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Outline of the book

This book provides:

* A pedagogical introduction to the perturbative and non-perturbative aspects of Quantum Chromo
Dynamics (QCD), which is expected to be accessible by pre-Ph.D. students who want to learn this
field.

* A status of the modern developments in the field.

¢ An update of the different results presented in the older though successful review [2] and book [3],
taking into account the developments of the field within these past 10 years.

* An extension and improvements of the presentation used in these previous review and book, where
the QSSR results are compared with those from other non-perturbative approaches.

The book is divided into ten parts:

* In the first part, one starts from a general introduction to particle physics and historical survey on
the developments of strong interactions prior to QCD. Then, we discuss the main ideas and basic
tools of the field.

In the second part, we present the gauge theory aspect of QCD.

In the third part, we discuss in details the most popular techniques of dimensional regularization
and renormalization and discuss some of its applications both in QCD and QED.

In the fourth part, we present different QCD hard deep inelastic processes at hadron colliders, and

discuss different unpolarized and polarized structure functions.

In the fifth part, we present the QCD hard processes in e " e~ processes and discuss jets, fragmentation
functions and totally inclusive processes.

In the sixth part we summarize QCD tests and o, measurements.

¢ In the seventh part, we discuss power corrections and mainly the theoretical basis and technologies

of the Shifman—Vainshtein—Zakharov operating product expansion (OPE).

In the eighth part, we present a compilation of different QCD two-point functions obtained from
perturbative calculations and the SVZ-expansion. These expressions are basic ingredients for various
phenomenological applications.

In the ninth part, we present different aspects of modern non-perturbative approaches to QCD.

In the tenth part, we present extensive phenomenological aspects of QCD spectral sum rules.

* The Appendices collect different useful conventions and formulae for QCD practitioners.

The Contents, References and Index are useful for a quick guide for readers of the book.
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Preface

Quantum Chromodynamics (QCD) continues to be an active field of research, which one can
see from the number of publications in the field, as well as from the number of presentations
at different QCD dedicated conferences, such as the regular QCD-Montpellier Conference
Series. This continuous activity is due to the relative difficulty in tackling its non-perturbative
aspects, although its asymptotic freedom property has facilated perturbative calculations
of different hard and jet processes. Therefore, we think it is still useful to write a book on
QCD in which, besides the usual pedagogical introduction to the field, some reviews of its
modern developments, which have not yet been ‘compiled’ into a book, will be presented.
Elementary introductions at the level of pre-Ph.D. in different specialized topics of QCD
will be discussed, which may be useful for a future deeper research and for a guide in a
given subject.

We start the book with a general elementary introduction to strong interactions, parton
and quark models, ..., and present the basic tools for understanding QCD as a gauge
field theory (renormalization, operator product expansion, ... ). After, we present the usual
hard processes (deep inelastic scattering, jets,...) calculable in perturbative QCD, and
discuss the resummation (renormalons, . . . ) of the perturbative series. Later, we discuss the
different modern non-perturbative aspects of QCD (lattice, effective theories, .. .). Among
these different methods, we discuss extensively, the method and the phenomenology of
the QCD spectral sum rules (QSSR) method introduced in 1979 by Shifman—Vainshtein
and Zakharov (hereafter referred to as SVZ) [1]. Indeed, we have been impressed by its
ability to explain low-energy phenomena such as the hadron masses, couplings and decays
in terms of the first few fundamental parameters of QCD (QCD coupling, quark masses,
quark and gluon condensates), and vice versa, we have been fascinated by the success of
the method to extract the QCD universal parameters from experiments. In this respect,
some parts of this book have been updated, improved, extended and included a latex
version of the former review [2]:

Techniques of dimensional regularization and renormalization for the two-point functions
of QCD and QED, S.N., Phys. Rep. 84 (1982) 263

and of the book [3]:
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QCD Spectral Sum Rules Lecture notes in Physics, Vol. 26 (1989) World Scientific Publ.
Co. Singapore.

However, the discussions in this book cannot replace the previous ones (hereafter referred
to as QSSR1), as some detailed analyses carried out in the older review and book are not
reported and repeated here. In this present book, we limit ourselves to review the most recent
results and new developments in the field, without going into some technical details, and,
in this sense, this book is a useful supplement to the former. Various misprints in QSSR1
have also been corrected.

As we have already mentioned, and as in the previous review and book, we have written
this book for a large audience, not necessarily working in the field (elementary introduction
to QCD,...). However, experts will also appreciate this book, as they will find the most
relevant and the latest results obtained so far with the QSSR method. They can also find
compilations of non-trivial QCD expressions of the two-point correlators obtained within
the Operator Product Expansion (OPE), and technical points relevant to the method itself
(mixing of operators under renormalizations, validity of the SVZ expansion. .. ). Experi-
mentalists will find in this book a ‘quick review’ of most of important results obtained from
QSSR.

However, because of the large horizontal spectrum of the QSSR applications in different
branches of low-energy physics, including nuclear matters, which we (unfortunately) cannot
cover in this book, we shall limit ourselves to the well-controlled and simplest applications
of the methods, namely the light and heavy quark systems and to a lesser extent the gluonia
and hybrid meson channels. At present, these examples are quite well understood and will,
therefore, serve as prototype applications of QSSR in high-energy physics and quantum
field theory. Some other applications of QSSR, such as in the QCD string tension, in the
composite models of electroweak interactions (QHD sum rules) and in supersymmetric
QCD, were already discussed in QSSR1 and will not be discussed in detail here, since
there has been no noticeable recent developments in these fields of applications, since the
publication of QSSR1. We shall not discuss the uses of QSSR for nuclear matters, either,
since the complexity of these phenomena still needs to be better understood. However,
the enthusiasm of nuclear physicists for using this method in the baryonic sector might be
restrained, owing to the delicateness of the corresponding analysis, which in my opinion has
not yet been improved since the original work, in which the obstacle is due to the optimal
choice of the nucleon operators. At the present stage, one can only consider the analysis
done in the baryon sector to be very qualitative.

Following (actively) the developments of QCD through those of QSSR since its birth in
1979, my feeling a la Feynman (Omni magazine 1979), advocated in QSSR1 about this
field remains unchanged (as already quoted in QSSR1):

... A fewyears ago, I was very skeptical . . .  was expecting mist and now it looks like ridges
and valleys after all. . .,

while the great success of QSSR in the understanding of the complexity of low-energy non-
perturbative phenomena and hadron physics, is well illustrated by the Malagasy saying:
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‘Vary iray no nafafy ka vary zato no miakatra!.

which means: with one grain of rice sowed, one can gather by the thousand!, or in other
words, the method has started quite modestly and, with time, it has become more and
more underground. Indeed, at present, QSSR (used correctly) is one of the most powerful
methods for understanding (analytically) the low-energy dynamics of hadrons using the
few fundamental parameters (coupling, masses and condensates) coming from QCD first
principles.
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General introduction






1
A short flash on particle physics

Since ancient times, we have been curious to know the origin and the nature of the universe.!

Numerous ancient philosophers and scientists have tried to answer these fundamental ques-
tions. It is only at the present time of the twentieth millennium that we can provide a partial
answer to these questions, as some significant progress has been accomplished in both par-
ticle physics and astrophysics, which are two areas of research in two apparently opposite
scale directions (see Fig. 1.1).2

On the one hand, this progress is due to our ability to explore the heart of matter, with
powerful accelerators (where the accelerated particle has a velocity near to the velocity of
light), which reveal their infinitely small, deepest structure (see Fig. 1.2).

As an example, we show in Figs. 1.3 and 1.4, the large electron-positron (LEP) ac-
celerator and the reaction inside the detector after the collision of the electron and the
anti-electron (positron). Notice that at LEP, the energy of the electron is in the range of
90-180 GeV which is about (5-10) x10° times the energy of our home TV screen. On
the other hand, powerful telescopes (see Fig. 1.5) explore the enormous structure of the
universe, and may reach the time of its origin. At present, these apparently two opposite
(in scale) areas of research are found to have a common feature as the conditions re-
quired for exploring the smallest structure of matters (quarks) reproduce the periods which
followed the big-bang (see Fig. 1.6), from which one may understand the origin of the
universe.?

In this book, we shall concentrate on one aspect of particle physics, called Quantum
ChromoDynamics, which is a part of the so-called Standard Model (SM). We know that,
at the beginning of the study of nuclear physics, it was observed that, in addition, to the
well-known Newton gravitation and electromagnetism (Maxwell) forces, nature is governed
by two other new forces, the weak interactions responsible of the 8 decay and the strong
Yukawa force which binds the nucleons inside the nucleus (see Fig. 1.7).

In particle physics, only the last three forces play an important rdle as gravitation couples
too weakly and cannot be directly detectable in particle physics experiments. At the particle

! This short review is based on the review talk in [4].

2 L

< Figures in this chapter come from [5].

3 For a recent review on interfaces between these two fields, see e.g. [6].
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Fig. 1.2. The different structures of matter at different scales (ref. CERN DI-17-7-95).
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Fig. 1.3. An aerial view of CERN-Geneva, showing the undeground LEP ring, 27 km in circumference,
where also the LHC (large hadron collider) will run soon. In order to see the real size of the ring, one
can see Geneva airport in the front part of the photo (ref. CERN X 973-1-87).

Eliane Onursal

Fig. 1.4. A schematic view of the detector and particles produced after the collision (ref. cern DI-64-
I-91).
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Fig. 1.5. A photo of the Hubble telescope.

physics scale (below TeV), physics is well described by the SM SU(3). ® SU(2)., ® U(1),
and the distinction between the three forces leads to the classification that: Leptons (e~ v,)
and (u~, v,) pairs couple only to weak and electromagnetic SU(2); ® U(1) forces (the
neutral neutrino v; has only weak interactions), whereas Hadrons like the proton, neutron,
pion and rho meson have mainly strong SU (3). colour interactions.

However, one expects that at higher energy levels, of the order of 10> GeV to the
Planck scale, these three different forces which apparently are of different origins unify
with gravitation, then leading to a much simpler description of nature and the realization of
the old Einstein dream for the understanding of the universe laws. At present, the minimal
version of supersymmetry based on the SU(5) group (popularly called MSSM) is the best
candidate for such a unified theory. Indeed, using the renormalization group evolution of the
different couplings in the MSSM, one realizes that to second order in perturbation theory,
these three couplings indeed cross with high precision at the unification scale of 10'> GeV
as shown in Fig. 1.8. This result is encouraging although we still fail to find the correct
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Fig. 1.6. A schematic view of the history of the universe from the big bang to the present day
(ref. cern DI-2-8-91).



8 1 General introduction

THE FORCES IN NATURE

Fig. 1.7. A schematic view of the different forces in nature, and their associated vehicles (gauge
bosons). The reference force is a strong interaction of strength 1072 cm (ref. cern Z 004).
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Fig. 1.8. Energy evolution of the different coupling constants of the QCD, weak and QED standard
model taking into account the virtual effects of the SM particles and normalized to the MSSM SU (5)
coupling.
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theory including gravitation. Many interesting attempts and proposals are available on the
market.

The aim of this book is to present the developments of our understanding of strong
interactions, and to concentrate on the exposition of its modern theory, called Quantum
ChromoDynamics (QCD). Indeed, progress on strong interactions is important and neces-
sary for making progress in the understanding of the physics beyond the SM.



2
The pre-QCD era

2.1 The quark model

® We know that hadrons have mainly strong interactions. However, the number of observed hadrons
increases drastically in comparison with that of leptons. The classification of hadrons into multi-
plets has been facilitated by the discovery of internal symmetries, which play an important role for
obtaining relations among masses, magnetic moments and couplings of the hadrons. The classifica-
tion under the SU(3)r group (named flavour at present) [7] has been successful, where hadrons are
characterized under their isospin I, hypercharge Y, baryon number B and strangeness S. Therefore,
the pions are placed in the same pseudoscalar octet as the K, K and 5, while the vector mesons
p, o, ¢ fill another octet, . . . The splitting of hadron masses was expected, due to SU (3) r breaking
that originated from strong interaction forces, whereas the SU (2) isospin subgroup was found to be
almost symmetric. This led to the concept of charge independence, which has played an important
role in nuclear physics, where the proton and neutron form an SU(2) doublet.

However, none of the fundamental representations SU (3)r were realized by the observed hadrons,
which led Gell-Mann and Zweig [8,9] to postulate that the observed hadrons, like the atoms, are

not elementary, but are built by more elementary quark' constituents ¢ having three flavours up,
down and strange. Their charge Q in units of the one of the electron are:

Qu=2/3, Qu=0,=-1/3. 2.1

In this picture, the mesons are bound states of quark—anti-quark, while the baryons are made by
three quarks. The quarks internal quantum numbers are given in Table 2.1.
The SU(3)r decomposition into products of 3 and 3* representations gives for mesons:

gq : 3¥®3=108 (22
and for baryons:

q99 : 3®3®3=10308®10, (2.3)

The name quark did not exist in the English dictionary, and may have been inspired from the following poetry Finnengan’s wake
of J. Joyce:

“Three quarks for Muster mark!
Sure he has’not got much of bark
and sure any he has it’s all beside the mark.”

However, quark is a well-known German word as it means curdy milk, but more commonly it means a mess.

10
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Table 2.1. Additive quark-quantum numbers

Quark u d s

Charge Q : -1 !
Third component of isospin /5 1 —1 0
Hypercharge Y : ; -3
Baryon number : 3 :
Strangeness 0 0 -1

Fig. 2.1. The nine mesons built from the u, d, s quarks.

from which one can built a simple but complete Periodic Table of Hadrons. These classifications
are given in Figs. 2.1 to 2.3. In this sense, the quark model was a modern version of the Sakata [10]
model.

® Masses and mass-splittings of hadrons have been explained by using Gell-Mann—Okubo-like mass
formulae [11], and by introducing the so-called constituent quark masses with the values [12]:

M, ~ 300 MeV , (2.4)
and by assuming the quark-mass differences:
M, — M, ~4MeV, M; — M; ~ 150 MeV . 2.5)

® The compositeness hypothesis for the hadrons has been supported by the measurement of the proton
magnetic moment which has a value of about 2.8 in units of i, = ehi/2M,, while it is expected to
be unity from a point-like spin 1/2 object.
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Fig. 2.2. The octet baryons built from the u, d, s quarks.

Fig. 2.3. The ten spin 3/2 baryons built from the u, d, s quarks.
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2.2 Current algebras

Reviews on current algebras can be seen in [13]. In the following, we shall discuss some
main features of the approach.

2.2.1 Currents conservation

¢ Although we have more forces in nature, electromagnetism plays a capital role. The theory of
electron (muon) interacting with the photon field is the only one where the concepts of quantum
field theory work in a satisfactory manner. Indeed, within Quantum ElectroDynamics (QED), one
has been able to perform higher order approximate calculations which are confirmed by experi-
mental measurements at an impressive, high level of accuracy (anomalous magnetic moment of the
leptons, . .. ). Although more complicated, due to the presence of strong interactions, the study of the
electromagnetic interaction of hadrons has been facilitated by the property of the electromagnetic
current conservation leading to the concept of universality, which allows us to put, for example, at
the same footing, an e, am~ and a p~, and to show, for instance, that the physical charges of these
three particles remains the same after renormalizations. Moreover, current conservation allows the
use of soft photon theorems in order to relate the cross-section to the static properties of the hadrons
(charge, magnetic moments, . .. ). It is also one of the basis of the popular Vector Meson Dominance
Model (VDM) [14]. As a consequence of the current conservation, the corresponding charge is a
constant of motion, such that the only non-vanishing matrix elements of this charge are between
equal-mass states.

In the case of weak current, current conservation gives a well-defined meaning to the idea of universal

weak coupling which has been successfully tested experimentally in the case of non-strange weak
vector currents. However, difficulty arises when one tries to explain strangeness-violating transition
such as the ratio of the K+ — 7 Oe*v,. It can only be explained by the
introduction of the Cabibbo angle 6. [15] allowing the mixing of the strange quark with the down

quark, with the experimental value sin 6. = 0.220 4= 0.003 [16]. In this case, the idea of weak

etv, overthe n* —

universality appears also to work in the process involving the strange quark.

Inspired again by the quark model, Gell-Mann [7] suggested that the vector and axial charges
satisty a SU(3) ® SU(3) algebra. This picture naturally leads to the existence of larger multiplets
of particles having the same spins but with both parities, which has been confirmed by the data. The
r6le of partially conserved axial current (PCAC) was found to be related to the existence of the light
(compared with the p and p) pseudoscalar particle, the r, which has been understood, later on, from
the spontaneous Nambu—Goldstone [17] nature of the symmetry breaking. More precisely, the exact
current conservation of the axial current is realized when the pion is massless. Again inspired by
the soft photon theorem which is a consequence of the conservation of the electromagnetic current,
one can also derive soft pion theorems obtained from phenomenological Lagrangians satisfying the
non-linear realizations of chiral symmetry.

2.2.2 Currents and charges

The next development is the construction of hadron currents built from quark fields in much
the same way as one can write a current for lepton fields. The quark electromagnetic and
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charged weak currents can be written as:

2 1 1
Ji = gﬁy“u - gdy“d - giy“s + -

J\f\feak = I/_t)/ﬂ(l - ]/5)d+, (26)

where we ignore to a first approximation the mixing among quark fields due to the Cabibbo
angle. In the massless quark limit (m; = 0), the free quark Lagrangian density Lq(x):

L) =i Y Tivuty 2.7)
=

possesses a SU(n);, x SU(n)g global chiral symmetry and is invariant under the global
chiral transformation:

Yi(x) = exp(—i0 Ta)y;(x) ,

Yi(x) = exp(—i0* Tays)Yi(x) , (2.8)

where TA(A = 1, ...,n* — 1) are the infinitesimal generators of the SU(n) group acting
on the quark-flavour components. The associated Noether currents are the vector and axial-
vector currents:

VA = divu Tiix),

AN = Vivuys THvi(x) (2.9)
which are the ones of the algebra of currents of Gell-Mann [69,13] (n = 3 in the original
paper). The corresponding charges which are the generators of SU(n);, x SU(n)g are:

04 = /d3x Vix),

Q¢ = /d3x A (x). (2.10)

The charges in Eq. (2.10) are conserved in the massless quark limit, and obey the com-
mutation relations (simplified notations):

(0% QP1 = ifus, O,
[0, 0] = ifus, O,
[0% 0f] = ifus, OF . @.11)

i.e. Qy and Q4 generate a closed algebra. They also imply:

[Q%, VP = ifup, V7,
[Q%, AP] = ifys, AY |
(05, VF] = ifup, A7,
[02. AP] = ifup, V7 . (2.12)
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2.2.3 Chiral symmetry and pion PCAC

In the Nambu—Goldstone [17] realization of chiral symmetry, the axial charge does not
annihilate the vacuum, which is the basis of the successes of current algebra and pion
PCAC [13]. In this scheme, the chiral flavour group G = SU(n);, x SU(n)g is broken
spontaneously by the light quark (u, d, s) vacuum condensates down to a subgroup H =
SU(n)r+r, where the vacua are symmetrical:

<lﬁuwu> = (1/;de> = (&sl%) . (2.13)
The Goldstone theorem states that this spontaneous breaking mechanism is accompa-
nied by n2 — 1 massless Goldstone P (pions) bosons, which are associated with each
unbroken generator of the coset space G/H. For n = 3, these Goldstone bosons can be
identified with the eight lightest mesons of the Gell-Mann eightfoldway (z*, 7=, 7%, 7,
KT, K~, K° K. On the other hand, the vector charge is assumed to annihilate the vac-
uum and the corresponding symmetry is achieved a la Wigner—Weyl [18]. In the vector
case, the particles are classified in irreducible representations of SU (n); 1 and form parity
doublets. In addition to the electromagnetic mass which the Goldstone bosons can acquire
[19], they get a mass mainly from an explicit breaking (m; # 0) of the SU(n);, x SU(n)g
global symmetry. In this case, the divergence of the axial-vector current does not vanish
and reads (in the case of the u, d quarks):

A" () = (my +m)iGiys)y; (2.14)
to which are associated the quasi-Goldstone parameters defined as:
(O|8,LA“(x);|7r) = «/Efnmiﬁ , (2.15)

where 7 is the pion field and f, = 92.4 MeV is the pion decay constant which controls the
m — pv decay width. In this case, the divergence of the vector current reads:

3, V() = (mi —m )i, (2.16)
to which is presumably associated the a¢(980) scalar meson (the best experimental
candidate).

Current algebra also tells us that the two-point correlator associated with Eq. (1.15) is

related to the axial-current one via a current algebra Ward identity [20,13], up to equal-time
commutator terms (in the following we shall suppress flavour indices):

auqy 115" = Ws(g®) — q" / d*xe'7*8(x0) (0[A(x), (A”(0))" 10)
+i / d*xe'*8(x0)(0[d, A*(x) , (A°(0))10) , (2.17)

with:

Us(q?) = i / d*xe (O[T, AP (x)(, A (0))1]0)

Mt (g» =i / d*xe' T (0|TAM(x) (A”(0)' |0) . (2.18)
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At g = 0, the previous identity reduces to:

Ws(0) = —i(m,, + ma)(0[Y 4(0)i ys 1 (0), Q110) , (2.19)

where Qs is the axial-charge generator. In the Nambu—Goldstone realization of chiral
symmetry, one has:

0510) #0. (2.20)
Therefore, we get:
Ws(0) = —(my + ma)(VaVa + ¥uu) - (2.21)

Using Eq. (2.15) in the definition of Ws(¢?) and equating this with Eq. (2.19), we have
the well-known pion PCAC (Gell-Mann et al. [21]) relation at g = O (recall that f,; =
92.4 MeV):

—(my + ma)(Vava + Vuhu) = 2m2 fr . (2.22)

2.2.4 Soft pion theorem and the Goldberger-Treiman relation

Let’s consider the matrix element of the axial-vector current between two nucleon states
shown in Fig. 2.4.
Using invariance properties, it can be parametrized as:

(N(p)IALIN(p1)) = u(p)[V84(q”) + qugr(@H)]ysu(pr) (2.23)

where ¢ = p, — p; is the momentum transfer between the nucleon states, and where
experimentally g4(0) = 1.26. The matrix element of the current divergence reads:

A= (N(p2)|3" A, IN(p1)) = @(p)[2Myga(g®) + q*gp(g)IGys)u(p), (2.24)

where the relation for the Dirac spinors:

qui4(p2)(iy" ys)u(pr) = 2Myia(p2)ysu(p1) , (2.25)
has been used. The PCAC hypothesis in Eq. (2.15) yields in the massless pion (chiral) limit:
2Myga(@®) +4°gr(g?) = 0. (2.26)
q
N(p4) N(p,)

Fig. 2.4. Axial-vector scattering with nucleon.
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where the divergence of the axial-vector current is zero. If g(g?) has no singularity at
g* =0, then Eq. (2.26), would imply either My = 0 or g4 = 0. However, none of these
requirements are true. Therefore, gp should have a pole at ¢*> = 0:

2Myga
==

lim gp(q”) = — (2.27)
q*—0

The matrix element in Eq. (2.24) between a one pion state and the vacuum is the same as
if there were a term in A, (x) of the form V2 fr B,ﬁ(x). Therefore, in the chiral limit, the
matrix element has a pole, and reads:

fz"“gmm Yia(ka)Giysyutky) .

(2.28)

(N(P)IALIN (DY) = V2 frqu (N(p)IFIN(p1)) =

where g, nn(g?) is the 7 NN vertex function. Its physical coupling is defined at > = m2

at has the experimental value of 13.50 & 0.15 [16]. Solving these last two equations, one
can derive the Golberger—Treiman relation (GT) [22] in the chiral limit:

Jr8xnn(0) = Mynga(0) . (2.29)

In the case of massive quarks, one can write the matrix element in Eq. (2.24) as:

2 fom?
A=V2fm (N(p)IEIN(p1)) = %gnNN(CIZ)M(kz)(lVS)M(kl) (2.30)
By identifying Eqgs. (2.24) and (2.30), and setting ¢g> = 0, one would obtain the previous
GT relation in Eq. (2.29), which one can identify With the physical coupling assuming that
the coupling is a smooth function of g2 from 0 to m2, which is valid as there is no one-pion
pole in this function. One should remark that only g p(qz) has a pion pole term, and it is of
the form:

2 fx
gr(q?) = mz\/_—_fqz\/zgnmv , (2.31)

such that at g = m , Egs. (2.30) and (2.24) leads to a trivial equality.

2.2.5 The Adler—Weisberger sum rule and soft pion theorems

In the case of the Golberger—Treiman relation, we have used a one-pion soft theorem
for estimating the pion-nucleon-nucleon matrix element. Here, we shall be concerned by
low-energy theorems for pion-nucleon scattering amplitudes involving two soft pions. The
process is depicted in Fig. 2.5.

The amplitude can be written as:

(mi(@)N(Pp)Imj(qN(p1) = i2m)*$*(p1 + q1 — p2 — ¢T3 (2.32)
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7(q4) (gp)
N ,
N L
N L
N(p4) N(po)

Fig. 2.5. Forward pion-nucleon scattering process.
which can be decomposed in terms of two invariants (isospin-even and -odd):
1
Tij = 0TV + Sl T (2.33)

where i, j are isospin indices. Using standard reduction formula discussed in the next
section, one can apply the soft pion theorem, which gives:

Ti; = i(—q3 +m2)(N(p)I7 (0)7/ (g1)N(p1))
¢ (=45 +m3) ; -
= W<N(p2>|AH<0>|nf(qu(pl» : (2.34)

For ¢, — 0, we can take T~ = 0 since it is odd under crossing. Also, the non-singular
part of the amplitude vanishes (Adler’s consistency condition) [23]:

TPW=0,vp=0,gi =m2, qg5=0)=0, (2.35)
where:

v=qi(p1+p2/2, Vg = —q1-q2/2, (2.36)
are kinematic variables. Similarly, when g7 — 0, one obtains:

TPWv=0,vp=0¢=0,¢5=m2)=0. (2.37)

Applying two times the soft pion theorems, one can reduce the amplitude as:

1
2m; f7

Ty =i(q; —m2) (g5 — m?) / d*x e (N(p2)| T A, (x)3" AL (0)|N(p1)) -

(2.38)

Using the current algebra Ward identity:
atqy / d*x T Al (x)A](0) = / d*x 1 [T0" Al (x)0" AL (0)

—ig}'8(x)[A)(0), AL ()] + 8(x0)[A}(0), 3" AJ()]] .
(2.39)
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one can see after sandwiching between two nucleon states that the first term is the nucleon
matrix element of a time-ordered product of two-pion operators; the second term can be
evaluated from the current algebra commutation relation:

8(x)[A(0), AL (x)] = —i8(x)eV Vi u(x) (2.40)

while the last term gives the pion-sigma term, which is symmetric in 7, j, and then this
t-channel state must have isospin 0 or 2 since the pion has isospin 1. However, since the
nucleon has isospin 1/2, only I = 0 state can contribute, and therefore:

ol = (SUO'N . (2.41)

In the low-energy limit, the following soft-pion theorems are obtained:

lim v TO0,0,0,00= (1 —g3)/f7. (2.42)
and
lim v 70,0,0,0) = —on/f2. (2.43)

It is also expected and assumed that 7=, which is odd under the change v — —v, obeys
an unsubtracted dispersion relation in the variable v:

TOW,¢>2=0) 2 (> dV
I".q" =0 _ 2 / — Y 5 Im7 (', 0) . (2.44)
v T Jy V v

Its imaginary part can be related to the w N cross-section if one assumes a smoothness
assumption:

ImT O, 0) = ImT (v, m2) = v[og, ") — o "W)] - (2.45)

Using the previous GT relation in Eq. (2.29) for eliminating f;; in Eq. (2.42), the dispersion
relation gives the Adler—Weisberger relation [24]:

1 2M% [ dv _
— = / —[om ") — o ") (2.46)
gA ngerN v

which is an interesting low-energy sum rule.

Vo

2.2.6 Soft pion theorem for p — 7t~ and the KSFR relation

We discuss here a further use of soft pion theorems. We consider the process in the chiral
limit where the pions are massless:

AR S (2.47)

It is described by the amplitude:

Ty, =i / d*x expliqx)(0|T AL (x)ALO)|p(p)) , (2.48)
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where i, j are isospin indices. Taking its divergence, one obtains:
q'T}, = {U,’;" =- / d'x exp(iqx)<0|78“AL(x)A{;(ONp(p»}
- / d*x exp(igx)8(xo)(0I[AG(x), AL(O)]Ip(p)) - (2.49)
Using the commutation relation given previously, one can deduce the Ward identity:

q'T = U —if 70| V,uil o(p)) . (2.50)

where V), is the vector isovector current. In the massless pion limit, the axial current is
conserved such that U, vanishes. The coupling of the neural p-meson to the isovector
current is introduced as (from now, we shall suppress the isospin indices):

2

M
O1Vulp(p)) = Eeﬂ . (2.51)
where, experimentally, y, = 2.55, with the normalization:
2 M
Tpere ~ —ma’ =2 (2.52)
3 2y,

€* is the polarization of the p meson which ensures the conservation of the vector current.
Contracting again with the pion momentum ¢’, one obtains:

q"q"T,, = (6~q’)£§ (2.53)
» o .

Introducing the pz coupling as:

(7). T(@lp(p)) = €'(q" — @ 8prr » (2.54)

and taking the limit ¢" — ¢ — 0, one obtains the soft pion relation:

MZ
A — . 2.55
2)/,0 fn 8pnm ( )
If one assumes p-universality from the vector meson dominance model [14], one has:
M? M?
B (2.56)
2y, 8pnm

The two equations give the Kawarabayashi—Suzuki—Ryazuddin—Fayazuddin (KSFR)
relations [25]:

M2
2 o
8onn = T30 (2.57)
P 4f7%
or:
M2
2 £ (2.58)

™= 162"
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which are useful in different phenomenological applications. One can check from the data
that the predictions given by these two relations are unexpectedly good despite the crude
approximation used for deriving them.

2.2.7 Weinberg current algebra sum rules

Another important consequence of the commutation relation of currents are the different
current algebra dispersion sum rules, based on the assumption that the SU(3) ® SU(3)
symmetry is realized asymptotically. Though conceptually difficult to digest, this asymp-
totically free hypothesis has been very successful in different applications [13] (Weinberg
and Das—Mathur—Okubo (DMO) sum rules [26,27], Adler—Weisberger sum rule [24] dis-
cussed previously, .. .). Here, we shall discuss briefly the Weinberg and DMO sum rules.
They are based on the assumed asymptotic behaviour of the absorptive amplitudes, with the
assumption that the SU(2);, x SU(2) chiral symmetry is asymptotically realized in nature.
Weinberg has derived two superconvergent sum rules, well-known as Weinberg sum rules
(WSR) [26]. In order to show this result, it is appropriate to study the two-point correlator:

iy
WLR

i/d‘*xe"moUJ[‘(x) (72(0)) 10)
= —(g"q* — g"¢" ) + ¢"¢' 11" (2.59)

where J}* and Jy are left- and right-handed charged currents, which read in terms of the
quark fields:

JI =yt —ys)d , Jy =uy*(1+ ys)d . (2.60)

Hg,)e and H(LO;e are respectively the transverse and longitudinal parts of the correlator. In the
asymptotic limit (4> — o0) or in the chiral limit (m, 4 — 0), where the SU(2); x SU(2)g
chiral symmetry is realized, W'y tends to zero. Using the Killen—Lehmann representation
of the two-point correlator:

o0 dt 1
) _ (s (D) 22 2\ _ _ &)

(M) = (119, ) (% w2, m2) = /0 S N0+ Q6D
where - - - represent subtraction points, which are polynomial in the g>-variable, one can
transform the previous property of W', into superconvergent sum rules for its absorptive
parts [26]:

/ dt Im(I} +11%) ~ 0,
0

o0
f dr t Imny), ~ 0, (2.62)
0

where the first WSR comes from the ¢**¢" component of W}’ and the second WSR comes
from its gV part. These WSR express in a clear way, the global duality between the long-
range (spectral function measurable at low-energy) and the high-energy (asymptotic theory)
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parts of the hadronic correlators. This quark-hadron duality is one of the basic idea behind
QCD spectral sum rules, which we shall discuss in detail in the next part of the book.

In order to parametrize the spectral functions, we use a narrow-width approximation and
assume that the 7w, A; and p dominate the spectral functions. In this way, one can derive
the constraints:

2 2
ﬂ — % —2f2~0
2y2  2y? T '
Yo Ya,
M: M3
2 - L ~0, (2.63)
2)/0 2yA]

where f; = 92.4 MeV is the pion decay constant governing the # — pv decay; yy is the
V-meson coupling to the corresponding charged current:

M2
O|VH|p) = V2=—Le" | (2.64)
2y,

where experimentally y, 2~ 2.55. Notice the extra V/2 factor coming from the different
normalizations of the charged and neutral current discussed in the analysis of the p° —
777~ decay. From the above crude assumptions, one can predict by solving the two WSR
equations and by using the experimental values of the p and 7 parameters:

My, ~1.1GeV , (2.65)

which is in good agreement with the present data [16]. If, in addition, one uses the relation
between f, y, and M, (approximate KSFR relation [25]) discussed previously:

MZ
fr==E

~ £ 2.66
16)/0 ( )

deduced, from p — 7 decays, using soft pion techniques, one arrives at the successful
Weinberg mass formula:
My, ~2M, , (2.67)

although one should notice that the data from hadronic experiments give a slightly higher
value [16].

2.2.8 The DMO sum rules in the SU (3)r symmetry limit

Electromagnetic current

Weinberg-inspired sum rules have been also derived from the asymptotic realization of the
flavour symmetry. The Das—Mathur—Okubo (DMO) sum rules [27] can be studied from the
two-point correlator:

n“'g? = / d*xe (0| TV} (x) (V,-“(O))T 10)

=—(g"¢* - ¢"¢"N Y , (2.68)
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where Vl.“(x) =Yy (i =u,d,s,...) are the flavour components of the electromag-
netic current:

2 1 2 1
Ton(0) = Vi = Vi SV =3V (2.69)

In the asymptotic limit (q2 — 00) or in the chiral limit (m; — 0), one can derive the
DMO sum rule [27]:

/ ” dt[ImIT5(r) — ImITg(¢)] = / S Im(TT, + [, —2T,) (1) =0,  (2.70)
0 0

which corresponds to the difference between the isovector and isoscalar spectral functions
associated with the SU (3) r symmetry. Saturating the spectral functions by the lowest mass
resonances, one can derive the well-known successful phenomenological relation among
vector mesons:

Mprp%ﬁg— —3(M,T s ote- + erwﬁeﬂ?—) ~0. 2.71)

One can also re-write the DMO sum rules in terms of the total cross-section for eTe™ —
hadrons by using the optical theorem:

2
o(ete” — hadrons) =

o 21
> —ImIl(z) . (2.72)
T

This relation is useful for testing the breaking of SU(3)r, as we shall see later on, because
we have complete data for the total cross-section.

Charged current

In the case of the charged vector or axial current:
VEQY, =gyt . AR =gty Y (2.73)
the DMO sum rules read in the chiral limit:
oo o
/ dt ImMV()? = / dt Im1 V() (2.74)
0 0
where the spectral function can be measured in the T — v, 4 hadrons decays. By saturating
the spectral function with the lowest resonances, one can deduce the constraint:
M? M2,
L~ —=. (2.75)
Vp y[(*
Using y, = 2.55, M, = 0.776 GeV and Mg+ = 0.892 GeV, it gives:
vy = 2.93, (2.76)

which is already an interesting constraint as compared with the data from t decay [16]. On
can notice that, as in the case of the WSR, the DMO sum rules give constraints between the
low-energy behaviour of the spectral functions and their asymptotic one.
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2.2.9 n*-7° mass difference

Hadronic contributions to the electromagnetic 77 *-7° mass difference have been derived by

Das et al. [19] by assuming a good realization of the SU(2);, x SU(2)g chiral symmetry
at short distance. In this way, by integrating the virtual photon with momentum ¢2, they
derive the result, in the chiral limit:

5 ) . bma dq 1/°° dt T
0

Moy —moy >~ — —— —Imn"
’ qg*+t—iem LR

* =T | ey g

3o /Oodt rin L) L mn® 2.77)
>~ n— | —Im .
4 f2 Jo v2) 2 LR
where the spectral functions enter the second WSR and v is an arbitrary UV cut-off. Using
a lowest resonance saturation of the spectral functions in the narrow width appproximation

(NWA), and the constraints provided by the first and second sum rules, which guarantee
the convergence of the integral, one can derive the relation:

2 2 2
2 o 3a MAlMP MAl

o — My X ——— n . (2.78)
47 My — Mﬁ Mg
Using the WSR relation M/241 = 2M§, one can deduce the result of [19]:
RI% M/% In2
Mgt — M0 >~ —— (2.79)

At m,

which is in good agreement with the data m+ — m o = 4.5936(5) MeV [16]. The improve-
ments of these prototype current algebra sum rules in the QCD context have been done in
[28-34] and will be discussed in details in the following sections.

2.3 Parton model and Bjorken scaling

Different deep-inelastic scattering experiments such as the unpolarized electroproduction
process ep — eX (X being the sum of inclusive produced hadrons) at high-energy virtual
photon with momentum Q, have been used to explore the quark structure of the proton.
This unpolarized process can be characterized by two measurable structure functions W, ,,
which parametrize the hadronic tensor and contains all strong interaction information about
the response of the target nucleon to electromagnetic probes:

do na?
dQ*dv — 4M,E?sin*0EE’

{zsin2 §W](Q2, V) + cos’ §W2(Q2, v)} . (2.80)

As shown in Fig. 2.6, they depend on the usual kinematic variables —g> = Q2 and v:
v=p-q=MyE-E), (2.81)

where v/M,, is the energy transfer in the proton rest frame; p and M, are the proton
momentum and mass; E and E’ are the energies of the incident and scattered electrons in
the proton rest frame, and 6 is the scattering angle (Q* = 4E E’ sin® %). For a point-like
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y >

Fig. 2.6. ep — e+hadrons process.

proton, the structure functions are §-functions:

Q? Q? Q?
Wi(Q2,v) = 4M;3 <v - 7) , Wa(Q%,v) =38 <v - 7) . (2.82)

It has been observed that, at large Q2, contributions from pointlike spin 1/2 objects
inside the proton still remain, while prominent contributions of resonances at low Q2 die
out quickly when Q? increases. A rough estimate of the proton structure functions can
be done by assuming that the proton consists with pointlike spin 1/2 quark constituents
(called wee partons by Feynman [35]), each one carrying a given fraction &; of the proton
momentum. Defining by f;(&;) the probability that a parton i has momentum fraction &;, and
by W}i) the parton contribution to the structure function, then the proton structure function
becomes an incoherent sum of the one of the partons, and reads:

1 . 1
W@ = 3 [ dafiew @t =3 Y i = A
i Y0 7

2 _ ! CF(E. @) 2 _%]27 2, :%
WaQ% v =37 | fi@W (0% v =SB} el i = PR (283)

where ¢; is the electric charge and:

Q2

P
This simple parton description of the proton, where the structure function depends only

on the kinematic variable x, is known as Bjorken scaling [36]. As a consequence of the

spin-1/2 assumption of the constituent quarks, one also obtains the Callan—Gross relation
[37]:

X

(2.84)

Fr(x) =2xFi(x) . (2.85)

These two QCD sum rules are well-satisfied by the data as shown in the Figs. 2.7 and 2.8,
which then surprisingly suggest the existence of free point-like partons inside the proton,
in apparent contradiction with the confinement postulate.

2 Small logarithmic deviations from the parton model prediction are also seen, and are well explained in QCD (as we shall see
later on) after leading logs-resummation using the Altarelli—Parisi equation [38].
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Fig. 2.7. The proton structure function F, versus x at two values of Q?, exhibiting scaling at the pivot
point x ~ 0.14.
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Fig. 2.8. The ratio 2x F / F, versus x for Q? values between 1.5 and 16 GeV>.
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2.4 The S-matrix approach and the Veneziano model
2.4.1 The S-matrix approach

An alternative to the quark model was the so-called S-matrix (bootstrap) approach which
was very popular in the 1960s—1970s. Itis based from a general Lagrangian, which should be
constrained from general principles (relativistic covariance, substitution rule, unitarity and
analyticity), and which limits the choice of the S-matrix. One of the main consequences
of this approach is the Regge poles theory [39], which gives a general classification of
hadrons (Regge trajectories) and predictions for high-energy data in terms of low-energy
parameters from the study of resonances. This approach can be illustrated by the scattering
process:

A+B—>C+D (2.86)
and the crossed processes:
A+C —->B+D, A+D— B+C, (2.87)

characterized by the two kinematic variables s and ¢. The amplitude can be written in a
dispersive form:

1 [ ImA(s', ¢

Als, 1) = —-/112—52——2d§, (2.88)
b4 s’ —s

where one assumes that it converges for sufficiently large 7, while it can be written as a sum

of poles:

[ee) g

A(s, t) = B(t T 2.89

(s, 1) ﬁ();am_n (2.89)

in the variable ¢ at the solutions of the equations a(#y) = 0, «(#,) = n. Regge asymptotic
law gives rise for fixed ¢ to:

lim ImA(s, t) ~ B(t)s*® (2.90)
§—>00

where one can see a direct relation between the s and 7-channels description of the
scattering. This relation can also be seen more conveniently from the finite energy sum
rule:

La(t)+n+l

L
f ds s" ImA(s, 1) =
0

2.4.2 The Veneziano model and duality

The duality relation (crossing) between the s-channel resonance and 7-channel Regge poles
suggests the duality bootstrap. This has been achieved by the Veneziano approach [40],
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where a complete (though approximate) description of scattering can be obtained in terms
of the s-channel resonances only. Inserting the resonance contributions from the particles
contained in the trajectory «(s) and in its daughters, one obtains:

A(s, 1) = Z C"—(t) — cn—(s) , (2.92)

— a(s) —n — a(t) —n
where the last equality is due to the duality constraints. c,(¢) is a polynomial of order n
in ¢. The contribution of highest spin j = n comes from the «(s) = n intercept in the
leading trajectory, while the ones of lower spin come from the presence of lower ‘daughter’
trajectories. The solution to this equation is given by the well-known Veneziano beta-
function amplitude:

F—a®IT[—a()]

A(s, 1) = T ——ra (2.93)

The Veneziano dual-resonance model for the scattering amplitude can be summarized by
the following conditions:

® Only infinitely narrow resonances appear, and the only singularities are poles on the real axis.
® There is an exact crossing symmetry.
® There is an asymptotic Regge behaviour with linear trajectories with universal slope.

However, one should notice that straight line trajectories are very far from the
expectation from a field theoretical argument which suggests a Yukawa-like potential. In-
stead, they follow from a harmonic oscillator potential, and seem to be supported by the
data.

2.4.3 Duality diagrams

The previous discussion can be visualized using duality diagrams introduced in [41]. It
consists to represent the quark content of non-exotic (ordinary) hadrons as:

® Ordinary baryons composed of three quarks will be represented by three quark lines oriented in the
same directions.

® Mesons composed by quark—anti-quark will be represented by quark lines going in opposite
directions.

The process is represented by the topological structure of the graph:

® Planar diagrams can be drawn without crossing quark lines, which coincide with the ones suggested
by duality and ordinary hadrons, and which give a non-vanishing contribution to the imaginary part
of the amplitude.

* Non-planar diagrams are the other possibility, but do not contribute to the imaginary part as they
are real.
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t-channel

s-channel

(a) (b)

Fig. 2.9. Duality diagrams for = ¥~ scattering: (a) planar (s, t) graph; (b) non-planar (s, 5) or (¢, §)
graph.

+

X

Fig. 2.10. Dual-resonance diagram for 7-7 scattering.

In order to illustrate these rules, we can consider the scattering process:

7tnT - atn” (s — channel),
7tn~ — xtx~ (¢t — channel),
7ttt - atat (5 — channel), (2.94)

shown in Fig. 2.9.

From the previous discussion, only the planar diagram contributes to the imaginary part
of the amplitude. Duality invokes that a sum of resonances (or Regge poles) exchanged
in the s channel is equivalent to the sum of Regge poles (or resonances) exchanged in the
t channel, which is shown in Fig. 2.10. Similar planar diagrams can be drawn for w-N
scattering as shown in Fig. 2.11. In the case of N-N (or in general baryon—antibaryon)
scattering, one has the dual-resonance diagram (Fig. 2.12).

It shows that the planar graph represents exchange of non-exotic objects in the s channel,
but exchange of exotics in the ¢ channel. This feature signals that without exotics, the
approach cannot consistently explain the hadronic world.
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T - N
t-channel

s-channel

(a) (b)
Fig. 2.11. Planar diagrams for - N scattering: (a) ((s, t) or (5, ); (b) (s, 5).

(<X

Fig. 2.12. Dual-resonance diagram for N-N scattering.

One has expected that the previous approach based on superconvergence and duality,
and implemented by the dual-resonance model suggested by Veneziano [40] will bring new
insights in the developments of the theory of strong interactions. Alas, after the discovery of
QCD, such theories became unsuccessful, although we know, at present, that the Veneziano
model (actually it can be viewed as a string model) revives as the basics of superstring
theories with which one wishes to unify the three electromagnetic, weak and strong forces
with gravitation.



3
The QCD story

We shall limit ourselves here to a qualitative survey of Quantum ChromoDynamics (QCD),
with the aim to present in a short and simple way the main idea behind the theory. Many
more complete and detailed reviews and books on QCD [2,3,42-52] and on Quantum Field
Theory [53] exist in the literature, which the interested readers may consult, while recent
results and developments in QCD both from theory and experiments may, for example, be
found in many conferences, for instance, in the proceedings of the QCD—Montpellier Series
of Conferences published regularly in Nucl. Phys. B (Proc. Suppl.) by Elsevier Publ. Co.

3.1 QCD and the notion of quarks

* QCD is by now expected (and widely accepted) to be the field theory describing the strong inter-
actions of quarks g [8,9] (elementary constituents of the matter) having three colours (blue, red,
yellow) which are glued together inside the nucleus by eight coloured (chromo) gluons which pro-
vide a vehicle for the Yukawa strong nuclear forces. However, the quark scheme is not only a pure
mathematical concept for classifying the hadronic world. There is indirect evidence of the existence
of quarks through the observation of two-jet events, such as the one from:

Z° — hadrons, 3.1)

as shown in Fig. 3.1.
QCD originated from the natural development of the quark model of the early 1960s, where, as

we have discussed in the previous chapter, hadrons were classified under the representations of an
SU3)r (now called a flavour group), the so-called eightfoldway of Gell-Mann and Ne’eman [7],
where ordinary mesons and baryons of this SU (3)F classification are respectively bound states g¢q
and gqq of the light quarks up (u), down (d) and strange (s). The masses of these quarks,' which
are given in the next section, are much lower than the value of the QCD scale A ~ 300 MeV, and
have the values at the scale 2 GeV? [54]:

m, ~3.5MeV, my >~ 6.3 MeV, my; >~ 119 MeV , 3.2)

where one can notice thatm, /m, >~ 201is ahuge number obtained originally [21,55-57] from current
algebra approaches [13]. These values have to be contrasted with the so-called constituent quark

As quarks are not directly observed, the definitions of their masses are only theoretical. For light quarks, I will quote the values
of running (or current) masses evaluated at a certain scale.
2 The original choice of scale is 1 GeV. We take 2 GeV in order to follow current practice.

31
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Table 3.1. Quantum numbers of the

new quarks
Quark c b t
Charge Q : -1 2
C-charm 1 0 0
B-bottomness or beauty 0 —1 0
T -topness or topless 0 0 1

Fig. 3.1. Two-jet events from hadronic Z° decay.

values M, ~ 300 MeV, used in the previous chapter for the case of the quark and potential model
approaches [12], for explaining the mass-splittings of hadrons using the Gell-Mann—Okubo-like

mass formulae [11].

Including the previous three light quarks, at present six quark flavours have been found and classified
according to their charge Q in units of the electron. They are:

0=2/3: (u,c,t)
Q=-1/3 : d,s,b),

(3.3)

where, for instance, in these triplet representations, the neutral currents of electroweak interactions

are flavour conserving. The new quarks c, b, ¢ carry new quantum numbers as shown in Table 3.1.

The charm quark was proposed in [58], in which the name charm was adopted by Bjorken and
Glashow [58]. The discovery of the charm quark through the finding of the ¢c bound state J /¢
meson [59] at 3.1 GeV, indicates that its mass is about 1/2 of the one of the meson.? Its discovery
has been crucial for avoiding the flavour changing neutral current responsible for the excess of Z°

For heavy quarks (m, > A), the mass is defined as the on-shell mass (pole mass) analogous to the one of the electron (see next

section).
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exchange contributions in the K°-K° oscillations, and for the huge K; — u*pu~ and K* — 7¥v
experimentally unacceptable rates. The need for charm in this mechanism was indeed advocated a
long time ago by Glashow-Iliopoulos—Maiani (GIM suppression mechanism) [60]. Then, after the
charm discovery, the two generations of quarks (u, d) and (c, s) for the electroweak SU(2), x U(1)
standard model (SM) of Glashow—Weinberg—Salam [61] were completed, and could be compared
with the two lepton doublets (e, v,) and (1, v,,). These two quark doublets mix through the Cabibbo
mixing angle 6. introduced a long time ago [15], and has the experimental value sin 6, = 0.220 £
0.003 from, for example, the K — w%*v, process [16].

® The discovery in 1974 of the third T charged lepton [62], having a mass 1.8 GeV, was the first
sign of the third generation, which was confirmed later on by the discovery of the Y, which is a
bb bound state [63] in 1977, with a b-mass M, ~ 4.6 GeV, expected to be about 1/2 of the one of
the Y. More recently, the third family has been completed by the discovery of the ¢ quark in 1995
[64] from the analysis of the lepton + jet and dilepton channels originated from 7t — W-bW*h
processes at the collider experiments. This gives a top mass M, >~ (174.3 3.2 £4.0) GeV [16].
The b and ¢ quarks have been predicted by Kobayashi and Maskawa [65], and the names bottom
and top were first used by Harari [66]. At present, we have found three families of leptons:

() () (%) 64

and analogous three families of quarks:

() () G) =

Quark families mix under a 3 x 3 unitary matrix, which is a generalization of the previous 2 x 2
Cabibbo unitary matrix, and which is called the CKM (Cabbibo—Kobayashi-Maskawa) mixing
matrix [67]. This matrix has three real parameters (mixing angles) and one C P violating phase
(see Appendix A3), which cannot be absorbed by a redefinition of the quark fields. LEP studies [68]
of the Z° width also indicate that it is unlikely to have more than three (almost) massless neutrinos,
such that, most probably, we only have these three generations in nature.

3.2 The notion of colours

* Historically [69], the introduction of colours has been motivated by the failure of the quark model
to expain the peculiar nature of the pion-nucleon A** baryon, which has a total zero angular
momentum J = 3/2. In order to fulfill this property, one has to put its three u-quark constituents
with spins aligned up. This requirement is not allowed by Dirac statistics as the quarks are supposed
to be a spin 1/2 particle. This wrong statistic problem is solved when one gives three colours to the
quarks,* such that the A™* can be represented as:

|A*T, J =3/2) = %G“ﬁylua Toupg touy 1), (3.6)

with an antisymmetric wave function (&, B, y are colour indices).

4 A possible solution, where quarks obey parastatistics of rank three, has been proposed by Greenberg [70], which can be satisfied
by the attribution, by Gell-Mann et al. [69], of the new internal colour quantum number to the quarks.
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¢ [t is also known that quantum anomaly spoils the renormalizability of the SU(2) x U(1) Standard
Model of Electroweak interactions. Its disappearance can only be achieved if the quark number of
colour is 3.

3.3 The confinement hypothesis

* However, the theory is amusing as one has to avoid the existence of coloured states, i.e., they
should have infinite energy, such that all asymptotic states should be colourless. This leads to the
confinement hypothesis implying the non-observability of free quarks. There is indeed an indication
of such a property from a lattice measurement of heavy quark-antiquark bound state potential, where
itis found to be Coulomic at short distances and increases linearly at long distances (see also Section
3.8):

o (r)

Voo ~ C
0 F r

+or 3.7

with Cr = 4/3 and o is the QCD string tension. The linear rising term renders the separation of the
0 Q pair energetically impossible.

® The confinement assumption also implies that QCD should be a local field theory that leads to local
observables described by local operators or currents built with gluons and/or quark fields. This
locality property is one of the basis of the current algebras that we have outlined in the previous
chapter.

* Confinement is also essential for explaining the short-range nature of the nuclear forces, while
massless gluons exchange is a long-range process. This is because nucleons are colour singlet
states which cannot exchange colour octet gluons but only coloureds states.

* Some qualitative ideas on the nature of confinement lead to the picture that quarks are bound by
strings or chromelectric flux tubes. Indeed, if a O Q pair is created at one space-time point in a given
process, and the quark and antiquark start to move away from each other in the centre of mass of the
system, then it soon becomes energetically possible to create additional pairs smoothly distributed
in rapidity between the two leading charges, which neutralize colour and allow the final state to
be reorganized into two jets of coloured hadrons, which communicate in the central region by a
number of wee hadrons. This phenomena is very similar to the case of broken magnet, where an
attempt to isolate a magnetic monopole by stretching a dipole, leads to the breaking of the magnet
into two new monopoles at the breaking point. with small energy. Alas, nobody has succeeded yet
in proving this scenario, which remains a great challenge due to the peculiar IR properties (infrared
slavery) of the theory. At present, the confinement hypothesis can still be considered a postulate.

3.4 Indirect evidence of quarks

Prior QCD, constituent quark models have been used for predicting some processes. The
calculations assume that one can simply produce free quarks, which, a priori, is in contra-
diction with the confinement postulate. (Indirect) evidence® of quarks have been observed at
LEP from two hadronic jet events in the decay of the weak boson Z° through the intermedi-
ate process Z° — ggq, where the quarks hadronize later on. However, one should remember

3 Some direct searches based on the expectation to observe spin 1/2 quark were not successful.



3 The QCD story 35

that, in these hard processes, experimentalists only detect hadrons (pions, kaons, . ..), but
neither quarks nor gluons. It is impressive that these hard processes can be nicely explained
by perturbative QCD [52].

3.5 Evidence for colours

* In an analogous way, the existence of gluons has been seen in three hadronic jet decays of the Z°
through the process Z° — gqgg.
® The number of colours has also been tested from different experiments. Classical examples are:

& The ete™ — hadrons total cross-section R,+.- normalized to the ete™ — u ™ cross-section
is expected to be equal to the number of colours N, times the sum of the square of the quark
charge, if one assumes the production of free gg pairs (parton model) before hadronization (see
Fig. 3.2):

o(ete” — y, Z° — hadrons)

Rote- = ~Ne Y 07 (3.8)

g(ete - putu) el

This fact has been observed in ete™ experiments for sufficiently large energy beyond the reso-
nances structure as shown in Fig. 3.3.

¢ Similarly, the decay rate of the weak Z° boson shown in Fig. 3.4 is also controlled by N.. Its
hadronic branching ratio reads:

I'(Z° — hadrons) N. Z 2, 2
= ~ (v +4f)

R; = ~ 39
4 [(Z0 — ete™) (v2+a2) G2

ud,s...

where v; and a; are the electroweak vector and axial-vector couplings of the §g or ete™ pairs to
the Z°.
Experimentally, one has [16]:

Rz =20.77£0.08 . (3.10)

© The inclusive heavy lepton 7 semi-hadronic rate R, normalized to its semi-leptonic one, shown
in Fig. 3.5, is expected to be equal to the colour number 3 from the parton model:
R = I'(t = v; + hadrons)
e F(t_) Vr+l+]_)1)

(3.11)

Experimentally, one has:

r 1- ZNL B.(t — v, +19)

=3.647 £ 0.05 (3.12)

B.(t — v, +1v))

/>:

Fig. 3.2. ¢ + e— — hadrons process.
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Fig. 3.3. ¢ + e— — hadrons data. The continuous lines are QCD fit.

Fig. 3.5. T — v, + hadrons decay.
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y 14

Fig. 3.6. 7% — yy decay from the quark triangle.

where B, is the leptonic branching ratio. We shall see later on that the QCD radiative corrections
explain the 20% discrepancy between the parton model prediction and the data.

#& The decay rate of the neutral pion into two photons which occurs through the quark triangle loop
(Abelian anomaly) shown in Fig. 3.6 is controlled by the square of the colour [71]:

0 2 2\12 o\ my
I#® — yy)= [Nc(Qu — Qd)] P F =77¢eV, (3.13)

where f;, = 92.4 MeV is the pion decay constant controlling the decay 7~ — uv. It was shown
a long time before QCD that this prediction is not affected by quantum corrections [72]. This
prediction is in remarkable agreement with the data of (7.7 & 0.6) eV [16].

3.6 The SU(3). colour group

The previous properties:

® Quarks with three colours
® Quarks and anti-quarks are different objects
* Exact colour symmetry (hadrons have no colour multiplicity)

are sufficient to select the SU(3), symmetric colour group for desribing the theory of
strong interactions, instead of the other Lie group candidates SO(3) and its isomorphic
SU(2) ~ Sp(1), which have real representations, and then cannot distinguish the particle
from its anti-particle. In this SU(3), unitary group, quarks (anti-quarks) then belong to the
fundamental presentation 3 (resp 3*), whereas gluons are in the adjoint 8. The previous Gell-
Mann eightfoldway [7] quark model classification, can now be viewed in a modern way,
where hadrons should be colour-singlet states. The SU (3), decomposition into products of
3 and 3" representations gives for mesons:

gq : 3’ ®3=108 (3.14)
and for baryons:
qqq9 1 3®3Q3=10808010, (3.15)

which guarantee the colour-singlet configurations of hadrons required by the confinement
postulate. and which are satisfied by the experimentally observed hadrons. On the contrary,
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some exotic combinations like diquarks:
qq 1 3®3=3"06, (3.16)
and four-quark states:
999q 1 3®3Q3R3=3®30306"d6 Pl5 15015015 (3.17)

do not satisfy the colour-singlet confinement constraints, and can induce coloured states in
the spectrum [73].

3.7 Asymptotic freedom

Gell-Mann postulated that, at short distances, the commutation relations of the local
hadronic currents imply that the quark fields entering them are free particles (asymptotic
freedom). These assumptions led to the success of the different current algebra supercon-
vergent sum rules and to the Bjorken scaling. However, such assumptions a priori contradict
the previous confinement postulate. As we shall see, QCD can satisfy simultaneously the
two conditions thanks to the property of the QCD gauge coupling g, which is the only
parameter that controls the QCD Lagrangian in the massless quarks limit (as we shall see
in the next chapter). 't Hooft observed [74] that the slope of the first coefficient (N, and n¢
are respectively the colour and flavour numbers):

_ 1(11& g) (3.18)
,31——2 3 3 .

of the S-function [75,76] is negative at the origin of the coupling constant for a SU(3),
Yang—Mills gauge theory, while, independently, Gross, Wilczek and Politzer [77] discovered
that for non-Abelian gauge theories, the origin of the coupling constant is an UV stable
fixed point in the deep Euclidian region. This asymptotic freedom® property thus states,
after solving the renormalization group equation (RGE) (resummation of all leading logs
corrections), as we shall see in Section 11.7, that at large momenta Q, the running QCD
coupling falls off as:

g T

= S TAmoA

where A is the characteristic QCD scale, which indicates that below its value, the perturba-
tive approximation breaks down. The situation in QCD is the opposite of the familiar QED
described by the U(1) Abelian theory, in which the effective charge o increases slowly
for increasing Q2 because the corresponding 8 function is positive (8; = 2/3).” At the
electron mass, a has the value 1/137, while it is 1/129 at an Z° mass of a distance of
1/500 fm (It becomes infinite (so-called Landau pole [79]) at an energy much higher than

s

% For historical reviews on the discovery of asymptotic freedom, see the talks given by David Gross and Gerard ’t Hooft at the
QCD 98 Montpellier Euroconference [78].
7 More discussions on QED will be given later.
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the mass of the universe). An intuitive understanding of this decrease of the QED effec-
tive coupling at long distance is provided by the dielectric screening due to the cloud of
virtual e*e™ pairs created in the vacuum, through quantum effects, surrounding the elec-
tric charge. For QCD, and more generally, for non-Abelian theories, one then expects an
anti-screening effect generated by the gauge self-interactions of gluons, which spread out
the QCD colour charge, and makes the Yang—Mills vacuum like a paramagnetic substance
implying an anti-screening charge through relativistic invariance. This anti-screening or the
asymptotic freedom property are only true for non-Abelian theories [80]. This remarkable
asymptotic freedom property of QCD then permits a simple treatment of the different QCD
hard processes, which can be approximated by perturbative series in the strong coupling o
at large momenta. This feature also confirms the success of the parton model in describing
(to lowest order of the a,-series expansion in the perturbative QCD language), the examples
of QCD processes R.+.-, Rz, R, and DIS mentioned previously, but also implies that for
Q% — oo, quarks become free particles.

3.8 Quantum mechanics and non-relativistic aspects of QCD

We have learned from previous sections that quarks are free at very short distances but tightly
bounded at long distances. For an heavy O Q bound state, the QCD potential is Coulomic
at short distances and increases linearly at long distances. This behaviour is typical for
quantum mechanical systems bound together by a potential which is not singular at short
distance and increases infinitely with distance at large distances. This is, for instance, the
case of the harmonic oscillator where its potential reads:

LI
V) = Ema) r (3.19)
The corresponding Green’s function of the system is:

3/2 .
maw imw
G ﬂ, ﬂ/,l‘ = - 22 =2 ; — 2—>—>/ , 320

. % 1) (27rhsina)t> eXp{Zhsina)t((x FaT)cosw ) (3.20)

which, for small # (ot < 1), is well approximated by the function for the free particle:

3/2 .
Go(i, ¥ 1) = (%) exp {% & —2’)2} . (3.21)

Therefore, it is not so surprising that non-relativistic potential models of quarks [12,
81-94] were able to describe some characteristic features of the systems, and successfully
explain the complex hadron spectra made with heavy quarks. However, a purely quantum
mechanical description of the theory is not fully satisfactory, as it does not incorporate
Lorentz invariance. We shall come back to this subject in a future section.
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Field theory ingredients

In this chapter, we shall collect some of the field theory ingredients which will often
be encountered in this book. More detailed discussions and derivations can be found
in classic textbooks on quantum field theories [53] and some of the QCD books in
[42-46].

4.1 Wick’s theorem

Let us consider free boson or fermion fields ¢;(x) of a particle i, which one can express in
terms of the creation a' and annihilation a operators, and the corresponding ones b and b
for the anti-particles, where a and b may (or may not) coincide:

gi(x) =Y ¢ ay + e )b} . 4.1
For a fermion field (« and v are Dirac spinors):
Y(x) = / dkla(kyu(k) e 4+ bl (kyv(k) ], (4.2)
and for a boson:
d(x) = / dkla(k) e ™ 4+ bl (k) '] . (4.3)

where the phase space measure is:

AL
Qr)R2E;,  Q2n)*

dk 21 8(k* — mHOKkY) . (4.4)

The Wick or normal ordered product [95]:

s o1(xD@a(x2) 4.5)

is obtained by placing all creator operators to the left of all annihilation operators, and
by taking care on the (anti)-commuting relations if the fields are (fermions) bosons.

40
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Therefore:

L) =) [ DS (a)anan + 7 (1) (x)blb),

n,n’

+2 e bl aw + (=1’ (x)eS (x)blan] . (4.6)

where § = 1(0) for fermions (bosons). This results can be easily generalized to more factors
of fields.

4.2 Time-ordered product

A time-ordered product is obtained by rearranging the fields or operators in the natural
sequence of time. Atatime ¢t > t, we first create a particle at a time 7 with ¢! and annihilate
later on at a time ¢’ with ¢. This can be encoded by the amplitude:

o' — Ne(t', ¥l %) . 4.7)

If, for ¢’ < ¢, an antiparticle is produced by ¢(x’), then it is annihilated by @T(x) at the
time ¢, with the amplitude:

0t — o', D', %) . (4.8)
The sum of the two equations gives the time-ordered product:
To( ) (x) = (1" = e e (0) + (= 1’0 — 1) (W) () | 4.9)

where § = 1(0) for fermion (boson), where one should also note that fermion-boson oper-
ators are taken to commute. The T-product is arranged from right to left with increasing
times, and then the appropriate name. One can also express it in terms of the Wick product:

To( ) (x) = p(x)p'(x) : +01T(x")p' (x)[0) . (4.10)
The above results can be generalized to the 7 products of n operators/fields:

Toi(x1) - 0a(xn) = (=101, (xi)) -~ 91, (x;,) 4.11)

where in the RHS the times are ordered (f;, > #;, > --- > t; ) and § is the number of trans-
position of indices of the fermion operators/fields necessary for obtaining the required form
in the RHS. It can be written as:

Toi1(x1) - 0u(xn) = To1(x1) - - - @u(Xn—1)n(Xn)
=1 @1(x1) - @u(Xn—1) * @u(xn)
+ (01T p(x)e(x2)[0) : @1(x3) - - - @p(xn_1) : @u(x,) + perm.
+ (017 91 (x1)g2(x2)10) (017 ¢3(x3)pa(x4)|0) = @1(x5) - - - @u(Xn—1) : @u(xn) + perm.
+ -, 4.12)
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where - - - stands for:
(O17 1 (x1)@2(x2)10) - - - (017 @1 (Xn—1)¢n(x,)|0) + permutations , (4.13)
if n is even, and for:
(017 1 (x1)@2(x2)10) - - - (017 9 —2(xn—2)¢n—3(xn—3)10) @ (x,,) + permutations , (4.14)

if n is odd. The vacuum expectation values or contractions give rise to the field propagators.

4.3 The S-matrix
4.3.1 Generalities

In field theory, one measures S-matrix elements, which is the probability amplitudes for
transition between states which contain definite numbers of particles for ¢ ranging from
—00 to +00. They are usually named ‘in” and ‘out’ states |«, in) and |8, out), where o, B
characterize particles momenta and quantum numbers. The S-matrix can be obtained from
the interaction Lagrangian:

S =T exp |:i / d*x cl} (4.15)
which one can expand as:
S=1+i / d*x Lo+ / d*xi - d'x, TLG) - Lix) . (4.16)
n!
The S-matrix is relativistically invariant:
S =Ula, NSU  (a, A) , (4.17)
where U(a, A) is a transformation under the Poincare group. It is also unitary:
sts=1. (4.18)
It can be related to the transition amplitude:
(B, out|T |, in) 4.19)

which gives the probability that the incoming state |«) will evolve in time to the outcoming
state | 3) as:

S=1+4iT (4.20)

4.3.2 Applications: cross-section and decay rate

We can illustrate the discussion by considering the scattering process:

(p1, J) + (p2, J2) = (ki jo) + - (kns i) - 4.21)
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of two initial particles with momenta p; and p, and spin J; and J,, and » final states with
momenta p, and spin j,. The unpolarized cross-section of this process can be written as:

w
o= Z 5 (4.22)

where ) represents an averaging over initial particle polarizations; W is the transition
probability per unit of time and unit of volume, F is the incident particle flux and D the
target-particle density. In the laboratory frame of incident particle 1 on a target particle 2,
one has the kinematic variables:

A(s,m7, mz) [s — (m1 +m2)*s — (my — my)*],
= 2E|v; — va| = A'2(s)/m3
D =2E,, (4.23)
s =(p1+p)*, (4.24)

where v; (i = 1, 2) is the velocity of the particle i (v, = 0). The transition probability per
unit of time and unit of volume is:

(Zn)454(0) / o= )3215 (£16S = DIDP. (4.25)

where the sum over the helicities of different particles is understood. We have used the
normalization of state | p, A) having helicity A and momentum p:

(p', N |p,A) = Q) 2E8*(p' — p)dys . (4.26)

Using trivial substitutions, one can deduce the well-known cross-section:

1 N

7 T 202 (s, w2 md) 2 + D@D+ D)
x / @m)'s* (P — PYIMG — [P Eeyfszjzsj : 4.27)
where we have introduced the reduced amplitude transition M:
i(fITIi) = %Py — PIMG — 1) (4.28)
Here:
Pf£il’f§ Pi=pi+p2, (4.29)

and the statistical factor is:

1
N = H i (4.30)
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if one has n; identical particles in the final state. Analogously, the decay rate reads for a
particle of mass M at rest is:

N ndk;

PG — f)= 5 f @n)*'8*(Pr — PYIMG — PP ] g, 4

M j=i

Repeated uses of the reduction formula will show that the transition matrix can be related
to the Green’s function of the relevant particles.

4.4 Reduction formula

Let’s consider the simplest case for the elastic scattering of two scalar particles. The S-matrix
of this process is:

(k1k2| S| p1p2) (4.32)

In terms of annihilation and creation operators, which satisfy the commutation relations:

la(p),a'(p)] = @r)Y*2ES(p' — p), la(p),a(p))] =0, (4.33)

the scalar field reads:

P(x) = / &[a(me—f“ +d'(p)e™], (4.34)
which can be inverted:
a(p) = i / Bx e 50 p(x) (4.35)
where:
f 8= f(g) - (Bof)g (436)

Then, after some algebra:

(k1ko out|p1ps in) = (kilaou(k2)|p1p2 in)
=i lim [ d® ¢ 3y (ki|¢(x)|p1pa in)
Xo—>+00

= (kilain(k2)| p1 p2 in)
+i/d4x dole™™* 3o (k1l@(x)| p1p2 in)] . (4.37)

Using:

d(fdg) = figg
e’ = (V2 — mPeth | (4.38)
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one can replace the last term of the previous equation by:

i / d*x €* (82 + m?) (ki|p(x)| p1 p> in) . (4.39)

Using repeatedly the above manipulations, one obtains the Fourier transform of the
vacuum expectation value (VEV) of the I-product of four fields:

(k1ky out|py py in) = (kiky in|p; py in)
+ i4 f d4x1d4x2d4y1d4y2 eilklerkzXz*Pl,Vl*Pz,Vzl
x (87 +m?) (07, +m?) (37, +m?) (33, +m?) (ki |p(0)|p1 pa in)
X (0|7 [¢(x1)p(x2)p(y1)(y2)110) , (4.40)
where:

(kiky out|pypy in) — (kiky in|pi ps in) = (kik2|(S — D)|p1p2)
= 2n)'id(ki + k2 — p1 — p)kika| T p1p2)
“4.41)

and we have used the shorthand notation:

Ox

0
—. (4.42)
0xy,

Similar manipulations can be extended to spinor fields.

4.5 Path integral in quantum mechanics

The path integral method, used long time ago by Feynman [96], has been revived by Fadeev
and Popov and De Witt [97] in its application to non-Abelian theory, and by "t Hooft [98]
when he derives the Feynman rules for massive gauge theories, particularly for the Standard
Model of the Electroweak interactions. Detailed derivation of this method are described in
modern textbooks. We shall briefly outline the method here, but starting from some examples
in quantum mechanics.

4.5.1 Transition matrix of quantum mechanics in one dimension

The Hermitian operator ‘coordinates’ Q, and a conjuguate ‘momenta’ Py, satisfy the canon-
ical commutation relations:

[Q[la Pa] = iSab ’ [Qav Qb] = [Paa Pb] = 0 (443)

to which correspond the eigenvectors |¢) and |p) and the eigenvalues g, and p;. In the
Heisenberg picture, Q and P have a time dependence leading to:

lg:1) = exp(iH1)lq) |pit) = exp(iH1)|p) (4.44)
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for the eigenstates, which satisfy the orthonormality and completeness conditions:
qtlgsty =8¢ —q),  (Pstlpst) =8(p" —p),

/qua|q;t><q;r| =1 =/1"[dpa|p;r><p;r| (4.45)

and:

1
(@:tlpity =] 7= Pidapa) (4.46)

One should remember that, in the previous notation, the state |g;¢) in the Heisenberg
picture coincides with the one of the Schridinger picture |g(t)) at a given t. Now, we wish
to calculate the scalar product:

(q'st'q:1) , (4.47)

which corresponds to the probability amplitude for measurements at time ¢’ to give the state
lg’; "), if we found that at the time 7 our system is in a definite state |g;¢). This is an easy
task if the time ¢’ and ¢ are infinitely close to each other (t = t; t' =t + dt and dt — 0)
since from Eq. (4.44):

(q'st +drtlg:t) = (¢'stlexp(—i Hd7)|q; T) . (4.48)

Expanding |g; t) in terms of the P eigenstates | p; T) by using Eq. (4.46), one can write:

(q'sT +drlg:T) = /]_[dpa<q’;rleXP[—iH(Q(r), P(r)dt]lp;T)(pstlgsT)

dpa : ’ . ,
= /H % exp |:—1H(q , pdt +i Z(qa — qa)pa] , (4.49)

where each p, is integrated from —oo to 4-00. One can generalize this procedure by breaking
the interval ¢’ — ¢ into N + 1 sets of infinitesimal intervals, as shown in Fig. 4.1, and sum

AN+

a
Sl

fo INeg >

Fig. 4.1. Subdivision of the time interval t' — ¢ into N + 1 sets of infinitesimal intervals.
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over a complete set of states |g; tx) at each time 7. Then,

1. al al dpk,a
<q;t|q;t>=/ L[l]:[qu,a ]1:([)]:[7

N+1
X exp |:i > H—H(Clk, Pe-0dT + Y (qra — C]kl,a)Pkl,a} ] . (4.50)

k=1

with ¢o = ¢ and gy, = ¢'. In the limit t — 0, and then N — 00, one can assume that g,
and p, are (to leading order in the T-expansion) independent of t, such that the argument
of the exponential becomes an integral over t. Making the formal substitutions:

N+1 v N
(Gak = Gak-1) = GadT ; Z—>/ ; f[]_[]_[qu,a} — f]_[dqa(r),
k=1 4 k=1 a a

4.51)

one, then, obtains the path integral (= integration over all paths taken by ¢g(t) from ¢ to ¢'):

[P = dpb(r)
{g:rlgst) = /qazqaa) ndq”(r)lf_bIT

q; = Qa(l,) T.a

X exp [l/ dt {—H (q(7), p(0)) + Zéla(f)pa(f)}] . (452)

One can perform the p integration. In order to read off the oscillating function in the
exponential, it is convenient to work in the Euclidian space by formally treating idt to be
real. Then, the integral has a definite norm. For a Hamiltonian of the form:

P2
H(P, Q)= . + V(). (4.53)

where V(Q) is the potential, we have to perform a Gaussian integral:

/m X xpl—ax? + bx] L explb?/4al (4.54)
-— —ax X| = a| . .
o 2P Jaza ¥

Then, one can deduce from Eq. (4.52):

(q':t)q;1) = /qa 0 ndqa(r) X exp |:z/ L(T)d{| , (4.55)

q{; = qa(t,) T.a

where:

L=—¢*-V(), (4.56)

|3

is the Lagrangian.
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4.5.2 The Green’s functions

One can extend the previous discussion of matrix transition to the analysis of a Green’s
function which is the time-ordered products of different (local) operators. This can be
illustrated by the example of a quantum mechanical two-point function, which is the matrix
element of the time-ordered product between ground states:

G(t, 1) = (01T Q1) Q®)I0) , (11 > 1), (4.57)

where |0) denotes the ground state. By inserting complete sets of states, it can be written
as:

G(t, 1) = qudq/(olq';t’ﬂq’; Y17 Q(t)Q(1)lg;1)(q;t10) , (1 > 1) . (4.58)
Introducing the wave function of the ground state:

(Olg:1) = ¢o(q) exp[—i Eot] = do(q. 1) , (4.59)

and using an analogue of the derivation of Eq. (4.52) for the matrix element:

(¢ 01T Q) 0()lg;t) = /(q’IGXP[—iH(t’ — t)llg1){q:11Q ) expl—i H(t; — t2)]lg2)
x{q2| Q(t2) exp[—i H(t; — t)]lg;t)dqdq> , (4.60)

one obtains in the Schrédinger picture:

d
Gy = [, o TTaa@ ] 2 0 i, nartaate
T,b

I 1 T.d 27
qa:qa(t) ’

X exp [l/ dt {—H(q(r), p() + Zé]a(f)pa(f)} ] . (46l

Now, we can remove the wave functions by introducing a complete set of states. Then:

(q':1'10:T") = (q|expl—i H(t' = TN|Q") = Y (q'In){n|exp[—i H( — T")]|Q)

n

=Y 61(q)dn(Q) expl—i E,(t' — TN, (4.62)

where E, and ¢, are the energy and wave functions of the state |n). The contribution of the
ground states can be isolated by taking the limit # — ioco and using the fact that E,, > E
for n # 0. In this way, one gets:

t,lig}oo(q’;t’lQ’; T') = ¢5(q")po(Q") expl—Eolt'[1expli EoT'] . (4.63)
Similarly:

lim (Q:T|q;1) = $o(q)Pg(Q) exp[—Eolt|lexp[ —i EoT], (4.64)

t——+ioo
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from which one can deduce:

N = . hmoo<q’;t’|q;t> = ¢y(q")po(q) exp[—Eo(|t] + |'D] . (4.65)
t — +ioco

Therefore, one can derive after some straightforward algebra:

r llmloo(q’;t/|TQ(t1)Q(t2)|q;t> = /dQ 4Q'(q: 10T
t — +ioco

x(Q T T Q1) Q)0 TH{Q; Tlg;t)
= ¢5(q")do(q) expl—Eo(|t] + [£'DIG (11, ) . (4.66)

Combining Eqgs. (4.65) and (4.66), one can deduce the result:

Gl 1) = + N e I 07 )H

Ga =g, T4
X exp [l/ dt {—H(CI(T), p(0) + an(f)pa(f)}] . (4067)

This result for the two-point function can be generalized to n-point Green’s function.
This Green’s function can be generated as:

CI1(I1)Q2(12)

8"Z[J]

GV, 10, Ty = (i) ————
(t1, &2 ) = (=) 5J(T1)-'-51(Tn)jo

(4.68)

by the generating functional:

t—)—lDON

t — 4ioco

Z[J1= lim /Dq exp{i/ dr [—%qz _ V(q)—l—J(t)q(r)]} . (4.69)

which corresponds to the transition amplitude from a ground state at t to the ground state
at T’ in the presence of an external source J (), with the normalization Z[0] = 1. We have
introduced the symbolic notation D for the integration measure:

Dg = [ [dqa(r) . (4.70)

In order to elucidate the meaning of the previous expression, we recall that, by definition,
a functional is an application of the space of smooth functions f(x) into complex numbers:

J(x)— Z[J], @71

while a functional derivative is defined as:
8Z[J] . ZIJ + €8] - Z[J]
= llm El

O ; 4.72)
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where 8, = §(x — y) is the §-function at y. In the case of the functional integral:

ZlJ] = /dx K(x)J(x), (4.73)
the functional derivative is:
8Z[J]
— =K, (4.74)
8J(y)
which, after performing a Taylor expansion of the kernel K (x), leads to:
8" ZJ
Kn(xl’ o xn) [ ] (475)

T8I 8T ()

4.5.3 Euclidean Green’s function

The unphysical limits ¢ — —ioco, t — ico can be interpreted in terms of the Euclidean
Green’s functions:

SOy, . 1) =i"G (=it ..., —iTy)

8" Zg[J]

= . (4.76)
§J(r)---8J(m)|,

where Zg[J] can be deduced from Z[J] by the formal change 7 — it. In the Euclidean
region, the path integral is well-defined, as it converges because the potential is bounded
from below ((m/2)¢*> + V(g) > 0), such that the exponential in Eq. (4.69) will give a
damping factor.

4.6 Path integral in quantum field theory
4.6.1 Scalar field quantization

For simplicity let’s consider a classical field ¢(x) and the corresponding Lagrangian density
L(¢, 3,¢) to which corresponds the action:

3=ff&a¢%@. 4.77)

The field ¢ satisfies the Euler-Lagrange equation of motion:

8L 8L

0y—————=0. (4.78)
"8(0.0) 8¢
We denote by 7 (x) its conjuguate momentum:
8L
(x) 4.79)

T 5 (000)
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which obeys the equal-time canonical commutation relations:
[, 1), ¢, )] = —i8 & —X) (4.80)

while the Hamiltonian density is defined as:

H= /d4x[7r(x)80¢(x) — L(x)] (4.81)

Therefore, in order to use the previous results of quantum mechanics, one can consider a
field theory as a quantum mechanical system with infinite degrees of freedom. Therefore,
one can make the substitutions:

DqgDp — D¢p(x)Drm(x)
L ) — / Px L6, 0,9 ;

H(g;, pi) — / d’x H(p, ) . (4.82)

Using the fact that the ground state in field theory is the vacuum state, the generating
functional Z[J] is the vacuum-to-vacuum transition amplitude in the presence of an external
source J(x), and read in the Euclidian space:!

ZlJ] = /7345 exp {/d4X[C(¢(X))+ J(X)cb(X)]} , (4.83)

up to an inessential normalization factor; Here, x is the Euclidian coordinate (z — if). In
field theory, we are interested in the connected Green’s function, which is:

(4.84)

SM(xy, ... xp) = { ! ZL] }

Z[J18J(x1)---8J(xp)

J=0
where an extra factor of 1/Z[J] has been inserted in order to remove the disconnected part
of the Green’s function.

4.6.2 Application to Lp* theory

We can illustrate this result by working with the Lagrangian of A¢* theory:
L= »Cfree + L:l (485)
with:
1 u 1,
Ltree = 50uP)@"h) — Z17d .

A 4
Li=—1". (4.86)

! We shall work in the Euclidian space in this subsection, where, as mentioned previously, the integral has a definite norm, and is
well defined. This space is useful for a path integral formulation of non-perturbative QCD. However, the derivation of Feynman
rule can still be done in the Minkowski space.
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In Euclidian space, the generating functional reads:

3
Z[J]:/D¢exp{—/d4 [2(3?) (v¢>) + = u¢ + o ¢ +J¢“

(4.87)

which one can rewrite as:

Z[J]l = |:exp/d4x L1 (%) :|ZO[J] (4.88)

The free-field generating functional

ZolJ] = / D¢ exp [ / d*x (Liee + J¢):| ) (4.89)
can be written in the form:

1
ZolJ] = / D¢>exp{—5 f d*xd*y p(x)K(x, y)(y) + f d4zJ(z)¢(Z)} . (4.90)

where:
9 2 2
K(x, y) = (—W—V +u ) 4.91)
and the identity:
9 2
(af) — (V¢ =¢ ( - V2) ¢ (4.92)

has been used because their divergence is a total four-divergence. Integrating the Gaussian
integral:

1
JE,O/D(’)' - Doy exp|:—§ ;(f)l‘Kijd)j +Xk:Jk¢k:|

~ LK Y. I, 4.93
m [ Z (K7 ] (4.93)
one obtains:

ZolJ] —exp|: / d*xd*y J(x)A(x, y)J(y)] (4.94)

where A(x, y) is the inverse of K(x, y):

/ d*y K(x, YAy, 2) = 8*(x — 2), (4.95)
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which leads to the desired expression of the scalar propagator:
d*k explik(x — y)]

Q) k2 + u?

Perturbative expansion in powers of the interaction Lagrangian £; generates the Feynman

rules for different vertices. However, in order to keep only the connected Green’s function,
one should expand In Z as defined in Eq. (4.84).

4.6.3 Fermion field quantization

The quantization of the fermion field can also be done by expressing the transition amplitude
as a sum over possible lines connecting the initial and final states. For a classical fermion
(anti-fermion) fields v, (¥) and sources 1, 7j, the generating functional reads:

Zin.l = [ DYDI exp {i [ atxieciy+in+ ﬁw]} @
where the functional integral must be taken over anti-commuting ¢ number functions which
are elements of the Grassmann algebra:

0(x), 0(x") = 0(x), 0(x") = 0(x),0(x) =0,
[0 =0, (4.98)
where 0 = i or 1. The fermion Lagrangian is:
L= Liee + L1, (4.99)
with:

Liree(x) = Y0y d" —m)y(x),

Li(x) = Y )y () A" (x) . (4.100)

Since the fermion fields always enter the Lagrangian quadratically, the previous functional
is a generalized Gaussian integral. Therefore, one can write:

Z[J] = /D¢(x)D¢(x)exp{/d4x &Aw} = detA , (4.101)

where Z is the vacuum-to vacuum amplitude and the (connected) Feynman diagram gen-
erated by In Z will be a set of single-closed fermion loops.

4.6.4 Gauge field quantization

Due to gauge invariance, gauge theories represent systems with constrained dynamic vari-
ables. Their quantization is more involved than the one of scalar field theory or of free
fermion discussed previously, and so we shall leave it for discussion in the next section.
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Lagrangian and gauge invariance

5.1 Introduction

After Einstein’s identification of the invariance group of space and time in 1905, symmetry
principles received an enthusiastic welcome in physics, with the hope that these princi-
ples could express the simplicity of nature in its deepest level. Since 1927 [99,100], it has
been recognized that Quantum ElectroDynamics (QED) has a local symmetry under the
transformations in which the electron field has a phase change that can vary point to point
in space—time, and the electromagnetic vector potential undergoes a corresponding trans-
formation. This kind of transformation is called a U(1) gauge symmetry due to the fact
that a simple phase change can be thought as a multiplication by a 1 x 1 unitary matrix.
Largely motivated by the challenge of giving a field-theoretical framework to the concept
of isospin invariance, Yang and Mills [101] in 1954 extended the idea of QED to the SU(2)
group of symmetry. However, it appears here that the symmetry would have to be approx-
imate because gauge invariance requires massless vector bosons like the photon, and it
seems obvious that strong interactions of pions were not mediated by massless but by the
massive p mesons. In 1961, there was the idea of dynamic breaking, i.e., the Hamiltonian
and commutation relations of a quantum theory could possess an exact symmetry and the
symmetry of the Hamiltonian might not turn to be a symmetry of the vacuum. This way of
breaking the symmetry would necessarily imply the existence of massless-spin zero par-
ticle, the Nambu—Goldstone boson [17] discussed previously. Later on, Higgs and others
[102] showed that if the broken symmetry is a local gauge symmetry, as in the case of
QED, the Nambu—Goldstone bosons could formally exist, but can be eliminated by a gauge
transformation, so that they are not physical particles. These Nambu—Goldstone bosons
appear as helicity states of massive vector particles. These ideas were the starting point
for building the SU(2), x U(1) electroweak theory by Weinberg and Salam [61] as an im-
provement of the model proposed earlier by Glashow [61]. The spontaneous breaking of the
electroweak group into U (1) via a non-vanishing expectation value of the Higgs scalar field
gives masses to the W* and Z° but leaves the photon massless. At present time, one even
expects that nature has a richer symmetry (supersymmetry), which treats in the same manner
the fermions and the bosons. However, we do not have yet any direct evidence of a such
symmetry. In the following, we shall restrict ourselves to the discussion of the symmetry of
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QED and QCD described respectively by a U(1) Abelian and SU (3). non-Abelian gauge
groups.

5.2 The notion of gauge invariance

In quantum mechanics, a multiplication of a state vector by a constant phase factor, e'*, does
not induce any observable consequences. Now if you take a wave function with two very
distant peaks, and multiply one by a phase factor, then you have to multiply the other by
the same phase. This is the local gauge invariance, i.e., independence under a space—time-
dependent phase factor exp (ix(x)), postulated by Weyl [100]. However, this requirement
does not even hold for free non-relativistic particles. Indeed, if ¥ (¥, ¢) is the solution of the
Schrodinger equation:

2
—h—%zl/f(;,f) =ihd (X, 1), (5.1
2m

the quantity exp (ia(x)) ¥ (X, t) is not, in general, a solution of it. Then, gauge invariance
necessarily implies that a particle should interact with fields. If indeed, we consider the
Schrodinger equation in a magnetic field with a vector potential A(X, ¢), then the equation
becomes:

W - e 2
— (iV — —A(x, t)) (X, 1) =ihd, (X, 1) . 5.2)
2m c

In this case, where the vector potential changes.'
o o Co o
A(x,t) > A(x,t) — —-Va((x), 5.3)
e

one can see that both (X, t) and exp (ia(x)) ¥ (X, t) are solutions of the Schrddinger
equation. From this example, we learn that a local gauge invariance of the wave function
necessary needs a coupling of the particle to a vector field. Such an invariance will be
satisfied by the gauge theory Lagrangian that we shall discuss below.

5.3 The QED Lagrangian as a prototype

The previous discussion can be illustrated in field theory by the simple Lagrangian of QED.
In so doing, one can consider the Lagrangian describing a free Dirac electron field having
amass m:

Liree = 1/7(16)(1'3;;)/“ —m)y(x) . (5.4)
Under a U(1) global phase transformation, one has:
Y(x) = exp(—ifl) ¥ (x), (5.5)

! Fortunately, this gauge transformation does not influence the magnetic field.
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where 0 is an arbitrary constant. Now, if one considers the case where 6 depends
one the space—time coordinate, one can notice that the Lagrangian is no longer invari-
ant under the phase transformation as the derivative of the field has induced an extra-
term:

P (x) — exp(—ifl) (3" —i3"0) Y (x), (5.6)

which means that, for the theory to be consistent, the same phase convention should be taken
at all space—time points. However, this is not natural. Gauge symmetry requires that the U (1)
phase invariance should hold locally. This can be achieved, like for the case of quantum
mechanics above, by adding a new spin-1 contribution which can cancel the previous extra
term:

Au(x) = Aux) — éaﬂe(x) , 5.7
and by defining the covariant derivative:
Dy (x) = (8 +ieA, ()Y (x), (5.8)
which transforms like the field itself:
"y (x) — exp (i601) D"y (x) . (5.9)
Therefore, the Lagrangian:

L=y Duy" —mp(x) = Liree — eAp()Y ()Y P(x) (5.10)

is invariant under the local U(1) transformation. As in the case of quantum mechanics, the
gauge principle necessary needs a coupling of the electron field to the vector field, which is
given by the second term of the Lagrangian. A complete QED Lagrangian can be achieved
by adding the kinetic term of the electromagnetic field and a gauge term:

1 1
Ly == FuF" = 5 0" A, (5.11)

which expresses that A, can propagate. Here, F,, = 9, A, — 9, A, is the electromagnetic
field strength; o is the gauge parameter which is O(resp. 1) in the Landau(resp. Feynman)
gauge. On the other hand, a possible m>A* A , Mmass term violates gauge invariance, which
then implies that the photon is massless. We have then shown that, with the alone gauge
principle, one can rederive the QED Lagrangian, which leads to a very impressive quantum
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field theory which applications have been tested to a very high degree of accuracy (see next
section).

5.4 The QCD Lagrangian

The case of QCD is very similar to the one of QED though more involved due to the
non-Abelian structure of its SU(3). gauge group. The QCD Lagrangian density reads:

Locp(x) = — ZG*”G,“N +i Y P DIV = Y Y
j=1 j=1
1
— — 0" A9, AN — 0,5.D" 9" (5.12)
20[G

where Gj, = 9,A7 — 0, A} +¢g fabLA” AS (a=1,2,...,8) are the Yang—Mills field
strengths constmcted from the gluon fields Af (x) [101 ¥; is the field of the quark
flavour j while ¢“(x) are eight anti-commuting scalar fields in the 8 of SU(3). (Dy)up =
Bupdy —ig D, zkgﬂA“ are the covariant derivatives acting on the quark colour compo-
nent o, B = red, blue and yellow; Ag, are the eight 3 x 3 colour matrices and f are real
structure constants which close the SU(3) Lie algebra:2

[Tav Tb] =i fubc Tc B (513)

where (T9),5 = A” B in the fundamental colour 3 representation, while (7,),. = —i fupe
in the adjoint 8 representatlon of gluon basis. The last two terms in the Lagrangian are
respectively the gauge-fixing term necessary for a covariant quantization in the gluon sec-
tor [eg = 1(0) in the Feynman (Landau) gauge] and the Faddeev—Popov ghost term [97]
necessary to eliminate unphysical particles from the theory.

One can rewrite the above Lagrangian in a more explicit form:

Locp = Liwee + L1 + L85 4+ £17, (5.14)
where:
Efree - £tree + ‘Cfree + Lfree ’ (515)

is the free-field Lagrangian containing the kinetic terms of the different fields, with:

1 v v v v 1 a
L8, = -1 (9" AL — 3" A") (3“AL — 9" AL) — EaﬂAMaﬂAI;
n n
L. = iZ T O ap ¥l =Y m vy a
4 £
‘Cfree = /L@aaﬂwa . (5.16)

2 More general and useful properties of the A matrices are given in Appendix B.
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The interaction Lagrangian of the gluon fields respectively with the quarks, gluons and
Faddeev—Popov ghosts reads:

n B )\a
o =enr o wir (%) vl
j=1 of

2
£ = —%f”bc (0" A2 — 9" AM) Ay Acy — ng“bffadeAg‘AgAﬁAi :
L7 = gfunc(3,89" A, . (5.17)

The new piece compared with the usual Abelian QED Lagrangian is the the appearance of
the gluon self-interaction ££g, which is a specific feature of the non-Abelian group SU(3)..
Because of this new piece, the Faddeev—Popov ghosts fields are introduced (as mentioned
above) for a proper quantization of the theory, which can be done formally using path
integral techniques. This method is discussed in details in various textbooks and will be
briefly sketched in the next section.

5.5 Local invariance and BRST transformation

Locp(x) is locally invariant under the BRST transformation [103]:
A(x)—> A,(x)+wD, ¢,
Vi(x) — exp(—igwT - @) Vi ,
b= D+ —0,A,
aG
|
¢—>¢>—§ga)(p><go, (5.18)

where w(x) is an arbitrary parameter. In order to see the usefulness of the BRST transforma-
tions for generating the Slavnov—Taylor—Ward identities [104,20], let’s consider the gluon
propagator:

D (k) = / d*x e (01T A% (x)AL(0)(0) . (5.19)

28

We shall prove that order by order in perturbation theory, the non-transverse part of the
gluon propagator remains the same as for the free propagator:

kK iD (k) = —iags®™ . (5.20)
In so doing, we start with the trivial identity:
(O|8“AZ(x)<7)b(0)|O) =0. (5.21)

The BRST invariance implies:

(013 A% (x)P"(0)[0) = (013 (A%) (x)(@") (0)]0) , (5.22)
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where the new fields:
A;f = A} + oD, ¢,
w
¢ =@+ —a"A], (5.23)
oG
have been introduced. Then, one can deduce:

w
—(0]9" A%(x)8" AL(0)]0) = 0. (5.24)
aG

By taking its Fourier transform, one obtains the Ward identity written in Eq. (2.39). Using
the canonical commutation relation:

[T14(x), A2(0)]8(x0) = —igyund*"8*(x) (5.25)
where:

I}, (x) = =G, (x) = igoﬂa”Aﬁ(x) , (5.26)
we obtain:

[A§(x), 3" AL(0)]8(x0) = —iags*(x) . (5.27)

Using Eq. (5.27) into the Ward identity in Eq. (2.39), one can deduce the result in
Eq. (5.20).
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Quantization using path integral

A quantization of a theory can be done either by considering the quark and gluon fields
as operators with canonical commutation relations or by introducing Feynman integrals
in functional spaces. The second procedure is very convenient for gauge theories, and
especially for the non-perturbative approaches. However, although this second method
preserves Lorentz invariance, it is not clear that the S-matrix calculated in this way is
unitary. On the contrary, Lorentz invariance is obscure from the canonical commutation
relations, while unitarity is obvious.

6.1 Path integral technique for QCD

The expression of the path integral can be obtained following the derivation discussed in
a previous chapter. However, the quantization of the gauge fields is more peculiar as the
source term A}, JJ! is not gauge invariant and hence the generating functional itself. A gauge
invariant functional can be obtained (detailed derivations are given in many textbooks).
This can be achieved by first introducing an invariant measure (Faddeev—Popov ansatz).
One considers that the action is invariant under the gauge tranformation:

Ay — A7 (6.1)
where:
AA@ =U®) xA + 1 U='®a,U® | U ®) 6.2)
and:
A
U@®) = exp|:—l§9(x)i| . (6.3)

Then, one makes an expansion for small 6, which leads to:

a a abc 1 a
(Afl) = AH + f b ebAu,c - Eaue . (64)
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The proper invariant measure becomes:

DA — DA AglA] [ [ 8[G" A% (x) — B (x)] . (6.5)

a,x

G*" has been introduced as:
G“AZ = B*, (6.6)

as a generalization of the (Lorentz) gauge fixing condition 9, A* = 0; B“ is an arbitrary
space—time function, independent of the gauge field; A can be obtained from the volume
normalization condition:

1= AG[A]fDQ“na[G“Aff(x) - B(0)],

AglA]
= ) 6.7
det Mg ©.7)
where:!
3[G" (A%)" ()]
Mg(x, " = —— =, 6.8
[M(x, y)] G) 6.8)
By integrating over B¢(x) by the suitable choice of weight:
exp [—’— / d4x[B(x)]2] : 6.9)
20lG
where a is the gauge-fixing term, the generating functional reads:
zZl = /DA det Mg [ [ 8[G" A4(x) — B“(x)]
a,x
1 2
. 4 a a
X exp {l/d X [Ekin—E(GﬂAﬂ) +AMJ$‘:|} , (6.10)
where:
1
Lyin = _ZGMVGMU > (6.11)

is the gluon kinetic term; the last term in the exponent is the external source term. In a
covariant gauge, the matrix Mg reads:

3\ .

[Ma(x, My = [sab (37) - gfabca“A;}S“(x ~), (6.12)
%

which depends on the gauge field Aj, such that a simple perturbative expansion of the

previous generating functional is not allowed. In this case, one needs to exponentiate det M

! One should note that in the case of axial (n.A¢ = 0, n = a space-like constant vector) and in a temporal gauge (Ao = 0), det M
is a constant like in the case of an Abelian theory, where the canonical quantization can be easily done. This is not the case of
the covariant gauge as we shall see later on.
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and consider it as a part of the effective Lagrangian. This can be done by introducing the
Faddeev—Popov fictious ghost anti-commuting fields ¢ and ¢:

det Mg = / DyD@ exp [—i f d*xd'y @“(x)(Mc(x,y»abwb(x)] . (6.13)

Therefore, the complete QCD generating functional is:

21y, A, o] = / DADYDYDYDG exp {i f ¥ [ Locn + Lo } (6.14)
where:
Loource = A" + X0+ @x +¥n+ 0y, (6.15)

with x, y and 7, 7 are respectively source functions for the ghost and fermion fields. The
generating functional can now be written in the familiar form as in the case of scalar fields
in Eq. (4.85), as the Lagrangian can be decomposed into:

‘CQCD = ACfree + LI s (616)

where, as one can see in Eq. (5.15), that L. has three parts. Therefore, the generating
functional reads:

ZIV, A, o] = ex ifd4x£ LI B ZolJ X 7
b 7¢_ p I ié]g, ién, i87_7’ iSX’ iax 0 SX’ X? n’n?

(6.17)
where Z; is the generating function for free fields:
Zo = Z§INZ5"1x. X125, 7l (6.18)
with:
ZiJ] = /DA exp {i / d*x (L. + AJ)} :
Z3ln, 7l = /Dwt/'f exp {i / d*x (Lie + 9 + fn/f)} ,
Zy"lx. X1 = waD@ exp {i f d*x (Lhee + X0 + @x)} . (6.19)
6.2 Feynman rules from the path integral
6.2.1 Free-field propagators
The propagator for a free field ¢ is defined as:
., 8InZz
D(x. y) = (0T ¢p(x)p(0)[0) = (=i ———— (6.20)
BIDIM|,_,
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Following closely the derivation of the scalar propagator in the case of scalar A¢* theory
discussed in previous chapter, and by using the generalized Gaussian integral, one can
rewrite:

Z§[J] = exp {i / d*xd*y T (x)Dih (x —y)J”“(y)} :

Z3n, 7] = exp |i / d*xd*y ﬁ(X)S(x—y)n(y)} ,

ZEx, x1 = exp{i / d*xd*y x(x)D*(x —y)x(y)} : (6.21)

where DZ’\’,, S, D¢ are respectively the gluon, fermion and Faddeev—Popov ghost propa-

gators, which obey respectively the conditions:
/ d*y Kjii(x =)D (y = 2) = gud"8*(x — 2)
/ d'y K*“(x = y)D(y —2) = §6%(x — 2) ,

/d4y Qx — Sy —2) =8 -2, (6.22)

2
K =3§%| g, K + - L 3,9, |
e EM oG
2
Kab=8ub i
ax,)

Q=—iy"d,+m. (6.23)

where:

Solving these equations give the Feynman rules (visualized in Appendix E) in the momentum
space after Fourier transform:

4 —ikx
D0y = (i [ LR T (o e
v Q) k2 +ie’ \°" )
d4k e—ikx
Dab — (—; (Sab ,
) = (=) Q) K2 + i€’
d4k g—ikx
S(x) = (i _ . 6.24
) (l)/(Zn)“k—m—i—ie’ (6.24)

6.2.2 Vertices

Perturbative series can be generated by expanding the exponential in Eq. (6.17):

Z[J,...]={1+i/d4xﬁ’<, ) ,...)+---}ZO[J,...]. (6.25)
18],‘}
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Let, for instance, the three-gluon vertex at order g:

a\ma . 83 3 3
F3LIZMSM3(.X], X2, X3) = (—l)zm / d4x £1g (m) Zg[.]] (626)

J=0

From the three-gluon terms of the Lagrangian £,,, one can deduce:

5
/1= / S (iajau) Sl
J=0

Y I A Y L 03 _sepy (627)
2 Risgav  "Visgan ) jsgbujgjev O ‘

After some algebra, one obtains:

. g abc aa aa
ZyglJl = =i f e | dtxd*yid* yrd* y3[0, D5 (x — y1) — 3, D55 (x — y1)]
X DY (x — yp) DS (x — y3)J M (y) I (1) SR (v3) Z§[T] . (6.28)

which gives:

b 4
T (1, x0, x3) = gf | d*x[0, Dy (x — x1) — 8, D! (x — x1)]

X DZ‘;W(x — xz)D;“;"(x — x3) + permutations .  (6.29)

Taking the Fourier transform, one then deduces:

ajaxas d4k1 d4k2 . > 3
U5 o (K15 X2, X3) = WW exp leix,- HD/M,-
i=l i=l

x gf 1 (ky — ko) g™ + (ky — ka)™ 8™ o+ (ks — k1) gM ]

(6.30)
with:
ki+ky+k3s=0 (6.31)
and:
1 kk,
D, (k) = 2 |:gw — (1 —ag) 2 } . (6.32)

Equation (6.30) gives the Feynman rule for the three-gluon vertex to order g, which is given
in Appendix E. One can extend the previous analysis to derive the different Feynman rules
listed in Appendix E.
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6.3 Quantization of QED

QED is a particular aspect of the more general non-Abelian case discussed previously.
Under the U (1) gauge transformation, one has instead of Eq. (6.4):

AS () = Au(x) — éi)u@(x) : (6.33)

and the response matrix Mg in Eq. (6.8) will be independent of A, for any choice of the
gauge, and then the Faddeev—Popov factor det M plays no physical role and can be dropped
in the generating functional in Eq. (6.10).

6.4 Qualitative feature of quantization

For a qualitative physical picture of the quantization procedure, one can notice that the
gluon fields A/ have four Lorentz degrees of freedom, while a massless spin-1 gluon has
only two physical polarizations. In QED, the gauge-fixing term is enough for making a
consistent quantization, as the U(1) gauge symmetry guarantees that the extra degrees of
freedom do not generate physical amplitudes, and the physical results is independent of
the gauge parameter «g. In QCD, life is more complicated. For instance, if one tries to
evaluate the cross-section of the scattering process gg — gg¢ — §g, one notices that, due
to the propagation of the longitudinal and scalar gluon polarizations along the internal gluon
lines, the contribution of the higher-order diagrams shown in Fig. 6.1, violates unitarity.
In QED, the analogous process ete™ — yy — eTe™ does not have these drawbacks as
unphysical contributions from the longitudinal and scalar components of the photons vanish

q q q q

— > T8 —>—— —_— ——

Y A + \i A

—e— T ———— ——— S
q q q q

q q q q

+ +
q q q q

Fig. 6.1. Gluon contributions to the §g — gq process.
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q q q
s ?

// /{ \\

g 7 / \

< |

\\ \\ /

\\ \L//
\\ _ _ —_ _
g P g ¢ g

Fig. 6.2. Ghost contributions to the gg — gg process.

due to gauge invariance and to the conservation of the electromgnetic current. In order to
recover such a property in QCD, one can introduce unphysical scalar fields with negative
norms (ghosts) which eliminate the contributions of such unwanted terms from the diagrams
depicted in Fig. 6.2.

More generally, the introduction of the Faddeev—Popov ghosts, in addition to the gauge-
fixing term, guarantees a consistent quantization of the theory.
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QCD and its global invariance

7.1 U(1) global invariance

Lqcp(x) is invariant under the U(1)p global transformation :
Yi(x) — exp(—idDy(x) ,

to which corresponds the conserved baryonic current:
T = iy i),
and the baryonic charge generator of the U(1)p group:

B :/ PxJGE, ).

(7.1)

(7.2)

(7.3)

For massless quarks, Locp(x) is also invariant under the axial U (1), transformation:

Y — (=i01ys)y; ,

acting on quark-flavour components. The corresponding current:

Ji(x) = ZI&W”VSIM(X) ,

has an anomalous divergence:

2

L g
B;LJS’ x) =

” Y PO
47_[2 861’-‘)/0‘7Ga Ga ’

where the rate of the change of the associated axial charge:
0s = / dx 00JY(X, 1) .
is zero in the absence of instanton-type solutions [105].
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(7.4)

(7.5)

(7.6)

(7.7)
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7.2 SU(n)L x SU(n)g global chiral symmetry

Aswehave already dicussed in Part 1, and we shall partly repeat here, Locp (x) also possesses
a SU(n)p x SU(n)g global chiral symmetry. In the massless quark limit (m; = 0), it is
invariant under the global chiral transformation:

Vi(x) = exp(=i0 TA)Yi(x) ,
Vi(x) = exp(=i0  Tays)yi(x) (7.8)
where TA(A = 1, ...,n? — 1) are the infinitesimal generators of the SU(n) group acting

on the quark-flavour components. The associated Noether currents are the vector and axial-
vector currents:

V) = Yy T i(x)
AL = Viyuys T (x) (7.9)

which are the ones of the algebra of currents of Gell-Mann [69,13]. The corresponding
charges, which are the generators of SU(n);, x SU(n)g are:

04 = /d3x (V' + Af) . (7.10)
The charges are conserved in the massless quark limit, and obeys the commutation relation:

[05. 01) = ifusy Q1 -
[Q5. Q] = ifupy Qi -
[07.0%] =0, (7.11)

where o, B, ¥ = 1, ...n.Inthe Nambu—Goldstone [17] realization of chiral symmetry, the
axial charge does not annihilate the vacuum, which is the basis of the successes of current
algebra and pion PCAC [13]. In this scheme, the chiral flavour group G = SU(n);, x
SU (n)g is broken spontaneously by the light quark (u, d, s) vacuum condensates down to
a subgroup H = SU(n), g, where the vacua are symmetrical:

(Futu) = (ava) = (Fss) - (7.12)

The Goldstone theorem states that this spontaneous breaking mechanism is accompanied by
n? — 1 massless Goldstone P (pions) bosons, which are associated with each unbroken gen-
erator of the coset space G/ H . For n = 3, these Goldstone bosons can be identified with the
eight lightest mesons of the Gell-Mann eightfoldway (z*, n~, n°, 5, K+, K=, K°, K9).
On the other hand, the vector charge is assumed to annihilate the vacuum and the corre-
sponding symmetry is achieved a la Wigner—Weyl [18]. In the vector case, the particles are
classified in irreducible representations of SU(n), 4 and form parity doublets.
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Introduction

As in QED, the evaluation of QCD Feynman diagrams leads (in many cases) to divergent
results. Finite physical answers need a regularization and a renormalization of the QCD
parameters (vertices, coupling, masses...). However, the renormalization programme of
QED [106] cannot be extended to QCD in a naive way, as contrary to leptons which we
can (freely) observe, quarks are off-shell, such that the standard Pauli—Villars regularization
[107] and on-shell renormalization successful in QED cannot be used here. There exists
different versions of off-shell renormalization schemes, which can be applied to non-Abelian
gauge theories. Among them, we shall review the most elegant and powerful one, which is
the: Dimensional Regularization and Renormalization, the so-called M S scheme originally
proposed by ’t Hooft and Veltman, Bollini and Giambiagi and by Ashmore [108,109,123].!

The most important feature of the method is the concept of analytic continuation of the
dimension of space—time to complex n (n = 4 for low-energy space—time). This regulariza-
tion procedure has the great advantage of preserving the local invariance of the underlying
Lagrangian, and allows one to treat, in a gauge-invariant way, divergent Feynman integrals
to all orders of perturbation theory.

In the e-regularization procedure, the UV and IR divergencies are transformed into poles
in €, where the integrals are performed in 4 — € space—time dimensions). In general the UV
poles are of the form:

ZP)

- - (7.1)
and will appear as counterterms in the initial Lagrangian. However, these counterterms
are not arbitrary as they should obey constraints imposed by the Slavnov—Taylor identities
[103,104]. In the case of renormalizable theory like QCD, the Z(” must be constants or
polynomial in the fermion (boson) mass after the introduction of the renormalized para-
meters.

Finally, the most relevant term entering in the renormalization group programme is the
zM /€, while the other Z () for p > 2 are related to each other via the differential equation
of the renormalization group equation.

! For reviews see e.g. [110-112] .
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In the following, we shall discuss successively the dimensional regularization and the
renormalization procedure. We shall also compare this M S scheme with some other schemes
proposed in the literature and discuss the link between these different schemes.
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Dimensional regularization

We shall discuss here the procedure how these divergences can be removed in QCD. Our
discussion will be based on the previous QSSR1 book and review in [2,3].

8.1 On some other types of regularization
8.1.1 Pauli-Villars regularization
In QED, one regulates an UV divergent integral using a Pauli—Villars [107] regularization

(PVR), by replacing the propagator as:

1 1 1
% —_—
@?—m? @2 —m? g — A%,

) 8.1)

where Ayy is a UV cut-off. PVR respects translational and Lorentz invariance, and, in QED,
the gauge invariance. However, the renormalization programme of QED [106] cannot be
extended trivially to QCD. PVR, which is successful in QED, is not often convenient.
For instance, using PVR, the proof of unitarity for massless Yang—Mills theory is quite
cumbersome. For massive Yang—Mills such as the Electroweak Standard Model [61], PVR
does not maintain gauge invariance [113].

8.1.2 Analytic regularization

Like the case of PVR, the analytic regularization proposed in the literature [114], does not
also maintain gauge invariance. It consists by replacing the propagator as:

1 1
—
g% —m? (g2 —m2y

(8.2)

where « is a complex number with Re & > 1, which ensures the convergence of the integral.
The original propagator is recovered for « — 1.
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8.1.3 Lattice regularization

Another type of regularization is the lattice regularization [115] dedicated to lattice calcula-
tions of hadron parameters but not suitable for analytic gauge theories as it breaks translation
and Lorentz invariance. It is based on the fact that the space—time is discretized and made
of small cells of size a (lattice spacing). Due to the lattice structure of space—time, the
short-distance contribution to the space—time is eliminated and then leads to a convergent
integral.

8.2 Dimensional regularization

In QCD continuum theory or/and in the Standard Model, one uses instead the method
of dimensional regularization and renormalization (so-called MS scheme [108-112,123])
which is proven to preserve gauge invariance to all orders of perturbation theory. Its most
important feature is the concept of analytical continuation of the dimension of space—
time to complex n(n = 4 for low-energy space—time). In practice, this means that Dirac
algebra, Fierz rearrangments and the momentum integration are done in n dimensions, and
then analytically continued to four dimensions.! As mentioned in the introduction, in this
approach, the IR and UV divergences are transformed into poles in € = n — 4, as we shall
see in the following explicit example of the two-point correlator of the pseudoscalar current.
However, there are different variants of dimensional regularization, where the difference
is due to the definitions of the Dirac matrices used in n dimensions, and in particular, on
the one of ys which is more delicate when one works in n > 4 space—time dimensions.
Among possible others, there are the so-called naive dimensional regularization (NDR) and
't Hooft-Veltman (HV) [108,117] schemes, which we shall briefly sketch below.

8.2.1 Naive dimensional regularization

In this case, only the n-dimension metric tensor satisfying the properties is introduced:

8w = 8vu » g//.pg\'? = 8uv » g;: =n, (8.3)

while the y matrices obey the same rules as in four dimensions (see Appendix D.5):

Tr1=4, {(yun}=28w, {VYur}=0. (8.4)

where ys anti-commutes with the other Dirac matrices. NDR is very convenient and widely
used in the literature because of its easy implementation in a software program. The defini-
tion of y5 in four dimensions given in Egs. (D.10) and (D.11) has been proven to maintain
chiral symmetry to all orders of QCD perturbation series [118]. However, care must be
taken when odd parity fermion loops appear in the calculation due to the presence of the
parity-violating term 77 (y5Y,.¥» ¥, Vo) [117,119], as in fact, one does not know how to deal
with such a term in n dimensions.

! Useful packages for doing these n-dimension calculations are given in the Appendices D and F.
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8.2.2 Dimensional reduction for supersymmetry

Dimensional reduction [120] is a variant of dimensional regularization, and is convenient
for supersymmetric theories,? because the conventional dimensional regularization does not
preserve supersymmetry. Indeed, in # dimensions, the numbers of bosonic and fermionic
degrees of freedom increases, the Fierz rearrangements need more covariants, while one
also has to worry about the supersymmetric anomalies and Ward identities. This is obvious
in the superfield language since the integral:

/ d"x(D*Dy)(D*Dy)L(x, 6, 0), (8.5)

is @ independent only forn = 4 [122]. Here, 6 is a four-component anti-commuting variable,
D“ is a covariant derivative and x is the space-time variable. The dimensional reduction
technique is based on analytically continuing the number of co-ordinates and momenta, but
not the number of components of the fields. In other words, the Dirac algebra should be
done in four dimensions but the momentum integration has to be done inn = 4 — € in order
to regulate UV divergences. In particular, the average of the momentum integral should be
done in n dimensions:

ﬂ 2 2 _l f d'k 5,00 o
/(zn)nkﬂkvf(k »m )_ ng”’v (27.[)"]( f(k s m ) (86)

More specifically, the tensor metric g,,, is defined in the same way as in Eq. (8.3), except
that:

gﬁ:4, gﬁgf:guvv (8.7)

where the last equality is needed for preserving gauge invariance for n < 4.

8.2.3 ’t Hooft-Veltman regularization

The HV rule can be satisfied by introducing a new metric g in addition to the previous g
n-dimensional and g four-dimensional metrics. In 4—€ space-time, one has the same prop-
erties as in Eq. (8.3), except that:

gl =—c. (8.8)

The difference with dimensional reduction is that, instead of the rule in Eq. (8.7), one
has:

gz,gf = g,uu s (89)

which does not lead to inconsistencies, while, one also has:

gﬁgf = guv , §up§'3 =0. (8.10)

2 For a review on supersymmetry, see e.g. [121].
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The n-dimensional Dirac matrices are now split into 4- and —e-dimensional parts:

Yu="Vut+ P, (8.11)
where y, 7 and § satisfy the usual commutation rule analogue to the one in Eq. (8.4), but,
in addition, one has the novel properties:

~ AL,

{J/);L7 771)}:0’ Vuf’lt:os gﬁ?[lzo, guyMZO' (812)

The ys matrix can be be introduced [117] which anti-commutes with  but commutes
with P:

yi=1, {ys.#)=0. [y Pl=0. (8.13)

As ys does not have simple commutation rules, it is important to check that chiral Ward
identities are respected at each step of the calculation, where anomalous genuine terms have
to be cancelled by the counterterms of the Lagrangian [119,117]. For instance, in practice,
one has:

1
S0+ y)yu(l = ys) = Pu(l = ys). (8.14)

Equivalently, one can represent the 5 matrix as:

i
w=E#WW%m%, (8.15)

where for n > 4:
elrPe = el for pvpo =0,...,3, el =0 for pvpo >3. (8.16)

It is clear that contrary to the NDR scheme, the HV scheme is more cumbersome,
in particular, when one tries to implement it in the computer. Neverthless, it is the only
dimensional regularization scheme which has been demonstrated to be consistent [119,117].

8.2.4 Momentum integrals in n dimensions
Let us consider the typical one-loop integral:
dk ( kZ)r
Qm)r [k —R"
It is convenient to rotate (Wick’s rotation) the path of integration in the complex &y plane
[k = (ko, k)] by + /2 without crossing the two poles:

ko = £/ k]2 +R2 . (8.18)

Therefore, the k¢ integration has the limits —i oo to 4+i00. Going to the Euclidian space,
one can define:

I(m,r) =

(8.17)

l
[
=
o
bl
I
—_
Pl
<
4l
N

ko = iky, k= (8.19)



80 Il MS scheme for QCD and QED

such that the & integral goes from —oo to 4-00. It is easy to find:

d"k (122)1’

I(m,r):(—1)7 i mm

(8.20)

Going over polar co-ordinates, one has:

- o0 T T 2
/ d'k = / 0" d, / d6,_1(sin@,_y)" "2 --- / d6,(sin 6,) / de,, (8.21)
0 0 0 0

where p is the length of the vector k. In this way, the integrand of /(m, r) only depends on
0, and one can perform the angular integration using the formula:

o T (m+ 1))
/0 40 Sin0Y" = VA T )

where I' is the gamma function defined and having the properties in Appendix F. Then, one
obtains:

(8.22)

.2(].[)/1/2 ood - (pZ)r

Im,r)=(—1)""i 0P (8.23)
I'(n/2) Jo [p? — R?]
which leads to the basic formula:
dk (kZ)r
I(m,r) = _—
=] Gy e - R
] r DI'(m —r —n/2
— ! (_l)r—M(RZ)r—m-‘rn/Z (r +n/ ) (m r n/ ) . (824)
(1672)n/4 TC'(n/2)'(m)
Using the symmetry of the integration, it is easy to show that:
d"k kyk, 1 d"k k2 (8.25)
Qo K —Ry"  a® ) Qoy 2 —RY" '
In the same way:
kukokpks — m(kz)z(gwgm + 8up&uo + Guo&up) - (8.26)
In the case where r is odd:
d"k ky -k
BB o—. (8.27)

Q2my" [k* — R2T™
Finally, it is important to notice that tadpole type integral vanishes identically in dimen-
sional regularization:
d"k
— (k> '=0 for B=0,1,2,... (8.28)
Q@)

We shall also see that the divergent part of /(m, r) can be tranformed into € = 4 — n poles
thanks to the properties of the I" function.
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8.2.5 Example of the pseudoscalar two-point correlator

Let us consider the pseudoscalar correlator:
Ws(g?) =i / d*x (01T Jp(x) (Jp(O))' [0}, (8.29)

where:

Jp = (mi +mp)¥iiys)y; , (8.30)

is the light quark pseudoscalar current; m; is the mass of the quark ;. In order to simplify
the discussion, we shall work to lowest order of perturbative QCD and work with massless
quarks in the fermion loop given in the following diagram (Fig. 8.1):*

p-q

e > (8.31)

Using Feynman rules given in Appendix E, it reads:

d*p i i
[Ws(g?) = (m; »Z—IN/———Tr ys)=———(iys)= ————— . (8.32
iWs(@®) = (mi +m (DN | o5 {(lyS)ﬁ+ie’(ly5)f7—q+ie’} (8.32)
where one can notice that for large k2, one has a divergent integral:
d*k

One can use either PVR, but it is more convenient to use dimensional regularization. In
so doing, one works inn = 4 — € space—time dimensions, such that the previous expression
becomes:

V< Ws(g?) = (m; +m;)*(—i)N / dip Tr{(iy )——1——(1')/ )———1——— (8.34)
s\ P Qn) Y tie e g ie| T
The arbitrary scale v has been introduced for dealing with dimensionless quantities in
4 — € dimensions.

One can parametrize the quark propagators a la Feynman (see Appendix E):

J__fl___sz___ :/‘____df____ (8.35)
ab  Jo [a—=bx+bP  Jo [(p—1?—RP’ '

3 The case of massive quarks will be discussed later on in Section 11.14.
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where:

a=(p—q)+ie,

b=p>+ie,
l=g¢gx,
R?> = —¢%x(1 — x) — i€’ . (8.36)

One uses the properties of the Dirac matrices in n dimensions given previously:
Tr pys(h —@)ys = —4p(p —q) , (8.37)
and does the shift:
p—p+Il. (8.38)
Therefore, one arrives at the momentum integration of the type:

a" ]5 ﬁk
Qmyr [p2 —R2*

(8.39)

which one can evaluate using the formula given in the previous section. It is easy to obtain:

e B, 2 , N ! e\ (R2—ie\

v

x (3 n %) ¢*x(1—x). (8.40)

where yg = 0.5772. .. is the Euler constant. The loop UV divergence appears as a pole at
€ = 0 of the I'-function:

. € 2
lim T (5) ~ =4 Indm —yp + 0(). (8.41)

which, as you may have noticed simplify the calculation, which is remarkable when one
does a higher order calculation. For large value of g2, one then obtains to leading order:

VU2 (%) = (m; +m;) 2 N A2 dr e —tn - (8.42)
s\) = 777 8n2 | e VE 2 '

As we have discussed in the introduction, the UV (and IR) divergences originated from
the I'-function, are transformed into poles in € = n — 4, and are, more generally, of the
form:

A
> — (8.43)

p=1

in the so-called [123] Minimal Subtraction (MS) scheme.
Later on, it has been remarked [124] that the combination in Eq. (8.41) appears always
in the stage of the calculation. Therefore, the authors in [124] find that it is natural to also
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subtract the constant terms In4w — yg together with the e-pole:

2 2 2
- —=—-+1Indr — yg (8.44)
€ & ¢

This is the modified version of the MS scheme, and called: M S scheme, which will be used
in the forthcoming discussions of this book. These divergences will appear as counterterms
in the initial Langragian constrained by the Slavnov—Taylor identities [104]. One should
notice that for renormalizable theories the ZP) are local, i.e. constants or polynomials
in the inverse of the square of some momentum. These features will be discussed in the
forthcoming section.
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The M S renormalization scheme

9.1 Renormalizability and power counting rules

The notion of a superficial degree of divergences, based on the power counting rule of a
given Feynman diagram, is often used for studying the renormalizability of the interactions
in the Lagrangian. For instance, if we consider the previous two-point correlator Ws(g?),
we can see, for n-dimensions space—time, that, to lowest order, it behaves for large p2 as:

Ws(g?) ~ lim p"~2, ©.1)
p—00
and its degree of divergence is:
d=n-2. 9.2)

More generally, for an arbitrary Green’s function G, the superficial degree of divergence
reads:

d:nl+28u—2n3—n,v, 9.3)
v

where:

n = space—time dimensions,

[ = number of loops (independent integrals),
&, = number of momentum factors at the vertex v, 9.4)
np = number of internal boson lines (we consider a theory with massless bosons), (9.5)

nr = number of internal fermion lines. 9.6)
For a given interaction Lagrangian term £, which one can write symbolically as:
Ly~ g@° (@)’ W), ©.7)

where ¢ and i are the bosonic and fermion fields, one can define the index of divergence
of the interaction Lagrangian as:

_n—Zb n—1 5 0.8
"<2)+<2>“ - 08

84
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where:

8 = number of space-time derivatives in L,
b = number of boson fields in £j,

f = number of fermion lines in Ly. 9.9)

Actually, using the fact that the action:

S = /Ll d"x (9.10)
is dimensionless, one can deduce from a dimensional analysis that:
. n—2 n—1
nZdlm[g]+(T)b+< 5 >f+8, 9.11)
such that:
r = —dim[g] . 9.12)

One can define respectively by:

v = number of vertices corresponding to EII in the Green’s function G,
Np = number of external boson lines in G,

Npr = number of external fermion lines in G, (9.13)
which obey the relations:
2ng + Np =vb; 2np+ Np =vf,
I=ng+np—v+1l, > 8 =08. (9.14)
v

Eliminating for instance the internal fields through Eq. (9.14), one can rewrite Eq. (9.3)

as.
) 1
d:rv—(nT)NB—<n2 )NF—i—n, (9.15)

where r is the index divergence given above. This result can be generalized to any numbers
of interaction Lagrangians by the substitution:

rv — Zr,-v,- (9.16)

From these definitions, one can classify the different theories as:

* If one of the r; is positive, the divergences cannot be removed by any finite numbers of renormal-
ization constants and interaction parameters. Then the theory is not renormalizable.

e Ifallr; < 0,thenthereis apossibility to remove the divergences by finite numbers of renormalization
constants and interaction parameters. The theory is a candidate for a renormalizable theory.

® If r; < O for all i, then the theory is super renormalizable since the number of types of divergent
diagrams, and the number of diagrams are finite.
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¢ If r; = 0, the theory is renormalizable in a narrow sense, which is the case of QCD. As QCD has
a dimensionless coupling, then comes the conclusion from Eq. (9.12).

9.2 The QCD Lagrangian counterterms

As we have seen before, one can remove the UV divergences of a renormalizable
theory by finite numbers of counterterms to any orders of perturbation theory. In QCD,
the counterterms of the Langrangian are:

1
A Locp = Asym 1 (0,A, — 0,A,) (0"A” — 9" A”)

1 - -
+A1YM 5 (auAv - avAu)gAv X AM
I, - S = ol
+A52g(AMxAU)(A“xA)
—Dori Y UiV U ALY miT Yy
j J

_ A u -
—AngWEV vA,
1 - ~ ~ o
+A6E(aﬂ A + A3, 0 +A1gd, 9 A  x ¥, (9.17)

which are all we need for removing the UV divergences of the theory. We have used the
notation:

Aux Ay = fape AL A 9.18)

It is possible to rescale the fields in such a way that Locp has the form in Eq. (5.12)
but in terms of ‘bare’ quantities. This manipulation is correlated to the introduction of
renormalization constants and then to the choices of renormalization schemes.

9.3 Dimensional renormalization

In QED, it is natural to use the on-shell renormalization scheme:
Ws(qHr = Ws(g®) — Ws(g® = 0), 9.19)

for defining a renormalized Green’s function, as the photon and electron are observed, and
then are on their mass-shells (for a electron self-energy diagram, on can, for example, do
the subtraction at p? = m?), which is not the case of QCD, as quarks are off-shell due
to confinement. Therefore, there is a freedom to choose the renormalizaton schemes. We
shall discuss these different renormalization schemes and their relations in the following
sections. t"Hooft [123] has introduced the M S (renormalization) scheme, which is specific
for dimensional regularization. In this scheme, one only has to eliminate the 1/¢ poles
[or in the M S scheme, the 1/¢ poles defined in Eq. (8.44)] of the Green’s functions. The
renormalization constants are mass-independent and will appear as counterterms in the
initial Lagrangian constrained by the Slavnov-Taylor identities [104].
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Table 9.1. Dimensions of the couplings and
fields in n dimensions

Name Notation  Dimension
gauge coupling g 1(d—n)
quark mass m; 1
covariant gauge parameter g 0
fermion field ¥i(x) % n—1
gluon field A4 (x) 1(n—-2)
Faddeev—Popov field @ (x) 1(n-2)

9.4 Renormalization constants

Taking into account the dimension obtained in the 4 — € world (see Table 9.1) via the mass
scale v, one has relations between renormalized and bare parameters:

gR — €2 gB Z;l/Z
g2/4jT = aS ’
R B -1
mj =m; Z,

R _ By—1
ag =agls ,

()" = v ()" Zar "
(A%) . = v/2(A%) , Zaym) ',
(& = v/ (") p(Z3) "2, (9.20)

where Z; = 1 — A;. One can introduce the renormalization constant for the quark-gluon-
quark vertex as:

(gV AV = (gpV AV Zp | (9.21)

which corresponds to the Feynman diagrams (Fig. 9.1).

Analogously, one can introduce the three-gluon renormalization constant (Z;y) corre-
sponding to the vertex (Fig. 9.2).
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1 - “““ !
+ — - lTb'l'( ! + U
2 N /%- ’
i=1 !

and, (Z,) ghost self-energy and (Z3) ghost-gluon-ghost vertex one (Fig. 9.3).

and (Zs) four-gluon vertices one. Then, one can deduce:

_32
M = Ziyu Z3y1{/1 &R »

28 =77 Ziyi gr
85 = Z1r Ziynt Zap 8% »
(€)= 25 23}y g3 9.22)
which are related to each other by BRS [103] invariance:
g = =2f), (9.23)
leading to the Slavnov—Taylor [104] identities:
Zsym/Ziym = 23/ 21 = Zor | ZiF
Zs = Ziym/Zsym - (9.24)
This is the analogue of the QED relation:
Zir=2,. 9.25)
The mass renormalization constant is:
mg = (Zy = Z4 Z5}) mg, (9.26)
and the gauge one is:
ad=alz;' Zsym . (9.27)

Zsyy comes from the evaluation of the gluon propagator (Fig. 9.4).
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Z,r and Z,, come from the quark self-energy diagram, which can be parametrized as:

X =mpX; +(p—mp)Xsy, (9.28)
and leads to:
Zor = ! Zn=1-—3%4] (9.29)
2F = 1— 22|p016 ’ m — 1ipole » .

More generally, for a Green’s function with Ng, Npp and N external gluons, ghost and
fermion fields, one can associate the renormalization constants:

Zr = (Z33) " (Z) ()T (9.30)

Expressions of these renormalization constants are known from standard diagram tech-
niques (see Table 11.1).

9.5 Check of the renormalizability of QCD

We are now in a position to check the renormalizability of QCD. We want to see if the
counterterms presented in Eq. (9.17) are sufficient for removing all divergences in Feynman
integrals to all orders.

If one looks at the superficial degree of divergences for the Feynman diagrams given in
Eq. (9.15), and using the fact in Eq. (9.12), we can see for QCD in four dimensions:

3
d=4—NB—§Np, (9.31)
for Np and N external lines of bosons and fermions. Here, N includes gluons N and
Faddeev—Popov Npp ghosts. Remarking that the coupling in the ghost-gluon-ghost vertex
behaves like k,, (see Appendix E), the number of boson fields become:

1
Np ZNg+NFP~|-§NFP. (9.32)

It is easy to see that the condition d > 0 for a superficially divergent integral is obtained
for seven different cases of the set (Ny, Ng, Npp) discarding the case (0, 0, 0) (vacuum)
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and the one (0, 1, 0) because of Lorentz invariance. These seven diagrams are displayed in
Fig. (9.5):

and have the same structure as the counterterms. It is an easy exercise to show that these
divergences can all be absorbed by the counterterms. One should also notice that owing
to gauge and Lorentz invariances, the apparent degree of divergence 2, 1, 1, 1 of the self-
energies of gluons, ghost, fermions, and of the three-gluon vertex become logarithmic.
These features have explicitly shown the renormalizability of QCD, which is maintained to
all orders of perturbative QCD [113,108,125,104,103].
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Renormalization of operators using the
background field method

In the following chapters, in order to probe the hadron properties, we will have always
to deal with local hadronic currents or/and operators built from quark or/and gluon fields,
but not only with Green’s functions. Therefore, it is of prime importance to study the
renormalization of such operators. Renormalization of composite operators has been studied
[126,127] using background field technology and some further examples have been studied
explicitly in perturbation theory [128].

10.1 Outline of the background field approach

The basic idea of the method is to write the gauge field appearing in the classical action
as A 4+ Q, where A is the background field and Q the quantum field which is the variable
of integration in the functional integral.! The background field gauge is chosen, which
maintains the gauge invariance in terms of the A field, but breaks the one of the Q field.
This background field gauge invariance is further assured by coupling external sources only
to the Q field, which allows one to perform quantum calculations without losing the gauge
invariance of the background field. More explicitly, let us consider the generating functional
in Yang-Mills theory:?

Z[J] = / DQD¢Dp exp (i / d*x[Lym + Lrp + Lsource + Lgauge]> . (10.1)

where Lyy, Lpp are the QCD and Faddeev—Popov Lagrangians defined in Eq. (5.14)
without the fermion fields, and Loy is defined in Eq. (6.15). The gauge fixing term is:

1
‘cgauge = _E(Ga)z s (10.2)

where (G“) is, for example, G = 9, QZ. Doing the shift:

0 (x) = Qh(x)+ AL (x), (10.3)

' We shall follow closely the discussion in [127].
2 Fermions do not play a role in this approach as they can be treated in the usual way.

91
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where A/ (x) is the background field, the functional integral becomes:

717, Al = f DODYDE exp (i f d*x[Lym + Lsource +f3gauge]) (104
where:
- 1
Ly = —7 (0"(A+ Q); = 0" (A + Q)f) (9" A — 0" AY) .
Lip = =000 (0"ap — &fanc(A + Q) ¢,

Esource = Q/AJM +Xxe+ox, (105)
where the term A, J* in the source has been omitted as A, is an external field to which one
does not need to attach a source. The gauge fixing term (background gauge) can be chosen
as:

~ 1 a
‘Cgauge = _E(G )2 , (10.6)
where:
G =09"Q% +gf A, Q" . (10.7)

Like in the conventional approach, one can define the connected Green functions:

W[J]=—-ilnZ[J], (10.8)
and the effective action:
F[o1=wiJ1 - fd4x VA (10.9)
where:
QZ = (SW/(SJIf . (10.10)
Using the change of variable:
Q4 — Q4 — 0" 0, (10.11)

it is easy to show that Z[J] and hence W[J] are invariant under the infinitesimal transfor-
mations:

AL = gfupcByAS, — 08, .
8Jy = &favcOpJ; - (10.12)

Then, it follows that f’[Q, A] is invariant under the infinitesimal transformations:
8Ay = 8fanctbAj, — 9,64 (10.13)
and:

304 = &functh 0, , (10.14)
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in the background field gauge. In particular, I'[0, A] should be an explicitly gauge-invariant
functional of A, since Eq. (10.13) is an ordinary gauge transformation of the background
field. The quantity I'[0, A] is the gauge-invariant effective action which one computes in
the background field method. One can show that:

F[0, A1=T[0llg=x , (10.15)

where the latter is the usual action calculated in an unconventional gauge depending on A.
Therefore, I'[0, A] can be used to generate the S-matrix of a gauge theory in the same way
as the usual effective action is used. Feynman rules in the background gauge formalism
can be generated from ﬁgauge in Eq. (10.6). Since the effective action only involves 1PI
diagrams, vertices with only one outgoing quantum line will never contribute. Furthermore,
the propagator of the A field is not defined, which does not matter as it is a classical field
which never appears in the loop. Compared with ordinary Feynman rules the only difference
is the appearance of the A field in external legs, which one denotes by a blob. These Feynman
rules are given in Appendix E.

10.2 On the UV divergences and S-function calculation

The UV divergences of f‘[(~), A] can be absorbed by the renormalizations Z4, Z,, Z,, of
the A field, the coupling constant and the gauge parameter, as it is a sum of a 1PI diagrams
with A-field external legs and Q fields inside the loops. The renormalization of the gauge
parameter can be avoided by working in the Landau gauge o = 0. Because explicit gauge
invariance is retained in the background field method, the renormalization constants Z 4 and
Z are related, and the infinities must take the gauge-invariant form of a divergent constant
times the product of field strength GI“wGﬁf ”. Let’s now consider the bare field strength:
GuP = Z)*[8,A% — 0,A% + gfunc Z, Z)* AL A (10.16)

7Y

where we have used the fact that A, is a classical field for renormalizing AZAﬁ. It will only

take the form constant times G, if:

Z, 7' =1, (10.17)

which is arelation analogous to the one in QED. Equation (10.17) simplifies the computation
of the B-function as illustrated in the explicit calculation of [127]. In the following, we give
another application of the method to the renormalization of some composite operators.

10.3 Renormalization of composite operators
The first thing to do is to classify these operators into three classes:
Class I: gauge-invariant and do not vanish after using the equation of motion.

Class II: gauge-invariant but vanish after using the equation of motion.
Class III: gauge-dependent operators.
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Therefore any composite renormalized operators can be written as:
O=2Z,00 +Z110}, + Z11:0F,, . (10.18)

The great advantage of the background field techniques is that for graphs with external
quark and background fields, one only needs gauge-invariant counterterms, i.e:

Zi1 =0, (10.19)

which is a consequence of the background field gauge invariance under quantization and
renormalization. We shall now study some useful examples.

10.3.1 The vector and axial-vector currents

A classics example of composite operator is the local electromagnetic or neutral vector
current:

Vi) =gy Y, (10.20)
which is conserved to all orders of perturbation theory:
9, V*(x)=0, (10.21)
and does not require any renormalization. The axial-vector current:
AL = Py ys(x), (10.22)
is partially conserved for SU(n);, x SU(n)g:
AL (x) = (mi +m )i (iys) ¥;(x) . (10.23)

It can be seen that for the divergence of the axial current, the mass renormalization
compensates that of the operator ¥ ys, such that at the end it does not get renormalized.
We shall see, in the following, that for the U (1), current, it needs to be renormalized.

10.3.2 Renormalization of G,,G""

Let us illustrate the approach by studying the renormalization of the G, G'" gluon operator
in the presence of massive quarks. For that, we have to take all bare (B) operators of

dimension-four:

—LGG,
4

0F == "FiD+impy; .
J

oy

0 :izmﬂﬁj%, (10.24)
j
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where D is the covariant derivative. The renormalized OF operator is, in general, a combi-
nation of these three bare operators:

ot =2,08 +2,0F + 7,07 . (10.25)

The renormalization constants Z;; are mass-independent in the M S scheme, where one
can notice that Z;| and Z, can already be obtained in the massless limit. In order to evaluate
the Z;;, one inserts the zero momentum O operator into the gluon and quark propagators:

(42 01 A7) = 2,20 (42 01 A3)+ Zufal 02 43).
(U O\ ¥) =Ziu(y Oy )+ Zap Zio(Y O2 V) + Zap Zi3(y O3 ) . (10.26)

In practice, the insertions of Of and O into the gluon propagator corresponds to the
Feynman rules:

01 - _i(sah(ng;w - pupv) 5
0, — ip, (10.27)

and one has to calculate respectively:

(10.28)

The insertions of O, 0% and 033 into the quark propagator correspond respectively to:

A
01— igZy",
Oy — i(p—mjp),

O3 — im;p, (10.29)

which can be represented by the following diagrams (Fig. 10.1):
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ALA AN -

Evaluations of the previous diagrams give in the Landau gauge [128]:
=20 z@=0 z¥=-4(2), (1031
: € \m

as Z;zF) = 1 in the Landau gauge (the index (2) means second order in «y). Therefore, one
can deduce:

o o -

(GG)y = (1 + (;) %) (GG)y + 4% (;) > mis@vs . (10.32)
J

i.e., GG is not multiplicatively renormalizable. However, one can deduce from this expres-

sion the finite non-renormalized combination:

1 _
O = 3B@IGG + Y ymldm ;i (10.33)
J

which is the trace of the energy-momentum tensor; 8(c;) and y,, (o) are the B function and
the mass-anomalous dimension defined in the previous section. The non-renormalization
of 6/} is also preserved by higher-order terms [128].

10.3.3 Renormalization of the axial anomaly

The renormalization of the axial anomaly has been also discussed in [129]. Here, the different
lowest dimension gauge-invariant pseudoscalar operators are:

0, =--GG ,

0= ¥,ysiD—mj)y;
j

N

03 =i0" > (F;vuys¥)) -
J
0= mi¥ysisj . (10.34)
J
Previously background field techniques have been used for studying the renormalizations

of these different operators, whereas the one of O, has not been studied because it does not
appear in the triangle anomaly equation:

Y (Jﬂs =3 wjyﬂyswj> =2 mP sy - (2Q = :‘—;nf(;é) . (10.35)
J J
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where n; is the number of quark flavours. After renormalizations, the divergence of the
flavour singlet current and the gluon topological charge density mix as follows:

IS =2zI%,
1
R B . 1B
=085 - —1-209"JE 10.36
Q Q 2I’lf ( ) us ( )
where the renormalization constant is in n-dimension space—time (n = 4 — ¢€), and reads:
Z=1+ (“5)2 S (10.37)
= — ) —=ns—. .
n) 43¢

10.3.4 Renormalizations of higher-dimension operators

The renormalization of dimension-five and -six operators have been studied in [130,131]
and reviewed in detail in [3]. In the chiral limit, one can built the RGI mixed quark-gluon
d =5 operator for N colours and n ; flavours:

_ = wha
(0s) = a;()’s/ﬁl) <gwouv?wGZU> , (10.38)

with:
(N?-5) 1
= =——(11IN =2 . 10.39
Vs AN Bi 6( ny) ( )

The triple gluon condensate does not mix under renormalization, and one can form the
renormalization group invariant (RGI) operator:

) , 2+7N
(0g) = a; Y5 /P)ef, . G*GPG°) : v = +6 ) (10.40)

The renormalization of the four-quark operators involves, in general, the mixing of different
operators, such that the four-quark condensate:

(02) = (VYY) , (10.41)

retained in the QSSR analysis within the vacuum saturation cannot be made RGI but pos-
sesses an intrinsic p dependence. This u dependence is only absent in the large N.-limit,
where only the diagonal renormalization constant Z, , (notation in [ 130]) contributes. There-
fore, only in this limit, one can form a RGI condensate:

) 143N
(02) =a ;B0 = = - (10.42)

We shall see later on, the importance of these operators in the context of QSSR.
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The renormalization group

Renormalization invariance states that physical observables must be independent of the
renormalization scheme chosen in their theoretical evaluation. The differential approach
to renormalization invariance was pioneered by Stueckelberg—Peterman [75] and by Gell-
Mann-Low [76], where it has been pointed out that the QED coupling constant is momentum
dependent due to the definition of the renormalized charge. Such a consideration led to
write a differential equation for the photon propagator. Later on, the study of the scaling
behaviour in field theory (experimental observation of the Bjorken scaling [36] in deep
inelastic scattering) gave rise to the Callan—-Symanzik equation (CSE) [132], which is a
very powerful technique for expressing the renormalization invariance constraints on the
short-distance behaviour of the Green functions. The CSE takes into account the fact that
scaling cannot be strictly implemented because of the necessity of a mass scale in the theory.
In the e-regularization, such a mass scale renders the coupling constants dimensionless (see
Table 9.1). A generalization of the uses of the CSE to arbitrary Green functions has been
proposed [123,171]. The central idea was to treat g, m;, o as coupling constants of various
interaction terms in the Lagrangian.

The meaning of the renormalization group can be seen from a simple example. Let us
consider a field ¢. One can renormalize it in two different renormalization schemes which
we call Ry and R,. Then, the renormalized field in terms of the bare one is:

Or, = Z(R\)¢p , Or, = Z(R)dp , (11.1)

where: Z(R;) is the renormalization constant for each scheme R;, and ¢ is the bare field.
As the bare field is by definition independent of the scheme, we can then, deduce:

Or, = Z(Ry, R) g, , (11.2)
with:
Z(R1, Ry) = Z(R)/Z(Ry) , (11.3)

which should be finite as do the renormalized fields, despite the fact that the renormalization
constants Z(R;) are divergent. Analogous reasoning can be applied for other parameters
of the Lagrangian. The operation which relates quantities of two different renormaliza-
tion schemes can be interpreted as a transformation from R; to R,. The set of all these

98
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transformations is called the renormalization group. One can use the invariance of physi-
cal quantities under this group in order to study the asymptotic behaviour of the Green’s
functions. This can be done as shown below using the renormalization group equation.

11.1 The renormalization group equation
The e-regularized Green function reads:
TR, pro... pys 85 @G, mi) = ZeTP, pi, ... phs g, ag, mi) .

The v-independence of 'z implies the zero of the total derivative:

dl'p
v— =0,
dv
which is equivalent to:
d dag 0 v dm; 0 d 0 1 dZ
vV— +v % ——jmj— vﬂ———v—r r*=o0
ov dv do = m;j dv om; dv dag Zr dv
By introducing the universal B function and anomalous dimensions y;:
do
asﬂ(as) =V d : ’
v gp,mp fixed
v dmf
Ym=——% ;
mzR dv gp,mp fixed
v dZ,
Vi=— —— ,
l Z; dv gp.mp fixed

one can transform Eq. (11.6) into the renormalization group equation (RGE):

3+ﬂ<>82()8+ﬂ8 rf=0
v— o )0y —— — (0t )m ; —— —_— = =0.
av T dayg - Y / om; ¢ dog r

For Ng, Nyp and N external gluon, ghost and fermion lines:

1
yr = _E[NGVSYM + Npyar + Nepial .

(11.4)

(11.5)

. (11.6)

(11.7)

(11.8)

(11.9)

The expressions of the previous universal parameters can be easily deduced from their

definitions as we shall show below.

11.2 The g function and the mass anomalous dimension

Noticing that, in the M S scheme, S(oy) is mass-independent, one can, therefore, write

[110,111]:
daf  d 1 dz,
Olsﬂ(()ls, €)=v ;‘j = VE (OlSBU_GZa_]) = —60{;e —OlSRZ—aU

(11.10)
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The fact that Z,, is v-independent allows us to also write:
0

{afﬁ(as,e)+eaf+(a§)2ﬁ(as,e)8—R}za —0. (11.11)
aS

Using the expression of the Z, in terms of the 1/€ poles into the previous differential
equation, one gets from the finite terms:

afBlay, €) = —eal + (finite term = o f (ay)) . (11.12)

Using this relation into the 1/¢ term, one can deduce:

374
Blay) = af —= (11.13)
daR

i.e., B(ay) is nothing else than the coefficient of the 1 /e-term of Z,,. The different coefficients
of B are given in Table 11.1, showing that 8 is negative for n < 11 where n is the number
of flavours. We shall see in the discussion of the running coupling that this negativity is
important for an asymptotically free theory. We apply the same reasoning for obtaining the
quark mass anomalous dimension defined as:

v dmR

(o) v dZ,
m\Og) = ———F —— e .
v mR dv

11.14
gB,mB fixed Zy dv ( )

where B and R refer to renormalized and bare quantities. Using the fact that in the
M S scheme, Z,, is only function of v and «;, one gets:

dZﬂ1
])_ ==
dv

B] B
v— + Blay, €)ay Zy (11.15)
v 0o

To lowest order of o, noting that the only dependence on Z,, is from «;, and using the
previous expression of the B function in Eq. (11.10), the previous differential equation can
be written as:

v

dZm_{

a a
dv —€ay— + asﬂ(as)a_} Zm . (1116)

0o o

Using the expression of Z,,, which is generically given by:
1
Zp=14) —Z0, 11.17

one can obtain that the mass anomalous dimension is given by the opposite of the 1 /¢ pole
coefficient in our sign convention (d = 4 — €). Analogous reasoning applies to the other
anomalous dimensions, i.e., they are the opposite of the 1/é-coefficient. Their expressions
are given in Table 11.1. The coefficients of the quark mass anomalous dimension and S
functions have been calculated in the M S scheme by: [133] (y»), [134] (B2), [135] (y3 and
B3) and [136] (4 and B).
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11.3 Gauge invariance of 5(c,) and y,, in the M S scheme

One can also prove the gauge invariance of 8 and y,,. This property leads to a great simplicity
in their evaluation, as one can perform the calculation in a given gauge like the Feynman
gauge g = 1. For completing the proof, we start from a dimensionless Green’s function
" associated to a gauge-invariant amplitude. Using the fact that the bare Green’s function
is independent of the renormalization scale v and of the gauge o, one has the RGE:

d ad ad ad
V— + B(t)y — — Ym(a)m— + fo— T¥ =0. (11.18)
av 00 om dog
The fact that it is gauge invariant gives:
0 0 0 R
— 4o p— +om— | I'" =0, (11.19)
oag oo om
with:
dog 1 d
a0 = 22 and ¢ =— 2 (11.20)
dag gB, € fixed mdog 8B, € fixed

We apply the commutators of the operators in Eqgs. (11.18) and (11.19) into I'%:
{...},C.)Ir%k=o0. (11.21)
Eliminating dT'® /9 with the help of Eq. (11.19), one obtains a third independent RGE:

(s 9 9 9
pi— p282 0 2 4 by - pa 2 |l PR, ag, m=0, (1122)
3053 aas aas am

where:

D P B = :B - IOIBG s J_/m =Vm — GﬁG . (1123)

0
=— +a
dog O{‘paas

However, I'® depends only on the two conditions in Egs. (11.18) and (11.19). Therefore
the third equation should be trivially satisfied:

I T
DB — B (o p) —0
dag
_ _  do
Dy, — Bag =0. (11.24)
dag
Therefore, the RGE becomes:
0 ~ 0 _ 0 R
v— + Blog)oy — — Pplagm—  TF =0, (11.25)
av 00 om

which shows that the physical consequences of the RGE are gauge invariant. Recalling that
in the M S scheme:

g5 =1"2gp (1 +y “—) =12gpZ? (11.26)
n En
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and using the previous definition of p, one gets:

14z, _ L [dal a1 1127,
P =77, dag oeed  Za l0ag e dag € '
Then:
da; 1 1
p(1+ﬂ)=__‘“-+o =), (11.28)
€ dog € €?

which is only satisfied if and only if p = 0 because p is independent of € (see its definition
and its relation with 8 and ). One should notice that it is also due to the fact that in the
MS scheme, Z, has no constant term other than 1 (the In4mr — y term being al-
ready absorbed into 1/€). Inserting p =0 into Eq. (11.24), one gets the desired
result:

B

=0, (11.29)
aa(;

showing that g is gauge independent. With similar proofs, one also obtains o = 0, leading
to the gauge independence of y,,.

11.4 Solutions of the RGE

One can now solve the RGE. If D is the dimension of I" in units of mass and if one scales
the momenta py, ..., py by a dimensionless factor A, the Euler theorem on homogeneous
function gives:

3
5t Z +vo— =D TRGp1, ... Apwsas, ag,mj,v) =0. (11.30)
mj

Introducing for convenience the dimensionless variables:
t=Ini xj=mj/v, (11.31)

one arrives at the desired form of the RGE:

i_i + :3(053)0[3 88

d
—Z(lwm(ab))x,a +ﬁc—+D Vr}

x TR pr,....e' pn; a5, oG, xj, 1) =0, (11.32)
with the solution:
TR pi,....e' py; oy, ag, xj, V)

t
= }"DFR(pl’ <« PN; 0753%1 Xj» = O)exp{_/ dt/)/l“[&s(f/,as)]} . (1133)
0
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Zid— = coefficient of —1/& and

Table 11.1. Anomalous dimension y; = 7
coefficients of the B function in the M S scheme for SU(N). x SU(n)p

Fermion field VoF = (af) N221\71 aTC +0 (?T;)Z

Gluon field varm=— () {5 (£ —ag) — 3 (3)n}
Ghost field =— (G;S) % B —oac)

Mass ym=n=21(%)+[1r2=1 (- 2)] (77‘)2

+ s = & [3747 — (160 — 219)  — 20,2]] ()’

+ [y4 1é3 [46(1)2(2)55 + 135680;- _ 8800;5

+(—% _ 34192§ 1 880¢, + 1849&0();)
+ (58 + 500 — La)nd + (<3 + Ho) '] (%)’
for N =3; 3 =1.2020569..., 4

=1.0823232...,¢5 = 1.0369277 ...

Coupling constant Blas) = - o = -7 e
=[Bi=—1 (11— 2n)](2) +[B = —L (51 — 2n)] (%)
+[Bs = g (2857 — X2n + 2n?)] ()’

[ = ok (255 4 3504) — (5680 + 82,

500 6472 1093 s _
+(Te + STo)n + 5 3]](7) for N =3
Gauge B = v‘{‘;‘—f = —agYsym
Three-gluon yivm = —[(£ = 3ag) & — 24n] (%)
Ghost-gluon-ghost h=agh (%)
. . 2_
Fermion-gluon-fermion ViF = % [(3 +ag) ¥ —ag N2N 1]

where &, @ and X; are respectively the running QCD coupling, gauge and mass, solutions
of the differential equations:

dd?:&sﬁ(as) o a0, ) = af(),
dOlG _
—~ =B6 (@) : ag(0,a) =ag(v), (11.34)
and:
d)_C,' — — - R
— = [+ yu @51 : %:(0,00) = xF(v) . (11.35)

dt
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Their explicit expressions will be given later on. One should notice that the Green function
has acquired an extra dimension induced by the exponential factor, which explains the name
anomalous dimension.

11.5 Weinberg’s theorem

In connection with the power counting theorem, one can derive a theorem on the asymptotic
behaviour of the Green’s function at large external momenta. This theorem is known as
Weinberg’s theorem [137].

It states that if non-exceptional momenta' are parametrized as:

pi, =ik  l=1,m, (11.36)
the renormalized Feynman amplitude of a Feynman diagram G behaves as:
TR(p1, ..., pp) ~A%InA? | (11.37)
when A — oo and k; kept fixed. Here 8 is undetermined, while:
o =max d(H) (11.38)

where d(H) is the superficial degree of divergence of the subdiagram H consisting of
continuous path of lines connected to the external lines with momenta p; , ..., p;,. For
a renormalizable theory like QCD, the constant d(H) can be obtained from Eq. (9.15) by
taking r = 0. In other word, the Weinberg theorem tells us that the asymptotic limit in the
deep Euclidean region A — oo is given by the naive power counting times a logarithmic
factor.

11.6 The RGE for the two-point function in the M S scheme

In order to illustrate this discussion, let us consider the generic two-point correlator:
Mg*) =i / d*x &7 (01T J(x)u (Ju(O)' 10) (11.39)

where Jg(x) is the hadronic current of quark and/or gluon fields. In n = 4 — € dimen-
sion, TT(g?) acquires an extra v—¢ dimension. The renormalized two-point correlator is
[28,110,111]:

Mg(q®, o5 my, v)=Mg(q% af, mf, €)—v<C(q* af, mf, €), (1140

i s i

! Amomentum configuration (p;, .. ., Pn) of momenta are non-exceptional if no non-trivial partial sum p;, + pi, + - - - pi,, Where,
(i take any of the label 1, ...n) vanishes. On the contrary, an example of vanishing trivial sum is p; + p> +--- + p, =0,
which is due to the energy-momentum conservation.



11 The renormalization group 105

where in the M S scheme, C is the e-pole terms:
1
2 B B _ 2 A
C(q% o, mP, €)= ije—kck(q . a5, m;) (11.41)

where, as usual, Cj are constants or polynomials in m? /q*. Using the fact that Iy is
independent of v, implies the differential equation:

ov

d [ .1

) 9 o ] »
vV — +ﬂ(“.&')as )m]_ II (‘] , O, My, U)
ooy om

k
Rewriting
d . 1 d dag 0 _
Y o) ={v— ) ¢ C
Ydv (V Xk:ek k) {v8v+vdv (@ )mfa } Z g
(11.43)
using:
dog
vV— = —e€a; + o B(ay) , (11.44)
dv
and the fact that the equation is finite for ¢ — 0, one gets:
li d <y Le C) (11.45)
im:v— (v — =— C), .
e—0 dv % ek k
and the set of recursive equations for k > 1:
asBles) = Y Ymmi 9 e, = a(aC ) (11.46)
s s : Ym lami k — 805_; sCk+1) - .
The dimensionless condition of IT reads:
—+A—+ A2, v2, g, mi, v)=0, 11.47
{v ij ™ } ( Ve, o, m;, V) ( )

where ¢ = In A. Therefore, one arrives at the RGE for the two-point function:

{—3 + ﬂ(%)aé - Z(l +ym(as)xj o } (7, oy, x;) = %(%C) =D

(11.48)
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with the solution:
t
I1(t, as, x;) = 1 (t =0, a,(1), x;(¢)) — / dt'D[t —t', ay(t), x(t)], (11.49)
0

where &; and X; are running parameters solutions of the differential equations given in
Eq. (11.34), and which will be given explicitly in the following.

11.7 Running coupling
11.7.1 Lowest order expression and the definition of the QCD scale A

Solving the differential equation in Eq. (11.34), the expression of the running coupling, to
one-loop accuracy is:

O ) = —2W__ (11.50)
1- lglas(‘))t
where:
Ay
as=—,
b4
1. —¢?

and g is the first coefficient of the 8 function given in Table 11.1. It shows that for t — 400,
a® — 0 for B; < 0, which is satisfied for the number of quark flavours n; < 11. In this
case, the theory is asymptotically free and the use of perturbation theory is legitimate. The
point oy = 0 is an UV fixed point as shown in Fig. 11.1 because the B-function has a
negative slope at the origin.

B (ag) 4

Y

We can also re-write the solution as:

t—/d—zL = @¢(z) + constant (11.52)
) T T '
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where the constant term is a renormalization group invariant (RGI) quantity, which one
identifies as:

1 1
t—o)=-Inv>+ = constant = 3 In A?, (11.53)

1
2 Bras(v)
where A is a RGI but renormalization scheme-dependent quantity. Therefore, the running
coupling, in terms of A to one-loop accuracy, reads:
1 1
a(g*) = A T
Lyl

(11.54)

11.7.2 Renormalization group invariance of the first two coefficients of 8

Before discussing the high-order expression of the coupling, let us discuss the renormal-
ization group invariance of the first two coefficients of the 8 function. Let 8¢ and S the
B functions related to two different values of the subtraction v, and v, of the ‘MS scheme.
Using Eq. (11.52), we have:

— a2 &:(tb,as(\),f)) d 1
1 / < =0(2). (11.55)

fh=-In—2 = =
) z B2)

v
Applying the operator v,d/dv, to both sides of Eq. (11.55), and using the fact that
a1y, otx(vi)) obeys the differential equation:

{”bi + Bas (vp) 0

v Do (vp) } a5 (tp, os(vp)) =0, (11.56)

one obtains:

= ( 1 >/3ba3(vb)aa3(va) — ,Ba _ ,Bb (as(vb)) (3(13(1%)) . (1157

O{S(Ua)ﬂ“ 8055(1)1,) as(va) aas(‘)u)

Using the o, expansion:

g =8 (Z) o+ 85 (2) @+
=P (a;) () + B3 (?T_S)Z(Vb)‘f‘"' : (11.58)
and the relation:
a5 (V) = ay(vp) + ca(vp) (11.59)

where ¢ is an arbitrary constant depending on the subtraction scale, one can easily
deduce:

B{ =p] and BS =47, (11.60)

which achieves the proof of the RGI invariance of 8; and §,. The higher-order terms of the
B function will be affected by the coefficient ¢ and hence on the subtraction scale.
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11.7.3 Higher order expression

The previous result can be extended to higher orders. To order af, one can write the solution
of Eq. (11.52) as:

/' dz T
= — 4+ constant
22 B1 (1 + (Ba/B1)(z/7))
- { /32 (—1 * (,32//31)(2/7[)) } + constant , (11.61)
B B 7 z

where the constant is a RGI quantity which has been fixed to be In A to lowest order. At the
two-loop level, it is convenient to fix it as in [138]:

constant = In A(1 loop) — 'B—i In (—ﬁ> . (11.62)
Bi 2

Therefore, we get the RGI quantity to two loops:

_B, (1 + (ﬂz/ﬁl)(%))

Bias B} asm

Inv + =1nA(tw0100ps)—%ln< ﬂ‘) (11.63)

i 21

Expanding Eq. (11.61), and inserting the expression of the running o to one loop, we
deduce:

20 _ 0 0B v?
ag(@g”) =a;’ {1 —aq ,3_ Inln B (11.64)
1

It is not difficult to show that, to order a2, one can relate the one- and two-loop values of
A as:

B2/ Bi
A(two loops) = <—f—1> A(1 loop) (11.65)
b4

To three-loop accuracy the running coupling can be parametrized as:

2
a;(v)=a® 11 - aio)@ Inln —
Bi A2

2 2
+(a§0))2|:ﬁ? In? In F—ﬁgl nln %—?—j+/§j+0(u3)}, (11.66)

with g; are the O(af;) coefficients of the 8 function in the M S scheme for n r flavours (see
Table 2.2), which, for three flavours, read:

Bi=-9/2, pr=-8, PB3y=—20.1198. (11.67)



11 The renormalization group 109

A is a renormalization group invariant scale but is renormalization scheme dependent. The
running coupling o, has been measured from LEP, t decays” and deep-inelastic scattering
data. We shall discuss these determinations in the next chapter. The present world average
is [16,139]:

ag(Mz) =0.1181 £ 0.0027 . (11.68)

11.8 Decoupling theorem

The decoupling theorem of Appelquist and Carazzone [140] states that the effect of heavy
particles (fermion, boson) of mass MIZ{ > —¢” can be ignored below their thresholds.
However, in the M S and M S schemes, these heavy particles could contribute to the universal
B and y functions as they are mass independent, and therefore the M S and M S schemes
do not a priori satisfy this theorem. In order to satisfy this theorem, one should modify the
scheme. References [141-143] have proposed to absorb into the renormalization constant,
not only the 1/& pole but also terms of the type In" My /v coming from heavy fermion or
boson loops (v being the scale of the M S scheme). In such an effective theory, one can
relate the QCD scale of n light quarks to the one with n light plus one heavy flavour. To
one loop, this relation is:

M3, e
Ani1 = Ay ) (11.69)

At the heavy quark threshold p?> = 4M?,, one can see that the heavy quark effect tends
to decrease slightly the value of A. One can see more explictly such effects in Table 11.2.

11.9 Input values of «; and matching conditions

We shall discuss below, how this decoupling is used in the practical evaluation of the running
coupling. In so doing, we run the value of o, (M) in the range given in Table 11.2, to lower
scales by taking appropriately the threshold effects due to heavy quark productions. We run
this value until M}, = 4.6-4.7 GeV, using the two-loop relation:

LN () <1 — 0P, 1n(—q2/A2)) (11.70)
T Bi
and for n s flavours, we note that:
= —— — an - A . .
! 2 73 2T TR

2 This process gives so far the most precise measurement of &, at Mz as a modest accuracy at the -mass becomes a precise value
at the Z-mass because the errors decrease faster than the running of «. Also, here, compared with some other determinations, we
have relatively the best theoretical control including the perturbative corrections to order a?, the non-perturbative condensates
and the resummation of the asymptotic series.
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Table 11.2. Value of oy and A to two-loops at different scales
and flavours

o;(Mz) As[MeV] au(M,) AsMeV] a(M:) A3[MeV] oy (M)

0.112 160 0.198 240 0.312 290 0.277
0.118 225 0.218 325 0.372 375 0.319
0.124 310 0.241 432 0.463 480 0.378
0.127 360 0.254 495 0.528 540 0.417

Following references [144,145], we do the matching condition «® = at this
b-mass, in order to extract o, for four flavours. We continue iteratively this procedure
for completing Table 11.2, which is one of the basic inputs of numerous phenomeno-
logical analyses discussed in this book. We use here the value of the perturbative pole
mass to two-loops: M, = 4.62 GeV and M, = 1.42 GeV which we shall discuss later on.
Notice that doing a similar procedure at the three-loop level, we reproduce the value of
o given in [139]. In this case, one can use the three-loop relation at the subtraction scale
My [146]:

o’V = a1 - 0.291667a% — [5.32389 — (n; — 1)0.262471a3],  (11.72)
Lo )
where: a; = o5 ' /7.

11.10 Running gauge

The running gauge &g is the solution of the differential equation in Eq. (11.35). To leading
order in «y, it reads [110]:

_ ag N Qg
ac(—q*) = {

-1
— + — — ,  (11.73)
[% In (—qZ/A)](S/ Bi ]8/ Bi }

4[5 In(—q%/A)
where for SU(N), x SUn)r:

5= Dy " (11.74)
12 3" '
&¢ is a renormalization group invariant parameter defined to one loop as:
1 8/=p1
dg = “2(”) ( ) . (11.75)
1— R“G(U) —pBras(v)

It is interesting to notice that for n < 9, the running gauge tends to the Landau gauge
(g = 0) for —g> — o0. One also obtains:

ag(q*) = ag(v), (11.76)
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for o = 0 (Landau gauge) to all orders and for «g = 44 (peculiar gauge) to lowest order
in .

11.11 Running masses

The running masses are solutions of the differential equation in Eq. (11.35). Analogously
to A, one can also introduce an invariant mass 71; [28]. The expression of the running quark
mass in terms of the invariant mass 7; is [28]:

- . _ B
(V) — 71 (— ri/Bi _ 2
ml(v) m; ( ,31613(1))) {1 + ,3] (ﬂl ﬂ2> as(v)

1/3_%(&_&)2_/3_%(&_&) é(ﬂ_&> 201 4 O3
+2|:/312 B B B \Bi B +,31 B B a0 +0(@)
(11.77)

where y; are the O(ai) coefficients of the quark-mass anomalous dimension (see
Table 11.1). For three flavours, we have:

n=2, p»=91/12, 1y =24.8404. (11.78)

As we shall see later on, QSSR is, at present, the most appropriate theoretical method for
extracting the absolute values of the light quark masses. A long list of these determinations
is given in the recent review [54] (see also [57] and the chapter on quark masses in this
book), where the QSSR results are compared with the ones from chiral perturbation theory
and lattice calculations. We only quote below the results:

mgy(2 GeV) = (6.5 £ 1.2) MeV, m,(2 GeV) = (3.6 £0.6) MeV , (11.79)
and:
my(2 GeV) = (117.4 £23.4) MeV , (11.80)
and the bounds from the positivity of the spectral functions:
90 MeV < m,(2 GeV) < 168 MeV . (11.81)

The running masses of the ¢ and b quarks have been also extracted directly from the J /v
and Y sum rules. To two-loop (order «) accuracy, one obtains [149]:

me(M.) = (1237001 £0.03) GeV  in,(M,) = (4.237003 £0.02) MeV . (11.82)
From the D and B meson systems, one obtains to order ozf [150]:

m(M,) = (1.10 £0.04) GeV  np(M;) = (4.05+0.06) MeV,  (11.83)
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which agree with the former within the errors though the central values are slightly lower.
These results can be compared with different results based on non-relativistic and some
other approaches [16].

11.12 The perturbative pole mass

The notion of perturbative pole mass can be useful in the phenomenology of the heavy
quark systems. However, unlike in QED, where the pole mass is well-defined, due to
the observation of the lepton, this definition is ambiguous in QCD due to confinement.
Attempts to define the pole mass within perturbation theory have been done in the literature
[141,133,148]. By analogy with QED, one can define the pole mass as the pole of the quark
propagator. For definiteness, on can start with the bare quark propagator:

1

S =— 11.84
P = s (11.84)

After interaction, one has:

Sr(p) ( 1 > 1
F\p)= "
1-% p_MB[l—i_lE:lEz]

which shows explicitly the wave function and the mass renormalization constants in
Eq. (9.20). An explicit evaluation of ¥ , in the M S scheme gives:

(11.85)

Cr !
B__ —€/2\2
X7 =(gpv ) —(16712)1—6/4/0 dx

R2 €/2
X [F(E/Z) (g) 22 —x) —e(l —x)+ (1 —ag)d —2x)]
p2
C 1
R2 —€/2
X |:F(6/2) <§) [2x+e(l—x)+ (1 —ae)2(l —x)]
B—px

P>
+ (1 —a6)2x(1 - X)Mz—:| , (11.87)

where:

R® = (1 —x) (M} — p’x) —i€. (11.88)
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o is the covariant gauge parameter and Cp = (N? - 1)/(2N) for SU(N).. These para-
metric integrals lead to:

305 3 MR- p?
B __ = et - B
E'_( )sz{ﬂJrz R

1\ Mj M} p
1 M
2

1 1M M My p?
1 M2_p2
B
22_( )CF4[—1+(1—01(;)]{ +1-m—2
M2 2 2 M2
+(—32> ln<1—p—2>——32 : (11.90)
=D My —-p
with:
1
1/e =1/e + 5(1n47t ), (11.91)

which shows that £% vanishes to order «; in the Landau gauge g = 0. Their asymptotic
expressions are:

o 113 5 3 —r M —p
pz>>w=(;)CF5{é+z‘zl +“‘“G>+O<7‘“W)]’

o 1 2 —p2 M?2 —p2
p2>>M2:(;>CFZ[_1+(1—aG)][E—i-l—]nT—i—O(_—pzan s

X

=7

and:

ay 13 3 M 3 s
L FREE S E R 7y
1 2
Hl_aG)[_Z__( )”
2 M1 2 (—p
= (= )Cp[l—i—(l—aG)]{g—ln v2+———<—’;)}, (11.93)

At p?> = M? =12, one gets:

o 1{3
Zf; PP=M2=12 = (;) CF§|:5 +2:| , (11.94)
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which is gauge independent. It is related to the pole mass, which is defined at the pole
p? = M? of the full quark propagator through Eq. (11.85). In terms of the running mass,
the pole mass reads:

_ Ti(p* = M?)
Mpore = m(p*) {1 , 11.95
pole m(l’ ) { + 1— 22([72 — MZ) ( )
Therefore, the previous expressions gives [148]:
Moo = m(p>) {1+ Y (a—) (11.96)
pole p 3 M2 s P .

which is gauge and renormalization scheme independent. The IR finiteness of the result to
order af has been explicitly shown in [133]. The independence of M. on the choice of
the regularization scheme has been demonstrated in [148]. The extension of the previous
result to order o2 is [151]:

4 2 o
o 1+ (500 ) (2)

221 13 p? 15 n\,, p* | /a2
Ko (222 m 2 o (2" V2 2 (%) |, (197
+[ Q+<24 36n)nM2+(8 12)rl M2 (7‘[) (11.97)

where, in the RHS, M is the pole mass and:

4 m;
Ko =17.1514 — 1.04137n+—ZA =—). (11.98)
37 Mo

For 0 < r < 1, A(r) can be approximated, within an accuracy of 1% by:

2
A(r) ~ %r —0.5977% 4+ 0.230r3 , (11.99)

while, its values in the following limiting cases are:

A(r — 0) Zq(z)r +0@?),

1 13 1 151
A(r > o0)~—In>r 4+ —Inr + Z;(2)+ — + 0@ 2Inr),

4 24 288
A(r = 1):%((2)—%. (11.100)

As, one can notice, the behaviour of A(r — 00) is quite bad, such that in the effective
field theory where the heavy quark mass tends to infinity, one should write a well-defined
relation in this limit. This can be achieved by introducing the coupling and light quark
masses in the effective field theory in terms of the corresponding quantities in the full
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theory [144]:

@ (1) = o (V) C et (v), x)
m () =m)H(a,(v), x) (11.101)

where x = ln(m%/vz) and:

Clann=1+Y G (%), Gw= Y cur,

k>1 0<i<k
Hla.0)=1+ Y H (%)k Hy(x) = Z Hyx' (11.102)
k>1 0<i<k
with:
=t ooi 1
6 72 24" T 36
H=0. m=213.4% (11.103)
327360 12

eff
s

X /a 7 19X X2\ /o2
eff s s
A ( NI T <_ , 11.104
%s “‘{ 6 n> ( 24 24 36> n>} ( )

where X = In(M7/v?). In this way, the previous expression becomes:

4 p? o
= m(p? - (=
Myl =m(p )|:l—i—<3 +1In _2> (77>

o 173 13 p2 15 n 2p2 o\ 2
K o) (2o e e (2
+[ Q(mf/m)+<z4 36”) nm2+<8 12)n 2 <n) ’

(11.105)

and by expressing «¢" in terms of the pole mass:

where m is the running mass of the finite mass heavy quark, n is the number of finite
mass quark flavours and the summation in Ky through A(m /) runs over the n — 1
lightest quarks. For instance, in the case of the bottom quark mass, one uses n = 5, and

deduce:
4 2 aeff
szrhb(pz)|:1 + <— +1n {)—2> ( i )
3 mj b

o 389 p2 35 2p2 o\ 2
+[Kg(mf/mb)+ﬁlnm—i+ﬁln% (;) . (11.106)

where, by neglecting the 1 and d quark masses:

K (i ‘)—9278+4ZA' M) 11.107)
Ql’ﬂf/l’llb =Y. ngX’C (mf/mb . ( .
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Finally, a recent order 053 evaluation leads to [152]:

1 (Mpote) = Mpole[l - g () +1-14.3323 - 1.0414n] (O‘;)Z

T
o\ 3
1 [~198.7068 + 26.92397 — 0.6526912] (—) . (11.108)
T

However, one should be careful when using the previous mass in the OPE, as, in order to
be consistent, one should use the same truncations in the mass definition and in the hadronic
correlator to be analysed. For this reason, the re-summed result obtained to leading order
in (Bay) term within the large n ¢-limit [154], should also be used with care. Using the
previous relation with the pole and running mass as well as a direct estimate of the two-loop
order g running mass from the ¥ and Y'-sum rules, one obtains the value of the pole mass
to two-loop accuracy [149]:3

MPT? = (1.424£0.03)GeV,  M/™* =(4.62+0.02)GeV. (11.109)

It is informative to compare these values with those of the pole masses from non-
relativistic sum rules to two loops [149]:

MNR = (1457003 £0.03) GeV,  MYF = (4.697007 £0.02) GeV, (11.110)

c

and, recently, to three loops of order o?* including a resummation of the Coulombic
corrections [156]:

M} = (4.60 £0.02) GeV (11.111)

in good agreement with the former results.
If one uses the value of the running mass obtained to three-loop accuracy [156], and the
three-loop relation between the pole and the running mass, one obtains:’

MFP™ ~ (4.740.07 £0.02) GeV , (11.112)

which, although slightly higher, is in agreement within the errors with the two-loop result.

Recent extension of the sum rules analysis [157,159] have led to more accurate values
of the pole mass. The one using the relation between the pole and the 1S meson mass gives
[159]:

MFPT3 ~ (471 £0.03) GeV , (11.113)

in agreement with the two-loop «; result given in Eq. (11.109).
One can also compare the previous values with the dressed mass:

My = (4.94+£0.10+0.03) GeV, (11.114)

3 We shall discuss these different points in more details in the chapter on quark masses.

*# This result can be considered to be an improvment of the Voloshin value of 4.8 GeV [155].

3 This value is slightly lower than the one given in [149], as the value of the running mass used there is higher. However, the
results agree within the errors.
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obtained from a non-relativistic Balmer formula based on a bb Coulomb potential and
including higher order o?-corrections [94], or the mass obtained from the fit of the spectra
within potential models [12]:

MP” ~ (4.8 ~ 4.9) GeV. (11.115)

This non-relativistic mass is slightly higher than the one from the sum rules. One can
remark that the mass difference is :

M) — M ~ (100 ~ 200) MeV . (11.116)

The interpretation of this mass difference is not very well understood. If one has in
mind that the non-relativistic pole mass contains a non-perturbative part, which can be of
the same origin as the one induced by the truncation of the perturbative series at large
order, then one might eventually consider this value as a phenomenological estimate of
the renormalon contribution, which is comparable in strength with the estimate of about
100-133 MeV from the summation of higher-order corrections of large-order perturbation
theory [154].

An extension of the previous analysis of the J /¢ and Y-systems to the case of the D, B
and D*, B* mesons leads to the value to order « [149]:

MFT? = (4.63 £0.08) GeV , (11.117)

in good agreement with the previous results, but less accurate. This result has been confirmed
by recent estimates to order ocf [150]:

MPFPT3 = (1.47 £0.06) GeV M = (4.69 £0.06) GeV,  (11.118)

11.12.1 The b and c pole mass difference

One can also use the previous results, in order to deduce the mass difference between the b
and ¢ (non)-relativistic pole masses:

My(My) — M.(M.) = (3.22 4 0.03) GeV , (11.119)

in good agreement (within the errors) with potential model expectations [12,16], and with
the heavy quark symmetry (HQET) result from the B and D mass difference [164] (see also
Chapter 44):

_ _ A 1
M,(My) — M.(M,) ~ (Mg — M l—-———+ 0 — ) 2(B4£0.04),
»(Mp) (M) ~ (Mg D){ ZMBMD+ (M?Q)} ( )
(11.120)
where one has used the QSSR estimate of the heavy quark kinetic term inside the meson
[165,166]:

A~ —(0.5 £ 0.2) GeV2. (11.121)
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A direct comparison of this mass difference with the one from the analysis of the inclusive
B-decays needs however a better understanding of the mass definition and of the value of
the scale entering into these decay processes. If one chooses to evaluate these pole masses
at the scale v = M},, which might be a natural scale for this process, one obtains to two-loop
accuracy:

M.(v = My;) = (1.08 £0.04) GeV, (11.122)
which leads to the mass difference:

My, — M,|,—y, = (3.54 +0.05) GeV . (11.123)

11.13 Alternative definitions to the pole mass

It has been argued that the pole masses can be affected by non-perturbative terms induced
by the resummation of the QCD perturbative series [ 154] (see chapter on power corrections)
and alternative definitions free from such ambiguities have been proposed (residual mass
[158] (see also [160]) and 1S mass [159]). Assuming that the QCD potential has no linear
power corrections, the residual or potential-subtracted (PS) mass is related to the pole mass
as:

-

Mps = M, +1/ g V@) (11.124)
PS = pole ) len (27[)3 q) - .

The 1S mass is defined as half of the perturbative component to the S; O Q ground state,
which is half of its static energy (2Mpole + V).% The running and short distance pole mass
defined at a given order of PT series will be used in the following discussions in this book.

11.14 M S scheme and RGE for the pseudoscalar two-point correlator

In order to illustrate the discussions in the previous sections, let us consider the two-point
correlator:

Ws(g?) Ei/d4x €' (01T Jp(x) (Jp(0)10) , (11.125)
where:

Jp = (m; +mp)¥i(iys)y; , (11.126)

is the light quark pseudoscalar current.

6 These definitions might still be affected by a dimension-two term advocated in [162,161,438], which might limit their accuracy
[163].



11 The renormalization group 119

11.14.1 Lowest order perturbative calculation

We shall be concerned with Fig. 8.1 discussed in Section 8.2.5 for massless quarks
(Fig. 11.2):

p-q

Using Feynman rules, it reads:
d"p
. 2 2
v ws(q) =+ o [ S8
x Tr{(z'yj):———’——.— (iw):——:—’————.—} . (1127
p—miTi pP—9q
Parametrizing the quark propagators & la Feynman (Appendix E) and using the properties

of the Dirac matrices (Appendix D) and momentum integrals (Appendix F) in #n-dimensions,
one obtains for the bare correlator:

—€/2
ewB(,2 , N ! 2 R2_ic’\
VWS (g)=(m; +m;) ZJT_Z ) dx E+]n4n—y __1)_2__

(

X [<3+ %) q%x(1 —x)—2(1 + Z) (mfx—i—m?(l —x)+m,-mj)} ,
(11.128)

where:
R* = —¢%x(1 — x) +mix + m%(l —-Xx), (11.129)

and y = 0.5772 ... is the Euler constant. Two limiting cases are particularly interesting:

Wl (g2 2 Y =(m; +m;)? 2 N %+14 oy —1 __22_
vYsS(gm > myp ) =(m; +m; ) p n4aw —y —In 2

] 2
+2+51n2<_£§->_§(1n4n—y+2)1n<—%->], (11.130)
vV V



120 Il MS scheme for QCD and QED

and:

N m; m’
v (g® =0)=(m; + mijg |: (mj n=5+ mj In v_2]>

2
— <—+ln4n—y—l) (m?+mj):| . (11.131)
€

The case ¢ = 0is useful for the Ward identity discussed in Eq. (2.17) and for the definition
of the scale-invariant condensate which will be discussed in Part VII.

One can explicitly check the Ward identity perturbatively by evaluating the longitudinal
part of the axial-vector current correlator defined in Eq. (2.18). One obtains:

—€/2
N ! R —ie'\
quq 115" = qu/o dx [mlzx +m§(1 —X) —}—mimj] (T) I'(e/2),

(11.132)

which by comparison gives:

N m? m>
4TI = Ws(g?) — (m; + m,»)m <m,.3 In ? +m}In v—zf) . (11.133)
Finally, one can extract the spectral function by using:
InR?> = In|R?| — in6(—R?). (11.134)
Therefore, one can deduce:
ImWs(r) =Im (g,.q,115")
- %(m,- +m ) (1 - M)

2 m?
‘A2 (1» =, 7’) ole—Gm+mpPl.  (LI3S)

11.14.2 Two-loop perturbative calculation in the M S scheme

For a pedagogical illustration, we consider a massless quark inside the quark loop. The
corresponding two-loop perturbative contribution comes from Fig. 11.3.

Fig. 11.3. Two-loop perturbative contribution to the pseudoscalar two-point function.
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A routine application of the previous rules leads to [167]:

Vi (g*) =

3 (mP 4 m?)e?| 2 114 S
ez (m’ +mi)q’| = +Indr —y +2—In| —-

2 2
_€ _ R DI s O
2(111471 y+2)1n(v2>+41n (vz)

B, —€/2\ 2 2N\ €
+<g e ) |:i2+i(ln4n—y)+%+0(l)i|( q) } (11.136)

472 € € 3 V2
Introducing the renormalized parameter (we shall omit the index R):
ng—s/2 =g [1 +0 (a_3>] ,
T

m® =m; [1—%(%)] , (11.137)

T

one can deduce [167]:

2 3 2 2| 2 —q?
Us(g )=g(mi+m,')q E+1n471—y+2—ln —

o 4 5 5 (—4*
(%) [‘2*5*‘“ (55)
2
- (1—7+2(1n4n—y)> In <—q>ﬂ (11.138)
3 2

This expression tells us that the lowest order term proportional to € induce via the mass
renormalization a non-zero finite term. It also shows how the non-local:

2

T (%) (11.139)
€ v

pole has disappeared after renormalization. The disappearance of this term is a double check
of the calculation as well. Finally, one can also use the RGE for checking the In-coefficient.
This can be done by working with the RGE of the two-point correlator given in Section
11.6. In so doing, we consider the coefficient of the 1/e-terms:

D=D0+(%) D . (11.140)
T
with:

3
DO = —@(xi + _Xj)22€2l s
3

D=5

10
(x; +xj)2?e2’ . (11.141)
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where x; = m; /v is a dimensionless mass and t = —1/21In(—g?/v?). Expressing Ws in
terms of x;, one has:

2 2t 4
\I"S(Iaamxi,j):_ (xl+xj) et

8 2
x[—2t+ln47r—y+2+( )(4at +2bt+c)], (11.142)

where a, b, c have to be determined. Using the RGE, one obtains the constraint:
_ _i e
Dy = 2(x,+xj) 27,

Dy =———(x; +x]) €y

3
8 2
x [—8at —2b — 2y (Indw — y +2) + 2112¢] (11.143)

where y; = 2 is the mass anomalous dimension. The fact that D; cannot depend on ¢
implies:

—da+2y =0 = a=1. (11.144)

The relation between Cy and D given in Eq. (11.48) implies:

c” =Dy. (11.145)
C 51) is not fixed by the RGE but we know it from the previous calculation:
5
cV = W(x, +x;)? 2f§, (11.146)

while we deduce from Eq. (11.48):

2c¢V =D, . (11.147)
The recursive relation implies:
3
cs) = o i+ X)X 2y . (11.148)
Inserting the previous expressions into the one of Dy, one can deduce:
10
—2b —2y(Indx —y +2) = 3 (11.149)

One can see that the RGE and an explicit evaluation of the 1/e-coefficient to order o
allows one to fix the coefficients of the 1/ €2, In? and In at that order. This impressive result
allows to have a double check of the direct calculation.
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Other renormalization schemes

In previous chapters, we have concentrated our discussions on the modified minimal sub-
traction M S scheme, which is the most convenient one for QCD. However, it is known
that there is a freedom for choosing a renormalization scheme. Among different existing
off-shell renormalization schemes discussed in the literature, we choose to discuss the fol-
lowing schemes which have been widely used in the 1980s. We shall also discuss their
connections by comparing the renormalized QCD coupling in these different schemes.

12.1 The M S scheme

The M S scheme is the original minimal subtraction scheme proposed for dimensional renor-
malization. We have already discussed the difference between the M S and M S schemes,
which one can illustrate by the comparison of the renormalized coupling in the two schemes:

va? = ok {1 +(2) (%+8) +O(%)2} , (12.1)

where ¢ is an arbitrary constant characteristic of the scheme used. In the M S scheme:

_h

bizs = 5 ndm —y1, (12.2)

and the running couplings in the two schemes are related as:
G’ = gMs [1 + <&)8+O(af)] . (12.3)
b4

This leading order relation can be translated by the relation between the scale A in the
two schemes:

Azrs =~ Ayusexp(8/p1) , (12.4)

1.e., one obtains to this order:

123
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Table 12.1. Value of 6(ag, ny) in the MS and MOM schemes

Scheme S(ag,ny)
MS 0
MS S5 = (B1/2)[Indm — y]
2 3 .
MOM Three-gluon Sis— 5 — B —aep(l—D+E@-N—-E+4(1+3))
1 Snyg

Quark-gluon Sz — £ (89 —8J) —acZ (1-27)+ €@ -1+ 3L

2
Ghost-gluon S5 — 5 (41 +3J) —%C(©—-2/) - % (3-4) 4+ 2

12.2 The momentum subtraction scheme

In the momentum subtraction scheme (MOM scheme), the renormalized two-point (or in
general Green’s) function is defined as [168—170]:

Ws(gHr = Ws(g?) — ¥s(g” = —p?, m?), (12.6)

where u is the subtraction point in the Euclidean region. The choice of u is arbitrary. It is
often chosen at the symmetric point of the three-gluon vertex with which one defines the
renormalized QCD coupling. However, the choice of the vertex is also arbitrary, as one can
choose the quark-gluon-quark or ghost-gluon-ghost vertex for defining the renormalized
coupling. In this scheme, the renormalization constants and universal parameters are mass-
dependent, which is not convenient when one works with massive particles. However, due
to the Appelquist—Carazzone decoupling theorem, one may ignore the effect of the heavy
quarks having a mass larger than the momentum scale of the analysis. If one expresses the
renormalized QCD coupling «; in terms of the bare coupling ? in 4 — € dimensions, one
has:

V*ozSB = |:1 + <6(a(;, ng)+ %) o + O(asz)i| , 12.7)

where (g, n ) is a finite term which depends on how « is renormalized, and are given
in Table 12.1, where o is the gauge parameter; 8; = —(1/2)(11 — 2n/3) for SU(3), x
SU(n)y, and:

1

1

- —2/ dx——% _23439072.... . (12.8)

0 x2—x+1

Therefore, one can derive the lowest order relation between the MOM and M S schemes
in the case of massless quarks [170]:

(12.9)

8 s
Amom — AMS exp {M} .

Bi
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In the usual case of three-gluon vertex, and for some particular values of the gauge
parameter, one has:

5(0,3) = —8.46, 8(1,3) = —-7.68, (12.10)

which leads to the numerically lowest order relation:

(12.11)

Ao ~ Asgs (6.55 for ag = 0 : Landau gauge )

5.51 forag = 1: Feynman gauge

12.3 The Weinberg renormalization scheme

The Weinberg scheme [171] is variant of the MOM scheme. In this scheme the renormalized
two-point function reads:

Us(q?, mH)g = Us(q*, m*) — Ws(q® = —p*, m* =0), (12.12)

and is renormalized at an off-shell space-like point > = —u? and putting the particle masses
to be zero. It coincides with the MOM scheme, in the case of massless theories. One can
see that, in this scheme, the renormalization constants are also quark-mass dependent. It
has been shown by [172] that the Weinberg scheme violates the Slavnov—Taylor identities
due to the arbitrariness of the subtraction point at a specific vertex, the gauge dependence
of the coupling and to the definition of the tensorial structure of the vertex at the subtraction
point.

12.4 The BLM scheme

The BLM (Brodsky-Lepage—Mackenzie) scheme has been introduced in [173] and has
been based on the analogy with QED where only the light fermion vacuum polarizations
(VP) contribute to the renormalization of the strong coupling constant. In QED, the running
effective charge can be defined as (see the next chapter on QED):

o

o =——, 12.13
Q) 1 +e2nem(Q) ( )

where to lowest order in «, and using an on-shell renormalization:

1 (2. QO 5
I1 =———\|z-Ih——-=|. 12.14
em(Q) 472 <3 nme 3> ( )
The scheme states that an observable O which has the perturbative expansion:
O:Qm@1+a%?+~} (12.15)
can be replaced by:

0=Cw@®1+€ﬁf”+~} (12.16)
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where all VP corrections are absorbed into the effective coupling by an appropriate and
unique choice of scales Qf, Q7,.... Since the number 7, of light flavour dependences
usually enters the VP to this order, then, both QF and C; are independent of n ;, while,
in general, the scales Q} can depend on the ratio of invariants. Taking the example of the
anomalous magnetic moment of the leptons, which can be expressed as (see QED section):

o o
a, = —[1 - 0.657—] , (12.17)
2 2m

and the VP contribution to the muon anomaly gives:

o 2 m 25| «
A -0 =21 13 0
e [3 e 18]

= a, . (12.18)
For the muon, one can expect that, at a scale Q* ~ m,,, the exact result can be expressed

as:

a(Q")
27

where the running coupling is defined in Eq. (12.13), such that Eq. (12.18) and Eq. (12.19)

must be equal. In this way, one obtains:

(12.19)

a, =

Q* =mye'? . (12.20)

In this procedure, the electron and the muon anomaly have the same expression to this
order, as we replace:

au=%[1+%(AVP+CI)+"':| , (12.21)
by:
a, = Ot(Q*) |:1 + (X(Q*)Cl 4. :| , (12.22)
2 T
where:
Q" - (12.23)
o >~ .
1 —(a/m)Avp
and:
C; = —-0.657. (12.24)

In the case of QCD, a similar approach can be made. The observable can be written as:
M = Coazs(QIN1 + (ay5(Q)/7) (nyAvp + B)] . (12.25)

One can change the coupling by:

* —1
w375(0") = ays(Q) [1 ~ Bi@ss(Q)/m)In % .. } L 1226)
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and express the observable as:
M = Coozzs(QOI1 + (ayrs(QH)/m)CF + -+ 1. (12.27)
Then, one can deduce:

Q" = 0 expBAyp),

33
Ci=ZAvr+B. (12.28)

where the term % Ay p in Cy serves to remove the part of B which renormalizes the leading-
order coupling.

The ratio of these gluonic corrections to the light quark ones is fixed by the 8 function. In
some of the examples given by BLM, the value of Q* appears to be lower than the original
scale of the process, which might be inconvenient for the convergence of the QCD series.
Moreover, the scheme dependence of the result in Eq. (12.28) has been pointed out in [174],
while an extension of the BLM result beyond NLO shows an ambiguity in the prescription
[175]. Recent interest in the resummation of perturbative QCD series using large value of
B in the naive Abelization of QCD (see Renormalons section) has revived the use of the
BLM scheme despite these previous drawbacks of the procedure.

12.5 The PMS optimization scheme

The principle of minimal sensitivity (PMS) scheme has been introduced by Stevenson
[176] in QCD. It consists on the fact that physical quantities should be insensitive to a
small variation of unphysical parameters, and is based on variational approach. It is more
instructive to illustrate the method by the classical example of the e e~ — hadrons total
cross-section, which is known to high-accuracy in perturbative QCD. To order &2, the
corresponding Adler D-function reads:

< d
D(g*) = —q2/0 mR(I)’:ZQ?{l +Dr=a; (1 +aF)l+--), (12.29)

where:

R o(ete™ — hadrons)

. 12.30
o(ete = utu) ( )

Q; is the quark charge in units of e; Fj3 is renormalization scheme dependent; a; = &,/

is the QCD running coupling. The v (subtraction scale) dependence of the dimensional
renormalization scheme can be introduced via:

T=—pBIn(v/A). (12.31)
Using the differential equation obeyed by the running coupling:

dag

—Pi

= a,f(a;) = Bia? (1 + %as> , (12.32)
1
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one obtains:

D, B2 dF;

Using the fact that D, is independent of 7, the a2 term in Eq. (12.33) must vanish, which
leads to:

Fi(t)=1t — 1+ F3(1) . (12.34)

The optimization criterion imposes that the remainder term of d D, /9t also vanishes at
a critical value t = 7.. The optimal value of F3 corresponds to:

% +2F" (1 + %mm) =0, (12.35)
1 1

where the role of a, 8, can be increased by computing the next order terms. From this result,
one can deduce the optimal value of D,:

(12.36)

D;Pl = as(fc)|:1 (/32/,31)‘1&(7:6) j| .

201+ (Ba/Br)as()]

The last step of the analysis is to find a,(z.). This can be done by integrating Eq. (12.32).
One obtains to two loops:

. e d 1 5
Kra,) =1 = / 5 * =—+ P2 In (M> , (12.37)
a XL+ (B/Bas(x)] a; B 1+ (B2/B1)as
where the upper limit of integration is equivalent to the choice of A in T = —g; In(v/A).
Using Eq. (11.53) by including next leading corrections, one can derive the relation:
B B2/ B’
Aopt = Ay (—2/3—) . (12.38)
1

Rewriting Eq. (12.34) as:
Fs = Ka(a5) = p1(Q) (12.39)
where:
p1(Q) =10 — F3(10) , (12.40)

is a constant term independent of the unphysical variable t at fixed Q, where at Q* =
—g? = v?, it reads:

p1(Q* =v?) = —B In(Q/A) — F; . (12.41)

It is also a renormalization scheme invariant quantity, as the scheme dependence of A
cancels the one of F3. Substituting the value of F3 from Eq. (12.39) into Eq. (12.35), one
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gets the following transcendental equation for a,(z.):

5 1 g ( B >‘ 3
Ko(as(te) + 5= ( 1+ Z(as(ze) | = pi(Q), (12.42)
2B Bi
where the solution a,(7.) is the one to be used in D;’P ' As p1 behaves like 1/ay, it needs to
be large for a good description of the process. The PMS scheme has been quite popular in
the period of 1980-1990.

At present, the interest in the method has decreased. This is probably related to the fact
that it does not yet incorporate the power corrections which plays a non-negligible role
in the extraction of the QCD coupling from different processes. However, an extension of
the method including these non-perturbative corrections, although small, should be more
attractive.

12.6 The effective charge scheme

Like the PMS, this scheme is also conceptually based on the construction of scheme-
invariant quantities from combinations of scheme-dependent coefficients [177]. In order to

illustrate the discussion, let’s start from the D function defined in Eq. (12.29), which we

rewrite as:!

n—1
Dn:ZQ?:1+asd0<1+2dia§>+---} , (12.43)
i i=1
where all higher order corrections and scheme dependence of the process are absorbed into
the definition of the coupling constant. The ECH approach imposes the condition that all
coefficients d; = 0 for all i > 2. Writing the 8 function as:

Blas) = —piag (1 + niciaj,) , (12.44)
i=1
and:
DM = D,(a,) + 6D (12.45)
these conditions imply for the remaining corrections to the physical quantities [178]:
§DFM = dod, (c) + db)
SDECH — dod, <cZ - %cldl —2d} +3d> + dz) : (12.46)

These conditions are realized provided that the expansion of the 8 function in terms of
a, makes sense, which translates into the renormalization scheme-independent constraint:

clay = éas <1, (12.47)
B

! We neglect in this discussion the small contribution due to the light by the light-scattering diagram (see next chapter).



130 Il MS scheme for QCD and QED

which for four flavours corresponds to Q > 1.62A. However, it is interesting to see the
modification of this constraint when non-perturbative terms are included in the QCD series.
In [178], relations between the corrections to D,, in the PMS and ECH scheme have been
also derived with the result:

2
§DPMS — §DECH | d‘;i
SDIMS = s pECH | (12.48)

as well as an extension of the analysis to n = 4.
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M S scheme for QED

Related discussions can e.g. be found in [147,110,111]. QED which is an Abelian theory is
much simpler than the non-Abelian QCD. As we have mentioned in the introduction, QED
works well with the on-shell renormalization scheme and has been experimentally tested
with a high degree of accuracy (g — 2, ...), such that it is a priori useless to introduce a
new scheme for studying it. However, it is interesting to know the relations of different
observables in the on-shell and M S schemes.

13.1 The QED Lagrangian
As we have already mentioned previously, the QED Lagrangian is quite simple, as we do
not need ghost fields for its quantization due to its Abelian character. Its expression is given
in Eq. (5.10), which we repeat below:
Lopp=L, + L+ Ly, (13.1)
with:

1 1
Ly = =g PO Fu) = 5~ 8,400, A" (),

L= Y(x) @3, y" —myp(x),
Lr = —eA, ()P x)y yx) (13.2)
where F),,(x) = 9, A,(x) — 9, A, (x) is the photon field strengths of the photon field A ,(x);

o is the gauge parameter with o = 0 (Landau gauge) and o = 1 (Feynman gauge); ¥ (x)
and m is the lepton field and mass; e is the electric charge.

13.2 Renormalization constants and RGE

The renormalization constants of the fields are defined analogously to the case of QCD in
Egs. (9.20, 9.21, 9.22), and will not be repeated here. The QED Ward identity, analogous
to the one in Eq. (9.24), gives:

Z\r = ZoF, (13.3)
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which implies:
Zo=Zyu=23", (13.4)

while the gauge invariance of the QED Lagrangian implies that there is no renormalization
counterterm for gauge term of the Lagrangian. Then:

Zo = Zs (13.5)

The RGE of QED has been originally introduced by [75,76] for improving the QED
perturbation series. It has the form in Eq. (11.32) with the solution in Eq. (11.33).

13.3 S function, running coupling and anomalous dimensions
The B function is known to order o Tt reads [179]:

Vv dZ3
Z3 dv

/3_2 (a)+ ,3_] (a)2+ By = 121 (oe)3 (13.6)
'T3)\x *72)\x T )\ '

where, in the case of massless fermion, 8; and §, are invariant under the renormalization
schemes. It is important to notice the crucial difference between QCD and QED, as here
the B function is positive, which means that the origin of the coupling is no longer an UV

fixed point and the QED coupling increases with g2. The running QED coupling is solution
of the differential equation analogue to the one in Eq. (11.34). Its solution to one loop is:

Bla) =

a(v) _ b4
L= (@)/7) BiyIn(=q>/v?)  BigIn(—q?/A2,)
where in the last identity, we have introduced the RGI parameter A.,, in analogy of QCD.
The anomalous dimensions are:

a(g?) = , (13.7)

v dZr ag /o 2
= — = — | — O s
YF ZZF dv 2 <JT) + (a )
_vdZz, . 3 o 2
szz—mw— (Vemz 2) <n)+(9(0l ),
yr - Zl" dV - 2 nV o nFVF ) .

where n, and nr are respectively the number of external photon and fermion fields.

13.4 Effective charge and link between the M S and on-shell scheme

One can relate the electric charge in the QED on-shell scheme to the one in the
M scheme, by using the fact that the QED effective charge is invariant under the choice
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of renormalizations:!

B _ R
I+epM3, 1+ epME,

detr(q?) = , (13.9)

where the indices R and B denote renormalized and bare quantities; @ = e* /47 is the fine
structure constant; Iy, is the electromagnetic vacuum polarization defined as:

N4 (g) =i / d*x €701 T J*(x)J"(0)']0) = — (8""q* — ¢"¢")em(g?), (13.10)

where J# = [y* is the local current built from the lepton field. Using the Feynman rule
given in Appendix E and the Dirac algebra in n dimensions in Appendix D, its expression
can be easily obtained, if one follows closely the derivation of the pseudoscalar two-point
function discussed previously. The bare two-point correlator reads to lowest order:

2 1 42 1— 2 et
2 (g2 = 2 4 (Indm) —y —3/ dx 2x(1 — xyln 4 XA =0 Fm” —ie’ |
1272 | € 0 V2
(13.11)
From this expression, one can deduce to leading order in m?/q*:
1 |2 —q> 5
B 2 2
Mg (=g~ > m") = W{g+(ln4ﬂ)—3’_ln7+§
LY 21 4 (13.12)
—6— — ) In—¢, .
—q2 —q? m2
and:
2 (¢*>=0) = 2 + (In4r) In m’ (13.13)
et =T 1002 e 4 v ) '
The renormalized vacuum polarization can be easily obtained:
s 1 —q> 5
Mew = 5,2 {_IHF 3 +}
=7 1 —q> 5
nis — ~In— 4>+ 13.14
em 12;12{ "t } (13.14)

Using the fact that ng‘};She“(qz = 0) = 0 in Eq. (13.9), one can relate the charge in the
on-shell and M S scheme as.”

2
a(v) = ags {1 4 (“) T ”—} (13.15)

x /3 m?

! The last equality comes from the fact that the charge renormalization constant Z,, and the photon field renormalization constant
Z3 are related to each others from Eq. (13.4).
2 For a more elegant notation, we shall not put index for the M S coupling.
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Using this relation into Eq. (13.7), one can deduce the running coupling in the M S scheme
in terms of the one in the on-shell scheme evaluated at v = m:
Qo s.

1 — (tos./7) P13 In(—q2/m?)

Identifying this result with the one in Eq. (13.7), one can deduce for one fermion:

alg?) = (13.16)

:Blao.s.

This result can be easily generalized to n fermions of mass m;:

Aem = <Hm)exp (nﬁla ) (13.18)

For the three observed charged leptons e, u, 7, this leads to:

Aemzmexp< il ) (13.17)

Aem = 5.2 x 10° GeV , (13.19)

which is an astronomical number. This is the scale at which one expects that the QED series
expansion breaks down, and is commonly called as the Landau pole. Using its definition
in Eq. (13.9), the effective QED charge can be expressed in terms of the running charge. It

reads, in the M S scheme:
a\1/5 m?
den(q®) 2 g\ 1= =) 2 (5 ) +O( =5 ) - (13.20)
T/ 3\3 q
Analogous relation from Eq. (13.9) can also be obtained in the on-shell scheme. The iden-

tification of the two relations for «.g leads to the relation between the running coupling in
the M S and on-shell schemes:

o _ 2 = 2
a(q%) = @os(q?) {1 + (a—) 1m0 <“°* ) } . (13.21)
T )3 m b4

This relation is useful in the analysis of electroweak processes where the Green’s functions
are often evaluated using the M S scheme.
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High-precision low-energy QED tests

As shown in the previous chapter, one expects that QED works well until an astronomical
value of A¢p, which is due to the non-asymptotically free property of the theory, where the
effective charge grows with the energy. Therefore, contrary to QCD, one expects that QED
is best tested at low energies which is the interesting experimental region.'

14.1 The lepton anomaly

Indeed, one of the most impressive and traditional test of QED is given by the measurements
of the leptons (e, ©)anomalous magnetic moments (lepton anomaly) a,,, where one notices
that from the electron to the muon, the running charge has increased from &(¢ = 0) to
a(t = In@m,/m,)). The anomalous magnetic moment of charged leptons and for on-shell
photon (g% = 0) is defined as:

1
a = E(g, —2)= F(0), (14.1)

where F(0) is the Pauli form factor related to the lepton-photon-lepton vertex as:

1
i(pT,(p* = p? = m*u(p) = i(p)yu(p)Fi(g>) — %E(P/)U;quu(l’)Fz(qz) :

(14.2)
The full vertex and the lowest order QED contribution are given by Fig. 14.1.
The lowest order contribution is:
l ja
P =2(3) - 14.3
a >\ (14.3)

14.1.1 The electron anomaly and measurement of fine structure constant o

In the case of the electron, the anomalous magnetic moment has been measured with a high
accuracy [181]:

a;® = 115965218 84(43) x 1073,
al? = 115965218 79(43) x 107" . (14.4)

! For some other low-energy tests of the fermion substructure beyond the standard model, see e.g. [180].
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¢ ¢ ¢ ¢

Fig. 14.1. Full vertex and lowest order QED contribution to q;.

A comparison of this value with the theoretical prediction [182,183,184]:

asM = % (%) — 0.328 478 444 00 (%)2 +1.181 234 017 (%)3

4
— 1.509 8(384) (3) +1.66(3) x 10~ 2(hadronic + electroweak loops)  (14.5)
T

provides a very precise measurement of the QED charge (fine structure constant) at the
scale of the electron mass [185]:

a'(a,) = 137.035 999 58(52) (14.6)
which is more precise than the one from the quantum Hall effect [182]:
o' (Hall) = 137.036 003 00(270) . 14.7)

A resolution of the two discrepancies can provide a bound on new physics which
is however not very strong as the new physics scale is constrained to be only larger than
100 GeV, assuming a generic effect of the order of m2/A>.

14.1.2 The muon anomaly and the role of the hadronic contributions
In the case of the muon, higher order QED contributions are known up order o>. Typical
higher order QED diagrams are shown in Fig. 14.2.
The total QED contribution reads [184,186]:
oep _ 1 (@ a2 o3
ag®® = (—) +0.765 857 376(27) (-) +24.050 508 98(44) (—)
b4 b4 T

m
4 5
+126.07(41) (3) +930(170) (5>
T T
= 116 584 705.7(2.9) x 10~'" .
(14.8)

The electroweak contributions are known. In the standard model, the lowest order con-
tributions come from Fig. 14.3.
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Fig. 14.2. Typical higher order QED contributions to a;.
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Fig. 14.3. Lowest order electroweak contribution to g;.

It reads [186]:

1 toopy = 225 5 T L Zasinony? + 0 (M) ] 195 x 1071
a, ( —OOP)——8—\7§—§7;2' +§( —4sin” Oy )" + (_]\/;) = X ;

(14.9)

where the G, = 1.16637(1) x 1075 GeV2, sin Oy = 0.223 and M denotes My or Miggs.
The full two-loop contribution including hadronic electroweak loops and a leading log-
resummation is [186]:

a¥ (2 — loop) = —43(4) x 107" (14.10)

and gives the total contribution:

a™ =152(4) x 1071 (14.11)

14.1.3 The lowest order hadronic contributions

The main theoretical errors in the determination of the muon anomalous magnetic
moment are due to the strong interaction (hadronic loop) contributions, in the region
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H
14 ¢

Fig. 14.4. Lowest order hadronic contributions to ;.

below 2 GeV, and mainly in the p meson region. The lowest order diagram is depicted in
Fig. 14.4.

Using a dispersion relation, the hadronic vacuum polarization contribution to the muon
anomaly can be expressed as [187-191]:

;o) = 1— Ky o (0). (14.12)
K, (1) is the QED kernel function [192]:
1 2(1 _ )C)

( ) (+3)
— a4z 1+
;1

2
ZM
X |:11’1(1 +Z/1) ZM ?j|

I+2zu\ »
+(q> ZI’« IHZ# s (1413)
with:
1 — 4m?
zM=( ”“), and v, =,/1— —%. (14.14)
1 +wv) t
K,,(t) is a monotonically decreasing function of ¢. For large ¢, it behaves as:
2
m
K, (t > m,) :3—;‘, (14.15)

which will be useful for the analysis in the large ¢ regime. Such properties then emphasize
the importance of the low-energy contribution to al}f‘d(l.o), where the QCD theory cannot
be (strictly speaking) applied. o (t) = o(eTe™ — hadrons) is the ee~ — hadrons total
cross-section which can be related to the hadronic two-point spectral function ImIT(#)ep
through the optical theorem:

o(ete™ — hadrons
R, = = 127 TmIT(F)epy » (14.16)
o(ete” — utu)




14 High-precision low-energy QED tests 139

— LI I N N L B L AL B LN L LA Y NNLANLEL B LI
= - 4
- e T (V,I=1)v(ALEPH)
25 2= e'e > (V, 1) i

2
i & B naive parton model prediction ]
2+ -
[ q ]
L5 -
- L s
(b h
L ]
L < A 4
] i A L R A & .
L / ]
ol ]
0 0.5 1 1.5 2 2.5 3 3.5

Mass® (GeV/c?)?

Fig. 14.5. Isovector spectral function from tau-decay and comparison with the e*e™ data.

where:
Lo Lo dra’®
ogleTe” > uu)= TR (14.17)
Here,
e = / d*x € (01T JL (x) (2 (x)) T 10)
= —(¢""¢* = ¢"¢")Mem(q”) (14.18)
is the correlator built from the local electromagnetic current:
2_ 1. 1_
JE(x) = guy“u - gdy“d — gsy“s + .- (14.19)

The present most precise result comes from combining the eTe™ — hadrons compiled
in [193-198,16] and the precise r-decay data [193,199]. These data are shown in
Fig. 14.5.

An average of the results from e*e™ — hadrons: ) [e*e™] = 7016(119) x 10~'! and
T decay a}*![t] = 7036(76) x 107" data leads to [201]:

ap(l.0) = 7021(76) x 107", (14.20)
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Fig. 14.6. Lowest order hadronic vacuum polarization contributions to a,, from [207].

where the CVC hypothesis has been used in order to relate the electromagnetic to the
charged current through an isospin rotation [200]:

4o’

ou(t) = v, (14.21)

and where a correction due to the w — p mixing has been applied. We follow the notation
of ALEPH [193], where:

1
[C5 —
ImIT;,; , = 7701 (14.22)
is the charged vector two-point correlator:
e, =i / d*x 4501 J2,(x) (J2,(0) T 10)

= —(8""¢* — ¢"¢")NY) ,(¢*)
+q"q" Ty (g% . (14.23)

built from the local charged current JL-{“d’V(x) = uyHd(x). It is amusing to notice that the
central value here coincide with the old result in [209,215]. In [202], the impressive agree-
ment of the result of the hadronic contributions to the QED running coupling « and to
the muonium hyperfine splitting with other determinations (see next section) is a strong
support of the estimate obtained in [201]. In Fig. 14.6, we see that the most recent standard
model theoretical determinations [205,201] are in good agreement with the measured value
[206,207]. After the completion of this work, we became aware of recent determinations
[203] using recent eTe~ — hadrons data from CMD-2 and BES [204] and of more precise
measurement of aﬁXp = 11 659 204(7) (5) x 10~'° [208]. The estimate based on T-decay
agrees with ours whereas the one from e*e™ differs by 1.40 from ours, and leads to a
discrepancy of 30 between a,,” and alSLM of the Standard Model predictions. However, a
new analysis of the scalar meson contributions (SN, hep — ph/0303004) gives an additional
effect ai < 13(11) 107'°, which reduces the discrepancy of alSLM and a,,'. The difference

between the results from e*e™ and 7 decay still needs to be understood.
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¢ ¢

Fig. 14.7. Higher order hadronic vacuum polarization contributions to a;.

¢ ¢

Fig. 14.8. Light-by-light scattering hadronic contribution to a,,.

14.1.4 The higher order hadronic contributions

Higher order contributions were first discussed in [209]. They can be divided into two clases.
The one involving the vacuum polarization is given in Fig. 14.7, and can be related to the
measured eTe~ — hadrons total cross-section, similar to the lowest order contribution. It
gives [201] after rescaling the result in [209,210]:

ap(h.o)yp = —101.2(6.1) x 107", (14.24)

The second class is the light-by-light scattering diagram shown in Fig. 14.8.

Contrary to the case of vacuum polarization, this contribution is not yet related to a
direct measurable quantity. In order to estimate this contribution, one has to introduce some
theoretical models. The ones used at present are based on chiral perturbation [211] and
ENIJL model [212], where to both are added vector meson dominance and phenomenological
parametrization of the pion form factors. The different contributions can be classified in
diagrams Fig. 14.9, where the first two come from the quark (constituent) and boson loops,
whereas the last one is due to meson pole exchanges. The first two diagrams are quite
sensitive to the effects of rho-meson attached at the three off-shell photon legs which reduce
the contributions by about one order of magnitude. The third diagram with pseudoscalar
meson exhanges (anomaly) gives so far the most important contribution. There is a complete
agreement between the two model estimates (after correcting the sign of the pseudoscalar
and axial-vector contributions [213)], which may indirectly indicate that the results obtained
are model independent. However, there are still some subtle issues left to be understood
(is the inclusion of a quark loop a double counting?; why the inclusion of the rho-meson
decreases drastically the quark and pion loop contributions?; is a single pole dominance
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Table 14.1. a™(h.0) 1, x 10"

Type of diagrams [211] [212]
7~ loop —4.5(8.1) —19(13)
quark loop (not added in the sum) 9.7(11) 21(3)
7%, n, n’ poles 82.7(6.4) 85(13)
axial-vector pole 1.74 2.5(1.0)
scalar pole —6.8(2.0)
Total 79.9(18.2) 61.7(23.8)
f q q
7 ~
/ \
L ) Q
\\§§ g /
u
q
M Msno,n, n,o...
u u

Fig. 14.9. Different light-by-light scattering hadronic contributions to a,,.

justified?,...). The results in [211] and [212], after correcting the sign of the pseudoscalar
and axial-vector contributions [213], are given in Table 14.1.
An arithmetic average of the central values and of the errors give:

a)(h.o)L = 70.8(21.0) x 107", (14.25)

One can remark the agreement in sign and magnitude with the contribution of a quark
constituent loop diagram (first used in [209]) without any hadrons [214] and YTO1 in [205].
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Then, we deduce:
a)(h.0) = a}*(h.o)vp + a)*(h.o).L = —30.4(21.9) x 107", (14.26)

where one can notice a partial cancellation between the higher order vacuum polarization
and the light-by-light scattering contributions.

14.1.5 The total theoretical contributions to a,,
Summing up different contributions, the present theoretical status in the standard model is:

SM __ _QED EW had
a, =4a, +au +au

= 116 584 669.9(39.2) x 10" + a}*(l.0.)
= 116 591 846.9(78.9) x 10! . (14.27)

This theoretical contribution can be compared with the experimental average [186] of
CERN?78 [216] + BNL98 [207] + BNL99 [208]:

a;P(average) = 116 592 023(151) x 1071, (14.28)
which is more weighted by the new BNL precise result:
a;P(BNL99) = 116 592 020(160) x 1071, (14.29)
The comparison of the theoretical and experimental numbers gives:

a™ =af® —ad™ = (176 £170) x 107", (14.30)

which can indicate about o deviation from the SM prediction. This result can be used to
give a lower bound on the presence of new physics beyond the standard model. Combining
this result with the world average of a}f‘d(l.o.), we can have the range at 90% confidence
level (CL):

—42 <a)™ x 10" <413 (90% CL) . (14.31)

This range is expected to be improved in the near future both from accurate measure-
ments of a,, and of e™ e~ data necessary for reducing the theoretical errors in the determina-
tions of the hadronic contributions, being the major source of the theoretical uncertainties.
Constraints on some models (supersymmetry, radiative muon mass, leptoquarks) beyond
the standard model (SM) using this result have been discussed in [186,201]. The lower

bounds on the scale of the models using this new allowed range of ;" are typically:
m > 113 GeV : degenerate sparticle mass
M > 1.7TeV : compositeness
Mg, > 55.5GeV : Zee model singlet scalar
M > 1.1TeV : leptoquarks . (14.32)
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14.1.6 The t anomaly

The different theoretical contributions to the T anomaly have been discussed before in [215].
Compared to the case of the electron and of the muon, an eventual precise measurement of
a, will provide a further test of the QED calculation at short distance ¢t = In (M, /m;) not
reached in the electron and muon case. Then, it can provide a measurement of the QED
running coupling & as given by the RGE discussed previously, and a test of an eventual sub-
structure of the 7 lepton. As can be seen in details in [215], the relative weight of the hadronic
contributions has decreased compared, for example, with the weak interaction contributions.
Also, because of the large value of M, the rdle of the p-meson has relatively decreased,
which renders, almost equal, the contribution of the hadrons below and above 1 GeV. This
is a positive feature which can allow a precise theoretical prediction of this observable. An
update of the theoretical predictions obtained in [215] is [201] (in units of 107%):

a®P = 117327.1(1.2),
atV ~46.9(1.2),
a™(l.0) = 353.6(4.0)
a™(h.0)q1, = 20.0(5.8),
a"™(h.0) = 27.6(5.8) , (14.33)

which leads to:
aEM — a?ad +a]r€W —I—a?ED
= 117 755.2(7.2) x 1078 . (14.34)

where we have used the present accurate value of M, = 1.77703 GeV. This value in
Eq. (14.34) can be compared with the present (inaccurate) experimental value [217]:

ad® = 0.004 +0.027 £0.023 , (14.35)

which, we hope, can be improved in the near future.

14.2 Other high-precision low-energy tests of QED
14.2.1 Lowest order hadronic contributions

In addition to the high-precision measurements of the lepton anomalies, some QED high-
precision tests are also performed. As in the case of the lepton anomalies, the hadronic
contributions also play an important for the QED predictions of the running QED coupling
(M) and of the muonium hyperfine splittings v. These contributions can be expressed in
a closed form as the convolution integral:?

o0

1
Ohat = — / dt Ko(t) og(t), (14.36)
47 4m2

2 For a recent estimate and review see e.g. Ref. [202] and references therein.



14 High-precision low-energy QED tests 145

where:
Ohad = Atthag X 10° 0r  Avpag . (14.37)
* For the QED running coupling Aay,g x 10°, the kernel is:
b4 M?2
Kot = (= £, 14.38
) (a)<M%_Z> (14.38)

where @ ~!'(0) = 137.036 and M; = 91.3 GeV. It behaves for large 7 like a constant.
® For the muonium hyperfine splitting Avy,q, the kernel function is (see e.g. [220]):

1 3
Ky = —po| (o +2)In 2 (xu + 7) Inx, (14.39)
1-v, 2
where:
20, M ! . (14.40)
vy = 2Vp— , = T 5 Uy = - T .
P qu " 4’”,3 " Xy

and v is the Fermi energy splitting:
vp = 445903 192 0.(511)(34) Hz . (14.41)

It behaves for large ¢ as:

m*\ (9 + 15
K,(t>m))~p, <[’) (2 In — + iR (14.42)
"

The different asymptotic behaviours of these kernel functions will influence on the relative weights
of different regions contributions in the evaluation of the above integrals.

14.2.2 QED running coupling a(Mz)

Using the same data as for the anomalous magnetic moment, one can deduce the lowest
order hadronic contribution [202]:

Adpag = 2763.4(16.5) x 107 . (14.43)

We add the hadronic radiative corrections Adpg = (6.4 &+ 2.7) x 1073 from the radiative
modes 7’y, ny, mTw "y ... coming from the largest range given in [195] and YTO1 [205].
Using the renormalization group evolution of the QED coupling:

a ' (Mz) = a (0)[1 — Aagep — Adpaal (14.44)

and the available results to three-loops [218] of Aaqep = 3149.7687 x 1073, one can
deduce:

a~'(My) = 128.926(25) . (14.45)

The results in Eqgs. (14.43) and (14.45) are in good agreement with other determinations
[205,219] as shown in Fig. 14.10, but more accurate, thanks to the combined e*e™ and
T-decay data.
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Fig. 14.10. Recent determinations of Aay,q and o' (My). The dashed vertical line is the mean central
value. References to the authors are in [218,219,195,205].

The above results are important for a precise determination of the Higgs mass from a
global fit of the electroweak data as shown in Fig. 14.11.

We expect that with this new improved estimate, the present lower bound of 114 GeV
for the Higgs mass from LEP data can be improved in the near future.

14.2.3 Muonium hyperfine splitting

Using again the same data input as in previous observables, the hadronic contribution to the
muonium hyperfine splitting is [202]:

Avpyg = (232.5+3.2)Hz, (14.46)

which is in excellent agreement with recent determinations shown in Table 14.2.

Here, due to the (Int)/t behaviour of the kernel function, the contribution of the low-
energy region is dominant. However, the p-meson region contribution below 1 GeV is
47% compared with the 68% in the case of a,,, while the QCD continuum is about 10%
compared to 7.4% for a,,. The accuracy of our result is mainly due to the use of the T-decay
data, explaining the similar accuracy of our final result with the one in [220] using new
Novosibirsk data. Combined with existing QED and electroweak contributions:

G 3
Avgep = 4270819(220) Hz , AVyea(l.0) = _TZmEmM <4—> vF >~ —65 Hz ,
T

|AVgea(h.0)| ~ 0.7Hz,  Avpaa(h.0) ~7(2) Hz (14.47)
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VsM = Vr + AVQED + AVyeak + AVhad + Avpaa(h.0) ,
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Table 14.2. Recent determinations

of Avpag
Authors Avyg [Hz]
FKM 99 [221] 240 £ 7
CEK 01 [220] 233+£3
SN 01 [202] 232.5+3.2

S M I SR 008

..... a—lmj); 128.890 + (.09

s

10%

10°

Miggpe (GeV)

one obtains the SM prediction:

from which one can, for example, deduce [202]:

UM 1.000 957 83(5),

VF

Vexp = 4463 302 776(51) Hz ,

one can deduce the SM prediction:

VM = 4 459 031 783(226) Hz ,

Fig. 14.11. x? of the global fit determinations of the Higgs mass using electroweak data.
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(14.48)

(14.49)

by noting that vy enters as an overall factor in the theoretical contributions. Combining this
result with the experimental value of v:

(14.50)

(14.51)
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where the error is dominated here by the QED contribution at fourth order. This result is a
factor of 2 more precise than the one in [220]. One can use this result in Eq. (14.51) in the
expression:

Vg = pp <m—> - (1+a,) (14.52)

m, (1I+ me/m/t)3

where a, = 1.165 920 3(15) x 1073, and:
16 202

and Z = 1 for muonium, o~ '(0) = 137.035 999 58(52) [182,184], cRs = 3289 841960
368(25) kHz. Therefore, one can extract a value of the ratio of the muon over the electron
mass:

"M — 206.768 276(11) , (14.54)

me
to be compared with the PDG value 206.768 266(13) using the masses in MeV units. If one
uses the relation:

Hyu 1
Vp = — ), 14.55
! pF(u%) (U me/m, )} (1433
one can also extract the one can deduce the ratio of magnetic moments:
M—f_f = 4.841 970 47(25) x 1072, (14.56)
Hp

compared with the one obtained from the PDG values of w, /u, and w,/pn%: ./ us =
4.841 970 87(14) x 1073. In both applications, the results in Eqgs. (14.54) and (14.56) are
in excellent agreement with the PDG values.

14.3 Conclusions

We have discussed the evaluation of the hadronic and QCD contributions a,had(l.o), Althag
and Avp,g respectively to the anomalous magnetic moment, the QED running coupling and
to the Muonium hyperfine splitting. Our self-contained results derived from the same input
data and QCD parameters are in excellent agreement with existing determinations and are
quite accurate. One of the immediate consequences of these results is the prediction of
a,, a; and a(Mz). We have used the result for the muonium hyperfine splitting for a high
precision measurement of the ratios of the muon over the electron mass and of their magnetic
moments. These standard model predictions are in excellent agreement with those quoted
by PDG [16] and can be used for providing strong constraints on some model building
beyond the standard model.
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OPE for deep inelastic scattering

15.1 Introduction

Deep-inelastic scattering (DIS) are classical QCD processes playing an important role in
the understanding of perturbative QCD and of the nucleon structure function, where several
structure functions F;(x, Q%)[x (fraction of proton momentum) and Q2 (squared of transfer
momentum)] can be predicted and measured from different targets and beams and different
polarizations. In the past DIS has been used for establishing the parton nature of quarks and
gluons and QCD as a theory of strong interactions.

Atpresent (as we shall see later on), DIS provide quantitative tests of QCD (measurements
of quark and gluon densities in the nucleon, of &, (Q?), . .. ). The theory of scaling violations
for totally inclusive DIS processes are based on the operator product expansion (OPE) and
renormalization group equation.

The OPE has been introduced by Wilson [222] and was proven by Zimmermann [223]
in perturbation theory through the application of the BPHZ method. Let us consider the
time-ordered product of two scalar fields:

T p(x)p(0) (15.1)

which we can write, using the Wick’s theorem studied in Section (4.1), as:

TP(x)p(0) = (017 (¢(x)p(0)) [0)+ : p(x)p(0) : (15.2)
The first term in the RHS is the scalar propagator:
1 i 1

m24ie  (2m)2 x2 —i0 o
(15.3)

]

. d4p —ipx
(017 (¢(x)9(0)) [0) = —i A(x) = / (271)46 F=

where - - - means less-singular terms. It is a c-number (unit operator) but singular forx — 0,
while the operator : ¢(x)@(0) : is regular. In general, any local operators J(x) and J'(y)
can be expanded in a series of well-defined and regular operators O; (x) multiplied with the
c-number C;(x), the Wilson coefficients containing the singularity of the product J(x)J'(y)

151
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for x = y. This leads to the OPE or Wilson expansion:

xX+y
2

T () =Y Calx = y)O, ( ) n=0,12,.... (15.4)
n=0

15.2 The OPE for free fields at short distance

As an application, let us consider the neutral vector current:

Ju() = gy ()« (15.5)

which is a normal ordered product of two quark fields. Applying the Wick theorem studied
in Part 1, one can write:

T(Ju(),(0) = =Tr{{01T (¥ (0)y(x))]0)y, (01T (¥ () (0)[0)y,}
+ 1 Y @)y 01T (Y ()P (0)[0) ¥ (0) :
+ 1 (0% (01T (W (0P (x))10)yu ¥ (x) :
+ 1 Y@y (PO 0) : (15.6)

where the free propagator:

i

_ d* .
OIT (Y (x)¥(ON]0) = —iS(x) = / p4e”p)r - (15.7)
(2m) p—

m+ie’
is singular at short distance (x — 0). Therefore, by inspecting Eq. (15.6), one can see that
the first term is more singular than the second.. ., i.e. Eq. (15.6) is a typical example of an
OPE. Relating the free fermion propagator to the scalar one:

S(x) = (G +mA(x), (15.8)

one can extract the leading singularity for x — 0 from Eq. (15.3), which is quark mass
independent. As the singularity behaves like x> (but not like x), it is on the light cone
and called light-cone singularity. From the expression of the Fourier transform of the
propagator:

. na

. 1 el
/dx e'a" G =2 F(n)e(q)qn_l ; (15.9)

one can see that the dominant contribution of the T-product of the two currents comes from
the most singular part of the c-number coefficients. Therefore, near the light cone, one
obtains [224]:

(x%guy — 2x,%,) B x*
m4(x2 —ie)* 2r2(x2 —ie)?

X [1015p O (x) + €43p O4 ()] + Opu(x) (15.10)

T(Ju(x)J4(0)) =



15 OPE for deep inelastic scattering 153

where O(x) are regular operators:
Ouv(x) =1 ¥ (X)) (0) = YOy ¥ (x) :
O ax) = Y()Yuys¥(0) + Y O)yuysyr(x) :
Oun(x) = Y)Yy (DY ),y (0) : (15.11)
and:
Ounvp = 8ur8vp + 8up&vr — Zuv&up - (15.12)
We have used the relation:
YuVaVo = (Ouivp + i€ap¥5)¥” s (15.13)

where €,,,, is the totally anti-symmetric rank 4 tensor with the properties defined in
Appendix D. Analogous expression can be derived for the current commutator:

T1Ju(x), 1, (0], (15.14)
by using:

1
x2 —je

_ ; L ims(d). (15.15)

where P denotes principal value. Differentiating this expression, it is easy to obtain:

1 1 . (_l)n—l 2
Wi i e O (15.16)

Therefore:
T, () 1(0)] — T, ()L (O] = €(x)[u(x), J,(0)]

i
= —§8(3)(x2)(x2g,w — 2x,x,)

1 .
_ ;x}\S(])[lO‘HKVPOé(x) —+ GM)LUPOZ(X)]

+Ou(x) = Oyu(x), (15.17)
where:
X0
e(xg) = — , (15.18)
|0l

is the sign function.

15.3 Application of the OPE for free fields: parton model and Bjorken scaling
For simplicity, we consider the unpolarized process:

e+p—>e+ X (15.19)
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Fig. 15.1. Kinematics of the e + p — e + X process.

which we have anticipated in Section 2.3. Here, we shall derive explicitly the structure
functions W, »(Q?, v) using OPE for free fields. The kinematics of the process is given in
Fig. 15.1.

There are three independent kinematic variables:

s=(p+k?*, ¢F=k-K?  W=(p+q), (15.20)

where k and k&’ are momenta of the initial and final electrons, p and g are respectively the
proton and photon momenta. In the laboratory frame (proton rest frame) and neglecting the
electron mass, one can rewrite:

s =M,QE+M,),

0
g> = —(0* > 0) = —4EE’sin’ 7
W? =M. +2M,(E —E)+q", (15.21)

where E = ko, E' = k are the energies of the incident and scattered electrons in the proton
rest frame, and 6 is the scattering angle of the electron. The physical region is:

s=M;, <0,  W?=(M,+m,), (15.22)

m, being the pion mass. It is usual to introduce:
v=p-q=MyE—-E), (15.23)

where v/M,, is the energy transfer in the proton rest frame, in terms of which the physical
region condition on W? reads:

2v+q* = ma2M, + my) . (15.24)

The inclusive differential cross-section of the unpolarized process can be written as:

,do 1 1
A3k’ 322 k- p

D) @n)*st(px +K —k— p)l{eX|T|eN)*, (15.25)

o0, A X
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where o/, o, A are the spin components of the scattered, initial electrons and the target
proton. The amplitude is:

1
(eX[T|eN) = ﬁaf(k’)(eyu)ua(k)qj(Xl(—e)J“(O)lp, A) . (15.26)
This leads to the expression of the cross-section as a convolution of the leptonic and
hadronic tensors:

do a?
E' =——L,,W*, 15.27
3k 4k - p)gt " ¢ )

where o = €2 /(47) is the QED fine structure constant. The leptonic tensor is:

1 N A
LM = ZTr{(k +m )y (k" + m.)y"}

= 4(K"k" + K"k + (297 + 4m2) g™ . (15.28)
The hadronic tensor can be written as:
1 iox 1
Wy = E/d4x e'l > ;(p;MJM(x)Jv(O)M;p) . (15.29)
Using the property:
/ d*x &Y (P A (0)],(0)1hs p) =0, (15.30)

A

for physical process, which can be shown by using:

/ d*x &3 (pi AL 0,012 p)

A

= _Cm)*8* (g — p+ px) Y_(ps ML ONXNXI LA p) . (15.31)
X A

The assumption that g — p + px = 0 in the physical region (Eq. (15.22)) would lead to
the contradiction gy > 0. Therefore, one obtains:

1 1
Wy = gfd4x equz Z(p;M[.lM(x), L,O]1A; p) . (15.32)
Fy

Causality requires that the commutator vanishes for x> < 0, such that the integral is only
non-zero for x> > 0. Using the optical theorem, one can relate the hadronic tensor to the
absorptive part of the forward Compton scattering amplitude:

igx 1
Ty = /d“x e'l 3 E)\ (ps AT Ju(x)J,(0)|A; p) (15.33)
by the relation:

1
W,y = —ImT,, , (15.34)
T
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which corresponds to the discontinuity of 7}, across the cut along the line go > 0 in the
complex gg plane:

1
ImT,, = 2—Z_[T,w(q0 +ie)—Tu(go—ie)]. (15.35)

Using the general Lorentz decomposition, one can express W,,,, in terms of the invariants
W; (so-called structure functions) introduced in Section 2.3:

_ qudv 2 1 P-q P-q 2
(o iy - ) (- )
. r’q° 2
+ leuupamWZ%(Q ’ ‘)) . (1536)
For unpolarized process, only W , are relevant. Then, the differential cross-section has
the form:

do a?
dQ*dv — 4M,E?sin*0EE’

{2 sin’ §W1(Q2, V) + cos’ ng(Q2, u)} . (15.37)

Coming back to the OPE of W,, given in Eq. (15.17) between two proton states, one
can notice that the last term is less singular than the two former terms, such that we can
neglect it to a first approximation. The first term can also be omitted as it corresponds to a
disconnected diagram. Also noticing that the operators O are regular and finite for x — 0,
one can Taylor-expand the quark fields:

1
Y(x) = ¥(0) + X" [0, (X)]y—o + 1100 Y (e + - (15.38)
and write:
> 1
Oy ax) = 20: SO g e, O (15.39)
where:

O o ) = 2 (8, 0, PO Y () = TP [y -~ 8y, Y ()] -
O o 0 = 2 [0y - 0, PO s Y () + TP 5[0, -+~ 0, W ()] = (15.40)

For the unpolarized process which we discuss here, the operator O’ will not also con-
tribute. One can express the matrix element:

(P1OY 41, O p) = Oup” Py, -+ Py, + terms containing g, . (15.41)

where @ is a Lorentz invariant constant reduced matrix element which depends on p? = M%
and on quark masses. We have used the fact that the matrix element only depends on p,,
and is symmetric in the indices (1, (2, - - - i,. The terms containing g, in Eq. (15.41) are
of the form p”pg,,u, Pus - - - Py, and so on, which are less singular in x> because g, ,,
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gives rise to x2, and can therefore be neglected. Therefore, the relevant part of Eq. (15.17)
for our process can be written as:

1 .
Wi = =5 50w " / d*x &9 5 e(x)8 V() f(p - x) (15.42)
JT
with:
00 N Zn
= On_ ’ 1543
f@ ; p (15.43)

where one can also notice that due to the form of (’)ﬁ’ i @n vanishes for n even and the

summation in Eq. (15.43) only runs for n odd. Taking the Fourier transform:

+o00 )
f(z)=/ d¢ e F (), (15.44)
one can rewrite:
i 9 e 4 ilg+po)x 1)y..2
W = _ﬁa‘“"pppﬁf d{]—'({)/d x e Y e(x0)8 (x7) . (15.45)
A J—o0

Using:
P2

@) €@ . (1546)

I, = /d4x eiq"S(”)(xz) =
one obtains:

Wiy = f:o deF@O[ —(p-q+ M) guv +2Epupy + Puds + Pody]
x €(qo +¢po)s (¢° +2¢p - q + 2 M) (15.47)

In the Bjorken limit:
pg—>o00, —g*—>o00 and ¢=x=—¢>/Q2p-q) fixed, (15.48)

one can neglect p?> = M;, and deduce:

1 q° Pudy + Pvdu

4 v — —]:()C) <_g v~ 75 PubPv + — ) (1549)

) e pq

which one can rewrite in terms of W ; defined in Eq. (15.36) with:

1
Wi(v, Q%) = 7T =F),
LW, 0% = LF() = FBav) (15.50)
M; 2 £ - 2 _— 2 ’ .

as given in Eq. (2.83) in terms of the Bjorken scaling function F) »(x). This result shows that
the assumption of free-field light-cone structure is equivalent to that of the parton model.
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15.4 Light-cone expansion in ¢;(x) theory and operator twist

For simplifying our discussions, we shall work in ¢g (x) theory with a mass m. The hadronic
current is:

J(x) = $*(x), (15.51)

and the OPE has the form given in Eq. (15.4). In the previous sections, we have used the
OPE at short distance x — 0, i.e. large ¢, such that we can neglect terms of order p - g
compared with g2. For instance, in this case, the tree level amplitude of a forward Compton
scattering reads:

1 1 1
— = —40(—=). 15.52
(g +pP—m> g2 (q“) ( )

In deep inelastic scatterings, the light-cone region x> — 0 corresponds to the Bjorken
limit in Eq. (15.48). In this region, the tree level Compton amplitude reads:
1 1 1
(@+py—m> ¢ 14328
1 2p - 2p - q)* 1
~ 1 24,y +..-+o<—4), (15.53)
q q q q

which expresses that the dominant term of the amplitude in the Bjorken limit is due to an
infinite number of ‘composite operators’. This can be seen by taking the Fourier transform
of Eq. (15.53):

Folg, p) =

. 1 X x)?
/dﬁq e Fo(g, p) ~ — i — (P 3 T (15.54)
X X 8x
Its k-th term can be written as:
1
Fx‘“ o x"(plOy, P - (15.55)
In general the OPE near the light cone has the form (light-cone expansion):
J(x)J'(0) = Z oD | (0), (15.56)
ik

where the index i specifies the type of composite operators. Identifying with Eq. (15.4), the
coefficient functions are:

Cu(x) = CO (et (15.57)

In free-field theory, in order to match the mass dimension of both sides of Eq. (15.56),
the coefficient function should behave as:

. (i)
C]((l)(XZ) ~ (xz)_(dl(>+d_l(j+k—d0.k)/2 , (15.58)

where d,, d; and d) are canonical dimensions of the current J, J' and of the operator
O;(R et This naive power counting is valid for free-field theory as no other mass scale is
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present in the OPE. The index:
T = d(% — k = dimension — spin (15.59)

which governs the strength of the singularity of the coefficient function is called the twist
of the composite operator ijl) " [225]. k is called the spin of the operator and d is its
dimension. The operators of lowest twist dominate in the light-cone expansion. The scalar
field ¢, the fermion field v and the gauge field G, v have twist one. Taking the derivative
of these fields cannot reduce the twist as the derivative increases the dimension by one unit
but changes the spin by 1 or 0. Therefore, the minimum twist of an operator involving n
fields is n. In the light-cone expansion the dominant operators have twist 2. In the presence

of external field, the symmetric traceless tensors of rank k and twist 2 are e.g. of the form:

OgLI"'ﬂk = ¢*DM1 e D;L/((ﬁ s
k—1
(@) l 7 .
O.;vﬂl“'ﬂk = W{WVM Dy, - -+ Dy, ¥ + permutations} ,
k-2
. l .
Og,)m---m = 2_k! Tr{G oDy, "'DukGZk + permutations} . (15.60)

where D, is the covariant derivative which is half the difference of the derivative acting to
the right and to the left. In the presence of an external field the scale dimension counting does
not hold. In the case of a theory with an UV fixed point, the scale invariance is recovered
with the anomalous dimension, and the canonical dimensions are replaced by the scale
dimensions d; and d,ﬁi). Therefore, the light-cone singularity reads for x> — 0 [222]:

i (x?) ~ (x2)~Drrdrk=d2. (15.61)

In QCD, this expression will only be modified by logarithmic corrections as we shall see
later on.
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Unpolarized lepton-hadron scattering

16.1 Moment sum rules

We shall consider the previous lepton-hadron unpolarized process studied in Section 15.3
governed by the T-product of two electromagnetic currents. The general Lorentz decompo-
sition of the hadronic tensor has the form:

Ju()J,(0) = (8,8] — 8,,)OL(x)
(80009, + 0D — 8urgond - ) — 0 9,8,)O5" (x)
+ i €010 Of (x)
+ i (€020 - R - GW,MBVE)"’ + ew,\paﬂa"’)OQ’)(x) , (16.1)

where 9, = 9/dx,, and O; are suitable bilocal operators, where O, corresponds to the
longitudinal structure functions W, — 2x W, defined in Eq. (15.36). The operators Os 4 do
not contribute to the unpolarized process. Using the result in Eq. (15.56), one can write an
OPE for the invariants. In the QCD deep inelastic scattering region, one can neglect quark
mass corrections such that we have a good realization of the SU(n); flavour symmetry.
For the case ny = 2 here (isospin symmetry), the electromagnetic current corresponds to
the third component of SU(2) such that the product J(x)J(0) and the associate composite
operators O belong to the representations:

393=193®5. (16.2)

Therefore the lowest twist (t = 2) gauge invariant operators which dominate the light-
cone expansion are, the non-singlet (A,/2 is the SU(n) s flavour matrix):

k-1
OX')S,M»M _ l? {&%VMDM <D+ permutations} , (16.3)
and singlet operators which mix under renormalizations:
k-1
O(Si,)m--m — %{@VMDM -+- Dy, ¥ + permutations} ,
, o2
0N = 2T {GiaDy, -+ Dy, G, + permutations} . (16.4)

160
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We have omitted terms containing g,,,, the so-called trace terms. Substituting Eq. (15.56)
into Eq. (16.1), one can deduce in momentum space:

T =i f d*x ¢ (p|T J,(x) 1, (0)p)

2N\ —n—1
i i —q
= —(&ud” — quq) Y _(PIO}), . O)p)CL (=gP)g" - g™ (7)

in

+ (g/MCIpQV + Epvqpugr — ngukgpv - guv‘]kqp)

2\ —n—1
i i w, [ —4
X D APIOS L L, OIP)YCS (=" - g™ (7) : (16.5)

where we have defined the Fourier transform of the coefficient functions:

2

—n—1
C(Li?,l(—qz)q”' N (Tq> = / d*x 9% xm ...x“"C(Li’)n(xz) )

) 2 —n—2 . )
C;{LH(—qz)q“‘ ceeghn2 (—Zq ) =i / dx e xt ... xt Cg)n(xz) , (16.6)

and we have used the simplified notation:
1
(PIT Ju(x)J,(0)p) = 3 Z(p;)»ITJM(x)Ju(O)I)»;P) : (16.7)
P

Using the tensor structures:

(PIOS 1 OIP) = Orpysy -+ P, + -
(PIOY . () p) = Qs D™ PP Py -+ Py + (16.8)

where O; are reduced matrix elements not calculable in perturbation theory, and we have
omitted terms containing g,,,, we finally deduce:

Ty =20" Y e Cy(—gHO0), — d CY) (—gHOY), . (16.9)

with:

Cuv = &uv — qudv /4"

duv = 8uv = 4*Pulo/ (P -4 — (P + P4,/ (P - 4) . (16.10)
where w~! = Q?/(2p - q) is the Bjorken variable. Because of crossing symmetry:

T;w(w) = T;w(_a)) , (16.11)

the sum runs only over even n. The unphysical relation in Eq. (16.9) (0 < @ < 1) can be
converted to a physical one w > 1 by using a Cauchy integral to both sides of Eq. (16.9).
Since T, is an analytic function in the complex @ plane with branch cuts along the real
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A
o

Fig. 16.1. Integration contour.

axis for o < —1 and w > 1, as shown in Fig. 16.1, it obeys the dispersion relation:

0?2 dv’
T, = / / ImTw(Qz, ) + subtractions .  (16.12)
0%/2

Using the Cauchy integration to both sides of Eq. (16.9) along the contour in Fig. 16.1,
one obtains:

1 e
5 . :-/ —ImT,w_Z/O dx x"*W,, , (16.13)

where we have used the definitions in Egs. (15.34) and (15.35) and the crossing symmetry
in Eq. (16.11).

Noting that:
f do "™ =68pn-1, (16.14)
c
one can write:
T =2 ¢uCili(=a)00, 1 = dCap_(=¢)05, . (16.15)

Equating Egs. (16.15) and (16.13), one can deduce the moment sum rules for the structure
functions [226]:

1 . s
M) = [ dx xR, 0 = Y €00,
0 i

1 . ~r
M0 = / dx x" 2 Fy(x, 0% =Y C(—gHOY), | (16.16)

0
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where the structure functions F; = F, — 2x F (longitudinal structure functions) and F,
are defined through:

Wp,v = w[e;wFL + d,uuFZ] ) (1617)

and are related to the W; » in Eq. (15.36) as:
2

Fi(x. 0% = —Wi(v, 0% + (1 + é) Wa(v, Q%)
v

i Wa(v, 0?) . (16.18)

Fy(x, Q%) =
The coefficient functions C(L')n and C;’;L in Eq. (16.16) are of short-distance nature and
are calculable using perturbative QCD. The reduced matrix elements @(L’)n and (’A)g )n are
of long-distance nature and cannot be calculable. They can be determined experimen-
tally, which can be done by measuring the moments in Eq. (16.16) at a fixed Q% and
solve it for the reduced matrix elements. In practice, the moments are not very conve-
nient as they are expressed in such a way that direct predictions of the structure func-
tions cannot be made. Instead, one can take their inverse Mellin transform, which can be
obtained by analytically continuing from integer n to complex n following the Carlson
theorem [227].
One gets:

1 c+ioco ; Al
Fra(x, Q%) = 3— / o dn g e (@0, (16.19)
where C is an arbitrary real positive constant. Assuming (for simplifying the discussion)
that only one operator contributes to the moment, we can suppress the index i. Therefore,
one can deduce from the moments in Eq. (16.16):

1 1
Cran(02) /o dx 2" Fra(x., 07) . (16.20)

OL;Z,n =
CL;Z,n

which, when inserted into Eq. (16.19), gives after rearranging the integral:

'd
Frat 0 = [ Dk (2,02 ) Fua (.03) (16.21)

where the kernel function is:

1 efico dn Zlin CL;Z,n(QZ)

2 02) — (02
K(Z, o, QO) 20 Jelin CL;Z,n(Q(z)) .

(16.22)

Equation (16.21) expresses that once we know the structure function at a given Q% for all
x (0 < x < 1), one can predict its value at another 0? using a perturbative QCD calculation
of the kernel function K.
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16.2 RGE for the Wilson coefficients

The Q%-dependence of the structure functions is completly contained into the one of the
Wilson coefficients. As the electromagnetic current is not renormalized, the anomalous
dimension of the composite operators should be cancelled by the one of the Wilson co-
efficients. Using the discussions in Chapter 11, we can write the RGE for the Wilson
coefficients:

3 ‘
vt ﬁ(as)ax— - Z ym(ay)mj— —yDrCO(—gH=0. (16.23)

where y,*) is the anomalous dimension of the composite operators @fli), which can be proven
to be gauge invariant such that the gauge-dependent term in the RGE is absent here. In the
case of non-singlet structure functions, we have only one operator. In the case of singlet
operators, we have coupled RGE due to the mixing of the two operators presented previously
in Eq. (16.4). In this case, one should understand the anomalous dimension as a2 x 2 matrix
and the Wilson coefficient as a two-component vector. The solution to the RGE is:

C,(,i)(Qz/vz,ax,m)ZC,Si)(l,&s(f),m(f))exp[ / dty(’)[g(t)]] (16.24)

where t = 1/21og(Q?/v?). One can also rewrite the solution as:

s l)
C(QY) = C (1, & (1) exp [— f dg (g)} (16.25)
o B(g)

where the 8 function has been defined in Chapter 11 (Table 11.1):

B= ﬂl( )+ﬂ2( )2+~-~. (16.26)

16.3 Anomalous dimension of the non-singlet structure functions

In the following, one can safely suppress the index i because in the non-singlet case, only
one operator dominates the light-cone expansion. Therefore:

i) _ o, o\ 2
VNS = YNSw =V (;Y) +7, (;) T (16.27)

In the following, we shall explicitly discuss the evaluation of . It comes from the
Feynman diagrams in Fig. 16.2.

Using the Feynman rules given in Appendix E for the composite operators, Fig. 16.2a
gives in the massless case and in the Feynman gauge:

s ZZM Ay dVk yRRAA kYT kY (—guw) '
Qr)N k4 (p — k)?

Vi = (16.28)

The relevant contribution to the anomalous dimension is the divergent part of the coef-
ficient of (A - p)"~'A. Using standard Feynman parametrization and shift of momentum
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o
i)
©

=

(d)

Fig. 16.2. Diagrams involved in the evaluation of ..

(see Appendix F), the divergent part is:

dVk N
@ 25, ¢ / d(] — / . (1629
ij le pole =ig i x( *) (EJT)N k2 +p X(l —X)]3 ( :

where:
2k2 a.,B A n—1 A n—1
N = =y yP Bygrex' Aa - pyt. (16.30)
Therefore:
(67 2 CF 2 A
v@ - (_) SEE 2 AA-pyt, 16.31
i lepe =\ ) e a n N AP (1631
where Cr = (N? — 1)/2N, for SU(N), and:
2 2
=< +log4m — yg . (16.32)

Figures 16.2b and c give the same result. It reads:

dVk AFA[YIZA - pYIA - (p+ T2 ](ph)yu
Q)N k2(k + p)? '

V(b) V(C) — ngZCFSij
(16.33)
The pole part of the coefficient of (A - p)*~'A is:

dVk YA - pHA -k 4 x Ak
Qm)N [k2 + p2x(1 — x)]?

n—1
:_(%)é S84 )n—la{/ dex —Z—} : (16.34)

=2

1
v = 2ig°Crpé;; A / dx
0

1 le pole
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The diagrams in Fig. 16.2d give the same contributions as the fermion wave function
renormalization constant Z, defined in Egs. (9.22) and (9.29). In the Feynman gauge, it
gives:

@) _ (%) 2Cr _14
Vij epole — (;) g_‘sij(A “p)TA (16.35)
Adding the different contributions, one obtains the renormalization constant defined as:
(a+b+ct+d)
Z =l (16.36)
(A . p)n—l A

Using the definition of the anomalous dimension:

vdZ . 1
Vo = Z a0 = coefficient of — z) (16.37)
one obtains the result:
C 2 "1
0 F
=—|l1——+4 -, 16.38
Y 2[ w1 ;1} (16.38)
or equivalently:
Cr 2
0
=— |48, -3—- ———|, 16.39
12 > [ 1, Y. 1)i| ( )
with
n 1
Spp = Z 7 (16.40)

The expression of S; , can be analytically continued to complex n thanks to the Carlson
theorem [227] which we have used previously when taking the inverse Mellin transform.
In this case, one can write:

dlogT(z)

16.41
dz ( )

s i 1 Y+ 1)+ ()
n=~n —_— = n : )=
RS TS ve

where the expression of ynl is also known [228] and corrected in [232]. At this order,
the problem of even (resp. odd) structure functions arises. The corresponding anomalous
dimensions are y,"'*. They read:

32 82n + 1) 32 1
1,+ +
g 67T+ =L | — 648,85, — —[S, — S 28, — ————
Yn 9 1*[ +n2(n+1)2] LnS2n = 152 2v"/2][ b n(n+l):|

128 .. 32 3 16

I —S,,[——7] —85F 28
o o TG t g s
6151n4+260n3+96n2+3n+10

9n3(n + 1)

32@2n*+2n+1)  32n; 3 11n*>+4+5n-3
= 68y, — 108, + >+ —""" | (1642
9 B+ 1) 27 z LI Y BIE JO (16.42)
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where:
+ - ot 5 Sy (—DF
S = Sins2 s Sinp = SLn-n/2 S, = —§§3 F ; msz,wrk . (16.43)

16.4 Strategy for obtaining the Wilson coefficients

The main task in perturbative QCD is to calculate the Wilson coefficients. This can be
simplified by the key observation that they are independent of the states which sandwich
the light-cone expansion of the T-product of the electromagnetic current for the forward
Compton amplitude 7},,,. For instance, instead of taking proton states, one could consider
quark or gluon Green’s function with the insertion of the T-product of electromagnetic
current. In the case of quark fields, the truncated (quark external line) Green’s function
reads:

Tun(q, Pluune = i f d*xd*x1d*xy e P01 T J,(x) 1, (0 (x )P (x2)[0) . (16.44)

where p is the quark momentum. Repeating the same reasoning as in the previous section,
one can write the OPE analogous to the one in Eq. (16.9):

L@, Paune = 20" Y € Cr, (=a)OL ™ = €5, (=¢)O5™ . (16.45)

i,n even

where the Wilson coefficients are the same as in Eq. (16.9) but the ‘composite operators’

(’)(L";gf’;‘) are calculable in perturbative QCD. The strategy is to calculate T',(¢, P)irunc

and @2;’? ) in perturbation theory and then deduce the Wilson coefficients order by order
of perturbative QCD.

16.4.1 Non-singlet part of the Bjorken sum rule

In the non-singlet part of the Bjorken sum rule, the Wilson coefficients can be expressed as:
Cos(1,a5(Q%) = C s {1 +Clys (%) +-- } (16.46)
For their evaluation, we shall consider the quark Green’s functions:
Tu(g, ¥) =i / d*x &7 (Y| T 1, () L)) (16.47)
which has the decomposition:
Tuw(g) =enTr +d,T, (16.48)

where e, and e,,, have been defined in Eq. (16.10). We shall also use:

OLR p - ph = (IO " ) (16.49)
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* *

4 4

+ N

Fig. 16.3. Tree-level diagram for a photon-quark scattering.

The quark tree-level diagram shown in Fig. 16.3 leads to the amplitude:

—_

T°=Q212a<p) Vi + Yu——— [ (p) . (16.50)
wy vy L Cryny yupet Gl Crsuy supnt 6 R 20 :

where u ;(p) is the quark spinor, and Q. is its charge in units of e. Introducing the Bjorken
variables, one has:

1 1 1\
T° = Q%d,, | —— — =20%d,, -, 16.51
w = Qydy <x—l x—i—l) 2y n:224~- X ( )
where d,,, has been defined in Eq. (16.10). Then, ones find:
70 =02 2 TP =0 (16.52)
2 =% o L=y :

These results are already known from the free-field theory discussed in the beginning of
this chapter. Solving the RGE for the Wilson coefficient, one obtains the modification due
to QCD at leading order:

2\ W /2B
0 ) , (16.53)

CZ,n(QZ) ~ (10g F
showing that the naive Bjorken scaling is modified by the running coupling of QCD to
leading order. To second order, one has [233]:

281, 3 4

2
+t—+ = —9> . (16.54)
n

Cr
JE— —+_
nn+1) n n+1

clye=
n,NS 4

(25;{" +381, — 28, —

Therefore, to second order, the non-singlet moments read:

a ()" (14 BosBries(@ym) \
(0% 1+ Bo/ B (o, (Q2) /)

[ L+ Chsa@@)/m
L+ Chs,y (os(Q5)/7)

MYS(QH = (

)M,’,VS(Qg) , (16.55)
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where:

pn=v/B— /B (16.56)

This relation is well verified experimentally and used to measure the QCD coupling «;.

16.4.2 Callan—Gross scaling violation

To leading order, the longitudinal structure function, coming from the diagram in Fig. 16.3,
vanishes being defined as F> — 2x F. In the following, we analyze the structure function
to order o.

Non-singlet part
To order «;, the non-singlet part comes from the diagram in Fig. 16.4.
The analysis is simplified by noting that 77, is the only amplitude multiplied by ¢,,q,.
The amplitude from the direct diagram is:

- 1
Tli]‘} dir = _iCFaingZ Zﬁ(pv G)
dVk yo(p+ )y (p+k +q)y (p + by~
Q)N (p+*p + k+ q)°k?

u(p,o). (16.57)
Using:

> i(p.o)Mu(p,0) = TripM] (16.58)
and extracting term proportionnal to g*g", one obtains after usual manipulations:

2 ! ! (1—yz2)
TNS,ZEC—/d/d Y . (16,59
2 L (n) =12 Z[y—[l—(l—y—yz)/)c]]2 ( :

Vﬂ v,

q p+k+q

p+k p+k  + crossed
ip ip

Fig. 16.4. Diagrams contributing to F}¥5.



170 1V Deep inelastic scatterings at hadron colliders

Expanding in powers of 1/x and integrating, one obtains:

¢ o0 1 l n
5= (Z) e Y - +1 (;> . (16.60)

n=1

The crossed diagram doubles the even n contribution and cancels the odd one. Then, one
finally obtains:

o n
TNS =2 (“;) cr Y - Jlr 1 Gc) . (16.61)

n=even

Comparing with Egs. (16.52) and (16.16), one can deduce the scaling violation QCD
correction to the Callan—Gross relation:

e
MYS = 58S (“;) M (16.62)

where for ep scattering §5 = 1/6. Taking the Mellin transforms, one can derive the non-
singlet part of the structure functions:

1
FYS(x, 0% = f dy Cks(y, OHF)S <§,Q2> , (16.63)

X

where:
CY5(y, 0%) = Crx(a,(Q*)/m) 4+ O(«}) (16.64)
where the ozf correction has been evaluated in [235].
Singlet part

The calculation of the singlet part is similar to that for the non-singlet. To the quark diagram
in Fig. 16.3, one has to add the gluonic diagram in Fig. 16.5.

q\u Iﬁj q
p+k A + crossed
k
p p

Fig. 16.5. Diagrams contributing to the gluon component of the structure function.
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For electron-proton scattering, the singlet structure function can be decomposed as:
F(x, 0% = / Ly {Cé(y, 0HF; (5 Q2> +C6(. QHFG (’;C Q2>} . (16.65)
where:
Ci(x, Q%) = Cys+ Cs
as(QZ))z
T

Chs(x, 0% = Cyy (

2 29\ 2
CL(x, 0%) = 4n; Trx(1 — x) (“S(Q )> +Ckt (““‘(]TQ )) . (16.66)

T

C ,’;,  has been defined in Eq. (16.64). The coefficients C 1Q§ and C é‘L have been evaluated in
[235-237]. The full longitudinal structure function is the sum of the non-singlet and quark
singlet components.

It is given by:

FL=F —2xF;=F) +F\S. (16.67)

16.5 Singlet anomalous dimensions and moments

The singlet calculations are more involved than the case of non-singlet and longitudinal
structure functions. The corresponding anomalous dimension is a 2 x 2 matrix because of
the mixing of the operators in Eq. (16.4). Using an expansion of the anomalous dimension

and Wilson coefficient function:
o o\ 2
Yn = Yon (_) + Yin (_) +o
T T

(1, a,(Q%) = C°, {1 ey (a—) ¥ } (16.68)
’ ’ 4
To leading order,
Yon/ B
; a,(03)
CO(1, (%) = Cy) 2 (16.69)
7\ as(0?) y

where the indices i, j = ¢, g indicate quark and gluon composite operators respectively.
The calculation of C ,?. ; 1s very analogous to the non-singlet case by considering the forward
Compton amplitude sandwiched between two quark states for Cfl), , and two gluon states for
Cfl), - One obtains to this order:

CO { 1 for Cn.2

n =10 forC,, " (16.70)

Since the gluon does not couple to the photon to lowest order, one obtains:

Cy (0 =0. (16.71)
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(@) (b)

Fig. 16.6. Diagrams contributing to the singlet anomalous dimensions.

The anomalous dimension matrix reads to leading order:
You You
Yon = . (16.72)

89 88
Yon Yon

The diagrams contributing to the anomalous dimensions are given in Fig. 16.6, in addition
to the contribution from the diagrams in Fig. 16.2. The results are [168,234]:

Cr 2 1
M9 - 2 11— —— 44 —1,
Yon 2 |: n(n+1)+ Z:J:|

j=2
n?4+n+2
‘}/gng = —Zl’lfTR— )
nn+ )(n +2)
2
2 n“4+n+2
= _C A5 . b
Yon F n(n?—1)
1 1 1 "1 n
8¢ _ ol — — — + )+ =L |, a6.73

where Cr = (Nf —1)/2N,., Tg = 1/2 and Cg = N, for SU(N),. To this order, the mo-
ments in Eq. (16.16) read:

on/ Bi
2 o [as(0))"
Man (@Y =3 G (axQZ) ’

iq

Mpa(0*)=0. (16.74)

1
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In order to make a comparison with experiment, it is convenient to diagonalize the
anomalous dimension matrix y,,,. On this basis, one can write:

Q2 V(;/zﬁl Q2 —You/2B1
Mo, (0% = (log ) +C?, <log F) , (16.75)

with:

1
3 [von + Vo i\/ (Yol + ¥oF) +4ngy(§,q] (16.76)

To the next order, the expressions of the anomalous dimensions are known and the Wilson
coefficients read [233]:

+
Yon =

CF 2S1n 3 4 2
cl —c! 252 38, — 28y, — —tn 4 2 — =9,
n,q nNS = 4 < ln+ 1, 2, nin+1) +n +n—|—1 +l’l2

1 6 6 S n*+n+2
nn+l n+2 ]’"n(n+1)(n+2)>
To this order, the moments in the singlet case have more involved expressions, because of
the mixing of operators. We refer the readers to, for example, the papers in [228,232,233],
the review in [49] and book [46] for some expositions of this case. Finally, the expressions
of few moments including three-loop corrections have been evaluated in [238].

1
c _Tan< 1yl (16.77)
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The Altarelli—Parisi equation

Although convenient, the use of OPE to deep inelastic scattering does not provide a trans-
parent physical intuition of the parton model. An elegant reformulation of the moments
which makes a close contact with the parton model picture is given by the Altarelli—Parisi
equation [239] and the review in [48].

17.1 The non-singlet case

One can illustrate this equation by taking the simple example of the non-singlet structure
functions, which one can write as an incoherent sum of quark parton densities ¢ ;(x). In
presence of external fields, the quark parton densities acquire a Q% dependence, and the
structure function can be written as:

Q) =x) 85 (x, 0%, 17.1)
f

where 81}’ S are known coefficients. Using the QCD expression to lowest order, the corre-
sponding moments read:

MYS(0?) = (log(Q2/AB)y"/Pr . (17.2)

From its definition, the moments of the quark densities are:

1
Mya(Q%) = f dx x""qp(x, Q). (17.3)
0
Using Eq. (17.2), one can derive the evolution equation:
oM, (1) 0 (O!S)
—_— = — ) (OM (1), 17.4
T 7 (2) OMeao (17.4)
with t = (1/2)log(Q?/v?). Defining:
1
/ dz 277 PO = -2 (17.5)
0
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and taking the Mellin transform of Eq. (17.3), one can deduce the Altarelli—Parisi equation

[239]:
dqr(x, 1) _as(t) [ dy
e / 2P (2)aren, (17.6)
t y
which one can symbolically write as:
dqr a0
)2 (17.7)

In its infinitesimal form, the equation can be rewritten as:

q(x. )+ dg (x, t)—/ dy/ dz 8(zy = x)q,x. 08 = D+ (Z) PYR@ar] -
(17.8)

One can interpret P;(\;O;(z) (splitting functions) as controlling the rate of change of the
parton distribution probability with respect to . One can check that Eq. (17.5) is satisfied if:

O\ _ 300 1422
Pys(z) =Crp {28(1 7) + o (17.9)
where for any function g:
b dz b dz
_ = D]. 17.10
fo a=2, 8(2) /0 a- )[g(z) g(D)] ( )

17.2 The singlet case

In the case of singlet structure functions, analogous relations can be obtained. The Altarelli—
Parisi evolution-coupled equations are:'

aqf(x 1) as(t)/ dY{ <o>< )q 3.0+ PY (%) G(y,t)} . (17.11)

ang’t)zaS(t)/ d_y{Péﬁ) (£>Qf(y,t)+P(O)< )G(y,t)} (17.12)
t ToJx Y y y

The splitting functions are:

0 _ pO
qu _PNS’

T
P = —(7+ (1 -x)7),
ny

1
Py =Cr—(1+ (1 —x)),
(11Cg —4T)

, (17.13
; ( )

1—x X
PO =206 [ —= +x(1 - —— ) +8(1 —
e ol + x( x)+(1_x)+ +48(1 —x)

! Recall our definition of # which is 1/2 of the one used in the original paper.
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where: T =n;/2 ,Cr = (N? — 1)/2N) and Cg = N. In the limit Cr = Cg = 2T
(supersymmetry of the massless QCD lagrangian Where both gluons and Weyl fermions
transform according to the regular representation of the group), one has the remarkable
relation:

PO+ PO =2n;P + P . (17.14)

By taking the difference of Eq. (17.11) for ¢; and g;, where g; ; are any quark or anti-
quark densities, the gluon term drops out, and one recovers the previous simple result for
the non-singlet (or valence) evolution equations:

Wy _ @ g Vi) = qite ) — g, ). (17.15)
at T
Defining:
(x, t)—zqf(x 1) = Z [q(x, 1) +q(x, 0], (17.16)
flavours

one can also obtain the evolution equations in terms of two independent densities:

T )

—=—"{Z®P)+Ge2nPY} .

o (TP, +Ge2n P}

0G _ a,(1)

o = % () (20 P0+G6oPY} . (17.17)
b

which are convenient to work with in the phenomenological analysis. The solution for a
quark i can be reconstructed by splitting it into its non-singlet g; — £ /2 and singlet X /2
components.

17.3 Some physical interpretations and factorization theorem

We have seen in Eq. (17.8) that one can interpret the (splitting functions) Pz(\? ; (z) as control-
ling the rate of change of the parton distribution probability with respect to ¢. This can be
understood by considering the scattering of an off-shell photon on the parton as depicted in
the different diagrams in Fig. 17.1.

Diagram 17.1a shows the free quark diagram in the parton model with a certain probability
q s (x) of having a fraction of the proton momentum g r(x). After a time ¢, the quark may
radiate into gluons as depicted in different diagrams shown in 17.1b and 17.1c. One can
show that, in the axial (physical) gauge, only diagram 17.1b contributes to the cross-section
and gives a term proportional to ¢:

(17.18)

\ s (1)?
o(y'q >q+gx .
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* *

14 4

or

Fig. 17.1. Scattering of an off-shell photon on the parton.

Q

P(x) is well-defined perturbatively, while f(x) depends on the IR regularization procedure.
One can generalize the above procedure to sum up the contributions of an arbitrary number
of gluons. In the leading log approximation, one can show [240] that only the ladder graphs
in Fig. 17.2 contribute and lead to the factorization theorem:

n 2
o(y'q —>q+g~ (“T(t)> In" % ) (17.19)

It is also important to recall that the splitting functions P;g) are universal (anoma-
lous dimension of the RGE) and consequently the parton densities depend only on the
the target and are independent of the nature and polarization of the probe (vector, axial-
vector, ... ).

17.4 Polarized parton densities

The previous approach can be generalized to parton densities of definite helicity in a polar-
ized target. The quark and gluon densities g;+ and G 1, with helicity & in a target of definite
polarization, are related to the unpolarized ones as:

pa+(x, 1) + pa_(x,1) = pa(x, 1) : s(pa =4qi. G). (17.20)
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*

y
q\‘\
—_—

Py

Fig. 17.2. Ladder diagrams contributing at the leading log approximation.

The corresponding evolution equations can be written to leading order as:

opa+ o, (1) o o
a7 ZB: [Ps, @ Pilp. +Ps®Pyls |1 - (17.21)

Parity and probability conservation gives:
(V) ©)
Py = PA,B; )
©0) 0 _ pO 0)
Pyp, + Py g =Py g +Py g . (17.22)

which imply that (p4, + pa ) = paand (pa, — pa_) = Apa evolve separately for any A.
The evolution equation for the difference is:

Ipat o (1) 0)
—_ = A AP, . 17.23
9t T XB: Ps @ AP,p ( )
The splitting function:
AP =PQ, — P, (17.24)

measures the tendency of a parton A to remember the polarization of its parent B. From the
helicity conservation at the quark gluon vertex, it follows that the non-singlet kernel is the
same as in the unpolarized case:

AP(;Z) = P(O) _ P(O) . (17.25)

U 4+9+ qaq
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One also finds:
T 1
APY = — (x> — (1 —x)?),
q8 ny2

Crl
o _ ~F 2
Aqu —7;(1—(1—)6)),

3
AP;g>=%<(1+x4)(l+ ! )—(1 x))

x  (1—=x)4 X
+58(1 —x)%. (17.26)

In this case, all charge moments are well defined, as the total helicity is finite though the
total number of gluons and quark pairs is infinite. To leading order, the net helicity is also
conserved, such that AP(;g) and APq(g) are zero.

The previous evolution equations for parton densities with definite helicities are sufficient
for the prediction of scaling violations in leptoproduction on a longitudinal polarized target.
Additional information is needed for a transversely polarized target.
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More on unpolarized deep inelastic scatterings

18.1 Target mass corrections

Target mass corrections have been introduced by Nachtmann [229], and later on in [168]. If
one considers the NS part of the moments defined in Eq. (16.16), one can show [168] that
they can be written as:

), 2 % M_zzvj (n+ ! ) 2
e )|““‘“_;<Q2> =Dl + 22y — 12 (@0 18D

Inverting this expression, one can express the structure function in terms of the Nachtmann
variable [229]:

(18.2)

2x
é‘_

1+ /1+4x2M3, / 02

In the region x — 1, higher twist contributions can also be important and can cancel the
target mass corrections [230], it is instructive to do an expansion in x. Keeping the leading
term, one obtains (see e.g. [46)]:

szj%,

Fp'® s 09 = B, @) 4 =55

ldy
x {6x/ —= B, 00 -
0oy

3212

M
+0 ((3 ~ S)OX_—X)NQJ : (18.3)

where the quality of the expansion can be controlled by the size of the next term. This
contribution can be compared with the higher-twist contribution in Eq. (18.6).

18.2 End points behaviour and the BFKL pomeron
18.2.1 The limit x — 1

The NLO perturbative expression of the non-singlet structure function indicates that for
x — 1, it behaves as [231]:

FNS o a- x)2[1n(17x)](as/3zr) i (18.4)
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showing that perturbation theory fails. This result can be generalized to all orders by formally
replacing o, (Q?) by a,[(1 — x)Q?] [241]. One can also interpret this feature because, in
this limit, we are in the bound state regime where the reaction of the type:

y*+N —> N (18.5)

dominates. In this limit, one may also expect that non-perturbative higher twist contributions
behave as [230]:
2
HT 2y Pr X 2
Fy' ' (x, 09) Esz(X,Q ) (18.6)

where pr is the transverse momentum of partons in the nucleon.

18.2.2 The limit x — O for the non-singlet case

This limit has been studied extensively in hadron physics for the non-singlet scattering
process.! It corresponds to the kinematic region where Q? is fixed and the hadronic energy
v going to infinity. This is the so-called Regge limit, where the cross-section of the photon
scattering off the proton is proportional to the structure function:

4’0

a(y*(Q1)p(s)) = > F(x, 0% :  s=0%x, (18.7)

and where the non-singlet amplitude can be expressed as:
TVS(v — 00) >~ f(QHs% | (18.8)

due to exhange of Regge trajectories, either the p trajectory or the one degenerate to it. o, (0)
is the universal intercept of the p trajectory, which has an experimental value of about 0.5.
Therefore, one can show that the structure function behaves as:

FNS(x, Q) ~ x'=%© (18.9)

18.2.3 The limit x — O for the singlet case and the BFKL pomeron

The singlet case is more subtle due to the coupled evolution equations from the presence
of the gluon density. At present, there is no consensus on the behaviour of the structure
functions at Q3 ~ few GeV?. There are three proposals:

¢ Soft pomeron
In this case, the structure functions are expected to behave as a constant in the x = 0 limit. This
behaviour was first considered in [230] and completed later on. However, it has been known for a
long time that a soft pomeron for off-shell processes leads to inconsistencies [243].

¢ Hard pomeron
The previous remark then leads some people to postulate the hard pomeron exchange, where:

F¥(x, Q%) ~x",  F%x,Qf) ~x7’¢. (18.10)

! For a recent review, see e.g. [242].
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e -
ag \J v 4 v -’ -

x = 0.0004 x =0.025

T

Fig. 18.1. Comparison of the measured and BFKL predictions of F, for small x = 4 x 10~* and large
Q2. For a running value of o, the HERA data are in disagreement with the BFKL result (F, should
decrease with Q?).

It has been proved that:
g = Ag (18.11)

and are Q7 independent.

* BFKL pomeron
The usual procedure used now is to assume a given behaviour at fixed Q3 and then evolve the
behaviour using the RGE for an arbitrary Q2. Using a different approach, BFKL [244] found a
different behaviour:

4C,1n2
w=————.

2\ o —was(0%) .
Fz(x,Q) XY : -

(18.12)
which is not compatible with the RGE where the exponent is constant. A comparison of this
prediction with data for a given small x value is given in Fig. 18.1.

A number of speculations have been suggested in order to explain this difference (two different
regimes in x ? o, function of a soft scale of the order of A% but not of Q2 ?...).

18.3 Experimental tests and new developments

¢ In the previous section, we have discussed in detail the scaling violation to the Bjorken sum rule
as an illustration of the OPE approach and of the Altarelli-Parisi evolution equation. We have also
concentrated the discussions on the photon scattering off a proton. A test of this prediction is given
in Fig. 18.2.

We also give the new compiled data from PDG [16] in Figs. 18.3 and 18.4.

¢ In [245], a model which interpolates the soft and hard pomeron parametrization and which can be
used at low O has been proposed. It has been assumed that the soft pomeron contribution is given
by an ordinary pomeron which is constant when x — 0, while one has to find a parametrization
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Fig. 18.2. Comparison of the measured and QCD predictions for F, where the NS and S components

(dashed) are explicitly shown. The full curve is the sum of the two. Data points are SLAC data [246].
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Fig. 18.3. The proton structure function F, from ep scattering versus x at two values of Q2, exhibiting
scaling at the pivot point x = 0.14.

where the cross-section does not blow up when Q% — 0. This can be achieved by replacing the
coupling by:

o, (0%) = &, o

= R In(Q + MY/AY

(18.13)
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Fig. 18.4. The proton structure function F, from ep scattering versus Q2 at different values of x. A
constant c(x) = 0.3(i, — 0.4) has been added to F, where i, is the number of the x bin ranging from
iy = 1(x =0.85) to i, = 28(x = 0.000063).

and the soft pomeron term by:

Q2
C—-C—F—o0, (18.14)
Q2 + M2
where M is a typical hadronic scale of the order of M. In this way, the structure function takes the
form:

~— n= — ) Q2 ~—dNS(n=1—ar¢ NS _ 43NS
Fy = (e2)Bsa; " "= 0 ZASA+C7Q2+M2+BNSO{S” (=1 QB g (18.15)
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Fig. 18.5. Comparison of the measured and QCD model predictions for F, at low x and small Q2.

with:
di(1+x) =141, dV(1=2%) =1-2{", (18.16)

and:

dn) = yu/(=28) . (18.17)

The different fits give a good description of the HERA data at low x and small Q2, as shown in
Fig. 18.5.
The results of the fit give:

Ao = 047, AYS =0.522. (18.18)

which are larger than a hard pomeron fit A = 0.32 — 0.38 but are in the range given by a soft
pomeron fit A = 0.44 +0.04 .

® We also know that deep inelastic scatterings and some other related sum rules have been traditionally
used for extracting the QCD coupling a,(Q?) and the scale A due to their sensitivity to leading
order to these quantities. The determinations of « from different methods will be discussed in
Section 18.4, Chapter 25 and Part VI. Various more involved systematic tests of scaling violations
and modern analysis can, for example, be found in different textbooks [42—46], reviews [47-52]
and also the proceedings of the QCD series of the Montpellier-Conference.

18.4 Neutrino scattering sum rules

For (anti)-neutrino off-proton scattering, we have the following sum rules:

® The Adler sum rule

1
/ X (pir _pry =2, (18.19)
0 X

valid for all @2, and which has no corrections because it is related to an equal-time commutator
[247].
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Fig. 18.6. x F; measured from electroweak scattering of (a) electrons on protons and (b) muons on
carbon versus x and for different Q2.
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Fig. 18.7. x F3 measured from v — Fe scattering versus Q2 and for different x.
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* The Gross-Llewellyn Smith sum rule
It reads [248]:

1
f ‘%[F;P(x, 0Y) + F"(x, 09)] =3{1 —a,(Q%) — 3.58 a}(Q*) — 19.0 4} (0"}, (18.20)
0

where higher order corrections have been evaluated by [249] and are shown in Fig. 18.6.
Data [16] from v-Fe scattering is shown in Fig. 18.7.

18.5 Summary of o; measurements from DIS

The different analysis from DIS lead to the values of «; given in Table 25.3 and Fig. 25.13
from [139]. The most recent and precise result comes from the analysis of F, by [250] using
data on protons from SLAC, BCDMS, E665 and HERA. It leads to:

ay(Mz0) = 0.1166 % 0.0009 (stat) = 0.0020 (syst) , (18.21)

where the systematic error has been multiplied by a factor 2 as a guess of the -dependence
and effects of power corrections not fully analysed in [250]. It reaches the accuracy of the
determination from, for example, the inclusive t-decay data. However, the DIS data have
shown large fluctuations in recent years, and then are less satisfactory than those from ete™
and t-decay data. The previous value o;(Mz0) = 0.113 £ 0.005 from BCDMS, SLAC data
[251] and soon confirmed by the CCFR result from F; 3, become 0.119 £ 0.002 (stat) +
0.003 (th) after a new energy calibration. Recent result on F,y photon structure function is
also available from LEP leading to:

ay(Mz0) = 0.1198 £ 0.0028 (exp) T500¢ (th) . (18.22)

These different DIS results are compared with other determinations given in Table 25.3
and Figs. 25.13 and 25.15. The overall agreement shows a great achievement of the pQCD
calculations.
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Polarized deep-inelastic processes and the proton
‘spin’ crisis

We extend the previous unpolarized deep-inelastic scattering analysis to the case of polar-
ized processes in the aim to study the ‘spin’ content of the proton and, later on (see next
chapter), of the photon from y-y scattering.! Interest on such processes has been stimu-
lated by the EMC collaboration [253] finding that the first moment of the polarized proton
structure function g{ is unexpectedly suppressed compared with the naive quark model
prediction (OZI [254] violation), which has provoked an extensive discussion (see e.g.
[255-261]) of the parton model interpretation of QCD in deep inelastic scattering processes
involving the U (1) axial anomaly [262-264]. We shall be concerned here with the parity-
violating part of the hadronic tensor defined in Eq. (15.36) where the structure function is
defined as:

g =—Ws. (19.1)

Data [16] are shown in Fig. 19.1.

19.1 The case of massless quarks

We shall discuss here the approach based on a composite operator and proper vertex. This
discussion can be consulted in the reprinted paper [260] given in Section 19.4 at the end of
this chapter.

19.2 Extension of the method to massive quarks

We extend the previous approach to the case of massive quarks [261]. In this paper, a detailed
estimate of the slope of the topological susceptibility using the approach of QCD spectral
sum rules in the case of massive quarks is given.? The result [261]:

VA O, 20 = (33.5 +£3.9) MeV , (19.2)

! It is a pleasure to thank Graham Shore for discussions related to this chapter.
A previous estimate of the slope of the topological charge using QSSR in pure Yang—Mills theory has been done
in [265] and confirmed later on by lattice calculations [266].
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Fig. 19.1. The spin-dependent structure function xg1 of proton, deuteron and neutron in DIS of
polarized electron/positron versus x and for different Q? ranging from 0.01 to 100 GeV? (SMC) for
proton and deuteron, and from 1 to 17 GeV? (E154) for neutron.

compared to the massless quark values of (26.4 £ 4.1) MeV [260] is smaller than the OZI
expectation of (43.8 £ 5.0) MeV. As a result, the singlet polarized structure function:

a’=at (‘;—8> NCTOIES (19.3)

where:

1
GV =—2d, GV=d, (19.4)

24/3

has the value [261]:

a’(Q? = 10 GeV?) = 0.31 +£0.02
I (Q% =10 GeV?) = 0.141 +0.005 , (19.5)

which is about the same as the one obtained in the chiral limit, and confirms the expectation
that the result is insensitve to the quark mass values. This result is in agreement with the data,
which may also confirm the proposal that the proton spin suppression is a target-independent
effect due to the screening of the topological charge of the QCD vacuum.
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19.3 Further tests of the universal topological charge screening

The previous proposal can be tested in different processes. This can be done either in
semi-inclusive polarized ep scattering (for a review see e.g. [267]) or in the y y polarized
process.

19.3.1 Polarized Bjorken sum rule

If the previous proposal requiring an identical suppression of the flavour singlet component
for the proton and neutron is correct, one expects that the Bjorken sum rule:

1
SLP ™ =rr -1 = / dx[g](x; 0%) — g} (x; 0]
0

—a,
0

1
= ga(1 - a, —3.583a} — 20215a) + e (19.6)
should hold. The 1/Q? higher twist term can be neglected at higher Q2. Using the experi-
mental value of g4, one may extract the value of «. Instead, we use the previous sum rule
and that of the nucleon [260]:

STP7"(2 GeV?) =~ —(0.203 £0.029),  I'(Q* =2GeV?) ~ —(0.022 +0.011),
(19.7)
from which one can deduce the higher twist terms in units of GeV?:

a, >~ —0.117£0.145 , a, ~ —0.018 £0.025 , (19.8)

which, although consistent with zero are neverthless interesting.

19.3.2 Semi-inclusive polarized ep scattering

An alternative test of the previous proposal is to perform a DIS experiment on a target other
than the nucleon. This can be done by studying a semi-inclusive process in which a single
hadron carrying a large target energy fraction is detected in the target fragmentation region.
This is shown in the Fig. 19.2.

In terms of the fracture function [268] Ml.h /N (x, z, 1, 0%) which represents the joint prob-
ability distribution for producing a parton i with momentum fraction x and a detected
hadron /4 carrying an energy fraction z = pj - ¢/p> - g from a nucleon N ( is the invariant
momentum transfer), the lowest order polarized cross-section reads [267]:

d Ao taeet _ dra’y(2 —y)
dxdQ%dzdt 04

AM!™N(x, 2,1, 0% (19.9)
where:

2
am =3 %AM}”N , (19.10)

i
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u

N N

Fig. 19.2. Semi-inclusive process.

is equivalent to the inclusive structure function g{', and where Q; is the charge of the quark
i in units of e. For large z — 1, the fracture function can be modelled by, for example, a
single region exchange and reads:

AM{™ = F(o)(1 = 272 0g (1% 2 Q2> : (19.11)

where g[* is the structure function of the exchanged region R with trajectory az(#). Inde-
pendently on the detailed model of the fracture functions, one can predict the ratio of the

moments:
Mi(ep > en™X) 25+2  Mi(ep —> eD™X)
Mi(en — entX) 25 —1  Milen — eD°X) "’
K°x 25 41
Miep = K X) 25+ 1 (19.12)
Mi(en - eK*TX) 25 —1
where:
1-z
M, =/ dxAMI'™N . (x,z,1, 0%, (19.13)
0
and:

CS N\ (V2
5(0%) = <C—,$S) ( fnf) VxQ). (19.14)
1 Jr

C; and C1'S are ratio fo the singlet and non-singlet Wilson coefficients. In the OZI limit,
s = 1, such that one expects a large deviation from the previous value of x’(0). In the small
limit z — 0, the previous ratios reduce to the first moment ratio g/ /g7. In the whole range
of z, one expects a deviation of about a factor 2.5 from the OZI prediction.
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Y(q) Y(-q)

Fig. 1. The two-current matrix element (N|J,,(¢)J,(—¢q)IN).

19.4 Reprinted paper
Target independence of the EMC—SMC effect

S. Narison, G. M. Snore and G. Veneziano

Reprinted from Nuclear Physics B, Volume B433, pp. 209-233, Copyright (1995) with permission from Elsevier
Science.

1. Introduction

The discovery by the EMC Collaboration [1] (see also Ref. [2]) of an unexpected sup-
pression of the first moment of the polarised proton structure function g} has provoked an
extensive discussion of the parton model interpretation of QCD in deep inelastic scattering
processes involving the axial U(1) anomaly. (For reviews, see Refs. [3,4].) While it has so
far proved possible with careful redefinitions and interpretations [5] to preserve the essence
of the parton model description, it is becoming clear that these processes involve subtle
field theoretic properties of QCD which lead beyond both the original and QCD-improved
parton approximation. In this paper, we develop an alternative approach to deep inelas-
tic scattering emphasising field theoretic concepts such as the operator product expansion
(OPE), composite operator Green functions and proper vertices. This clarifies some of the
difficulties encountered in the parton description and gives a new insight into the underlying
reason for the EMC result. In particular, our analysis strongly suggests that the observed
suppression of the first moment of gf is a generic QCD effect related to the anomaly and
is actually independent of the target. Rather than revealing a special property of the proton
structure, the EMC result reflects an anomalously small value of the first moment of the
QCD topological susceptibility [6,7].

The essential features of this method are easily described for a general deep inelastic
scattering process. The hadronic part of the scattering amplitude is given by the imaginary
part of the two-current matrix element (N | J,(g)J,(—¢q) | N) illustrated in Fig. 1, where
J,, is the current coupling to the exchanged hard proton (or electroweak vector boson) and
| N) denotes the target. The OPE is used to expand the large Q7 limit of the product of
currents as a sum of Wilson coefficients C;(Q?) times renormalised composite operators
O; as follows (suppressing Lorentz indices):

J@QI—q) ~ Y C(QHO0). (L.D)

0*—oc0 |
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Fig. 2. Decomposition of the matrix element into a composite operator propagator (denoted by the
double line) and a proper vertex (hatched).

The dominant contributions to the amplitude arise from the operators O; of lowest twist.
Within this set of lowest twist operators, those of spin #n contribute to the nth moment of
the structure functions, i.e.

1
/O dxx"'F(x, Q%) = ZC{'(QZ)(N | O}0) | N). (12)

The Wilson coefficients are calculable in QCD perturbation theory, so the problem re-
duces to evaluating the target matrix elements of the corresponding operators. We now
introduce appropriately defined proper vertices Iy, Which are chosen to be 1PI with
respect to a physically motivated basis set Oy of renormalised composite operators. The
matrix elements are then decomposed into products of these vertices with zero-momentum
composite operator propagators as follows:

(N 1O0) [ N) = (0| O:(0)Ox(0) | ()T yx- (13)
k

This is illustrated in Fig. 2. In essence, what we have done is to split the whole amplitude
into the product of a “hot” (high momentum) part described by QCD perturbation theory,
a “cold” part described by a (non-perturbative) composite operator propagator and finally
a target-dependent proper vertex.

All the target dependence is contained in the vertex function I'5yy. However, these are
not unique — they depend on the choice of the basis Oy of composite operators. This choice
is made on physical grounds based on the relevant degrees of freedom, the aim being to
parametrise the amplitude in terms of a minimal, but sufficient, set of vertex functions. A
good choice can often lead to an almost direct correspondence between the proper vertices
and physical couplings such as, e.g., the pion—nucleon coupling g,nn. In particular, it will
be wise to use, whenever possible, RG-invariant proper vertices.

Despite being non-perturbative, we can frequently evaluate the composite operator Green
functions using a combination of exact Ward identities and dynamical approximations
(see Sections 2 and 3). On the other hand, because of the target dependence, the proper
vertices are not readily calculable from first principles in QCD, so we are in general left
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Fig. 3. The original parton model representation of the scattering amplitude.

with a parametrisation of the amplitude in terms of a (hopefully small) set of unknown
vertices. These play the role of the non-perturbative (i.e. primordial or not-yet-evolved)
parton distributions in the usual treatment. Just as for parton distributions, many different
QCD processes can be related through parametrisation with the same set of vertex functions.

Now compare this approach with the parton model. In the original parton model, the
amplitude is approximated by Fig. 3, describing the scattering of a large Q? photon with
a parton in the target nucleon. This picture is already sufficient to reveal Bjorken scaling.
It may be improved in the context of QCD by including gluonic corrections, exactly as in
the OPE, as shown in Fig. 4. These give the logarithmic scaling violations characteristic of
perturbative QCD. The total amplitude is therefore factorised into a perturbative scattering
amplitude for the hard photon with a parton (quark or gluon) and a parton distribution
function giving the probability of finding a particular parton with given fraction x of the
target momentum.

The question of whether the full QCD amplitude can be given a natural parton inter-
pretation depends on the composite operators (J; in the Wilson expansion. For example,
if the lowest twist operator for a given process is multilinear in the elementary quark and
gluon fields rather than simply quadratic then the diagram of Fig. 4 is not appropriate
and the process can only be described in terms of multi-parton distributions [8]. A more
subtle problem arises when the operators O; are non-trivially renormalised and mix with
other composite operators under renormalisation. In this case, the parton interpretation is

Fig. 4. The QCD-improved parton model representation.
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preserved by defining parton distributions directly in terms of the operator matrix elements
(see, e.g., Ref. [8]). This procedure becomes especially delicate [5] in the case of polarised
deep inelastic scattering because of the special renormalisation properties of the relevant
Wilson operator J SSR due to the axial U(1) anomaly.

In this paper, rather than attempt to interpret the amplitude for polarised deep inelastic
scattering in terms of specially defined polarised quark and gluon distributions, we instead
focus the analysis on the composite operator level. By splitting the matrix elements in the
form of Eq. (1.3), we can exploit chiral Ward identities and the renormalisation group to
separate out generic features of QCD manifested in the composite operator propagator from
specific properties of the target. In the next section, we see how this clarifies the origin of
the suppression of the first moment of g} observed in polarised up scattering.

2. The first moment sum rule for g%

Our starting point is the familiar Ellis—Jaffe [9] sum rule for the first moment of the
polarised proton structure function glf. For Nr = 3 and in the MS scheme [10], this reads'

Fp(Q)—fdxg(XQ)

_ é {(GS)(O) + %GE@(O)) [1 - “; —3.583 (0‘;)2 — 20215 (%)3}
2 0. 2 1oy 2
+§GA(O,Q)[1—§;—OSSO(N):|}, @.1)

where the Gﬁf) are form factors in the proton matrix elements of the axial current

(P | Jig(®) | P) = G ((Day,ysu + Gy (kD iysu, (2.2)
and a is an SU(3) flavour index. In our normalisations (see Ref. [7])

G = Lau — 2a),

1
GY = —(Au + Ad —2A4s), (2.3)
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GV = Au+Ad+ As = AX.

We ignore heavy quarks and, for simplicity, set the light quark masses to zero in the formulae
below.

The axial current occurs here since it is the lowest twist, lowest spin, odd-parity operator
in the OPE of two electromagnetic currents, i.e.

Ju(@)(=q) ~ 2 Z €pva’ C”(Q ) gsg + 2.4)
Q*—>00 =038

'We use the NLO and NNLO coefficients given in Ref. [11]. However, due to our definition (2.5) of the
renormalised composite operators, the radiative corrections of the singlet are different from the corresponding
terms in Ref. [11], which uses a different renormalisation of the singlet operators.
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The suffix R emphasises that the current is the renormalised composite operator. Under
renormalisation, the gluon topological density Qr and the divergence of the flavour singlet
axial current J SSR mix as follows [12]:

J,SSR = ngst
1
Qr = Qp — 77-(1 - Z)9" I g (2.5)

where ‘]IBSB = dyuysq and Qg = (aS/Sn)tr(G“"GM) and we have quoted the formulae
for Ng flavours. The mixing is such that the combination occurring in the axial anomaly
Ward identities, e.g.

(0] (9" 25 —2NrQr)Ox | 0) + (0 | 8504 | 0) =0, 2.6)
is not renormalised.

Since J SSR is renormalised, its matrix elements satisfy renormalisation group equations

with an anomalous dimension y, so that in particular Gf)(O; 0?) depends on the RG scale
(which is set to Q2 in Eq. (2.1)).

As we have emphasised elsewhere, GEB) does not, as was initially supposed, measure the
spin of the quark constituents of the proton. The RG non-invariance of J SSR (a consequence
of the anomaly) is itself sufficient to prevent this identification. The interest in the first
EMC data [1,2] on polarised up scattering?, which allows the following result for Gf,f) to
be deduced:

GY0; 0> =11GeV?) = AX =0.19+0.17, (2.7)

is rather that this value for Gf) represents a substantial violation of the OZI rule [13,14],
according to which we would expect

G(0)oz = 3F — D =~ 0.579 £ 0.021. 2.8)
Here, we have used [15,16]
F + D ~1.257 £0.008, F/D ~0.575 £ 0.016 (2.9)

as fitted from hyperon and B-decays. The assumption that the OZI rule is satisfied for Gg)) 0)
is equivalent to the Ellis-Jaffe sum rule prediction for the first moment of g}.

It follows immediately from Eq. (2.2) (assuming the absence of a massless pseudoscalar
boson in the U(1) channel) that

1
G (0; Q%) aysu = 7P "Ik | P), (2.10)

2The combined SLAC/EMC data quoted in Ref. [1] gives

IP(Q* = 11GeV?) = 0.126 £ 0.010 £ 0.015.

The result for GES) in Eq. (2.7) is extracted from the sum rule using the values for ' and D given below and the
running coupling from tau-decay data [30] (see the remarks after Eq. (3.32)).



19 Polarized deep-inelastic processes 197

where M is the proton mass. The anomalous chiral Ward identity then allows Gf) to be
re-expressed as the forward matrix element of the renormalised gluon topological density

QR, i.e.
1
GO(0; 0Haysu = 537 2NE(P | Or(0) | P). (2.11)

Notice that in terms of bare fields, Qg contains both gluon and quark bilinears. This, together
with the explicit factor of « in the definition of the topological density, is the source of the
difficully in giving a natural and unambiguous parton interpretation [5,3,4].

At this point, we apply the method described in the introduction. We choose as the com-
posite operator basis Oy the set of renormalised flavour singlet pseudoscalar operators, viz.
Or and @sg, where, up to a crucial normalisation factor discussed below, the corresponding
bare operator is simply the singlet i 3" Gysq. We then define I'[Qgr, ®sg; P, P] to be the
generating functional of proper vertces which are 1PI with respect to these composite fields
only. (Here, P and P denote interpolating fields for the proton — they play a purely passive
role in the construction.) I” is obtained from the QCD generating functional by a Legendre
transform with respect to the sources for the composite operators Qg and @sg only. We
may then write (cf. Eq. (1.3))

(P Or(0) | P) = (0] Or(0)Qr(0) | 0) Iy, pp + (O | Or(0)Psr(0) | 0) I, pp,
2.12)

where the propagators are at zero momentum.
The composite operator propagator in the first term in Eq. (2.12) is the zero-momentum
limit of an important quantity in QCD known as the topological susceptibility x (k?), viz.

x(k*) = /dx e i(0 | T* Qr(x)Qr(0) | 0). (2.13)

The second term is clearly independent of the normalisation of the renormalised quark
bilinear operator @sg. We choose to normalise this operator in such a way that the in-
verse two-point function ', ¢.,, Which has to vanish at k> = 0, is equal to k2, the correct
normalisation for a free, massless particle. With this normalisation, a straightforward but
intricate argument [7] using chiral Ward identities (see Appendix A) shows that the prop-
agator (0 | Qr®sgr | 0) at zero momentum is simply the square root of the first moment of
the topological susceptibility x (k?). We therefore find

(P | Qr(0) | P) = X(O)T g p7 + X' O ' - (2.14)

The chiral Ward identities further show that for QCD with massless quarks, x (0) actually
vanishes. (This is in contrast to pure Yang—Mills theory, where x(0) is non-zero and is
related to the n’-mass in the large N¢ resolution of the U(1) problem [17,18].) Only the
second term in Eq. (2.14) remains. Remarkably, this means that the matrix element of the
renormalised gluon density Qr measures the coupling of the proton to the renormalised
pseudoscalar guark operator @sg. This happens because the composite operator propagator
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matrix in the pseudoscalar (Qr, @sgr) sector is off-diagonal. We therefore arrive at our basic
result [7],

1
GO0, 0itysu = 537 2NV X O Ty (2.15)

The renormalisation group properties of Eq. (2.15) are central to our argument. With the
normalisation of @sg chosen above, it can be shown [7] that the proper vertex Lo rP isRG
invariant and so has no scale dependence. The scale dependence needed to match Gg)) is
provided entirely by the topological susceptibility which, as shown in Appendix A, satisfies
the RGE

<,ui + ,B(ozs)ozsi — 2y> x'(0) =0. (2.16)
I dag

The challenge posed by the EMC data is to understand the origin of the OZI violation in
fo). The OZI approximation applied to the RHS of Eq. (2.15) would require® (neglecting
flavour SU(3) breaking) I'p_ 5 V2 gponntiysu while /x’(0) 2 (1/+/6) fr.

Our proposal is that we should expect the source of the OZI violation to lie in RG
non-invariant terms, i.e. in x’(0). The reasoning is straightforward. In the absence of the
U(1) anomaly, the OZI rule would be an exact property of QCD. So the OZI violation is
a consequence of the anomaly. But it is the existence of the anomaly that is responsible
for the non-conservation and hence non-trivial renormalisation of the axial current J SSR.
We therefore expect to find OZI violations in quantities sensitive to the anomaly, which we
identify through their RG dependence on the anomalous dimension y . This seems reasonable
since, if the OZI rule were to be good for such quantities, it would mean approximating a
RG non-invariant, scale-dependent quantity by a scale-independent one. If this proposal is
correct, we expect 4/x’(0) to be significantly suppressed relative to its OZI approximation
of (1/+/6) f,. The proper vertex Iy, pp Would behave exactly as expected according to the
OZI rule. That s, the Ellis-Jaffe violating suppression of the first moment of g} observed by
EMC would not be a property of the proton at all, but would simply be due to an anomalously
small value of the first moment of the QCD topological susceptibility x’(0).

In the next section, we attempt to verify this hypothesis by evaluating x’(0) using QCD
spectral sum rules.

3To understand this, we note from Ref. [7] that Eq. (2.15) is equivalently written as one form of the U(1)
Goldbergen—Treiman relation, viz.

0
GE\)(O; 0h) = F02187071NN»

where Fy0z1 and g, NN are respectively the decay constant and nucleon coupling of a state | nozi). | nozi) is an
unphysical state in QCD (i.e. not a mass eigenstate) which in the OZI or large N¢ limit, in which the anomaly is
absent, can be identified as the massless U(1) Goldstone boson. Simple quark counting rules then relate g,,,,NN
to the ng—nucleon coupling g,,nN. This identification is the origin of our choice of normalisation of @sg. In the
OZI limit, I'pszNN becomes the Goldstone boson—nucleon coupling.
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3. QCD spectral sum rule estimate of x’(0)

We now present an estimate of x’(0) in QCD with massless quarks using the method of
QCD spectral sum rules (QSSR) pioneered by Shifman, Vainshtein and Zakharov [19] and
reviewed recently in Ref. [20].

The correlation function x (k?) is defined in Eq. (2.13) and its renormalisation group
equation is given in Appendix A. Including the inhomogeneous contact term [21], we
have

0 0 1
— — =2 k?) = ————28Vk*, 3.1
(Mau + Blas)as b, V) x (k%) N B 3.1
with the beta function
1 d o og\2
Bla) = —n—a, == +p (=), (3.2)
oy du T T

where, for QCD with Nf flavours, ; = —1(11 — 2Ng) and > = —1(51 — L Np), and the
anomalous dimension [12]

y = M%logZ - (“;)2 (3.3)

The extra RG function 8% (so called because it appears in the longitudinal part of the Green
function of two axial currents) is given by

1 1 o\ 2 29 o
(L5 =S 14+ 225 3.4
(ZNF)Zﬁ 3272 (71> ( + 4 n) 34

The RGE is solved in the standard way, giving

X (K, otg; ) = exp (—2 / dr’ y(as(ﬂ))) [x (K*, arg(1); ')
0

-2 f de” BN (s (t")) exp (2 / dr/y(asu/»)] 3.5)
0 0

where ay(#) is the running coupling.
The perturbative expression for the two-point correlation function in the MS scheme is
[22]

2 ~ O 2.2 4 —k2 Oy 1 —k2 29
x (k )P.T,—_(—S ) —k'log— 1+ —=(3p1log—+— ) +...|.
(3.6)

The non-perturbative contribution from the gluon condensates (coming from the next lowest
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dimension operators in the OPE) is [23]

k2
XK Np, = =5 2[<1+2ﬂ1 log—> <asG>—2k2< G3>]. 3.7)

The RGE has been used to check the consistency of the leading log approximation in
the perturbative expression and to fix the radiative correction in the gluon condensate
contribution.

For the QSSR analysis of x’(0), we use the subtracted dispersion relations

1 5 [ 1 1
p[X(k )—X(O)]—/(; nglm x(@) (3.3)
and
*d 1 1
o L1 = x - Bx0)] = /0 t_ztm;hn x(@). 3.9)

Then, taking the inverse Laplace transform [20] of both sides of the dispersion relations
and using the fact that x (0) = 0 in massless QCD, we find*

fdr .1
—e '"—Im x(¢)
0 t T

ES ? 2 -2
:<_> ;z [1 —exp(—tcT)(1 + 1.7)]

8w

[1 2 (29 + 4P — ye) — Sﬁ—log( 1ogm2))}

o < 1 2 Q. >

+ — (s G7) + (gG ) (3.10)
8w

and

) dr 1 @\ 2
x'(0) >~ —e T—Im x(t)— | — | —71t [l —exp(—t.1)]
o 12 T 87 ) w2

oy ﬂZ 2
x |14+ —129 — 48,y — 8—log(—logt A”)
47 ﬂl
+ o (1 (s G?) + s 2(gG?) (3.11)
87 \ 27 " 2w ) '

where o is the running coupling expressed in terms of the QCD scale A from the two-loop
relation:

522) o o B
= —|1—- ——log(—log TA? ) 3.12)
T T T B
with
o, 2
& - (3.13)
7 B log TA?

4For the corresponding results in pure Yang-Mills theory, see Refs. [24,25].
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Fig. 5. (a) t-behaviour of ./x’(0) for different values of the continuum threshold ¢.
(b) Behaviour of different T-minima versus ..

In these expressions, we have cut off the #-integration at some scale ¢, and used the pertur-
bation theory approximation to Im x(¢) for ¢ > ..

In order to extract a value for x’(0) from these sum rules, we keep only the lowest
resonance (the 1) contribution to the spectral function, i.e. we assume

%Im x(t) = 27y, f78(t — i) + “QCD continuum” O(t — t.), (3.14)
where 71,y is the mass of the " extrapolated for massless QCD, viz.

Y~ my, — 3my ~ (0.87 GeV)®. (3.15)
To evaluate Egs. (3.10) and (3.11), we use

A >~ 350 £ 100 MeV (3.16)
for the QCD scale parameter [26],

(¢,G?) ~ 0.06 £ 0.02 GeV* (3.17)

from a global fit of the light mesons and charmonium data [20], and parametrise the triple
gluon condensate as

(§°G* ~ 1.5 £0.5 GeV? (e, G?) (3.18)

using the dilute gas instanton model [19]. We show the result in Fig. 5a for x'(0) plotted
versus t for different values of 7.. In Fig. 5b we show the behaviour of the 7-minima for
different z.. Our optimal result corresponds to the range of values of #, corresponding to the
first appearance of the T-minimum until the beginning of the #, stability region. The value
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of T at which the stability occurs is around 0.4 to 0.6 GeV~2, which is quite small compared
with the light meson systems and is consistent with qualitative expectations [23] of a scale
hierarchy in the QSSR analysis of gluonium systems. This small value of 7 also ensures
that higher dimension operators such as those arising from instanton-like effects will not
contribute in the OPE. We deduce

x'(0)~223+324+28+1.3MeV, (3.19)

where the first error comes from (o G?), the second one from A and the third from the
range of .-values from 4.5 to 7.5 GeV?. The effects of the triple gluon condensate and the
radiative corrections are relatively unimportant, contributing about (3—10)% to x’(0). We
add a guessed error of 5% each from the unknown non-perturbative and radiative correction
terms. Finally, adding all these errors quadratically, we find the following Laplace sum rule
estimate of the first moment of the topological susceptibility evaluated at T ~ 0.5 GeV~:

Vx'(0) =223+ 4.8 MeV. (3.20)

As a check on the validity of this result, we now repeat the analysis using the finite energy
sum rule (FESR) local duality version of the spectral sum rules discussed in Ref. [25]. The
advantage of the FESR method is that it projects out the effects of the operators of a given
dimension [27] (in this case, dimension 4) in such a way that, at the order to which we are
working, the FESR analogues of the sum rules (3.10) and (3.11) are not affected by higher
dimension operators such as those induced by instanton-like effects.

The FESR sum rules are

— 2 2 —
~ (&) iti |:1 + & (29 — 4& - 8&10g(— log rAz))]
4 B

8r ) w22 4 2

o [ 1 ’

=S 21
+ 8 |:27r (&G >:| 32D

and

— 2 —
_ <°‘—) 2, [1 il (29 — 48, — 822 log(— log uﬁ)] . (322
8t ) w2 47 Bi
Analysing Eqgs. (3.21) and (3.22), we realise that the solution increases monotonically with
t. so that no firm prediction can be made, although the result gives a rough indication of
consistency with the previous Laplace sum rule. To overcome this problem, we repeat the
analysis using only the FESR (3.22) and using as an extra input the value of the parameter
Sy extracted from the first Laplace sum rule (3.10). The value of f, is given in Appendix
B. This weakens the #.-dependence of the result and z.-stability now appears as an inflection
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Fig. 6. (a) As Fig. 5a for the parameter f,/ (b) FESR prediction of v/ x’(0) versus ¢, for different values
of fn/ .

point. We obtain the result shown in Fig. 6 for different values of f;; and A, from which
we deduce that with ¢, >~ 6.5-9.5 GeV?2,

%'(0) ~25.5+1.5+2.0+ 1.0 MeV, (3.23)

where the errors come from f;/, A and 1. respectively. Adding the errors quadratically and
including a further 5% error from the unknown higher order terms, we obtain at the scale
7 ~0.5GeV~?

Vx'(0) ~26.5 £ 3.1 MeV, (3.24)

where we have run the result from 7. = 8 GeV? to the scale T = 0.5 GeV~2 using the RGE
solution expressed in terms of A, viz.

x'(0; ) >~ %' (0)exp < (3.25)

8
Bi 10g(M/A)>’
where x’(0) is RG invariant. (Notice that the inhomogeneous term proportional to %) does
not contribute to the first moment at k> = 0.) We see that the FESR result is consistent with
the Laplace one.
Taking the average of the Laplace and FESR results, we obtain our final estimate of the
first moment of the topological susceptibility at the scale T = 0.5 GeV~*:

Vv x'(0) =253 +£2.6 MeV. (3.26)

This result should be compared with that obtained [24,25] in pure Nc = 3 Yang—Mills
theory using a similar QSSR approach:

V=x(0) lym=7 + 3 MeV. (3.27)

It is important to notice that this pure Yang—Mills result has been confirmed by lattice
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calculations [28,29], which is a strong indication of the validity of the methods used in
deriving both (3.27) and (3.26). The introduction of massless quarks has changed the sign
of x’(0) and increased its absolute value by a factor of around 12. From the QSSR analysis,
this effect is due mainly to the low value of the ’-mass of 0.87 GeV (massless QCD) which
enters into the spectral function, compared with the pseudoscalar gluonium mass of about
1.36-1.66 GeV [24,20] in pure Yang—Mills theory.

To compare with the experimental result on the polarised proton structure function, we
use the RGE to run the result for x’(0) to the EMC scale of 10 GeV2. We find

V%' 0) [emc ~23.2 & 2.4 MeV. (3.28)

This is smaller by a factor of 1.64 4= 0.17 than the OZI value of (1/ \/6) fr-. We therefore
do indeed find a significant suppression of x’(0) relative to its OZI value.

To convert this result into a prediction for the singlet form factor, we take our fundamental
expression (2.15) for Gg)) and equate the proper vertex I’ &5 PP with its OZI expression given
by the Goldstone boson—nucleon coupling. In this way, we obtain

G90) = GO0y 2O 3.29
NO) A )021(1/\/6)](” (3.29)

Using the value of fo) (0)oz1 in Eq. (2.8) and including an additional error of approximately
10% for the use of the OZI approximation for the proper vertex, we arrive at our final
prediction:

GY(0; 0% = 10 GeV?) ~ 0.353 + 0.052. (3.30)
Substituting this result’ together with
!
T 23
GY = 4(F+D)

BF - D),
(3.31)

into the first moment sum rule (2.1), using the values of F and D from Eq. (2.9), and
neglecting the higher twist terms (which are certainly negligible at Q> = 10 GeV?), we
deduce

(o GeV?) ~ 0.143 £ 0.005. (3.32)

Here, we have used the coupling as(m.) = 0.347 &+ 0.030 extracted from tau-decay data
[30]. One should notice that the radiative corrections decrease the leading order result by
about 12%.

Our result, Eqgs. (3.30) and (3.32), certainly goes in the right direction, i.e. that of reduc-
ing the prediction from the OZI (Ellis—Jaffe) value. At the time we obtained it, however,

SIn terms of the quantities Au, Ad and As defined in Eq. (2.3), we have at Q2 =10 GeV? Au =0.84 +
0.01, Ad = —0.41 £0.01, As = —0.08 £ 0.02.
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Eq. (3.30) still appeared too high compared to the experimental result (2.7), which would
have implied further OZI violations in the proper vertex. Amusingly enough, while this
paper was being completed we learned of the new results from the SMC Collaboration
which, combined with the earlier proton data, gives the new world average [31]:

P10 GeV?) = 0.145 + 0.008 £ 0.011 (3.33)
from which we deduce
G0, 0> = 10GeV?) = AX = 0.37 +0.07 £ 0.10. (3.34)

These results are now in excellent agreement with our predictions.

4. Tests of the Bjorken sum rule and estimate of higher twist effects

Recently, the SMC Collaboration at CERN [31,32] and the E142 Collaboration at SLAC
[33] have produced data on the polarised neutron structure function gY'. Since our proposal
requires that the flavour singlet suppression is identical for the proton and neutron, we see
no reason why the Bjorken sum rule [34],

srit=rf-nt

1
/0 dx[g)(x; 0%) — g(x; 09)]

1 o o 2 o 3 ap — an
£8A 1———3.583(— ) —20.215{ = + —, “4.1)
T T s Q2

should not hold, at least up to flavour SU(2) breaking. Provided the measurements are at
sufficiently high Q2, the higher twist corrections related to the coefficients ap — ay can be
neglected. Analysis of the combined proton and deuteron data as performed in Ref. [35]
gives at 0% = 5 GeV? [31]

81"1"_" ~ 0.203 £ 0.029, “4.2)
to be compared with the QCD prediction, with «g (5 GeV?) = 0.32 +0.02, of

p—n ap — ln
8Fl ~0.176 £ 0.003 + 7» (43)

From this, one can deduce the difference of the higher twist coefficients (in units of GeV?)°,
ap — ay > 0.135 £ 0.145. 4.4)

Keeping the order « term and using the estimate of the higher twist terms from QCD spectral sum rules, the

authors of Ref. [36] found I'°™" ~ 0.180 & 0.006, in agreement with the data in Eq. (4.2). Our attitude here is
different, as we will extract tile size of the higher twist terms from the data in order to test the reliability of the
previous theoretical estimate of those terms.
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We can pursue an analogous analysis for the first moment of the neutron structure function,
which satisfies the sum rule (cf. Eq. (2.1))

e
1
= /0 dx gl(x; 0%)

V) (o Lo o o\ A%
_6{( GA(0)+\/§GA(0)) |:1 - 3.583<n) 20'215(7[)

2
+3GL0; 0% [1 - %% - 0.550(%) “ + % (4.5)

where we have included the higher twist contribution. Evaluating this quantity at Q> =
2 GeVz, where the SLAC data are available, we find

M2 GeV?) 2 —(0.031 + 0.006) + % (4.6)

Comparing this with the SLAC data [33],
IT'(2GeV?) >~ —(0.022 £ 0.011), (4.7)

and using Eq. (4.4), we can extract the coefficients of the higher twist terms. In units of
GeVZ, we find

ap >~ —0.117 £ 0.145,
(4.8)
an, ~ 0.018 £ 0.025.

These values of the higher twist terms are consistent with the previous determinations
[37,38] from QCD spectral sum rules. However, these sum rules would be affected by a
more general choice of the nucleon interpolating field [20] (the one used in Refs. [37,38]
is not the optimal one) and by the well-known [20] large violation by a factor 2-3 of the
vacuum saturation of the four-quark condensate, which is assumed in Refs. [37,38] to be
satisfied to within (10-20)%. In addition, radiative corrections, which are known to be large
in the baryon sum rules [20], can also be important here. More accurate data on the Bjorken
and neutron sum rules, and/or a measurement of the proton sum rule at lower Qz, are
needed to improve the results in Eq. (4.8), which are necessary to test the validity of the
QCD spectral sum rule predictions in Ref. [38].

5. Further discussion

In this paper, we have presented evidence that the experimentally observed suppression
of the first moment of the polarised proton structure function g} (the so-called EMC “proton
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spin” crisis) is a target-independent effect reflecting a suppression of the first moment of
the QCD topological susceptibility x’(0) relative to the OZI expectation. Not only does
GES)(O) not measure the quark spin, its suppression is not even a property of the proton
structure.

It would be interesting to test this hypothesis directly by polarised deep inelastic scattering
experiments on other targets not simply related to the proton by flavour symmetry. We have
already studied the case of a photon target and have presented elsewhere [39] a new sum rule
for the first moment of the polarised photon structure function g} measurable in polarised
ete™ colliders. However, this turns out to be a special case because the electromagnetic
U(1) anomaly contributes at leading order and so the g} sum rule does not display the
suppression mechanism described here. Another possibility is to consider semi-inclusive
processes in which a particular hadron with a fraction z of the incoming momentum is
observed in the target fragmentation region. It was recently suggested [40] that such cross
sections should be described in terms of new, non-perturbative hybrid functions M(z, x, Q),
called “fracture functions”. To the extent that an OPE can be used, it would be possible
to represent M in terms of the forward matrix element of a composite operator between a
suitable proton-plus-hadron state. In this case, one would again factorise M into a composite
propagator of the usual type and a proper vertex involving four external hadron legs. If the
suppression of the polarised structure function indeed originates from the propagator, as we
suggest, such a suppression should also be found at the level of the (less inclusive) fracture
functions.

So far, we have only considered the first moment of g!'. Of course, we would like to
extend our approach to higher moments and discuss the full x-dependence of the structure
function. This would require knowledge of the renormalisation properties and composite
operator Green functions of the higher spin axial currents and gluon densities [41], together
with the associated proper vertices.

Another possible line of development would be to try to develop techniques to estimate
the proper vertices themselves, rather than just the composite operator Green functions. To
the extent that the quenched approximation may be trusted for the proper vertices, lattice
calculations could already be suitable for the task, and QCD spectral sum rule techniques
could be used in conjunction to check the validity of that approximation. We recall that,
in contrast, the use of the quenched approximation directly for the matrix elements of
the operator Q can be shown to be completely unreliable since these are affected by low-
lying poles that should disappear after dynamical quark loops are added. This is another
example of how the apparent complication introduced by our splitting of matrix elements
into propagators and proper vertices can ultimately pay off.

Finally, it would be interesting to attempt to apply this analysis of deep inelastic scattering
using proper vertices to other QCD processes normally described in the language of the
parton model rather than in terms of the OPE. Semi-inclusive deep inelastic scattering is
one such example, but many other interesting possibilities can be considered, especially in
the context of hadron—hadron collisions.
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Appendix A

Chiral Ward identities and the renormalisation group

The anomalous chiral Ward identities for Green functions of the pseudoscalar operators
Or and ®sy are (for zero quark masses)

ik, (0 | T35 (k) Qr(—K) | 0) = 2NE(0 | Qr(k)Qr(—K) | 0) =0, (A.D)
ik, (0 | JRsg(K)Psp(=k) | 0) — 2Nk (0 | Qr(K)@sr(—k) | 0)
+ (0| 85Psr(—k) | 0) = 0. (A.2)

So, at zero momentum, assuming there is no physical massless U(1) boson,

(01 Or(0)Qr(0) | 0) =0, (A.3)

showing that the topological susceptibility x (0) vanishes for massless QCD, and
1
(O] Or(O)Psr(0) | 0) = ——2(Pr), (A.4)
2Ng

where (@r) is the VEV of the scalar partner of @sg and is non-vanishing because of the
quark condensate.

The field ®sg is normalised such that the two-point proper vertex g, ¢., = k*. This
means that Iy, ¢, is (minus) a component of the inverse propagator matrix in the pseu-
doscalar sector, i.e.

Togag = (0] QrROR | 0)({0 | Qr®Psr | 0)> — (0 | QrOr | 0)(0 | Psp®sr | 0)) .

(A.5)
Expanding to lowest order in k? gives
Togog = X'(0)(0 | Qr(O)Psr(0) | 0)~2k* + OK*), (A.6)
where we have written (0 | Qr(k)Qr(—k) | 0) = x'(0)k* + O(k*). We therefore deduce
(0| Qr(0)®s(0) | 0) = v/X(0). (A7)

as quoted in Eq. (2.15).

The renormalisation group equation for the topological susceptibility follows from the
definition of the renormalised composite operators, Eq. (2.4), and the chiral Ward identities.
The Ward identity for the two-current Green function is

Pk (0 | 05 (k)T 05k (=) | 0) = 2N&(0 | Qr(k)JO5(—k) | 0) = 0. (A8)
Combining Egs. (A.1), (A.8) and (2.4), we find straightforwardly
(0] Or(k)Qr(—K) | 0) = Z*(0 | Qp(k)Qp(—k) | 0) + ... (A.9)

The dots denote the extra divergences associated with contact terms in the two-point Green
functions of composite operators. Taking these into account (see Refs. [21,7] for full details)
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we find the full RGE for x k3,

280 (a)k*, (A.10)

d ad
(Ma_ + Blog)ar - 2)’) X(kz) = -
I das

(2Np)?
where BV is a new RG function. The inhomogeneous term does not contribute at zero
momentum, however, and the required RGE (2.13) for x’(0) follows immediately.

Appendix B

Decay constants and the 1’

We can estimate the parameter f,, appearing in the spectral expansion using the first
Laplace QSSR, Eq. (3.10). f;; is defined by

(01 Tsgk) | ') = iky fo, (B.1)
and is RG non-invariant. On shell (see Ref. [7], Appendix D), the scale dependence is due
entirely to the anomalous dimension y of the axial current so, using Eq. (3.3) and expressing
the result in terms of the QCD scale A, we may write

fo(w) = fyexp < (B.2)

)
Bilog(n/A))
where f » 1s RG invariant. From the QSSR (3.10), we find the t-stability starts at 7. ~
6.5 GeV?, while the z.-stability is reached for z, larger than 9.5 GeV?>. In this region,
the radiative corrections are about 10% of the lowest order term, while the (g3G?) one
contributes about 10%. Under such conditions, our optimal result at T ~ 0.6 GeV~2is (see
Fig. 6a)

Sy =2414+£0.6+3.41+03MeV, (B.3)

where the first error comes from («;G2), the second from A and the third from the
range of f.-values between 6.5 and 9.5 GeV?. Adding a 5% error from the unknown
QCD terms, adding the different errors quadratically and running to the EMC scale, we
obtain

S lEmc = 23.6 = 3.5MeV. (B.4)

This value is strongly suppressed relative to the OZI prediction of +/6 f; for the n’-decay
constant.

However, as has been shown in Refs. [42,7], this f, is not the 1’-decay constant measured
in, e.g., the decay n” — y y. In fact, the analogues of the current algebra formulae

1
fngngg = ;aem (BS)
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and

fr&xNN = mMNga (B.6)

in the flavour singlet sector are [42,7]

1 4
Fauyy + 55 F 3y 8Gyy (0) = —aem (B.7)
and
1 2,2 ©0)
Fgynn + 5 F"m; gonn(0) = 2mnG 7 (0). (B.8)
2Nk
Here, F is the RG-invariant decay constant defined by
2(¢r) . . 2
F==" ( / dx i(0 | T* 355 (x)¢5x(0) | 0>) , (B.9)
n/

where ¢2R =1Xqysq and (¢) = X (gq). The extra terms gg,,, and gonn appearing in Egs.
(B.7), (B.8) (which are properly defined as proper vertices [42,7]) may be thought of as the
couplings of the gluonic component of the n’. They arise because the 7’ is not a Goldstone
boson in the U(1) channel and so the naive current algebra extensions of Egs. (B.5), (B.6)
are not valid. At first sight, therefore, Eqs. (B.7) and (B.8) are not predictive since gg,, and
gonn are unknown. However, if we follow our proposal that OZI violations are associated
with RG-non-invariant quantities we can make predictions.

Taking Eq. (B.7) first, we have shown [42] that gg,,,, is RG invariant. Since in the OZI limit
this term is absent, we therefore expect gg,, to be small, and so to a good approximation
we predict

4
Fyy = —Oem. (B.10)

Since F is RG invariant, we expect it to be well approximated by its OZI value /6 f.
Experimentally (see Ref. [43]), the relation (B.10) is very well satisfied.

In Eq. (B.8), on the other hand, ggnn is not RG invariant so we do not expect this term
to be small. In fact, this equation is just a rewriting of the U(1) GT formula quoted in the
text, for which our proposal is successful.

An important test of our picture of the pattern of OZI breaking is therefore to evaluate
the RG-invariant decay constant F from first principles and check that it is close to the OZI
prediction of /2Ng f,;. Again, we can use QCD spectral sum rules.

We require the zero-momentum limit @5(0) of the two-point correlation function

os(k?) = / dx e (0 | T*¢d(x)p%(0) | 0) (B.11)

for QCD with 3 flavours and massless quarks. However, as there is a smooth behaviour of
the two-point correlator when the common light quark mass mg goes to zero, we shall work
(for convenience) with the RG-invariant correlation function

Ws(k?) = 4mg ds(k?), (B.12)
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Fig. B.1. As Fig. 5a for the parameter f.

where mp is the average of the renormalised u and d quark masses. Now, in perturbation
theory, the difference between this flavour singlet correlation function and the corresponding
non-singlet one appears only at O(e?) from the double-triangle anomaly-type diagrams.
Similarly for the non-perturbative condensate terms, the difference is only of O(c?) arising
from the equivalent diagrams. Instanton-like effects appear as higher dimension operators.
So, at the order we are working, we can simply use the expression for the isotriplet (pion)
correlation function in QCD discussed in the literature [20].
The first Laplace sum rule to two loops reads [20]

e —tT 1
dr e”'" —ImWs(¢)
0 g

~ S5 (r){‘c_2[l —exp(—t.7)(1 + £.7)]

2 2 (. _pB 7182
) { Bi1L |:3 v B1 nen B1 * B} o8
+ (37 (s G?) + B73 parg (wu)’7) } (B.13)

where L = — log 7 A% and [20]

pa(uu)? ~ (3.8 £2.0) x 107* GeV?,

m(t) = L, +ma)) = (1 logr 4277

(12.1 & 1.0) MeV. (B.14)

As before, we parametrise the spectral function keeping only the lowest (") resonance,
ie.

1
— ImWs(1) = 2, f28(t — iny,) + “QCD continuum” 6( — t.), (B.15)
T
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Fig. B.2. As Fig. 5a for ¥s(0).

where the unknown parameter f, which is defined by
2me(0 | ¢% | 1) = V2 fml, (B.16)

can be estimated from the sum rule (B.13). We study the r-and #.-behaviours of f inFig.B.1.
The t-stability starts for 7. ~ 4 GeV?, while stability in 7. appears above 7. ~ 7 GeV?, a
range which is equal to the one for the correlation function for Q(x). The value for the t-

stability of about 0.9 GeV 2 is typical of light quark correlation functions. At the minimum,
we obtain

S =+ Npr(5.55+0.08 £ 0.65 £ 0.35 £ 0.06 £ 0.03) MeV, (B.17)

where the errors come respectively from z., A, 71, («sG?) and pa (uu)?. Adding these errors
quadratically, we deduce

f = /Np(5.55 £ 0.75) MeV. (B.18)

With this value for f, we are now able to estimate ¥s(0) itself using a second Laplace
sum rule [44,25]:

e dr 1 3N,
!1/5(0):/ —e_“—ImlI/S(t)——gmz(r)<t_'[1 — exp(—1.7)]
o t b4 2

2 [y 2 (B e
x{l ﬂ1L|:3+2VE 1()/2 7/1131)—}-2}612 logL]}

+ (37 (e, G?) + %ﬁfﬁpaswu)%)), (B.19)
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where 7, 7, are the coefficients in the anomalous dimension for the light quark mass. For
three flavours, 7 =2 and j = % The sum rule analysis of this quantity shows a strong
t.-dependence and the T-stability only appears at unrealistic values of 7. larger than 8 GeV?.
In order to circumvent this difficulty, we work with a combination of the sum rules (B.13)
and (B.19) which has been used successfully in the past for measuring the deviation from
pion and kaon PCAC to a good accuracy [44]. The combined sum rule reads

WS(O):/C%e_”(l tT)— Imllfs(t)—z— (r)( "ot exp(—1.1)]
0

2 2 - B 7182
X{l ,31L[ + 2y ,31( ,31>+2,31 logL“

+1 (37 (e, G*) + 3807 pag(uu)zr)) (B.20)

This sum rule is studied in Fig. B.2. The position of the stability is almost insensitive to the
value of 7. due to some cancellations amongst the perturbative terms. However, this feature
also implies that the stability is obtained at values of t larger than in the previous cases,
making the result sensitive to the errors on the four-quark condensates, which affects the
accuracy of the result. We deduce

Ws(0) ~ Np(3.70 & 0.90 £ 0.30 £ 0.70 £ 2.00) x 107 GeV*, (B.21)

where the errors are due to f, A, (asG?) and pa (iu)?. Adding these errors quadratically,
we obtain

VW5(0) ~ /Np(1.92 +0.53) x 1072 GeV>. (B.22)

Using this value in Eq. (B.9) (with 7,/), after multiplying the numerator and denominator
by the overall 2my factor and using Dashen’s formula for mg (¢r), we finally find

F ~ (1.55 & 0.43)\/2 Nk £, (B.23)

to be compared with the OZI prediction of /2Ng f;.

This result is again in broad agreement with our expectations, although of course the
errors are much too large to draw a definitive conclusion. Nevertheless, this confirmation
can be taken as providing extra support for the reliability of the estimate in the text for x’(0).
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Drell-Yan process

It corresponds to the sub-process, where the quark and anti-quark come from the two
scattering hadrons, and annihilate into vector bosons (photon, W*, Z°) with large invariant
mass and then produce a lepton pair. A classical example is the annihilation into photon
and with the production of ete™:

gq — ete”, (20.1)

shown in Fig. 20.1. Drell-Yan process offers the possibility to test perturbative QCD as the
large scale is given by the invariant mass of the lepton pair (of the order of My, z at CERN
and Tevatron energies), while the parton densities enter quadratically in this process where
the final state is totally inclusive.

20.1 Kinematics

The kinematics of the process is characterized by the parton distribution ql}" (x) for a quark
of flavour f issued from the hadron %;. The total momentum squared of the subprocess is:

0% = (x1p1 +x2p2)%, (20.2)

and coincides with the invariant mass squared of the photon. The total energy squared of
the hadron is:

s=(p1+p2)*. (20.3)

For large s, one usually neglects the hadron mass, such that one can approximately write:

Q2 >~ X1X2S . (20.4)

Another useful variable is:
Xp =X — X2, (20.5)

and the rapidity y defined as:
tanhy = iilz or y:%lni—; . (20.6)
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e+

X1P1 14

hy XoP2

Fig. 20.1. Drell-Yan process.

Alternatively, in the hadron-hadron centre of mass where the photon momentum is:

q=(E;q),q1), (20.7)
one has:
1. E+
xr=2q)/v5.  y=zl E—q” . (20.8)
-4

20.2 Parton model
20.2.1 Cross-section

In order to evaluate the production cross-section, one calculates the reduced cross-section
corresponding to the subprocess in Eq. (20.1), and write the total cross-section as a convo-
lution. Neglecting quark and electron masses, the point-like cross-section reads, to lowest
order:

4o’ Q?
3N.Q?
where Q  is the quark charge in units of e. The full lowest order differential cross-section

reads:

GloG+q—eTeT)= ; (20.9)

%-g: 3‘;"22 [ i / @8(1—@[ 0" ) + 41 g ()]
(20.10)
where:
r=0%s and zzi. (20.11)

T quantifies the fraction of energy squared that goes into the lepton pair. If 7 is small, then,
one of the x; is small and then favours the sea quark contribution. If the x; is maximal i.e.
around 1/3 ~ 1/4, then the valence contribution will dominate. The Drell-Yan processes
are important as they can provide a non-trivial test of the validity of the parton approach
and of its extension in QCD through the factorization theorem. One expects that the parton
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densities measured in lepto-production for a given hadron target should be relevant to make
predictions on the Drell-Yan and some other DIS processes.

20.2.2 Approximate rules

There are typical rules for Drell-Yan processes.

Intensity rules
From the above-mentioned properties, one expects that, for large x;, the cross-section involv-
ing two valence quarks for producing the eTe™ pair, is much larger than the one involving
one valence and one sea quarks. For an isoscalar target one, e.g., expects:

o(mINU=0)

g NI=0) 1 (20.12)
o(m- NI =0) 4

Scaling

In the region where the naive parton model is valid, one expects that the dimensioneless
quantities:
4 do do 0 do
do*’ dQ%dxyp ’ dQ%dy’

should scale as functions of the scaling variables 7, xr and y independently of Q2.

o* (20.13)

Angular distribution of leptons

For large Q2, where the longitudinal structure function (W) is much smaller than the
transverse (Wr) one, the lepton pair angular distribution originated from an off-shell photon
is predominantly of the form:

do

— ~ Wy (0% D) 20). 20.14
d0%d cos 0 7(Q°, T)(1 + cos” ) ( )

Atomic number

The cross-section being proportional to the number of quarks or antiquarks in the target
nucleus, each contribution adding up incoherently, one expects a linear dependence with
the atomic number A in the Drell-Yan region.

20.3 Higher order corrections to the cross-section
The different processes relevant to the NLO corrections are:
q+q4—>v"
qg+q—>v +g
g+gqorg) — y*+gq(org), (20.15)

where y* produces the lepton pairs eTe~. They are shown in Fig. 20.2.
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Fig. 20.2. NLO corrections to the Drell-Yan process.

Technically, the evaluation of higher order corrections is not easy because of the interplay
between the IR and mass singularities. The NLO corrections have been obtained in [270],
and the NNLO corrections in [271]. The interactions with the spectator quarks induce a
1/Q? power corrections analogue of the higher twist term in DIS. The expression of the
cross-section including the NLO corrections reads:

dUZ.o

dQ?

2
ST [ oo G- omal
¢ f

x [} D@ (x2) + @ (g ()]

+(2) 001 - 90,@[af ) + T 0] (2 01 + (1 2)} . (0.16)
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where:
Cr 3 In(1 — z) 4712)
() —6—4z4+2(1+ 1+ — )80 — ,
40 = [(1_)+ e +20+ >(1_)++<+ L z)i|
1 972 3
D, (z) = [[z +(1—Z)]ln(l—z)+——5 +2] (20.17)

In the case of pp collisions, the valence quarks and antiquarks contribution dominates in
the Drell-Yan region. In the case of pp collisions, the anti-quark comes from the sea such
that the contribution of the anti-quark and of the gluon are comparable.

20.4 The K factor

Noting that the correction term proportional to 6(1 — z) comes from vertex corrections and
from a radiation of zero momentum gluons, which cancels the IR singularity in the vertex,
one can separate this term from the others and rewrite:

81 =2+ (2) ©4(0) = Kuened(1 = )+ (2) @y @ (20.18)
where @ (2)y, is the regular part of ®,(z) and:
Cr 47 o
Kuenes = 1+ = (1 + T) (;) . (20.19)

One can notice that the radiative corrections in the regular part of the cross-section are
small. The most important correction comes from the 72 part of K.crex, Where it has been
noticed [272] that part of this large correction can be resummed and exponentiates:

2

) c
14+ CF% (%) — K(Q% =exp (%n%) , (20.20)

while the remaining correction:

- (1 + 32> (%), (2021)

is comfortably small. However, one should be aware of the fact that the resummation
procedure is not unique. Different phenomenology of the Drell-Yan processes have been
performed at Tevatron, which can be consulted from different contributions at various
conferences, like the QCD-Montpellier series.
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One ‘prompt photon’ inclusive production

We shall be concerned with the process:
hi+h—y+X. (21.1)
This process is very similar to the one hadron inclusive process:
ete” > H+ X (21.2)

with the hadron H replaced by a photon, which we shall study in the next part of this book.
As it has been studied in hadronic collisions rather than in eTe~ [273], further difficulties
and complications arise in practice. However, in contrast to quarks, the photon does not
hadronize and their energies and directions can be measured with better accuracy than
hadron jets. To leading order, the production cross-section is O(xay) which is relatively
smaller than the hadron cross-section O(a?), while backgrounds due to photons initiated
from 7% and 7 productions, are experimentally difficult to separate. In terms of the photon
transverse momentum pr and rapidity variable, the cross-section can be written in the form
[273]:

do _ dUdir +dabrem
dprdn — dprdy  dprdn’

(21.3)

where one distinguishes between the ‘direct’ and ‘bremsstrahlung’ photon productions,
which are known to NLO. Assuming factorization, they read:

dadir h h (XS(U)
dxidx F.' (x1, WF (x7,
dprdn ”E:qg/ xidxa F (s ) F (o M)( o

% d&ij O{S(U)Kidh
dprdn 2 Y

(Va M, H’f))

do.brcm Iy " dz Ols(l)) 2
dprdn Z dxidxy F;' (xy, wF; (x2sM)?Dy/k(Zv/¢Lf) o

i,j.k=q

»8
y dél ()
dprdn | 27

Kﬁ?ﬁhu,ﬂﬂ>- (21.4)
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Fih’ are parton densities in the initial hadrons, which depend on the factorization scale pu;
D, is the parton to photon fragmentation function which depends on the fragmentation
scale ¢, while v is the renormalization scale. 6 are the point-like cross-section, while
the K factors are higher-order QCD corrections evaluated in [274]. In principle the differ-
ential cross-section is function of the three arbitrary variables (i, @, v), and the optimal
physical results should present stabilities or extrema against their variations, which is not
often reached. In practice, the choice 1y = v or uy = v = u is chosen, which minimizes
the arbitrariness in the analysis. Using the NLO QCD predictions, the UA6 collaboration
determined o, from a measurement of the cross-section difference in the pr range from

about 4 to 8 GeV [275]:
o(pp = yX)—o(pp = vX), (2L.5)
which is free from the poorly known sea quarks and gluons distributions, with the results:

5(24.3 GeV) = 0.135 £ 0.006 (exp) T5-00} (th) . (21.6)



Part V

Hard processes in e*e™ collisions



Introduction

In this part, we study different hard and jet processes in e*e™. These concern:

® one hadron inclusive production.

® yy scatterings and the ‘spin’ of the photon.
* QCD jets.

® heavy quarkonia inclusive decays.

® ¢*e” — hadrons total cross-section.

® Z — hadrons inclusive decay

® 7 — v+ hadrons semi-inclusive decays.

These processes are used as classical tests of perturbative QCD, where values of the running
QCD coupling have been extracted. A pedagogical introduction to the physics of ete™ can
be found in, for example, the book of [276]. More modern QCD phenomenology in ete™
can be found in different reviews and in the proceedings of the QCD-Montpellier series of
conferences and many others.
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One hadron inclusive production

22.1 Process and fragmentation functions
We shall be concerned here with the one hadron production inclusive process:
ete” > y*6s)—> H+ X, (22.1)

which is the twin in the timelike region of the leptoproduction discussed previously on the
target H:

Y (—=s)+H— X. (22.2)
In the centre of mass of y*:

q=(/>5,0), (22.3)

the kinematics of the process can be described by the momentum p of the hadron H and
the fraction of beam energy z./s/2, where 0 < z < I:

p=@Vs/2,p). (22.4)

By formal analogy with leptoproduction, one can introduce the structure functions
F f’ 5 (2, 0?), such that the angular differential cross-section reads:

_do 30, [2F (2,5) + = sin 6 Fa(z s)] (22.5)
dzdcost ~ 4 e 2 e ’ '

where in the naive parton with spin 1/2 quarks:

42
6-(0) —
3s

Alternatively, one can introduce the transverse and longitudinal structure functions:

Fr(z, 0*) = 2F(z, Q%)

(22.6)

Fi(z, 01 = 2F(z, Q) + 2Fa2(z. 0%, (22.7)
with which one can express the differential cross-section:
do ~0. | & 1=
——=6"z|Fr(z,8)+ SFL(z,9)] , (22.3)
dz 2
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Fig. 22.1. Transverse Fr = Frand longitudinal F,=F fragmentation functions versus x at /O =
91 GeV. F4 is a parity-violating contribution coming from the interference between the vector and
axial-vector contributions.

where in the naive parton with spin 1/2 quarks:

FL(Zv S) = O
Fr(z,s)=3)_ 07[Dg,(2)+ D (2)] - (22.9)

D(Z’, is the fragmentation or decay function, which is the number of density of H in the jet
of parton p.
The data of these functions compiled by [16] are given in Fig. 22.1.

22.2 Inclusive density, correlations and hadron multiplicity

As in all inclusive processes, one can define the inclusive total cross-section:

Ot = )0t + (22.10)
H
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as the sum of all exclusive channels production of H particles. The one particle inclusive
cross-section density is:
1 pPdo
p(p) = —
Ot d3p
for a particle of momentum p. Similarly for two particles 1 and 2, the inclusive density is
defined as:

: (22.11)

1 pipydo
p(p1,p2) = ———7—, (22.12)
pr-p2 Otot d3p1d3p2
and one can define their correlations:
C(p1, p2) = p(p1, p2) — p(pP(P2) . (22.13)

The average hadron mutiplicity for one inclusive particle are defined as:

d3p
(ng) = / ra p(p), (22.14)

and for two particles:

d3p,d’
(i’l]n2> = / % ,0([71, pz) . (22.15)
12

In the same way, one can also define the third isospin components for the hadron H:

1 3 HdO'H
I = ;;fd pl P (22.16)

22.3 Parton model and QCD description

To the leading order approximation, one has for each parton p:

1
Z/ dZ13HD(ilU(Z) =1
= Jo

1
Z/ dzDfl(z)=1, (22.17)
H YO0

where the first equation reflects the non-singlet charge conservation sum rule, while the
second is the momentum conservation in the jet of parton p. The parton model description
of a one hadron inclusive production is shown in Fig. 22.2, where the photon produces a
hard parton p with four momentum k and with an energy fraction y of the beam energy:

k= (yv/s5/2,K), (22.18)

such that, independently of other partons, the produced parton fragments into hadrons. One
expects that no hard interactions can take place between produced partons because their
separation in rapidity is too wide at higher energies. In the limit of massless partons and
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Fig. 22.2. ete™ — y* — H+ all in the parton model.

negligible intrinsic transverse momentum of the fragments, one has the relation between
the hadron and parent parton:

p=(z/y)k. (22.19)

The cross-section for producing a hadron H with fraction z of the beam energy is obtained
as a convolution of the cross-section for producing a parton with energy fraction y times
the density of a hadrons H in the parton p with the fraction z/y of the proton momentum:

Fl @z 5) = % / 1 %y Zag*ﬂf(y, DY (2/y) (22.20)
where:
Fl'=(2F], —zFY). (22.21)
In the case of the naive parton model, the cross-section reads:
oV 71 =3 Z 0381 —z). (22.22)

One can easily see that the inclusive quark production cross-section to order c; is:

2 2 2
o7 <1)=ﬁ(%>/1 PR R =ﬁ<&)1+xq,+_..
1 2 \x/ )i, T —xp)l—xp) 2 \m/1-x,

1 ray
=2 (“;) Pyg(x )t + - - (22.23)

where the log-divergence of the integral at x; = 1 has been re-interpreted as a factor t =
(1/2)In(Q*/v?).

In the same way, the cross-section production of a gluon is:

. 1 x24+Q2— x5 —x,)°
o¥ TE(x) = ﬁ (ﬁ)/ dx, g 1 2)

2 \n/ Jiy, (I —x)xy +x, — 1)

_ 2CF (m) 14+ (1 —)cg)2

2 \x

{4 =2Ck ("‘_) Poy(x)t + -+ . (22.24)
Xg i
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where the factor 2 indicates that the gluons can be emitted either by quark or by antiquarks.
Therefore, one can deduce:

— 1 : dy O 1 ra
iz s) = mwz/z 7{ [8(1 -n+(2) (thq(w + 5@@))}

s

|
% [Dfy(e/n) + D]+ (2) (2quq(y> + Ef;i(y)> Dog(z/y)} ,

(22.25)

where the sum over flavours is understood. As in the case of electroproduction for the struc-
ture functions, the fragmentation functions obey similar Altarelli—Parisi evolution equations.
To order «, it reads:

0 o
qu,(Z’I) = (;) [Pyq ® Dy, + Pog ® Dyl

0 o
Dy (z.1) = (;> [Pric ® Y (D + D) + Pog ® Dy | (22.26)
i
where the only difference with electroproduction is the transposition Py, <> P,,. In terms
of the singlet and non-singlet fragmentation functions:

Dys = Dy, — Dl]/
Ds = (Dy + D), (22.27)

the evolution equations read:

d o
EDS(L 1) = (;) [Pgq ® Ds +2nyPgy ® Dy]

] o,
—Dy(2.1) = (2) [Py ® Ds+ Pyy ® Dy 1. (22.28)

Factorization of the perturbative (hard gluon radiation) and non-perturbative (hadroniza-
tion) regime at a scale u  in the time-like region has been proved by many authors (see,
however, the notion of fracture functions introduced in [268]). In this case, the inclusive
cross-section of the process can be expressed as:

d L g
%(ﬁe‘ S HAX) = Z/Z ch,»(y, 12 12D (zfy. pu3) . (22.29)

where C; are Wilson coefficients calculable perturbatively and correspond to the cross-
section for the creation of a hard parton i and a momentum fraction y of the beam energy;
D; is the fragmentation function (density of a hadron H in a parton i with fraction z/y of
the parton momentum). The coefficient functions vanish to lowest order for gluons and are
known to higher orders. However, the previous factorization assumption may not work, and
it can be more appropriate to introduce the notion of fracture functions. The phenomenology
of fragmentation functions has been discussed in the literature using different Monte-Carlo
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simulation programs (see e.g. [277]). Detailed analyses of the charged hadron fragmentation
functions have been performed by different LEP groups using data samples at PETRA, PEP
and LEP energies from c.m. energy in the range from 14 to 92 GeV. We show the data in
Figs. 22.3 and 22.4.

These analyses have been used for extracting oy and some QCD power-like corrections.
Combined ALEPH [278] and DELPHI [279] results give:

ay(Mzo) = 0.1257000% (exp) % 0.009 (theo) , (22.30)

where the theoretical uncertainties are mainly due to the scale variations.
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yy scatterings and the ‘spin’ of the photon

yy collisions in e™

+

e~ process are known to be an important source of hadrons as the
e~ — eTe™+ hadrons increases logarithmically with the energy while the
annihilation process e™
from two on-shell photons emitted at small angles using the so-called equivalent photon
approximation [280].

cross-section e
e~ — hadrons decreases like 1/s. The dominant contribution comes

23.1 OPE and moment sum rules
The subprocess:
y + y — hadrons , (23.1)

depicted in Fig. 23.1, where one photon is far off-shell (large Q?) and the other almost on
shell (small k%), can be considered as a deep-inelastic scattering on a photon target with the
kinematic variables:

v=pr-q, v=k-q, 0°=—¢*, x=0%2v, y=0%2v, (232)
and the DIS limit:
0, v, v—>o00, —k*/O*«1. (23.3)

One can also express these variables in terms of the energy E; and scattering angle 6; of
the hard scattered electron, the energy E of the incident electron, the scattered angle 6, of
the target electron and the invariant hadronic mass W. In this way, one has:

0
0? = 4EE| sin® 31 . —k*~EE}?, (23.4)

and:

E| sin®(6;/2) 02
X = / s y=——.
E — E| cos*(6,/2) Q2%+ W2

(23.5)

The formalism is very similar to the case of ep scattering discussed previously where the
gluon is now replaced by a photon. The derivation of the moment sum rules is based on the

232
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Fig. 23.1. e"e~ — ete™+ hadrons process.

OPE of the T-product of two electromagnetic currents (—g? — 00):
2”
T @ICD~ Y D OO

n=2,even
x [} (—=qgHg" ... q" (8" ¢ — q"¢")
+Cy"(—gMg" g™ (8" g — " g" (8" — q"q")]
o
t X O O G g i g (236)
n=1,odd

where OZ ", and OQZ] ., are set of even and odd parity, twist-2 operators (including
photons) listed in Egs. (15.60), (16.3) and (16.4). The sum 4 runs over non-singlet, sin-
glet, gluon and photon operators. Introducing this expression into the four-point function

JuJvA, A,, one obtains:

<O|Oh n

el

- k_4@}m(k2)kﬂ3 o 'kun(kzg?»mgpuz — kakyu, 8uap — Kpkus 8 + kuaki, 83p)

(n > 2, even),

Ax(k)A,(=k)|0)

and

010%™ A, (k)A,(—k)|0) = (9" kD, -k i€apuak®  (n =2, odd) (23.7)

3,4l

Therefore, the moments of the photon structure functions read:

1
My = / dy y" ' Fl (. Q°. k) = ZCZ‘"“(QZ)@”’”“(kz),
My = / dy y" ' (y. Q% k%) = Zch HEHOMH )

MY = / dy y"'gl (v, Q% k%) = ) C3(QHOF" (k). (23.8)
0 h
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where C; = C, — C; and C3 are Wilson coefficients and O are reduced operators or form
factors.

23.2 Unpolarized photon structure functions

One can introduce the ‘electron’ structure function F; similarly to the case of the proton
structure function in ep scattering given in Eq. (15.50) (the other structure functions Fy
and F} are defined in a similar way). In terms of which, the unpolarized cross-section reads

[267]:
— 21/‘ sz/ <XS _ Q2) e Q2 e
o =2nua A 14 x5 F, x5 Fr|. (23.9)

The ‘electron’ structure function can be related to the conventional photon structure
function ;" using the Altarelli-Parisi evolution equation [281]:

2
F,-g(x,Q2)=%/ dk f dyx ( )FV(y 02k, (23.10)
A .

where i = 2, L and:
1 2
P, = Z(l —(1-=2)), (23.11)

is the splitting function. Using the previous evolution equation into the expression of the
cross-section, one can derive the x-moments of the cross-section:

1 d3O' Ol3 1 1 oy -
dx x" = "P,.(z "F (y, 07, k7). 23.12
[ axe s = o [ b [0 0. @aa

Forn = 1,3, ..., the z integral is finite, to which corresponds the moment sum rules of
the structure functions:

1
Mgn) — [ yn—llyi]/(y’ QZ, k2) — Z Cih,n+1(Q2)@h,n+l(k2) . (23.13)
0 h

One can notice that for n = 0 (total cross-section), the z integration is logarithmically
divergent. More explicitly, one can express the cross-section as:
d*c d*c
————(ee — eeX) ~
dQ*dy dQdy

(ey — eeX)D(E) . (23.14)

where the photon flux factor is:

E E 92 max
In

E'in me

a (! > dk? o
PE)= — " Py, — ~2—1 23.15
()hfozy(z)()k2 ~In (23.15)
after taking the cuts:

_k2 = E2622max , k2 = m2 s Ey > Enins  Zmin = Emin/E . (23.16)

max min e
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Assuming that the photon structure function is crudely approximately constant, and using
the differential cross-section:

o ( X) = 2762 — (1 ‘ + ’2> Lrr . 0% (23.17)
———(ey > eX)=2ma*— (1 —t+ =) - , , .
gy’ 0’ 2) vy
where ¢t = Q?/ys, one can deduce for Q%/xs < 1:
4 E EOymax . 2E?
o =a 5 In ——In 20N 10 S FY (23.18)
min min ne Vmin

where further cuts Jp,x = s/2 and D, have been taken for b = k - g. One recovers the
result of [280] obtained using the equivalent photon approximation.

The parton model contribution to F) comes from the box diagram and dominates over
the vector meson contribution. For large Q2, the parton model expression reads:

Fl(x, 0% = (NC Z Q;‘) 8ax P,y (x)In Q* (23.19)

where P,y (x) s the splitting function encountered previously in the case of ep scattering but
the gluon is now replaced by a photon. Witten [282] pointed out that QCD corrections affect
the parton model expression in Eq. (23.19), and his result has been extended to next order
in [283]. The moments of the photon structure functions can be expressed in a similar way
as in the case of gluons, where there is a mixing between the quark and photon operators.
It reads [282]:

1 n—2 gy 2 0 % 1
/dex F,(x,0)~a anlnﬁ—i—anlnlnﬁ—i—bn—f-(’) @ ,  (23.20)

where the VDM contributions are included in the 1/1n Q? term. a,,, @, and b, have been
calculated in perturbation theory by the previous authors: a,, depends on the one-loop anoma-
lous dimension and one-loop B-function; d@, depends in addition on the two-loop 8 func-
tion. In addition to the previous dependences, b,, depends also on the two-loop anomalous
dimensions and one-loop contribution to the Wilson coefficients, and is renormalization-
scheme dependent. Extensive phenomenology of this process exists in the literature (see for
example [49]).

23.3 Polarized process: the ‘spin’ of the photon
23.3.1 Moments and cross-section

We will be interested here in the polarized yy process, in which one can test the idea of
the universality of the topological charge screening discussed in the previous chapter. An
approach similar to the case of the unpolarized y y process gives the results in terms of the
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g1 structure function as defined in Eq. (19.1):

dk? d
gix. 09 = 5 /0 / DIA ye(g)gm,gz,kz), (23.21)

where:
AP,,=2—12z, (23.22)

is the splitting function. The ratio of the polarized over the unpolarized cross-section is:

Ao 1a, Q2 : : )
(e} _ a Qmml = max |:1 ~|—11’1 max (hl leﬂ> s (2323)

o 2a, s Qrznm A?

where one can approximately take a, >~ a,,. The moment is given in Eq. (23.8). The Wilson
coefficients have a 3 x 3 anomalous dimension matrix " in the hadron sector and another
y,,h ¥ reflecting the mixing of the photon and singlet hadron operators. It explicitly reads:

MP(Q% k) = Ch" (1, as,(Q*)T exp — / 1y (1) OL" (K2, (), @)

+ [C?’”(l, @ (Q*)7T exp — / di'y,” (") + CY"(1, ax<Q2>>}

x O (K2, a5 (1), @) . (23.24)
To leading order, one obtains:
Q2
A?
For n = 1, there is no operator R, i, such that the lowest twist 2 operator is the axial current
J,i5. To, leading order, one can write

M@ k)= 2Tr (0°29)0F (K, . )
a#0

M2, K = %an In n >3 odd. (23.25)

+n,'Tr Q2exp{—/ dﬂy(as(r’))@g*”(k{as(u),a)} . (23.26)
‘ 0

23.3.2 The g! sum rule and the axial anomaly

The AVV vertex and chiral Ward identities

Let us define the vertices:

T4 (p, ki, k=017 %5(p) (k) T, (kIO) = TS5 = Ty ysh?d
T4, (P ki, k)=(01JE ()L (k) T, (k)I0) B = iyshys
Lo, ki, k)=(01Q(PI k)T, (ka)I0) : Q= (ary/87) Tr G, G, (23.27)
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where A are SU (3) matrices. The conservation of the electromagnetic currents implies:
KiTS,,(p ki, ko) = 0 = ST, (p, ki ko) (23.28)

The vertices obey the anomalous chiral Ward identities.

. a a NC o
i Ty = 2T, + S lapuph] =0 (a#0)

ip*1?°

N, .
00— 2mT,  —2n Tz, + T3 laroupki K=o, (23.29)

where: [, = TrQ?A? is related to the quark charge Q in units of e. Then, for n =3,
ly=2/3, I3=1/6,andlg =1/ (6\/§). The AVV vertex function has the general Lorentz
decomposition:

—i{01J;5(p)Ja(k1)Jp(k2)10) = AT € pak + A€ paks
+ Al apk ik kap + Afepapki ks Ky
T+ A%€apkikl ki, + A€, puskikl ks . (23.30)

where A%(p?, k3, k3) are invariants. In the case of the n = 1 sum rule with p =0, k; =
—k = k, one can deduce away from the chiral limit m2 # 0:

07 (k) = dma (AY — AS) (0, K, k?) . (23.31)
Rewriting:
N,
(AT = 43) (0, 1%, k) = Z5TH Q) Fu(k?, 1) (23.32)
T

one obtains for n =3
1
M@ k) = / dy ¢ (v, 0°. k)
0
- %[m(/&) + Fy(k®) + 8Fy (K2, 0], (23.33)

where the singlet form factor F, has a non-trivial Q> dependence due the anomalous
dimension y.

Non-singlet form factors

Using the conservation of the electromagnetic current on the AVV (amputated) vertex in
Eq. (23.28), one can derive:

1
AY = ASk3 — A‘;z(kf +k5—p?). (23.34)

Assuming a smooth behaviour of the form factors in the limit p — Oand k; — —k, — *k,
one obtains:

A0, k%, k%) = K2 (A§ — A2)(0, k%, k%) O(K?) , (23.35)
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by assuming in addition that there is no 1/k? pole in the form factors A; (i = 3, 5) (and
i =4, 6if one assumes that a similar result holds for A9). Defining the form factor F:

2mTY,, = Fa€spapkiks | (23.36)

and considering the previous Ward identities, one obtains:

N,
Al — A0,k k) = —F (k) + —51, . 23.37
(A = A3)( ) )+ 13 (23.37)
Identifying with the result in Eq. (23.32), one obtains:
Fa(k?)
F,() =1—-"2 23.38
a(k?) Z.0) ( )

Expressing the PVV vertex in terms of the pion field and coupling to y y, one obtains the
leading-order relation:

1
Fulk®) = —— fu&niyp k) 1 fr =92.4MeV, (23.39)
8o
which gives:
(K2
Fud) = 1 — Smrr &) (23.40)
8r.yy(0)

Using an OPE of the PVV vertex for large k2, one obtains:

ka a ap
(o (k) T, (=K)[0) ~ 2€xpauk—203’l(k2)(ﬂa|15’ (0)[0) . (23.41)
Therefore, one can deduce:
1672 f?
F,(k>)=1— — =~ 23.42
(k) N, (k) ( )

Combining this result with the one in Eq. (23.40), one can deduce that the form factor
interpolates smoothly from 0 to 1 when k? varies from zero to infinity. We can parametrize
this behaviour as:

—k?
Fuk) = ——~ 23.43
©)= e (23.43)
where:
l6r?
M2 ~ ( N” ) 12~ 0.67* GeV? (23.44)

is a characteristic hadronic mass scale indicative of the non-perturbative realization of the
AVV vertex in the spontaneously broken chiral symmetry phase of QCD. It can be related to
the quark vacuum condensate in the QCD spectral function analysis of the vertex function.
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Singlet form factors
The situation is much more involved here due to the presence of the U (1) anomaly [255,256].

Defining the form factor as:
1 o ﬁ
Cor = n_fOEApaﬂkl ky | (23.45)
f

and using the fact that A(f - Ag = O(k?), one can write:
Fo(k?, u?
Fo(kz) —1— O(—M) .
Fo(0)

(23.46)

One can introduce the OZI Nambu—Goldstone boson 7 associated with the singlet pseu-
doscalar field <I>(5) defined in Eq. (23.27) and its decay constant f,,, with 7% =2(d)~! f,mcbg.
The latter being related to the first moment of the topological susceptibility:

Foo =205/%0) (23.47)
with:
x(p?) =i / d*x €7 (0|7 Q(x)Q'(0)[0) . (23.48)
An approach similar to the case of the non-singlet current gives:
(23.49)

v (k2
F()(kz, MZ) =1— Snoy*y ( ) .
&noyy (0)

However, the situation is more complicated as g is not a physical state, while g,
and gy,,, are not RG invariants. Therefore, we approximate the 7o by the " and replace
the difference of the couplings by their OZI limit g,y «,« — g, Whichis RG invariant. We

also replace the anomaly coefficient using the relation:
2
? (23.50)

‘& :2NC__3
Ju8nyy 37

where:
| ~1/2
fy = M/Z(d))|:i f d*x ei”x(0|TCI>2(x)d>(5)(0)|0)j| . (23.51)
n
The form factor reads [281]:
2 2 Nfﬂo(o’p’z) _ 872 2
Fo(k=, n*) fn’ |:1 Ncnf fn’fno(o’ no)
X (’Texp—/o dt’ y(otx(t’))> (—;kz) + - :| ) (23.52)
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The associated scale for interpolating the singlet form factor from O to 1 is:

2~
M}~

872
N—nffn'fno(Q k). (23.53)

The explanation of the proton spin proposed in the previous section requires a small value
of fy,(0, 0% =11 GeV?) compared to its OZI value of NG fr-

Implications for the moment sum rules

Introducing the previous behaviour of the form factors, one can deduce from Eq. (23.33):

1
/ dy gl (y, 0% k*=0)=0, (23.54)
0
and for MZ < —k* < 0%

(23.55)

’

1 2
/ dy g} (y, Q% k*) ~ NL.%Q‘; (1 —c+ cM> ’
0 . }

with:

2
1
c=— <Z Q2f> /Z o, (23.56)
f 7 f

where the deviation from the naive leading-order value comes from the effect of the U(1)
anomaly. Related phenomenology of the U (1) anomaly but on the 1'(n) — yy decays is
reviewed in [284].
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QCD jets

24.1 Introduction

We shall focus our discussions for jet productions in e*e~. More complete discussions can,
for example, be found in [52] and the different contributions of the LEP groups at the QCD-
Montpellier conference series. The aim is to study final states which do not depend on the
identification of particular hadronic channels. High-energy e™e™ experiments offer a such
opportunuity, although many aspects of the analysis can be extended to other processes. We
shall consider the parton process:

ete” = y* = gq , (24.1)

if one assumes that quarks are produced as free particles. In that case, one obtains, the
angular distribution:

de® w02
= 1 0), 24.2
dcosf 2s (1+cosf) ( )

which after integration gives the parton model total-cross section:

4ra’ Q]

3s

o©® = (24.3)

24.2 1R divergences: Bloch—-Nordsieck and KLN theorems

However, the process in Eq. (24.1) does not exist in practice as the production of quarks is
always accompained by the emission of gluons. Formally, this feature is signalled by the
appearance of the IR divergences when one evaluates the QCD radiative corrections given
by diagrams in Fig. 24.1.

The IR divergence from the vertex correction is cancelled by the one from soft gluon
radiation, which renders the total cross-section finite:

3CF o
m _ () S
oV =¢ [1+ 1 (n)] (24.4)

241
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ki N\ 9, p

ko A \p2
(a) d

e q e q
et a et (_]

(b)

Fig. 24.1. o, corrections to ete™ — y* — ggq. (a) vertex corrections. (b) gluon radiation.

which is the well-known inclusive cross-section. Therefore, only the sum of the cross-
sections:

ete” = y* > gg+ggg + - (24.5)
is expected to be finite, and this is the quantity that one measures. This cancellation of IR
divergence is a general property already encountered in QED for soft and collinear pho-
tons and is known as the Bloch—Nordsieck theorem [285]. It states that soft divergence is
absent for a totally inclusive cross-section. However, new features appear in QCD at higher
orders due to the self-gluon interactions, or if one works in a covariant gauge, due to the
emission of soft ghosts and the appearance of ghost loops. The theorem has been general-
ized to QCD by the Kinoshita—Lee—Nauenberg (KLN) theorem [286]. The KLN theorem
states that in a theory with massless fields, transition rates are free of IR soft and collinear
(mass singularities) divergences if the summation over the initial and final degenerate states
(a massless quark accompanied by an arbitrary number of gluons cannot be distinguished
from a single quark) are carried out. That is, for a single-quark state of mass m, we should
add all final states that in the limit m — 0 have the same mass, including massless glu-
ons and quarks. In order to quantify this feature, one can mimic the IR problem in QED,
where, under certain conditions, the processes: et
distinguishable. This is realized if the gluon energy k is below a certain detection threshold
or if the angle formed by its three-momentum k with the quark momenta p; is smaller than

e~ — gq and ete” — Gqg, .. .are in-
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Y

Fig. 24.2. Two ‘fat’ jets with possible extra soft partons (inside the sphere).

the detector resolution [287]:

ko, pio < €/s
LK, pi) s Z(P1,P2) <9, (24.6)

where € and § which characterizes the detection efficiency are defined in Fig. 24.2.

The previous conditions can be generalized for more produced numbers of quarks and
gluons. If one considers the massless quark propagator in Fig. 24.2:
itk (24.7)
pr+k  2p1-k
which indicates that for soft partons ky, p;o =~ O or for collinear momenta pg || Kk, the
denominator vanishes (collinear mass singularities). The conditions in Eq. (24.6) guarantee
that this does not happen because:

1
pi-k> Es(eé)2 , (24.8)

which after integration over final particle momenta, corresponds for the cross-section, to
the singularity:

(D
Using

~aslnelné . (24.9)
This result informs us that at higher energies this contribution becomes more and more
negligible as «; is smaller, such that the parton model description of the cross-section will
be much better and the events are more jet-like. However, the complete analysis is more
complicated because we see jets of hadrons (hadronization) not quark jets. This leads to

the introduction of fragmentation functions discussed previously.
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Fig. 24.3. Two-jet events seen in e*e™ at PETRA (1979).

24.3 Two-jet events

It is instructive to compare Fig. 24.2 with the two jet events seen inside the detector
(Fig. 24.3).

Using the Sterman—Weinberg parametrization, one can explicitly show the different con-
tributions from Fig. (24.2), where each individual contributions are IR divergent, which
we regulate by attributing a mass A to the gluons. The contribution of the diagrams in
Fig. (24.1b) for the production of a real gluon can be divided into three parts:

® A contribution of a gq jet plus a jet due to a hard gluon inside the cone with an energy greater than
€4/s from Fig. (24.2b), which is:

s d 17 2
o (hard)? = o ©C, (“—) ()Gt amae — 22 T (e, 8)| .
T A 4 3
(24.10)
® A contribution due to two jets from gq and the one due to a soft gluon inside the cone with an
energy smaller than €./s, which is:
2

o (softy® = O, (%) [21112 (%) - % + O, 5)} . (24.11)
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® A contribution from the interference of the lowest order diagram with the vertex and self-energy
corrections, which is:

2
o (interf)© = ¢© [1 +Cr (0‘;)] [—21112 (%) +3n (%) - % + % + O, 5)] .

(24.12)

The sum of the different contributions, where all but a fraction of the total energy is
emitted inside these cones, are IR finite (cancellation of soft and collinear singularities) and
reads:

2
o =0 [1 —Cp (“—‘) [(3 420 s — >+ 4 O, 3)]] L (4.13)
T 2 3

Therefore, the fraction of events which have all but a fraction € of their energy in some
pairs of cones with half-angle § is:

Ay

. o 7 72
RQjet) = — =1—Cr (—) G+4m20)ns— -+ 106, 8)| |, @414
oM T 4 3

where o is the inclusive total cross-section to order a. This expression is valid if € and
4 are not too small such that perturbation theory is valid [288]. Alternatively, one can take
another parametrization (e.g. cylindrical jet picture). Noting that the previous inclusive total
cross-section in Eq. (24.4) includes the two- and three-jet events, the two-jet events can be
obtained as:

o2jet) = oV — o (2jet) . (24.15)

where o ( 2jet) does not contain two-jet events. The cross-section for the process:

ete” — y* = Gqg (24.16)

can be obtained from Fig. (24.2). Defining:
s=(p1+p2+k’ and x; =2py/ s, (24.17)

one obtains:

1 d? Cr /oy xlz + x%
I - 24.18
O dxidx; 2 ( ) ( )

) A=—x)(1—x)°
with:
Xxi+x>1, 0<x<I1. (24.19)

Using the geometry of the ggg produced state given in Fig. 24.4, this process will not
be considered as a two-jet event if the angle 6 between the quark momenta is smaller than
T — 19, where 1 is the resolution of the detector. Therefore, the not two-jet (three-jet)
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P N\

Y
Py

Fig. 24.4. Configuration of ggg produced state.

cross-section will be:

) sup dzd
o(2jet) = / /dxldxz dodn” (24.20)

where sup corresponds to the domain:
X1X2
Xi+x=1+ T(l 4+ cosno) . (24.21)

In the limit ny = 0, which corresponds to a much better experimental precision, one
obtains:

2

. Cr say 4 4 T 7
o (2jet) = a<°>7F (;) [1112 77_5 —3In n_é + 5 + 5} , (24.22)

from which one can deduce the observed two-jet total cross-section:

CF (04 4 4 7T2
2iet) =@ 31— 22 (Y 22 —3ln— 4+ — 42 , 24.23
oQjety =0 { 2(7T)|:n178 nn%+3+ ( )

which depends on the resolution ng. This result differs from that of Sterman—Weinberg,
which shows the dependence of the cross-section on the parametrization of the two-jet
event.

24.4 Three-jet events

Experimentally, three-jet events have been observed in ete™ experiments. We show these
events in Fig. 24.5.

It is interpreted in QCD as coming from quark-anti-quark plus a gluon emitted from one
of the quark.



24 QCD jets 247

Fig. 24.5. Three-jet events seen at LEP.

The three-jet cross-section has been already evaluated in Eq. (24.20). For studying these
events, it is convenient to introduce the kinematic variables:

x1=2poi/vs,  x2=2pn/Ns,  x3=2ko/s=2—x—x;. (24.24)

24.4.1 Thrust as a jet observable

Different observables have been proposed in the literature for a qualitative description of
final state topology. They are, for example, useful to define the axis or the plane of the
event and therefore longitudinal and transverse momentum distributions. These variables
should be linear in energy and/or momentum in order to meet the necessary condition of
cancellation of IR divergence. Thrust and spherocity are two alternative IR safe quantities
for a parametrization over the continuous range from the topology of a sphere to that of an
ideal collinear two-jet event. Spherocity is defined as [290]:

(4 : > Ipisl 2
s=(3) mo(20) @29
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where p;, is the transverse momentum with respect to the minimum direction (spherocity
axis). It has the extremal values:

0<S<1 g — l: sphere (24.26)
0: line
The thrust variable is defined as [289]:
2
T — omax =Pl (24.27)
s

where the sum runs over all particles in a hemisphere; p;; are the components of particle
momenta along the jet axis contained in the hemisphere. The plane of the hemisphere is
chosen to be perpendicular to the jet axis. The latter is found by requiring 7' to be maximal.
This can be obtained by choosing an arbitrary jet axis characterized by the polar angles
(0, ¢), and evaluates T(0, ¢) as a function of these angles. In terms of partonic variables:

T = max {Xl, X2, X3} y (2428)
and, in general, it has the boundaries:
12<T<1. (24.29)

Integrating the cross-section in Eq. (24.18) at fixed T, one finds the differential cross-
section:

do Cr [a 4 2T — 1
1-T)— === (= 6T —6+ — |1 3(31* -8T +4) |,
=D =0 2(7‘[)|:< 7)) 3 +4)

(24.30)
The average value is [291]:
Cr /oy 3 1 b dr 2T — 1
1 —T), :_(_) T3 — 4/ T
= Thaee =57 [ FR T 2/3Tn(1—T):|
~1.05 (“—) . (24.31)
T
Another alternative definition of thrust, mostly used at LEP, is:
_ma 2ilpinl (24.32)
Z,’ il

where p is the momenta of particles produced, while n is a unit vector. The thrust axis ny
is the direction at which the maximum is attained.

24.4.2 Other event-shape variables

Below we shall list some other event-shape parameters useful in the jet analysis. They are
IR safe quantities, i.e. free from IR divergences, which are insensitive to the emission of
soft or collinear partons at the logarithmic level.
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* Heavy (resp. light) jet mass A plane through the origin and orthogonal to the thrust axis ny
divides the event into two hemispheres H, and H,, from which one obtains the corresponding
normalized hemisphere invariant masses:

2
1

=(§ pk), i=1.2, (24.33)
SA\T

where s = E,;, is the square of the fotal visible energy of the events. The heavier (resp. lighter) of
the two hemispheres is called heavy (resp. light) jet mass M}, (resp. M,).
® The jet broadening corresponding to the definition in Eq. (24.32), is defined as:

B, = (leian|>/(2Z|pil> : (24.34)
i€Hy i

The total jet broadening is defined as:

Br =B+ B,. (24.35)
® The wide jet broadening is defined as:
Bw = max(By, By) . (24.36)
® The C parameter is defined as:
C =3(MAy + Aoz + A3A1), (24.37)

where A; is the eigenvalue of the quantity:

(Z (pi'p?) /|p.> / > Ipil. (24.38)

24.4.3 Event-shape distributions

One can generally study any particle distributions in terms of the shape parameters:

H =

k k'
ZIP( )Islp( I p Py(cos dur) . (24.39)

k.k'

where s is the square of the ete™ c.m. energy and P, is the Legendre polynomials of the
angle ¢y, between two final momenta; p(k) is the final momenta of the particle k. In the
massless limit, the energy—momentum conservation requires:

Ho=1 and H; =0, (24.40)
while collinear jets give:

H,=1 (l even)
=0 (lodd). (24.41)
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In general:
0<H, <Ho. (24.42)

For a continuous distribution of momenta, H; corresponds to the multiple momenta:

Al 24.43
M=o Z a7l (2443)
where:

Al' = /p(Q) Y"(Q)dS . (24.44)

2 is the solid angle and:

Ip(6)|

Q) ~ ———. 24.45
p(§2) NG (24.45)

24.4.4 Energy-energy correlation

If w is an angle between 0 and 7, the energy-energy correlation is defined as [293]:

N
LR ——— Y T (24.46)

0®dcosw NsAw sinw

A=l pairs in Aw

where A labels the events. In each event, E4, and E,4, are the energies of two particles
separated by an angle w + %Aw. For small resolution Aw, one can impose the conditions:

1 1
— —Aw <G, < —A
w > w < ;,_a)+2 w

S8(w — Op)Aw = §(cosw — cos ) Aw sinw . (24.47)
In terms of the partonic variables, one has:

cos Oy = (x] — x5 —x;) [2xax  c#a,b

E.E, = ixuxb , (24.48)

where a, b, ¢ vary from 1 to 3 and x3 = 2 — x; — x, Substituting into the jet cross-section
in Eq. (24.18), one can deduce:

1 dX Cr /a x2 4+ x?
LodE Gy [ [ TR NS cosw — costyy) .
cOdcosw 2 <n>/ xl/ xz(l—xl)(l—xg);x %53(c0s @ — €05 Oap)

(24.49)

After integration, one obtains:

1 dZ CF( )(3 27)

- = - — 2 — —
~O Tooss A T )[2(3 6z +2z7)In(l — 2) +3z(2 —32)], (24.50)
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where:
z=(1—cosw)/2. (24.51)

The next order correction to this expression has been evaluated in [294].

24.4.5 Jade and Durham algorithms

¢ Jade algorithm Another popular jet definition is the so-called Jade algorithm [295]. For the three
jet, one uses the invariant mass cut y:

sij=pi+p)>yews  (Gj=12.3), (24.52)

where s is the squared of the sum of the measured energies of all particles of an event. In this
original Jade algorithm, one can define:

sij = 2E;Ej(1 —cos6;) , (24.53)
or the jet rates:
Yeut = Sij/s (24.54)

where E; and E; are the energies of the particles and ;; is the angle between them.
Durham algorithm In its variant (Durham and Cambridge algorithms [296]), one defines instead:

sij = 2min(E}, E7)(1 — cos6;;)  or  yeu = s5;j/5 . (24.55)

These two definitions are the most used at LEP due to their less sensitivity to hadronization and
mass effects.

Jet resolution parameter y, They are defined as the particular values of y¢y at which events switch
from n — 1 to n-jet configuration.

The QCD expression of the fraction of the three-jet cross-section is of the form:

oGjet) Crp /oy 2 y y
R; = =—(—) |21 e 3(1 —2y)1
3T 0 T (7‘[)|: 1 (1—2y 30 =2 57

5 9 . y w2
Z—6y— —y?’+Lip ([ — ) - = 24.56
+t5 =6y -y 12(1_y) 3} (24.56)

where:

. *odx
Lir(z) = —/ 7 Inx , (24.57)
0 — X

is the dilogarithm function with the properties given in Appendix F. The limit y = O reflects
the IR singularities. The fraction of the two-jet event is:

Ry=1—R;. (24.58)

This result can be generalized for n-jet configuration provided that the constraint s;; > ys
is satisfied foralli, j = 1, ..., n. In this case, the pair i, j of particles or cluster of particles
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satisfying the previous cut condition is replaced or recombined into a single jet or a cluster
k with four-momentum p; = p; + p;. This procedure is repeated until all pair y;; are larger
than the jet resolution parameter cut y.,,, and the remaining clusters of particles are called
jets. One has:

_ n—2 _ Jj
(o2 cm [ O
R,=[— C; A e 24.59
(n ) ; i) <n ) (24.59)
with:

Z R,=1. (24.60)

and &,(s) corresponds to the summation of the higher-order term «;(v?)/ In*(s/v?). For
large y, the jet fractions R, with n > 3 are small, while for y — 0, the IR-divergence
reappears making the QCD series unreliable. Other jet algorithms in order to improve the
QCD predictions at low values of y have been proposed in the literature (see e.g. [297]).

24.5 QCD tests from jet analysis

* As we have mentioned previously, one observes jet of hadrons but not jets of quarks or/and gluons.
Therefore, one has to take into account the hadronization which is quantified into the fragmentation
functions. This effect is modelled through Monte-Carlo analysis and introduces theoretical uncer-
tainties not under control. Jet analyses, like the deep inelastic processes discussed in the previous
chapters, have been used to measure the value of the QCD coupling constant where complete results
for different energies (91.2, 133, 161, 172, 183, 189 GeV) from LEP studies will be shown in the
next chapter. At the Z, mass, the average results from LEP and SLC are [139]:

a5(91.2 GeV) = 0.121 £ 0.001 (exp) =% 0.006 (th) . (24.61)
Recent ALEPH result from four-jets [298] at NLO (order af) leads to:
,(91.2 GeV) = 0.1170 £ 0.0001 (stat) £ 0.0013 (syst) , (24.62)

where the analysis of the error needs to be reconsidered to being convincing.

* Three-jet events are also used to test the gluon spin, where for a spin zero gluon, the term x? + x3
of the cross-section in Eq. (24.18) should be replaced by x?/4. The measured distributions agree
well with a spin-1 gluon and excludes the spin-0 one.

* One can also notice that the jet event-shape variables are functions of the colour group factors:

Tr=1/2, Cr=(N?-1)/2N,), Cis=N., (24.63)

which originate from the SU(N), algebra given in Appendix B at the different vertices. Combined
fit of these quantities favour the SU(3) group for QCD (see different contributions at the QCD-
Montpellier conference). In Fig. 24.6, one compares the scaling violation rates in the hadron spectra
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Fig. 24.6. Scaling violation rates in inclusive hadron distributions from
quarks and gluon jets.

from gluon and quark jets as a function of the hardness scale « which caracterizes a given jet [299].
At large xg ~ 1, one expects that the log-derivatives between the quark and gluon jet is close
to C4/Cr, which is 9/4 for a SU(3). QCD group. As shown in the figure, experimentally, one
obtains:

C
C—A =2.23+0.09, % 0.064y; - (24.64)
F

In the same way, one expects that hadron multiplicity increases with the hardness of the jets
proportional to the multiplicity of secondary gluons and sea quarks. This is shown in Fig. 24.7. The
ratio of the slopes in the gluons and quarks jets are proportional to C,/Cr, which is again verified
experimentally:

C
C—A = 2.246 4 0.062, &= 0.08,y; £ 0.095, . (24.65)
F

24.6 Jets from heavy quarkonia decays

Quarkonia decays can also produce gluon jets:

17~ —3g
— 2gy
0t —2g

— 8V (24.66)
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Fig. 24.7. Charged hadron multiplicity in gluons and quark jets.

via OZI violating processes. To leading order, the differential decay rate for 17~ — 3g,
can be written as:

I _dls ! I-x 2+( ) L j=1,2,3, (24.67)
— = Xj < X i,j=1,2,3, .
M0 dxdx, 72 -9 J /

0)

3¢ is the

where x; = Zk? /My, k; is the gluon momenta and My is the vector meson mass. I'
lowest order decay rate:

160 [381(0)2

(0)
;) =
3 81  M?

, (24.68)

where |3S;(0)| is the wave function at the origin. In terms of the thrust variable, one has
[291]:

(5T% — 12T +8)In

1dry, 3 {4(1—T) 21 = T)
T

ry) dT nr-9|122-T)

(24.69)

23T —2)(1 = T)?
T32 —T)? ’
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and the average:

()5 = —— lem@s3) 3,47 o LI D (24.70)
%= 7 g n(2/ 2 3 j x2+x ~0. . .

24.7 Jets from ep, pp and pp collisions

QCD jets may also be produced in ep or hadronic reactions and from heavy quarkonia
decays. In ep scattering, and to leading order in oy, two identified jets in addition to the
beam jet from the remnants of the incoming proton, arise from photon gluon fusion and
from QCD Compton processes. This process has been also used for determining the QCD
coupling s, where the theoretical uncertainties come from the scale variations and structure
functions, while the systematic ones come from the uses of jet algorithms and hadronization
models. The result from HERA is [300]

as(Mzo) =0.118 £ 0.002 (stat) £ 0.008 (syst) £ 0.007 (th) . (24.71)

Jets from hadronic collisions followed the previous strategies used in e*e™. However,
one has to separate (jet finders) the jets from the proton remnants from the ones from
reconstructed jets, which is different from the case of ete™ where all particles are assigned
to be jets. At present, one follows the jet definitions used in [301], where jets are defined
by concentrations of transverse energy Ey = |E sin | in cones of radius:

R =(An)? + (Ag)?, (24.72)

where n = — Intan(6/2) is the pseusdorapidity, ¢ is the azimuthal and 6 the polar angles
of a particle in the calorimeter of the detector, measured with respect of the point of beam
crossing. Jets study have been used by the CDF collaboration for determining «y, as a
function of E7 and for a radius R = 0.7, with the result [302]:

ay(Mz0) = 0.1178 £ 0.0001 (stat) T0-0% (syst) 7597 (th) +0.006 (pdf), (24.73)

where the theoretical error is due to the scale dependence.

Analogously, heavy quark production has been also studied at Tevatron hadron colliders,
where there is a good agreement with QCD predictions for the top production, while the total
rate and E7 distribution of b quarks produced by CDF exceeds the QCD predictions up to
the largest values of E7 by a factor of 3—4. According to [303], this rare discrepancy between
the data and QCD predictions can be attributed to the inconsistency of the input B meson
fragmentation functions used in previous analysis (mismatch between the perturbative and
non-perturbative contributions). This result can be tested in some other processes.
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25.1 Heavy quarkonia OZI-violating decays

In the previous chapter, we have studied the QCD jets from the OZI-violating decays of
quarkonia, which occurs through the diagrams in Fig. 25.1.

OZI or Zweig rule [9,254] states that the decays of an heavy resonance involving discon-
nected diagrams such as in the previous figure are suppressed. In QCD, the rate behaves as
o for a spin one and to order & for a spin zero resonance. In the case of the bb states:

Y — hadrons ~ Myag(MT)
Ny — hadrons ~ M,,a*(M,,) . (25.1)

N=s

The rule works better for heavier and heavier resonances, which can be understood from
a 1/N, argument [304]. Phenomenologically, a decay of a Q Q resonance into a Q Q pair
should involve a pair of open Q states Qq and § Q. As the open Q states are too heavy, there
is not enough phase space for the O Q resonance to decay into them. An explanation of the
smallness of this width was one of the successes of QCD [305]. In QCD, the evaluation of
the width consists of replacing the sum over hadron states by the gluons. Let’s consider the
1~(*S;) quarkonia states described by the hadronic current:

Jy(x)=0y"Q. (25.2)
To lowest order of QCD, one has:
17 — hadrons ~ 17 — 3g. (25.3)

In this way, the onium decay is very similar to the one of positronium up to an overall
colour factor:
64> = 9) | PWi(0))

I'(V — hadrons) ~ 9 Cy JYE
v

o) (M7) (25.4)

where |3W;(0)|? is the square of the onium wave function at the origin, and is proportional
to the matrix element:

(VIQy"0l0), (25.5)

256
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Fig. 25.1. Hadronic decays of an heavy quarkonium.

while:
1

Cy = d?,. =5/18 25.6
V= Ton ; pe =5/ (25.6)

is the colour factor. The wave function can be also related to the V — ete™ width as:

167 Q2% o
TV —ete) = —— 2Py 0)). (25.7)
M,

where Qg is the heavy quark charge in units of e. Therefore, one obtains the branching

ratio:

R — I'(V — hadrons)  10(z* — 9) al(M3)
"TT(V s ete)y T 8lm Qha?

(25.8)

Including the next-to-leading order (NLO) corrections, one obtains in the M S scheme:
T(V > ete™) = T(V = ete )10 [1 +4Cy (a—)] in [306]
b4
A .
I'(V — hadrons) = ['(V — hadrons), o [1 — (3.840.5) (—)] in[307], (25.9)
b4

and therefore (for n; = 4):

_10(r? = 9) o} (M) o
Ry = —— ore [1—(9.1:&0.5) (;)] (25.10)

which is a huge coefficient correction, and requires an evaluation of the non-trivial next-to-
next-leading order (NNLO) contribution. The situation is much better for the ratio [308]:

_ I(V — y + hadrons) 36Q2Q o

R =
4 I'(V — hadrons) 5 a_Y(M\z,)

[1 +(2.2+40.6) (“;)] . @25.11)
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where a large cancellation occurs because the leading-order amplitudes for V. — 3g and
V — ggy are of the same nature. The decays of a pseudoscalar 0~('Sy) state in the
M S scheme and, at the subtraction point v = Mp, are [309]:

2

=BT e wo 1 (5= =) o (&
L~ yy) = 35 Qoo WO [1 (5 4>CF(H)}

I'(P —h 2 (M3 :
Ry = (P — hadrons) _ i o? (M3) 1+ (%) 17.13 — §nf> (25.12)
L(P— yy) 90, o’ ™ 9

and also have huge «; corrections. In the BLM scheme [173], where the vacuum polarization
corrections are absorbed into the definition of the QCD coupling (see previous chapter on
the renormalizations), one can decrease the strength of the coefficient:

BLM 2 asz(M*)
PoT90h o

[1 +2.46 (O‘;) (M*)] , (25.13)

but the scale at which the coupling is evaluated becomes too low M* ~ 0.26 M p. Another
unclear situation is the possible effect of the analytical continuation from Euclidean (QCD
result) to the time-like (the process) regions (see e.g. [310] for related discussions). These
processes have been used to estimate the value of «; from J/W and Y decays [311], after
the inclusions of relativistic and finite mass corrections, and an estimate of higher-order
corrections. The analysis gives:

as(Mzo) = 0.1137007 (25.14)

which is comparable with other results, although most probably, the error has been under-
estimated. The result needs to be confirmed by the inclusion of the NNLO terms.

25.2 Alternative extractions of «; from heavy quarkonia

Alternative to these non-relativistic approaches, are the QCD spectral sum rule (QSSR)
analysis which will be discussed in the following chapters. They have also been used to
extract the QCD coupling o, from the leptonic widths [312,155] after the resummation of
Coulombic corrections. However, the result should be affected by the value of the quark
mass and of the non-perturbative terms which are strongly correlated in the sum rule analysis
[3,148,149,313]. The result quoted in [139] is:

as (M) = 0.118 £+ 0.006 . (25.15)

Using also QSSR, «; has been extracted from the meson mass-splitting to order o5 [313],
with the NLO result:

2
]P1

MZ
3 P1

~ 1+ a,(0)[ AL (exact) = 0.01475005 ] + O(e}) | (25.16)
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where 0! ~ 1.3 GeV is the sum rule scale. Using the experimental value M 12P1 ~ 3526.1
GeV, one can deduce:

a5(1.3 GeV) = 0.647038 = a;(Mz0) = 0.127 £0.009, (25.17)

in fair agreement with the different predictions given in the next section, although not
included in the ‘world summary table’ (Table VI.1). For a comparison, one can also use
non-perturbative lattice calculations of the Y mass splittings. The resulting value of ot (M 7o)
ranges from 0.105 £ 0.004 (quenched approximation [314]) to 0.1174 £ 0.0024 [315] and
0.1118 £ 0.0017 [316] for two dynamic quarks, indicating that systematic errors are not
under good control. A more conservative lattice result has been adopted to be:

ay (M) = 0.115 % 0.006 , (25.18)

as quoted in the ‘world summary table’ (Table VI.1), given in Part VI [139].

25.3 ete~ — hadrons total cross-section

The inclusive eTe™ — hadrons production is the simplest though fundamental deep inelastic
process. The data until LEP energies are shown in Figs. 25.2 and 25.3.

In the one photon approximation (below the Z° mass), the hadronic production occurs
through the process shown in Fig. 25.4, in which the gqg pairs interact through QCD forces,
and then exchange and emit gluons in different ways.

However, we do not yet have a good understanding on the way quarks and gluons
hadronize. At short distance x ~ 1/4/7, one can use perturbative QCD for predicting the
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Fig. 25.2. ete™ — hadrons data at lower energies.
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Fig. 25.4. ete~ — hadrons inclusive process.

total inclusive productions:
o(ete” — hadrons) =o(ee” — §q +Gqg +Gggg + ), (25.19)

as the details of the final hadronization is irrelevant for the inclusive sum, because the
probability to hadronize is one owing to the confinement assumption. Technically, one can
consider the two-point function of the electromagnetic hadronic current:

ne g =i / d*xe"* (0| TJ*(x)J1(0)|0) = —(g""¢* — ¢"¢")em(q?) . (25.20)
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where:
2_ 1. 1_

Ju(x) = ZR)Yu) = 2d@)yd () = Z5Ys) + - (25.21)
is the electromagnetic current associated to the quarks u, d, s.... Thanks to its analytic-
ity property, IT.,(g2) obeys the well-known Kiillen—Lehmann dispersion relation (Hilbert
representation):

) o0 dt 1

Mem(g™) = ———— —Imllen(@) + -, (25.22)
. t—q®—iem

where - - - represents subtraction terms, which are, in general, polynomial in ¢2; t. is the

hadronic threshold. Its imaginary (absorptive) part is related to the total cross-section:

2
o(eTe” — hadrons) =

o 5,1
= ezglml'[em(qz) , (25.23)

where:
1
=30()q” —ImTlen(q®) = D (015, O)I0) (01} o (0)10)27)*64 g — pr) . (25.24)
T
Normalized to the ete™ — pT ™ total cross-section:
47202

o(efe” —» putpum) = T3

) (25.25)

it reads:

te~ — had
R, = J¢ e = hadions) M+ i) . (25.26)
olete - utu~)

It is also convenient, in the perturbative calculation, to relate this quantity to the Adler
D-function [317] defined as:

d
D(0?) = —0>——T1.n(0%). 25.27
Q9 0 107 () ( )
In this way, one obtains:
1 t+ie dQZ 5
R(t) = — —D , 25.28
=5  GrP@ (25.28)

where it is necessary to transform the result into the physical region by taking into account
the effects due to the analytic continuation of the terms of the type:

In"(—¢*/v?) — (In(—q*/v?) +im)" . (25.29)

Away from thresholds, one can neglect quark mass corrections, and obtain the perturbative
series in o, in the M S scheme. To order a;‘, one has:

nf 2
Ryte- =3 (Z Q?) [1+ Faay(t) + Fsal(t) + Faal ()] + Fial (1) (Z Q,») ., (25.30)
1 i
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where:

F>,=1in[318,319]

F3=1.9857 — 0.1153n in [317,320]

Fy =—6.6368 — 1.2001n; — 0.005n% in [321]
F,=—12395in[321], (25.31)

where, for, for example, five flavours:
11
Ree = — [1+a,(t) + L4llal(t) — 12.80a)(t) + O(a})] (25.32)

The perturbative uncertainties are of the order a? and includes ambiguities related to the
choice of renormalization scale and scheme, which leads to slightly different predictions
for the truncated series. Because of the above functional forms of R,+.-, relative errors in
R.+.- lead to an absolute error in ¢ of the same size:

AR -
Re*e*

~ Ad (25.33)

such that precise measurement of R,+.- still leads to large errors in «. Re-analysis of
PETRA and TRISTAN data in the c.m. energy range from 20 to 65 GeV, gives at NNLO
[322]:

a;(42.4GeV) =0.175+£0.028 — o (Mz,)=0.126£0.022. (25.34)

25.4 Z — hadrons

On top of the Z°, LEP experiments have produced a large statistical data sample that allow
a precise measurement of o;. The hadronic Z° width can be parametrized in a similar
way:

'(Z° — hadrons) . m?,
R, = =3R%"|[1 F,a"(M o — , (25.35
Z F(ZO—> €+€7) zZ |: +; as( ZO)+ <M% ( )
where:
> (v +a})
RYW ==L __17(1+3, 25.36

contains the underlying Z — ), §;q; decay amplitude, v, is the weak coupling of fermion
to Zo; 8.4 is the weak correction. The QCD correction coefficients F,, are slightly different
from F,, due to the presence of both vector and axial-vector coupling. Combined LEP results
lead to [68]:

Rz =20.768 £ 0.024 , (25.37)
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which gives:
as(Mz0) = 0.124 £ 0.004 (exp) +0.002 My, My T0003 (QCD),  (25.38)

where the second errors are from those from M, and from My ranging from 100 to 1000
GeV. The last errors come from the scheme and scale dependences at NNLO.

25.5 Inclusive semi-hadronic t decays

The QCD evaluation of the inclusive semi-hadronic process:
T — v; + hadrons (25.39)

is diagramatically similar to the e*e~ — hadrons process. One puts all possible gluon and
Gq corrections to the QCD diagram in Fig. 25.5 and computes the sum of all partonic
subprocesses. As in eTe™, one considers the two-point correlator:

H’L”(qz)zi/d4xeiq"(0|TJ£‘(x)JZT(O)|O)
=—(¢""¢* = ¢"¢"M @) + ¢"¢"L (@) | (25.40)
associated with the charged current:

Jf =uy"(1 — y5)(d cosO¢c + s sinfc) , (25.41)

Hadrons

Fig. 25.5. t — v, + hadrons inclusive process.
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Fig. 25.6. Sum of the vector and axial-vector spectral functions from tau-decay.

where u, d and s are quark fields and 6¢ is the Cabibbo angle. In terms of which, one can
express the inclusive semi-hadronic branching ratio:

I'(t — v, + hadrons)

R, =
't = veev,)
M? 2
©d 2
=127 ﬁi (1 - #) {(1 + Vi) Im 1" + Im H(LO)}, (25.42)
0 T T T
where [16]:

M, = (1777.001939) MeV . (25.43)
We have seen, in Part I of this book, that, in the naive parton model, one expects:
R, =N,. (25.44)

We show in Fig. 25.6 the V + A spectral function measured by ALEPH.

In Fig. 14.5, we show its isovector component and a comparison with the e™e™ data, and
in Fig. 25.7, we show the difference between the vector and axial-vector spectral function.

The experimental data either from the t-lifetime:

Fr - Z Fr‘%

e,

Rl=__ " (25.45)

T
F‘[—)(
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or/and from the t-leptonic branching ratios:
1-B,—B
Rf =—— " (25.46)
B,

have the present average [323]:

R, =3.649+£0.014. (25.47)

This experimental value is indeed a good evidence for the existence of colour but it is
20% higher than the quark-parton model estimate, such that one (a priori) can expect that
QCD perturbative and/or non-perturbative corrections can resolve this discrepancy. From
the expression of the width, it is clear that R; in Eq. (25.45) cannot be calculated directly
from QCD for s < A%. However, exploiting the analyticity of the correlators I1/) and the

Cauchy theorem, one can express R; as a contour integral in the complex s-plane running
counter-clockwise around the circle of radius |s| = Mf shown in Fig. 25.8:

R, = 6in f Lol (1 - i)z{(l + 2—S> nh 4+ n“”} (25.48)

’ =2 M? Mz m2) OO
One should notice the existence of the double zero at s = M2, which suppresses the un-
certainties near the time-like axis. As |s| = M% > AZ, one can use the standard operator

product expansion (OPE) a la SVZ [1] (as will be discussed in the following chapters) for
the estimate of the correlators. In this way, one can express the QCD expression of the decay

265
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1 Im(s)
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Fig. 25.8. Integration contour in the complex s-plane used to get Eq. (25.48).

width as [324] (hereafter referred to as BNP [325]):

Re = 3(1Vual* + Vus ) Sew(l + 85w + 8 +8xp} | (25.49)
where:

[Vial = 0.9753 £0.0006, and |V,,| >~ 0.221 £0.003 , (25.50)

are the CKM mixing angles, while the Cabibbo angle is defined as:

2
.o | Vius |
sin“fg = ——— . (25.51)
| Vud |2 + | Vus |2

Sew = 1.0194 and 6w = 0.0010 are LO and NLO electroweak corrections [326,327].
Based on the SVZ-Operator Product Expansion [1],! these non-perturbative corrections
have been estimated to be small by BNP [325]:

dvp ~ —(0.7+0.4)% (25.52)
A direct measurement of these effects from t decay gives [33,328]:
Svp =Y (cos? 08y, + sin® 0,8(2) ~ —(0.5 £ 0.7)% (25.53)
D>4

and from the most recent analysis from eTe™ data [329] (reprinted article):2

NP~ —(2.84+0.6)1072, (25.54)

! Here and in the rest of this section, we anticipate the discussions of the SVZ expansion and of the QCD condensates in Part VII,
which the reader may consult for understanding the origin of the non-perturbative corrections.

2 This result has been obtained by combining the fitted value of non-perturbative corrections in the vector channel with the
theoretical estimate which relates the vector and axial-vector terms.
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confirm the previous estimate of BNP. The smallness of these non-perturbative effects
are related to the fact that within the SVZ expansion the numerical leading contribution
behaves as (A/M,)®, while the radiative corrections are relatively large at the T mass.
These properties indeed show that t decay is a good laboratory ( or a lucky process as
stated by Gabriele Veneziano) for extracting a,. The perturbative QCD correction § gives
the dominant contribution, and can then be used to determine o at the r-mass scale.
It reads:

8(5(’)1)\/13 ZZ(Kn + gn)a;l s

n=1

19\ ,
=a, + | K> — ﬁm a:

19 19 265 — 2472
K; — —K)B) — — = =" gl +0@G), @555
+ < 3 12 2,31 24/32+ 288 ﬂl)ar + (ar) ( )
where, here:
_S‘ M‘L’
a, = M) (25.56)
T

K, are the coefficients appearing in the D-function given in Eq. (25.31), which, forn = 3
flavours read:

Ki=F,=1, Ky=F=163982, Ks;=F =637101, (2557)

while g, are induced by the contour integral and depend on K,,<, and on S,,<,. Forn =3
flavours, one has:

g» = 3.5626, g3 = 19.9949 , (25.58)
and
Sonp = ar +5.2023a 4 26.366a> + O(a?) (25.59)
while a bold-guess of
K4 ~ K3(K3/K) ~ 25, (25.60)

confirmed by the estimate [178] (K4 & 27.5) based on PMS [176] and ECH [177] renor-
malization invariant schemes, from the large 8 limit of QCD [330,331,154] (K4 &~ 24.8)
and from an experimental measurement [332] (K4 & 29 £ 5) gives [323]:

g1~ T8, (25.61)

which indicates that g, are larger than the corresponding K, coefficients, and implies a
sizeable renormalization scale dependence [333,334]. As observed in [333], these large
corrections come from the running along the circle s = Mf exp(i¢) (0 < ¢ < 2m), which
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leads to the imaginary logarithm log(—s/M?) = i(¢ — ), which are large in some parts
of the integration range, and leads to the small convergence radius a, < 0.11. Using this
remark, [333,335] deduce that the series is more convergent if one expands it in terms of
the contour coupling A™:

1 ds K s3 st
AD(g,) = — il (I, S AL PO 25.62
@) = 5 .s.:M,zs( o M§>a,(s> (25.62)
such that:
89 =" K,A"(a), (25.63)
n>1

where the QCD series is more convergent and the renormalization scale dependence is very
small [336]. The error in the truncation of the perturbative series can be estimated from the
last known term of the series [337]. In this way, one can deduce the conservative estimate
[323,338]:

s ~ (25 4 50)aj (25.64)

where the factor 2 has been included in the estimate of the error. In this way, the estimate
of the error is about the effect of K3A®, which appears to be conservative enough, and
is, therefore, realistic. This result agrees with the one (though slightly larger) from the
renormalons effect within an optimized PMS renormalization scheme, which has been
estimated to be [339] (see also [340]):

s~ 0.01, (25.65)

for a typical value of ag(M,) = 0.33. It also agrees with the fit from the e*e™ data of the
l/MT2 contribution [329,341]:

SYM? 2 0.01 , (25.66)

confirmed later on from other channels [161] (hereafter referred to as CNZ). The existence
of the small D = 2 dimension term beyond the usual OPE expansion may be justified from
the short distance linear term of the QCD potential and from monopole studies [162] as
we shall see in the following chapters. The fit from eTe~ data does not allow the existence
of an eventual huge contribution from the quark constituent mass advocated sometimes in
the literature, due to the small value of the contribution obtained from the fit as well as
to the opposite sign compared with the expected contribution from the known coefficient
of the quark mass. Indeed, the result of the fit would correspond to a tachyonic mass naturally
interpreted as the one of tachyonic gluon by [161]. These results indicate that those obtained
from a naive resummation of the QCD series [331,154], [342-344] may be an overestimate
of the true error.
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Table 25.1. Values of o from R,.

Pert. Theory ALEPH OPAL
FOPT 0.322 £ 0.005 (exp) = 0.019 (th)  0.324 £ 0.006 (exp) = 0.013 (th)
CIPT 0.345 £ 0.007 (exp) = 0.017 (th)  0.348 £ 0.010 (exp) = 0.019 (th)
RCFT ~ 0.306 £ 0.005 (exp) & 0.011 (th)

Estimates of some other sources of the errors can be found in [338]. For a typical value
of R, = 3.56 & 0.03, these errors have been classified as follows for o, (M7):

0.0003 electroweak
0.0010 M, - My
0.0005 RS-dependence
0.0009 p-dependence
0.0005 quark masses
0.0009 SVZ condensates
0.0014 truncation of the PT series at o
or UV renormalon and 1/ MTZ. (25.67)

Adding them in quadrature, the total theoretical error is expected to be:
Aas(Mz) >~ 0.0023 , (25.68)

which is reflected in Table 25.1 above. The most extensive determinations of ¢« from
t-decays are based on recent sutudies from LEP, making use of the large amount of
statistical data available at LEP-1. Measurements of the vector and axial-vector differ-
ential hadronic mass distributions of t-decays have been performed by the ALEPH and
OPAL collaborations [33,328], which allow a simultaneous measurement of «; and the
non-perturbative corrections, where, as mentioned earlier, these latter are found to be small.
At NNLO corrections, the resulting values of «; from recent measurements [33] are given
in Table 25.1, corresponding to the different structure of the perturbative series:

* FOPT: naive perturbative expansion in terms of o (M) given in BNP.

* CIPT: contour-improved perturbation theory where 8§ is expressed as a contour integral in the
complex-s plane.

* RCPT: renormalon chain-improved perturbation theory, where the leading terms of the S-functions
are resummed by insertion of renormalon chains (gluon lines with fermion loop insertions) as will
be seen in the next section.

The resulting mean value from the two experiments and from the different structure of
perturbative series is:

ay(M,;) = 0.323 £ 0.005 (exp) = 0.030 (th) , (25.69)
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at M, = (1777.007039) MeV, which shows that FOPT gives the mean theoretical values.
Runned to Mo, and taking account of the different threshold effects, this value gives:

ag(Mzo) = 0.1181 = 0.0007 (exp) £ 0.0030 (th) , (25.70)

which is in excellent agreement with the direct measurement at the Z° peak and with a
similar error bar. This agreement of the two determinations of o, in two extreme regime
from M, to Mo provides a beautiful test of the QCD prediction of the running coupling
behaving as 1/log, which is a very significant experimental verification of asymptotic
freedom.

25.5.1 Running of o below the t-mass

The analysis of the running of «; from the inclusive distribution of 7-decays [345] and from
eTe™ — hadrons data [346,329] has been extended to a lower mass below M, where one
does not find any deviation from the one expected from QCD. We show in Fig. 25.9 the
comparison of the theoretical prediction (FOPT) and ALEPH measurements of R; vy for
different values of the T-mass.

In Fig. 25.10, one shows the running of a,(so) below 3 GeV? using FOPT. The other
structures of PT series (CIPT and RCPT) show the same behaviour [33].

/\O 4.2 T T T T I T T T T ‘ T T T T ‘ T T T T [ T T T T ‘ T

“ - : : : : I
= i : Data (exp. err.) ALE PH i
Ny : : : : :

N 28 Theory (theo: err.) —
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S
,,,,,,,,,,,,,, Py e
: s s
/II//,,,,*,,&?}%',’1555p
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e
:

34l T T T — ]

5, (GeV?)

Fig. 25.9. R, v+4 as a function of the T mass so. The theoretical predictions is from FOPT.
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Table 25.2. Values of o, from different
observables in t-decays.

Observables o (Mf)

R.y =178 £0.03 0.35+0.05
R. 4 =1.67£0.03 0.34 £ 0.05
R: exa = 3.58 £0.05 0.34 £0.04

/22 0.6 L T \I\ T | T 1T | L | L ‘ T 1T I L ‘ L I LI | T T ]
1=} ~ \ | | \ H \ H H
\gh i : 1 Data (exp. errors only) ]
05 [ T ,R(}éE,Evolgtion,(n};s,), - ]
L RGE Evolution (n,~2) ]
e | | | o ]
r ALEPH ? | : | : =
0.3 | - ‘ L1 ‘ | - ‘ |- ‘ | - | | - ‘ - | | - | -

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
2
50 (GeVY)

Fig. 25.10. Running of «; from the theoretical predictions of R; y.4 from FOPT to four-loop RGE
evolution for two and three flavours. The shaded band is the data.

25.6 Some other 7-like processes
25.6.1 oy from other T widths

One can also extend the previous analysis in order to extract the value of o from the
vector, axial-vector and from the sum of the exclusive modes by applying a SU(2) isospin
rotation [347]. This analysis has been done in [338] using the compilation of data in [346].
The analysis and predictions are summarized in Table 25.2 from [338] where one should
remark that the errors in each separate channel are larger than in the total inclusive mode,
which comes from the fact that the non-perturbative contributions have larger errors in
each separate vector and axial-vector channel than in the sum. Indeed, from [338], one can
deduce the sum of the non-perturbative terms in each channel at the T mass:

Svp = (4+13)1072, 88, ~—(44+£2.1)107%. (25.71)

The larger error from the exclusive modes is mainly due to the data. These different
determinations are consistent with each others. In Fig. 25.11, we show the behaviour of
the vector and axial-vector components of t decays versus an hypothetical heavy lepton of

mass ,/so.
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Fig. 25.11. Behaviour of R; y,4 versus the T mass so. The theoretical prediction is from FOPT.

One can again notice that the pQCD prediction is in very good agreement with the data
for a value of sy above 1 GeV?, confirming that the determination of e, from 7 decays is
robust.

25.6.2 o, from ete™ — I = 1 hadrons data

We have discussed that the vector component of the t decay can provide an estimate of o
although the accuracy is less than in the case of the total inclusive mode. Equivalently, one
can use the eTe™ data into the vector spectral function using an isospin rotation [347] in
order to estimate ;. In this way, the decay width reads [346]:

Ry = 3 cos” GCS w szd 1 Y 14 28 s > (25.72)
T = e—_—m_—_— S —_—— — — O’e e — . .
v 2ma? 0 M? M?2) M2 ’ =1

This quantity has been used for studying the mass dependence of the prediction on o;.
Therefore, it can provide an independent test on the reliability of the result from v decays
and a test of the isospin symmetry. The value of o obtained in this way [346,338,329],
at the observed value of the 7 mass, is given in Table 25.2. From this analysis we con-
clude that the eTe™ data give a value of o, compatible with the one from t decay

data. We show in Fig. 25.12, the behaviour of R; ; versus the value of the T mass using
FOPT.
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Fig.25.12. R,y versus the hypothetical r mass M using e*e™ data. The shaded region is the theoretical
predictions corresponding to the choice of parameters discussed in the text.

There is a good agreement between the data and the theory above 1.2 GeV. The shaded area
between the two dashed curves corresponds to the theoretical predictions for a(M?) = 0.33.
The bigger allowed region at low value of M is due to the uncertainty in the leading non-
perturbative contribution taken to be:

M. \°®
SD=O(M) ~ 2.4+ 1.3)1072 x (ﬁ> , (25.73)

as given in Eq. 25.71. The departure of the theoretical prediction from the data points below
1.2 GeV signals the important role of higher dimension non-perturbative contributions
which we shall discuss in the part of this book dedicated to QCD spectral sum rules. Here,
a reasonable fit represented by the continuous line corresponds to the choice:

ay(M?) =033, 8070(M?) ~24x107%, 8)7%(MZ)~—-95x 107 . (25.74)

However, though the D = 8 condensate contribution is tiny at the t mass, its effect at
1.2 GeV is 1.25 larger than the one of D = 6, which changes completely the shape of the
QCD prediction and can raise some doubt on the validity of the OPE at this scale.

25.6.3 Strange quark mass from t-like processes

t-like processes have also been used for extracting the strange quark running mass defined
in the previous chapter. These processes are:
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* The Cabibbo suppressed transition AS = 1 measured in [33,328] and exploited in [348]:
T — v; + AS = 1 hadrons (25.75)
® The I = 0 ete™ — hadrons process:
ete” — I = 0 hadrons (25.76)

using the t-like decay process [354] (see also [355]):

3cos? 6, Mz s \? 25\ s
RT,O = 27_[0[2 SEWA ds (l — W) (1 + ﬁ?) ﬁrz Opte—— =0 - (2577)

involving the I = 0 total cross-section or/and of its different combinations.

We shall discuss in details these processes in the chapter on quark masses.



Part VI

Summary of QCD tests and oy measurements



V1.1 The different observables

We have discussed in the previous two parts of this book, deep inelastic scatterings in hadron
colliders and different hard processes in e*e™ annihilations. These hard processes have been
used for testing the underlying ideas of perturbative QCD at short distances. Among others,
one has studied and measured:

¢ Scaling violations in different parton model sum rules.
¢ Structure functions.

® Spin content of the proton.

® Fragmentation functions.

¢ Spin of the photon.

¢ One hadron inclusive production.

® Jets.

* Total inclusive ete™ cross-sections.

* Hadronic 7 and Z° decays.

In all these hard processes, most of the perturbative QCD predictions based on the SU (3),
colour group and on asymptotic freedom properties have been confirmed by the data.

V1.2 Different tests of QCD

The main outcomes of these analysis in the previous parts of the book are given in the
following sections.

VI.2.1 Deep inelastic scatterings

* A measurement of the scaling violations to parton model predictions in deep inelastic processes
using different moments of the structure functions as predicted by QCD. In the unpolarized case,
one has used these processes to extract the value of the QCD running coupling. In the polarized case,
one has been able to emphasize the important universal role of the QCD anomaly for explaining the
relative suppression of the first moment of the structure function compared to the OZI prediction
(so-called proton spin) and a proposal for testing its effect from the measurement of the photon spin
in y-y scattering processes, and of some semi-inclusive processes.

276
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An extension of the test of the validity of perturbation theory in the low-x region leading to a
modification of the Altarelli-Parisi evolution equations.

VI.2.2 QCD jets

A confirmation of the vector nature of the gluon rather than its scalar nature from the measurement
of the moment distributions in three-jet events.
A measurement of the ratio of the colour group factor C4/Cr from the scaling violation rates in
inclusive hadron distributions and charged hadron multiplicites from gluon and quark jets, which
leads to

Ca
. =224+£0.11, (VL1)

F

in agreement with the QCD expectation:

Cu =9/4=225. (V1.2)
Cr
This fact confirms the SU(3). colour group structure of QCD for describing the strong inter-
actions, and the appearance of the different vertices involving gluon interactions. It also rules out
some other group candidates (Abelian, semi-simple Lie group...).
An extraction of the QCD running coupling o;.

Inclusive et e™, Z — hadrons and t — v, hadrons processes

Most precise extractions of the QCD running coupling o using the high statistics LEP measurements
of the Z — hadrons and T — v, + hadrons decays and the best QCD approximation available today
(NNLO and resummation of the asymptotic terms of the QCD series). Unlike the previous deep
inelastic and jet processes, one does not need to introduce structure and/or fragmentation functions
which can limit the accuracy of the predictions.

VI.3 Summary of the o, determinations

In the massless quark limits which are a good approximation for the light quarks, QCD is a one-
parameter theory gouverned by its running coupling o, (Q?) evaluated at a scale Q, such that all
hard strong interaction processes, where one can apply perturbative QCD, should be described in
terms of this single input parameters.
A determination of the values of the running QCD coupling o, (Q?) at different energies from various
processes as summarized in the table and figures from [139]. In this comparison, the coupling should
be defined in the same way everywhere. The M S scheme has been adopted as the most convenient
renormalization scheme for defining this coupling.

One can see that the running of the coupling shown in Fig. VI.1 from 1 to 100 GeV and at
LEP2 energies in Fig. V1.2 satisfies the 1/log behaviour predicted by QCD. The slope of the curve
interpreted in terms of the first coefficient of the 8 function lead to an alternative measurement of
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Fig. VI.1. Summary of the different oy determinations at different energies from [139].
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Fig. VI.2. oy determinations from hadronic event shapes at LEP2 energies.

200

the number of colours:

N, =3.03+0.12, (VL3)

which is an internal consistency check of the results between data and QCD (N, = 3 in QCD!).
* Evaluated at the common scale Q = M o, the different experiments lead to consistent values of ¢
as shown in Fig. VI.3, with the average value from the six most significant NNLO determinations
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July 2002
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Fig. VI.3. Summary of the different «; determinations at the common scale Mo from [139].

(total error less or equal than 0.008) [139]:!
a;(Mz) = 0.1181 £ 0.0027 . (V1L.4)
As a result, the corresponding value of the QCD scale for five flavours is:

As = (210%3}) MeV . (VL5)

! The one coming from PDG 2000 [16] is slightly more precise than the average of different determinations from Table VI.1. This
is mainly due to the inclusion of the result from [250], where the error of 0.001 has been taken literally.
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Table VI.1. World summary of measurements of o (status of July 2002) from

VI Summary of QCD tests and o; measurements

[139]: DIS = deep inelastic scattering; GLS-SR = Gross—Llewellyn-Smith sum rule;
Bj-SR = Bjorken sum rule; (N)NLO = (next-to-) next-to-leading order perturbation
theory; LGT = lattice gauge theory; resum. = resummed NLO). Some entries are still

preliminary.
0 Ay (Mz)
Process [GeV] o, (Q) o, (Myz) exp. theor. Theory
DIS [pol. stret. fetn.] — 0.7-8 0.120 + 010 FO004 H009 NLO
DIS [Bj-SR] 1.58 0.375 F (0% 0.121 {008 - - NNLO
DIS [GLS-SR] 1.73 0.280 * 3070 0.112 * 4% T 0.005 NNLO
t-decays 1.78 0.323+£0.030  0.1181£0.0031 0.0007 0.0030 NNLO
DIS [v; xF;] 2.8-11 0.1153+0.0073 0.0040 0.0061 NNLO
DIS [e/u; F2] 1.9-15.2 0.1166 +0.0022  0.0009 0.0020 NNLO
DIS [e-p — jets] 6-100 0.118£0.011  0.002 0.0l11 NLO
DIS & pp —jets 1-400 0.119+£0.004  0.002 0.003 NLO
QQ states 4.1 0.216+£0.022  0.115£0.006  0.000 0.006 LGT
Y decays 4.75 0.217£0.021  0.118 £ 0.006 - - NNLO
ete” [F)] 1.4-28 0.1198 T304 0.0028 *00%¢  NLO
ete” [Ohaal 10.52 0.20 +0.06 0.130 7005 oo 0.002 NNLO
ete” [jets & shapes]  14.0 0.170 * 3¢ 0.120 012 0.002 X2 resum
ete” [jets & shapes]  22.0 0.151 79413 0.118 T9:000 0.003 T30 resum
ete” [jets & shapes]  35.0 0.145 * 052 0.123 70008 0.002 % resum
ete” [Onaal 424 0.1444+0.029  0.1264£0.022  0.022 0.002 NNLO
ete” [jets & shapes] ~ 44.0 0.139 2014 0.123 F008 0,003 20T resum
e*e” [jets & shapes]  58.0  0.1324+0.008  0.123+£0.007  0.003  0.007 resum
pp — bbX 20.0 0.145 * 0018 0.113£0.011  F35%7 008 NLO
PP, pp — ¥X 24.3 0.135 7 0552 0.110 T 3408 0.004 *007  NLO
o(pp — jets) 40-250 0.118 £0.012 T8 +0009  NLO
ete” [I(Z° — had)] 912 0.1227+00%48 . 1227+00048 038 +0002  NNLO
e*e™ scal. viol. 14-91.2 0.125+0.011  T3%9  0.009 NLO
e*e~ four-jet rate 912 0.1170£0.0026 0.1170 +0.0026 0.0001 0.0026 NLO
ete™ [jets & shapes] 91.2 0.121 £ 0.006 0.121 £0.006 ~ 0.001 0.006  resum
e*e” [jets & shapes] 133 0.113£0.008  0.120£0.007  0.003 0.006 resum
e*e” [jets & shapes] 161 0.1094+0.007  0.118£0.008  0.005 0.006 resum
e*e” [jets & shapes] 172 0.104£0.007  0.114+£0.008 0.005 0.006 resum
ete™ [jets & shapes] 183 0.109 % 0.005 0.121+0.006  0.002  0.005 resum
e*e” [jets & shapes] 189 0.109 £0.004  0.121£0.005  0.001  0.005 resum
e*e” [jets & shapes] 195 0.109 £0.005  0.122£0.006  0.001  0.006 resum
e*e [jets & shapes] 201 0.110£0.005  0.124+£0.006  0.002 0.006 resum
e*e [jets & shapes] 206 0.110£0.005  0.124+£0.006  0.001  0.006 resum
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* However, one should have in mind that the different values of «; for each process are not obtained
within the same QCD approximations. In some processes, they are known very precisely to NNLO,
while in some others they are poorly known to NLO. In addition, the theoretical uncertainties are
also affected by the asymptotic behaviour of the perturbative series in powers of ¢, and by small
non-perturbative effects which should be present in different processes. We shall come back to this
point in subsequent chapters.
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Introduction

The problems of power corrections have been intensively discussed during the last few
years [1,3,329-344,356-398].! By power corrections to the parton model, one means terms

of the order of:
<A)n~ex <—”” ) (26.1)
0 P\esop ) '

where Q is a typical momentum much larger than the QCD scale A, and 8; = —1/2(11 —
2n/3) in our notation. A priori, this is problematic as these contributions are exponentially
small in the inverse of the running coupling, and can be related to many orders of the
perturbative expansion. In order to develop a phenomenology of these power corrections,
one then assumes that they are numerically important and are responsible for the breaking of
asymptotic freedom at intermediate energies. This fact has been firstly indicated in the QCD
spectral sum rules phenomenology [1,2,3,356-365] and in the analysis of renormalons [329—
380] and instantons [382—-398]. However, as noticed in [162], the idea of power corrections
are not quite new but can be traced back to an old paper [416]. It has been considered an
ete™ pair at distance r placed into a centre of a conducting cage of size L. Assuming that
L > r, the potential energy of the pair can be approximated by:

o ar?
Vote-(r) = - -+ const 55 for L>r, (26.2)

where the second term can be viewed as a power correction to the Coulomb potential. In
classical electrodynamics, this correction corresponds to the interaction of a dipole with its
image, or can be also derived in terms of one-photon exchange. From this example, one
can derive, by analogy, the heavy quark potential of QCD, which at short distances looks
as [417]:

C
Voo(r — 0) >~ — + const A2, (26.3)
r

where C is calculable in perturbative QCD as series in oy, and where one should notice the
absence of a linear term at short distance. For deriving this expression, one has replaced L by
1/ A, assuming that the gluon propagator is modified by IR effects at the scale 1/ A. The shift

! It is a pleasure to thank Valya Zakharov for reading this Part.
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of the atomic levels in the cage are sensitive to a local characteristic of the non-perturbative
fields, which on dimensional grounds reads [416,162]:

0|E?|0
BE)np ~ il J J , (26.4)
P

e

where (0|E?|0) corresponds to the difference of the mean value of E? in one photon approx-
imation evaluated without and with the cage, and which is UV finite. Translated in QCD,
one can have the picture of the Q Q bound states, in terms of the density of the colour field
strengths, or more popularly known as gluon condensate (0|o¢S(GZU)2 |0), first discussed in
[418]:

(Olers (G4,)0)

8Enl ~ Cnl M4Q (265)
Considering now the QCD correlation function, which generically reads:
Mp(—¢q*) =i f d*x &TOITI()n (J(O)' |0} (26.6)

where Jy(x) is the hadronic current of quark and/or gluon fields, a use of the standard OPE
leads to [1]:

2 2 2y, ba
My (=4q7) ~ Mu (=g )parton |:1 +ana(—q°) + ra +-- ] (26.7)

for massless quarks, and, where ay and by are constants which depend on the hadron
quantum numbers. One should notice the absence of the 1/Q? power term in the standard
OPE as we shall discuss in detail in the next chapter. We shall also see in the following
chapters how the resummation of the QCD asymptotic series and its phenomenological
picture can induce such a term.



27
The SVZ expansion

27.1 The anatomy of the SVZ expansion

For definiteness, let us illustrate our discussion from the generic two-point correlator:
Mu(g®) =i / d*x (01T T (x) (Ju (O 10) | (27.1)

where Jy(x) is the hadronic current of quark and/or gluon fields. Here, the analysis is in
principle much simpler than in the case of deep inelstic scatterings, because one has to
sandwich the T-product of currents between the vacuum rather than between two proton
states. Following SVZ [1], the breaking of ordinary perturbation theory at low ¢? is due to
the manifestation of non-perturbative terms appearing as power corrections in the operator
product expansion (OPE) of the Green function a la Wilson [222]. In this way, one can
write:

Mu(g® m) =~ Y S Y. C@mP VoW, (272)

2_ D2
p=tza.. (M*—q%) 12 iiSen

provided that m?> — g% > AZ. For simplicity, m is the heaviest quark mass entering into the
correlator; v is an arbitrary scale that separates the long- and short-distance dynamics; C
are the Wilson coefficients calculable in perturbative QCD by means of Feynman diagrams
techniques; (O) are the non-perturbative (non-calculable) condensates built from the
quarks or/and gluon fields. Though, separately, C and (O) are (in principle) v-dependent,
this v-dependence should (in principle) disappear in their product.

® The case D = 0 corresponds to the naive perturbative contribution.

® For D = 2 and owing to gauge invariance which forbids the formation of a condensate, one can
only have the contributions from the light quark running mass squared. Moreover, one may (or
may not) also expect that the summation of perturbation theory via UV renormalon technology
(see next section) could also induce such a term, while the possibility from the freezing mecha-
nism of the coupling constant is negligibly small as it is expected to be of the order of (a,/7)*
[338].

® For D = 4, the condensates that can be formed are the quark and gluon ones:

myy), (G, (27.3)
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where the former can be fixed by pion PCAC (see Part I) in the standard Gell-Man—Oakes—Renner
(GMOR) realization of chiral symmetry.
® For D = 5, one can only have, in the massless quark limit, the mixed quark-gluon condensate:

(VoA [2GE ) . (27.4)
¢ For D = 6 one has, in the chiral limit, the triple gluon and the four-quark condensates:
& faeG GG, (YT 1Y YToY), (27.5)

where I'; are generic notations for any Dirac and/or colour matrices.

The validity of the SVZ expansion has been understood formally, using renormalon technology
(see next sections) and the mixing of operators under renormalizations. The SVZ expansion has
been also tested in the A¢* [367,368] and QCD-like models [369] (Schwinger two-dimensional
gauge theories [370], the C PV~ model [371], which both have instantons and -vacua; the Gross—
Neveu model [372] with dynamical chiral symmetry breaking [373] and 2-d O(N) free non-linear
o model [374,367], where both have the asymptotic freedom property of QCD).

Its phenomenological confirmation can be viewed from the unexpected accurate extraction of «;
from 7 decays and from independent measurements of the QCD condensates (see chapter on QCD
condensates).

27.2 SVZ expansion in the 1¢* model

For a simple pedagogical introduction, let us illustrate the SVZ expansion for scalar field
theory.! The bare Lagrangian of the theory reads:

Ly = S@ubn) — ymsdh — o 27.6)
where ¢ is the scalar field, m and A are its mass and coupling. B refers to bare quantity.
It is known that for m% < 0, one has a spontaneous breaking mechanism where the field
acquires a non-vanishing expectation value, which is non-analytical in the coupling, such
that the model mimics non-perturbative effects. In order to further simplify our discussions,
let us, however, work in the case m% > 0, where no condensate breaks spontaneously the
symmetry and let us ignore (for the moment) renormalization effects. We shall be concerned
with the propagator:

D(g*) =i / d*xe' ™ (0| T (x)$(0)[0) , (27.7)

which we shall evaluate in two different ways. In the first one, we evaluate it using the
standard perturbative expansion in A (Fig. 27.1).

! We shall ignore in this illustrative example the radiative corrections discussed in [367,368].
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2 P
D(q) X—X + +...

p

Fig. 27.1. Lowest order perturbative contribution to the scalar correlator.

Fig. 27.2. Lowest order scalar condensate contribution to the scalar correlator.

Using, for instance, a Pauli—Villars regularization (the following conclusion is regular-

ization invariant), one obtains for —q2 > m% = m?:

D~y (g A (27.8)
)= 32\ T ) :

m

where A is an arbitrary UV cut-off.
In the second method, one evaluates the propagator using the SVZ expansion for —g? >
m2. Therefore, it reads:

D(g*) =~ Ci1+ Cy(p?) + - - (27.9)

By introducing the scale v, which separates the long- and short-wavelength fluctuations,
one can extract C| from the perturbative graph for p > v (short fluctuations):

PO AL PR (YOS el (27.10)
~—=4+—{1—-—=—(log— - —— )} . .
! 2 ¢ 3072 \ 082 m2
The Wilson coefficient C, is associated to the ¢* ‘condensate’:

A

Cy~ 3 (27.11)

and comes from Fig. 27.2.
The condensate (¢?) corresponds to the evaluation of the tadpole-like graph for p < v
(large fluctuations), from which, one obtains:

(¢?) ~ ! vz—mzlogv—z (27.12)
1672 m?2) ’
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These results show that in this simple example, the SVZ expansion recovers (to this ap-
proximation) the usual calculation. However, the coincidence of the series is not trivial if
one goes to higher order. This will be the subject of the next discussion in QCD.

27.3 Renormalization group invariant (RGI) condensates

Now, the next step is to see if the condensates can be well-defined in perturbation theory,
namely if one can form quantities which are invariant under the RGE. This discussion has
already been anticipated when we discussed the renormalization of composite operators,
where it has been shown that, in general, these operators can mix under renormalizations
[126-131].

27.3.1 Scale invariant D = 4 condensates

* Generalities and definitions
In the previous section, it was demonstrated that the condensates:

mi(y;v;)
1 -
(6:) = JB@IGG) + 3 ymerm;(F;v) . 27.13)
J

are renormalization group invariant [126,128]. However, perturbative evaluations of the
quark-mass corrections to the correlation functions give rise to IR logarithms of the form
m“a;’(v)log"(m/v) (k < n+ 1), where v is the M S renormalization scale [167,399]. The mass
singularities arise from the region of small loop-momenta in the relevant Feynman diagrams, and
therefore should be absorbed (like the IR renormalons) into the non-perturbative condensates (O(v)).
The IR logarithms are nothing more than the perturbative contributions to the D = 4 vacuum
condensates.

However, one should notice that the calculation of the D = 2 quark-mass corrections does not
produce any logarithms log*(m /v), which is a consequence of the absence of the D = 2 operators
in QCD.

In order to be explicit, let us consider the pseudoscalar two-point correlator defined in Eq. (8.29).
At g = 0, one obtains from a perturbative calculation of the correlator [167]:

3
WS Olpen = 5 (mi +m)) (m7 Z; +m32;) (27.14)
with:
m? 2 oy m? 2 m,2

which improves the non-perturbative Ward identity in Eq. (2.17), and which indicates that, in order
to absorb the mass singularities, one should add a perturbative piece to the quark condensate. In a
similar way, the perturbative piece to the gluon condensate reads [325]:

2

wS | m? ms;
(GCONE = ~5 (;) > miw) [9 ~8log — +3log’ y] . (27.16)
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The summation of the log-terms using the RGE becomes more convenient by working with the
scale invariant non-normal ordered condensates [325]:2

(@%.GG) = <1 n %6%.(1)) + 0(a§)> ¥< . GG): S

- (14 32 0(@2)) om0

9 7
1 4 o, (v)
37 (1+§T+0(“3)>Zm?(v), 0717)
and:
(milpjwj) = m;( ;1[,”01.: )W(v)
3 _ Eas(v) 5 . \
+ Tro,(v) (1 % + O(aS)> m;(vym;(v), (27.18)

where one can notice the inverse power of «, in the expression for the quark condensate. The
use of these scale-invariant condensates in the OPE implies that the coefficient functions obey an
homogeneous RGE, which then facilitates the summation of the log(Q/v) terms in the analysis.

Analogously to the invariant mass 77; in Eq. (11.77), a spontaneous RGI mass /i; associated to
the quark vacuum condensate can also be introduced by taking into account the fact that the product
m;(Yrr) is RGI (at least to leading order in ;) [28,110,2]. Then, one obtains:

(¥ 1)) == ] (=Pra, ()" {1 + b (ﬂ - &) as(v)

B \B B
! ﬂ%(w_yz)z_ﬂ%(w_Vz) é(ﬁ_&) .
+ 2[/312 5 5) E\s B) T s 8) |
-1
+ O(a}, mf)} , (27.19)

where the values of the 8 functions and mass anomalous dimensions can be found in Table 11.1.
Values of the light quark condensates

Assuming a GMOR realization of chiral symmetry as commonly accepted, the light quark conden-
sate can be estimated, to leading order of the light quark mass, from the PCAC relation given in
Eq. (2.22):

(my +ma) P+ Paa ) = —2my fr . (27.20)
Anticipating the values of the running masses in the next chapter, one can deduce:

1 -

E(ﬁu +dd)(2 GeV) = —[(254 &+ 15) MeV]® . (27.21)

We shall also see, in the next chapter, that one has a large breaking from the SU(3)r flavour
symmetric value of the condensates as first noticed in [400] from the pseudoscalar sum rule, where

)

One should notice that the use of the Wick’s theorem in the evaluation of the Feynman diagrams generates automatically
normal-ordered condensates which we shall denote as ( : O : )
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a recent update estimate [354,419-421] (see also [423]) leads to the ratio of the normal ordered
condensates:

(:5s:)/{ @u: )=0.66=+0.10, (27.22)

in agreement within the errors with different baryon sum rules results [426-430]. Combining
Eq. (27.17) with this result, one can also deduce the ratio of the non-normal ordered condensates:

(5s)/(iu) =0.75+0.12. (27.23)

* Value of the gluon condensate
The gluon condensate has been orginally estimated by SVZ from charmonium sum rules [1]. We
shall see in the next chapter that a re-extraction of this quantity from the e*e~ — I = 1 hadrons
data and from the heavy quarkonia mass-splittings, lead to [329,313] (Sections 51.3 and 52.10):

(,G?) = (7.1 £.9)1072 GeV*, (27.24)

as expected from various post-SVZ estimates [3,356—365], but about a factor of two higher than
the original SVZ estimate.

27.3.2 D = 5 mixed quark-gluon condensate

The renormalization of the mixed quark-gluon condensate has been studied in [130], where
it has been shown that the scale invariant, which one can form, is the combination:

(Os) = a™/~P {04+ x O +y Oy) (27.25)
where the dimension-five gauge invariant operators are:
0, Eim?(&j‘ﬁj) ,
0, = —:—‘m_/ (G?),
O3 =—m;y (D +imj)y;

04Eg<1/7jguv%¢jczv> _ (27.26)
For SU(3)¢:
1944 72 1
=—35 y=-g =3 (27.27)
which indicates that working with (Oj), is only valid to leading order in the quark mass-
expansion.

The value of the mixed quark-gluon condensate has been estimated from baryon sum
rules [424-430] to be about 0.8 GeV?, and alternatively from the heavy-light quark systems
B and B* [401]. Further discussions will be given in the next chapter. The QSSR value of
the mixed quark-gluon condensate is:

_ A4 i
g<¢joﬂ“7¢jczv> = MZ a7 i) (27.28)
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where:
M = (0.8 £0.01) GeV? . (27.29)
For a conservative result, we shall adopt:
M} = (0.8 £0.1) GeV?, (27.30)

assuming a 10% uncertainty typical for the sum rule approach.

27.3.3 D = 6 gluon condensates

Triple gluon condensate:
It reads:

(O6) = & fune (G*G"G) (27.31)

and does not mix under renormalization with the other D = 6 operators. Its renormalization
improved expression is [130]:

(Og) = a; 7P (Og) , (27.32)

where for SU(N):
1
Y6 = 6(2 +7N). (27.33)

A crude estimate of this condensate can be obtained using a dilute gas instanton approximation
model (DIGA) (see next chapter). For an instanton size p. ~ 200 MeV, one obtains [382]:3

(Og) ~ (1.5 +0.5) GeV*{a, G , (27.34)

where we have assumed a 30% error. This estimate is in good agreement with the SU(2) lattice
estimate [402]:

(Og) ~ (1.2 GeV?){a,G?) , (27.35)

although one should be careful in using this result (in particular the sign) as the latter has been
obtained in the Euclidean region.
¢ Gluon derivative condensate:

§*(DG DG) = ¢g*(D,G* D"G%,) . (27.36)

It reduces to the four-quark condensates:

oo V2
gt <Z m—w> , (27.37)

after the use of the equation of motion.

3 The effect of the anomalous dimension has not been included in the analysis but it is negligible.
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27.3.4 D = 6 four-quark condensates

On the contrary, the four-quark condensates mix with each other [130,131]. In the chiral
limit and after the use of the equation of motion, one remains only with five operators:

Or = (T ¥ Tavp) | (27.38)

where the colour indices («, 8) run from 1 to N. I'; is any Dirac and colour indices. One
can choose the basis:

l—15 =1 s 1-‘V =Vu
Cp=vys, Ta=vyuys,
Ir =0 = lj[y;u yu] . (27.39)

In the large N-limit, where the vacuum saturation is expected, one has:

- - 1 -
YTy yay) = W[Tr Ty Tr Ty — Te(C TN y)? (27.40)

With the inclusion of the next 1/N-correction, one has [130]:
Os =Wy)* (1 - 35) - Op=(F¥)* (—3y) .
Oy =YY (—3) . Oa=(¥)1(5) .
Or = () (=3y) - (27.41)

indicating that in the large N-limit, only Oy is relevant. However for finite N, the operators
mix with each other and signal the fact that the vacuum saturation is inconsistent with the
RGE, as one cannot form a RGI condensate. In the solely case of N — oo, the situation
improves, as one can construct the RGI condensate:

(0n) = /P Yyriy) (27.42)
where:
143
Y6(N — 00) = fN . (27.43)

The size of the four-quark condensates has been estimated from the ete™ — hadrons
data [403,404], [405-409] and from the T — hadrons decay width [328,33]. It has been
noticed for the first time in [404] that the vacuum saturation assumption, used previously,
underestimates the real value of the four-quark condensate by a factor:

p~2-73, (27.44)

while in the eTe™ analysis, there is a strong correlation between the four-quark and the
(a; G?) condensates, as they appear in opposite signs in the OPE. This result has been also
found from baryon sum rules [424,426]. A recent analysis of the eTe™ data gives [329]
(reprinted paper):

pos (Ur)? = (5.8 +£0.9)107* GeV® | (27.45)
a result confirmed by the ALEPH and OPAL measurement from 7-decay data [328,33].
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27.3.5 Higher dimensions gluonic condensates

The dimension-eight gluonic condensates have been discussed in [410—-412]. In general,
one can form eight operators:

=(Tr G* Tr G?) ,
(Tr G,,G"" Tr G,,G"") ,
(Tr G,,G™ Tr G,,G™) ,
04 =(Tr G,,G™ Tr GLG"%),

=(Tr GWG“ G,.G"
( Gv;LGTpG

= (Tr GWG”” G,”G‘"
08 =(Tr G,,G"* G""G’"

’

),
0 )
)
). (27.46)

Using the symmetry properties of the colour indices and an explicit evaluation of the
trace, one can show that one has only six independent operators and the relation for N = 3
[411]:

1
O5+20,=0,+ 504 ,
1
Og +20¢= 03 + 501 . (27.47)

The use of the vacuum saturation in the large N-limit gives:

01_(G2>2}t (1+%N21 1) ’ 02=<G2)2i (i—i_%Nzl—l) ’

03:(G2>2}1 (é+%N21 1) ’ 04:<G2)2% (1_12+%N21—1) ’

0s = (G2>2ﬁ (% - 112 N2171) » Os= <G2>2ﬁ (% - %Nzlq) J
0,=(G) & (3 —15) . 0s=(GH% (3 — ) . (27.48)

which indicates that only the first four operators are leading in 1/N, and they do not satisfy
the previous constraints. Moreover, the 1/N? corrections to these leading-term are also
large for N = 3 in the case of O3 and Oy, and put some doubts on the validity of the
1/N-approximation. A modified factorization has been therefore proposed [411] based on
the evaluation of the typical G* one-point function:

(27.49)
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within a heavy-quark mass expansion and on the approximate validity of the factorization
of the four-quark operator. In this way, one obtains the constraints:

G22
01=(4> ’
03=204,
11
O = —— (G2
6 4N( )
0s5=07,
03 =407 — Og , (27.50)

which leave one operator unconstrained.

Although theoretically interesting, these results are not very rewarding in practice. How-
ever, phenomenological fits from the 7 decay [407,328,346] and e*e™ — hadrons data
[329] (Section 52.10) indicate that the estimate based on the factorization assumption gives
about a factor 5 underestimate of the real value of the dimension-eight operators.

27.3.6 Relations among the different condensates

The heavy quark expansion has been used to derive the relations among the different conden-
sates by studying the OPE in the inverse of the quark mass of the corresponding one-point
function. More rigorously, the following results apply in the condensates of a heavy quark
Q, although it has been extended to the light quark one in the literature, in an attempt to
derive the light quark constituent mass from an effective QCD action [413].

A study of the (Q Q) one-point function as shown in the following figure:

<QQ>= + +

(27.51)

gives:

_ 1 1 3G3 1 (DGDG
MQ<QQ>=_E g’(G”) ¢ )

G?) — -
(@G = Taom? M3 1200 M}

. (27.52)

where the first term has been obtained orginally by SVZ [1] and the higher dimensions
corrections have been evaluated in [410,411].
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A similar relation has been also derived from the one-point function of the mixed quark-
gluon condensate [410,411,414]:

<C§GQ>: + +

(27.53)

It reads:

M <Q0/L”A—“QGH > 3 (“—) (G3) (27.54)

0 2 0w | T g\ )8 ‘
where we have dropped the non-local perturbative term, which has no physical relevance,
though its role is useful for absorbing the m* log” (m /v) mass singularities (subtleties related
to these terms have been discussed in detail in [411]).

The previous relations show that the quark and mixed quark-gluon condensates vanish in
the world with an infinitely heavy quark mass. Due to the positivity of the G3-condensate,
the previous relation also shows that the mixed quark-gluon condensate is positive, which
is a less trivial result. Finally, a relation among the condensates has also been derived using
a Cauchy-Scharwz-like inequality [415]:

(gY Gy)? < 167 (o, GH)[(Tysyirysr)] (27.55)

which we should regard with a great caution as we can not control the error in deriving
this formula. However, it indicates that the previous values of the condensates obtained
from QSSR are self-consistent and disfavours the SVZ standard value of the gluon and
four-quark condensates.

27.3.7 Non-normal ordered condensates and cancellation of mass singularities

We have discussed in previous sections the mixing among different condensates and the
neccessity to form scale-invariant quantities which facilitates the log-resummation. This
definition is also intimately connected with the absence of quark-mass singularities in the
OPE. In order to show explicitly how these IR singularities are absorbed, it is informative
to write the renormalized non-normal-ordered condensates in terms of the normal-ordered
ones denoted by ( : O : ), where the latter appear naturally in the use of the Wick’s theorem
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for the calculation of the Feynman diagrams. To order «, one has:

- - 3 m? 1 1
TV =( PP )= —5m [1og?—1}———< L0, GG ),

4 127 m
(o, GG)(v) =( 10, GG : )+ O(ef) .
- A . A m m?
pv 4 ~a — . uv a4 ~a . - . .
g<1/fc7 2Gwl//>(1})—g< Yo 2GW¢. >+2ﬂ log v2< oy, GG 1), (27.56)

where the non-local logarithms and additionnal terms are just those necessary to render
the results of the OPE free from IR singularities. Careful handling of these quantities are
required for correct treatments of the Green’s functions in which one or more internal
fermion masses are much smaller than the QCD scale. We also expect that most of the
perturbative results available in the literature (e.g. supersymmetric calculations or QCD
high-energy processes, ... ), which are strongly affected by the change of the light quark
masses (or the IR scale of the theory), should be treated in an analogous way in order to
absorb such divergences.
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Technologies for evaluating the Wilson coefficients

There are nice expositions of these methods in the literature [431-434,3,362,45,399]. We
shall not try to replace these discussions, but for a pedagogical reason, we shall repeat within
our proper style some of these results. Let us remind ourselves that the evaluation of the
Green’s function of some local colourless currents is reduced to its evaluation in external
gluons or/and quark fields, assuming that the field is weak, namely its momentum is much
smaller than the characteristic scale of the problem. In this way, the expansion in power
series a la Wilson makes sense.

28.1 Fock-Schwinger fixed-point technology
28.1.1 Fock-Schwinger gauge

Let us now come to the methods for evaluating the Wilson coefficients appearing in the
SVZ-expansion. Among others, the Fock—Schwinger method is the most convenient one in
practice [431]. It corresponds to the choice of the Fock—Schwinger gauge [435,319]:

(x —x0)A7(x) =0, (28.1)

used often in QED. Af (x) is the four-potential and xo is an arbitrary choice of coordinate
which plays the role of a gauge. As Eq. (28.1) breaks explicitly the translation invariance,
its restoration (cancellation of the x( terms) for gauge-invariant quantities provides a double
check of the validity of the calculation. Unfortunately, due to algebraic complications, most
calculations have been done in the special choice xy = 0 of the gauge.

28.1.2 Gluon fields and condensates

Using the identity:
0 AP(x)
123 - P _ 7
At (x) = rh [A?(x)x,] — x, FPTRE (28.2)
and from Eq. (28.1) at xo = 0:
AP AH(x)
_ 7
Xp Py x,G" +x, ox, (28.3)
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one can deduce:

AR+ x, Aa"(x)

=x,G"" . (28.4)

Xp
By substituting x = az in the previous equation, it is easy to realize that this equation is
a full derivative:

d
oA, (28.5)

which gives after integration:
1
At (x) = / do G (ax)x, , (28.6)
0

which expresses the gauge field A} (x) in terms of the gluon-strength tensor G;,,. One can
use Eq. (28.6) by Taylor expanding G, around x* = 0:
= 1
a _ e XPxVi.x™y ... a
A= Z nl(n + 2)x Xy By, Gl - (28.7)

x=0

By Taylor expanding A*(x), the gauge condition x,, A*(x) = 0 becomes:
1
X I:AM()C) + Xy, aU] Au’(x)(O) + Exmxuz 81)1 8vaM(x)(O) + - ] =0 ) (288)

for all x and leads to:

x, A*(x)(0)=0,
XXy, 8v1 AM(X)(O) =0 s
XX, Xy, Oy, 0y, AH(x)(0)=0. (28.9)

Therefore:

x\)] 81)1 G(O) = xvl [Dvl ’ G(O)] ]
Xy, Xy, 0y, 00, G(0) = x,, X,,0,, [ Dy,, G(O)] = x,,x,,[Dy,, [D,,, GO)]],... (28.10)

and then the useful formula:

o0

1
W@ =3 e x (Du (Do [ [P O] 1) @8

One can immediately form the gluon normal ordered condensate:
1,
A,u(x)Av(y) = Zx y GA;/,Gpu +---

1

=———x")” b — 8uw&uplGPGup + - - 28.12
4d(d — l)x Ygro8u 8uw&upl s+ s ( )

where d = 4 — € is the space-time dimension.
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28.1.3 Light quark fields and condensates

Analogous arguments can be used for the quark fields. One obtains the Taylor expansion:

1
@)=Y —x' Dy, Dy Dy Yl

n

_ 1 - ,
w(x)zzixm cx" D} Dlz"'D\Tzn|X=0 , (28.13)

n

with:
V(0] =0, . (28.14)

From the previous expressions, one can also form the normal-ordered quark condensate:
- 1 U -
(Yia@Vie0): )= m&yﬂ 8ij + mx Ywij | vy o)

. . ) .
— l—xz (5,‘j + l—m XM(Vu)ij) < : I/IUW?GZVW : >

16 6
—I—sz (i vy, &WZ‘/_’J‘W}L—“‘” S| (28.15)
288 wij A A A

This expression tells us that one should be careful in evaluating the Wilson coefficients
of high-dimension condensates as the propagation of the () condensate induces extra-
contributions due to the mixed and four-quark condensates. This effect has been one of the
main source of errors in the existing QSSR literature.

28.1.4 Mixed quark-gluon condensate

By combining the Taylor expressions of the quark and gluon fields, one can form the
normal-ordered mixed quark-gluon condensate:

- 1 - 1 -
(1 ¥ix0)A,(2)y;(0) : >=§Z“< UG )+ EXVZ”( YDIGu Yt )+

ZH |: [ m( )+ i y i|
=—| |ow — =(xux, —x,x,) + =mx"oy,x,
96 2 2 i

3 3 2

ij

7 tk . 2 2 1 v
X YouG Y Y+ i —5zuYe + 520V | + 5X V0w

N _ Aa
7

This expression also indicates that the propagation of the mixed quark-gluon condensate
induces a quartic condensate. Here, one should remark that the non-local condensates used
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in some literature can be identified with the LHS of Egs. (28.15) and (28.16). In this
framework, the Wilson coefficients of these non-local condensates differ from the standard
SVZ expansion.

28.1.5 Gluon propagator

For a complete calculational purpose, one also likes to have the expression of the propaga-
tors. We only quote their expressions in this gauge. The gluon propagator reads:

DMu(Q) = / d4xeiqultv(xv 0)

4i

_8w 26 D)G 2 DG g
= ~|—g; ;w‘i‘gﬁ(q ) /w_gﬁguv aUap 4

q2
2 B 2 a2 _4 2
+gq8(l]D)DaGaﬁ8 8y +gq8(l] D Gp,v (qD) Gp.v)

2 1 2 af 2 2 4
+8 2qggw(q GoG 4quGop)) + 8 7 GuaGav (28.17)
where:
_ pab __ pa yb _ rabe e
G = GW = lek =f GM(O). (28.18)

28.1.6 Quark propagator
The quark propagator satisfies the Dirac equation:
.0
<’ T Ve T ANy = M ) See,y) =890 =), (28.19)
I

where: A = (A,/2)A! and M is the quark mass. Under the condition that the position of
the field is much smaller than the characteristic distance x — y, one can have the Taylor
expansion:

iS(x,y) = is<°)(x,y)+gfd4ziS“”(x,z)iA(z)iS“”(z,y)

+g2/d4z’ d*ziSO(x,2)iAE) iSO, 2)iAR) iSO, y)
Ll (28.20)

where S©(x, y) is the free quark propagator, and A = A* ¥u. This expression shows ex-
plicitly how many times the quark from the point y scatters 0,1, . .. external fields before
annihilating at x = 0.

We shall consider the case of the heavy quark propagators in the next section due to the
subtlety that the quark and gluon condensates are related to each other through Eq. (27.52).
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Let us now consider the massless quark propagator in external fields. It reads in the
x-space:

A

225G =—— — & o)
y V)= 22 472 apV)Yuys

A

7 1 7

i v
+ {EW)’PXHGPM(O) - % (r2)2 (x2y2 - (Xy)z)le(O)GM (O)}

+ operators of higher dimensions , (28.21)
where:
A a 2 1 vB
r=x-—y Gy = g?GW Gop = EewvﬂG . (28.22)

For two-point correlators without derivative currents, only the first two terms are operative
in the evaluation of the gluon condensate effects, while the other terms contribute in the
case of three-point functions or current with derivatives. The extension of this expression
including higher-dimension gluon operators can be done. For completeness, this expression
is:

inx 1 p* -
S(p)=fd4x e S(x,0) = = — 7 8Gupy’y’
P p
2 1 A Vv o . VA /o
+§gﬁ[p2D“Ga,syﬁ — pD*Gop pP — pyD'D*Gopy”? — 3ip, D" D*Gopy?y’)

+ 2 [ip2ip, D D Gy — i ppaD D*Gug? — i (pu D"V G y?
pg PPy aBY Lppy apV t(py p apY
s 1 s
+2(vau)2 p“Gaﬁyﬁys _ EDUDVPZP“GO,,@)/’S)/S]
i 2r_9p o Bv 2 o Bv Bv
+p8g [=2pp*GapG"" py + P p*(GopG™" + G™' Gup)yy
— PP (GupG” — G GopIy] + - (28.23)

where here G = (A,/ 2)GZ,3' The Wilson coefficient of the gluon condensate having di-
mension D is proportional to p~2+1,

28.2 Application of the Fock—Schwinger technology to the light quarks
pseudoscalar two-point correlator

In order to illustrate the discussions in the previous sections and chapters, let us consider
the two-point correlator:

Ws(g*) =i f d*x €% (0|7 Jp(x) (Jp(0)' [0) , (28.24)
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where:

Jp = (mi +m)¥i(iys)¥; (28.25)
is the light quark pseudoscalar current. The lowest order perturbative result for massive
quarks and the two loop expression for massless quarks has been discussed for illustration

in previous chapters. Here, we shall discuss explicitly the evaluation of the non-perturbative
contributions.

28.2.1 Quark condensate { : i : )

In order to compute the Wilson coefficient, one can start from the Wick’s theorem and leave
one pair of ( : ¥ : ) without contraction. Therefore:

Ws(q2) = (m + ma () (s (—i) f dtx e
) Ty () Attt : )+ uO)pr( )t = dO)ped Xy : )]

(28.26)
Using the definition of the propagator:
YW () =i8ap8" " Sij(x — )
s 6fr [ AP ~ip(r—y)
= i8apd 2n) 3ij(ple o (28.27)
with:
1

Shp) = ————. (28.28)

p—mp+ie

one obtains:
d4p )
2N 2 4 —i(p—q)x
Ws(g?) = (m, +ma) /d x/—(zn)4e Pt

x [ @(x)eiu(O)g : MysSUp)ysli + 2 d0)prd(x)aj 2 VMysS“(P)yslij] -
(28.29)

In terms of Feynman diagrams, Eq. (28.29) reads:
9, UL ST (28.30)

where e e means that the two-quark fields condense at the same point, so that a Taylor
expansionin x,, of { : ¥/(x)y¥(0) : ) makes sense. Using Eq. (28.15), wherein we shall limit
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ourselves to the first two terms of the expansion, one obtains:

2 23
Ws(g*) = (m, +my) D

1 0
X |:( chuc ) [Tr vsS4(q)ys — 7N [—aTr(VSSd(‘])VSVA)] }
P=q

X (U <— d):| . (28.31)

Using the property:

9
_a_S(p) = S(PyrS(p), (28.32)
D

one can deduce the final result:

2
Us(@Dlgy = (’"“;L—zmd) [(md _ %)( i) 4 (e d)] . (2833)

The minus sign is due to the ys chirality flip which acts on the term 3/dp*. This implies
that for the scalar current, one has to change this minus sign.

28.2.2 Gluon condensate { : a,G>: )

The evaluation of the effect of the gluon condensate can be done by using the previous
expression of the quark propagators in external fields. Diagramatically, one has to compute
(Fig. 28.2):

P4 P3
p1-q Py b1 P2
q q q
- >— 4+ - > — 4+ —o > -
P2
P1-q P3
P3 Py

q
(28.34)

As usual, we apply Wick’s theorem where all quark fields should be contracted but not the
gluon ones. The notation ¢ e means again that the gluon fields are put at the same point,
such that the previous Taylor expansion in Eq. (28.20) is valid. Using Feynman rules, one
can deduce:

2 4
N ; d p a a
Ws(qh)lg = (mu + ma) (=)= / d*y d*z f [Ti= 1352;,-)5# PAT(NALR) )
x [TelysS(p1+ @)y*S(p3)y” S(p2)ysS(p)le! TP mrtieamia)
+ TI‘[)/5S(p1)yss(pz))/pS(p3)y)‘S(p] — q)]ei(—m+q+l73),\'+i([72—[73)z

+ Tr[ysS(p1)y” S(p2)ysS(p3)y*S(p1 — @)l rtpvtitpi=mi] (28 35)
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where we have omitted the flavour indices u, d as we shall work in the massless quark
limit. Now, one takes advantage of Eq. (28.12), which is valid in the Schwinger gauge.
Substituting it in Eq. (28.35), one gets:

d4P1

Ws(g™)|6 = (my +ma)*(—i) a0t

2 v
Gy'Gy, VT — 8y T
Tod(ad —1)'§ Ga Cunll8ve&io = 8w ]/

TrlysS(p1 + @)y"S(p3)y " S(P2)vsS(P] pr=ps=pi -+

X |:2
aplv aer

TrlysS(p)y” S(p2)ysS(p3)y*S(p1 — q)]ﬁz_ﬁl_PS_Pl—q] ;

8p3v 8p2r
(28.36)

where we have used the fact that the two self-energy-like diagrams give the same contribu-
tion. Using Eq. (28.32) and the properties of Dirac matrices and Feynman integrals given
in Appendices D and F and in that of QSSRI1, one can deduce:

1 (mu + md)2

g (GG, (28.37)

Y

Ws(gH)le = —

28.2.3 Mixed quark-gluon condensate

This contribution corresponds to the diagram:

p p+k
(28.38)

As before, one again writes the Wick product where two quark fields should be contracted.
The first diagram gives:
. d*p d*k
W@ = (m, 2/d4d4 qu/ ________
@)y =0m+ma) rare Q2m)* 2m)*
X g( 1 u(xX)ai AL u(0)gr 2 YY" Viun(v5)ij (¥s)a

x e P gd (D)t (p+k) + (u «—d).  (28.39)

We use now Eq. (28.16), the property in Eq. (28.32) and we do the Dirac algebra.

The self-energy-like diagram can be obtained by considering the propagation of the
(¥) condensate in a weak external field as given in Eq. (28.15). Using iteratively the
property in Eq. (28.32) and doing as usual the Dirac algebra, one obtains the desired result.
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The sum of the mixed quark-gluon condensate contributions is:

m, +m 2 _ -
\Ifs(qz)|M = —(z(q—z)zd)g[md(uGu) + m, (dGd)], (28.40)
with the shorthand notation:
_ _ A‘a
gWGY) = g< Yot S G > : (28.41)

The result for the scalar current can be deduced from Eq. (28.40) by changing the overall
-(mg + m,)? factor with (my — m,)?.

28.2.4 Four-quark condensates

Two classes of diagrams contribute to the four-quark condensates.

® Class 1: is that where the gluon fields once contracted give a hard momentum gluon propagator:

S

The computation of these diagrams can be done using standard perturbation theory, namely by
writing the Wick product, contracting the gluon fields and two pairs of quark fields and by taking
the vacuum expectation values (v.e.v) of the four-quark operators. Then, one obtains:

2
s (my +my)? . A s M
Ws(q )‘4\[/ = Wﬂas cioht ysfu —do"ys ?d : . (28.43)
¢ Class 2 is that where the momentum of the gluon propagator is zero. This contribution is represented
by the diagrams:

(28.44)

The first two diagrams are generated by the propagation of the { : ¥ : ) condensate in a weak
external field as given in Eq. (28.15). The third diagram is generated by the mixed quark-gluon
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condensate as in Eq. (28.16). Evaluation of these diagrams leads to:

u T md)z T - Al 7 Al - Al
wo(g?y|® = Pt ma) AayrZu+dyr-a Sy ). (2845
s@,, P ay" St dy" S ;ﬂmzw (28.45)

If one uses the vacuum saturation and the SU (2)r flavour symmetry of the quark condensates, the
sum of the four-quark contributions reads:

(my +ma 112

SRz el ) (28.46)

‘I’s(qz)|4\// =

where p measures the deviation from the vacuum saturation estimate.

28.2.5 Triple gluon condensate

The contribution of the triple gluon condensate g( : furc G, G? ,G, ) has been evaluated
in [436,432] and comes from the diagrams:

+ + (28.47)

One can use here the quark propagator in the external field (Eq. (28.23)) and write the gluon
fields in terms of the field strengths as in Eqs. (28.11) and (28.12) in order to form the triple
condensate. The calculation can be done using standard perurbation theory. In the chiral limit
(m;, j = 0), the effect of the triple gluon condensate vanishes for any quark-bilinear currents.

28.3 Fock-Schwinger technology for heavy quarks
28.3.1 General procedure

The technology differs slightly from the light quark one as we can no longer neglect the quark
mass M which is the most important scale in the OPE. Moreover, due to the Wigner—Wey]l
realization of chiral symmetry for the heavy quark systems, the heavy quark condensate
vanishes as 1/M and is correlated to the gluon condensate as in Eq. (27.52), which is the
most important non-perturbative scale in the heavy quark sector.

The Fock—Schwinger gauge [435,319] remains the most convenient working gauge and
the momentum space is also the most convenient working space [431]. Let the generic
heavy quark two-point correlator:

Yr(gH =i / d*x €'* (0T Jr(x) (Jr(0)' 0}, (28.48)

where:

Jr = i)Y, (28.49)
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and I is any Dirac matrices. The non-perturbative contributions to the correlator are typically
of the form:

d*k Te(T..., k, g, m,...T..)

2 2 = :
"IJF(q ) M )— (gG G) (27T)4 (k2 _ Mz)[(k—i-q)z _ M2]n

(28.50)

The trace can be done using some algebraic programs. It is convenient to express the
result as inverse powers of k> — M? and (k + g)*> — M?. After a Feynman parametrization,
one encounters integrals of the form:

1
19(¢%, M?) = / d
0

By noting the symmetry x — (1 — x), one can re-expand the previous integral in x(1 — x)

x%(1 —x)P
X .
[—g%*x(1 — x) + M?]"

(28.51)

and deduce the recursive relation:

aa o 1 oa— —
=" = 7 (1) — M2y (28.52)

This leads to the basic integral:

! dx
= /o [1—x(1—x)g2/M2]"° (28.53)

which reads:

n — n—k
Cn=3)"{ (vP=1\" |, v+l k=1 (-1
J, = 21 , (28.54
n—1)! [( 22 )V ogv—1+z(2k—1)!! 22 (28.54)

k=1

where:

am\'?
v= (1 - —) . (28.55)

28.3.2 D = 4 gluon condensate of the electromagnetic correlator

We use the Fock—Schwinger gauge in order to express the gluon fields in terms of the field
strengths as in Eq. (28.12). The algorithm is very similar to the one used for the light quarks.
The first two self-energy-like diagrams normalized to (i, G?) give [431]:

B a4 vt Vs v+1

I 1| _Gv*+3) - D3*5vr+3) v—1
Ct = 2 1
G = " 96 q4|: + o8

} . (28.56)

The vertex-like diagram contributes as:

112024+ =12 v—1
ct {2 R Ve } (28.57)

Gz@q_“ v? v3 gv+1
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where one can notice that each set of diagrams develops a non-transverse part:

1 1(1=1v% W+, v-1
rg'Tlb = ——— — 1 1 , 28.58
9 16w g%  v2 |: + 2v Ogv—l-l ( )

which vanishes in the sum. One can also express the sum of the transverse contribution in
terms of the basic integral in Eq. (28.53):

11
Ci=Cl+Ch= T (1320 (28.59)

which is a useful compact expression for further analysis.

28.3.3 D = 6 condensates of the electromagnetic correlator

The light four-quark condensates contribute through the diagram:
(28.60)

via the equation of motion of the gluon fields:

| >

’ v, (28.61)

[\

2
gJ'=D,G" = _% Y
u,d,s

while the triple gluon condensate contributes via the diagrams in Eq. (28.3.3):

In order to reach the desired result, it is useful to express the v.e.v:
( :DeDpGyGpo: )y (1 DuGuyDpGoo : ), | & fureGl,GlpGl, = ). (28.63)

In so doing, one uses the colour trace due to two and three A matrices, the previous
gluon field equation of motion and the Bianchi identity. After a lengthy but straightforward
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algebraic manipulation, one can express the result in terms of the two condensates:

Ci6(8’ furcG4,GY,GS ) . Cuilg*IoTs), (28.64)

vo T pu

where the Wilson coefficients are [1,433]:

Comt |2y 3y 8, 2, @
T m2gs |15 T T 3 T s T s oM |

PP e Y - G VA A A
T 36m2g6 |45 T \3 T 3m2) T T 9P T st T s sy |
(28.65)

28.3.4 Matching the heavy and light quark expansions

It is instructive to compare the coefficient functions obtained directly from a light quark
expansion and from the heavy quark one by taking the limit v = 1. In order to be explicit,
let us consider the coefficient of the gluon condensate ( : a;G? : ). In the light quark-
expansion, one obtains [411]:

Gi(m =0)=0,
GL(m = 0) ! 1( G*:) (28.66)
m=0)=——(:a,G": ). .
G 12 g* ¢

If one takes naively the heavy quark result, one obtains from Eqs. (28.56) and (28.57):

a 11 2
Gs(v — 1):—52( raGT ),

b Lt 2.

Gilv— 1= Eq_4< ca,GT ) (28.67)
which shows that the two limits do not coincide (!). This discrepancy can be restored by
including the effect of the quark condensate which is known to be correlated to that of the
gluon through Eq. (27.52).

One obtains in the two cases [411]:

2 _
Cl//(m=0)=gm( HR VLV N

CMW%%;TM Y ), (28.68)
where the two results coincide for v — 1. Using the relation in Eq. (27.56), one can in-
troduce the non-normal-ordered quark and gluon condensates, where an extra gluon con-
densate term has been induced by the quark condensate. This term cancels the extra part in
Cé(v—1).

This lesson just tells us that one cannot directly take the v = 1 limit of the heavy quark
correlator in order to get the light-quark result without paying attention to the masked
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contribution of the quark condensate, which induces a gluon condensate effect. Some other
similar relations and properties hold for higher dimension condensates.

28.3.5 Cancellation of mass singularities

Let us now discuss another example related to the previous subtlety of the quark and gluon
condensates.

Let the example of the correlator of the vector current built from one light and one heavy
quark fields:

T, =iy (28.69)

By keeping the quark mass terms and taking the limit —g? — oo after integration, one
obtains for the transverse part [437]:

1 Com\ 1
cr (1 _ M @> — (2,G?) (28.70)

which exhibits a dangerous mass singularity. The normal ordered quark condensate contri-
bution is:

1 _ -
C¢=q—4( Iml"(ﬂjl//j'i‘mjl//iwi D), (28.71)

Expressing it in terms of the non-normal ordered quark condensate as defined Eq. (27.56)
and adding it to the previous gluon condensate contribution, one obtains the IR stable result:

=——(:a,G*: ). (28.72)
and:
1 _ _
Cy = gm0 Y) (28.73)

However, the natural question to ask is the commutativity of the operation by taking the
limit mm; ; = O before the loop integration. A positive answer to this question can only be
provided if one treats the IR integral in dimensional regularization and if one removes the
1/e-pole at the very end of the calculation.

Indeed, in this calculation, one encounters integrals of the type:

= [ (25) (o)
) Qo) \ 2 +ie I+qP+ie)

_(=a*\"?Ta+b—n/2T /2 —a) (/2 —b)
- (H) T(@)T()C(n —a — b)

(28.74)

where the IR singularity is transformed into 1/e-pole, which can be removed. In general, the
extension of this method for the calculation of the Wilson coefficients of higher dimension
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condensates can be easily done provided one takes care of the mixing of the operators under
renormalizations as discussed earlier.

28.4 The plane wave method

This method exploits the fact that the Wilson’s expansion is an operator identity, namely
that one can single out a given operator by sandwiching it between appropriate states. Let
us consider the two-point correlator associated with the quark current:

J'x) =9Iy, (28.75)
characterized by the Dirac matrix I', and which possesses the generic OPE (omitting Lorentz
indices):

- 1
(g% = Ci1 + Cu¥ ¥ + G¢G* + Do {GQSG%qaqﬂ = Zquz} . (28.76)

The first unit term corresponds to the usual perturbative calculation, which one obtains by
sandwiching the correlator between the vacua. The next term is obtained by sandwiching
the correlator between one-quark states and corresponds to the quark-current scattering
amplitude shown in Fig. 28.1.

The Wilson coefficient Cs can be obtained by sandwiching the correlator between one-
gluon states. Therefore, the problem reduces to the evaluation of the forward gluon scattering
amplitude on a colour-singlet current. From Lorentz invariance, this amplitude can be
decomposed as:

T"(q, k) =i / d*xe (e, | T " (x) (7 (0)) [k, v)

= F{""C(q. k) + F}"D(q. k) , (28.77)

where:
FIY = 40P g™ — k"k") = (k, u|G?k, v) (28.78)

and:
Fy" =2[k*q"q" — (k.q)(q"k" + q"k") + g™ (k - 9)*] — ¢*(K*g"" — k"k")
1

= (k, 1lGas G4’ q” = 24°G? Ik, v) . (28.79)

Fig. 28.1. “‘Weak’ quark (full line)-current (dashed line) scattering amplitude.
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They correspond to the diagrams:

(28.80)
A comparison of Eqs (28.76) and (28.77)—(28.79) gives:

Dg(q*) = Cs(q, k)lk,—o- (28.81)

In practice, the plane wave method is convenient when one has external weak quark fields
as in Fig. 28.1. In the case of many ‘weak’ external gluon fields, the extraction of a partic-
ular operator from various possible candidates having the same dimensions becomes very
difficult. In one sense, this is the main inconvenience of this method.

28.5 On the calculation in a covariant gauge

The evaluation of the Wilson coefficients can be also obtained in a covariant gauge. Unlike
the usual perturbative term, and the quark condensate term, which are easily obtained in
this gauge, the evaluation of the Wilson coefficients of the gluon condensates is much more
cumbersome in this gauge than in that of Fock—Schwinger. A published evaluation of the
gluon condensate contribution in this gauge can be found in [626]. As applications of this
method, we give at the end of this part a compilation of QCD two-point functions useful
for further analysis.
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Renormalons

29.1 Introduction

The renormalon problem is related to the well-known fact [372,375] (for more complete
reviews, see for example [162,154]) that the QCD series is unfortunately divergent (no
finite radius of convergence) like !, which is the number of diagrams of nth order. Indeed,
a given observable can be expressed as a power series of the coupling g as:

Fe)=Y_ fag", (29.1)

where the series are divergent:
fuln — 00) ~ Ka'n'n® | (29.2)

and where the nth order grows like n!, such that it is not practicable to have a quantitative
meaning of Eq. (29.1). For the approximation to be meaningful, the approximation should
asymptotically approach the exact result in the complex g-plane, such that:

N

F(8)exact — Z fng"

n=0

< Kyng"th, (29.3)

where the truncation error at order N should be bounded to the order gV *!. If £, behaves
like in Eq. (29.2), Ky usually behaves as a¥ N!N?. The truncation error behaves similarly
as the terms of the series. It first decreases until:

1
Ny~ —, (29.4)
lalg
beyond which the approximation to F does not improve through the inclusion of higher-
order terms. For Ny > 1, the approximation is good up to terms of the order:

Ky,g"0 ~ e~ 1lals (29.5)

Provided f,, ~ K,, the best approximation is reached when the series is truncated at its
minimal term and the truncation error is given by the minimal term of the series.

315
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One can use the well-known technique (Borel transform) for improving the convergence
of a power series whose nth order grows like n!, by considering the related series:

Bo)=)Y. f,,% . (29.6)

If f, grows not faster than n!, then B(z) will at least have a finite radius of convergence.
Using the usual formula:

o0
/ exp(—z/g)z"dz = n!g"™!, (29.7)
0
one can see that:
o0
F=gF(g) =f exp(—z/g)B(z)dz . (29.8)
0

The relation in Eq. (29.8) is true order by order in perturbation theory, but there are
arguments that it cannot be true for the full Greens functions. From Eq. (29.8), in order
to calculate F(g), one needs B(z) only for real positive values of z less than or of the
order g, which can be obtained from the series in Eq. (29.1) if the singularities of B(z) in
the complex plane are all at distances from the origin much greater than g. Even if a few
poles z1, z2, ... have moduli of order g, one can calculate B(z) by using power series for
(z — z1)(z — z2) - . . B(2), where we should know the position of the poles. Singularities of
B(z) on the positive real axis are much worse, as they invalidate Eq. (29.8). One can distort
the contour integral to avoid singularities on the positive real axis, but the ambiguities
come from the question of distortion of the contour below or above the singularity? In
the following, we will show that some of the singularities of the Borel transform B(z) are
associated with terms in the OPE (renormalons) and the others with solutions of the classical
field equations (instantons).

In order to illustrate this discussion, let us assume that:

F(g)exact = Ka"I'(n + 1+ b) (29.9)

For positive b, its Borel transform is:
I'(l+b)

BIFIz) = K——, 29.10
(FI@) = K s (29.10)
while for negative integer b = —I[, one can write:
-1
BFl(z) = (m; (1 —az)~'In(1 — az) + polynomial in z. (29.11)

In the case of QCD and QED, where one expects a > 0 (non-alternating series), one has
singularities in the positive z axis, such that the Borel integral does not exist. However, it
may still be defined by taking the contour above or below the singularities, where it acquires
an imaginary part:

s K
Im F(g) = Fr—e ) (ag)’ , (29.12)
a
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Fig. 29.1. Renormalon chains contributions to the QCD Adler D-function.

where the sign depends on whether the integration is taken in the upper or lower complex
plane. The difference in the two definitions is the so-called ambiguity of the Borel integral.
As it behaves as an exponential in the coupling, it is of non-perturbative origin and induces
power corrections.

In the following, we shall discuss for definiteness, the Adler D-function in QCD:

dTi(Q%

D(Q* =—¢°) = —4ﬂ2Q2d—Q2 ,

(29.13)
built from the electromagnetic current J,(x) = ¥y, ¥ and which governs the ete™ —
hadrons total cross-section. For the D-function, the unnecessary v-dependence appearing
in the two-point correlator I1(g?) from the leading-log term is not there, i.e., D is RGL
Therefore, its perturbative expansion reads:

D (as = “;) = Xn: Kaa" (29.14)

where a,(Q?) is the running coupling and K, are pure numbers which are, however,
RS-dependent.

Renormalon effects are associated to the insertion of n bubbles of quark loops into gluon
lines (gluon chains) exchanged between the two quark lines in the D-function built from
the quark current as shown in Fig. 29.1.

It is well-known that they induce a n! growth into the perturbative series. This difficulty
can be (in principle) cured by working with the Borel transform D of the correlator D(s):

D(a,) — D(0) = / db D(b) exp(—b/ay) , (29.15)
0

which possesses an explicit 1/n! suppression factor. However, life is not so simple because
of the features described in the following.

29.2 Convergence of the Borel integral

The b-integral does not converge for b — oo. This can be seen from the fact that, in the
chiral limit, hadrons have a non-zero mass in QCD, such that D should have singularities at
0 = M,, where M, is the mass of any hadrons having the quantum number of the photon
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Fig. 29.2. Singularities in the Borel plane of the QCD Adler D-function.

(or gluons). As for large Q, D is only function of:

1
(=B1/2)[log Q?/A? + (2n + Djin]
one can see that it has an infinite number of singularities in ¢, where oy, = 0, corresponding

to My = oo, is an accumulation point of these singularities. However, the singularities at
oy = o5(Mp) can arise through the behaviour:

a,(Q%) = (29.16)

Jim D ~ exp —bpi[log Q?/A* + 2n + Din], (29.17)
— 00

which indicates that the b-integral does not converge for b — oco. However, a large b-region
corresponds to large Q7 where D decreases rapidly like cy, such that the «y-singularities are
very weak and justify the uses of the Borel integral for studying, without any ambiguities,
the asymptotic behaviour of QCD at large Q2. In general, D develops singularities at
b = kby = 2wk /(—p1) in the real b-axis, where the integral is also ambiguous.

29.3 The Borel plane in QCD
There are three known types of singularities in the Borel plane of QCD as shown in Fig. 29.2.

* UV renormalons occur in the negative real axis (f; is negative in our notation.), and are harm-
less since the integration contour in Eq. (29.15) is along the positive b-axis. At the nth order of
perturbation theory, integrand of the form:

dif In" p*, (29.18)
p
gives a n! factor and reflects the fact that such integrals are less convergent for large .

¢ IR renormalons are singularities in the positive b-axis, which are due to the IR region of the Feynman
integrals.

* Instanton—anti-instanton singularities occur because far separated instanton—anti-instanton pairs
which can exist cannot be properly treated in a perturbative expansion around «; = 0.

29.4 IR renormalons

The IR renormalons correspond to the singularities atk = +2, + 3, ..., and are generated
by the low-energy behaviour of these higher-order diagrams, where fermion bubbles are
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inserted into the internal gluon line exchanged between the two fermion lines. In order
to illustrate this feature, let us consider the one-gluon exchange diagram with a gluon of
momentum p, where we shall focus on the low-p region R.! Then:

d4
D (ay(Q)) ~ / T aIE). (29.19)

R

where F(P? = —p?) behaves as P2. Using:

as(Q)
as(p) ~ Ao (29.20)
1 — pia;(Q)log (P*/ Q%)
and:
- 1 as+ioo
By =5 [ dli/a)eDa). (2921)
2w a;—ioco
one obtains:
5 P2 _h/b()
D(b) ~ / P%dP? (—2> , (29.22)
R 0
which gives the singularity near b = —4m/B;:
L bpi\ "
D(b) ~ (1 + ﬁ) , (29.23)
4
or to two loops, i.e., for two gluons-exchange:
) B, \ ~1+2B2/ B}
D(b) ~ (1 + ﬁ) , (29.24)
4

forb > 2by = —4m/B;. This indicates that the pole at b = 2b, gives rise to an IR ambiguity,
if one tries to reconstruct D(ay) from D(b) taken from perturbation theory. Converting
the a;-dependence into a Q-one, one can expect that the non-perturbative corrections to
perturbation theory are of the size 1/ Q*. More generally, diagrams with one chain of gluons
contribute as:

O " ~ kbo
D(ay) ~ : B(D) =Db) ~ — , 29.25
(ay) ;”<kb0) = BD)=D) ~ — =5 (29.25)
for b > kby, which indicates that the pole at b = kb gives rise to an IR ambiguity:
kb A2\
8D(as) ~ exp (— °> ~ (—2> : (29.26)
s —-q

if one tries to reconstruct D(ay) from D(b) taken from perturbation theory. However, dif-
ferent prescriptions for defining D in perturbation theory for b > kb, can be compensated
by the changes in the value of the non-perturbative condensates introduced via the SVZ

! IR renormalons have been studied in the O(N) non-linear ¢ model [374] and in QCD [376,377]. Here, we shall limit ourselves
to the QCD case.
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expansion, which one must add to perturbation theory in order to obtain a reliable result
[162,342].

The absence of a k =1 singularity is related to the absence of any gauge invariant
operator of dimension 2. The absence of this singularity has been proved [331] from an
explicit calculation in the limit of large n ;-number of flavours, where it has been shown
that the relation:

sin(;wb/bg) ~

B (ImIT) (b) tb/by) D), (29.27)
implies that 3 (ImIT) has only a zero at k = 1 but not the other alternative where D has a pole
at this point, which follows from the simple factorization of the Q” dependence in the Borel
transform of the D-function in the large B-limit. Then, one can conclude that no 1/Q?-
ambiguity can be generated by the IR renormalons and they are intimately connected to the
gauge invariant condensates in the SVZ-expansion. Restricting to the lowest IR renormalon
pole, one can derive the perturbative contribution to the gluon condensate [378]:

(010t G210} en 3 (0N =81\
g = ZZ(—;T ) (T) . (29.28)

n large
One should notice that renormalons are target-blind:
(PletsG?|P)ren = (0lets G| 0)yen - (29.29)

They cannot also produce a non-vanishing quark condensate (Ggq) as they respect the
symmetries of the QCD Lagrangian, and cannot bring some insights on confinement due to
their ‘perturbative’ origin.

However, at the one-loop level, renormalons are not the only way to probe the IR regions
perturbatively. Another possibility is the introduction of the gluon mass A [478] as a fit
parameter, while an IR perturbative contribution to the gluon condensate has been obtained
in [479]:

3ag

(0]ts G*10) pere = —-A* In A% . (29.30)

72

A similar result has been obtained in a QCD-like model [369,374], which is an alter-
native to the renormalon contribution for massless gluon. Phenomenology using gluon
mass has been developed [366], while in [162], a one-to-one correspondence between the
two approaches has been proposed. Keeping only IR-sensitive contributions, a one-loop
calculation with a gluon mass A can be translated as:

2 21n 32
Coay In A% + CI%% + czas“Q—nz’\ 4.

2

A
ClosIn A? + C{asa + Céas@ 4o (29.31)

where C;, C; are coefficients.
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29.5 UV renormalons

The UV renormalon singularities correspond to k = —1, —2, ..., and are generated by the
high-energy behaviour of the virtual momenta. They lead to a Borel-summable series thanks
to the asymptotic freedom property of the theory. After a Borel sum, they cannot limit the
applicability of perturbation theory [377,379], although they can induce an uncertainty in
the truncated perturbative series when the Borel sum is not done. Their contributions are
dominated by the leading singularity at k = —1:

n!

K,~——, 29.32
" ooy ( )

which gives rise to an asymptotic series:
|Kia| > |K2a?| -+ > Ky_1a" ™' ~ |Kya"| < |[Kypa¥*' <o (29.33)

where the successive terms decrease like N ~ by/a, at which the minimum value is attained,
while the series explodes afterwards. The alternating sign of K, guarantees that the series is
Borel summable. For a truncated series, the accuracy is limited by the size of the minimum
term:

47%8D(a) = |Kya"| ~ N'n¥ ~ 2nNe ™™ ~ exp(—=bo/a) ~ A*/ —q*, (29.34)

which indicates that the UV renormalon can contribute as 1/Q? [161,162,297-300].
However, this result is subtraction-scale dependent [162], as a more careful analysis
shows that the ambiguity scales as:

202
AQ ) , (29.35)

Aas(v) < P
where A and A absorb this renormalization scheme (RS)-dependence, whilst w is an arbi-
trary UV cut-off. However, it can be shown that the results obtained in the limit of infinite
numbers of flavours within the one-chain approximation, can be strongly affected by the
UV renormalon induced by the two-, three-,...chains of gluons [342,343], such that, it
is premature to deduce any reliable quantitative estimates from this approach. However,
some more optimistic authors have considered a more refined version of the one-chain of
gluons approximation, involving next-to-leading g functions and RS-invariant quantities.
The analysis indicates that the UV renormalon effect is much smaller [339,340] than naively
expected [344,331], and than that of the perturbative error based on the last calculated coef-
ficient term of the series (theorem of divergent series [337]) [338,323]. Taking into account
the different existing (qualitative) estimates of UV renormalon effects [331-340], one can
conclude that the estimate of the perturbative errors based on the last calculated term of the
QCD series [338,323] gives a reasonable or presumably an overestimate of the true error. It
is also clear that the UV renormalon contribution cannot be considered as a new source of
uncertainty, butitis of the same nature as the perturbative error. An independent extraction of
such a contribution is needed. The only available alternative attempt for doing this, is its phe-
nomenological extraction from the ete~ — I = 1 hadrons data [341,329](Section 52.10)],
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from QSSR. It has been noticed from the analysis of [329], that the obtained constraint is
strongly correlated to the value of the gluon condensate. Postulating that a new term of
dimension-two exists in the QCD series, the OPE is modified as:

N () x B
D(Q)—1+(n)+ ot (29.36)
one obtains [329]:
d> ~ (0.03 ~ 0.05) GeV? , (29.37)

if one uses the value of the gluon condensate (; G*) ~ 0.08 GeV*. This term would induce
an effect of about 1% in the QCD expression of the T-width [325], whichis anegligible effect.

29.6 Some phenomenology in the large S-limit

The large B-limit corresponds to the case where one takes large numbers of quark flavours
and neglect the remainder terms of the B-function:

Bi(ny — 00) ~ny/3, (29.38)

and then corresponds to the abelianisation of QCD.

29.6.1 The D-function
In this limit the D-function can be expressed as:
DY =1+ (Z) P« [dn (ﬁ> + 5,,} , (29.39)
/= 2r

where dy = 1 and 8y = 0. The coefficient d,, comes from the bubble diagrams. Its Borel
transform reads:

o, 32(0° N\ b o~ (=D
B(D)(b) = ; b = = (We ) e ; A< (29.40)

where in the M S scheme C = —5/3. The UV renormalon poles at b = —1, —2, ... are
double poles, while the IR renormalon poles at b = 3, 4, ... are double poles and a single
pole at b = 2. It is informative to decompose the Borel transform into the sum of leading
poles:

4 1 10 1 2
a4 10 10/3__ <

2 1 1
—10/3 _ =z _ .
¢ [ 92 +u? 202+ u)i| * (2941)
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Working in the MS scheme, the ambiguity in summing the series can be quantified as
(see e.g. [154]):

4 \ e'% A% 0.06 GeV*
2 ~
ID(Qren = <_,31> —Q4 ~ 2 . (29.42)

This effect is smaller than the non-perturbative gluon condensate contribution:
27 (0o G2|0) 0.14 GeV*

30 ot

where we have used the most recent QSSR determination [313,329]. This result is not

significant for raising doubts on the existence of the non-perturbative gluon condensate in
the SVZ expansion [1], although it can contribute to its perturbative component.

(SD(Q )cond —

(29.43)

29.6.2 Semi-hadronic inclusive t decays

Semi-hadronic tau decays have been discussed in details in BNP [325]. We shall be interested
here in its asymptotic perturbative expansion, which have been discussed by many authors
[331-345]. In the large B-function limit, one can write, the branching ratio [154]:

Rf=3(|vud|2+lvus|2)il+(%)z [d’(ﬁl> +5;”, (29.44)
n=0

where one can neglect the remainder §;. The Borel transform is [154]:

2 2 1
21-b) 7G-0b)  7@_b)

1
B(R.)(b) = B(D)(b) sin(rrb) |: j| , (29.45)
where the sinus attenuates all renormalon poles except those at b = 3, 4. The pointb = 1 is
regular but will not be suppressed by a factor oy when one uses the Cauchy contour integral
for evaluating R, .
Taking the leading renormalon poles, one can approximately have:

2 2 8 8
BR)(b) ~ =5/ —10/3 5 .
RO =e 5y ™ merw ¢ 36w 6-w]t
(29.46)
Expressing the rate as in BNP:
Re = 3(|Vual* + Vs P)Sewll + 8pr + 8ew + Snp] (29.47)

one can compare the measured value of §pr with the one obtained from the large B-limit
prediction. One can notice that the value of o (M) can reduce by 15% compared to the
one from the truncated series but this effect is smaller than one obtained by adding the o’
correction. Another point is that the error induced by the A?/M? term which arises when
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the series is truncated at the onset of UV renormalon divergence is numerically very small
due to the smallness of its coefficient. Therefore, the induced uncertainty is negligible in
the M S scheme.

29.7 Power corrections for jet shapes

The phenomenology of power corrections in jets and DIS has been developed [162,366],
while numerous experimental studies have been devoted for measuring these contributions
[480,481]. Renormalons are most useful in these frameworks as they can fix unambiguously
the power n of the corrections (A /Q)". However, in order to find relations between various
corrections, models are still needed as one expects [342,162] that any number of renormalon
chains gives power corrections of the same order, and there is no way to evaluate all of them.
Some other reservations to be made in the renormalon approach are also the extrapolation
of the small QCD coupling expansion in the UV regime down to the IR domain where the
QCD coupling is of order one, and where, terms which dominate in the UV region do not
necessarily dominate in the IR region.

For definiteness, let us consider the thrust variable defined in the previous chapters
dedicated to jets:

_max > Ipi-n| ’

Zi |Pn|
where p is the momenta of particles produced and n is a unit vector. From perturbation
theory T # 1 due to the emission of gluons from quarks. The contribution due to a soft
gluon emission can be quantified as [162]:

T (29.48)

Ado w A
u—ﬂm~A-;5%~§, (29.49)

where dw/w is the standard factor for the gluon emission; w/Q comes from the definition
of T while «; is of the order one. Alternatively, if one attributes to the gluon an intrinsic
invariant mass squared ¢ QZ, and evaluate the thrust mean value, one obtains [366,154]:

(1-T)=Cy (“;) [0.788 — ky/C + -1, (29.50)

where /¢ ~ A/Q, and its coefficient depends on the definition of thrust used (k = —7.32
with the previous definition, while it is 4 for the definition used in [366]). One can generalize
the previous result by using an universality picture. That can be done by keeping terms which
contributes perturbatively as o In* Q and extrapolating such terms in the IR region where,
however, they no longer dominate! In this way, the 1/Q correction can be expressed in
terms of the universal factor [162]:

EMZ/MMMMﬁ» (2951)

where y,;;. is the so-called eikonal anomalous dimension, and the integral over the
Landau pole is understood as the principal value. In this way, on gets the different relations
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among the event-shape variables (see the definitions in the jet chapters from Egs. (24.32)
to (24.37))[162]:

2
1-T =—(C
( 1170 3n< )1/0

2 2
_ (M) (29.52)
0 1/0

2 2
(@) ~ (@) ) (29.53)
Q 1/0 Q 1/0

These relations are well verified experimentally [480]:

and:

l<1 —T)yp= € 0,511 +0.009)
2 0
1 c
32 (o= a(0.482 +0.008)
2 (W—’%)> — C0616+0018) . (29.54)
), @

where C is a constant.

29.8 Power corrections in deep inelastic scattering

Power corrections in deep inelastic scattering have been developed at the single renormalon
chain level [482], and an alternative derivation using Landau pole of the power corrections
has been given in [162].

29.8.1 Drell-Yan process
The inclusive cross-section can be expressed in terms of the moments:
2
d 2 ¢ A
/dr 1900 e YR (29.55)
dQo? 0
where Q is the invariant mass of the lepton pair; /s is the invariant mass of the gg from
the initial hadrons 4, » and T = Q2 /83 A is the gluon mass. To one loop, one finds [154]:
C,=0 for n-A//s<1. (29.56)

An understanding of this result from general arguments based on the inclusive nature of
momenta has been given in [162].
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29.8.2 Non-singlet proton structure functions F,

A systematic measurement of power corrections in DIS for the moments of the non-singlet
structure functions F, has been performed [481]. The moments:

1
MSP(Q%) = / dx X" Fy(x, 0%, (29.57)
0
have been parametrized as:
2 - 2,PT 2 Q2 4 Q4 3 .

where M(;:DT is the perturbative QCD prediction. The n-dependence of the power cor-

rections has been included into C;’"ﬁ. In the range of 0? values from 5 to 260 GeV?, and
studying different figures, the analysis leads to a non-vanishing contribution:

2~ (02 +0.1) GeV?, (29.59)

if A* = 0 and (0.25 £ 0.2) GeV? if A* # 0. This result and the n-dependence agree with
the renormalon-based result [162].

29.8.3 Gross-Llewellyn Smith and polarized Bjorken sum rules

Power corrections to other DIS sum rules (Gross—LIlewellyn Smith (GLS), polarized Bjorken
(PBj) sum rules) have been also analysed from the renormalon approach [331]. In the
large B-limit, one can approximately assume them to be the same because the perturbative
contributions differ only by light-by-light scattering starting at «>. Let’s remind ourselves
of the GLS sum rule given in Eq. (29.60):

1 d _
[ IR, 0+ B, 07)
0
=3{1—a,(Q% —3.58 a}(Q*) — 19.0a;(Q%) + S5} , (29.60)

to which we add the power correction (twist-4) term 8 5. In the large 8-limit, one obtains
in the M S scheme [154]:
16 ) A% 0.1GeV?

~ 5320y A
doLs ~ e ( o )2~ o
which is comparable in strength but differs in sign with the twist-4 QSSR estimate [483]
and fit using the CCFR data [249]:

(29.61)

(0.10 £ 0.05) GeV?
Q? .
However, an extraction of this power correction from the polarized Bjorken sum rule
[260] leads to an inaccurate value consistent with zero as given in Eq. (19.8).

St ~ —

(29.62)
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29.9 Power corrections to the heavy quark pole mass

We have defined in the chapter on perturbation theory the notion of pole mass, which is
defined at the pole of the propagator. We have seen that this definition is not renormalized
[141,147,133], independent of the regularization procedure [148] and free from IR singu-
larities [133]. However, when this mass is related to the short distance M S running mass,
one can notice its sensitivity to long distances. In the renormalon approach, this difference
is given by the self-energy diagram with one-gluon chain:

—-5/6 Vu(ﬁ + ]AC + m)yu
)k2 —k 2 2
[(p — k)> —m?]

M(p? = i) = ) + (=i) / d:t]; o (ke (29.63)

Q2

pi=m?

It shows that for p> = m?, the integral behaves for small k like d*k/k>, which implies
that the series gives an IR renormalon singularity at b = —m /. The asymptotic behaviour
of the series expansion reads [331,154]:

5/6 _B\"
M(p* =m*) = m®) + cri—v Z (ﬁ) nla"t! . (29.64)
b4 - b4 ‘
Writing:
Cr [
o = Myoie = M(p? = i) = ) = ()= () DS e —o/m" + 0,10
(29.65)
its Borel transform reads, in the large B-limit, [331]:
m2\ " Tl — 2u)
Blém/m] = | — Bl —u)———— e, 29.66
[8m /1] <v2> eP6(1 — ) —F T (29.66)
where - - - indicates subtraction terms which are rapidly convergent and give negligible

contributions to the coefficients d,, for increasing n. Comparisons of the values of d,, with the
available calculations [151,153] show that the asymptotic series reproduce approximately
the first two coefficients [331]. One can also notice that the series is rapidly dominated by
the IR renormalon contributions and the series start to diverge to order o for the charm
quark mass, and to order oe;1 for the bottom. An intuitive derivation of this IR effect can
be obtained from the Coulomb potential. In this way, the IR correction to the heavy quark
mass is [162]:

Sm 1 g . _ m
 — — Ty ~ —Croy— , 29.67
- 2 ) @y (q) Fos ( )
where:
V(@) = —ancp D (29.68)

ZI'Z
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It has also been noticed [158,159] that the IR singularity of the Borel transform for the pole
mass in Eq. (29.66) is cancelled by that of the potential [486,162]:

d3é‘ eic}-?

(27[)3 (é’Z)H—u

_ _ﬁ( zrze_c)u r'«1/2) +w'«(1/2) — u)
B a1 + 2u)

This leads to the proposal of a new mass definition that is less IR sensitive than the pole mass
in this approximation (see Section 11.13). In, for example, the derivations of the inclusive
B-decays using a 1/m,, expansion, which behaves to leading order as m3, it has been noticed
that the use of the pole mass definition introduces an ambiguity of the order of A /m,; when
summing the series, which does not match with any non-perturbative parameters of the heavy
quark expansion. This problem does not appear when one expresses the width in terms of
the short distance M S-mass, where a cancellation of the leading divergence between that
of the width and of the relation between the pole and running mass occurs.

BIV(#)] =@ Cr)(vie )"

(29.69)
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Beyond the SVZ expansion

30.1 Tachyonic gluon mass

We have extensively discussed power corrections related to the IR regions, where the phys-
ical picture is simply the increase of the running coupling at large distance. Unconventional
1/Q? corrections which go beyond this simple picture have been also analysed in the litera-
ture [161,162,342,341,329,344]. A lattice calculation of [487] shows that the 1/ 0? correc-
tion arises within a dispersive approach or from a removal of the Landau pole of the running
coupling [162,488]. We have sketched this point when presenting the UV renormalons in
the previous chapter. Following the presentation in [162], the leading UV renormalon gives
the series expansion:

F=(2)mﬂﬁ) =D nl(=bo)'i(Q%). (30.1)
n uv n

Using its Borel transform, one has the integral representation:
(s bOZ)N
1+ aboz’

where N = 1/bga; is the value of n for which the absolute value of the terms reaches its
minimum. The integral is of the form:

B[F] = /dz exp(—z) (30.2)

(@ar(?) _, ~ 12 (30.3)
ns =N T2 :
where one can notice that the correction comes from the large virtual momenta p? ~
Q% exp(N), which is very different with the case of IR renormalon. However, in a theory
such as lattice, which possesses an intrinsic UV cut-off, this effect can be irrelevant. There-
fore, the alternative dispersive approach of the coupling can be used. The coupling can be
parametrized as:
1 1 A?

In 0%/ A2 - In Q2/A2 - 0 — A2 . (30.4)

This modification can be justified if one argues that at finite order of perturbation theory
the coupling satisfies dispersion relations with cuts at physical s > 0. More explicitly, one

329
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has:
A2
Za,laS(Qz) — Zanas(Qz) - Zann!bga . (30.5)

In the case:
a, = n!(=by)", (30.6)

the power correction in the second term is still poorly defined. Taking its Borel transform,
one obtains:

A2 1 A2
Z(—l) o =30 (30.7)
n Borel

showing that the power corrections from the procedures in Eqs (30.2) and (30.5) are the

same, which may indicate that the Borel summation of the UV renormalon series and the

removal of the Landau pole from dispersion relation can be intimately connected.
Another issue is the short distance (r <« A) modification of the QCD potential, which

becomes (k is the string tension):

lim V(r) = —Cp 2

r—0

+ kr, (30.8)

while in standard QCD, the leading power correction at short distance is 2. This leads to
the introduction of new small-size non-perturbative corrections and of a new picture of the
QCD vacuum. In [161] one discusses this modification of the standard picture in terms of the
phenomenology of the tachyonic gluon mass which is assumed to mimic the short-distance
non-perturbative effects of QCD. We have seen previously that the 1/Q? corrections to DIS
can be explained from the IR region and is consistent with the OPE. In this picture, the
constant term of the linear correction can be expressed as [162]:

4 2
ko~ =, (30.9)

where A2 < 0 is the tachyonic gluon mass. In this framework, the standard picture of the
OPE within the SVZ expansion gets modified due to the presence of the new 1/Q? term. A
systematic evaluation of this contribution using Feynman diagrams has been developed in
CNZ. For the current—current two-point functions, it corresponds, to lowest order in «;, to
the evaluation of the diagram in Fig. 30.1.

Fig. 30.1. Lowest order diagram contributing to 1/ Q2. The cross in the gluon propagator corresponds
to the tachyonic gluon mass insertion A2.
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The value of the tachyonic gluon mass has been extracted phenomenologically using
previous analysis in [341,329] from ete™ data. Analyses of some other channels by CNZ
have confirmed such findings. The pion and p meson channels give the intersection range:

(a5 /7)A2 >~ —(0.06 ~ 0.07) GeV?, or A%(1.25GeV?) ~ —(0.34 ~ 0.52) GeV? ,
(30.10)
leading to the value of the string tension:

Vk =~ (369 + 14) MeV , (30.11)

in agreement with the lattice results. The consequences of this result in some paradoxical
QCD spectral sum rules channels have been also studied by CNZ, and lead to a resolution
of different puzzles for the sum rule scales. One finds, for instance, for these scales:

M. ~4M} (30.12)

in agreement with the expectations of [382]. Analogous expectations in the gluonium chan-
nel has been also recovered. However, this change in the scale does not affect the predictions
on the QCD parameters from the sum rules (quark mass, .. .).

30.2 Instantons

Instanton—anti-instanton singularities occur for b = 4 in the positive real axis [375]. They
occur because far-separated instanton—anti-instanton pairs cannot be properly treated in a
perturbative expansion around ¢y = 0. Due to graph counting rules, perturbation theory has
a singularity at » = 4, such that perturbation theory alone cannot give an unambiguous
answer to the Borel integral for b > 47 . However, the singularity at b = 4 in perturbation
theory should also appear in the valley method for instanton-anti-instanton pairs. In addition,
a proper definition of D(b) for b > 47, including non-perturbative and non-analytic terms
in b should also emerge from the valley method.

In QCD, one expects an important rdle of the instantons due to the topologically non-
trivial fluctuations of the gauge fields [381,264], where they are expected to explain the
large mass of the n” compared with the usual pseudoscalar mesons [262-264].

30.2.1 ’t Hooft instanton solution

For a pedagogical introduction, let us start from the example of the Riemann integral (see
e.g. [51]):

+o00
7= / F(x)e " Wdx | (30.13)

o.¢]
where A(x) is some positive-definite functions. If A(x) has a minimum at the position x,
one can approximate this function by:

"

A(x) > Ao + ?(x —x0)* 4 -, (30.14)
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and obtain:
. |27
T >~ F(xg)e™ ™ R (30.15)

If instead, A(x) has several minimas Ap; at positions xp;, one can approximately

2
T3 Flxge ™ /% . (30.16)

A similar procedure can be done in the evaluation of a functional integral. If the action
S[®] has a minimum for a field ®y(x), then this field gives a classical contribution to the
functional integral analogously to Eq. (30.15):

write:

/ F[®]DD ~ F[Dgle 5[] | (30.17)

where corrections to this result are quantum corrections. If the field ®y(x) leads to a min-
imum of the action S[®], it is a solution of the Euler-Lagrange equations for that action.
Hence solutions of the classical equations of motion lead to classical contributions to the
functional integral in Eq. (30.17). There exist classical solutions of pure SU (2) Yang—Mills
theory which can be embedded in any SU(N) gauge theory, which are called instantons.
The ’t Hooft instanton solution of the Yang—Mills equation is [264]:
a 2
G = 4"‘”;0 R (30.18)
gl(x = x0)* + p7]

where xo is the instanton position and 7;, is the t’'Hooft anti-symmetric symbol with the
properties:

a

’7,aw=€ for w,v=1,273

v

nfllv = _83

N = 8

N4, =0, (30.19)

where ¢ is the totally anti-symmetric tensor in three-dimensions, while a = 1, 2, 3 for
the (subgroup) SU(2). The anti-instanton solution is obtained by replacing 7, by its
dual:

T, = (=10t (30.20)

In Euclidian space-time, these solutions would correspond to particles of size p at a position
X0, while in Minkowskian space—time, the solutions are not particles but can be considered
as contributions to the tunnelling between different vacua. The action corresponding to the
solution in Eq. (30.18), is easily obtained:

872

a 1 4 a v
SIG ]CIZ_E/dXGMUGZ =5

. (30.21)
g
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The instanton fields are self-dual:

a 1 a a
G = EGMV‘YﬂGaﬁ =G, -

The action of a self-dual field configuration is determined by its topological charge defined

as:
g =
0= f dx <327‘[2> G, G, (30.23)

where an instanton has topological charge +1, and an anti-instanton —1. According to
Eq. (30.17), the contribution of a single instanton to the vacuum expectation value of the
functional F[G] of G‘fw is:

(30.22)

_sx2
F[Gle *19 = F[Gle™ ¢ . (30.24)
From Egs. (30.21) and (30.24), one can deduce that instantons give genuine non-perturbative
contributions, since the exponential cannot be expanded in a convergent power series of g
and its asymptotic expansion in g is identically zero.

30.2.2 Instanton phenomenology

Qualitative estimates of the instanton effects based on the dilute gas approximation have
been done in the literature [382—-385], while an instanton liquid model has also been pro-
posed [386]. However, the results obtained in these papers, for example, for the pseudoscalar
quark currents are controversial, which come mainly from the uncontrolled use of the chiral
symmetry-breaking parameters entering the analysis. Indeed, one does not know exactly if
one should use the light quark current masses or the quark condensate. Moreover, the effects
depend also crucially on the size of the instanton, whose value is very inaccurate. In practice,
in this model, the instantons contribute as operators of dimension larger or equal than 9—11.
For Q% > 1 GeV?, no appreciable evidence of these effects has been detected in the phe-
nomenological analysis, (even in the pseudoscalar channel, where one often claims that the
effects are important!), as we shall see later on. A quantitative estimate of these effects from
ete” — I = 1 hadrons data indeed shows that they are small [387,329], as expected from
[385]. A program for measuring instanton induced hard scattering processes at HERA has
been proposed [388]. In DIS, one expects to probe small-size instantons, which, in princi-
ple, are calculable, where the cross-section behaves as the square of the instanton density
D ~ e % times a function F (e = 4/s/Q’) of the total energy over the invariant mass of
the particle produced:

4

o~e wlO, (30.25)

30.2.3 Dilute gas approximation

In principle, the superposition of two instanton solutions will not be a solution of the
Euler-Lagrange equations, due to the non-linearity of these equations for a non-Abelian
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gauge theory. If one considers two far-away solutions, the superposition should be a good
approximation for two instanton solutions (topological charge 2). In the dilute gas instanton
approximation (DIGA), the instanton contribution can be estimated very roughly [382]. In
so doing, one starts from the dilute gas density:

6
)
) exp< ”) . C~006 forQCD,  (30.26)

2
d ~C
) ( o:(p)

as(p)

where p is the instanton radius. Using the previous t"Hooft instanton solution of the Yang—
Mills equation the gluon condensates of 2n dimensions can be represented as:

Pe d
(Om) = ((£GS,), -+ (¢G5, ) = fo dp% , (30.27)

where p. is the critical cut-off size of the instanton. By introducing the approximate

relation:
2 N 2

as(0)  as(pc)

1 1 27T 6 27T
<02n> ~ (11 — 2]’1) @ (a‘v(pc)> exp <_a‘y(lo(,‘))

o, 6! 1 k
P iy <2(11 - 2n)%(ﬂc)) : (30.29)

k=0

+ 11log(pc/p) (30.28)

one obtains:

indicating that, for condensates of a critical dimension:
2n =11, (30.30)

one has a phase transition which separates the large-size instantons (2n < 11), that is, ordi-
nary low-dimension condensates, with the small-size instanton (instanton—anti-instanton or
one-instanton) effects. As emphasized in the previous derivation, the small-size instanton
is very sensitive to the value of the instanton radius p., which renders (among many other
unknown) uncertain the quantitative estimate of its effect. Some other reasons, as we shall
see below are the inconsistency of the size and distance between instanton ensembles. For
these different reasons, the estimate based on DIGA should only be considered at the qual-
itative level. Using the general expression in Eq. (30.29) for estimating, the contribution of
the instanton to the NP gluon condensate (g>G?), and using the value of o (p.) A 1, one
can deduce:

(¢G> 4 (30.31)

inst —
e

Using the previous expression of the topological charge and the self-duality relation, one
obtains for n, dilute instantons in a volume V greater than the instanton size, the instanton
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density:'
nq 1 4 22
no= = va Q(x)d"x = 32ﬂ2<g G inst - (30.32)
Therefore the average distance d; between two instantons is:
dy=ny'* = (ﬂyﬂ . (30.33)
2(g*G?)inst
These two equations give the ratio:
% <0.7, (30.34)

which is smaller than 1. It may indicate that the dilute gas approximation is inconsistent, or it
can indicate that higher unknown perturbative corrections or non-perturbative contributions
(multi-instantons) to the classical result are important. Alternatively, one can integrate the
tunnelling rate in order to get the phenomenological value of the instanton density [389]:

Pe
Nphen = / dp no(p) , (30.35)
0

which for nphen =1 fm—4, gives p. = 1 fm using the SVZ value of the gluon condensate,
which is rather pessimistic.”

30.2.4 The instanton liquid model

A more promising picture is the instanton liquid model [386,390]. The non-perturbative
contribution to the instanton density defined previously can be estimated from the gluon
condensate. The interaction of an instanton with an arbitrary external field G}, , is:
272p bb

Sint = P2 UG, (30.36)
which is a dipole interaction, and then does not contribute to the average action to first order.
U is an unitary matrix describing the orientation of the instanton in colour space. One can
deduce [391]:

ot

2g4

n(p) = no(p) [1 + (G*) + - } , (30.37)

which has been exponentiated by [392]. In this way, and using 7pheq = 1 fm, one obtains

using the SVZ value of the condensate:

pe = 1/3 fm, (30.38)

! In the classical field approach, the quantity below has no g2 factor.
2 However, the SVZ value of the gluon condensate has been underestimated by a factor of about 2 [329,313] such that the value
of p. becomes 0.5 fm which leads to a more optimistic situation.
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which is rather small. This result gives a different picture of the QCD vacuum. The instanton
size being smaller than the separation between instantons implies that the vacuum is dilute.
Also, the field inside the instanton is very strong:

G > A*, (30.39)
implying that the semi-classical approximation is valid. The action is large:
S =812/g>~10—15>1. (30.40)
Also, instantons retain their individuality and are not destroyed by interactions:
ISt K So (30.41)
while interactions are important for the structure of the instanton ensemble:
(exp [8Sine| ~ 20> 1). (30.42)

The phenomenology of the instanton liquid model has been published in [386], which
readers can consult for more details.

30.3 Lattice measurements of power corrections

Recent lattice measurements of the V &+ A and (pseudo)scalar (S, P) two-point correlators
have been done in [393] in the x-space and have been compared with different models of
power corrections (SVZ, ILM). Using the expressions of the correlators in the momentum
space given in the previous section, and using the Fourier transform formulae in Table G.1
from [394] given in Appendix G, the different QCD expressions of the V + A and S + P
correlators of interest here® in the x-space normalized to the perturbative contributions are
[394]:

ny+A Os .o 2 T a \2\ .4 22”3 _ 2.6 2
@ — I—EA -x° = E(aS(GW) )x Inx +Has(qq) x’Inx”, (30.43)

where we adopt the convention Inx? < 0. We have added to the usual SVZ-expansion the
quadratic x? correction from [161]. In the V — A channel, the usual SVZ expansion works
quite well but for a small radius of convergence. In the V 4 A channel, the SVZ-expansion
as well as the ILM describe quite well the quantity Q>T1(Q?), which is expected not to have
a 1/Q2-term [161]:

Q2 . HV+A T 20 4 27T3 s 5
m - 1 - %(as(G;‘w) )x + 8—las(qq) x%Inx”. (30.44)

This is to be contrasted to the case of IT1(Q?), which needs also to be measured on the
lattice, in order to test the existence of the 1/ Q? inthe V 4+ A channel. However, the channel

3 Some other correlators in the x-space are given in Chapter 39.
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Table 30.1. Different parameters used in the
analysis of the S + P data in units of GeV? (d is
the dimension of the operator)

Sources (,G*) (YY) (a/m)A2
SET 1 (SVZ) [1] 0.04  0.25° 0
SET 2 [313,329] 0.07 5.8 x 107 0

SET 3[313,329,161] 0.07 58 x107*  —0.12

2 O T T T T T T T T 1 T T T

10

0.5
0.0 0.2 0.4 0.6 0.8
x [fm]

Fig. 30.2. S + P channel: comparison of the lattice data from [393] with the OPE predictions for the
two sets of QCD condensate values given in Table 30.1 . The dot-dashed curve is the prediction for
SET 3 where the contribution of the x2-term has been added to SET 2. The bold dashed curve is SET
3 + a fitted value of the D = 8 condensate contributions. The diamond curve is the prediction from
the instanton liquid model of [386].

which is crucial for the present analysis is the (S + P) one. In this channel:

R 1 ({n*f n s
P+s = 5|5 T T
2 H}fert ngrl
3
O 5 5 T a4 AT 6 )
- 1- Ek x4+ %@ (Ga,)")x* + 8—1ax<qq> x®Inx?.  (3045)
As shown in Fig. 30.2, neither the SVZ-expansion nor the ILM can describe the lattice
data, where we have used the sets of condensate values given in Table 30.1.
If such data are confirmed, it may indicate a strong evidence of the quadratic 1/ Q* power

correction. We can see in Fig. 30.2, that for large x, the data is better fitted by including
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Fig. 30.3. V + A channel: comparison of the lattice data from [393] with the OPE predictions for the
SET 3 QCD condensates values given in Table 30.1 including a fitted value of the D = 8 contributions.
The diamond curve is the prediction from the instanton liquid model of [386].

both the 1/Q? correction anda D = 8 dimension condensates where the latter differ notably
from the vacuum saturation estimate, with the size:

X \8
Cs05 =~ + (ﬁ) , (30.46)
compared with the one from a modified vacuum saturation [399,411]:
3395 x \8
CsOgliae ~ +——(a,G*)2 23 ~ (=) . 30.47
8Oslne = + 35053168 (4O (1.2) (30.47)

For completeness we also show in Fig. 30.3, a fit of the V + A channel including the
D = 8 condensate contributions. One can notice that like in the case of the S 4+ P channel,
the value of the D = 8 condensates differs notably from the vacuum saturation estimate. It
reads:

X \8
C303 =~ (—) , 30.48
30 >~ + 07 ( )
compared with the one from a modified vacuum saturation [399,411]:
2 x \8
CsOlae = + ——— SG“%(—) . 30.49
808 fac +3428352 (a;G7)"x G ( )

One can conclude from the lattice measurement of the S + P correlators that, if the
data have to be explained by power corrrections, it can only be done by the presence
of A% quadratic corrections at moderate distance (less than 0.5 fm). For larger distances,
one needs to add the contributions of higher eight-dimension condensates. It has been
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argued [395] that the A? correction can be better understood within the effective Higgs-like
theories which are common within the monopole mechanism of confinement, where, in the
presence of a magnetically charged (effective) scalar field, the symmetry of the theory is
SU(3)colour X U(1)magnetic- Upon the spontaneous breaking of the magnetic U(1) the gauge
boson acquires a non-vanishing mass and its mass squared is the only parameter of dimension
d = 2 consistent with the symmetry. Moreover, in exchanges between (colour) charged
particles the gauge-boson mass appears to be the tachyonic mass as was demonstrated on
the U(1) example in [396,397]. Detailed analysis of various power corrections within the
Higgs-like models can be found in [396-398]. Moreover, if the monopole size is indeed as
small as indicated above, then the effective Higgs-like theories can apply at all distances
~ (0.1 +0.5) fm.






Part VIII
QCD two-point functions






31

References guide to original works

In this chapter, we give a compilation of the different Wilson coefficients, as applications
of the discussions in the previous chapter.! In order to minimize the missprint errors in
the transcription of the formulae, we have used as much as possible the transfer of the
formulae from the original files. These QCD two-point functions are useful for further uses
in high-energy physics processes (ete~ — hadrons total cross-section, Higgs decays, . . .),
and not only for the QCD spectral sum rules analysis.

31.1 Electromagnetic current

Historically, the electromagnetic spectral function has been obtained to order « in QED [318,319].
In the massless quark limit, the order ozf correction has been obtained by [317], while the order
ozf terms have been computed in [321]. The order oz;‘ terms have been estimated [178] using the

principle of minimal sensitivity (PMS) [176] and effective charge (ECH) approaches [177], or using
T decay data [332]. The order ocfn? has been computed recently in [438].

The non-perturbative corrections were orginally obtained by SVZ [1]. Radiative corrections to the
non-perturbative quark condensate have been calculated for the first time in [439].
This observable is the most accurate quantity known in QCD today.

31.2 (Pseudo)scalar and (axial-)vector currents

The results for the bilinear (pseudo)scalar and (axial)-vector quark correlators come essentially
from [325,399,440,441,444].
The «; correction to the massless pseudoscalar correlator as well as the non-perturbative corrections

were computed for the first time in [167]. The ozf term has been obtained in [445]. The af correction
has been obtained in [446].

31.3 Quark mass corrections to the (pseudo)scalar and (axial)-vector
quark correlators

Quark mass corrections to the quark current—current correlators have been calculated to higher
orders in [325,399,440,441], where it has been emphasized that the perturbative terms resulting
from the relation between the normal and non-normal ordered quark condensates are essential for
removing the mass logarithms singularities.

This list of references might not be complete but only representative.

343
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* The complete o, correction to the massive (pseudo)scalar and (axial-)vector correlator has been
evaluated in [399], while the o? corrections come from [448,449].

31.4 Tachyonic gluon corrections to the (pseudo)scalar and (axial)-vector
quark correlators

* Dimension two contributions due to tachyonic gluon mass have been obtained for the first time
in [161].

31.5 Tensor quark correlators

® The correlator associated to the quark tensor current has been evaluated in [357,451]. It has been
revised and corrected in [452].

31.6 Baryonic correlators

® Radiative corrections and non-perturbative effects to the light baryonic correlators have been
calculated in [424-430].
® Correlators of heavy baryons have been evaluated in [453,454].

31.7 Four-quark correlators

® The two-point correlator associated to the four-quark current has been evaluated in [465,466] for
analysing the four-quark states.

* Analogous correlators have been evaluated for the study of the AS = 2 [467,468] and Al = 1/2
kaon weak decays [469,470]. These results have been revised in [471].

e Similar correlators for the analysis of the BB mixing have been obtained in [472] to lowest order
and including non-perturbative corrections. Radiative corrections including non-factorizable ones
have been evaluated in [473]. SU(3) breaking corrections are given in [474].

31.8 Gluonia correlators

® Radiative perturbative corrections to the bilinear gluonic correlators have been computed in [455],
while the non-perturbative terms have been obtained in [382,456].

® The two-point correlator associated to three-gluonic current including non-perturbative corrections
has been computed in [457].

® The off-diagonal quark-gluon two-point correlators have been calculated in [458,450,457].

31.9 Hybrid correlators

® The two-point correlator associated to the hybrid massless quark and gluonic current has been
calculated in [459,460], where the final correct expression is given in [461]. The contribution of the
tachyonic gluon acting as a new operator of dimension two has been obtained in [462].

* Two-point correlator associated to the heavy hybrid meson have been calculated in [463]. The
contribution of the tachyonic gluon has been obtained in [464].
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(Pseudo)scalar correlators

We shall be concerned with the two-point correlators:
Ws(gD) =i / d*x €45 (01T 9, A*(x)! (3,A"0)!) |0) ,
V(gD =i / d*x €% (0| T8, V" (x)! (BVVV(O){)*|0> , (32.1)
associated to the pseudoscalar and scalar currents:
0. AL = (mi +m i (iys) W)
AV = (mi —m )iy, (32.2)

Here the indices i, j correspond to the light quark flavours u, d, s; m; is the mass of
the quark i. It will be convenient to introduce the notation:

m4y =m; :I:mj . (323)

The result of the scalar current can be deduced from the one of the pseudoscalar by the
change m ; into —m  or, equivalently, by the change m into m_ and vice-versa.

32.1 Exact two-loop perturbative expression in the M S scheme

The complete two-loop result for the pseudoscalar correlator, using the M S renormalized
mass is:

3 0\ L D\
Us(q); = 5 (mi+m,) [(q2 ~ (m; —m,)) [K +(2) ﬂ + M+ (2) g] ,
(32.4)

with:

1 1
K51+§li+§(l+xi)fi + (@ «— ),
L =3K>+2K +6—2EI — 10x; f
+ mi[ BK —2)0K /om; — 2(E +m3)01/dm; | + (i «<— j),
M=-mi1+1)+ (i <)),

345
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1

N = _ng(lsz — 4K +5)+3mi(1+ )1 +x; £)
—2m3(5 + 51 + 317) + (i «<— J),

I =[F(x;)+ F(x;) — F(xix;) — F(D1/q",

E

1
Z (s = 7).
log x;
log (v’/m?), fi = e
xij =m; ; J{AE + E[1 — (mim;/EY]'?}

X 2 )
Fx) = / dy (i(’%) log (%) =3 1@ —nlogx)* + 21" /n’ . (32.5)

y n=1

l;

This expression reproduces the massless result given previously in Section 11.14. The
use of these results at g = 0 lead to the two-loop expression given in Eq. (27.14).

32.2 Three-loop expressions in the chiral limit

To order a , the correlator reads:!

(167%)Ws(q%)
v2
:—6121713r |: 12 — 6ln—:|
q
o 131 s M
+(;)[—T+24§(3)—341n@—61 QZ}
a\2[ 17645
2V 222 135343 4)—50¢(5
+(ﬂ)[ oL 135300 + 3 £) — 50405)
10801 = v? p2
— 1 117¢(3) In—
T 2 g H 1T I
6 V2 p2 , 12 11 , 12
1913”2 L (32.6)
— I — 4+ -n;* | |. .
2 —q* 3nf —q*

The same equation with ny = 3 reads:

(167%)Ws(g%)

2
22
=—qg°m 12 — 6ln—]
*H 9’

a\ [ 131 V2 2
+ (;) [_T 4+ 240(3) — 34ln—q —6ln 7]

! From now, we shall omit the indices i and j on lIls(qz)"/..
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a\2[ 15601 9631 1>
LY 4 30943 4)—50(5) — In——
+(n)[ R R9LG) 45 L)~ 505(5) — o s
2 2 17 2
F10523) In—— — 95> —— — 32| |. (32.7)
_qz _qz 2 _qz

32.3 Dimension-two

For a practical application, one should substract the mass singularities with the help of
the Ward identity in Eqgs. (2.17) and (27.14) and by working with the non-normal ordered
condensate. To next-to-leading order in the quark mass terms, the IR stable result is:

- 3
Wy (gH)|P=? = W(m ~|—m,)2[ (m + m* ) F Bm; mj] (32.8)
where:

’ 25
A=2-24Cf (“;) [—312—1—81— ?—1—6{(3)} ,
B=2—4+Cy (“—) (=302 + 141 — 22 + 62(3)] , (32.9)
T

with: Cp = (N? — 1)/(2N) and [ = log(—¢g?/v?); ¥, and W_ are the pseudoscalar and
scalar correlators.

32.4 Dimension-four

In terms of the non-normal ordered quark condensate, where the m* log m? terms have been
absorbed, one obtains:

V()0 = (m,

[m? + 4m12m§ + m‘}
+ 2(m,. F 2m,.m,- F 2m3-mi +mi)l]. (32.10)

To lowest order in o and to all orders in the quark mass, the normal ordered quark
condensate contribution reads:

< alpoaly. - 2
\I—’i(qz)‘(D = = —(m; :I:m])2|:( Vil )|:1 - = qn;_mz f(Zi)i| + (i «— j):| ;
J

2m; qc —m;

(32.11)

where:

1
f(Zi)=2—Z[1—v1—4Zi],

G mie
(2 = m3 +m)
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qe =q* — (m; £m;)*,
4dm; m]

q>

u= |1-— (32.12)

To order «; and to leading order in the quark mass, one obtains:

_ - 31 . .
‘I’i(q20|E/,D 4) %[2[1+CF<T[> <—§l+z>i|(milﬂﬂﬁi+mj‘ﬁj‘pj>

s 3.7 - -
ZF|:1+CF (;) (—§l+§>:|(mj1ﬁi1pi+milﬂj1//j)i| , (32.13)

To all orders in the quark mass, one obtains the contribution of the normal ordered gluon
condensates:

Vo (gd)|e ™ = —mi £m)) Lﬂ( :a,GG : )

g% 33 +u>)(1 —u?) u+1 3ut4+4u*+9 4
ol vy 3 log - 2 2 - )
qi 2u u—1 u’(l — u?) m;m;

(32.14)

where the expression of the scalar correlator can be deduced from the former by the ad-
ditional change of u into 1/u. The previous expression still contains mass singularities.
The introduction of non-normal ordered condensates as given in Eq. (27.17) leads to a
cancellation of these terms. One obtains the IR stable result:

1
V([ = i £ mp— —(@,GG)
—q? 8w
2m,~2 + m? 2m;m;
1+ = + (3—21) (32.15)
3¢ q*

where the mass-logs have cancelled.

32.5 Dimension-five

To all order in the quark mass, the contribution of the normal ordered mixed quark-gluon
condensate reads:

D=5 - 1
‘I’i(qz)\fmx = —(m; £m;)( PG : )W[QZ —m? Fmim;
[(qZ_m§)2¢mm,(q —m% +m?) — m?m?]
- P 2 f(Zi
q? —mj —m;

+( <~ j). (32.16)
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The leading contribution of the non-normal ordered condensate is:

= (m; £m;)? _ _
V(g0 = ¢Tg<michwj +m G GY) (32.17)

32.6 Dimension-six

The leading contributions are:

p=ey (m; £m;)* - _
Vi), = T-’nax F MV 100 Tav; ¥ 0,0 Tati)

<91/f VuTawi + U ivuTav)) D wky“TAwkﬂ . (32.18)
u,d,s

Using the vacuum saturation-like parametrization, one can write:

s Etm)? [4C - 7 7 7
iy = I (3;)”%[<wm>2+<w,-wj>2¢9<1/wf><¢ﬂ/’f>]-

(32.19)

W, (g

32.7 Exact two-loop expression of the spectral function

The complete two-loop pseudoscalar spectral function expressed in terms of the pole mass
reads:

 mnWs) = >y + )2 o142 (a) 372
— = —(m; +m; =(7T—v
T 82 ! 3\7 /|8

+> w+vh [Liz(a,-aj) — Lis(e;) — log o log Bi]

+ A; loga; + B; log ,3,} +0(a?) |, (32.20)
where:
Li(x) = / —log(l —Xx),

Ai:_<3m,+m> 19 + 2v% + 3v* _m_,-(m,-—mj)<1+v+ 2v )’

4\ m;i+mj 32v G*v(1 + v) 1+ q;

m? — m?
Bi _2+2¥’
g*v

m; 1—v
o =— :

mj1l+v

1+ v)?
Bi ! ) Vito, (32.21)

4v
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with:
g =t—(m —m;)