5.2 Trigonometric geometry in model
optimization

Trigonometric functions, particularly hyperbolic functions such as hyperbolic sine
(sinh), cosine (cosh), and tangent (tanh), are important in model optimization and activa-
tion functions in machine learning. To introduce non- linearity and assist gradient- based
optimization, neural networks frequently use hyperbolic tangent (tanh) and rectified
linear units (ReLU) activation functions. To incorporate non- linear transformations and
normalize activations in deep neural networks, the hyperbolic tangent (tanh) activation
function is used to neuron outputs. This enables more effective gradient propagation and
convergence during back- propagation, resulting in better training stability and model
performance. Assume there is a neural network consisting of one input neuron, one
hidden neuron, and one output neuron. The hidden neuron will utilize the hyperbolic
tangent activation function, whereas the output neuron will use the rectified linear unit
(ReLU) activation function.

The hyperbolic tangent function, denoted as ()tanh x , is defined in Equation (2.81).

() ()

()
sinh

tanh
cosh

x x

x x

x e e
x

x e e

−

−
−= =
+

(2.81)

where:

()sinh and

2

x xe e
x

−−=

()cosh

2

x xe e
x

−+=

Given an input x, the hidden neuron computes its output h using the hyperbolic tangent
activation function, as illustrated in Equation (2.82).

 ()tanhh wx b= + (2.82)

where:

w represents the weight connecting the input to the hidden neuron, and
b is the bias term.

62 Practical Machine Learning

Equation (2.83) shows how the output neuron computes its output y using the recti-
fied linear unit (ReLU) activation function.

 ()max 0,why c= + (2.83)

where:

wh represents the weighted sum of the hidden output of the neuron, and c is the output
bias term of a neuron.

Assume that the weight linking the input to the hidden neuron is w = 0.5, the bias
term for the hidden neuron is b = 1, the weight connecting the hidden neuron to the
output neuron is w′ = −1, and the bias term for the output neuron is c = 0.5. Given an
input 2x = , we can compute the output of the hidden neuron using Equation (2.82) as
follows:

 () () ()tanh 0.5 2 1 tanh 2 1 tanh 3h = × + = + =

Using the hyperbolic tangent function, we determine that h is around 0.995. The output
neuron’s output is then calculated using Equation (2.83), as follows:

() () ()max 0, 1 0.995 0.5 max 0, 0.995 0.5 max 0, 0.495 0y = − × + = − + = − =

Therefore, the output of the output neuron is 0.

2.6 INFORMATION THEORY

Information theory is an area of mathematics created in 1948 by Claude Shannon that
provides a framework for quantifying and studying information, uncertainty, and com-
munication systems. In the context of machine learning, information theory provides
important insights into data representation, model evaluation, and optimization tech-
niques. This subsection looks into the fundamental concepts of information theory and
its applications in machine learning, with instructive examples.

2.6.1 Entropy and information content

Entropy is a fundamental concept in information theory that describes the average
uncertainty or disorder in a probability distribution. It estimates the quantity of informa-
tion needed to describe the results of a random variable. In machine learning, entropy is
an important statistic for assessing uncertainty in data distributions and model predic-
tions. For example, in decision tree algorithms, entropy is used to assess the purity of

2 • Mathematics for machine learning 63

splits and drive feature selection. The entropy H(X) of a discrete random variable X with
probability distribution P(X) is computed using Equation (2.84).

() () ()2log

x

H P x P x
∈

= −∑

(2.84)

where:

x is the set of all possible values for X.
Assume we have a random variable X that represents the result of flipping a fair coin.
There are two possible outcomes: heads (H) and tails (T), each with a chance of 0.5.
This distribution’s entropy is computed using Equation (2.84):

() 2 2

1 1 1 1 1 1
log log 1bit

2 2 2 2 2 2
H

 = − + = − − =

This indicates that there is 1 bit of uncertainty associated with each coin- flip outcome.
For example, in classification, consider a binary classification problem with two

classes, where each class occurs with an equal probability ()0.5p = . The entropy of this
distribution is calculated as shown in Equation (2.84).

() () () ()
= − −
= − − = − × − − × − =

1 2 1 2 2 2

2 2

Entropy log log
0.5log 0.5 0.5log 0.5 0.5 1 0.5 1 1bit
p p p p

This indicates that there is 1 bit of uncertainty associated with each outcome, reflecting
the equal probability of the two classes.

2.6.2 Mutual information and feature selection

Mutual information measures the amount of information shared between two random
variables. In machine learning, mutual information is utilized for feature selection,
where it quantifies the relevance of each feature to the target variable. Features with
high mutual information are considered informative and are retained, while irrelevant
features are discarded. Mutual Information ();I X Y between two random vari-
ables X and Y with joint probability distribution (),P X Y is calculated as shown in
Equation (2.85).

() () ()

() ()2

,
; , log

x X y Y

P x y
I X Y P x y

P x P y
∈ ∈

=

∑∑

(2.85)

where:

x and y are the sets of possible values of X and Y, respectively.
Consider a dataset with two variables X and Y, where X represents the presence (i.e.,
1) or absence (i.e., 0) of a particular gene mutation and Y represents the occurrence

64 Practical Machine Learning

(1) or absence (0) of a disease as shown in Table 2.1. The aim is to measure the mutual
information between X and Y to determine the relevance of the gene mutation to the
disease.

Using the formula for mutual information in Equation (2.85), the following calcula-
tion can be performed.

() () ()
() () () ()

() ()

() ()
() () () ()

() ()

2 2

2 2

2 2

2

0,0 0,1
; 0,0 log 0,1 log

0 0 0 1

1,0 1,1
1,0 log 1,1 log

1 0 1 1

500 500 200 200
log log

1400 1400 600 1400 1400 800

100 100 600
log l

1400 1400 600 1400

P P
I X Y P P

P P P P

P P
P P

P P P P

= +

+ +

 = + × ×
 + + ×

2
600

og 0.041bits
1400 800
 ≈ ×

This indicates the amount of information gained about the disease (Y) by observing the
gene mutation (X), with higher values indicating a stronger association.

2.6.3 Cross- entropy and model evaluation

Cross- entropy is a measure of dissimilarity between two probability distributions. In
machine learning, it is commonly used as a loss function for training classification
models, particularly in neural networks. Minimizing cross- entropy corresponds to max-
imizing the likelihood of predicting the correct class label. For example, in binary clas-
sification, the cross- entropy loss function is defined in Equation (2.86).

() ()

1

1
Cross Entropy log 1 log 1

N

i i i i

i

y p y p
N

=

 − = − + − − ∑
 (2.86)

where:

iy is the true class label (0 or 1),
ip is the predicted probability of the positive class, and

N is the number of samples.

TABLE 2.1 The values of features X and Y

X Y COUNT

0 0 500
0 1 200
1 0 100
1 1 600

2 • Mathematics for machine learning 65

2.7 CLUSTERING

As explained earlier in Chapter 1, clustering identifies patterns in unlabeled data by
grouping similar data points into clusters or segments. Although there are several cat-
egories of clustering algorithms, for mathematical illustrative purposes, the K- Means
clustering algorithm based on partitioning clustering is demonstrated in the subsequent
subsection.

2.7.1 K- Means clustering algorithm

The K- Means algorithm is an iterative clustering technique used to partition a
 dataset into K distinct, non- overlapping clusters based on a specific distance met-
ric (e.g., Euclidean distance). It works by iteratively assigning data points to the
nearest cluster centroid and then updating the centroids based on the mean of the
data points assigned to each cluster. This process continues until convergence,
where the centroids no longer change significantly or a specified number of itera-
tions are reached. The K- Means clustering algorithm can be performed through the
 following steps.

 i. Initialization
 In the initial step, the parameter K is determined, representing the desired

number of clusters. Subsequently, centroids are randomly initialized for each
K cluster to start the clustering process.

 ii. Calculation of Distances
 In this step, the distance matrix between the centroids and the data patterns

should be created to identify the nearest distance of the data points to the cen-
troids. Since there are K clusters/centroids and n samples, the algorithm shall
compute n*K geometric distances. There are several geometric distances
that can be used to compute the distance of the data points to the centroids,
including the Euclidean distance, Manhattan distance, and Chebyshev dis-
tance. These geometric distances, together with their respective formulas are
discussed in the following subsections.

 a. Euclidean Distance
 The Euclidean distance d is a straight- line distance between two points in

a Euclidean space. It is computed using Equation (2.87).

()2

1

n

i i

i

d x y
=

= −∑

(2.87)

where:

n is the number of dimensions in Euclidean space
ix and iy are points in the Euclidean space

66 Practical Machine Learning

For example, given two points (2, 3) and (5, 7) in a two- dimensional space, as shown in
Figure 2.8, the Euclidean distanc is computed as follows:

 () ()2 2
2 5 3 7 9 16 25 5.d = − + − = + = =

 b. Manhattan Distance
 This is the distance between two points in a grid- based system like a chess-

board. It is calculated by adding the absolute differences of their coordi-
nates using the formula in Equation (2.88).

 1

n

i i

i

d x y
=

= −∑
 (2.88)

where:

ix and iy are points in the Euclidean space
Consider the same two points (2, 3) and (5, 7) in a two- dimensional space as shown in
Figure 2.9 the Manhattan distance is computed as follows:

 2 5 3 7 3 4 7.d = − + − = + =

FIGURE 2.8 Euclidean distance visualization.

2 • Mathematics for machine learning 67

 c. Chebyshev Distance
 The Chebyshev distance is the maximum absolute difference between

two points across all dimensions. It is calculated using the formula in
Equation (2.89).

()max i i

i
d x y= −

 (2.89)

where:

ix and iy are points in the Euclidean space.
For the same two points (2, 3) and (5, 7) in a two- dimensional space, as shown in
Figure 2.10, the Chebyshev distance is computed as follows:

 () ()max 2 5 , 3 7 max 3,4 4.d = − − = =

 iii. Assigning Each Sample in the Cluster
 After calculating the distance from each sample to every cluster, the sample is
assigned to the closest centroid (i.e., minimal distance). If a sample distance to
the current centroid is much higher than one of the other centroid, then the sam-
ple should be shifted to the new centroid with minimum distance. However,
when there is no movement of samples to another cluster anymore, the algorithm
should end. Suppose the assignment of data points to centroids is determined

FIGURE 2.9 Manhattan distance visualization.

68 Practical Machine Learning

using the Euclidean distance, then this can be performed using the formula in
Equation (2.90).

() ()2

1

,
n

i i

i

d x c x c
=

= −∑
 (2.90)

where:

x is the data point
c is the centroid
n is the number of dimensions

 iv. Updation
 The updation step involves recalculating the centroids for each cluster by taking
the mean of all data points assigned to the cluster. This will result in a shift in the
positions of the centroids. The new centroid (),x yc c c is obtained as shown in
Equations (2.91) and (2.92) for the x and y coordinates of data points, respectively.

 1

1
l

x i

i

c x
l

=

= ∑
 (2.91)

 1

1
l

y i

i

c y
l

=

= ∑
 (2.92)

FIGURE 2.10 Chebyshev distance visualization.

2 • Mathematics for machine learning 69

 v. Repeating Steps ii to iv
 This step involves repeating steps ii to iv until the algorithm convergence (i.e.,
when the centroids no longer change) or a specified number of iterations is
reached. Consider a dataset with eight samples and two attributes, as shown in
Table 2.2. The task is to assign each data point to one of three clusters (C1, C2,
and C3) using the K- Means algorithm, with the Manhattan distance serving as
the distance measure. As described earlier in this section, the following steps are
applied to assign each data point to the respective cluster as follows.

 i. Initialization Iteration 1:
 Since there are three clusters (i.e., C1, C2, C3), then the centroids are randomly
initialized as follows:

 ()1: 1 4.00, 2 6.33C A A= =

 ()2 : 1 6.00, 2 5.67C A A= =

 ()3 : 1 2.50, 2 5.50C A A= =

 ii. Calculation of Distances and Assigning Each Sample to a Cluster
 Using the Manhattan distance measure, the distance from each data point to each
centroid is calculated as follows.
Distances for data point (2, 10) to each centroid:

 Distance to 1 2 4 10 6.33 5.67C = − + − =

 Distance to 2 2 6 10 5.67 8.33C = − + − =

 Distance to 3 2 2.5 10 5.5 5C = − + − =

Data point (2, 10) is clustered in C3 since it has the smallest distance of 5 from C3 com-
pared to other clusters (5.67 and 8.33).

TABLE 2.2 Sample dataset

NO. A1 A2

1 2 10
2 2 5
3 8 4
4 5 8
5 7 5
6 6 4
7 1 2
8 4 9

70 Practical Machine Learning

Distances for data point (2, 5) to each centroid:

 Distance to – –C = + =1 2 4 5 6.33 3.33

 Distance to – –C = + ⋅ = ⋅2 2 6 5 5 67 4 67

 Distance to – –C = ⋅ + ⋅ =3 2 2 5 5 5 5 1

Data point (2, 5) is clustered in C3 since it has the smallest distance of 1 from C3 com-
pared to other clusters (3.33 and 4.67).

Distances for data point (4, 8) to each centroid:

 Distance to – –C = + ⋅ = ⋅8 4 4 6 33 6 331

 Distance to – –C = + ⋅ = ⋅2 8 6 4 5 67 3 67

 Distance to – –C = + ⋅ =3 2.5 5 5 78 4

Data point (4, 8) is clustered in C2 since it has the smallest distance of 3.67 from C2
compared to other clusters (6.33 and 7).

The assignment of data points to their respective clusters is shown in Table 2.3 with
each color indicating the data points that belong to the same cluster.

 iii. Updating Centroids for Iteration 2:
 After assigning all samples to clusters, the centroids are recomputed by finding
the mean of all data points in each cluster. The updated centroids will be used in
the next iteration and are calculated as follows:

Centroid for Cluster 1, C1:

TABLE 2.3 Data points assigned to the clusters for the first iteration

DATA POINTS

A1

C1 C2 C3

4.00 6.00 2.50

A2 6.33 5.67 5.50

NO. A1 A2 MANHATTAN DISTANCES

1 2 10 5.67 8.33 5.00

2 2 5 3.33 4.67 1.00

3 8 4 6.33 3.67 7.00

4 5 8 2.67 3.33 5.00

5 7 5 4.33 1.67 5.00

6 6 4 4.33 1.67 5.00

7 1 2 7.33 8.67 5.00

8 4 9 2.67 5.33 5.00

2 • Mathematics for machine learning 71

 • The data samples are (5, 8) and (4, 9).

 • The mean is ()5 4 8 9
, 4.5,8.5

2 2
+ + =

. Thus, the new centroid is ()4.5,8.5 .

Centroid for Cluster 2, C2:

 • The data samples are (4, 8), (5, 7), and (4, 6).

 • The mean is ()8 7 6 4 5 4
, 7,4.33

3 2
+ + + + =

. Thus, the new centroid is ()7,4.33 .

Centroid for Cluster 3, C3:

 • The data samples are (2, 10), (2, 5), and (1, 2).

 • The mean is ()2 2 1 10 5 2
, 1.67,5.67

3 2
+ + + + =

. Thus, the new centroid

is ()1.67,5.67 .

 iv. Repeating Steps ii to iv (i2 to i3)
 The process of creating data point distances from each centroid, assigning data
points to clusters, and updating centroids are repeated in this step until the
centroids converge or a specified number of iterations is reached. After two
more iterations the centroids of the clusters were no longer changing with their
final values () () ()1 3.67,9 , 2 7,4.33 , and 3 1.5,3.5C C C . The final cluster assign-
ments are as follows: cluster 1 includes the data points (2, 10), (5, 8), and
(4, 9); cluster 2 includes the data points (4, 8), (5, 7), and (4, 6); and cluster 3
includes the data points (2, 5) and (1, 2) as shown in Table 2.4.

TABLE 2.4 Data points assignment to the clusters for second and third iterations

DATA POINTS

A1

C1 C2 C3 C1 C2 C3

4.5 7 1.67 3.67 7.00 1.50

A2 8.5 4.3 5.67 9.00 4.33 3.50

NO. A1 A2 DISTANCE 2 DISTANCE 3

1 2 10 4.00 10.67 4.67 2.67 10.67 7.00

2 2 5 6.00 5.67 1.00 5.67 5.67 2.00

3 8 4 8.00 1.33 8.00 9.33 1.33 7.00

4 5 8 1.00 5.67 5.67 2.33 5.67 8.00

5 7 5 6.00 0.67 6.00 7.33 0.67 7.00

6 6 4 6.00 1.33 6.00 7.33 1.33 5.00

7 1 2 10.00 8.33 4.33 9.67 8.33 2.00

8 4 9 1.00 7.67 5.67 0.33 7.67 8.00

72 Practical Machine Learning

2.8 SUMMARY

This chapter equips readers with the requisite mathematical foundation for undertaking
machine learning tasks. It guides learners through a structured progression, commenc-
ing with the fundamental mathematical concepts critical for comprehending machine
learning principles. As readers progress, they develop the ability to mathematically rep-
resent machine learning models, fostering understanding and confident implementation.
Furthermore, the chapter cultivates the essential skills of translating machine learning
problems into mathematically optimized formulations. This empowers readers with
problem- solving abilities in diverse machine learning contexts. The chapter also focuses
on analyzing and interpreting mathematical expressions within machine learning algo-
rithms, giving readers profound insights into the operational mechanisms driving these
algorithms, ultimately enhancing their ability to leverage them effectively. Finally, the
chapter equips learners to apply mathematical representations to evaluate algorithmic
efficiency and model behavior.

Exercises

 1. Assume that we have the following set of emails in Table 2.5 classified as
either spam or ham. Given the new email “review us now,” find the prob-
ability that the given email (new email) is (i) Spam or (ii) Ham.

 2. Three factories F1, F2, and F3 in the Dodoma region produce 50%, 25%,
and 25%, respectively, of the total daily output of bottles of grape juice.
It is known that 4% of the bottles of juice produced by Factories F1 and
F2 are defective and that 5% of those produced in F3 are defective. If one
bottle of juice is picked up at random from a day’s production, calculate
the probability that it is defective.

 3. Suppose you are given the following set of data in Table 2.6 with the
Boolean input variables a, b, and c, and a single Boolean output variable K.

 a. Assume we are using a naïve Bayes classifier to predict the value of K
from the values of the other variables.

TABLE 2.5 Email classification

EMAIL LABEL

Send us your password Spam
Send us your review Ham
Password review Ham
Review us Spam
Send your password Spam
Send your account Spam

2 • Mathematics for machine learning 73

i. According to the naïve Bayes classifier, what is P(K = 1|a = 1 ∧ b =
1 ∧ c = 0)?

ii. According to the naïve Bayes classifier, what is P(K = 0|a = 1
∧ b = 1)?

 4. For the following scores of students in an examination: 84, 58, 90, 56, 85,
72, 64, 54, 48, 88, 92, and 74. Compute the:

 a. Measures of dispersion.
 b. Measures of central tendency.
 c. Quartiles.
 d. The 10th, 20th, 50th, and 70th percentiles.

 5. Given the following data points.

X Y

2 3
4 7
6 8
8 10

10 12

Calculate the covariance between the predictor variable X and the response
variable Y.

 6. Given the following data points with two predictor variables X1 and X2 and
one response variable Y.

X1 X2 Y

1 2 3
2 1 6
3 4 7
4 3 10
5 5 12

TABLE 2.6 Set of Boolean data

a B c K

1 0 1 1
1 1 1 1
0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0

74 Practical Machine Learning

FURTHER READING

Aggarwal, C. C. (2020). Linear algebra and optimization for machine learning: A textbook.
Springer.

Alencar, M. S., & Alencar, R. T. (2024). Set, measure, and probability theory. CRC Press.
Bertsekas, D., & Tsitsiklis, J. N. (2008). Introduction to probability (Vol. 1). Athena Scientific.
Bhatia, P. (2019). Data mining and data warehousing: Principles and practical techniques.

https:// openlibrary. org/ books/ OL28937714M/ Data_Mining_and_Data_Warehousing
Borovkov, A. A. (1999). Probability theory. CRC Press.
Bruce, P., Bruce, A., & Peter, G. (2020). Practical statistics for data scientists (Second Edition).

O’Reilly Media, Inc.
Dalgaard, P. (2002). Introductory statistics with R. Springer.
Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for machine learning.

Cambridge University Press.
Evans, M. J., & Rosenthal, J. S. (2004). Probability and statistics: The science of uncertainty.

Macmillan.
Grinstead, C. M., & Snell, J. L. (1997). Introduction to probability. American Mathematical

Society.
Haden, P. (2019). Descriptive statistics. In S. A. Fincher, & A. V. Robins (Eds.), The Cambridge

handbook of computing education research. Cambridge handbooks in psychology
(pp. 102–132). Cambridge University Press.

Calculate the covariance matrix between the predictor variables X1, X2, and
the response variable Y.

 7. Consider a neural network with an input x = 2, weight w = 0.5, and bias b
= 1. Compute the output of the neuron using the hyperbolic tangent (tanh)
activation function. Then, repeat the computation for an output neuron
using the ReLU activation function with the output of the hidden neuron as
its input and weight w′ = −1, bias c = 0.5.

 8. Using eigenvalues and eigenvectors for principal component analysis
(PCA), perform dimensionality reduction on the following dataset.

2 3

3 3

4 3

 9. Perform K- Means clustering with K = 2 on the given dataset of points (2,
4), (1.5, 2), (3, 4), (1), (3, 2.5), and (1, 2), using your chosen initial cen-
troids and the Euclidean distance method for distance calculation.

10. How does centroid initialization affect the K- means algorithm? Brainstorm
strategies for centroid initialization and their implications.

https://openlibrary.org/books/OL28937714M/Data_Mining_and_Data_Warehousing
https://openlibrary.org/books/OL28937714M/Data_Mining_and_Data_Warehousing

2 • Mathematics for machine learning 75

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K- means clustering algorithm.
Applied Statistics/Journal of the Royal Statistical Society. Series C, Applied Statistics,
28(1), 100. https://doi.org/10.2307/2346830

Mirkin, B. (2005). Clustering for data mining: A data recovery approach. https:// ci. nii. ac. jp/
ncid/ BA71969362

Montgomery, D. C., & Runger, G. C. (2020). Applied statistics and probability for engineers.
John Wiley & sons.

Ross, S. M. (2017). Introductory statistics. In Sheldon M. Ross (Ed.), Introductory statistics
(Fourth Edition, pp. 797–800). Academic Press.

Strang, G. (2019). Linear algebra and learning from data. Wellesley- Cambridge Press.
Tabak, J. (2014). Probability and statistics: The science of uncertainty. Infobase Publishing.
Wasserman, L. (2004). All of statistics. Springer.

https://doi.org/10.2307/2346830
https://ci.nii.ac.jp/ncid/BA71969362
https://ci.nii.ac.jp/ncid/BA71969362

76 DOI: 10.1201/9781003486817-3
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

3Data
preparation

Upon completing this chapter, learners should be able to:

1. Understand the machine learning process.
2. Identify business problems that can potentially be solved using machine

learning techniques.
3. Use different methods for collecting relevant data for machine learning tasks.
4. Apply various data preprocessing techniques to ensure quality and reliability.
5. Understand ethical considerations in data collection.

3.1 OVERVIEW OF MACHINE
LEARNING PROCESS

Generally, the machine learning process entails several steps, such as understanding the
problem to be addressed, collecting and preprocessing data for training the model, and
evaluating and deploying the model. Such a process is depicted in Figure 3.1. This chap-
ter focuses on the steps related to data preparation, including business problem identifi-
cation, defining success criteria, and data collection and preprocessing. The remaining
steps shown in Figure 3.1 are covered in Chapter 4.

3.2 BUSINESS PROBLEM IDENTIFICATION

A business problem is a specific challenge or issue an organization encounters in its
day- to- day operations. It represents a gap between the current state of the business
and its desired vision, hindering its performance or preventing it from achieving
its goals. Business problems can vary in nature and complexity, requiring analysis,
planning, and implementation of appropriate solutions to resolve them effectively.

http://dx.doi.org/10.1201/9781003486817-3

3 • Data preparation 77

In the machine learning context, a business problem refers to a specific challenge
or issue an organization faces that machine learning techniques can solve. In other
words, a business problem is an opportunity that can benefit from leveraging data
and machine learning techniques to make informed decisions, improve efficiency,
and optimize processes that will ultimately lead to achieving business objectives.
Identifying and clearly defining the business problem is a critical first step in the
machine learning process, as it establishes the scope and direction for subsequent
data collection, preprocessing, and modeling phases. The business problem may
vary based on the nature of the problem domain. It could involve predicting cus-
tomer behavior, disease diagnosis, fraud detection, weather forecasting, and recom-
mendation systems.

3.3 SUCCESS CRITERIA DEFINITION

Success criteria refer to the specific benchmarks or goals established for a machine
learning project. It defines what constitutes a successful outcome for the project and
guides the evaluation of its progress and final results. They are typically defined in
the business problem identification phase, where project objectives are identified and
aligned with business goals. They also serve as a reference point when assessing whether
the outcomes meet the desired requirements and provide business value. Some common
examples of key success criteria include business objectives, measurable metrics (e.g.,
key performance indicators), timeframe, and stakeholder engagement.

FIGURE 3.1 Machine learning process.

78 Practical Machine Learning

3.4 DATA COLLECTION

Data is essential for accurately designing and implementing machine- learning mod-
els. Therefore, collecting the specific data related to the problem you intend to solve
before embarking on a machine learning project is essential. Data can be gathered from
pre- existing databases or can be built from scratch. Usually, the nature of the prob-
lem domain dictates how data should be collected and stored. For instance, specialized
equipment is necessary to create a digital image catalogue when tasked with developing
a system to identify skin cancer from skin images. In contrast, creating a recommen-
dation system for e- commerce does not necessitate specialized data collection tools.
Instead, all requisite data is supplied by users during product purchases. Notably, data
collection process considerations include the nature of the data and their corresponding
sources as detailed in the following sections.

3.4.1 Nature of data

Data comprises raw facts, figures, or statistics, which may exist in structured, semi-
structured, or unstructured forms. Usually, data is represented in different formats such
as numbers, text, images, audio, video, or any other format. Structured data is stored in a
predefined format and is usually highly specific. A simple illustration of structured data is
a Microsoft Excel file, in .xls or .csv format, where each column represents an attribute of
the data. Unstructured data includes a multitude of diverse types of data typically stored
in their native formats. A set of photo, video, or text files can represent unstructured data.
Semi- structured data combines the features of unstructured and structured data. Examples
of semi- structured data include JavaScript Object Notation (JSON), Extensible Markup
Language (XML), and log files. Semi- structured data includes tags and elements, often
called metadata, which serve to group the data and delineate its storage structure.

3.4.2 Data sources

Machine learning datasets can originate from available or online resources, or be built
from primary sources. The online datasets may be either publicly accessible or propri-
etary. Therefore, utilizing these datasets demands thoroughly examining ethical con-
siderations across different data lifecycle stages. This covers scrutiny in data sources
and collection, data representation, and data balancing and splitting. It is imperative to
uphold principles of fairness, transparency, and responsible data usage. Delving into the
ethical dimensions at each stage is essential for fostering ethical practices in machine
learning. Table 3.1 outlines a few online data sources where data for implementing
machine learning models can be accessed.

Alternatively, the Google search engine can be used to search for datasets using
relevant keywords and filter the results based on the dataset formats (e.g., images, text,
and videos) or accessibility (i.e., freely available or not).

3 • Data preparation 79

TABLE 3.1 Online dataset repositories

NAME OF DATASET
REPOSITORY DESCRIPTION

UCI Machine
Learning Repository

The University of California Irvine (UCI) data repository provides
free datasets for empirically analyzing machine learning
models. The UCI repository can be accessed at https:// archive.
ics. uci. edu/ ml/.

Kaggle Regarded as one of the most resourceful data repositories
and online communities that support the development of
machine learning models. It is a rich repository, offering a vast
and diverse collection of free datasets. Additionally, Kaggle
has various tools for data exploration, visualization, and
collaboration. It is a valuable platform for both beginners and
experienced data scientists. The Kaggle repository is available at
https:// www. kaggle. com/ datasets.

GitHub Stores and publishes open machine learning datasets that are
freely accessible for analyzing machine learning algorithms.
The public datasets on GitHub can be accessed at https://
github. com/ awesomedata/ awesome- public- datasets.

Microsoft Research
Open Data

The repository contains free accessible datasets to promote
research advancements in different fields, including computer
vision, NLP, and domain- specific sciences. The repository is
available at https:// msropendata. com/.

OpenML An online platform for machine learning that facilitates the
sharing and organization of data, algorithms, and experiments.
It aims to establish a seamless, interconnected ecosystem that
integrates with existing processes, code, and environments.
The platform enables global collaboration, allowing individuals
to build upon each other’s ideas, data, and results, regardless
of the infrastructure and tools they use. The OpenML data
repository is available at https:// www. openml. org/.

Amazon Web Service
(AWS) Datasets

Provides a lot of datasets for quick deployment of machine
learning models when using AWS. Different third parties
provide datasets under varied licenses that determine in which
applications they can be used. The Amazon datasets repository
is available at https:// registry. opendata. aws/.

Zenodo Open Data
Repository

An open- access platform that hosts a broad spectrum of
research data across disciplines such as healthcare, agriculture,
climate, and cyber security. With robust metadata standards
and versioning capabilities, Zenodo facilitates collaboration and
promotes transparency in scientific research. The Zenodo open
data repository is available at https:// zenodo. org/.

Hugging Face Dataset An online platform for accessing and sharing datasets
specifically suited for NLP, computer vision, and audio tasks. It
also contains a variety of pre- trained models with the necessary
tools for effectively using them. The Hugging Face open data
repository is available at https:// huggingface. co/ datasets.

(Continued)

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets
https://msropendata.com/
https://www.openml.org/
https://registry.opendata.aws/
https://zenodo.org/
https://huggingface.co/datasets

80 Practical Machine Learning

3.4.3 Data curation

Data curation is essential when gathering information from multiple sources. This pro-
cess involves collecting and standardizing data from diverse origins into a unified format.
It entails employing relevant analysis tools and filtering methods to discern valuable data
from irrelevant ones during integration. Typically, data curation tools aid in integrating,
cleansing, adding metadata, validating, and preserving collected data. Ultimately, data
curation enhances dataset accessibility and comprehension, making them more man-
ageable for users to locate and interpret. Notable data curation tools include Alation,
Talend, Stitch Data, Informatica, Ataccama ONE, and Alteryx. The choice of the exact
tool depends on the properties and size of the data for a particular machine learning
problem. A proper data curation process will ensure that the data remaining for labeling
tasks are only those likely to enhance the performance of the models.

3.4.4 Data labeling

Data labeling is the process of identifying raw data and adding informative and meaning-
ful labels to provide context for a machine learning algorithm to learn from. For instance,
labels might indicate whether a photograph contains a dog or a cat, identify the words
spoken in an audio recording, or specify whether an X- ray image shows a tumor. Data
labeling is essential for several applications, such as image and text classification, action
recognition, intrusion detection, and speech recognition. Figure 3.2 illustrates an example
of labeled and unlabeled image samples. Notably, a labeled dataset from which an algo-
rithm can learn is required for supervised learning. Typically, data labeling begins with
the respective domain’s experts (labelers or annotators) being asked to describe or group
unlabeled pieces of data in their respective categories. For example, a medical domain
expert may be requested to tag X- ray images based on the condition “Does the image con-
tain signs of tuberculosis or not.” Tagging can be a “yes” or “no” answer corresponding to
whether a patient is infected with tuberculosis or not, respectively.

NAME OF DATASET
REPOSITORY DESCRIPTION

Government Open
Data Portals

Are operated by governments, regional integration bodies, and
international organizations thereby providing access to a wide
range of datasets related to public services, the environment,
demographics, and other topics. Examples of such portals are
hosted by Tanzania, the United States of America, Canada, the
European Union, and the World Bank at:

 https:// www. nbs. go. tz/
 https:// www. data. gov/
 https:// open. canada. ca/en
https://www.europeandataportal.eu/
https://data.worldbank.org/

TABLE 3.1 (Continued) Online dataset repositories

https://www.nbs.go.tz/
https://www.data.gov/
https://open.canada.ca/en
https://www.europeandataportal.eu/
https://data.worldbank.org/

3 • Data preparation 81

3.4.5 Ethical considerations in data collection

Data often inherits societal biases that can be perpetuated by machine learning algo-
rithms and impact outcomes, thereby reinforcing existing disparities and inequalities.
Thus, it becomes imperative to conscientiously address ethical concerns throughout the
data collection process, as highlighted in Table 3.2.

3.5 DATA PREPROCESSING

Usually real- world data typically contains noise, missing values, duplicate values, and
outliers, and it may be in unusable format—making it unsuitable for directly developing
machine learning models. Therefore, data preprocessing targets transforming raw data
into a format appropriate for training machine learning algorithms. Data preprocess-
ing can significantly affect the performance of a machine learning model. It entails
critical steps, including data cleaning, transformation, dimensionality reduction, and
 integration, as described in the following subsections.

3.5.1 Data cleaning

Data cleaning deals with fixing missing, outlier, duplicate, corrupted, incorrectly format-
ted, and incorrect values within a dataset. Data with such issues could lead to unreliable
machine learning models. Generally, data cleaning helps in reducing errors and improv-
ing data quality. Although the data cleaning process can be time- consuming and tedious,
it should not be ignored. Several techniques can be used in data cleaning depending on
the nature of the dataset, as described in the following subsections.

3.5.1.1 Removing duplicate or irrelevant values

Duplicate values in datasets often stem from different sources, such as data entry
errors, merging data from multiple sources, or incomplete deletion of redundant
records. Addressing duplicates is a critical aspect of the data- cleaning process. Failure
to remove duplicates can lead to redundant information being fed into the model,

FIGURE 3.2 Labeled and unlabeled image samples.

82 Practical Machine Learning

resulting in wasted computational resources and skewed results. The typical approach
to handling duplicates involves identifying and removing them, retaining only one
unique observation for each duplicated entry. Similarly, irrelevant values not aligning
with the problem at hand require attention. These values can be managed by deleting
the corresponding observations or replacing the irrelevant ones with accurate ones, if
available or retrievable.

TABLE 3.2 Ethical considerations in data collection

ETHICAL ISSUE DESCRIPTION

Privacy Privacy concerns often stem from data containing personal and
sensitive information, such as names, addresses, and financial
details. Collecting and securely storing data is crucial to reduce
the risk of unauthorized access. Individuals should also maintain
control over their data usage.

Accuracy Ensuring data accuracy requires rigorous validation and verification
procedures to confirm precision and reliability. Thorough scrutiny
and validation checks help prevent disseminating potentially
misleading or inaccurate information.

Security Employ encryption and access controls during data collection to
restrict access to unauthorized personnel, mitigating the risk of
unauthorized disclosure. Regularly audit data handling processes
and comply with legal standards to promptly detect and address
security vulnerabilities or breaches.

Ownership Ethical data handling requires respecting individuals’ rights
to control their data and acknowledging their ownership.
Organizations should establish clear policies on data ownership,
outlining guidelines for control and usage to uphold ethical
standards.

Transparency Data transparency entails openly acknowledging biases, errors, or
uncertainties within datasets, enabling informed decision- making
and reducing potential harm. Embracing data transparency
cultivates trust, accountability, and responsible data usage in
machine learning applications.

Bias and Fairness Data collection practices must avoid unfairly targeting or excluding
specific groups, necessitating vigilance against potential biases in
sampling and collection methods.

Informed Consent Individuals whose data is collected should be informed about the
purpose of the data collection, its intended use, and any potential
benefits or risks. Besides, participants should also be allowed to
decline participation or withdraw their consent at any time.

Accessibility It entails removing barriers to data access, such as cost or technical
expertise, and providing documentation and tools to facilitate
understanding and utilization of the data. Prioritizing data
accessibility promotes inclusivity, transparency, and collaboration,
enabling broader participation and societal benefits from machine
learning advancements.

3 • Data preparation 83

3.5.1.2 Fixing structural errors

Structural errors occur due to typos, incorrect capitalization, or improper naming
conventions. Such inconsistencies may lead to mislabeled categories or classes. For
instance, you may find “N/A” and “Not Applicable” in a dataset, but they should be
considered in the same category. In the case of structural error, the data (or entries) of
the same category should be renamed using the same convention.

3.5.1.3 Detecting and removing outliers

Outliers refer to the data points in a dataset that are beyond a predefined distribution range
and fall far from the mean of the dataset’s observations. Usually, outliers appear not to fit
within the dataset under analysis. Outliers could lead to unrealistic model performance and
inflation of error metrics which give higher weight to large errors. Outliers can easily be
detected using visualization techniques such as clustering, z- score, and box plots.

3.5.1.4 Handling missing values

Missing values are among the common challenges in datasets, occurring when certain
attribute values are missing. Most machine learning algorithms cannot handle missing
values, which may lead to errors or biased models if trained on such data. Failure to
adequately address missing values can result in skewed models and prone to incorrect
results. Missing values can be addressed using different approaches, such as:

 • Dropping a feature or record with missing values. This is fairly simple but
may lead to loss of information. Therefore, careful consideration, such as
dataset size, is needed before dropping a feature or record.

 • Filling missing values based on the measures of central tendency (mode,
mean, and median). However, there is a risk of compromising data integrity
due to working on assumptions rather than actual data.

3.5.1.5 Validation

Data validation involves inspecting data quality before training a machine learning algo-
rithm. The following questions should be answered as part of data validation:

 i. Does the data make sense?
 ii. Does the data adhere to domain- specific rules?
 iii. Does the data support or refute your working theory or provide new insights?
 iv. Can you identify trends in the data to assist with developing your next theory?
 v. If not, is that because of issues in data quality?

3.5.2 Data Transformation

Data transformation entails converting data between formats, such as converting
numerical data to categorical data through binning or categorical data to numeri-
cal data via encoding. Moreover, data transformation involves scaling the data in a

84 Practical Machine Learning

suitable range through normalization. The following subsections describe common
data transformation techniques.

3.5.2.1 Binning

Binning or discretization transforms numerical attributes into categorical equivalents.
For instance, age values can be discretized into categories like 20–39, 40–59, and
60–79. Binning can enhance machine learning model accuracy by mitigating noise or
non- linearity, aiding in outlier identification, and smoothing data through techniques
like equal bin frequency, means, median, and boundaries.

3.5.2.2 Encoding

Machine learning algorithms operate solely on numerical data and cannot comprehend
textual, date, or other non- numeric values. Encoding translates these diverse values
into numerical formats, enabling algorithms to interpret and leverage them for learning
and predictive tasks. Consequently, converting categorical values into numerical ones
via encoding becomes imperative. Common encoding techniques in machine learn-
ing include Label Encoding, where each category receives a unique numerical label,
and One- Hot Encoding, which generates binary columns representing the presence or
absence of each category in the dataset. For instance, when applying One- Hot Encoding
to a binary attribute like gender, with male or female values, the resulting encoded val-
ues become zero (0) or one (1), respectively, indicating male or female. Notably, encod-
ing methods are important in the preprocessing stage before inputting data into machine
learning algorithms. This ensures efficient interpretation of diverse information types
within the dataset, thus deriving meaningful patterns.

3.5.2.3 Data normalization

Data normalization refers to changing the numerical values of attributes to a common
scale without affecting the differences or losing information. Normalization provides
equal weights or importance to each attribute so that no single attribute influences the
performance of a model because of its large values. For example, a dataset can have sev-
eral attributes with values in the order of tens and others in the order of millions. In this
case, normalization will scale down all attributes to a common scale (say 0 to 1). This
process is also known as rescaling attribute values. This technique is particularly useful
for algorithms that rely on distance measures, such as k- NN. The most widely used tech-
nique is min- max normalization, which performs a linear transformation of the original
data to fit it in the range of 0 to 1. By so doing, it ensures that all attributes are handled
equally regardless of their original values. It is computed by subtracting the minimum
value from each feature and dividing the result by the range (maximum- minimum) as
expressed in Equation (3.1).

normalized value
feature value value

value va
_

_ min_

max_ min_
�

�� �
� llue� �

(3.1)

3 • Data preparation 85

Tables 3.3 and 3.4 show examples of features before and after min- max normaliza-
tion, respectively.

3.5.2.4 Standardization

Standardization transforms numerical data to have zero mean and unit standard devia-
tion. Unlike normalization, which scales the data within a specific range, standardization
focuses on centering the data around the mean and adjusting its distribution. The most
commonly used standardization technique is z- score, which transforms features from
differing means and standard deviations to a standard Gaussian distribution. Z- score is
the most suitable technique when there are outliers in the dataset. The z- score standard-
ization formula is expressed in Equation (3.2).

standardize value

feature value mean

standard deviation
_

_

_
�

�� �

(3.2)

Tables 3.5 and 3.6 show examples of features before and after z- score standardiza-
tion, respectively.

TABLE 3.3 Features before normalization

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE

0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32

TABLE 3.4 Features after normalization

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE

0 0.353 0.744 0.590 0.354 0.000 0.501 0.234 0.483
1 0.059 0.427 0.541 0.293 0.000 0.396 0.117 0.167
2 0.471 0.920 0.525 0.000 0.000 0.347 0.254 0.183

TABLE 3.5 Features before z- score standardization

INDEX PREGNANCIES GLUCOSE
BLOOD

PRESSURE
SKIN

THICKNESS INSULIN BMI

DIABETES
PEDIGREE
FUNCTION AGE

0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32

86
Practical M

achine Learning

TABLE 3.6 Features after z- score standardization

INDEX PREGNAN CIES GLUCOSE
BLOOD

PRESSURE
SKIN

THICKNESS INSULIN BMI

DIABETES
PEDIGREE
FUNCTION AGE

0 0.639947 0.848324 0.149641 0.907270 −0.692891 0.204013 0.468492 1.425995
1 −0.844885 −1.123396 −0.160546 0.530902 −0.692891 −0.684422 −0.365061 −0.190672
2 1.233880 1.943724 −0.263941 −1.288212 −0.692891 −1.103255 0.604397 −0.105584

3 • Data preparation 87

3.5.3 Exploratory data analysis

Exploratory Data Analysis (EDA) utilizes statistical summaries and graphical represen-
tations to analyze data, aiming to uncover trends and patterns or validate assumptions. Its
primary goal is to extract meaning from the data and glean insights before constructing
a machine learning model. EDA goes beyond mere numerical analysis, it delves into
understanding the narrative within the data, unveiling patterns, and fostering a profound
comprehension of the dataset before it is used in machine learning algorithms.

EDA typically begins with a descriptive overview of the dataset, encompassing
checks on its dimensions (number of columns and rows), comprehension of feature data
types, and identification of missing values. Visualizations such as box plots, histograms,
and scatter plots serve the purpose of investigating distributions, central tendencies, and
potential outliers within numerical data. Furthermore, EDA involves the analysis of rela-
tionships between variables, utilizing correlation matrices or pair plots to discern asso-
ciations among features. Bar charts or frequency tables come into play for comprehending
distributions across various categories in categorical data. The key methodologies of
EDA are elaborated in the subsequent subsections.

3.5.3.1 Data summarization

Data summarization provides a summary or report of data in an informative and under-
standable manner. The summary contains some necessary statistical explanations about
the data, such as the minimum and maximum value of the feature across all entries. For
instance, in Table 3.7, each feature column has a summary that shows statistical expla-
nations of the data, such as count, mean, standard deviation, variance, percentiles, and
interquartile range. The summary helps to show whether the values of the features are
informative and comprehensible.

3.5.3.2 Data visualization

Data visualization is transforming data into a visual or graphical format (such as graphs,
maps, and charts) so that it can be easily understood and communicate insights from
data to a wide audience. Data visualization is essential as it identifies patterns, trends,

TABLE 3.7 Data summarization example

PREGNANT GLUCOSE BP SKIN INSULIN

count 768 768 768 768 768
mean 3.845052 120.894531 69.105469 20.536458 79.799479
std 3.369578 31.972618 19.355807 20.536458 115.244002
min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 1.000000 99.000000 62.000000 0.000000 0.000000
50% 3.000000 117.000000 72.000000 23.000000 30.500000
75% 6.000000 140.250000 80.000000 32.000000 127.250000
max 17.000000 199.000000 122.000000 99.000000 846.000000

88 Practical Machine Learning

outliers, and variable distributions. It also aids in identifying data quality issues, such
as inconsistencies, errors, or missing values, before the data preprocessing stage. It is
 particularly valuable for individuals who may lack technical aspects of the data. By
visually representing the data, complex information becomes more accessible, facilitat-
ing a better understanding of the dataset and aiding in the effectiveness of data prepro-
cessing. Figure 3.3 depicts an example of data distribution of a single feature (i.e., age)
plotted individually for distribution analysis.

3.5.4 Types of exploratory data analysis

There are three types of EDA: univariate, bivariate, and multivariate.

3.5.4.1 Univariate

In univariate analysis, one feature (numerical or categorical) is analyzed independently
and in detail. The feature is analyzed to observe and learn its distribution and central
measure of tendency values such as mean, mode, and median to gain insight into the
data. The feature can also be visualized with the help of graphical tools for easier inter-
pretations. Graphs to visualize a single feature can be pie charts, bar plots, and histo-
grams, as shown in Figure 3.4.

FIGURE 3.3 Data distribution of a single feature.

3 • Data preparation 89

3.5.4.2 Bivariate

Bivariate analysis involves the analysis of two independent attributes simultaneously.
The features involved can be numerical, categorical, or any combination of both. The
analysis aims to discover the relationship between the two attributes if there is a differ-
ence or association between them. The features are visualized in the same plot graph to
learn their relationship, as shown in Figure 3.5. The two features can be visually ana-
lyzed by using any of the following approaches:

 • Scatterplots and heatmaps (for numerical and numerical attributes).
 • Stacked column chart, Chi- square test, and Combination chart (for categorical

and categorical attributes).
 • Line chart with error bars, z- test, t- test, and combination chart (for categorical

and numerical attributes).

3.5.5 Multivariate

Multivariate analysis is crucial when analyzing more than two independent features
simultaneously, as depicted in Figure 3.6. Multivariate analysis includes various
 techniques, such as cluster analysis, factor analysis, multiple regression analysis, and

FIGURE 3.4 Univariate analysis example.

90 Practical Machine Learning

FIGURE 3.5 Bivariate analysis example.

FIGURE 3.6 Multivariate analysis example.

3 • Data preparation 91

principal component analysis (PCA), among others. Such methods facilitate a compre-
hensive exploration of complex relationships and patterns across the features, cater-
ing to different characteristics of the dataset. In contrast to univariate analysis, which
focuses on one variable at a time, multivariate analysis considers the dependencies and
interactions between multiple variables. Multivariate analysis enables a deeper under-
standing of the underlying structure and dynamics of the data.

3.5.6 Dimensionality reduction

High- dimensional datasets are often challenging to visualize and comprehend.
Therefore, dimensionality reduction is usually applied to convert a dataset from a
higher- dimensional space to a lower- dimensional one while preserving its original
information. This technique is utilized when a dataset comprises many input features.
Therefore, the goal is to eliminate the less important features and avoid complicating
the modeling task. Dimensionality reduction is commonly applied in domains involving
high- dimensional data, for example, signal processing, speech recognition, and bio-
informatics. The following subsections briefly highlight the common dimensionality
reduction techniques.

3.5.6.1 Feature selection

Feature selection is a process of automatically selecting informative features that have
the most significant impact on the performance of a machine learning model. Having
irrelevant features in the dataset can reduce the performance of machine learning mod-
els, especially linear algorithms like simple linear and logistic regression. The common
benefits of feature selection include the following:

 • Reduces Overfitting: Feature selection reduces model overfitting by identi-
fying and using only the most relevant features for model training, discard-
ing redundant or irrelevant ones. Ultimately improving the performance of
the model.

 • Reduces Training Time: Fewer features mean that models train faster.

Notably, backward and forward feature elimination methods are the common techniques
used to perform feature selection, as detailed in the following:

3.5.6.1.1 Backward feature elimination
This technique is employed to systematically remove features that exhibit minimal
impact on predicting the output or dependent feature. It commences with a full set of
features and progressively eliminates the least influential ones until a specified stopping
point is reached. This iterative process rigorously refines the feature set, enhancing the
model’s efficiency and interpretability. This method ensures the model focuses solely on
the most impactful features, thereby refining predictive accuracy and streamlining the
overall model complexity.

92 Practical Machine Learning

3.5.6.1.2 Forward feature selection
This technique is the inverse of backward feature elimination. In this approach, features
are not removed but progressively added based on their ability to enhance the model’s
performance. This method systematically evaluates and selects features that can effec-
tively improve the model’s predictive accuracy, in other words, prioritizing those that
yield the highest increase in performance. Generally, the model refines its understanding
by iteratively including the most influential features, ensuring a more robust and opti-
mized configuration that bolsters its predictive capabilities.

3.5.6.2 Feature extraction

Feature extraction involves selecting or transforming the most relevant and informative
features from raw data, streamlining it for more effective model training. This process
identifies key patterns or attributes within the data that contribute significantly to the
task at hand, enhancing decision- making and predictive accuracy in machine learning
tasks. For instance, text analysis may entail converting words into numerical represen-
tations or pinpointing important phrases that convey a sentence’s meaning. In image
processing, it could involve recognizing edges, textures, or shapes that distinguish one
object from another. Eliminating redundant or less important information aids in focus-
ing on the most crucial aspects that improve the model’s performance. This streamlined
data enhances the ability of the model to identify essential patterns, leading to more
correct predictions and improved decision- making in machine learning applications.

The common technique for feature extraction is Principal Component Analysis
(PCA). The PCA is a statistical technique that transforms correlated features into a set of
linearly uncorrelated features through orthogonal transformation. The resultant features,
known as principal components, capture the essential information in the data while reduc-
ing its dimensionality. PCA evaluates the variance of each feature, prioritizing those with
high variance to retain valuable information and enhance interpretability. Real- world
applications span diverse domains such as movie recommendation systems, image pro-
cessing, and optimizing power allocation in communication channels. PCA can inadver-
tently amplify existing biases in the data, potentially resulting in unfair outcomes if the
data is skewed. Therefore, carefully selecting principal components is crucial to avoid
excluding pertinent information and ensure fair and unbiased classifications.

3.5.7 Data balancing

Data imbalance is a common issue in machine learning, where one class or category
within a dataset has significantly more representation than others. This can occur natu-
rally, such as in fraud detection, where fraudulent transactions are far less frequent than
legitimate ones, or due to biases in data collection. Uncorrected imbalances can lead to
models that are heavily biased toward the majority class, thereby underperforming when
encountering samples of the minority classes. Data balancing is a crucial technique that
involves adjusting the distribution of classes to create a more balanced dataset. This
might be achieved through oversampling (replicating minority class samples), unders-
ampling (removing majority class samples), or more sophisticated approaches like the

3 • Data preparation 93

Synthetic Minority Oversampling Technique (SMOTE). It is important to note that data
balancing might not be necessary in all cases. Factors such as the severity of imbalance
and project goals dictate its importance.

3.6 SUMMARY

This chapter provided the key steps in business problem identification, data collection,
and preprocessing in machine learning. It began by underlining the importance of align-
ing machine learning initiatives with business goals, emphasizing the need to contextu-
alize and define problems within the broader organizational landscape. Furthermore, the
chapter explored the nature of data, highlighting various data sources and their essen-
tial characteristics. Subsequently, the chapter focused on data curation, cleaning, and
labeling, outlining essential procedures to ensure data accuracy and coherence. It also
discussed techniques for managing missing values and eliminating duplicates, thereby
enhancing the integrity of the dataset. Moreover, the chapter introduced methods for data
transformation, normalization, and exploratory data analysis (EDA) to uncover insights
into data patterns and relationships. Finally, it introduced methods for dimensionality
reduction, feature selection, and the utilization of principal component analysis (PCA)
to streamline data preprocessing for enhanced model performance.

Exercises

 1. Formulate a hypothetical business problem where machine learning can
offer significant value. Describe the problem context, its alignment with
business goals, and potential machine learning applications.

 2. Research and compile a list of diverse data sources applicable to weather
forecasting. Discuss the types of data available, their relevance, and the
challenges associated with integrating multiple sources for machine learn-
ing models.

 3. Devise a comprehensive data collection plan for a healthcare analytics proj-
ect centered on patient outcomes. Outline data collection methodologies,
anticipated challenges, and potential strategies to overcome them.

 4. Find a dataset with missing and duplicate values from the data repository
introduced in this chapter and implement data- cleaning techniques to rec-
tify these issues. Document the steps taken and justify the chosen methods
for cleaning the dataset.

 5. Choose any dataset from the data repositories introduced in this chapter,
apply data transformation techniques like normalization or scaling, and
provide visual representations of the data through exploratory data analysis
(EDA) methods. Interpret any observed trends or patterns.

94 Practical Machine Learning

FURTHER READING

Barga, Roger, Fontama, V., Wee Hyong Tok, Barga, R., Fontama, V., and Wee Hyong Tok. (2015).
Data preparation. In Predictive Analytics with Microsoft Azure Machine Learning, 45–79.

Berman, Jules J. (2018). Principles and practice of big data: preparing, sharing, and analyzing
complex information. Academic Press.

Bowles, Michael. (2015). Machine learning in Python: essential techniques for predictive analy-
sis. John Wiley & Sons.

Brownlee, Jason. (2020). Data preparation for machine learning: data cleaning, feature selection,
and data transforms in Python. Machine Learning Mastery.

Cielen, Davy, & Meysman, Arno. (2016). Introducing data science: big data, machine learning,
and more, using Python tools. Simon and Schuster.

Dangeti, Pratap (2017). Statistics for machine learning. Packt Publishing Ltd.
Flach, Peter. (2012). Machine learning: the art and science of algorithms that make sense of

data. Cambridge University Press.
Kelleher, John D., Namee, Brian Mac, & D’Arcy, Aoife. (2020). Fundamentals of machine

learning for predictive data analytics: algorithms, worked examples, and case studies.
MIT press.

Kononenko, Igor, & Kukar, Matjaz. (2007). Machine learning and data mining. Horwood
Publishing.

Pyle, Dorian. (1999). Data preparation for data mining. Morgan Kaufmann.

 6. When applying dimensionality reduction methods such as PCA to a data-
set with high dimensions, what are its impacts on data representation and
computational efficiency?

 7. Choose any dataset with several features from the data repositories intro-
duced in this chapter, and use feature selection methods to find the most
impactful features for model development. Justify your selection criteria.

 8. Analyze possible challenges one may encounter during data collection
from highly specialized domains (e.g., healthcare and autonomous vehi-
cles) and propose strategies to address them.

 9. A financial institution uses historical loan data to train a machine learning
model for loan approvals. Describe potential biases that may manifest in
this dataset. Outline practical strategies to identify and mitigate such biases
before and during model development.

10. Discuss the role of dimensionality reduction in preventing model
overfitting.

95DOI: 10.1201/9781003486817-4
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

4Machine
learning
operations

Upon completing this chapter, learners should be able to:

1. Choose a suitable algorithm depending on the problem at hand and the
nature of the data.

2. Explain the key steps for developing a machine learning model.
3. Describe the concepts of overfitting and underfitting and the strategies to

mitigate them.
4. Apply optimization techniques for machine learning algorithms to enhance

model performance.
5. Explain the key steps for deploying and monitoring machine learning mod-

els to ensure continued performance.

4.1 MODEL DEVELOPMENT

This chapter focuses on the remaining steps of the machine learning process, as depicted
in Figure 3.1. The first step in machine learning operations is model development, which
entails training and evaluation. Before developing the model, it is necessary to perform
data splitting and select a specific algorithm, as discussed in the following subsections.

4.1.1 Dataset splitting

Dataset splitting involves dividing the dataset into training and testing sets. The training
set is used to train the model, whereas the testing set is used to assess the performance
of the model based on data it has not seen before. The rationale for using a testing set
is to avoid assessing a model’s performance based on seen (training) data, which could
lead to unrealistic results. Dataset splitting can be done in two ways: Hold- Out and
Cross- Validation.

http://dx.doi.org/10.1201/9781003486817-4

96 Practical Machine Learning

4.1.1.1 Hold- out

Hold- out refers to reserving a subset of the dataset for testing while using the remainder
for training machine learning models. Typically, a dataset is split in a specific percentage,
for example, 70 by 30 or 90 by 10, where the larger segment set is allocated for training
and the smaller segment set for testing. Usually, the training set is recommended to be
in the range of 70% to 90% of the whole dataset.

4.1.1.2 Cross- validation

Cross- validation involves splitting a dataset into k subsets of equal size called folds. The
model undergoes iterative training on k−1 folds while being tested on the remaining fold,
ensuring that each subset serves both training and testing purposes. This helps to assess
the model’s ability to generalize to new, unseen data. Note that a k- fold cross- validation
technique helps achieve an unbiased estimate of the model’s performance when only a
limited amount of data is available. Suppose the dataset is split into five equal subsets, as
shown in Figure 4.1, forming a fivefold cross- validation. This implies that the model will

FIGURE 4.1 5-fold Cross- validation example.

TEST SET

TEST SET

TEST SET

TEST SET

TEST SET

TRAINING SET

TRAINING SET

TRAINING SET

TRAINING SET

TRAINING SET

Fold 1

DATASET
EXAMPLE OF

5-FOLD CV

Fold 2 Fold 3 Fold 4 Fold 5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

4 • Machine learning operations 97

be trained in five iterations. In each iteration, the model undergoes training utilizing four
of the five subsets, while the remaining subset is used as the testing subset.

4.1.2 Choosing an algorithm

Before building machine learning models, it is essential to determine appropriate
 algorithms that align with the problem at hand and the available dataset. Determining
the suitable machine- learning algorithm depends on various factors such as the problem
at hand, algorithm capabilities, and the computational resources as described in the
 following subsections.

4.1.2.1 Problem understanding

A thorough understanding of the problem to be solved is crucial. This includes identify-
ing whether the problem is classification, regression, clustering, or association rule min-
ing. After identifying the type of problem, multiple machine learning algorithms within
that specific problem category, as presented in Chapter 1, are trained to build models.
Consequently, the model that exhibits the highest performance is chosen as the most
suitable solution for the identified problem.

4.1.2.2 Algorithm capabilities

Each algorithm possesses unique strengths and weaknesses. For instance, decision
trees excel in interpretability, making them valuable for understanding the underlying
logic of a model, whereas neural networks are effective at addressing complex patterns
within data.

4.1.2.3 Computational resources

Some algorithms might demand substantial computational resources, particularly when
handling large datasets. Consider the computational complexity of each algorithm and
select the one that performs better with the available resources.

4.1.3 Model training

Model training enables the selected algorithms to extract knowledge from the provided
dataset. It is a critical step where a model progressively enhances its capability to pre-
dict the given data samples. Typically, the dataset undergoes splitting into training and
testing sets, as described earlier in this chapter. Subsequently, the machine learning
model engages with the training set, iteratively refining its performance by recogniz-
ing patterns and making predictions. This involves adjusting the algorithm’s internal
parameters, often represented as coefficients in a mathematical function, to capture the
underlying patterns in the dataset better. The model refines its capacity to make accurate
predictions for new, unseen data samples through this iterative process.

98 Practical Machine Learning

4.1.4 Model evaluation

Model evaluation entails evaluating the performance and effectiveness of a trained
model on unseen data from the testing set. It is a crucial step for determining the abil-
ity of the trained model to generalize to new data and whether it meets the desired
objectives of the problem. The primary purpose of using a testing set is to reveal the
performance of the model on real- world data to ensure its reliability and effectiveness in
practical applications. Several evaluation metrics are used to measure the performance
of the trained model, depending on the nature of the problem. Table 4.1 presents the
commonly used evaluation metrics for classification, regression, clustering, and asso-
ciation rule problems.

The mathematical presentations of the evaluation metrics shown in Table 4.1 are
highlighted in the following formulas. Some of these formulas are derived from a fun-
damental tool known as the confusion matrix, presented in Table 4.2. This matrix cap-
tures the model’s prediction results by comparing them with the actual labels in the
dataset. At its core, the confusion matrix breaks down the classification results into four
distinct categories:

 • True Positives (TP): This happens when the outcome is correctly predicted
as positive when it is indeed positive. For example, a spam email is correctly
predicted as spam.

TABLE 4.1 Performance metrics

PERFORMANCE METRICS PROBLEM TYPE

Accuracy Binary and multiclass classification.
Precision (Positive Predictive Value) Binary and multiclass classification.
Recall (Sensitivity, True Positive Rate) Binary and multiclass classification.
F1 Score Binary and multiclass classification.
Area under the Receiver Operating Characteristic
curve (AUC- ROC)

Binary classification.

Log Loss (Cross- Entropy Loss) Binary and multiclass classification.
Mean Absolute Error (MAE) Regression
Mean Squared Error (MSE) Regression
Root Mean Squared Error (RMSE) Regression
R- squared (Coefficient of Determination) Regression
Silhouette Score Clustering
Support, Confidence, and Lift Association Rules Mining

TABLE 4.2 Confusion matrix

ACTUAL POSITIVE ACTUAL NEGATIVE

Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)

4 • Machine learning operations 99

 • True Negatives (TN): This happens when the outcome is correctly predicted
as negative when it is indeed negative. For example, a non- spam email is cor-
rectly predicted as non- spam.

 • False Positives (FP): This happens when the outcome is wrongly predicted
as positive when it is indeed negative. This is also known as the Type 1 error.
For example, a non- spam email is wrongly predicted as spam.

 • False Negatives (FN): This happens when the outcome is wrongly predicted
as negative when it is indeed positive. This is also known as the Type 2 error.
For example, a spam email is incorrectly predicted as non- spam.

Accuracy: This performance metric quantifies the proportion of correctly classified
instances to the total number of instances evaluated. Accuracy is calculated as shown in
Equation (4.1).

Accuracy

TP TN
TP FP FN TN

� �
� � �

(4.1)

High accuracy indicates the model’s ability to make correct predictions, whereas low
accuracy suggests a higher rate of incorrect predictions.

Precision (i.e., Positive Predictive Value): This performance metric quantifies the
proportion of correctly predicted positive instances among all instances predicted as
positive, as given by Equation (4.2).

Precision

TP
TP FP

�
�

(4.2)

A high precision value signifies that the model has a low rate of false positives, making
it more reliable in its positive predictions.

Recall (i.e., Sensitivity or True Positive Rate): This performance metric quanti-
fies the proportion of true positive instances correctly predicted by the model among all
actual positive instances as given by Equation (4.3).

Recall

TP
TP FN

�
�

(4.3)

A high recall value signifies that the model effectively captures a large proportion of
positive instances.

F1 Score (i.e., F- Measure): This performance metric is the harmonic mean of pre-
cision and recall, providing a balanced assessment of the performance of the model on
both positive and negative instances, as given in Equation (4.4). It is particularly useful
in a scenario where the dataset has a disproportionate distribution of classes (i.e., it is an
imbalanced dataset), as it prevents the evaluation from being overly influenced by the
majority class.

F Score

Precision Recall
Precision Recall

1 2� � �
�

(4.4)

100 Practical Machine Learning

A high F1 score indicates the model’s strong ability to balance precision and recall. In
contrast, a low F1 score suggests that the model struggles to achieve a balance between
precision and recall, possibly favoring one over the other.

Specificity: This performance metric measures the proportion of true negative
instances correctly predicted by the model among all actual negative instances, as given
by Equation (4.5).

Specificity

TN
TN FP

�
�

(4.5)

A high specificity value demonstrates that the model can capture a large proportion of
negative instances.

Area under the Receiver Operating Characteristic Curve (AUC- ROC): This
 performance metric visually illustrates the balance between the true positive rate
(i.e., Sensitivity) and the false positive rate (i.e., 1—Specificity) across different
thresholds for the model. The ROC curve (depicted in Figure 4.2) is generated by plot-
ting the true positive rate (TPR) against the false positive rate (FPR) across various
classification thresholds. The graph’s diagonal line (y = x) serves as a reference for
random guessing.

The AUC- ROC value closest to the upper left corner signifies strong model perfor-
mance in distinguishing between positive and negative instances. When comparing two
ROC curves, the higher and more toward the upper left corner represents the superior
model. AUC- ROC values near 0.5 (at y = x) suggest performance equivalent to random
chance, whereas values below 0.5 indicate a model is performing worse than random
guessing and potentially inverting predictions.

Log Loss (i.e., Cross- Entropy Loss or Logistic Loss): The log loss metric evalu-
ates a model’s performance when it assigns probability scores to various classes. It

FIGURE 4.2 ROC Curves.

ROC

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0
false positive rate

class A ROC curve

class B ROC curve

class C ROC curve
y=x

tr
ue

 p
os

iti
ve

 r
at

e

4 • Machine learning operations 101

quantifies the disparity between the true label distribution and the predicted probabili-
ties assigned by the model. Log loss is computed as given in Equation 4.6.

log .log . logLoss � � � � � �� � �� �� �� �

�
�1

1 1
1

N
y p y p

i

N

i i i i

(4.6)

where:

 • N is the number of instances in the dataset.
 • yi is the true label for instance ii (0 or 1).
 • pi is the predicted probability that instance i belongs to class 1.

Mean Absolute Error (MAE): This performance metric quantifies the average abso-
lute differences between predicted and actual values, providing a straightforward and
interpretable measure of the model’s accuracy. It computes the average absolute devia-
tions of predictions from the true values, as shown in Equation (4.7).

MAE predicted actual� �

�
�1

1
N

i

N

i i

(4.7)

where:

 • N is the number of instances in the dataset.
 • predictedi is the predicted value for instance i.
 • actuali is the true value for instance i.

MAE values vary from 0 to ∞, with lower values signifying higher model performance.
An MAE of zero indicates a perfect model, with predictions that exactly match the actual
data. MAE is also widely employed in cases where anticipating the precise numeric value
is critical, such as finance, where pricing must be predicted, or demand forecasting.

Mean Squared Error (MSE): This performance metric is used to quantify the
average squared difference between predicted and actual values. It quantifies the overall
accuracy of a regression model by averaging the squared errors across all instances in
the dataset. The advantage of MSE over MAE lies in its ability to provide greater sensi-
tivity to larger errors and deviations from true values, facilitating better optimization
and model tuning. MSE is calculated as shown in Equation (4.8).

MSE predicted actual� �� �

�
�1

1

2

N
i

N

i i

(4.8)

where:

 • N is the number of instances in the dataset.
 • predictedi is the predicted value for instance i.
 • actuali is the true value for instance i.

102 Practical Machine Learning

Root Mean Squared Error (RMSE): This performance metric is widely used to quan-
tify the average magnitude of the errors between predicted and actual values. It is simi-
lar to MSE, but RMSE addresses one of the limitations of MSE by taking the square
root of the average squared differences. This results in a quantity that is in the same
units as the target variable, making it more interpretable. RMSE is calculated as shown
in Equation (4.9).

RMSE predicted actual� �� �
�
�1

1

2

N
i

N

i i

(4.9)

where:

 • N is the number of instances in the dataset.
 • predictedi is the predicted value for instance i.
 • actuali is the true value for instance i.

R- squared (i.e., Coefficient of Determination): This performance metric assesses
the model’s goodness of fit by indicating the extent to which the independent vari-
ables elucidate the variability in the dependent variable. It is calculated as shown in
Equation (4.10).

R2 1� �

� �
� �

�
Sum of Squared Residuals SSR

Total Sum of Squares TSS
RSS
TTSS

ESS
TSS

� �1

(4.10)

where:

 • RSS is the residuals or regression sum of squares. It measures the difference
between the predicted and mean values of the dependent variable.

 • TSS is the total sum of squares. It measures the difference between the actual
and the mean values of the dependent variable.

 • ESS is the error sum of squares. It measures the difference between the pre-
dicted and actual values of the dependent variable.

The R- squared values vary between 0 and 1, representing the extent to which the model
explains the variance between dependent and independent variables. A higher value
signifies a stronger model fit and better predictive performance for the dependent vari-
able, while a lower value indicates limitations in the ability of the model to predict the
dependent variable.

Silhouette Score: This performance metric measures the resemblance of a sample
to its assigned cluster (cohesion) compared to other clusters (separation). Silhouette
Score values range from −1 to +1, where a score close to +1 suggests well- clustered data
points, a score close to 0 indicates an overlapping cluster or a cluster with ambiguous
boundaries, and a score close to −1 suggests potential misassignment of data points to
the wrong clusters. While the Silhouette Score is useful, it should be supplemented with

4 • Machine learning operations 103

other validation methods, particularly in scenarios with irregularly shaped or differently
sized clusters. Silhouette Score is calculated as shown in Equation 4.11.

S

b a

a b
i

i i

i i

� �
� �max ,

(4.11)

where:

 • ai represents the average distance from the ith data point to other data points
within the same cluster.

 • bi represents the average distance from the ith data point to data points in a
different cluster, minimized across all clusters.

Support: This performance metric measures how often an itemset appears in a transac-
tion. It is computed as the ratio of the number of transactions containing the itemset by
the total number of transactions, as shown in Equation (4.12). The support value ranges
from 0 to 1, where 0 indicates that the itemset does not appear in any transaction, and
1 indicates that the itemset appears in every transaction. Intermediate values between 0
and 1 represent the proportion of transactions in which the itemset appears. The higher
the value of support the greater the prevalence and importance of the itemset in the
transaction.

Support

Transactions containing
Total Transactions

X
X� � �

(4.12)

where:

 • X represents itemsets.

Confidence: This performance metric measures the likelihood that the item will be
present in a transaction given the presence of another related item in that transaction.
Mathematically, confidence is defined as the ratio of the number of transactions con-
taining both items X and Y to the number of transactions containing item X as shown
in Equation (4.13). The confidence value ranges between 0 to 1. A value approaching 1
indicates a strong association, suggesting that the occurrence of Y is highly likely when
X is observed. In contrast, a value close to 0 signifies a weaker connection, implying
that the presence of X provides less certainty about the occurrence of Y in a transaction.

Confidence

Support Y

Support
X Y

X

X
�� � � � �

� �
,

(4.13)

where:

 • X → Y represents the association rule where a transaction containing item X
also contains item Y.

104 Practical Machine Learning

Lift: This metric quantifies the strength of association between two items beyond what
would be expected by chance. It compares the likelihood of the items occurring together
in transactions to the likelihood of the items occurring independently of each other.
Mathematically, Lift is computed as shown in Equation 4.14.

Lift

Support

Support Support
X Y

X Y

X Y
�� � � � �

� �� � �
,

(4.14)

The range of Lift values theoretically ranges from 0 to positive infinity. However, in
practice, the interpretation of Lift values can be categorized as follows. A Lift value
exceeding 1 signifies a positive association between items. A Lift value precisely at 1
indicates no association beyond what would be expected by chance. Conversely, a Lift
value below 1 suggests a negative association.

4.1.5 Overfitting and underfitting

Usually, the desired goal is to get a model that is well generalized on the whole training
set and not specific details of specific data points. Usually, when the model fails to gen-
eralize it overfits. Overfitting happens when the model achieves a high training accuracy
yet performs poorly when encountering unseen data. Conversely, underfitting happens
when the model performs poorly on the training and testing set. This implies that the
model has failed to learn any pattern from the dataset. Poor data quality, improper fea-
ture selection, few training samples, an imbalanced dataset, and a bad selection of train-
ing parameters often cause model overfitting and underfitting. Model overfitting and
underfitting can be handled by using techniques such as data balancing, proper feature
selection, data augmentation, and cross- validation.

4.1.6 Model optimization

Optimization is adjusting training parameters (i.e., model coefficients) to minimize
errors made when mapping the inputs to outputs by the machine learning model.
Adjusting training parameters (i.e., tuning) is usually required to build a model that per-
forms well and yields accurate predictions for a particular problem. During optimiza-
tion, a model uses a parameterized mapping function (e.g., a weighted sum of inputs) to
learn and generalize from training data to predict new data. The optimization algorithm
usually minimizes the function’s error and generates the optimal parameters by select-
ing values that cause the trained model to provide the best performance. The algorithm
compares the results in every iteration by changing the parameters in each step until it
reaches an optimum set of values. The selection and adjustment of parameters directly
and significantly impact how the model performs.

In implementing machine learning models, various techniques are pivotal for opti-
mizing algorithms. This section delves into four prevalent and traditional optimization
methods to offer a concise understanding. The techniques explored include Exhaustive
Search, Gradient Descent, Stochastic Gradient Descent, and Evolutionary Optimization
Algorithms. Each method is detailed in the following subsections.

4 • Machine learning operations 105

4.1.6.1 Exhaustive search

Exhaustive or brute- force search involves finding the most optimal parameters by exam-
ining whether each value is a good match. An excellent example of an exhaustive search
is when someone forgets the combination of the digits (code) for a suitcase lock and tries
out all possible combinations of digits to unlock it. The same approach is applied in model
optimization, but the number of possible options (i.e., parameters’ combinations) is typi-
cally very large. First, it generates a list of parameters and their corresponding values.
Then, it trains and evaluates a model for each parameter combination, selecting the one
with the best performance based on a predefined metric. Examples of machine- learning
algorithms that can be optimized using exhaustive search are K- means clustering, Fuzzy
c- mean clustering, and kNN classification algorithms.

4.1.6.2 Gradient descent

Gradient refers to the slope or incline of a surface. Thus, gradient descent means a
descending slope to reach the lowest point in a particular space. The idea of the gradient
descent method is to update the model parameters iteratively to minimize the objec-
tive function, whose parameters are optimized during training. With every update, this
method guides the model in finding the target and gradually converges to the optimal
value of the objective function. More precisely, it first initializes model parameters ran-
domly with predefined values. Then, it computes the gradient of the loss function with
respect to each parameter using training data and adjusts the parameters accordingly to
converge toward the optimal values that minimize the loss gradually. When perform-
ing parameter optimization, the gradient descent optimization technique utilizes all
data samples in a given dataset in every iteration. Thus, performing optimization with
a large dataset in each iteration becomes computationally very expensive. Examples of
machine- learning algorithms that can be optimized using gradient descent are logistic
regression, linear regression, SVM, gradient boosting, and AdaBoosting.

4.1.6.3 Stochastic gradient descent

In contrast to gradient descent, which uses all data samples from the dataset in every
iteration, Stochastic Gradient Descent (SGD) uses a few samples (or a batch) that are
selected randomly in each iteration. A batch refers to the complete set of samples from
a dataset utilized to compute the gradient in every iteration. Thus, in SGD, the learning
algorithm normally finds out the gradient of the objective function for a batch in each
iteration rather than the sum of the gradients of the objective function of all the samples.
Since only a batch from the dataset is randomly selected for each iteration, the time
taken by the algorithm to reach the optimal performance is usually significantly shorter
compared to gradient descent methods. Some of the algorithms that are optimized by
using SGD include logistic regression and SVM.

4.1.6.4 Evolutionary optimization algorithms

Evolutionary Optimization Algorithms (EOA) are population- based methods inspired
by biological principles employed in solving machine- learning optimization problems.
These algorithms draw inspiration from natural phenomena such as natural selection,

106 Practical Machine Learning

species migration, bird swarms, human culture, and ant colonies. EOA starts by initial-
izing a population of potential solutions, where each solution is represented by individu-
als possessing sets of parameters. They then evaluate the fitness of each individual based
on an objective function, selecting individuals based on their fitness and generating
new candidate solutions through recombination and mutation operations. Offsprings
are introduced to the population, either replacing or supplementing existing individuals.
The process continues for multiple iterations until termination criteria are met, allow-
ing individuals to evolve toward better solutions efficiently. Examples of EOA include
Genetic Algorithms (GA), Ant Colony Optimization, and Particle Swarm Optimization.
It is worth noting that while EOAs can optimize machine learning models effectively,
they do not necessarily find the optimal solutions.

4.2 MODEL DEPLOYMENT

The deployment of the machine- learning model involves putting a trained and validated
model into a working environment. The machine- learning models can be deployed across
a wide range of environments, such as web and mobile platforms, and are often integrated
with other systems through Application Programming Interfaces (API) to facilitate acces-
sibility for end users. The process of deploying the model requires several different key
steps. Firstly, the model needs to be deployed into its working environment, where it has
access to the hardware resources and data to work on. Secondly, the model is made acces-
sible to end users’ devices. Finally, the end users are trained to interact with the model via
a simplified interface where they can insert their inputs and receive corresponding outputs.

4.3 MODEL MONITORING

The deployed model is continuously monitored to ensure that it performs predictions
properly. Apart from performance monitoring, it is also important to ensure that the API
and computation resources perform as required. Additionally, the model’s performance
should be routinely assessed using tools that track metrics to automatically give alerts
should there be any degradation in its performance. Common causes of performance
degradation include:

 • Variance in Input Data: The data given to the model might not be cleaned in
the same way as it was for the training and testing data which could adversely
affect the performance of the model.

 • Changes in Data Integrity: Over time, changes in data (e.g., formats and
attribute naming) being fed to the model can affect the model’s performance.

 • Data Drift: Changes in features like demographics and market shifts can lead
to data drift. This makes the data used during training become irrelevant with
respect to the current context thereby making the model’s results less precise.

4 • Machine learning operations 107

 • Concept Drift: End users’ perceptions of correct predictions may change
over time, making the model’s predictions less relevant.

4.4 ETHICAL CONSIDERATIONS IN MACHINE
LEARNING OPERATIONS (MLOps)

Ethical considerations within MLOps entail a spectrum of principles and practices
focused on ensuring fairness, transparency, privacy, accountability, security, and diver-
sity in the development, deployment, and use of AI systems. These considerations are
crucial for mitigating potential harms, preventing discrimination and bias, protecting
individual rights and privacy, and promoting trust and accountability in AI technolo-
gies. Ethical frameworks and guidelines offer direction on navigating complex ethical
challenges and ensuring the responsible and ethical development and deployment of AI
systems. Table 4.3 summarizes common ethical considerations in MLOps.

TABLE 4.3 Common ethical considerations in MLOps.

ETHICAL CONSIDERATION DESCRIPTION

Fairness and Bias Ensure that algorithms avoid discriminating against
individuals based on protected features such as religion,
race, or gender.

Accountability and
Responsibility

Holding developers and organizations accountable for
the actions and outcomes of deployed models, including
resolving any errors or biases that arise.

Diversity and Inclusion Ensure varied representation in model development to avoid
bias perpetuation and to create inclusive solutions for all
individuals.

Privacy and Security Implementing strong privacy and security controls to prevent
unwanted access, alteration, or exploitation of deployed
models and the data they handle.

Explainability and
Interpretability

Creating interpretable and explainable algorithms is crucial
to upholding accountability, nurturing trust, and uncovering
potential biases. When users comprehend how an algorithm
makes its decisions, it promotes transparency and trust.

Human- in- the- Loop
Approaches

Implement a human- in- the- loop approach where human
judgment is involved in critical decisions made by deployed
models. Establish redress mechanisms for individuals who
perceive algorithmic decisions have negatively impacted them.

Legal and Regulatory
Compliance

Ensure that algorithms comply with pertinent legal and
regulatory frameworks related to fairness and non-
discrimination to prevent potential legal and ethical conflicts.

Continuous Evaluation
and Improvement

Emphasize continuous evaluation of algorithms post-
deployment. Regularly update models, reevaluate fairness
metrics and incorporate improvements to address emerging
challenges and issues.

108 Practical Machine Learning

4.5 SUMMARY

This chapter provided a comprehensive guide on developing, deploying, and monitor-
ing machine learning models. It began by discussing the critical considerations in data-
set splitting techniques, emphasizing the importance of partitioning data into training
and testing sets to ensure effective model evaluation. Additionally, it covered strategies
for choosing the appropriate algorithm based on factors like the nature of the prob-
lem, dataset characteristics, and available computing resources. After that, the chapter
discussed the model training and evaluation steps, explaining how to build the model
and emphasizing the importance of assessing model performance on unseen data to
gauge generalization capabilities accurately. Subsequently, the chapter presented sev-
eral evaluation metrics, including R- squared, Accuracy, Silhouette score, Support, etc.,
used to facilitate performance evaluation, ensuring consistency and reliability in real-
world applications. Additionally, the chapter explored the concepts of overfitting and
underfitting, along with their corresponding mitigation techniques. Furthermore, key
algorithms such as Gradient descent and EOA were presented to provide a comprehen-
sive understanding of model optimization. Then, the chapter discussed model deploy-
ment and monitoring, underscoring the significance of deploying models in production
environments and continuously monitoring their performance to address potential drift
and maintain efficacy in dynamic settings. Lastly, the chapter concluded by present-
ing ethical issues in MLOps, which encompasses various principles and practices that
promote fairness, transparency, privacy, accountability, security, and inclusion in the
development, deployment, and use of AI systems.

Exercises

 1. While training a machine learning model, discuss the role of k- fold cross-
validation in preventing overfitting.

 2. Explain key considerations when selecting a machine learning algorithm
for different problems.

 3. Identify and explain scenarios where improper data splitting could result in
a biased model.

 4. Describe the primary steps involved in model training and testing in
machine learning. Highlight the significance of testing sets for model per-
formance evaluation.

 5. Define overfitting and underfitting in the context of machine learning mod-
els. Discuss strategies to mitigate these issues in model development.

 6. Examine the optimization techniques used in machine learning algorithms.
Discuss how optimization impacts model performance and efficiency.

 7. Explain the importance of model evaluation in machine learning. Describe
commonly used evaluation metrics and their relevance in assessing model
performance.

4 • Machine learning operations 109

FURTHER READING

Dangeti, P. (2017). Statistics for machine learning. Packt Publishing Ltd.
Gollapudi, S. (2016). Practical machine learning. Packt Publishing Ltd.
Hall, M. (2011). Practical machine learning tools and techniques. Morgan Kauffman.
Paleyes, Andrei, Urma, Raoul- Gabriel, & Lawrence, Neil D. (2022). Challenges in deploying

machine learning: A survey of case studies. ACM Computing Surveys 55(6), 1–29.
Pruneski, James A., Williams, Riley J., Nwachukwu, Benedict U., Ramkumar, Prem N.,

Kiapour, Ata M., Kyle Martin, R., Karlsson, Jón, & Pareek, Ayoosh. (2022). The develop-
ment and deployment of machine learning models. Knee Surgery, Sports Traumatology,
Arthroscopy 30(12), 3917–3923.

Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons.
Singh, P. (2021). Deploy machine learning models to production. Springer.
Subasi, A. (2020). Practical Machine Learning for Data Analysis Using Python. Academic Press.
Thompson, S. (2023). Managing machine learning projects: From design to deployment. Simon

and Schuster.
Witten, Ian H., & Frank, E. (2002). Data mining: practical machine learning tools and tech-

niques with Java implementations. Acm Sigmod Record 31(1), 76–77.

 8. Describe the process of machine learning model deployment and monitor-
ing. Highlight the key factors to consider when deploying a model into
production and establishing monitoring systems.

 9. Critically identify and discuss ethical considerations in machine learning
operations.

10. What are the potential benefits and challenges of adopting MLOps prac-
tices within an organization, and how can these challenges be overcome?

110 DOI: 10.1201/9781003486817-5
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

5Machine
learning
software and
hardware
requirements

Upon completing this chapter, learners should be able to:

1. Describe commonly used software tools and libraries in machine
 learning development, including TensorFlow, PyTorch, scikit- learn, and
Apache Spark.

2. Evaluate different hardware options for machine learning tasks based on
performance, cost, and scalability considerations.

3. Demonstrate proficiency in setting up and configuring machine learning
environments, including software installation, package management, and
virtual environments.

4. Understand the importance of software version control and collaboration
tools (e.g., Git and GitHub) in machine learning projects.

5. Explore cloud- based machine learning platforms and services for scalable
model training and deployment.

5.1 PROGRAMMING LANGUAGES

It is important to acknowledge that proficiency in computer programming is essential
for developing machine learning models. Python, R, and MATLAB are widely rec-
ognized as prominent programming languages in this field. They offer comprehensive
software tools, including frameworks, Integrated Development Environments (IDEs),
and libraries designed to construct machine learning models. These languages boast

http://dx.doi.org/10.1201/9781003486817-5

5 • Machine learning software and hardware requirements 111

large and active communities comprising developers, data scientists, researchers, and
enthusiasts. These communities contribute to advancing libraries, providing assistance,
and sharing knowledge and resources. They offer extensive documentation, tutorials,
forums, and online courses that facilitate learning. Moreover, Python, R, and MATLAB
are user- friendly, readable, and versatile, which makes them accessible to both begin-
ners and experienced developers. This fosters a supportive and collaborative environ-
ment within these communities. The following subsections provide in- depth discussions
of the programming languages commonly used in machine learning.

5.1.1 Python programming language

Python is a versatile, object- oriented, open- source programming language widely used
for crafting machine learning models. Its flexibility allows the implementation of vari-
ous machine learning models through a range of Python- based software tools. Unlike
Windows, Linux and Mac operating systems come with a Python environment pre-
installed by default. Presently, Python exists in two primary versions: Python 2.x and
Python 3.x, where x represents a minor version within the primary versions. Thus, offer-
ing distinct functionalities and features allows users to choose between versions based
on specific project requirements and compatibility needs. The latest Python version is
3.x and can be installed through a Python setup file (available at: https:// www. python.
org/ downloads/). The goal of installing Python is to create an environment that supports
Python code execution. Python can also be automatically installed when installing other
software packages such as Anaconda (available at: https:// www. anaconda. com/).

5.1.1.1 Python code editors and IDEs

Most Python tools come packaged in a single distribution platform called Anaconda.
Anaconda is an open- source platform and environment manager with several open- source
packages (i.e., libraries, IDEs, and editors), as shown in Figure 5.1. Additional libraries to

FIGURE 5.1 Anaconda environment.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.anaconda.com/

112 Practical Machine Learning

Anaconda can be installed using Anaconda’s package managers. Code editors and IDEs
that support Python are needed to write the Python programs. A code editor is a text
editor that simplifies and accelerates code writing and editing processes. On the other
hand, an IDE is a software application used for creating, compiling, and debugging code.
The common code editors and IDEs that support the Python programming language are
 summarized in Table 5.1.

TABLE 5.1 Python code editors and IDEs

TOOL DESCRIPTION

Jupyter
Notebook

Jupyter Notebook is a web- based open- source application offering
an intuitive and interactive platform for data exploration, model
development, visualization, documentation, and collaboration. Instead
of composing and revising an entire program, Jupyter Notebook enables
users to iterate and write Python code lines within cells, executing them
individually. It facilitates easy modifications by allowing users to jump to
cells, edit their code, and rerun the program seamlessly.

JupyterLab JupyterLab presents the evolution of the Jupyter Notebook, offering
an upgraded and more versatile interface for data exploration and
computational tasks. It retains the core functionalities of the Notebook
while introducing an enhanced user interface that allows for improved
data analysis, visualization, and workflow organization.

PyCharm PyCharm is an IDE that allows code completion and inspections, error
highlighting and fixes, debugging, version control, and code refactoring.
The major drawback of this software is that it is resource- intensive.

Spyder Spyder is used for Python program development and has autocompletion,
debugging, and variable exploration features. It has an area for writing
Python code, a console, and a place for displaying variables, plots, and files.

Visual Studio
Code (VS
Code)

VS Code is a versatile code editor supporting numerous programming
languages like Python, C++, PHP, and more. Its wide array of features
and extensions makes it an excellent option for ML model development,
testing, and deployment. These features encompass IntelliSense for
intelligent code completion, integrated debugging tools, Jupyter
Notebooks support, and an extensive library of extensions, streamlining
Python development in machine learning endeavors.

Sublime Text Sublime Text is a lightweight, cross- platform code editor known for
its simplicity, speed, and user- friendly interface. It supports multiple
programming and markup languages and offers many robust editing
features, such as syntax highlighting, code folding, auto- completion,
multiple selections, and macros. It is important to note that Sublime Text
is not integrated into Anaconda.

PyDev PyDev is a prominent open- source Python IDE built in the Eclipse platform.
It has various capabilities, such as code completion, syntax highlighting,
debugging tools, and integration with major Python libraries and
frameworks.

Wing Wing is a powerful proprietary IDE with open- source community editions.
It includes advanced capabilities such as code analysis, debugging tools,
integrated profiling, and support for various frameworks and libraries,
including Python.

5 • Machine learning software and hardware requirements 113

5.1.1.2 Python libraries

Python offers a vast selection of libraries explicitly designed for constructing
machine learning models. These libraries cover various functionalities, including
classification, regression, clustering, collaborative filtering, dimensionality reduc-
tion, and optimization algorithms. Depending on the Python environment, these
libraries may come pre- installed or can be readily accessed and installed using
 commands like conda and pip (i.e., Conda (conda install <library name>) or Pip
(pip install <package name>)). A notable benefit is that most of these libraries are
open- source, providing users with the flexibility to utilize and customize them at no
cost. This significantly contributes to the collaborative and innovative environment
for machine learning research and development. Table 5.2 outlines the most preva-
lent Python libraries.

5.1.2 R programming language

R is a no- cost, open- source programming language and environment devised for sta-
tistical computing and model creation. It boasts numerous capabilities, including
robust techniques for data cleaning, transformation, integration, and preprocessing.
Additionally, it offers various statistical tools, such as the chi- square test, t- test, z- test,
and ANOVA, alongside machine learning tools like regression, classification, and clus-
tering modeling. The R environment can be installed on Windows, Linux, and Mac
operating systems via a standalone software package called R Studio. For example,
in Windows operating systems, R Studio (Figure 5.2) can be installed using the setup
file downloadable from https:// cloud. r- project. org/ or through the Anaconda distribution
platform.

5.1.2.1 R programming code editors and IDEs

Several popular IDEs and code editors support the R programming language, offer-
ing diverse options for users. Notable ones include Jupyter Notebook, Spyder, and VS
Code, highlighted in Table 5.1. Each platform provides a robust environment for R pro-
gramming, catering to different preferences and requirements, thereby accommodating
a wide range of users and their varying workflow needs. Other IDEs and code editors
that support the R programming language are presented in Table 5.3.

TOOL DESCRIPTION

Geany Geany is a code editor that is lightweight and efficient and can be used
for Python programming. It has syntax highlighting, code folding, and
project management features.

Brackets Brackets is an open- source code editor intended mostly for web
development but also suited for Python programming, including live
preview, preprocessor support, and task- specific extensions.

TABLE 5.1 (Continued) Python code editors and IDEs

https://cloud.r-project.org/

114 Practical Machine Learning

TABLE 5.2 Common Python libraries

LIBRARY DESCRIPTION

NumPy NumPy is a library employed for manipulating large, multidimensional
arrays and matrices coupled with a suite of high- level mathematical
functions tailored to operate on these arrays and matrices.

Pandas Pandas are a powerful tool for loading, analyzing, and refining datasets,
offering robust data manipulation and preparation functionalities.
Leveraging the foundation provided by the NumPy library, Pandas extends
its capabilities, providing a high- level interface and specialized tools for
efficient data handling, transformation, and exploration.

Matplotlib Matplotlib is a plotting library utilized for generating static, animated,
and interactive 2D and 3D visualizations. It is commonly employed in
conjunction with the NumPy library.

Seaborn Seaborn is a Python data visualization library constructed atop Matplotlib.
Offering a high- level interface enables the creation of visually engaging and
informative statistical graphs, including scatter plots, line plots, histograms,
box plots, and heatmaps. Seamlessly compatible with data frames and
arrays, Seaborn aids in visually exploring and comprehending data.

scikit- learn scikit- learn is employed for modeling tasks such as classification,
regression, clustering, and dimensionality reduction. It incorporates a
diverse range of machine learning algorithms, including SVM, Random
Forest, and kNN, among others, for model development.

TensorFlow TensorFlow is an end- to- end framework with a flexible ecosystem of tools,
submodules, APIs, and community resources, aiding in developing and
deploying classical machine learning and neural network–based models.

PyTorch PyTorch is a library commonly used for developing and training neural
network–based models. It is primarily developed to accelerate the path
from prototyping to deployment.

Keras Keras offers a high- level interface for creating and training deep learning
models, enabling users to effortlessly design intricate neural networks with
minimal coding, utilizing the capabilities of TensorFlow.

fastai fastai is a deep learning library constructed atop PyTorch, aiming to
streamline the training of deep learning models through user- friendly
APIs and pre- trained models.

Plotly Plotly is a library designed for crafting interactive and dynamic
visualizations, providing a high- level interface to produce interactive
plots, charts, and dashboards for tasks such as data exploration, model
evaluation, and result presentation.

Plotnine Plotnine is a Python library that applies graphics grammar to generate
statistical graphs. Inspired by the ggplot2 package in R, it adopts a similar
syntax and philosophy for visualization construction. With Plotnine, users
can generate a diverse array of plots, including scatter plots, line plots,
bar plots, histograms, and more, by mapping data attributes to aesthetic
properties like color, shape, and size.

SciPy SciPy library provides advanced scientific computing capabilities like
optimization, integration, and linear algebra. These capabilities are
essential for tasks such as signal processing and numerical analysis.

OpenCV OpenCV is a computer vision library focused on image processing,
feature detection, and object recognition.

5 • Machine learning software and hardware requirements 115

5.1.2.2 R programming libraries

Several R libraries play crucial roles in building machine learning models, as detailed
in Table 5.4. These libraries include different functionalities to address distinct aspects
of machine learning tasks.

5.1.3 MATLAB

MATLAB® is a high- level programming language employed to express data or fea-
tures in matrix and array form. It furnishes interactive tools, facilitating various machine
learning tasks, including feature extraction, feature selection, model training, and
hyperparameter tuning. As depicted in Figure 5.3, MATLAB offers diverse capabilities
for managing machine learning tasks. It is worth noting that MATLAB is proprietary

FIGURE 5.2 R studio environment.

LIBRARY DESCRIPTION

Natural
Language
Toolkit (NLTK)

NLTK is a Python library dedicated to natural language processing tasks,
providing extensive tools and resources for text processing, linguistic
analysis, and machine learning.

Gensim Gensim is a library focused on topic modeling and natural language
processing (NLP), making it especially adept for text analysis tasks like
document clustering and topic discovery.

Explain Like
I’m 5 (ELI5)

ELI5 is a library for explaining machine learning models in simple terms,
assisting in interpreting model predictions and gaining insights into
their thinking.

TABLE 5.2 (Continued) Common Python libraries

116 Practical Machine Learning

TABLE 5.3 IDEs and code editors for R

TOOL DESCRIPTION

RStudio RStudio furnishes extensive tools and functionalities to aid R
development, data analysis, and statistical modeling.

IntelliJ IDEA with R
Plugin

IntelliJ IDEA is a Java IDE that supports R programming through its
R plugin. It provides features such as code completion, debugging
tools, and version control integration, offering a robust and
reliable environment for R programming.

Eclipse with StatET StatET plugin extends Eclipse’s capabilities to support R
programming. The plugin enhances Eclipse by incorporating syntax
highlighting, code completion, and an integrated R console.

R Tools for Visual
Studio

R Tools for Visual Studio is an extension of the Microsoft Visual
Studio IDE enabling R programming. It provides various features,
including IntelliSense, debugging, charting, remote execution, and
SQL integration.

Atom Atom provides a set of features, including syntax highlighting,
code completion, debugging tools, an interactive console,
data visualization capabilities, and project management
functionalities.

TABLE 5.4 R programming libraries

LIBRARY DESCRIPTION

DataExplorer DataExplorer is a library used for EDA, feature engineering,
and data reporting.

Ggplot2 Ggplot2 is a data visualization library renowned for producing
visually appealing and informative plots, simplifying the
exploration and communication of complex data patterns.

Kernel- Based Machine
Learning Lab (kernLab)

kernLab is utilized for machine learning modeling tasks,
encompassing classification, regression, clustering, and
dimensionality reduction. It includes a diverse range of
machine learning algorithms like SVM, Random Forest,
and kNN.

MICE Package Multivariate Imputation by Chained Equations (MICE) Package
is used for imputing missing values in a dataset.

Rpart Recursive partitioning (rpart) is a library used for classification,
regression, and tree- based models.

Caret caret offers a consolidated interface for training and assessing
an extensive array of classification and regression models.
The library streamlines the tasks of model selection,
hyperparameter tuning, and performance evaluation.

5 • Machine learning software and hardware requirements 117

software compatible with Windows, Linux, and Mac operating systems. Further infor-
mation on MATLAB installation can be found at https:// www. mathworks. com/ help/
install/ install- products. html.

5.1.3.1 MATLAB code editors and IDEs

MATLAB does not have a wide variety of code editors and IDEs, unlike Python
and R. MATLAB Desktop is the primary and most widely used IDE for MATLAB
 programming. It has an interactive editor, command window, debugger, and various
toolboxes for numerical computation, visualization, and programming. MATLAB
Online and MATLAB Mobile are the web- and mobile- based versions of MATLAB
Desktop, respectively, offering the same functionalities as the desktop version.

5.1.3.2 MATLAB libraries

Several MATLAB programming libraries are used for building machine learning models
as summarized in Table 5.5.

5.1.4 Other programming languages

Python, R, and MATLAB are popular choices for machine learning, as described in
the previous sections. However, other languages like Java and C++ can also be used as
discussed in the following.

5.1.4.1 Java programming

Java is one of the predominant programming languages in the Information and
Communication Technology (ICT) domain, renowned for its platform agnosticism,
readability, and vast ecosystem. Machine learning in Java remains significant for various

FIGURE 5.3 MATLAB working environment.

https://www.mathworks.com/help/install/install-products.html
https://www.mathworks.com/help/install/install-products.html

118 Practical Machine Learning

reasons, including its wealth of libraries and frameworks, seamless integration with
existing Java codebases, robust performance and scalability, applicability in enterprise
environments, emphasis on security, versatility across diverse use cases, compatibility
across multiple platforms, and strong community support.

5.1.5 Java programming code editors and IDEs

Java programming code editors and IDEs for machine learning development provide
advanced syntax highlighting, code completion, and debugging capabilities specifically
designed for Java machine learning libraries. These tools streamline the machine learn-
ing workflow by incorporating version control systems like Git and granting convenient
access to libraries and frameworks for tasks such as data preprocessing, model training,
and evaluation. Moreover, they boast a diverse ecosystem of plugins and extensions for
additional customization, enhancing productivity in machine learning projects. These
tools are outlined in Table 5.6.

5.1.6 Java ML libraries

Java has specialized machine learning libraries offering various functions, from data
preparation to model evaluation. By leveraging these libraries, developers can better
utilize Java’s robust ecosystem to build and deploy machine learning solutions. Some of
the libraries are described in Table 5.7.

TABLE 5.5 MATLAB programming libraries

LIBRARY DESCRIPTION

MATLAB Image Processing
Toolbox

The MATLAB Image Processing Toolbox offers
comprehensive functions and tools for processing,
analyzing, and visualizing images.

MATLAB Signal Processing
Toolbox

The MATLAB Signal Processing Toolbox comprises functions
tailored for signal analysis, filtering, feature extraction
operations, and spectrum analysis.

MATLAB Statistics and
Machine Learning
Toolbox

The MATLAB Statistics and Machine Learning Toolbox
provide functions and algorithms for statistical analysis,
machine learning, and predictive modeling. It provides
functionalities for classification, regression, clustering, and
dimensionality reduction.

MATLAB Optimization
Toolbox

MATLAB Optimization Toolbox contains a set of algorithms
and tools for handling optimization issues such as linear
programming, nonlinear optimization, and restricted
optimization.

MATLAB Curve Fitting
Toolbox

MATLAB Curve Fitting Toolbox includes tools for fitting
curves, interpolating data, and smoothing data. It provides
a variety of curve- fitting methods as well as tools for
analyzing and displaying fitted curves.

5 • Machine learning software and hardware requirements 119

TABLE 5.6 IDEs and code editor for Java

TOOL DESCRIPTION

IntelliJ IDEA IntelliJ IDEA is an IDE tailored for Java development, facilitating the
creation of robust code across various platforms such as Windows,
macOS, and Linux. It offers two editions: a no- cost community version
and a paid ultimate edition.

Eclipse Eclipse provides both a desktop version and a cloud version known
as Eclipse Che. This IDE empowers developers to manage multiple
workspaces concurrently, enhancing project organization and boosting
productivity and efficiency.

NetBeans NetBeans is a cross- platform, open- source IDE designed for Java
development that is free of charge. Packed with features like syntax
highlighting, code completion, and integrated debugging tools, the IDE
facilitates rapid coding.

BlueJ BlueJ, a free IDE commonly utilized for educational aims, is particularly
beginner- friendly. This well- organized platform offers an interactive
environment complemented by graphical representations and a
distinctive coloring scheme.

JDeveloper JDeveloper, a free IDE, is particularly suited for streamlining Java application
development across the System Development Life Cycles (SDLC). This tool
stands out for its features, including advanced code editing functionalities,
seamless integration with version control systems like Git, automated
deployment tools, and strong support for Java technologies like Enterprise
JavaBeans (EJB) and Java Persistence API (JPA).

JCreator JCreator is a versatile IDE suitable for developers of all levels (i.e., deals
for beginners and experienced professionals), with a lightweight design
and robust features. It offers an intuitive interface, advanced code
editing, integrated debugging, project management tools, version control
integration, GUI design, profiling, code analysis, and support for plugins.

Codenvy Codenvy is a cloud- based software that allows developers to work and
collaborate without installing local software on their machines. This
makes it ideal for remote software development teams that need a
unified platform that their global workforce can use to work individually
and collaborate.

DrJava DrJava is a lightweight, user- friendly IDE primarily designed to offer
simplicity and ease of use for developers. It is particularly preferred in
educational settings due to its beginner- friendly interface and features
tailored for learning Java programming.

JGrasp JGrasp, a straightforward Java IDE, is particularly commendable for
educational purposes. It boasts syntax highlighting, code navigation,
and UML visualization capabilities, all packaged within a user- friendly
interface that facilitates the automatic creation of software visualizations.
Notably, it specializes in generating Control Structure Diagrams (CSDs),
technical diagrams crucial for illustrating control flow in applications. This
functionality aids debugging and workbench testing phases by enhancing
developers’ code readability.

120 Practical Machine Learning

TABLE 5.7 Java ML libraries

LIBRARY DESCRIPTION

TensorFlow Serving TensorFlow Serving, an open- source library, is tailored for
deploying machine learning models focusing on achieving
low latency performance. It can operate locally or in cloud
environments, accommodating a wide array of models, ranging
from deep convolutional networks to linear models. This tool
empowers developers to efficiently deploy machine learning
models at scale, eliminating the need for manual infrastructure
management.

Apache Spark MLlib Apache Spark MLlib, a specialized library is crafted to construct
machine learning pipelines within Apache Spark clusters.
Equipped with high- level APIs, it empowers developers to swiftly
establish resilient machine learning pipelines by leveraging
distributed data training algorithms and other distributed
processing tasks.

DL4J Deeplearning4j (DL4J), a robust deep learning library, is
constructed atop the Java Virtual Machine (JVM), aiding
developers in crafting production- ready applications. With
provisions for GPU acceleration, distributed computing, and
diverse neural network architectures like convolutional nets,
recurrent neural nets, and LSTM networks, DL4J ensures
comprehensive support. Additionally, it offers a GUI- based
user interface for hyperparameter tuning, simplifying the
optimization of model performance.

Apache OpenNLP The Apache OpenNLP library specializes in natural language
processing (NLP) tasks within the Java environment. With
functionalities like tokenization, part- of- speech tagging,
sentence segmentation, and named entity recognition,
OpenNLP offers a modular architecture and pre- trained
models, streamlining the integration of NLP features into Java
applications.

Apache Mahout Apache Mahout is a Java library tailored to deliver scalable
machine learning algorithms, covering clustering, classification,
and recommendation tasks. Engineered to handle extensive
datasets efficiently, Mahout excels in performing machine
learning operations on big data.

Smile The Statistical Machine Intelligence and Learning Engine
(Smile) is a Java library featuring various algorithms for
classification, regression, clustering, association rule mining,
and dimensionality reduction. With a focus on simplicity and
performance, Smile offers an intuitive API suitable for novice and
experienced developers.

TensorFlow Java API TensorFlow, a renowned deep learning library, offers a
Java API that enables developers to integrate TensorFlow
capabilities seamlessly into Java applications. This facilitates
the development and training of neural networks within Java
environments.

5 • Machine learning software and hardware requirements 121

5.1.6.1 C++ programming

C++ is a versatile and powerful programming language widely utilized in machine
learning to develop core algorithms and implement computationally intensive tasks.
With its high speed, efficiency, reliability, and low- level control, C++ caters to diverse
domains beyond machine learning, including game development, embedded systems,
and software engineering. This ability is attributed to its support for procedural and
object- oriented programming paradigms and low- level memory manipulation features.

5.1.7 C++ programming code editors and IDEs

C++ code editors and IDEs are tools that offer a variety of features tailored for C++
development. These tools support code editing, debugging capability, and integration
with C++ libraries essential for ML- based project management. The C++ code editors
and IDEs are described in Table 5.8.

5.1.8 C++ programming libraries

C++ offers numerous libraries tailored for machine learning and AI applications,
equipped with pre- implemented algorithms, functions, and tools to construct intelligent
systems. Table 5.9 outlines some of the prominent libraries for machine learning in C++.

LIBRARY DESCRIPTION

DL4J Deep Learning for Java (DL4J) is a distributed deep learning
library designed for Java, Scala, and Clojure. It harmonizes with
Hadoop and Spark, accommodating diverse neural network
architectures.

Encog Encog emerges as a sophisticated machine learning framework
tailored for Java, encompassing neural networks, genetic algorithms,
support vector machines, and various other ML techniques.

JSAT Java Statistical Analysis Tool (JSAT) is a Java- based library housing
ML algorithm, prioritizing user- friendliness and mirroring the
design of the Weka library. JSAT offers an extensive array
of algorithms for classification, regression, clustering, and
recommendation, suitable for researchers, students, and
enthusiasts keen on experimenting with ML algorithms in Java.

MALLET MALLET, which stands for Machine Learning for Language
Toolkit, is a Java- based toolkit designed for natural language
processing (NLP), encompassing tasks such as document
classification, clustering, topic modeling, and information
extraction. Renowned for its flexibility, user- friendly interface,
and comprehensive documentation, MALLET is accessible to
novices and seasoned NLP practitioners.

TABLE 5.7 (Continued) Java ML libraries

122 Practical Machine Learning

TABLE 5.8 C++ programming code editors and IDEs

TOOL DESCRIPTION

Code::Blocks Code::Blocks is a free, cross- platform IDE tailored for C/C++
development, offering a range of features like compiling, debugging,
profiling, and code analysis. Renowned for its performance and user-
friendly interface, it supports full breakpoints and integrates seamlessly
with community and team- developed plugins.

CodeLite CodeLite is also an open- source IDE that comes with the features of a class
browser, static code analysis, project management, code refactoring,
profiling, debugging, completion, and compiling. The IDE offers a rapid
application development (RAD) tool that helps one build widget- based
applications. Windows, Linux, Mac, and FreeBSD support it.

CLion CLion is a cross- platform IDE built for C++ development, providing
features such as code analysis, CMake support for streamlined project
management and build automation, and intelligent code assistance for
project modeling. Notably, it offers local and remote (via SSH) support,
enabling developers to code locally and compile on remote servers.

TABLE 5.9 C++ programming libraries

LIBRARY DESCRIPTION

Dlib Dlib, an open- source, cross- platform toolkit, is primarily employed for
machine learning and computer vision applications. Renowned for its high
performance and efficiency, it provides many tools and algorithms for facial
recognition, object detection, image processing, and machine learning
model training, making it ideal for real- time applications.

mlpack mlpack is a versatile machine learning library designed to provide state- of-
the- art algorithms for clustering, regression, and dimensionality reduction,
along with data preprocessing and visualization tools. Utilizing the
Armadillo linear algebra library, mlpack emphasizes scalability, speed, and
user- friendliness, making machine learning model development accessible
to novice users through a simple and consistent API.

SHARK SHARK is a collection of open- source C++ machine learning libraries that
offer linear and nonlinear optimization, kernel- based learning algorithms,
neural networks, and various machine learning methods. It empowers
machine learning experts to easily tackle a broad spectrum of tasks, making
it suitable for real- world applications and research endeavors. SHARK’s
versatility extends to supervised and unsupervised learning, evolutionary
algorithms, and other machine learning techniques, providing a robust
toolkit for diverse machine learning challenges.

Caffe Caffe, developed by the Berkeley Vision and Learning Center (BVLC), is
a high- performance deep learning framework designed for the efficient
training and deployment of neural networks, particularly in computer vision.
Its modular architecture facilitates experimentation, and its CPU and GPU
acceleration support allows it to handle large- scale machine learning tasks
efficiently. Caffe is rich in pre- trained models and visualization tools, making
it popular among deep learning researchers and practitioners.

5 • Machine learning software and hardware requirements 123

5.1.9 Criteria for choosing programming language
for machine learning

When choosing a programming language for machine learning projects, key factors
include library and framework support, robust and extensive community support,
ease of learning and use, flexibility, scalability and efficiency, integration with other
tools and software, and industry adoption. Languages like Python are favored for their

LIBRARY DESCRIPTION

CNTK The Microsoft Cognitive Toolkit (CNTK) is an open- source platform for
distributed deep learning, known for its high accuracy in training deep
learning models. It features a flexible and powerful API for C++.

Armadillo Armadillo is a robust C++ linear algebra library with MATLAB- like syntax
and functionality, simplifying matrix, linear algebra, and numerical tasks.
Its intuitive interface enhances development productivity, while seamless
integration with other C++ libraries makes it versatile for scientific
computing, machine learning, and data analysis. Known for its speed, ease
of use, and compatibility, Armadillo is favored in academic research and
industrial applications requiring fast and reliable numerical computations.

DyNet DyNet is a C++ library with Python bindings optimized for dynamic
computation graphs and automatic differentiation. It excels in neural
network operations and training, particularly in natural language processing
tasks where it is frequently applied.

Shogun Shogun offers various machine learning algorithms and tools for
classification, regression, clustering, and dimensionality reduction tasks.
With bindings for Python, Java, and MATLAB, users can access its
functionalities from various programming environments despite its core
implementation being in C++.

FANN Fast Artificial Neural Network (FANN) is an open- source neural network
library written in C language (it also supports C++). The library implements
multilayer artificial neural networks supporting fully and sparsely connected
networks. It is easy to use, versatile, well- documented, and fast. Critical
features of FANN include backpropagation learning, evolving topology
learning, cross- platform, and support for floating and fixed point numbers.

FAISS FAISS offers efficient algorithms for similarity search and clustering of dense
vectors. With Python bindings, it integrates well with Python- based machine
learning workflows. Its core functions are in C++, ensuring high efficiency
for tasks like large- scale nearest- neighbor search. FAISS supports CPU and
GPU acceleration, making it versatile for applications like image and text
retrieval, recommendation systems, and NLP.

OpenNN OpenNN supports machine learning and advanced analytics across
various domains like energy, marketing, health, and digital economy.
With algorithms for classification, regression, and prediction, OpenNN
offers robust AI solutions. Its multiprocessor programming ensures high
performance for the swift execution of complex tasks.

TABLE 5.9 (Continued) C++ programming libraries

124 Practical Machine Learning

simplicity and extensive ecosystem of machine learning libraries, while languages like
C++ and Java excel in performance- intensive tasks. Python’s interoperability and light-
weight deployment options make it popular for integrating machine learning models
into production systems. Ultimately, the choice depends on project requirements and
development team preferences, with careful consideration of these factors ensuring the
most suitable language is selected for machine learning projects. These criteria are dis-
cussed in the subsequent sections.

5.1.9.1 Library and framework support

Libraries are compilations of pre- written code modules that developers can utilize to
save time and avoid reinventing the wheel. In AI and machine learning, where spe-
cific functionalities can significantly speed up the development process, libraries play
a crucial role by offering ready- to- use algorithms and data structures. A programming
language equipped with a diverse and robust set of libraries is often favored for AI and
machine learning development. On the other hand, a framework is a pre- established,
reusable toolkit comprising tools, libraries, and conventions. It serves as an abstrac-
tion layer, streamlining the development and maintenance of software applications by
providing common functionalities, design patterns, and components. Robust library and
framework support in a programming language can simplify and accelerate the execu-
tion of machine learning projects.

5.1.9.2 Robust and extensive community support

The presence of robust and extensive community support is crucial for navigating the
challenges encountered while developing machine learning applications. Additionally,
a large, active, and knowledgeable community associated with a particular program-
ming language plays a pivotal role in selecting the language for machine learning
projects. Such a community actively engages in discussions, forums, and online plat-
forms, readily sharing expertise and knowledge. Moreover, it facilitates in- person
connections through meetups and events, fostering experience exchanges among the
members. A vibrant community benefits developers of all levels, enabling continuous
learning and exposure to best practices. In the context of machine learning projects,
programming language community support ensures resilience and sustainability by
offering the members reliable assistance and shared knowledge. The active participa-
tion and extensive support from the community ultimately contribute to the success of
machine learning endeavors.

5.1.9.3 Ease of learning and use

The ease of learning and use depends on factors such as user experience, familiariza-
tion with the programming language, or its direct impact on solving the problem. A
programming language with high ease of learning has clear and concise documentation,
a simple and consistent syntax, and features that make common tasks straightforward.
Additionally, the availability of learning resources, community support, and a support-
ive development environment contribute to the overall ease of use. A programming

5 • Machine learning software and hardware requirements 125

language designed for ease of learning and use can accelerate the development process
and reduce the likelihood of errors, making it more accessible and appealing to both
beginners and experienced developers.

5.1.9.4 Flexibility, scalability, and efficiency

Choosing the right programming language for machine learning projects involves
assessing flexibility, scalability, and efficiency to meet diverse needs and challenges
throughout the development life cycle. A flexible language allows developers to write
adaptable code that addresses various requirements by supporting multiple programming
paradigms, offering diverse libraries and frameworks, and enabling concise expression
of ideas. Scalability is crucial for accommodating growth in users, data, and features,
requiring vertical and horizontal scaling capabilities. Support for parallel processing,
efficient memory management, and distributed computing enhances a language’s scal-
ability. Additionally, efficiency is essential for executing tasks quickly and utilizing
system resources effectively. Considerations such as runtime performance, memory
management, and optimization tools are crucial for resource- intensive machine learning
applications. Choosing a programming language that balances flexibility, scalability,
and efficiency ensures robustness and adaptability in machine learning development.

5.1.9.5 Integration with other tools and software

Effective integration with other tools and software is crucial in selecting a pro-
gramming language for machine learning projects. Seamless integration streamlines
workflows, leveraging existing tools and infrastructure efficiently. Key consider-
ations include robust APIs and libraries, compatibility with existing tools and
frameworks, support for standard data exchange formats, efficient interprocess
communication mechanisms, database integration, deployment, and cloud services.
By considering these factors, developers can choose a programming language that
facilitates seamless integration, enhances productivity, and maximizes efficiency in
machine learning projects.

5.1.9.6 Industry adoption

Industry adoption is a pivotal factor influencing the choice of programming languages
for ML projects. The widespread adoption of a language across various sectors signifies
its relevance and suitability for real- world applications. One of the primary advantages
of selecting a language with high industry adoption is the market demand it gener-
ates. Such languages are often in high demand, increasing job opportunities and career
prospects for proficient developers. Moreover, industry adoption ensures the availabil-
ity of a skilled talent pool. Companies prefer languages with a large community of
proficient developers, making recruiting and onboarding talent with relevant expertise
easier. Additionally, languages with extensive industry adoption typically enjoy stable
ecosystems with robust support from developers, communities, and organizations. This
stability ensures continuous development, updates, and maintenance support, reducing
the risk of project disruptions.

126 Practical Machine Learning

5.2 NO- CODE TOOLS

No- code tools come with pre- packed implementations for common machine learning
algorithms for classification, clustering, regression, dimensionality reduction, etc. They
are used to quickly build machine learning models without requiring prior programming
knowledge and skills. However, using programming languages to develop machine learning
models is a better option than no- code tools because the former provides control over the
created model. The common no- code tools are WEKA, Orange, and Teachable Machine.
Table 5.10 summarizes common no- code tools for building machine learning models.

5.3 EXPERIMENT TRACKING TOOLS

Experiment tracking within machine learning encompasses the comprehensive manage-
ment of all experiment components, from hyperparameters and performance metrics to
predictions, ensuring the creation of an efficient and well- documented model. Table 5.11
presents a compilation of the commonly utilized tools designed explicitly for experi-
ment tracking in machine learning. These tools offer diverse functionalities that aid in
organizing, monitoring, and evaluating various experiment elements, contributing sig-
nificantly to the streamlined development and optimization of machine learning models.

5.4 PRE- TRAINED MODELS REPOSITORIES

A pre- trained model is a solution developed for a specific problem, which can be
directly applied or fine- tuned to address similar tasks. Leveraging pre- trained models
can reduce computing costs, reduce carbon footprint, and save time on training models

TABLE 5.10 Common no- code tools

TOOL DESCRIPTION

WEKA WEKA, short for Waikato Environment for Knowledge Analysis, is a free
and open- source tool for machine learning. It offers a range of algorithms
for tasks like data preprocessing, classification, regression, clustering,
association rules, and visualization. Further information on installing WEKA
can be found at https:// waikato. github. io/ weka- wiki/ downloading_weka/.

Orange Orange is a free open- source toolkit for data visualization and machine
learning featuring comprehensive libraries. It is conveniently included in the
Anaconda distribution.

Teachable
Machine

Teachable Machine is a free web- based machine learning no- code tool for
easily prototyping models.

https://waikato.github.io/weka-wiki/downloading_weka/

5 • Machine learning software and hardware requirements 127

TABLE 5.11 Experiment tracking tools

TOOL NAME DESCRIPTION

Dashboard by weight
and biases

Weight and Biases Dashboard allows for the real- time
monitoring of training data. It seamlessly integrates
with popular machine learning frameworks like PyTorch,
TensorFlow, and Keras.

Tensorboard Tensorboard enables the visualization of statistics of a neural
network, such as the training parameters (e.g., loss, accuracy,
and weights), images, and even the graph to debug and
optimize the model.

Neptune.ai Neptune.ai is a centralized metadata repository for machine
learning operations workflow, enabling tracking, visualization,
and comparison of thousands of machine learning models in
one place. It fosters seamless collaboration within the machine
learning community.

MLflow Machine Learning Flow (MLflow) is an open- source platform for
managing the end- to- end machine learning life cycle. It has
components for recording and querying experiments, packaging
code into reproducible runs, managing and deploying machine
learning models, supporting integration with popular machine
learning frameworks and libraries, and storing and sharing
machine learning models.

Comet ML Comet Machine Learning (Comet ML) is a machine learning
experimentation and collaboration platform. It can track,
compare, and analyze experiments, log hyperparameters,
metrics, and experiment results, and facilitate collaboration
among team members. Comet ML also supports integration
with popular machine learning frameworks and libraries.

Metaflow Metaflow is a machine learning infrastructure tool developed
by Netflix for building, deploying, and managing real- life
data science projects by providing a high- level abstraction.
It supports versioning, monitoring, and scaling machine
learning pipelines. It enables users to define machine learning
workflows as a series of steps and execute them locally or in
the cloud.

ClearML Clear Machine Learning (ClearML), previously called Trains,
is an open- source platform designed to oversee machine
learning experiments and models. It offers features for
logging hyperparameters, metrics, and artifacts and tracking,
visualizing, and optimizing machine learning workflows.
Additionally, ClearML supports model deployment and
monitoring, and seamless integration with popular machine
learning frameworks and libraries.

128 Practical Machine Learning

from scratch. These machine learning models are readily available from established
repositories, some of which are detailed in Table 5.12.

5.5 DATASETS AND MODEL TRACKING TOOLS

Datasets and model tracking tools are crucial in monitoring alterations made to datasets
and gauging their influence on the performance of machine learning models. These
tools are integral for tracking changes within the data and training and refining machine
learning models. Table 5.13 provides a compilation of common datasets and model-
tracking tools. Each tool within this compilation is pivotal in cataloging, managing, and
analyzing datasets and monitoring the evolution of machine learning models, thereby
aiding researchers and practitioners in effectively managing the intricate process of data
modification and model refinement within the machine learning workflow.

TABLE 5.12 Pre- trained models’ repositories

REPOSITORY NAME DESCRIPTION

TensorFlow Hub TensorFlow Hub contains pre- trained models that are available
for deployment and fine- tuning. It facilitates the reuse of pre-
trained models with a minimum amount of code added. This
repository can be accessed at https:// www. tensorflow. org/ hub.

Pytorch Hub PyTorch Hub provides a platform for publishing pre- trained
models to a GitHub repository, including model definitions and
pre- trained weights. This repository can be accessed at
 https:// pytorch. org/ hub/.

Hugging Face
Transformers

The Hugging Face Transformers platform offers APIs that simplify
downloading and retraining state- of- the- art pre- trained models.
This repository can be accessed at https:// huggingface. co/ docs/
transformers/ index.

OpenAI OpenAI provides powerful machine learning models created by
OpenAI that are trained on massive quantities of data to reach
outstanding language interpretation and generation skills.
The pre- trained models’ documentation can be accessed at
 https:// platform. openai. com/ docs/ models.

Paperswithcode Paperswithcode is a repository of machine learning research
papers with links to the corresponding code and pre- trained
models. It is helpful for researching cutting- edge models and
locating suitable resources for specific requirements. It can be
accessed at https:// paperswithcode. com/.

OpenAI Model Zoo OpenAI Model Zoo is a repository that contains a collection of
high- performing pre- trained OpenAI models, including the
GPT- 3 family of big language models. It is well- known for its
cutting- edge models. It can be accessed at https:// platform.
openai. com/ docs/ models.

https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://platform.openai.com/docs/models
https://paperswithcode.com/
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models

5 • Machine learning software and hardware requirements 129

5.6 AUTOML HYPERPARAMETER
OPTIMIZATION TOOLS

Automated Machine Learning (AutoML) tools simplify the process of optimizing machine
learning models by automatically adjusting their hyperparameters. Table 5.14 presents a
compilation of the most commonly used tools for this purpose, providing a comprehen-
sive overview of the techniques employed in AutoML hyperparameter optimization.

5.7 MACHINE LEARNING LIFE CYCLE TOOLS

Machine learning life cycle tools track every model development, deployment, and per-
formance monitoring stage. They are used from the initial conception of the algorithm
to the optimization, which is required to keep the model accurate and effective. The
common machine learning life cycle tools are summarized in Table 5.15.

5.8 USER INTERFACE DEVELOPMENT TOOLS

The user interface is crucial in interactive machine learning as users actively train
the algorithm iteratively. Table 5.16 compiles commonly used tools for developing
 interactive and effective interfaces.

TABLE 5.13 Datasets and model tracking tools

TOOL DESCRIPTION

Artifacts by Weights
and Biases

Artifacts by Weights and Biases are used to version the datasets,
track different machine learning pipelines, and reproduce
previous datasets.

Data Version Control
(DVC)

DVC, an open- source version control system, is tailored to monitor
and manage models and datasets within the machine learning
workflow. It offers a structured framework for tracking changes
in models and datasets, bolstering reproducibility and fostering
collaboration among teams engaged in machine learning projects.

CML Continuous Machine Learning (CML) is a GitHub Actions feature
that allows one to automate machine learning activities, such
as tracking datasets and model versions.

DataRobot MLOps DataRobot MLOps platform offers the functionality for
managing and tracking datasets, apart from the end- to- end
machine learning life cycle.

130 Practical Machine Learning

TABLE 5.14 AutoML hyperparameter optimization tools

TOOL DESCRIPTION

Optuna Optuna is a freely available open- source framework developed
explicitly for automatic hyperparameter optimization. Its user-
friendly define- by- run API sets it apart, making the process
more intuitive and adaptable to varying optimization needs.

Tune Tune is a versatile Python library designed for experiment
execution and automatic hyperparameter tuning, suitable for
small- and large- scale machine learning projects. It facilitates
efficient experimentation and parameter tuning across various
task complexities.

HyperOpt HyperOpt is a Python library for hyperparameter tuning that
automatically chooses the best parameters for a given model.
It is capable of optimizing large- scale models with hundreds of
hyperparameters.

TPOT TPOT, which stands for Tree- based Pipeline Optimization Tool,
is a Python- based automated machine learning tool. It utilizes
genetic programming to optimize machine learning pipelines
automatically.

Google Cloud AutoML Google Cloud AutoML is a tool developed by Google that
automatically tunes hyperparameters in complex machine
learning models.

AWS Sage Maker AWS Sage Maker provides automatic optimization service to
machine learning algorithms built using huge datasets in a
distributed environment.

Microsoft (MS) Azure
AutoML

MS Azure AutoML is a Microsoft- developed open- source toolkit
for AutoML. It automates hyperparameter tuning, feature
engineering, and model compression tasks.

Scikit- Optimize Scikit- Optimize is an easy- to- use Python built- in library
integrated with scikit- learn and provides basic hyperparameter
optimization (HPO) algorithms such as grid search and random
search.

Auto- PyTorch Auto- PyTorch is a PyTorch models automation library focused on
hyperparameter optimization (HPO), neural architecture search
(NAS), and model pruning.

Auto- Keras Auto- Keras is a specialized library integrated with Keras that
focuses on automating neural architecture search (NAS) and
hyperparameter optimization (HPO) specifically for Keras
models.

IBM Watson AutoAI IBM Watson AutoAI is a component of IBM Watson Studio
that automates the training and optimization of ML models,
including hyperparameter tuning.

5 • Machine learning software and hardware requirements 131

5.9 EXPLAINABLE AI TOOLS

Explainable AI (XAI) tools provide detailed insights into the functioning of machine
learning models through descriptive explanations. Table 5.17 is a convenient reference,
showcasing these tools for easy understanding and practical application.

TABLE 5.15 Machine learning life cycle tools

TOOL DESCRIPTION

Kubeflow Kubeflow is a free and open- source machine learning
platform that facilitates the development, orchestration,
optimization, deployment, and execution of scalable and
portable models. It provides a framework for organizing
projects, harnessing the power of cloud computing, and
empowering developers to construct optimal models.

Seldom Seldom is an open- source machine learning deployment
platform that streamlines the machine learning workflow
with features such as audit trails, advanced experiments,
continuous integration, scaling, and model explanations,
enabling faster and more effective problem- solving.

Mlflow Mlflow is an open- source platform to manage the
machine learning life cycle, including implementation,
experimentation, packaging, deployment, and performance
monitoring.

Google Cloud AI Platform Google Cloud AI Platform provides a range of features for
managing the machine learning life cycle. This includes
a dashboard, data labeling, workflow orchestration, and
model management.

TABLE 5.16 User interface development tools

TOOL DESCRIPTION

Streamlit Streamlit supports the development of web applications for machine learning
problems. It is an open- source library’s API written entirely in Python.
Therefore, it simplifies web application development without utilizing other
web technology languages.

Django Django is a free and open- source framework for constructing web apps
(i.e., user interfaces) based on Python programming. It is suitable for building
secure, maintainable, and multi- page applications.

Flask Flask is a Python- based microframework that offers basic features for
developing web applications. It is suitable for single- page applications only.

132 Practical Machine Learning

5.10 VERSION CONTROL SYSTEMS

Version control systems (VCS) are software tools that track and manage file changes,
enabling developers to record modifications in the source code. VCS maintains a reposi-
tory of all changes, allowing developers to revert to earlier versions if needed. This
facilitates error fixing and comparison of file versions. Moreover, VCS enables col-
laborative work by allowing multiple developers to edit files independently and share
changes when ready. Table 5.18 provides examples of common VCS tools.

5.11 MACHINE LEARNING
HARDWARE REQUIREMENTS

This chapter introduces the hardware requirements for machine learning tasks. It also
introduces using cloud computing services as an alternative method if local computer
resources do not meet the requirements of the machine learning process.

TABLE 5.17 Common XAI tools

TOOL DESCRIPTIONS

SHAP SHAP, which stands for SHapley Additive exPlanations, is a
framework that offers explainability for various algorithms,
including linear regression, logistic regression, and tree- based
models. It provides insights into the contributions of individual
features toward the predictions made by these models.

LIME LIME, which stands for Local Interpretable Model- agnostic
Explanations, is a methodology that provides explainability for
a wide range of algorithms, including random forest, k- Nearest
Neighbor (kNN), and support vector machines (SVMs). It enables
the interpretation of individual predictions made by these
models, allowing for a better understanding of their decision-
making process.

AI Explainability 360 AI Explainability 360 is an open- source toolkit developed by IBM.
It offers a comprehensive collection of techniques and models
specifically designed for interpreting and explaining machine
learning models. This toolkit provides a valuable resource for
enhancing the transparency and interpretability of machine
learning models.

Anchors Anchors is a tool with simple, high- precision rules that locally
characterize a model’s behavior. These rules are interpretable and
aid in comprehending the model’s decisions.

5 • Machine learning software and hardware requirements 133

5.12 OPERATING SYSTEMS REQUIREMENTS

The most commonly used operating systems in contemporary machine learning tasks
include GNU/Linux- based OSs, Microsoft Windows, and Apple MacOS. However,
modern machine learning algorithms primarily execute their computational tasks
within the core software governing the entire computer system. Consequently, there
is no inherent advantage in using a particular OS over others for the machine learning
process. Moreover, considering additional factors such as the ease of supporting emerg-
ing technologies and the extensive support of free and open- source libraries, the Linux
operating system holds more advantages than Microsoft Windows and MacOS.

5.13 PROCESSOR AND
MEMORY REQUIREMENTS

Machine learning tasks often necessitate substantial computational resources due to the
large datasets and complex algorithms involved. Selecting the most suitable machine for
such tasks can be challenging, as several factors must be considered, including process-
ing speed and graphics processing capabilities. The following subsections outline the
minimum requirements for the Central Processing Unit (CPU), Graphics Processing Unit
(GPU), Random Access Memory (RAM), and Storage to ensure optimal performance in
machine learning workloads.

TABLE 5.18 Version control systems

VERSION CONTROL
SYSTEM DESCRIPTION

Git Git is an open- source distributed VCS designed to support projects
of different sizes and support multiple branches of change that
can be independent of each other.

Concurrent Versions
System (CVS)

CVS is a free, open- source version control system that efficiently
manages concurrent software development branches. It enables
collaboration, tracks changes, and maintains version history.

Subversion (SVN) SVN, an open- source version control system, offers a wide
selection of Integrated Development Environment (IDE) plugins.
These plugins enhance usability and integration with various
IDEs, making version control seamless within the development
environment. They facilitate smoother collaboration and code
management among team members.

Mercurial Mercurial is a distributed VCS with features similar to those of Git.
Data Version Control
(DVC)

DVC, primarily designed for version management of machine
learning projects, specializes in handling machine learning
datasets and models. It efficiently handles large files, such as
datasets, while effectively tracking changes.

134 Practical Machine Learning

5.13.1 CPU

Multi- core processing, which involves distributing computationally intensive tasks
across multiple CPU cores, is commonly employed in machine learning. Utilizing mul-
tiple cores can significantly reduce execution time, scaling performance gains with the
number of available cores. A minimum recommendation for simple machine learning
tasks would be a dual- core 2.2 GHz processor.

5.13.2 GPU

A GPU, or Graphics Processing Unit, is a specialized microprocessing chip or circuit
for graphics- related tasks. GPUs are widely used in machine learning due to their ability
to efficiently perform parallel computations, surpassing the capabilities of CPUs in this
regard. They feature a large number of cores and high memory bandwidth, making them
well- suited for parallel processing of large datasets. Several types of GPUs are available
in the market, including Tesla NVIDIA, NVIDIA GeForce RTX, NVIDIA Quadro RTX,
and AMD Radeon RX.

5.13.3 TPU

The Tensor Processing Unit (TPU) is a custom- designed application- specific integrated
circuit (ASIC) developed by Google. It is specifically designed to accelerate machine
learning tasks, particularly for training and inference of large AI models. TPUs are opti-
mized for various applications, including chatbots, media content generation, recommen-
dation engines, and more. They offer scalability and cost- efficiency across various AI
workloads and are compatible with popular frameworks such as TensorFlow, PyTorch,
and Just Another X (JAX). TPUs significantly enhance the performance of neural net-
work- –based machine learning tasks, making them a valuable asset in the AI ecosystem.

5.13.4 RAM

Random Access Memory (RAM) temporarily stores data that the computer’s processor
needs to access quickly. When it comes to machine learning tasks, the amount of RAM
in a computer is a crucial consideration. A large RAM capacity is vital when dealing
with large datasets and performing complex computations. It enables efficient data pro-
cessing and manipulation during the machine learning workflow, leading to improved
performance and faster execution times.

5.13.5 Storage

A computer with significant storage capacity is necessary for machine learning tasks
involving large datasets, such as images and videos. It is recommended to have both
Solid State Drive (SSD) and Hard Disk Drive (HDD) with reasonable sizes. However, if

5 • Machine learning software and hardware requirements 135

speed, price, and efficiency are key factors, a hybrid drive that combines SSD and HDD
is the optimal choice. A hybrid drive offers the advantages of both technologies by pro-
viding the speed of an SSD and the storage capacity of an HDD. This provides a good
balance between performance and storage for machine learning tasks.

5.14 CLOUD COMPUTING SERVICES FOR
MACHINE LEARNING

Cloud computing is an excellent alternative for running machine learning models,
especially when access to expensive and high- maintenance specialized computers
or servers is limited. Cloud computing services provide a cost- effective solution for
executing complex and memory- intensive machine learning models. These services
involve delivering IT resources, such as servers, storage, databases, networking,
software, analytics, and intelligence, over the internet. They typically operate on a
pay- as- you- go pricing model. Table 5.19 describes some of the most common cloud
computing services available.

TABLE 5.19 Common cloud computing services for ML

CLOUD COMPUTING
SERVICES DESCRIPTION

Google colab Google Colab is a Jupyter Notebook environment developed
by Google that grants users free access to GPUs and TPUs,
empowering them to build machine learning models at no cost.

Amazon Web Services
(AWS)

AWS, provided by Amazon, is a comprehensive and continuously
evolving cloud computing platform that offers Machine
Learning as a Service (MLaaS). It enables users to build, run,
and conveniently deploy machine learning models.

Microsoft (MS) Azure Microsoft Azure is a proprietary cloud computing service
encompassing many functionalities for training, deploying,
accelerating, and managing the entire life cycle of machine
learning projects. It provides a comprehensive platform for
various aspects of machine learning, allowing users to leverage
its capabilities seamlessly.

IBM Watson IBM Watson is a cloud computing service that offers a full range
of tools and services for building, training, and deploying
machine learning models.

BigML BigML is a cloud- based machine learning platform prioritizing
ease of use and automation. It offers a range of tools and
features that simplify the development and deployment of
machine learning models. With its user- friendly interface and
automated processes, BigML aims to make machine learning
accessible to a wide range of users.

136 Practical Machine Learning

5.15 SUMMARY

This chapter explores the interplay between essential hardware and software tools nec-
essary for developing machine learning models. On the software side, it delves into the
integration of programming languages with comprehensive ecosystems, user- friendly
frameworks, and libraries. No- code tools are highlighted for democratizing machine
learning access. The chapter also covers experiment tracking tools and pre- trained model
repositories that enhance management and reproducibility. Additionally, it discusses
tools for managing machine learning life cycles, AutoML, user interfaces, explainable
AI, and version control. It underscores the critical hardware components required, such
as multi- core processors, high- performance CPUs, GPUs, TPUs for efficient training,
and ample storage and RAM for managing complex datasets. The chapter also highlights
the scalability and flexibility offered by leading cloud computing services. Collectively,
these components form a robust ecosystem that ensures collaboration, transparency, and
traceability throughout the machine learning development process.

Exercises

 1. Consider having a CPU, RAM, GPU, and TPU to do machine learning tasks:
 a. What are their minimum requirements?
 b. How does each accelerate the training process?
 c. What are the key considerations when selecting them, considering both

hardware and budget constraints?
 2. What factors should be considered when selecting a cloud provider

for machine learning tasks? Compare the performance of cloud- based
machine learning services with on- premise solutions. What are the trade-
offs between the two approaches in terms of scalability and cost?

 3. What is the most used programming language for machine learning tasks,
and why? Compare and contrast the use of programming languages in
machine learning. What are the strengths and weaknesses of each lan-
guage, and in what contexts are they commonly employed?

 4. Explain the role of version control systems (e.g., Git) in managing machine
learning codebases. How can version control contribute to collaboration
and reproducibility in machine learning projects?

 5. Briefly describe three popular machine learning code editors, IDEs, frame-
works, and libraries, highlighting their key features and use cases.

 6. How do no- code editors contribute to broadening access to machine
 learning, and what advantages and limitations do they have compared to
traditional coding?

 7. How do pre- trained model repositories accelerate machine learning devel-
opment, and what challenges may arise when utilizing pre- trained models?

5 • Machine learning software and hardware requirements 137

FURTHER READING

AI For People. (n.d.). Tools for explainability and transparency. https:// www. aiforpeople. org/
tools- for- explainability- and- transparency/

Anand, A. (2021, January). 6 Explainable AI (XAI) frameworks for transparency in AI. Dev.
https:// dev. to/ amananandrai/ 6- explainable- ai- xai- frameworks- for- transparency- in- ai- 3koj

Bulat, R. (2023, February 24). Machine learning programming – Languages and frameworks for
2023. Iglu. https:// iglu. net/ machine- learning- programming/

Dilhara, M., Ketkar, A., & Dig, D. (2021). Understanding software- 2.0: A study of machine
learning library usage and evolution. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(4), 1–42.

Flexa, C., Gomes, W., & Viademonte, S. (2019, July). An exploratory study on machine learning
frameworks. In Anais do XVIII Workshop em Desempenho de Sistemas Computacionais
e de Comunicação. SBC.

Li, H., & Bezemer, C. P. (2022). Studying popular open source machine learning libraries and
their cross- ecosystem bindings. arXiv preprint arXiv:2201.07201.

Loeliger, J., & McCullough, M. (2012). Version control with git: Powerful tools and techniques
for collaborative software development. O’Reilly Media, Inc.

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., … & Hluchý,
L. (2019). Machine learning and deep learning frameworks and libraries for large- scale
data mining: A survey. Artificial Intelligence Review, 52, 77–124.

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., … & Hluchý,
L. (2019). Machine learning and deep learning frameworks and libraries for large- scale
data mining: a survey. Artificial Intelligence Review, 52, 77–124.

Onose, E. (2020, December 13). Explainability and auditability in ML: Definitions, techniques,
and tools. Neptune. https:// neptune. ai/ blog/ explainability- auditability- ml- definitions-
techniques- tools

Wang, Z., Liu, K., Li, J., Zhu, Y., & Zhang, Y. (2019). Various frameworks and libraries of
machine learning and deep learning: A survey. Archives of Computational Methods in
Engineering, 31, 1–24.

Zhu, M., McKenna, F., & Scott, M. H. (2018). OpenSeesPy: Python library for the OpenSees
finite element framework. SoftwareX, 7, 6–11.

 8. How do datasets and model tracking tools contribute to effective
 management throughout the machine learning development life cycle, and
what metadata is crucial for tracking datasets and models?

 9. Explain the concept of hyperparameter optimization in machine learn-
ing and how AutoML tools automate the process of finding optimal
hyperparameters.

10. Explain the concept of explainable AI and how explainable AI tools con-
tribute to interpreting and understanding the decisions made by machine
learning models.

https://www.aiforpeople.org/tools-for-explainability-and-transparency/
https://www.aiforpeople.org/tools-for-explainability-and-transparency/
https://dev.to/amananandrai/6-explainable-ai-xai-frameworks-for-transparency-in-ai-3koj
https://dev.to/amananandrai/6-explainable-ai-xai-frameworks-for-transparency-in-ai-3koj
https://iglu.net/machine-learning-programming/
https://neptune.ai/blog/explainability-auditability-ml-definitions-techniques-tools
https://neptune.ai/blog/explainability-auditability-ml-definitions-techniques-tools

138 DOI: 10.1201/9781003486817-6
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

6Responsible
AI and
explainable AI

Upon completing this chapter, learners should be able to:

1. Explain the concepts of responsible AI and explainable AI.
2. Understand the importance of transparency, fairness, and accountability in AI.
3. Analyze and identify biases and assess fairness considerations within

AI systems.
4. Examine the cultural implications of AI technologies and their impact on

various sectors.
5. Familiarize with existing and emerging regulations and standards related to

AI ethics.

6.1 RESPONSIBLE AI

AI offers a broad spectrum of opportunities across a variety of application domains. For
instance, AI technologies support medical experts in disease diagnosis and prognosis,
treatment planning, and disease prevention. Furthermore, AI has significantly improved
agriculture, environmental conservation, manufacturing, and transportation sectors.
However, the impressive advancements in AI technology may have negative outcomes,
which, if not addressed, could lead to potentially disruptive consequences, threats, and
risks to humanity. Consequently, the development and deployment of AI systems require
special attention to ensure that they are in the interest of the social good. As a result,
it becomes imperative to adopt responsible approaches to AI solutions from the early
stages of their inception. Responsible AI refers to the ethical and accountable develop-
ment, deployment, and use of AI systems. It entails various principles and practices
aimed at ensuring AI technologies are designed and used in ways that benefit individu-
als and society while minimizing potential risks and negative impacts. It is, therefore,
important to consider the principles of responsible AI to ensure that the development

http://dx.doi.org/10.1201/9781003486817-6

6 • Responsible AI and explainable AI 139

and application of AI solutions are inclusive, transparent, equitable, unbiased, and ethi-
cal. The fundamental principles of responsible AI are summarized in Table 6.1.

6.2 EXPLAINABLE AI

Explainable AI (XAI) refers to artificial intelligence systems that provide clear, understand-
able, and interpretable explanations of their decisions and actions to human users. XAI
aims to make the workings of AI models transparent, allowing users to trust and understand
the reasoning behind AI outputs. XAI is essential in building trust and confidence in the
deployed models. It is also one of the key requirements for implementing responsible AI.

If AI lacks explainability in certain domains, like entertainment services, the poten-
tial harm may not be as catastrophic compared to other areas. Explainable AI is crucial
in domains with high- risk applications such as face recognition (in law enforcement),
autonomous vehicles, or disease diagnosis and prognosis. It is important to note that
using explainable machine learning models provides more debugging efficiency and
contributes to achieving responsible AI. The difference between traditional AI and
explainable AI is summarized in Figure 6.1.

6.3 PRIVACY CONCERNS IN
MACHINE LEARNING

Privacy in machine learning has become increasingly critical as machine learning
algorithms are widely deployed across various applications. Privacy concerns revolve
around the collection, storage, and utilization of sensitive information in ways that can

TABLE 6.1 Responsible AI principles

PRINCIPLE DESCRIPTION

Fairness AI systems should treat everyone fairly regardless of geographical
differences, ethnicities, and gender. Ensuring fairness and avoiding
biases require well- representative datasets for AI model training.

Inclusiveness AI systems should empower everyone and engage people to provide
better results.

Reliability & Safety AI systems should perform reliably and safely such that they can
cause no harm.

Transparency AI systems should be understandable so that their decision- making
is explainable and provide visibility of their elements.

Privacy & Security AI systems should be secure and respect the privacy of individuals’
data and supporting systems.

Accountability AI systems might operate autonomously, but humans should be
accountable for supervising such systems.

140 Practical Machine Learning

impact the privacy of individuals. The privacy issues in machine learning can manifest
in different ways, presenting challenges that extend across various stages of the machine
learning life cycle. For example, the unintentional inclusion of personally identifiable
information (PII) during data collection can threaten individuals’ privacy. This risk is
heightened in the event of data breaches, where unauthorized access to training datas-
ets might lead to the disclosure of sensitive information, thereby endangering privacy
on a larger scale. To protect user privacy, techniques such as deanonymization and
data aggregation can be employed to separate user data. Additionally, eliminating user
 identifiers and unique data and ensuring secure data storage are critical measures for
preventing potential privacy risks.

It is worth noting that machine learning models are vulnerable to implication
breaches. Implication breaches in machine learning happen when information used by or
derived from machine learning models is misused to reveal sensitive details about indi-
viduals. These breaches take advantage of data patterns learned by the models, potentially
exposing personal information even if it was anonymized. For example, an attacker could
exploit subtle correlations within the model to re- identify individuals or infer private attri-
butes not explicitly present in the data. These breaches are particularly alarming in sectors
such as healthcare, finance, or any area involving sensitive personal information.
Consequences may include identity theft, discrimination, and privacy violations. To miti-
gate the risks of implication breaches in machine learning, it is essential to implement
strong data protection and privacy measures, such as differential privacy, secure data stor-
age, and thorough model evaluation. Moreover, the opacity of certain machine- learning
models complicates the explanation of their decision- making processes. This lack of
explainability poses significant privacy concerns, especially in contexts where transpar-
ency is crucial, such as medicine or legal or financial decision- making. Deep neural net-
works, for example, are vulnerable to various implication breaches because they retain
information from their training data. These vulnerabilities can be exploited through tech-
niques like white- box membership inference. The “white- box” refers to having access
to detailed information about the model’s architecture, parameters, and training process.

FIGURE 6.1 Traditional AI and explainable AI.

6 • Responsible AI and explainable AI 141

By exploiting this access, an attacker can infer membership of a particular data sample in
the training dataset based on the model’s responses or outputs.

Furthermore, it is important to note that creating datasets with individual informa-
tion from different sources could result in multidisciplinary privacy risks. This risk
emerges when data from diverse sources are aggregated, leading to the possibility of
revealing sensitive information that was not considered private when isolated. For
example, consider a scenario where medical records are combined with social media
data and purchasing history. Individually, each dataset might not disclose sensitive
information. However, combined, the dataset could reveal personal details about an
individual’s health conditions, lifestyle choices, and financial status.

As consumers commit their data to machine learning systems, gaining explicit and
informed consent becomes increasingly essential. Furthermore, individuals should have
a choice over how their data is used, and companies must set clear rules for data collec-
tion, utilization, and storage. As a result, regulatory compliance with privacy standards
such as the General Data Protection Regulation (GDPR) or the Health Insurance
Portability and Accountability Act (HIPAA) is more than simply a legal necessity. It is
an essential component of protecting individuals’ private rights.

Therefore, privacy- preserving techniques are employed to protect user privacy
within machine learning applications. Consider the following scenario: the data owner
wants to use the data to train a machine learning model but does not want to lose control
over it. And, the model’s owner refuses to expose its parameters to anyone, including the
owner of the data used to train it. Additionally, both the model and data owners have a
shared interest. This issue can be handled well by privacy- preserving machine learning
strategies to safeguard the interests of each side. Several privacy- preserving machine
learning strategies have been developed to address possible privacy risks. These include
differential privacy—introducing noise to data to protect individual privacy; homomor-
phic encryption—enabling computations on encrypted data; and federated learning—a
decentralized approach where multiple devices collaboratively train a model without
sharing raw data. However, each technique has strengths and weaknesses, making
privacy- preserving machine learning an active area of research.

6.4 ETHICAL IMPLICATIONS
OF MACHINE LEARNING

Human beings exhibit various cognitive biases, such as recency and confirmation bias,
which are reflected in our behaviors and, consequently, in the data we generate. Since
data forms the foundation of machine learning algorithms, it is crucial to design experi-
ments and algorithms with these biases in mind. Machine learning has the potential to
amplify and scale human biases at an unprecedented rate, leading to significant ethical
concerns. These issues can arise from misguided, unexplainable, or untraceable evi-
dence, potentially resulting in unfair and discriminatory outcomes. Addressing these
biases is essential to ensure the ethical and fair deployment of machine learning tech-
nologies. Table 6.2 summarizes the general ethical issues of machine learning.

142 Practical Machine Learning

TABLE 6.2 Ethical implications of machine learning

CONCERN DESCRIPTION

Bias and Discrimination Machine learning models may unintentionally perpetuate
bias and discrimination contained in the training data.
If the training data contains biased or discriminating
tendencies, the model may learn and repeat such biases,
resulting in biased conclusions or treatments. For example,
if the data for resume screening is biased toward specific
groups, a resulting machine learning system may mistakenly
discriminate against certain demographic groups.

Privacy and Data Protection Machine learning frequently relies on vast volumes of
sensitive personal data for training and prediction in crucial
domains such as law enforcement and healthcare. The
collection, storage, and use of such data might raise privacy
and protection concerns. Individuals’ personal information
must thus be maintained securely and used in accordance
with existing privacy regulations. Furthermore, the prospect
of re- identification and data breaches pose significant
challenges to maintaining data privacy. This may potentially
lead to targeted assaults.

Lack of Transparency and
Explainability

Some machine learning models, particularly deep learning
models, can be exceedingly complicated and difficult to
comprehend. However, the lack of transparency raises
concerns about the models’ capacity to explain and defend
their findings. As a result, the black- box nature of some
machine learning algorithms may be problematic in certain
industries, such as healthcare or finance, where openness
and accountability are crucial.

Unintended Consequences Unexpected or unintended consequences may arise from
machine learning models. These outcomes may be
caused by data biases, external influences, or the model’s
interactions with complex systems. For example, the
machine learning algorithm’s decision- making process in
autonomous cars may result in unexpected accidents or
moral quandaries when presented with moral choices.

Job Displacement and
Economic Impact

Machine learning–driven automation may lead to job losses
in certain industries. While the transition may create new
job possibilities, it may also cause economic disruption and
inequality. For example, in customer service, generative AI
is used to create chatbots that can answer client inquiries
and resolve issues. Consequently, this leads to job losses for
human customer service representatives.

Adversarial Attacks and
Security

Machine learning models are vulnerable to adversarial
attacks, in which hostile actors intentionally affect or
confuse the model by introducing minor disruptions to
the input data. Such assaults have serious ramifications,
particularly in critical applications like autonomous cars,
disease diagnostics, and cybersecurity.

6 • Responsible AI and explainable AI 143

6.5 ACCOUNTABILITY AND TRUST IN AI

Accountability and trust in AI systems are essential for their ethical and responsible
deployment. Therefore, it is crucial to develop methods to trace AI decision- making
by creating frameworks that enable the understanding and tracking of how AI systems
reach their conclusions or actions. This involves establishing explainable AI techniques
that ensure AI algorithms and models are transparent and interpretable. Furthermore,
model interpretability, causal reasoning, and attention processes provide insights into
the AI’s decision- making process, allowing users to understand and confirm the logic
behind AI- generated outcomes. Error detection systems are required to regularly exam-
ine AI outputs for biases, inaccuracies, and unexpected effects. These techniques include
 frequent audits, validation processes, and feedback loops to improve the accuracy,
dependability, and fairness of artificial intelligence systems.

Building trust between AI systems and people requires openness and clear com-
munication, which includes making AI operations and functions accessible and appar-
ent to users, and disclosing the system’s capabilities, limits, and the data on which it
operates. It also includes reporting the methods employed, the data sources, and any
relevant biases or uncertainties. Furthermore, good communication includes providing
consumers with comprehensible information regarding AI functions and activities. It
features user- friendly interfaces, explanations of AI- generated judgments, and easy
ways for users to request clarification or voice concerns. Moreover, developing trust
requires establishing an open and responsive culture where user input and concerns are
noticed and handled. Managing unforeseen outcomes in AI systems necessitates a pro-
active strategy. As a result, companies must anticipate any adverse effects or biases in
AI decision- making and should have mechanisms in place to detect and mitigate them.
This includes ongoing monitoring, impact assessments, and adopting methods to reduce
negative repercussions. In addition, setting clear criteria for accountability and respon-
sibility when unintended consequences arise ensures that necessary remedial steps are
performed to avoid or mitigate any negative impacts.

6.6 GLOBAL CASE STUDIES ON AI
GOVERNANCE AND REGULATION

AI governance and regulation include creating AI rules, ethical frameworks, and legal
standards that regulate the development, deployment, and use of AI technology and
solutions. The goal is to guarantee that AI systems perform ethically, openly, and in
accordance with human norms while mitigating possible risks and social repercussions.
AI governance includes developing AI Acts, rules, and ethical guidelines, establish-
ing AI safety standards, encouraging accountability and transparency in AI decision-
making, and addressing concerns about bias, privacy, and the social repercussions
of AI. Regulatory activities are focused on adopting rules and regulations that control AI
technology, including data privacy, AI ethics, liability, safety, and verifying compliance

144 Practical Machine Learning

with established standards in order to promote responsible AI creation and usage. The
following subsections present some case studies of projects in AI governance and regu-
lation throughout the world.

6.6.1 Formulation of AI strategies and guidelines
in Africa

The formulation of AI strategies and guidelines in some African countries involves
developing comprehensive plans and policies to harness AI technologies for eco-
nomic growth and social development and address regional challenges. For example,
Rwanda’s National AI Policy incorporates ethical considerations to seize economic
development opportunities and manage AI- related risks. Other African countries either
finalizing or already releasing their AI strategy include Algeria, Egypt, Tunisia, Ghana,
Benin, Mauritius, and Ethiopia. At the continental level, the African Union (AU) com-
menced consultation meetings with stakeholders in early 2024 to draft the Continental
AI Strategy for Africa. This strategy aims to outline how AI can be leveraged to advance
social and economic development in Africa while establishing necessary legal and
 regulatory safeguards to protect users and societies.

6.6.2 European Union AI Act

The European Union (EU) has proposed an AI Act with the goal of addressing ethi-
cal and social concerns about AI by creating a comprehensive regulatory framework
for high- risk applications. The Act defines four types of high- risk AI, including those
that affect safety, justice, democracy, or fundamental rights, such as facial recognition
systems in public places, AI- powered recruiting tools, and algorithms that influence
social media content. Such applications will face greater control due to their potential
for abuse or prejudice. The EU AI Act promotes openness throughout the AI develop-
ment and deployment life cycle, requiring developers to provide information about data
sources, algorithms employed, and potential hazards, allowing users to make informed
decisions when engaging with AI systems. This quest for openness is intended to fight
the “black box” dilemma, in which AI judgments remain opaque and unaccountable. In
addition, the Act requires developers and users to follow values such as human dignity,
non- discrimination, and justice. This value- driven approach aims to guarantee that AI
benefits humanity and does not aggravate current imbalances. The Act’s emphasis on
human- centric AI and openness establishes a precedent for future global policies, which
may influence the course of AI research worldwide.

6.6.3 Global partnership on AI

The Global Partnership on AI (GPAI) is an international initiative launched in 2020 to
bring together governments, business leaders, academics, and civil society to support
responsible AI development worldwide. GPAI focuses on collaborative efforts through

6 • Responsible AI and explainable AI 145

working groups focused on themes such as responsible AI, data governance, and ethics
in order to foster international cooperation, develop best practices, and create frame-
works to ensure AI advancements are consistent with ethical principles, human rights,
and societal values. GPAI aims to foster dialogue and information exchange, striving
toward a future where AI technologies benefit society, uphold ethical standards, and
promote transparency.

6.6.4 China AI ethics guidelines

China introduced AI ethics standards in 2019, including the “Beijing AI Principles” by
the Beijing Academy of Artificial Intelligence (BAAI) and the “AI Ethics Guidelines for
Trustworthy AI” by the Ministry of Industry and Information Technology (MIIT). The
Beijing AI Principles emphasize values such as justice, transparency, and safety, advo-
cating for AI advancements aligned with societal norms, privacy protection, and legal
compliance. Concurrently, the MIIT standards emphasize the necessity of trustworthy
AI innovation by prioritizing human autonomy, justice, responsibility, and security in AI
applications. Both recommendations highlight the commitment of the country to sup-
porting responsible AI research and ethical standards in its fast- evolving AI ecosystem,
highlighting concepts critical to the responsible use of AI technology.

6.7 HUMAN- CENTRIC
ARTIFICIAL INTELLIGENCE

The desire to emphasize the importance of human- centricity stems from the fact that AI
algorithms have moved away from human control and fail to fit consumers’ ideals. In
order to ensure that AI effectively fulfills its intended purpose and avoids inadvertent
harm to end users or possible harm to others in the future, humans must be included in
the loop. While many people see AI as a revolutionary tool for human advancement,
the potential implications of the gap between AI and humans can be severe, affecting
individuals and the community. A human- centric approach in developing AI systems
prioritizes designing technologies that cater to human needs, preferences, and capa-
bilities. It entails using user feedback to improve AI functionality and correspond with
human tastes and requirements. This approach prioritizes ethical concerns, including
fairness and transparency in AI algorithms, to ensure the responsible and ethical use of
AI technology. However, the emphasis on fostering human- centric AI, particularly dur-
ing the design phase of AI systems, may lead to overlooking the likelihood that dangers
to human values may develop at various points during the AI life cycle. Other phases of
the AI systems life cycle, such as creation, assessment, and operation, must be closely
monitored to guarantee conformity with human values. For example, research reveals
that different biases exist and may be identified at various phases of the AI system’s
lifespan. Notably, certain biases may be related to the obtained data rather than the AI
algorithm’s design.

146 Practical Machine Learning

6.8 RESPONSIBLE AI BEST PRACTICES

Developing and implementing ethical AI best practices is critical as AI technologies
continue to affect various facets of our lives. These best practices promote transpar-
ency, justice, accountability, and privacy in AI development and deployment. Table 6.3
outlines a useful set of responsible AI best practices that can be used to reduce biases,
increase transparency, and maintain ethical standards throughout the AI life cycle. By
adopting these best practices, stakeholders can better navigate the ethical challenges
associated with AI, leading to more trustworthy and equitable outcomes.

TABLE 6.3 Responsible AI best practices

S/N BEST PRACTICE DESCRIPTION

1 Use Diverse and
Representative Data

Ensure that the training data is varied and reflects
the population it intends to serve. Biases in data
can lead to biased models. Thus, steps should be
taken to rectify underrepresentation and guarantee
inclusion.

2 Human Involvement in
Algorithms Design

Since algorithms are designed by people, they can
unintentionally perpetuate and even aggravate
biases in the data used to train them. Humans
can also give a deep knowledge of the social,
cultural, and historical context of the data. This
understanding is critical for identifying potential
biases and creating algorithms that are sensitive
to these nuances. In addition, create a broad and
heterogeneous algorithm development team. By
including team members from different disciplines,
cultures, gender groups, and experiences, the team
can better identify potential biases, address a wider
range of ethical concerns, and develop more robust
and inclusive AI systems.

3 Ensure Transparency
and Explainability

Uphold transparency in the machine learning
model’s decision- making process. Users who
understand how decisions are produced may better
evaluate and counter any biases. As a result, the
highest level of explainability in the produced
models is achieved.

4 Employ Bias Assessment
and Mitigation Tools

Utilize tools that assess and measure biases in the
training data and model outputs. These tools can
provide insights into potential sources of bias and
guide corrective actions. In addition, bias mitigation
techniques should be employed during model
training. Techniques such as re- sampling, re-
weighting, and adversarial training can help reduce
biases in machine- learning algorithms.

6 • Responsible AI and explainable AI 147

6.9 AI IMPACT ASSESSMENT
CASE STUDIES

Unfair or discrimination caused by AI may be addressed through AI impact assess-
ment and ethics by design. On the one hand, the overall purpose of impact assessment
is to understand prospective and anticipated issues within a given area. The goal is to
use this information to design mitigation solutions. Some significant examples of AI
impact assessment include the European Commission’s High- Level Expert Group on
Artificial Intelligence’s evaluation list for trustworthy AI (AI HLEG 2020) and the ECP
Platform AI impact assessment. On the other hand, ethics by design aims to include
ethical principles in designing and developing AI and associated technologies, empha-
sizing that these issues should not be considered an afterthought. Ethics by design
involves considering ethical concepts as requirements the AI system must meet. The
Ethics By Design and Ethics of Use Approaches for Artificial Intelligence guidance

S/N BEST PRACTICE DESCRIPTION

5 Regular Algorithms
Audit

Regular and thorough assessments conducted
by operators are essential to identify and rectify
potential algorithm biases, ensuring ongoing
fairness and equity in their outcomes. An example
of biased outcomes can be evident in hiring
processes that consistently favor candidates from
certain socioeconomic backgrounds over others
leading to perpetuating inequality in employment
opportunities. In this case, users can discern
the presence of bias without knowing the inner
workings of the algorithm’s decision- making
process.

6 Legal and Regulatory
Compliance

Establish clear ethical guidelines for algorithm design
and implementation and adhere to such guidelines.
Human input is essential in defining what is
considered fair and unbiased in different contexts.
This involves considering ethical implications and
societal norms. Besides, stay informed about legal
frameworks related to discrimination, privacy, and
fairness, and integrate compliance measures into
the development process.

7 Encourage User
Feedback and Input

Users may have unique perspectives and experiences
that can help identify biases or unintended
consequences in algorithms. Actively incorporating
user feedback can lead to iterative improvements.

TABLE 6.3 (Continued) Responsible AI best practices

148 Practical Machine Learning

drafted by the European Commission in 2021 suggests a five- layer model that shows
what needs to be incorporated at different levels of AI development. Other existing
frameworks proposed to measure Responsible AI include the FACETS Responsible
AI Framework designed by the RAIL in KNUST Ghana, CITADEL in Burkina Faso,
and the AfriAI (previously known as AI4D Lab) Research Lab at the University of
Dodoma, Tanzania. The framework includes a series of questions to compute the
FACETS score. F, A, C, E, T, and S stands for Fairness, Accountability, Confidentiality,
Ethics, Transparency, and Safety measures, respectively. The framework computes the
scores for four pipeline sections: Envision, Data, Model, and Deployment. The frame-
work can be accessed online at: https:// facets. netlify. app/facets.

6.10 ARTIFICIAL INTELLIGENCE
SOVEREIGNTY

Imagine a world where nations, communities, and even individuals have control over the
AI systems that influence their lives. This is the essence of AI sovereignty, which is the
ability to shape, develop, and utilize AI to align with individual values, cultural norms,
and strategic goals. At its core, AI sovereignty encapsulates the idea that nations should
retain control over their own AI capabilities, policies, and data governance frameworks,
safeguarding their autonomy in the face of the rapidly evolving AI landscape. This sov-
ereignty extends beyond mere technological expertise to encompass the ethical, legal,
and strategic dimensions of AI deployment. The race for AI dominance has become a
focal point of geopolitical competition in today’s interconnected World. Nations are
investing heavily in AI research, development, and deployment, recognizing its trans-
formative potential across various sectors, from healthcare to defense. However, as AI
infiltrates critical infrastructure and decision- making processes, concerns about depen-
dency on foreign AI technologies and vulnerabilities to data breaches or algorithmic
biases have intensified. Consequently, AI sovereignty has emerged as a counterbalance
to these risks, advocating for national strategies prioritizing self- reliance and resilience
and protecting core values and interests.

To effectively address the complexities of AI sovereignty, policymakers must
 navigate a delicate balance between fostering innovation and safeguarding national inter-
ests. This entails developing robust regulatory frameworks that promote responsible AI
development, ensure data privacy and security, and mitigate the risks of algorithmic
manipulation or proliferation of autonomous weapons. Moreover, international
 cooperation and dialogue are essential to harmonize standards, norms, and practices gov-
erning AI, fostering trust, transparency, and accountability in its use globally. Ultimately,
the pursuit of AI sovereignty is not merely about asserting technological supremacy but
also about upholding fundamental principles of sovereignty, democracy, and human
rights in the age of AI. Some of the AI sovereignty aspects are described in Table 6.4.

https://facets.netlify.app/facets

6 • Responsible AI and explainable AI 149

6.11 SUMMARY

This chapter started by setting the base on what it means by responsible and explain-
able AI. It introduced the foundation of responsible AI principles, emphasizing fair-
ness, transparency, and ethical considerations throughout the AI life cycle. Moving
forward to explainable AI, the chapter underscored the importance of interpretability in
AI systems, enabling users to comprehend and trust the technology. Privacy concerns
in machine learning were discussed, offering strategies for safeguarding individual pri-
vacy amid the evolving data landscape. The chapter extended the discussion on the
ethical implications of machine learning, and highlighted some existing frameworks
for assessing ethical compliance. Besides, the issues around accountability and trust
in AI were explored in the context of establishing responsible AI practices. The chap-
ter further delved into the regulatory dimension with insights into AI governance and
regulation. Global perspectives were enriched by case studies across the world, provid-
ing a contextual understanding of diverse approaches to responsible AI deployment.
Last but not least, the chapter discussed the importance of human- centric AI design in
aligning AI systems with user needs and experiences. Finally, the chapter presented the
compilation of responsible AI best practices and AI sovereignty, offering actionable
guidelines for practitioners and organizations committed to fostering responsible, ethi-
cal, and sustainable AI.

TABLE 6.4 AI sovereignty aspects

ASPECT DESCRIPTION

Data Control Ensuring that citizens and organizations have control over
their data, including who collects it and how it is used to
train AI models. This protects privacy, prevents discrimination,
and fosters responsible AI development.

Technological
Independence

Reducing reliance on foreign- developed AI tools and
fostering domestic capabilities. This strengthens national
security, economic competitiveness, and cultural
autonomy.

Ethical Alignment Shaping AI in line with local values and ethical principles.
This could involve ensuring fairness, inclusivity, and alignment
with human rights standards.

Algorithmic Transparency Demystifying AI decision- making processes to understand how
algorithms impact individuals and society. This builds trust,
enables accountability, and allows corrective actions if biases
are detected.

150 Practical Machine Learning

FURTHER READING

Ala- Pietilä, P., Bonnet, Y., Bergmann, U., Bielikova, M., Bonefeld- Dahl, C., Bauer, W., … & Van
Wynsberghe, A. (2020). The assessment list for trustworthy artificial intelligence (ALTAI).
European Commission.

Amariles, D. R., & Baquero, P. M. (2023). Promises and limits of law for a human- centric artifi-
cial intelligence. Computer Law & Security Review, 48, 105795.

Clarke, R. (2019). Principles and business processes for responsible AI. Computer Law &
Security Review, 35(4), 410–422.

Defense Advanced Research Projects Agency (DARPA). (2022). Explainable artificial
intelligence (XAI). Retrieved July 7, 2022, from https://www.darpa.mil/program/
explainable- artificial- intelligence

Dignum, V. (2023). Responsible artificial intelligence: Recommendations and lessons learned.
In Responsible AI in Africa. Challenges and Opportunities (pp. 195–214). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-031-08215-3_9

ECP. (2019). Artificial intelligence impact assessment. ECP platform for the information society.
The Hague. Retrieved December 13, 2023, from https://ecp.nl/wp- content/uploads/2019/01/
Artificial- Intelligence- ImpactAssessment- English.pdf

European Commission. (2021). Ethics by design and ethics of use approaches for artificial
intelligence. Retrieved December 13, 2023, from https://ec.europa.eu/info/funding-
 tenders/opportunities/docs/2021-2027/horizon/guidance/ethics- by- design- and-
ethics- of- use- approaches- for- artificial- intelligence_he_en.pdf

Exercises

 1. Describe the principles of Responsible AI.
 2. Discuss legal and ethical frameworks that can help address issues around

Responsible AI.
 3. Discuss how developers can ensure that AI models are transparent and

explainable.
 4. Describe the privacy concerns related to machine learning.
 5. Describe any five ethical implications of machine learning.
 6. Discuss the ethical considerations associated with using AI in decision-

making processes.
 7. Give a short description of accountability and trust in AI.
 8. How can biases be introduced in AI systems, and what are the potential

consequences?
 9. Analyze the privacy implications of AI technologies, especially in relation

to data collection, storage, and usage.
10. What steps can you take to ensure the accountability of the decisions and

actions made by the algorithms you develop, especially in critical domains
such as healthcare and finance?

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/978-3-031-08215-3_9
https://ecp.nl/wp-content/uploads/2019/01/Artificial-Intelligence-ImpactAssessment-English.pdf
https://ecp.nl/wp-content/uploads/2019/01/Artificial-Intelligence-ImpactAssessment-English.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf

6 • Responsible AI and explainable AI 151

Ghallab, M. (2019). Responsible AI: Requirements and challenges. AI Perspectives, 1(1), 1–7.
IBM. (2022). Explainable AI. Retrieved July 7, 2022, from https://www.ibm.com/watson/

explainable- ai
Mikalef, P., Conboy, K., Lundström, J. E., & Popovic,̌ A. (2022). Thinking responsibly about

responsible AI and ‘the dark side’ of AI. European Journal of Information Systems, 31(3),
257–268. https://doi.org/10.1080/0960085X.2022.2026621

Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The
ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172.
https://doi.org/10.1016/j.socscimed.2020.113172

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep
learning: Passive and active white- box inference attacks against centralized and federated
learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739–753). IEEE.

Shafi, A. (2021, June 16). 5 explainable machine learning models you should understand.
Towardsdatascience. https://towardsdatascience.com/explainable- ai- 9a9af94931ff

Stahl, B. C., Schroeder, D., & Rodrigues, R. (2023). Ethics of artificial intelligence: Case studies
and options for addressing ethical challenges (p. 116). Springer Nature.

Suresh, H., & Guttag, J. (2021). A framework for understanding sources of harm throughout the
machine learning life cycle. In Proceedings of the 1st ACM Conference on Equity and
Access in Algorithms, Mechanisms, and Optimization (pp. 1–9).

Takyar, A. (2023). AI model security: Concern, best practices, and techniques. Retrieved
December 14, 2023, from https://www.leewayhertz.com/ai- model- security/

Taylor, R. R., O’Dell, B., & Murphy, J. W. (2024). Human-centric AI: philosophical and com-
munity-centric considerations. AI & Society, 39, 2417–2424. https://doi.org/10.1007/
s00146-023-01694-1

World Economic Forum (WEForum). (2022). Why artificial intelligence design must prioritize
data privacy. Retrieved July 7, 2022, from https://www.weforum.org/agenda/2022/03/
designing- artificial- intelligence- for- privacy/

Zapechnikov, S. (2020). Privacy- preserving machine learning as a tool for secure personalized
information services. Procedia Computer Science, 169, 393–399.

https://www.ibm.com/watson/explainable-ai
https://www.ibm.com/watson/explainable-ai
https://doi.org/10.1080/0960085X.2022.2026621
https://doi.org/10.1016/j.socscimed.2020.113172
https://towardsdatascience.com/explainable-ai-9a9af94931ff
https://www.leewayhertz.com/ai-model-security/
https://doi.org/10.1007/s00146-023-01694-1
https://doi.org/10.1007/s00146-023-01694-1
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/

152 DOI: 10.1201/9781003486817-7
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

7Artificial general
intelligence

Upon completing this chapter, learners should be able to:

1. Define Artificial Narrow Intelligence (ANI), Artificial General Intelligence
(AGI), and Artificial Super Intelligence (ASI).

2. Differentiate between ANI, AGI, and ASI based on their capabilities and
characteristics.

3. Identify the societal and ethical implications of ANI, AGI, and ASI in the
context of advancements in AI, as well as their potential benefits and risks.

4. Understand the basic concepts of robotics and embodied intelligence, the
philosophy of mind, and the future of AGI.

5. Recognize real- world examples of AGI- like technologies in different appli-
cations, including robotics, self- driving cars, virtual assistants, and natural
language processing.

7.1 CATEGORIES OF ARTIFICIAL
INTELLIGENCE

Artificial intelligence is classified into three categories: Artificial Narrow Intelligence
(ANI), Artificial Super Intelligence (ASI), and Artificial General Intelligence (AGI).
ANI is usually regarded as weak and limited in scope due to its capacity to perform
a specific task, such as winning a chess game or identifying a particular individual in
a series of images, as demonstrated by applications like Siri and Alexa. On the con-
trary, AGI and ASI are considered strong AIs as they prominently incorporate human
behavior, such as tone and emotion interpretation. Furthermore, while AGI performs at
the same level as humans, ASI (also known as super intelligence) surpasses humans’
 intelligence and capability.

AGI is the theoretical concept of a machine that can learn, understand, adapt, and
apply knowledge across a wide array of tasks, similar to human intelligence. Unlike
specialized AI systems designed for specific tasks (e.g., playing chess or recognizing
images), AGI aims to replicate the comprehensive cognitive abilities of human beings.

http://dx.doi.org/10.1201/9781003486817-7

7 • Artificial general intelligence 153

AGI seeks to create machines capable of flexible thinking, problem- solving, creativity,
and understanding context across diverse domains without requiring reprogramming for
each new task. The pursuit of AGI involves creating algorithms, architectures, and mod-
els that enable machines to generalize their learning and apply knowledge from one
domain to another, similar to human cognition. Achieving AGI is still challenging due
to the complexity of human intelligence and the complex nature of learning, reasoning,
and decision- making.

Research in AGI spans various disciplines, such as cognitive science, neuroscience,
philosophy, and computer science. While AGI holds immense potential for revolution-
izing industries like healthcare, science, and more, it raises profound ethical, societal,
and existential concerns about the impact of creating machines with human- like intel-
ligence. The quest for AGI is an ongoing endeavor that involves scientific advancements
and requires consideration of the implications and responsibilities associated with
developing such powerful AI.

7.2 WHAT MAKES AN
INTELLIGENCE GENERAL?

General intelligence is characterized by flexibility that allows humans or AI systems
to adapt to new situations, tasks, or environments without specific programming or
training for each scenario. It encompasses complex capabilities that enable adaptive
and versatile problem- solving across various domains. Moreover, general intelligence
involves the capacity to learn efficiently and not just to memorize facts but to under-
stand the underlying principles, patterns, and relationships. The learning encompasses
acquiring new information, skills, and concepts that can be applied across various
contexts.

Reasoning and problem- solving skills are also crucial aspects of general intelli-
gence as they involve analysis of complex problems, decomposing them into manage-
able components, and devising effective strategies to solve them. This requires deductive
and inductive reasoning, critical thinking, and creative problem- solving. Additionally,
general intelligence allows for transfer learning, where knowledge, skills, and experi-
ences from one domain benefit performance in unrelated tasks. Applying learning from
one area to others enhances overall adaptability and problem- solving ability.

Planning is another crucial facet of general intelligence, which involves the capac-
ity to formulate a sequence of actions to achieve specific goals while considering differ-
ent possible scenarios and outcomes. Notably, AGI aims to develop systems that can
strategize, foresee consequences, and plan courses of action in dynamic and uncertain
environments. Furthermore, metacognition plays a vital role in general intelligence. It
refers to being aware of your thinking processes. A generally intelligent being or AI
system can not only solve problems but also understand how they solved them, allowing
them to improve their approach in the future and apply it to similar situations. Moreover,
analogy and abstraction are also essential aspects of general intelligence. Analogy and

154 Practical Machine Learning

abstraction entail the capability of humans or AI systems to recognize similarities and
underlying patterns across diverse situations and engage in reasoning about abstract
concepts. This ability to reason through analogy and abstraction enhances problem-
solving and adaptability across various domains.

Human intelligence thrives through understanding the nuances of language, vision,
the unwritten rules of social interaction, and the hidden connections between seemingly
unrelated things. Therefore, for AGI to demonstrate human intelligence, it must go
beyond literal interpretation, grasp the context of situations, and develop a rudimentary
sense of “common sense” to operate effectively in the real world. AGI developers face
the challenge of creating AI systems that mimic the cognitive abilities of humans,
enabling machines to reason, learn from various sources, and solve problems across
domains with human- like flexibility and adaptability.

7.3 APPROACHES FOR DEVELOPING AGI

There are various approaches to developing AGI, each offering unique insights and pre-
senting challenges in creating human- like cognitive capabilities in machines. Firstly,
symbolic AI, rooted in logic and rules, focuses on representing knowledge and problem-
solving through symbols and rules. It involves encoding information into a symbolic
format, employing logical operations to simulate human reasoning, and using inference
rules to make conclusions. Symbolic systems excel in representing explicit knowledge
but often struggle with uncertainty and handling large- scale, unstructured data, limiting
their capacity for true generalization.

Artificial neural networks, particularly deep learning, represent a dominant approach
to achieving AGI. These networks are designed to mimic the structure and function of the
human brain, with the potential to replicate human- like learning and intelligence. Deep
learning involves interconnected artificial neurons arranged in layers, learning to recog-
nize patterns and relationships by being exposed to vast datasets during training. Their
ability to learn from diverse data types, excel in pattern recognition and problem- solving,
and continuously improve makes them vital contributors to AGI development. However,
challenges such as their black- box nature and intensive computational demands should
be addressed to exploit their full potential.

Also, evolutionary algorithms and genetic programming, inspired by biological
evolution, offer alternative AGI approaches. These methods involve generating and
evolving populations of solutions to problems, mimicking the process of natural
 selection to improve performance over iterations. While they excel in optimization and
adapting to changing environments, they often face challenges in scalability and
 efficiency for more complex problems.

Moreover, hybrid models combine various AI techniques to leverage their capa-
bilities and compensate for their drawbacks. For instance, integrating symbolic reason-
ing with neural networks aims to combine the structured knowledge representation of
symbolic AI with the learning and pattern recognition abilities of neural networks.

7 • Artificial general intelligence 155

Hybrid models seek to harness the complementary strengths of different approaches to
achieve more robust and flexible AGI systems.

Furthermore, artificial consciousness is another approach to developing AGI that
seeks to instill AI systems with subjective experiences and awareness similar to human
consciousness. It draws inspiration from theories in cognitive science and philosophy
and seeks to understand and replicate the mechanisms underlying human consciousness.
While still in its infancy, artificial consciousness holds the potential to create more
adaptable and ethics- aware AI systems, although significant technical, philosophical,
and ethical challenges remain to be addressed.

7.4 PHILOSOPHY OF MIND

In pursuing AGI, the philosophy of mind serves as both a guiding principle and a
critical inquiry. The philosophy of mind is a branch of philosophy that examines the
nature of consciousness, intelligence, and the mind. It explores fundamental questions
about what it means to have a mind, how consciousness arises, and the relationship
between the mind, the brain, and the external world. Central to this field is the explora-
tion of consciousness, arguably one of the most intriguing aspects of human existence.
Philosophers of mind explore the nature of subjective experience and how the brain’s
processes generate our inner lives, including sensations, thoughts, and emotions.

Additionally, in the domain of the philosophy of mind, the mind- body problem is
a core issue that deals with the relationship between mental states (such as thoughts,
beliefs, and perceptions) and physical states (neural processes in the brain). Philosophers
explore different theories, from dualism (which posits a fundamental distinction
between mind and body) to materialism (which suggests that mental states are ulti-
mately reducible to physical states). Intelligence is another focal point at which phi-
losophers seek to understand the nature of intelligence, what it means to be intelligent,
whether intelligence is solely a product of the brain’s computational abilities, and
whether artificial systems can possess true intelligence. This inquiry delves into ques-
tions about the nature of reasoning, problem- solving, learning, and the potential for
non- biological systems to exhibit intelligence comparable to or surpassing human
intelligence. Moreover, the philosophy of mind also examines the concept of mental
representation and how the mind represents and interacts with the world. This involves
discussions about perception, cognition, memory, and how mental states are structured
to represent external reality.

Furthermore, this field contemplates the implications of its inquiries on broader
philosophical issues and ethical considerations. It raises questions about free will,
morality, personal identity, and the implication of advancements in AI and neuroscience
on our understanding of ourselves and our place in the world. The philosophy of mind
stands at the intersection of philosophy, psychology, neuroscience, and artificial intelli-
gence disciplines. Its inquiries are foundational not only for understanding the nature of
human cognition and consciousness but also for dealing with the profound implications
of these understandings on our concepts of self, intelligence, and the nature of reality.

156 Practical Machine Learning

Thus, the philosophy of mind provides a rich conceptual framework for understanding
the nature of intelligence and consciousness, which consequently informs the design,
development, and ethical considerations of AGI systems.

7.5 CHALLENGES OF ARTIFICIAL
GENERAL INTELLIGENCE

AGI poses several challenges due to its aspiration to replicate human- like cognitive
abilities across diverse domains. The foremost challenge is the complexity and scale
that AGI systems need to comprehend and navigate. Additionally, handling the vast
complexity and scale of information while maintaining efficiency and accuracy poses
substantial technical challenges. AGI systems must be capable of understanding and
operating within real- world environments, tasks, and datasets, which demands sophisti-
cated algorithms and computational capabilities.

Another obstacle lies in the absence of a unified theoretical framework for
AGI. Various approaches to AI, such as symbolic AI, neural networks, evolutionary
algorithms, and hybrids, have advanced independently with their theories and method-
ologies. Integrating these diverse approaches into a cohesive, unified model that
accounts for the complexity of human- like intelligence remains a significant challenge.
Achieving synergy among these disparate theories and technologies is crucial for
 progressing toward AGI.

Moreover, technological limitations, such as constraints in computational power,
hinder AGI development by restricting the scalability and complexity of AI systems
needed to emulate human- level intelligence across various tasks and contexts.
Addressing these challenges demands collective efforts across multiple disciplines,
including computer science, neuroscience, philosophy, psychology, and ethics. This
requires a holistic approach that advances technological capabilities while navigating
ethical and philosophical complexities.

7.6 POTENTIAL BENEFITS AND RISKS OF
ARTIFICIAL GENERAL INTELLIGENCE

AGI holds the potential for transformative impacts across various domains, yet it also
poses significant risks that require careful consideration. It could enhance efficiency
across industries through automation and optimization, potentially revolutionizing
healthcare, natural language, agriculture, transportation, and logistics. In healthcare,
for instance, AGI could revolutionize disease diagnosis and treatment by analyzing vast
amounts of medical data, accelerating drug discovery, and offering personalized medi-
cation. Additionally, AGI’s ability to process and understand natural language could

7 • Artificial general intelligence 157

significantly improve communication, customer service, and accessibility for individu-
als with disabilities. Moreover, AGI might aid scientific research by quickly processing
complex datasets and contributing to breakthroughs in domains such as climate science,
astronomy, and material science.

However, the power and capabilities of AGI pose significant risks, including job
displacement and economic disruption. Its ability to automate tasks across industries
could result in widespread unemployment, necessitating societal adaptations and poten-
tial retraining programs to lessen the impact. Additionally, ethical concerns arise regard-
ing the possible misuse of AGI for malicious purposes, such as autonomous weapons,
cyberattacks, or surveillance, raising questions about accountability and control.

Another significant risk involves AGI surpassing human intelligence, leading to an
intelligence explosion or the creation of super intelligent systems that could potentially
act in ways unforeseen by their creators. This scenario poses risks if AGI’s objectives
misalign to human values or if the system lacks appropriate safeguards and control
mechanisms. Furthermore, similarly to conventional AI, the AGI systems could exhibit
biases inherited from the training data, leading to discriminatory or unfair outcomes.
Therefore, ensuring fairness, transparency, and ethical behavior in AGI systems is cru-
cial to prevent perpetuating societal biases and inequalities.

Managing these risks requires national, regional, and international collaboration,
robust ethical frameworks, and comprehensive regulatory oversight. Proactively
addressing AGI’s societal, ethical, and safety implications is crucial for harnessing its
potential benefits while mitigating the associated risks. Balancing technological
advancement with ethical considerations is critical in ensuring that AGI serves the best
of humanity.

7.7 INDICATORS OF THE PRESENCE OF
ARTIFICIAL GENERAL INTELLIGENCE

Although the realization of full AGI is still a distant goal, its indications are already being
seen in other fields, providing exciting glimpses of its potential to bring about signifi-
cant changes. AGI- powered technology can be found in different domains, for example,
the rise of large language models (LLM) such as the Generative Pre- trained Transformer
(GPT) series, encompassing models like GPT- 3, GPT- 4, and Google Gemini. These
models demonstrate an exceptional ability to understand and generate natural language.
Additionally, the models have made substantial progress in understanding context and
delivering consistent and contextually appropriate responses across various topics. They
can be used for activities such as text production, translation, summarization, and assis-
tance in other written content creation tasks.

Humanoid robots like Sophia demonstrate modest advancements in general intel-
ligence capabilities despite their limited and specialized intelligence. These robots are
notable for their ability to interact with humans, recognize faces, and engage in conver-
sation. Another indicator of AGI is found in self- driving cars developed by companies

158 Practical Machine Learning

such as Tesla and Waymo, which exemplify AGI- like capabilities in navigating complex
environments. These vehicles integrate various AI technologies, such as machine learn-
ing, computer vision, and decision- making algorithms, to perceive their surroundings,
make real- time decisions, and navigate roads autonomously. While not yet fully autono-
mous in all conditions, they demonstrate significant progress toward vehicles that can
handle diverse and unpredictable driving scenarios.

Moreover, AI systems in game- playing, such as AlphaGo and AlphaZero developed
by DeepMind, demonstrate remarkable strategic thinking and learning capabilities that
showcase their vicinity to general intelligence. These systems excel in creating games,
for example, chess, Go, and video games, showcasing adaptive learning and decision-
making abilities. While these AI systems demonstrate certain indications of AGI
 capabilities, such as understanding and problem- solving skills, it is crucial to emphasize
that they have not yet achieved AGI status themselves.

7.8 ROBOTICS AND EMBODIED
INTELLIGENCE

Robotics and embodied intelligence in the context of AGI involve the integration of
AI algorithms with physical robots to enable machines to perceive, interact with, and
learn from the physical environment. This integration emphasizes the importance of
sensory inputs and motor skills in shaping an understanding of the world through AI
systems. The concept of embodied intelligence in robotics proposes that intelligence is
not solely a function of algorithms but also the physical manifestation of an entity and
its interactions with the environment. By integrating AI with robots, developers aim to
create systems that learn from and adapt to the physical world, mirroring how humans
and animals learn through interaction and experience. For instance, robots equipped
with sensors such as cameras, lidar, radar, or tactile sensors gather data from the envi-
ronment, providing information about surroundings, objects, and potential obstacles. AI
algorithms process this sensory input to make sense of the environment, enabling robots
to perceive and understand their surroundings.

Also, robots need the ability to act upon their environment through movement and
manipulation. Advanced motor skills involve grasping objects, navigating environments,
and performing complex actions. A robot’s movements are controlled by AI algorithms,
enabling it to interact with and manipulate objects based on its sensory perceptions. The
combination of perception and action forms a feedback loop that facilitates learning. As
robots interact with the environment, they receive feedback based on their actions, which
helps refine their understanding and decision- making processes. Through reinforcement
learning, the robots can learn from trial and error, adjusting their behaviors based on the
outcomes of their actions in the physical world.

The integration of AI with robots has numerous real- world applications. In manu-
facturing, AI- powered robots can adapt to changing environments and tasks to optimize
production processes. Additionally, robotic systems can assist surgeons in healthcare,

7 • Artificial general intelligence 159

aid in rehabilitation, or support individuals with disabilities. Moreover, Boston Dynamics
exemplifies embodied intelligence through robots like Spot and Atlas. Spot is an agile
robot dog that utilizes sensors and AI to navigate complex terrain and learn from inter-
actions, adapting its movements for improved performance. Whereas, Atlas is an acro-
batic humanoid that showcases advanced balance and dexterity, performing complex
maneuvers with stability and agility.

However, challenges persist in achieving robust embodied intelligence in robotics,
such as developing AI systems that can adapt to diverse and unpredictable real- world
scenarios, handle uncertainties, and learn effectively from physical interactions.
Additionally, ensuring the safety, reliability, and ethical implications of AI- powered
robots operating in real- world settings is critical in this field. Therefore, the synergy
between AI and robotics in achieving embodied intelligence represents a significant step
toward AGI.

7.9 ARTIFICIAL SUPER INTELLIGENCE

ASI is the hypothetical future of AGI which is expected to possess cognitive abilities far
beyond human capacity. This will enable it to solve complex problems, acquire knowl-
edge across multiple domains, and exhibit creativity and consciousness, fundamen-
tally altering the dynamics of society and technology. The theoretical concept of ASI
remains speculative, as achieving it poses profound scientific and ethical considerations
due to its potential for immense impact on humanity. Notably, concerns arise regard-
ing control over AI systems with such capabilities, posing technological challenges.
Therefore, human control over ASI is crucial to prevent unintended consequences and
uphold ethical principles. Furthermore, it is essential to address concerns regarding
safety, transparency, and ethical alignment in the development and deployment of ASI
to mitigate potential risks and promote beneficial outcomes for society.

7.10 SUMMARY

This chapter provided a detailed overview of AGI, beginning with the definition and
differentiation from other categories of AI (i.e., ANI and ASI). It then presented the
characteristics of AGI, exploring the cognitive functions necessary for an AI system
to demonstrate broad intelligence. Various approaches for developing AGI, including
symbolic reasoning, artificial neural networks, and hybrids, were presented along-
side discussions on the philosophical foundations of AGI in the philosophy of mind.
Additionally, the chapter examined the inherent challenges in AGI development and
how to address ethical, safety, and control concerns while weighing the potential bene-
fits and risks across different domains. It further scrutinized indicators of AGI presence,
such as LLMs, humanoid robots, self- driving cars, and game- playing AI systems, which

160 Practical Machine Learning

demonstrate significant advancements in understanding and problem- solving abilities.
The chapter also discussed the role of robotics and embodied intelligence in enabling
AGI to perceive, interact with, and learn from their environment. Finally, the concept
of ASI was briefly explored, envisioning a future where AI surpasses human intelli-
gence significantly, accompanied by a discussion on the associated implications and the
imperative for responsible development and governance.

FURTHER READING

Baum, S. (2017). A survey of artificial general intelligence projects for ethics, risk, and policy.
Global Catastrophic Risk Institute Working Paper, 17–1.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P. et al.
(2023). Sparks of artificial general intelligence: Early experiments with GPT- 4. arXiv
 preprint arXiv:2303.12712.

Goertzel, B. (2007). Artificial general intelligence. Edited by Cassio Pennachin (Vol. 2). Springer.
Goertzel, B. (2014). Artificial general intelligence: Concept, state of the art, and future prospects.

Journal of Artificial General Intelligence, 5(1), 1–46.

Exercises

 1. Describe three key characteristics differentiating general intelligence from
narrow or specialized intelligence. Provide examples to illustrate these
differences.

 2. Choose any two challenges associated with AGI development and propose
potential strategies to overcome or mitigate them.

 3. Apart from the examples this chapter outlines, describe a recent real- world
application or advancement toward AGI.

 4. Describe the applications and potential impacts of AGI on society.
 5. Discuss potential advancements, challenges, and the implications of

AGI over the next decade on various aspects of society, including ethics,
employment, and technology.

 6. Imagine you could design your own AGI system. What key features and
abilities would you prioritize?

 7. Describe current AI systems which, to some extent, exhibit early manifes-
tations of AGI.

 8. Analyze and compare two philosophical theories or perspectives regarding
the nature of consciousness and its emulation in AGI systems.

 9. Discuss a recent advancement in robotics technology that showcases
embodied intelligence principles.

10. Discuss the potential biases in AGI systems trained on real- world data,
how they arise, and propose strategies to mitigate their impact on decision-
making and social interactions.

7 • Artificial general intelligence 161

Goertzel, B., Pennachin, C., & Geisweiller, N. (2014). Engineering general intelligence, Part 1.
Atlantis Thinking Machines, 5, 1–318.

Goertzel, B., Pennachin, C., & Geisweiller, N. (2014). Engineering general intelligence, Part 2:
The CogPrime architecture for integrative, embodied AGI (Vol. 6). Springer.

Pei, Jing, Lei, Deng, Sen, Song, Mingguo, Zhao, Youhui, Zhang, Shuang, Wu, & Guanrui, Wang.
(2019). Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature,
572(7767), 106–111.

Pennachin, C., & Goertzel, B. (2007). Contemporary approaches to artificial general intelligence.
In Goertzel, B., Pennachin, C. (eds) Artificial general intelligence (pp. 1–30). Springer.
https://doi.org/10.1007/978-3-540-68677-4_1

Voss, P. (2007). Essentials of General Intelligence: The Direct Path to Artificial General
Intelligence. In Goertzel, B., Pennachin, C. (eds) Artificial general intelligence, 131–157.
Springer. https://doi.org/10.1007/978-3-540-68677-4_4

Wang, Pei, & Goertzel, B. (Eds.). (2012). Theoretical foundations of artificial general intelligence
(Vol. 4). Springer Science & Business Media.

https://doi.org/10.1007/978-3-540-68677-4_1
https://doi.org/10.1007/978-3-540-68677-4_4

162 DOI: 10.1201/9781003486817-8
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

8Machine
learning
step- by- step
practical examples

Upon completing this chapter, learners should be able to:

1. Understand how to approach various machine learning problems.
2. Apply practical data preprocessing skills to address machine learning

problems.
3. Apply classification algorithms to classify data into distinct categories and

interpret the results.
4. Utilize regression algorithms on real- world datasets to make predictions and

evaluate model performance.
5. Apply clustering algorithms to partition real- world data into groups based

on similarity and interpret and visualize results.
6. Apply association rules techniques to discover relationships between items

in a real- world dataset.

8.1 CASE STUDY 1: CLASSIFICATION
PROBLEM

This case study focuses on detecting diabetes using a machine learning classifier,
where the data samples are classified into two classes (i.e., positive or negative).
The subsequent subsections outline the steps involved in handling this particular
case study.

http://dx.doi.org/10.1201/9781003486817-8

8 • Machine learning step-by-step practical examples 163

8.1.1 Problem definition

Diabetes is a chronic disease that leads to elevated levels of blood sugar. When this
 condition develops, individuals may experience a range of uncomfortable, dangerous,
and potentially life- threatening symptoms. These symptoms include high blood pressure,
increased susceptibility to infections, heart disease risks, gastroparesis, blood vessel
damage, malfunctioning of the pancreas, and irreversible blindness.

8.1.1.1 Description of the dataset

The case study utilizes the widely known Pima Indian Diabetes Dataset, a popular dataset
for machine learning tasks. This dataset can be used to train, test, and evaluate new
machine learning algorithms and develop models for diabetes prediction. It is publicly
available for download from the Kaggle data science repository (https://www.kaggle.
com/datasets/uciml/pima- indians- diabetes- database). The dataset consists of 768
records of women at least 21 years old. Each record contains nine features (8 input and
1 output/outcome/target) as follows:

 • Pregnancies: Number of times pregnant
 • Glucose: Plasma glucose concentration 2 hours in an oral glucose tolerance test
 • BloodPressure: Diastolic blood pressure (mm Hg)
 • SkinThickness: Triceps skin fold thickness (mm)
 • Insulin: Serum insulin concentration (mu U/ml)
 • BMI: Body mass index (weight in kg/height in m2)
 • DiabetesPedigreeFunction: Diabetes pedigree function
 • Age: Age (years)
 • Outcome: The target feature is a binary variable (i.e., 1 or 0) indicating

whether the patient has diabetes or not (i.e., positive or negative).

8.1.2 Loading libraries

Loading the required libraries for data manipulation and model development is
 essential. The import statement is used to load a library in Python. Therefore,
the following code snippet loads the necessary libraries required in this case study.
More details about each imported library are provided using comments indicated by
the hash sign (#).

importing the pandas library for data manipulation
import pandas as pd

importing the numpy library for mathematical computations
import numpy as np

importing the scipy library for data transformation
from scipy.stats import zscore

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

164 Practical Machine Learning

importing the seaborn library for data visualization
import seaborn as sns

importing the matplotlib library for data visualization
import matplotlib.pyplot as plt

importing train_test_split function from sklearn library

for splitting the dataset into the train and test sets
from sklearn.model_selection import train_test_split

importing logistic regression algorithm from sklearn library
from sklearn.linear_model import LogisticRegression

importing evaluation metrics from sklearn library
from sklearn.metrics import precision_score, recall_score,
f1_score,accuracy_score, confusion_matrix, ConfusionMatrixDisplay

8.1.3 Loading dataset

Once the necessary libraries have been imported, the subsequent step involves loading
the dataset file (in this case, diabetes.csv) using the read_csv method in the panda’s
library. The dataset should be loaded from its stored file path, which may vary depend-
ing on the file’s location within the computer being used. For simplicity, storing the
dataset file and the code or notebook file in the same directory is advised where there
is no need to specify the absolute file path, as seen in the following code snippet. This
code snippet shows the content of the first five records (depicted in Figure 8.1) using the
data.head(5) command statement.

Loading the diabetes dataset
diabetes_data = pd.read_csv("diabetes.csv")

Displaying the first few records
print("First 5 records:")
print(diabetes_data.head(5))

FIGURE 8.1 The first five records of the dataset.

8 • Machine learning step-by-step practical examples 165

8.1.4 Data summary

After loading the dataset, it is essential to get a summary of the loaded dataset. As
shown in the following code snippet, the info() method can be used to provide details
such as the number of rows and columns, the data types of the columns, and the
memory usage of the dataset. Figure 8.2 shows the output of the data.info() command
statement.

diabetes_data.info()

8.1.4.1 Descriptive statistics

There are various ways of summarizing and describing the main properties of attri-
butes of the dataset in Python, such as the central tendency, dispersion, and shape. For
instance, the describe() method is used to display the measures of central tendency
for all numerical attributes in the dataset. In this case, the following code snippet is
used for such purposes. Figure 8.3 shows the output of the data.describe() command
statement.

diabetes_data.describe().round(2)

Additionally, the following code snippet computes and displays the number of
records in each class and their corresponding percentages. As it is shown in Figure 8.4,
the classes labeled as 0 (i.e., negative) and 1 (i.e., positive) have a total of 500 (65.10%)
and 268 (34.90%) records, respectively. These statistics show that the two classes are
imbalanced, as the number of records in the negative class is almost double that of the
positive class. This gives insightful information to help you understand the class com-
position of the dataset and consider potential implications for data analysis and
modeling.

FIGURE 8.2 Data summary.

166 Practical Machine Learning

Counting the number of samples in each target class
target_counts = diabetes_data['Outcome'].value_counts()
print("\nClass Counts:")
print(target_counts)

Calculating the percentage of samples in each target class
target_percentages = (target_counts / len(diabetes_data)) * 100
print("\nClass Percentages:")
print(target_percentages)

8.1.4.2 Data visualization

It is essential to visually analyze the characteristics of the dataset in order to get insights
such as the relationships and comparisons between features, checking for the pres-
ence of outliers and other data- relevant insights. The following code snippet displays
the visual representation of the class distribution in the dataset. The resultant output is
depicted in Figure 8.5.

FIGURE 8.3 Descriptive statistics for each column in the dataset.

FIGURE 8.4 The class distribution of the dataset.

8 • Machine learning step-by-step practical examples 167

Visualizing the class distribution
sns.set(style="whitegrid")
plt.figure(figsize=(8, 6))
plt.title("Class Distribution")
sns.set_palette("Set2")
sns.countplot(x='Outcome', data=diabetes_data)
plt.xlabel("Target Class")
plt.ylabel("Count")
plt.show()

Furthermore, scatter plots are commonly used to visualize insights about a dataset,
such as correlations between features, outlier detection, and feature distribution.
For example, the subsequent code generates a scatter plot that helps examine the rela-
tionship between BMI and age features using the scatterplot() function. As depicted in
Figure 8.6, the resulting scatter plot enabled the discovery of outliers in the dataset, as
seen in the two red ovals.

plt.figure(figsize=(8, 6))
sns.scatterplot(x="bmi", y="age", data=diabetes_data, sizes=(1, 8),
hue="Outcome")
plt.title("Age against BMI Scatterplot")
plt.show()

Moreover, a boxplot visually displays the lower fence, the first quartile (25th per-
centile), the median (50th percentile), the third quartile (75th percentile), and the
upper fence values of the feature, along with any outliers. The following code snippet
generates the boxplot showing the BMI feature’s outliers. The resulting boxplot,
depicted in Figure 8.7, suggests that the BMI values below 18 and above 50 are

FIGURE 8.5 Class distribution.

168 Practical Machine Learning

FIGURE 8.6 Scatter plot for age against BMI.

FIGURE 8.7 BMI box plot (with outliers).

8 • Machine learning step-by-step practical examples 169

considered outliers. It is worth noting that the code snippet for the box plot and scatter
plot can also be used to detect the presence of outliers in other dataset features apart
from the BMI feature.

plt.figure(figsize=(8, 6))
sns.boxplot(x=diabetes_data['bmi'])
plt.title("BMI Boxplot")
plt.show()

8.1.5 Data preprocessing

Data preprocessing is vital to cleaning, refining, transforming, and formatting data to
ensure its suitability for machine learning tasks. Data preprocessing can significantly
impact the effectiveness and accuracy of the developed models, as the quality of the data
used directly influences them. As part of data preprocessing, we showcase how to han-
dle outliers and missing values and standardize data to prepare it for subsequent steps.

8.1.5.1 Data cleaning

This section focuses on handling outliers and missing values in the dataset, as
detailed below.

8.1.5.1.1 Outliers
The BMI feature in the dataset contains outliers; therefore, outliers for the BMI fea-
ture that fall below the lower fence are trimmed because their values are zero. Note
that the values within the lower and upper fences can either be trimmed or winsorized
(replacing an outlier value with the nearest non- outlier value). However, in this case, the
BMI values above the upper fence are replaced with the value of the nearby upper fence.
The following code snippet demonstrates removing and trimming outliers and plotting
the resultant box plot, as shown in Figure 8.8.

Removing records with bmi value of zero
diabetes_data = diabetes_data.drop(diabetes_data[diabetes_data
['bmi'] == 0].index, axis=0)

Winsorizing bmi outliers above the upper fence
bmi_upper_fence = 50
diabetes_data['bmi'] = diabetes_data['bmi'].clip(upper=bmi_
upper_fence)

Visualizing bmi distribution after handling outliers
plt.figure(figsize=(8, 6))
sns.boxplot(x=diabetes_data['bmi'])
plt.title("bmi Distribution (Outliers Removed)")
plt.show()

8.1.5.1.2 Missing values
As the dataset for this case study contains no missing values, some values of the “Age”
feature are intentionally set to null in the original dataset to demonstrate how to deal

170 Practical Machine Learning

with missing values. Consequently, the resulting dataset contains some missing values.
The following code snippet is used to check the presence of missing values for all fea-
tures in the dataset. Figure 8.9 shows no missing values for all features except for the
“Age” feature, which comprises three null values.

Checking for missing values
print(diabetes_data.isnull().sum())

Moreover, several methods can be used to handle the identified missing values in
the “Age” feature, including imputation by using measures of central tendencies (mean,
median, or mode) or removing the corresponding records that contain missing values. In
this case, the missing values are filled by the median value of the “Age” feature, as

FIGURE 8.8 BMI box plot after removing and trimming outliers.

FIGURE 8.9 Checking the presence of missing values for all features.

8 • Machine learning step-by-step practical examples 171

shown in the following code snippet. The median was chosen after examining the mean,
mode, and median of the "Age" and determining that the median value was the most
suitable for this dataset.

Imputing missing values in the age feature
diabetes_data['age']=diabetes_data['age'].fillna(diabetes_
data['age'].median())

8.1.5.2 Data standardization

Before data standardization, the target feature (i.e., Outcome) should be separated from
the rest (i.e., input features) as shown in the following code snippet. It is worth noting
that the target feature is separated to avoid standardizing its values.

separating the target feature from the input features
predictor_vars = diabetes_data.drop("Outcome", axis=1)
target_var = diabetes_data["Outcome"]

Moreover, after separating the target feature, the input features are standardized
using a z- score, as showcased in the following code snippet. Figure 8.10 depicts the
standardized values of the input features. Note the difference between the standardized
values (Figure 8.10) and non- standardized values (Figure 8.1).

Standardizing the features
standardized_predictors = predictor_vars.apply(zscore)

display the first few records
print(standardized_predictors.head())

8.1.6 Split- out the dataset

After data preprocessing, the dataset should be split into two sets: a training and a test
set. The training set is used to train the model, and the test set is used to evaluate the
model’s performance. The following code snippet splits the dataset into two sets in a
ratio of 80:20 for the training and testing sets (i.e., test_size=0.2), respectively. It is

FIGURE 8.10 Standardized input features.

172 Practical Machine Learning

worth noting that random_state=42 sets a value to ensure that the random splitting of
the dataset will be reproducible.

Splitting the data into train and test sets
train_predictors, test_predictors, train_targets, test_targets =
train_test_split(standardized_predictors, target_var,
test_size=0.20, random_state=42)

8.1.7 Choosing classification algorithm

Notably, there are many classification algorithms; therefore, one needs to spot- check
and select just one or a few algorithms that can properly address the problem. Spot-
checking explores which algorithm(s) is the best performing on the respective problem.
Some popular classification algorithms include Support Vector Machine, Decision Tree,
K- Nearest Neighbor (KNN), Logistic Regression, Random Forest, and Naive Bayes.
In this case study, the Logistic Regression algorithm was selected due to its simplicity,
interpretability, and computational efficiency in modeling the probability of a binary
outcome. This algorithm is arbitrarily selected for demonstration purposes.

8.1.8 Training the model

The logistic regression algorithm is trained using the training set, which allows it to
learn the relationship between the input and the target features. Therefore, the following
code snippet demonstrates the training of the Logistic Regression algorithm.

initialize the instance of the algorithm
logistic_model = LogisticRegression()

using the instance to train the algorithm
logistic_model.fit(train_predictors, train_targets)

8.1.8.1 Model evaluation

It is essential to evaluate model performance on the test set based on different metrics
such as Confusion Matrix, Accuracy, Precision, Recall, F- score, Sensitivity, Specificity,
ROC, and AUC. The following code snippet evaluates the model performance based on
Accuracy, Precision, Recall, and F1-score, and the performance evaluation results are
depicted in Figure 8.11.

FIGURE 8.11 Model performance evaluation results.

8 • Machine learning step-by-step practical examples 173

Making predictions on the test set
test_predictions = logistic_model.predict(test_predictors)

Computing and printing the performance metrics
print("Accuracy:", accuracy_score(test_targets,
test_predictions))
print("Precision:", precision_score(test_targets,
test_predictions))
print("Recall:", recall_score(test_targets, test_predictions))
print("F1 Score:", f1_score(test_targets, test_predictions))

Furthermore, the confusion matrix is also used to evaluate the model’s performance
by observing the number of predicted labels against the actual labels in a given class. The
following code snippet generates the confusion matrix of the model, and the results
are depicted in Figure 8.12. Notably, the number of true negatives is 82, false negatives
are 15, false positives are 22, and true positives are 33. These results imply that the model
can correctly predict many instances of the negative class compared to the positive class.

Visualizing the confusion matrix
cm = confusion_matrix(test_targets, test_predictions,
labels=logistic_model.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_
labels=logistic_model.classes_)
plt.figure(figsize=(8, 6))
disp.plot()
plt.title("Confusion Matrix")
plt.grid(False)
plt.show()

8.1.8.2 Saving the model

In machine learning, saving the model involves storing a trained model on a computer
storage or external drives, which enables the model to be reused to make predictions

FIGURE 8.12 Confusion matrix.

174 Practical Machine Learning

on new, unseen data without retraining it from scratch. Various libraries, such as joblib
and pickle, can be used to save the trained model. The following code snippet demon-
strates how the joblib library using the dump() method is employed to save the trained
model in the current working directory with the file named logistic_model.joblib.

Saving the trained model
joblib.dump(logistic_model, 'diabetes_logistic_model.joblib')

8.1.8.3 Inferencing

Once a model has been trained and saved, it can be used to classify/predict new, unseen
data that were not part of the training and test sets. During predictions, the new data has to
undergo the same data preprocessing steps applied during the training phase. Suppose the
unseen data needs to be classified using the saved model; it will have to be checked for outli-
ers and standardized using the zscore() function as presented in the previous steps. As shown
in the following code snippet, the new, unseen data has been classified as 1 (i.e., positive)
after undergoing the necessary preprocessing steps and being fed into the trained and saved
model. Figure 8.13 shows that the new, unseen data has been classified as 1 (i.e., positive).

load the model
loaded_model = joblib.load('diabetes_logistic_model.joblib')

Calculate the mean and standard deviation of each feature from
the training data
feature_means = diabetes_data.drop("Outcome", axis=1).mean()
feature_stds = diabetes_data.drop("Outcome", axis=1).std()

Defining new, unseen data
new_data = [6, 148, 72, 35, 0, 33.6, 0.627, 50] # Example
realistic data

Standardize the new data using the means and standard
deviations from the training data
standardized_new_data = (new_data - feature_means) / feature_stds

Reshaping the standardized new data
reshaped_new_data = standardized_new_data.values.reshape(1, -1)

Creating a DataFrame with feature names and standardized new data
feature_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',
'bmi', 'pedigree', 'age']
new_data_df = pd.DataFrame(reshaped_new_data,
columns=feature_names)

Making predictions on the standardized new data
print("\nPrediction on New Data:")
print("The new data is predicted as class : ", loaded_model.
predict(new_data_df)[0])

FIGURE 8.13 Result of new data prediction.

8 • Machine learning step-by-step practical examples 175

8.2 CASE STUDY 2: REGRESSION
PROBLEM

This case study focuses on regression analysis using an advertising dataset. This prob-
lem demonstrates the relationship between advertising and sales and aims to develop a
model to predict sales based on advertising budgets. The following subsections outline
the steps in developing a prediction model using this dataset.

8.2.1 Problem definition

Sales prediction through advertising on TV, radio, and a newspaper is complex due to
a number of factors that can influence sales, including the target audience, message,
medium, budget, and the timing of the advertising campaign. Consequently, it becomes
challenging to accurately predict how much sales will increase as a direct outcome of
advertising. This section aims to show step- by- step how to develop a regression model
that can predict sales based on advertising on TV, radio, and a newspaper.

8.2.1.1 Description of the dataset

The advertising dataset used in this case study is a collection of structured data that con-
tains information related to advertising costs across multiple channels, including radio,
TV, and newspapers. The dataset is used to understand the correlation between advertis-
ing expenditures and the generated sales revenue. It also compares the effectiveness of
different advertising channels (i.e., TV, radio, and newspaper). The dataset is publicly
available for download from the Kaggle data science repository (https://www.kaggle.
com/datasets/tawfikelmetwally/advertising- dataset). The dataset contains 200 rows and
the following four features:

 • TV: The amount spent on TV advertisements.
 • Radio: The amount spent on radio advertisements.
 • Newspaper: The amount spent on newspaper advertisements.
 • Sales: The target feature shows the total sales revenue generated.

8.2.2 Loading libraries

As pointed out in Case Study 1, importing the required libraries for data manipulation
and model development is essential. The following code snippet imports the required
libraries in this case study. Again, more details about each library are provided using
comments indicated by the hash sign (#).

library to store data
import pandas as pd

https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset
https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset

176 Practical Machine Learning

library to perform mathematical #computations on matrices
import numpy as np

library to calculate #standardization
from scipy.stats import zscore

library to visualize data
import seaborn as sns

library to visualize data
import matplotlib.pyplot as plt

library #to split the data in train and test data
from sklearn.model_selection import train_test_split

library #to use for machine learning (eg., here logistic
regression) algorithm
from sklearn.linear_model import LinearRegression

importing the joblib library for model saving
import joblib

8.2.3 Loading dataset

After importing the required libraries, the next step is to load the dataset file (i.e.,
 advertising.csv) from its stored file path using the read_csv function in the pandas library,
as shown in the following code snippet. The output of the code snippet is displayed in
Figure 8.14, showing three records using the head() function.

advertising_data = pd.read_csv("advertising.csv")

displaying the first three records
advertising_data.head(3)

8.2.4 Data summary

The info() method is used to display the contents and gain key insights into the data-
set. As shown in the following code snippet, the info() method displays the number of
rows and columns, the data types of the columns, and the memory usage of the dataset.
Figure 8.15 shows the output of the advertising_data.info() command statement.

advertising_data.info()

FIGURE 8.14 The first three records of the dataset.

8 • Machine learning step-by-step practical examples 177

8.2.4.1 Descriptive statistics

As demonstrated in Case Study 1, descriptive statistics are used to summarize and
describe the main features of a dataset. Therefore, in this case study, the describe()
method is again used to display the measures of central tendency for all numerical col-
umns in the dataset, as shown in the following code snippet. Figure 8.16 shows the
output of the advertising_data.describe() command statement.

advertising_data.describe()

8.2.4.2 Data visualization

Data visualization techniques are used to visually analyze the features of the dataset in
order to get insights such as the relationships, comparisons between features and other
data- relevant insights. The following code snippet displays the visual representation of
the correlation matrix (e.g., showing the relationship among the features). The resultant
output is depicted in Figure 8.17. Note that the results in Figure 8.17 show that values
closer to 1 indicate stronger positive relationships, while values closer to 0 suggest
weaker or no linear relationships.

compute the correlation matrix
corr = advertising_data.corr()

heatmap with annotations
plt.figure(figsize=(7,7))
plt.title("Correlation among features")
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f",
square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()

In addition, the following code snippet displays the visual representation of
the scatter plots to show the relationship between the target and the input features.
The resultant output is depicted in Figure 8.18. Note that the steeper the slope of the
regression line fitted through the data points in a scatter plot, the stronger the correlation
between the features in the dataset, as illustrated in Figure 8.18.

FIGURE 8.15 Data summary.

178 Practical Machine Learning

FIGURE 8.16 Descriptive statistics for TV, radio, newspaper, and sales columns in the
dataset.

FIGURE 8.17 Correlation matrix.

8 • M
achine learning step

-by-step practical exam
ples

179

FIGURE 8.18 Scatter plots for the target against the input features.

180 Practical Machine Learning

import matplotlib.pyplot as plt
import seaborn as sns

Create a figure with three subplots
fig, axes = plt.subplots(1, 3, figsize=(18, 6))

Scatter plot: TV against Sales
sns.regplot(x="TV", y="Sales", data=advertising_data, ax=axes[0])
axes[0].set_title("TV vs. Sales")

Scatter plot: Radio against Sales
sns.regplot(x="Radio", y="Sales", data=advertising_data,
ax=axes[1])
axes[1].set_title("Radio vs. Sales")

Scatter plot: Newspaper against Sales
sns.regplot(x="Newspaper", y="Sales", data=advertising_data,
ax=axes[2])
axes[2].set_title("Newspaper vs. Sales")

Adjust spacing between subplots
plt.tight_layout()

Display the figure
plt.show()

8.2.5 Data preprocessing

In this case study, the data preparation techniques are applied to handle outliers and
missing values, along with data transformation, to ensure its readiness for subsequent
steps in the modeling phase.

8.2.5.1 Data cleaning

In this case study, the implemented data cleaning methods aim to explore possibilities
for handling outliers, addressing missing values, and executing data transformations.

8.2.5.1.1 Outliers
The provided code snippet generates a box plot highlighting outliers, as depicted in
Figure 8.19. It is evident from the dataset that only the "newspaper" attribute con-
tains two outlier points. These outliers constitute a small proportion relative to the
dataset’s overall size and are especially noteworthy in the context of the regression
problem at hand. Most regression algorithms exhibit reduced sensitivity to outliers,
and since the dataset includes occasionally plausible values, their presence is consid-
ered for analysis. It is not a strict rule that outliers must be removed from the dataset
on every occasion. The outliers were not removed, imputed, or transformed in this
specific use case.

advertising_data.plot.box(figsize=(5,5))

8 • Machine learning step-by-step practical examples 181

8.2.5.1.2 Missing values
The following code snippet is used to assess the presence of missing values across all
dataset features to handle missing values. As illustrated in Figure 8.20, no missing val-
ues are detected for any of the features. Consequently, no techniques will be applied to
handle missing values.

advertising_data.isnull().sum()

8.2.5.2 Feature selection

The previous correlation matrix in this case study indicates that the features are not
highly correlated, as their correlation value is less than 0.35. Based on the correlation
values, two features with high correlation values (i.e., above 0.7 or 0.8) might be redun-
dant in providing information to the model. Therefore, one can be eliminated. In this
dataset, all the input features can be retained (i.e., none should be eliminated based on
the correlation value) since their correlation values are less than 0.35. It is important to
note that when there is a zero correlation value between the independent variables and
the dependent variable, it necessitates the elimination of the independent variable. The
correlation values between sales and TV, Radio, and Newspaper are 0.9, 0.35, and 0.16,

FIGURE 8.19 Box plot for outlier identification.

FIGURE 8.20 Checking the presence of missing values for all features.

182 Practical Machine Learning

respectively (i.e., all are not equal to zero). Therefore, none of the attributes (i.e., TV,
Radio and Newspaper) are dropped from the dataset.

8.2.5.3 Data transformation

Upon examining the range of values in the features within the dataset, it becomes appar-
ent that they are not significantly disparate. For example, the "Radio" feature ranges
from 0 to approximately 50, "Newspapers" from 0 to about 115, and "Sales" from
approximately 1.6 to 27. The only feature that notably stands out is "TV," ranging from
0.7 to nearly 300. Despite the scales not differing drastically (except for "TV"), and con-
sidering that the dataset pertains to advertising data where higher values are expected
for TV advertisement due to its broader reach, it might be acceptable to forgo normal-
ization. However, it is suggested to experiment with normalization and document any
observed differences at the conclusion of the model training.

8.2.6 Choosing regression algorithm

Given the plethora of regression algorithms available, it becomes crucial to spot- check
to discern and choose the most suitable algorithm(s) for addressing a specific problem.
In this case study, the Multivariate Linear Regression algorithm is selected due to the
presence of multiple independent variables and a single dependent variable. It can offer
insight into complex relationships within the data.

8.2.7 Training the model

The dataset is divided into training and test sets containing the independent and
dependent variables, denoted as X_train, X_test, y_train, and y_test, respectively.
Specifically, the dataset is split into a training set comprising 75% of the data and a
test set comprising 25% of the data. Such splitting is done using the following code
snippet.

X_train and y_train will be used for training the model,

X_test for testing the models predictions, y_test for
evaluating the model predictions.
X_train, X_test, y_train, y_test = train_test_split(features,
target, test_size=0.25, random_state=42)

The model is initialized after splitting the data into training and test sets. Since the
Multivariate Linear Regression model is used, the initialized model is LinearRegression()
and is trained using the training set as shown in the following code snippet.

initialize the instance of the algorithm
lr_model = LinearRegression()

using the instance to training the algorithm
lr_model.fit(X_train, y_train)

8 • Machine learning step-by-step practical examples 183

Finding the model equation (estimated Sales) starts by finding the estimated regres-
sion coefficients. The first regression coefficient is the y- intercept and is computed in the
following code snippet. In the code snippet, the value of the y- intercept is estimated
equal to 2.778303460245283, as shown in the subsequent output.

lr_model.intercept_

The other regression coefficients are computed from the following code snippet.
Here, the values of coefficients of TV, Radio, and Newspapers are estimated to equal
0.04543356, 0.19145654, and 0.00256809, respectively, as shown in the subsequent
output in Figure 8.22.

lr_model.coef_

8.2.7.1 Model equation

After estimating the regression coefficients, the equation of the model can now
be determined. Using the value of the regression coefficients, the estimated Sales can be
computed as follows:

Estimated Predicted Sales

TV Radio

/

. . . .� � � � � �2 7783 0 0454 0 1914 0 00026�Newspaper

8.2.7.2 Evaluating the model

After obtaining the model equation, it is essential to evaluate model performance using
different performance metrics for regression problems. These metrics include Mean
Square Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Coefficient of Determination (R2 or R- Square), Adjusted R- squared, Mean Percentage
Error (MPE), and Coefficient of Variation (CV). For demonstration purposes, only MSE
and R- Square are used to evaluate the model.

8.2.7.3 Evaluating the model using MSE

In the following code snippet, the X_test represents independent variables used to pre-
dict the value of the dependent variable (Sales), here y_predict. The predicted depen-
dent variable (y_predict) and actual dependent variable (y_test) are subjected to the
MSE function (mean_squared_error()) to calculate the value of MSE. The value

FIGURE 8.21 Output showing the y- intercept value of the linear regression model.

FIGURE 8.22 Output showing the coefficients of the linear regression model.

184 Practical Machine Learning

of the MSE obtained is 2.880023730094193, as shown in the subsequent output in
Figure 8.23. This indicates better model performance in terms of prediction accuracy
since it has a lower value.

using the trained model to make ‘y_predict’ on

new input features from the test set
y_predict = lr_model.predict(X_test)

computing and printing the performance metrics
mse = mean_squared_error(y_test, y_predict)
print("Mean Squared Error (MSE):", mse)

8.2.7.4 Coefficient of determination

The following code snippet calculates the Coefficient of Determination (R2) value
and the resulting value is 0.8935163320163657, as shown in the subsequent output in
Figure 8.24. This means that the model can better explain the variability in the depen-
dent variable.

print('R- squared:', r2_score(y_test, predictions))

8.3 CASE STUDY 3: CLUSTERING
PROBLEM

This case study focuses on the Clustering Problem, which aims to uncover and organize
unlabeled data into distinct groups based on inherent similarities or patterns. As previ-
ously stated, unlike classification or regression problems where data points already have
assigned labels, clustering algorithms must categorize unlabeled data into groups (i.e.,
clusters). The following subsections outline the steps in developing a clustering model
using the given dataset.

8.3.1 Problem definition

The clustering problem in this case study focuses on customer segmentation in malls
and shopping complexes. Malls and shopping complexes often compete with each other
to increase their customer base in order to increase profit. Segmenting customers proves

FIGURE 8.23 Output showing the mean squared error (MSE) of the linear regression model.

FIGURE 8.24 Output showing the R- squared value of the linear regression model.

8 • Machine learning step-by-step practical examples 185

challenging due to the complex nature of customer behavior, variability in individual
preferences, lack of clear understanding of the target audience, and ineffective segmen-
tation criteria. These complexities may lead to datasets with quality issues and potential
biases. Achieving effective customer segmentation demands a sophisticated approach
covering advanced data handling, robust validation, and domain expertise to navigate
these challenges.

8.3.1.1 Description of the dataset

The dataset used in this case study is known as the "Mall Customer Segmentation," a popu-
lar choice for developing a model for customer segmentation. It is publicly available for
download from the Kaggle data science repository (https://www.kaggle.com/code/listonlt/
mall- customers- segmentation- k- means- clustering). The dataset contains five features and
200 samples (i.e., data points) representing individual customers. The features include:

 • CustomerID: Unique identifier for each customer
 • Gender: Male or Female
 • Age: In years (range: 18–70)
 • Annual Income: In thousands of dollars (range: 15–150)
 • Spending Score: Reflects customer spending habits (range: 1–100).

8.3.2 Loading libraries

The following code snippet imports the necessary libraries for this specific case study.

Data manipulation libraries
import pandas as pd
import numpy as np

Data visualization libraries (plotly for interactive graphs)
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

Importing sklearn library to use K- Mean algorithm
from sklearn.cluster import KMeans

Suppresses warnings of type FutureWarning
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)

8.3.3 Loading the dataset

Once the essential libraries are imported, the subsequent step involves loading the data-
set file (i.e., mall_customers.csv) utilizing the ‘read_csv’ function within the pandas
library. The following code snippet loads the dataset, and Figure 8.25 displays the out-
put, showing five randomly sampled records using the ‘customer_data.sample(5)’ func-
tion in pandas.

https://www.kaggle.com/code/listonlt/mall-customers-segmentation-k-means-clustering
https://www.kaggle.com/code/listonlt/mall-customers-segmentation-k-means-clustering

186 Practical Machine Learning

customer_data = pd.read_csv("Mall_Customers.csv")
customer_data.sample(5)

8.3.4 Renaming column names

The dataset used in this case study contains columns with spaces in their names that
need to be renamed for clean and efficient data handling. Spaces in column names
can cause issues accessing them using dot notation (e.g., dataframe.Spending Score).
Additionally, short and descriptive names make the code easier to read and understand,
improve the clarity of visualizations, and reduce typo possibilities. The following code
snippet renames the column ‘Spending Score (1-100)’ to ‘Spending_Score’ and the
 column ‘Annual Income (k$)’ to ‘Annual_Income’.

customer_data.rename (columns = {
 'Spending Score (1-100)':'Spending_Score',
 'Annual Income (k$)': 'Annual_Income'},
 inplace=True)

8.3.5 Data summary

As demonstrated earlier, the ‘info()’ method in the following code snippet provides
essential data summary details. Figure 8.26 showcases the output of the ‘customer_
data.info()’ command statement.

customer_data.info()

8.3.6 Dropping less informative features

In this case study, the CustomerID column has to be dropped as it is redundant and
non- predictive and does not contribute to understanding the target variable. Eliminating
it reduces noise, mitigates overfitting risks, and streamlines computational efficiency
during model training and prediction. The ‘CustomerID’ in the dataset is dropped using
the following code snippet.

customer_data.drop("CustomerID", axis=1, inplace=True)

FIGURE 8.25 Displaying five data samples.

8 • Machine learning step-by-step practical examples 187

8.3.6.1 Descriptive statistics

The following code snippet displays the output of the ‘customer_data.describe()’
 command statement, as presented in Figure 8.27.

customer_data.describe()

Additionally, the following code snippet aims to ascertain whether the characteris-
tics of the ‘Gender’ feature impact a customer’s spending behavior. The ‘Gender’ fea-
ture is used as it is the only categorical feature in the dataset. The output of the code is
 displayed in Figure 8.28.

seeks to answer whether gender influences spending
pd.pivot_table(customer_data,index=["Gender"], values=
["Spending_Score"], aggfunc=["count","sum","max","mean"])

8.3.6.2 Data visualization

The following code snippet generates a histogram illustrating the relationship between
the categorical feature (i.e., ‘Gender’) and the total number of samples. The resulting
output is presented in Figure 8.29.

sns.countplot(x=customer_data["Gender"], data= customer_data)

FIGURE 8.26 Data summary.

FIGURE 8.27 Descriptive statistics.

188 Practical Machine Learning

Moreover, the following code snippet creates three subplots, as displayed in Figure 8.30,
each containing a distribution plot for each numerical feature in the dataset. This helps in
showing the spread of data and detecting outliers by considering deviations from the mean.
Note that the data is skewed if the graph leans to one side. The graph’s "peakedness" reflects
how concentrated the data is around the center. Points far away from the central tendency
(mean or median) on the tails of the distribution are potential outliers.

create a single figure with multiple axes to fit the graphs
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
sns.histplot(customer_data["Spending_Score"], kde=True, ax=axs[0])
axs[0].set_title('Spending Score Distribution')
sns.histplot(customer_data["Annual_Income"], kde=True, ax=axs[1])
axs[1].set_title('Annual Income Distribution')
sns.histplot(customer_data["Age"], kde=True, ax=axs[2])
axs[2].set_title('Age Distribution')

Adjust the padding between and around the subplots
plt.tight_layout()

FIGURE 8.28 Relationship between gender spending habit.

FIGURE 8.29 Relationship between 'Gender' and the total number of samples.

8 • M
achine learning step

-by-step practical exam
ples

189

FIGURE 8.30 Distribution plots for numerical features.

190 Practical Machine Learning

Furthermore, the following code snippet generates a scatter plot, illustrating the
relationship between the ‘Age’ and ‘Spending_Score’ features. Observations on
the scatterplot in Figure 8.31 suggest a weak correlation between these two features,
as represented by data points scattered randomly across the plot without forming a
clear pattern or trend. This inference is further illustrated by the correlation matrix
depicted in Figure 8.32.

plt.figure(figsize=(10,5))
sns.scatterplot(x=customer_data["Age"],y=customer_data
["Spending_Score"])

Also, the correlation between the features can further be visualized in the correla-
tion matrix. The following code snippet plots the correlation matrix to visualize the
relationships among the numerical features. The matrix provides a more quantified
 perspective on the relationship between ‘Age’ and ‘Spending_Score’, reinforcing the
observations made from the scatter plot. For instance, upon examining the correlation
value of ‘Age’ and ‘Spending_Score’, it can be noted that a correlation value of -0.33
between these two features suggests a slight negative correlation.

corr = customer_data.drop("Gender", axis=1).corr()
sns.heatmap(corr, annot=True)
plt.show()

8.3.7 Feature transformation

Since the ‘Gender’ feature is categorical, it needs to be transformed into numerical
data before being used to train the model, as most machine learning algorithms work
best with numerical data. Therefore, the ‘Gender’ feature is converted from categories

FIGURE 8.31 Distribution plots for numerical features.

8 • Machine learning step-by-step practical examples 191

to numbers using one- hot encoding. This technique assigns a unique binary code to
each gender (i.e., [1, 0] for ‘male’ and [0, 1] for ‘female’). The following code snip-
pet encodes gender variables using one- hot encoding, and the output is presented in
Figure 8.33.

FIGURE 8.32 Correlation matrix.

FIGURE 8.33 Encoding of the gender feature.

192 Practical Machine Learning

Convert categorical variable(s), in our case Gender, into encoded

variables, dropping the first category to avoid
multicolinearity
customer_data = pd.get_dummies(customer_data,drop_first=True)
customer_data.sample(4)

8.3.8 Performing clustering using K- means
algorithm

In this case, the K- means clustering algorithm was chosen for its simplicity. Before
conducting the clustering process, the elbow method was utilized to determine the opti-
mal number of clusters (k). The following code snippet illustrates the application of the
elbow method to select the most suitable number of clusters. Figure 8.34 showcases
the ideal cluster quantity (6 clusters) identified through the elbow method. Note that

FIGURE 8.34 The optimal number of clusters using the elbow method.

8 • Machine learning step-by-step practical examples 193

the elbow method identifies the optimal number of clusters at the point where the graph
forms an elbow and maintains consistency.

cluster_range = range(1, 25)
inertia_values = []
for k in cluster_range:
 cluster_model = KMeans(n_clusters=k)
 cluster_model.fit(customer_data)
 cluster_predictions = cluster_model.predict(customer_data)
 inertia_values.append(cluster_model.inertia_)
plt.plot(cluster_range, inertia_values)
plt.xlabel('Number of Clusters')
plt.ylabel('Sum of Squared Distances')
plt.show()

Given the optimal number of clusters generated by the elbow method, the following
code snippet performs clustering using the K- means algorithm with the derived optimal
number of clusters, which is 6.

final_model=KMeans(6)
final_model.fit(customer_data)
prediction=final_model.predict(customer_data)

#Append the prediction
customer_data["GROUP"] = prediction
print("Groups Assigned : \n")

The following code snippet renames the group names from numbers to letters for
easier readability and visualization. In addition, the code snippet assigns a cluster value
to each record in the dataset, simplifying the process of allocating data samples to their
respective clusters among the six identified clusters (0 to 5).

Define a mapping from numbers to letters
group_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}

Apply the mapping to the 'GROUP' column
customer_data['GROUP'] = customer_data['GROUP'].map(group_dict)

The following code snippet computes the mean of each cluster, as illustrated in
Figure 8.35.

data_mean = customer_data.drop("Gender_Male", axis=1).groupby
(['GROUP'])
data_mean.mean()

The mean values of the identified clusters reveal distinct customer profiles, provid-
ing insights that are valuable for tailoring targeted marketing approaches, as described
in the following:

 • Group A, characterized by an average age of 32.69 years, an average annual
income of $86.53k, and a high spending score of 82.12, represents middle-
aged individuals with high income and spending capacity, suggesting they
may be the primary target for luxury goods.

194 Practical Machine Learning

 • Group B, with younger demographics and moderate income and spend-
ing tendencies (average age: 27.00 years, average annual income:
$56.65k, spending score: 49.13), could be interested in trendy or afford-
able products.

 • Group C, comprising older individuals with moderate income and spending
scores (average age: 56.16 years, average annual income: $53.38k, spending
score: 49.09), may respond well to marketing strategies emphasizing value-
oriented products.

 • Group D, exhibiting middle- aged demographics with high income but lower
spending scores (average age: 41.68 years, average annual income: $88.22k,
spending score: 17.28), might prefer cautious spending or saving.

 • Group E, with an average age of 44.14 years, an average annual income of
$25.14k, and a spending score of 19.52, consists of older individuals with
lower income and spending scores, indicating a preference for discounted or
value- oriented products.

 • Group F, representing younger demographics with lower income but
high spending scores (average age: 25.27 years, average annual income:
$25.72k, spending score: 79.36), may be inclined toward trendy or impulse
purchases.

8.3.9 Cluster visualization

For visualization purposes, the Plotly library displays the data samples in their respec-
tive clusters (using the command ‘px.scatter()’). Since k- means uses all data features,
visualizing high dimensions is difficult. To address this, a scatter plot can be created
to focus on just two features (2D) or three features (3D). Thus, the scatter plots of
2D are used as depicted in Figures 8.36 and 8.37 to display the ‘Annual_Income‘ vs
‘Spending_Score’ and ‘Age’ vs ‘Spending_Score’ respectively. The following code
snippet generates a scatter plot of ‘Annual_Income’ vs ‘Spending_Score’ and ‘Age’ vs
‘Spending_Score.’

FIGURE 8.35 The mean of each cluster.

8 • Machine learning step-by-step practical examples 195

FIGURE 8.36 Scatter plot of ‘Annual_Income’ vs ‘Spending_Score’.

FIGURE 8.37 Scatter plot of ‘Age’ vs ‘Spending_Score’.

196 Practical Machine Learning

fig = px.scatter(customer_data, x='Annual_Income',
y='Spending_Score',color='GROUP')
fig.update_layout(title='Annual_Income vs Spending_Score',
width=700, height=500)
fig = px.scatter(customer_data, x='Age', y='Spending_Score',
color='GROUP')
fig.update_layout(title='Spending_score vs Age', width=700,
height=500)

Additionally, the distribution of the six clusters can be distinctly visualized in 3D
using the ‘px.scatter_3d()’ command illustrated in the following code snippet, with the
corresponding 3D visualization depicted in Figure 8.38.

fig = px.scatter_3d(customer_data, x='Annual_Income',
y='Spending_Score', z='Age',color='GROUP')
fig.update_layout(title='Annual_Income vs Spending_Score vs
Age', autosize=False,width=1000, height=800)

Furthermore, it is important to visualize the gender distribution in each cluster to
provide the number of male and female customers in each customer segment. The fol-
lowing code snippet generates the gender distribution as depicted in Figure 8.39.

FIGURE 8.38 The 3D view of the clusters.

8 • Machine learning step-by-step practical examples 197

Create a copy of the customer_data and replace encoded
values with

original ones
data_copy = customer_data.copy()
data_copy['Gender_Male'] = data_copy['Gender_Male'].replace
({0: 'Female', 1: 'Male'})
plt.figure(figsize=(10, 6))
sns.countplot(x='GROUP', hue='Gender_Male', data=data_copy)
plt.title('Distribution of Groups by Gender')
plt.xlabel('Group')
plt.ylabel('Count')
plt.show()

8.3.10 Model evaluation

The silhouette score using the ‘silhouette_score()’ method is used to evaluate the qual-
ity of the clustering model. It measures how similar an object is to its own cluster (i.e.,
cohesion) compared to other clusters (i.e., separation). The silhouette score close to
1 implies well- separated clusters, near 0 indicates overlap, while close to -1 suggests
misplacement of points. The following code snippet calculates the silhouette score in
this case study, with the corresponding output value of 0.45206493204632353. This

FIGURE 8.39 Distribution of gender in each cluster.

198 Practical Machine Learning

value suggests a moderate/reasonable separation between clusters, indicating that the
data points are reasonably well- placed within their clusters but still have some degree of
overlap with points in neighboring clusters.

from sklearn.metrics import silhoutte_score
silhouette_score_value = silhouette_score(data.drop("GROUP",
axis=1), final_model.labels_)
print("Silhouette Score:", silhouette_score_value)

8.3.11 Case study 4: Association rules

This case study focuses on the association rule problem, which aims to uncover
meaningful insights into consumer behavior and product relationship. It illustrates
the formulation of rules based on product transactions recorded within the dataset.
The following subsections outline the steps in developing association rules using a
given dataset.

8.3.12 Problem definition

Discovering customer purchase patterns within transactional data presents a significant
challenge due to the complexity of identifying associations and relationships among
items bought together frequently. Understanding the interplay of product affinities, sea-
sonal trends, and customer preferences is crucial for optimizing product placement,
enhancing cross- selling opportunities, and tailoring marketing strategies. However,
the sheer volume and diversity of transactional data and the need to extract meaning-
ful insights amid noise and variability make it difficult to uncover actionable patterns
efficiently. Addressing this challenge requires sophisticated techniques such as Market
Basket Analysis, which aims to identify frequent itemsets and generate association rules
to guide strategic decision- making.

8.3.12.1 Description of the dataset

The dataset utilized in this case study is the Grocery Store dataset, a widely recog-
nized and frequently employed dataset designed explicitly for association rule mining
tasks. The Grocery Store dataset is a collection of customer transactions stored in a
tabular format. Each row represents a single purchase, and columns include identifiers
like customer ID and products. This data allows for analyzing purchase patterns by
identifying frequently purchased combinations of items. It helps businesses understand
customer behavior, optimize product placement, develop targeted promotions, and ulti-
mately increase sales. The Groceries Dataset for Market Basket Analysis is publicly
available for download from the Kaggle data science repository (https://www.kaggle.
com/datasets/shazadudwadia/supermarket). The dataset contains 20 transactions and
11 items (i.e., ‘Products’) including Jam, Maggi, Sugar, Coffee, Coke, Tea, Biscuit,
Bournvita, Bread, Cornflakes, and Milk.

https://www.kaggle.com/datasets/shazadudwadia/supermarket
https://www.kaggle.com/datasets/shazadudwadia/supermarket

8 • Machine learning step-by-step practical examples 199

8.3.13 Loading libraries

The following code snippet imports the necessary libraries for this case study.

Import necessary libraries
import pandas as pd
import warnings
from mlxtend.preprocessing import TransactionEncoder as TE
from mlxtend.frequent_patterns import apriori, association_rules
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings("ignore", category=DeprecationWarning)

8.3.14 Loading dataset

Once the essential libraries are imported, the subsequent step involves loading the data-
set file (i.e., GroceryStoreDataSet.csv) utilizing the ‘read_csv’ function within the pan-
das library. The following code snippet loads the dataset, and Figure 8.41 displays the
first five transactions using the ‘data.head(5)’ function in panda.

transaction_data = pd.read_csv("GroceryStoreDataSet.csv",
header=None)
transaction_data.columns = ["Products"]
transaction_data.head(5)

FIGURE 8.41 Displaying the first five products.

FIGURE 8.40 Output showing the Silhouette score of the clustering model.

FIGURE 8.42 Output displaying the number of transactions and unique items in the
dataset.

200 Practical Machine Learning

8.3.15 Data summary

Displaying a data summary typically involves examining key statistics and charac-
teristics of the dataset. This includes information such as the number of transactions,
the total number of unique items or products available in the dataset, and the average
number of items per transaction. Additionally, summary statistics might include the
most frequently occurring items and measures of item popularity or support. For dem-
onstration, the following code snippet outputs the number of transactions and unique
items in the dataset.

Fetch the number of transactions
num_transactions = len(transaction_data)
print(f"Number of transactions: {num_transactions}")

Fetch the number of unique items
num_unique_items = transaction_data['Products'].str.split(',').
explode().nunique()
print(f"Number of unique items: {num_unique_items}")

8.4 FEATURE TRANSFORMATION

Feature transformation is done to convert the transactional data into a suitable format for
analysis. This is achieved by transforming the dataset into a transactional format where
each row represents a unique transaction and each column represents a distinct item or
product. This transformation is achieved through one- hot encoding, where the values of
‘1’ and ‘0’ indicate the presence and absence of an item in a transaction, respectively.
Additionally, feature transformation may involve filtering out low- support items or rare
items to reduce noise in the dataset and improve the efficiency of the association rule
mining algorithms. Feature transformation aims to prepare the dataset for subsequent
analysis and rule generation, enabling the discovery of meaningful associations between
items in customer transactions. The following code snippet splits, computes one- hot
encoding and displays the output shown in Figure 8.43.

FIGURE 8.43 The output of one- hot encoding.

8 • Machine learning step-by-step practical examples 201

Split the products in each transaction into separate items
transactions = transaction_data['Products'].str.split(',')
encoder = TE()
encoded_transactions = encoder.fit_transform(transactions)
encoded_data = pd.DataFrame(encoded_transactions.astype(int),
columns=encoder.columns_)
encoded_data.head()

8.4.1 Data visualization

Data visualization of unique items within the dataset typically involves creating bar
charts or histograms to display the frequency of each item occurrence in the transac-
tions. It provides a clear overview of the most commonly purchased items and their
relative popularity among customers. The following code snippet computes the number
of unique items in the dataset that occurred in the transaction and displays the resulting
output in Figure 8.44.

FIGURE 8.44 Frequency of items in the transactions.

202 Practical Machine Learning

Bar plot of the product counts
product_counts = encoded_data.sum()
plt.figure(figsize=(12, 8))
sns.barplot(x=product_counts.index, y=product_counts.values,
palette='viridis')
plt.title('Product Counts')
plt.xlabel('Products')
plt.ylabel('Count')
plt.xticks(rotation=90)
plt.show()

8.4.2 Model development

In this case study, the Apriori algorithm is utilized to uncover frequent itemsets within
the transactional datasets. It operates by iteratively generating candidate itemsets and
pruning those that fall below a predetermined minimum support threshold. Before
rule generation, the following code snippet produces combinations of itemsets rang-
ing from single items to the maximum number appearing in transactions, as shown in
Figure 8.45. Note that, for the sake of simplicity, several combinations of itemsets are
omitted.

frequent_itemsets = apriori(encoded_data, min_support=0.1, use_
colnames=True, verbose=1)
frequent_itemsets['length'] = frequent_itemsets['itemsets'].
apply(lambda x: len(x))
frequent_itemsets = frequent_itemsets.sort_values(by='support',
ascending=False)

FIGURE 8.45 Combination of items in the dataset.

8 • Machine learning step-by-step practical examples 203

Sort and select the top 15 itemsets. Adjust this number to
control how

many itemsets are displayed
top_frequent_itemsets = frequent_itemsets.head(15)
plt.figure(figsize=(12, 8))
plt.barh(y=range(len(top_frequent_itemsets)), width= top_
frequent_itemsets ['support'], color='skyblue')
plt.yticks(range(len(top_frequent_itemsets)), top_frequent_
itemsets ['itemsets'])
plt.gca().invert_yaxis() # labels read top- to- bottom
plt.xlabel('Support')
plt.ylabel('Itemsets')
plt.title('Support of Frequent Itemsets')
plt.show()

Once frequent itemsets are identified, association rules are generated based on
these itemsets. The following code snippet computes the rules from the frequent item-
set with a minimum threshold of 0.85. Then, the candidate rules are generated by com-
bining antecedents with consequents derived from frequent itemsets. Note that there is
no universally predefined minimum threshold for the ‘association_rules()’ function.
Setting the threshold too low can result in many meaningless frequent itemsets due to
random co- occurrences, and a higher threshold will identify only the most frequent
co- occurrences.

rules = association_rules(frequent_itemsets,
metric="confidence", min_threshold=0.85)
rules = rules[['antecedents', 'consequents', 'antecedent support',
'consequent support', 'support', 'confidence', 'lift']]
rules

Figure 8.46 displays the resultant association rules in a tabular format, where each
row represents a rule and columns represent various metrics such as support, confidence,
and lift. This allows for a concise overview of the rules and their associated metrics.

8.5 SUMMARY

This chapter explored machine learning techniques through four distinct practical case
studies. It details the step- by- step practical process by employing Python programming
language and a coding environment set up with Jupyter Notebook or Google Colab.
In Case Study 1, the focus was on a classification problem where the objective was to
detect diabetes using a machine learning classifier. This involves classifying data sam-
ples into positive or negative classes. Moving on to Case Study 2, the chapter jumped
into a Regression Problem, using an advertising dataset to predict sales based on adver-
tising budgets. This case study illustrated the relationship between advertising and sales

204
Practical M

achine Learning

FIGURE 8.46 Resultant association rules in tabular form.

8 • Machine learning step-by-step practical examples 205

to demonstrate the development of a prediction model to forecast sales outcomes. Case
Study 3 shifted the focus to a clustering problem to organize unlabeled data into distinct
groups based on inherent similarities or patterns. Unlike classification or regression
problems, clustering algorithms categorize unlabeled data into clusters, and the chapter
outlined the steps involved in developing a clustering model using the provided dataset.
Finally, Case Study 4 explored association rules to uncover meaningful insights into
consumer behavior and product relationships. This case study demonstrated the formu-
lation of rules based on product transactions recorded within the dataset, providing a
step- by- step guide to developing association rules and gaining insights into customer
purchase patterns. Thus, through these practical examples, the chapter aimed to provide
hands- on skills in applying various machine- learning techniques to real- world datasets,
covering classification, regression, clustering, and association rule mining. Each case
study offers valuable insights and practical guidance for understanding and implement-
ing machine- learning models.

Exercises

 1. For the classification problem in Case Study 1, analyze the dataset used for
detecting diabetes and identify the key features that contribute most to the
classification task.

 2. In the regression problem in Case Study 2, experiment with different
regression algorithms such as K- NN regression and decision tree regres-
sion, and compare their performance in predicting sales based on advertis-
ing budgets.

 3. For the clustering problem in Case Study 3, apply various clustering
algorithms such as agglomerative clustering and DBSCAN to the data-
set and evaluate their effectiveness in organizing unlabeled data into dis-
tinct groups.

 4. In the association rules problem in Case Study 4, explore different sup-
port and confidence thresholds for generating association rules and analyze
how they impact the number and quality of rules discovered.

 5. Implement feature engineering techniques such as feature scaling,
 dimensionality reduction (e.g., PCA), and feature selection on the data-
set used in Case Study 1, and evaluate their effects on classification
performance.

 6. Experiment with different cross- validation settings on the dataset used in
Case Study 1 and assess the impact on classification performance.

 7. Experiment with different clustering techniques, such as Fuzzy- C- Means-
Clustering and Gaussian mixture on the dataset used in Case Study 3, and
compare their performance with the k- means clustering algorithm.

 8. Investigate the use of association rule mining algorithms such as FP- growth
and Eclat in Case Study 4, and analyze their ability to generate high-
quality rules.

206 Practical Machine Learning

 9. Use a publicly accessible dataset for a classification task. Experiment with
a different classification algorithm, such as SVM, random forest, and naive
Bayes, to perform cross- validation and compare their performance using
different metrics.

10. Perform market basket analysis on a publicly available dataset similar to
the one used in Case Study 4, and apply the Apriori algorithm to uncover
interesting patterns of item co- occurrence in customer purchases. Propose
actionable insights for improving product recommendations or marketing
strategies based on the discovered rules.

207

Appendix
Machine Learning Resources

RESOURCE SOURCE

Python
Programming

 1. Corey Schafer: https:// www. youtube. com/ user/ schafer5
 2. Sentdex: https:// www. youtube. com/ user/ sentdex
 3. Edureka: https:// www. youtube. com/ playlist? list= PL9ooVrP1hQOHUfd-

g8GUpKI3hHOwM_9Dn
 4. Python Machine Learning Tutorial: https:// www. youtube. com/ watch?

v= 7eh4d6sabA0
 5. Machine Learning With Python: https:// www. youtube. com/ watch? v=

c8W7dRPdIPE
 6. Codecademy: Codecademy's Python Course is an interactive and

beginner- friendly platform. It provides hands- on coding exercises to
reinforce concepts.

 7. SoloLearn's Python Course is a mobile- friendly platform with a
community aspect, allowing you to learn and practice Python on the go.

 8. Real Python provides tutorials, articles, and other resources that cater
to developers at various skill levels. It covers both fundamentals and
advanced topics.

 9. The official Python website itself is an excellent resource. It provides
documentation, tutorials, and links to various learning resources.

Machine
Learning

 1. Machine Learning with Maths, Statistics, and Linear Algebra by
Andrew NG applied AI: https:// www. youtube. com/ watch? v=
PPLop4L2eGk& list= PLLssT5z_DsK- h9vYZkQkYNWcItqhlRJLN

 2. Machine Learning by Statquest with Josh Starmer: https:// www.
youtube. com/ user/ joshstarmer

 3. Machine Learning Stanford University: https:// www. youtube. com/
watch? v= jGwO_UgTS7I

 4. Introduction to Machine Learning Udacity: https:// www. udacity. com/
course/ aws- machine- learning- engineer- nanodegree- - nd189

 5. Introduction to Machine Learning Yale University: https:// www. cs. cmu.
edu/ link/ research- notebook- discipline- machine- learning

 6. Introduction to Machine Learning Berkeley University:
a. https:// ml. berkeley. edu/
b. https:// launchpad. berkeley. edu/

 7. Google Python Class: https:// developers. google. com/ edu/ python/
 8. Python HOWTOs, invaluable for learning idioms: https:// docs. python.

org/ 2/ howto/ index. html

https://www.youtube.com/user/schafer5
https://www.youtube.com/user/sentdex
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9Dn
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9Dn
https://www.youtube.com/watch?v=7eh4d6sabA0
https://www.youtube.com/watch?v=7eh4d6sabA0
https://www.youtube.com/watch?v=c8W7dRPdIPE
https://www.youtube.com/watch?v=c8W7dRPdIPE
https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
https://www.youtube.com/user/joshstarmer
https://www.youtube.com/user/joshstarmer
https://www.youtube.com/watch?v=jGwO_UgTS7I
https://www.youtube.com/watch?v=jGwO_UgTS7I
https://www.udacity.com/course/aws-machine-learning-engineer-nanodegree--nd189
https://www.udacity.com/course/aws-machine-learning-engineer-nanodegree--nd189
https://www.cs.cmu.edu/link/research-notebook-discipline-machine-learning
https://www.cs.cmu.edu/link/research-notebook-discipline-machine-learning
https://ml.berkeley.edu/
https://launchpad.berkeley.edu/
https://developers.google.com/edu/python/
https://docs.python.org/2/howto/index.html
https://docs.python.org/2/howto/index.html

208 Appendix

RESOURCE SOURCE

 9. Introduction to Artificial Intelligence (AI) by Microsoft on edX is a
comprehensive program covering AI and machine learning concepts.

 10. Fast. ai provides a practical and top- down approach to learning
machine learning. They offer free courses that are highly regarded
for their effectiveness.

Machine
Learning
Libraries
Guides

 1. Python Standard Library Reference: https:// docs. python. org/ 2/ library/
index. html

 2. SciPy Lecture Notes: http:// www. scipy- lectures. org/
 3. NumPy User Guide: http:// docs. scipy. org/ doc/ numpy/ user/
 4. Matplotlib gallery of plot types and sample code: http:// matplotlib. org/

gallery. html
 5. Matplotlib Beginners Guide: http:// matplotlib. org/ users/ beginner. html
 6. Matplotlib API Reference: http:// matplotlib. org/ api/ index. html
 7. Pandas documentation page (user guide). Note the table of contents

on the left- hand side, it is very extensive: http:// pandas. pydata. org/
pandas- docs/ stable/

 8. Pandas cookbook provides many short and sweet examples: http://
pandas. pydata. org/ pandas- docs/ stable/ cookbook. html

 9. Pandas API Reference: http:// pandas. pydata. org/ pandas- docs/ stable/
api. html

 10. The scikit- learn API Reference: http:// scikit- learn. org/ stable/ modules/
classes. html

 11. The scikit- learn User Guide: http:// scikit- learn. org/ stable/ user_
guide. html

 12. The scikit- learn Example Gallery: http:// scikit- learn. org/ stable/ auto_
examples/ index. htm

Machine
Learning
Projects

Machine Learning Projects: https:// www. youtube. com/ watch? v=
5Txi0nHIe0o& list= PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw

Machine
Learning
Blogs

 1. Towards Data Science: https:// towardsdatascience. com/
 2. Medium Machine Learning: https:// medium. com/ topic/ machine-

learning
 3. Reddit: https:// www. reddit. com/
 4. Hackers News: https:// news. ycombinator.com/
 5. Explainable AI:

a. https://www.ibm.com/watson/explainable- ai
b. https://www.darpa.mil/program/explainable- artificial- intelligence
c. https://towardsdatascience.com/explainable- ai- 9a9af94931ff
d. https://www.weforum.org/agenda/2022/03/

designing- artificial- intelligence- for- privacy/
e. https://ora.ox.ac.uk/objects/

uuid:2b379a39-2bd9-43c1-a97a- 78632ddb9ede

https://www.fast.ai
https://docs.python.org/2/library/index.html
https://docs.python.org/2/library/index.html
http://www.scipy-lectures.org/
http://docs.scipy.org/doc/numpy/user/
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/users/beginner.html
http://matplotlib.org/api/index.html
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/cookbook.html
http://pandas.pydata.org/pandas-docs/stable/cookbook.html
http://pandas.pydata.org/pandas-docs/stable/api.html
http://pandas.pydata.org/pandas-docs/stable/api.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org
http://scikit-learn.org
https://www.youtube.com/watch?v=5Txi0nHIe0o&list=PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw
https://www.youtube.com/watch?v=5Txi0nHIe0o&list=PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw
https://towardsdatascience.com/
https://medium.com/topic/machine-learning
https://medium.com/topic/machine-learning
https://www.reddit.com/
https://news.ycombinator.com/
https://www.ibm.com/watson/explainable-ai
https://www.darpa.mil/program/explainable-artificial-intelligence
https://towardsdatascience.com/explainable-ai-9a9af94931ff
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://ora.ox.ac.uk/objects/uuid:2b379a39-2bd9-43c1-a97a-78632ddb9ede
https://ora.ox.ac.uk/objects/uuid:2b379a39-2bd9-43c1-a97a-78632ddb9ede

Appendix 209

RESOURCE SOURCE

Mathematics
for Machine
Learning

 1. MIT Courseware Linear Algebra: https://ocw.mit.edu/
courses/18-06-linear- algebra- spring- 2010/

 2. Calculus 3blue1brown: https://www.3blue1brown.com/topics/calculus
 3. Introduction to Probability The Science of Uncertainty: https://www.

edx.org/course/probability- the- science- of- uncertainty- and- data
 4. Khan Academy offers a wide range of tutorials on mathematics,

including algebra, calculus, linear algebra, and statistics. It provides a
step- by- step approach suitable for beginners.

 5. edX provides online courses from universities worldwide. Courses such
as “Essential Mathematics for Artificial Intelligence” by Microsoft on
edX cover relevant topics.

 6. Brilliant provides interactive courses in mathematics and science. The
“Mathematics for Computer Science” course is suitable for building a
strong mathematical foundation.

 7. Mathematics Stack Exchange is a community where you can ask
questions and get answers related to mathematics. It's a valuable
resource for clarifying concepts.

 8. Channels like Professor Leonard and PatrickJMT offer comprehensive
tutorials on various mathematical topics.

 9. Mathematics for Machine Learning by Marc Peter Deisenroth, A Aldo
Faisal, and Cheng Soon Ong is a book specifically designed for those
entering the field of machine learning.

Machine
Learning
Algorithms

Algorithm Design and Analysis Pennsylvania University: https://repository.
upenn.edu/sd3x/

Deep
Learning

 1. Deep Learning Andrew Ng: https://www.youtube.com/watch?v=
CS4cs9xVecg&list=PLkDaE6sCZn6Ec- XTbcX1uRg2_u4xOEky0

 2. CS231n - Convolutional Neural Networks for Visual Recognition is a
widely praised course by Stanford University. It covers convolutional
neural networks (CNNs) and their applications.

 3. MIT OCW: Introduction to Deep Learning provides lecture notes and
resources for learning deep learning concepts.

 4. PyTorch Tutorials on the official PyTorch website provide hands- on
guides for learning deep learning using PyTorch, a popular deep
learning framework.

 5. TensorFlow Tutorials on the official TensorFlow website offer practical
guides for building deep learning models using TensorFlow.

 6. Deep Learning (deeplearningbook.org) by Ian Goodfellow, Yoshua
Bengio, and Aaron Courville is a comprehensive book that covers the
theoretical foundations of deep learning.

https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://www.3blue1brown.com/topics/calculus
https://www.edx.org/course/probability-the-science-of-uncertainty-and-data
https://www.edx.org/course/probability-the-science-of-uncertainty-and-data
https://repository.upenn.edu/sd3x/
https://repository.upenn.edu/sd3x/
https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0
https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0

210

Index

Pages in italics refer to figures and pages in bold refer to tables.

A

activation functions, 60–62, 74
hyperbolic tangent, 61

advertising, 175–177, 180–181, 203
AGI (Artificial General Intelligence), 152–160
algorithm design, 146–147, 209
algorithms, 3–8, 13, 65, 74, 79, 80, 94–95, 97,

104–105, 107–108, 118, 120, 121–123, 129,
130, 132, 143–147, 150, 158, 172

ANI (Artificial Narrow Intelligence), 152, 159
anomalies, 7, 12, 60
APIs (Application Programming Interfaces), 106,

114, 123, 128
apriori algorithm, 202, 206
artificial general intelligence, 152–160
artificial intelligence, 6–9, 10, 16, 145, 147–148,

150, 152, 208–209
artificial intelligence systems, 139, 143
Artificial Narrow Intelligence, see ANI
ASI (Artificial Super Intelligence), 152, 159–160
association rule mining, 97–98, 120, 205
association rules, 5–6, 103, 126, 198, 203
AUC- ROC values, 100

B

Bayes’ Theorem, 51
Bernoulli distribution, 54
bias and discrimination, 142
bias term, 61–62
biases, 14, 74, 82, 92, 94, 107, 127, 129, 138,

141–143, 145–147, 149–150, 157
big data, 94, 120
binomial distribution, 55
box plots, 36–37, 40, 83, 87, 114, 169, 180

C

Caffe, 122
categorical data, 34, 40, 83, 87
Central Processing Unit (CPU), 133–134, 136
central tendency, 33–34, 52, 73, 83, 87, 165, 170,

177, 188
Centroid for Cluster, 70–71
centroids, 65, 67–71

chatbots, 2, 8–9, 11–13, 134, 142
Chebyshev distance, 65, 67
class distribution, 166–167
classes, 3–4, 34, 63, 83, 92, 99–101, 162, 165, 174
classification, 3, 97–98, 113, 114, 116, 118, 120,

121, 123, 126, 162, 184, 205
classification algorithms, 3, 162, 172, 206
cloud computing, 131, 135
cloud computing services, 132, 135
clustering, 5, 65, 83, 97–98, 105, 113, 114, 116,

118, 120, 121–123, 126, 184, 205
clustering algorithms, 5, 65, 162, 184, 205
clusters, 5, 60, 65, 67–71, 102–103, 184, 192–194,

196–198, 205
code, 79, 105, 112–113, 122, 125, 128, 164,

186–187
code editors, 112–113, 116, 117, 119, 121
code snippet, 164, 169, 176, 180, 183, 193
computer science, 7, 153, 156
computer vision, 7, 9, 10, 79, 122, 158
conditional probability, 50–51
conditional probability of event, 50–51
confusion matrix, 98, 172–173
continuous random variables, 51–54, 56
convolutional, 209
correlations, 12, 140, 167, 175, 177, 190
cost, 59, 82, 110, 113, 135–136

D

data, 1, 7–8, 33–36, 38–41, 74, 76–88, 91–97,
106–107, 139–143, 148–149, 166–167, 169,
171–172, 174–176, 180, 182, 186–188,
192–193, 196–202

data collection, 76, 78, 81–82, 92–94,
140–141, 150

data curation, 80, 93
data distribution, 40, 62, 88
data labeling, 80, 131
data mining, 12, 25, 94
data points, 5–6, 19, 35–39, 41, 52, 60, 65, 67–71,

83, 102–104, 177, 184–185
data preparation, 76–77, 79, 80–94, 118
data preprocessing, 76, 81, 88, 118, 122, 126, 169,

171, 180
data repositories, 79, 93–94

Index 211

data samples, 3–4, 39, 71, 105, 141, 162, 194
data science, 6–7, 13, 16, 19, 25, 53, 94, 208
data scientists, 14, 79, 111
data sources, 78, 93, 143–144
data standardization, 171
data summary, 165, 176–177, 186–187, 200
data transformation, 83, 93, 163, 180, 182
data visualization, 87, 126, 166, 177, 187, 201
dataset, 5, 32–33, 35–41, 78–85, 87–88, 91–99,

101–102, 104–105, 128–129, 130, 141,
163–167, 169–172, 175–177, 178, 180–182,
185–188, 198–202, 205

dataset features, 169, 181
dataset file, 164, 176, 185, 199
dataset splitting, 95
DBSCAN (Density- Based Spatial Clustering of

Applications with Noise), 5, 205
decision trees, 4, 172
deep learning, 8–9, 11, 16, 151, 154, 209
deep learning models, 114, 123, 142, 209
deployment, 106–110, 112, 114, 122, 125, 128–129,

131, 138, 143, 146, 148–149, 159
discrete random variables, 51–54, 63

E

EDA (Exploratory Data Analysis), 87–88, 93, 116
eigenvalues, 18, 30–32, 74
eigenvectors, 18, 25, 30–32, 74
EOA (Evolutionary Optimization Algorithms),

104–106, 108–109
error term, 45, 47–48
ethical challenges, 146, 155
ethical frameworks, 107, 143, 150
ethical issues, 82, 108
Euclidean distance, 60–61, 65, 68
Euclidean space, 65–67
evaluation metrics, 98, 108
events, 48–51, 55, 124, 140

F

False Negative (FN), 98–99, 173
false positive, 98–99, 173
feature extraction, 92, 115
feature selection, 63, 91, 93–94, 104, 115, 181, 205
forecasting, 12, 101
functions, 7, 53, 58–59, 86, 118, 143, 154, 158, 174,

176, 185, 199, 203

G

GA (Genetic Algorithms), 106, 121
Gaussian distribution, 40, 56
Generative Pre- trained Transformer (GPT), 157
Genetic Algorithms (GA), 106, 121
GPUs (Graphics Processing Unit), 133–136

gradient, 59–60, 105
gradient descent, 59, 104–105

H

hyperparameter optimization, 130, 137
hyperparameter tuning, 115, 116, 120, 130

I

IDEs (Integrated Development Environments),
110–113, 117–119, 121, 122, 133, 136

income, 186, 188, 194–196
independent variables, 4, 45–47, 59, 102,

181, 183
inferential statistics, 33, 39, 43
information theory, 62
input features, 3–4, 91, 171, 177, 179, 181
input variables, 59
intelligence, 7, 135, 152–156, 158–159
intelligent systems, 121

J

JAX (Just Another X), 134
joblib, 174
Jupyter Notebook, 112–113, 135, 203

K

k- means, 5, 194
k- means algorithm, 192–193
Keras, 114, 127, 130
kNN, 114, 116, 132, 172
knowledge, 1, 3, 12–13, 124, 152–153, 159

L

labeled data, 4, 6, 8
large language models (LLMs), 157, 159
learning algorithm, 3, 105
libraries, 110–113, 114, 115, 116, 118, 120,

121–125, 127, 130, 136–137, 163, 174–176, 208
linear algebra, 13, 18, 114, 123, 207, 209
LinearRegression, 182
loading libraries, 163, 175, 185, 199
loss function, 64, 105

M

machine learning, 1–33, 39–41, 49–51, 53–65,
73–74, 92–94, 108–109, 121–124, 126,
134–137, 139–142, 149–150, 207, 209

machine learning algorithms, 3, 12, 18–19, 40,
72, 79, 80–81, 83–84, 87, 108, 114, 116, 123,
141–142

MAD (Mean Absolute Deviation), 37–39

212 Index

MAE (Mean Absolute Error), 98, 101, 183
Manhattan distance, 65–66, 69
mathematical function, 51, 53, 60, 97
MATLAB, 110–111, 115, 117, 123
matrices, 18, 20–22, 25–26, 114
matrix, 20–27, 29–30, 98, 115, 164, 173, 190
Mean Absolute Error, see MAE
Mean Percentage Error (MPE), 183
mean squared error, see MSE
mean values, 42–43, 102, 193
measures of dispersion, 34, 38, 73
median, 34, 36, 39, 83–84, 88, 167, 170–171, 188
MLOps, 107–108
model, 1–4, 6, 33, 58–60, 76, 80–81, 91–92,

95–102, 104–106, 108–109, 126, 127, 129, 130,
132–134, 139–143, 148–150, 157, 171–175,
181–185, 193

model deployment, 106, 108, 127
model equation, 183
modeling phases, 77, 180
MPE (Mean Percentage Error), 183
MSE (Mean Squared Error), 98, 101–102, 183–184
multivariate analysis, 89, 91
multivariate linear regression, 47, 182

N

natural language processing, 7–9, 10, 115, 120,
121, 152

neural networks, 8, 61, 64, 97, 114, 120–121, 122,
127, 154, 156

NLP (Natural language processing), 7–9, 10, 16, 79,
115, 120, 121, 123, 152

noise, 5, 81, 141, 186, 198, 200
normal distribution, 40–43, 56–57
normalization, 33, 50, 84–85, 93, 182

O

object recognition, 114
one- hot encoding, 84, 191, 200
open- source version control system, 129, 133
optimization, 104, 114, 120, 126, 129–131, 151,

154, 156
optimization algorithms, 104, 113
outcomes, 48–51, 53–54, 56–57, 59–60, 63, 77,

98–99, 142, 143, 158–159, 163, 166–167, 171,
174

outliers, 5, 33–34, 36, 39, 81, 83, 85, 88, 166–169,
174, 180

P

parameters, 48, 65, 104–106, 140–141
PCA (principal component analysis), 74, 91–94,

205

PDF (probability density functions), 53–54, 57
performance metrics, 98–102, 126, 183
Poisson distributions, 54–55
precision, 82, 98–100, 172–173
predict, 3–4, 47–48, 72, 97, 102, 104, 173–175,

183–184
pre- trained models, 79, 114, 120, 122, 126, 128, 136
principal component analysis, see PCA
privacy, 14, 82, 107–108, 139–140, 142, 143,

146–147, 149–151
probability, 13, 48–51, 53–56, 72, 172, 209
probability and statistics, 13
probability density function, 52–54, 57
probability distribution, 49, 51, 53–54, 57, 62–64
probability mass function, 52–55
probability theory, 48–49, 51, 53
problem domains, 12, 77–78
programming, 113, 116, 117, 121, 124, 153, 207
programming code editors, 113, 121, 122
programming languages, 110–113, 117, 121,

123–126, 136
programming libraries, 115, 116, 121–123
Python, 110–113, 117, 123, 131, 163, 165, 207
Python code editors and IDEs, 111–113
Python libraries, 113–115
Python programming, 113, 131
Python tools, 111
PyTorch, 110, 114, 127, 134, 209

Q

quartiles, 36–37, 73, 167

R

R- Square, 183
RAM (Random Access Memory), 133–134, 136
Random Access Memory, see RAM
random variables, 49, 51–57, 62–63
recommendation systems, 2, 12, 61, 77–78, 123
regression, 3–4, 33, 56, 97–98, 113, 114, 116, 118,

120, 121–123, 126, 175, 205
regression algorithms, 4, 162, 180, 182, 205
regression models, 101, 116, 175
reinforcement learning, 3, 6, 158
RMSE (Root Mean Squared Error), 98, 102, 183
ROC curve, 100
Root Mean Squared Error, see RMSE
rows, 19–22, 24, 27, 87, 165, 175–176, 198,

200, 203

S

scalability, 118, 122, 123, 125, 134, 136, 154, 156
scatter plots, 87, 114, 167, 169, 177, 179–180, 190,

194, 195

Index 213

semi- structured data, 78
semi- supervised learning, 3, 6
sensitivity, 98–101, 172
SGD (Stochastic Gradient Descent), 104–105
sigmoid function, 60
silhouette score, 102–103, 108, 197–199
slope, 45–47, 59–60, 105, 177
SMOTE (Synthetic Minority Oversampling

Technique), 93
software tools, 110, 132, 136
standard deviation, 38–42, 52–53, 57, 85, 87, 174
statistics, 13, 32–33, 40, 50–51, 53, 78, 127, 165,

207, 209
Stochastic Gradient Descent, see SGD
structured data, 78, 175
supervised learning, 3, 6, 80
support vector machine, 4, 121, 132, 172

T

TensorFlow, 110, 114, 120, 127, 134, 209
testing data, 106
testing sets, 95, 97–98, 104, 108, 171
tokenization, 120
TPUs (Tensor Processing Unit), 134–136
training, 6, 95–97, 104–106, 108, 114, 123, 128,

134–135, 153–154, 171–172, 174, 182
training and testing data, 106
training and testing sets, 95, 97, 104, 108, 171

training parameters, 104, 127
training set, 95–97, 104, 171–172, 182
transactions, 103–104, 198–202
true negative, 98–99, 173
true positive (TP), 98–99, 173

U

uniform distribution, 56–57
unlabeled data, 6, 65, 184, 205
unseen data, 3, 96, 98, 104, 108, 174
unstructured data, 8, 78, 154
unsupervised learning, 3–5, 122

V

vectors, 18–21, 59
visualization, 39, 79, 87, 112, 114, 117, 126, 127,

186, 193, 196
visualization techniques, 33, 83
visualization tools, 122

W

weights, 39, 61–62, 74, 127, 129, 163

Z

zscore, 171, 174

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	About the authors
	Preface
	Acknowledgments
	Glossary
	Chapter 1: Fundamentals of machine learning
	1.1 What is machine learning?
	1.2 A brief history of machine learning
	1.3 Types of machine learning algorithms
	1.3.1 Supervised learning
	1.3.1.1 Types of supervised learning

	1.3.2 Unsupervised learning
	1.3.2.1 Types of unsupervised learning
	1.3.2.1.1 Clustering
	1.3.2.1.2 Association Rules

	1.3.3 Semi-supervised learning
	1.3.4 Reinforcement learning

	1.4 Relationship between machine learning and other computer science disciplines
	1.4.1 Machine learning and artificial intelligence
	1.4.2 Machine learning and data science
	1.4.3 Machine learning and traditional programming
	1.4.4 Machine learning and deep learning
	1.4.5 Machine learning and natural language processing
	1.4.6 Machine learning and computer vision
	1.4.7 Machine learning and generative AI

	1.5 The importance of machine learning
	1.6 When do we need machine learning?
	1.7 Machine learning skills
	1.7.1 Essential technical skills for machine learning professionals
	1.7.2 Essential soft skills for machine learning professionals

	1.8 What do machine learning professionals do?
	1.9 Real-world applications of machine learning
	1.10 Machine learning and ethical concerns
	1.11 Summary
	Further Reading

	Chapter 2: Mathematics for machine learning
	2.1 Linear algebra
	2.1.1 Scalars
	2.1.2 Vectors
	2.1.2.1 Vector addition
	2.1.2.2 Vector subtraction
	2.1.2.3 Vector multiplication

	2.1.3 Matrix
	2.1.3.1 Matrix addition
	2.1.3.2 Matrix subtraction
	2.1.3.3 Matrix multiplication
	2.1.3.4 Matrix transpose
	2.1.3.5 Square and rectangular matrix
	2.1.3.6 Triangular matrix
	2.1.3.7 Diagonal matrix
	2.1.3.8 Identity matrix
	2.1.3.9 Matrix determinant
	2.1.3.10 Adjugate of a matrix
	2.1.3.11 Singular and non-singular matrix
	2.1.3.12 Matrix inversion
	2.1.3.13 Eigenvectors and eigenvalues

	2.2 Statistics concepts
	2.2.1 Use of statistics in machine learning
	2.2.2 Types of statistics
	2.2.2.1 Descriptive statistics
	2.2.2.2 Inferential statistics

	2.2.3 Types of data
	2.2.3.1 Numerical data
	2.2.3.2 Categorical data

	2.2.4 Data distribution
	2.2.4.1 Normal distribution in statistics
	2.2.4.2 Skewness
	2.2.4.3 Central limit theorem

	2.2.5 Applied statistical inference
	2.2.5.1 Linear regression

	2.3 Probability theory
	2.3.1 Sample spaces and events
	2.3.2 Probability
	2.3.3 Probability measures
	2.3.4 Conditional probability
	2.3.5 Bayes’ theorem
	2.3.6 Random variables
	2.3.7 Expectation
	2.3.8 Variance
	2.3.9 Standard deviation
	2.3.9.1 Cumulative distribution function
	2.3.9.2 Probability mass function
	2.3.9.3 Probability density function
	2.3.9.4 Discrete distributions
	2.3.9.5 Bernoulli distribution
	2.3.9.6 Binomial distribution
	2.3.9.7 Poisson distribution
	2.3.9.8 Uniform distribution
	2.3.9.9 Continuous distributions
	2.3.9.10 Normal distribution (Gaussian distribution)
	2.3.9.11 Uniform distribution

	2.4 Calculus
	2.4.1 Differentiation
	2.4.2 Integration
	2.4.3 Gradient
	2.4.4 Linear function
	2.4.5 Quadratic function
	2.4.6 Sigmoid function

	2.5 Geometry and trigonometry
	2.5.1 Geometry in data representation
	2.5.2 Trigonometric geometry in model optimization

	2.6 Information theory
	2.6.1 Entropy and information content
	2.6.2 Mutual information and feature selection
	2.6.3 Cross-entropy and model evaluation

	2.7 Clustering
	2.7.1 K-Means clustering algorithm

	2.8 Summary
	Further Reading

	Chapter 3: Data preparation
	3.1 Overview of machine learning process
	3.2 Business problem identification
	3.3 Success criteria definition
	3.4 Data collection
	3.4.1 Nature of data
	3.4.2 Data sources
	3.4.3 Data curation
	3.4.4 Data labeling
	3.4.5 Ethical considerations in data collection

	3.5 Data preprocessing
	3.5.1 Data cleaning
	3.5.1.1 Removing duplicate or irrelevant values
	3.5.1.2 Fixing structural errors
	3.5.1.3 Detecting and removing outliers
	3.5.1.4 Handling missing values
	3.5.1.5 Validation

	3.5.2 Data Transformation
	3.5.2.1 Binning
	3.5.2.2 Encoding
	3.5.2.3 Data normalization
	3.5.2.4 Standardization

	3.5.3 Exploratory data analysis
	3.5.3.1 Data summarization
	3.5.3.2 Data visualization

	3.5.4 Types of exploratory data analysis
	3.5.4.1 Univariate
	3.5.4.2 Bivariate

	3.5.5 Multivariate
	3.5.6 Dimensionality reduction
	3.5.6.1 Feature selection
	3.5.6.1.1 Backward feature elimination
	3.5.6.1.2 Forward feature selection

	3.5.6.2 Feature extraction

	3.5.7 Data balancing

	3.6 Summary
	Further Reading

	Chapter 4: Machine learning operations
	4.1 Model development
	4.1.1 Dataset splitting
	4.1.1.1 Hold-out
	4.1.1.2 Cross-validation

	4.1.2 Choosing an algorithm
	4.1.2.1 Problem understanding
	4.1.2.2 Algorithm capabilities
	4.1.2.3 Computational resources

	4.1.3 Model training
	4.1.4 Model evaluation
	4.1.5 Overfitting and underfitting
	4.1.6 Model optimization
	4.1.6.1 Exhaustive search
	4.1.6.2 Gradient descent
	4.1.6.3 Stochastic gradient descent
	4.1.6.4 Evolutionary optimization algorithms

	4.2 Model deployment
	4.3 Model monitoring
	4.4 Ethical considerations in machine learning operations (MLOps)
	4.5 Summary
	Further Reading

	Chapter 5: Machine learning software and hardware requirements
	5.1 Programming languages
	5.1.1 Python programming language
	5.1.1.1 Python code editors and IDEs
	5.1.1.2 Python libraries

	5.1.2 R programming language
	5.1.2.1 R programming code editors and IDEs
	5.1.2.2 R programming libraries

	5.1.3 MATLAB
	5.1.3.1 MATLAB code editors and IDEs
	5.1.3.2 MATLAB libraries

	5.1.4 Other programming languages
	5.1.4.1 Java programming

	5.1.5 Java programming code editors and IDEs
	5.1.6 Java ML libraries
	5.1.6.1 C++ programming

	5.1.7 C++ programming code editors and IDEs
	5.1.8 C++ programming libraries
	5.1.9 Criteria for choosing programming language for machine learning
	5.1.9.1 Library and framework support
	5.1.9.2 Robust and extensive community support
	5.1.9.3 Ease of learning and use
	5.1.9.4 Flexibility, scalability, and efficiency
	5.1.9.5 Integration with other tools and software
	5.1.9.6 Industry adoption

	5.2 No-code tools
	5.3 Experiment tracking tools
	5.4 Pre-trained models repositories
	5.5 Datasets and model tracking tools
	5.6 AutoML hyperparameter optimization tools
	5.7 Machine learning life cycle tools
	5.8 User interface development tools
	5.9 Explainable AI tools
	5.10 Version control systems
	5.11 Machine learning hardware requirements
	5.12 Operating systems requirements
	5.13 Processor and memory requirements
	5.13.1 CPU
	5.13.2 GPU
	5.13.3 TPU
	5.13.4 RAM
	5.13.5 Storage

	5.14 Cloud computing services for machine learning
	5.15 Summary
	Further Reading

	Chapter 6: Responsible AI and explainable AI
	6.1 Responsible AI
	6.2 Explainable AI
	6.3 Privacy concerns in machine learning
	6.4 Ethical implications of machine learning
	6.5 Accountability and trust in AI
	6.6 Global case studies on AI governance and regulation
	6.6.1 Formulation of AI strategies and guidelines in Africa
	6.6.2 European Union AI Act
	6.6.3 Global partnership on AI
	6.6.4 China AI ethics guidelines

	6.7 Human-centric artificial intelligence
	6.8 Responsible AI best practices
	6.9 AI impact assessment case studies
	6.10 Artificial intelligence sovereignty
	6.11 Summary
	Further Reading

	Chapter 7: Artificial general intelligence
	7.1 Categories of artificial intelligence
	7.2 What makes an intelligence general?
	7.3 Approaches for developing AGI
	7.4 Philosophy of mind
	7.5 Challenges of artificial general intelligence
	7.6 Potential benefits and risks of artificial general intelligence
	7.7 Indicators of the presence of artificial general intelligence
	7.8 Robotics and embodied intelligence
	7.9 Artificial super intelligence
	7.10 Summary
	Further Reading

	Chapter 8: Machine learning step-by-step practical examples
	8.1 Case study 1: Classification problem
	8.1.1 Problem definition
	8.1.1.1 Description of the dataset

	8.1.2 Loading libraries
	8.1.3 Loading dataset
	8.1.4 Data summary
	8.1.4.1 Descriptive statistics
	8.1.4.2 Data visualization

	8.1.5 Data preprocessing
	8.1.5.1 Data cleaning
	8.1.5.1.1 Outliers
	8.1.5.1.2 Missing values

	8.1.5.2 Data standardization

	8.1.6 Split-out the dataset
	8.1.7 Choosing classification algorithm
	8.1.8 Training the model
	8.1.8.1 Model evaluation
	8.1.8.2 Saving the model
	8.1.8.3 Inferencing

	8.2 Case study 2: Regression problem
	8.2.1 Problem definition
	8.2.1.1 Description of the dataset

	8.2.2 Loading libraries
	8.2.3 Loading dataset
	8.2.4 Data summary
	8.2.4.1 Descriptive statistics
	8.2.4.2 Data visualization

	8.2.5 Data preprocessing
	8.2.5.1 Data cleaning
	8.2.5.1.1 Outliers
	8.2.5.1.2 Missing values

	8.2.5.2 Feature selection
	8.2.5.3 Data transformation

	8.2.6 Choosing regression algorithm
	8.2.7 Training the model
	8.2.7.1 Model equation
	8.2.7.2 Evaluating the model
	8.2.7.3 Evaluating the model using MSE
	8.2.7.4 Coefficient of determination

	8.3 Case study 3: Clustering problem
	8.3.1 Problem definition
	8.3.1.1 Description of the dataset

	8.3.2 Loading libraries
	8.3.3 Loading the dataset
	8.3.4 Renaming column names
	8.3.5 Data summary
	8.3.6 Dropping less informative features
	8.3.6.1 Descriptive statistics
	8.3.6.2 Data visualization

	8.3.7 Feature transformation
	8.3.8 Performing clustering using K-means algorithm
	8.3.9 Cluster visualization
	8.3.10 Model evaluation
	8.3.11 Case study 4: Association rules
	8.3.12 Problem definition
	8.3.12.1 Description of the dataset

	8.3.13 Loading libraries
	8.3.14 Loading dataset
	8.3.15 Data summary

	8.4 Feature transformation
	8.4.1 Data visualization
	8.4.2 Model development

	8.5 Summary

	Appendix: Machine Learning Resources
	Index

