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Preface

In the park, in Milan, where I am writing this preface, there are seven other people 
enjoying “nature”. Four of us are sitting on benches, either using a smartphone or a 
laptop (myself). Two are on the grass, talking. The remaining two, a boy and a girl, 
jokingly fight in the area with trees. The boy initially pretends to lose and, then, to 
prove his athletic abilities, climbs on a small tree imitating a chimpanzee.

In a few square metres, millions of years of evolution of our species are repre-
sented – the arboreal past, with grooming, the spoken language in the savannah, and 
finally digital communication.1

I cannot avoid asking myself, once more – How did we get here, and where are 
we going? With this question in mind, I started looking at the development of life 
inside a single coherent framework – theory of information and theory of network – 
with the hope to shed some light on the possible futures humanity could face.

There is no definitive answer, but scientific research has proposed a few theories 
which, put together, present an interesting picture. And I am not just talking about 
paleoanthropology. We are children of the universe, and the laws governing the 
universe are the same as those which enabled first the emergence of life, then of 
Homo sapiens, and finally of human societies – artificial intelligence included.

One of the characteristics of life is that it becomes increasingly more complex. 
At the same time, life devises increasingly more sophisticated tools with which to 
gather energy from the environment. Yet another characteristic of life is self-
similarity: a human society has a similar structure to our own person (with a govern-
ment/brain, working force/muscular system, army/immune system, etc.), which in 
turn has a similar structure to a unicellular organism.

This self-similarity is an effect of complexity being built by successive aggrega-
tions: atoms into molecules, molecules into amino acids, and these into proteins, 
then cells, then complex organisms, and finally societies. Every form of life is made 

1 There are also people talking to dogs and collecting their excrement, a behaviour which I still find 
hard to justify from any evolutionary point of view.
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up of less complex elements, collaborating so tightly that, as Jean Jacques Rousseau 
said, each element alienates itself, totally, to the community.

There is a moment when the community becomes a form of life on its own. Our 
own body, a community of collaborating cells, is a living being, not just an aggrega-
tion of cells. The whole is much more than the sum of its parts: what our cells can 
do together cannot be compared to what they would do independently.

This is the mantra of the book – to evolve, life needs collaboration. I am not 
preaching a religion of love. I am saying that the physics of life is based on collabo-
ration. Life does not work without the ability of individuals to collaborate.

The necessity to collaborate comes from the fact that living systems are systems 
which process information on how to extract energy from the environment. They 
need this energy, because processing information requires energy – think of your 
brain or your smartphone. The more information processed, the more energy 
extracted, but also the more energy needed.

Aggregation happens because, sooner or later, organisms reach a limit in terms 
of how much information they can process. Biological cells, at a certain point, could 
not get any bigger. They therefore started collaborating, forming complex organ-
isms. A few billion years later, one of these complex organisms, Homo sapiens, built 
a very powerful brain that also reached a limit – so it started building a metaorgan-
ism made up of many collaborating Homo sapiens. These metaorganisms were 
based initially on language, then writing and math, then printing, and now digital 
communication and data processing.

And so we end up with artificial intelligence and the emergence of the distributed 
nervous system of a metaorganism, in which human beings are the cells, a reassur-
ing world but one where each individual will count increasingly less.

A neuron’s life is safe, but not fun: little more than receiving inputs and generat-
ing outputs. Neurons possess no real knowledge about the external environment. 
They don’t even “know” they are part of the brain. A neuron, left alone, dies. An 
amoeba, which we consider a primitive form of life, survives, because it knows the 
environment it lives in.

Similarly, we sapiens are becoming information processing apes – good at com-
municating through our new digital global nervous system but increasingly incapa-
ble of storing and processing information in our own brain. We are experiencing the 
highest survival rate of our history but are increasingly less knowledgeable about 
the world we live in: the information is now processed by the network of people and 
machines, not by the individual. Like neurons, it is becoming difficult for us to 
understand how our society works and what the forces are moving it. And like neu-
rons, we would not survive for long outside our society, contrary to so-called primi-
tive people, who still retain lots of information about the environment.

Currently, in this landscape, we have organisations, whose only mission is 
increasing their annual revenues – their energy input – managing such global ner-
vous system. As if that was not enough, our energy consumption has become unsus-
tainable: per capita consumption is around 5,000 times that of early hominids, and 
it is based on non-renewable resources.

Preface
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Are we doomed? In the long term, any form of life is. But in the medium short 
term, it is possible that the human metaorganism will not only survive but also 
thrive. The emergence of the DNA in cells or the brain in animals was pivotal for the 
evolution of life, and it is possible that artificial intelligence will play a similar role.

London, UK�   Mario Alemi 

Preface



ix

Skipping Math

The math and physics in the book are kept at a minimum level. A few sections 
would be easy to follow for a “hard” scientist, less for someone who does not like 
formulas. I believe the book can be read skipping those parts, and in order to make 
the process easier, a few sections which I believe can be skipped are in italics.

For example, understanding the difference in complexity between the numbers 
“π” and “1” is not fundamental for reading the book, but it helps understand what 
complexity is. For that reason, it is still in the book but in italics.
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“Cult anthropology is that branch of natural science which deals with matter and motion, 
i.e. energy, phenomena in cultural form, as biology deals with them in cellular, and physics 
in atomic, form."

Leslie Alvin White (1943). Energy and the evolution of culture. American Anthropologist.

…from schools to universities to research institutes, we teach about origins in disconnected 
fragments. We seem incapable of offering a unified account of how things came to be the 
way they are.

David Christian (2004). Maps of time. Introduction to Big History. University of California Press.

[My father] was reading books on the brain, looking for clues about how to make a com-
puter intuitive, able to complete connections as the brain did … the idea stayed with me that 
computers could become much more powerful if they could be programmed to link other-
wise unconnected information.

Tim Berners-Lee (1999). Weaving the Web: The original design and ultimate destiny of the World 
Wide Web by its inventor. DIANE Publishing Company.
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Chapter 1
Life, Energy and Information

The principles we need to take into consideration while studying the evolution of 
how matter aggregates are quite simple.

To extract energy from a system, we need information about that system. We 
need to be able to predict how it will react, evolve. But to process information, in a 
brain, in a computer, in the DNA, we need energy.

Life means storing information to extract energy, and extract energy to store 
information. This chapter will analyse the concepts of energy and information, and 
how they relate to each other.

�What Is Life?

Know thyself is a good starting point for someone who wants to study its origin. And 
in our case, we must start with the question: what is life, what does it mean to 
be alive?

Erwin Schrödinger’s, one of the parents of quantum mechanics, gave this defini-
tion in his booklet What is life (1944):

Life is organized matter which evades the decay to equilibrium through 
absorption of energy

If we do not eat, all our cells, and then molecules, and the atoms, will be scat-
tered in the environment. If we eat, we keep our body organised and avoid that.

A definition does not explain why life has emerged, or how it evolves. But is a 
good starting point to investigate these questions. Schrödinger definition allows us 
to clearly define the object of our interest, and is therefore worth to further explore it.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25962-4_1&domain=pdf
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�The Decay Towards Equilibrium

The concept of equilibrium mostly derives from the work of one single physicist: 
Ludwig Boltzmann. Towards the end of the nineteenth century, on the basis of the 
work done by Maxwell and others, Boltzmann introduced probability into the 
explanation of the evolution of systems into states of equilibrium.

The question no one could answer was –why there is such a thing as the equilib-
rium? Why, if I have a box filled with gas, I will never observe all molecules of gas 
in a single corner, but instead will see them always filling the whole box? Why do I 
need energy to compress all molecules in a corner?

The question is not much different from –why do I need energy to keep all mol-
ecules of an organism together? Why if I don’t provide energy to the organism, all 
its molecules and atoms will eventually diffuse in the environment, like the mole-
cules of gas in the box?

We can better comprehend Boltzmann’s reasoning by simply imagining a gas 
with two molecules, one blue and one read, in a container with a semi-divider wall, 
as in Fig. 1.1.

If the two balls are not coloured, the states B′ and B″, with a ball on both sides, 
appear to be the same, so an external observer might call both states “macrostate B”. 
If we shake the box, the macrostate B is more probable than L and R, because it is 
actually made of two microstates.

If there are one million balls (as many as are molecules in a cube of air with a 
0.1 mm edge) the probability of obtaining states with approximately half the balls 
in each region is about 10300,000 times higher than that of obtaining states in which all 
the balls are on one side.

This is why we say that the system’s equilibrium is with the balls, or molecules 
of gas, evenly distributed in the box. Unless we do something, the system will spon-
taneously evolve with the balls on both sides. Not always the same balls, but as far 
as we can say, the balls are evenly distributed.

Fig. 1.1  A box, a wall and 
two coloured balls. There 
are four microstates, i.e. 
states which we can 
identify as different thanks 
to the color of the balls. 
When the balls are 
indistinguishable, like 
molecules in a gas, we 
only identify three 
macrostates

1  Life, Energy and Information
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Similarly, if living systems do not absorb energy, they decay towards equilibrium 
in the sense that all their molecules tend to occupy the most probable macrostate, 
which is the one with all molecules diffused, like the ones in the gas. The gas does 
that quickly, our molecules slowly, but the process is the same.

To avoid the decay to equilibrium, we need energy. With some effort, we can 
move the balls from one side and put them on the other side, so to remain in a non-
equilibrium state. Similarly, with some energy we keep our organism… organised, 
and all its molecules together.

�Energy Extraction Requires Information

The real breakthrough for Boltzmann was linking the concept of equilibrium to the 
one of entropy, a physical quantity related to order and the ability to extract energy 
from a system.1 The more a system is far from equilibrium, the more energy we can 
extract. Let’s see what it means.

Around 80 years after Boltzmann’s studies on statistics and equilibrium, one of 
the most brilliant minds of the twentieth century, John von Neumann2 (1956), linked 
entropy and information with that definition:

Entropy … corresponds to the amount of (microscopic) information that 
is missing in the (macroscopic) description.3

Entropy, says von Neumann, is a lack of information about the system. We have 
microscopic information when we can identify each ball (e.g. with colour), macro-
scopic when not (all balls look the same). The less we can discern different micro-
states, and aggregate them into less informative macrostate, the higher the entropy.

Let us put this definition together with the one given by James Maxwell (1902), 
one of the founders of thermodynamics:

The greater the original entropy, the smaller is the available energy of the 
body.

1 Boltzmann defines his famous definition of entropy, engraved on his tombstone as a fitting epi-
taph: S = k•log W, where W is the number of microstates equivalent to the macrostate observed and 
S is the dimensional constant, known as the Boltzmann constant.
2 von Neumann, a Hungarian, one of the many Jews who fled from inhospitable Europe to America 
in the 1930s, was considered the most gifted man in the world by the likes of Enrico Fermi, who 
after working with him on a problem, said “I felt like the fly who sits on the plough and says ‘we 
are ploughing’” (Schwartz 2017).
3 The complete quote reads: “The closeness and the nature of the connection between information 
and entropy is inherent in L. Boltzmann’s classical definition of entropy … as the logarithm of the 
“configuration number”. The “configuration number” is the number of a priori equally probable 
states that are compatible with the macroscopic description of the state – i.e. it corresponds to the 
amount of (microscopic) information that is missing in the (macroscopic) description”

Energy Extraction Requires Information
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Maxwell says that low entropy means being able to extract energy. Von Neumann 
that low entropy means having information about the system. Therefore, when we 
have information about a system, we are able to extract energy from it.

If we think about that, it is quite obvious. If we want to extract wealth from the 
stock market, we need to study it. We need to be able to know how it evolves. If we 
want to extract energy from a liter of fuel, we need to know the laws of thermody-
namics, so that we can build an engine.

In order to get energy, we, like any other living system, must have information 
about the environment. This allows us to absorb the energy which allows us to 
escape equilibrium.

Having defined life, we ended up with the idea that living organisms are systems 
which collect information about the environment. They use this information to 
extract energy from the environment and keep themselves in a state far from equi-
librium. Before asking ourselves why they do so, we need to define information.

�Defining Information

If we want to study living systems, which store information on how to extract energy 
from the environment, we want to have a clear definition of what information is.

Acquiring information on a system means becoming able to predict how 
that system evolves with less uncertainty than we did before.

For those keen on a bit of mathematics, below we define uncertainty as a function 
of probability, and information as a function of uncertainty.

To do this, all we have to do is define the level of surprise for an event. Surprise 
is a function of the probability p, where p indicates how strongly, in a 0–1 range, we 
believe that an event is going to happen. Surprise should therefore be big in the case 
of a small p (we are very surprised if something we think as improbable happens) to 
zero in the case of p = 1 (we are not surprised if something we consider to be inevi-
table happens).

1  Life, Energy and Information
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For those interested in a bit of math, the function that satisfies this relationship 
between р and surprise is the logarithm. As in Shannon (1948), we consider the 
logarithm in base 2:

	 Surprise = −log2(p).	

From this definition, we define uncertainty as the average surprise. Which makes 
intuitive sense: if we are surprised very often of what happens around us, it means 
we don’t know much about the world we live in.

To understand the concept, we can take a very simple system –a coin.
In a coin, head and tail have the same probability. Let us imagine that for some 

reason we believe the coin to be biased. We believe that heads comes up 80% of the 
time and tails 20%. This means, each time head comes up our surprise will be

surprise(heads) =− log2(.8) = 0.32 bit

and each time we see tail:

surprise(tail) = − log2(.2) = 2.32 bit

Because the coin is actually not biased, we will have a surprise of 0.32 bit 50% 
of the times, and of 2.32 bit the remaining 50% of the times. On average, our sur-
prise will be

Average_surprise(we believe biassed coin) = 
0.5 • 0.32 bit +0.5 • 2.32 bit = 1.32 bit.

If we had believed that the coin was fair, as it was, our surprise for both head and 
tail would have been

Defining Information
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surprise(head or tail) = − log2(0.5) bit = 1 bit

average surprise would have been lower:

average_surprise(we believe fair coin) = 0.5 • 1 bit +0.5 • 1 bit = 1 bit

This will always be true: the average surprise is minimum when the probability 
we assign to each event is actually the frequency with which the event will happen.

More formally, we can say that if the system can be in N possible states, with an 
associated probability of pi and a frequency of qi, our uncertainty S for the system is

S q p
i

N

i i= − ( )
=
∑

1
2·log

According to the Gibbs’ inequality, S has its minimum for pi = qi, i.e. when the 
probabilities we associate to each event, p, is the one we will actually observe, q.

In this sense, acquiring information on a system means knowing how to predict 
the frequency of each result.

If we have a good model describing the solar system, we’ll be able to predict the 
next eclipse and not be surprised when the sun will disappear.

A lion – a carnivore who is one of the laziest hunters in the animal kingdom – 
like any other living system works on minimising uncertainty, to get more energy 
(food) from hunting. Of various paths used by prey to get to a water hole, the lion 
studies which are the most probable (Schaller 2009). The lion minimise the uncer-
tainty on the prays’ path, and therefore increases the probability of extracting energy 
from the environment.

Note that there is no such a thing as absolute information. While the frequency 
with which events happens are not observer-specific, the probability we associate to 
them are. As Rovelli (2015) writes: “the information relevant in physics is always 
the relative information between two systems” (see also Bennett 1985).

�Information Storage Requires Energy

If the pages of this book looked something like this

1  Life, Energy and Information
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few people would believe there was any message at all –rightfully, because this is 
just a randomly generated image.4 It looks like the ink was just spread, randomly, 
into this state and then dried.

Viceversa, the Jiahu symbols, drawn in China 8600 years ago, are widely seen as 
one of the first example of human writing (Li et al. 2003).

 

Our intuition tells us that someone made an effort to create signs with a meaning, 
and that this drawing is not random. We don’t know how valuable the information 
was, but we do know that someone wanted to communicate something, to pass 
information.

4 https://upload.wikimedia.org/wikipedia/commons/f/f6/White-noise-mv255-240x180.png

Information Storage Requires Energy
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To store information we need to set the system in a low-probability macrostate.5 
If we use as a communication tool a box with 10 balls and 9 walls, it would not be 
wise to assign a meaning to the state where all balls are evenly distributed: the sys-
tem would often decay, if not controlled, to this state. A recipient would see nothing 
more than the “normal” state of the system.

This means that information also needs energy. Because we use low-entropy 
states, we need some energy to avoid the decay to equilibrium of the memory.

Random Access Memory (RAM) in a computer, for example, requires continu-
ous energy input in order not to lose the information stored. Our brain dies in a few 
minutes without energy, and so on.

~

The last two sections bring us closer to understanding how a living system might 
work. They tell us that in order to absorb energy, the living system must store infor-
mation about the environment. And that to store information, the system needs energy.

 

�Storing Information

We took as examples of information-storing devices writing, computers’ memory 
and the brain. Only the last is (part of) a living organism.

5 The opposite is not necessarily true, and there are indeed drawings, which we will analyse later, 
which are not universally recognised as symbols. This, because sometimes a system can settle 
itself in an apparently not-random state, to which we can assign a meaning, although no informa-
tion was put there. For example, Italy, one of the largest exporters of footwear in the world, has the 
shape of a perfect boot. Nonetheless it’s hard to believe that someone in the universe created the 
peninsula with such a shape to advertise the Italian shoe industry.

1  Life, Energy and Information
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Nonetheless, for us humans, information is linked to language. We use language 
to store information, and to exchange information. Is the way we store information 
in language so different from how we living beings store information? Not really.

If we are asked about the structure of a brain, the first thing which comes to mind 
is probably “a network”. Language is no different, as it is a network (Wood 1970). 
When we express concepts, we connect words. The information is stored by identi-
fying patterns inside the network of language.

We could think of the book as a path in the network of the 6837 unique words6 
used to write it: 

“The” ⇒ “amazing” ⇒ “journey” ⇒ “of” ⇒ “reason” ⇒ “\new_line” ⇒ “from”… 
and so on.

One characteristic of language is that part of the information is in the microstate –
each word is different from the others– and part of it is in the macrostate –words have 
different meanings depending on which words they are connected to. Therefore part 
of the information is in the nodes of the network, part in the network itself.

What also is of interest, is that the complexity of the language network emerges 
as we use the language. The more we use language to describe new concepts, the 
more connections appear, the more complex the network becomes. One hundred 
years ago the word “so” was never used before the word “cool” and after “ur”. 
Today, with usage, a new path has appeared.

Something similar happens in the brain. The memorisation process in the net-
work of the brain occurs connecting nodes: “Pathways of connected neurons, not 
individual neurons, convey information. Interconnected neurons form anatomically 
and functionally distinct pathways” (Kandel 2013). As for language, information 
and complexity are inseparable in the brain.

Though the process is complicated (the human brain has various kinds of mem-
ory: short, medium, long-term, spatial, procedural), the memorisation mechanism 
involves the definition of new paths in the neural network, called Hebbian learning 
after the psychologist who came up with the theory in 1949.

Donald Hebb understood that memorising the association between two events 
(like in Pavlov’s experiment, in which a dog associates the sound of a bell with 
food) occurs when two neurons fire several times simultaneously, so the activity of 
the same often appears to be related: the connection between these two neurons is 
reinforced, leaving an information trail (Kandel 2013).7

In the case of long-term memory, the link is definitive, in the case of short-term 
memory it isn’t, and only remains if used frequently (by neurons that fire periodi-
cally). In general, with experience, the brain reinforces certain connections (“sensi-
tisation through a heterosynaptic process”, Kandel 2013) and weakens others 
(“synapses that are weakened by habituation through a homosynaptic process)”. 
The less-used connections disappear, while the more-used ones are consolidated. 
Exactly in the same way as with language.

6 Case-sensitive
7 Specifically, “E3 – Mathematical Models of Hebbian Plasticity”

Storing Information
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Open Access   This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

To sum up, networks are complex systems where their complexity, their internal 
structure, arise from storing information. In this sense, every network which stores 
information can be considered complex according to Herbert Simon (1962) defini-
tion of complexity: “Roughly, by a complex system I mean one made up of a large 
number of parts that interact in a nonsimple way. In such systems, the whole is more 
than the sum of the parts”.

1  Life, Energy and Information
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Chapter 2
From the Big Bang to Living Cells

We have seen that networks are complex systems, whose complexity, i.e. internal 
structure, arise from storing information. Living systems are information-storing 
devices, but so are other similar systems, like ant colonies or human societies.

Because we want to study the aggregation of matter from the Big Bang to the 
emergence of Artificial Intelligence, this chapter starts with a definition which 
encompasses all systems we will encounter in the book.

We then go on revising some theories on the emergence of life. Here we will see 
that molecular biology has identified communication as the engine behind the cre-
ation of the first biological cells.

�Intelligent Systems

Like a huge fractal, where each part is similar to the whole, life on earth appears to 
develop by subsequent degrees, creating aggregates of aggregates of said systems. 
It starts from proteins (aggregates of amino acids) through cells (aggregates of pro-
teins) and complex organisms (aggregates of cells) to social networks – the super-
organisms (Hölldobler and Wilson 2009) of ants and, lately, humans.

Internet isn’t a living biological network, but it was created by biological organ-
isms, exactly as biological cells created nervous systems. All these systems have the 
following properties which we observe from the outside:

•	 they’re systems able to store and process information. The capacity of manag-
ing information is an emergent property –memories are systems in which infor-
mation is recorded by connecting elements (proteins, cells, people, computer). 
The whole is more than the sum of the parts: therefore they are also complex, 
according to Simon’s definition.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25962-4_2&domain=pdf
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•	 they are self-sustaining: they can nourish their complexity autonomously. They 
have internal adjustment mechanisms, and manage to absorb sufficient energy 
from the external environment to maintain their internal structure and grow.

•	 they are self-organising: “A self-organising system is one in which a structure 
appears without specific intervention from the outside” (Griffith 2013). This con-
cept derives from physics, but as the quote taken from a book on educational 
theory suggests, it’s now commonly used.

There’s no term in the theory of networks (see Appendix 1) to describe similar 
systems. We’ll call them intelligent systems, with reference to the etymological 
origin of intelligence, from the Latin inter-legere: to join together, connect, in which 
legere has the proto-Indo-European root L-Gh that can also be found in the Italian 
word legno (wood), in the English word log, and in the Greek word λόγος (logos, 
word, speech, reasoning). The origin of the concept of intelligence is the ability to 
gather firewood, an essentially human activity used to extract energy from the envi-
ronment: there are no known Homo sapiens’ communities that don’t use fire, and no 
other species of animals are known to use it. Being intelligent means knowing how 
to extract energy from the environment to remain self-sustaining and 
self-organising.

“Living networks” could also be a good definition: but not all intelligent systems 
can be considered biologically alive, although all can be traced back to biologi-
cal life.

This race for ever-greater complexity, more information processed, more energy 
consumed, appears to be as relentless as it is necessary. Can we then understand 
why these systems emerge, and why they seem to have to evolve?

�Ex-Nihilo Energy and Information

Before we analyse the evolution of intelligent systems on earth, let’s take a look at 
the creation of the universe – because all things considered, it’s the structure of the 
universe that’s responsible for the existence of our solar system and therefore also 
planet earth. Furthermore, the concept of information we considered in Chap. 1 is 
of late being seen as a possible key for interpreting the creation of the universe itself.

Every culture has its own creation myth. “Ours” (the scientific one) appears to be 
by far the most complex. But it has two big advantages.

First, it explains a lot of what we observe – not simply what we see when gazing 
at the stars on a dark night, but also what we see when we make protons collide 
close to light speed, and what we measure, with manic precision, with reference to 
the evolution of the universe.

For example: background radiation. In the universe, radiation appears to come 
from all directions. If you aim a satellite-TV dish tuned to 160 GHz in any direction, 
you’ll receive an almost uniform signal. The two physicists who discovered this 
phenomenon by chance in 1964 won the Nobel prize, as they deserved to, because 

2  From the Big Bang to Living Cells
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years earlier the existence of background radiation had been predicted as part of the 
Big Bang theory, in exactly the same way in which it was later measured.

There aren’t many civilizations that aim satellite dishes at the night sky hoping 
to receive electromagnetic signals, and there are even fewer creation myths that can 
explain the existence of this radiation.

The second advantage of our creation myth is that it’s based on very simple prin-
ciples: interactions between matter are explained by so-called spontaneous sym-
metry breaking. As the temperature of the universe drops, asymmetry appears in the 
form of new forces.

Spontaneous symmetry breaking in quantum field theory isn’t easy to under-
stand, but the phenomenon that’s usually taken as an example, is. Imagine a red-hot 
ball of ferromagnetic material. At high temperatures, the material won’t be magne-
tised. As the temperature drops, the ball becomes a magnet, with the magnetic field 
in some random direction.

This means that by lowering the temperature we can acquire information on a 
system of balls. In a system consisting of many balls, all above critical magnetisa-
tion temperature, we cannot distinguish one ball from another. Below the critical 
temperature however, each ball will be different to the next: as the direction of the 
magnetic field of a ball is casual, so each ball can be identified by its magnetic direc-
tion. In practice, the difference between macrostate and microstate collapses: from 
maximum it becomes minimum, and the system “lets us” describe it in a better way, 
with more information, i.e. less uncertainty.1

Similar mechanisms lie behind the laws that have governed the universe since its 
primordial explosion, the Big Bang, 13.8 billion years ago. The most interesting 
thing is that in the last 50 years, in a more and more decisive way, temperature (in 
other words energy density) and information have been used to probe the “meta-
physical”: the very origins of matter-energy and time that constitute our universe 
(Tryon 1973), (Vilenkin 1982), (Wheeler 1990), (Lincoln 2013).

Information and energy, in these theories, are not linked merely on a thermody-
namic level, but at a much more intimate level: energy represents the other side of 
the coin to information. Having information means having energy, and it’s the spon-
taneous creation of information that represents the basis for the emergence of mat-
ter in the origin of the universe.

Although the creation of the universe remains within the scope of metaphysics, 
one of the merits of these speculations is interpreting energy in terms of informa-
tion, and therefore probability: something that’s even more fundamental than energy 
itself. Probability, in fact, seems independent of the type of universe in which we 
happen to live: we could imagine a universe in which the fundamental interactions 
are different, but it’s difficult to imagine a universe in which the probability of com-
ing up “heads” when tossing a fair coin isn’t 0.5.

1 As we’ve already seen, entropy should be considered a property of certain macroscopic variables 
(those that describe the macrostate), and information is always relevant information between two 
systems (Rovelli 2015)

Ex-Nihilo Energy and Information
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�The Emergence of Complexity

In Chap. 1 we saw how complex systems become all the more complex as the 
amount of information they contain increases, but the first great complex system 
actually emerged spontaneously: is the universe, or cosmos, rightfully from the 
Greek word κόσμος (kosmos, order).

Around 300,000 years after the Big Bang, the universe was an immense, rapidly 
expanding cloud of hydrogen, with just a little helium and a few other elements. We 
can compare this gaseous mass to a random network (Erdös and Rényi 1960): each 
atom influences and is influenced by only a small, almost constant number of 
other atoms.

In practice, there is maximum entropy in the system, because all the elements – 
the hydrogen atoms – are indistinguishable inside the network (see Appendix 1 for 
how to compute the entropy of a network). It seems like the end of the universe: as 
every system slips towards greater stages of entropy, and as the universe is now at a 
stage of maximum entropy, it should remain as it is and not evolve.

In reality, a system cannot become ordered unless it is supplied with energy. And 
although the universe cannot receive external energy, it is a system in unstable equi-
librium. The entire universe cannot “recollapse” in a Big Crunch because of the 
explosive power of the initial Big Bang, but areas in which the gas becomes more 
compact can form on a local scale.

Imagine the explosion of a bomb made up of magnetic parts: even if the average 
distance of all the parts from the centre of the explosion continues to increase, some 
parts will still come together. In practice, instead of many small parts moving away 
from the centre of the explosion, there will be fewer, bigger ones.

Something similar occurs in the universe. The gas cloud collapses in various 
points. High-density gas aggregates under extremely high pressure and forms the 
stars. Stars are indeed compressed hydrogen that fuses into heavier elements in the 
cores. The fusion produces heat, which stops the stars from collapsing.

The first effect of the formation of stars is the creation of thermal gradients – 
areas at high temperatures (the stars) and low temperature (everything else). One 
can extract energy from such a system with any thermodynamic engine, i.e. some-
thing which extract heat from the hot reservoir and releases it to the cold one, trans-
forming part of it in mechanical engine.2

The second effect is the spontaneous emergence of complexity. Not all stars 
are created equal: some are very rich in mass, heavy (few) and others are very poor, 
light (many). In other words the size of stars has the same structure of the wealth of 
people in a society does, the so-called Pareto distribution (or power-law, see 
Appendix 1). Furthermore, stars form aggregates, galaxies, in which the number of 
stars follows the same distribution (few really big, many very small), and galaxies 
form aggregates of galaxies (clusters) with the same Pareto distribution.

2 Steam and internal combustion engines work in this way, see for instance https://en.wikipedia.
org/wiki/Heat_engine.
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In short, something incredible is happening: matter organises itself and the structures 
typically found in intelligent systems appear: Pareto distribution and self-similarity.

The emergence of the Pareto distribution in this case has nothing to do with the 
process of storing information – it’s a “cosmic coincidence” (Watson et al. 2011). 
When a glass breaks on the ground, the size of the pieces also follow the Pareto 
distribution, but there’s no form of intelligence behind the process (see Appendix 1 
for why this happens).

Intelligent process or not, the universe has now a structure which makes possible 
the creation of more complex matter, beyond simple hydrogen and helium. In big 
stars, gas is subject to greater pressure, and burns faster. The few macro-stars burn 
all their fuel in a few billion years, and explode. Just before the final explosion they 
produce all the elements in the periodic table. Supernovas, as they are called, have 
been throwing elements out into space for 12 billion years. One supernova is also at 
the origin of the matter from which the planets in our solar system are made, and 
therefore us too.

In physics, the model that describes the formation of all elements – from hydro-
gen to uranium – during the life of the universe, was developed in the 1950s, and 
called B2FH, after the authors’ initials (B2FH 1957).

The prodigiousness of the B2FH model is that it not only explains what we 
observe in the universe. It provides us with an image of a universe in continuous 
change also in chemical terms. New elements continue to be formed with the pass-
ing of time, and the abundance or scarcity of elements lets astrophysicists calculate 
the age of various regions in space. It is estimated for instance that our solar system, 
earth included, formed 4.56 billion years ago.

That’s when life could emerge.

�Life Without Selection

Charles Darwin stated that asking questions about the origin of life was the same as 
asking questions about the origin of matter. This did not stop him imagining sce-
narios which, he thought, might have favoured the formation of living organisms: 
“some warm little pond with all sort of ammonia and phosphoric salts” Peretó 
et al. 2009).

Darwin was even criticised by his admirers for not having proposed an official 
theory on the origin of life (Peretó et al. 2009). We must give him credit for having 
avoided taking up the challenge. In the On the Origin of Species, Darwin described 
the evolution of a few complex organisms, made up of biological cells, the structure 
of which was unknown at the time. It was before Gregor Mendel discovered the 
laws of inheritance (1865), and of course before DNA was even imagined.

Darwin probably didn’t propose a theory for the origin of life simply because 
applying Darwin’s mechanism of natural selection to the emergence of life, as done 
by Dawkins (1976), is like comparing apples with pears (Johnson 2010). What’s 
more, the idea that a self-replicating molecule with an information content casually 
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appeared in a primordial soup, as imagined by Dawkins (1976) (“At some point a 
particularly remarkable molecule was formed by accident. We will call it the 
Replicator.”) appears to be statistically groundless (Yockey 1977).3

The fact that the “Replicator” cannot have appeared merely by chance has been 
considered proof that there must be an intelligent design behind it. As usual, when-
ever there is no clearly valid scientific explanation, the intelligent designer comes 
in. When a plausible explanation becomes common sense, as in the evolution of the 
universe, the intelligent designer retreats.

Consider a statement like the one John C. Eccles made just in 1989: “Since mate-
rialist solutions fail to account for our experienced uniqueness, I am constrained to 
attribute the uniqueness of the Self or Soul to a supernatural spiritual creation.”(Eccles 
1989). Today, scientists think that purely materialistic models can provide a perfect 
explanation for the emergence of conscience (Dehaene 2014), and few people, let 
alone a scientist, would defend Eccles’ idea.

In a similar way, our knowledge of molecular biology today leads us to consider 
the creation of life through divine intervention, or the emergence of the same “by 
accident” as in (Dawkins 1976), not to be the best choice.

The question is therefore: with the instruments at our disposal, can we describe 
the formation, evolution and behaviour of various intelligent systems, from biologi-
cal cells up to human societies, going through the nervous systems?

�The Startups of Life

There is often some confusion about physics dictating that “it’s impossible to create 
order” or “disorder is constantly increasing.” We have seen the universe itself cre-
ated order soon after the Big Bang. When we freeze water in a freezer we create 
order. It’s just that we need energy to do so.

Evolving systems can be divided into 4 categories:

	1.	 The system becomes more ordered and absorbs energy – the “freezer” system. 
Possible only if we provide sufficient energy.

	2.	 The system becomes more disordered and emits energy – the “explosion” sys-
tem. Possible only if there is not too much energy emitted.

	3.	 The system absorbs energy and becomes disordered – the “adolescent” system. 
These reactions are always possible. It’s easy to waste energy for creating 
disorder!

	4.	 The system becomes more ordered and emits energy –the “genie in a bottle” 
system. Unfortunately, it’s impossible.

3 There is still the possibility that life appeared on earth after this casual process had occurred an 
infinite number of times: both in an infinite number of universes and in this universe, and billions 
and billions of times in systems similar to our solar system. It’s possible, but perhaps it would be 
better to come up with a mechanism that makes us less unique…

2  From the Big Bang to Living Cells
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Figure 2.1 shows how the systems above evolve. They all start from a state where 
no energy is absorbed or emitted, and the order is not perturbed. They then start 
evolving, and finally stop. The fridge is switched on, absorbs increasingly more 
energy, creating more order, then stays in a region where it absorbs an almost fixed 
amount of energy, creating a fixed amount of order. Until it’s switched off.4

But if we take life since the very beginning, as shown in Fig. 2.2, there are two 
things which do not fit.

4 Pictures available under creative common licence: https://www.needpix.com/photo/down-
load/986345/refrigerator-freezer-fridge-freezer-retro-seventies-american-style-metalic-cool-cold,

https://www.flickr.com/photos/puyo/253932597,
https://www.flickr.com/photos/51686021@N07/33230171512

Fig. 2.1  The three possible evolution of a system in the space “energy absorbed/emitted” versus 
“order created/destroyed”

Fig. 2.2  Since its appearance, life has been absorbing increasingly more energy from the environ-
ment, constantly escaping equilibrium, i.e. creating more order

Life Without Selection

https://www.needpix.com/photo/download/986345/refrigerator-freezer-fridge-freezer-retro-seventies-american-style-metalic-cool-cold
https://www.needpix.com/photo/download/986345/refrigerator-freezer-fridge-freezer-retro-seventies-american-style-metalic-cool-cold
https://www.flickr.com/photos/puyo/253932597
https://www.flickr.com/photos/51686021@N07/33230171512
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The first is –why it started? A fridge starts cooling, when we provide energy, 
because that’s the way we built it. We are the intelligent designer.

The second is –why it keeps growing? “Because life evolves” is not a good 
answer. “Because of natural selection” isn’t either: why should natural selection 
bring an increase in energy absorbed and order?

To answer, let’s have a look at the ecosystem of companies. Specifically, startups 
growing without external funding (the ones who can “bootstrap”,5 a concept we will 
encounter again later). A startup which bootstraps has little or no internal organiza-
tion, just a few elements, but is able to absorb some energy (cash from sales).

If the business model, i.e. the information retained by the founders on how to 
extract energy from the market, is valid, the startup will use some of the earned cash 
to increase in size. Together with that, internal organisation –complexity– will 
appear.6 The organisation represents an asset for the company –is what allows the 
exploitation of the market– but also a liability –it requires energy in the form of cash.

The startup needs little cash at the beginning while providing, with its “disrup-
tive idea”, a way to extract revenues from the environment. The extra cash will be 
used to improve the internal organisation, while increasing revenues. It’s an ava-
lanche effect: more organisation increases the revenues, bringing more organisa-
tion, which requires more cash but allows more revenues and so on.

With growth, there is a scale effect: bigger networks –companies– can process 
more information per element, notwithstanding the fact that the information pro-
cessed by each element is less than it was at the beginning. It’s Herbert Simon defi-
nition of complexity –the whole is bigger than the sum of its parts.

In a similar way, we must find a mechanism which allows the aggregation of 
basic chemical elements into something more complex through absorption of 
energy. The information on how to extract energy must be contained somewhere, 
and these elements must be able to “read” it. Once the elements get together, they 
must be able to store information on how to aggregate further, storing increasingly 
more information.

It looks like an impossible task but, seen that we are here, alive, it must be not.

�Amino Acids – The Entrepreneurs of Life

Amino acids are big molecules which, bonded together, form proteins, which even-
tually organise themselves into biological cells. One of the most interesting discov-
eries in biology during the last century was that amino acids, considered the building 
blocks of life, appear spontaneously in nature.

5 “Building a company from the ground up with nothing but personal savings and, with luck, the 
cash coming in from the first sales”. https://www.investopedia.com/terms/b/bootstrap.asp verified 
26 August 2019.
6 Lex Donaldson, a sociologist, defines complexity as “a measure of the amount of knowledge 
available within the organization (Donaldson 2001)
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Soon after World War II, Harold C. Urey, a Nobel prize and key figure in the 
development of the nuclear bomb, began to consider the emergence of life in an 
atmosphere rich in methane, hydrogen, and ammonia (Bada and Lazcano 2003). It’s 
Darwin’s “primordial soup”.

Urey’s idea had such an impact on the 22 year old Stanley Miller, another physi-
cist, student of Edward Teller  – often referred to as the Father of the hydrogen 
bomb7 – that he decided to abandon nuclear physics for setting up an experiment 
which proved Urey’s hypothesis.

In 1952, for the first time, humanity produced synthetic amino acids in the 
Miller-Urey experiment.

Today, we believe primordial conditions were different to those imagined by 
Urey and Miller, but the fact remains that the formation of amino acids can be a 
spontaneous process. It’s a natural “freezer system”, a little order is created and in 
exchange a little energy is absorbed.

But how amino acids, these big molecules, can aggregate in more complex struc-
tures, like proteins? This cannot be a spontaneous process. To bond amino acids we 
need much more than just electrical discharges: they require specific chemical pro-
cesses. And these chemical processes do not occur by chance, especially on the 
necessary scale. In addition to that, even if we managed to supply energy in the right 
way, we couldn’t create long amino acid chains – proteins – as we wished, because 
they would break.

One mechanism that partially solves the first problem was proposed soon after 
Miller’s experiment (Koshland 1958). There are substances, called enzymes (from 
the Greek word ἔν-ζυμον, in yeast) which, due to their particular form, and there-
fore the electric field around them, can favour the creation of a bond between two 
amino acids, the peptide bond.

It’s like building a chain of lockers with or without their keys – energy is required 
in both cases, but much less in the first case. In presence of enzymes, amino acids 
bond easily, using just some excess of the energy available in the environment.

There is still the second problem: it’s impossible to have proteins, chains of bil-
lions of amino acids, free in the environment. Imagine a human chromosome – a 
DNA molecule – lying unfolded: it would be two metres long. In any natural envi-
ronment it would break immediately.

This problem is solved by collaborative molecules, called “chaperones”. 
Molecular chaperones can favour, without having to do any work, the folding of the 
proteins into stable configurations. These stable configurations have the additional 
property of favouring proteins interaction. When folded, proteins can move in water, 
interacting with each other without getting trapped.

Egg white is an excellent example of how important protein folding is. When 
raw, it’s fluid, and consists of an aqueous solution of folded proteins. When beaten 
into a thick foam or boiled, the white solidifies because the proteins burst and are 

7 For his obsession in building such a destructive device, together with his strong Hungarian 
accent, Edward Teller is also the person the character Dr. Strangelove in Stanley Kubrick’s film 
was based on.
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trapped in each other. In the first case the proteins can move around and interact, in 
the second they are immobilised.

In conclusion, for proteins to form, survive and eventually interact we must have:

	1.	 A mechanism which creates enzyme for amino acids to bond together in 
proteins

	2.	 A mechanism which creates chaperones, for the proteins to fold

�The Secret of Life

Ever since it was discovered, DNA has been called “the molecule of life”. But 
really, it would be more fitting to call it “the brain of cellular life”. Our brain, while 
essential for our survival, could not survive alone. The same is true for a DNA mol-
ecule, which alone would remain helpless and in time disappear.

Nevertheless, the idea that DNA is key not only for cellular life, but also for the 
appearance of life itself, has never been far from the thoughts of many chemists and 
biologists alike: one of the most popular theories on the origin of life is in fact the 
so-called “RNA world”, in which ribonucleic acid, a molecule similar to DNA, was 
responsible for having kick-started life.

The “RNA world” hypothesis derives from the fact that, in a similar way to 
Miller’s experiments, we’ve managed to reproduce the conditions in which amino 
acids organise themselves and bond in RNA chains which, in the right conditions, 
start reproducing. The only problem with this theory is that in any case, at the start 
of the process, you have to introduce enzymes of biological origin. Moreover, DNA 
and RNA are used by cells to store and transport information on how to construct 
proteins, so we don’t know how an RNA that reproduces autonomously could 
evolve into cells (Robertson 2010), (Davies 2000).8

Another hypothesis for the origin of life, better-suited to the framework of intel-
ligent systems, is the “proteins first”, proposed by physicist Freeman Dyson (2004). 
Going against the idea that life started by creating both the information medium and 
the information itself (RNA) at the same time, Dyson took inspiration from the 
theory of Russian biologist Alexander Oparin (1957). Oprain had the intuition that 
life is made possible by how molecules interact. Life begins with the interaction 
between proteins, and not with their capacity to reproduce.

What’s fascinating about Oparin’s view, is that life is seen as a natural process in 
the evolution of matter. Previously we considered how the universe created more 
and more complex structures, starting from a shapeless blob of energy, the Big 
Bang. In Oparin’s opinion, life should be considered the continuation of this pro-
cess – a continuation that stopped at very low levels in some parts of the universe, 
while on earth and perhaps on other planets it continued to create complex organisms.

8 “Is Eigen’s work a reconstruction of the steps in which nature created life from inanimate matter? 
Evidently not. “Page 139 in the Italian version.
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The idea that life started thanks to the fact that amino acids spontaneously 
became organised into complex structures has become all the more credible in 
recent years thanks to theoretical and experimental works. Guseva et al. (2017), for 
example, introduce a complexification mechanism based on the polarity of water 
molecules and polymers.9

The mechanism is ingenious, and surprisingly simple: the authors prove that in 
certain conditions a small percentage of proteins10 fold in water, because some 
amino acids are hydrophilic and others are hydrophobic: the first tend to form the 
surface of the folded protein, while the second form the internal part. Some hydro-
phobic amino acids remain exposed though, attracting the hydrophobic elements of 
other proteins.

Sometimes two hydrophobic tails fall together into the field of another hydro-
phobic section on the surface of the refolded protein. Like a magnet that attracts 
other magnets so they stick together, this section helps the two tails interact and 
form a bigger protein  – it’s the enzymatic process. In practice, small proteins 
become the enzymes that help other proteins grow ever bigger. The same mecha-
nism helps these new proteins fold.

Some proteins, highly interacting with each other, combine spontaneously in 
closed communities, called protocells, that can attract or search for the substances 
they need to function. The fact that a few molecules combined, protocells, can form 
systems able not only to use the chemical energy available in their environment, but 
also to move in order to find it, has been proven in various experiments (e.g. see 
Hanczyc et al. (2003), made famous by Hanczyc’s TED talk11).

Protocells are dissipative structures: structures that can use an energy flow to 
create and maintain an internal order (Kondepudi and Prigogine 1998), (Margulis 
and Sagan 1997). When there is no energy, the internal structure disappears, exactly 
as an organism without food decomposes.

While remaining within the field of speculation – there is still no widely accepted 
paradigm for the origin of life – according to Dyson at this point the RNA can form 
(as there are enzymes) and reproduce (the RNA can produce its own reproductive 
enzyme, the ribozyme).

The RNA initially appeared as a parasite. After having exploited the spontaneous 
emergence of simple polymers/enzymes, it started to grow, absorbing the same 
polymers it no longer needed thanks to the ribozyme, destroying the host protocell.

At this point, the RNA had two options: continue to emerge spontaneously, grow, 
and destroy every protocell it manages to infect, and therefore disappear, or collabo-
rate with the protocell on which it is the resident. Since 1982, in fact, we know that 

9 A term used generically for chains of simpler molecules, the monomers. It includes also, but not 
only, proteins.
10 Specifically, we are talking about very small proteins, so small that they are called peptic chains 
and not proteins.
11 Hanczyc, M.  M. (2011) The line between life and not-life. TEDSalon London Spring 2011. 
https://www.ted.com/talks/martin_hanczyc_the_line_between_life_and_not_life
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RNA acts in cells not only as an information medium, but also as a protein enzyme: 
in other words it helps other proteins form.

In the words of Freeman Dyson:

Within the cell, with some help from pre-existing enzymes, the nucleotides produced an 
RNA molecule, which then continued to replicate itself. In this way RNA first appeared as 
a parasitic disease within the cell. The first cells in which the RNA disease occurred prob-
ably became sick and died. But then, according to the Margulis scheme [which we’ll dis-
cuss later], some of the infected cells learned how to survive the infection. The protein-based 
life learned to tolerate the RNA-based life. The parasite became a symbiont. And then, very 
slowly over millions of years, the protein-based life learned to make use of the capacity for 
exact replication that the chemical structure of RNA provided. The primal symbiosis of 
protein-based life and parasitic RNA grew gradually into a harmonious unity, the modern 
genetic apparatus. (Dyson 2004)

Dyson adds that what his is “not yet a serious scientific theory”. One might add, 
nonetheless, that the idea that life followed what happens at a macroscopic level – first 
the medium for storing the information (hardware) is supplied, and then the informa-
tion itself (software) – appears to be more plausible than the RNA world theory.

The idea that a parasite can turn itself into an information processing centre is 
incredibly appealing and, far from being a phenomenon specific to cells evolution, 
it’s something we come across in nature –and in our society, as we will see– all 
the time.

A parasite is an organised structure that grows in another organised structure, in 
a way that’s detrimental to the same. The RNA parasite found its way into cells – 
fragile structures always looking for new mechanisms to supply the necessary 
energy – finally destroying both itself and the cell.

It would be much better, for the protocells, to learn how to use this fantastic mol-
ecule, and use it on the one hand as an enzyme, and on the other as an information 
medium to memorise which proteins were necessary, and when.

With the inclusion of RNA also came the ability to replicate, and therefore also 
evolution through natural selection. Selection, for the reasons explained above, can-
not lay the foundations of life; it’s just one of the processes that allows life to evolve. 
As the physicist Jeremy England said, “you might call Darwinian evolution a spe-
cial case of a more general phenomenon” (Wolchover 2014).

The secret of life is collaboration, not selection.

�Evolution Through Learning

Even if we accept that proteins managed to absorb an RNA molecule and use it as a 
data processing centre, one fundamental question remains unanswered: how did 
protocells with RNA evolve into cells able to duplicate their “brain” and pass it 
down to descendants?

So we must imagine a mechanism that drives life towards a stage of evolvability, 
or a propensity for evolution (Watson and Szathmáry 2016).12 For example, the 

12 See “Outstanding Question 1”
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ability to reproduce is essential for the evolution of organisms. By reproducing, an 
organism increases its evolvability also thanks to natural selection, and its code will 
be favoured over others (reproduction also favours evolution because, as we’ll see 
below, makes it also possible to reset unnecessary complexity).

We saw how Hebbian learning works in the brain (Chap. 1, Storing information): 
two neurons that are activated together reinforce their connection. The same thing is 
true for language, and it’s a classic example of unsupervised learning in Artificial 
Intelligence: if the words “kitten” and “cat” are often used in the same context, a 
computer (or a person) understands they are synonymous – i.e. they are connected – 
without needing external training.

But we’ve also seen that this mechanism is the one many complex networks use 
for memorisation. Not only neural networks, but also societies (two people who 
have the same interests are likely to form a bond) store information as Donald Hebb 
described in the 1940s. Creating paths between the elements, and assigning a mean-
ing to each path.

The same thing probably happens with genes. Exactly like the brain doesn’t 
memorise in terms of single neurons (the “words”), but rather in terms of the con-
nections between the neurons (the “phrases”), a cell’s information is stored in a 
genetic network, the GRN (Genetic Regulatory Network) (Davidson et al. 2002)

The cell learning mechanism is essential for adaptation in unicellular organisms, 
and is used for the formation of complex organisms. How can two cells with exactly 
the same DNA become part of such different parts of the body as the intestine and the 
brain? By “learning” what they must become. Learning doesn’t necessarily have to be 
Hebbian, as there are non-Hebbian mechanisms that let the cell inhibit or favour cer-
tain genes (Epigenetics 2013), but Hebbian learning was recently shown to be a pos-
sible learning mechanism (Watson et al. 2010), (Watson and Szathmáry 2016).

�Artificial Neural Networks and DNA

The Hebbian model was also the model that inspired the first attempts to replicate 
the learning capacities of biological neural networks with computers, although 
without much success (Anderson and Hinton 1981).

The situation changed in 1982, when physicist John Hopfield proved that it was 
possible to define an “energy” function for mathematical structures resembling a 
biological neural network.

Physical systems tend to settle into low energy states, like a ball in a bowl. If we 
have a function describing the energy of a system, we can also identify stable con-
figurations. This is what Hopfield did: he proposed a function computing, for any 
configuration, a certain variable, which he called “energy”. Starting from an input, 
it was possible to find, always, a particular configuration minimising this “energy” 
function. Similar inputs would have the same minimum, and therefore would cor-
respond to the same “stored message”. It’s like saying we can recognise similar 
bowls because the ball will move to the same position however we throw it in 
(Hopfield 1982).

Artificial Neural Networks and DNA
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In practice, Hopfield networks are defined by the weights of the relationships 
between the neurons. The energy of a neuron is the sum of the weights for its state 
of excitation (0 or 1). The energy of the network is the sum of the energies of each 
neuron. When each neuron tries to minimise its energy value, independently of the 
others, a Hopfield network falls into a configuration (neurons activated / deacti-
vated) that minimises the energy of the whole network.

To store a vector [a list of 0 and 1s], the weights are changed to reduce the energy of that 
vector. So the stored vector correspond to the local minima in the ‘energy landscape’. To 
retrieve a vector from a noisy version of it, the network is put into an initial state that repre-
sents the noisy version and then allowed to settle to an energy minimum (Hinton 2014).

But what have Hopfield networks – a computational neuroscience instrument – got 
to do with the genetic code? A lot! The genetic code shouldn’t be seen as a mere 
storage device, dumb memory. It’s more similar to our brain than to a hard disk. 
Paul Werbos, the mathematician who in his 1974 graduate thesis showed how we 
can “make artificial neural networks learn”, wrote:

…to what extent is the “junk DNA,” 97% of the genome, actually a kind of learning system, 
like the brain. More precisely, how much of the genome is intended to help us learn how to 
choose better gene expressions, as opposed to merely specifying the final “actions” at the 
output layer of the “gene brain”?13

Geoffrey Hinton, probably the most important figure in the development of artificial 
neural networks, as long ago as 1987 wrote, together with Steven Nowlan:

Many organisms learn useful adaptations during their lifetime … It seems very wasteful not 
to make use of the exploration performed by the phenotype to facilitate the evolutionary 
search for good genotypes. The obvious way … is to transfer information about the acquired 
characteristics back to the genotype (Hinton 1987).

While today epigenetics have legitimised the idea that genetic code can pass infor-
mation acquired during the life of the organism on from parent to offspring, this 
wasn’t so obvious in the 80s, and John Maynard Smith – one of the most important 
geneticists and scholars of evolution of the century  – had to publicly support 
Hinton’s (1987) publication when this was blocked from publishing (Smith 1987). 
The concept, taken up again by Watson and Szathmáry (2016), is clear: to evolve, a 
successful system must be able to learn, and pass what it learns on to its offspring.

A living system which, when it dies, loses all the information it acquired during 
its lifetime would not only pointlessly destroy something precious, but also slow the 
evolution of the species to such an extent that it would soon become extinct 
(Hinton 1987).

According to biologist Lynn Margulis (1997), to whom next section is dedicated, 
a crucial feature of living systems is that the internal organisation they support is 
simply the information necessary for finding the energy they need –exactly what we 
discussed in the previous chapter.

13 https://www.werbos.com/life.htm, retrieved August 10, 2018.
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In a more general framework the ultimate purpose of every intelligent system, 
including living systems, is to reduce uncertainty concerning the external environ-
ment, storing information, to acquire the energy necessary to sustain its internal 
order. It’s therefore only natural that life has adopted a data processing centre, DNA, 
that lets it learn, and therefore quickly evolve.

�Collaboration and Eukaryotes

The Dyson quotation in the previous section refers to the “Margulis scheme”. Dyson 
explains that he got the idea from a theory created to explain the emergence of more 
complex biological cells, called eukaryotes, published by Lynn Margulis (1970).

Dyson (2004) also wrote a short, excellent description of Margulis’s origi-
nal theory:

…the evolutionary tree has three main branches representing a divergence of cell types far 
more ancient than the later division of creatures into animals and plants. Moreover, the 
genetic apparatus carried by organelles such as chloroplasts and mitochondria within 
eucaryotic cells does not belong to the same main branch of the tree as the genetic apparatus 
in the nuclei of eukaryotic cells. The difference in genetic apparatus between organelles and 
nucleus is the strongest evidence confirming Lynn Margulis’s theory that the organelles of 
the modern eucaryotic cell were originally independent free-living cells and only later 
became parasites of the eucaryotic host.

According to this theory, the evolutionary success of the eucaryotic cell was due to its pol-
icy of free immigration. Like the United States of America in the nineteenth century, the 
eucaryotic cell gave shelter to the poor and homeless, and exploited their talents for its own 
purposes. Needless to say, both in the United States and in the eucaryotic cell, once the old 
immigrants are comfortably settled and their place in society is established, they do their 
best to shut the door to any prospective new immigrants.

With his reference to politics, Dyson suggested that the Margulis scheme – the 
idea that parasitism and symbiosis are the driving forces behind evolution – could 
help understand not only the emergence of life but also properties of human societ-
ies which should be analysed in terms of emergence properties.

�The Importance of Scientific Revolutions

When Lynn Margulis died in 2011. The obituary published by Nature praised “her 
paradigm-changing book, Origin of Eukaryotic Cells”, published in 1970 
(Lake 2011).

The term paradigm refers to Thomas Kuhn’s (1962) The structure of scientific 
revolutions. In his work, Kuhn, a physicist and historian of science, proposes a 
social vision of the scientific method. There are no strict rules on what is scientific 
and what is not (contrary to what Karl Popper (1934) thought). It’s a shared idea, 
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which Kuhn calls normal science, that guides a scientist’s work. There are works, in 
this normal science, that can be considered paradigms (from παρα-δείκνυμι, show 
to the side). Aristotle’s Physics in this sense is no less a scientific work than Galileo’s 
The Assayer, Newton’s Principia, or Freud’s The Interpretation of Dreams. All of 
these works coagulated the knowledge of the time in order to refer to a multitude of 
concepts, connected with each other, without having to explain what the author is 
referring to all the time. The concept of force in physics was crystallised by Newton, 
that of the unconscious by Freud. Every time we use these words, we’re referring to 
the Newtonian and Freudian paradigm.

As Feyerabend (1989) then noted, a shared paradigm can eventually stiff the 
evolution of scientific thought. There will be scientists who’ll defend it even if it’s 
indefensible: Aristotelians, like the character of Simplicio in Galileo’s Dialogue, are 
the problem, not Aristotle.

The anatomist who in the Dialogue observes that all nerves originate in the brain 
but remains convinced they originate in the heart because Aristotle said so, strikes a 
sour note (“You’ve shown me this thing which is so open and sensible, that if it 
weren’t for Aristotle’s text of the opposite opinion, as it openly says, the nerves 
originate in the heart, one would have to confess it was true”).

But considering what we have discussed about uncertainty and coins in Chap. 1, 
the anatomist behaviour might be justified. As we’ve seen, considering a coin as fair, 
i.e. that it will have a 50% probability14 of coming up heads or tails, is the safest 
choice we can make. We have held thousands of coins in our hands, and none of 
them seemed biased. If, without an absolutely valid reason, you were to consider the 
coin biased with an 80% probability of coming up heads and a 20% probability of 
coming up tails, you’d risk increasing your uncertainty and if taking bets you’d lose 
money fast: the bet placers would continue to consider the coin fair, and rightly so, 
while you would take ridiculous bets (such as “heads” 3–1) and lose time and 
time again.

On the other hand, if the coin is actually biased but everyone, including you, 
thinks it’s fair, no one would win much as everyone has the same average uncer-
tainty. Likewise, if the consensus for 2000 years was that nerves originate in the 
heart, stating that the opposite is true means risking everything. Just before Dialogue 
was published, Jacopo Berengario of Carpi, the first ever neurosurgeon, was called 
to operate on the fractured skull of Lorenzo de’ Medici, one of the most powerful 
men in Renaissance Italy. If Berengario had used Aristotelian medicine and Lorenzo 
had died, his reputation would have suffered. If Lorenzo had died while being oper-
ated on by a non-Aristotelian surgeon, as Berengario was, he would have lost not 
only his reputation but also his head.

The problem was that if he had used the Aristotelian nerve model, the whole 
society would have lost. The “anti-information” on the origin of nerves caused the 
deaths of many patients, and it was down to scientists like Galileo and the likes to 

14 We always refer to the Bayesian definition of probability: “Probability … serves to express, in a 
precise fashion, for each individual, their choice in their given state of ignorance” (de Finetti 1970)
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put forward counterarguments convincing enough to destroy the old paradigm and 
create a new one.

Society will benefit from a new paradigm that minimises uncertainty, and can 
create new instruments to sustain its internal complexity. It’s the same mechanism 
Margulis (1997) described for the evolution of cells, and can be applied to her 
own work.

Tenaciously sticking to the paradigm can be counterproductive. For example, 
using the principle of natural selection as the driving force of evolution of societ-
ies – as Darwin himself and many others did – leads to make hazardous conclusions. 
According to the English naturalist, hospitals and health services were the cause of 
the decline of our species: “We … do our utmost to check the process of elimina-
tion; we build asylums for the imbecile, the maimed, and the sick; we institute poor-
laws … Thus the weak members of civilised societies propagate their kind … this 
must be highly injurious to the race of man. It is surprising how soon a want of care, 
or care wrongly directed, leads to the degeneration of a domestic race; but excepting 
in the case of man himself, hardly any one is so ignorant as to allow his worst ani-
mals to breed.” (Darwin 1874).

Darwin was wrong. There was a period, after the end of the Second World War, 
in which the human race and its living conditions improved, not thanks to selection 
but instead thanks to social policies and collaboration (Pinker 2011), (Norberg 
2016). Fascists and Nazis, who followed social darwinism and wanted to suppress 
what they considered the “weaker” elements of society, produced as a result hellish 
conditions for human beings.15

Margulis proved that life emerges as a result of collaborative processes: collabo-
ration is the driving force behind evolution.16 This is what the present book wants to 
take to extremes: collaboration – in practice the exchange of information/energy – 
lies behind every successful long-term enterprise, from eukaryotes to nation-states. 
And that’s not all: the union of various elements is what makes it possible for every-
thing to store information. If humanity was composed of only the “fittest” it would 
fail, as would a language made up of only particularly eloquent words. Obviously, 
every new word can only enrich the language.

What’s more, as mentioned in (Margulis 2008), Darwin’s On the Origin of 
Species isn’t about the origin of life or even the origin of the species.17 Not acknowl-
edging that natural selection plays a role in the origin of life doesn’t make it any less 
important for the evolution of the species, but “pure” Darwinists seem unable to 
accept other mechanisms in biology, sociology and whenever they believe selection 

15 With the help of a Darwinian foreign policy aimed at defending living space, lebensraum (Ratzel 
1901), rather than collaborating with other states.
16 The fact that Margulis was worthy of an obituary in Nature, which called her book paradigmatic, 
therefore measuring it with the same yardstick as Darwin’s work, did not stop her book from fail-
ing to be acknowledged by anyone outside a close circle of scientists, and, unfortunately, being 
literally eradicated from human memory. No further editions of the book were ever printed and 
finding an electronic version is impossible.
17 As the subtitle of Darwin explains: it’s about “the Preservation of Favoured Races”
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could be applied. Let’s not forget that Darwin broke ties with the past by valiantly 
defending the concept of evolution: it’s not natural selection that’s changed the way 
we think about life on earth, but rather the idea that life evolved.

If this change occurred thanks also to collaboration and not just selection, this 
means that a collaborative societies, whatever Darwin thought, might not only be 
nicer to live in, but also more likely to be successful.
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Chapter 3
From Complex Organisms to Societies

We have seen how the evolution of the universe brought exploitable energy, com-
plexity and finally, at least on our planet, life. In this chapter we will see why life 
had to evolve beyond unicellular organism, creating complex organisms and then 
aggregates of those organisms –societies.

�Intelligence Needs Energy

In order to understand the evolution of life in terms of the subjects covered in Chap. 
1, let’s take another look at the example of the container with a semi-divider wall 
between two compartments:

 

If the system is microscopic, thermal disturbances will make balls pass from one 
side to the other. We can make the system more stable by using heavier balls, but in 
this case we’ll need more energy to change the state of the system and store some 
information.

The system with light balls is more efficient, but also fragile. The other is stron-
ger, but inefficient. Another trick could be using several systems of light balls to 
store the message in a redundant way, but in the end we’d have to use just as much 
energy as in the heavy ball system.

In nature there are robust “heavy ball” information tools such as DNA and other 
more agile “light ball” ones like the nervous system. All of them need energy to be 
set or remain in a particular state. This is not related to the information the state 
carries.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25962-4_3&domain=pdf
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We call a particular state to which we associate a meaning as syntax. Syntax has 
to do with the structure of the message, it is the substrate on which we put a mes-
sage, but has nothing to do with its value. With 5 bits we can pass on a message that 
reduces uncertainty (the next number on a roulette wheel where the ball will land, 
see Appendix 2) or not (a number where the ball won’t land). But to store these 5 
bits we need energy.

As it costs energy to build and use syntax, regardless of its utility, every intelli-
gent system has to make sure every processed bit brings information, i.e. reduction 
of uncertainty about the environment. Intelligent systems must be able to change 
their mind according to observation.

We do that quite easily for simple cases. For example, how likely is it that a coin 
is biased if after 100 tosses it comes up heads 51 times and tails 49? Not very likely, 
as there aren’t that many biased coins around and the ratio of heads to tails we 
observed is close to 1. But if it comes up heads 89 times and tails just 11 it makes 
sense to consider the hypothesis that the coin is biased as likely.

This seems obvious, but while it’s relatively easy for one brain to change opinion, 
it’s not so easy for a network of brains to do the same. We quite rightly refer to a 
company’s DNA, not its frontal lobes. “Organizational capabilities are difficult to 
create and costly to adjust” (Henderson and Clark 1990), in the same way as for DNA.

Unfortunately, an organisation created to extract energy needs itself energy. Not 
updating the knowledge  – keeping the same syntax even when it’s no longer of 
value, when it produces no more energy – means accepting to keep an energy invest-
ment portfolio that will result in a loss.

This is also what ageing means: storing syntax that provide less and less up-to-
date information. Evolving, on the other hand, means updating the stored informa-
tion on the basis of the changes in the environment we are living in. Life and 
evolution are a continuous compromise: attempting to keep complexity (and there-
fore also energy requirements) to a minimum, but not to such an extent as not to 
store enough valid information.

As the apocryphal quotation from Albert Einstein goes: everything should be as 
simple as it can be, but not simpler. As the original says, observation of the environ-
ment will set the limit beyond which we must not simplify: “… the supreme goal of 
all theory is to make the irreducible basic elements as simple and as few as possible 
without having to surrender the adequate representation of a single datum of experi-
ence.” (Einstein 1934).

�Sleep, Death and Reproduction

Because of the inevitable build-up of useless syntax, every intelligent system has 
three possibilities: learn more, forget what’s useless, or die.

Learning means storing (and being able to process) new, valid information that 
effectively reduces uncertainty and, although energy is needed to store this new 
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information in memory, being able to acquire new energy from the environment. 
Forgetting means freeing up memory from the syntax that’s no longer used, one that 
requires energy without producing anything in exchange.

Forgetting is normally done through periods of reduced activity in which the 
system works on its internal reorganisation, processing less external information.

This is true for every complex system a la Herbert Simon, even non-intelligent 
ones. Some computer operating systems need to be periodically rebooted because 
they cannot manage the level of superfluous complexity they produce while operat-
ing. In order to postpone the need for rebooting, computers “reorganise themselves” 
during periods of scarce activity (as is the case with Microsoft Windows Disk 
Defragmenter).

Organisms with a central nervous system need sleep: while the role sleep plays 
isn’t fully understood, it’s widely accepted that one of its functions is to prune many 
of the synapses created while the organism is awake (Li et al. 2017).

Unfortunately, sleep, like the defragmenter, can however only put off the inevi-
table: death. In time, a computer will accumulate more and more useless syntax. 
The same goes for a car, a human being, or a civilisation. It’s the natural order of 
things, and can be well understood in the information-energy framework. As some 
energy opportunities are exploited, they no longer arise again: for a lion it may be 
prey that no longer follows a certain trail to a water hole, for a company it may be 
that the market is no longer willing to pay a price that is higher than the cost of 
production. A lion lying in wait for prey that doesn’t show, or a company manufac-
turing obsolete products, and storing the information necessary to do so, continues 
to require the same amount of energy as before, but with no energy return.

The history of management is full of stories of companies that, at the very peak 
of their success, collapsed disastrously because they couldn’t shake-up the company 
and introduce new production processes. Kodak is a glaring example of this. 
Rebecca Henderson, one of the first scholars who studied corporate organisation to 
realise how important information and in-house organisation is for companies in 
order to evolve (Henderson and Clark 1990), said the following after Kodak went 
bankrupt: “Kodak is an example of a firm that was very much aware that they had to 
adapt, and spent a lot of money trying to do so, but ultimately failed.” (Gustin 2012).

Interestingly, the company’s senior vice president, had proposed the most sensi-
bly solution: “Directing its skills in complex organic chemistry and high-speed 
coating toward other products involving complex materials” (Shih 2016). This 
would have meant not sacrificing the huge amount of technical know-how the com-
pany had accumulated over the years, but did require significant changes to the in-
house organisation, which in the end proved impossible.

The last option was death. We see death as a tragedy, because most of the informa-
tion stored by the organism seems lost to us. But this cannot be completely true: if 
information was irreversibly lost when an organism died, it would have been difficult 
for life to evolve. So there had to be a way to pass useful information on to future 
generations. The same is true for companies. The legacy of General Electric, which 
today is fighting to survive, in terms of management innovation, will remain in the 
“DNA” of many other companies for years to come. Xerox’s research into the usabil-
ity of computers paved the way for the success of companies like Apple and Microsoft.

Sleep, Death and Reproduction
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Works of pure research stand out too: Claude Shannon was working for AT&T 
when he published his article on information theory in the company journal. Benoit 
Mandelbrot was working for IBM when he developed fractal mathematics, and 
today “Big Internet” business groups like Google publish fundamental studies on 
applied mathematics. Kodak left its legacy to human knowledge in the form of hun-
dreds of scientific articles.

The same is true for individuals. There’s a legend that tells of the religious con-
version of John von Neumann before he died, refuted however by the scientist’s 
brother (Hargittai 2008). Unlikely as it may seem, it is a plausible idea: how could 
the most intelligent mind of the time accept that all his knowledge would simply 
disappear the day he lost his battle with cancer? But the truth is that von Neumann’s 
knowledge has not been lost, thanks to the thousands of people who have soaked up 
at least part of his intellectual legacy. Thousands of articles in IT, economics, phys-
ics and mathematics, have references to works of von Neumann.

Language and writing are Homo sapiens’ solution to lost of information which 
would happen when people die.

Unicellular organisms learnt a similar trick billions of years ago. As mentioned 
above, DNA passes on information not only on how to construct the cell itself, a 
process perfected over hundreds of millions of years, but also on how to react in 
certain situations: something that can be learnt during a lifetime and passed on to 
descendants through epigenetic inheritance –“phenotypic variations that do not 
stem from variations in DNA base sequences are transmitted to subsequent genera-
tions of cells or organisms.” (Jablonka and Raz 2009).

�The Limits of Unicellular Organisms

The DNA is rightfully seen as a milestone in the evolution of life. Thanks to it, uni-
cellular organisms found a way to store information, and filter it through natural 
selection. More successful DNA strands were more likely to reproduce, less suc-
cessful ones more likely to become extinct.

But cells soon reached the limits of this mechanism. In fact, the amount of infor-
mation an isolated cell can store is limited by the fact that it cannot grow out of all 
proportion: in cells, nutritive material is only distributed by diffusion and the walls 
are made of protein chains that cannot extend over more than a certain surface area. 
For this and other reasons, the biggest unicellular organisms grow to just a few cen-
timetres and these are very much a minority (Marshall et al. 2012).

A limit in size also limits information. To increase information capability, life 
stopped storing information in single cells – by now saturated – and started using 
networks. Although it occurred in different ways, first with amino acid networks 
and then with protein networks, life changed gear and introduced a new level of 
complexity. This didn’t take long: traces of bacteria 3.5 billion years old show that 
there were communication’s mechanisms even then (Decho et  al. 2009), (Lyon 
2015), (Zhang et al. 2012).
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In recent decades the mechanism of bacteria communication, called quorum 
sensing, has revolutionised our idea of unicellular organisms: more than 99% of 
bacteria live in communities, so-called biofilms, where the organisms form “a com-
plex web of symbiotic interactions” (Li and Tian 2012). Using quorum sensing, 
some bacteria (such as cholera) sense not only how many conspecifics are within 
signal range, but often also which and how many other species of bacteria they are 
sharing the environment with (Ryan, website), (Ng and Bassler 2009).

Many types of bacteria use quorum sensing mechanisms to do more than simple 
census taking. Myxobacteria Xanthus and Amoeba Proteus are examples of unicel-
lular organisms that form colonies very similar to multicellular organisms: “In a 
process likened to ‘the great animal herd migrations’ up to a million cells move 
toward aggregation sites where fruiting bodies form. Of the initial cell population, 
only 10–20% will transform into long-lasting, stress-resistant myxospores and sur-
vive to reproduce another day. A staggering 65–90% of the initial population col-
lectively suicide, by rupturing their cell envelope (autolysis). … The cell fragments 
are assumed to provide carbon and energy for development. Another 10% of the 
population transform into special cells that remain on the periphery … these cells 
could be a kind of sentry, to prevent pillaging of the sacrificial feast and predation 
of the dormant myxospores” (Lyon 2007).

�From Interaction to Cognitive Processes

We humans usually associate cognitive processes with just one lifeform: the one we 
call sapiens (Lyon 2015). Yet, as we’ve seen, biological networks like DNA have the 
ability to learn, and evolution favours the emergence of cognitive processes 
(Watson 2014).

To understand how simple mechanisms of interaction can produce cognitive 
abilities, researchers have studied various loose communities found in nature –those 
in which every element is linked to the others through just an exchange of simple 
signals. Similar interactions between elements regulate typically bacteria communi-
ties, flocks of birds and schools of fish (Deneubourg and Goss 1989).

In these cases the community learns through allelomimesis, or imitation, with 
the help of a mechanism called autocatalysis that prevents the indiscriminate dis-
semination of the behaviour of just one individual. “The probability of an individual 
adopting a particular behaviour is a function of the number of individuals already 
exhibiting that behaviour.” (Goss and Deneubourg 1988).

For example, in a flock of birds on the ground, one bird takes flight because it 
notices a suspicious movement. The birds nearby lower their alarm threshold, and 
follow the first that took flight if they see even a slightly suspicious movement. At 
this point the whole flock takes flight, regardless of whether or not there is actually 
a predator. One bird acts as a trigger for a possible group behaviour through allelo-
mimesis, autocatalysis induces the whole flock taking flight in case of danger.
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Autocatalysis and allelomimesis allow the emergence of Hebbian learning pro-
cesses, although rudimentary ones: “The strengthening of frequently used trails is 
also reminiscent of Hebbian reinforcement of active neuronal pathways through 
long term potentiation” (Couzin 2009).

They can often be observed in the behaviour of humans too. How does a peace-
fully protesting crowd turn into a crowd of looters? One protester becomes violent, 
and another might copy the behaviour (allelomimesis). But generally, all protesters 
have their own threshold for doing what others are doing. Each protester will 
become violent themselves only if a certain number of protesters have already 
started looting. Each new looter will increase then the probability of the crowd loot-
ing (autocatalysis) (Buchanan 2007).

Something similar happens when fake news goes viral on social networks: the 
logical-analytical abilities of the average user aren’t comparable to those of experts. 
But the latter, who base their knowledge on experiments and cross-validation, typi-
cally don’t dedicate much time to updating their social profiles.

Unfortunately for the quality of the information on so-called social networks, 
while scientific thought has only been around for 500 years, allelomimetic and auto-
catalytic behaviour has been part of how instincts have evolved for hundreds of 
millions – or even billions – of years. Therefore the comments of thousands of peo-
ple who consider vaccines to be harmful, no matter how little they know about the 
subject, have more power to convince others than hundreds of scientific articles 
written on the same subject.

Facebook users act more like the lemmings of the mass suicide myth than a flock 
of herons1: when someone starts sounding off about vaccines, other users find it all 
but impossible to avoid following suit, creating a sort of domino effect.

Autocatalysis and allelomimesis of course weren’t introduced by nature to favour 
the spread of fake news on Facebook. They were meant to guide the evolution of life 
towards forms of aggregation that were more, and not less, intelligent: it’s thanks to 
these mechanisms for example that ants find the best and shortest paths to where 
they’re going (Goss and Deneubourg 1988), a capability of insect colonies we will 
describe later in this chapter.

�Nervous System or the Forgotten Transition

As mentioned at the beginning of this chapter, the genetic code and the nervous 
system are two different memories – the first is long term, the second short term. 
The genetic code of living organisms lets them pass information on from one gen-
eration to the next, and do so for millions of years, and has changed the way we 
think about the evolution of life. The brain, on the contrary, loses the information it 

1 It’s been proven that the only way to observe lemmings’ mass suicide is through a Disney docu-
mentary: “The stampede of lemmings in Walt Disney’s White Wilderness is an obvious fake” 
(Chitty 1996).
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contains with the death of the organism. Probably for this reason, scholars often 
considered the role played by the brain as secondary.

In a fundamental work like The Major Transitions of Evolution, which focuses 
on the evolution of information processing by living organisms, John Maynard 
Smith and Eörs Szathmáry failed to consider the emergence of the nervous system 
as one of the fundamental transitions (Smith and Szathmary 1995).

In (Calcott and Sterelny 2011), Szathmáry himself acknowledges this slip: “the 
origin of the nervous system is a forgotten transition.” He also adds that they would 
have included the nervous system in the second edition of the book.

From the point of view of processing information, and therefore that of this book, 
the emergence of the nervous system, up to the formation of the brain, is a funda-
mental stage in the evolution of life, and it’s just as important as the emer-
gence of DNA.

Jablonka and Lamb (2006), quoted by Szathmáry in the article above, write: 
“There are interesting similarities … between the outcomes of the emergence of the 
nervous system and the transition to DNA and translation, in both of which the 
interpretation of information involves decoding processes.”

From the first insects to the Anthropocene, the nervous system has had an extraor-
dinary impact on the planet, transforming the interaction between life and the envi-
ronment, as well as life itself.

In her autobiography, neurobiologist Rita Levi-Montalcini (1987) praises the 
imperfection of our species in relation to the environment. The fact that we are ill-
equipped has forced us to continuously come up with new solutions – mostly pro-
duced by our brains.

The essential role of brains, with their ability to analyse data and react as a con-
sequence, is “to serve as a buffer against environmental variation” (Allman 2000). 
The more sudden and unexpected these environmental variations are, the more 
organisms have to be able to adapt to them. And for this task, what could be better 
than short-term memory, able to see the patterns in everything around us?

�Origin of Neurons

As is often the case, neurons probably did not appear to do what they do now – cre-
ate information-processing networks  – but rather to find food: “Initially sensing 
environmental cues (such as the amino acid glutamate indicating prey) the partaking 
receptors and ion channels may have started to receive internal information (such as 
the transmitter glutamate) from within the newly evolving synapse” (Achim and 
Arendt 2014).

The role of glutamate has been studied in organisms that were probably the first 
to develop a nervous system, ctenophores, marine invertebrates also known as comb 
jellies, whose ancestors probably appeared towards the end of the Neoproterozoic 
Era around 550 million years ago. A ctenophore’s nervous system coordinates its 
cilia; hundreds of tiny tentacles the animal uses to move around and search for food. 
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Unlike more complex nervous systems, the ctenophore’s one mainly uses 
L-glutamate as its neurotransmitter (Moroz et al. 2014), which leads us to consider 
the hypothesis of the origin of neuron transmission (Achim and Arendt 2014).

Of a ctenophore’s many properties, the most interesting could in fact be that it 
appeared before sponges. In other words, the first complex organisms to form might 
have adopted immediately a rudimentary nervous system, unlike sponges (Shen 
et al. 2017).

This has caused quite a stir. Firstly because it’s not universally accepted as hav-
ing been proven (Marlow and Arendt 2014), and secondly because it goes against 
the idea – officially denied but intuitively felt – that evolution is always a process of 
complexification.

The paleo-geneticists will have to make up their minds about the first point, but 
the second appears to be completely unjustified. Evolution means making the pro-
cess of storing useful information more efficient, also reducing the amount of energy 
required to store it (using lighter balls as in the example at the beginning of this 
chapter).

Going from ctenophores, more complex and active, to sponges, simpler and with 
modest energy requirements, is just as much a winning strategy as making the ner-
vous system more powerful and finding new solutions to the resulting energy crisis.

Having said this, how could we fail to agree with Rita Levi-Montalcini? Our 
conscious organisms, yearning for knowledge, with memories of past life – all made 
possible by our brain – seems a more interesting condition than the static existence 
of the humble sponge. We should consider ourselves lucky that evolution took a 
more complex path that led to Homo sapiens.

�First Brains and Shallow Neural Networks

We humans have got to know our brains so well, now we know that all we know is 
all but nothing. Nonetheless, by examining simpler natural neural networks and 
artificial ones, it’s possible to come up with some hypotheses as to how information 
processing capability evolved in time.

The only brain that’s been mapped until now is that of the hermaphrodite and the 
male C. elegans. The connectome of the hermaphrodite’s brain (White et al. 1986), 
with its 302 neurons, was compiled in 1986 and has been studied extensively, as can 
be seen in (Watts and Strogatz 1998). The connectome of the male, with 383 neu-
rons, was compiled, in 2012 (Jarrell et al. 2012).

The difference between the nervous systems in the two genera is due to the fact 
that the male C. elegans, which cannot inseminate itself, has a further purpose in life 
in addition to energy provision: to mate with the hermaphrodite.

As every adolescent knows, the cognitive processes behind mating mechanisms 
are challenging. Considering that the C. elegans mating ritual isn’t as simple as the 
animal’s position on the evolutionary tree might lead us to believe (Jarrell et  al. 
2012), it’s almost a miracle that the male C. elegans manages to do its job with just 
a sprinkling of neurons.
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Basically, C. elegans has developed a shallow neural network,2 in which the sen-
sory layer is a Hopfield network able to recognise some categories, called Gestalt 
by Hopfield (1982), of the surrounding environment – for example if there’s a her-
maphrodite in the vicinity, and what position it’s in. After this initial classification, 
the information is sent to a second layer (interneurons) and then to a third, last layer, 
the motor neurons, which pass the stimulus to the relevant muscles (Varshney 
et al. 2011).

In the same way as in so-called Recurrent Artificial Neural Networks, some neu-
rons have a processing memory and re-analyse their own output.

Considering that nematodes (the phylum Elegans belongs to) appeared soon after 
ctenophores (Poinar 2011), it didn’t take long for evolution to go from a distributed 
neuron network that could only move cilia, to one organised in a way that could 
process information and produce relatively complex behaviour.

By forcing the analogies with artificial networks a little, we’ve gone from the 
Hopfield Networks of 1982, to Recurrent Neural Networks, developed during the 
1990s, in a few million years.

�Societies and Natural Selection

If natural selection were the only mechanism of evolution, one might think that 
communication between complex organisms would not have gone beyond repro-
duction. Why collaborate with other individuals? This would mean increasing the 
possibilities of success of the other, with their genetic code, which isn’t exactly 
advantageous to our own genetic code. Or even better, why allow other individuals’ 
genetic code to propagate at all, and invent instead a way to clone itself?

The idea of natural selection influenced more than biologists. As seen in Darwin’s 
The Descent of Man, welfare and redistribution of wealth were thought to play 
against the fitness of the species: the weak must perish to leave room for the strong. 
Scientists didn’t even think collaboration was possible among animals. Therefore, 
they would never say that a collaborative society could be more successful than a 
non-collaborative one: collaboration was “human misbehaviour”.

Ronald Fisher (1930), one of the forefathers of statistical experimentation, in The 
Genetical Theory of Natural Selection considers an original hypothesis on how 
human civilisations first formed. At a certain point in history, some primitive popu-
lations entered a “barbarian” phase. Barbarian societies were organised to evolve 
through selection: they were divided into social classes, with those best suited to 
survival at the top, and the strongest elements were selected through family feuds. 
The strongest were rewarded with reproductive prizes (e.g. polygamy), and finally, 
they adopted a lineage cult, to favour the male offspring of the strongest.

2 Networks with just a few layers are called “Shallow Neural Networks”, the opposite of “Deep 
Neural Networks” – the current superstars, with dozens of layers.
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These barbarian mechanisms, according to Fisher, resulted in the “social promo-
tion of fertility into the superior social strata”. Human societies, and only human 
ones, started to favour the process of selection: “The combination of conditions 
which allows of the utilization [sic] of differential fertility for the acceleration of 
evolutionary changes, either progressive or destructive, seems to be peculiar to 
man.” (Fisher 1930)

As had been the case for life according to Dawkins (2013), suddenly a structure 
appeared that could evolve thanks to selection – but a mechanism that explains the 
emergence of this structure isn’t introduced (see the analysis of Johnson and Sheung 
Kwan Lam 2010). Dawkins explains the origin of life with the sudden appearance 
of the Replicator, which can eventually evolve through natural selection. Fisher is 
no different: suddenly, the society appears, so that can evolve through natural selec-
tion. Neither Dawkins nor Fisher suggest mechanisms that explain why and how 
these structures emerge.

Never mind that, if societies appear to let natural selection do its job, it becomes 
difficult to explain the emergence of fully collaborative societies (bees and ants), 
where no internal selection takes place.

The idea of emerging properties, “the whole is more than the sum of the parts”, 
was still a long way off. It seemed necessary to imagine a mechanism that made it 
possible to apply natural selection to the evolution of communities of organisms.

The mathematics of genetic variation within populations under the effects of 
natural selection was eventually perfected by John B. S. Haldane (1932) and finally 
William Hamilton (1964).

In his inclusive fitness theory, later called kin selection by John Maynard Smith, 
Hamilton explains that when we behave altruistically with a relative with whom we 
have a certain amount of genes in common, we do so if the person we are being 
altruistic with shares some of the same genes.

As an example, if your sister steals €100 from you for an investment that makes 
€250, you’ve both made a profit. 100% of your genes have lost €100, but 50% of 
your genes –the one you have in common with your sister – have earned €250. That 
means on average your genes have made a €25 profit. The fact that the champagne 
eventually purchased with the €250 gain doesn’t whet your taste buds, is but a minor 
detail: the whetted taste buds have 50% of your genes, so you reap the benefits in 
any case.

In The Selfish Gene, Dawkins mentioned it would be worth studying nine-banded 
armadillos, the female of which gives birth to a litter of identical quadruplets: “some 
strong altruism is definitely to be expected, and it would be well worth somebody’s 
while going out to South America to have a look” (Dawkins 2013).

As can be expected, Dawkins’ guess was disproven: despite the fact that armadil-
los can tell the difference between their twins and non-twins, they apparently behave 
in a friendly way towards all, regardless of shared genes (Loughry et al. 1998).3 

3 If you wonder why the quadruplets, it appears that the particular shape of the uterus causes poly-
embryony. It’s nothing to do with kin-selection (Loughry et al. 1998).
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What Blanche says at the end of Tennessee Williams’ A Streetcar Named Desire 
goes for armadillos too: “I have always depended on the kindness of strangers”.

In fact, “Hamilton’s rule almost never holds” (Nowak et al. 2012).4 The most 
extreme form of collaboration, eusociality, would appear to be exactly what’s 
needed to refute Hamilton’s rule. In eusocial societies “adult members are divided 
into reproductive and (partially) non-reproductive castes and the latter care for the 
young” (Nowak et  al. 2012). Eusociality is more common in societies in which 
siblings have 50% of their genes in common with each other than in those with 75%, 
as is the case with some bees and ants.5

Finally, the behaviour of individuals appears to be collaborative in many societ-
ies, regardless of how many genes the individuals have in common with each other. 
Furthermore, no animal societies – as Fisher mentioned – have established an inter-
nal selection system.

We must conclude that, from the point of view of evolution, organisms that col-
laborate for the common good have a greater chance of surviving than those that 
don’t. This is just as true for humans as it is for other animals. Actually, more so 
for humans.

Internal selection, as Ludwig von Mises mentioned shortly after the fall of fascist 
regimes in Italy and Germany, seems to be there to favour tyrants:

As every supporter of economic planning aims at the execution of his own plan only, so 
every advocate of eugenic planning aims at the execution of his own plan and wants himself 
to act as the breeder of human stock (Mises 1951).

�Insects and Intelligent Societies

The first organised societies of complex organisms emerged 300 million years ago 
in insect communities, in the form of eusociality in fact.

Without the help of parental selection it would appear to be difficult to explain 
why certain insects chose to help each other, sacrificing their own fertility: if they 
had an “altruism gene”, they would favour the survival of others more than their 
own, so natural selection could not propagate the “altruistic gene”. By definition, 
genes that don’t follow Hamilton’s rule, like the altruism gene, should become 
extinct.

4 We could examine Hamilton’s rule considering how much DNA (rather than how many genes) we 
have in common with other living beings. All humans have practically the same DNA in common, 
so altruism should be mandatory, total and undiscerning for all. We should expect extremely altru-
istic behaviour also from chimpanzees and towards them too, as we have 98.4% of our DNA in 
common with them. Considered in these terms, Hamilton’s rule doesn’t work, not because we’re 
too altruistic, but because we aren’t altruistic enough!
5 In haploid-diploid sex determination, males hatch from non-fertilised eggs and therefore always 
inseminate the queen with the same genetic code: in this way, sisters on average have 75% of their 
genes in common with each other because the father’s genetic code is always the same.
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But “.. eusociality is not a marginal phenomenon in the living world. The bio-
mass of ants alone composes more than half that of all insects and exceeds that of 
all terrestrial non-human vertebrates combined. Humans, which can be loosely 
characterized as eusocial, are dominant among the land vertebrates” (Nowak 
et al. 2012).

Natural selection can prevent unsuitable life forms from developing, and favour 
the success of a mutant organism. But it cannot explain either the emergence of life, 
or the change from unicellular organisms to complex organisms, nor the organisa-
tion of the latter into societies.

The fact that natural selection can filter behaviour that’s unsuitable for survival 
doesn’t imply that every new behaviour emerges only thanks to selection. If A 
implies B, B doesn’t necessarily imply A: behaviour that’s better suited to survival 
is favoured by selection, but this doesn’t mean that if a new behaviour emerges the 
cause is necessarily natural selection.

The essence of an intelligent system is to continually organise itself in a better 
way to absorb more energy, storing more and more useful information. The concept 
of evolvability is more important than that of fitness: the first is a long-term invest-
ment, which goes beyond the current generation and genes, the second only lets 
behaviour emerge that increases the probability of survival of the individual, now.

An intelligent system that doesn’t implement a long-term survival strategy is not 
worthy of the name. Improving cognitive capacities, or creating new (perhaps exter-
nal) ones would appear to be an excellent strategy. This is valid for all intelligence 
systems, from the biological cell to the nation-state.

The creation of networks to increase the amount of available information and the 
capacity to process said information is a common phenomenon. For data analysts, 
and high energy physicists, the use of personal computers in the 1990s was severely 
limited by one factor: the capacity of local hard disks. At CERN, over a period of 
5 years, I personally witnessed the change-over from workstations, kind of powerful 
PCs, with their huge external hard disks, to consumer PCs, which were cheaper, 
could process data stored in shared file systems in parallel (NFS and AFS, similar to 
virtual disks) and distributed databases. A path which culminated with the Web, giv-
ing non-professional users access to a virtually infinite amount of information, 
incomparable with what’s on the hard disk of their PC.

This process has intensified in time: today, a typical PC (smartphone) can store 
just a few tens of gigabytes on the hard disk (not much more than what I had on my 
workstation in 1998), but processes – in the case of adolescents – hundreds of giga-
bytes every week6 (approximately the amount of data I processed during my PhD in 
the 1990s).

Today, having the same storage system shared by millions of people, gives the 
“Homo smartphonicus” access to an abundance of information, something that 
would have been unimaginable until recently, with only-local storage.

6 When kids go back to school in Italy there’s a 30% drop in nationwide 4G data traffic (personal 
communication, Wind Italia).
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Something similar happened with eusocial insects, the first animals to develop 
societies.

Insects were the first to reach an information-processing limit, for the same rea-
son as biological cells a few billion years earlier. Although giant insects roamed the 
earth during the Permo-Carboniferous period,7 300 million years ago, is not conve-
nient for insects to grow into giants. Quite the contrary: they’ve implemented vari-
ous miniaturisation strategies as they evolved. Their compact dimensions have been 
essential for “microhabitat colonization, [and the] acquisition of a parasitic mode of 
life, or reduced developmental time as a result of a rapidly changing environment” 
(Niven and Farris 2012).

To sustain and perfect miniaturisation, insects have developed a passive respira-
tory system, consisting of spiracles and tracheae that let the cells exchange carbon 
dioxide for oxygen. As a result, the nervous system developed in a decentralised 
way,8 providing a greater surface area to oxygenate in terms of total volume9 (Niven 
and Farris 2012).

This miniaturisation strategy comes at a cost then: a cognitive limit of the indi-
vidual, due to the concentration of oxygen. Processing information no longer as 
individuals, but as a network, increased then the information processing capacity of 
the species, without renouncing to miniaturisation.

Ants, for instance, communicate with dozens of different pheromones (Jackson 
and Ratnieks 2006): each ant leaves a track as it passes that acts as a signal for the 
next ant that passes that way, and each message is subsequently reinforced, weak-
ened or changed by the other sisters in the colony.

Using this relatively simple mechanism, ants, which are blind, successfully solve 
“the travelling salesman problem”: Given a list of cities and the distances between 
each pair of cities, what is the shortest possible route that visits each city and returns 
to the origin city? (Yogeesha and Pujeri 2014).

It sounds like a miracle, but ants really can find the fastest route between a cer-
tain number of points. As the problem is one of the toughest in mathematics, for 
which no one (including ants) have yet found a completely satisfactory solution (in 
other words valid for any number of cities), it is a noteworthy result.10

7 There are fossils of dragonflies with a wingspan of 70 cm and millipedes two metres long. In 
addition, insects exposed to an artificial atmosphere with a high oxygen content develop (through 
the activation of some genes) hypertrophic features (Zhao et al. 2010). The fact that “gigantism” in 
insects only occurs in hyperoxygenated atmospheres is worthy of note: it’s not accidental. 
Organisms able to activate genes that develop a phenotype that’s more suitable to survival are 
selected: selection acts as a filter.
8 For centuries we have known that an insect can survive for weeks after the part of the nervous 
system in the head has been removed (Gregory 1763)
9 Two “spherical” brains have a surface area 25% larger than one brain of the same volume
10 The algorithm used by ants is… as simple as it can be, but not simpler. At first, as they’re blind, 
they move randomly. In a certain period of time the ants that chose the fastest path with have trav-
elled back and forth several times, reinforcing the pheromone trails. After a while, the most distinct 
trail will be the fastest (Dorigo and Gambardella 1997).
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As was the case when unicellular organisms organised themselves into complex 
organisms, the emergence of sociality in insects as a mechanism used to store and 
process information has not certainly been the dominant paradigm in science, but it 
is present.

First of all, the idea that information processing capabilities can spontaneously 
emerge is deeply-rooted in information technology and neuroscience:

The bridge between simple circuits and the complex computational properties of higher 
nervous systems may be the spontaneous emergence of new computational capabilities 
from the collective behaviour of large numbers of simple processing elements (Hopfield 
1982).

In addition to that, for other geneticists, “gene-based theories have provided plau-
sible, albeit incomplete, explanations [for the origins of collaborative societies] … 
In many social groups, socially learned cooperative behaviours increase the produc-
tivity of the individuals in the group relative to that of animals that are not group 
members, yet the evolutionary effects of such behaviourally transmitted informa-
tion have rarely been explored.” (Jablonka 2006).

There is a long way to go from ants colony solving the salesman problem to 
Homo sapiens inventing GPS satellite system and creating car navigators. But the 
road is marked out.

�The Social Body

To many biologists, including Bert Hölldobler and Edward Wilson (2009), the 
authors of The Superorganism: The Beauty, Elegance, and Strangeness of Insect 
Societies, the problem lies in understanding when and how the “eusociality gene” 
became established. The reasoning behind this is that, if a complex organism is 
altruist, this is encoded in the information code of each individual.

But we are dealing with complex systems: a property of the system doesn’t 
derive from a property possessed by each individual – this is in fact Simon’s defini-
tion of a complex system. Cooperation can be one of the many effects of 
communication: first comes the ability to communicate, then the instinct to cooper-
ate for a common scope.

If we consider complex organisms, including human beings, this hypothesis 
doesn’t appear to be too far-fetched. For human beings, cooperation without prior 
communication is something of a rarity. Many anthropologists who have lived with 
hunter-gatherer populations, say that learning the language was essential not only to 
their studies, but for their safety too. When Daniel Everett was with the Piraha he 
acknowledged that on one occasion he only managed to avoid being killed by a 
drunk member of the tribe because he was able to speak the man’s language 
(Everett 2009).
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Even Frans de Waal, a primatologist famous for his idea that culture and morals 
are not exclusively human traits, acknowledges the fundamental role played by lan-
guage in the formation of an ethical society:

Members of some species may reach tacit consensus about what kind of behaviour to toler-
ate or inhibit in their midst, but without language the principles behind such decisions can-
not be conceptualized, let alone debated. To communicate intentions and feelings is one 
thing; to clarify what is right, and why, and what is wrong, and why, is quite something else 
(Waal 1996).

Surely chimpanzees communicate, and do form collaborative societies. But nothing 
compares to humans, and in fact there’s an incredibly high level of collaboration 
between humans “What is most amazing is that our species is able to survive in cit-
ies at all, and how relatively rare violence is.” (Waal 1996). No other primate could 
live in cities as crowded as ours without starting a civil war.

For Robin Dunbar, the anthropologist famous for proposing that group size was 
correlated with brain size among species of social primates, language lays the foun-
dations of society. What’s more, according to Dunbar, language, in the form of gos-
sip, emerged not as a form of communication, but as the evolution of grooming: 
“gossiping … is the core of human social relationships, indeed of society itself. 
Without gossip, there would be no society.” (Dunbar 2004).

As mentioned in (Reader 1998), language isn’t much use when hunting. There’s 
really no need to read the adventures of anthropologists gone native, from Colin 
Turnbull in The Forest People (Turnbull 1961), to Daniel Everett, who tell of their 
inability to move through the forest in perfect silence on a hunting expedition. As 
every hunter knowns (Forense 1862), language is not only superfluous, it’s to be 
avoided at all costs: vocal skills are used just for “faking natural sounds in order to 
lure their prey within range of their weapons” (Botha 2009).

But language does have something to say when it comes to hunting. Language in 
fact is fundamental if hunters are to peacefully share out game: it therefore emerges 
more as a means of negotiation (Reader 1998), rather than just gossip, or a way to 
pass on information.

This goes for every means of communication. While communication, to be effi-
cient, has to pass on “useful” information, this does not necessarily have to be the 
case. The exabytes of cute kittens – hardly informative – sent over Facebook might 
have a role: communication is also used to create the system’s identity. The role of 
language and communication in general is also to make individuals feel – and there-
fore become – part of the system as a whole.

Language permits the constitution of the social body, a structure where the single 
elements go beyond collaboration. In Jean Jacques Rousseau’s words means “the 
total alienation of each associate, together with all his rights, to the whole commu-
nity” (Rousseau 1762). We call it body for a reason: the citizens become the cells of 
an organism, they stop existing as a single element. When we raise an arm to defend 
our head from a dangerous object, there’s no altruism in the arm’s action: the cells 
of the arm wouldn’t survive outside the organism anyway: the self of the cells in the 
human body is a meta-self, transcendent, not immanent.
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For Rousseau, in human societies, like in insect societies, the individual ceases 
to exist, and is alienated mainly thanks to shrewd communication – the conviction 
that every person has a well-defined role to play in society, and must play that role 
and no other.

Language allows the emergence of collaborative societies, but not necessarily 
fair societies –exactly like ant colonies. Citizens under the social contract (which is 
an emergent property in Rousseau writing, not an actual piece of paper) are safer. 
But certainly not more free or smarter than they were.
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Chapter 4
The Human Social Brains

We saw how the emergence of biological neural networks, from the simple neurons 
of ctenophores to C. elegans’ neural network, appears to be a natural evolutionary 
process.

In this chapter, however, we’ll consider one brain in particular – our own. What 
drove the development of our hypertrophic neural network?

According to some scientists, there is no answer to this question. Yuval Harari 
(2014) writes: “What then drove forward the evolution of the massive human brain 
during those 2 million years? Frankly, we don’t know.”

A good approach would be to consider the development of our brain under the 
same light we would consider the development of other brains. In the framework of 
intelligent systems, it comes natural to consider the evolution of the communication 
skills of mammals in general, primates, and H. sapiens in particular, as a transfer of 
the cognitive abilities of the species from individuals to the network, just as it hap-
pened for unicellular organisms, which are networks of proteins, and complex 
organisms, which are networks of cells.

The leitmotif of this book is that there wasn’t just one single cognitive revolu-
tion – typically identified with human language – but rather a continuous increase in 
the capability of intelligent systems to process and store information. And the revo-
lutions, if we really want to identify any, are the emergence of new forms of life 
based on the integration of old form of life.

Revolution, therefore, can be seen as starting with the introduction of culture, or 
information stored by the society and passed on from one generation to the next. 
And culture, in this sense, was not invented by H. sapiens 50,000 years ago. Not 
even by some of our ancestors 14 million earlier (“great-ape cultures exist, and may 
have done so for at least 14 million years,” van Schaik et al. 2003). The need for a 
cultural system is tied to the inevitability of death and the need to reproduce.

As mentioned in Chap. 3, death and reproduction are necessary processes that 
clean superfluous syntax. But a system that was unable to pass on the useful infor-
mation acquired from one mortal individual to other surviving individuals wouldn’t 
be a great evolutionary success. Intelligent systems have to adopt a mechanism to 
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pass on useful information to other systems before they die: this is the only way 
these systems can evolve into ones that are more and more intelligent.

It’s true that today we know organisms can pass on information to their descen-
dants by activating and deactivating genes, but as mentioned above, DNA is a long-
term memory, difficult to modify. What’s more, it can only be used to pass on 
information to one’s descendants. It is a one-to-very-few communication system.

Culture on the other hand is the capability to store information not in an indi-
vidual, but in a network. And the greater the communications’ capability of the 
elements in a network, the more information the network can store and process.

So, intelligent systems like uni- or multicellular organisms have two mechanisms 
for recording new survival strategies over multiple generations: as an individual by 
adapting the phenotype1 through genetic modification (“… novel phenotypes arise 
as a result of environmental induction”. Jones 2012), and passing this information 
to their offspring; as a network by modifying its structure, for instance through 
Hebbian learning.

In the case of complex organisms, we know for a fact that some mammals 
adopted social behaviour –an exchange of information between organisms– as far 
back as the Palaeocene, immediately after the Cretaceous period, the age identified 
with the extinction of non-avian dinosaurs 65 million years ago. The remains of 
Pucadelphys andinus, a small Palaeocene marsupial mammal, suggest they were 
polygynous animals with a highly evolved social life living in a pack with the males 
probably competing with each other (Ladevèze et al. 2011).

We don’t know when these behavioural patterns emerged. But essentially, along 
with social behaviour, at that time mammals had already developed a brain that, 
when compared to the brain of a dinosaur, is like comparing a Ferrari Testarossa to 
a Fiat 500.

Although we studied the emergence of the nervous system, we didn’t consider 
how difficult it is, for an organism as a whole, to maintain a brain even as simple as 
that of Palaeocene mammals, and make it work well. Just as the sophistication of a 
Ferrari depends on more than just a powerful engine, a mammal’s brain also needs 
just as sophisticated an organism to go with it.

First and foremost, a powerful brain tends to also become an information pro-
cessing centre, and therefore a single point of failure.2 All it takes to put it out of 
action is a relatively light shock, so the brain needs a strong and costly skull to 
protect it. What’s more, as is the case with every powerful motor, it requires a nota-
ble amount of energy (in the case of Homo sapiens and some dolphins (Martin 
1996) it weighs just 2% of the body weight but requires 20% of the energy absorbed 
by the organism).

In addition, energy is required continuously, because the brain, unlike muscles, 
cannot store nutritive substances. If the brain is left without nutrients and oxygen 

1 Phenotype: “The set of observable characteristics of an individual resulting from the interaction 
of its genotype with the environment.” (Oxford English Dictionary)
2 A part of a system that, if it fails, will stop the entire system from working (https://en.wikipedia.
org/wiki/Single_point_of_failure, verified 5 May 2019)
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for just a few minutes, it suffers irremediable damage, exactly like modern data 
centres would be damaged if they were suddenly deprived of electrical power.

Also like data centres, because of the amount of energy consumed, our brain 
heats up – something that poses problems in the design of the skull and circulatory 
system. The very definition of “mammal” includes the presence of a cerebral neo-
cortex and a particularly well-developed cerebral cortex (Borrell and Calegari 
2014). Both these areas can only function thanks to a sophisticated body tempera-
ture regulating mechanism, which birds, reptiles, fish –and of course dinosaurs– 
don’t have.

In short, in terms of a cognitive revolution, the real revolutionary leaders were 
some obscure vertebrates who started investing in the cognitive organ some 200 mil-
lion years ago: “What is beyond dispute is that the earliest mammals themselves did 
have significantly enlarged brains … brain size in Mesozoic [248 million to 65 mil-
lion years ago] mammals lay within the lower part of the size range of the brains of 
living mammals. This represents an overall increase of some four or more times the 
volume of basal amniote brains, and presumably involved the evolution of the neo-
cortex, the complex, six-layered surface of the cerebral hemispheres that is one of 
the most striking of all mammalian characters” (Kemps 2005).

�Why a More Powerful Brain?

Understanding the origin of the mammals’ brain is fundamental if we want to 
understand the origin of our own. According to some anthropologists, our brain has 
only really been useful in the last few thousand years: “For more than 2 million 
years, human neural networks kept growing and growing, but apart from some flint 
knives and pointed sticks, humans had precious little to show for it.” (Harari 2014).

Looking at it from this point of view, the brain appears to be a mere exercise in 
sexual energy-wasting (Miller 1998), which by chance, and only in the case of 
Homo sapiens, around 50,000 years ago produced symbolic thought. Just like birds 
that grew wings for no obvious reason, and then by chance found they could fly.

But the brain is a costly investment. According to Wheeler and Aiello’s (1995) 
expensive-brain hypothesis, many complex organisms, in order to afford an increas-
ingly more powerful brain, have in fact reduced, as they have evolved, the mass of 
other energy-consuming tissues like the digestive system and muscles. Homo sapi-
ens, with their thin body and short intestine, is an excellent example.

If the brain was so useless as Harari wrote, this investment would appear to make 
no sense. A useless, costly brain, that needs so much energy it forces an organism 
to reduce organs essential for its survival like muscles and the digestive system can-
not have laughed in the face of natural selection for hundreds of millions of years.

If a mutation, whatever the cause, is prejudicial to fitness, it’s hard to imagine 
why it would be adopted by the entire species.

To justify the introduction of the brain we can imagine a few possibilities.

Why a More Powerful Brain?
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First, it could be that the brain initially develops like a parasite, to the detriment 
of its host organism. The brain “decides” it will have the host organism mate only 
with other similarly hyper-cerebral conspecifics.

In this case, a useless brain – the one indicated by Harari – will come out on top 
anyway, in spite of the process of selection: any organism able to increase its cere-
bral capacity to the detriment of other organs will be taken down this path by its 
parasite-brain.

This may be the case, but perhaps the brain evolved for a more noble cause, like 
its cognitive abilities. The brain’s problem-solving capabilities could represent a 
profitable return on the investment. In fact, for many years “it was assumed that 
brains evolved to deal with essentially ecological problem-solving tasks” (Dunbar 
1998): it’s cold, so instead of waiting for selection to favour hairy people the brain 
invents clothing.

Another evolutionary push, not necessarily an alternative to the one above, could 
be Dunbar’s social-brain hypothesis. Dunbar shows that the evolutionary push 
towards a more powerful brain in primates derives not from the need for cognitive 
abilities, but from more sophisticated social skills. More and more organised Homo 
societies made this genus a success, despite the atrophy of the organs.

Dunbar’s hypothesis could, and perhaps should, be extended to include mam-
mals, the first organisms that made a serious investment in the brain: “human culture 
cannot be disassociated from social life, and therefore from humanity’s mammalian 
and primates foundation” (Sussman 2017).

So, getting back to the reason why mammals in general, and primates and Homo 
in particular, have such a powerful brain, we have three possible hypotheses:

	1.	 The brain of mammals, like an internal parasite, developed to the detriment of 
other organs, even though this wasn’t really necessary.

	2.	 Brains evolved to become more and more powerful to improve problem-solving 
capabilities.

	3.	 Same as above, but in this case to create more complex societies.

Obviously, none of the three hypotheses can be discarded completely, but the 
social component, the third, appears to have carried more weight than the other two. 
Isler and Van Schaik (2008) analysis on mammals and modern dinosaurs – birds – 
shows that the brain, when unable to favour collaboration, is more of a liability than 
an asset.

In practice, the body needs to reduce its energy requirements when the whole 
organism cannot exploit the advantages that derive from the ability to collaborate 
with others of its species. This means for instance reducing the digestive system in 
mammals or the pectoral muscles in birds.

The “maximum rate of population increase3 is negatively correlated with brain 
size only in precocials [offspring born relatively mature and mobile, e.g. ducks] and 

3 The maximum intrinsic rate of increase is the per capita birth rate minus the per capita death rate 
for a population (Cole 1954).
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semi-precocials, but not in altricials or semi-altricials [offspring requiring total care, 
like eagles]” (Isler and Van Schaik 2008). In other words, birds with a high encepha-
lization level but a scarce ability to pass information on from parent to offspring, 
reproduce less than those that, with a brain of the same power, create a parent-
offspring bond.

Note that Isler and Van Schaik do not think their study contradicts the expensive-
tissue hypothesis:

The observed trade-off between the maximum rate of population increase and both absolute 
and relative brain size supports the notion that this trade-off is caused by an energetic con-
straint, especially since it disappears in lineages where the mother’s energetic burden dur-
ing reproduction is alleviated through helpers. Thus, our results fully support the expensive 
brain hypothesis, which predicts that relatively large brains can evolve only when either 
energy input increases. (Isler and Van Schaik 2009)

In practice, if energy is available, organisms, and rightly so, will develop their brain 
and pick the low-hanging fruit that derives from problem-solving skills. But “during 
mass extinctions large-brained taxa are especially vulnerable,” and precocial ani-
mals, considering the same cerebral energy consumption, are more vulnerable than 
altricial animals:

But what change of lifestyle would allow the evolution of larger brained lineages? Our 
results show that, as predicted by the expensive brain hypothesis, allomaternal energy 
inputs during offspring production are one critically important factor. (Isler and Van Schaik 
2009)

In a similar analysis, this time focused on mammals and primates, Isler and Van 
Schaik (2012) proved that the brain of the genus Homo, without a significant capa-
bility for collaboration, would already have been unsustainable already 1.8 million 
years ago, when the successful Homo erectus started colonising the whole planet.

In short, Fisher’s idea – that societies formed so natural selection could improve 
the species – could not be further from the truth. Societies, made up of individuals 
with a communicative and collaborative brain, are an essential instrument in order 
to be able to afford even more powerful brains. Mammals’ brain can afford to be so 
powerful precisely because it’s so spectacularly collaborative.

Human brain in particular appears all the more extraordinary not for its calcula-
tion capabilities, but for its communication capabilities. Just as neurons probably 
first appeared as intelligent cells, able to report the presence of food, then showing 
their “true colours” when they learnt to communicate, forming neural networks, the 
brain in turn was born to be an information processing centre that then went on to 
become the key to success of some species – Homo sapiens first and foremost – 
when it learned to communicate.

This success is evident also in consideration of the biomass on the planet for dif-
ferent organisms, shown in Fig. 4.1

Even excluding Homo sapiens and the animals humans have domesticated, the 
biomass of mammals is three times that of surviving dinosaurs (the birds). Mammals 

Why a More Powerful Brain?



50

today, with Homo sapiens leading the way in a de facto dictatorship, represent the 
vast majority of terrestrial vertebrates.4

The success of mammals is the success of an evolutionary strategy aimed at 
developing an organ that doesn’t merely excel in processing information: it does a 
great job of exchanging information too, and therefore creating networks that can 
quickly store and process information necessary for survival.

�The Primates’ Brain

Isler and Van Schaik (2008) analysis of birds appears to be convincing, and Isler and 
Van Schaik (2012) extends these conclusions to primates. The importance of their 
studies can hardly be overestimated. Until the last century, anthropology considered 
the social behaviour of primates to be less important than the creation and use of 
tools. The number of results for “primate social behaviour anthropology” and “pri-
mate tool use anthropology” on Google Scholar shows the complete disinterest of 
the post-war generation in the social relations of primates compared to the use of 
tools: 800 compared to 17,000 hits.5

But in time, around the year 2000, articles on social relations surpass those on the 
use of tools. Today, the figures are 90,000 for social relations compared to 50,000 
for tools. Dunbar’s social brain hypothesis was published in 1998.

Ape the tool-maker and ape the social animal are representative of the second 
and third hypothesis for the emergence of the brain  – problem solver or social 
instrument.

It makes sense that paleoanthropologists gave initially more weigh to the 
tool-maker. The reason for making tools is evident: an increase in energy gain. 

4 There are less vertebrates than arthropods, such as insects, spiders and crustaceans, however.
5 Analysis carries out with Google Scholar, 27 february 2019.

Fig. 4.1  Graphical representation of the global biomass distribution by taxa (Bar-On et al. 2018)
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For both man and chimps this is certainly true. Homo habilis fed on marrow by 
cutting bones open with flint tools, and chimpanzees obtain high calorie foods 
such as honey, termites, marrow and brain from their prey by using specific tools 
to do the job.

But is not as simple as it looks. Simple energy gain cannot, for example, explain 
the inventiveness of the gorilla. Far from stupid, the gorilla doesn’t (as far as we 
know) use any tools to increase the amount of food it has access to (for that matter 
it has plenty of leaves to feed on). A gorilla does, for example, create tools to help it 
move through water (Breuer et al. 2005). Millions of years of evolution to develop 
a brain that weighs half a kilo with its relative energy requirements that only comes 
up a stick to help you cross a stream isn’t exactly an excellent investment.

But the brain did not give gorillas just that. The mammals’ brain, in general, 
performs two tasks. The first is to find solutions to the problems found, a task often 
performed by one or a few individuals. The second is the cultural absorption of the 
information acquired, in other words storing information in the same society using 
communications mechanisms like imitation.

Gorilla didn’t develop their brain to invent a stick to cross a stream, but to com-
municate: some populations communicate using rudimentary sign language (Kalan 
and Rainey 2009).

Although archaeology was established specifically to study the use of tools by 
primates (Haslam et al. 2009), it emphasises the importance of conformist transmis-
sion mechanisms – in practice learning through imitation or allelomimesis as men-
tioned in Chap. 2 (Luncz et al. 2015). In a sense, the invention of the tools by the 
brain is the finger pointing at the moon, but the moon is the society.

In conclusion, as is the case for mammals in general, the primates’ brain is first 
and foremost a social brain, and has been for a long time. The ability to live in 
communities made it possible to store information not only as individuals, but as 
a society. Individuals die and lose information, societies don’t, or at least not 
so fast.

Something similar happens with ants, although while ants have developed a sort 
of distributed brain and the information in the same dies with the swarm, mammals, 
and primates in particular, have created a network that can not only share informa-
tion quickly within the same, but also keep it for millions of years.

Although on a different scale, this isn’t introducing anything new compared to 
what was described for unicellular, multicellular organisms and insect superorgan-
isms in the previous chapters.

�What Makes a Homo

Paraphrasing “The Big Lebowski” (Coen and Coen 2009), the question “What 
makes a Homo, Mr Lebowski?” has no easy answer. As in the sorites paradox (or 
paradox of the heap), in which we don’t know when to start calling “a few grains of 
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sand” a “heap of sand” but do recognise the two as being different, in palaeoanthro-
pology it’s hard to define exactly when the brain of the ape lost ground to that 
of Homo.6

But today it’s easy to see the difference between the two brains: Homo sapiens 
brain is the one that has by far come up with the most complex tools and societies.

While mammals are the organisms that have invested the most in the brain in 
order to communicate, and therefore store and process information in a network of 
organisms, Homo sapiens is the mammal par excellence: the one that has taken its 
ability to communicate to new limits, and is still pushing those limits.

The truth is, a martian anthropologist would probably call ourselves Gens com-
municans, and not Homo sapiens. Homo, more than any other complex organism, 
continues to aggregate into complex structures thanks to new communication media, 
creating a global network of people – a single tribe, gens. We are an organism that 
started to create a new level of aggregation: that of the meta-organism, an organism 
made up of complex organisms.

So, instead of attempting to define the moment in which the genus Homo 
appeared, a problem that’s as paradoxical as a heap, we can try to analyse the pro-
cess that’s made us what we are. In other words, a species with some apparently 
unique characteristics, such as highly symbolic thought and the use of extremely 
complex languages, with which we can send highly informative messages in an 
efficient way.

And as in the sorite paradox, there won’t be the first Homo, but instead a continu-
ous evolution from hardly communicative (for our own standards) apes to hyper-
communicative Homo. We need therefore to analyse the emergence and evolution of 
language.

Above, we saw that a more and more demanding brain developed into a brain 
that was not only able to autonomously solve certain problems, but also communi-
cate. This is because the ability to connect with other individuals means being able 
to store and process information as a network. And being part of a communication 
network means being pushed into communicating even better.

It seems improbable that the changes our body had to go through in order to 
develop the use of spoken language all happened by chance (Lieberman 2014). Not 
only a more powerful brain was necessary. The tongue, the soft palate and the glottis 
underwent major transformations which, together, made it possible for Homo sapi-
ens to speak. As each transformation requires the activation of various genes, we 
cannot say there’s one single “language gene”.

Again, considering life as the evolution of intelligent systems leads us to the 
conclusion that these systems can learn new ways to extract energy and pass infor-
mation on to descendants, also by activating and deactivating genes. It’s certainly 
not a new idea, and was also upheld by Darwin, who “admits use and disuse as an 

6 The paradox is similar to the definition of pornography in US Supreme Court Judge Potter 
Stewart’s ruling: “I know it when I see it” (Jacobellis v. Ohio 1964).
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important evolutionary mechanism” not once, but as many as 12 times (see Ernst 
Mayr’s introduction to the Origin of Species quoted in Noble, 2010).

On the causality of variations, in the fifth chapter of the Origin of Species, 
Darwin writes:

I have hitherto sometimes spoken as if the variations – so common and multiform in organic 
beings under domestication, and in a lesser degree in those in a state of nature – had been 
due to chance. This, of course, is a wholly incorrect expression, but it serves to acknowl-
edge plainly our ignorance of the cause of each particular variation … The greater variabil-
ity of species having wide ranges than of those with restricted ranges, lead to the conclusion 
that variability is generally related to the conditions of life to which each species has been 
exposed during several successive generations.

Similarly, in the case of language, not only is there no need to wait for casual varia-
tions to make Homo sapiens a talking ape “by chance”, once again it would appear 
we must accept a certain level of Lamarckian evolution.

“[Lamarckism] is not so obviously false as is sometimes made out”, writes 
Maynard Smith (1998). “A statement that is all the more significant from being 
made by someone working entirely within the Modern Synthesis [neo-Darwinist] 
framework. His qualification on this statement in 1998 was that he couldn’t see 
what the mechanism(s) might be. We can now do so thanks to some ingenious 
experimental research in recent years” (Noble 2015), thanks to the discovery that 
“epigenetics can provide a new framework for the search of aetiological factors in 
complex traits” (Petronis 2010).

�The Anatomy of Language

Homo sapiens’ organism went through many changes so we could talk the way we 
do today. In the anatomically modern Homo, Daniel Lieberman (1998), (2014) 
associates the growth of the frontal brain lobes and the hypertrophy of the neocortex 
located immediately behind the eyebrows, as a possible cause of our faces becom-
ing flatter. While the first feature is a sign of frontal lobes with a greater capability 
for symbolic reasoning, the second makes room for a vocal tract divided into two 
parts, a horizontal and a vertical part of the same length – a feature necessary to 
articulate certain sounds (D. Lieberman 1998).

No other species of the genus Homo shares these two features with Homo sapi-
ens, so it’s highly probable that none of our forefathers could articulate sounds the 
way we do.

This, however, doesn’t mean we were the first to to communicate using some 
language. As mentioned above some wild gorillas have autonomously developed a 
form of sign language. The genus Pan (bonobo and chimpanzees) uses vocalization 
to transmit information on available food or the quality of the same (Taglialatela 
et al. 2003), (De Waal 1988), (White et al. 2015).

Although gorillas and Pan have also been going through a process of evolution 
since our evolutionary lines split, as today their encephalization quotient is lower 
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than that of an Australopithecus three million years ago. It would therefore be plau-
sible to believe that similar abilities have been in the curriculum of Hominidae for 
just as long.

This leads many paleoanthropologists to exclude not only the cognitive revolu-
tion of Homo sapiens 50,000 years ago, but also the one two million years ago, 
which according to Louis Leakey led to the emergence of the genus Homo (Leakey 
et  al. 1964): “there is no clear evidence of the quantum leap in intelligence and 
social complexity that Louis Leakey assumed when he first encountered Homo 
habilis” (Christian 2011).

There wasn’t a group of sapiens which, by chance or out of necessity, suddenly 
found it had a “language gene” –a gene of such a reproductive success that it started 
a new human race.7

The cognitive revolutions of Homo sapiens was, in reality, just an evolution, as 
in the sorite. From some very basic communication capabilities (expressions, atti-
tude, smell) that cannot be defined as language, to today hyper-communication era.

There is another information revolution which makes a good example, because it 
has not taken millions of years but hundreds: the “IT revolution”.

The IT revolution has been less sudden than we first thought. We might start from 
Blaise Pascal’s seventeenth century calculator to the tabulators used to take cen-
suses in late nineteenth-century America, electromechanical calculators, silicon 
chips, printed circuit boards, and integrated circuits. But none of these technologies 
resulted in an immediate quantum leap. The first calculators that used semiconduc-
tors to compute their results were less powerful than electromechanical calculators, 
and when the evolution of these could go no further, silicon took over and growth 
continued. The amount of information we can process with machines has been 
increasing, in an exponential but continuous way, year after year, since the micro-
chip, or since Pascal calculator, or we could say since the abacus or writing were 
invented, depending on what you want to consider the origin of the process. In the 
end, this is “computer science”, so we should analyse the emergence of computing, 
which surely goes back to the Sumeri mathematicians, and so on.

If we take a look at our own built-in computer, the brain, the story isn’t much 
different: “Our data suggest that the evolution of modern human brain shape was 
characterized by a directional, gradual change” (Neubauer et al. 2018).

In order to understand how our organism allowed language to emerge, we should 
remember that language itself is an emergent property (Everett 2017). Apparently, 
everything that concerns our brain is an emergent property, as our neurons are not 
good for much except communicating with each other.

In the book that introduced modern artificial neural networks, Frank Rosenblatt 
(1961) writes: “Individual elements, or cells, of a nerve network have never been 

7 If we’re to take recent history as an example, human society seems more inclined to reward in 
reproductive terms violent political leaders rather than peaceful geniuses: Einstein, Dirac, Fermi 
and co. didn’t start a new subspecies of Homo genialis, while Genghis Khan was such a reproduc-
tive success that today his genes can be found in approximately 8% of the males in a region stretch-
ing from Northeast China to Uzbekistan”, (Zerjal et al. 2003).
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demonstrated to possess any specifically psychological functions, such as ‘memory’, 
‘awareness’, or ‘intelligence’. Such properties, therefore, presumably reside in the 
organization and functioning of the network as a whole, rather than in its elemen-
tary parts”.

What goes for memory, awareness and intelligence can be said of language too: 
it’s an emergent property of the brain, not the product of a gene that appeared by 
chance. Excluding divine intervention or pure luck, as we did for the origin of life 
(Chap. 2), the origin of language may also have been through autocatalysis mecha-
nisms, with neurons and synapses instead of water and an electrostatic field.

In exactly the same way as biological cells emerged from some proteins being 
able to act as a catalyst for the folding of other proteins, language probably derived 
from the brain’s ability to interpret what occurs in the environment, in a more and 
more sophisticated way

According to Everett’s hypothesis (2017), inspired in turn by Charles S. Peirce’s 
semiotic progression, language initially evolved from indexes, in other words indi-
cations that something is happening. Smoke indicates there’s a fire, tracks that an 
animal passed that way.

Next steps are icons, like the stone an Australopithecus africanus was probably 
carrying around three million years ago  – the Makapansgat pebble. Natural ele-
ments worked the stone to make it look like a face, and for this reason, the hypoth-
esis is that it was picked up and kept as a kind of amulet or bauble by the 
Australopithecus.

Then there were signs – intentional and arbitrary – and so on, gradually, up to the 
development of modern language.

What’s important to emphasise here in terms of hypotheses like Everett’s – or 
Szathmáry’s (2001) language amoeba hypothesis – is that language is an emergent 
property of the brain and as such (like every emergent property) didn’t appear sud-
denly, out of the blue, but through a bootstrapping8 or autocatalysis process. This 
occurred, thanks to the ability to note, and exploit, minor coincidences: smoke-fire, 
fire-hot, hot-food smells good,9 an ability that resulted in the emergence of new 
cognitive tools.

As mentioned above, this isn’t much different from the development of networks 
of neurons, created to detect the presence of organic material. Hundreds of millions 
of years ago neurons, which until then had been used to detect glutamate in the 

8 One fundamental concept in computer science (although introduced in physics) is bootstrapping. 
Bootstrapping, in reality, is just another name for autocatalysis, as described in Chapter three with 
reference to the emergence of cells, but it’s also commonly used to explain the growth of systems 
based on information. This comes from the absurd idea that you can pull yourself up by your boot-
straps. On the basis of classic mechanical principles, bootstrapping is impossible, because it cre-
ates energy. But, in the case of information and acquiring energy, the process is natural: even a 
minimum amount of information lets you acquire a little energy, which lets you store a bit more 
information, and so on.
9 Without digressing on the use of fire, Wrangham (2009) reports that chimpanzees feed on seeds 
toasted by natural fires.
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environment, a sign of the presence of material that could be used as food, started 
producing and exchanging glutamate as a means of communication.

The brain took the same path, and Homo’s brain more than any other. The 
problem-solving capability of the human brain lets it recognise indexes that most 
other animals miss, just like the neurons that were the only ones that could detect 
glutamate. Homo started with the ability to distinguish indexes, then used this abil-
ity to communicate, eventually creating cognitive networks, societies, the equiva-
lent of neural networks of brains.

In time, the ability to recognise indexes was refined: the brain started recognising 
an albeit casual representation of something that really existed. If a pebble with two 
holes and its chipped mouth reminds the brain of a face, it will probably do the same 
for my mates’ brain. The ability to turn an icon into a sign is, in a certain sense, the 
ability to turn the function into an object – to create communication tools.

Indexes and icons in turn therefore act as catalysts for the emergence of complex 
structures, like signs. This is the bootstrapping process. There is no need then to 
imagine a cognitive revolution that coincides with the birth of language. The use of 
even an extremely crude form of language lets human societies store and process 
much more information than other mammals.

The autocatalysis in this case is that, also a primitive form of language – like that 
used by gorillas – produces a more organised community, more advanced in cogni-
tive terms, and therefore better able to obtain food than others. And the more the 
communicative society is successful, the more the individual is forced to become 
more communicative.

The reason why is important that organisms can change their phenotypes in 
response to environmental stimuli throughout the book, is that this mechanism is 
essential to explaining the emergence of language: “the origin of human language 
required genetic changes in the mechanism of epigenesis in large parts of the brain” 
(Szathmáry 2001).

In the case of language, environmental stimuli are social stimuli. Autocatalysis is 
the ability of society to force the individual to use instruments for communication – 
and therefore, if necessary, epigenetic modification.

�Agriculture and Cognitive Social Networks

Another myth that’s been busted in recent years, along with that of the cognitive 
revolution, is the myth of “the invention of agriculture”. The idea that there was a 
moment in which some Homo sapiens understood they could grow a plant by plant-
ing a seed. The cognitive revolution suddenly made Homo sapiens special, but it 
was the agricultural revolution that decreed the demographic success of the popula-
tions that “invented it”, the Fertile Crescent first followed by Europe and Asia.

But as Marvin Harris (1978) pointed out 40 years ago, agriculture was probably 
more the product of necessity than a stroke of genius.
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Our forefathers had already colonised a considerable part of the planet’s land 
mass thanks to the social and technological success of Homo erectus. The same 
thing happened with sapiens, who developed the abilities of erectus. But why so 
widespread? Because a Homo population hunting and gathering needs a notable 
extension of land to avoid exhausting natural and renewable resources.

The need changes from region to region, but if we consider, as Lieberman did 
(2014), that a tribe of 20–30 people needs at least 250 square km of land, this trans-
lates into an extremely low sustainable population density. To give you an idea of 
what this would mean, a territory as vast as France for example, even without con-
sidering the presence of mountains and less productive areas, could sustain a popu-
lation of no more than 70,000 – a thousandth of what it does today.

This explains why Homo’s reproductive success pushed the species to every cor-
ner of the planet. If, as surmised by Lieberman (2014), an erectus woman on aver-
age gave birth to five children, half of which would survive, the growth rate of the 
population is 0.4% per year.

This doesn’t sound like a lot, but it is exponential growth: at this rate, the popula-
tion doubles every 175  years. A tribe that initially occupied 250 square km, in 
4000 years would have grown to occupy an inhabitable surface area of 150 million 
square km – almost all the dry land that could be used by man. On the basis of a 
more conservative estimate of our population growth capabilities, Lieberman (2014) 
estimates that it took Homo erectus 100,000  years to spread from Ethiopia to 
Georgia.

In practice, the advantage with hunting and gathering is that, as it’s sustainable, 
it requires less effort than farming – the first requires no work to transform the envi-
ronment, the second on the other hand does. But in the case of hunting and gather-
ing, the number of people in the population must remain below sustainable limits. 
Harris (1978) explains some hunter-gatherer behaviour – female infanticide and the 
martial tendencies of males – by the need to remain within demographical limits.

Once the Homo system had occupied all the available space – the planet – it was 
forced to stop expanding and had to find a balance. On the one hand there would 
always have had to be a sufficient number of individuals for inter-tribal and intra-
tribal collaboration (the first to renew the gene pool). But, on the other hand, as soon 
as collaboration made excessive population growth possible, this had to be stopped, 
through abortion and feuds for example.

Paleontological studies suggest that we have been fighting wars, or little wars 
(guerrilla) for at least 10–50,000 years (Lahr et al. 2016). But it has probably always 
been so: aggressiveness must emerge when renewable resources are scarce. When 
the environment can no longer sustain the Homo population, it tends to limit itself 
to avoid shortages that could lead to severe consequences such as famine.

Agriculture can be considered an alternative to population control. If we modify 
the environment, it can sustain a larger population.

The “discovery” related to the introduction of agriculture isn’t botanical, but 
once again, social, anthropological. It’s difficult to imagine that gatherers 
20,000 years ago didn’t know that plants grew from seeds (Harris 1978), quite the 
opposite: although there isn’t just one single category of “hunter-gatherers” (Testart 
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et al. 1982), the term “gatherer” is typically used to refer to populations with a more 
sophisticated botanical culture than that of sedentary populations committed to agri-
culture (Schultes, Raffauf 1990).

It was therefore necessary to start using agriculture when the fragile balance that 
was reached when all the available space had been occupied was upset. There may 
have been many causes of this upset, although climate change has recently been 
accepted as the principal cause (Richerson et al. 2001). As Cohen (1977) explains: 
“an imbalance between a population, its choice of foods, and its work standards 
which force the population either to change its eating habits or to work harder, or 
which if no adjustment is made can lead to the exhaustion of certain resources.”

Agriculture made it possible for man to exploit his intellectual and social skills 
even more: “crop cultivation fosters association, a desirable goal for our sociable 
species. At the same time, farming promotes individual ownership and accumula-
tion of material possessions; it makes it easier to have larger families.” (Smil 2008).

In practice, agriculture acts as a social thickening agent, as well as being the most 
reliable method for obtaining food. As mentioned above, the maximum intrinsic 
rate of increase of Homo sapiens was only made sustainable thanks to the unique 
collaboration capabilities of the species: the more individuals manage to collabo-
rate, the more our species is a success. Agriculture, which requires consistent, 
coherent communities, means the cognitive abilities of the community, of the net-
work of Homo sapiens, can explode. Larger and more organised communities 
encourage the evolution of language, for example with the introduction of the math-
ematical language, and of communication and information storage, for example 
writing (Rubin 1995).

“Once food production had thus begun, the autocatalytic nature of the many 
changes accompanying domestication (for example, more food stimulating popula-
tion growth that required still more food) made the transition rapid” (Diamond 2002).

Unfortunately the emergence of agriculture, despite the fact that it increased the 
amount of available energy, didn’t make humans abandon their warlike tendencies, 
quite the contrary. As various tales tell, from Cain and Abel to Romulus and Remus, 
“[farming] facilitates warfare” (Smil 2008). With a relatively inexhaustible supply 
of food (when compared to hunter-gatherer populations), the better-organised, more 
technologically advanced populations were able to expand at the expense of the 
weaker ones, with relative ease.

Hundreds of books have been written on Alexander the Great’s skills in terms of 
military strategy, but – in terms of information processing – the invention of torsion-
spring catapults by the Macedonian army would appear to be just as important as 
the visionary capabilities of their commander. Without his unbridled ambition 
Alexander couldn’t have conquered an empire, but in a war of sieges, the Macedonian 
catapults – war machines that could fire projectiles weighing dozens of kilograms at 
targets hundreds of meters away  – were probably just as decisive a factor 
(Ferrill 2018).

Agriculture made wars of conquest a profitable endeavour. The accumulation of 
energy, from cereals, means immediate payback to cover the cost of war. Furthermore, 
rigid social organisation into classes introduced by farming communities  – 
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impossible for hunter-gatherers – favoured the absorption of conquered populations 
into the new empire: the ruling class might be sacked of its riches, but it was still the 
head of the organisation. The army was put to death or incorporated into the ranks. 
The productive classes – peasants – were in the same position as the ass in Aesop’s 
“The Ass and the Old Peasant”, with the peasant begging the ass to fly with him as 
fast it could or else they would be captured by the enemy: “Do you think they’ll 
make me carry heavier loads?” “Oh, well, then,” said the Ass, “I don’t mind if they 
do take me, for I shan’t be any worse off.” (Aesop 1994).

In practice, with the advent of agriculture, war was transformed from a means of 
population control to an instrument of conquest: great states absorbed weaker ones, 
to create the first great empires.

�Empires and Networks

The autocatalytic nature of the domestication of plants and animals can actually go 
beyond “more food stimulating population growth that required still more food”, as 
Jared Diamond wrote (2002). Agriculture acted as feedback mechanism allowing 
more people together, who communicate more, who increase their technological 
expertise, which allow even more people to live together, who communicate more…

We have seen how the evolution of language into a more and more sophisticated 
instrument makes it possible for more and more intelligent societies to emerge: able 
to store information, self-sufficient and self-organising.

When we set up communities of thousands of individuals, a new form of lan-
guage appeared, mathematics. The power of the mathematical language lies in the 
use of an extremely powerful syntax that can be used to process a previously 
unthinkable amount of information.

We’ve seen how complex the “simple” symbol π is. If mathematicians have been 
obsessed about it for millennia, is because the importance of that number is second 
only to 0 and 1. The effectiveness of mathematics in natural sciences – in other 
words in the ability to model and therefore predict our environment – is intimately 
related to π, as summed up by Eugene Wigner’s tale (1960):

There is a story about two friends, who were classmates in high school, talking about their 
jobs. One of them became a statistician and was working on population trends. He showed 
a reprint to his former classmate. The reprint started, as usual, with the Gaussian distribu-
tion and the statistician explained to his former classmate the meaning of the symbols for 
the actual population, for the average population, and so on. His classmate was a bit incred-
ulous and was not quite sure whether the statistician was pulling his leg. “How can you 
know that?” was his query. “And what is this symbol here?” “Oh,” said the statistician, “this 
is pi.” “What is that?” “The ratio of the circumference of the circle to its diameter.” “Well, 
now you are pushing your joke too far,” said the classmate, “surely the population has noth-
ing to do with the circumference of the circle.”

But the truth is that the situation described by Wigner appears to be optimistic: 
many people find it hard to understand that the ratio of the circumference of the 
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circle to its diameter is constant, and will be flummoxed by the fact that said ratio is 
an irrational (and transcendental) number.

Really there’s no need to resort to π to have an idea of how unnatural it is for 
Homo sapiens to use mathematical language. Many Homo sapiens find it hard to 
understand that 3/5 is more than half. It’s absolutely normal: the human brain is 
intrinsically non-mathematical – more communicans than sapiens. “A bat and a ball 
cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball 
cost?” Everyone, at least for a few seconds, will come up with the answer “10 cents”.

We’re cooperative primates, with an innate sense of justice, not of mathematics. 
A chimpanzee, like a person, is happy to work for an apple until it sees its neighbour 
receives a banana for the same work (De Waal 1996). The ultimatum game10 experi-
ment shows our sense of justice is innate, and independent of our culture.

“The moral law in us” is, in other words, a common trait. But gazing at “the stars 
in the sky” and imagining their origin, as did Immanuel Kant, is less so.

The social success of mathematics is therefore not due to the fact that, like the 
spoken word, it’s used by the entire population: it’s due to the fact that it’s the best 
tool at our disposal for managing public affairs:

Most pristine state structures depended on organized violence, on religious institutions, 
etc., and mathematics did not enter. At least one major exception to this rule can be found, 
however: the earliest “proto-literate” state formation in Mesopotamia of the late fourth mil-
lennium, intimately connected to a system of accounting that seems to have guaranteed an 
apparent continuation of pre-state “just redistribution”. (Høyrup 2009)

Not by chance, the word “statistik” was coined around the middle of the eighteenth 
century to describe the analysis of state data (Achenwall 1748). Mathematics, since 
the first Sumerian empires, has been society’s instrument of management: it first 
appeared with agriculture 10,000 years ago (Høyrup 2009) and was used to organise 
society in a relatively fair way.

The passion felt by some Homo sapiens for mathematics doesn’t, in most cases, 
derive from the fact that they know it will be useful: for some Homo sapiens, math-
ematics, and logical-deductive reasoning in general, is merely a source of pleasure. 
When the Sumerians were founding the first civilization, mathematicians gathered 
data on the position of the planets knowing that in some cases it would take genera-
tions to paint a complete picture (Tabak 2004). They worked in the hope and with 
the conviction that humanity – or in any case the part of the same that dedicated its 
time to quantitative knowledge – would one day be able to comprehend more com-
plex natural mechanisms than those they could strive to understand with the data 
acquired during their lifetime.

As a form of language, mathematics, or science in general, is also an emerging 
property of a community. Something that will survive the individuals.

10 One player, the proposer, is endowed with a sum of money. The proposer is tasked with splitting 
it with another player, the responder. Once the proposer communicates their decision, the responder 
may accept it or reject it. If the responder accepts, the money is split per the proposal; if the 
responder rejects, both players receive nothing. Both players know in advance the consequences of 
the responder accepting or rejecting the offer. (https://en.wikipedia.org/wiki/Ultimatum_game)
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�The Expensive-Class Hypothesis

In the Aztec’s “cannibal kingdom” described by Harris (1978), the aristocracy – a 
combination of the military, priests and mathematicians – had no scruples about 
keeping most of the population just above subsistence level. Then they would use 
them as meat to be butchered.

The situation in the Fertile Crescent was completely different. Sumerian slaves 
were mostly foreigners (Mendelsohn 1946), and there are no traces of ritual 
cannibalism.

The difference between the two societies wasn’t genetic, obviously, but environ-
mental. “Mesoamerica was left at the end of the ice age in a more depleted condi-
tion, as far as animal resources are concerned, than any other region” (Harris 1978). 
The Fertile Crescent, on the other hand, as emphasised by Diamond (2002) “yielded 
what are still the world’s most valuable domestic plant and animal species.”

In practice, the Sumerians probably found themselves with a group of priest-
mathematicians who, thanks to the presence of resources that were easily exploit-
able through technological developments, soon turned into a technocracy that made 
it possible for the society to quickly consolidate itself and expand.

The Aztec aristocracy, on the other hand, found themselves in a situation in 
which the only way to survive was to become a parasite, considering society as the 
environment from which they would extract the energy necessary for survival: peas-
ants were considered both workforce and livestock.

We can draw an analogy between these two cases and the brain in Isler and Van 
Schaik’s analysis (2009). The information processing centre  – brain or govern-
ment – is a liability when energy sources are scarce, and in these cases behaves like 
a parasite – in other words it continues to exist at the expense of the other organs/
classes, part of the same organism/society.

Information processing centres are not only more intelligent, they need more 
energy too. When energy can be extracted from outside the system, there’s no rea-
son to “eat your neighbours”. But in times of hardship, the first survival strategy is 
to exploit productive sub-systems.

The increase of inequality in networks is a phenomenon that’s been subject to a 
great deal of study. As pointed out by Dorogovtsev and Mendes (2003), in a society 
in which wellbeing decreases, the level of inequality increases.11 Seen as intelligent 
systems, government or the brain not only need more energy, they’re also in the 
position to subjugate the rest of the organism to obtain it.

Although new technologies, from the brain to mathematics and computers, are 
developed in periods of opulence  – like the electronic calculators developed in 
post-World War II America – the same technologies will be used to the disadvantage 

11 Dorogovtsev and Mendes measured the level of inequality, and rightly so, not with indexes like 
the Gini coefficient, but by measuring the exponent of the power-law which describes the distribu-
tion of wealth (see Appendix 1). The greater the absolute value of the index, the greater the 
inequality.
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of the common good and to the advantage of the governing minority in times 
of need.

We’ll take a look at how Homo sapiens evolved after the invention of language, 
and how human societies evolved through the evolution of communications’ instru-
ments in the next chapter: in practice, whether cells or societies, systems that can 
effectively process information can exist as a parasite in another system (the Aztec 
ruling class or Dyson’s RNA) or as organisational centres for the system as a whole.

In the following chapter we’ll see how something similar is happening in modern 
Homo sapiens’ societies with the emergence of today’s IT giants.

Open Access   This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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Chapter 5
The Human Meta-Organism

The aggregation of cells into complex organisms is considered a new form of life, 
although it’s really just the result of the aggregation of other lifeforms. This makes 
sense though: when cells reached their cognitive limit, by connecting, intelligence 
continued to evolve. The cognitive capabilities of complex organisms have little to 
do with the ones of a single cell.

We’ve also seen that the above development occurs seamlessly: we go from the 
distributed collaboration of bacteria up to complex organisms.

Bacterial colonies aren’t really organisms: they don’t appear to have any self-
awareness, they cannot clearly distinguish between “themselves” and the external 
environment. An organism, on the contrary, knows which elements are part of the 
system (and therefore collaborate in the cognitive processes, and must receive 
energy) and which aren’t (and can therefore be sources of energy).

Networks of complex organisms –societies– however, are more similar to bacte-
rial colonies than to a new organism. The only possible exception, colonies of 
insects, are somewhere between the two: they are formed by extremely simple com-
plex organisms, like ants, whose network creates a superorganism, like the ant col-
ony. But the colony’s cognitive abilities are well below the ones of many complex 
organisms.

In this sense we say that the appearance of complex organisms is a revolution in 
the evolution of life. Complex organisms went on developing cognitive abilities that 
no single cell can have. Networks of complex organisms, like ants or social mam-
mals and birds, on the contrary did not show such a leap in intelligence.

The aim of this chapter is to show how the introduction of communication 
through electric signals by Homo sapiens pushed the cognitive abilities of our spe-
cies: not the ones of the individual, but the ones of human society as a whole, which, 
with the introduction of Internet, is starting to look more and more like a complex 
organism made of complex organisms.

This, in geological terms, is indeed a historic moment: the emergence of the first 
meta-organism of complex organisms, the human meta-organism. A new milestone 
in the evolution of life.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25962-4_5&domain=pdf
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�The Evolution of Communication in Homo sapiens

Hippocrates of Kos’ quote “Ὁ βίος βραχύς, ἡ δὲ τέχνη μακρή” was translated into 
Latin as Vita brevis, ars longa. The word τέχνη (téchne), from which the term tech-
nology comes, derives from the Proto-Indo-European root ∗teks-, initially “to con-
struct putting together” and then “to weave”, from which the Italian word tela 
(cloth) derives. The origin of the Latin ars is similar, and derives from the Proto-
Indo-European haer-, “prepare, put together” (Mallory, Adams 1997). Taking liber-
ties with the quote one might paraphrase it as “the individual dies young, the 
network lives long”.

Hippocrates’ quote is reminiscent of Sumerian mathematicians: a life is not 
enough to collect all data needed to build a model. The solution adopted by the 
Sumerians was to introduce a form of language, mathematics, and a communication 
channel, writing. This, as described in the previous chapter, increased their ability 
to store and process information as a network of individuals. In short, it created an 
intelligent system that survived longer than the single components of the same, and 
even longer than the system itself: while the Sumerians have disappeared, their 
math lives on.

The invention of mathematics and writing can be compared to the introduction of 
synapses by neurons. Spoken language in fact, on its own, has some clear limita-
tions, as it did for early neurons communication through the diffusion of chemicals. 
It’s difficult to imagine Homo sapiens communicating verbally with 7000 or 20 mil-
lion people, respectively the average and highest number of neuron synapses in 
our brain.

Homo sapiens, as Dunbar (1992) proved in his study on the relationship between 
the cortex and the size of communities, can’t connect to more than about a hundred 
other individuals. If mammals, and Homo first and foremost, managed to use the 
network effect for leverage, despite the small size of the same, this is also and espe-
cially thanks to the impressive cognitive abilities of individuals.

As mentioned above, the brain was originally a processor of information, and 
evolved into a communicator, in the same way as the neuron was originally a detec-
tor of edible material that evolved into a communicator cell.

In practice, social networks of mammals are mainly a multiplier of individual 
intelligence. They are not a new entity, a real meta-organism, from the word μετά: 
“after”, “beyond”.

�More Communicans than Sapiens

In an information-energy context, it’s this thrust towards more intelligent cognitive 
networks, systems that can process more information in order to obtain more energy 
from the environment, that drove the Homo brain to become constantly more power-
ful for millions of years.

5  The Human Meta-Organism
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But as mentioned in the previous chapter, it’s a substantial investment for a mam-
mal to keep its brain functioning. Increasing cognitive ability more than Homo sapi-
ens has done would be risky and impractical in energy management terms.

According to Hofman (2014), Homo sapiens brain could reach its maximum 
processing power, approximately 50% more than it has today, by increasing its vol-
ume by 130%. If so, it would weigh almost 3.5  kg compared to the 1.5  kg it 
weighs today.

Leaving aside the question as to whether our organism could physiologically 
sustain a greater brain mass, it’s obvious that 100,000 years ago a brain that was a 
bit more powerful but in proportion required a lot more energy, would have been 
nothing more than a risky liability.

So, it was a much better idea to develop communication abilities, creating the 
necessary specific instruments: doing the same thing as neurons, that created syn-
apses and dendrites in order to communicate more effectively.

Put simply, the first instrument of communication to emerge after language, was 
writing. The written word, at least in the Fertile Crescent, was probably developed 
to keep accounts in the taxation system: the oldest example of writing is a Sumerian 
income statement, not a poem (Lerner 2009).

Writing was invented to boost the cognitive abilities of some brains, those of the 
Sumerian civil servants-mathematicians, so they could create small cognitive 
networks.

As communication developed through writing a change began: from storing and 
processing information as an individual to doing so as a network. This became evi-
dent to some Homo sapiens already thousands of years ago. In Plato’s Phaedrus, 
Socrates exclaimed:

…this discovery of yours [writing] will create forgetfulness in the learners’ souls, because 
they will not use their memories; they will trust the external written characters and not 
remember themselves. The specific which you have discovered is an aid not to memory, but 
to reminiscence, and you give your disciples not truth, but the semblance of truth; they will 
be hearers of many things and will have learned nothing; they will appear to be omniscient 
and will generally know nothing; they will be tiresome company, having the show of wis-
dom without the reality.

It’s a concept that’s repeated over the centuries, every time a new instrument of 
communication emerges. In 1492 the German Renaissance polymath Johannes 
Trithemius published De laude scriptorum manualium (In praise of scribes). 
Trithemius considers manual writing to be a form of higher learning:

[Writers,] while they are writing on good subjects, is by the very act of writing introduced 
in a certain measure into the knowledge of the mysteries and greatly illuminated in his 
innermost soul.

But as Ziolkowski (2011) mentions, “Trithemius himself was no foe of printed 
books”, and ironically, the treatise has survived till today only as a printed work. 
The same is true for the words of Socrates, which we can read only because his 
pupil Plato transcribed them.

More Communicans than Sapiens
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If we continue to follow evolution in instruments of communication, the tele-
graph first and then the telephone were received in the same way: they made it pos-
sible for a global society to emerge, but were also attacked.1

At the end of the nineteenth century the American writer C. Harris wrote:

At present our most dangerous pet is electricity – in the telegraph, the street lamp and the 
telephone … The telephone is the most dangerous of all because it enters into every dwell-
ing. Its interminable network of wires is a perpetual menace to life and property. In its best 
performance it is only a convenience. It was never a necessity (Harris 1889).

Similar stands were taken against the radio, television and, obviously, against com-
munication through interconnected networks managed by electronic calculators, the 
Internet, and the subsequent development of graphical interface for non-profes-
sional use, the World Wide Web.

Perhaps, the first Homo who used a form of spoken language to settle controver-
sies in a group was criticised by the older generation too. How much less “human-
ity” was there in communicating verbally, at a distance, compared to the physical 
contact of grooming, of reciprocally cleaning each other’s fur? We’ll never know, 
because the older Hominidae probably conveyed their disapproval with a few grunts 
of disgust, and that was the end of that.

Socrates, Trithemius and those who today complain about the externalisation of 
our memory from the brain “to Google” have a point though. Language, writing, 
print, have resulted in societies able to extract more energy from the environment, 
to such an extent that we can now sustain a population of several billion Homo, not 
necessarily any wiser.

As mentioned in Chap. 3, quoting Rousseau’s On the social contract, the more 
society acquires cognitive abilities, the more the individual becomes insignificant in 
relation to the rest.

The more communicans Homo becomes, the less he is worthy of the name 
sapiens.

�Communications Technologies and Topologies

On the basis of the brief overview of communications technologies in the previous 
section one might think there had been a constant improvement in means of com-
munication, as communications channels have constantly increased. But it’s not 
that simple.

Despite the fact that today there’s more focus on “bandwidth” in economic 
development policies, it’s also, if not above all, the topology of the network that 
determines the amount of information a network can process.

1 Thanks to David Malki for his blog http://wondermark.com where all the examples quoted were 
found.
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In this sense, instruments of communication invented by humans, regardless of 
the capacity of the channel, ie the amount of information/syntaxes that can flow 
from one element to the next, can’t be considered a constant improvement in infor-
mation processing capacity for society.

The C. elegans neural network analysed in Chap. 3 is nothing special in terms of 
amplitude of the communication bandwidth between neurons, or number of nodes. 
But as we’ve seen, this type of network makes the processing of sensory input sur-
prisingly accurate.

The first societies based on spoken language in a certain sense represent the 
equivalent of the elegans proto-brain: each person can exchange signals with any 
other member of the group.

The same thing can’t be said of the written word. On the one hand, writing is in 
itself a way to store information, with the obvious advantage that something written 
today can be read centuries later, as it happened to Socrates. It can therefore be used 
to create information networks that develop in time, and not just in space.

But on the other hand writing comes with some distinct disadvantages, including 
the externalisation of memory. It is for example quite an inflexible form of memory, 
a bit like DNA. Languages that aren’t officially used in a written form are more 
plastic than written ones (Hollenstein and Aepli 2014). Languages without a written 
tradition are not less expressive than official languages, quite the contrary. Consider 
the importance of dialect poetry in countries that have an official language such as 
Italy, or the acknowledgement that “the highly verbal” African American Vernacular 
English “is famous in the annals of anthropology for the value placed on linguistic 
virtuosity” (Pinker 2003).

The fact that in Switzerland 80% of the population uses a non-written language 
as their first language (this is the percentage of people who speak Swiss German and 
Italian dialects) maybe due to the “early and long-lasting interest in pragmatism” in 
the country (Tröhler 2005).

The Latin saying verba volant, scripta manent can be interpreted in two ways: 
written words are of more certain interpretation than spoken ones, or spoken words 
let you fly away, written words keep your feet on the ground.2

Regardless of the speculations concerning the connections between the nature of 
a people and the use of writing, what’s certain is that writing started a transforma-
tion of human social network. Whereas before, one person could have bidirectional 
contacts with about one hundred others, now one single written work created a one-
way channel between writer and readers. Writing is a “one-to-many” communica-
tion system. Intellectual currents do form around written works, but societies cannot 
participate as a whole. First writing, and then printing, in the best case scenario 
create small connected sub-networks (the intellectuals) whose ideas propagate until 
they eventually touch the society.

The situation changed radically with the invention of the telegraph, for two rea-
sons. The first is that, for the first time in the history of complex organisms, these 

2 I was told the second interpretation by my late father, who loved Latin and Ancient Greek.
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organisms managed to communicate with each other at speeds close to that reached 
by the nervous system. The second is that the telegraph made it possible to create a 
network that was topologically similar to neural networks, in which each individual 
could connect to all other individuals.

“Could connect” because in reality the telegraph is an instrument that’s problem-
atic to build and keep working over long distances, and it’s also complicated to use. 
But it was still an embryonic nervous system, as was obvious to Carl Friedrich 
Gauss almost two centuries ago.

Gauss, who as well as being one of the most brilliant and prolific mathematicians 
and physicists of all time, never turned down an opportunity to experiment, in 1833 
wrote to the astronomer Heinrich Wilhelm Matthias Olbers: “I don’t remember any 
mention to you about an astonishing piece of mechanism we have devised.” 
(Dunnington et al. 2004).

That piece of mechanism was the telegraph, which Gauss and his young col-
league Wilhelm Eduard Weber had invented, built and installed so they could 
quickly communicate between the observatory and the institute of physics. Gauss 
and Weber published their results in German in the Göttingische gelehrte anzeigen 
(Dunnington et al. 2004). Despite the initial interest shown by politicians (it was 
presented to the Duke of Cambridge), the invention wasn’t a success, also because 
after the two inventors proved the feasibility of the project they didn’t have time to 
dedicate to its industrial development.

But the importance of the discovery was clear to Gauss from the start. In 1835, 
the scientist wrote to his ex-student Heinrich Christian Schumacher: “The telegraph 
has important applications, to the advantage of society and … exciting the wonder 
of the multitude”. In the same letter he also mentioned the estimated investment 
necessary to lay the required wires around the world: 100 million thalers.3 He con-
cluded by mentioning that he had found it easy to teach his daughter to use the 
instrument (Dunnington et al. 2004).

At the time, no one shared Gauss’s enthusiasm, and the telegraph was reinvented 
and developed by others. It’s easy to understand Gauss’s contemporaries, as it must 
have been hard to imagine how two needles miles away that move in synchrony with 
each other could one day “excite the wonder of the multitude”.

What Gauss was rightly enthusiastic about was the possibility of communicating 
instantaneously between one place and another on the planet. To create, to all effects 
and purposes, a network of electrical synapses in which the people are the neurons. 
It took humanity almost 200 years to evolve the telegraph into something that could 
arouse the interest of the masses. This was because the necessary investment was 
huge, and because the technology wasn’t easily scalable. A wire one mile long is 
one thing, a network of wires around the planet, a “world wide web”, a completely 
different concept.4

3 Considering the observatory’s budget was 150 thalers (which Gauss was known to complain 
about), the investment would be about 100 billion dollars today, a more than reasonable estimate.
4 The telegraph in topological terms can be considered to be a network that’s similar to that of the 
brain, but in terms of physical connections it’s different, and this made development difficult: if a 
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But all things considered, the result is the same: each element can communicate 
in a bidirectional way, almost instantaneously, with a very high number of other 
elements, which is what matters in terms of processing information in a network.

This means the telegraph and its spin-offs are perfect to create the “next level” of 
intelligent systems: they can transform a social network into a network that’s topo-
logically similar to a network of neurons, with similar cognitive abilities.

Systems such as radio and television on the other hand, with their one-way star 
structure (a few transmitters and many receivers) are exactly the opposite. They’re 
used to connect one node to others and not vice versa.

If we consider this in terms of Hebbian learning, radio and television don’t let the 
network learn much: there’s one single central neuron, connected to peripheral neu-
rons, that acts in a relatively independent way. As predicted by Hebb, connections 
will be created between peripheral neurons only because they’re in tune with the 
central neuron, which occurs often, considering its power.

So Hebbian learning, considering the topology of the network, was responsible 
for the fact that radio was a highly effective instrument of propaganda for early 
twentieth-century governments. As Joseph Goebbels said soon after the Nazi party 
came to power in Germany in 1933: “It would not have been possible for us to take 
power or to use it in the ways we have without the radio…” (Adena et al. 2015).

�Internet Companies

When we talk about Artificial Intelligence we mostly think of companies like 
DeepMind, an Alphabet Inc. (former Google Inc.) subsidiary, with neural networks 
that can learn to play Go or video games, or certain products like chabots and 
speech-to-text, rather than algorithms that are currently used by Google, Facebook, 
Amazon and Netflix (the FAANGs excluding Apple, or the FANGs) to make a 
fortune.

Although the technology is very advanced, algorithms, in terms of mathematical 
sophistication, are less so. But the ability to extract a great deal of information is 
notable, and this gives these companies a huge advantage over everyone, govern-
ments included.

One of the most obvious examples is Alphabet Inc., which continues to generate 
a healthy revenue through the Google search engine. Google’s ability to find the 
most influential nodes in a network is based on a brilliant algorithm published by 
the two founders. This algorithm, called PageRank, calculates the central position 
of the nodes (Brin and Page 1998) in a very precise way, and could finally be imple-
mented by Google’s engineers on a scalable and cheap infrastructure. It really was 

telegraph can connect to 10,000 other telegraphs it can’t have 10,000 outgoing connecting wires, 
like the synapses of a neuron. Hubs are required to route the communication between two ele-
ments: this was done for the telephone by switchboard operators, until a few decades ago, and is 
now automated using specific computers called routers.
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a silver bullet. But it wasn’t just the PageRank that made Google one of the most 
successful companies in the history of finance.

PageRank and its implementation allowed Google to offer an excellent service, 
fulfilling its mission: “To organise the world’s information and make it universally 
accessible and useful”.

But what makes Google still today such a successful company is the application 
of smaller strategies, much less sophisticated than PageRank, used to extract energy 
(revenue) from the external environment. An environment which, in this case, con-
sists of its users and the companies who want to reach those users.

Today, Google has managed to make the dreams of some CERN researchers of 
the 1990s come true: to make people pay a fee for each site they browse.5

In its early years, Google effectively put its mission of organising information 
into practice. The compromise was that the service wasn’t monetised through pay-
ments (the founders’ initial idea), but by proposing sponsored links, always perti-
nent to the user’s search and clearly separated from the main results.

People looking for “Lawyers in Paris” would find various websites ranked by 
relevance, plus others, clearly highlighted as “sponsored links”, relegated on the 
right of the page. Sponsored links were ranked by relevance and by the amount of 
fees paid to Google.

The breakthrough arrived with the analysis of user behaviour. The company 
noticed that many of the search queries it received weren’t keywords, but names of 
web site. In other words, people who wanted to visit the site of the company ACME, 
whose web address was http://www.acme.com, didn’t type such address in their 
browser. They would google “ACME” and then click on the first link proposed, 
which infallibly (and easily) was redirecting them to http://www.acme.com.

This is when Google started having the signal “Sponsored links” changed to a 
timid “Ad”, and serving those paid links on top of the real results. In this way, 
ACME, in addition to optimise its content according to what Google wants, has to 
pay to be on top of the paid links.

ACME must pay, because if it does not pay enough, competitors might appear at 
the top.

How little importance Google puts on linking the user to the web site they actu-
ally wanted to reach is clear in Fig. 5.1. In this case, the first result in a search for 
“SK Traslochi” is the competitor “traslochi 24”. The link to the competitor is labeled 
“Ann.”, which has no meaning whatsoever in Italian, surely not “Sponsored”.6 Users 
looking for “SK Traslochi”, used to trust Google, are easily tempted to click on the 
competitor’s link. That is evil, and is far from Google’s original mission.

Google has other revenue channels apart from its search engine, all based on 
analysing user behaviour. For example, thanks to a “free” tool used by websites to 

5 At the time, I heard many such complaints from my colleagues, who didn’t realise that, if the Web 
won over all other solutions (does anyone remember Gopher?), it was precisely because it was free 
of any commercial license, see (Berners-Lee and Fischetti 1999).
6 Verified 7 April 2019.
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analyse web traffic, called Google Analytics, a huge number of websites7 send to 
Google detailed information on who is reading what.

It is interesting to read in the book written by Google’s first director of market-
ing, Douglas Edwards (2011), how the idea to just insert sponsored results was ini-
tially considered immoral by the company’s employees.

Now, however, Google gives companies paid-for visibility: if you want to appear 
as the first link when your customer google your company’s name, you have to pay. 
If your competitors have a good Search Engine Optimization expert, you might 
have to pay a lot.

The model described above is in line with the real mission of Google’s holding, 
obvious if we look at the name: Alpha-bet, a bet on alpha, the symbol used in finance 
as a measure of the excess return of an investment in relation to the market 
benchmark.

Alphabet’s raison d’être isn’t to provide the perfect website, but rather a website 
that will satisfy the user, making them pay for it, albeit in an indirect way. There is 
no such thing as a free lunch: users think they’re not paying, but companies have to 
pay for the user to find them, and as a consequence must increase their prices to 
compensate for these additional costs.

With Google Analytics, companies think they don’t have to pay for a service. 
They do have to pay Alphabet for their products and services to be displayed to their 
target users though, something Google is well aware of. Google, in fact, collects 
non-aggregated browsing data, in other words it knows exactly which person visited 
the website, but it only provides Google Analytics users with aggregated data. 
What’s more, Google can cross-reference visit data with search data, to identify the 
user profile precisely.

Similar strategies are used by Facebook to circulate posts, and by Amazon after 
it introduced “sponsored products”.

7 Google does not provide any figures on the number of websites using its product

Fig. 5.1  Google proposing a competitor’s website as first (sponsored) link
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�On Regulating the Private Sector

As Yoshua Bengio says, when powerful algorithms are used exclusively for com-
pany profit, this creates dangerous situations:

Nowadays they [the big companies] can use AI [Artificial Intelligence] to target their mes-
sage to people in a much more accurate way, and I think that's kind of scary, especially 
when it makes people do things that may be against their well-being (Ford 2018).

Bengio isn’t exaggerating, although it does not mean that the role of these compa-
nies has never been beneficial.

While the public sector was responsible for the impetus behind the creation of 
the World Wide Web, it was the private sector – companies like Google – that made 
the invention useable by the masses. Reading Edwards (2011), one sees Google dur-
ing the first years of existence as a community of hackers,8 whose purpose was 
effectively to organise global information and, above all, solve the technological 
problems that made indexing billions of web sites more and more difficult.9

This vocation for problem solving, for “making the world a better place”, is one 
of the mantras of all technological start-ups, right up to the day they’re listed on the 
stock exchange. As Cringely (1996) explains, IT companies have to aim to be listed 
on the stock exchange not to acquire capital (in relation to any other industry, IT is 
not very capital intensive), but to liquidate workers, who are paid in company stock 
options. The workers have to be paid in stock options because the good old hackers 
were inclined to leave the company after solving the first intellectually stimulating 
problem they were given, to look for another problem. It’s only the mirage of mil-
lions of dollars that lets these companies keep the first wave of creative minds, the 
ones that can solve the most challenging problems, on their payroll for more than a 
couple of years.

When the company is listed on the stock exchange, the first wave of hackers 
jump ship, and the company organisation is set up. But the price of the shares on the 
market must always continue to grow, because if it doesn’t there’ll be an excessive 
brain drain and, as a consequence, a loss of capital. A vicious circle that would 
destroy the company.

In short, the company’s mission becomes: to increase revenue.
Google found itself at the right place at the right moment: it received major fund-

ing just before the new economy bubble burst in 2001 (Edwards 2011). This let the 
company scrape together the finest computer scientist and solve problems that had 
until then been considered unsolvable.

If, as Tim Berners-Lee wrote, “…people say how their lives have been saved 
because they found out about the disease they had on the Web, and figured out how 

8 “Hackers solve problems and build things, and they believe in freedom and voluntary mutual 
help.” Eric Raymond in How To Become A Hacker, http://catb.org/~esr/faqs/hacker-howto.html, 
verified 12 April 2019.
9 “The Friendship That Made Google Huge” by James Somers, The New Yorker, December 3, 
2018
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to cure it”,10 the credit goes to Google too. But when Edwards (2011) describes 
Google’s employees being told the company would be listed on the stock exchange, 
we see kids who have won the lottery rather than people who want to make the 
world a better place. The result is that, as Berners-Lee said on the 30th anniversary 
of his proposal for an information management system at CERN in Geneva, “user 
value is sacrificed, such as ad-based revenue models that commercially reward 
clickbait and the viral spread of misinformation”.11

In the west, as well as the above-mentioned technology giants listed on the stock 
exchange, there are also new entries that have taken advantage of the power of the 
Internet to solve real problems, as Google did in the 90s.

One example is AirBnb. There are many advantages for the economy, as con-
firmed by independent studies (Quattrone et al. 2016) and, of course, by AirBnB 
itself. The services offered by AirBnb in some cases are more efficient than the 
services offered to tenants by the state. In Italy for instance, unpaid rent amounts to 
1.2 billion euros per year, and it’s hard to imagine recovering the debt you are owed 
in less than a year.12 With the law incapable of guaranteeing fulfilment of a contract, 
AirBnB is considered the only viable option for renting out a house.

AirBnB is in the same situation that Google was in around the year 2000, or 
Facebook a few years later, but if left unregulated there’s nothing to guarantee it 
won’t represent the same risks as Google and Facebook today.

Facebook, for example, has developed a technology that’s ideal for someone who 
wants to make harmful information go viral. Let’s take vaccines for example. 
Citizens/users find themselves torn between two contrasting sources of information: 
on the one hand medicine, which wishes to assure them that the probability of infec-
tion is minimised; on the other, a user or organisation which, in good faith or not, 
spreads the word that vaccines are harmful.

A Facebook user, the father or mother of a child, who in their timeline sees a post 
entitled “Vaccines reduce the probability of infection in children” won’t give it 
much consideration. But “Vaccines cause autism” shocks the user, who hesitates 
while scrolling the timeline. The Facebook algorithm is not designed to minimise 
deaths from infection, but user engagement, and slowing down while scrolling 
means more engagement.

This is enough to display the post against vaccines to other users too and hide 
those promoting vaccines: the time each user spends on the application, along with 
the number of users, is one of the most important parameters for investors. The 
number of deaths of children who weren’t vaccinated don’t appear in investor 
relations.

10 Tim Berners-Lee, “Answers for Young People”, https://www.w3.org/People/Berners-Lee/Kids.
html, checked on 12 April 2019.
11 Tim Berners-Lee, “30 years on, what’s next #ForTheWeb?”, https://webfoundation.org/2019/03/
web-birthday-30/, verified 12 April 2019.
12 La Stampa (Italian newspaper), 14 August 2018, tenants in arrears, a portal for recovering unpaid 
rent https://www.lastampa.it/2018/08/14/economia/inquilini-morosi-arriva-il-portale-per-recuper-
are-gli-affitti-non-pagati-Sj3au6263cQsApQAKw6VEN/pagina.html, verified 12 April 2019.
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Facebook acknowledges that some of its users create fake news for economic 
gain,13 but does not acknowledge that Facebook Inc. also benefits from fake news. 
Facebook makes profit every time the user clicks on a sponsored link, regardless of 
the content. Posts containing disinformation are the perfect instrument for identify-
ing the ideal user for those who want to sell you something, first and foremost poli-
tics: always on the lookout for gullible people.

Let’s take Italy, the country that in the last century was the testing ground for the 
rise and consolidation of fascism. In the bel paese, the two political parties that 
formed the Italian government in May 2018 (the Five Star Movement and Lega 
Salvini Premier) both promoted anti-vaccination policies while in power (Sole 
2018), (Repubblica 2019).

Some Italian Five Star Movement members of parliament publicly uphold the 
existence of chemtrails and Judeo-Masonic conspiracies, not to mention the fake 
moon landing and mermaids14.15

Populist parties feed off gullibility. There are no limits to the pre-electoral prom-
ises a “flat earth” voter will believe, or to the excuses given, without fail, after the 
elections.

Once gullible users have been identified, they can be targeted with the most 
unbelievable messages, from immigration being the cause of the economic crisis to 
the phantasmagorical profit to be made from exiting the European Union.

Not by chance, the Five Star Movement is the political arm of a communications 
company. One that understood before others how to use digital channels (Casaleggio 
2008). Likewise, the Lega Salvini Premier makes use of a seasoned digital commu-
nications’ team (Espresso 2018).

The spectrum of disinformation is wide, and obviously Facebook and other plat-
forms are not the only cause of disastrous political decisions. For example, a variety 
of factors made 17  million British citizens vote in favour of Brexit (Kaufmann 
2016). But the 350  million pounds/week that Brexit should have speared to the 
British economy (Rickard 2016) remains a masterful ruse, or a criminal way to use 
digital communications’ channels, depending on how you look at it.

Facebook is unrivalled in being able to find gullible user segments. The statistical 
analysis done academic to find out which human profiles voted for Brexit (and 
therefore also their reasons) are certainly sophisticated, but also based on a ridicu-
lously small sample when compared to the “big data” of the company. Two examples: 

13 “We’re getting rid of the financial incentives for spammers to create fake news -- much of which 
is economically motivated.” Mark Zuckerberg, Second Quarter 2018 Results Conference Call, 
https://s21.q4cdn.com/399680738/files/doc_financials/2018/Q2/Earnings-call-prepared-remarks.
pdf
14 “Carlo Sibilia, the Five Star Movement’s conspirationist, the new Interior Ministry 
Undersecretary”, La Repubblica, 13 June 2019, checked https://www.repubblica.it/polit-
ica/2018/06/13/news/carlo_sibilia_sottosegretario_all_interno-198873517/)
15 “Secrets and chemtrails: the long list of Five Star conspiracies”, Espresso, 26 September 2014, 
verified 9 April 2019: http://espresso.repubblica.it/palazzo/2014/09/26/
news/l-eurodeputato-m5s-a-caccia-di-scie-chimiche-ecco-la-lunghissima-lista-dei-complotti-gril-
lini-1.181876

5  The Human Meta-Organism

https://s21.q4cdn.com/399680738/files/doc_financials/2018/Q2/Earnings-call-prepared-remarks.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2018/Q2/Earnings-call-prepared-remarks.pdf
https://www.repubblica.it/politica/2018/06/13/news/carlo_sibilia_sottosegretario_all_interno-198873517/
https://www.repubblica.it/politica/2018/06/13/news/carlo_sibilia_sottosegretario_all_interno-198873517/
http://espresso.repubblica.it/palazzo/2014/09/26/news/l-eurodeputato-m5s-a-caccia-di-scie-chimiche-ecco-la-lunghissima-lista-dei-complotti-grillini-1.181876
http://espresso.repubblica.it/palazzo/2014/09/26/news/l-eurodeputato-m5s-a-caccia-di-scie-chimiche-ecco-la-lunghissima-lista-dei-complotti-grillini-1.181876
http://espresso.repubblica.it/palazzo/2014/09/26/news/l-eurodeputato-m5s-a-caccia-di-scie-chimiche-ecco-la-lunghissima-lista-dei-complotti-grillini-1.181876


75

Kaufmann (2016) reached the following conclusion “primarily values … motivated 
voters, not economic inequality” after analysing the results of a survey that inter-
viewed 24,000 people. Swami et al. (2017) reached the conclusion that people who 
believe in Islamic conspiracies are more likely to vote for Brexit thanks to an analy-
sis of an opinion poll with 303 participants.

Let’s compare this figure with Facebook use in the UK at the time of the referen-
dum: 37 million users,16 with up to 2 hours per day spent using the app.17

Technology giants have more data on habits, behaviour and opinions than any 
other human organisation. In 2017, “only around 43% of households contacted by 
the British government responded to the LFS [Labour Force Survey]”, a survey 
which is used to prepare important economic statistics in Great Britain.18

On the contrary, Facebook and Google know where users are, who they are 
acquainted with, what they are watching. Google users, through a simple search, tell 
Google their wishes and problems, things they probably haven’t told anyone else, 
and they didn’t have to answer even one survey question to do so.

The problem with big Internet companies is that their organisation and capabili-
ties could almost be considered those of a global brain. Their behaviour however 
cannot be considered in the same light.

Behind the success of complex organisms’ brains there’s always a balance of 
costs-benefits. As mentioned in the previous chapter, the expensive tissue hypothesis 
proposes the idea that the human brain, becoming more and more costly in energy 
usage terms, made the organism sacrifice part of its essential organs such as the 
digestive system or the locomotor apparatus. But this didn’t create problems for the 
organisms, quite the contrary.

If we look at the brain as an independent system, the brain always considered 
itself to be part of the organism, and always identified the environment outside the 
organism as the source of energy it needs to survive. The organism is an organisa-
tion of collaborating organs. They brain does not feed itself at the expense of 
other organs.

Big Internet companies on the other hand, see human society as the environment 
from which they extract energy. In the best case scenario they can be compared to 
parasites – foreign organisms that feed off their host. In the worst case scenario they 
are like tumours  – sub-organisms that grow out-of-control, and that in order to 
maintain their level of low entropy are willing to sacrifice the very life of the organ-
ism of which they themselves are part.

16 Forecast of Facebook user numbers in the United Kingdom (UK) from 2015 to 2022, https://
www.statista.com/statistics/553538/predicted-number-of-facebook-users-in-the-united-kingdom-
uk/, checked 9 April 2019
17 Average daily usage time of Facebook in the United Kingdom (UK) 2014, by age and gender, 
checked 9 April 2019, https://www.statista.com/statistics/318939/
facebook-daily-usage-time-in-the-uk-by-demographic/
18 The Economist, 24 May 2018, “Plunging response rates to household surveys worry policymak-
ers”, https://www.economist.com/international/2018/05/24/plunging-response-rates-to-house-
hold-surveys-worry-policymakers, verified 9 April 2019
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This might seem excessive, but the number of deaths of people who haven’t been 
vaccinated could be just the tip of the iceberg. This is the mechanism with which 
new nationalist, populist or openly fascist movements including Donald Trump in 
the US, the Five Star Movement and Northern League in Italy, Narendra Modi in 
India (the first to use WhatsApp,19 a service owned by Facebook, in politics) and Jair 
Bolsonaro20 in Brazil came to power. They all exploited so-called social networks.

Trumpeting about making the world a better place, the big tech have become 
similar to their parodies: in the Silicon Valley TV series, Gavin Belson, the CEO of 
the fictitious Hooli Inc., clearly based on Google, says: “I don’t want to live in a 
world where someone else makes the world a better place better than we do.”

In conclusion, on the one hand there are companies that provide services, from 
web indexing to renting homes, machines and hiring labour, in a much more effi-
cient way than states.

On the other hand, there’s the problem that the ultimate aim of these companies 
is to increase revenue, whatever the cost. The aim is not to improve the lives of 
the people.

Probably and hopefully in the future both the value of Internet companies and the 
need to regulate their actions will be acknowledged, in exactly the same way as is 
done for water and electricity21 today. In practice, this will force these systems to 
acknowledge their role as part of society.

�The Evolution of Artificial Intelligence

While artificial and natural neural networks have some things in common, in the 
context of this book it doesn’t make much sense to ask oneself if one day artificial 
neural networks will be more intelligent than Homo sapiens.

Artificial intelligence might have been created by Homo sapiens, but it is no less 
natural than its creator, or any mechanism that other forms of life, as intelligent 
systems, developed to extract energy and feed their cognitive abilities. It is always 
natural evolution which led to the introduction of the C. elegans neural network, and 
“artificial” neural networks a few million years later.

One thing it does make sense to ask is why Artificial Intelligence systems 
emerged, why in this form, and what role will they play in the evolution of life on 
earth. Or rather: how will their role evolve, in consideration of the fact that they 
already play an essential role in our society.

19 “India, the WhatsApp election”, The Financial Times, May 5, 2019.
20 “How social media exposed the fractures in Brazilian democracy”, The Financial Times, 
September 27, 2018
21 The Economist, 23 September 2017, “What if large tech firms were regulated like sewage com-
panies?”, https://www.economist.com/business/2017/09/23/what-if-large-tech-firms-were-regu-
lated-like-sewage-companies, verified 12 April 2019.
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The reason why we can’t remain indifferent to artificial neural networks is that, 
unlike other Artificial Intelligence systems, they are incredibly autonomous sys-
tems. It is as if Homo sapiens effectively created a sort of brain, and then the brain 
learnt on its own. Mathematicians create the structure and expose it to the environ-
ment. The structure, autonomously, not only learns, it adapts so it can represent the 
environment.

Considering how the cognitive ability of artificial neural networks can evolve 
autonomously, it’s essential we realise why we reached this point, and which direc-
tion we might take.

An important aspect of artificial neural network is that Homo sapiens, scientist 
or not, has little to say on how the system will behave. Today, data is the true mine 
of information, and no longer the mathematical model making sense of those data. 
When you have enormous amounts of data, mathematical sophistication becomes 
less important.

This is something old-school scientists, like physicists, have had difficulty recog-
nising, contrary to computer scientists. In the aptly titled “The Unreasonable 
Effectiveness of Data”, three famous researchers (Alon Halevy, Peter Norvig, and 
Fernando Pereira (2009), all Google employees) refer to Wigner’s book (1960) 
mentioned in the previous chapter.

The article was written when the academic world, and not only, had accepted a 
return to neural networks, after the “long winter” of the 1980s and 1990s. Although 
the article doesn’t mention neural networks, it predicts exactly what neural net-
works would soon be capable of in the near future: thanks to the analysis of a sig-
nificant amount of data, machines would be able to perform tasks that had been 
unimaginable until then. The sophistication of the mathematical model that explains 
the phenomena is less important than being able to predict them.

At the end of the day, that’s all intelligent systems have to do. Creating mathe-
matical models is a characteristic of no other complex organism except very few 
Homo sapiens. Most intelligent systems reduce uncertainty using mechanisms simi-
lar to neural networks, i.e. without trying to understand why. It’s not surprising 
therefore that in artificial neural networks we’ve developed something that works, 
in cognitive terms, in quite a similar way to other intelligent systems, like the C. ele-
gans22 brain. As of today, with big limits though.

The algorithms used today are mostly classifiers. In other words, attempting to 
maximise a gain function the algorithm put an input in a probability box: label “A” 
has a certain probability of being true, label “B” another probability and so on.

In a game of chess, the gain function is winning. After having analysed hundreds 
of millions of games, a neural network can predict that a certain move will increase 
the chances of winning. But we’re still a long way from being able to say machines 
are sapiens though.

22 One of the reasons why it was difficult for artificial neural networks to emerge is because a sys-
tem that incorporates the programmer’s logic (an “expert system”) functions immediately, without 
the need for training. But it’s more difficult for them to learn new strategies when the environment 
changes.

The Evolution of Artificial Intelligence



78

In 1950, Alan Turing (1950) developed what today is called the “Turing test”: a 
machine exhibits human cognitive abilities if a human can interact with it (by chat-
ting for example) without being able to tell they are talking to a machine. As some 
people say, either the machine is very competent, or the person is not. In any case, 
it does not seem to be a definitive test for measuring how “human” and algorithm is. 
And typically, algorithms in Artificial Intelligence are not build to behave as humans. 
In Artificial Intelligence we look for other capacities, that humans don’t possess.

If Ke Jie, the Go champion who lost to AlphaGo (Chao, 2018), had played 
against a remote machine, he probably wouldn’t have known his opponent was not 
human. But this doesn’t change the fact that AlphaGo does not learn or think like a 
human being: a person learns to play Go in just a few minutes, by simply reading 
the rules. If Ke had had to teach the machine to play Go, he would have immediately 
realised there was not a person on the other end of the line. The machine will never 
be able to think like a Homo sapiens, for the simple reason that this is not its purpose.

For scientists, entrepreneurs and, above all, investors, it would not make sense to 
invest time and money on a synthetic brain that is the same as a human one. You 
might as well hire a person. With increasingly more data produced around the globe, 
what does make sense is investing to have something that can extract information 
from a huge amount of data, and use it. Something humans find it very hard to do.

As Berners-Lee wrote with Hendler and Lassila in 2001, “The Semantic Web 
will enable machines to comprehend semantic documents and data, not human 
speech and writings.” Computers will be able to take bookings, but they won’t 
understand what a hotel is.

The fact that a software uses our own language does not necessarily mean it also 
has the same internal representation of reality. We have a human representation of 
reality, based on our history and evolution, computers don’t. The advantage of neu-
ral networks is that they learn to do “the right thing” without needing an operator to 
program the logic, but this is a weakness too. A computer for which the right thing 
is making paper clips, won’t stop until everything is clips (Bostrom 2003). A com-
puter trained to win at Go doesn’t have the necessary sensibility to teach the game 
to a child. A computer trained to generate revenue won’t stop if a few people die of 
infection, or if after thousands of years of war and just one century of peace, a con-
tinent, Europe, risks falling into nationalist chaos. Once again.

Earth today, as Gauss imagined, has been almost all completely wired and con-
nected. Soon, probably, there won’t be any isolated area. Every thing, and every 
person, everywhere, will continuously be connected to the Internet thanks to a net-
work of satellites.23 The amount of information managed by Internet is already 
beyond the scope of Homo sapiens, but it will soon explode.

There is not only the statistical certainty, considering the evolution of life in the 
past, that the cognitive abilities of this meta-organism will exceed those of every 
individual, but also the logical certainty: this book was written precisely to explain 

23 “Satellites may connect the entire world to the internet”, The Economist, December 8, 2018
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why intelligent systems must, at a certain point, aggregate into a system able to 
process more information.

If the human organism has reached its information processing limit, the only 
thing it can do to survive is to create information networks of human organisms, and 
start processing the information “outside” the single element. Homo sapiens started 
doing this a few million years ago when some kind of language was introduced, but 
that has now become more extreme, with the introduction of a global neural network.

The emergence of the human meta-organism gives us sapiens the feeling, as 
Harari (Atlantic 2018) rightly says, that we are part of society but don’t have a real 
role. Like neurons of the brain, we’re increasingly more part of a meta-system, 
which protects and feeds us, but are less free to learn, to process information, and 
insignificant in relation to everything else. Just as neurons learnt to communicate 
with only a few signals, some Homo sapiens recently abandoned a language of 
complex syntax to start using smiley hearts and hashtags.

Our ability to adapt lets us transform ourselves into organisms that can commu-
nicate quickly, but are less able to process information. To become cells of this 
meta-organism, working readily for the survival of the same, without knowing why. 
In this meta-organism, like the cells of a complex organism, safety increases while 
freedom becomes a thing of the past.

More and more, the medium is the message: the ability of software to associate 
words with events in our lives, to use our language as a medium, is mistaken for 
intelligence. This does not mean, however, that conversational User Interfaces, so 
called chatbots, are not going to be “the next big thing” after web sites, blogs (web 
2.0), and social networks. They most probably will be.

The risk is that sapiens-sapiens communication will become a thing of the past, 
and machine-machine communication will be the driving force of the meta-
organism. But those machines will still have absolutely no real understanding of our 
reality. Can we really put our lives in the hands of such systems, even more if their 
only mission is increasing revenues?

Until today, scientists, with all their weakness but thanks to their obsessive quest 
for rationality, have helped Homo become the dominant species on earth. Whoever 
started mastering fire (“The Greatest Ape-man in the Pleistocene,” as Roy Lewis’ 
(1960) masterpiece title was translated in Italian), Aristotles, Galileo, Newton, 
Enrico Fermi or Tim Berners-Lee, you name it – their first goal has never been rul-
ing the world or make a fortune.

But they produced tools whose power could be easily exploited by second-class 
scientists: almost all founders of today’s big tech have started their careers as scien-
tists. Bertrand Russell (1971) used to say that “no transcendent ability is required in 
order to make useful discoveries in science”. But, he added, the person “of real 
genius is the person who invents a new method.” Inventing a new medium of com-
munication, the World Wide Web, is genius. Exploiting it through the PageRank is 
brilliant.

Indeed, it is relatively easy to make an atomic bomb too. But because govern-
ments recognise the danger of atomic bombs, access to materials that can be used to 
make those weapons is controlled at a global level, to minimise the risk of a nuclear 
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catastrophe. Perhaps it might soon be wise to control the development of Artificial 
Intelligence too.

So-called Artificial Intelligence might actually help us live a better life. For this 
though, we need scientists who are more architects than engineers; artists, or soci-
ologists, rather than technicians obsessed with the search for optimisation.

If things continue the way they are going, the race to create a global neural net-
work will probably be very similar to a new form of nuclear energy. A technology 
which can improve the quality of life by producing cheap electricity with a low 
environmental impact, but that was initially used to kill millions.

The difference though compared to nuclear energy is that, those who invented 
Artificial Intelligence have less and less control over it, and the technology is 
becoming a necessity, much more than nuclear power years ago. It can’t be simply 
swept under the carpet and forgotten. The use of Artificial Intelligence, as the 
emerging fascism reminds us, risks being an autoimmune disease  – the defence 
systems attacking the organism itself, rather than its enemies – which could lead the 
human race to unleash the last fatal attack: against itself.

Open Access   This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.
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�Appendix 1: More on Networks and Information

�Physicists Don’t Like Networking

Physicists love interactions, but only if no people are involved.
Isaac Newton’s gravitation, the first great theory concerning the action of matter 

on matter, revised by Albert Einstein in his general theory of relativity, precisely 
describes the evolution of macro-aggregations of matter (stars, galaxies). Particle 
physics on the other hand, in the so-called Standard Model, a mathematical model 
established during the third quarter of the past century, precisely describes the 
behaviour and structure of subatomic particles, based on weak, strong and electro-
magnetic interactions.

Despite the fact that physics is still far from coming up with a theory of every-
thing – the universe is full of dark matter, the origin of which we cannot yet explain, 
and the origin of the universe is still in the realm of metaphysics – many of the 
mechanisms that govern the fundamental interactions of matter have been modelled 
in an incredibly accurate way.

Yet we are nowhere near fully understanding the emergence and working of a 
living organism. We can describe how quarks bond to form an atomic nucleus. We 
know that atoms contain protons, neutrons and electrons, and atoms bond to form 
more or less complex molecules – but we don’t know how billions of atoms can 
spontaneously bond into protein chains, that are in turn organised in the form of 
biological cells and therefore complex organisms, like our own.

There is a branch of physics that deals with the origin and evolution of aggre-
gated systems – the theory of networks – but until the end of the last century not one 
physicist and only a few mathematicians had studied it. For the entire century the 
theory of networks was used mainly in “soft science”1.

1 The separation science in “soft” and “hard” science reminds of the physicist Sheldon’s disdainful 
definition of biology in ‘The Big Bang Theory’: “…biology: that’s all about yucky, squishy 
things”.

https://doi.org/10.1007/978-3-030-25962-4
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Sociologists and psychologists started studying social networks, on the basis of 
“it’s a small world!”. “A cliché to be uttered at the appropriate moment of recogniz-
ing mutual acquaintances”, wrote the psychologist Stanley Milgram (1967) in his 
article entitled “The Small World Problem”. Milgram, a social psychologist, pub-
lished the results of an experiment that proved the level of separation between two 
Americans was around 5 – in other words two randomly chosen Americans looking 
through their friends, on average, found they were the friend of a friend of a friend 
… and so on to the fifth level.

In his article on the subject Milgram apologised for not having found a mathe-
matical model that explained how social networks could be so closely connected. 
Someone else took a shot at it. In 1997, 116 scientific articles quoting Milgram’s 
work2 were published. They were all in sociology, psychology or anthropology 
publications.

�Abby Normal Distributions3

Another phenomenon, apparently not connected to the theory of networks, seemed 
to be of little interest to physicists and other “hard scientists”: many observables in 
nature are not distributed in a Gaussian or “normal” way. Many physicists and 
mathematicians assume that when something is measured, most of the results oscil-
late around an average value, and we observe exponentially fewer results the further 
we get from the average. People’s height for example, follows Gaussian distribu-
tion: 68% of Italian women are 155 to 170 cm tall, but only three in every thousand 
are over 177 cm4. No one is 10x taller than average or 1/10th average human height.

But observables that follow a Gaussian distribution, like the height of humans, 
are not … the norm5. Many observables follow the “Pareto-Zipf-Levy-Mandelbrot” 
distribution – called by whichever of the names of these scholars you prefer, none 
of which was a physicist. It’s also simply referred to as “power law”.

Because it was initially studied by Italian economist Vilfredo Pareto, we will 
refer to it also as the “Pareto distribution”. Pareto (1896) realised that the distribu-
tion of wealth in Europe didn’t follow the Gaussian distribution. He did that tracing 

2 Search made on scholar.google.com the 7 June 2018.
3 Dr. Frederick Frankenstein: Whose brain did you put in him?

Igor: Err… Abby something…
Dr. Frederick Frankenstein: Abby who?
Igor: Abby… Normal. Yes that’s it, Abby Normal!
Dr. Frederick Frankenstein: Are you saying that you put an abnormal brain in a 7 foot tall, 54 

inch wide gorilla!? (Brooks, M. (2000). Frankenstein junior. Twentieth Century Fox Home 
Entertainment).
4 https://tall.life/height-percentile-calculator-age-country/, checked the 11 June 2018
5 Gauss came up with normal distribution in his theory of errors. It says that the measurements of 
the same sample follow Gaussian distribution because it is impossible to take perfect measure-
ments. It is a property of the observer, not of the system.
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a graph showing the number of people “N” whose wealth is “x” or more, for each 
value of “x”6. He noticed then that for all the countries he had data on, the curve of 
the graph could be represented as a relation

	 N xa∼1 / 	

With “a” measured as between 1.35 and 1.73. Interestingly, Pareto (1909) also 
attempted to explain the skewness (asymmetry) of the wealth curve, in other words 
the long tail on the right (there are some people who earn 10 or even 100 times more 
than the average salary). His hypothesis was that there are no limits to the income 
of an extraordinary person, while a person with negative qualities cannot earn less 
than the subsistence level. Unfortunately, this is a purely qualitative reasoning 
which might explain the asymmetry, but not why the Pareto distribution emerges7.

In finance, the Pareto curve hasn’t been used as much as one might expect. For 
example, the Basel II Accord of 2004 accepted a Value at Risk based on log-normal 
distribution (Basel 2004) therefore unable to predict, in the 2008 financial crisis, 
what seemed to be extremely rare events, nicknamed by Nassim Taleb (2007) 
Black Swans.

In the academic field some scholars started asking themselves why the Pareto 
curve occurred. In 1963, the mathematician Benoit Mandelbrot (1963), who would 
become the father of fractal geometry, noted there was nothing normal in the varia-
tions of the price of cotton: there is relatively little difference in the majority of 
cotton prices, as in the salaries in Pareto’s studies. But every now and then there are 
huge variations, just as every now and then someone gets extremely rich8 (for a 
review see Fama 1965).

The Pareto distribution also appears in the “Zipf’s law” after the linguist George 
Zipf. Zipf (1932), analysing word frequency in various corpora in English, Latin 
and Chinese, observed that the distribution of the frequencies followed the trend 1/
xa with a=2, and also that by putting the words in order from the most frequent to 
the least frequent, the product rank•frequency remained constant, in other words

	 Rank K xa∼ −/ 1
	

6 By “or more” Pareto shows that he is measuring the cumulative distribution, in other words the 
sum of all those whose income is greater than x.
7 In fact – Pareto’s reasoning led to the introduction of the “log-normal” curve, in which the factor 
applied to the mode is normally distributed (half of the mode has the same probability as double, a 
third as triple, and a fraction as the infinite). In finance in fact, fluctuations in the prices of shares 
were initially modelled using the normal curve on the basis of the pioneering works of Louis 
Bachelier (1900), and the log-normal was adopted in the 1960s
8 Mandelbrot, basing his studies on the work of his master Paul Lévy, went further, proving that 
“the tails of all non-Gaussian stable laws follow an asymptotic form of the law of Pareto”
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Where K is a constant and a is 2. The second representation is equivalent to the 
one used by Pareto –the cumulative distribution, but with the abscissas in place of 
the ordinates, therefore using the inverse of the Pareto index9.

�Networks and Power

Pareto distribution and social networks are strongly related. In social networks, the 
importance of the individuals, measured by number of contacts, follows Pareto.

Most people have a few dozen connections, but there are some individuals who 
are hyper-connected, with thousands of connections. Choosing one person at ran-
dom, and following a path through their contacts, it’s highly probable that we’ll end 
up going through one of these social hubs.Their existence makes the network so 
hyper-connected. If we want to send a message to a stranger (as in Milgram’s origi-
nal experiment) obviously we’d contact someone who, as far as we know, has a lot 
of contacts. And this person in turn, with many contacts, will have someone in their 
contacts with even more contacts, so the message will be delivered in just a few 
steps thanks to these “social hubs”.

One possible mechanism responsible for the development of these networks was 
first proposed by Reka Albert and Albert-Laszlo Barabasi (1999): incremental 
attachment. In their articles, the two physicists proved that the assumption that each 
new individual who joins a network will connect to another individual with a prob-
ability proportional to the number of their connections, is sufficient to spontane-
ously create a small-world network.

Inequality in networks (the fact that a few nodes are super-rich and most nodes 
are poor) is linked to how connectivity evolves: those with most connections gain 
even more connections, and in doing so the network grows to be highly connected. 
Our society is a network of economic relationships, and is no wonder that the rich 
gets richer.

�The Emergence of Small-world Networks

Just before (Albert and Barabasi 1999) was published, two mathematicians, Duncan 
Watts and Steven Strogatz (1998), proved that to create a small-world network all 
you have to do is take an ordered network, like a lattice, and introduce a pinch of 
chance, severing a few links and recreating them in a random way. The work by 

9 It can also be proven through integration that Pareto’s cumulative distribution index is in fact that 
of the same distribution less one, therefore the Zipf distribution index must be 1/(a-1)=1, as 
observed.
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Watts and Strogatz is fundamental as it proves that not only social networks, but 
also nervous or electrical systems are small-world, and these networks are all highly 
connected and have a high clustering coefficient, in other words “my friends are 
friends of my friends”.

In practice, after a century, the theory of networks has managed to prove that 
systems made up of elements that interact also over great distances, such as nervous 
systems, the web, social networks, etc. have the following characteristics:

	1.	 The number of connections follows a power law, in other words the probability 
that the nth most connected element receives a new connection is proportional to 
1/na, where a is bigger than 1.

	2.	 Point 1 may be the result of a growth mechanism that makes networks:

	a.	 highly connected
	b.	 highly clustered

Almost all the articles quoted above are considered cornerstones of the theory of 
networks. With so many physicists on the subject, one might think that the concept 
of entropy is essential in this theory. It isn’t: even in (Albert and Barabasi 2002), 
called significantly “Statistical Mechanics of Networks”, the word “entropy” is 
never used.

�Entropy of Networks

First of all, let’s see how we can define microscopic and macroscopic description in 
a network.

The microscopic description is as usual the one where each node (as the elements 
of networks are known) can be identified for its own properties, like color or a 
label “A”.

The macroscopic description derives from the role each node plays inside the 
network, or, more formally, how the topology of the network can identify (univo-
cally or not) the node.

Let’s consider a very simple network: a triangle.

A B

C

Appendix 1: More on Networks and Information



86

The microscopic description of the system is one that identifies every node with 
the letters A, B, C. The macroscopic description instead describes each node as “the 
one with two connections” –not useful indeed.

But if, instead of a triangle, we consider a network with three different nodes, 
like this:

A

B

C

the description we can use for each node thanks to the properties of the network 
(“the node with two incoming connections”, or “the node with the loop”, or “the 
node with two outgoing connections”) has the same uncertainty as the microscopic 
description.

Thanks to our skills in analysing networks, we can say that the difference between 
the microscopic and macroscopic description (Boltzmann’s entropy as redefined 
by von Neumann) in the first case is:

	

entropy triangle uncertainty macroscopic uncertainty micr( ) = ( ) – ooscopic

bit

( )
= ( ) =– log –2

1
3 0 1.58

	

While in the second case is 0 bit.
For those interested in some mathematical formalism, in the triangle all the 

permutations of the nodes (6 possible) produce the same network. If we switch “A” 
and “B”, remaining in a topological context so without considering the position of 
the nodes, we obtain the same network.

This allows us to define entropy in a network with N nodes as:

	
S

n

N

n

Ni k

i i=
=
∑
1

2
..

log
	

where each ni is one of the k groups of nodes that can be permuted without changing 
the macrostate.

In this network, taken from Mowshowitz (2009), a publication that provides a 
mathematically more formal description of entropy in networks:
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we can switch nodes 2-5 and 3-4. So there are three groups of interchangeable 
nodes: {1}, {2, 5}, {3,4) and entropy is

	
S = – log – log – log – log1

5
1
5

2
5

2
5

2
5

2
5

2
5

2
52 2 2 2 	

The mathematical formalism in (Mowshowitz 2009) can be used to calculate the 
entropy of each network on the basis of the so-called adjacency matrix, a matrix in 
which each element i, j indicates the existence or not of a link between nodes i and j.

�Barabasi-Albert small-world networks

It’s not always possible to find a group of interchangeable nodes in a network using 
a computational operation. For this reason it’s better to simplify the entropy for-
mula, and instead of considering all the network topology, merely limit the opera-
tion to a few properties of the same topology, such as the number of connections of 
the nodes. The groups of interchangeable nodes in the topology are replaced by the 
groups of nodes with the same number of connections: all the nodes with the same 
number of connections are indistinguishable.

In this case the entropy of the network is calculated using degree distribution. 
In a Barabasi-Albert network, in which the probability that a node receives a con-
nection from a new node is proportional to the number of connections k it already 
has (incremental attachment), the degree distribution comes close to the curve 1/k3 
(Albert and Barabasi 2002, sec. VII B).

As 
k

k
=

∞
−∑ ∼

1

3 1.2 10, a network of N elements will have approximately N k/ 1.2 3⋅( )  

nodes with k connections.

10 The series is the so-called “Euler-Riemann Zeta Function”, one of the most famous (and most 
studied) mathematical functions. The Zeta function for z=3 converges with “Apéry’s constant”, an 
irrational number around 1.2
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In a Barabasi-Albert network of 10,000 nodes, the probability of having a node 
connected to all other nodes, i.e. a node with 10,000 connection, is practically zero. 
But in the brain, which has 100 billions nodes, the probability for a neuron to have 
10,000 synapses is far from zero (Gazzaniga 2009, page 366).

Incremental attachment gives us a simplified, but faithful, model of reality: a 
network that grows with this mechanism has a low degree of separation and observ-
ables distributed according to power-law.

Barabasi-Albert networks help us understand many network phenomena. Let’s 
take a look at intelligence. So-called intelligence quotient (IQ) tests for example, are 
considered standardised by definition, with an average IQ of 100 and a standard devia-
tion of 15. Those who score 100 are considered normal, over 115 (a standard devia-
tion) particularly intelligent, less than 85 not very. But if we consider our own personal 
experience, it’s hard to accept that intelligence follows such a bell curve trend. Just as 
some rich people may feel poor when compared to others who are richer (imagine 
your richest friend how would they feel when compared to Jeff Bezos – even if they 
are the hundredth on richest people ranking), in the same way even the brightest peo-
ple in a degree course might feel like nonentities when compared to the greatest minds 
of all time – those four or five who changed our understanding of the world.

The reason for this, as confirmed by recent studies (Aguinis 2012), is that the 
intelligence tail, as vaguely as intelligence can be defined, is extremely long and not 
at all Gaussian.

The importance of the Barabasi-Albert model is that it simulates the fact that, the 
larger the network, the more exceptional elements –so called outliers– there are. 
Many other parameters plays an important role, but a bigger society produces outli-
ers more easily than a small one. The “many other parameters” might well be how 
well connected the society is, how valuable the information it stores, and more. But 
if we apply the same Albert-Barabasi growth process to two societies, the smaller 
one will have less outliers.

Studies on different IQs in various communities, such as in (Herrnstein 1995), 
eloquently entitled “The Bell Curve, Intelligence and Class Structure in American 
Life”, can draw some strange conclusions if they fail to consider this simple growth 
process. A simulation shows that an observable generated randomly on the basis of 
a power-law with an index of 2 and a minimum value of 1 in two communities, one 
of 200 million inhabitants and another of 30 million inhabitants (approximately the 
“Caucasian” and African-American ethnic groups analysed in Hernstein’s book) 
generates outliers in the first community with an “intelligence” value 30 times 
higher than the second. These are randomly generated numbers, and take into 
account just the size of the two communities, but as the first community is larger, 
and the tail is a lot longer, it will have outliers that cannot be found in the second11.

In small-world networks, “size matters”.

11 It is an extremely simplistic model: the Jewish community in Europe has always been a sub-
community, but it has produced quite a few notable geniuses. The importance of teaching in the 
jewish community, for instance, might have prevailed over the size. Geniuses like Paul Erdös 
considered the time they dedicated personally to teaching gifted children to be just as important as 
time spent on research (Hoffman, 1998). Thanks to Tito Bellunato for pointing this out.
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�Why Power Law Appears in Networks

In “Complexity in Numbers” we discussed Kolmogorov’s complexity, in other 
words how easy it is to come up with a formula that faithfully describes network 
topology.

Shannon’s formula

	
H p p

i
i i= ⋅ ( )∑ – log2

	

was in fact proposed as part of communication theory. It was not dealing with com-
plexity, nor with meaningfulness of a message.

Shannon’s communication theory considers the question: What do I need in 
order to encode a message (whatever the meaning), send it, and be sure the person 
who receives the code can decode said message?

In practice, the fact that the letters, and the bigrams (two letters), trigrams, etc. 
don’t occur with the same frequency, helps us decode the message. For example, if 
you receive “WHO” and then “FEVER”, you might imagine that the message had 
been disturbed by interference and was originally “WHO EVER” (Shannon 1948). 
The entropy of a language in which the probability of a character is simply the 
reciprocal of the number of available characters is greater than for a language in 
which the probability of each character is different, and what’s more depends on 
which characters precede that particular character. The same thing is true for words.

In English, for example, entropy was originally calculated by Shannon using 
consecutive approximations, in other words considering the probability of observ-
ing each letter as being the same (F0=log226 = 4.7 bit per letter), then considering 
the actual frequency pi of each letter (F1 = –palog2pa –pblog2pb … –pzlog2pz=4.14 bit) 
then considering the probability of one letter on the basis of the previous one, (F2 = 
3.56 bit) and so on (Shannon 1951).

Next Shannon approximated the frequency with the Zipf’s distribution, calculat-
ing an entropy of 11.82 bit per word (Shannon 1951), soon after corrected to 9.74 
by Grignetti (1964).

What do all these “bit” mean for the English language? For example, if we were 
to consider the statistics of bigrams, we wouldn’t need 7 bits to encode each letter, 
as we do with ASCII code. F2 says that 4 bits are more than enough. We use 7 bits 
so that the message is redundant, and we can understand it also in the presence of 
noise. Smartphones’ “predictive keyboards” (such as SwiftKey) are a perfect exam-
ple. To input a word, one or two letters are enough, because the smart keyboard also 
takes into consideration the previous words, and can guess that after “WHO” there 
will be “EVER”.

You’ll notice this when speaking too; it’s that redundancy that helps us under-
stand when there’s a lot of background noise. Without redundancy, each of the 
100,000 English words (the total number of words used in Grignetti 1964) 
could carry
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log log2 2 100 000 16.6N bitwords( ) = ( ) =,

	

of information. Because of redundancy this is reduced to 10 bits.
It is a bit surprising that the frequency of words follows the Pareto distribution. 

As noticed by Easley (2010), “when one sees a power law in data, the possible rea-
sons why it’s there can often be more important than the simple fact that it’s there”.

The reason of such a distribution is that Pareto gives us “the best word-by-word 
coding”. Mandelbrot (1953) proves that a function that generalises power-laws min-
imises the cost (i.e. the amount of bits) required to send the message with a certain 
level of redundancy. Soon after, Simon (1955) reached the same conclusion on the 
basis of various assumptions (and acknowledging the ingenuity of Mandelbrot’s 
approach).

In the Barabasi-Albert mechanism this does away with the “metaphysical com-
ponent” of preferential attachment: while we can accept that it may be true for 
social networks and the web, can a neuron really “know” it should preferentially 
connect with neurons that have many connections? And what about the protein in a 
cell? Is there such a thing as a prime, absolute principle on which life is based, that 
drives these components to aggregate in such a way as to create complex organisms?

It would appear to be more likely that the complexity of networks, discernible 
from the fact that they are organised and grow as if following a predefined design, 
is due to the fact that networks, like language, are just a support on which informa-
tion is stored and the emergence of power-law is the effect of storing information, 
done in a redundant way, but with minimal effort.

�Code snippet: entropy of scale-free networks

import math
import numpy as np
import collections
def network_entropy(a, node_thousands, stat=10):
“'Entropy of a network of ‘node_thousands’∗1,000 ele-
ments based on an observable following a Pareto distri-
bution with exponent a+1 (see https://docs.scipy.org/
doc/numpy-1.14.0/reference/generated/numpy.random.
pareto.html)
“'
def par(a, node_thousands):
ca = {} # counter - how many nodes have a certain distri-
bution value
for t in range(node_thousands):
try:
steps = int(node_thousands/100)
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if t % steps == 0 and t != 0:
pc = t // steps
print("INFO: %s per 100 done (%s)" % (pc, t))
except ZeroDivisionError:
pass
w = (np.random.pareto(a, 1000) + 1) # get a random node 
with its distribution value
for i in w:
ca[round(i, 0)] = ca.get(round(i, 0), 0) + 1
ent = 0
for v in ca.values():
ent += v/float(node_thousands∗1000) ∗ math.log(v,2)
return ent, ca
e = []
for i in range(stat):
ent, ca = par(a, node_thousands)
e.append(ent)
return np.mean(e), np.std(e), ca
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�Appendix 2: Math and Real Life

The book used the concepts introduced chapter 1 (information, energy, complexity) 
as keys to follow the emergence of life and its evolution. There are two questions 
which one might ask though:

	3.	 Did scientists come up with things like the mathematical theory of information, 
entropy, energy, just for fun, and then engineers found practical applications?

	4.	 There was a lot of writing about complexity. Simons’ definition (the whole is 
bigger than its parts) makes clear when a system can be called complex. But why 
do we say that certain structures are complex, and others are simple?

Here we have then a brief history on how information theory was used by its 
creators to start making some money, plus an explanation of why equally probable 
series of digits are seen by us as “simple” or “complex”.

�Two Scientists Playing Roulette

It’s fair to believe that no living being minimises the uncertainty it has on a system 
using mathematical formulas, and so becomes able to extract energy from such 
system. There are exceptions though: scientists and hedge funds. Edward Thorp, 
physicist, gambler and creator of the first hedge fund, is the person who did that, 
together with Claude Shannon, the father of information theory and creator of what 
we have called the “uncertainty formula”.

In “The Invention of the First Wearable Computer”, Edward Thorp (1998) tells 
how he and Claude Shannon built a small device that predicted which of the roulette 
wheel’s octants the ball would fall into with sufficient precision to be sure, in the 
long term, that they would leave the casino with more money than when they came 
in. “Sufficient precision” meant for Thorp and Shannon knowing that the probabil-
ity of the ball stopping into one particular octant on the roulette wheel is higher 
than 1 in 8.

https://doi.org/10.1007/978-3-030-25962-4
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If Thorp and Shannon could have actually predicted, with the laws of mechanics, 
in which octant the ball would fall with absolute precision, they would have reduced 
their uncertainty from log2(37) = 5.2 bit to log2(8) = 3 bit, improving their winnings 
from an average loss of

Loss(average roulette player) = 36/37 – 1 = –2.7%
To an average win of
Win(Thorp & Shannon) = 36/8 – 1 = 350%
Of course, the difference between losing and winning is more than just a ques-

tion of decreasing uncertainty – there are other variables to consider too. In a casino 
where the payout for a win is multiplied by a factor of 7 instead of 36, the Thorp-
Shannon system reduces losses, but doesn’t give a win. In a similar way, if the 
device required greater investments in terms of components, electrical energy and 
work than the payout, the balance at the end of the day would be negative anyway.

(In fact, the device wasn’t a success due to research and development costs and 
continuous faults, but the mathematical technique – the information gain – was put 
to good use by Thorp to set up the first hedge fund in the history of finance).

We could study the analogy between a casino and thermodynamic systems in 
greater depth by defining a Boltzmann constant and temperature for a roulette, but 
this isn’t inside the scope of the book. The fundamental concept is:

	1.	 You have to invest energy to be able to extract energy. In the above experiment, 
Thorp and Shannon worked for almost a year on their device.

	2.	 There is a direct relationship between the information – or reduction of uncer-
tainty – we have on a system and the amount of energy we can extract from that 
system. Having information on a system (in other words not being in a situation 
of the greatest uncertainty) is a necessary condition, but alone it’s not enough to 
extract energy.

Note that the information we have defined is not found in Shannon (1948). As 
explained by Weaver: “The word information, in this theory, is used in a special 
sense that must not be confused with its ordinary usage. In particular, information 
must not be confused with meaning” (Weaver 1949). Shannon’s information is sta-
tistical, syntactic information, but the information isn’t considered in terms of 
reducing the uncertainty of the message (e.g. concerning a possible winning number 
or weather forecasts, as in Eco 1962).

�Complexity in Numbers

John von Neumann’s definition of entropy can be used to explain why we consider 
a sequence of numbers “ordered” or not.

If a message was received from outer space that was interpreted as 3.1415… 
mathematicians would have no doubt whatsoever: it came from an intelligent, 
highly evolved life form that sent us π (“pi”, the ratio of circumference divided by 
the diameter).
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For mathematicians, a huge amount of information can be communicated by π, 
and from Archimedes to the present day this information continues to grow: it’s 
almost as if every formula drawn up since the nineteenth century is based on π.

As humanity needs the finest mathematical minds to define both the expansion of 
the number and its use, it’s also fair to say that π is highly complex, but its complex-
ity has been tamed through formalism, identifying this quantity in a fast and pre-
cise way.

Still, the series of digits in π on its own is not special. The sequence of digits in 
π is no more or less improbable than any other sequence, including 0.111111111… 
or even just “1”. Generating random digits from 0 to 9, it’s improbable the result 
will always be 1, or 0, but it’s just as improbable that the result will be the decimal 
digits in π in perfect order. The same goes for the square root of 2, which was “dis-
covered” long before π.

Furthermore, we know that periodic sequences – rational numbers – represent 
just an infinitesimal fraction of non-periodic numbers like π or Euler’s number e1 – 
so-called transcendental numbers.

So, there are a few natural numbers (1, 2, 3…), just as many rational numbers 
(fractions) and algebraic numbers (numbers that can be expressed as the root of a 
polynomial equation with integer coefficients) and infinitely more transcendental 
numbers. Complexity increases in a similar way: natural numbers are not very com-
plex, transcendental numbers are much more complex.

Complexity means how well we know these numbers. We know natural and 
rational numbers from head to toes. Algebraic numbers are harder to represent, 
but – by definition – they can be reduced to simple formulas. But representing tran-
scendental numbers is really hard, that’s why we are familiar to only a few of them 
although they are infinitely more.

Complexity has been “tamed” for some transcendental numbers in the sense that 
as mathematics progressed, the entropy as defined by von Neumann we associate 
with π has constantly diminished: the difference in uncertainty between the macro-
state (our description of π using a symbol) and the microstate (the actual number π) 
is “virtually minimal”. We must of course say “virtually” because in any case we 
only know a few trillion of the digits in π2, which we know is only a tiny part of the 
actual number.

The above is in line with Kolmogorov’s definition of complexity: a series is com-
plex if it is difficult to define with a formula (it took us thousands of years since we 
started studying mathematics to accept the fact that irrational numbers like the 
square root of 2 existed, and even longer for transcendental numbers), non-complex 
in the opposite case (such as a natural or rational numbers). Therefore transcenden-
tal numbers are by far the most complex, followed by non-transcendental, irrational 
and rational numbers.

1 See http://en.wikipedia.org/wiki/E_(mathematical_constant)
2 See “y-cruncher - A Multi-Threaded Pi-Program”, url: http://www.numberworld.org/y-cruncher/
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This leads us to conclude that measuring Shannon’s entropy in a series of digits 
considering only the frequency of said digits is not always a good instrument for 
acquiring information content. If we do that both square root of 2 and π, along with 
infinite other sequences, meet all the requirements to be considered a casual series 
of numbers (in other words the statistical non-predictability of a number on the 
basis of the ones before it). They would seem an informationless sequence of digits.

Still, square root of 2, and even more π and e, seem to carry a good amount of 
information about nature!

Using Shannon’s formula to measure the information content is misleading, or 
just plain wrong, for two reasons. First, because Shannon introduces entropy for 
communication, and says nothing regarding the information content. Second, 
because if we measure complexity using Shannon’s entropy and statistical correla-
tions, we might be unable to tame complexity, and appreciate the inherent structure 
of a system.
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At the end of the last century it would have been technologically unthinkable to 
keep files on billions of individuals and observe their behaviour in order to produce 
tailor-made content on the fly. Even in 2010, the leading technology used in big data 
analysis was powerful but still relatively slow. Hadoop (White 2012), the open 
source software created following the specifications of Google MapReduce (Dean 
2004) and GFS (Ghemawat 2003) was the standard for the (few) companies pro-
cessing big data, but it could only be used for offline data analysis.

Today, on the contrary, not only the data but also the almost instantaneous analy-
sis such data are becoming commodities. So what technology made this change of 
paradigm possible?

Italian Renaissance polymath Gerolamo Cardano, with his passion for gambling, 
was the first person to introduce the concept of probability. Probability calculation 
can be considered a search for a logical instrument used to reduce uncertainty: from 
Cardano to Thorp, who four hundred years later used probability in finance, it gives 
those who use it an advantage based on intelligent data analysis.

But as we saw, it’s not just gamblers and hedge fund investors who want to 
reduce uncertainty: the principal task of every intelligent system, living ones 
included, is to predict the evolution of other systems, from which energy can be 
extracted thanks to an information advantage, with the lowest possible uncertainty.

There was a minor revolution in probability at the dawn of the new millennium. 
In the last years of the 20th century, the frequentist approach was still the dominant 
paradigm. In order to calculate the probability of a coin toss coming up heads or 
tails, I toss a coin a high number of times and note the result: as the coin in asymp-
totic terms appears to land heads and tails with the same frequency, I can deduce 
that the probability is 50%.

In recent years however there has been more widespread use of the Bayesian 
approach, mentioned briefly in chapter 2 (“The importance of scientific revolu-
tions”). Probability is no longer calculated in an agnostic way: I don’t need to toss 
the coin to imagine that a flat cylinder made of metal, subject to various forces, can 
reach a minimum potential energy state with either one side or the other facing up, 
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which is a complicated way of saying that intuitively the probability for heads or 
tails are the same.

In short, I already have an idea beforehand of what might happen. An idea based 
on experience and past models and that I can, if necessary, adapt to new observations.

In practice, in the Bayesian approach, the probability shows only “how certain I 
am that something will happen”. The Bayesian definition is looser than the frequen-
tist one. This is a good thing, because the frequentist definition makes it difficult to 
calculate probability when experiments can’t be repeated as often as you’d like. One 
extremely practical use is in weather forecasts, where the only definition that can be 
used is the Bayesian one: I can’t observe tomorrow’s weather 100 times to express 
the probability that a weather forecast is right or not.

Weather forecasts are a fine example of a problem solved by using the Bayesian 
approach and artificial neural networks, the technology that made a new revolution 
in data analysis possible. To forecast the weather, I might have thousands of input 
parameters (e.g. pressure, humidity and temperature from various parts of the world, 
with readings taken every hour).

In exactly the same way as the ancient Sumerians, who wished to predict the 
motion of planets without using a mathematical model that explained said motion 
(we had to wait for Newton to do that), I could hope to forecast the weather by sim-
ply creating an algorithm, a series of formulas, that learns from the past, but isn’t 
based on a logic model.

It might seem easy, but it isn’t.
I have thousands of input parameters, and all of them are used to forecast the 

weather in a non-linear way. Non-linear means the temperature tomorrow may ini-
tially increase in a proportional way to the temperature today (if today is hot, tomor-
row will be hot), but suddenly drop if it rises a lot (if today there’s a hot spell, clouds 
will form, and tomorrow will be colder).

When one variable is related to another in a non-linear way, chaotic behaviour 
may emerge. In mathematics, chaos means highly unpredictable behaviour, and this 
is what these relationships produce. Let’s say that, after normalising the temperature 
range between 0 and 1, one discovered that tomorrow’s and today’s temperature are 
linked by an apparently simple relation

	
T r T Ttomorrow today today= −( )· 1

	

For r > 3.57 it would be practically impossible to forecast the weather in one 
week’s time on the basis of the weather today. The above formula, the logistic map1, 
is in fact one of the best known examples of deterministic chaos, due to the non-
linear dependency between the value of a variable (temperature in our example) 
now and at the previous time of observation.

1 All books on deterministic chaos include the logistic map. There’s an excellent Wikipedia article: 
https://en.wikipedia.org/wiki/Logistic_map
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It seems strange, considering the weather of one particular day is determined 
univocally on the basis of the weather of the previous day, but these systems are 
highly unstable and even a tiny change in the input data produces an evolution in the 
system in a totally different direction.

As the precision of every measuring instrument, including thermometers, is finite, 
input data never represents extreme conditions with infinite precision. This small dif-
ference between real conditions and theoretical conditions increases in time.

Not surprisingly, the chaos theory was discovered in meteorology along with the 
dependence of the initial conditions called the “butterfly effect”: the flap of a but-
terfly’s wings in Brazil can set off a cascade of atmospheric events that changes the 
weather all over the planet in a way which wasn’t originally expected (Lorenz 
1963, 1972).

Predicting the evolution of a highly non-linear system dependant on thousands of 
parameters, like the planet’s weather, seems impossible. Even if we had a complete 
model, we could never measure all the input variables with infinite precision, for 
example by observing all the butterflies in the world.

As a model based on the laws of physics does not in any case help a great deal to 
forecast medium-long range weather, I might think I could create a generic model, 
that isn’t based on the laws of physics. A highly non-linear model, in the hope that 
I could adapt it to the real situation. This is what our brain does when it instinctively 
predicts something: it tries to predict without creating mathematical models, just 
with “circuits” in the brain able, with certain input, to provide an output that can be 
interpreted as a prediction.

It’s something mammals find it easy to do. The behaviour of another person is no 
less complex than the evolution of the weather. Nonetheless, we interact easily with 
others thanks to our ability to predict their behaviour. To do so we do not build a 
mathematical model of our acquaintance’s brains.

In a similar way, to predict the evolution of the weather system I don’t try to under-
stand how it functions with a logical-deductive model, but connect a high number of 
variables in a non-linear way, in the hope that this network can recreate, approximately, 
the behaviour of the system I wish to modelize. I create an internal structure that repro-
duces the behaviour of the external one, but with different mechanisms.

This approach would appear to be of an indefensible complexity.
Let’s imagine a simpler task to the one meteorologist are faced with: we wish to 

predict the atmospheric temperature tomorrow on the basis of the temperatures 
taken by a network of a thousand thermometers all over the world.

What we do to create the non-linear model is choose a function, obviously not a 
straight line, using the thousands of temperatures taken as the input. For example, a 
function that uses the weighted sum of all the variables as the input, the result of 
which is 0 until the weighted sum is less than 7, and increases to 45 degrees for 
values of over 7:
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The output of this function can be seen as a mathematical neuron, the input of 
which is the output of all the sensory neurons –the temperatures taken by the ther-
mometers. The function has 1001 parameters: those of the weighted sum (αi), and 
the threshold (in this case 7), after which the neuron emits a proportional input signal.

This would already appear to be complicated, but we aren’t finished with this 
process yet. We construct another 500 of these functions/neurons, each of which has 
1,001 parameters, the input of which is the output from the 1,000 neurons of the first 
layer. Then we do the same thing with the output of these functions, and construct 
100 other functions, connecting the first 500 neurons to 100 new neurons, this time 
each has 501 parameters for the input functions. Finally, we connect these 100 func-
tions to 50 functions, our output neurons.

This makes in the end 555,650 parameters.
At this point we associate a probability with each of the 50 output neurons. The 

first neuron expresses the probability that the temperature will be 10 degrees centi-
grade below zero or lower, the second above -10 and below -9, and so on up to the 
last neuron which represents 40 degrees above zero or higher.

The solution lies in managing to train this network of functions/neurons so it can 
predict the output on the basis of the input. In other words, find the set of values for 
the more than half million parameters that, when a certain input is given, allows the 
network to predict the actual observation. If we have one year of readings, for each 
year we’ll use the output of the weather stations as input, and we’ll choose a set of 
parameters so the output neuron close to the observed temperature has a high value, 
and the others will be close to 0.

This operation, in reality, would appear to be not only a crazy idea, but also a 
useless one too. As Enrico Fermi said to Freeman Dyson: “My friend Johnny von 
Neumann used to say, with four parameters I can fit an elephant, and with five I can 
make him wiggle his trunk.” There will certainly be thousands of sets of parameters 
that, given the temperatures of one day, can be used to obtain the temperature taken 
the next day. We might as well become astrologists and use the position of the 
planets in the various constellations as parameters: for every past temperature we 
will find a series of weights to associate with each position of the planets, but without 
the power to predict the future!

What one does when building artificial neural network is more sophisticated than 
finding “a set of parameters that can be adapted.” One looks for a set of parameters 
that lets each layer create a representation of the global situation, which can then be 
analysed using the next layer.

Think of how a neural network (artificial or in the brain) could classify the image 
of a dog: first it would classify it as the image of a living being, then as an animal, 
and then as a dog.

To do this, when training the network (in other words adapting the parameters) 
one enters the photograph of a dog in the initial layer and tell the network that in the 
final layer the highest value must be that of the neuron associated with a dog.

The neurons are not adapted by changing the values of the parameters one by one 
in an iterative way, which is a bit slow, not optimal, but feasible. One starts from the 
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last ones, then those in the second last layer, which are the values in the second last 
layer that let the last represent the animal?, then the third last, and so on.

Because the network is trained starting from the last layer and going back, this 
algorithm is called backpropagation (Werbos 1974) (Parker 1985) (LeCun 1985) 
(Rumelhart, Hinton, Williams 1988). The values of the parameters on all the other 
layers are obtained using the infinitesimal calculus, developed by Newton and 
Leibniz. The interesting thing is that a dog and a cat are represented in the same way 
in the first and second layers: the network learns autonomously to classify them in 
the same “living” and “animals” macro-categories.

We don’t know how a neural network could represent global weather, but it is 
similar, because first the macro-categories are identified (e.g. emergence of an area 
of high pressure) and then, greater detail is gradually added.

The network, also when forecasting weather, learns to recognise different repre-
sentations of input data. These go from more general (the first layer, with 1,000 
neurons) to more specialised (the last, with the temperatures). The network of func-
tions simplifies the representation as the signal progresses in the network.

Although the topology of the neural network described above is simpler than 
those used today, the functional principle is the same. Above all, the power of these 
mathematical instruments is being able to create, as mentioned above, hierarchical 
representations of reality.

All things considered, there are two things about neural networks that at first 
glance appear surprising. First, their ability to represent various aspects of reality – 
they can be used to recognise images when processing natural language. Second, 
the fact that the more they learn the better they get at learning. A neural network 
that’s trained to categorise images initially needs a lot of data, but as it’s used every 
new entity will be categorised faster and faster.

In exactly the same way, a young child needs time to be able to distinguish a dog 
from a cat, but an adult immediately knows a lynx is a different animal that is just 
similar to a cat. A trained network learns faster, because it has already learnt the 
fundamental thing: how to create representations.

A third thing to consider is that, even if backpropagation (very probably) isn’t 
used by the brain, the neural networks are based on how neuroscientists think the 
brain works, and in many ways they work like a biological brain.
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