


The book provides an accessible, comprehensive introduction for beginners to machine 
learning, equipping them with the fundamental skills and techniques essential for 
this field.

It enables beginners to construct practical, real- world solutions powered by machine 
learning across diverse application domains. It demonstrates the fundamental tech-
niques involved in data collection, integration, cleansing, transformation, development, 
and deployment of machine learning models. This book emphasizes the importance of 
integrating responsible and explainable AI into machine learning models, ensuring these 
principles are prioritized rather than treated as an afterthought. To support learning, this 
book also offers information on accessing additional machine learning resources such as 
datasets, libraries, pre- trained models, and tools for tracking machine learning models.

This is a core resource for students and instructors of machine learning and data 
science looking for a beginner- friendly material which offers real- world applications 
and takes ethical discussions into account.
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Preface

Education is the most powerful weapon that you can use to change the world.
—Nelson Mandela

Machine learning is evolving rapidly, and its impact on our lives is profound. Machine 
learning applications have seamlessly expanded beyond their initial domains, integrat-
ing into our daily lives in ways we might not consciously recognize. It is not always 
apparent that machine learning algorithms drive commonplace activities such as using 
virtual assistants for voice commands, relying on self- driving features in modern 
 vehicles,  benefiting from smart home devices like intelligent kitchen appliances, or even 
experiencing personalized recommendations during online transactions. Machine learn-
ing is not just a tool, it is a force that shapes our future.

Acquiring machine learning knowledge and skills is crucial for staying relevant and 
unlocking diverse career opportunities in, for example, agriculture, healthcare, engineer-
ing, and finance industries. The acquired skills are in high demand, offering a lucrative 
career path with personal growth. Furthermore, machine learning contributes to effi-
ciency, creativity, and competitive advantages in business creation and optimization.

This book is a humble attempt to demystify the complexities of machine learning 
while emphasizing the crucial role of ethics in this transformative field. Embarking on a 
journey into machine learning can be both thrilling and daunting. This book serves as a 
guide, simplifying concepts and providing practical examples to make the learning pro-
cess engaging and accessible. This book is tailored to varied readers, including students, 
professionals exploring a new domain, or simply curious about the intersection of 
machine learning and ethics.

In the following chapters, this book will delve into the fundamentals of machine 
learning, explain the underlying algorithms, and explore real- world use cases of machine 
learning. The ethical implications of AI are central to the discussions in this book. As we 
unlock the potential of machine learning, we must also grapple with the responsibility it 
places on our shoulders. Notably, the ethical dimension of machine learning cannot be 
overstated. This book navigates the ethical considerations inherent in designing, deploy-
ing, and using machine learning models. From bias in algorithms to the societal impact 
of automation, urging the readers to think critically and responsibly about the power 
they wield as practitioners in this field. We encourage the reader to read the book with 
curiosity, an open mind, and a keen interest in the ethical dimensions of artificial intel-
ligence. May this book empower the reader to delve into this transformative field 
responsibly and ethically.
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Glossary

Algorithm: A set of instructions that a computer follows to solve a problem.
Artificial Intelligence: Mimicking human intelligence in machines designed to  perform 

tasks that usually require human intelligence.
Bias: A systematic error in a machine learning model that causes it to make incorrect 

predictions.
Data Preprocessing: Preparing and cleaning raw data before feeding it into a machine 

learning algorithm.
Feature Extraction: The process of selecting the most relevant features from the input 

data to enable efficient and accurate learning.
Hyperparameters: Parameters that are not learned from the data but are set manually 

before training a machine learning model.
Machine Learning: A branch of artificial intelligence that focuses on developing 

 algorithms and models that enable computers to learn from data and make 
predictions without being explicitly programmed.

Metadata: A set of details that provides information about the data, such as data 
g eneration date, data source, data size, owner, and license agreement.

Model Development: Designing, building, and refining a machine learning model to 
solve a specific problem or make predictions.

Model Deployment: Deploying a trained machine learning model into a production 
environment.

Model Evaluation: The process of assessing the performance of a machine learning 
model using various metrics to determine its effectiveness.

Neural Network: A network of artificial neurons or nodes that draws inspiration from 
the structure and function of the human brain.

Noise: The presence of inaccurate or irrelevant variations in a dataset.
Overfitting: A phenomenon in machine learning where a model learns excessively well 

from the training data and fails to generalize to new, unseen data.
Outlier: A single data point in a dataset that deviates noticeably from the rest of the 

dataset.
Supervised Learning: A type of machine learning where a model is trained using 

labeled data, meaning each data point has a corresponding target value. 
The model learns to predict these target values for new, unseen data.

Testing Data: A set of data (different from the training data) used to evaluate the 
 performance and generalization of a trained machine learning model.

Training Data: The labeled or unlabeled data used to train a machine learning model.



xii Glossary

Underfitting: A phenomenon that occurs when a machine learning model fails to  capture 
the underlying patterns in the training data, resulting in poor  performance on 
both the training and testing data.

Unsupervised Learning: A type of machine learning where the model learns from 
unlabeled data, discovering hidden patterns and structures within the data 
without predefined target values.

Validation Set: A set of data (different from the training and testing datasets) that is 
used to fine- tune the performance of a machine learning model.
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1Fundamentals 
of machine  
learning

Upon completing this chapter, learners should be able to:

1. Define machine learning with a foundational understanding of its  principles, 
terminologies, and processes.

2. Articulate the importance of machine learning, its practical applications, 
and growing relevance.

3. Differentiate between various types of machine learning algorithms, their 
characteristics, and use cases.

4. Examine real- world applications of machine learning across diverse indus-
tries and their practical impact.

5. Understand the interdisciplinary connections of machine learning with other 
computer science disciplines.

1.1 WHAT IS MACHINE LEARNING?

Machine learning is a field of science that utilizes data and algorithms to train  computers 
to mimic human learning processes, as illustrated in Figure 1.1. It involves learning 
from data to acquire knowledge (i.e., what is learnt), understand the process (i.e., how 
it learnt), and apply this knowledge to solve problems (i.e., reasoning and decision- 
making) reliably.

Additionally, as summarized in Figure 1.2, machine learning can also be defined as 
the science of creating autonomous software or models that learn from data to solve 
problems and make predictions. Simply put, machine learning focuses on building mod-
els that improve automatically with experience. This approach offers greater flexibility 
and efficiency, significantly reducing software developers’ need to manually program 
machine instructions.

This chapter has been made available under a CC-BY-NC-ND 4.0 license.

http://dx.doi.org/10.1201/9781003486817-1


2 Practical Machine Learning

1.2 A BRIEF HISTORY OF MACHINE LEARNING

Machine learning has been evolving since its inception in the 1950s. In the 1970s and 
1980s, the field of machine learning primarily revolved around the goal of decision- 
making based on predetermined rules. However, in the 1990s, a notable shift occurred, 
redirecting machine learning toward a more data- centric approach. During the 2000s, 
there was a significant advancement in computer learning capabilities, particularly com-
plex and data- rich applications, for example, processing visual information. This progress 
greatly contributed to the machines’ ability to learn and comprehend, mirroring the way 
human brains work. In the 2010s, machine learning experienced remarkable progress, 
marked by significant developments in voice assistants, self- driving technologies, rec-
ommendation systems, and the widespread adoption of spam filters and chatbots. In the 
early 2020s, ongoing trends include the exploration of federated learning, allowing model 
training across decentralized machines and an increased focus on ethical considerations. 
Additionally, machines can learn and generate content in human- like language and cre-
ate original and creative outputs on their own, such as images, text, music, or even entire 
realistic scenarios. Furthermore, the field continues to evolve, emphasizing responsible AI 
practices, bias mitigation, and the development of models that align with ethical principles.

FIGURE 1.1 Machine learning overview.

Machine Learning

How is it learnt?What is learnt?

Learning Reasoning, Decision-making

How is it converted to action?

FIGURE 1.2 The meaning of machine learning.
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1.3 TYPES OF MACHINE 
LEARNING ALGORITHMS

An algorithm is a set of mathematical instructions or rules that directs a computer 
program to solve a specific problem or perform a task. In machine learning, an algo-
rithm enables a model to process data, identify patterns, and make predictions. It 
is the fundamental building block that drives the learning process and allows the 
model to generalize its knowledge to new, unseen data. There are four main types 
of machine learning algorithms: Supervised Learning, Unsupervised Learning, 
 Semi- supervised Learning, and Reinforcement Learning, which are discussed in the 
following subsections.

1.3.1 Supervised learning

Supervised learning is a branch of machine learning wherein the algorithm learns from 
input features associated with known output labels or target values, enabling it to predict 
or classify new, unseen data. Supervised learning relies on a dataset containing input- 
output pairs to train the algorithm. This concept can be likened to learning under the 
guidance of a supervisor. Generally, supervised learning proves more effective when 
labeled datasets are available than other learning methods. Its applications span various 
real- life scenarios, including fraud detection (e.g., distinguishing between fraudulent 
and legitimate transactions), sales forecasting (e.g., predicting high, medium, or low 
sales), and email categorization (e.g., identifying spam emails). Table 1.1 depicts an 
example of a labeled dataset containing the diabetes diagnostic measurements, where 
the last feature (label) contains the values of 1 or 0, indicating that a patient is diabetic 
or not, respectively.

1.3.1.1 Types of supervised learning

Supervised learning encompasses two primary types of problems: classification and 
regression.

 • Classification entails assigning input data samples into predefined catego-
ries or classes. Drawing from previous learning experiences, a classifica-
tion  algorithm typically identifies data samples within the input dataset 

TABLE 1.1 An example of a labeled dataset

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE LABEL

0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
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and assigns them to specific classes. Common classification types include 
binary and multiclass classification.
• In binary classification, an algorithm trains to classify data samples into 

one of two potential classes, aiming to construct a model capable of 
accurately assigning new samples to their respective classes. Examples 
of binary classification applications include discerning whether an 
email is spam or not and diagnosing whether an individual is diabetic 
or not. Algorithms proficient in binary classification include Logistic 
Regression, Support Vector Machine, k- Nearest Neighbors, Decision 
Trees, Naive Bayes, and Random Forest.

• In multiclass classification, an algorithm trains to classify data sam-
ples into three or more classes, aiming to construct a model capable of 
accurately  categorizing new data samples into their respective classes. 
Examples of multiclass classification applications include determin-
ing the genre of a movie into categories such as action, drama, comedy, 
or fiction and classifying animals into categories like dog, cat, or tiger. 
Algorithms proficient in multiclass classification include Decision Tree 
and Artificial Neural Networks.

 • Regression involves predicting a continuous output or numerical value 
based on input features. To develop a model, regression algorithms are 
trained to understand the relationship between independent variables and 
a continuous dependent variable. This model can then predict the outcome 
of new, unseen input data. An example of a regression algorithm is Linear 
Regression.
• In linear regression, an algorithm captures the relationship between a 

dependent variable (the feature to be predicted) and one or more inde-
pendent variables (the predictor features) to develop a model capable of 
accurately predicting the dependent variable based on at least one inde-
pendent variable. Linear regression algorithms are categorized into two 
main types: simple and multivariate (multiple) regression. Simple linear 
regression involves a dependent variable relying on a single indepen-
dent variable, while multivariate linear regression involves a dependent 
variable relying on multiple independent variables. Linear regression is 
extensively used for tasks such as estimating housing prices based on 
factors like area, room count, and location.

1.3.2 Unsupervised learning

Unsupervised learning is a type of machine learning that does not require labeled 
 datasets. Instead of being guided by predefined labels, the algorithm independently dis-
covers hidden patterns and insights within the data. Unsupervised learning is crucial 
because obtaining unlabeled data is often easier than acquiring labeled data, which typi-
cally requires human annotators. Additionally, unsupervised learning can help identify 
 features useful for categorization. Table 1.2 illustrates an unlabeled dataset containing 
diabetes diagnostic measurements without a label feature.
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1.3.2.1 Types of unsupervised learning

Unsupervised learning techniques are categorized into clustering and association rules 
as described in the following:

1.3.2.1.1 Clustering
This machine learning technique finds patterns or structures in a collection of unclas-
sified data and uses them to group similar data into clusters or segments. Common 
categories of clustering algorithms include hierarchical, partitioning, and density- based 
clustering.

 • Hierarchical clustering involves creating a hierarchical structure of clusters 
by merging or splitting clusters based on the similarity of data points. The 
application of hierarchical clustering spans various domains, including doc-
ument clustering and social network analysis. Notable examples of hierar-
chical clustering algorithms include agglomerative hierarchical clustering, 
divisive hierarchical clustering, and Ward’s method.

 • Partitioning clustering algorithms organize a dataset into distinct, non- 
overlapping groups or clusters, where each data point belongs to only one 
cluster. Partitioning clustering is used in applications such as customer 
 segmentation based on online purchasing behavior. Examples of partition-
ing clustering algorithms include K- means, fuzzy C- means (FCM), X- means, 
and G- means.

 • Density- based clustering algorithms cluster data points according to their 
density in the feature space. The algorithm identifies clusters as regions 
with a higher density of data points, separated by areas of lower density. 
This enables it to uncover clusters of diverse shapes and effectively handle 
noise or outliers. In density- based clustering, clusters emerge around dense 
regions, while data points in sparser regions may be classified as outliers. 
Density- based clustering algorithms find applications in traffic analysis and 
anomaly detection in network security. Examples of such algorithms include 
Density- Based Spatial Clustering of Applications with Noise (DBSCAN) 
and mean shift.

1.3.2.1.2 Association Rules
This technique is used to identify relationships or associations between variables in 
a dataset based on predefined rules. The rules highlight patterns in the form of “if- 
then” statements, indicating that the occurrence of one set of items is associated with 

TABLE 1.2 An example of an unlabeled dataset

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE

0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32
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the occurrence of another set of items. Applications of association rules are market 
 basket analysis, online shopping customer behavior analysis, and inventory manage-
ment. In essence, association rules provide valuable insights into the relationships 
between seemingly unrelated data points, facilitating data- driven decision- making in 
diverse fields. For instance, businesses utilize association rules to understand patterns 
of co- occurrence among products frequently purchased together (e.g., bread and jam, 
book and pencil), informing decisions on product placement, targeted marketing, and 
personalized recommendations. Examples of association rules algorithms are Apriori, 
Eclat, and FP- Growth.

1.3.3 Semi- supervised learning

Semi- supervised learning provides the capability to train an algorithm using a combi-
nation of labeled data, consisting of a small number of examples with known labels, 
and unlabeled data, which comprises a large number of examples without labels. In 
situations where acquiring fully labeled data is challenging, unsupervised and semi- 
supervised learning offers viable alternatives to supervised learning. The process of 
creating labeled datasets can be time- consuming, labor- intensive, and costly, as it often 
requires the involvement of domain experts for manual annotation. Various algorithms 
can be employed in semi- supervised learning, including self- training, co- training, gen-
erative models, entropy regularization, graph- based methods, semi- supervised support 
vector machines (S3VM), and transductive support vector machines (SVM).

1.3.4 Reinforcement learning

Reinforcement learning involves training a machine learning model to make a series of 
decisions within a complex environment. The model perceives and interprets its surround-
ings, employing a trial- and- error approach to discover the optimal solution to a given prob-
lem. In reinforcement learning, the model receives rewards for desirable behaviors and 
may face penalties for undesired ones. Several common reinforcement learning algorithms 
exist, including Q- learning, deep Q- networks (DQN), policy gradient methods, actor- 
centric methods, Monte Carlo methods, and deep deterministic policy gradient (DDPG).

1.4 RELATIONSHIP BETWEEN MACHINE 
LEARNING AND OTHER COMPUTER 

SCIENCE DISCIPLINES

This section describes the relationship between machine learning and artificial intelli-
gence, data science, traditional programming, deep learning, natural language process-
ing, computer vision, and generative AI.
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1.4.1 Machine learning and artificial intelligence

In brief, AI is a field within computer science, with machine learning under its umbrella. 
While machine learning and AI are often used interchangeably, machine learning is a 
subset of AI that enables systems to learn and refine processes without explicit program-
ming for each task. These systems ingest data, process it through algorithms, and learn 
from it, discerning patterns or anomalies. In contrast, AI involves crafting systems to 
think and behave in ways akin to humans, empowering them to undertake tasks typically 
requiring human intellect. AI is characterized in two key ways: as the scientific endeavor 
to design machines capable of decision- making like humans and as the manifestation 
of intelligence in machines, distinct from natural human and animal intelligence. In 
essence, machine learning outputs contribute to AI solutions. While both share simi-
lar goals and functions, AI covers various techniques such as computer vision, natural 
 language processing, and robotics.

1.4.2 Machine learning and data science

Data science is a discipline that revolves around studying data and extracting valuable 
insights from it. On the other hand, machine learning is a specialized field within data 
science that focuses on comprehending and constructing models that leverage data to 
enhance performance or make predictions. In simpler terms, data science aims to extract 
actionable insights from data, while machine learning is concerned with developing 
models that can automate predictive behavior by utilizing the available data. The rela-
tionship between machine learning, AI, and data science is illustrated in Figure 1.3.

1.4.3 Machine learning and traditional programming

Both machine learning and traditional programming serve as problem- solving tools, 
each suitable for different types of challenges. Traditional programming excels in 
 scenarios with well- defined rules and structures, where solutions can be articulated 

FIGURE 1.3 The relationship between AI, machine learning, and data science.

Data scienceMachine
LearningArtificial

Intelligence
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through logical statements and algorithms. Conversely, machine learning shines in 
addressing problems characterized by complex and elusive patterns or relationships. 
Inspired by human learning, machine learning empowers computers to glean insights 
from examples and autonomously devise solutions. As depicted in Figure 1.4, tradi-
tional programming involves the computer processing data and programs to generate an 
output. In contrast, machine learning entails the computer utilizing data and expected 
output to generate the program.

1.4.4 Machine learning and deep learning

Both machine learning and deep learning reside under the umbrella of artificial intel-
ligence, yet they diverge in their learning methods and problem- solving approaches. 
Deep learning, a subset of machine learning, is distinguished by its utilization of 
 neural networks, inspired by the human brain, to learn and solve problems. In con-
trast, machine learning trains computer programs or systems to execute tasks without 
explicit instructions. Machine learning excels in well- defined tasks with structured and 
labeled data, typically involving lower data volumes. Conversely, deep learning thrives 
in tackling complex tasks with unstructured and extensive data. Examples of machine 
learning applications encompass spam filtering, image recognition, and product rec-
ommendation systems. In contrast, deep learning finds applications in self- driving 
cars, speech  recognition, medical image analysis, and generative AI applications like 
chatbots (such as ChatGPT) and Google’s Gemini. Figure 1.5 delineates the relation-
ship between artificial intelligence, machine learning, and deep learning.

1.4.5  Machine learning and natural 
language processing

Natural language processing (NLP) is a specialized field within machine learning 
that focuses on the interaction between human language and computers. It recognizes 
the abundance of valuable information in text and speech data, such as news articles, 
customer reviews, and research papers. NLP provides computational tools to extract 
insights and derive meaning from this unstructured data, making it a crucial component 
of the machine learning toolbox for understanding and processing human language. 

FIGURE 1.4 The relationship between machine learning and traditional programming.

Computer ComputerOutput

Output

DataData

Traditional Programming Machine Learning

Program

Program
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The applications of NLP are diverse and span across various industries. In healthcare, 
NLP can be used for tasks like clinical text analysis and medical record extraction. In edu-
cation, it can aid in automated grading and intelligent tutoring systems. Communication 
platforms like Google Translate and text auto- completion rely on NLP algorithms. In 
business and marketing, sentiment analysis and chatbots employ NLP techniques. Also, 
NLP contributes to entertainment applications such as social media feed recommen-
dations and voice assistants. Figure 1.6 illustrates the relationship between machine 
learning and natural language processing, highlighting how NLP plays a vital role in 
leveraging machine learning techniques to process and understand human language.

1.4.6 Machine learning and computer vision

Computer vision (CV) constitutes a subset of AI that empowers computers to compre-
hend visual information such as images and videos. Given the complex and variable 
nature of visual data, traditional programming techniques often fall short in resolving 
many computer vision tasks. Instead, machine learning methods, particularly deep learn-
ing, are leveraged to discern visual patterns from images autonomously. This progression 
underlies the creation of applications like image classification (categorizing images), 
object detection (locating specific objects within images), and facial recognition (match-
ing and identifying human faces). The relationship among artificial intelligence, machine 
learning, and computer vision is succinctly depicted in Figure 1.7.

FIGURE 1.5 The relationship between artificial intelligence, machine learning, and deep 
learning.
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FIGURE 1.7 The relationship between artificial intelligence, machine learning, and 
 computer vision.

FIGURE 1.6 The relationship between machine learning and natural language processing.
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1.4.7 Machine learning and generative AI

AI has made significant strides in recent years, showcasing mastery in various domains, 
from complex games to language translation and disease diagnosis. However, what if 
AI could transcend its current capabilities and become a creator? You may have encoun-
tered ChatGPT, a chatbot with human- like conversational abilities, or Midjourney, a 
model capable of generating realistic images from textual prompts. These break-
throughs are powered by Generative AI, a subset of machine learning, particularly deep 
learning, which focuses on generating novel content rather than just analyzing or acting 
upon existing data. The following key advancements have propelled the evolution of 
Generative AI:

 i. Transformers: These architectures revolutionized NLP, enabling AI sys-
tems to understand the relationships between words and the language con-
text more sophisticatedly. This paved the way for advanced conversational AI 
applications.

 ii. GANs (Generative Adversarial Networks): These systems operate within a 
framework where two deep neural networks engage in a competitive process: 
a generator network strives to produce realistic data, while a discriminator 
network differentiates between real and generated examples. This dynamic 
competition fosters a cycle of continuous enhancement, driving improve-
ments in the quality and realism of the generated content.

 iii. Diffusion Models: These learn to create new data by gradually reversing 
a process of adding noise to existing data. They have proven exceptionally 
powerful in generating high- resolution images and other complex media.

1.5 THE IMPORTANCE OF MACHINE  
LEARNING

Machine learning models streamline tasks that would typically demand manual effort 
from humans. By harnessing machine learning, organizations can uncover valuable 
insights from data, facilitating informed decision- making processes. Implementing 
data- driven strategies enhances business efficiency, performance, and productiv-
ity and mitigates risks. The significance of machine learning extends across various 
sectors and industries, enabling the anticipation of future risks and opportunities. In 
healthcare, for instance, machine learning can scrutinize medical images, genomic 
data, and electronic health records to aid physicians in making precise diagnoses and 
recommending suitable treatments. Similarly, machine learning finds utility in crop 
monitoring, yield prediction, pest detection, and soil analysis in agriculture. Machine 
learning optimizes crop production and resource allocation by enabling farmers to 
make data- driven decisions.
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1.6 WHEN DO WE NEED MACHINE  
LEARNING?

Machine learning is indispensable across various contexts and problem domains, 
 especially where conventional rule- based programming or manual analysis falls short. 
The following are several typical scenarios where machine learning proves exception-
ally beneficial:

 a. Handling of large and complex data: Machine learning algorithms excel at 
revealing patterns, correlations, and insights that are challenging to discern 
manually, especially when confronted with extensive datasets. With its capac-
ity to navigate complex data structures and high- dimensional data, machine 
learning is well- suited for data mining, pattern recognition, and predictive 
modeling tasks.

 b. Need for automation and efficiency: Machine learning can automate repeti-
tive tasks and boost efficiency across various domains. In customer service, 
for instance, integrating chatbots driven by machine learning can efficiently 
handle basic inquiries, allowing human agents to focus on more com-
plex issues.

 c. Prediction and forecasting: Machine learning algorithms can analyze his-
torical data patterns to forecast outcomes across various sectors, including 
stock price movements, weather patterns, and disease outbreaks. By harness-
ing this capability, machine learning provides invaluable insights, enabling 
informed decision- making grounded in past trends.

 d. Anomaly detection: Machine learning algorithms can detect anoma-
lies and recognize unusual patterns within data. This capability holds 
 significant value across various domains, including fraud detection, cyber-
security, and network monitoring. By acquiring knowledge of  normal 
behavior through training, machine learning models can effectively iden-
tify  deviations and  anomalies that may indicate fraudulent activities or 
security breaches. This enables prompt intervention and implementation 
of mitigation measures to address potential risks and safeguard the system 
or network.

 e. Personalization and recommendation systems: Machine learning empow-
ers personalized experiences and tailored recommendations by scrutiniz-
ing user preferences and behavior. This technology drives recommendation 
engines across diverse domains like hospitality, content streaming, and social 
media. By analyzing user data, machine learning models deliver personalized 
suggestions for products, services, movies, or connections that resonate with 
individual preferences.

 f. Computational linguistics: Machine learning is pivotal in computational 
linguistic tasks, empowering machines to process, comprehend, and interpret 
human languages effectively; this involves language translation, sentiment 
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analysis, speech recognition, and chatbots. Through extensive training on 
vast amounts of text data, machine learning models can grasp and generate 
human language, facilitating seamless communication and language- based 
interactions.

1.7 MACHINE LEARNING SKILLS

Given the interdisciplinary nature of machine learning, the requisite skills lie at the 
intersection of various domains, including software engineering, data science, and com-
munication. These skills can be broadly categorized into technical and soft skills, as 
elaborated in the following subsections.

1.7.1  Essential technical skills for machine 
learning professionals

This refers to the technical skills spanning data science and software engineering, as 
summarized in Table 1.3.

1.7.2  Essential soft skills for machine 
learning professionals

Soft skills are what set apart effective machine learning professionals from those who 
are ineffective. These skills are needed for the project’s successful completion and deliv-
ery. Such skills include communication, problem- solving, time management, teamwork, 
and a thirst for learning.

TABLE 1.3 Essential technical skills for machine learning professionals

SKILL DESCRIPTION

Software Engineering Includes the ability to write computer programs, 
understanding of algorithms and data structures, and 
knowledge of computer architecture and organization.

Statistics and Mathematics This entails having proficiency in hypothesis testing, data 
modeling, and a strong grasp of mathematical concepts 
such as probability, statistics, and linear algebra. It also 
involves the ability to devise an evaluation strategy for 
predictive models and algorithms.
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1.8 WHAT DO MACHINE LEARNING 
PROFESSIONALS DO?

Machine learning professionals are responsible for designing, building, testing, deploy-
ing, and updating machine learning models. In particular, this involves:

 • Performing data analysis.
 • Running machine learning experiments.
 • Implementing machine learning models.
 • Optimizing the machine learning models.
 • Deploying machine learning models into production.

Additionally, a significant aspect of the role involves collaborating with various stake-
holders, including domain experts, data scientists, researchers, software engineers, and 
product managers, to establish project objectives and roadmaps.

1.9 REAL- WORLD APPLICATIONS OF 
MACHINE LEARNING

Machine learning finds applications across numerous domains: manufacturing, retail, 
healthcare and life sciences, transportation, digital economy, agriculture, environmen-
tal conservation, and education. Table 1.4 provides real- world examples of machine- 
learning applications in various fields.

1.10 MACHINE LEARNING AND 
ETHICAL CONCERNS

The ethical considerations surrounding machine learning are increasingly paramount 
as the technology progresses. Issues such as bias, explainability, privacy, transparency, 
algorithmic fairness, safety, job displacement, and weaponization necessitate a compre-
hensive approach. Prioritizing fairness, accountability, and transparency entails invest-
ing in pertinent research, crafting supportive ethical frameworks, and implementing 
requisite policies and regulations. These endeavors are vital to ensure that the potential 
benefits of machine learning outweigh its potential harms. Moreover, raising public 
awareness regarding the ethical implications of machine learning is pivotal in fostering 
conscientious and informed utilization of this technology. Addressing these concerns 
collectively will guarantee that machine learning evolves and is deployed to align with 
societal values and ethical standards, ultimately serving the greater good.
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TABLE 1.4 A summary of some real- world applications of machine learning

APPLICATION DESCRIPTION

Image recognition Identification and classification of objects or patterns within digital 
images. Application examples include labeling an X- ray image as 
cancerous or not and assigning a name to a photographed face 
(this is known as “tagging” on Facebook).

Speech recognition Translating speech into a readable text that the machine can 
understand and work on. This results in applications capable 
of responding to speech. Speech recognition is used for voice 
search and dialing, and application control. Real- world speech 
recognition applications include Google Home, Google Assistant, 
Alexa, Siri, and Cortana.

Medical diagnosis Studying physiological data, environmental influences, and genetic 
factors complements the decision- making by medical doctors 
to diagnose diseases early and effectively. Examples of real- life 
applications include Dr. Elsaa, CareAi, and Ada Healthb.

Agriculture Enabling accurate and efficient farming with less manpower for 
high and quality yields. It can be used to predict crop yield as 
well as detect and assess the impact of crop diseases. Application 
examples include Plantixc, Trace Genomics, and Agriod.

Automotive industry Building self- driving cars integrated with various models and 
algorithms that analyze data collected from cameras and sensors, 
interpreting them, and making decisions accordingly. Common 
examples include Google’s and Tesla’s self- driving cars.

Travel assistance Virtual travel agents that enhance the overall travel experience for 
users. Examples of real- life applications include Google Maps, 
commercial flights, and riding apps like Uber and Bolt.

Entertainment Recommending personalized entertainment content based on the 
user's history. For example, Netflix recommends movies based on 
users’ past behaviors. Facebook gathers behavioral information 
for every user on social media platforms and uses it to predict 
interests and recommends articles and notifications on news 
feed.

Email Intelligence Enhancing intelligence capabilities of email applications. Examples 
include email classification (e.g., spam filtering) and smart replies.

Cyber security Detecting and preventing security threats. Machine learning 
applications in cybersecurity include intrusion detection, malware 
detection, anomaly detection, vulnerability detection, and fraud 
detection.

Surveillance Analyzing video or image data for object detection, tracking, 
and behavior recognition. Examples of applications are video 
surveillance, crowd monitoring, and real- time alert and response.

Notes:
a  https:// www. elsa. health/
b  https:// ada. com/
c  https:// plantix. net/ en/
d  https:// agrio. app/

https://www.elsa.health/
https://ada.com/
https://plantix.net/en/
https://agrio.app/
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1.11 SUMMARY

This chapter introduces the fundamental concepts of machine learning, its relation-
ship with other related concepts, and its overall significance. Furthermore, the chapter 
explores various scenarios in which machine learning is essential. It also presents the 
crucial skills required for professionals in machine learning. Real- world examples are 
offered, showcasing the practical applications of machine learning and highlighting its 
relevance and impact. Different types of machine learning problems are discussed, and 
lastly, the chapter concludes by briefly highlighting the ethical concerns of machine 
learning.

Exercises

 1. With examples of any three industries in which machine learning is used, 
give thorough descriptions of how it is used.

 2. Give descriptions of what machine learning models promise in software 
development.

 3. With at least three algorithm examples for each, provide thorough descrip-
tions of the four main types of machine learning algorithms (and their 
respective sub- types where applicable).

 4. Provide descriptions of the relationship between machine learning and the 
following disciplines:

 a. Artificial Intelligence
 b. Data Science
 c. Traditional Programming
 d. Deep Learning

 5. In detail, describe the following terminologies:
 a. Generative AI
 b. NLP

 6. Explain the importance of machine learning.
 7. With examples, outline the scenarios in which machine learning is needed.
 8. Provide descriptions of the essential skills for machine learning 

professionals.
 9. Explain any five real- world machine learning applications with at least two 

examples for each.
10. Briefly explain the ethical concerns of machine learning.
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2Mathematics  
for machine  
learning

Upon completing this chapter, learners should be able to:

1. Understand basic mathematics essential for comprehending machine learn-
ing concepts.

2. Master the concept of representing machine learning models mathemati-
cally, enabling good understanding and implementation.

3. Develop the capability of converting machine learning problems into formu-
lations for mathematical optimization.

4. Understand the working principles of machine learning algorithms by ana-
lyzing and comprehending mathematical expressions.

5. Apply mathematical representations to assess algorithmic performance, 
model behavior, and problem- solving capability in machine learning 
contexts.

2.1 LINEAR ALGEBRA

Linear algebra is a fundamental component of mathematics that is essential for machine 
learning practitioners. It provides the theoretical foundation needed to understand and 
work with various machine learning concepts. Mastery of linear algebra equips learn-
ers with the critical tools and arithmetic computations required for implementing and 
optimizing machine learning algorithms. The following subsections present in detail 
scalars, vectors, matrices, eigenvalues, and eigenvectors which are considered to be the 
basic concepts of linear algebra.

http://dx.doi.org/10.1201/9781003486817-2


2 • Mathematics for machine learning 19

2.1.1  Scalars

In mathematics, a scalar is a measurement that has a magnitude without any associated 
direction. Within the era of machine learning or data science, scalars might represent 
various features of data points. For instance, residence datasets with the following fea-
tures: number of bedrooms, the total floor area, and the sale price of each house can 
be represented as separate scalar numbers. Scalar values are fundamental units used to 
create more complex mathematical models and are crucial for carrying out mathemati-
cal computations and analyses in machine learning algorithms. Scalars cover various 
numerical values such as integers, decimals, fractions, and irrational numbers. However, 
depending on their importance, scalars can be either positive, negative, or zero. Scalars 
can be evaluated in mathematics using standard arithmetic operations such as addition, 
subtraction, multiplication, and division.

For example, consider two scalars, 5a =  and 3b = . The sum of these two scalars is 
obtained by adding them together, 5 3 8a b+ = + = .

2.1.2  Vectors

A vector is a collection of numbers that are ordered consecutively. However, vectors are 
quantities that can convey direction as well as magnitude. Equation (2.1) depicts this 
concept, which can be identified as a row or column of numbers in lowercase characters, 
such as v.

 ( )= 1 2 3, ,v v v v  (2.1)

where 1v , 2v , 3v  are scalar values, often real values.
In mathematical operations, vectors can be calculated using standard arithmetic 

operations such as addition, subtraction, and multiplication, as discussed in the subse-
quent sections.

2.1.2.1  Vector addition

Consider two vectors; ( )= 1 2 3, ,a a a a  and ( )= 1 2 3, ,b b b b . Vector addition of “a” and “b” 
is performed element- wise to produce a new vector of the same length as shown in 
Equation (2.2).

 ( )+ = + + +1 1 2 2 3 3, ,a b a b a b a b  (2.2)

For example, let us say we have two vectors, ( )= 2, 4, 6a  and ( )= 1, 3, 5b . To find the 
sum of these vectors, corresponding components of the vectors will have to be added to 
each other, as shown in the following:

 ( )+ = + + +2 1, 4 3, 6 5 .a b

Thus a b+  is equal to (3, 7, 11)
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2.1.2.2  Vector subtraction

Consider two vectors; ( )= 1 2 3, ,a a a a  and ( )= 1 2 3, ,b b b b . Vector subtraction of “a” and 
“b” is performed element- wise to produce a new vector of the same length as shown in 
Equation (2.3).

 ( )− = − − −1 1 2 2 3 3, ,a b a b a b a b  (2.3)

For example, let us say we have two vectors, ( )= 2, 4, 6a  and ( )= 1, 3, 5b . To subtract 
vector “b” from “a”, the corresponding components will have to be subtracted from 
each other as shown in the following:

( )− = − − −2 1, 4 3, 6 5 .a b

Thus a b−  is equal to (1, 1, 1)

2.1.2.3  Vector multiplication

It is worth noting that multiplication is typically defined for vectors of the same dimen-
sion when dealing with vectors. This is because certain operations, like the dot product 
and cross product, require vectors of the same dimensionality to be performed. Given 
two vectors ( )= 1 2 3, ,a a a a  and ( )= 1 2 3, ,b b b b  of equal length, the dot product and cross 
product of “a” and “b” are given in Equations (2.4) and (2.5), respectively.

 ( )⋅ = × × ×1 1 2 2 3 3, ,a b a b a b a b  (2.4)

 ( )× = × − × × − × × − ×2 3 3 2 3 1 1 3 1 2 2 1, ,a b a b a b a b a b a b a b  (2.5)

Using the same vectors as before, ( )= 2, 4, 6a  and ( )= 1, 3, 5b . The dot product and 
cross product of these two vectors are:

 ( )⋅ = × × ×2 1, 4 3, 6 5a b

 ⋅ = + + = ⋅2 12 30 44. Thus, is equal to 44.a b a b

 ( )× = × − × × − × × − ×4 5 6 3, 6 1 2 5, 2 3 4 1a b

 ( ) ( )× = − − − = −20 18, 6 10, 6 4 2, 4, 2 .a b

Thus, a× b is equal to ( ), ,−2 4 2 .

2.1.3  Matrix

A matrix is a grid of numbers arranged in rows and columns. Each number in a matrix 
is called an element. In machine learning, matrices are used to organize data, with each 
row representing an individual item or sample and each column representing a feature 



2 • Mathematics for machine learning 21

of that item. In addition, matrices serve as the foundational representation for datasets in 
machine learning, facilitating efficient analysis and processing throughout the machine 
learning workflow. A matrix is usually denoted by an uppercase letter (e.g., A), and each 
element is referred to by its two- dimensional subscript of row (i) and column (j) such as 
aij as represented in Equation (2.6).

 

11 12 13

21 22 23

a a a
A

a a a

 
=  
  

(2.6)

Similar to vectors, matrices can be manipulated using standard arithmetic operations 
such as addition, subtraction, and multiplication, as discussed in the subsequent sec-
tions. However, the division of a matrix can only be performed on each of its elements 
by a scalar value.

2.1.3.1  Matrix addition

Matrix addition involves adding together corresponding elements of two matrices with 
the same dimension to form a new matrix whose elements are the sum of the respective 
elements from the two matrices being added together. In other words, the items in the 
i- th row and j- th column of matrices A and B are added together to form a new matrix. 
Given matrices A and B in Equations (2.7) and (2.8), respectively, the result of adding 
the two matrices is shown in Equation (2.9).

 

 
=  
 

11 12 13

21 22 23

a a a
A

a a a  
(2.7)

 

 
=  
 

11 12 13

21 22 23

b b b
B

b b b  
(2.8)

 

11 11 12 12 13 13

21 21 22 22 23 23

a b a b a b
A B

a b a b a b

+ + + 
+ =  + + +   

(2.9)

For example, given matrices A and B their sum is calculated as follows:

 

1 2 3

4 5 6
A

 
=  
 

 

2 4 6

8 10 12
B

 
=  
 

1 2 2 4 3 6 3 6 9

4 8 5 10 6 12 12 15 18
A B

+ + +   
+ = =   + + +   
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2.1.3.2  Matrix subtraction

Matrix subtraction can be performed between two matrices with the same dimension and 
involves subtracting each element of the second matrix from its corresponding element 
of the first matrix to produce a new matrix. In other words, an element in the i- th row and 
j- th column of matrix B is subtracted from the corresponding element in the i- th row and 
j- th column of matrix A. Given matrices A and B in Equations (2.10) and (2.11), respec-
tively, the result of subtracting matrix B from A is given as shown in Equation (2.12).

 

11 12 13

21 22 23

a a a
A

a a a

 
=  
  

(2.10)

 

11 12 13

21 22 23

b b b
B

b b b

 
=  
  

(2.11)

 

11 11 12 12 13 13

21 21 22 22 23 23

a b a b a b
A B

a b a b a b

− − − 
− =  − − −  

(2.12)

For example, given matrices A and B the subtraction of matrix B from A is calculated 
as follows:

 

3 5 7

2 4 6
A

 
=  
 

 

1 2 3

1 2 3
B

 
=  
 

 
3 1 5 2 7 3 2 3 4

2 1 4 2 6 3 1 2 3
A B

− − −   
− = =   − − −   

2.1.3.3  Matrix multiplication

Matrix multiplication involves performing the dot product of the rows and columns of the 
multiplied matrices. In multiplying two matrices, each element in the resulting matrix is 
calculated by taking the dot product of the corresponding row of the first matrix and the 
corresponding column of the second matrix. This process repeats for each element in the 
resulting matrix. Given matrices A and B in Equations (2.13) and (2.14), respectively, the 
result of multiplying matrices A and B is given in matrix C as shown in Equation (2.15).

 

11 12

21 22

a a
A

a a

 
=  
  

(2.13)

 

11 12

21 22

b b
B

b b

 
=  
  

(2.14)

 

11 12

21 22

c c
A B C

c c

 
× = =  

  
(2.15)



2 • Mathematics for machine learning 23

where:

= +11 11 11 12 21. .c a b a b

= +12 11 12 12 22. .c a b a b

= +21 21 11 22 21. .c a b a b

= +22 21 12 22 22. .c a b a b

For example, given matrices A and B, their multiplication is calculated as shown in 
matrix C as shown in the following:

 

 
=  
 

1 2

3 4
A

 

5 6

7 8
B

 
=  
 

 = × + × = + =11 1 5 2 7 5 14 19c

 12 1 6 2 8 6 16 22c = × + × = + =

 21 3 5 4 7 15 28 43c = × + × = + =

 22 3 6 4 8 18 32 50c = × + × = + =

 

   
× = = =   

   

11 12

21 22

19 22
Thus,

43 50

c c
A B C

c c

Scalar multiplication can also be applied to a matrix, where a scalar value is multiplied 
by each matrix element. Given matrix A in Equation (2.16) and a scalar value k, the 
result of multiplying matrix A by the scalar value k is as shown in Equation (2.17).

 

a b c
A

d e f

 
=  
  

(2.16)

 

a k b k c k
A k

d k e k f k

× × × 
× =  × × ×  

(2.17)

For example, given matrix A and a scalar value k = 3, their product is calculated as 
follows:

 

1 2 3

4 5 6
A

 
=  
 

 
1 3 2 3 3 3 3 6 9

4 3 5 3 6 3 12 15 18
A k

× × ×   
× = =   × × ×   
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2.1.3.4  Matrix transpose

Matrix transpose is an operation that produces a new matrix by flipping the rows and 
columns of a matrix. It involves creating a new matrix by changing the rows of a matrix 
into columns and its columns into rows. Given the matrix A in Equation (2.18), its trans-
pose is denoted by AT as shown in Equation (2.19).

 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 =  
 
  

(2.18)

 

11 21 31

T
12 22 32

13 23 33

a a a

A a a a

a a a

 
 =  
 
  

(2.19)

For example, given matrix A, its transpose is as shown in the following:

 

1 2 3

4 5 6

7 8 9

A

 
 =  
 
 

 

T

1 4 7

2 5 8

3 6 9

A

 
 =  
 
 

2.1.3.5  Square and rectangular matrix

A square matrix is characterized by an equal number of rows (n) and the number of 
columns (m), denoted as n = m. It is differentiated from a rectangular matrix, where the 
number of rows and columns are not equal. Below is an example of a square matrix A, 
where n = m = 3 and a rectangular matrix B, where n =2 and m = 3.

 

1 2 3

4 5 6

7 8 9

A

 
 =  
 
 

 

1 2 3

4 5 6
B

 
=  
 

2.1.3.6  Triangular matrix

A triangular matrix is a special type of square matrix where all the elements above or 
below the diagonal are zeros. Depending on which side of the diagonal contains the 
non- zero elements, it can be classified either as an upper triangular matrix or a lower 
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triangular matrix. As shown in the following, matrix A is an upper triangular matrix with 
non- zero elements located above the diagonal; matrix B is a lower triangular matrix with 
non- zero elements located below the diagonal.

 

1 2 3

0 4 5

0 0 6

A

 
 =  
 
 

 

1 0 0

4 5 0

0 0 6

B

 
 =  
 
 

2.1.3.7  Diagonal matrix

A diagonal matrix is a square matrix in which any value off the main diagonal is zero. 
Elements from top left to bottom right make up the primary diagonal. In the following 
example, the diagonal matrix is indicated by D.

 

2 0 0

0 3 0

0 0 4

D

 
 =  
 
 

2.1.3.8  Identity matrix

An identity matrix is also a square matrix in which all elements along the diagonal 
are equal to 1, and all other elements off the diagonal are equal to zero. Matrix I is an 
example of the identity matrix.

 

1 0 0

0 1 0

0 0 1

I

 
 =  
 
 

2.1.3.9  Matrix determinant

The determinant of a matrix is a scalar value that can be computed from the elements of 
a square matrix. It offers essential details about the matrix, such as whether it is invert-
ible, singular, or neither. It is used in different fields of machine learning, data science, 
data mining, mathematics, and science, to mention a few, such as computing eigen-
values and eigenvectors, computing systems of linear equations, calculating areas and 
volumes, and analyzing transformations. The determinant of a square matrix A which is 
denoted by ( )det A  or A  can be evaluated differently depending on the dimension of a 
matrix. The formula for determinants of 2 × 2 and 3 × 3 matrices is given in Equations 
(2.20) and (2.21), respectively.
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11 12

21 22

a a
A

a a

 
=  
 

 ( ) = × − ×11 22 21 12det A a a a a  (2.20)

 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 =  
 
 

 

( ) ( ) ( )
( )

= × − × − × − ×
+ × − ×

11 22 33 32 23 12 21 33 31 23

13 21 32 31 22

det A a a a a a a a a a a

a a a a a  (2.21)

For larger matrices, the determinant can be calculated using different methods, such 
as cofactor expansion, LU decomposition, or Gaussian elimination, depending on the 
properties of the matrix and computational efficiency requirements.

As an example, given matrices ×2 2A  and ×3 3B  their determinants can be evaluated as 
shown in the following:

 

2 3

1 4
A

 
=  
 

 ( )det 2 4 1 3 8 3 5A = × − × = − =

 

1 2 3

0 1 4

5 6 0

B

 
 =  
 
 

 ( ) ( ) ( ) ( )= × − × − × − × + × − ×det 1 1 0 4 6 2 0 0 4 5 3 0 6 1 5B

 ( ) ( ) ( ) ( )= − − − + −det 1 0 24 2 0 20 3 0 5B

 ( ) ( ) ( ) ( )= − − − + −det 1 24 2 20 3 5B

 ( ) = − + −det 24 40 15B

 ( ) =det 1B
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2.1.3.10  Adjugate of a matrix

The adjugate of a matrix, also known as the adjoint of the matrix (for matrix A, indicated 
by adj(A)), can be created in various methods depending on the matrix’s dimension. In 
the case of a 2×2 matrix, Equation (2.22) specifies that the elements along the main 
diagonal are exchanged, and the signs of the elements off the main diagonal are modi-
fied. Conversely, for a 3×3 matrix, Equation (2.23) computes the cofactors (Cij) of the 
matrix elements and proceeds to transpose the resulting matrix. Additionally, each ele-
ment of the 3×3 adjugate matrix is the result of computing the determinant of the 2×2 
sub- matrix obtained by removing the row and column of the corresponding element of 
the matrix multiplied by −1 if the sum of the row index and column index is odd, as 
shown in Equation (2.24).

 

11 12

21 22

a a
A

a a

 
=  
 

 
( ) 22 12

21 11

adj
a a

A
a a

− 
=  −  

(2.22)

 

11 12 13

21 22 23

31 32 33

b b b

B b b b

b b b

 
 =  
 
 

 

( )
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

adj

T
C C C C C C

B C C C C C C

C C C C C C

   
   = =   
   
    

(2.23)

where:

 ( ) ( )1 det
i j

ij ijC M
+

= − ×  (2.24)

where:

Mij is the resulting 2×2 sub- matrix after removing the i- th row and j- th column.
For example, given matrices 2 2A ×  and 3 3B ×  their adjugates are calculated as follows:

 

2 3

1 4
A

 
=  
 

 
( ) 4 3

adj
1 2

A
− 

=  − 
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1 2 3

0 1 4

5 6 0

B

 
 =  
 
 

 
( ) ( )11

1 4
det 1 0 4 6 24

6 0
M

 
= = × − × = − 

 

Since ( ) ( )21 1 2 1 1 1
+

+ = + = − = − =,
i j

i j , thus, ( ) ( )11 1 24 24= × − = −C

 
( ) ( ) 

= = × − × = − 
 

12

0 4
det 0 0 4 5 20

5 0
M

Since ( ) ( )31 2 3 1 1 1
+

+ = + = − = − = −,
i j

i j , thus, ( ) ( )12 1 20 20= − × − =C

 
( ) ( ) 

= = × − × = − 
 

13

0 1
det 0 6 1 5 5

5 6
M

Since ( ) ( )41 3 4 1 1 1
+

+ = + = − = − =,
i j

i j , thus, ( ) ( )13 1 5 5= × − = −C

 
( ) ( ) 

= = × − × = − 
 

21

2 3
det 2 0 3 6 18

6 0
M

Since ( ) ( )32 1 3 1 1 1
+

+ = + = − = − =, –
i j

i j , thus, ( ) ( )21 1 18 18= − × − =C

 
( ) ( )22

1 3
det 1 0 3 5 15

5 0
M

 
= = × − × = − 

 

Since ( ) ( )42 2 4 1 1 1
+

+ = + = − = − =,
i j

i j , thus, ( ) ( )22 1 15 15= × − = −C

 
( ) ( )23

1 2
det 1 6 2 5 4

5 6
M

 
= = × − × = − 

 

Since ( ) ( )52 3 5 1 1 1
+

+ = + = − = − = −,
i j

i j , thus, ( ) ( )23 1 4 4= − × − =C

 
( ) ( )31

2 3
det 2 4 1 3 5

1 4
M

 
= = × − × = 

 

Since ( ) ( )43 1 4 1 1 1
+

+ = + = − = − =,
i j

i j , thus, ( ) ( )31 1 5 5= × =C

 
( ) ( )32

1 3
det 1 4 3 0 4

0 4
M

 
= = × − × = 
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Since ( ) ( )53 2 5 1 1 1
+

+ = + = − = − = −,
i j

i j , thus, ( ) ( )32 1 4 4= − × = −C

 
( ) ( )33

1 2
det 1 1 2 0 1

0 1
M

 
= = × − × = 

 

Since ( ) ( )63 3 6 1 1 1
+

+ = + = − = − =,
i j

i j , thus, ( ) ( )32 1 1 1= × =C

 

( )
24 20 5 24 18 5

18 15 4 and adj 20 15 4

5 4 1 5 4 1

C B

− − −   
   = − = − −   
   − −   

2.1.3.11  Singular and non- singular matrix

A singular matrix and a non- singular matrix are characterized by having determinants 
of zero and non- zero values, respectively. Consequently, the inverse of a singular 
matrix does not exist, whereas the inverse of a non- singular matrix exists. For exam-
ple, given a singular matrix A, there is no matrix A −1, such that − −1 1A× A or A × A= I, 
where I is an identity matrix. However, if a matrix A is non- singular, there exists A−1  
such that − −1 1A× A or A × A= I .

2.1.3.12  Matrix inversion

Matrix inversion is a process of finding the inverse for a square non- singular matrix. 
Given matrix A, its inverse is denoted by A−1. The inverse of a matrix is computed by 
dividing each element of the adjugate by the determinant of the matrix. The formula for 
computing the inverse of a matrix A is given in Equation (2.25).

 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 =  
 
 

 
( ) ( ) ( )

11 21 31

1
12 22 32

13 23 33

1 1
adj

det det

C C C

A A C C C
A A

C C C

−

 
 = × = × 
 
  

(2.25)

For example, given matrix B, its inverse matrix is calculated as shown in the following:

 

1 2 3

0 1 4

5 6 0

B

 
 =  
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( ) ( ) ( ) ( )det 1 1 0 4 6 2 0 0 4 5 3 0 6 1 5 1
0 (i.e., is a non singular matrix)

B
B

= × − × − × − × + × − × =
≠ −

 

( )
24 18 5

adj 20 15 4

5 4 1

B

− 
 = − − 
 − 

 

1

24 18 5 24 18 5
1

20 15 4 20 15 4
1

5 4 1 5 4 1

A−

− −   
   = × − − = − −   
   − −   

2.1.3.13  Eigenvectors and eigenvalues

An eigenvector is a non- zero vector v that changes in magnitude but retains its direc-
tion when a square matrix is applied to it as a linear transformation (i.e., when mul-
tiplied by an eigenvalue). The eigenvalue is a scalar value that represents the scaling 
factor of the eigenvector and indicates the extent to which the eigenvector has been 
stretched. Eigenvectors and eigenvalues are used to identify directions and patterns 
in data, reduce complexity, and make sense of information. Mathematically, given a 
square matrix A, the relationship of an eigenvector v of matrix A and its corresponding 
eigenvalue λ  is shown in Equation (2.26). In addition, given a matrix A, the eigenvalue 
can be computed using Equation (2.27), whereas the eigenvector can be computed 
using Equation (2.28).

 Av vλ=  (2.26)

 ( )det 0A Iλ− =  (2.27)

 ( ) 0A I vλ− =  (2.28)

For example, given matrix A, its eigenvalues and eigenvectors are calculated as follows:

 

2 1

1 3
A

 
=  
 

 

2 1 1 0
det 0

1 3 0 1
λ

    
− =         

 

2 1 0
det 0

1 3 0

λ
λ

    
− =         

 

2 1
det 0

1 3

λ
λ

 − 
=   −  
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2 1
det 0

1 3

λ
λ

− 
= − 

( )( )( ) ( )( ) ( )2 22 3 1 1 6 5 1 5 5 0λ λ λ λ λ λ− − − = − + − = − + =

Finding the eigenvalue λ by using the quadratic formula:

 

2 4
2

b b ac

a
λ − ± −=

( ) ( )25 5 4 1 5 5 25 20 5 5
2 1 2 2

λ
− − ± − × × ± − ±= = =

×

 
1 2

5 5 5 5
and

2 2
λ λ+ √ −√= =

Using Equation (2.28), the eigenvector for the eigenvalue 1
5 5

2
λ + √=  can be computed 

as follows:

 
( ) 1

1
2

2 1 1 05 5
0

21 3 0 1

v
A I v

v
λ

      + √− = − =             

 

1

2

5 5
02 1 2 0

1 3 5 5
0

2

v

v

  + √
       − =     + √   
  

  

 

1

2

5 5
2 1

2 0
5 5

1 3
2

v

v

 + √−    =  + √  − 
 

 

1

2

1 5
1

2 0
1 5

1
2

v

v

 − + √
    =  + √  
 
 

 
1 2

1 5
0

2
v v

− + + =
 

(2a)

 
1 2

1 5
0

2
v v

+ √+ =
 

(2b)
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From Equation (2a):

 
2 1

1 5
2

v v
−=

 
(2c)

Substituting Equation (2c) in Equation (2b):

 
1 1

1 5 1 5
0

2 2
v v

  + √ −+ =     

 
1 1

1 5
0

4
v v

−+ =

 
1 1

4
0

4
v v

−+ =

 1 1 0v v− =

 0 0=

This equation is always true, which means there are infinitely many solutions for 1v , any 
non- zero value can be chosen for 1v  and the corresponding value of 2v  can be computed 
by using Equation (2c). Suppose 1 1v = , then the value of 2v  can be obtained as follows:

 
2 1

1 5 1 5 1 5
1

2 2 2
v v

− − −= = × =

Therefore, the possible value of the eigenvector with its corresponding eigen-

value 1
5 5

2
λ + √=  is

1

1 5
2

 
 

−  
 

.

In the same fashion, the possible value of the eigenvector for the eigenvalue 

2
5 5

2
λ −√=  can be calculated.

2.2 STATISTICS CONCEPTS

In machine learning, statistics is the application of statistical concepts and methods to 
data analysis, prediction, and model performance assessment. Effective model training 
and interpretation is made possible by its foundation in the understanding of uncer-
tainty, variability, and linkages within datasets.

2.2.1  Use of statistics in machine learning

In every aspect of machine learning, statistics plays an important role in algorithm 
selections, developments, and real- world applications. The core of the machine learning 
process is formed by practitioners’ ability to understand, assess, and extract insights 
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from data. Machine learning workflow begins with data preprocessing tasks such as 
data cleaning, normalization, and modeling. However, advanced modeling techniques 
such as regression, classification, and clustering statistics inform the entire spectrum of 
machine learning processes. Furthermore, through statistical techniques, outliers and 
extreme values are detected; missing values are  substituted and normalized, therefore 
guaranteeing the accuracy and dependability of the dataset.

Descriptive statistics and visualization techniques assist in exploring data charac-
teristics and relationships, thereby guiding feature selection and dimensionality reduc-
tion in datasets. Hence, statistical methods are used to build models for both supervised 
and unsupervised learning tasks. Additionally, metrics are used to measure how well 
models perform and generalize.

Statistics improves decision- making in complicated settings by enabling probabi-
listic modeling and uncertainty quantification. However, frameworks for representing 
and arguing about uncertainty are provided by methods such as Bayesian inference and 
probabilistic graphical models. Additionally, statistics guides feature selection and engi-
neering efforts, identifying informative features and reducing dimensionality while pre-
serving essential data structure. Furthermore, its holistic integration across the machine 
learning pipeline empowers practitioners to unlock the potential of data across various 
domains. Statistics is basically the base on which machine learning grows and develops. 
It helps professionals find useful insights and make informed decisions in a world that 
is becoming more and more data- driven.

2.2.2  Types of statistics

Statistics can be broken down into two types: descriptive statistics and inferential 
statistics.

2.2.2.1  Descriptive statistics

Descriptive statistics is the study of how to organize, summarize, and show data in a way 
that makes sense and gives us useful information. Its goal is to show the most important 
features of a dataset, including trends, ranges, and patterns of distribution. At the cut-
ting edge of data analysis, descriptive statistics tries to turn complicated datasets into 
concepts that are easy to understand and comprehend. Additionally, it is important to 
note that descriptive statistics do not draw conclusions about the whole community or 
anything bigger than the dataset it is looking at. Instead, it shows and summarizes the 
dataset’s natural properties.

 i. Measures of Central Tendency
 • Mean

Mean is the most commonly used measure of central tendency. It is computed by 
adding up all the values of the elements in the list and then dividing that number 
by the number of elements. Equation (2.29) illustrates the computation of 
the mean.

 

Sum of elements
Mean

Total number of elements
=

 
(2.29)
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Consider a class whose students have obtained the following marks out of 100: 
45, 55, 60, 75, 80, 55, 37, 39, 25, 48, 37, and 68. The mean is calculated as 
shown in the following:
Sum of elements = 45 + 55 + 60 + 75 + 80 + 55 + 37 + 39 + 25 + 48 + 37 + 
68 = 624
Total number of elements = 12.
Thus,

624
52

12
Mean = =

 • Median
The median of a set of numbers is the middle value when the numbers are 
arranged in ascending or descending order. If the set contains an odd number of 
values, the median is the middle number. If the set contains an even number of 
values, the median is the average of the two middle numbers. This measure is 
less sensitive to extreme values (i.e., outliers) compared to the mean.
Consider the same example of a class whose students have obtained the  following 
marks out of 100: 45, 55, 60, 75, 80, 55, 37, 39, 25, 48, 37, and 68. The median 
is calculated as shown in the following.
First, arrange the values in ascending order:
25, 37, 37, 39, 45, 48, 55, 55, 60, 68, 75, 80
Since the number of elements is 12 (i.e., even), the median value will be the 
average of the sixth (i.e., 48) and seventh (i.e., 55) elements.
Thus,

48 55 103
51.5

2 2
Median

+= = =

 • Mode
The mode is the value that appears most frequently in a set of data. The set of 
data may have one mode, more than one mode (i.e., multimodal), or no mode at 
all (i.e., when all values occur with the same frequency). The mode is useful in 
filling the missing values for categorical data. Consider a class whose students 
have obtained the following marks out of 100: 45, 55, 60, 75, 80, 55, 37, 39, 25, 
48, 37, and 68. The mode is calculated as shown in the following. For simplicity 
in identifying the mode, it is advised to arrange the values in ascending order as 
follows:

25, 37, 37, 39, 45, 48, 55, 55, 60, 68, 75, 80

Since 37 appears most frequently (i.e., 2 times compared to others) in the set of 
data, then the mode is 37.

 ii. Measures of Dispersion
Measures of dispersion provide insights into the variability of data from the 
central tendency such as mean or median. They provide valuable insights into 
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how widely the values are spread from the center of the distribution, helping to 
understand the distribution and potential outliers within the dataset.

 • Range
The range is a measure that indicates the extent of variation within a dataset by 
quantifying the difference between the largest and smallest values. It is calcu-
lated by subtracting the minimum value from the maximum value. For example, 
in a dataset of test scores {65, 72, 80, 85, 92}, the range would be 92 (i.e., the 
largest value) minus 65 (i.e., the smallest value), resulting in a range of 27.

 • Percentiles
A percentile is a statistical measure that signifies the value below which a spe-
cific percentage of observations in a dataset lies. For instance, the 20th percentile 
denotes that the value falls below 20% of the dataset. For example, if the 20th 
percentile score is 35, it means that 20% of the total observations have a value 
less than 35. Consider a dataset showing the heights (in inches) of ten individu-
als: {66, 75, 64, 65, 67, 72, 68, 70, 62, and 60}. The percentiles are calculated as 
shown in the following steps.

 1. Sort the Data: Arrange the data in ascending order.

{60, 62, 64, 65, 66, 67, 68, 70, 72, 75}

 2.  Calculate the Position: Determine the position of the desired percentile in 
the dataset using the formula given in Equation (2.30).

( )Position 1
100
P

n
 = × + 
   

(2.30)

where:

P is the desired percentile (e.g., 25th percentile, 50th percentile, etc.), and
n is the total number of data points in the dataset.

For instance, the 25th, 50th, and 90th percentile positions are computed as follows:

25th Percentile:

 
( ) th25

Position 10 1 0.25 11 2.75 value.
100
 = × + = × = 
 

50th Percentile:

 
( ) th50

Position 10 1 0.5 11 5.5 value.
100
 = × + = × = 
 

90th Percentile:

 
( ) th90

Position 10 1 0.9 11 9.9 value.
100
 = × + = × = 
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 3.  Interpolate if necessary: If the position is an integer, the percentile is 
identified as the value at that position. However, if the position is not an 
integer, interpolate between the values at the nearest lower and higher 
positions to find the exact value of the percentile. Consider the integer 
portion as R (i.e., the number to the left of the decimal point) and the frac-
tional portion as FR (i.e., the number to the right of the decimal point), the 
value at the nearest lower position as L and the value at the nearest higher 
position as H, the percentile can be computed using Equation (2.31).

( )Percentile value FR H L L= − +  (2.31)

  For the 25th percentile in a dataset with 10 data points is the 2.75th value, 
making 2, 0.75, 64, and 62R FR H L= = = = , the 25th percentile is com-
puted as shown in the following:

( ) ( )th25 Percentile 0.75 64 62 62 0.75 2 62 63.5= − + = + =

  For the 50th percentile in a dataset with 10 data points is the 5.5th value, 
 making 5, 0.5, 67, and 66R FR H L= = = = , the 50th percentile is com-
puted as shown in the following:

( ) ( )th50 Percentile 0.5 67 66 66 0.5 1 66 66.5= − + = + =

  For the 90th percentile in a dataset with 10 data points is the 9.9th value, 
 making 9, 0.9, 75, and 72R FR H L= = = = , the 90th percentile is com-
puted as shown in the following:

( ) ( )th90 Percentile 0.9 75 72 72 0.9 3 72 74.7= − + = + =

 • Quartiles
Quartiles are measures that divide a dataset into four equal parts, each contain-
ing approximately 25% of the data. In terms of percentiles, the first quartile 
(i.e., Q1) corresponds to the 25th percentile, the second quartile (i.e., Q2) cor-
responds to the 50th percentile (i.e., median), and the third quartile (i.e., Q3) 
corresponds to the 75th percentile. In order to calculate Q1, Q2, and Q3, refer to 
the approach used to compute the percentiles.

 • Interquartile Range
In descriptive statistics, the interquartile range (IQR) is a measure of statistical 
spread or dispersion. It is expressed mathematically as the difference between 
the first (i.e., 25th percentile or Q1) and third (i.e., 75th percentile or Q3) quar-
tiles of the data. Figure 2.1 illustrates a box plot, which shows minimum value, 
maximum value, IQR, lower quartile, and upper quartile. The box plot is used to 
identify and handle outliers and extreme values in the datasets.
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Equation (2.32) illustrates how to compute IQR by subtracting the first quartile 
(Q1) from the third quartile (Q3).

 IQR 3 1Q Q= −  (2.32)

where:

Q1 is the first quartile (25th percentile).
Q3 is the third quartile (75th percentile).

For example, given 1 6Q =  and 3 13.5Q = , then IQR 13.5 6 7.5= − =

 • Mean Absolute Deviation
 Mean Absolute Deviation (MAD) is a statistical measure that describes the vari-
ability in a dataset. It measures how much of an average absolute difference each 
data point has from the dataset average. Furthermore, MAD offers a reliable and 
understandable measure of variability in a dataset. The computation of MAD 
involves calculating the mean of all the data points, finding the absolute difference 
between each data point and the mean, summing up all the absolute differences and 
dividing the sum by the total number of data points, n, as shown in Equation (2.33).

 
1

mean
MAD

n

i
i

x

n
−

−
= ∑

 
(2.33)

where:

mean is the mean of the dataset.
n is the total number of data points.
xi represents each data point in the dataset.

FIGURE 2.1 IQR using a box plot.
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For example, the MAD for the dataset {3, 7, 8, 5, 12, 14, 21, 13, and 18} can be 
 calculated using Equation (2.33) as shown below:

 

3 7 8 5 12 14 21 13 18 101
mean 11.2

9 9
+ + + + + + + += = =

 

sum of absolute differences 3 11.2 7 11.2 8 11.2 5 11.2 12 11.2

14 11.2 21 11.2 13 11.2 18 11.2

= − + − + − + − + −
+ − + − + − + −

 sum of absolute differences 8.2 4.2 3.2 6.2 0.8 2.8 9.8 1.8 6.8 43.8= + + + + + + + + =

 

43.8
MAD 4.87

9
= =

 • Variance
 Variance measures the dispersion of data points from the mean. It is calculated by 
finding the mean of all the data points, summing the squared differences between 
the data points and the mean, and then dividing the sum by the total number of data 
points, as shown in Equation (2.34). As opposed to MAD, variance uses the squares 
of differences between the data points and the mean. The challenge with variance is 
in its unit inconsistency due to squaring, which makes it less intuitive for interpreta-
tion. Consequently, the standard deviation is often preferred, as it provides a mea-
sure of dispersion in the same units as the original data. Variance is computed as 
shown in Equation (2.34).

 

( )2

1
mean

Variance

n

i
i

x

n
−

−
= ∑

 
(2.34)

For example, the variance for the dataset {3, 7, 8, 5, 12, 14, 21, 13, and 18} can be cal-
culated as follows using Equation (2.34).

 

3 7 8 5 12 14 21 13 18 101
mean 11.2

9 9
+ + + + + + + += = =

The sum of the squared differences between each data point and the mean:

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

= − + − + − + − + −

+ − + − + − + −

2 2 2 2 2

2 2 2 2

sum 3 11.2 7 11.2 8 11.2 5 11.2 12 11.2

14 11.2 21 11.2 13 11.2 18 11.2

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
sum 8.2 4.2 3.2 6.2 0.8 2.8 9.8 1.8 6.8= + + + + + + + +

sum 67.24 17.64 10.24 38.44 0.64 7.84 96.04 3.24 46.24 287.56= + + + + + + + + =

 

287.56
Variance 31.95

9
= =
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 • Standard Deviation
 Standard deviation is a measure of dispersion of data points from the mean. It can 
be calculated as the square root of the variance, as shown in Equation (2.35). 
Therefore, it provides a measure of variability in the same units as the original 
data. Additionally, for a data point, a higher standard deviation value indicates 
greater dispersion from the mean, whereas a lower standard deviation value sug-
gests closer proximity to the mean. The standard deviation is computed as shown 
in Equation (2.35).
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(2.35)

For example, the standard deviation for the dataset {3, 7, 8, 5, 12, 14, 21, 13, and 
18} can be calculated using Equation (2.35) as follows:

Since the variance of the data is 31.95, then:

 standard deviation 31.95 5.65= =

 • Median Absolute Deviation
 The Median Absolute Deviation (MedAD) is a robust measure of the variability or 
dispersion of a dataset. It is calculated as the median of the absolute differences 
between each data point and the median of the dataset. However, MedAD is less 
sensitive to outliers and extreme values compared to standard deviation, making it 
suitable for evaluating datasets.

2.2.2.2  Inferential statistics

Inferential statistics is the process of making inferences about a broader population from 
a sample of data that has been taken from that population. Additionally, insights are 
gained and predictions that apply to the full population are established through statisti-
cal testing and analysis samples. Regression analysis, hypothesis testing, data manipu-
lation, and visualization are some of the approaches employed. This process assists in 
identifying patterns and extracts valuable information. Even in cases where data avail-
ability is restricted, inferential statistics can be used to draw defensible inferences about 
populations and make well- informed decisions.

2.2.3  Types of data

Data can be broadly categorized into two types, numerical and categorical as described 
in the following subsections.

2.2.3.1  Numerical data

Numerical data consists of quantifiable data, such as height, weight, temperature, or test 
results. Additionally, numerical data refers to quantities expressed as integers or decimal 
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numbers, often known as floating- point numbers. This data can be classified into two 
primary categories:

 (i) Discrete numerical data are precise and separate quantities, typically indicat-
ing counts or categories. Examples include the rank of students in a class-
room or the number of faculties in a department.

 (ii) Continuous numerical values include values that can take on any real num-
ber within a certain range. Unlike discrete values, continuous values have an 
infinite number of possible values. An example is the salary of an employee, 
which can vary continuously within a certain range.

2.2.3.2  Categorical data

Categorical data represents qualitative values that are typically divided into categories 
or groups. It is often expressed as strings or characters. Examples include names, col-
ors, or any type of non- numeric labels. This type of data is commonly categorized into 
two main types: ordinal and nominal. Ordinal categorical values can be meaningfully 
ranked or ordered, but the intervals between rankings may not be uniform. Examples 
include student grades (e.g., A, B, C) and satisfaction ratings (e.g., high, medium, low). 
Nominal categorical values can be represented in various groups or names, with no 
intrinsic order or ranking. They are composed of distinct categories with no implicit 
hierarchy. Examples include colors (red, blue, green), courses (math, science, history), 
and fruit varieties (apple, banana, orange).

2.2.4  Data distribution

Data distribution refers to how a set of data is spread out and dispersed throughout a 
range of possible values. It can be graphically represented using a histogram, frequency 
polygon, or box plot. Understanding data distribution is crucial because it shows pat-
terns that are not immediately obvious when looking at the data itself. Data distribution 
can reveal if the data is symmetrical, how densely the data is clustered, and whether the 
data is skewed.

2.2.4.1  Normal distribution in statistics

Normal distribution is a type of data distribution that is also known as a Gaussian dis-
tribution. It is defined by its mean and standard deviation and is characterized by a 
bell- shaped curve, as shown in Figure 2.2. Normal distribution is prevalent in many 
datasets used in machine learning. For datasets that do not naturally follow this distri-
bution, efforts are often made to transform the data into a normal distribution due to 
its favorable properties. Additionally, many machine learning algorithms perform opti-
mally on data that approximates a normal distribution as the distribution mirrors real- 
world phenomena, such as salary distributions, where the majority of employees fall 
within a medium range, with fewer at the extremes of low or high salaries. The normal 
distribution aligns with the Empirical Rule, which states that about 68% of the data falls 
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within one standard deviation of the mean, 95% falls within two standard deviations, 
and 99.7% falls within three standard deviations.

The normal distribution aligns with the Empirical Rule. The rule outlines the pro-
portion of data falling within specific ranges of standard deviations from the mean. 
According to the rule, approximately 68% of the data lies within one standard deviation 
of the mean. This means that the majority of observations in a normally distributed data-
set are clustered within a relatively narrow range around the mean, as shown in Figure 2.3.

The Empirical Rule also states that about 95% of the data falls within two standard 
deviations of the mean. This wider interval encompasses a significant portion of the 
dataset, indicating a broader dispersion of observations from the mean, as shown in 
Figure 2.4. While there is greater variability within this range compared to the first 
standard deviation, the majority of data points still exhibit a pattern consistent with the 
normal distribution.

The Empirical Rule also asserts that nearly 99.7% of the data falls within three 
standard deviations of the mean. This extensive range covers the vast majority of 
 observations in a normally distributed dataset, reflecting the symmetrical nature of the 
bell- shaped curve, as shown in Figure 2.5. The diminishing proportion of data beyond 
three standard deviations underscores the rare occurrence of extreme values in a dataset 
following the normal distribution.

2.2.4.2  Skewness

Skewness measures the asymmetry of distribution as depicted in histograms or 
Kernel Density Estimation (KDE) plots and is usually characterized by a  pronounced 
peak toward the mode of the data. Skewness is commonly categorized into two 

FIGURE 2.2 Normal distribution curve.
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types:  left- skewed (i.e., negative skewness) and right- skewed (i.e., positive skew-
ness) as shown in Figure 2.6. Additionally, some consider a third category: symmetric 
distribution, which is indicative of a normal distribution. A right- skewed distribu-
tion is characterized by a long tail extending toward the positive axis. A suitable 

FIGURE 2.3 68% of all values are within 1 standard deviation of the mean value.

FIGURE 2.4 95% of all values are within 2 standard deviation of mean value.
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example of right- skewed data is wealth distribution, where only a small  percentage 
of individuals possess very high wealth, while the majority falls within the middle 
range. On the other hand, a left- skewed distribution is marked by a long tail extend-
ing toward the negative axis. For instance, consider the distribution of grades among 
students, where fewer students receive lower grades, while the  majority of them fall 
within the passing category.

2.2.4.3  Central limit theorem

The Central Limit Theorem (CLT) states that “regardless of population distribution, the 
sampling distribution of the sample mean approaches a normal distribution as sample 
size increases.” Figure 2.7 illustrates the theorem, which allows machine learning prac-
titioners to draw conclusions about population parameters based on sample means even 
when the population distribution is unknown.

2.2.5  Applied statistical inference

This section looks into the practical applications of inferential statistics. The concept 
entails drawing conclusions about a population using sample data. Applied statisti-
cal inference comprises utilizing statistical methods to assess data, derive meaningful 
insights, and drive decision- making across a variety of domains. As a result, this part 
focuses on the application of linear regression as a fundamental approach for predictive 
modeling and statistical analysis.

FIGURE 2.5 99.7% of all values are within 3 standard deviation of mean value.
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FIGURE 2.6 Skewness.
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2.2.5.1  Linear regression

Linear regression is a statistical technique that models the relationship between a depen-
dent variable and independent variables by fitting the regression line to observed data. 
As a result, the relationship between the variables is thought to be linear, meaning that 
changes in the independent variable produce changes in the dependent variable(s) at the 
same pace. Additionally, it is one of the most basic and widely applied approaches in 
statistical modeling and predictive analysis. However, the objective of linear regression 
is to find the best- fitting line (or plane, in the case of numerous independent variables) 
that minimizes the difference between the observed data points and the predicted values 
provided by the linear equation. Hence, this line is then used to forecast the dependent 
variable using the values of the independent variables. This section covers two types of 
linear regression: univariate and multivariate linear regressions.

 i. Univariate linear regression
 Univariate linear regression or simple linear regression describes the relation-
ship between a single independent variable (X) and one dependent variable (Y). 
Hence, the univariate linear regression model is described by Equation (2.36).

 0 1Y Xβ β ε= + +  (2.36)

where:

0β is the intercept, representing the value of Y when X is zero.
1β  is the slope, representing the rate of change in Y for a one- unit change in X.

ε  is the error term, representing the difference between the observed and predicted 
 values of ˆ( i iY Y Yε = − ).

FIGURE 2.7 Demonstration of the Central Limit Theorem.
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The goal of univariate linear regression is to estimate the values of 0β  and 1β  that 
 minimize the sum of squared differences between the observed and predicted values 
of Y, typically using the method of least squares. The estimation of coefficients can be 
obtained through the following steps.

 a. Calculate the Mean: Compute the means of the dependent variable Y and the 
independent variable X as shown in Equations (2.37) and (2.38), respectively.

 1
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where:

n is the total number of samples.

 b. Calculate Covariance and Variance: Compute the sample covariance 
between X and Y and the sample variance of X as shown in Equation (2.39) 
and (2.40), respectively.
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 c. Estimate Slope: To estimate the slope ( 1β ) of the regression line, the covari-
ance of X and Y is divided by the variance of X, as shown in Equation (2.41).
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 d. Estimate Intercept: To estimate the intercept ( 0β ) of the regression line, the 
slope ( 1̂β ) is used to estimate it as shown in Equation (2.42).

 0 1
ˆ ˆY Xβ β= −  (2.42)

Upon the estimation of 0β  and 1β , these coefficients can be used to make predictions 
about the dependent variable Y for new unseen data values of the independent variable 
X and modeled as shown in Equation (2.43).

 0 1
ˆ ˆŶ Xβ β= +  (2.43)
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 ii. Multivariate Linear Regression
 Multivariate linear regression involves more than one independent variable 
( predictor variable) to predict a single dependent variable. The general form of 
the multivariate linear regression model is shown in Equation (2.44).

0 1 1 2 2 k kY X X Xβ β β β ε= + + + + +  (2.44)

where:

Y is the dependent variable.
1X , 2X , …., kX  are independent variables (predictors).
0 1,β β , 2β , …., kβ  are the coefficients (intercepts and slopes) representing the relationship 

between each independent variable and the dependent variable.
ε  is the error term, representing the difference between the observed and predicted 
 values of ˆ( i iY Y Yε = − ).

In the real scenario the dataset will have multiple k features with n records; it can be 
modeled as shown in Equation (2.45).
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These n Equations from Equation (2.45) can be written as shown in Equation (2.46).
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In general, for a multiple linear regression, the model with k independent features 
( variables) can be simply expressed as shown in Equation (2.47).

 y xβ ε= +  (2.47)

where:

 

1

2

n

Y

Y

y

Y

 
 
 
 =
 
 
 
 





48 Practical Machine Learning

 

11 12 1

21 22 2

1 2

1

1

1

k

k

n n nk

X X X

X X X
x

X X X

 
 
 =
 
 
 





    



 

0

1

and

k

β
β

β
β

 
 
 
 =
 
 
 
 



 

1

2

n

ε
ε

ε
ε

 
 
 
 =
 
 
 
 



To estimate (predict) the value of a dependent variable from Equation (2.47), it’s nec-
essary to estimate the parameters (regression coefficients) using the Ordinary Least 
Squares (OLS) method that minimizes the error term as shown in Equation (2.48).
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(2.48)

The resulting least squares estimate is shown in Equation (2.49).

 ( ) 1ˆ T Tx x x yβ
−

=
 

(2.49)

Since the estimation of dependent variable can be obtained by ˆŷ xβ= , then the equation 
of a multivariate linear regression model can be obtained as shown in Equation (2.50).

 ( ) 1
ˆ T Ty x x x x y

−
=

 
(2.50)

2.3 PROBABILITY THEORY

Probability theory is a branch of mathematics that studies random events and the 
likelihood of their occurrence. It provides a mathematical framework for quantifying 
uncertainty and predicting the probability of specific outcomes in events with multiple 
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possible results. Understanding probability theory is crucial for machine learning practi-
tioners, as it underpins many machine learning algorithms. The subsequent subsections 
offer a comprehensive overview of key probability concepts, helping readers build a 
solid foundation in probability theory and its applications in machine learning.

2.3.1  Sample spaces and events

Probability theory entails fundamental concepts like sample space, probability distribu-
tions, and random variables to calculate the likelihood of an event to occur. A sample 
space is the collection of all conceivable experiment results. It comprises all possible 
outcomes that could occur during an experiment. For example, when flipping a coin, 
the sample space has two possible outcomes: heads or tails. An event is a subset of the 
sample space that denotes specific outcomes or combinations of outcomes. Events can 
range from basic (like flipping a coin) to compound (like flipping a coin twice and get-
ting heads both times). Understanding sample spaces and events is critical for compre-
hending probability and generating predictions in a variety of domains. This is where 
probability theory is heavily used to quantify uncertainty and make decisions. The fol-
lowing are the types of events:

 i. Independent Events
  These are the events that occur without being influenced by other factors. 

This implies that the outcome of one event does not affect the outcome of 
another.

 ii. Dependent Events
  These are events that are influenced by prior outcomes. This suggests that the 

occurrence of one event has a considerable impact on the probability of the 
succeeding event.

 iii. Mutually Exclusive Events
  These are events that are characterized by their inability to occur simultane-

ously. When one of these events takes place, the occurrence of the others is 
precluded.

 iv. Equally Likely Events
  These are events that share an identical probability of happening. This 

implies that, under similar conditions, each of the events has an equal chance 
of occurrence.

 v. Exhaustive Events
  These are events that encompass all possible outcomes within the sample 

space of an experiment. They essentially account for every conceivable result 
that could arise from the given set of circumstances.

2.3.2  Probability

Probability is defined as the ratio of the number of favorable outcomes to the total 
number of possible outcomes. Suppose S is the sample space, representing the set of all 
possible outcomes of an experiment and an event A is a subset of sample space S. Hence, 
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the probability of an event A denoted as P(A) is defined as the ratio of the number of 
favorable outcomes for event A denoted as n(A) to the total number of possible out-
comes in the sample space denoted as n(S). Mathematically, P(A) is computed as shown 
in Equation (2.51).
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n A

P A
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=
 

(2.51)

2.3.3  Probability measures

A probability measure assigns numerical values to events within a sample space, reflecting 
the likelihood of occurrence of those events. It provides a formal framework for quantify-
ing uncertainty and making predictions in various fields, including statistics and machine 
learning. A probability measure P on a sample space S satisfies the following properties:

 i. Non- negativity
  This property states that the probability of an event A must be a non- negative 

real number. In mathematical terms, the property is represented as ( ) 0P A ≥  
for all events A.

 ii. Normalization
  This property states that the total probability assigned to the entire sample 

space is equal to 1. Mathematically, for a sample space S, the property is 
represented as ( ) 1P S = .

 iii. Additivity
  The additivity property of a probability measure applies to mutually exclu-

sive events. The additivity property states that the probability of the union of 
two mutually exclusive events is equal to the sum of their individual prob-
abilities. If 1A , 2A , … are disjoint events (i.e., 0i jA A∩ =  whenever i j≠ ),  
then ( ) ( )1 2 i

i

P A A P A∪ ∪… =∑ .

2.3.4  Conditional probability

Conditional probability is a measure of the likelihood of an event occurring given that 
another event has already occurred with a certain probability. It is denoted by ( | )P A B ,  
where A represents the event of interest and B signifies the condition under consid-
eration for evaluating the probability. Mathematically, conditional probability is com-
puted as shown in Equation (2.52).
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(2.52)

where:

( | )P A B  is the conditional probability of event A given event B has occurred.
( )P A B∩  is the joint probability of events A and B occurring together. If the two events 

(A and B) are independent (i.e., mutually exclusive events), then ( ) ( ) ( )P A B P A P B∩ = .  
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Thus, the conditional probability becomes ( )( | )P A B P A= . This is equivalent to stating 
that the observation of B has no impact on the probability of A.
( )P B  is the probability of event B occurring.

2.3.5  Bayes’ theorem

Bayes’ Theorem is an important concept in probability theory that offers a method 
for updating beliefs about the probability of an event occurring based on new evi-
dence. It is a cornerstone in various fields such as statistics, machine learning, and 
AI. Mathematically, the theorem relates the conditional probability of an event 
A given event B (i.e., the posterior probability) to the conditional probability of 
event B given event A (i.e., the likelihood), along with the prior probabilities of 
events A and B occurring independently. The formula of Bayes’ Theorem is given in 
Equation (2.53).
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where:

( | )P A B  is the conditional probability of event A given event B has occurred.
( | )P B A  is the conditional probability of event B given event A has occurred.
( )P A  is the probability of event A occurring.
( )P B  is the probability of event B occurring.

2.3.6  Random variables

A random variable is a mathematical function that assigns a numerical value to each 
possible outcome of a random experiment. In simpler terms, a random variable is a vari-
able whose value is determined by the outcome of a random process. There are mainly 
two types of random variables: discrete and continuous, as described in the following.

 i. Discrete Random Variables
   These are variables that take on a countable number of distinct values. The 

possible values of a discrete random variable can be listed, and there are gaps 
between them. Examples of random variables include the number of heads in 
a series of coin flips or the count of emails received in a day.

 ii. Continuous Random Variables
   These are variables that can take any value within a given range. The pos-

sible values form a continuous interval, and there are no gaps between them. 
Examples include the height of individuals in a population, the time it takes 
for a reaction to occur, or the temperature at a specific location.

   Random variables are denoted by X and their possible values are often 
denoted by lowercase letters, e.g., x. The probability distribution of a random 
variable describes the likelihood of each possible value occurring.



52 Practical Machine Learning

2.3.7  Expectation

Expectation or mean represents the average value that one would expect the random 
variable X to take over a large number of repetitions of an experiment. It is denoted by 
( )E x  or µ  and is a measure of central tendency.

For a discrete random variable X, with probability mass function ( )iP X x=  and 
corresponding values ix , the expectation is denoted in Equation (2.54).
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For a continuous random variable X, with probability density function ( )f x , the 
 expectation is denoted in Equation (2.55).
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2.3.8  Variance

The variance of a random variable X is a measure of the spread or dispersion of its 
values around the mean or expected value. It quantifies the degree to which individual 
observations deviate from the average. Variance is denoted as Var(x) or 2σ .

For a discrete random variable X, with probability mass function ( )iP X x=  and 
corresponding values ix  and expected value µ , the variance is calculated as indicated in 
Equation (2.56).
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(2.56)

Whereas, for a continuous random variable X, with probability density function ( )f x  
and expected value µ , the variance is computed as shown in Equation (2.57).
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2.3.9  Standard deviation

The standard deviation is a statistical measure that quantifies the amount of variation 
or dispersion within a set of values. Standard deviation is the square root of variance. 
Additionally, it shows how individual data points deviate from the dataset’s mean. Hence, 
a low standard deviation shows that the data points are close to the mean, whereas a high 
standard deviation indicates more variability. Standard deviation is denoted by σ.
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For a discrete random variable X, with probability mass function ( )iP X x=  and cor-
responding values ix  and expected value µ , the standard deviation is given in Equation (2.58).
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Equation (2.59) denotes the variance for a continuous random variable X, with 
probability density function f(x) and expected value μ.
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A probability distribution is a mathematical function that describes the probability of 
various outcomes in a random experiment. It offers a way for assigning probabilities 
to the numerous outcomes that a random variable can have. Understanding probabil-
ity distributions is essential for probability theory, statistics, machine learning, and 
data science. Furthermore, when describing probability measures linked with random 
 variables, alternative functions such as cumulative distribution functions (CDFs), 
probability density functions (PDFs), and probability mass functions (PMFs) are fre-
quently defined. These functions provide a straightforward approach to calculating the 
probability measure that will lead an experiment.

2.3.9.1  Cumulative distribution function

The cumulative distribution function (CDF) depicts the probability distribution of a 
random variable. It also provides the likelihood that the variable will have a value less 
than or equal to a given value x. Consider the random variable X, which represents the 
adult male height in a population as measured in feet. The CDF of X, denoted by f(x), 
indicates the probability that an adult male is less than or equal to a given height, such 
as 68 feet. Specifically, f(68) is the probability that an adult male is shorter than or equal 
to 68 feet. For any random variable X, the CDF f(x) must meet the following conditions.

 i. Non- decreasing: This feature means that when x increases, the cumulative 
probability does not decrease. If ( ) ( )1 2f x f x≤ , then 1 2x x≤ . Where ( )1f x
and ( )2f x  denote the CDF values at two points 1x  and 2x , respectively.

 ii. Right- Continuous: The probability of reaching any particular 
value from the right is the same as approaching it from the left. It is 
denoted as ( ) ( )

0
lim
h

F x F x h
+→

= + .

 iii. Limits at Infinity: The cumulative probability approaches 0 for values that 
are extremely small and approaches 1 for values that are extremely large. It is 
denoted as ( )lim 0

x
F x

→−∞
=  and ( )lim 1

x
F x

→+∞
= .
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2.3.9.2  Probability mass function

The probability mass function (PMF) represents the probability distribution of a discrete 
random variable by assigning probabilities to all possible outcomes. Thus, the PMF is 
denoted as P(X = x), and it reflects the probability that the random variable X will take 
the value x. For a discrete random variable X, the PMF ( )P X x=  satisfies non- negativity 

(i.e., ( ) 0P X ≥ ) and summation to 1 (i.e., ( )
all

1
x
P X x= =∑ ) property. The PMF is 

 significant in machine learning because it provides a formal mechanism for describing 
the probability distribution of discrete random variables. This allows machine learning 
systems to represent and reason about uncertainty in discrete domains.

2.3.9.3  Probability density function

A Probability Density Function (PDF) defines the probability distribution of a continu-
ous random variable by assigning probabilities to groups of values rather than individual 
values. Furthermore, the PDF, indicated as f(x), represents the likelihood that the ran-
dom variable X falls inside a specific range around x. Consider X, a continuous random 
variable representing an adult male’s height in a population, measured in feet. Thus, 
the PDF f(x) would represent the likelihood that an adult male’s height falls within a 
specified range of x feet. A PDF f(x) must satisfy two conditions: non- negativity (f(x) ≥ 
0) and area under the curve (∫_(-∞)^∞ f(x)dx  = 1). The PDF is significant in machine 
learning because it allows for formal modeling and analysis of continuous random vari-
ables. This allows algorithms to understand uncertainty and make accurate predictions 
in continuous domains.

2.3.9.4  Discrete distributions

Discrete probability distributions show the probabilities associated with discrete random 
variables, which have separate and independent values. Discrete distributions include 
the Bernoulli, Binomial, and Poisson distributions. These sorts are ideal for modeling 
events with countable and accurate outcomes.

2.3.9.5  Bernoulli distribution

The Bernoulli distribution represents a random experiment with only two possible 
 outcomes (1 for success and 0 for failure), making it ideal for representing binary 
data. It is useful in machine learning, particularly for classification tasks. Furthermore, 
Equation (2.60) defines the probability mass function, P(X = k), of a Bernoulli random 
variable X. In addition, Equations (2.61) and (2.62) calculate the mean, E(X), and vari-
ance, Var(X), of the Bernoulli Distribution, respectively.

 ( ) ( )1· 1
kkP X k p p

−
= = −  (2.60)

where:

k takes values 0 or 1, and
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p represents the probability of success. The distribution is characterized by a single 
parameter p, which is between 0 and 1.

 ( )E X p=  (2.61)

 ( ) ( )Var · 1X p p= −  (2.62)

2.3.9.6  Binomial distribution

The number of successes in a fixed number of independently and identically  distributed 
Bernoulli trials is represented by a binomial distribution. Each trial either succeeds with 
probability p or fails with probability (1 − p). Equation (2.63) describes the  probability 
mass function for a binomial random variable X. Equations (2.64) and (2.65) also 
 provide the mean, E(X), and variance, Var(X), of a Binomial Distribution.

 ( ) ( ) ( )· · 1
n kk k

nP X k p p
−

= = −
 

(2.63)

where:

n is the number of trials.
k is the number of successes.
p is the probability of success in a single trial.
( )k

n  is the binomial coefficient, representing the number of ways to choose k success 
from n trials.

 ( )E X np=  (2.64)

 ( ) ( )Var 1X np p= −  (2.65)

2.3.9.7  Poisson distribution

The Poisson Distribution represents the number of events that occur within a specific 
time. This distribution is crucial in machine learning for modeling unusual event occur-
rences within a set period, which aids in tasks such as website traffic prediction and data 
anomaly detection. Equation (2.66) calculates the PMF for a Poisson random variable 
X. In addition, the mean E(X) and variance Var(X) of a Poisson distribution are equal to 
the average rate parameter λ, as defined in Equation (2.67).

 
( )

!

ke
P X k

k

λλ −

= =
 

(2.66)

where:

k is the number of events.
λ  is the average rate at which events occur.
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e is the base of the natural logarithm (i.e., 2.71828e ≈ ).

 ( ) ( )VarE X X λ= =  (2.67)

2.3.9.8  Uniform distribution

The Uniform Distribution is distinguished by a PMF that is constant throughout a speci-
fied range. The distribution is uniform since all outcomes within the range have an equal 
chance of occurring. Furthermore, in machine learning, the distribution is critical for 
producing random samples with similar probability across a certain range and giving a 
baseline comparison. As a result, it is critical in producing synthetic datasets for model 
training and testing, as well as in assuring random selection process integrity. It can also 
generate random starting settings for algorithms. Equation (2.68) computes the PMF for 
a uniform random variable X on the interval [a, b]. For a uniform distribution, the mean 
E(X) and variance Var(X) are also calculated using Equations (2.69) and (2.70).

 
( ) 1

1
iP X x

b a
= =

− +  
(2.68)

where:

a is the minimum value in the range.
b is the maximum value in the range.

ix  is a specific value in the range.

 
( )

2
a b

E X
+=

 
(2.69)

 
( ) ( )2

1 1
Var

12

b a
X

− + −
=

 
(2.70)

2.3.9.9  Continuous distributions

Continuous probability distributions describe the probabilities associated with continuous 
random variables. Unlike discrete distributions, where the random variable can only assume 
distinct values, continuous distributions deal with variables that can take on an uncountable 
infinite number of values within a given interval. These distributions are vital for machine 
learning in modeling real- world phenomena with continuous variables and facilitate tasks 
such as regression, density estimation, and generative modeling. Types of continuous 
probability distribution include Normal Distribution, Uniform Distribution, Exponential 
Distribution, Log- Normal Distribution, Gamma Distribution, and Beta Distribution.

2.3.9.10  Normal distribution (Gaussian distribution)

The Normal Distribution, commonly referred to as the Gaussian distribution, is a foun-
dational probability distribution well- known for its symmetry about the mean. This 
inherent symmetry implies that data points close to the mean are more prevalent than 
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those farther away, creating the distinctive bell- shaped curve appearance when visual-
ized graphically. This distribution is widely used for data analysis, anomaly detection, 
and generating synthetic data in machine learning. The probability density function 
for a Gaussian random variable X with a mean ( )E X  and standard deviation (σ ) is 
given in Equation (2.71). Moreover, the mean ( )E X  and variance ( )Var X for a Normal 
Distribution are calculated as shown in Equations (2.72) and (2.73), respectively.

 

( )2
22

2

1
( | , )

2

x

f x e
µ

σµ σ
πσ

−
−

=
 

(2.71)

where:

x is the random variable.
µ  is the mean, determining the center of the distribution.
σ  is the standard deviation, influencing the spread or dispersion of the distribution.
π  is the mathematical constant (i.e., 3.14159π ≈ ).
e is the base of the natural logarithm ( 2.71828e ≈ ).

 ( )E X µ=  (2.72)

 ( ) 2Var X σ=  (2.73)

2.3.9.11  Uniform distribution

The Uniform Distribution is a probability distribution characterized by a constant PDF 
over a specified range. In simpler terms, every outcome within the range has an equal 
chance of occurring, making the distribution uniform. This distribution is important in 
machine learning for fair random selection processes and a crucial tool in generating 
random samples that can be used in algorithm training and testing. The PDF for a uni-
form random variable X over the interval ,a b   is given in Equation (2.74). Moreover, 
the mean ( )E X  and variance ( )Var X for a uniform distribution are calculated as shown 
in Equations (2.75) and (2.76), respectively.

 ( )
1

( | , )f x a b
b a

=
−  

(2.74)

where:

a is the lower bound of the interval.
b is the upper bound of the interval.

 
( )

2
a b

E X
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(2.75)
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(2.76)
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2.4 CALCULUS

Calculus is essential in machine learning, particularly for optimizing algorithms and 
understanding function behavior. Consequently, differentiation and integration are two 
fundamental concepts that are often employed in machine learning.

2.4.1  Differentiation

Differentiation is used to determine the rate at which a function changes. In machine 
learning, it is commonly used to optimize models by modifying parameters to reduce 
or maximize a specific objective function. The derivative of a function f(x) with respect 
to a variable x is represented by f′(x), which represents the rate of change of f(x) at a 
particular position. The derivative is defined as the limit of the difference quotient as the 
interval approaches 0, as shown in Equation (2.77).

 
( ) ( ) ( )

0
lim
h

f x h f x
f x

h→

+ −
′ =

 
(2.77)

Let us consider a simple function ( ) 2f x x= . Its derivative ( )f x′  can be computed using 
the power rule of differentiation:

 ( ) ( ) 22 ,which is the derivative of .f x x f x x′ = =

2.4.2  Integration

Integration is the reverse process of differentiation; hence, it is used to calculate the area 
under a function’s curve. In machine learning, integration is used in a range of situa-
tions, including predicting probabilities in statistical models. Equation (2.78) represents 
the integral of a function f(x) with relation to the variable x.

 ( )f x dx∫  (2.78)

Let us consider the function ( ) 2g x x= . The area under the curve can be calculated by 
integrating g(x) with respect to x.

 ( ) 2f x dx x C∫ = +

where:

C is the integration constant.
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To get the area under the curve of g(x) = 2x from x = 0 to x = 3, we use the definite 
integral:

 

3
32 2 2

0
0

2 3 0 9xdx x = = − = ∫
So, the area under the curve of g(x) = 2x from x = 0 to x = 3 is 9.

2.4.3  Gradient

Gradients are a basic concept in calculus that play a significant role in model optimiza-
tion by providing information about the rate of change of functions. To improve a model’s 
performance, a cost function that measures the difference between the model’s predic-
tions and the desired outcome is usually minimized. In addition, several machine learning 
optimization approaches, such as gradient descent and its derivatives, iteratively update 
model parameters using the gradient. As a result, in order to achieve optimal performance, 
a model’s internal parameters must be modified so that the cost gradually decreases. Here 
is when the concept of gradient comes into play. In mathematics, gradients are the vec-
tors of partial derivatives of a multivariable function with respect to its input variables. 
Geometrically, the gradient indicates the direction of the steepest ascent of a function’s 
surface at a particular point. Equation (2.79) defines the gradient of a function f(x).

 1 2

, , ,
n

f f f
f

x x x

 ∂ ∂ ∂∇ = … ∂ ∂ ∂  
(2.79)

where:

i

f

x

∂
∂

 represents the partial derivative of f with regard to the i- th input variable, xi.

2.4.4  Linear function

A linear function is a mathematical relationship between two variables that can be repre-
sented visually by a straight line, with the dependent variable moving at a constant rate rel-
ative to the independent variable. Let us consider the simple linear function ( )f x mx c= + ,  
where m is the slope and c is the intercept. As a result, the gradient of f with respect to x 
is constant, equal to the slope m across the domain. Hence, the gradient of f  is ∇f = m. 
For example, given a linear function ( ) 2 3f x x= + , the gradient of f  with respect to x is 
constant and equal to 2m =  across the domain. Therefore, f∇  equals 2 for all x.

2.4.5  Quadratic function

A quadratic function is a mathematical relationship between two variables that can be 
graphically depicted as a curve in which the dependent variable increases or decreases 
in proportion to the independent variable squared. Let us consider a quadratic function 
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( ) 2f x ax bx c= + + , where a, b, and c are constants. When partial derivatives are com-
puted, the gradient ∇f varies with x and is influenced by coefficients a and b. The gradi-
ent vector provides insight on the slope of the quadratic curve at various points within its 
domain. Consider the quadratic function ( ) 2 2 1f x x x= + + . Its gradient with respect to 
x is 2 2f x∇ = + . At 0x = , the gradient is 2f∇ = , showing a positive slope. As x increases, 
so does the gradient, which reflects the quadratic curve’s steeper slope.

2.4.6  Sigmoid function

A sigmoid function is a mathematical function with a distinctive S- shaped curve. It is 
commonly used to model nonlinear interactions and map inputs to a range of 0 to 1. 
In machine learning, the sigmoid function ( ) ( )1 / 1 xx eσ −= +  is frequently employed 
as an activation function. The gradient of the sigmoid function with respect to x has a 
distinct S- shape, gradually shifting from big positive values to small positive values as x 
changes. Let us get the gradient of the sigmoid function ( ) ( )1/ 1 xx eσ −= +  with respect 

to x. Calculating the derivative of ( )xσ  yields ( ) ( ) ( )( )1x x xσ σ σ′ = − . This gradient 

goes smoothly from big positive values (i.e., for large positive x) to small positive values 
(i.e., for large negative x), representing the sigmoid function’s characteristic of translat-
ing input values to the range (0, 1).

2.5 GEOMETRY AND TRIGONOMETRY

Geometry and trigonometry are fundamental mathematical principles with numerous 
applications in machine learning, ranging from data representation to model develop-
ment. Understanding their applications is critical for developing efficient algorithms and 
evaluating their outcomes. This section looks into the fundamental ideas of geometry 
and trigonometry, emphasizing their application in the machine learning domain.

2.5.1  Geometry in data representation

Geometry provides a foundation for describing data in machine learning, especially 
in high- dimensional domains. Distance metrics, inner products, and norms are impor-
tant concepts for assessing the similarities and differences between data points. For 
example, the Euclidean distance metric calculates the straight- line distance between 
points in a geometric space, making it easier to cluster, classify, and discover anomalies. 
Consider a dataset with two- dimensional points reflecting the positions of houses in a 
neighborhood. Each data point (x, y) represents the coordinates of a dwelling on a map. 
Equation (2.80) is used to calculate the Euclidean distance between pairs of data points 
to determine how similar dwellings are based on their locations.

 ( ) ( )2 2
2 1 2 1Distance x x y y= − + −  (2.80)
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Let us consider two houses with coordinates (2, 3) and (5, 7). The Euclidean distance 
between them can be computed as follows:

 ( ) ( )2 2 2 2Distance 5 2 7 3 3 4 9 16 25 5= − + − = + = + = =

Therefore, the Euclidean distance between the dwellings is 5 units. This distance mea-
sure allows us to quantify the spatial links between dwellings and perform tasks like 
clustering or identifying nearest neighbors for recommendation systems.

2.5.2  Trigonometric geometry in model  
optimization

Trigonometric functions, particularly hyperbolic functions such as hyperbolic sine 
(sinh), cosine (cosh), and tangent (tanh), are important in model optimization and activa-
tion functions in machine learning. To introduce non- linearity and assist gradient- based 
optimization, neural networks frequently use hyperbolic tangent (tanh) and rectified 
linear units (ReLU) activation functions. To incorporate non- linear transformations and 
normalize activations in deep neural networks, the hyperbolic tangent (tanh) activation 
function is used to neuron outputs. This enables more effective gradient propagation and 
convergence during back- propagation, resulting in better training stability and model 
performance. Assume there is a neural network consisting of one input neuron, one 
hidden neuron, and one output neuron. The hidden neuron will utilize the hyperbolic 
tangent activation function, whereas the output neuron will use the rectified linear unit 
(ReLU) activation function.

The hyperbolic tangent function, denoted as ( )tanh x , is defined in Equation (2.81).
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where:
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Given an input x, the hidden neuron computes its output h using the hyperbolic tangent 
activation function, as illustrated in Equation (2.82).

 ( )tanhh wx b= +  (2.82)

where:

w represents the weight connecting the input to the hidden neuron, and
b is the bias term.
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Equation (2.83) shows how the output neuron computes its output y using the recti-
fied linear unit (ReLU) activation function.

 ( )max 0,why c= +  (2.83)

where:

wh represents the weighted sum of the hidden output of the neuron, and c is the  output 
bias term of a neuron.

Assume that the weight linking the input to the hidden neuron is w = 0.5, the bias 
term for the hidden neuron is b = 1, the weight connecting the hidden neuron to the 
output neuron is w′ = −1, and the bias term for the output neuron is c = 0.5. Given an 
input 2x = , we can compute the output of the hidden neuron using Equation (2.82) as 
follows:

 ( ) ( ) ( )tanh 0.5 2 1 tanh 2 1 tanh 3h = × + = + =

Using the hyperbolic tangent function, we determine that h is around 0.995. The output 
neuron’s output is then calculated using Equation (2.83), as follows:

( ) ( ) ( )max 0, 1 0.995 0.5 max 0, 0.995 0.5 max 0, 0.495 0y = − × + = − + = − =

Therefore, the output of the output neuron is 0.

2.6 INFORMATION THEORY

Information theory is an area of mathematics created in 1948 by Claude Shannon that 
provides a framework for quantifying and studying information, uncertainty, and com-
munication systems. In the context of machine learning, information theory provides 
important insights into data representation, model evaluation, and optimization tech-
niques. This subsection looks into the fundamental concepts of information theory and 
its applications in machine learning, with instructive examples.

2.6.1  Entropy and information content

Entropy is a fundamental concept in information theory that describes the average 
uncertainty or disorder in a probability distribution. It estimates the quantity of informa-
tion needed to describe the results of a random variable. In machine learning, entropy is 
an important statistic for assessing uncertainty in data distributions and model predic-
tions. For example, in decision tree algorithms, entropy is used to assess the purity of 
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splits and drive feature selection. The entropy H(X) of a discrete random variable X with 
probability distribution P(X) is computed using Equation (2.84).

 
( ) ( ) ( )2log

x

H P x P x
∈

= −∑



 

(2.84)

where:

x is the set of all possible values for X.
Assume we have a random variable X that represents the result of flipping a fair coin. 
There are two possible outcomes: heads (H) and tails (T), each with a chance of 0.5. 
This distribution’s entropy is computed using Equation (2.84):

 
( ) 2 2

1 1 1 1 1 1
log log 1bit

2 2 2 2 2 2
H

   = − + = − − =   
   



This indicates that there is 1 bit of uncertainty associated with each coin- flip outcome.
For example, in classification, consider a binary classification problem with two 

classes, where each class occurs with an equal probability ( )0.5p = . The entropy of this 
distribution is calculated as shown in Equation (2.84).

( ) ( ) ( ) ( )
= − −
= − − = − × − − × − =

1 2 1 2 2 2

2 2

Entropy log log
0.5log 0.5 0.5log 0.5 0.5 1 0.5 1 1bit
p p p p

This indicates that there is 1 bit of uncertainty associated with each outcome, reflecting 
the equal probability of the two classes.

2.6.2  Mutual information and feature selection

Mutual information measures the amount of information shared between two  random 
variables. In machine learning, mutual information is utilized for feature selection, 
where it quantifies the relevance of each feature to the target variable. Features with 
high mutual information are considered informative and are retained, while  irrelevant 
features are discarded. Mutual Information ( );I X Y  between two random vari-
ables X and Y  with joint probability distribution ( ),P X Y  is calculated as shown in 
Equation (2.85).
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(2.85)

where:

x and y are the sets of possible values of X and Y, respectively.
Consider a dataset with two variables X and Y, where X represents the presence (i.e., 
1) or absence (i.e., 0) of a particular gene mutation and Y represents the occurrence 
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(1) or absence (0) of a disease as shown in Table 2.1. The aim is to measure the mutual 
information between X and Y to determine the relevance of the gene mutation to the 
disease.

Using the formula for mutual information in Equation (2.85), the following calcula-
tion can be performed.
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This indicates the amount of information gained about the disease (Y) by observing the 
gene mutation (X), with higher values indicating a stronger association.

2.6.3  Cross- entropy and model evaluation

Cross- entropy is a measure of dissimilarity between two probability distributions. In 
machine learning, it is commonly used as a loss function for training classification 
models, particularly in neural networks. Minimizing cross- entropy corresponds to max-
imizing the likelihood of predicting the correct class label. For example, in binary clas-
sification, the cross- entropy loss function is defined in Equation (2.86).
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 (2.86)

where:

iy  is the true class label (0 or 1),
ip  is the predicted probability of the positive class, and

N  is the number of samples.

TABLE 2.1 The values of features X and Y

X Y COUNT

0 0 500
0 1 200
1 0 100
1 1 600
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2.7 CLUSTERING

As explained earlier in Chapter 1, clustering identifies patterns in unlabeled data by 
grouping similar data points into clusters or segments. Although there are several cat-
egories of clustering algorithms, for mathematical illustrative purposes, the K- Means 
clustering algorithm based on partitioning clustering is demonstrated in the subsequent 
subsection.

2.7.1  K- Means clustering algorithm

The K- Means algorithm is an iterative clustering technique used to partition a 
 dataset into K distinct, non- overlapping clusters based on a specific distance met-
ric (e.g., Euclidean distance). It works by iteratively assigning data points to the 
nearest cluster centroid and then updating the centroids based on the mean of the 
data points assigned to each cluster. This process continues until convergence, 
where the  centroids no longer change significantly or a specified number of itera-
tions are reached. The K- Means clustering algorithm can be performed through the 
 following steps.

 i. Initialization
   In the initial step, the parameter K is determined, representing the desired 

number of clusters. Subsequently, centroids are randomly initialized for each 
K cluster to start the clustering process.

 ii. Calculation of Distances
  In this step, the distance matrix between the centroids and the data patterns 

should be created to identify the nearest distance of the data points to the cen-
troids. Since there are K clusters/centroids and n samples, the algorithm shall 
compute n*K geometric distances. There are several geometric distances 
that can be used to compute the distance of the data points to the centroids, 
including the Euclidean distance, Manhattan distance, and Chebyshev dis-
tance. These geometric distances, together with their respective formulas are 
discussed in the following subsections.

 a. Euclidean Distance
  The Euclidean distance d is a straight- line distance between two points in 

a Euclidean space. It is computed using Equation (2.87).

 
( )2
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(2.87)

where:

n is the number of dimensions in Euclidean space
ix  and iy  are points in the Euclidean space
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For example, given two points (2, 3) and (5, 7) in a two- dimensional space, as shown in 
Figure 2.8, the Euclidean distanc is computed as follows:

 ( ) ( )2 2
2 5 3 7 9 16 25 5.d = − + − = + = =

 b. Manhattan Distance
   This is the distance between two points in a grid- based system like a chess-

board. It is calculated by adding the absolute differences of their coordi-
nates using the formula in Equation (2.88).

 1

n

i i

i

d x y
=

= −∑
 (2.88)

where:

ix and iy are points in the Euclidean space
Consider the same two points (2, 3) and (5, 7) in a two- dimensional space as shown in 
Figure 2.9 the Manhattan distance is computed as follows:

 2 5 3 7 3 4 7.d = − + − = + =

FIGURE 2.8 Euclidean distance visualization.
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 c. Chebyshev Distance
   The Chebyshev distance is the maximum absolute difference between 

two points across all dimensions. It is calculated using the formula in 
Equation (2.89).

 
( )max i i

i
d x y= −

 (2.89)

where:

ix and iy  are points in the Euclidean space.
For the same two points (2, 3) and (5, 7) in a two- dimensional space, as shown in 
Figure  2.10, the Chebyshev distance is computed as follows:

 ( ) ( )max 2 5 , 3 7 max 3,4 4.d = − − = =

 iii. Assigning Each Sample in the Cluster
 After calculating the distance from each sample to every cluster, the sample is 
assigned to the closest centroid (i.e., minimal distance). If a sample distance to 
the current centroid is much higher than one of the other centroid, then the sam-
ple should be shifted to the new centroid with minimum distance. However, 
when there is no movement of samples to another cluster anymore, the algorithm 
should end. Suppose the assignment of data points to centroids is determined 

FIGURE 2.9 Manhattan distance visualization.
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using the Euclidean distance, then this can be performed using the formula in 
Equation (2.90).
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where:

x is the data point
c is the centroid
n is the number of dimensions

 iv. Updation
 The updation step involves recalculating the centroids for each cluster by taking 
the mean of all data points assigned to the cluster. This will result in a shift in the 
positions of the centroids. The new centroid ( ),x yc c c  is obtained as shown in 
Equations (2.91) and (2.92) for the x and y coordinates of data points, respectively.
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c x
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= ∑
 (2.91)

 1

1
l

y i

i

c y
l

=

= ∑
 (2.92)

FIGURE 2.10 Chebyshev distance visualization.
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 v. Repeating Steps ii to iv
 This step involves repeating steps ii to iv until the algorithm convergence (i.e., 
when the centroids no longer change) or a specified number of iterations is 
reached. Consider a dataset with eight samples and two attributes, as shown in 
Table 2.2. The task is to assign each data point to one of three clusters (C1, C2, 
and C3) using the K- Means algorithm, with the Manhattan distance serving as 
the distance measure. As described earlier in this section, the following steps are 
applied to assign each data point to the respective cluster as follows.

 i. Initialization Iteration 1:
 Since there are three clusters (i.e., C1, C2, C3), then the centroids are randomly 
initialized as follows:

 ( )1: 1 4.00, 2 6.33C A A= =

 ( )2 : 1 6.00, 2 5.67C A A= =

 ( )3 : 1 2.50, 2 5.50C A A= =

 ii. Calculation of Distances and Assigning Each Sample to a Cluster
 Using the Manhattan distance measure, the distance from each data point to each 
centroid is calculated as follows.
Distances for data point (2, 10) to each centroid:

 Distance to 1 2 4 10 6.33 5.67C = − + − =

 Distance to 2 2 6 10 5.67 8.33C = − + − =

 Distance to 3 2 2.5 10 5.5 5C = − + − =

Data point (2, 10) is clustered in C3 since it has the smallest distance of 5 from C3 com-
pared to other clusters (5.67 and 8.33).

TABLE 2.2 Sample dataset

NO. A1 A2

1 2 10
2 2 5
3 8 4
4 5 8
5 7 5
6 6 4
7 1 2
8 4 9



70 Practical Machine Learning

Distances for data point (2, 5) to each centroid:

 Distance to – –C = + =1 2 4 5 6.33 3.33

 Distance to – –C = + ⋅ = ⋅2 2 6 5 5 67 4 67

 Distance to – –C = ⋅ + ⋅ =3 2 2 5 5 5 5 1

Data point (2, 5) is clustered in C3 since it has the smallest distance of 1 from C3 com-
pared to other clusters (3.33 and 4.67).

Distances for data point (4, 8) to each centroid:

 Distance to – –C = + ⋅ = ⋅8 4 4 6 33 6 331

 Distance to – –C = + ⋅ = ⋅2 8 6 4 5 67 3 67

 Distance to – –C = + ⋅ =3 2.5 5 5 78 4

Data point (4, 8) is clustered in C2 since it has the smallest distance of 3.67 from C2 
compared to other clusters (6.33 and 7).

The assignment of data points to their respective clusters is shown in Table 2.3 with 
each color indicating the data points that belong to the same cluster.

 iii. Updating Centroids for Iteration 2:
 After assigning all samples to clusters, the centroids are recomputed by finding 
the mean of all data points in each cluster. The updated centroids will be used in 
the next iteration and are calculated as follows:

Centroid for Cluster 1, C1:

TABLE 2.3 Data points assigned to the clusters for the first iteration

DATA POINTS

A1

C1 C2 C3

4.00 6.00 2.50

A2 6.33 5.67 5.50

NO. A1 A2 MANHATTAN DISTANCES

1 2 10 5.67 8.33 5.00

2 2 5 3.33 4.67 1.00

3 8 4 6.33 3.67 7.00

4 5 8 2.67 3.33 5.00

5 7 5 4.33 1.67 5.00

6 6 4 4.33 1.67 5.00

7 1 2 7.33 8.67 5.00

8 4 9 2.67 5.33 5.00
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 • The data samples are (5, 8) and (4, 9).

 • The mean is ( )5 4 8 9
, 4.5,8.5

2 2
+ +  = 

 
. Thus, the new centroid is ( )4.5,8.5 .

Centroid for Cluster 2, C2:

 • The data samples are (4, 8), (5, 7), and (4, 6).

 • The mean is ( )8 7 6 4 5 4
, 7,4.33

3 2
+ + + +  = 

 
. Thus, the new centroid is ( )7,4.33 .

Centroid for Cluster 3, C3:

 • The data samples are (2, 10), (2, 5), and (1, 2).

 • The mean is ( )2 2 1 10 5 2
, 1.67,5.67

3 2
+ + + +  = 

 
. Thus, the new  centroid  

is ( )1.67,5.67 .

 iv. Repeating Steps ii to iv (i2 to i3)
 The process of creating data point distances from each centroid, assigning data 
points to clusters, and updating centroids are repeated in this step until the 
centroids converge or a specified number of iterations is reached. After two 
more iterations the centroids of the clusters were no longer changing with their 
final values ( ) ( ) ( )1 3.67,9 , 2 7,4.33 , and 3 1.5,3.5C C C . The final cluster assign-
ments are as  follows: cluster 1 includes the data points (2, 10), (5, 8), and 
(4, 9); cluster 2 includes the data points (4, 8), (5, 7), and (4, 6); and cluster 3 
includes the data points (2, 5) and (1, 2) as shown in Table 2.4.

TABLE 2.4 Data points assignment to the clusters for second and third iterations

DATA POINTS

A1

C1 C2 C3 C1 C2 C3

4.5 7 1.67 3.67 7.00 1.50

A2 8.5 4.3 5.67 9.00 4.33 3.50

NO. A1 A2 DISTANCE 2 DISTANCE 3

1 2 10 4.00 10.67 4.67 2.67 10.67 7.00

2 2 5 6.00 5.67 1.00 5.67 5.67 2.00

3 8 4 8.00 1.33 8.00 9.33 1.33 7.00

4 5 8 1.00 5.67 5.67 2.33 5.67 8.00

5 7 5 6.00 0.67 6.00 7.33 0.67 7.00

6 6 4 6.00 1.33 6.00 7.33 1.33 5.00

7 1 2 10.00 8.33 4.33 9.67 8.33 2.00

8 4 9 1.00 7.67 5.67 0.33 7.67 8.00
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2.8 SUMMARY

This chapter equips readers with the requisite mathematical foundation for undertaking 
machine learning tasks. It guides learners through a structured progression, commenc-
ing with the fundamental mathematical concepts critical for comprehending machine 
learning principles. As readers progress, they develop the ability to mathematically rep-
resent machine learning models, fostering understanding and confident implementation. 
Furthermore, the chapter cultivates the essential skills of translating machine learning 
problems into mathematically optimized formulations. This empowers readers with 
problem- solving abilities in diverse machine learning contexts. The chapter also focuses 
on analyzing and interpreting mathematical expressions within machine learning algo-
rithms, giving readers profound insights into the operational mechanisms driving these 
algorithms, ultimately enhancing their ability to leverage them effectively. Finally, the 
chapter equips learners to apply mathematical representations to evaluate algorithmic 
efficiency and model behavior.

Exercises

 1. Assume that we have the following set of emails in Table 2.5 classified as 
either spam or ham. Given the new email “review us now,” find the prob-
ability that the given email (new email) is (i) Spam or (ii) Ham.

 2. Three factories F1, F2, and F3 in the Dodoma region produce 50%, 25%, 
and 25%, respectively, of the total daily output of bottles of grape juice. 
It is known that 4% of the bottles of juice produced by Factories F1 and 
F2 are defective and that 5% of those produced in F3 are  defective. If one 
bottle of juice is picked up at random from a day’s production, calculate 
the probability that it is defective.

 3. Suppose you are given the following set of data in Table 2.6 with the 
Boolean input variables a, b, and c, and a single Boolean output variable K.

 a.  Assume we are using a naïve Bayes classifier to predict the value of K 
from the values of the other variables.

TABLE 2.5 Email classification

EMAIL LABEL

Send us your password Spam
Send us your review Ham
Password review Ham
Review us Spam
Send your password Spam
Send your account Spam
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i.  According to the naïve Bayes classifier, what is P(K = 1|a = 1 ∧ b = 
1 ∧ c = 0)?

ii.  According to the naïve Bayes classifier, what is P(K = 0|a = 1 
∧ b = 1)?

 4. For the following scores of students in an examination: 84, 58, 90, 56, 85, 
72, 64, 54, 48, 88, 92, and 74. Compute the:

 a. Measures of dispersion.
 b. Measures of central tendency.
 c. Quartiles.
 d. The 10th, 20th, 50th, and 70th percentiles.

 5. Given the following data points.

X Y

2 3
4 7
6 8
8 10

10 12

Calculate the covariance between the predictor variable X and the response 
variable Y.

 6. Given the following data points with two predictor variables X1 and X2 and 
one response variable Y.

X1 X2 Y

1 2 3
2 1 6
3 4 7
4 3 10
5 5 12

TABLE 2.6 Set of Boolean data

a B c K

1 0 1 1
1 1 1 1
0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0
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Calculate the covariance matrix between the predictor variables X1, X2, and 
the response variable Y.

 7. Consider a neural network with an input x = 2, weight w = 0.5, and bias b 
= 1. Compute the output of the neuron using the hyperbolic  tangent (tanh) 
activation function. Then, repeat the computation for an  output neuron 
using the ReLU activation function with the output of the  hidden neuron as 
its input and weight w′ = −1, bias c = 0.5.

 8. Using eigenvalues and eigenvectors for principal component analysis 
(PCA), perform dimensionality reduction on the following dataset.

 

2 3

3 3

4 3

 
 
 
 
 

 9. Perform K- Means clustering with K = 2 on the given dataset of points (2, 
4), (1.5, 2), (3, 4), (1), (3, 2.5), and (1, 2), using your chosen initial cen-
troids and the Euclidean distance method for distance calculation.

10. How does centroid initialization affect the K- means algorithm? Brainstorm 
strategies for centroid initialization and their implications.
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3Data  
preparation

Upon completing this chapter, learners should be able to:

1. Understand the machine learning process.
2. Identify business problems that can potentially be solved using machine 

learning techniques.
3. Use different methods for collecting relevant data for machine  learning tasks.
4. Apply various data preprocessing techniques to ensure quality and reliability.
5. Understand ethical considerations in data collection.

3.1 OVERVIEW OF MACHINE 
LEARNING PROCESS

Generally, the machine learning process entails several steps, such as understanding the 
problem to be addressed, collecting and preprocessing data for training the model, and 
evaluating and deploying the model. Such a process is depicted in Figure 3.1. This chap-
ter focuses on the steps related to data preparation, including business problem identifi-
cation, defining success criteria, and data collection and preprocessing. The remaining 
steps shown in Figure 3.1 are covered in Chapter 4.

3.2 BUSINESS PROBLEM IDENTIFICATION

A business problem is a specific challenge or issue an organization encounters in its 
day- to- day operations. It represents a gap between the current state of the business 
and its desired vision, hindering its performance or preventing it from achieving 
its goals. Business problems can vary in nature and complexity, requiring analysis, 
planning, and implementation of appropriate solutions to resolve them effectively. 

http://dx.doi.org/10.1201/9781003486817-3


3 • Data preparation 77

In the machine learning context, a business problem refers to a specific challenge 
or issue an organization faces that machine learning techniques can solve. In other 
words, a business problem is an opportunity that can benefit from leveraging data 
and machine learning techniques to make informed decisions, improve efficiency, 
and optimize processes that will ultimately lead to achieving business objectives. 
Identifying and clearly defining the business problem is a critical first step in the 
machine learning process, as it establishes the scope and direction for subsequent 
data collection, preprocessing, and modeling phases. The business problem may 
vary based on the nature of the problem domain. It could involve predicting cus-
tomer behavior, disease diagnosis, fraud detection, weather forecasting, and recom-
mendation systems.

3.3 SUCCESS CRITERIA DEFINITION

Success criteria refer to the specific benchmarks or goals established for a machine 
learning project. It defines what constitutes a successful outcome for the project and 
guides the evaluation of its progress and final results. They are typically defined in 
the business problem identification phase, where project objectives are identified and 
aligned with business goals. They also serve as a reference point when assessing whether 
the outcomes meet the desired requirements and provide business value. Some common 
examples of key success criteria include business objectives, measurable metrics (e.g., 
key performance indicators), timeframe, and stakeholder engagement.

FIGURE 3.1 Machine learning process.
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3.4 DATA COLLECTION

Data is essential for accurately designing and implementing machine- learning mod-
els. Therefore, collecting the specific data related to the problem you intend to solve 
before embarking on a machine learning project is essential. Data can be gathered from 
pre- existing databases or can be built from scratch. Usually, the nature of the prob-
lem domain dictates how data should be collected and stored. For instance, specialized 
equipment is necessary to create a digital image catalogue when tasked with developing 
a system to identify skin cancer from skin images. In contrast, creating a recommen-
dation system for e- commerce does not necessitate specialized data collection tools. 
Instead, all requisite data is supplied by users during product purchases. Notably, data 
collection process considerations include the nature of the data and their corresponding 
sources as detailed in the following sections.

3.4.1 Nature of data

Data comprises raw facts, figures, or statistics, which may exist in structured, semi- 
structured, or unstructured forms. Usually, data is represented in different formats such 
as numbers, text, images, audio, video, or any other format. Structured data is stored in a 
predefined format and is usually highly specific. A simple illustration of structured data is 
a Microsoft Excel file, in .xls or .csv format, where each column represents an attribute of 
the data. Unstructured data includes a multitude of diverse types of data typically stored 
in their native formats. A set of photo, video, or text files can represent unstructured data. 
Semi- structured data combines the features of unstructured and structured data. Examples 
of semi- structured data include JavaScript Object Notation (JSON), Extensible Markup 
Language (XML), and log files. Semi- structured data includes tags and elements, often 
called metadata, which serve to group the data and delineate its storage structure.

3.4.2 Data sources

Machine learning datasets can originate from available or online resources, or be built 
from primary sources. The online datasets may be either publicly accessible or propri-
etary. Therefore, utilizing these datasets demands thoroughly examining ethical con-
siderations across different data lifecycle stages. This covers scrutiny in data sources 
and collection, data representation, and data balancing and splitting. It is imperative to 
uphold principles of fairness, transparency, and responsible data usage. Delving into the 
ethical dimensions at each stage is essential for fostering ethical practices in machine 
learning. Table 3.1 outlines a few online data sources where data for implementing 
machine learning models can be accessed.

Alternatively, the Google search engine can be used to search for datasets using 
relevant keywords and filter the results based on the dataset formats (e.g., images, text, 
and videos) or accessibility (i.e., freely available or not).
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TABLE 3.1 Online dataset repositories

NAME OF DATASET 
REPOSITORY DESCRIPTION

UCI Machine 
Learning Repository

The University of California Irvine (UCI) data repository provides 
free datasets for empirically analyzing machine learning 
models. The UCI repository can be accessed at  https:// archive. 
ics. uci. edu/ ml/.

Kaggle Regarded as one of the most resourceful data repositories 
and online communities that support the development of 
machine learning models. It is a rich repository, offering a vast 
and diverse collection of free datasets. Additionally, Kaggle 
has various tools for data exploration, visualization, and 
collaboration. It is a valuable platform for both beginners and 
experienced data scientists. The Kaggle repository is available at  
https:// www. kaggle. com/ datasets.

GitHub Stores and publishes open machine learning datasets that are 
freely accessible for analyzing machine learning algorithms. 
The  public datasets on GitHub can be accessed at  https:// 
github. com/ awesomedata/ awesome-   public-   datasets.

Microsoft Research 
Open Data

The repository contains free accessible datasets to promote 
research advancements in different fields, including computer 
vision, NLP, and domain- specific sciences. The repository is 
available at  https:// msropendata. com/.

OpenML An online platform for machine learning that facilitates the 
sharing and organization of data, algorithms, and experiments. 
It aims to establish a seamless, interconnected ecosystem that 
integrates with existing processes, code, and environments. 
The platform enables global collaboration, allowing individuals 
to build upon each other’s ideas, data, and results, regardless 
of the infrastructure and tools they use. The OpenML data 
repository is available at  https:// www. openml. org/.

Amazon Web Service 
(AWS) Datasets

Provides a lot of datasets for quick deployment of machine 
learning models when using AWS. Different third parties 
provide datasets under varied licenses that determine in which 
applications they can be used. The Amazon datasets repository 
is available at  https:// registry. opendata. aws/.

Zenodo Open Data 
Repository

An open- access platform that hosts a broad spectrum of 
research data across disciplines such as healthcare, agriculture, 
climate, and cyber security. With robust metadata standards 
and versioning capabilities, Zenodo facilitates collaboration and 
promotes transparency in scientific research. The Zenodo open 
data repository is available at  https:// zenodo. org/.

Hugging Face Dataset An online platform for accessing and sharing datasets 
specifically suited for NLP, computer vision, and audio tasks. It 
also contains a variety of pre- trained models with the necessary 
tools for effectively using them. The Hugging Face open data 
repository is available at  https:// huggingface. co/ datasets.

(Continued)

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets
https://msropendata.com/
https://www.openml.org/
https://registry.opendata.aws/
https://zenodo.org/
https://huggingface.co/datasets
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3.4.3 Data curation

Data curation is essential when gathering information from multiple sources. This pro-
cess involves collecting and standardizing data from diverse origins into a unified format. 
It entails employing relevant analysis tools and filtering methods to discern valuable data 
from irrelevant ones during integration. Typically, data curation tools aid in integrating, 
cleansing, adding metadata, validating, and preserving collected data. Ultimately, data 
curation enhances dataset accessibility and comprehension, making them more man-
ageable for users to locate and interpret. Notable data curation tools include Alation, 
Talend, Stitch Data, Informatica, Ataccama ONE, and Alteryx. The choice of the exact 
tool depends on the properties and size of the data for a particular machine learning 
problem. A proper data curation process will ensure that the data remaining for labeling 
tasks are only those likely to enhance the performance of the models.

3.4.4 Data labeling

Data labeling is the process of identifying raw data and adding informative and meaning-
ful labels to provide context for a machine learning algorithm to learn from. For instance, 
labels might indicate whether a photograph contains a dog or a cat, identify the words 
spoken in an audio recording, or specify whether an X- ray image shows a tumor. Data 
labeling is essential for several applications, such as image and text classification, action 
recognition, intrusion detection, and speech recognition. Figure 3.2 illustrates an example 
of labeled and unlabeled image samples. Notably, a labeled dataset from which an algo-
rithm can learn is required for supervised learning. Typically, data labeling begins with 
the respective domain’s experts (labelers or annotators) being asked to describe or group 
unlabeled pieces of data in their respective categories. For example, a medical domain 
expert may be requested to tag X- ray images based on the condition “Does the image con-
tain signs of tuberculosis or not.” Tagging can be a “yes” or “no” answer corresponding to 
whether a patient is infected with tuberculosis or not, respectively.

NAME OF DATASET 
REPOSITORY DESCRIPTION

Government Open 
Data Portals

Are operated by governments, regional integration bodies, and 
international organizations thereby providing access to a wide 
range of datasets related to public services, the environment, 
demographics, and other topics. Examples of such portals are 
hosted by Tanzania, the United States of America, Canada, the 
European Union, and the World Bank at:

 https:// www. nbs. go. tz/
 https:// www. data. gov/
 https:// open. canada. ca/en
https://www.europeandataportal.eu/
https://data.worldbank.org/

TABLE 3.1 (Continued ) Online dataset repositories

https://www.nbs.go.tz/
https://www.data.gov/
https://open.canada.ca/en
https://www.europeandataportal.eu/
https://data.worldbank.org/
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3.4.5 Ethical considerations in data collection

Data often inherits societal biases that can be perpetuated by machine learning algo-
rithms and impact outcomes, thereby reinforcing existing disparities and inequalities. 
Thus, it becomes imperative to conscientiously address ethical concerns throughout the 
data collection process, as highlighted in Table 3.2.

3.5 DATA PREPROCESSING

Usually real- world data typically contains noise, missing values, duplicate values, and 
outliers, and it may be in unusable format—making it unsuitable for directly developing 
machine learning models. Therefore, data preprocessing targets transforming raw data 
into a format appropriate for training machine learning algorithms. Data preprocess-
ing can significantly affect the performance of a machine learning model. It entails 
critical steps, including data cleaning, transformation, dimensionality reduction, and 
 integration, as described in the following subsections.

3.5.1 Data cleaning

Data cleaning deals with fixing missing, outlier, duplicate, corrupted, incorrectly format-
ted, and incorrect values within a dataset. Data with such issues could lead to unreliable 
machine learning models. Generally, data cleaning helps in reducing errors and improv-
ing data quality. Although the data cleaning process can be time- consuming and tedious, 
it should not be ignored. Several techniques can be used in data cleaning depending on 
the nature of the dataset, as described in the following subsections.

3.5.1.1 Removing duplicate or irrelevant values

Duplicate values in datasets often stem from different sources, such as data entry 
errors, merging data from multiple sources, or incomplete deletion of redundant 
records. Addressing duplicates is a critical aspect of the data- cleaning process. Failure 
to remove duplicates can lead to redundant information being fed into the model, 

FIGURE 3.2 Labeled and unlabeled image samples.
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resulting in wasted computational resources and skewed results. The typical approach 
to  handling duplicates involves identifying and removing them, retaining only one 
unique observation for each duplicated entry. Similarly, irrelevant values not aligning 
with the problem at hand require attention. These values can be managed by deleting 
the corresponding observations or replacing the irrelevant ones with accurate ones, if 
available or retrievable.

TABLE 3.2 Ethical considerations in data collection

ETHICAL ISSUE DESCRIPTION

Privacy Privacy concerns often stem from data containing personal and 
sensitive information, such as names, addresses, and financial 
details. Collecting and securely storing data is crucial to reduce 
the risk of unauthorized access. Individuals should also maintain 
control over their data usage.

Accuracy Ensuring data accuracy requires rigorous validation and verification 
procedures to confirm precision and reliability. Thorough scrutiny 
and validation checks help prevent disseminating potentially 
misleading or inaccurate information.

Security Employ encryption and access controls during data collection to 
restrict access to unauthorized personnel, mitigating the risk of 
unauthorized disclosure. Regularly audit data handling processes 
and comply with legal standards to promptly detect and address 
security vulnerabilities or breaches.

Ownership Ethical data handling requires respecting individuals’ rights 
to control their data and acknowledging their ownership. 
Organizations should establish clear policies on data ownership, 
outlining guidelines for control and usage to uphold ethical 
standards.

Transparency Data transparency entails openly acknowledging biases, errors, or 
uncertainties within datasets, enabling informed decision- making 
and reducing potential harm. Embracing data transparency 
cultivates trust, accountability, and responsible data usage in 
machine learning applications.

Bias and Fairness Data collection practices must avoid unfairly targeting or excluding 
specific groups, necessitating vigilance against potential biases in 
sampling and collection methods.

Informed Consent Individuals whose data is collected should be informed about the 
purpose of the data collection, its intended use, and any potential 
benefits or risks. Besides, participants should also be allowed to 
decline participation or withdraw their consent at any time.

Accessibility It entails removing barriers to data access, such as cost or technical 
expertise, and providing documentation and tools to facilitate 
understanding and utilization of the data. Prioritizing data 
accessibility promotes inclusivity, transparency, and collaboration, 
enabling broader participation and societal benefits from machine 
learning advancements.
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3.5.1.2 Fixing structural errors

Structural errors occur due to typos, incorrect capitalization, or improper naming 
conventions. Such inconsistencies may lead to mislabeled categories or classes. For 
instance, you may find “N/A” and “Not Applicable” in a dataset, but they should be 
considered in the same category. In the case of structural error, the data (or entries) of 
the same category should be renamed using the same convention.

3.5.1.3 Detecting and removing outliers

Outliers refer to the data points in a dataset that are beyond a predefined distribution range 
and fall far from the mean of the dataset’s observations. Usually, outliers appear not to fit 
within the dataset under analysis. Outliers could lead to unrealistic model performance and 
inflation of error metrics which give higher weight to large errors. Outliers can easily be 
detected using visualization techniques such as clustering,  z- score, and box plots.

3.5.1.4 Handling missing values

Missing values are among the common challenges in datasets, occurring when certain 
attribute values are missing. Most machine learning algorithms cannot handle missing 
values, which may lead to errors or biased models if trained on such data. Failure to 
adequately address missing values can result in skewed models and prone to incorrect 
results. Missing values can be addressed using different approaches, such as:

 • Dropping a feature or record with missing values. This is fairly simple but 
may lead to loss of information. Therefore, careful consideration, such as 
dataset size, is needed before dropping a feature or record.

 • Filling missing values based on the measures of central tendency (mode, 
mean, and median). However, there is a risk of compromising data integrity 
due to working on assumptions rather than actual data.

3.5.1.5 Validation

Data validation involves inspecting data quality before training a machine learning algo-
rithm. The following questions should be answered as part of data validation:

 i. Does the data make sense?
 ii. Does the data adhere to domain- specific rules?
 iii. Does the data support or refute your working theory or provide new insights?
 iv. Can you identify trends in the data to assist with developing your next theory?
 v. If not, is that because of issues in data quality?

3.5.2 Data Transformation

Data transformation entails converting data between formats, such as converting 
numerical data to categorical data through binning or categorical data to numeri-
cal data via encoding. Moreover, data transformation involves scaling the data in a 
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suitable range through normalization. The following subsections describe common 
data transformation techniques.

3.5.2.1 Binning

Binning or discretization transforms numerical attributes into categorical equivalents. 
For instance, age values can be discretized into categories like 20–39, 40–59, and 
60–79. Binning can enhance machine learning model accuracy by mitigating noise or 
non- linearity, aiding in outlier identification, and smoothing data through techniques 
like equal bin frequency, means, median, and boundaries.

3.5.2.2 Encoding

Machine learning algorithms operate solely on numerical data and cannot comprehend 
textual, date, or other non- numeric values. Encoding translates these diverse values 
into numerical formats, enabling algorithms to interpret and leverage them for learning 
and predictive tasks. Consequently, converting categorical values into numerical ones 
via encoding becomes imperative. Common encoding techniques in machine learn-
ing include Label Encoding, where each category receives a unique numerical label, 
and One- Hot Encoding, which generates binary columns representing the presence or 
absence of each category in the dataset. For instance, when applying One- Hot Encoding 
to a binary attribute like gender, with male or female values, the resulting encoded val-
ues become zero (0) or one (1), respectively, indicating male or female. Notably, encod-
ing methods are important in the preprocessing stage before inputting data into machine 
learning algorithms. This ensures efficient interpretation of diverse information types 
within the dataset, thus deriving meaningful patterns.

3.5.2.3 Data normalization

Data normalization refers to changing the numerical values of attributes to a common 
scale without affecting the differences or losing information. Normalization provides 
equal weights or importance to each attribute so that no single attribute influences the 
performance of a model because of its large values. For example, a dataset can have sev-
eral attributes with values in the order of tens and others in the order of millions. In this 
case, normalization will scale down all attributes to a common scale (say 0 to 1). This 
process is also known as rescaling attribute values. This technique is particularly useful 
for algorithms that rely on distance measures, such as k- NN. The most widely used tech-
nique is min- max normalization, which performs a linear transformation of the original 
data to fit it in the range of 0 to 1. By so doing, it ensures that all attributes are handled 
equally regardless of their original values. It is computed by subtracting the minimum 
value from each feature and dividing the result by the range (maximum- minimum) as 
expressed in Equation (3.1).
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Tables 3.3 and 3.4 show examples of features before and after min- max normaliza-
tion, respectively.

3.5.2.4 Standardization

Standardization transforms numerical data to have zero mean and unit standard devia-
tion. Unlike normalization, which scales the data within a specific range, standardization 
focuses on centering the data around the mean and adjusting its distribution. The most 
commonly used standardization technique is z- score, which transforms features from 
differing means and standard deviations to a standard Gaussian distribution.  Z- score is 
the most suitable technique when there are outliers in the dataset. The z- score standard-
ization formula is expressed in Equation (3.2).
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Tables 3.5 and 3.6 show examples of features before and after z- score standardiza-
tion, respectively.

TABLE 3.3 Features before normalization

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE

0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32

TABLE 3.4 Features after normalization

INDEX PREGNANT GLUCOSE BP SKIN INSULIN BMI PEDIGREE AGE

0 0.353 0.744 0.590 0.354 0.000 0.501 0.234 0.483
1 0.059 0.427 0.541 0.293 0.000 0.396 0.117 0.167
2 0.471 0.920 0.525 0.000 0.000 0.347 0.254 0.183

TABLE 3.5 Features before z- score standardization

INDEX PREGNANCIES GLUCOSE
BLOOD 

PRESSURE
SKIN 

THICKNESS INSULIN BMI

DIABETES 
PEDIGREE 
FUNCTION AGE

0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32
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TABLE 3.6 Features after z- score standardization

INDEX PREGNAN CIES GLUCOSE
BLOOD 

PRESSURE
SKIN 

THICKNESS INSULIN BMI

DIABETES 
PEDIGREE 
FUNCTION AGE

0 0.639947 0.848324 0.149641 0.907270 −0.692891 0.204013 0.468492 1.425995
1 −0.844885 −1.123396 −0.160546 0.530902 −0.692891 −0.684422 −0.365061 −0.190672
2 1.233880 1.943724 −0.263941 −1.288212 −0.692891 −1.103255 0.604397 −0.105584
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3.5.3 Exploratory data analysis

Exploratory Data Analysis (EDA) utilizes statistical summaries and graphical represen-
tations to analyze data, aiming to uncover trends and patterns or validate assumptions. Its 
primary goal is to extract meaning from the data and glean insights before constructing 
a machine learning model. EDA goes beyond mere numerical analysis, it delves into 
understanding the narrative within the data, unveiling patterns, and fostering a profound 
comprehension of the dataset before it is used in machine learning algorithms.

EDA typically begins with a descriptive overview of the dataset, encompassing 
checks on its dimensions (number of columns and rows), comprehension of feature data 
types, and identification of missing values. Visualizations such as box plots, histograms, 
and scatter plots serve the purpose of investigating distributions, central tendencies, and 
potential outliers within numerical data. Furthermore, EDA involves the analysis of rela-
tionships between variables, utilizing correlation matrices or pair plots to discern asso-
ciations among features. Bar charts or frequency tables come into play for comprehending 
distributions across various categories in categorical data. The key methodologies of 
EDA are elaborated in the subsequent subsections.

3.5.3.1 Data summarization

Data summarization provides a summary or report of data in an informative and under-
standable manner. The summary contains some necessary statistical explanations about 
the data, such as the minimum and maximum value of the feature across all entries. For 
instance, in Table 3.7, each feature column has a summary that shows statistical expla-
nations of the data, such as count, mean, standard deviation, variance, percentiles, and 
interquartile range. The summary helps to show whether the values of the features are 
informative and comprehensible.

3.5.3.2 Data visualization

Data visualization is transforming data into a visual or graphical format (such as graphs, 
maps, and charts) so that it can be easily understood and communicate insights from 
data to a wide audience. Data visualization is essential as it identifies patterns, trends, 

TABLE 3.7 Data summarization example

PREGNANT GLUCOSE BP SKIN INSULIN

count 768 768 768 768 768
mean 3.845052 120.894531 69.105469 20.536458 79.799479
std 3.369578 31.972618 19.355807 20.536458 115.244002
min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 1.000000 99.000000 62.000000 0.000000 0.000000
50% 3.000000 117.000000 72.000000 23.000000 30.500000
75% 6.000000 140.250000 80.000000 32.000000 127.250000
max 17.000000 199.000000 122.000000 99.000000 846.000000
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outliers, and variable distributions. It also aids in identifying data quality issues, such 
as inconsistencies, errors, or missing values, before the data preprocessing stage. It is 
 particularly valuable for individuals who may lack technical aspects of the data. By 
visually representing the data, complex information becomes more accessible, facilitat-
ing a better understanding of the dataset and aiding in the effectiveness of data prepro-
cessing. Figure 3.3 depicts an example of data distribution of a single feature (i.e., age) 
plotted individually for distribution analysis.

3.5.4 Types of exploratory data analysis

There are three types of EDA: univariate, bivariate, and multivariate.

3.5.4.1 Univariate

In univariate analysis, one feature (numerical or categorical) is analyzed independently 
and in detail. The feature is analyzed to observe and learn its distribution and central 
measure of tendency values such as mean, mode, and median to gain insight into the 
data. The feature can also be visualized with the help of graphical tools for easier inter-
pretations. Graphs to visualize a single feature can be pie charts, bar plots, and histo-
grams, as shown in Figure 3.4.

FIGURE 3.3 Data distribution of a single feature.
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3.5.4.2 Bivariate

Bivariate analysis involves the analysis of two independent attributes simultaneously. 
The features involved can be numerical, categorical, or any combination of both. The 
analysis aims to discover the relationship between the two attributes if there is a differ-
ence or association between them. The features are visualized in the same plot graph to 
learn their relationship, as shown in Figure 3.5. The two features can be visually ana-
lyzed by using any of the following approaches:

 • Scatterplots and heatmaps (for numerical and numerical attributes).
 • Stacked column chart, Chi- square test, and Combination chart (for categorical 

and categorical attributes).
 • Line chart with error bars, z- test, t- test, and combination chart (for categorical 

and numerical attributes).

3.5.5 Multivariate

Multivariate analysis is crucial when analyzing more than two independent features 
simultaneously, as depicted in Figure 3.6. Multivariate analysis includes various 
 techniques, such as cluster analysis, factor analysis, multiple regression analysis, and 

FIGURE 3.4 Univariate analysis example.
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FIGURE 3.5 Bivariate analysis example.

FIGURE 3.6 Multivariate analysis example.
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principal component analysis (PCA), among others. Such methods facilitate a compre-
hensive exploration of complex relationships and patterns across the features, cater-
ing to different characteristics of the dataset. In contrast to univariate analysis, which 
focuses on one variable at a time, multivariate analysis considers the dependencies and 
interactions between multiple variables. Multivariate analysis enables a deeper under-
standing of the underlying structure and dynamics of the data.

3.5.6 Dimensionality reduction

High- dimensional datasets are often challenging to visualize and comprehend. 
Therefore, dimensionality reduction is usually applied to convert a dataset from a 
higher- dimensional space to a lower- dimensional one while preserving its original 
information. This technique is utilized when a dataset comprises many input features. 
Therefore, the goal is to eliminate the less important features and avoid complicating 
the modeling task. Dimensionality reduction is commonly applied in domains involving 
high- dimensional data, for example, signal processing, speech recognition, and bio-
informatics. The following subsections briefly highlight the common dimensionality 
reduction techniques.

3.5.6.1 Feature selection

Feature selection is a process of automatically selecting informative features that have 
the most significant impact on the performance of a machine learning model. Having 
irrelevant features in the dataset can reduce the performance of machine learning mod-
els, especially linear algorithms like simple linear and logistic regression. The common 
benefits of feature selection include the following:

 • Reduces Overfitting: Feature selection reduces model overfitting by identi-
fying and using only the most relevant features for model training, discard-
ing redundant or irrelevant ones. Ultimately improving the performance of 
the model.

 • Reduces Training Time: Fewer features mean that models train faster.

Notably, backward and forward feature elimination methods are the common techniques 
used to perform feature selection, as detailed in the following:

3.5.6.1.1 Backward feature elimination
This technique is employed to systematically remove features that exhibit minimal 
impact on predicting the output or dependent feature. It commences with a full set of 
features and progressively eliminates the least influential ones until a specified stopping 
point is reached. This iterative process rigorously refines the feature set, enhancing the 
model’s efficiency and interpretability. This method ensures the model focuses solely on 
the most impactful features, thereby refining predictive accuracy and streamlining the 
overall model complexity.
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3.5.6.1.2 Forward feature selection
This technique is the inverse of backward feature elimination. In this approach, features 
are not removed but progressively added based on their ability to enhance the model’s 
performance. This method systematically evaluates and selects features that can effec-
tively improve the model’s predictive accuracy, in other words, prioritizing those that 
yield the highest increase in performance. Generally, the model refines its understanding 
by iteratively including the most influential features, ensuring a more robust and opti-
mized configuration that bolsters its predictive capabilities.

3.5.6.2 Feature extraction

Feature extraction involves selecting or transforming the most relevant and informative 
features from raw data, streamlining it for more effective model training. This process 
identifies key patterns or attributes within the data that contribute significantly to the 
task at hand, enhancing decision- making and predictive accuracy in machine learning 
tasks. For instance, text analysis may entail converting words into numerical represen-
tations or pinpointing important phrases that convey a sentence’s meaning. In image 
processing, it could involve recognizing edges, textures, or shapes that distinguish one 
object from another. Eliminating redundant or less important information aids in focus-
ing on the most crucial aspects that improve the model’s performance. This streamlined 
data enhances the ability of the model to identify essential patterns, leading to more 
correct predictions and improved decision- making in machine learning applications.

The common technique for feature extraction is Principal Component Analysis 
(PCA). The PCA is a statistical technique that transforms correlated features into a set of 
linearly uncorrelated features through orthogonal transformation. The resultant features, 
known as principal components, capture the essential information in the data while reduc-
ing its dimensionality. PCA evaluates the variance of each feature, prioritizing those with 
high variance to retain valuable information and enhance interpretability. Real- world 
applications span diverse domains such as movie recommendation systems, image pro-
cessing, and optimizing power allocation in communication channels. PCA can inadver-
tently amplify existing biases in the data, potentially resulting in unfair outcomes if the 
data is skewed. Therefore, carefully selecting principal components is crucial to avoid 
excluding pertinent information and ensure fair and unbiased classifications.

3.5.7 Data balancing

Data imbalance is a common issue in machine learning, where one class or category 
within a dataset has significantly more representation than others. This can occur natu-
rally, such as in fraud detection, where fraudulent transactions are far less frequent than 
legitimate ones, or due to biases in data collection. Uncorrected imbalances can lead to 
models that are heavily biased toward the majority class, thereby underperforming when 
encountering samples of the minority classes. Data balancing is a crucial technique that 
involves adjusting the distribution of classes to create a more balanced dataset. This 
might be achieved through oversampling (replicating minority class samples), unders-
ampling (removing majority class samples), or more sophisticated approaches like the 
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Synthetic Minority Oversampling Technique (SMOTE). It is important to note that data 
balancing might not be necessary in all cases. Factors such as the severity of imbalance 
and project goals dictate its importance.

3.6 SUMMARY

This chapter provided the key steps in business problem identification, data collection, 
and preprocessing in machine learning. It began by underlining the importance of align-
ing machine learning initiatives with business goals, emphasizing the need to contextu-
alize and define problems within the broader organizational landscape. Furthermore, the 
chapter explored the nature of data, highlighting various data sources and their essen-
tial characteristics. Subsequently, the chapter focused on data curation, cleaning, and 
labeling, outlining essential procedures to ensure data accuracy and coherence. It also 
discussed techniques for managing missing values and eliminating duplicates, thereby 
enhancing the integrity of the dataset. Moreover, the chapter introduced methods for data 
transformation, normalization, and exploratory data analysis (EDA) to uncover insights 
into data patterns and relationships. Finally, it introduced methods for dimensionality 
reduction, feature selection, and the utilization of principal component analysis (PCA) 
to streamline data preprocessing for enhanced model performance.

Exercises

 1. Formulate a hypothetical business problem where machine learning can 
offer significant value. Describe the problem context, its alignment with 
business goals, and potential machine learning applications.

 2. Research and compile a list of diverse data sources applicable to weather 
forecasting. Discuss the types of data available, their relevance, and the 
challenges associated with integrating multiple sources for machine learn-
ing models.

 3. Devise a comprehensive data collection plan for a healthcare  analytics proj-
ect centered on patient outcomes. Outline data collection  methodologies, 
anticipated challenges, and potential strategies to overcome them.

 4. Find a dataset with missing and duplicate values from the data repository 
introduced in this chapter and implement data- cleaning techniques to rec-
tify these issues. Document the steps taken and justify the chosen methods 
for cleaning the dataset.

 5. Choose any dataset from the data repositories introduced in this chapter, 
apply data transformation techniques like normalization or scaling, and 
provide visual representations of the data through exploratory data analysis 
(EDA) methods. Interpret any observed trends or patterns.
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 6. When applying dimensionality reduction methods such as PCA to a data-
set with high dimensions, what are its impacts on data representation and 
computational efficiency?

 7. Choose any dataset with several features from the data repositories intro-
duced in this chapter, and use feature selection methods to find the most 
impactful features for model development. Justify your selection criteria.

 8. Analyze possible challenges one may encounter during data collection 
from highly specialized domains (e.g., healthcare and autonomous vehi-
cles) and propose strategies to address them.

 9. A financial institution uses historical loan data to train a machine  learning 
model for loan approvals. Describe potential biases that may manifest in 
this dataset. Outline practical strategies to identify and  mitigate such biases 
before and during model development.

10. Discuss the role of dimensionality reduction in preventing model 
overfitting.
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4Machine  
learning  
operations 

Upon completing this chapter, learners should be able to:

1. Choose a suitable algorithm depending on the problem at hand and the 
nature of the data.

2. Explain the key steps for developing a machine learning model.
3. Describe the concepts of overfitting and underfitting and the strategies to 

mitigate them.
4. Apply optimization techniques for machine learning algorithms to enhance 

model performance.
5. Explain the key steps for deploying and monitoring machine learning mod-

els to ensure continued performance.

4.1 MODEL DEVELOPMENT

This chapter focuses on the remaining steps of the machine learning process, as depicted 
in Figure 3.1. The first step in machine learning operations is model development, which 
entails training and evaluation. Before developing the model, it is necessary to perform 
data splitting and select a specific algorithm, as discussed in the following subsections.

4.1.1 Dataset splitting

Dataset splitting involves dividing the dataset into training and testing sets. The training 
set is used to train the model, whereas the testing set is used to assess the performance 
of the model based on data it has not seen before. The rationale for using a testing set 
is to avoid assessing a model’s performance based on seen (training) data, which could 
lead to unrealistic results. Dataset splitting can be done in two ways: Hold- Out and 
Cross- Validation.

http://dx.doi.org/10.1201/9781003486817-4
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4.1.1.1 Hold- out

Hold- out refers to reserving a subset of the dataset for testing while using the remainder 
for training machine learning models. Typically, a dataset is split in a specific  percentage, 
for example, 70 by 30 or 90 by 10, where the larger segment set is allocated for training 
and the smaller segment set for testing. Usually, the training set is recommended to be 
in the range of 70% to 90% of the whole dataset.

4.1.1.2 Cross- validation

Cross- validation involves splitting a dataset into k subsets of equal size called folds. The 
model undergoes iterative training on k−1 folds while being tested on the remaining fold, 
ensuring that each subset serves both training and testing purposes. This helps to assess 
the model’s ability to generalize to new, unseen data. Note that a k- fold cross- validation 
technique helps achieve an unbiased estimate of the model’s performance when only a 
limited amount of data is available. Suppose the dataset is split into five equal subsets, as 
shown in Figure 4.1, forming a fivefold cross- validation. This implies that the model will 

FIGURE 4.1 5-fold Cross- validation example.
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be trained in five iterations. In each iteration, the model undergoes training utilizing four 
of the five subsets, while the remaining subset is used as the testing subset.

4.1.2 Choosing an algorithm

Before building machine learning models, it is essential to determine appropriate 
 algorithms that align with the problem at hand and the available dataset. Determining 
the suitable machine- learning algorithm depends on various factors such as the problem 
at hand, algorithm capabilities, and the computational resources as described in the 
 following subsections.

4.1.2.1 Problem understanding

A thorough understanding of the problem to be solved is crucial. This includes identify-
ing whether the problem is classification, regression, clustering, or association rule min-
ing. After identifying the type of problem, multiple machine learning algorithms within 
that specific problem category, as presented in Chapter 1, are trained to build models. 
Consequently, the model that exhibits the highest performance is chosen as the most 
suitable solution for the identified problem.

4.1.2.2 Algorithm capabilities

Each algorithm possesses unique strengths and weaknesses. For instance, decision 
trees excel in interpretability, making them valuable for understanding the underlying 
logic of a model, whereas neural networks are effective at addressing complex patterns 
within data.

4.1.2.3 Computational resources

Some algorithms might demand substantial computational resources, particularly when 
handling large datasets. Consider the computational complexity of each algorithm and 
select the one that performs better with the available resources.

4.1.3 Model training

Model training enables the selected algorithms to extract knowledge from the provided 
dataset. It is a critical step where a model progressively enhances its capability to pre-
dict the given data samples. Typically, the dataset undergoes splitting into training and 
testing sets, as described earlier in this chapter. Subsequently, the machine learning 
model engages with the training set, iteratively refining its performance by recogniz-
ing patterns and making predictions. This involves adjusting the algorithm’s internal 
parameters, often represented as coefficients in a mathematical function, to capture the 
underlying patterns in the dataset better. The model refines its capacity to make accurate 
predictions for new, unseen data samples through this iterative process.
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4.1.4 Model evaluation

Model evaluation entails evaluating the performance and effectiveness of a trained 
model on unseen data from the testing set. It is a crucial step for determining the abil-
ity of the trained model to generalize to new data and whether it meets the desired 
objectives of the problem. The primary purpose of using a testing set is to reveal the 
performance of the model on real- world data to ensure its reliability and effectiveness in 
practical applications. Several evaluation metrics are used to measure the performance 
of the trained model, depending on the nature of the problem. Table 4.1 presents the 
commonly used evaluation metrics for classification, regression, clustering, and asso-
ciation rule problems.

The mathematical presentations of the evaluation metrics shown in Table 4.1 are 
highlighted in the following formulas. Some of these formulas are derived from a fun-
damental tool known as the confusion matrix, presented in Table 4.2. This matrix cap-
tures the model’s prediction results by comparing them with the actual labels in the 
dataset. At its core, the confusion matrix breaks down the classification results into four 
distinct categories:

 • True Positives (TP): This happens when the outcome is correctly predicted 
as positive when it is indeed positive. For example, a spam email is correctly 
predicted as spam.

TABLE 4.1 Performance metrics

PERFORMANCE METRICS PROBLEM TYPE

Accuracy Binary and multiclass classification.
Precision (Positive Predictive Value) Binary and multiclass classification.
Recall (Sensitivity, True Positive Rate) Binary and multiclass classification.
F1 Score Binary and multiclass classification.
Area under the Receiver Operating Characteristic 
curve (AUC- ROC)

Binary classification.

Log Loss (Cross- Entropy Loss) Binary and multiclass classification.
Mean Absolute Error (MAE) Regression
Mean Squared Error (MSE) Regression
Root Mean Squared Error (RMSE) Regression
R- squared (Coefficient of Determination) Regression
Silhouette Score Clustering
Support, Confidence, and Lift Association Rules Mining

TABLE 4.2 Confusion matrix

ACTUAL POSITIVE ACTUAL NEGATIVE

Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)
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 • True Negatives (TN): This happens when the outcome is correctly predicted 
as negative when it is indeed negative. For example, a non- spam email is cor-
rectly predicted as non- spam.

 • False Positives (FP): This happens when the outcome is wrongly predicted 
as positive when it is indeed negative. This is also known as the Type 1 error. 
For example, a non- spam email is wrongly predicted as spam.

 • False Negatives (FN): This happens when the outcome is wrongly predicted 
as negative when it is indeed positive. This is also known as the Type 2 error. 
For example, a spam email is incorrectly predicted as non- spam.

Accuracy: This performance metric quantifies the proportion of correctly classified 
instances to the total number of instances evaluated. Accuracy is calculated as shown in 
Equation (4.1).

 
Accuracy

TP TN
TP FP FN TN

� �
� � �  

(4.1)

High accuracy indicates the model’s ability to make correct predictions, whereas low 
accuracy suggests a higher rate of incorrect predictions.

Precision (i.e., Positive Predictive Value): This performance metric quantifies the 
proportion of correctly predicted positive instances among all instances predicted as 
positive, as given by Equation (4.2).

 
Precision

TP
TP FP

�
�  

(4.2)

A high precision value signifies that the model has a low rate of false positives, making 
it more reliable in its positive predictions.

Recall (i.e., Sensitivity or True Positive Rate): This performance metric quanti-
fies the proportion of true positive instances correctly predicted by the model among all 
actual positive instances as given by Equation (4.3).

 
Recall

TP
TP FN

�
�  

(4.3)

A high recall value signifies that the model effectively captures a large proportion of 
positive instances.

F1 Score (i.e., F- Measure): This performance metric is the harmonic mean of pre-
cision and recall, providing a balanced assessment of the performance of the model on 
both positive and negative instances, as given in Equation (4.4). It is particularly useful 
in a scenario where the dataset has a disproportionate distribution of classes (i.e., it is an 
imbalanced dataset), as it prevents the evaluation from being overly influenced by the 
majority class.

 
F Score

Precision Recall
Precision Recall

1 2� � �
�  

(4.4)
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A high F1 score indicates the model’s strong ability to balance precision and recall. In 
contrast, a low F1 score suggests that the model struggles to achieve a balance between 
precision and recall, possibly favoring one over the other.

Specificity: This performance metric measures the proportion of true negative 
instances correctly predicted by the model among all actual negative instances, as given 
by Equation (4.5).

 
Specificity

TN
TN FP

�
�  

(4.5)

A high specificity value demonstrates that the model can capture a large proportion of 
negative instances.

Area under the Receiver Operating Characteristic Curve (AUC- ROC): This 
 performance metric visually illustrates the balance between the true positive rate 
(i.e.,  Sensitivity) and the false positive rate (i.e., 1—Specificity) across different 
thresholds for the model. The ROC curve (depicted in Figure 4.2) is generated by plot-
ting the true positive rate (TPR) against the false positive rate (FPR) across various 
classification thresholds. The graph’s diagonal line (y = x) serves as a reference for 
random guessing.

The AUC- ROC value closest to the upper left corner signifies strong model perfor-
mance in distinguishing between positive and negative instances. When comparing two 
ROC curves, the higher and more toward the upper left corner represents the superior 
model. AUC- ROC values near 0.5 (at y = x) suggest performance equivalent to random 
chance, whereas values below 0.5 indicate a model is performing worse than random 
guessing and potentially inverting predictions.

Log Loss (i.e., Cross- Entropy Loss or Logistic Loss): The log loss metric evalu-
ates a model’s performance when it assigns probability scores to various classes. It 

FIGURE 4.2 ROC Curves.
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quantifies the disparity between the true label distribution and the predicted probabili-
ties assigned by the model. Log loss is computed as given in Equation 4.6.

 
log .log . logLoss � � � � � �� � �� �� �� �

�
�1

1 1
1
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y p y p

i

N

i i i i

 

(4.6)

where:

 • N is the number of instances in the dataset.
 • yi is the true label for instance ii (0 or 1).
 • pi is the predicted probability that instance i belongs to class 1.

Mean Absolute Error (MAE): This performance metric quantifies the average abso-
lute differences between predicted and actual values, providing a straightforward and 
interpretable measure of the model’s accuracy. It computes the average absolute devia-
tions of predictions from the true values, as shown in Equation (4.7).
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where:

 • N is the number of instances in the dataset.
 • predictedi is the predicted value for instance i.
 • actuali is the true value for instance i.

MAE values vary from 0 to ∞, with lower values signifying higher model performance. 
An MAE of zero indicates a perfect model, with predictions that exactly match the actual 
data. MAE is also widely employed in cases where anticipating the precise numeric value 
is critical, such as finance, where pricing must be predicted, or demand forecasting.

Mean Squared Error (MSE): This performance metric is used to quantify the 
average squared difference between predicted and actual values. It quantifies the overall 
accuracy of a regression model by averaging the squared errors across all instances in 
the dataset. The advantage of MSE over MAE lies in its ability to provide greater sensi-
tivity to larger errors and deviations from true values, facilitating better optimization 
and model tuning. MSE is calculated as shown in Equation (4.8).
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where:

 • N is the number of instances in the dataset.
 • predictedi is the predicted value for instance i.
 • actuali is the true value for instance i.
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Root Mean Squared Error (RMSE): This performance metric is widely used to quan-
tify the average magnitude of the errors between predicted and actual values. It is simi-
lar to MSE, but RMSE addresses one of the limitations of MSE by taking the square 
root of the average squared differences. This results in a quantity that is in the same 
units as the target variable, making it more interpretable. RMSE is calculated as shown 
in Equation (4.9).
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where:

 • N is the number of instances in the dataset.
 • predictedi is the predicted value for instance i.
 • actuali is the true value for instance i.

R- squared (i.e., Coefficient of Determination): This performance metric assesses 
the model’s goodness of fit by indicating the extent to which the independent vari-
ables elucidate the variability in the dependent variable. It is calculated as shown in 
Equation (4.10).
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(4.10)

where:

 • RSS is the residuals or regression sum of squares. It measures the difference 
between the predicted and mean values of the dependent variable.

 • TSS is the total sum of squares. It measures the difference between the actual 
and the mean values of the dependent variable.

 • ESS is the error sum of squares. It measures the difference between the pre-
dicted and actual values of the dependent variable.

The R- squared values vary between 0 and 1, representing the extent to which the model 
explains the variance between dependent and independent variables. A higher value 
signifies a stronger model fit and better predictive performance for the dependent vari-
able, while a lower value indicates limitations in the ability of the model to predict the 
dependent variable.

Silhouette Score: This performance metric measures the resemblance of a sample 
to its assigned cluster (cohesion) compared to other clusters (separation). Silhouette 
Score values range from −1 to +1, where a score close to +1 suggests well- clustered data 
points, a score close to 0 indicates an overlapping cluster or a cluster with ambiguous 
boundaries, and a score close to −1 suggests potential misassignment of data points to 
the wrong clusters. While the Silhouette Score is useful, it should be supplemented with 
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other validation methods, particularly in scenarios with irregularly shaped or differently 
sized clusters. Silhouette Score is calculated as shown in Equation 4.11.
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where:

 • ai represents the average distance from the ith data point to other data points 
within the same cluster.

 • bi represents the average distance from the ith data point to data points in a 
different cluster, minimized across all clusters.

Support: This performance metric measures how often an itemset appears in a transac-
tion. It is computed as the ratio of the number of transactions containing the itemset by 
the total number of transactions, as shown in Equation (4.12). The support value ranges 
from 0 to 1, where 0 indicates that the itemset does not appear in any transaction, and 
1 indicates that the itemset appears in every transaction. Intermediate values between 0 
and 1 represent the proportion of transactions in which the itemset appears. The higher 
the value of support the greater the prevalence and importance of the itemset in the 
transaction.
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where:

 • X represents itemsets.

Confidence: This performance metric measures the likelihood that the item will be 
present in a transaction given the presence of another related item in that transaction. 
Mathematically, confidence is defined as the ratio of the number of transactions con-
taining both items X and Y to the number of transactions containing item X as shown 
in Equation (4.13). The confidence value ranges between 0 to 1. A value approaching 1 
indicates a strong association, suggesting that the occurrence of Y is highly likely when 
X is observed. In contrast, a value close to 0 signifies a weaker connection, implying 
that the presence of X provides less certainty about the occurrence of Y in a transaction.
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where:

 • X → Y represents the association rule where a transaction containing item X 
also contains item Y.
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Lift: This metric quantifies the strength of association between two items beyond what 
would be expected by chance. It compares the likelihood of the items occurring together 
in transactions to the likelihood of the items occurring independently of each other. 
Mathematically, Lift is computed as shown in Equation 4.14.
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The range of Lift values theoretically ranges from 0 to positive infinity. However, in 
practice, the interpretation of Lift values can be categorized as follows. A Lift value 
exceeding 1 signifies a positive association between items. A Lift value precisely at 1 
indicates no association beyond what would be expected by chance. Conversely, a Lift 
value below 1 suggests a negative association.

4.1.5 Overfitting and underfitting

Usually, the desired goal is to get a model that is well generalized on the whole training 
set and not specific details of specific data points. Usually, when the model fails to gen-
eralize it overfits. Overfitting happens when the model achieves a high training accuracy 
yet performs poorly when encountering unseen data. Conversely, underfitting happens 
when the model performs poorly on the training and testing set. This implies that the 
model has failed to learn any pattern from the dataset. Poor data quality, improper fea-
ture selection, few training samples, an imbalanced dataset, and a bad selection of train-
ing parameters often cause model overfitting and underfitting. Model overfitting and 
underfitting can be handled by using techniques such as data balancing, proper feature 
selection, data augmentation, and cross- validation.

4.1.6 Model optimization

Optimization is adjusting training parameters (i.e., model coefficients) to minimize 
errors made when mapping the inputs to outputs by the machine learning model. 
Adjusting training parameters (i.e., tuning) is usually required to build a model that per-
forms well and yields accurate predictions for a particular problem. During optimiza-
tion, a model uses a parameterized mapping function (e.g., a weighted sum of inputs) to 
learn and generalize from training data to predict new data. The optimization algorithm 
usually minimizes the function’s error and generates the optimal parameters by select-
ing values that cause the trained model to provide the best performance. The algorithm 
compares the results in every iteration by changing the parameters in each step until it 
reaches an optimum set of values. The selection and adjustment of parameters directly 
and significantly impact how the model performs.

In implementing machine learning models, various techniques are pivotal for opti-
mizing algorithms. This section delves into four prevalent and traditional optimization 
methods to offer a concise understanding. The techniques explored include Exhaustive 
Search, Gradient Descent, Stochastic Gradient Descent, and Evolutionary Optimization 
Algorithms. Each method is detailed in the following subsections.
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4.1.6.1 Exhaustive search

Exhaustive or brute- force search involves finding the most optimal parameters by exam-
ining whether each value is a good match. An excellent example of an exhaustive search 
is when someone forgets the combination of the digits (code) for a suitcase lock and tries 
out all possible combinations of digits to unlock it. The same approach is applied in model 
optimization, but the number of possible options (i.e., parameters’ combinations) is typi-
cally very large. First, it generates a list of parameters and their corresponding values. 
Then, it trains and evaluates a model for each parameter combination, selecting the one 
with the best performance based on a predefined metric. Examples of machine- learning 
algorithms that can be optimized using exhaustive search are K- means  clustering, Fuzzy 
c- mean clustering, and kNN classification algorithms.

4.1.6.2 Gradient descent

Gradient refers to the slope or incline of a surface. Thus, gradient descent means a 
descending slope to reach the lowest point in a particular space. The idea of the gradient 
descent method is to update the model parameters iteratively to minimize the objec-
tive function, whose parameters are optimized during training. With every update, this 
method guides the model in finding the target and gradually converges to the optimal 
value of the objective function. More precisely, it first initializes model parameters ran-
domly with predefined values. Then, it computes the gradient of the loss function with 
respect to each parameter using training data and adjusts the  parameters accordingly to 
converge toward the optimal values that minimize the loss gradually. When perform-
ing parameter optimization, the gradient descent optimization technique utilizes all 
data samples in a given dataset in every iteration. Thus, performing optimization with 
a large dataset in each iteration becomes computationally very expensive. Examples of 
machine- learning algorithms that can be optimized using  gradient descent are logistic 
regression, linear regression, SVM, gradient boosting, and AdaBoosting.

4.1.6.3 Stochastic gradient descent

In contrast to gradient descent, which uses all data samples from the dataset in every 
iteration, Stochastic Gradient Descent (SGD) uses a few samples (or a batch) that are 
selected randomly in each iteration. A batch refers to the complete set of samples from 
a dataset utilized to compute the gradient in every iteration. Thus, in SGD, the learning 
algorithm normally finds out the gradient of the objective function for a batch in each 
iteration rather than the sum of the gradients of the objective function of all the samples. 
Since only a batch from the dataset is randomly selected for each iteration, the time 
taken by the algorithm to reach the optimal performance is usually significantly shorter 
compared to gradient descent methods. Some of the algorithms that are optimized by 
using SGD include logistic regression and SVM.

4.1.6.4 Evolutionary optimization algorithms

Evolutionary Optimization Algorithms (EOA) are population- based methods inspired 
by biological principles employed in solving machine- learning optimization problems. 
These algorithms draw inspiration from natural phenomena such as natural selection, 
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species migration, bird swarms, human culture, and ant colonies. EOA starts by initial-
izing a population of potential solutions, where each solution is represented by individu-
als possessing sets of parameters. They then evaluate the fitness of each individual based 
on an objective function, selecting individuals based on their fitness and generating 
new candidate solutions through recombination and mutation operations. Offsprings 
are introduced to the population, either replacing or supplementing existing individuals. 
The process continues for multiple iterations until termination criteria are met, allow-
ing individuals to evolve toward better solutions efficiently. Examples of EOA include 
Genetic Algorithms (GA), Ant Colony Optimization, and Particle Swarm Optimization. 
It is worth noting that while EOAs can optimize machine learning models effectively, 
they do not necessarily find the optimal solutions.

4.2 MODEL DEPLOYMENT

The deployment of the machine- learning model involves putting a trained and validated 
model into a working environment. The machine- learning models can be deployed across 
a wide range of environments, such as web and mobile platforms, and are often integrated 
with other systems through Application Programming Interfaces (API) to facilitate acces-
sibility for end users. The process of deploying the model requires several different key 
steps. Firstly, the model needs to be deployed into its working environment, where it has 
access to the hardware resources and data to work on. Secondly, the model is made acces-
sible to end users’ devices. Finally, the end users are trained to interact with the model via 
a simplified interface where they can insert their inputs and receive corresponding outputs.

4.3 MODEL MONITORING

The deployed model is continuously monitored to ensure that it performs predictions 
properly. Apart from performance monitoring, it is also important to ensure that the API 
and computation resources perform as required. Additionally, the model’s performance 
should be routinely assessed using tools that track metrics to automatically give alerts 
should there be any degradation in its performance. Common causes of performance 
degradation include:

 • Variance in Input Data: The data given to the model might not be cleaned in 
the same way as it was for the training and testing data which could adversely 
affect the performance of the model.

 • Changes in Data Integrity: Over time, changes in data (e.g., formats and 
attribute naming) being fed to the model can affect the model’s performance.

 • Data Drift: Changes in features like demographics and market shifts can lead 
to data drift. This makes the data used during training become irrelevant with 
respect to the current context thereby making the model’s results less precise.
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 • Concept Drift: End users’ perceptions of correct predictions may change 
over time, making the model’s predictions less relevant.

4.4 ETHICAL CONSIDERATIONS IN MACHINE 
LEARNING OPERATIONS (MLOps)

Ethical considerations within MLOps entail a spectrum of principles and practices 
focused on ensuring fairness, transparency, privacy, accountability, security, and diver-
sity in the development, deployment, and use of AI systems. These considerations are 
crucial for mitigating potential harms, preventing discrimination and bias, protecting 
individual rights and privacy, and promoting trust and accountability in AI technolo-
gies. Ethical frameworks and guidelines offer direction on navigating complex ethical 
challenges and ensuring the responsible and ethical development and deployment of AI 
systems. Table 4.3 summarizes common ethical considerations in MLOps.

TABLE 4.3 Common ethical considerations in MLOps.

ETHICAL CONSIDERATION DESCRIPTION

Fairness and Bias Ensure that algorithms avoid discriminating against 
individuals based on protected features such as religion, 
race, or gender.

Accountability and 
Responsibility

Holding developers and organizations accountable for 
the actions and outcomes of deployed models, including 
resolving any errors or biases that arise.

Diversity and Inclusion Ensure varied representation in model development to avoid 
bias perpetuation and to create inclusive solutions for all 
individuals.

Privacy and Security Implementing strong privacy and security controls to prevent 
unwanted access, alteration, or exploitation of deployed 
models and the data they handle.

Explainability and 
Interpretability

Creating interpretable and explainable algorithms is crucial 
to upholding accountability, nurturing trust, and uncovering 
potential biases. When users comprehend how an algorithm 
makes its decisions, it promotes transparency and trust.

Human- in- the- Loop 
Approaches

Implement a human- in- the- loop approach where human 
judgment is involved in critical decisions made by deployed 
models. Establish redress mechanisms for individuals who 
perceive algorithmic decisions have negatively impacted them.

Legal and Regulatory 
Compliance

Ensure that algorithms comply with pertinent legal and 
regulatory frameworks related to fairness and non- 
discrimination to prevent potential legal and ethical conflicts.

Continuous Evaluation 
and Improvement

Emphasize continuous evaluation of algorithms post- 
deployment. Regularly update models, reevaluate fairness 
metrics and incorporate improvements to address emerging 
challenges and issues.
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4.5 SUMMARY

This chapter provided a comprehensive guide on developing, deploying, and monitor-
ing machine learning models. It began by discussing the critical considerations in data-
set splitting techniques, emphasizing the importance of partitioning data into training 
and testing sets to ensure effective model evaluation. Additionally, it covered strategies 
for choosing the appropriate algorithm based on factors like the nature of the prob-
lem, dataset characteristics, and available computing resources. After that, the chapter 
discussed the model training and evaluation steps, explaining how to build the model 
and emphasizing the importance of assessing model performance on unseen data to 
gauge generalization capabilities accurately. Subsequently, the chapter presented sev-
eral evaluation metrics, including R- squared, Accuracy, Silhouette score, Support, etc., 
used to facilitate performance evaluation, ensuring consistency and reliability in real- 
world applications. Additionally, the chapter explored the concepts of overfitting and 
underfitting, along with their corresponding mitigation techniques. Furthermore, key 
algorithms such as Gradient descent and EOA were presented to provide a comprehen-
sive understanding of model optimization. Then, the chapter discussed model deploy-
ment and monitoring, underscoring the significance of deploying models in production 
environments and continuously monitoring their performance to address potential drift 
and maintain efficacy in dynamic settings. Lastly, the chapter concluded by present-
ing ethical issues in MLOps, which encompasses various principles and practices that 
promote fairness, transparency, privacy, accountability, security, and inclusion in the 
development, deployment, and use of AI systems.

Exercises

 1. While training a machine learning model, discuss the role of k- fold cross- 
validation in preventing overfitting.

 2. Explain key considerations when selecting a machine learning algorithm 
for different problems.

 3. Identify and explain scenarios where improper data splitting could result in 
a biased model.

 4. Describe the primary steps involved in model training and testing in 
machine learning. Highlight the significance of testing sets for model per-
formance evaluation.

 5. Define overfitting and underfitting in the context of machine learning mod-
els. Discuss strategies to mitigate these issues in model development.

 6. Examine the optimization techniques used in machine learning algorithms. 
Discuss how optimization impacts model performance and efficiency.

 7. Explain the importance of model evaluation in machine learning. Describe 
commonly used evaluation metrics and their relevance in assessing model 
performance.
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 8. Describe the process of machine learning model deployment and monitor-
ing. Highlight the key factors to consider when deploying a model into 
production and establishing monitoring systems.

 9. Critically identify and discuss ethical considerations in machine learning 
operations.

10. What are the potential benefits and challenges of adopting MLOps prac-
tices within an organization, and how can these challenges be overcome?
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5Machine  
learning  
software and  
hardware  
requirements

Upon completing this chapter, learners should be able to:

1. Describe commonly used software tools and libraries in machine 
 learning development, including TensorFlow, PyTorch, scikit- learn, and 
Apache Spark.

2. Evaluate different hardware options for machine learning tasks based on 
performance, cost, and scalability considerations.

3. Demonstrate proficiency in setting up and configuring machine  learning 
environments, including software installation, package management, and 
virtual environments.

4. Understand the importance of software version control and collaboration 
tools (e.g., Git and GitHub) in machine learning projects.

5. Explore cloud- based machine learning platforms and services for  scalable 
model training and deployment.

5.1 PROGRAMMING LANGUAGES

It is important to acknowledge that proficiency in computer programming is essential 
for developing machine learning models. Python, R, and MATLAB are widely rec-
ognized as prominent programming languages in this field. They offer comprehensive 
software tools, including frameworks, Integrated Development Environments (IDEs), 
and libraries designed to construct machine learning models. These languages boast 

http://dx.doi.org/10.1201/9781003486817-5


5 • Machine learning software and hardware requirements 111

large and active communities comprising developers, data scientists, researchers, and 
enthusiasts. These communities contribute to advancing libraries, providing assistance, 
and sharing knowledge and resources. They offer extensive documentation, tutorials, 
forums, and online courses that facilitate learning. Moreover, Python, R, and MATLAB 
are user- friendly, readable, and versatile, which makes them accessible to both begin-
ners and experienced developers. This fosters a supportive and collaborative environ-
ment within these communities. The following subsections provide in- depth discussions 
of the programming languages commonly used in machine learning.

5.1.1 Python programming language

Python is a versatile, object- oriented, open- source programming language widely used 
for crafting machine learning models. Its flexibility allows the implementation of vari-
ous machine learning models through a range of Python- based software tools. Unlike 
Windows, Linux and Mac operating systems come with a Python environment pre- 
installed by default. Presently, Python exists in two primary versions: Python 2.x and 
Python 3.x, where x represents a minor version within the primary versions. Thus, offer-
ing distinct functionalities and features allows users to choose between versions based 
on specific project requirements and compatibility needs. The latest Python version is 
3.x and can be installed through a Python setup file (available at:  https:// www. python. 
org/ downloads/). The goal of installing Python is to create an environment that supports 
Python code execution. Python can also be automatically installed when installing other 
software packages such as Anaconda (available at:  https:// www. anaconda. com/).

5.1.1.1 Python code editors and IDEs

Most Python tools come packaged in a single distribution platform called Anaconda. 
Anaconda is an open- source platform and environment manager with several open- source 
packages (i.e., libraries, IDEs, and editors), as shown in Figure 5.1. Additional libraries to 

FIGURE 5.1 Anaconda environment.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.anaconda.com/
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Anaconda can be installed using Anaconda’s package managers. Code editors and IDEs 
that support Python are needed to write the Python programs. A code editor is a text 
editor that simplifies and accelerates code writing and editing processes. On the other 
hand, an IDE is a software application used for creating, compiling, and debugging code. 
The common code editors and IDEs that support the Python programming language are 
 summarized in Table 5.1.

TABLE 5.1 Python code editors and IDEs

TOOL DESCRIPTION

Jupyter 
Notebook

Jupyter Notebook is a web- based open- source application offering 
an intuitive and interactive platform for data exploration, model 
development, visualization, documentation, and collaboration. Instead 
of composing and revising an entire program, Jupyter Notebook enables 
users to iterate and write Python code lines within cells, executing them 
individually. It facilitates easy modifications by allowing users to jump to 
cells, edit their code, and rerun the program seamlessly.

JupyterLab JupyterLab presents the evolution of the Jupyter Notebook, offering 
an upgraded and more versatile interface for data exploration and 
computational tasks. It retains the core functionalities of the Notebook 
while introducing an enhanced user interface that allows for improved 
data analysis, visualization, and workflow organization.

PyCharm PyCharm is an IDE that allows code completion and inspections, error 
highlighting and fixes, debugging, version control, and code refactoring. 
The major drawback of this software is that it is resource- intensive.

Spyder Spyder is used for Python program development and has autocompletion, 
debugging, and variable exploration features. It has an area for writing 
Python code, a console, and a place for displaying variables, plots, and files.

Visual Studio 
Code (VS 
Code)

VS Code is a versatile code editor supporting numerous programming 
languages like Python, C++, PHP, and more. Its wide array of features 
and extensions makes it an excellent option for ML model development, 
testing, and deployment. These features encompass IntelliSense for 
intelligent code completion, integrated debugging tools, Jupyter 
Notebooks support, and an extensive library of extensions, streamlining 
Python development in machine learning endeavors.

Sublime Text Sublime Text is a lightweight, cross- platform code editor known for 
its simplicity, speed, and user- friendly interface. It supports multiple 
programming and markup languages and offers many robust editing 
features, such as syntax highlighting, code folding, auto- completion, 
multiple selections, and macros. It is important to note that Sublime Text 
is not integrated into Anaconda.

PyDev PyDev is a prominent open- source Python IDE built in the Eclipse platform. 
It has various capabilities, such as code completion, syntax highlighting, 
debugging tools, and integration with major Python libraries and 
frameworks.

Wing Wing is a powerful proprietary IDE with open- source community editions. 
It includes advanced capabilities such as code analysis, debugging tools, 
integrated profiling, and support for various frameworks and libraries, 
including Python.
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5.1.1.2 Python libraries

Python offers a vast selection of libraries explicitly designed for constructing 
machine learning models. These libraries cover various functionalities, including 
classification, regression, clustering, collaborative filtering, dimensionality reduc-
tion, and optimization algorithms. Depending on the Python environment, these 
libraries may come pre- installed or can be readily accessed and installed using 
 commands like conda and pip (i.e., Conda (conda install <library name>) or Pip 
(pip install <package name>)). A  notable benefit is that most of these libraries are 
open- source, providing users with the flexibility to utilize and customize them at no 
cost. This significantly contributes to the collaborative and innovative environment 
for machine learning research and  development. Table 5.2 outlines the most preva-
lent Python libraries.

5.1.2 R programming language

R is a no- cost, open- source programming language and environment devised for sta-
tistical computing and model creation. It boasts numerous capabilities, including 
robust techniques for data cleaning, transformation, integration, and preprocessing. 
Additionally, it offers various statistical tools, such as the chi- square test, t- test, z- test, 
and ANOVA, alongside machine learning tools like regression, classification, and clus-
tering modeling. The R environment can be installed on Windows, Linux, and Mac 
operating systems via a standalone software package called R Studio. For example, 
in Windows operating systems, R Studio (Figure 5.2) can be installed using the setup 
file downloadable from  https:// cloud. r-   project. org/ or through the Anaconda distribution 
platform.

5.1.2.1 R programming code editors and IDEs

Several popular IDEs and code editors support the R programming language, offer-
ing diverse options for users. Notable ones include Jupyter Notebook, Spyder, and VS 
Code, highlighted in Table 5.1. Each platform provides a robust environment for R pro-
gramming, catering to different preferences and requirements, thereby accommodating 
a wide range of users and their varying workflow needs. Other IDEs and code editors 
that support the R programming language are presented in Table 5.3.

TOOL DESCRIPTION

Geany Geany is a code editor that is lightweight and efficient and can be used 
for Python programming. It has syntax highlighting, code folding, and 
project management features.

Brackets Brackets is an open- source code editor intended mostly for web 
development but also suited for Python programming, including live 
preview, preprocessor support, and task- specific extensions.

TABLE 5.1 (Continued ) Python code editors and IDEs

https://cloud.r-project.org/
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TABLE 5.2 Common Python libraries

LIBRARY DESCRIPTION

NumPy NumPy is a library employed for manipulating large, multidimensional 
arrays and matrices coupled with a suite of high- level mathematical 
functions tailored to operate on these arrays and matrices.

Pandas Pandas are a powerful tool for loading, analyzing, and refining datasets, 
offering robust data manipulation and preparation functionalities. 
Leveraging the foundation provided by the NumPy library, Pandas extends 
its capabilities, providing a high- level interface and specialized tools for 
efficient data handling, transformation, and exploration.

Matplotlib Matplotlib is a plotting library utilized for generating static, animated, 
and interactive 2D and 3D visualizations. It is commonly employed in 
conjunction with the NumPy library.

Seaborn Seaborn is a Python data visualization library constructed atop Matplotlib. 
Offering a high- level interface enables the creation of visually engaging and 
informative statistical graphs, including scatter plots, line plots, histograms, 
box plots, and heatmaps. Seamlessly compatible with data frames and 
arrays, Seaborn aids in visually exploring and comprehending data.

scikit- learn scikit- learn is employed for modeling tasks such as classification, 
regression, clustering, and dimensionality reduction. It incorporates a 
diverse range of machine learning algorithms, including SVM, Random 
Forest, and kNN, among others, for model development.

TensorFlow TensorFlow is an end- to- end framework with a flexible ecosystem of tools, 
submodules, APIs, and community resources, aiding in developing and 
deploying classical machine learning and neural network–based models.

PyTorch PyTorch is a library commonly used for developing and training neural 
network–based models. It is primarily developed to accelerate the path 
from prototyping to deployment.

Keras Keras offers a high- level interface for creating and training deep learning 
models, enabling users to effortlessly design intricate neural networks with 
minimal coding, utilizing the capabilities of TensorFlow.

fastai fastai is a deep learning library constructed atop PyTorch, aiming to 
streamline the training of deep learning models through user- friendly 
APIs and pre- trained models.

Plotly Plotly is a library designed for crafting interactive and dynamic 
visualizations, providing a high- level interface to produce interactive 
plots, charts, and dashboards for tasks such as data exploration, model 
evaluation, and result presentation.

Plotnine Plotnine is a Python library that applies graphics grammar to generate 
statistical graphs. Inspired by the ggplot2 package in R, it adopts a similar 
syntax and philosophy for visualization construction. With Plotnine, users 
can generate a diverse array of plots, including scatter plots, line plots, 
bar plots, histograms, and more, by mapping data attributes to aesthetic 
properties like color, shape, and size.

SciPy SciPy library provides advanced scientific computing capabilities like 
optimization, integration, and linear algebra. These capabilities are 
essential for tasks such as signal processing and numerical analysis.

OpenCV OpenCV is a computer vision library focused on image processing, 
feature detection, and object recognition.
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5.1.2.2 R programming libraries

Several R libraries play crucial roles in building machine learning models, as detailed 
in Table 5.4. These libraries include different functionalities to address distinct aspects 
of machine learning tasks.

5.1.3 MATLAB

MATLAB® is a high- level programming language employed to express data or fea-
tures in matrix and array form. It furnishes interactive tools, facilitating various machine 
learning tasks, including feature extraction, feature selection, model training, and 
hyperparameter tuning. As depicted in Figure 5.3, MATLAB offers diverse capabilities 
for managing machine learning tasks. It is worth noting that MATLAB is proprietary 

FIGURE 5.2 R studio environment.

LIBRARY DESCRIPTION

Natural 
Language 
Toolkit (NLTK)

NLTK is a Python library dedicated to natural language processing tasks, 
providing extensive tools and resources for text processing, linguistic 
analysis, and machine learning.

Gensim Gensim is a library focused on topic modeling and natural language 
processing (NLP), making it especially adept for text analysis tasks like 
document clustering and topic discovery.

Explain Like 
I’m 5 (ELI5)

ELI5 is a library for explaining machine learning models in simple terms, 
assisting in interpreting model predictions and gaining insights into 
their thinking.

TABLE 5.2 (Continued ) Common Python libraries
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TABLE 5.3 IDEs and code editors for R

TOOL DESCRIPTION

RStudio RStudio furnishes extensive tools and functionalities to aid R 
development, data analysis, and statistical modeling.

IntelliJ IDEA with R 
Plugin

IntelliJ IDEA is a Java IDE that supports R programming through its 
R plugin. It provides features such as code completion, debugging 
tools, and version control integration, offering a robust and 
reliable environment for R programming.

Eclipse with StatET StatET plugin extends Eclipse’s capabilities to support R 
programming. The plugin enhances Eclipse by incorporating syntax 
highlighting, code completion, and an integrated R console.

R Tools for Visual 
Studio

R Tools for Visual Studio is an extension of the Microsoft Visual 
Studio IDE enabling R programming. It provides various features, 
including IntelliSense, debugging, charting, remote execution, and 
SQL integration.

Atom Atom provides a set of features, including syntax highlighting, 
code completion, debugging tools, an interactive console, 
data visualization capabilities, and project management 
functionalities.

TABLE 5.4 R programming libraries

LIBRARY DESCRIPTION

DataExplorer DataExplorer is a library used for EDA, feature engineering, 
and data reporting.

Ggplot2 Ggplot2 is a data visualization library renowned for producing 
visually appealing and informative plots, simplifying the 
exploration and communication of complex data patterns.

Kernel- Based Machine 
Learning Lab (kernLab)

kernLab is utilized for machine learning modeling tasks, 
encompassing classification, regression, clustering, and 
dimensionality reduction. It includes a diverse range of 
machine learning algorithms like SVM, Random Forest, 
and kNN.

MICE Package Multivariate Imputation by Chained Equations (MICE) Package 
is used for imputing missing values in a dataset.

Rpart Recursive partitioning (rpart) is a library used for classification, 
regression, and tree- based models.

Caret caret offers a consolidated interface for training and assessing 
an extensive array of classification and regression models. 
The library streamlines the tasks of model selection, 
hyperparameter tuning, and performance evaluation.
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software compatible with Windows, Linux, and Mac operating systems. Further infor-
mation on MATLAB installation can be found at  https:// www. mathworks. com/ help/ 
install/ install-   products. html.

5.1.3.1 MATLAB code editors and IDEs

MATLAB does not have a wide variety of code editors and IDEs, unlike Python 
and R. MATLAB Desktop is the primary and most widely used IDE for MATLAB 
 programming. It has an interactive editor, command window, debugger, and various 
toolboxes for numerical computation, visualization, and programming. MATLAB 
Online and MATLAB Mobile are the web-  and mobile- based versions of MATLAB 
Desktop, respectively, offering the same functionalities as the desktop version.

5.1.3.2 MATLAB libraries

Several MATLAB programming libraries are used for building machine learning  models 
as summarized in Table 5.5.

5.1.4 Other programming languages

Python, R, and MATLAB are popular choices for machine learning, as described in 
the previous sections. However, other languages like Java and C++ can also be used as 
discussed in the following.

5.1.4.1 Java programming

Java is one of the predominant programming languages in the Information and 
Communication Technology (ICT) domain, renowned for its platform agnosticism, 
readability, and vast ecosystem. Machine learning in Java remains significant for various 

FIGURE 5.3 MATLAB working environment.

https://www.mathworks.com/help/install/install-products.html
https://www.mathworks.com/help/install/install-products.html
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reasons, including its wealth of libraries and frameworks, seamless integration with 
existing Java codebases, robust performance and scalability, applicability in enterprise 
environments, emphasis on security, versatility across diverse use cases, compatibility 
across multiple platforms, and strong community support.

5.1.5 Java programming code editors and IDEs

Java programming code editors and IDEs for machine learning development provide 
advanced syntax highlighting, code completion, and debugging capabilities specifically 
designed for Java machine learning libraries. These tools streamline the machine learn-
ing workflow by incorporating version control systems like Git and granting convenient 
access to libraries and frameworks for tasks such as data preprocessing, model training, 
and evaluation. Moreover, they boast a diverse ecosystem of plugins and extensions for 
additional customization, enhancing productivity in machine learning projects. These 
tools are outlined in Table 5.6.

5.1.6 Java ML libraries

Java has specialized machine learning libraries offering various functions, from data 
preparation to model evaluation. By leveraging these libraries, developers can better 
utilize Java’s robust ecosystem to build and deploy machine learning solutions. Some of 
the libraries are described in Table 5.7.

TABLE 5.5 MATLAB programming libraries

LIBRARY DESCRIPTION

MATLAB Image Processing 
Toolbox

The MATLAB Image Processing Toolbox offers 
comprehensive functions and tools for processing, 
analyzing, and visualizing images.

MATLAB Signal Processing 
Toolbox

The MATLAB Signal Processing Toolbox comprises functions 
tailored for signal analysis, filtering, feature extraction 
operations, and spectrum analysis.

MATLAB Statistics and 
Machine Learning 
Toolbox

The MATLAB Statistics and Machine Learning Toolbox 
provide functions and algorithms for statistical analysis, 
machine learning, and predictive modeling. It provides 
functionalities for classification, regression, clustering, and 
dimensionality reduction.

MATLAB Optimization 
Toolbox

MATLAB Optimization Toolbox contains a set of algorithms 
and tools for handling optimization issues such as linear 
programming, nonlinear optimization, and restricted 
optimization.

MATLAB Curve Fitting 
Toolbox

MATLAB Curve Fitting Toolbox includes tools for fitting 
curves, interpolating data, and smoothing data. It provides 
a variety of curve- fitting methods as well as tools for 
analyzing and displaying fitted curves.
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TABLE 5.6 IDEs and code editor for Java

TOOL DESCRIPTION

IntelliJ IDEA IntelliJ IDEA is an IDE tailored for Java development, facilitating the 
creation of robust code across various platforms such as Windows, 
macOS, and Linux. It offers two editions: a no- cost community version 
and a paid ultimate edition.

Eclipse Eclipse provides both a desktop version and a cloud version known 
as Eclipse Che. This IDE empowers developers to manage multiple 
workspaces concurrently, enhancing project organization and boosting 
productivity and efficiency.

NetBeans NetBeans is a cross- platform, open- source IDE designed for Java 
development that is free of charge. Packed with features like syntax 
highlighting, code completion, and integrated debugging tools, the IDE 
facilitates rapid coding.

BlueJ BlueJ, a free IDE commonly utilized for educational aims, is particularly 
beginner- friendly. This well- organized platform offers an interactive 
environment complemented by graphical representations and a 
distinctive coloring scheme.

JDeveloper JDeveloper, a free IDE, is particularly suited for streamlining Java application 
development across the System Development Life Cycles (SDLC). This tool 
stands out for its features, including advanced code editing functionalities, 
seamless integration with version control systems like Git, automated 
deployment tools, and strong support for Java technologies like Enterprise 
JavaBeans (EJB) and Java Persistence API (JPA).

JCreator JCreator is a versatile IDE suitable for developers of all levels (i.e., deals 
for beginners and experienced professionals), with a lightweight design 
and robust features. It offers an intuitive interface, advanced code 
editing, integrated debugging, project management tools, version control 
integration, GUI design, profiling, code analysis, and support for plugins.

Codenvy Codenvy is a cloud- based software that allows developers to work and 
collaborate without installing local software on their machines. This 
makes it ideal for remote software development teams that need a 
unified platform that their global workforce can use to work individually 
and collaborate.

DrJava DrJava is a lightweight, user- friendly IDE primarily designed to offer 
simplicity and ease of use for developers. It is particularly preferred in 
educational settings due to its beginner- friendly interface and features 
tailored for learning Java programming.

JGrasp JGrasp, a straightforward Java IDE, is particularly commendable for 
educational purposes. It boasts syntax highlighting, code navigation, 
and UML visualization capabilities, all packaged within a user- friendly 
interface that facilitates the automatic creation of software visualizations. 
Notably, it specializes in generating Control Structure Diagrams (CSDs), 
technical diagrams crucial for illustrating control flow in applications. This 
functionality aids debugging and workbench testing phases by enhancing 
developers’ code readability.
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TABLE 5.7 Java ML libraries

LIBRARY DESCRIPTION

TensorFlow Serving TensorFlow Serving, an open- source library, is tailored for 
deploying machine learning models focusing on achieving 
low latency performance. It can operate locally or in cloud 
environments, accommodating a wide array of models, ranging 
from deep convolutional networks to linear models. This tool 
empowers developers to efficiently deploy machine learning 
models at scale, eliminating the need for manual infrastructure 
management.

Apache Spark MLlib Apache Spark MLlib, a specialized library is crafted to construct 
machine learning pipelines within Apache Spark clusters. 
Equipped with high- level APIs, it empowers developers to swiftly 
establish resilient machine learning pipelines by leveraging 
distributed data training algorithms and other distributed 
processing tasks.

DL4J Deeplearning4j (DL4J), a robust deep learning library, is 
constructed atop the Java Virtual Machine (JVM), aiding 
developers in crafting production- ready applications. With 
provisions for GPU acceleration, distributed computing, and 
diverse neural network architectures like convolutional nets, 
recurrent neural nets, and LSTM networks, DL4J ensures 
comprehensive support. Additionally, it offers a GUI- based 
user interface for hyperparameter tuning, simplifying the 
optimization of model performance.

Apache OpenNLP The Apache OpenNLP library specializes in natural language 
processing (NLP) tasks within the Java environment. With 
functionalities like tokenization, part- of- speech tagging, 
sentence segmentation, and named entity recognition, 
OpenNLP offers a modular architecture and pre- trained 
models, streamlining the integration of NLP features into Java 
applications.

Apache Mahout Apache Mahout is a Java library tailored to deliver scalable 
machine learning algorithms, covering clustering, classification, 
and recommendation tasks. Engineered to handle extensive 
datasets efficiently, Mahout excels in performing machine 
learning operations on big data.

Smile The Statistical Machine Intelligence and Learning Engine 
(Smile) is a Java library featuring various algorithms for 
classification, regression, clustering, association rule mining, 
and dimensionality reduction. With a focus on simplicity and 
performance, Smile offers an intuitive API suitable for novice and 
experienced developers.

TensorFlow Java API TensorFlow, a renowned deep learning library, offers a 
Java API that enables developers to integrate TensorFlow 
capabilities seamlessly into Java applications. This facilitates 
the development and training of neural networks within Java 
environments.
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5.1.6.1 C++ programming

C++ is a versatile and powerful programming language widely utilized in machine 
learning to develop core algorithms and implement computationally intensive tasks. 
With its high speed, efficiency, reliability, and low- level control, C++ caters to diverse 
domains beyond machine learning, including game development, embedded systems, 
and software engineering. This ability is attributed to its support for procedural and 
object- oriented programming paradigms and low- level memory manipulation features.

5.1.7 C++ programming code editors and IDEs

C++ code editors and IDEs are tools that offer a variety of features tailored for C++ 
development. These tools support code editing, debugging capability, and integration 
with C++ libraries essential for ML- based project management. The C++ code editors 
and IDEs are described in Table 5.8.

5.1.8 C++ programming libraries

C++ offers numerous libraries tailored for machine learning and AI applications, 
equipped with pre- implemented algorithms, functions, and tools to construct intelligent 
systems. Table 5.9 outlines some of the prominent libraries for machine learning in C++.

LIBRARY DESCRIPTION

DL4J Deep Learning for Java (DL4J) is a distributed deep learning 
library designed for Java, Scala, and Clojure. It harmonizes with 
Hadoop and Spark, accommodating diverse neural network 
architectures.

Encog Encog emerges as a sophisticated machine learning framework 
tailored for Java, encompassing neural networks, genetic algorithms, 
support vector machines, and various other ML techniques.

JSAT Java Statistical Analysis Tool (JSAT) is a Java- based library housing 
ML algorithm, prioritizing user- friendliness and mirroring the 
design of the Weka library. JSAT offers an extensive array 
of algorithms for classification, regression, clustering, and 
recommendation, suitable for researchers, students, and 
enthusiasts keen on experimenting with ML algorithms in Java.

MALLET MALLET, which stands for Machine Learning for Language 
Toolkit, is a Java- based toolkit designed for natural language 
processing (NLP), encompassing tasks such as document 
classification, clustering, topic modeling, and information 
extraction. Renowned for its flexibility, user- friendly interface, 
and comprehensive documentation, MALLET is accessible to 
novices and seasoned NLP practitioners.

TABLE 5.7 (Continued ) Java ML libraries
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TABLE 5.8 C++ programming code editors and IDEs

TOOL DESCRIPTION

Code::Blocks Code::Blocks is a free, cross- platform IDE tailored for C/C++ 
development, offering a range of features like compiling, debugging, 
profiling, and code analysis. Renowned for its performance and user- 
friendly interface, it supports full breakpoints and integrates seamlessly 
with community and team- developed plugins.

CodeLite CodeLite is also an open- source IDE that comes with the features of a class 
browser, static code analysis, project management, code refactoring, 
profiling, debugging, completion, and compiling. The IDE offers a rapid 
application development (RAD) tool that helps one build widget- based 
applications. Windows, Linux, Mac, and FreeBSD support it.

CLion CLion is a cross- platform IDE built for C++ development, providing 
features such as code analysis, CMake support for streamlined project 
management and build automation, and intelligent code assistance for 
project modeling. Notably, it offers local and remote (via SSH) support, 
enabling developers to code locally and compile on remote servers.

TABLE 5.9 C++ programming libraries

LIBRARY DESCRIPTION

Dlib Dlib, an open- source, cross- platform toolkit, is primarily employed for 
machine learning and computer vision applications. Renowned for its high 
performance and efficiency, it provides many tools and algorithms for facial 
recognition, object detection, image processing, and machine learning 
model training, making it ideal for real- time applications.

mlpack mlpack is a versatile machine learning library designed to provide state- of- 
the- art algorithms for clustering, regression, and dimensionality reduction, 
along with data preprocessing and visualization tools. Utilizing the 
Armadillo linear algebra library, mlpack emphasizes scalability, speed, and 
user- friendliness, making machine learning model development accessible 
to novice users through a simple and consistent API.

SHARK SHARK is a collection of open- source C++ machine learning libraries that 
offer linear and nonlinear optimization, kernel- based learning algorithms, 
neural networks, and various machine learning methods. It empowers 
machine learning experts to easily tackle a broad spectrum of tasks, making 
it suitable for real- world applications and research endeavors. SHARK’s 
versatility extends to supervised and unsupervised learning, evolutionary 
algorithms, and other machine learning techniques, providing a robust 
toolkit for diverse machine learning challenges.

Caffe Caffe, developed by the Berkeley Vision and Learning Center (BVLC), is 
a high- performance deep learning framework designed for the efficient 
training and deployment of neural networks, particularly in computer vision. 
Its modular architecture facilitates experimentation, and its CPU and GPU 
acceleration support allows it to handle large- scale machine learning tasks 
efficiently. Caffe is rich in pre- trained models and visualization tools, making 
it popular among deep learning researchers and practitioners.
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5.1.9  Criteria for choosing programming language 
for machine learning

When choosing a programming language for machine learning projects, key factors 
include library and framework support, robust and extensive community support, 
ease of learning and use, flexibility, scalability and efficiency, integration with other 
tools and software, and industry adoption. Languages like Python are favored for their 

LIBRARY DESCRIPTION

CNTK The Microsoft Cognitive Toolkit (CNTK) is an open- source platform for 
distributed deep learning, known for its high accuracy in training deep 
learning models. It features a flexible and powerful API for C++.

Armadillo Armadillo is a robust C++ linear algebra library with MATLAB- like syntax 
and functionality, simplifying matrix, linear algebra, and numerical tasks. 
Its intuitive interface enhances development productivity, while seamless 
integration with other C++ libraries makes it versatile for scientific 
computing, machine learning, and data analysis. Known for its speed, ease 
of use, and compatibility, Armadillo is favored in academic research and 
industrial applications requiring fast and reliable numerical computations.

DyNet DyNet is a C++ library with Python bindings optimized for dynamic 
computation graphs and automatic differentiation. It excels in neural 
network operations and training, particularly in natural language processing 
tasks where it is frequently applied.

Shogun Shogun offers various machine learning algorithms and tools for 
classification, regression, clustering, and dimensionality reduction tasks. 
With bindings for Python, Java, and MATLAB, users can access its 
functionalities from various programming environments despite its core 
implementation being in C++.

FANN Fast Artificial Neural Network (FANN) is an open- source neural network 
library written in C language (it also supports C++). The library implements 
multilayer artificial neural networks supporting fully and sparsely connected 
networks. It is easy to use, versatile, well- documented, and fast. Critical 
features of FANN include backpropagation learning, evolving topology 
learning, cross- platform, and support for floating and fixed point numbers.

FAISS FAISS offers efficient algorithms for similarity search and clustering of dense 
vectors. With Python bindings, it integrates well with Python- based machine 
learning workflows. Its core functions are in C++, ensuring high efficiency 
for tasks like large- scale nearest- neighbor search. FAISS supports CPU and 
GPU acceleration, making it versatile for applications like image and text 
retrieval, recommendation systems, and NLP.

OpenNN OpenNN supports machine learning and advanced analytics across 
various domains like energy, marketing, health, and digital economy. 
With algorithms for classification, regression, and prediction, OpenNN 
offers robust AI solutions. Its multiprocessor programming ensures high 
performance for the swift execution of complex tasks.

TABLE 5.9 (Continued ) C++ programming libraries
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simplicity and extensive ecosystem of machine learning libraries, while languages like 
C++ and Java excel in performance- intensive tasks. Python’s interoperability and light-
weight deployment options make it popular for integrating machine learning models 
into  production systems. Ultimately, the choice depends on project requirements and 
development team preferences, with careful consideration of these factors ensuring the 
most suitable language is selected for machine learning projects. These criteria are dis-
cussed in the subsequent sections.

5.1.9.1 Library and framework support

Libraries are compilations of pre- written code modules that developers can utilize to 
save time and avoid reinventing the wheel. In AI and machine learning, where spe-
cific functionalities can significantly speed up the development process, libraries play 
a crucial role by offering ready- to- use algorithms and data structures. A programming 
language equipped with a diverse and robust set of libraries is often favored for AI and 
machine learning development. On the other hand, a framework is a pre- established, 
reusable toolkit comprising tools, libraries, and conventions. It serves as an abstrac-
tion layer, streamlining the development and maintenance of software applications by 
providing common functionalities, design patterns, and components. Robust library and 
framework support in a programming language can simplify and accelerate the execu-
tion of machine learning projects.

5.1.9.2 Robust and extensive community support

The presence of robust and extensive community support is crucial for navigating the 
challenges encountered while developing machine learning applications. Additionally, 
a large, active, and knowledgeable community associated with a particular program-
ming language plays a pivotal role in selecting the language for machine learning 
projects. Such a community actively engages in discussions, forums, and online plat-
forms, readily sharing expertise and knowledge. Moreover, it facilitates in- person 
connections through meetups and events, fostering experience exchanges among the 
members. A vibrant community benefits developers of all levels, enabling continuous 
learning and exposure to best practices. In the context of machine learning projects, 
programming language community support ensures resilience and sustainability by 
offering the members reliable assistance and shared knowledge. The active participa-
tion and extensive support from the community ultimately contribute to the success of 
machine learning endeavors.

5.1.9.3 Ease of learning and use

The ease of learning and use depends on factors such as user experience, familiariza-
tion with the programming language, or its direct impact on solving the problem. A 
programming language with high ease of learning has clear and concise documentation, 
a simple and consistent syntax, and features that make common tasks straightforward. 
Additionally, the availability of learning resources, community support, and a support-
ive development environment contribute to the overall ease of use. A programming 
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language designed for ease of learning and use can accelerate the development process 
and reduce the likelihood of errors, making it more accessible and appealing to both 
beginners and experienced developers.

5.1.9.4 Flexibility, scalability, and efficiency

Choosing the right programming language for machine learning projects involves 
assessing flexibility, scalability, and efficiency to meet diverse needs and challenges 
throughout the development life cycle. A flexible language allows developers to write 
adaptable code that addresses various requirements by supporting multiple programming 
paradigms, offering diverse libraries and frameworks, and enabling concise expression 
of ideas. Scalability is crucial for accommodating growth in users, data, and features, 
requiring vertical and horizontal scaling capabilities. Support for parallel processing, 
efficient memory management, and distributed computing enhances a language’s scal-
ability. Additionally, efficiency is essential for executing tasks quickly and utilizing 
system resources effectively. Considerations such as runtime performance, memory 
management, and optimization tools are crucial for resource- intensive machine learning 
applications. Choosing a programming language that balances  flexibility, scalability, 
and efficiency ensures robustness and adaptability in machine learning development.

5.1.9.5 Integration with other tools and software

Effective integration with other tools and software is crucial in selecting a pro-
gramming language for machine learning projects. Seamless integration streamlines 
workflows, leveraging existing tools and infrastructure efficiently. Key consider-
ations include robust APIs and libraries, compatibility with existing tools and 
frameworks, support for standard data exchange formats, efficient interprocess 
communication mechanisms, database integration, deployment, and cloud services. 
By considering these factors, developers can choose a programming language that 
facilitates seamless integration, enhances productivity, and maximizes efficiency in 
machine learning projects.

5.1.9.6 Industry adoption

Industry adoption is a pivotal factor influencing the choice of programming languages 
for ML projects. The widespread adoption of a language across various sectors signifies 
its relevance and suitability for real- world applications. One of the primary advantages 
of selecting a language with high industry adoption is the market demand it gener-
ates. Such languages are often in high demand, increasing job opportunities and career 
prospects for proficient developers. Moreover, industry adoption ensures the availabil-
ity of a skilled talent pool. Companies prefer languages with a large community of 
proficient developers, making recruiting and onboarding talent with relevant expertise 
easier. Additionally, languages with extensive industry adoption typically enjoy stable 
ecosystems with robust support from developers, communities, and organizations. This 
stability ensures continuous development, updates, and maintenance support, reducing 
the risk of project disruptions.
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5.2 NO- CODE TOOLS

No- code tools come with pre- packed implementations for common machine learning 
algorithms for classification, clustering, regression, dimensionality reduction, etc. They 
are used to quickly build machine learning models without requiring prior programming 
knowledge and skills. However, using programming languages to develop machine learning 
models is a better option than no- code tools because the former provides control over the 
created model. The common no- code tools are WEKA, Orange, and Teachable Machine. 
Table 5.10 summarizes common no- code tools for building machine learning models.

5.3 EXPERIMENT TRACKING TOOLS

Experiment tracking within machine learning encompasses the comprehensive manage-
ment of all experiment components, from hyperparameters and performance metrics to 
predictions, ensuring the creation of an efficient and well- documented model. Table 5.11 
presents a compilation of the commonly utilized tools designed explicitly for experi-
ment tracking in machine learning. These tools offer diverse functionalities that aid in 
organizing, monitoring, and evaluating various experiment elements, contributing sig-
nificantly to the streamlined development and optimization of machine learning models.

5.4 PRE- TRAINED MODELS REPOSITORIES

A pre- trained model is a solution developed for a specific problem, which can be 
directly applied or fine- tuned to address similar tasks. Leveraging pre- trained models 
can reduce computing costs, reduce carbon footprint, and save time on training models 

TABLE 5.10 Common no- code tools

TOOL DESCRIPTION

WEKA WEKA, short for Waikato Environment for Knowledge Analysis, is a free 
and open- source tool for machine learning. It offers a range of algorithms 
for tasks like data preprocessing, classification, regression, clustering, 
association rules, and visualization. Further information on installing WEKA 
can be found at  https:// waikato. github. io/ weka-   wiki/ downloading_weka/.

Orange Orange is a free open- source toolkit for data visualization and machine 
learning featuring comprehensive libraries. It is conveniently included in the 
Anaconda distribution.

Teachable 
Machine

Teachable Machine is a free web- based machine learning no- code tool for 
easily prototyping models.

https://waikato.github.io/weka-wiki/downloading_weka/
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TABLE 5.11 Experiment tracking tools

TOOL NAME DESCRIPTION

Dashboard by weight 
and biases

Weight and Biases Dashboard allows for the real- time 
monitoring of training data. It seamlessly integrates 
with popular machine learning frameworks like PyTorch, 
TensorFlow, and Keras.

Tensorboard Tensorboard enables the visualization of statistics of a neural 
network, such as the training parameters (e.g., loss, accuracy, 
and weights), images, and even the graph to debug and 
optimize the model.

Neptune.ai Neptune.ai is a centralized metadata repository for machine 
learning operations workflow, enabling tracking, visualization, 
and comparison of thousands of machine learning models in 
one place. It fosters seamless collaboration within the machine 
learning community.

MLflow Machine Learning Flow (MLflow) is an open- source platform for 
managing the end- to- end machine learning life cycle. It has 
components for recording and querying experiments, packaging 
code into reproducible runs, managing and deploying machine 
learning models, supporting integration with popular machine 
learning frameworks and libraries, and storing and sharing 
machine learning models.

Comet ML Comet Machine Learning (Comet ML) is a machine learning 
experimentation and collaboration platform. It can track, 
compare, and analyze experiments, log hyperparameters, 
metrics, and experiment results, and facilitate collaboration 
among team members. Comet ML also supports integration 
with popular machine learning frameworks and libraries.

Metaflow Metaflow is a machine learning infrastructure tool developed 
by Netflix for building, deploying, and managing real- life 
data science projects by providing a high- level abstraction. 
It supports versioning, monitoring, and scaling machine 
learning pipelines. It enables users to define machine learning 
workflows as a series of steps and execute them locally or in 
the cloud.

ClearML Clear Machine Learning (ClearML), previously called Trains, 
is an open- source platform designed to oversee machine 
learning experiments and models. It offers features for 
logging hyperparameters, metrics, and artifacts and tracking, 
visualizing, and optimizing machine learning workflows. 
Additionally, ClearML supports model deployment and 
monitoring, and seamless integration with popular machine 
learning frameworks and libraries.
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from scratch. These machine learning models are readily available from established 
repositories, some of which are detailed in Table 5.12.

5.5 DATASETS AND MODEL TRACKING TOOLS

Datasets and model tracking tools are crucial in monitoring alterations made to datasets 
and gauging their influence on the performance of machine learning models. These 
tools are integral for tracking changes within the data and training and refining machine 
learning models. Table 5.13 provides a compilation of common datasets and model- 
tracking tools. Each tool within this compilation is pivotal in cataloging, managing, and 
analyzing datasets and monitoring the evolution of machine learning models, thereby 
aiding researchers and practitioners in effectively managing the intricate process of data 
modification and model refinement within the machine learning workflow.

TABLE 5.12 Pre- trained models’ repositories

REPOSITORY NAME DESCRIPTION

TensorFlow Hub TensorFlow Hub contains pre- trained models that are available 
for deployment and fine- tuning. It facilitates the reuse of pre- 
trained models with a minimum amount of code added. This 
repository can be accessed at  https:// www. tensorflow. org/ hub.

Pytorch Hub PyTorch Hub provides a platform for publishing pre- trained 
models to a GitHub repository, including model definitions and 
pre- trained weights. This repository can be accessed at  
 https:// pytorch. org/ hub/.

Hugging Face 
Transformers

The Hugging Face Transformers platform offers APIs that simplify 
downloading and retraining state- of- the- art pre- trained models. 
This repository can be accessed at  https:// huggingface. co/ docs/ 
transformers/ index.

OpenAI OpenAI provides powerful machine learning models created by 
OpenAI that are trained on massive quantities of data to reach 
outstanding language interpretation and generation skills. 
The pre- trained models’ documentation can be accessed at  
 https:// platform. openai. com/ docs/ models.

Paperswithcode Paperswithcode is a repository of machine learning research 
papers with links to the corresponding code and pre- trained 
models. It is helpful for researching cutting- edge models and 
locating suitable resources for specific requirements. It can be 
accessed at  https:// paperswithcode. com/.

OpenAI Model Zoo OpenAI Model Zoo is a repository that contains a collection of 
high- performing pre- trained OpenAI models, including the 
GPT- 3 family of big language models. It is well- known for its 
cutting- edge models. It can be accessed at  https:// platform. 
openai. com/ docs/ models.

https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://platform.openai.com/docs/models
https://paperswithcode.com/
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
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5.6 AUTOML HYPERPARAMETER 
OPTIMIZATION TOOLS

Automated Machine Learning (AutoML) tools simplify the process of optimizing machine 
learning models by automatically adjusting their hyperparameters. Table 5.14 presents a 
compilation of the most commonly used tools for this purpose, providing a comprehen-
sive overview of the techniques employed in AutoML hyperparameter optimization.

5.7 MACHINE LEARNING LIFE CYCLE TOOLS

Machine learning life cycle tools track every model development, deployment, and per-
formance monitoring stage. They are used from the initial conception of the algorithm 
to the optimization, which is required to keep the model accurate and effective. The 
common machine learning life cycle tools are summarized in Table 5.15.

5.8 USER INTERFACE DEVELOPMENT TOOLS

The user interface is crucial in interactive machine learning as users actively train 
the algorithm iteratively. Table 5.16 compiles commonly used tools for developing 
 interactive and effective interfaces.

TABLE 5.13 Datasets and model tracking tools

TOOL DESCRIPTION

Artifacts by Weights 
and Biases

Artifacts by Weights and Biases are used to version the datasets, 
track different machine learning pipelines, and reproduce 
previous datasets.

Data Version Control 
(DVC)

DVC, an open- source version control system, is tailored to monitor 
and manage models and datasets within the machine learning 
workflow. It offers a structured framework for tracking changes 
in models and datasets, bolstering reproducibility and fostering 
collaboration among teams engaged in machine learning projects.

CML Continuous Machine Learning (CML) is a GitHub Actions feature 
that allows one to automate machine learning activities, such 
as tracking datasets and model versions.

DataRobot MLOps DataRobot MLOps platform offers the functionality for 
managing and tracking datasets, apart from the end- to- end 
machine learning life cycle.
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TABLE 5.14 AutoML hyperparameter optimization tools

TOOL DESCRIPTION

Optuna Optuna is a freely available open- source framework developed 
explicitly for automatic hyperparameter optimization. Its user- 
friendly define- by- run API sets it apart, making the process 
more intuitive and adaptable to varying optimization needs.

Tune Tune is a versatile Python library designed for experiment 
execution and automatic hyperparameter tuning, suitable for 
small-  and large- scale machine learning projects. It facilitates 
efficient experimentation and parameter tuning across various 
task complexities.

HyperOpt HyperOpt is a Python library for hyperparameter tuning that 
automatically chooses the best parameters for a given model. 
It is capable of optimizing large- scale models with hundreds of 
hyperparameters.

TPOT TPOT, which stands for Tree- based Pipeline Optimization Tool, 
is a Python- based automated machine learning tool. It utilizes 
genetic programming to optimize machine learning pipelines 
automatically.

Google Cloud AutoML Google Cloud AutoML is a tool developed by Google that 
automatically tunes hyperparameters in complex machine 
learning models.

AWS Sage Maker AWS Sage Maker provides automatic optimization service to 
machine learning algorithms built using huge datasets in a 
distributed environment.

Microsoft (MS) Azure 
AutoML

MS Azure AutoML is a Microsoft- developed open- source toolkit 
for AutoML. It automates hyperparameter tuning, feature 
engineering, and model compression tasks.

Scikit- Optimize Scikit- Optimize is an easy- to- use Python built- in library 
integrated with scikit- learn and provides basic hyperparameter 
optimization (HPO) algorithms such as grid search and random 
search.

Auto- PyTorch Auto- PyTorch is a PyTorch models automation library focused on 
hyperparameter optimization (HPO), neural architecture search 
(NAS), and model pruning.

Auto- Keras Auto- Keras is a specialized library integrated with Keras that 
focuses on automating neural architecture search (NAS) and 
hyperparameter optimization (HPO) specifically for Keras 
models.

IBM Watson AutoAI IBM Watson AutoAI is a component of IBM Watson Studio 
that automates the training and optimization of ML models, 
including hyperparameter tuning.
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5.9 EXPLAINABLE AI TOOLS

Explainable AI (XAI) tools provide detailed insights into the functioning of machine 
learning models through descriptive explanations. Table 5.17 is a convenient reference, 
showcasing these tools for easy understanding and practical application.

TABLE 5.15 Machine learning life cycle tools

TOOL DESCRIPTION

Kubeflow Kubeflow is a free and open- source machine learning 
platform that facilitates the development, orchestration, 
optimization, deployment, and execution of scalable and 
portable models. It provides a framework for organizing 
projects, harnessing the power of cloud computing, and 
empowering developers to construct optimal models.

Seldom Seldom is an open- source machine learning deployment 
platform that streamlines the machine learning workflow 
with features such as audit trails, advanced experiments, 
continuous integration, scaling, and model explanations, 
enabling faster and more effective problem- solving.

Mlflow Mlflow is an open- source platform to manage the 
machine learning life cycle, including implementation, 
experimentation, packaging, deployment, and performance 
monitoring.

Google Cloud AI Platform Google Cloud AI Platform provides a range of features for 
managing the machine learning life cycle. This includes 
a dashboard, data labeling, workflow orchestration, and 
model management.

TABLE 5.16 User interface development tools

TOOL DESCRIPTION

Streamlit Streamlit supports the development of web applications for machine learning 
problems. It is an open- source library’s API written entirely in Python. 
Therefore, it simplifies web application development without utilizing other 
web technology languages.

Django Django is a free and open- source framework for constructing web apps  
(i.e., user interfaces) based on Python programming. It is suitable for building 
secure, maintainable, and multi- page applications.

Flask Flask is a Python- based microframework that offers basic features for 
developing web applications. It is suitable for single- page applications only.
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5.10 VERSION CONTROL SYSTEMS

Version control systems (VCS) are software tools that track and manage file changes, 
enabling developers to record modifications in the source code. VCS maintains a reposi-
tory of all changes, allowing developers to revert to earlier versions if needed. This 
facilitates error fixing and comparison of file versions. Moreover, VCS enables col-
laborative work by allowing multiple developers to edit files independently and share 
changes when ready. Table 5.18 provides examples of common VCS tools.

5.11 MACHINE LEARNING 
HARDWARE REQUIREMENTS

This chapter introduces the hardware requirements for machine learning tasks. It also 
introduces using cloud computing services as an alternative method if local computer 
resources do not meet the requirements of the machine learning process.

TABLE 5.17 Common XAI tools

TOOL DESCRIPTIONS

SHAP SHAP, which stands for SHapley Additive exPlanations, is a 
framework that offers explainability for various algorithms, 
including linear regression, logistic regression, and tree- based 
models. It provides insights into the contributions of individual 
features toward the predictions made by these models.

LIME LIME, which stands for Local Interpretable Model- agnostic 
Explanations, is a methodology that provides explainability for 
a wide range of algorithms, including random forest, k- Nearest 
Neighbor (kNN), and support vector machines (SVMs). It enables 
the interpretation of individual predictions made by these 
models, allowing for a better understanding of their decision- 
making process.

AI Explainability 360 AI Explainability 360 is an open- source toolkit developed by IBM. 
It offers a comprehensive collection of techniques and models 
specifically designed for interpreting and explaining machine 
learning models. This toolkit provides a valuable resource for 
enhancing the transparency and interpretability of machine 
learning models.

Anchors Anchors is a tool with simple, high- precision rules that locally 
characterize a model’s behavior. These rules are interpretable and 
aid in comprehending the model’s decisions.
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5.12 OPERATING SYSTEMS REQUIREMENTS

The most commonly used operating systems in contemporary machine learning tasks 
include GNU/Linux- based OSs, Microsoft Windows, and Apple MacOS. However, 
modern machine learning algorithms primarily execute their computational tasks 
within the core software governing the entire computer system. Consequently, there 
is no inherent advantage in using a particular OS over others for the machine learning 
process. Moreover, considering additional factors such as the ease of supporting emerg-
ing technologies and the extensive support of free and open- source libraries, the Linux 
operating system holds more advantages than Microsoft Windows and MacOS.

5.13 PROCESSOR AND 
MEMORY REQUIREMENTS

Machine learning tasks often necessitate substantial computational resources due to the 
large datasets and complex algorithms involved. Selecting the most suitable machine for 
such tasks can be challenging, as several factors must be considered, including process-
ing speed and graphics processing capabilities. The following subsections outline the 
minimum requirements for the Central Processing Unit (CPU), Graphics Processing Unit 
(GPU), Random Access Memory (RAM), and Storage to ensure optimal  performance in 
machine learning workloads.

TABLE 5.18 Version control systems

VERSION CONTROL 
SYSTEM DESCRIPTION

Git Git is an open- source distributed VCS designed to support projects 
of different sizes and support multiple branches of change that 
can be independent of each other.

Concurrent Versions 
System (CVS)

CVS is a free, open- source version control system that efficiently 
manages concurrent software development branches. It enables 
collaboration, tracks changes, and maintains version history.

Subversion (SVN) SVN, an open- source version control system, offers a wide 
selection of Integrated Development Environment (IDE) plugins. 
These plugins enhance usability and integration with various 
IDEs, making version control seamless within the development 
environment. They facilitate smoother collaboration and code 
management among team members.

Mercurial Mercurial is a distributed VCS with features similar to those of Git.
Data Version Control 
(DVC)

DVC, primarily designed for version management of machine 
learning projects, specializes in handling machine learning 
datasets and models. It efficiently handles large files, such as 
datasets, while effectively tracking changes.
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5.13.1 CPU

Multi- core processing, which involves distributing computationally intensive tasks 
across multiple CPU cores, is commonly employed in machine learning. Utilizing mul-
tiple cores can significantly reduce execution time, scaling performance gains with the 
number of available cores. A minimum recommendation for simple machine learning 
tasks would be a dual- core 2.2 GHz processor.

5.13.2 GPU

A GPU, or Graphics Processing Unit, is a specialized microprocessing chip or circuit 
for graphics- related tasks. GPUs are widely used in machine learning due to their ability 
to efficiently perform parallel computations, surpassing the capabilities of CPUs in this 
regard. They feature a large number of cores and high memory bandwidth, making them 
well- suited for parallel processing of large datasets. Several types of GPUs are available 
in the market, including Tesla NVIDIA, NVIDIA GeForce RTX, NVIDIA Quadro RTX, 
and AMD Radeon RX.

5.13.3 TPU

The Tensor Processing Unit (TPU) is a custom- designed application- specific integrated 
circuit (ASIC) developed by Google. It is specifically designed to accelerate machine 
learning tasks, particularly for training and inference of large AI models. TPUs are opti-
mized for various applications, including chatbots, media content generation, recommen-
dation engines, and more. They offer scalability and cost- efficiency across various AI 
workloads and are compatible with popular frameworks such as TensorFlow, PyTorch, 
and Just Another X (JAX). TPUs significantly enhance the performance of neural net-
work- –based machine learning tasks, making them a valuable asset in the AI ecosystem.

5.13.4 RAM

Random Access Memory (RAM) temporarily stores data that the computer’s processor 
needs to access quickly. When it comes to machine learning tasks, the amount of RAM 
in a computer is a crucial consideration. A large RAM capacity is vital when dealing 
with large datasets and performing complex computations. It enables efficient data pro-
cessing and manipulation during the machine learning workflow, leading to improved 
performance and faster execution times.

5.13.5 Storage

A computer with significant storage capacity is necessary for machine learning tasks 
involving large datasets, such as images and videos. It is recommended to have both 
Solid State Drive (SSD) and Hard Disk Drive (HDD) with reasonable sizes. However, if 
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speed, price, and efficiency are key factors, a hybrid drive that combines SSD and HDD 
is the optimal choice. A hybrid drive offers the advantages of both technologies by pro-
viding the speed of an SSD and the storage capacity of an HDD. This provides a good 
balance between performance and storage for machine learning tasks.

5.14 CLOUD COMPUTING SERVICES FOR 
MACHINE LEARNING

Cloud computing is an excellent alternative for running machine learning models, 
especially when access to expensive and high- maintenance specialized computers 
or servers is limited. Cloud computing services provide a cost- effective solution for 
executing complex and memory- intensive machine learning models. These services 
involve delivering IT resources, such as servers, storage, databases, networking, 
software, analytics, and intelligence, over the internet. They typically operate on a 
pay- as- you- go pricing model. Table 5.19 describes some of the most common cloud 
computing services available.

TABLE 5.19 Common cloud computing services for ML

CLOUD COMPUTING 
SERVICES DESCRIPTION

Google colab Google Colab is a Jupyter Notebook environment developed 
by Google that grants users free access to GPUs and TPUs, 
empowering them to build machine learning models at no cost.

Amazon Web Services 
(AWS)

AWS, provided by Amazon, is a comprehensive and continuously 
evolving cloud computing platform that offers Machine 
Learning as a Service (MLaaS). It enables users to build, run, 
and conveniently deploy machine learning models.

Microsoft (MS) Azure Microsoft Azure is a proprietary cloud computing service 
encompassing many functionalities for training, deploying, 
accelerating, and managing the entire life cycle of machine 
learning projects. It provides a comprehensive platform for 
various aspects of machine learning, allowing users to leverage 
its capabilities seamlessly.

IBM Watson IBM Watson is a cloud computing service that offers a full range 
of tools and services for building, training, and deploying 
machine learning models.

BigML BigML is a cloud- based machine learning platform prioritizing 
ease of use and automation. It offers a range of tools and 
features that simplify the development and deployment of 
machine learning models. With its user- friendly interface and 
automated processes, BigML aims to make machine learning 
accessible to a wide range of users.
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5.15 SUMMARY

This chapter explores the interplay between essential hardware and software tools nec-
essary for developing machine learning models. On the software side, it delves into the 
integration of programming languages with comprehensive ecosystems, user- friendly 
frameworks, and libraries. No- code tools are highlighted for democratizing machine 
learning access. The chapter also covers experiment tracking tools and pre- trained model 
repositories that enhance management and reproducibility. Additionally, it discusses 
tools for managing machine learning life cycles, AutoML, user interfaces, explainable 
AI, and version control. It underscores the critical hardware components required, such 
as multi- core processors, high- performance CPUs, GPUs, TPUs for efficient training, 
and ample storage and RAM for managing complex datasets. The chapter also highlights 
the scalability and flexibility offered by leading cloud computing services. Collectively, 
these components form a robust ecosystem that ensures collaboration, transparency, and 
traceability throughout the machine learning development process.

Exercises

 1. Consider having a CPU, RAM, GPU, and TPU to do machine  learning tasks:
 a. What are their minimum requirements?
 b. How does each accelerate the training process?
 c. What are the key considerations when selecting them, considering both 

hardware and budget constraints?
 2. What factors should be considered when selecting a cloud provider 

for machine learning tasks? Compare the performance of cloud- based 
machine learning services with on- premise solutions. What are the trade- 
offs between the two approaches in terms of scalability and cost?

 3. What is the most used programming language for machine learning tasks, 
and why? Compare and contrast the use of programming languages in 
machine learning. What are the strengths and weaknesses of each lan-
guage, and in what contexts are they commonly employed?

 4. Explain the role of version control systems (e.g., Git) in managing machine 
learning codebases. How can version control contribute to collaboration 
and reproducibility in machine learning projects?

 5. Briefly describe three popular machine learning code editors, IDEs, frame-
works, and libraries, highlighting their key features and use cases.

 6. How do no- code editors contribute to broadening access to machine 
 learning, and what advantages and limitations do they have compared to 
traditional coding?

 7. How do pre- trained model repositories accelerate machine  learning devel-
opment, and what challenges may arise when utilizing pre- trained models?
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 8. How do datasets and model tracking tools contribute to effective 
 management throughout the machine learning development life cycle, and 
what metadata is crucial for tracking datasets and models?

 9. Explain the concept of hyperparameter optimization in machine learn-
ing and how AutoML tools automate the process of finding optimal 
hyperparameters.

10. Explain the concept of explainable AI and how explainable AI tools con-
tribute to interpreting and understanding the decisions made by machine 
learning models.
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6Responsible  
AI and  
explainable AI

Upon completing this chapter, learners should be able to:

1. Explain the concepts of responsible AI and explainable AI.
2. Understand the importance of transparency, fairness, and accountability in AI.
3. Analyze and identify biases and assess fairness considerations within 

AI systems.
4. Examine the cultural implications of AI technologies and their impact on 

various sectors.
5. Familiarize with existing and emerging regulations and standards related to 

AI ethics.

6.1 RESPONSIBLE AI

AI offers a broad spectrum of opportunities across a variety of application domains. For 
instance, AI technologies support medical experts in disease diagnosis and prognosis, 
treatment planning, and disease prevention. Furthermore, AI has significantly improved 
agriculture, environmental conservation, manufacturing, and transportation sectors. 
However, the impressive advancements in AI technology may have negative outcomes, 
which, if not addressed, could lead to potentially disruptive consequences, threats, and 
risks to humanity. Consequently, the development and deployment of AI systems require 
special attention to ensure that they are in the interest of the social good. As a result, 
it becomes imperative to adopt responsible approaches to AI solutions from the early 
stages of their inception. Responsible AI refers to the ethical and accountable develop-
ment, deployment, and use of AI systems. It entails various principles and practices 
aimed at ensuring AI technologies are designed and used in ways that benefit individu-
als and society while minimizing potential risks and negative impacts. It is, therefore, 
important to consider the principles of responsible AI to ensure that the development 

http://dx.doi.org/10.1201/9781003486817-6
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and application of AI solutions are inclusive, transparent, equitable, unbiased, and ethi-
cal. The fundamental principles of responsible AI are summarized in Table 6.1.

6.2 EXPLAINABLE AI

Explainable AI (XAI) refers to artificial intelligence systems that provide clear, understand-
able, and interpretable explanations of their decisions and actions to human users. XAI 
aims to make the workings of AI models transparent, allowing users to trust and understand 
the reasoning behind AI outputs. XAI is essential in building trust and confidence in the 
deployed models. It is also one of the key requirements for implementing responsible AI.

If AI lacks explainability in certain domains, like entertainment services, the poten-
tial harm may not be as catastrophic compared to other areas. Explainable AI is crucial 
in domains with high- risk applications such as face recognition (in law enforcement), 
autonomous vehicles, or disease diagnosis and prognosis. It is important to note that 
using explainable machine learning models provides more debugging efficiency and 
contributes to achieving responsible AI. The difference between traditional AI and 
explainable AI is summarized in Figure 6.1.

6.3 PRIVACY CONCERNS IN 
MACHINE LEARNING

Privacy in machine learning has become increasingly critical as machine learning 
algorithms are widely deployed across various applications. Privacy concerns revolve 
around the collection, storage, and utilization of sensitive information in ways that can 

TABLE 6.1 Responsible AI principles

PRINCIPLE DESCRIPTION

Fairness AI systems should treat everyone fairly regardless of geographical 
differences, ethnicities, and gender. Ensuring fairness and avoiding 
biases require well- representative datasets for AI model training.

Inclusiveness AI systems should empower everyone and engage people to provide 
better results.

Reliability & Safety AI systems should perform reliably and safely such that they can 
cause no harm.

Transparency AI systems should be understandable so that their decision- making 
is explainable and provide visibility of their elements.

Privacy & Security AI systems should be secure and respect the privacy of individuals’ 
data and supporting systems.

Accountability AI systems might operate autonomously, but humans should be 
accountable for supervising such systems.
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impact the privacy of individuals. The privacy issues in machine learning can  manifest 
in different ways, presenting challenges that extend across various stages of the machine 
learning life cycle. For example, the unintentional inclusion of personally identifiable 
information (PII) during data collection can threaten individuals’ privacy. This risk is 
heightened in the event of data breaches, where unauthorized access to training datas-
ets might lead to the disclosure of sensitive information, thereby endangering privacy 
on a larger scale. To protect user privacy, techniques such as deanonymization and 
data aggregation can be employed to separate user data. Additionally, eliminating user 
 identifiers and unique data and ensuring secure data storage are critical measures for 
preventing potential privacy risks.

It is worth noting that machine learning models are vulnerable to implication 
breaches. Implication breaches in machine learning happen when information used by or 
derived from machine learning models is misused to reveal sensitive details about indi-
viduals. These breaches take advantage of data patterns learned by the models, potentially 
exposing personal information even if it was anonymized. For example, an attacker could 
exploit subtle correlations within the model to re- identify individuals or infer private attri-
butes not explicitly present in the data. These breaches are particularly alarming in sectors 
such as healthcare, finance, or any area involving sensitive personal information. 
Consequences may include identity theft, discrimination, and privacy violations. To miti-
gate the risks of implication breaches in machine learning, it is essential to implement 
strong data protection and privacy measures, such as differential privacy, secure data stor-
age, and thorough model evaluation. Moreover, the opacity of certain machine- learning 
models complicates the explanation of their decision- making  processes. This lack of 
explainability poses significant privacy concerns, especially in contexts where transpar-
ency is crucial, such as medicine or legal or financial decision- making. Deep neural net-
works, for example, are vulnerable to various implication breaches because they retain 
information from their training data. These vulnerabilities can be exploited through tech-
niques like white- box membership inference. The “white- box” refers to having access 
to detailed information about the model’s architecture, parameters, and training process. 

FIGURE 6.1 Traditional AI and explainable AI.
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By exploiting this access, an attacker can infer membership of a particular data sample in 
the training dataset based on the model’s responses or outputs.

Furthermore, it is important to note that creating datasets with individual informa-
tion from different sources could result in multidisciplinary privacy risks. This risk 
emerges when data from diverse sources are aggregated, leading to the possibility of 
revealing sensitive information that was not considered private when isolated. For 
example, consider a scenario where medical records are combined with social media 
data and purchasing history. Individually, each dataset might not disclose sensitive 
information. However, combined, the dataset could reveal personal details about an 
individual’s health conditions, lifestyle choices, and financial status.

As consumers commit their data to machine learning systems, gaining explicit and 
informed consent becomes increasingly essential. Furthermore, individuals should have 
a choice over how their data is used, and companies must set clear rules for data collec-
tion, utilization, and storage. As a result, regulatory compliance with privacy standards 
such as the General Data Protection Regulation (GDPR) or the Health Insurance 
Portability and Accountability Act (HIPAA) is more than simply a legal necessity. It is 
an essential component of protecting individuals’ private rights.

Therefore, privacy- preserving techniques are employed to protect user privacy 
within machine learning applications. Consider the following scenario: the data owner 
wants to use the data to train a machine learning model but does not want to lose control 
over it. And, the model’s owner refuses to expose its parameters to anyone, including the 
owner of the data used to train it. Additionally, both the model and data owners have a 
shared interest. This issue can be handled well by privacy- preserving machine learning 
strategies to safeguard the interests of each side. Several privacy- preserving machine 
learning strategies have been developed to address possible privacy risks. These include 
differential privacy—introducing noise to data to protect individual privacy; homomor-
phic encryption—enabling computations on encrypted data; and federated learning—a 
decentralized approach where multiple devices collaboratively train a model without 
sharing raw data. However, each technique has strengths and weaknesses, making 
privacy- preserving machine learning an active area of research.

6.4 ETHICAL IMPLICATIONS 
OF MACHINE LEARNING

Human beings exhibit various cognitive biases, such as recency and confirmation bias, 
which are reflected in our behaviors and, consequently, in the data we generate. Since 
data forms the foundation of machine learning algorithms, it is crucial to design experi-
ments and algorithms with these biases in mind. Machine learning has the potential to 
amplify and scale human biases at an unprecedented rate, leading to significant ethical 
concerns. These issues can arise from misguided, unexplainable, or untraceable evi-
dence, potentially resulting in unfair and discriminatory outcomes. Addressing these 
biases is essential to ensure the ethical and fair deployment of machine learning tech-
nologies. Table 6.2 summarizes the general ethical issues of machine learning.
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TABLE 6.2 Ethical implications of machine learning

CONCERN DESCRIPTION

Bias and Discrimination Machine learning models may unintentionally perpetuate 
bias and discrimination contained in the training data. 
If the training data contains biased or discriminating 
tendencies, the model may learn and repeat such biases, 
resulting in biased conclusions or treatments. For example, 
if the data for resume screening is biased toward specific 
groups, a resulting machine learning system may mistakenly 
discriminate against certain demographic groups.

Privacy and Data Protection Machine learning frequently relies on vast volumes of 
sensitive personal data for training and prediction in crucial 
domains such as law enforcement and healthcare. The 
collection, storage, and use of such data might raise privacy 
and protection concerns. Individuals’ personal information 
must thus be maintained securely and used in accordance 
with existing privacy regulations. Furthermore, the prospect 
of re- identification and data breaches pose significant 
challenges to maintaining data privacy. This may potentially 
lead to targeted assaults.

Lack of Transparency and 
Explainability

Some machine learning models, particularly deep learning 
models, can be exceedingly complicated and difficult to 
comprehend. However, the lack of transparency raises 
concerns about the models’ capacity to explain and defend 
their findings. As a result, the black- box nature of some 
machine learning algorithms may be problematic in certain 
industries, such as healthcare or finance, where openness 
and accountability are crucial.

Unintended Consequences Unexpected or unintended consequences may arise from 
machine learning models. These outcomes may be 
caused by data biases, external influences, or the model’s 
interactions with complex systems. For example, the 
machine learning algorithm’s decision- making process in 
autonomous cars may result in unexpected accidents or 
moral quandaries when presented with moral choices.

Job Displacement and 
Economic Impact

Machine learning–driven automation may lead to job losses 
in certain industries. While the transition may create new 
job possibilities, it may also cause economic disruption and 
inequality. For example, in customer service, generative AI 
is used to create chatbots that can answer client inquiries 
and resolve issues. Consequently, this leads to job losses for 
human customer service representatives.

Adversarial Attacks and 
Security

Machine learning models are vulnerable to adversarial 
attacks, in which hostile actors intentionally affect or 
confuse the model by introducing minor disruptions to 
the input data. Such assaults have serious ramifications, 
particularly in critical applications like autonomous cars, 
disease diagnostics, and cybersecurity.
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6.5 ACCOUNTABILITY AND TRUST IN AI

Accountability and trust in AI systems are essential for their ethical and responsible 
deployment. Therefore, it is crucial to develop methods to trace AI decision- making 
by creating frameworks that enable the understanding and tracking of how AI systems 
reach their conclusions or actions. This involves establishing explainable AI techniques 
that ensure AI algorithms and models are transparent and interpretable. Furthermore, 
model interpretability, causal reasoning, and attention processes provide insights into 
the AI’s decision- making process, allowing users to understand and confirm the logic 
behind  AI- generated outcomes. Error detection systems are required to regularly exam-
ine AI outputs for biases, inaccuracies, and unexpected effects. These techniques include 
 frequent audits, validation processes, and feedback loops to improve the  accuracy, 
dependability, and fairness of artificial intelligence systems.

Building trust between AI systems and people requires openness and clear com-
munication, which includes making AI operations and functions accessible and appar-
ent to users, and disclosing the system’s capabilities, limits, and the data on which it 
operates. It also includes reporting the methods employed, the data sources, and any 
relevant biases or uncertainties. Furthermore, good communication includes providing 
consumers with comprehensible information regarding AI functions and activities. It 
features user- friendly interfaces, explanations of AI- generated judgments, and easy 
ways for users to request clarification or voice concerns. Moreover, developing trust 
requires establishing an open and responsive culture where user input and concerns are 
noticed and handled. Managing unforeseen outcomes in AI systems necessitates a pro-
active strategy. As a result, companies must anticipate any adverse effects or biases in 
AI decision- making and should have mechanisms in place to detect and mitigate them. 
This includes ongoing monitoring, impact assessments, and adopting methods to reduce 
negative repercussions. In addition, setting clear criteria for accountability and respon-
sibility when unintended consequences arise ensures that necessary remedial steps are 
performed to avoid or mitigate any negative impacts.

6.6 GLOBAL CASE STUDIES ON AI 
GOVERNANCE AND REGULATION

AI governance and regulation include creating AI rules, ethical frameworks, and legal 
standards that regulate the development, deployment, and use of AI technology and 
solutions. The goal is to guarantee that AI systems perform ethically, openly, and in 
accordance with human norms while mitigating possible risks and social repercussions. 
AI governance includes developing AI Acts, rules, and ethical guidelines, establish-
ing AI safety standards, encouraging accountability and transparency in AI decision- 
making, and addressing concerns about bias, privacy, and the social repercussions 
of AI. Regulatory activities are focused on adopting rules and regulations that control AI 
technology, including data privacy, AI ethics, liability, safety, and verifying compliance 
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with established standards in order to promote responsible AI creation and usage. The 
following subsections present some case studies of projects in AI governance and regu-
lation throughout the world.

6.6.1  Formulation of AI strategies and guidelines 
in Africa

The formulation of AI strategies and guidelines in some African countries involves 
developing comprehensive plans and policies to harness AI technologies for eco-
nomic growth and social development and address regional challenges. For example, 
Rwanda’s National AI Policy incorporates ethical considerations to seize economic 
development opportunities and manage AI- related risks. Other African countries either 
finalizing or already releasing their AI strategy include Algeria, Egypt, Tunisia, Ghana, 
Benin, Mauritius, and Ethiopia. At the continental level, the African Union (AU) com-
menced consultation meetings with stakeholders in early 2024 to draft the Continental 
AI Strategy for Africa. This strategy aims to outline how AI can be leveraged to advance 
social and economic development in Africa while establishing necessary legal and 
 regulatory safeguards to protect users and societies.

6.6.2 European Union AI Act

The European Union (EU) has proposed an AI Act with the goal of addressing ethi-
cal and social concerns about AI by creating a comprehensive regulatory framework 
for high- risk applications. The Act defines four types of high- risk AI, including those 
that affect safety, justice, democracy, or fundamental rights, such as facial recognition 
systems in public places, AI- powered recruiting tools, and algorithms that influence 
social media content. Such applications will face greater control due to their potential 
for abuse or prejudice. The EU AI Act promotes openness throughout the AI develop-
ment and deployment life cycle, requiring developers to provide information about data 
sources, algorithms employed, and potential hazards, allowing users to make informed 
decisions when engaging with AI systems. This quest for openness is intended to fight 
the “black box” dilemma, in which AI judgments remain opaque and unaccountable. In 
addition, the Act requires developers and users to follow values such as human dignity, 
non- discrimination, and justice. This value- driven approach aims to guarantee that AI 
benefits humanity and does not aggravate current imbalances. The Act’s emphasis on 
human- centric AI and openness establishes a precedent for future global policies, which 
may influence the course of AI research worldwide.

6.6.3 Global partnership on AI

The Global Partnership on AI (GPAI) is an international initiative launched in 2020 to 
bring together governments, business leaders, academics, and civil society to support 
responsible AI development worldwide. GPAI focuses on collaborative efforts through 
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working groups focused on themes such as responsible AI, data governance, and ethics 
in order to foster international cooperation, develop best practices, and create frame-
works to ensure AI advancements are consistent with ethical principles, human rights, 
and societal values. GPAI aims to foster dialogue and information exchange, striving 
toward a future where AI technologies benefit society, uphold ethical standards, and 
promote transparency.

6.6.4 China AI ethics guidelines

China introduced AI ethics standards in 2019, including the “Beijing AI Principles” by 
the Beijing Academy of Artificial Intelligence (BAAI) and the “AI Ethics Guidelines for 
Trustworthy AI” by the Ministry of Industry and Information Technology (MIIT). The 
Beijing AI Principles emphasize values such as justice, transparency, and safety, advo-
cating for AI advancements aligned with societal norms, privacy protection, and legal 
compliance. Concurrently, the MIIT standards emphasize the necessity of trustworthy 
AI innovation by prioritizing human autonomy, justice, responsibility, and security in AI 
applications. Both recommendations highlight the commitment of the country to sup-
porting responsible AI research and ethical standards in its fast- evolving AI ecosystem, 
highlighting concepts critical to the responsible use of AI technology.

6.7 HUMAN- CENTRIC 
ARTIFICIAL INTELLIGENCE

The desire to emphasize the importance of human- centricity stems from the fact that AI 
algorithms have moved away from human control and fail to fit consumers’ ideals. In 
order to ensure that AI effectively fulfills its intended purpose and avoids inadvertent 
harm to end users or possible harm to others in the future, humans must be included in 
the loop. While many people see AI as a revolutionary tool for human advancement, 
the potential implications of the gap between AI and humans can be severe, affecting 
individuals and the community. A human- centric approach in developing AI systems 
prioritizes designing technologies that cater to human needs, preferences, and capa-
bilities. It entails using user feedback to improve AI functionality and correspond with 
human tastes and requirements. This approach prioritizes ethical concerns, including 
fairness and transparency in AI algorithms, to ensure the responsible and ethical use of 
AI technology. However, the emphasis on fostering human- centric AI, particularly dur-
ing the design phase of AI systems, may lead to overlooking the likelihood that dangers 
to human values may develop at various points during the AI life cycle. Other phases of 
the AI systems life cycle, such as creation, assessment, and operation, must be closely 
monitored to guarantee conformity with human values. For example, research reveals 
that different biases exist and may be identified at various phases of the AI system’s 
lifespan. Notably, certain biases may be related to the obtained data rather than the AI 
algorithm’s design.
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6.8 RESPONSIBLE AI BEST PRACTICES

Developing and implementing ethical AI best practices is critical as AI technologies 
continue to affect various facets of our lives. These best practices promote transpar-
ency, justice, accountability, and privacy in AI development and deployment. Table 6.3 
outlines a useful set of responsible AI best practices that can be used to reduce biases, 
increase transparency, and maintain ethical standards throughout the AI life cycle. By 
adopting these best practices, stakeholders can better navigate the ethical challenges 
associated with AI, leading to more trustworthy and equitable outcomes.

TABLE 6.3 Responsible AI best practices

S/N BEST PRACTICE DESCRIPTION

1 Use Diverse and 
Representative Data

Ensure that the training data is varied and reflects 
the population it intends to serve. Biases in data 
can lead to biased models. Thus, steps should be 
taken to rectify underrepresentation and guarantee 
inclusion.

2 Human Involvement in 
Algorithms Design

Since algorithms are designed by people, they can 
unintentionally perpetuate and even aggravate 
biases in the data used to train them. Humans 
can also give a deep knowledge of the social, 
cultural, and historical context of the data. This 
understanding is critical for identifying potential 
biases and creating algorithms that are sensitive 
to these nuances. In addition, create a broad and 
heterogeneous algorithm development team. By 
including team members from different disciplines, 
cultures, gender groups, and experiences, the team 
can better identify potential biases, address a wider 
range of ethical concerns, and develop more robust 
and inclusive AI systems.

3 Ensure Transparency 
and Explainability

Uphold transparency in the machine learning 
model’s decision- making process. Users who 
understand how decisions are produced may better 
evaluate and counter any biases. As a result, the 
highest level of explainability in the produced 
models is achieved.

4 Employ Bias Assessment 
and Mitigation Tools

Utilize tools that assess and measure biases in the 
training data and model outputs. These tools can 
provide insights into potential sources of bias and 
guide corrective actions. In addition, bias mitigation 
techniques should be employed during model 
training. Techniques such as re- sampling, re- 
weighting, and adversarial training can help reduce 
biases in machine- learning algorithms.
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6.9 AI IMPACT ASSESSMENT  
CASE STUDIES

Unfair or discrimination caused by AI may be addressed through AI impact assess-
ment and ethics by design. On the one hand, the overall purpose of impact assessment 
is to understand prospective and anticipated issues within a given area. The goal is to 
use this information to design mitigation solutions. Some significant examples of AI 
impact assessment include the European Commission’s High- Level Expert Group on 
Artificial Intelligence’s evaluation list for trustworthy AI (AI HLEG 2020) and the ECP 
Platform AI impact assessment. On the other hand, ethics by design aims to include 
ethical principles in designing and developing AI and  associated technologies, empha-
sizing that these issues should not be considered an afterthought. Ethics by design 
involves considering ethical concepts as requirements the AI system must meet. The 
Ethics By Design and Ethics of Use Approaches for Artificial Intelligence guidance 

S/N BEST PRACTICE DESCRIPTION

5 Regular Algorithms 
Audit

Regular and thorough assessments conducted 
by operators are essential to identify and rectify 
potential algorithm biases, ensuring ongoing 
fairness and equity in their outcomes. An example 
of biased outcomes can be evident in hiring 
processes that consistently favor candidates from 
certain socioeconomic backgrounds over others 
leading to perpetuating inequality in employment 
opportunities. In this case, users can discern 
the presence of bias without knowing the inner 
workings of the algorithm’s decision- making 
process.

6 Legal and Regulatory 
Compliance

Establish clear ethical guidelines for algorithm design 
and implementation and adhere to such guidelines. 
Human input is essential in defining what is 
considered fair and unbiased in different contexts. 
This involves considering ethical implications and 
societal norms. Besides, stay informed about legal 
frameworks related to discrimination, privacy, and 
fairness, and integrate compliance measures into 
the development process.

7 Encourage User 
Feedback and Input

Users may have unique perspectives and experiences 
that can help identify biases or unintended 
consequences in algorithms. Actively incorporating 
user feedback can lead to iterative improvements.

TABLE 6.3 (Continued ) Responsible AI best practices
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drafted by the European Commission in 2021 suggests a five- layer model that shows 
what needs to be incorporated at different levels of AI development. Other existing 
frameworks proposed to measure Responsible AI include the FACETS Responsible 
AI Framework designed by the RAIL in KNUST Ghana, CITADEL in Burkina Faso, 
and the AfriAI (previously known as AI4D Lab) Research Lab at the University of 
Dodoma, Tanzania. The framework includes a series of questions to compute the 
FACETS score. F, A, C, E, T, and S stands for Fairness, Accountability, Confidentiality, 
Ethics, Transparency, and Safety  measures, respectively. The framework computes the 
scores for four pipeline sections: Envision, Data, Model, and Deployment. The frame-
work can be accessed online at:  https:// facets. netlify. app/facets.

6.10 ARTIFICIAL INTELLIGENCE  
SOVEREIGNTY

Imagine a world where nations, communities, and even individuals have control over the 
AI systems that influence their lives. This is the essence of AI sovereignty, which is the 
ability to shape, develop, and utilize AI to align with individual values, cultural norms, 
and strategic goals. At its core, AI sovereignty encapsulates the idea that nations should 
retain control over their own AI capabilities, policies, and data governance frameworks, 
safeguarding their autonomy in the face of the rapidly evolving AI landscape. This sov-
ereignty extends beyond mere technological expertise to encompass the ethical, legal, 
and strategic dimensions of AI deployment. The race for AI dominance has become a 
focal point of geopolitical competition in today’s interconnected World. Nations are 
investing heavily in AI research, development, and deployment, recognizing its trans-
formative potential across various sectors, from healthcare to defense. However, as AI 
infiltrates critical infrastructure and decision- making processes, concerns about depen-
dency on foreign AI technologies and vulnerabilities to data breaches or algorithmic 
biases have intensified. Consequently, AI sovereignty has emerged as a counterbalance 
to these risks, advocating for national strategies prioritizing self- reliance and resilience 
and protecting core values and interests.

To effectively address the complexities of AI sovereignty, policymakers must 
 navigate a delicate balance between fostering innovation and safeguarding national inter-
ests. This entails developing robust regulatory frameworks that promote responsible AI 
development, ensure data privacy and security, and mitigate the risks of algorithmic 
manipulation or proliferation of autonomous weapons. Moreover, international 
 cooperation and dialogue are essential to harmonize standards, norms, and practices gov-
erning AI, fostering trust, transparency, and accountability in its use globally. Ultimately, 
the pursuit of AI sovereignty is not merely about asserting technological supremacy but 
also about upholding fundamental principles of sovereignty, democracy, and human 
rights in the age of AI. Some of the AI sovereignty aspects are described in Table 6.4.

https://facets.netlify.app/facets
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6.11 SUMMARY

This chapter started by setting the base on what it means by responsible and explain-
able AI. It introduced the foundation of responsible AI principles, emphasizing fair-
ness, transparency, and ethical considerations throughout the AI life cycle. Moving 
forward to explainable AI, the chapter underscored the importance of interpretability in 
AI systems, enabling users to comprehend and trust the technology. Privacy concerns 
in machine learning were discussed, offering strategies for safeguarding individual pri-
vacy amid the evolving data landscape. The chapter extended the discussion on the 
ethical implications of machine learning, and highlighted some existing frameworks 
for assessing ethical compliance. Besides, the issues around accountability and trust 
in AI were explored in the context of establishing responsible AI practices. The chap-
ter further delved into the regulatory dimension with insights into AI governance and 
regulation. Global perspectives were enriched by case studies across the world, provid-
ing a contextual understanding of diverse approaches to responsible AI deployment. 
Last but not least, the chapter discussed the importance of human- centric AI design in 
aligning AI systems with user needs and experiences. Finally, the chapter presented the 
compilation of responsible AI best practices and AI sovereignty, offering actionable 
guidelines for practitioners and organizations committed to fostering responsible, ethi-
cal, and sustainable AI.

TABLE 6.4 AI sovereignty aspects

ASPECT DESCRIPTION

Data Control Ensuring that citizens and organizations have control over 
their data, including who collects it and how it is used to 
train AI models. This protects privacy, prevents discrimination, 
and fosters responsible AI development.

Technological 
Independence

Reducing reliance on foreign- developed AI tools and 
fostering domestic capabilities. This strengthens national 
security, economic competitiveness, and cultural 
autonomy.

Ethical Alignment Shaping AI in line with local values and ethical principles. 
This could involve ensuring fairness, inclusivity, and alignment 
with human rights standards.

Algorithmic Transparency Demystifying AI decision- making processes to understand how 
algorithms impact individuals and society. This builds trust, 
enables accountability, and allows corrective actions if biases 
are detected.
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7Artificial general  
intelligence 

Upon completing this chapter, learners should be able to:

1. Define Artificial Narrow Intelligence (ANI), Artificial General Intelligence 
(AGI), and Artificial Super Intelligence (ASI).

2. Differentiate between ANI, AGI, and ASI based on their capabilities and 
characteristics.

3. Identify the societal and ethical implications of ANI, AGI, and ASI in the 
context of advancements in AI, as well as their potential benefits and risks.

4. Understand the basic concepts of robotics and embodied intelligence, the 
philosophy of mind, and the future of AGI.

5. Recognize real- world examples of AGI- like technologies in different appli-
cations, including robotics, self- driving cars, virtual assistants, and natural 
language processing.

7.1 CATEGORIES OF ARTIFICIAL  
INTELLIGENCE

Artificial intelligence is classified into three categories: Artificial Narrow Intelligence 
(ANI), Artificial Super Intelligence (ASI), and Artificial General Intelligence (AGI). 
ANI is usually regarded as weak and limited in scope due to its capacity to perform 
a specific task, such as winning a chess game or identifying a particular individual in 
a series of images, as demonstrated by applications like Siri and Alexa. On the con-
trary, AGI and ASI are considered strong AIs as they prominently incorporate human 
behavior, such as tone and emotion interpretation. Furthermore, while AGI performs at 
the same level as humans, ASI (also known as super intelligence) surpasses humans’ 
 intelligence and capability.

AGI is the theoretical concept of a machine that can learn, understand, adapt, and 
apply knowledge across a wide array of tasks, similar to human intelligence. Unlike 
specialized AI systems designed for specific tasks (e.g., playing chess or recognizing 
images), AGI aims to replicate the comprehensive cognitive abilities of human beings. 

http://dx.doi.org/10.1201/9781003486817-7
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AGI seeks to create machines capable of flexible thinking, problem- solving, creativity, 
and understanding context across diverse domains without requiring reprogramming for 
each new task. The pursuit of AGI involves creating algorithms, architectures, and mod-
els that enable machines to generalize their learning and apply knowledge from one 
domain to another, similar to human cognition. Achieving AGI is still challenging due 
to the complexity of human intelligence and the complex nature of learning, reasoning, 
and decision- making.

Research in AGI spans various disciplines, such as cognitive science, neuroscience, 
philosophy, and computer science. While AGI holds immense potential for revolution-
izing industries like healthcare, science, and more, it raises profound ethical, societal, 
and existential concerns about the impact of creating machines with human- like intel-
ligence. The quest for AGI is an ongoing endeavor that involves scientific advancements 
and requires consideration of the implications and responsibilities associated with 
developing such powerful AI.

7.2 WHAT MAKES AN 
INTELLIGENCE GENERAL?

General intelligence is characterized by flexibility that allows humans or AI systems 
to adapt to new situations, tasks, or environments without specific programming or 
training for each scenario. It encompasses complex capabilities that enable adaptive 
and versatile problem- solving across various domains. Moreover, general intelligence 
involves the capacity to learn efficiently and not just to memorize facts but to under-
stand the underlying principles, patterns, and relationships. The learning encompasses 
acquiring new information, skills, and concepts that can be applied across various 
contexts.

Reasoning and problem- solving skills are also crucial aspects of general intelli-
gence as they involve analysis of complex problems, decomposing them into manage-
able components, and devising effective strategies to solve them. This requires deductive 
and inductive reasoning, critical thinking, and creative problem- solving. Additionally, 
general intelligence allows for transfer learning, where knowledge, skills, and experi-
ences from one domain benefit performance in unrelated tasks. Applying learning from 
one area to others enhances overall adaptability and problem- solving ability.

Planning is another crucial facet of general intelligence, which involves the capac-
ity to formulate a sequence of actions to achieve specific goals while considering differ-
ent possible scenarios and outcomes. Notably, AGI aims to develop systems that can 
strategize, foresee consequences, and plan courses of action in dynamic and uncertain 
environments. Furthermore, metacognition plays a vital role in general intelligence. It 
refers to being aware of your thinking processes. A generally intelligent being or AI 
system can not only solve problems but also understand how they solved them, allowing 
them to improve their approach in the future and apply it to similar situations. Moreover, 
analogy and abstraction are also essential aspects of general intelligence. Analogy and 
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abstraction entail the capability of humans or AI systems to recognize similarities and 
underlying patterns across diverse situations and engage in reasoning about abstract 
concepts. This ability to reason through analogy and abstraction enhances problem- 
solving and adaptability across various domains.

Human intelligence thrives through understanding the nuances of language, vision, 
the unwritten rules of social interaction, and the hidden connections between seemingly 
unrelated things. Therefore, for AGI to demonstrate human intelligence, it must go 
beyond literal interpretation, grasp the context of situations, and develop a rudimentary 
sense of “common sense” to operate effectively in the real world. AGI developers face 
the challenge of creating AI systems that mimic the cognitive abilities of humans, 
enabling machines to reason, learn from various sources, and solve problems across 
domains with human- like flexibility and adaptability.

7.3 APPROACHES FOR DEVELOPING AGI

There are various approaches to developing AGI, each offering unique insights and pre-
senting challenges in creating human- like cognitive capabilities in machines. Firstly, 
symbolic AI, rooted in logic and rules, focuses on representing knowledge and problem- 
solving through symbols and rules. It involves encoding information into a symbolic 
format, employing logical operations to simulate human reasoning, and using inference 
rules to make conclusions. Symbolic systems excel in representing explicit knowledge 
but often struggle with uncertainty and handling large- scale, unstructured data, limiting 
their capacity for true generalization.

Artificial neural networks, particularly deep learning, represent a dominant approach 
to achieving AGI. These networks are designed to mimic the structure and function of the 
human brain, with the potential to replicate human- like learning and intelligence. Deep 
learning involves interconnected artificial neurons arranged in layers, learning to recog-
nize patterns and relationships by being exposed to vast datasets during training. Their 
ability to learn from diverse data types, excel in pattern recognition and problem- solving, 
and continuously improve makes them vital contributors to AGI development. However, 
challenges such as their black- box nature and intensive computational demands should 
be addressed to exploit their full potential.

Also, evolutionary algorithms and genetic programming, inspired by biological 
evolution, offer alternative AGI approaches. These methods involve generating and 
evolving populations of solutions to problems, mimicking the process of natural 
 selection to improve performance over iterations. While they excel in optimization and 
adapting to changing environments, they often face challenges in scalability and 
 efficiency for more complex problems.

Moreover, hybrid models combine various AI techniques to leverage their capa-
bilities and compensate for their drawbacks. For instance, integrating symbolic reason-
ing with neural networks aims to combine the structured knowledge representation of 
symbolic AI with the learning and pattern recognition abilities of neural networks. 
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Hybrid models seek to harness the complementary strengths of different approaches to 
achieve more robust and flexible AGI systems.

Furthermore, artificial consciousness is another approach to developing AGI that 
seeks to instill AI systems with subjective experiences and awareness similar to human 
consciousness. It draws inspiration from theories in cognitive science and philosophy 
and seeks to understand and replicate the mechanisms underlying human consciousness. 
While still in its infancy, artificial consciousness holds the potential to create more 
adaptable and ethics- aware AI systems, although significant technical, philosophical, 
and ethical challenges remain to be addressed.

7.4 PHILOSOPHY OF MIND

In pursuing AGI, the philosophy of mind serves as both a guiding principle and a 
critical inquiry. The philosophy of mind is a branch of philosophy that examines the 
nature of consciousness, intelligence, and the mind. It explores fundamental questions 
about what it means to have a mind, how consciousness arises, and the relationship 
between the mind, the brain, and the external world. Central to this field is the explora-
tion of consciousness, arguably one of the most intriguing aspects of human existence. 
Philosophers of mind explore the nature of subjective experience and how the brain’s 
processes generate our inner lives, including sensations, thoughts, and emotions.

Additionally, in the domain of the philosophy of mind, the mind- body problem is 
a core issue that deals with the relationship between mental states (such as thoughts, 
beliefs, and perceptions) and physical states (neural processes in the brain). Philosophers 
explore different theories, from dualism (which posits a fundamental distinction 
between mind and body) to materialism (which suggests that mental states are ulti-
mately reducible to physical states). Intelligence is another focal point at which phi-
losophers seek to understand the nature of intelligence, what it means to be intelligent, 
whether intelligence is solely a product of the brain’s computational abilities, and 
whether artificial systems can possess true intelligence. This inquiry delves into ques-
tions about the nature of reasoning, problem- solving, learning, and the potential for 
non- biological systems to exhibit intelligence comparable to or surpassing human 
intelligence. Moreover, the philosophy of mind also examines the concept of mental 
representation and how the mind represents and interacts with the world. This involves 
discussions about perception, cognition, memory, and how mental states are structured 
to represent external reality.

Furthermore, this field contemplates the implications of its inquiries on broader 
philosophical issues and ethical considerations. It raises questions about free will, 
morality, personal identity, and the implication of advancements in AI and neuroscience 
on our understanding of ourselves and our place in the world. The philosophy of mind 
stands at the intersection of philosophy, psychology, neuroscience, and artificial intelli-
gence disciplines. Its inquiries are foundational not only for understanding the nature of 
human cognition and consciousness but also for dealing with the profound implications 
of these understandings on our concepts of self, intelligence, and the nature of reality. 
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Thus, the philosophy of mind provides a rich conceptual framework for understanding 
the nature of intelligence and consciousness, which consequently informs the design, 
development, and ethical considerations of AGI systems.

7.5 CHALLENGES OF ARTIFICIAL 
GENERAL INTELLIGENCE

AGI poses several challenges due to its aspiration to replicate human- like cognitive 
abilities across diverse domains. The foremost challenge is the complexity and scale 
that AGI systems need to comprehend and navigate. Additionally, handling the vast 
complexity and scale of information while maintaining efficiency and accuracy poses 
substantial technical challenges. AGI systems must be capable of understanding and 
operating within real- world environments, tasks, and datasets, which demands sophisti-
cated algorithms and computational capabilities.

Another obstacle lies in the absence of a unified theoretical framework for 
AGI. Various approaches to AI, such as symbolic AI, neural networks, evolutionary 
algorithms, and hybrids, have advanced independently with their theories and method-
ologies. Integrating these diverse approaches into a cohesive, unified model that 
accounts for the complexity of human- like intelligence remains a significant challenge. 
Achieving synergy among these disparate theories and technologies is crucial for 
 progressing toward AGI.

Moreover, technological limitations, such as constraints in computational power, 
hinder AGI development by restricting the scalability and complexity of AI systems 
needed to emulate human- level intelligence across various tasks and contexts. 
Addressing these challenges demands collective efforts across multiple disciplines, 
including computer science, neuroscience, philosophy, psychology, and ethics. This 
requires a holistic approach that advances technological capabilities while navigating 
ethical and philosophical complexities.

7.6 POTENTIAL BENEFITS AND RISKS OF 
ARTIFICIAL GENERAL INTELLIGENCE

AGI holds the potential for transformative impacts across various domains, yet it also 
poses significant risks that require careful consideration. It could enhance efficiency 
across industries through automation and optimization, potentially revolutionizing 
healthcare, natural language, agriculture, transportation, and logistics. In healthcare, 
for instance, AGI could revolutionize disease diagnosis and treatment by analyzing vast 
amounts of medical data, accelerating drug discovery, and offering personalized medi-
cation. Additionally, AGI’s ability to process and understand natural language could 
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significantly improve communication, customer service, and accessibility for individu-
als with disabilities. Moreover, AGI might aid scientific research by quickly processing 
complex datasets and contributing to breakthroughs in domains such as climate science, 
astronomy, and material science.

However, the power and capabilities of AGI pose significant risks, including job 
displacement and economic disruption. Its ability to automate tasks across industries 
could result in widespread unemployment, necessitating societal adaptations and poten-
tial retraining programs to lessen the impact. Additionally, ethical concerns arise regard-
ing the possible misuse of AGI for malicious purposes, such as autonomous weapons, 
cyberattacks, or surveillance, raising questions about accountability and control.

Another significant risk involves AGI surpassing human intelligence, leading to an 
intelligence explosion or the creation of super intelligent systems that could potentially 
act in ways unforeseen by their creators. This scenario poses risks if AGI’s objectives 
misalign to human values or if the system lacks appropriate safeguards and control 
mechanisms. Furthermore, similarly to conventional AI, the AGI systems could exhibit 
biases inherited from the training data, leading to discriminatory or unfair outcomes. 
Therefore, ensuring fairness, transparency, and ethical behavior in AGI systems is cru-
cial to prevent perpetuating societal biases and inequalities.

Managing these risks requires national, regional, and international collaboration, 
robust ethical frameworks, and comprehensive regulatory oversight. Proactively 
addressing AGI’s societal, ethical, and safety implications is crucial for harnessing its 
potential benefits while mitigating the associated risks. Balancing technological 
advancement with ethical considerations is critical in ensuring that AGI serves the best 
of humanity.

7.7 INDICATORS OF THE PRESENCE OF 
ARTIFICIAL GENERAL INTELLIGENCE

Although the realization of full AGI is still a distant goal, its indications are already being 
seen in other fields, providing exciting glimpses of its potential to bring about signifi-
cant changes. AGI- powered technology can be found in different domains, for example, 
the rise of large language models (LLM) such as the Generative Pre- trained Transformer 
(GPT) series, encompassing models like GPT- 3, GPT- 4, and Google Gemini. These 
models demonstrate an exceptional ability to understand and generate natural language. 
Additionally, the models have made substantial progress in understanding context and 
delivering consistent and contextually appropriate responses across various topics. They 
can be used for activities such as text production, translation, summarization, and assis-
tance in other written content creation tasks.

Humanoid robots like Sophia demonstrate modest advancements in general intel-
ligence capabilities despite their limited and specialized intelligence. These robots are 
notable for their ability to interact with humans, recognize faces, and engage in conver-
sation. Another indicator of AGI is found in self- driving cars developed by companies 
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such as Tesla and Waymo, which exemplify AGI- like capabilities in navigating complex 
environments. These vehicles integrate various AI technologies, such as machine learn-
ing, computer vision, and decision- making algorithms, to perceive their surroundings, 
make real- time decisions, and navigate roads autonomously. While not yet fully autono-
mous in all conditions, they demonstrate significant progress toward vehicles that can 
handle diverse and unpredictable driving scenarios.

Moreover, AI systems in game- playing, such as AlphaGo and AlphaZero developed 
by DeepMind, demonstrate remarkable strategic thinking and learning capabilities that 
showcase their vicinity to general intelligence. These systems excel in creating games, 
for example, chess, Go, and video games, showcasing adaptive learning and decision- 
making abilities. While these AI systems demonstrate certain indications of AGI 
 capabilities, such as understanding and problem- solving skills, it is crucial to emphasize 
that they have not yet achieved AGI status themselves.

7.8 ROBOTICS AND EMBODIED  
INTELLIGENCE

Robotics and embodied intelligence in the context of AGI involve the integration of 
AI algorithms with physical robots to enable machines to perceive, interact with, and 
learn from the physical environment. This integration emphasizes the importance of 
sensory inputs and motor skills in shaping an understanding of the world through AI 
systems. The concept of embodied intelligence in robotics proposes that intelligence is 
not solely a function of algorithms but also the physical manifestation of an entity and 
its interactions with the environment. By integrating AI with robots, developers aim to 
create systems that learn from and adapt to the physical world, mirroring how humans 
and animals learn through interaction and experience. For instance, robots equipped 
with sensors such as cameras, lidar, radar, or tactile sensors gather data from the envi-
ronment, providing information about surroundings, objects, and potential obstacles. AI 
algorithms process this sensory input to make sense of the environment, enabling robots 
to perceive and understand their surroundings.

Also, robots need the ability to act upon their environment through movement and 
manipulation. Advanced motor skills involve grasping objects, navigating environments, 
and performing complex actions. A robot’s movements are controlled by AI algorithms, 
enabling it to interact with and manipulate objects based on its sensory perceptions. The 
combination of perception and action forms a feedback loop that facilitates learning. As 
robots interact with the environment, they receive feedback based on their actions, which 
helps refine their understanding and decision- making processes. Through reinforcement 
learning, the robots can learn from trial and error, adjusting their behaviors based on the 
outcomes of their actions in the physical world.

The integration of AI with robots has numerous real- world applications. In manu-
facturing, AI- powered robots can adapt to changing environments and tasks to optimize 
production processes. Additionally, robotic systems can assist surgeons in healthcare, 
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aid in rehabilitation, or support individuals with disabilities. Moreover, Boston Dynamics 
exemplifies embodied intelligence through robots like Spot and Atlas. Spot is an agile 
robot dog that utilizes sensors and AI to navigate complex terrain and learn from inter-
actions, adapting its movements for improved performance. Whereas, Atlas is an acro-
batic humanoid that showcases advanced balance and dexterity, performing complex 
maneuvers with stability and agility.

However, challenges persist in achieving robust embodied intelligence in robotics, 
such as developing AI systems that can adapt to diverse and unpredictable real- world 
scenarios, handle uncertainties, and learn effectively from physical interactions. 
Additionally, ensuring the safety, reliability, and ethical implications of AI- powered 
robots operating in real- world settings is critical in this field. Therefore, the synergy 
between AI and robotics in achieving embodied intelligence represents a significant step 
toward AGI.

7.9 ARTIFICIAL SUPER INTELLIGENCE

ASI is the hypothetical future of AGI which is expected to possess cognitive abilities far 
beyond human capacity. This will enable it to solve complex problems, acquire knowl-
edge across multiple domains, and exhibit creativity and consciousness, fundamen-
tally altering the dynamics of society and technology. The theoretical concept of ASI 
remains speculative, as achieving it poses profound scientific and ethical considerations 
due to its potential for immense impact on humanity. Notably, concerns arise regard-
ing control over AI systems with such capabilities, posing technological challenges. 
Therefore, human control over ASI is crucial to prevent unintended consequences and 
uphold  ethical principles. Furthermore, it is essential to address concerns regarding 
safety, transparency, and ethical alignment in the development and deployment of ASI 
to mitigate potential risks and promote beneficial outcomes for society.

7.10 SUMMARY

This chapter provided a detailed overview of AGI, beginning with the definition and 
differentiation from other categories of AI (i.e., ANI and ASI). It then presented the 
characteristics of AGI, exploring the cognitive functions necessary for an AI system 
to demonstrate broad intelligence. Various approaches for developing AGI, including 
symbolic reasoning, artificial neural networks, and hybrids, were presented along-
side discussions on the philosophical foundations of AGI in the philosophy of mind. 
Additionally, the chapter examined the inherent challenges in AGI development and 
how to address ethical, safety, and control concerns while weighing the potential bene-
fits and risks across different domains. It further scrutinized indicators of AGI presence, 
such as LLMs, humanoid robots, self- driving cars, and game- playing AI systems, which 
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demonstrate significant advancements in understanding and problem- solving abilities. 
The chapter also discussed the role of robotics and embodied intelligence in enabling 
AGI to perceive, interact with, and learn from their environment. Finally, the concept 
of ASI was briefly explored, envisioning a future where AI surpasses human intelli-
gence significantly, accompanied by a discussion on the associated implications and the 
imperative for responsible development and governance.
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Exercises

 1. Describe three key characteristics differentiating general intelligence from 
narrow or specialized intelligence. Provide examples to illustrate these 
differences.

 2. Choose any two challenges associated with AGI development and  propose 
potential strategies to overcome or mitigate them.

 3. Apart from the examples this chapter outlines, describe a recent real- world 
application or advancement toward AGI.

 4. Describe the applications and potential impacts of AGI on society.
 5. Discuss potential advancements, challenges, and the implications of 

AGI over the next decade on various aspects of society, including  ethics, 
employment, and technology.

 6. Imagine you could design your own AGI system. What key features and 
abilities would you prioritize?

 7. Describe current AI systems which, to some extent, exhibit early manifes-
tations of AGI.

 8. Analyze and compare two philosophical theories or perspectives regarding 
the nature of consciousness and its emulation in AGI systems.

 9. Discuss a recent advancement in robotics technology that showcases 
embodied intelligence principles.

10. Discuss the potential biases in AGI systems trained on real- world data, 
how they arise, and propose strategies to mitigate their impact on decision- 
making and social interactions.
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8Machine  
learning  
step- by- step  
practical examples 

Upon completing this chapter, learners should be able to:

1. Understand how to approach various machine learning problems.
2. Apply practical data preprocessing skills to address machine learning 

problems.
3. Apply classification algorithms to classify data into distinct categories and 

interpret the results.
4. Utilize regression algorithms on real- world datasets to make predictions and 

evaluate model performance.
5. Apply clustering algorithms to partition real- world data into groups based 

on similarity and interpret and visualize results.
6. Apply association rules techniques to discover relationships between items 

in a real- world dataset.

8.1 CASE STUDY 1: CLASSIFICATION  
PROBLEM

This case study focuses on detecting diabetes using a machine learning classifier, 
where the data samples are classified into two classes (i.e., positive or negative). 
The subsequent subsections outline the steps involved in handling this particular 
case study.

http://dx.doi.org/10.1201/9781003486817-8
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8.1.1 Problem definition

Diabetes is a chronic disease that leads to elevated levels of blood sugar. When this 
 condition develops, individuals may experience a range of uncomfortable, dangerous, 
and potentially life- threatening symptoms. These symptoms include high blood  pressure, 
increased susceptibility to infections, heart disease risks, gastroparesis, blood  vessel 
damage, malfunctioning of the pancreas, and irreversible blindness.

8.1.1.1 Description of the dataset

The case study utilizes the widely known Pima Indian Diabetes Dataset, a popular  dataset 
for machine learning tasks. This dataset can be used to train, test, and  evaluate new 
machine learning algorithms and develop models for diabetes prediction. It is publicly 
available for download from the Kaggle data science repository (https://www.kaggle. 
com/datasets/uciml/pima- indians- diabetes- database). The dataset consists of 768 
records of women at least 21 years old. Each record contains nine features (8 input and 
1 output/outcome/target) as follows:

 • Pregnancies: Number of times pregnant
 • Glucose: Plasma glucose concentration 2 hours in an oral glucose  tolerance test
 • BloodPressure: Diastolic blood pressure (mm Hg)
 • SkinThickness: Triceps skin fold thickness (mm)
 • Insulin: Serum insulin concentration (mu U/ml)
 • BMI: Body mass index (weight in kg/height in m2)
 • DiabetesPedigreeFunction: Diabetes pedigree function
 • Age: Age (years)
 • Outcome: The target feature is a binary variable (i.e., 1 or 0) indicating 

whether the patient has diabetes or not (i.e., positive or negative).

8.1.2 Loading libraries

Loading the required libraries for data manipulation and model development is 
 essential. The import statement is used to load a library in Python. Therefore, 
the   following code snippet loads the necessary libraries required in this case study. 
More details about each imported library are provided using comments indicated by 
the hash sign (#).

# importing the pandas library for data manipulation
import pandas as pd 

# importing the numpy library for mathematical computations
import numpy as np 

# importing the scipy library for data transformation
from scipy.stats import zscore 

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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# importing the seaborn library for data visualization
import seaborn as sns 

# importing the matplotlib library for data visualization
import matplotlib.pyplot as plt 

# importing train_test_split function from sklearn library

# for splitting the dataset into the train and test sets
from sklearn.model_selection import train_test_split 

# importing logistic regression algorithm from sklearn library
from sklearn.linear_model import LogisticRegression 

# importing evaluation metrics from sklearn library
from sklearn.metrics import precision_score, recall_score,  
f1_score,accuracy_score, confusion_matrix, ConfusionMatrixDisplay

8.1.3 Loading dataset

Once the necessary libraries have been imported, the subsequent step involves loading 
the dataset file (in this case, diabetes.csv) using the read_csv method in the panda’s 
library. The dataset should be loaded from its stored file path, which may vary depend-
ing on the file’s location within the computer being used. For simplicity, storing the 
dataset file and the code or notebook file in the same directory is advised where there 
is no need to specify the absolute file path, as seen in the following code snippet. This 
code snippet shows the content of the first five records (depicted in Figure 8.1) using the 
data.head(5) command statement.

# Loading the diabetes dataset
diabetes_data = pd.read_csv("diabetes.csv")

# Displaying the first few records
print("First 5 records:")
print(diabetes_data.head(5))

FIGURE 8.1 The first five records of the dataset.
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8.1.4 Data summary

After loading the dataset, it is essential to get a summary of the loaded dataset. As 
shown in the following code snippet, the info() method can be used to provide details 
such as the number of rows and columns, the data types of the columns, and the 
memory usage of the dataset. Figure 8.2 shows the output of the data.info() command 
statement.

diabetes_data.info()

8.1.4.1 Descriptive statistics

There are various ways of summarizing and describing the main properties of attri-
butes of the dataset in Python, such as the central tendency, dispersion, and shape. For 
instance, the describe() method is used to display the measures of central tendency 
for all numerical attributes in the dataset. In this case, the following code snippet is 
used for such purposes. Figure 8.3 shows the output of the data.describe() command 
statement.

diabetes_data.describe().round(2)

Additionally, the following code snippet computes and displays the number of 
records in each class and their corresponding percentages. As it is shown in Figure 8.4, 
the classes labeled as 0 (i.e., negative) and 1 (i.e., positive) have a total of 500 (65.10%) 
and 268 (34.90%) records, respectively. These statistics show that the two classes are 
imbalanced, as the number of records in the negative class is almost double that of the 
positive class. This gives insightful information to help you understand the class com-
position of the dataset and consider potential implications for data analysis and 
modeling.

FIGURE 8.2 Data summary.



166 Practical Machine Learning

# Counting the number of samples in each target class
target_counts = diabetes_data['Outcome'].value_counts()
print("\nClass Counts:")
print(target_counts)

# Calculating the percentage of samples in each target class
target_percentages = (target_counts / len(diabetes_data)) * 100
print("\nClass Percentages:")
print(target_percentages)

8.1.4.2 Data visualization

It is essential to visually analyze the characteristics of the dataset in order to get insights 
such as the relationships and comparisons between features, checking for the pres-
ence of outliers and other data- relevant insights. The following code snippet displays 
the visual representation of the class distribution in the dataset. The resultant output is 
depicted in Figure 8.5.

FIGURE 8.3 Descriptive statistics for each column in the dataset.

FIGURE 8.4 The class distribution of the dataset.
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# Visualizing the class distribution
sns.set(style="whitegrid")
plt.figure(figsize=(8, 6))
plt.title("Class Distribution")
sns.set_palette("Set2")
sns.countplot(x='Outcome', data=diabetes_data)
plt.xlabel("Target Class")
plt.ylabel("Count")
plt.show()

Furthermore, scatter plots are commonly used to visualize insights about a dataset, 
such as correlations between features, outlier detection, and feature distribution. 
For example, the subsequent code generates a scatter plot that helps examine the rela-
tionship between BMI and age features using the scatterplot() function. As depicted in 
Figure 8.6, the resulting scatter plot enabled the discovery of outliers in the dataset, as 
seen in the two red ovals.

plt.figure(figsize=(8, 6))
sns.scatterplot(x="bmi", y="age", data=diabetes_data, sizes=(1, 8),  
hue="Outcome")
plt.title("Age against BMI Scatterplot")
plt.show()

Moreover, a boxplot visually displays the lower fence, the first quartile (25th per-
centile), the median (50th percentile), the third quartile (75th percentile), and the 
upper fence values of the feature, along with any outliers. The following code snippet 
generates the boxplot showing the BMI feature’s outliers. The resulting boxplot, 
depicted in Figure 8.7, suggests that the BMI values below 18 and above 50 are 

FIGURE 8.5 Class distribution.
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FIGURE 8.6 Scatter plot for age against BMI.

FIGURE 8.7 BMI box plot (with outliers).
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considered outliers. It is worth noting that the code snippet for the box plot and scatter 
plot can also be used to detect the presence of outliers in other dataset features apart 
from the BMI feature.

plt.figure(figsize=(8, 6))
sns.boxplot(x=diabetes_data['bmi'])
plt.title("BMI Boxplot")
plt.show()

8.1.5 Data preprocessing

Data preprocessing is vital to cleaning, refining, transforming, and formatting data to 
ensure its suitability for machine learning tasks. Data preprocessing can significantly 
impact the effectiveness and accuracy of the developed models, as the quality of the data 
used directly influences them. As part of data preprocessing, we showcase how to han-
dle outliers and missing values and standardize data to prepare it for subsequent steps.

8.1.5.1 Data cleaning

This section focuses on handling outliers and missing values in the dataset, as 
detailed below.

8.1.5.1.1 Outliers
The BMI feature in the dataset contains outliers; therefore, outliers for the BMI fea-
ture that fall below the lower fence are trimmed because their values are zero. Note 
that the values within the lower and upper fences can either be trimmed or winsorized 
(replacing an outlier value with the nearest non- outlier value). However, in this case, the 
BMI  values above the upper fence are replaced with the value of the nearby upper fence. 
The following code snippet demonstrates removing and trimming outliers and plotting 
the resultant box plot, as shown in Figure 8.8.

# Removing records with bmi value of zero
diabetes_data = diabetes_data.drop(diabetes_data[diabetes_data 
['bmi'] == 0].index, axis=0)

# Winsorizing bmi outliers above the upper fence
bmi_upper_fence = 50
diabetes_data['bmi'] = diabetes_data['bmi'].clip(upper=bmi_ 
upper_fence)

# Visualizing bmi distribution after handling outliers
plt.figure(figsize=(8, 6))
sns.boxplot(x=diabetes_data['bmi'])
plt.title("bmi Distribution (Outliers Removed)")
plt.show()

8.1.5.1.2 Missing values
As the dataset for this case study contains no missing values, some values of the “Age” 
feature are intentionally set to null in the original dataset to demonstrate how to deal 



170 Practical Machine Learning

with missing values. Consequently, the resulting dataset contains some missing  values. 
The following code snippet is used to check the presence of missing values for all fea-
tures in the dataset. Figure 8.9 shows no missing values for all features except for the 
“Age” feature, which comprises three null values.

# Checking for missing values
print(diabetes_data.isnull().sum())

Moreover, several methods can be used to handle the identified missing values in 
the “Age” feature, including imputation by using measures of central tendencies (mean, 
median, or mode) or removing the corresponding records that contain missing values. In 
this case, the missing values are filled by the median value of the “Age” feature, as 

FIGURE 8.8 BMI box plot after removing and trimming outliers.

FIGURE 8.9 Checking the presence of missing values for all features.
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shown in the following code snippet. The median was chosen after examining the mean, 
mode, and median of the "Age" and determining that the median value was the most 
suitable for this dataset.

# Imputing missing values in the age feature
diabetes_data['age']=diabetes_data['age'].fillna(diabetes_
data['age'].median())

8.1.5.2 Data standardization

Before data standardization, the target feature (i.e., Outcome) should be separated from 
the rest (i.e., input features) as shown in the following code snippet. It is worth noting 
that the target feature is separated to avoid standardizing its values.

# separating the target feature from the input features
predictor_vars = diabetes_data.drop("Outcome", axis=1)
target_var = diabetes_data["Outcome"]

Moreover, after separating the target feature, the input features are standardized 
using a z- score, as showcased in the following code snippet. Figure 8.10 depicts the 
standardized values of the input features. Note the difference between the standardized 
values (Figure 8.10) and non- standardized values (Figure 8.1).

# Standardizing the features
standardized_predictors = predictor_vars.apply(zscore)

# display the first few records
print(standardized_predictors.head())

8.1.6 Split- out the dataset

After data preprocessing, the dataset should be split into two sets: a training and a test 
set. The training set is used to train the model, and the test set is used to evaluate the 
model’s performance. The following code snippet splits the dataset into two sets in a 
ratio of 80:20 for the training and testing sets (i.e., test_size=0.2), respectively. It is 

FIGURE 8.10 Standardized input features.
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worth noting that random_state=42 sets a value to ensure that the random splitting of 
the dataset will be reproducible.

# Splitting the data into train and test sets
train_predictors, test_predictors, train_targets, test_targets = 
train_test_split(standardized_predictors, target_var,  
test_size=0.20, random_state=42)

8.1.7 Choosing classification algorithm

Notably, there are many classification algorithms; therefore, one needs to spot- check 
and select just one or a few algorithms that can properly address the problem. Spot- 
checking explores which algorithm(s) is the best performing on the respective problem. 
Some popular classification algorithms include Support Vector Machine, Decision Tree, 
K- Nearest Neighbor (KNN), Logistic Regression, Random Forest, and Naive Bayes. 
In this case study, the Logistic Regression algorithm was selected due to its simplicity, 
interpretability, and computational efficiency in modeling the probability of a binary 
outcome. This algorithm is arbitrarily selected for demonstration purposes.

8.1.8 Training the model

The logistic regression algorithm is trained using the training set, which allows it to 
learn the relationship between the input and the target features. Therefore, the following 
code snippet demonstrates the training of the Logistic Regression algorithm.

# initialize the instance of the algorithm
logistic_model = LogisticRegression()

# using the instance to train the algorithm
logistic_model.fit(train_predictors, train_targets)

8.1.8.1 Model evaluation

It is essential to evaluate model performance on the test set based on different metrics 
such as Confusion Matrix, Accuracy, Precision, Recall, F- score, Sensitivity, Specificity, 
ROC, and AUC. The following code snippet evaluates the model performance based on 
Accuracy, Precision, Recall, and F1-score, and the performance evaluation results are 
depicted in Figure 8.11.

FIGURE 8.11 Model performance evaluation results.
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# Making predictions on the test set
test_predictions = logistic_model.predict(test_predictors)

# Computing and printing the performance metrics
print("Accuracy:", accuracy_score(test_targets, 
test_predictions))
print("Precision:", precision_score(test_targets, 
test_predictions))
print("Recall:", recall_score(test_targets, test_predictions))
print("F1 Score:", f1_score(test_targets, test_predictions))

Furthermore, the confusion matrix is also used to evaluate the model’s performance 
by observing the number of predicted labels against the actual labels in a given class. The 
following code snippet generates the confusion matrix of the model, and the results 
are depicted in Figure 8.12. Notably, the number of true negatives is 82, false negatives 
are 15, false positives are 22, and true positives are 33. These results imply that the model 
can correctly predict many instances of the negative class compared to the positive class.

# Visualizing the confusion matrix
cm = confusion_matrix(test_targets, test_predictions, 
labels=logistic_model.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_
labels=logistic_model.classes_)
plt.figure(figsize=(8, 6))
disp.plot()
plt.title("Confusion Matrix")
plt.grid(False)
plt.show()

8.1.8.2 Saving the model

In machine learning, saving the model involves storing a trained model on a computer 
storage or external drives, which enables the model to be reused to make predictions 

FIGURE 8.12 Confusion matrix.
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on new, unseen data without retraining it from scratch. Various libraries, such as joblib 
and pickle, can be used to save the trained model. The following code snippet demon-
strates how the joblib library using the dump() method is employed to save the trained 
model in the current working directory with the file named  logistic_model.joblib.

# Saving the trained model
joblib.dump(logistic_model, 'diabetes_logistic_model.joblib')

8.1.8.3 Inferencing

Once a model has been trained and saved, it can be used to classify/predict new, unseen 
data that were not part of the training and test sets. During predictions, the new data has to 
undergo the same data preprocessing steps applied during the training phase. Suppose the 
unseen data needs to be classified using the saved model; it will have to be checked for outli-
ers and standardized using the zscore() function as presented in the previous steps. As shown 
in the following code snippet, the new, unseen data has been classified as 1 (i.e., positive) 
after undergoing the necessary preprocessing steps and being fed into the trained and saved 
model. Figure 8.13 shows that the new, unseen data has been classified as 1 (i.e., positive).

# load the model
loaded_model = joblib.load('diabetes_logistic_model.joblib')

# Calculate the mean and standard deviation of each feature from 
the training data
feature_means = diabetes_data.drop("Outcome", axis=1).mean()
feature_stds = diabetes_data.drop("Outcome", axis=1).std()

# Defining new, unseen data
new_data = [6, 148, 72, 35, 0, 33.6, 0.627, 50]  # Example 
realistic data

# Standardize the new data using the means and standard 
deviations from the training data
standardized_new_data = (new_data - feature_means) / feature_stds

# Reshaping the standardized new data
reshaped_new_data = standardized_new_data.values.reshape(1, -1)

# Creating a DataFrame with feature names and standardized new data
feature_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 
'bmi', 'pedigree', 'age']
new_data_df = pd.DataFrame(reshaped_new_data, 
columns=feature_names)

# Making predictions on the standardized new data
print("\nPrediction on New Data:")
print("The new data is predicted as class : ", loaded_model.
predict(new_data_df)[0])

FIGURE 8.13 Result of new data prediction.
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8.2 CASE STUDY 2: REGRESSION  
PROBLEM

This case study focuses on regression analysis using an advertising dataset. This prob-
lem demonstrates the relationship between advertising and sales and aims to develop a 
model to predict sales based on advertising budgets. The following subsections outline 
the steps in developing a prediction model using this dataset.

8.2.1 Problem definition

Sales prediction through advertising on TV, radio, and a newspaper is complex due to 
a number of factors that can influence sales, including the target audience, message, 
medium, budget, and the timing of the advertising campaign. Consequently, it becomes 
challenging to accurately predict how much sales will increase as a direct outcome of 
advertising. This section aims to show step- by- step how to develop a regression model 
that can predict sales based on advertising on TV, radio, and a newspaper.

8.2.1.1 Description of the dataset

The advertising dataset used in this case study is a collection of structured data that con-
tains information related to advertising costs across multiple channels, including radio, 
TV, and newspapers. The dataset is used to understand the correlation between advertis-
ing expenditures and the generated sales revenue. It also compares the effectiveness of 
different advertising channels (i.e., TV, radio, and newspaper). The dataset is publicly 
available for download from the Kaggle data science repository (https://www.kaggle.
com/datasets/tawfikelmetwally/advertising- dataset). The dataset contains 200 rows and 
the following four features:

 • TV: The amount spent on TV advertisements.
 • Radio: The amount spent on radio advertisements.
 • Newspaper: The amount spent on newspaper advertisements.
 • Sales: The target feature shows the total sales revenue generated.

8.2.2 Loading libraries

As pointed out in Case Study 1, importing the required libraries for data manipulation 
and model development is essential. The following code snippet imports the required 
libraries in this case study. Again, more details about each library are provided using 
comments indicated by the hash sign (#).

# library to store data
import pandas as pd 

https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset
https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset
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# library to perform mathematical #computations on matrices
import numpy as np 

# library to calculate #standardization
from scipy.stats import zscore 

# library to visualize data
import seaborn as sns 

# library to visualize data
import matplotlib.pyplot as plt

# library #to split the data in train and test data 
from sklearn.model_selection import train_test_split 

# library #to use for machine learning (eg., here logistic 
regression) algorithm
from sklearn.linear_model import LinearRegression 

# importing the joblib library for model saving
import joblib

8.2.3 Loading dataset

After importing the required libraries, the next step is to load the dataset file (i.e., 
 advertising.csv) from its stored file path using the read_csv function in the pandas library, 
as shown in the following code snippet. The output of the code snippet is  displayed in 
Figure 8.14, showing three records using the head() function.

advertising_data = pd.read_csv("advertising.csv")

# displaying the first three records
advertising_data.head(3) 

8.2.4 Data summary

The info() method is used to display the contents and gain key insights into the data-
set. As shown in the following code snippet, the info() method displays the number of 
rows and columns, the data types of the columns, and the memory usage of the dataset. 
Figure 8.15 shows the output of the advertising_data.info() command statement.

advertising_data.info()

FIGURE 8.14 The first three records of the dataset.
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8.2.4.1 Descriptive statistics

As demonstrated in Case Study 1, descriptive statistics are used to summarize and 
describe the main features of a dataset. Therefore, in this case study, the describe() 
method is again used to display the measures of central tendency for all numerical col-
umns in the dataset, as shown in the following code snippet. Figure 8.16 shows the 
output of the advertising_data.describe() command statement.

advertising_data.describe()

8.2.4.2 Data visualization

Data visualization techniques are used to visually analyze the features of the dataset in 
order to get insights such as the relationships, comparisons between features and other 
data- relevant insights. The following code snippet displays the visual representation of 
the correlation matrix (e.g., showing the relationship among the features). The resultant 
output is depicted in Figure 8.17. Note that the results in Figure 8.17 show that values 
closer to 1 indicate stronger positive relationships, while values closer to 0 suggest 
weaker or no linear relationships.

# compute the correlation matrix
corr = advertising_data.corr()

# heatmap with annotations
plt.figure(figsize=(7,7))
plt.title("Correlation among features")
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", 
square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()

In addition, the following code snippet displays the visual representation of 
the   scatter plots to show the relationship between the target and the input features. 
The resultant output is depicted in Figure 8.18. Note that the steeper the slope of the 
regression line fitted through the data points in a scatter plot, the stronger the correlation 
between the features in the dataset, as illustrated in Figure 8.18.

FIGURE 8.15 Data summary.
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FIGURE 8.16 Descriptive statistics for TV, radio, newspaper, and sales columns in the 
dataset.

FIGURE 8.17 Correlation matrix.
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FIGURE 8.18 Scatter plots for the target against the input features.
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import matplotlib.pyplot as plt
import seaborn as sns

# Create a figure with three subplots
fig, axes = plt.subplots(1, 3, figsize=(18, 6))

# Scatter plot: TV against Sales
sns.regplot(x="TV", y="Sales", data=advertising_data, ax=axes[0])
axes[0].set_title("TV vs. Sales")

# Scatter plot: Radio against Sales
sns.regplot(x="Radio", y="Sales", data=advertising_data, 
ax=axes[1])
axes[1].set_title("Radio vs. Sales")

# Scatter plot: Newspaper against Sales
sns.regplot(x="Newspaper", y="Sales", data=advertising_data, 
ax=axes[2])
axes[2].set_title("Newspaper vs. Sales")

# Adjust spacing between subplots
plt.tight_layout()

# Display the figure
plt.show()

8.2.5 Data preprocessing

In this case study, the data preparation techniques are applied to handle outliers and 
missing values, along with data transformation, to ensure its readiness for subsequent 
steps in the modeling phase.

8.2.5.1 Data cleaning

In this case study, the implemented data cleaning methods aim to explore possibilities 
for handling outliers, addressing missing values, and executing data transformations.

8.2.5.1.1 Outliers
The provided code snippet generates a box plot highlighting outliers, as depicted in 
Figure 8.19. It is evident from the dataset that only the "newspaper" attribute con-
tains two outlier points. These outliers constitute a small proportion relative to the 
dataset’s overall size and are especially noteworthy in the context of the regression 
problem at hand. Most regression algorithms exhibit reduced sensitivity to outliers, 
and since the dataset includes occasionally plausible values, their presence is consid-
ered for analysis. It is not a strict rule that outliers must be removed from the dataset 
on every occasion. The outliers were not removed, imputed, or transformed in this 
specific use case.

advertising_data.plot.box(figsize=(5,5))
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8.2.5.1.2 Missing values
The following code snippet is used to assess the presence of missing values across all 
dataset features to handle missing values. As illustrated in Figure 8.20, no missing val-
ues are detected for any of the features. Consequently, no techniques will be applied to 
handle missing values.

advertising_data.isnull().sum()

8.2.5.2 Feature selection

The previous correlation matrix in this case study indicates that the features are not 
highly correlated, as their correlation value is less than 0.35. Based on the correlation 
values, two features with high correlation values (i.e., above 0.7 or 0.8) might be redun-
dant in providing information to the model. Therefore, one can be eliminated. In this 
dataset, all the input features can be retained (i.e., none should be eliminated based on 
the correlation value) since their correlation values are less than 0.35. It is important to 
note that when there is a zero correlation value between the independent variables and 
the dependent variable, it necessitates the elimination of the independent variable. The 
correlation values between sales and TV, Radio, and Newspaper are 0.9, 0.35, and 0.16, 

FIGURE 8.19 Box plot for outlier identification.

FIGURE 8.20 Checking the presence of missing values for all features.
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respectively (i.e., all are not equal to zero). Therefore, none of the attributes (i.e., TV, 
Radio and Newspaper) are dropped from the dataset.

8.2.5.3 Data transformation

Upon examining the range of values in the features within the dataset, it becomes appar-
ent that they are not significantly disparate. For example, the "Radio" feature ranges 
from 0 to approximately 50, "Newspapers" from 0 to about 115, and "Sales" from 
approximately 1.6 to 27. The only feature that notably stands out is "TV," ranging from 
0.7 to nearly 300. Despite the scales not differing drastically (except for "TV"), and con-
sidering that the dataset pertains to advertising data where higher values are expected 
for TV advertisement due to its broader reach, it might be acceptable to forgo normal-
ization. However, it is suggested to experiment with normalization and document any 
observed differences at the conclusion of the model training.

8.2.6 Choosing regression algorithm

Given the plethora of regression algorithms available, it becomes crucial to spot- check 
to discern and choose the most suitable algorithm(s) for addressing a specific problem. 
In this case study, the Multivariate Linear Regression algorithm is selected due to the 
presence of multiple independent variables and a single dependent variable. It can offer 
insight into complex relationships within the data.

8.2.7 Training the model

The dataset is divided into training and test sets containing the independent and 
dependent variables, denoted as X_train, X_test, y_train, and y_test, respectively. 
Specifically, the dataset is split into a training set comprising 75% of the data and a 
test set comprising 25% of the data. Such splitting is done using the following code 
snippet.

# X_train and y_train will be used for training the model,            

# X_test for testing the models predictions, y_test for 
evaluating the model predictions.
X_train, X_test, y_train, y_test = train_test_split(features, 
target, test_size=0.25, random_state=42)

The model is initialized after splitting the data into training and test sets. Since the 
Multivariate Linear Regression model is used, the initialized model is LinearRegression() 
and is trained using the training set as shown in the following code snippet.

# initialize the instance of the algorithm
lr_model = LinearRegression()

# using the instance to training the algorithm
lr_model.fit(X_train, y_train)
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Finding the model equation (estimated Sales) starts by finding the estimated regres-
sion coefficients. The first regression coefficient is the y- intercept and is computed in the 
following code snippet. In the code snippet, the value of the y- intercept is estimated 
equal to 2.778303460245283, as shown in the subsequent output.

lr_model.intercept_

The other regression coefficients are computed from the following code snippet. 
Here, the values of coefficients of TV, Radio, and Newspapers are estimated to equal 
0.04543356, 0.19145654, and 0.00256809, respectively, as shown in the subsequent 
output in Figure 8.22.

lr_model.coef_

8.2.7.1 Model equation

After estimating the regression coefficients, the equation of the model can now 
be  determined. Using the value of the regression coefficients, the estimated Sales can be 
computed as follows:

Estimated Predicted Sales

TV Radio

/

. . . .� � � � � �2 7783 0 0454 0 1914 0 00026�Newspaper

8.2.7.2 Evaluating the model

After obtaining the model equation, it is essential to evaluate model performance using 
different performance metrics for regression problems. These metrics include Mean 
Square Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
Coefficient of Determination (R2 or R- Square), Adjusted R- squared, Mean Percentage 
Error (MPE), and Coefficient of Variation (CV). For demonstration purposes, only MSE 
and R- Square are used to evaluate the model.

8.2.7.3 Evaluating the model using MSE

In the following code snippet, the X_test represents independent variables used to pre-
dict the value of the dependent variable (Sales), here y_predict. The predicted depen-
dent variable (y_predict) and actual dependent variable (y_test) are subjected to the 
MSE function (mean_squared_error()) to calculate the value of MSE. The value 

FIGURE 8.21 Output showing the y- intercept value of the linear regression model.

FIGURE 8.22 Output showing the coefficients of the linear regression model.
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of the MSE obtained is 2.880023730094193, as shown in the subsequent output in 
Figure 8.23. This indicates better model performance in terms of prediction accuracy 
since it has a lower value.

# using the trained model to make ‘y_predict’ on 

# new input features from the test set
y_predict = lr_model.predict(X_test)

# computing and printing the performance metrics
mse = mean_squared_error(y_test, y_predict)
print("Mean Squared Error (MSE):", mse)

8.2.7.4 Coefficient of determination

The following code snippet calculates the Coefficient of Determination (R2) value 
and the resulting value is 0.8935163320163657, as shown in the subsequent output in 
Figure 8.24. This means that the model can better explain the variability in the depen-
dent variable.

print('R- squared:', r2_score(y_test, predictions))

8.3 CASE STUDY 3: CLUSTERING  
PROBLEM

This case study focuses on the Clustering Problem, which aims to uncover and organize 
unlabeled data into distinct groups based on inherent similarities or patterns. As previ-
ously stated, unlike classification or regression problems where data points already have 
assigned labels, clustering algorithms must categorize unlabeled data into groups (i.e., 
clusters). The following subsections outline the steps in developing a clustering model 
using the given dataset.

8.3.1 Problem definition

The clustering problem in this case study focuses on customer segmentation in malls 
and shopping complexes. Malls and shopping complexes often compete with each other 
to increase their customer base in order to increase profit. Segmenting customers proves 

FIGURE 8.23 Output showing the mean squared error (MSE) of the linear  regression model.

FIGURE 8.24 Output showing the R- squared value of the linear regression model.
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challenging due to the complex nature of customer behavior, variability in individual 
preferences, lack of clear understanding of the target audience, and ineffective segmen-
tation criteria. These complexities may lead to datasets with quality issues and potential 
biases. Achieving effective customer segmentation demands a sophisticated approach 
covering advanced data handling, robust validation, and domain expertise to navigate 
these challenges.

8.3.1.1 Description of the dataset

The dataset used in this case study is known as the "Mall Customer Segmentation," a popu-
lar choice for developing a model for customer segmentation. It is publicly available for 
download from the Kaggle data science repository (https://www.kaggle.com/code/listonlt/
mall- customers- segmentation- k- means- clustering). The dataset contains five features and 
200 samples (i.e., data points) representing individual customers. The features include:

 • CustomerID: Unique identifier for each customer
 • Gender: Male or Female
 • Age: In years (range: 18–70)
 • Annual Income: In thousands of dollars (range: 15–150)
 • Spending Score: Reflects customer spending habits (range: 1–100).

8.3.2 Loading libraries

The following code snippet imports the necessary libraries for this specific case study.

# Data manipulation libraries
import pandas as pd
import numpy as np

# Data visualization libraries (plotly for interactive graphs)
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

# Importing sklearn library to use K- Mean algorithm
from sklearn.cluster import KMeans

# Suppresses warnings of type FutureWarning
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)

8.3.3 Loading the dataset

Once the essential libraries are imported, the subsequent step involves loading the data-
set file (i.e., mall_customers.csv) utilizing the ‘read_csv’ function within the pandas 
library. The following code snippet loads the dataset, and Figure 8.25 displays the out-
put, showing five randomly sampled records using the ‘customer_data.sample(5)’ func-
tion in pandas.

https://www.kaggle.com/code/listonlt/mall-customers-segmentation-k-means-clustering
https://www.kaggle.com/code/listonlt/mall-customers-segmentation-k-means-clustering
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customer_data = pd.read_csv("Mall_Customers.csv")
customer_data.sample(5)

8.3.4 Renaming column names

The dataset used in this case study contains columns with spaces in their names that 
need to be renamed for clean and efficient data handling. Spaces in column names 
can cause issues accessing them using dot notation (e.g., dataframe.Spending Score). 
Additionally, short and descriptive names make the code easier to read and understand, 
improve the clarity of visualizations, and reduce typo possibilities. The following code 
snippet renames the column ‘Spending Score (1-100)’ to ‘Spending_Score’ and the 
 column ‘Annual Income (k$)’ to ‘Annual_Income’.

customer_data.rename (columns = {
     'Spending Score (1-100)':'Spending_Score',
     'Annual Income (k$)': 'Annual_Income'},
     inplace=True)

8.3.5 Data summary

As demonstrated earlier, the ‘info()’ method in the following code snippet provides 
essential data summary details. Figure 8.26 showcases the output of the ‘customer_
data.info()’ command statement.

customer_data.info()

8.3.6 Dropping less informative features

In this case study, the CustomerID column has to be dropped as it is redundant and 
non- predictive and does not contribute to understanding the target variable. Eliminating 
it reduces noise, mitigates overfitting risks, and streamlines computational efficiency 
during model training and prediction. The ‘CustomerID’ in the dataset is dropped using 
the following code snippet.

customer_data.drop("CustomerID", axis=1, inplace=True)

FIGURE 8.25 Displaying five data samples.
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8.3.6.1 Descriptive statistics

The following code snippet displays the output of the ‘customer_data.describe()’ 
 command statement, as presented in Figure 8.27.

customer_data.describe()

Additionally, the following code snippet aims to ascertain whether the characteris-
tics of the ‘Gender’ feature impact a customer’s spending behavior. The ‘Gender’ fea-
ture is used as it is the only categorical feature in the dataset. The output of the code is 
 displayed in Figure 8.28.

# seeks to answer whether gender influences spending
pd.pivot_table(customer_data,index=["Gender"], values= 
["Spending_Score"], aggfunc=["count","sum","max","mean"])

8.3.6.2 Data visualization

The following code snippet generates a histogram illustrating the relationship between 
the categorical feature (i.e., ‘Gender’) and the total number of samples. The resulting 
output is presented in Figure 8.29.

sns.countplot(x=customer_data["Gender"], data= customer_data)

FIGURE 8.26 Data summary.

FIGURE 8.27 Descriptive statistics.
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Moreover, the following code snippet creates three subplots, as displayed in Figure 8.30, 
each containing a distribution plot for each numerical feature in the dataset. This helps in 
showing the spread of data and detecting outliers by considering deviations from the mean. 
Note that the data is skewed if the graph leans to one side. The graph’s "peakedness" reflects 
how concentrated the data is around the center. Points far away from the central tendency 
(mean or median) on the tails of the distribution are potential outliers.

# create a single figure with multiple axes to fit the graphs
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
sns.histplot(customer_data["Spending_Score"], kde=True, ax=axs[0])
axs[0].set_title('Spending Score Distribution')
sns.histplot(customer_data["Annual_Income"], kde=True, ax=axs[1])
axs[1].set_title('Annual Income Distribution')
sns.histplot(customer_data["Age"], kde=True, ax=axs[2])
axs[2].set_title('Age Distribution')

# Adjust the padding between and around the subplots  
plt.tight_layout() 

FIGURE 8.28 Relationship between gender spending habit.

FIGURE 8.29 Relationship between 'Gender' and the total number of samples.
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FIGURE 8.30 Distribution plots for numerical features.
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Furthermore, the following code snippet generates a scatter plot, illustrating the 
relationship between the ‘Age’ and ‘Spending_Score’ features. Observations on 
the scatterplot in Figure 8.31 suggest a weak correlation between these two features, 
as represented by data points scattered randomly across the plot without forming a 
clear pattern or trend. This inference is further illustrated by the correlation matrix 
depicted in Figure 8.32.

plt.figure(figsize=(10,5))
sns.scatterplot(x=customer_data["Age"],y=customer_data 
["Spending_Score"])

Also, the correlation between the features can further be visualized in the correla-
tion matrix. The following code snippet plots the correlation matrix to visualize the 
relationships among the numerical features. The matrix provides a more quantified 
 perspective on the relationship between ‘Age’ and ‘Spending_Score’, reinforcing the 
observations made from the scatter plot. For instance, upon examining the correlation 
value of ‘Age’ and ‘Spending_Score’, it can be noted that a correlation value of -0.33 
between these two features suggests a slight negative correlation.

corr = customer_data.drop("Gender", axis=1).corr()
sns.heatmap(corr, annot=True)
plt.show()

8.3.7 Feature transformation

Since the ‘Gender’ feature is categorical, it needs to be transformed into numerical 
data before being used to train the model, as most machine learning algorithms work 
best with numerical data. Therefore, the ‘Gender’ feature is converted from categories 

FIGURE 8.31 Distribution plots for numerical features.
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to numbers using one- hot encoding. This technique assigns a unique binary code to 
each gender (i.e., [1, 0] for ‘male’ and [0, 1] for ‘female’). The following code snip-
pet encodes gender variables using one- hot encoding, and the output is presented in 
Figure 8.33.

FIGURE 8.32 Correlation matrix.

FIGURE 8.33 Encoding of the gender feature.



192 Practical Machine Learning

# Convert categorical variable(s), in our case Gender, into encoded 

# variables, dropping the first category to avoid 
multicolinearity
customer_data = pd.get_dummies(customer_data,drop_first=True)
customer_data.sample(4)

8.3.8  Performing clustering using K- means  
algorithm

In this case, the K- means clustering algorithm was chosen for its simplicity. Before 
conducting the clustering process, the elbow method was utilized to determine the opti-
mal number of clusters (k). The following code snippet illustrates the application of the 
elbow method to select the most suitable number of clusters. Figure 8.34 showcases 
the  ideal cluster quantity (6 clusters) identified through the elbow method. Note that 

FIGURE 8.34 The optimal number of clusters using the elbow method.
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the elbow method identifies the optimal number of clusters at the point where the graph 
forms an elbow and maintains consistency.

cluster_range = range(1, 25)
inertia_values = []
for k in cluster_range:
   cluster_model = KMeans(n_clusters=k)
   cluster_model.fit(customer_data)
   cluster_predictions = cluster_model.predict(customer_data)
   inertia_values.append(cluster_model.inertia_)
plt.plot(cluster_range, inertia_values)
plt.xlabel('Number of Clusters')
plt.ylabel('Sum of Squared Distances')
plt.show()

Given the optimal number of clusters generated by the elbow method, the following 
code snippet performs clustering using the K- means algorithm with the derived optimal 
number of clusters, which is 6.

final_model=KMeans(6)
final_model.fit(customer_data)
prediction=final_model.predict(customer_data)

#Append the prediction
customer_data["GROUP"] = prediction
print("Groups Assigned : \n")

The following code snippet renames the group names from numbers to letters for 
easier readability and visualization. In addition, the code snippet assigns a cluster value 
to each record in the dataset, simplifying the process of allocating data samples to their 
respective clusters among the six identified clusters (0 to 5).

# Define a mapping from numbers to letters
group_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}

# Apply the mapping to the 'GROUP' column
customer_data['GROUP'] = customer_data['GROUP'].map(group_dict)

The following code snippet computes the mean of each cluster, as illustrated in 
Figure 8.35.

data_mean = customer_data.drop("Gender_Male", axis=1).groupby 
(['GROUP'])
data_mean.mean()

The mean values of the identified clusters reveal distinct customer profiles, provid-
ing insights that are valuable for tailoring targeted marketing approaches, as described 
in the following:

 • Group A, characterized by an average age of 32.69 years, an average annual 
income of $86.53k, and a high spending score of 82.12, represents middle- 
aged individuals with high income and spending capacity, suggesting they 
may be the primary target for luxury goods.
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 • Group B, with younger demographics and moderate income and spend-
ing tendencies (average age: 27.00 years, average annual income: 
$56.65k, spending score: 49.13), could be interested in trendy or afford-
able products.

 • Group C, comprising older individuals with moderate income and spending 
scores (average age: 56.16 years, average annual income: $53.38k, spending 
score: 49.09), may respond well to marketing strategies emphasizing value- 
oriented products.

 • Group D, exhibiting middle- aged demographics with high income but lower 
spending scores (average age: 41.68 years, average annual income: $88.22k, 
spending score: 17.28), might prefer cautious spending or saving.

 • Group E, with an average age of 44.14 years, an average annual income of 
$25.14k, and a spending score of 19.52, consists of older individuals with 
lower income and spending scores, indicating a preference for discounted or 
value- oriented products.

 • Group F, representing younger demographics with lower income but 
high spending scores (average age: 25.27 years, average annual income: 
$25.72k, spending score: 79.36), may be inclined toward trendy or impulse 
purchases.

8.3.9 Cluster visualization

For visualization purposes, the Plotly library displays the data samples in their respec-
tive clusters (using the command ‘px.scatter()’). Since k- means uses all data features, 
visualizing high dimensions is difficult. To address this, a scatter plot can be created 
to focus on just two features (2D) or three features (3D). Thus, the scatter plots of 
2D are used as depicted in Figures 8.36 and 8.37 to display the ‘Annual_Income‘ vs 
‘Spending_Score’ and ‘Age’ vs ‘Spending_Score’ respectively. The following code 
snippet generates a scatter plot of ‘Annual_Income’ vs ‘Spending_Score’ and ‘Age’ vs 
‘Spending_Score.’

FIGURE 8.35 The mean of each cluster.
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FIGURE 8.36 Scatter plot of ‘Annual_Income’ vs ‘Spending_Score’.

FIGURE 8.37 Scatter plot of ‘Age’ vs ‘Spending_Score’.
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fig = px.scatter(customer_data, x='Annual_Income', 
y='Spending_Score',color='GROUP')
fig.update_layout(title='Annual_Income vs Spending_Score', 
width=700, height=500)
fig = px.scatter(customer_data, x='Age', y='Spending_Score', 
color='GROUP')
fig.update_layout(title='Spending_score vs Age', width=700, 
height=500)

Additionally, the distribution of the six clusters can be distinctly visualized in 3D 
using the ‘px.scatter_3d()’ command illustrated in the following code snippet, with the 
corresponding 3D visualization depicted in Figure 8.38.

fig = px.scatter_3d(customer_data, x='Annual_Income', 
y='Spending_Score', z='Age',color='GROUP')
fig.update_layout(title='Annual_Income vs Spending_Score vs 
Age', autosize=False,width=1000, height=800)

Furthermore, it is important to visualize the gender distribution in each cluster to 
provide the number of male and female customers in each customer segment. The fol-
lowing code snippet generates the gender distribution as depicted in Figure 8.39.

FIGURE 8.38 The 3D view of the clusters.
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# Create a copy of the customer_data and replace encoded 
values with 

# original ones
data_copy = customer_data.copy()
data_copy['Gender_Male'] = data_copy['Gender_Male'].replace 
({0: 'Female', 1: 'Male'})
plt.figure(figsize=(10, 6))
sns.countplot(x='GROUP', hue='Gender_Male', data=data_copy)
plt.title('Distribution of Groups by Gender')
plt.xlabel('Group')
plt.ylabel('Count')
plt.show()

8.3.10 Model evaluation

The silhouette score using the ‘silhouette_score()’ method is used to evaluate the qual-
ity of the clustering model. It measures how similar an object is to its own cluster (i.e., 
cohesion) compared to other clusters (i.e., separation). The silhouette score close to 
1 implies well- separated clusters, near 0 indicates overlap, while close to -1 suggests 
misplacement of points. The following code snippet calculates the silhouette score in 
this case study, with the corresponding output value of 0.45206493204632353. This 

FIGURE 8.39 Distribution of gender in each cluster.
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value suggests a moderate/reasonable separation between clusters, indicating that the 
data points are reasonably well- placed within their clusters but still have some degree of 
overlap with points in neighboring clusters.

from sklearn.metrics import silhoutte_score
silhouette_score_value = silhouette_score(data.drop("GROUP", 
axis=1), final_model.labels_)
print("Silhouette Score:", silhouette_score_value)

8.3.11 Case study 4: Association rules

This case study focuses on the association rule problem, which aims to uncover 
meaningful insights into consumer behavior and product relationship. It illustrates 
the formulation of rules based on product transactions recorded within the dataset. 
The following subsections outline the steps in developing association rules using a 
given dataset.

8.3.12 Problem definition

Discovering customer purchase patterns within transactional data presents a significant 
challenge due to the complexity of identifying associations and relationships among 
items bought together frequently. Understanding the interplay of product affinities, sea-
sonal trends, and customer preferences is crucial for optimizing product placement, 
enhancing cross- selling opportunities, and tailoring marketing strategies. However, 
the sheer volume and diversity of transactional data and the need to extract meaning-
ful insights amid noise and variability make it difficult to uncover actionable patterns 
efficiently. Addressing this challenge requires sophisticated techniques such as Market 
Basket Analysis, which aims to identify frequent itemsets and generate association rules 
to guide strategic decision- making.

8.3.12.1 Description of the dataset

The dataset utilized in this case study is the Grocery Store dataset, a widely recog-
nized and frequently employed dataset designed explicitly for association rule mining 
tasks. The Grocery Store dataset is a collection of customer transactions stored in a 
tabular format. Each row represents a single purchase, and columns include identifiers 
like customer ID and products. This data allows for analyzing purchase patterns by 
identifying frequently purchased combinations of items. It helps businesses understand 
customer behavior, optimize product placement, develop targeted promotions, and ulti-
mately increase sales. The Groceries Dataset for Market Basket Analysis is publicly 
available for download from the Kaggle data science repository (https://www.kaggle.
com/datasets/shazadudwadia/supermarket). The dataset contains 20 transactions and 
11 items (i.e., ‘Products’) including Jam, Maggi, Sugar, Coffee, Coke, Tea, Biscuit, 
Bournvita, Bread, Cornflakes, and Milk.

https://www.kaggle.com/datasets/shazadudwadia/supermarket
https://www.kaggle.com/datasets/shazadudwadia/supermarket
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8.3.13 Loading libraries

The following code snippet imports the necessary libraries for this case study.

# Import necessary libraries
import pandas as pd
import warnings
from mlxtend.preprocessing import TransactionEncoder as TE
from mlxtend.frequent_patterns import apriori, association_rules
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings("ignore", category=DeprecationWarning)

8.3.14 Loading dataset

Once the essential libraries are imported, the subsequent step involves loading the data-
set file (i.e., GroceryStoreDataSet.csv) utilizing the ‘read_csv’ function within the pan-
das library. The following code snippet loads the dataset, and Figure 8.41 displays the 
first five transactions using the ‘data.head(5)’ function in panda.

transaction_data = pd.read_csv("GroceryStoreDataSet.csv", 
header=None)
transaction_data.columns = ["Products"]
transaction_data.head(5)

FIGURE 8.41 Displaying the first five products.

FIGURE 8.40 Output showing the Silhouette score of the clustering model.

FIGURE 8.42 Output displaying the number of transactions and unique items in the 
dataset.
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8.3.15 Data summary

Displaying a data summary typically involves examining key statistics and charac-
teristics of the dataset. This includes information such as the number of transactions, 
the total number of unique items or products available in the dataset, and the average 
number of items per transaction. Additionally, summary statistics might include the 
most frequently occurring items and measures of item popularity or support. For dem-
onstration, the following code snippet outputs the number of transactions and unique 
items in the dataset.

# Fetch the number of transactions
num_transactions = len(transaction_data)
print(f"Number of transactions: {num_transactions}")

# Fetch the number of unique items
num_unique_items = transaction_data['Products'].str.split(',').
explode().nunique()
print(f"Number of unique items: {num_unique_items}")

8.4 FEATURE TRANSFORMATION

Feature transformation is done to convert the transactional data into a suitable format for 
analysis. This is achieved by transforming the dataset into a transactional format where 
each row represents a unique transaction and each column represents a distinct item or 
product. This transformation is achieved through one- hot encoding, where the values of 
‘1’ and ‘0’ indicate the presence and absence of an item in a transaction, respectively. 
Additionally, feature transformation may involve filtering out low- support items or rare 
items to reduce noise in the dataset and improve the efficiency of the association rule 
mining algorithms. Feature transformation aims to prepare the dataset for subsequent 
analysis and rule generation, enabling the discovery of meaningful associations between 
items in customer transactions. The following code snippet splits, computes one- hot 
encoding and displays the output shown in Figure 8.43.

FIGURE 8.43 The output of one- hot encoding.
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# Split the products in each transaction into separate items
transactions = transaction_data['Products'].str.split(',')
encoder = TE()
encoded_transactions = encoder.fit_transform(transactions)
encoded_data = pd.DataFrame(encoded_transactions.astype(int), 
columns=encoder.columns_)
encoded_data.head()

8.4.1 Data visualization

Data visualization of unique items within the dataset typically involves creating bar 
charts or histograms to display the frequency of each item occurrence in the transac-
tions. It provides a clear overview of the most commonly purchased items and their 
relative popularity among customers. The following code snippet computes the number 
of unique items in the dataset that occurred in the transaction and displays the resulting 
output in Figure 8.44.

FIGURE 8.44 Frequency of items in the transactions.
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# Bar plot of the product counts
product_counts = encoded_data.sum()
plt.figure(figsize=(12, 8))
sns.barplot(x=product_counts.index, y=product_counts.values, 
palette='viridis')
plt.title('Product Counts')
plt.xlabel('Products')
plt.ylabel('Count')
plt.xticks(rotation=90)
plt.show()

8.4.2 Model development

In this case study, the Apriori algorithm is utilized to uncover frequent itemsets within 
the transactional datasets. It operates by iteratively generating candidate itemsets and 
pruning those that fall below a predetermined minimum support threshold. Before 
rule generation, the following code snippet produces combinations of itemsets rang-
ing from single items to the maximum number appearing in transactions, as shown in 
Figure 8.45. Note that, for the sake of simplicity, several combinations of itemsets are 
omitted.

frequent_itemsets = apriori(encoded_data, min_support=0.1, use_
colnames=True, verbose=1)
frequent_itemsets['length'] = frequent_itemsets['itemsets'].
apply(lambda x: len(x))
frequent_itemsets = frequent_itemsets.sort_values(by='support', 
ascending=False)

FIGURE 8.45 Combination of items in the dataset.
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# Sort and select the top 15 itemsets. Adjust this number to 
control how 

# many itemsets are displayed
top_frequent_itemsets = frequent_itemsets.head(15)
plt.figure(figsize=(12, 8))
plt.barh(y=range(len(top_frequent_itemsets)), width= top_
frequent_itemsets ['support'], color='skyblue')
plt.yticks(range(len(top_frequent_itemsets)), top_frequent_
itemsets ['itemsets'])
plt.gca().invert_yaxis()  # labels read top- to- bottom
plt.xlabel('Support')
plt.ylabel('Itemsets')
plt.title('Support of Frequent Itemsets')
plt.show()

Once frequent itemsets are identified, association rules are generated based on 
these itemsets. The following code snippet computes the rules from the frequent item-
set with a minimum threshold of 0.85. Then, the candidate rules are generated by com-
bining antecedents with consequents derived from frequent itemsets. Note that there is 
no universally predefined minimum threshold for the ‘association_rules()’ function. 
Setting the threshold too low can result in many meaningless frequent itemsets due to 
random co- occurrences, and a higher threshold will identify only the most frequent 
co- occurrences.

rules = association_rules(frequent_itemsets, 
metric="confidence", min_threshold=0.85)
rules = rules[['antecedents', 'consequents', 'antecedent support', 
'consequent support', 'support', 'confidence', 'lift']]
rules

Figure 8.46 displays the resultant association rules in a tabular format, where each 
row represents a rule and columns represent various metrics such as support,  confidence, 
and lift. This allows for a concise overview of the rules and their associated metrics.

8.5 SUMMARY

This chapter explored machine learning techniques through four distinct practical case 
studies. It details the step- by- step practical process by employing Python programming 
language and a coding environment set up with Jupyter Notebook or Google Colab. 
In Case Study 1, the focus was on a classification problem where the objective was to 
detect diabetes using a machine learning classifier. This involves classifying data sam-
ples into positive or negative classes. Moving on to Case Study 2, the chapter jumped 
into a Regression Problem, using an advertising dataset to predict sales based on adver-
tising budgets. This case study illustrated the relationship between advertising and sales 
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FIGURE 8.46 Resultant association rules in tabular form.
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to demonstrate the development of a prediction model to forecast sales outcomes. Case 
Study 3 shifted the focus to a clustering problem to organize unlabeled data into distinct 
groups based on inherent similarities or patterns. Unlike classification or regression 
problems, clustering algorithms categorize unlabeled data into clusters, and the chapter 
outlined the steps involved in developing a clustering model using the provided dataset. 
Finally, Case Study 4 explored association rules to uncover meaningful insights into 
consumer behavior and product relationships. This case study demonstrated the formu-
lation of rules based on product transactions recorded within the dataset, providing a 
step- by- step guide to developing association rules and gaining insights into customer 
purchase patterns. Thus, through these practical examples, the chapter aimed to provide 
hands- on skills in applying various machine- learning techniques to real- world datasets, 
covering classification, regression, clustering, and association rule mining. Each case 
study offers valuable insights and practical guidance for understanding and implement-
ing machine- learning models.

Exercises

 1. For the classification problem in Case Study 1, analyze the dataset used for 
detecting diabetes and identify the key features that contribute most to the 
classification task.

 2. In the regression problem in Case Study 2, experiment with different 
regression algorithms such as K- NN regression and decision tree regres-
sion, and compare their performance in predicting sales based on advertis-
ing budgets.

 3. For the clustering problem in Case Study 3, apply various clustering 
algorithms such as agglomerative clustering and DBSCAN to the data-
set and evaluate their effectiveness in organizing unlabeled data into dis-
tinct groups.

 4. In the association rules problem in Case Study 4, explore different sup-
port and confidence thresholds for generating association rules and analyze 
how they impact the number and quality of rules discovered.

 5. Implement feature engineering techniques such as feature scaling, 
 dimensionality reduction (e.g., PCA), and feature selection on the data-
set used in  Case Study 1, and evaluate their effects on classification 
performance.

 6. Experiment with different cross- validation settings on the dataset used in 
Case Study 1 and assess the impact on classification performance.

 7. Experiment with different clustering techniques, such as Fuzzy- C- Means- 
Clustering and Gaussian mixture on the dataset used in Case Study 3, and 
compare their performance with the k- means clustering algorithm.

 8. Investigate the use of association rule mining algorithms such as  FP- growth 
and Eclat in Case Study 4, and analyze their ability to generate high- 
quality rules.
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 9. Use a publicly accessible dataset for a classification task. Experiment with 
a different classification algorithm, such as SVM, random forest, and naive 
Bayes, to perform cross- validation and compare their performance using 
different metrics.

10. Perform market basket analysis on a publicly available dataset similar to 
the one used in Case Study 4, and apply the Apriori algorithm to uncover 
interesting patterns of item co- occurrence in customer purchases. Propose 
actionable insights for improving product recommendations or marketing 
strategies based on the discovered rules.
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Appendix
Machine Learning Resources

RESOURCE SOURCE

Python 
Programming

 1. Corey Schafer:  https:// www. youtube. com/ user/ schafer5
 2. Sentdex:  https:// www. youtube. com/ user/ sentdex
 3. Edureka:  https:// www. youtube. com/ playlist? list= PL9ooVrP1hQOHUfd-   

g8GUpKI3hHOwM_9Dn
 4. Python Machine Learning Tutorial:  https:// www. youtube. com/ watch? 

v= 7eh4d6sabA0
 5. Machine Learning With Python:  https:// www. youtube. com/ watch? v= 

c8W7dRPdIPE
 6. Codecademy: Codecademy's Python Course is an interactive and 

beginner- friendly platform. It provides hands- on coding exercises to 
reinforce concepts.

 7. SoloLearn's Python Course is a mobile- friendly platform with a 
community aspect, allowing you to learn and practice Python on the go.

 8. Real Python provides tutorials, articles, and other resources that cater 
to developers at various skill levels. It covers both fundamentals and 
advanced topics.

 9. The official Python website itself is an excellent resource. It provides 
documentation, tutorials, and links to various learning resources.

Machine 
Learning

 1. Machine Learning with Maths, Statistics, and Linear Algebra by 
Andrew NG applied AI:  https:// www. youtube. com/ watch? v= 
PPLop4L2eGk& list= PLLssT5z_DsK-   h9vYZkQkYNWcItqhlRJLN

 2. Machine Learning by Statquest with Josh Starmer:  https:// www. 
youtube. com/ user/ joshstarmer

 3. Machine Learning Stanford University:  https:// www. youtube. com/ 
watch? v= jGwO_UgTS7I

 4. Introduction to Machine Learning Udacity:  https:// www. udacity. com/ 
course/ aws-   machine-   learning-   engineer-   nanodegree- - nd189

 5. Introduction to Machine Learning Yale University:  https:// www. cs. cmu. 
edu/ link/ research-   notebook-   discipline-   machine-   learning

 6. Introduction to Machine Learning Berkeley University:
a.  https:// ml. berkeley. edu/
b.  https:// launchpad. berkeley. edu/

 7. Google Python Class:  https:// developers. google. com/ edu/ python/
 8. Python HOWTOs, invaluable for learning idioms:  https:// docs. python. 

org/ 2/ howto/ index. html

https://www.youtube.com/user/schafer5
https://www.youtube.com/user/sentdex
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9Dn
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9Dn
https://www.youtube.com/watch?v=7eh4d6sabA0
https://www.youtube.com/watch?v=7eh4d6sabA0
https://www.youtube.com/watch?v=c8W7dRPdIPE
https://www.youtube.com/watch?v=c8W7dRPdIPE
https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
https://www.youtube.com/user/joshstarmer
https://www.youtube.com/user/joshstarmer
https://www.youtube.com/watch?v=jGwO_UgTS7I
https://www.youtube.com/watch?v=jGwO_UgTS7I
https://www.udacity.com/course/aws-machine-learning-engineer-nanodegree--nd189
https://www.udacity.com/course/aws-machine-learning-engineer-nanodegree--nd189
https://www.cs.cmu.edu/link/research-notebook-discipline-machine-learning
https://www.cs.cmu.edu/link/research-notebook-discipline-machine-learning
https://ml.berkeley.edu/
https://launchpad.berkeley.edu/
https://developers.google.com/edu/python/
https://docs.python.org/2/howto/index.html
https://docs.python.org/2/howto/index.html
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RESOURCE SOURCE

 9. Introduction to Artificial Intelligence (AI) by Microsoft on edX is a 
comprehensive program covering AI and machine learning concepts.

 10.  Fast. ai provides a practical and top- down approach to learning 
machine learning. They offer free courses that are highly regarded 
for their effectiveness.

Machine 
Learning 
Libraries 
Guides

 1. Python Standard Library Reference:  https:// docs. python. org/ 2/ library/ 
index. html

 2. SciPy Lecture Notes:  http:// www. scipy-   lectures. org/
 3. NumPy User Guide:  http:// docs. scipy. org/ doc/ numpy/ user/
 4. Matplotlib gallery of plot types and sample code:  http:// matplotlib. org/ 

gallery. html
 5. Matplotlib Beginners Guide:  http:// matplotlib. org/ users/ beginner. html
 6. Matplotlib API Reference:  http:// matplotlib. org/ api/ index. html
 7. Pandas documentation page (user guide). Note the table of contents 

on the left- hand side, it is very extensive:  http:// pandas. pydata. org/ 
pandas-   docs/ stable/

 8. Pandas cookbook provides many short and sweet examples:  http:// 
pandas. pydata. org/ pandas-   docs/ stable/ cookbook. html

 9. Pandas API Reference:  http:// pandas. pydata. org/ pandas-   docs/ stable/ 
api. html

 10. The scikit- learn API Reference:  http:// scikit-   learn. org/ stable/ modules/ 
classes. html

 11. The scikit- learn User Guide:  http:// scikit-   learn. org/ stable/ user_
guide. html

 12. The scikit- learn Example Gallery:  http:// scikit-   learn. org/ stable/ auto_
examples/ index. htm

Machine 
Learning 
Projects

Machine Learning Projects:  https:// www. youtube. com/ watch? v= 
5Txi0nHIe0o& list= PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw

Machine 
Learning 
Blogs

 1. Towards Data Science:  https:// towardsdatascience. com/
 2. Medium Machine Learning:  https:// medium. com/ topic/ machine-   

learning
 3. Reddit:  https:// www. reddit. com/
 4. Hackers News:  https:// news. ycombinator.com/
 5. Explainable AI:

a. https://www.ibm.com/watson/explainable- ai
b. https://www.darpa.mil/program/explainable- artificial- intelligence
c. https://towardsdatascience.com/explainable- ai- 9a9af94931ff
d. https://www.weforum.org/agenda/2022/03/

designing- artificial- intelligence- for- privacy/
e. https://ora.ox.ac.uk/objects/

uuid:2b379a39-2bd9-43c1-a97a- 78632ddb9ede

https://www.fast.ai
https://docs.python.org/2/library/index.html
https://docs.python.org/2/library/index.html
http://www.scipy-lectures.org/
http://docs.scipy.org/doc/numpy/user/
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/users/beginner.html
http://matplotlib.org/api/index.html
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/cookbook.html
http://pandas.pydata.org/pandas-docs/stable/cookbook.html
http://pandas.pydata.org/pandas-docs/stable/api.html
http://pandas.pydata.org/pandas-docs/stable/api.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org
http://scikit-learn.org
https://www.youtube.com/watch?v=5Txi0nHIe0o&list=PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw
https://www.youtube.com/watch?v=5Txi0nHIe0o&list=PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw
https://towardsdatascience.com/
https://medium.com/topic/machine-learning
https://medium.com/topic/machine-learning
https://www.reddit.com/
https://news.ycombinator.com/
https://www.ibm.com/watson/explainable-ai
https://www.darpa.mil/program/explainable-artificial-intelligence
https://towardsdatascience.com/explainable-ai-9a9af94931ff
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://ora.ox.ac.uk/objects/uuid:2b379a39-2bd9-43c1-a97a-78632ddb9ede
https://ora.ox.ac.uk/objects/uuid:2b379a39-2bd9-43c1-a97a-78632ddb9ede
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RESOURCE SOURCE

Mathematics 
for Machine 
Learning

 1. MIT Courseware Linear Algebra: https://ocw.mit.edu/
courses/18-06-linear- algebra- spring- 2010/

 2. Calculus 3blue1brown: https://www.3blue1brown.com/topics/calculus
 3. Introduction to Probability The Science of Uncertainty: https://www.

edx.org/course/probability- the- science- of- uncertainty- and- data
 4. Khan Academy offers a wide range of tutorials on mathematics, 

including algebra, calculus, linear algebra, and statistics. It provides a 
step- by- step approach suitable for beginners.

 5. edX provides online courses from universities worldwide. Courses such 
as “Essential Mathematics for Artificial Intelligence” by Microsoft on 
edX cover relevant topics.

 6. Brilliant provides interactive courses in mathematics and science. The 
“Mathematics for Computer Science” course is suitable for building a 
strong mathematical foundation.

 7. Mathematics Stack Exchange is a community where you can ask 
questions and get answers related to mathematics. It's a valuable 
resource for clarifying concepts.

 8. Channels like Professor Leonard and PatrickJMT offer comprehensive 
tutorials on various mathematical topics.

 9. Mathematics for Machine Learning by Marc Peter Deisenroth, A Aldo 
Faisal, and Cheng Soon Ong is a book specifically designed for those 
entering the field of machine learning.

Machine 
Learning 
Algorithms

Algorithm Design and Analysis Pennsylvania University: https://repository. 
upenn.edu/sd3x/

Deep 
Learning

 1. Deep Learning Andrew Ng: https://www.youtube.com/watch?v= 
CS4cs9xVecg&list=PLkDaE6sCZn6Ec- XTbcX1uRg2_u4xOEky0

 2. CS231n - Convolutional Neural Networks for Visual Recognition is a 
widely praised course by Stanford University. It covers convolutional 
neural networks (CNNs) and their applications.

 3. MIT OCW: Introduction to Deep Learning provides lecture notes and 
resources for learning deep learning concepts.

 4. PyTorch Tutorials on the official PyTorch website provide hands- on 
guides for learning deep learning using PyTorch, a popular deep 
learning framework.

 5. TensorFlow Tutorials on the official TensorFlow website offer practical 
guides for building deep learning models using TensorFlow.

 6. Deep Learning (deeplearningbook.org) by Ian Goodfellow, Yoshua 
Bengio, and Aaron Courville is a comprehensive book that covers the 
theoretical foundations of deep learning.

https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://www.3blue1brown.com/topics/calculus
https://www.edx.org/course/probability-the-science-of-uncertainty-and-data
https://www.edx.org/course/probability-the-science-of-uncertainty-and-data
https://repository.upenn.edu/sd3x/
https://repository.upenn.edu/sd3x/
https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0
https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0
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