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Outline of the book

This book provides:

� A pedagogical introduction to the perturbative and non-perturbative aspects of Quantum Chromo
Dynamics (QCD), which is expected to be accessible by pre-Ph.D. students who want to learn this
field.

� A status of the modern developments in the field.
� An update of the different results presented in the older though successful review [2] and book [3],

taking into account the developments of the field within these past 10 years.
� An extension and improvements of the presentation used in these previous review and book, where

the QSSR results are compared with those from other non-perturbative approaches.

The book is divided into ten parts:

� In the first part, one starts from a general introduction to particle physics and historical survey on
the developments of strong interactions prior to QCD. Then, we discuss the main ideas and basic
tools of the field.

� In the second part, we present the gauge theory aspect of QCD.
� In the third part, we discuss in details the most popular techniques of dimensional regularization

and renormalization and discuss some of its applications both in QCD and QED.
� In the fourth part, we present different QCD hard deep inelastic processes at hadron colliders, and

discuss different unpolarized and polarized structure functions.
� In the fifth part, we present the QCD hard processes in e+e− processes and discuss jets, fragmentation

functions and totally inclusive processes.
� In the sixth part we summarize QCD tests and αs measurements.
� In the seventh part, we discuss power corrections and mainly the theoretical basis and technologies

of the Shifman–Vainshtein–Zakharov operating product expansion (OPE).
� In the eighth part, we present a compilation of different QCD two-point functions obtained from

perturbative calculations and the SVZ-expansion. These expressions are basic ingredients for various
phenomenological applications.

� In the ninth part, we present different aspects of modern non-perturbative approaches to QCD.
� In the tenth part, we present extensive phenomenological aspects of QCD spectral sum rules.
� The Appendices collect different useful conventions and formulae for QCD practitioners.
� The Contents, References and Index are useful for a quick guide for readers of the book.
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Preface

Quantum Chromodynamics (QCD) continues to be an active field of research, which one can
see from the number of publications in the field, as well as from the number of presentations
at different QCD dedicated conferences, such as the regular QCD-Montpellier Conference
Series. This continuous activity is due to the relative difficulty in tackling its non-perturbative
aspects, although its asymptotic freedom property has facilated perturbative calculations
of different hard and jet processes. Therefore, we think it is still useful to write a book on
QCD in which, besides the usual pedagogical introduction to the field, some reviews of its
modern developments, which have not yet been ‘compiled’ into a book, will be presented.
Elementary introductions at the level of pre-Ph.D. in different specialized topics of QCD
will be discussed, which may be useful for a future deeper research and for a guide in a
given subject.

We start the book with a general elementary introduction to strong interactions, parton
and quark models, . . . , and present the basic tools for understanding QCD as a gauge
field theory (renormalization, operator product expansion, . . . ). After, we present the usual
hard processes (deep inelastic scattering, jets, . . . ) calculable in perturbative QCD, and
discuss the resummation (renormalons, . . . ) of the perturbative series. Later, we discuss the
different modern non-perturbative aspects of QCD (lattice, effective theories, . . . ). Among
these different methods, we discuss extensively, the method and the phenomenology of
the QCD spectral sum rules (QSSR) method introduced in 1979 by Shifman–Vainshtein
and Zakharov (hereafter referred to as SVZ) [1]. Indeed, we have been impressed by its
ability to explain low-energy phenomena such as the hadron masses, couplings and decays
in terms of the first few fundamental parameters of QCD (QCD coupling, quark masses,
quark and gluon condensates), and vice versa, we have been fascinated by the success of
the method to extract the QCD universal parameters from experiments. In this respect,
some parts of this book have been updated, improved, extended and included a latex
version of the former review [2]:

Techniques of dimensional regularization and renormalization for the two-point functions
of QCD and QED, S.N., Phys. Rep. 84 (1982) 263

and of the book [3]:
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QCD Spectral Sum Rules Lecture notes in Physics, Vol. 26 (1989) World Scientific Publ.
Co. Singapore.

However, the discussions in this book cannot replace the previous ones (hereafter referred
to as QSSR1), as some detailed analyses carried out in the older review and book are not
reported and repeated here. In this present book, we limit ourselves to review the most recent
results and new developments in the field, without going into some technical details, and,
in this sense, this book is a useful supplement to the former. Various misprints in QSSR1
have also been corrected.

As we have already mentioned, and as in the previous review and book, we have written
this book for a large audience, not necessarily working in the field (elementary introduction
to QCD, . . . ). However, experts will also appreciate this book, as they will find the most
relevant and the latest results obtained so far with the QSSR method. They can also find
compilations of non-trivial QCD expressions of the two-point correlators obtained within
the Operator Product Expansion (OPE), and technical points relevant to the method itself
(mixing of operators under renormalizations, validity of the SVZ expansion . . . ). Experi-
mentalists will find in this book a ‘quick review’ of most of important results obtained from
QSSR.

However, because of the large horizontal spectrum of the QSSR applications in different
branches of low-energy physics, including nuclear matters, which we (unfortunately) cannot
cover in this book, we shall limit ourselves to the well-controlled and simplest applications
of the methods, namely the light and heavy quark systems and to a lesser extent the gluonia
and hybrid meson channels. At present, these examples are quite well understood and will,
therefore, serve as prototype applications of QSSR in high-energy physics and quantum
field theory. Some other applications of QSSR, such as in the QCD string tension, in the
composite models of electroweak interactions (QHD sum rules) and in supersymmetric
QCD, were already discussed in QSSR1 and will not be discussed in detail here, since
there has been no noticeable recent developments in these fields of applications, since the
publication of QSSR1. We shall not discuss the uses of QSSR for nuclear matters, either,
since the complexity of these phenomena still needs to be better understood. However,
the enthusiasm of nuclear physicists for using this method in the baryonic sector might be
restrained, owing to the delicateness of the corresponding analysis, which in my opinion has
not yet been improved since the original work, in which the obstacle is due to the optimal
choice of the nucleon operators. At the present stage, one can only consider the analysis
done in the baryon sector to be very qualitative.

Following (actively) the developments of QCD through those of QSSR since its birth in
1979, my feeling à la Feynman (Omni magazine 1979), advocated in QSSR1 about this
field remains unchanged (as already quoted in QSSR1):

. . . A few years ago, I was very skeptical . . . I was expecting mist and now it looks like ridges
and valleys after all . . . ,

while the great success of QSSR in the understanding of the complexity of low-energy non-
perturbative phenomena and hadron physics, is well illustrated by the Malagasy saying:
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‘Vary iray no nafafy ka vary zato no miakatra!.’

which means: with one grain of rice sowed, one can gather by the thousand!, or in other
words, the method has started quite modestly and, with time, it has become more and
more underground. Indeed, at present, QSSR (used correctly) is one of the most powerful
methods for understanding (analytically) the low-energy dynamics of hadrons using the
few fundamental parameters (coupling, masses and condensates) coming from QCD first
principles.
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1

A short flash on particle physics

Since ancient times, we have been curious to know the origin and the nature of the universe.1

Numerous ancient philosophers and scientists have tried to answer these fundamental ques-
tions. It is only at the present time of the twentieth millennium that we can provide a partial
answer to these questions, as some significant progress has been accomplished in both par-
ticle physics and astrophysics, which are two areas of research in two apparently opposite
scale directions (see Fig. 1.1).2

On the one hand, this progress is due to our ability to explore the heart of matter, with
powerful accelerators (where the accelerated particle has a velocity near to the velocity of
light), which reveal their infinitely small, deepest structure (see Fig. 1.2).

As an example, we show in Figs. 1.3 and 1.4, the large electron-positron (LEP) ac-
celerator and the reaction inside the detector after the collision of the electron and the
anti-electron (positron). Notice that at LEP, the energy of the electron is in the range of
90–180 GeV which is about (5–10) ×106 times the energy of our home TV screen. On
the other hand, powerful telescopes (see Fig. 1.5) explore the enormous structure of the
universe, and may reach the time of its origin. At present, these apparently two opposite
(in scale) areas of research are found to have a common feature as the conditions re-
quired for exploring the smallest structure of matters (quarks) reproduce the periods which
followed the big-bang (see Fig. 1.6), from which one may understand the origin of the
universe.3

In this book, we shall concentrate on one aspect of particle physics, called Quantum
ChromoDynamics, which is a part of the so-called Standard Model (SM). We know that,
at the beginning of the study of nuclear physics, it was observed that, in addition, to the
well-known Newton gravitation and electromagnetism (Maxwell) forces, nature is governed
by two other new forces, the weak interactions responsible of the β decay and the strong
Yukawa force which binds the nucleons inside the nucleus (see Fig. 1.7).

In particle physics, only the last three forces play an important rôle as gravitation couples
too weakly and cannot be directly detectable in particle physics experiments. At the particle

1 This short review is based on the review talk in [4].
2 Figures in this chapter come from [5].
3 For a recent review on interfaces between these two fields, see e.g. [6].
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Fig. 1.1. A schematic view of the scales of the universe and related research branches. Our human
body is taken as a reference scale (ref. CERN Z 11).

Fig. 1.2. The different structures of matter at different scales (ref. CERN DI-17-7-95).
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Fig. 1.3. An aerial view of CERN-Geneva, showing the undeground LEP ring, 27 km in circumference,
where also the LHC (large hadron collider) will run soon. In order to see the real size of the ring, one
can see Geneva airport in the front part of the photo (ref. CERN X 973-1-87).

Fig. 1.4. A schematic view of the detector and particles produced after the collision (ref. cern DI-64-
I-91).
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Fig. 1.5. A photo of the Hubble telescope.

physics scale (below TeV), physics is well described by the SM SU (3)c ⊗ SU (2)L ⊗ U (1),
and the distinction between the three forces leads to the classification that: Leptons (e−, νe)
and (µ−, νµ) pairs couple only to weak and electromagnetic SU (2)L ⊗ U (1) forces (the
neutral neutrino νl has only weak interactions), whereas Hadrons like the proton, neutron,
pion and rho meson have mainly strong SU (3)c colour interactions.

However, one expects that at higher energy levels, of the order of 1015 GeV to the
Planck scale, these three different forces which apparently are of different origins unify
with gravitation, then leading to a much simpler description of nature and the realization of
the old Einstein dream for the understanding of the universe laws. At present, the minimal
version of supersymmetry based on the SU (5) group (popularly called MSSM) is the best
candidate for such a unified theory. Indeed, using the renormalization group evolution of the
different couplings in the MSSM, one realizes that to second order in perturbation theory,
these three couplings indeed cross with high precision at the unification scale of 1015 GeV
as shown in Fig. 1.8. This result is encouraging although we still fail to find the correct



1 A short flash on particle physics 7

Fig. 1.6. A schematic view of the history of the universe from the big bang to the present day
(ref. cern DI-2-8-91).



8 I General introduction

Fig. 1.7. A schematic view of the different forces in nature, and their associated vehicles (gauge
bosons). The reference force is a strong interaction of strength 10−12 cm (ref. cern Z 004).
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theory including gravitation. Many interesting attempts and proposals are available on the
market.

The aim of this book is to present the developments of our understanding of strong
interactions, and to concentrate on the exposition of its modern theory, called Quantum
ChromoDynamics (QCD). Indeed, progress on strong interactions is important and neces-
sary for making progress in the understanding of the physics beyond the SM.



2

The pre-QCD era

2.1 The quark model

� We know that hadrons have mainly strong interactions. However, the number of observed hadrons
increases drastically in comparison with that of leptons. The classification of hadrons into multi-
plets has been facilitated by the discovery of internal symmetries, which play an important rôle for
obtaining relations among masses, magnetic moments and couplings of the hadrons. The classifica-
tion under the SU (3)F group (named flavour at present) [7] has been successful, where hadrons are
characterized under their isospin I , hypercharge Y , baryon number B and strangeness S. Therefore,
the pions are placed in the same pseudoscalar octet as the K , K̄ and η, while the vector mesons
ρ, ω, φ fill another octet, . . . The splitting of hadron masses was expected, due to SU (3)F breaking
that originated from strong interaction forces, whereas the SU (2) isospin subgroup was found to be
almost symmetric. This led to the concept of charge independence, which has played an important
rôle in nuclear physics, where the proton and neutron form an SU (2) doublet.

� However, none of the fundamental representations SU (3)F were realized by the observed hadrons,
which led Gell-Mann and Zweig [8,9] to postulate that the observed hadrons, like the atoms, are
not elementary, but are built by more elementary quark1 constituents q having three flavours up,
down and strange. Their charge Q in units of the one of the electron are:

Qu = 2/3 , Qd = Qs = −1/3 . (2.1)

In this picture, the mesons are bound states of quark–anti-quark, while the baryons are made by
three quarks. The quarks internal quantum numbers are given in Table 2.1.

The SU (3)F decomposition into products of 3 and 3∗ representations gives for mesons:

q̄q : 3∗ ⊗ 3 = 1 ⊕ 8 (2.2)

and for baryons:

qqq : 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 , (2.3)

1 The name quark did not exist in the English dictionary, and may have been inspired from the following poetry Finnengan’s wake
of J. Joyce:

“Three quarks for Muster mark!
Sure he has’not got much of bark
and sure any he has it’s all beside the mark.”

However, quark is a well-known German word as it means curdy milk, but more commonly it means a mess.

10
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Table 2.1. Additive quark-quantum numbers

Quark u d s

Charge Q 2
3 − 1

3 − 1
3

Third component of isospin I3
1
2 − 1

2 0

Hypercharge Y 1
3

1
3 − 2

3

Baryon number 1
3

1
3

1
3

Strangeness 0 0 −1

Fig. 2.1. The nine mesons built from the u, d, s quarks.

from which one can built a simple but complete Periodic Table of Hadrons. These classifications
are given in Figs. 2.1 to 2.3. In this sense, the quark model was a modern version of the Sakata [10]
model.

� Masses and mass-splittings of hadrons have been explained by using Gell-Mann–Okubo-like mass
formulae [11], and by introducing the so-called constituent quark masses with the values [12]:

Mq ≈ 300 MeV , (2.4)

and by assuming the quark-mass differences:

Md − Mu ≈ 4 MeV , Ms − Md ≈ 150 MeV . (2.5)

� The compositeness hypothesis for the hadrons has been supported by the measurement of the proton
magnetic moment which has a value of about 2.8 in units of µp = eh̄/2Mp , while it is expected to
be unity from a point-like spin 1/2 object.
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Fig. 2.2. The octet baryons built from the u, d, s quarks.

Fig. 2.3. The ten spin 3/2 baryons built from the u, d, s quarks.
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2.2 Current algebras

Reviews on current algebras can be seen in [13]. In the following, we shall discuss some
main features of the approach.

2.2.1 Currents conservation

� Although we have more forces in nature, electromagnetism plays a capital rôle. The theory of
electron (muon) interacting with the photon field is the only one where the concepts of quantum
field theory work in a satisfactory manner. Indeed, within Quantum ElectroDynamics (QED), one
has been able to perform higher order approximate calculations which are confirmed by experi-
mental measurements at an impressive, high level of accuracy (anomalous magnetic moment of the
leptons, . . . ). Although more complicated, due to the presence of strong interactions, the study of the
electromagnetic interaction of hadrons has been facilitated by the property of the electromagnetic
current conservation leading to the concept of universality, which allows us to put, for example, at
the same footing, an e−, a π− and a p−, and to show, for instance, that the physical charges of these
three particles remains the same after renormalizations. Moreover, current conservation allows the
use of soft photon theorems in order to relate the cross-section to the static properties of the hadrons
(charge, magnetic moments, . . . ). It is also one of the basis of the popular Vector Meson Dominance
Model (VDM) [14]. As a consequence of the current conservation, the corresponding charge is a
constant of motion, such that the only non-vanishing matrix elements of this charge are between
equal-mass states.

� In the case of weak current, current conservation gives a well-defined meaning to the idea of universal
weak coupling which has been successfully tested experimentally in the case of non-strange weak
vector currents. However, difficulty arises when one tries to explain strangeness-violating transition
such as the ratio of the K + → π0e+νe over the π+ → π0e+νe. It can only be explained by the
introduction of the Cabibbo angle θc [15] allowing the mixing of the strange quark with the down
quark, with the experimental value sin θc = 0.220 ± 0.003 [16]. In this case, the idea of weak
universality appears also to work in the process involving the strange quark.

� Inspired again by the quark model, Gell-Mann [7] suggested that the vector and axial charges
satisfy a SU (3) ⊗ SU (3) algebra. This picture naturally leads to the existence of larger multiplets
of particles having the same spins but with both parities, which has been confirmed by the data. The
rôle of partially conserved axial current (PCAC) was found to be related to the existence of the light
(compared with the ρ and p) pseudoscalar particle, the π , which has been understood, later on, from
the spontaneous Nambu–Goldstone [17] nature of the symmetry breaking. More precisely, the exact
current conservation of the axial current is realized when the pion is massless. Again inspired by
the soft photon theorem which is a consequence of the conservation of the electromagnetic current,
one can also derive soft pion theorems obtained from phenomenological Lagrangians satisfying the
non-linear realizations of chiral symmetry.

2.2.2 Currents and charges

The next development is the construction of hadron currents built from quark fields in much
the same way as one can write a current for lepton fields. The quark electromagnetic and
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charged weak currents can be written as:

Jµ
em = 2

3
ūγ µu − 1

3
d̄γ µd − 1

3
s̄γ µs + · · · ,

Jµ

weak = ūγ µ (1 − γ5) d + · · · , (2.6)

where we ignore to a first approximation the mixing among quark fields due to the Cabibbo
angle. In the massless quark limit (m j = 0), the free quark Lagrangian density Lq(x):

Lq(x) = i
n∑

j=1

ψ̄ jγµψ j , (2.7)

possesses a SU (n)L × SU (n)R global chiral symmetry and is invariant under the global
chiral transformation:

ψi (x) → exp(−iθ ATA)ψi (x) ,

ψi (x) → exp(−iθ ATAγ5)ψi (x) , (2.8)

where T A(A ≡ 1, . . . , n2 − 1) are the infinitesimal generators of the SU (n) group acting
on the quark-flavour components. The associated Noether currents are the vector and axial-
vector currents:

V A
µ (x) = ψ̄ iγµ T A

i j ψi (x) ,

AA
µ(x) = ψ̄ iγµγ5 T A

i j ψi (x) , (2.9)

which are the ones of the algebra of currents of Gell-Mann [69,13] (n = 3 in the original
paper). The corresponding charges which are the generators of SU (n)L × SU (n)R are:

Q A =
∫

d3x V A
0 (x) ,

Q A
5 =

∫
d3x AA

0 (x) . (2.10)

The charges in Eq. (2.10) are conserved in the massless quark limit, and obey the com-
mutation relations (simplified notations):

[Qα, Qβ] = i fαβγ Qγ ,[
Qα

5 , Qβ

5

] = i fαβγ Qγ ,[
Qα, Qβ

5

] = i fαβγ Qγ

5 , (2.11)

i.e. QV and Q A generate a closed algebra. They also imply:

[Qα, V β] = i fαβγ V γ ,

[Qα, Aβ] = i fαβγ Aγ ,[
Qα

5 , V β
] = i fαβγ Aγ ,[

Qα
5 , Aβ

] = i fαβγ V γ . (2.12)
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2.2.3 Chiral symmetry and pion PCAC

In the Nambu–Goldstone [17] realization of chiral symmetry, the axial charge does not
annihilate the vacuum, which is the basis of the successes of current algebra and pion
PCAC [13]. In this scheme, the chiral flavour group G ≡ SU (n)L × SU (n)R is broken
spontaneously by the light quark (u, d, s) vacuum condensates down to a subgroup H ≡
SU (n)L+R , where the vacua are symmetrical:

〈ψ̄uψu〉 = 〈ψ̄dψd〉 = 〈ψ̄ sψs〉 . (2.13)

The Goldstone theorem states that this spontaneous breaking mechanism is accompa-
nied by n2 − 1 massless Goldstone P (pions) bosons, which are associated with each
unbroken generator of the coset space G/H . For n = 3, these Goldstone bosons can be
identified with the eight lightest mesons of the Gell-Mann eightfoldway (π+, π−, π0, η,

K +, K −, K 0, K̄ 0). On the other hand, the vector charge is assumed to annihilate the vac-
uum and the corresponding symmetry is achieved à la Wigner–Weyl [18]. In the vector
case, the particles are classified in irreducible representations of SU (n)L+R and form parity
doublets. In addition to the electromagnetic mass which the Goldstone bosons can acquire
[19], they get a mass mainly from an explicit breaking (mi 	= 0) of the SU (n)L × SU (n)R

global symmetry. In this case, the divergence of the axial-vector current does not vanish
and reads (in the case of the u, d quarks):

∂µ Aµ(x)i
j = (mi + m j )ψ̄ i (iγ5)ψ j , (2.14)

to which are associated the quasi-Goldstone parameters defined as:

〈0|∂µ Aµ(x)i
j |π〉 =

√
2 fπm2

π �π , (2.15)

where �π is the pion field and fπ = 92.4 MeV is the pion decay constant which controls the
π → µν decay width. In this case, the divergence of the vector current reads:

∂µV µ(x)i
j = (mi − m j )ψ̄ i (i)ψ j , (2.16)

to which is presumably associated the a0(980) scalar meson (the best experimental
candidate).

Current algebra also tells us that the two-point correlator associated with Eq. (1.15) is
related to the axial-current one via a current algebra Ward identity [20,13], up to equal-time
commutator terms (in the following we shall suppress flavour indices):

qµqν

µν

5 = �5(q2) − qν

∫
d4xeiqxδ(x0)〈0[A0(x), (Aν(0))† ]0〉

+ i
∫

d4xeiqxδ(x0)〈0[∂µ Aµ(x) , (A0(0))†]0〉 , (2.17)

with:

�5(q2) = i
∫

d4xeiqx 〈0|T∂µ Aµ(x)(∂µ Aµ(0))†|0〉 ,



µν

5 (q2) = i
∫

d4xeiqx 〈0|TAµ(x) (Aν(0))† |0〉 . (2.18)
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At q = 0, the previous identity reduces to:

�5(0) = −i(mu + md )〈0[ψ̄d (0)iγ5ψu(0), Q†
5]0〉 , (2.19)

where Q5 is the axial-charge generator. In the Nambu–Goldstone realization of chiral
symmetry, one has:

Q5|0〉 	= 0 . (2.20)

Therefore, we get:

�5(0) = −(mu + md )〈ψ̄dψd + ψ̄uψu〉 . (2.21)

Using Eq. (2.15) in the definition of �5(q2) and equating this with Eq. (2.19), we have
the well-known pion PCAC (Gell-Mann et al. [21]) relation at q = 0 (recall that fπ =
92.4 MeV):

−(mu + md )〈ψ̄dψd + ψ̄uψu〉 = 2m2
π f 2

π . (2.22)

2.2.4 Soft pion theorem and the Goldberger–Treiman relation

Let’s consider the matrix element of the axial-vector current between two nucleon states
shown in Fig. 2.4.

Using invariance properties, it can be parametrized as:

〈N (p2)|Aµ|N (p1)〉 = ū(p2)[γµgA(q2) + qµgP (q2)]γ5u(p1) , (2.23)

where q = p2 − p1 is the momentum transfer between the nucleon states, and where
experimentally gA(0) = 1.26. The matrix element of the current divergence reads:

A ≡ 〈N (p2)|∂µ Aµ|N (p1)〉 = ū(p2)[2MN gA(q2) + q2gP (q2)](iγ5)u(p1) , (2.24)

where the relation for the Dirac spinors:

qµū(p2)(iγ µγ5)u(p1) = 2MN ū(p2)γ5u(p1) , (2.25)

has been used. The PCAC hypothesis in Eq. (2.15) yields in the massless pion (chiral) limit:

2MN gA(q2) + q2gP (q2) = 0 . (2.26)

N(p1) N(p2)

q

Fig. 2.4. Axial-vector scattering with nucleon.
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where the divergence of the axial-vector current is zero. If g(q2) has no singularity at
q2 = 0, then Eq. (2.26), would imply either MN = 0 or gA = 0. However, none of these
requirements are true. Therefore, gP should have a pole at q2 = 0:

lim
q2→0

gP (q2) = −2MN gA

q2
. (2.27)

The matrix element in Eq. (2.24) between a one pion state and the vacuum is the same as
if there were a term in Aµ(x) of the form

√
2 fπ∂µ �π (x). Therefore, in the chiral limit, the

matrix element has a pole, and reads:

〈N (p2)|Aµ|N (p1)〉 =
√

2 fπqµ〈N (p2)| �π |N (p1)〉 = 2 fπqµ

−q2
gπ N N (q2)ū(k2)(iγ5)u(k1) ,

(2.28)

where gπ N N (q2) is the π N N vertex function. Its physical coupling is defined at q2 = m2
π

at has the experimental value of 13.50 ± 0.15 [16]. Solving these last two equations, one
can derive the Golberger–Treiman relation (GT) [22] in the chiral limit:

fπ gπ N N (0) = MN gA(0) . (2.29)

In the case of massive quarks, one can write the matrix element in Eq. (2.24) as:

A =
√

2 fπm2
π 〈N (p2)| �π |N (p1)〉 = 2 fπm2

π

−q2 + m2
π

gπ N N (q2)ū(k2)(iγ5)u(k1) . (2.30)

By identifying Eqs. (2.24) and (2.30), and setting q2 = 0, one would obtain the previous
GT relation in Eq. (2.29), which one can identify with the physical coupling assuming that
the coupling is a smooth function of q2 from 0 to m2

π , which is valid as there is no one-pion
pole in this function. One should remark that only gP (q2) has a pion pole term, and it is of
the form:

gP (q2) =
√

2 fπ
m2

π − q2

√
2gπ N N , (2.31)

such that at q2 = m2
π , Eqs. (2.30) and (2.24) leads to a trivial equality.

2.2.5 The Adler–Weisberger sum rule and soft pion theorems

In the case of the Golberger–Treiman relation, we have used a one-pion soft theorem
for estimating the pion-nucleon-nucleon matrix element. Here, we shall be concerned by
low-energy theorems for pion-nucleon scattering amplitudes involving two soft pions. The
process is depicted in Fig. 2.5.

The amplitude can be written as:

〈πi (q2)N (p2)|π j (q1)N (p1)〉 = i(2π )4δ4(p1 + q1 − p2 − q2)Ti j , (2.32)
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π(q1)

N(p1) N(p2)

π(q2)

Fig. 2.5. Forward pion-nucleon scattering process.

which can be decomposed in terms of two invariants (isospin-even and -odd):

Ti j = δi j T
(+) + 1

2
[τi , τ j ]T

(−) , (2.33)

where i, j are isospin indices. Using standard reduction formula discussed in the next
section, one can apply the soft pion theorem, which gives:

Ti j = i
(−q2

2 + m2
π

)〈N (p2)| �π i (0)�π j (q1)N (p1)〉

= qµ

2

(−q2
2 + m2

π

)
√

2 fπm2
π

〈N (p2)|Ai
µ(0)|π j (q1)N (p1)〉 . (2.34)

For q2 → 0, we can take T (−) = 0 since it is odd under crossing. Also, the non-singular
part of the amplitude vanishes (Adler’s consistency condition) [23]:

T (+)
(
ν = 0, νB = 0, q2

1 = m2
π , q2

2 = 0
) = 0 , (2.35)

where:

ν ≡ q1(p1 + p2)/2 , νB = −q1 · q2/2 , (2.36)

are kinematic variables. Similarly, when q2
1 → 0, one obtains:

T (+)
(
ν = 0, νB = 0, q2

1 = 0, q2
2 = m2

π

) = 0 . (2.37)

Applying two times the soft pion theorems, one can reduce the amplitude as:

Ti j = i
(
q2

1 − m2
π

)(
q2

2 − m2
π

) 1

2m4
π f 2

π

∫
d4x eiq1x 〈N (p2)|T ∂µ Aµ(x)∂µ Aµ(0)|N (p1)〉 .

(2.38)

Using the current algebra Ward identity:

qµ

1 qν
2

∫
d4x eiq1xT Ai

µ(x)A j
ν(0) =

∫
d4x eiq1x

[T ∂µ Ai
µ(x)∂µ A j

µ(0)

− iqµ

1 δ(x0)
[
A j

0(0), Ai
µ(x)

] + δ(x0)
[
Ai

0(0), ∂µ A j
µ(x)

]]
,

(2.39)
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one can see after sandwiching between two nucleon states that the first term is the nucleon
matrix element of a time-ordered product of two-pion operators; the second term can be
evaluated from the current algebra commutation relation:

δ(x0)
[
Ai

0(0), A j
µ(x)

] = −iδ(x)εi jk Vk,µ(x) , (2.40)

while the last term gives the pion-sigma term, which is symmetric in i, j , and then this
t-channel state must have isospin 0 or 2 since the pion has isospin 1. However, since the
nucleon has isospin 1/2, only I = 0 state can contribute, and therefore:

σ i j = δi jσN . (2.41)

In the low-energy limit, the following soft-pion theorems are obtained:

lim
ν→0

ν−1T (−)(ν, 0, 0, 0) = (
1 − g2

A

)/
f 2
π , (2.42)

and

lim
ν→0

ν−1T (+)(0, 0, 0, 0) = −σN / f 2
π . (2.43)

It is also expected and assumed that T (−), which is odd under the change ν → −ν, obeys
an unsubtracted dispersion relation in the variable ν:

T (−)(ν, q2 = 0)

ν
= 2

π

∫ ∞

ν0

dν ′

ν ′2 − ν2
ImT (−)(ν ′, 0) . (2.44)

Its imaginary part can be related to the π N cross-section if one assumes a smoothness
assumption:

ImT (−)(ν, 0) � ImT (−)
(
ν, m2

π

) = ν
[
σ

π+ p
tot (ν) − σ

π− p
tot (ν)

]
. (2.45)

Using the previous GT relation in Eq. (2.29) for eliminating fπ in Eq. (2.42), the dispersion
relation gives the Adler–Weisberger relation [24]:

1 − 1

g2
A

= 2M2
N

πg2
π N N

∫ ∞

ν0

dν

ν

[
σ

π+ p
tot (ν) − σ

π− p
tot (ν)

]
, (2.46)

which is an interesting low-energy sum rule.

2.2.6 Soft pion theorem for ρ → π+π− and the KSFR relation

We discuss here a further use of soft pion theorems. We consider the process in the chiral
limit where the pions are massless:

ρ0 → π+π− . (2.47)

It is described by the amplitude:

T i j
νµ = i

∫
d4x exp(iqx)〈0|T Ai

ν(x)A j
µ(0)|ρ(p)〉 , (2.48)
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where i, j are isospin indices. Taking its divergence, one obtains:

qνT i j
νµ =

{
U i j

µ ≡ −
∫

d4x exp(iqx)〈0|T ∂ν Ai
ν(x)A j

µ(0)|ρ(p)〉
}

−
∫

d4x exp(iqx)δ(x0)〈0|[Ai
0(x), A j

µ(0)
]|ρ(p)〉 . (2.49)

Using the commutation relation given previously, one can deduce the Ward identity:

qνT i j
νµ = U i j

µ − i f i jk〈0|Vµ,k |ρ(p)〉 , (2.50)

where Vµ is the vector isovector current. In the massless pion limit, the axial current is
conserved such that U i j

µ vanishes. The coupling of the neural ρ-meson to the isovector
current is introduced as (from now, we shall suppress the isospin indices):

〈0|Vµ|ρ(p)〉 = M2
ρ

2γρ

εµ . (2.51)

where, experimentally, γρ = 2.55, with the normalization:

�ρ→e+e− � 2

3
πα2 Mρ

2γ 2
ρ

. (2.52)

εµ is the polarization of the ρ meson which ensures the conservation of the vector current.
Contracting again with the pion momentum q ′, one obtains:

qνq ′µTνµ = (ε · q ′)
M2

ρ

2γρ

. (2.53)

Introducing the ρππ coupling as:

〈π (q ′), π (q)|ρ(p)〉 = εν(q ′ − q)νgρππ , (2.54)

and taking the limit q ′ → q → 0, one obtains the soft pion relation:

M2
ρ

2γρ

= 4 f 2
π gρππ . (2.55)

If one assumes ρ-universality from the vector meson dominance model [14], one has:

M2
ρ

2γρ

= M2
ρ

gρππ

. (2.56)

The two equations give the Kawarabayashi–Suzuki–Ryazuddin–Fayazuddin (KSFR)
relations [25]:

g2
ρππ = M2

ρ

4 f 2
π

, (2.57)

or:

f 2
π = M2

ρ

16γ 2
ρ

, (2.58)
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which are useful in different phenomenological applications. One can check from the data
that the predictions given by these two relations are unexpectedly good despite the crude
approximation used for deriving them.

2.2.7 Weinberg current algebra sum rules

Another important consequence of the commutation relation of currents are the different
current algebra dispersion sum rules, based on the assumption that the SU (3) ⊗ SU (3)
symmetry is realized asymptotically. Though conceptually difficult to digest, this asymp-
totically free hypothesis has been very successful in different applications [13] (Weinberg
and Das–Mathur–Okubo (DMO) sum rules [26,27], Adler–Weisberger sum rule [24] dis-
cussed previously, . . .). Here, we shall discuss briefly the Weinberg and DMO sum rules.
They are based on the assumed asymptotic behaviour of the absorptive amplitudes, with the
assumption that the SU (2)L × SU (2)R chiral symmetry is asymptotically realized in nature.
Weinberg has derived two superconvergent sum rules, well-known as Weinberg sum rules
(WSR) [26]. In order to show this result, it is appropriate to study the two-point correlator:

W µν

L R ≡ i
∫

d4xeiqx 〈0|T Jµ

L (x)
(
J ν

R(0)
)† |0〉

= −(gµνq2 − qµqν)
(1)
L R + qµqν


(0)
L R , (2.59)

where Jµ

L and Jµ

R are left- and right-handed charged currents, which read in terms of the
quark fields:

Jµ

L ≡ ūγ µ(1 − γ5)d , Jµ

R ≡ ūγ µ(1 + γ5)d . (2.60)



(1)
L R and 


(0)
L R are respectively the transverse and longitudinal parts of the correlator. In the

asymptotic limit (q2 → ∞) or in the chiral limit (mu,d → 0), where the SU (2)L × SU (2)R

chiral symmetry is realized, W µν

L R tends to zero. Using the Källen–Lehmann representation
of the two-point correlator:

(



(J )
L R ≡ (


i j (J )
)

L R

) (
q2, m2

i , m2
j

) =
∫ ∞

0

dt

t − q2 − iε

1

π
Im


(J )
L R(t) + · · · , (2.61)

where · · · represent subtraction points, which are polynomial in the q2-variable, one can
transform the previous property of W µν

L R into superconvergent sum rules for its absorptive
parts [26]: ∫ ∞

0
dt Im

(



(1)
L R + 


(0)
L R

) ≈ 0 ,

∫ ∞

0
dt t Im


(1)
L R ≈ 0 , (2.62)

where the first WSR comes from the qµqν component of W µν

L R and the second WSR comes
from its gµν part. These WSR express in a clear way, the global duality between the long-
range (spectral function measurable at low-energy) and the high-energy (asymptotic theory)



22 I General introduction

parts of the hadronic correlators. This quark-hadron duality is one of the basic idea behind
QCD spectral sum rules, which we shall discuss in detail in the next part of the book.

In order to parametrize the spectral functions, we use a narrow-width approximation and
assume that the π, A1 and ρ dominate the spectral functions. In this way, one can derive
the constraints:

M2
ρ

2γ 2
ρ

− M2
A1

2γ 2
A1

− 2 f 2
π ≈ 0 ,

M4
ρ

2γ 2
ρ

− M4
A1

2γ 2
A1

≈ 0 , (2.63)

where fπ = 92.4 MeV is the pion decay constant governing the π → µν decay; γV is the
V -meson coupling to the corresponding charged current:

〈0|V µ|ρ〉 =
√

2
M2

ρ

2γρ

εµ , (2.64)

where experimentally γρ � 2.55. Notice the extra
√

2 factor coming from the different
normalizations of the charged and neutral current discussed in the analysis of the ρ0 →
π+π− decay. From the above crude assumptions, one can predict by solving the two WSR
equations and by using the experimental values of the ρ and π parameters:

MA1 � 1.1 GeV , (2.65)

which is in good agreement with the present data [16]. If, in addition, one uses the relation
between fπ , γρ and Mρ (approximate KSFR relation [25]) discussed previously:

f 2
π � M2

ρ

16γ 2
ρ

, (2.66)

deduced, from ρ → ππ decays, using soft pion techniques, one arrives at the successful
Weinberg mass formula:

MA1 �
√

2Mρ , (2.67)

although one should notice that the data from hadronic experiments give a slightly higher
value [16].

2.2.8 The DMO sum rules in the SU (3)F symmetry limit

Electromagnetic current

Weinberg-inspired sum rules have been also derived from the asymptotic realization of the
flavour symmetry. The Das–Mathur–Okubo (DMO) sum rules [27] can be studied from the
two-point correlator:



µν

i (q2) ≡
∫

d4xeiqx 〈0|T V µ

i (x)
(
V ν

i (0)
)† |0〉

= −(gµνq2 − qµqν)
(1)
i (q2) , (2.68)
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where V µ

i (x) ≡ ψ̄ iγ
µψi (i ≡ u, d, s, . . .) are the flavour components of the electromag-

netic current:

Jµ

E M (x) = 2

3
V µ

u − 1

3
V µ

d + 2

3
V µ

c − 1

3
V µ

s + · · · (2.69)

In the asymptotic limit (q2 → ∞) or in the chiral limit (mi → 0), one can derive the
DMO sum rule [27]:∫ ∞

0
dt[Im
3(t) − Im
8(t)] ≡

∫ ∞

0
dt Im(
u + 
d − 2
s) (t) = 0 , (2.70)

which corresponds to the difference between the isovector and isoscalar spectral functions
associated with the SU (3)F symmetry. Saturating the spectral functions by the lowest mass
resonances, one can derive the well-known successful phenomenological relation among
vector mesons:

Mρ�ρ→e+e− − 3(Mω�ω→e+e− + Mϕ�ϕ→e+e− ) � 0 . (2.71)

One can also re-write the DMO sum rules in terms of the total cross-section for e+e− →
hadrons by using the optical theorem:

σ (e+e− → hadrons) = 4π2α

t
e2 1

π
Im
(t) . (2.72)

This relation is useful for testing the breaking of SU (3)F , as we shall see later on, because
we have complete data for the total cross-section.

Charged current

In the case of the charged vector or axial current:

V µ(x)i
j = ψ̄ iγ

µψ j , Aµ(x)i
j = ψ̄ iγ

µγ 5ψ j , (2.73)

the DMO sum rules read in the chiral limit:∫ ∞

0
dt Im
(1)(t)d

u =
∫ ∞

0
dt Im
(1)(t)s

u , (2.74)

where the spectral function can be measured in the τ → ντ+ hadrons decays. By saturating
the spectral function with the lowest resonances, one can deduce the constraint:

M2
ρ

γ 2
ρ

≈ M2
K ∗

γ 2
K ∗

. (2.75)

Using γρ = 2.55, Mρ = 0.776 GeV and MK ∗ = 0.892 GeV, it gives:

γK ∗ = 2.93 , (2.76)

which is already an interesting constraint as compared with the data from τ decay [16]. On
can notice that, as in the case of the WSR, the DMO sum rules give constraints between the
low-energy behaviour of the spectral functions and their asymptotic one.
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2.2.9 π+-π0 mass difference

Hadronic contributions to the electromagnetic π+-π0 mass difference have been derived by
Das et al. [19] by assuming a good realization of the SU (2)L × SU (2)R chiral symmetry
at short distance. In this way, by integrating the virtual photon with momentum q2, they
derive the result, in the chiral limit:

m2
π+ − m2

π0 � −i
6πα

f 2
π

∫
d4q

(2π )4

1

q2

∫ ∞

0

dt

q2 + t − iε

t

π
Im


(1)
L R

� − 3α

4π f 2
π

∫ ∞

0
dt

(
t ln

t

ν2

)
1

2π
Im


(1)
L R (2.77)

where the spectral functions enter the second WSR and ν is an arbitrary UV cut-off. Using
a lowest resonance saturation of the spectral functions in the narrow width appproximation
(NWA), and the constraints provided by the first and second sum rules, which guarantee
the convergence of the integral, one can derive the relation:

m2
π+ − m2

π0 � 3α

4π

M2
A1

M2
ρ

M2
A1

− M2
ρ

ln
M2

A1

M2
ρ

. (2.78)

Using the WSR relation M2
A1

= 2M2
ρ , one can deduce the result of [19]:

mπ+ − mπ0 � 3α

4π

M2
ρ ln 2

mπ

, (2.79)

which is in good agreement with the data mπ+ − mπ0 = 4.5936(5) MeV [16]. The improve-
ments of these prototype current algebra sum rules in the QCD context have been done in
[28–34] and will be discussed in details in the following sections.

2.3 Parton model and Bjorken scaling

Different deep-inelastic scattering experiments such as the unpolarized electroproduction
process ep → eX (X being the sum of inclusive produced hadrons) at high-energy virtual
photon with momentum Q, have been used to explore the quark structure of the proton.
This unpolarized process can be characterized by two measurable structure functions W1,2,
which parametrize the hadronic tensor and contains all strong interaction information about
the response of the target nucleon to electromagnetic probes:

dσ

d Q2dν
= πα2

4Mp E2 sin4 θ E E ′

{
2 sin2 θ

2
W1(Q2, ν) + cos2 θ

2
W2(Q2, ν)

}
. (2.80)

As shown in Fig. 2.6, they depend on the usual kinematic variables −q2 ≡ Q2 and ν:

ν ≡ p · q = Mp(E − E ′) , (2.81)

where ν/Mp is the energy transfer in the proton rest frame; p and Mp are the proton
momentum and mass; E and E ′ are the energies of the incident and scattered electrons in
the proton rest frame, and θ is the scattering angle (Q2 = 4E E ′ sin2 θ

2 ). For a point-like
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Fig. 2.6. ep → e+hadrons process.

proton, the structure functions are δ-functions:

W1(Q2, ν) = Q2

4M2
p

δ

(
ν − Q2

2

)
, W2(Q2, ν) = δ

(
ν − Q2

2

)
. (2.82)

It has been observed that, at large Q2, contributions from pointlike spin 1/2 objects
inside the proton still remain, while prominent contributions of resonances at low Q2 die
out quickly when Q2 increases. A rough estimate of the proton structure functions can
be done by assuming that the proton consists with pointlike spin 1/2 quark constituents
(called wee partons by Feynman [35]), each one carrying a given fraction ξi of the proton
momentum. Defining by fi (ξi ) the probability that a parton i has momentum fraction ξi , and
by W (i)

j the parton contribution to the structure function, then the proton structure function
becomes an incoherent sum of the one of the partons, and reads:

W1(Q2, ν) =
∑

i

∫ 1

0
dξi fi (ξi )W

(i)
1 (Q2, ν) = 1

2

∑
i

e2
i fi (x) ≡ F1(x)

W2(Q2, ν) =
∑

i

∫ 1

0
dξi fi (ξi )W

(i)
2 (Q2, ν) = M2

p

ν
x

∑
i

e2
i fi (x) ≡ M2

p

ν
F2(x) , (2.83)

where ei is the electric charge and:

x ≡ Q2

2ν
. (2.84)

This simple parton description of the proton, where the structure function depends only
on the kinematic variable x , is known as Bjorken scaling [36]. As a consequence of the
spin-1/2 assumption of the constituent quarks, one also obtains the Callan–Gross relation
[37]:

F2(x) = 2x F1(x) . (2.85)

These two QCD sum rules are well-satisfied by the data as shown in the Figs. 2.7 and 2.8,2

which then surprisingly suggest the existence of free point-like partons inside the proton,
in apparent contradiction with the confinement postulate.

2 Small logarithmic deviations from the parton model prediction are also seen, and are well explained in QCD (as we shall see
later on) after leading logs-resummation using the Altarelli–Parisi equation [38].
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Fig. 2.7. The proton structure function F2 versus x at two values of Q2, exhibiting scaling at the pivot
point x ≈ 0.14.

Fig. 2.8. The ratio 2x F1/F2 versus x for Q2 values between 1.5 and 16 GeV2.
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2.4 The S-matrix approach and the Veneziano model

2.4.1 The S-matrix approach

An alternative to the quark model was the so-called S-matrix (bootstrap) approach which
was very popular in the 1960s–1970s. It is based from a general Lagrangian, which should be
constrained from general principles (relativistic covariance, substitution rule, unitarity and
analyticity), and which limits the choice of the S-matrix. One of the main consequences
of this approach is the Regge poles theory [39], which gives a general classification of
hadrons (Regge trajectories) and predictions for high-energy data in terms of low-energy
parameters from the study of resonances. This approach can be illustrated by the scattering
process:

A + B → C + D (2.86)

and the crossed processes:

A + C̄ → B̄ + D , A + D̄ → B̄ + C , (2.87)

characterized by the two kinematic variables s and t . The amplitude can be written in a
dispersive form:

A(s, t) = 1

π

∫
ImA(s ′, t ′)

s ′ − s
ds ′, (2.88)

where one assumes that it converges for sufficiently large t , while it can be written as a sum
of poles:

A(s, t) = β(t)
∞∑

n=0

sn

α(t) − n
(2.89)

in the variable t at the solutions of the equations α(t0) = 0, α(tn) = n. Regge asymptotic
law gives rise for fixed t to:

lim
s→∞ ImA(s, t) ∼ β(t)sα(t) , (2.90)

where one can see a direct relation between the s and t-channels description of the
scattering. This relation can also be seen more conveniently from the finite energy sum
rule: ∫ L

0
ds sn ImA(s, t) = Lα(t)+n+1

α(t) + n + 1
. (2.91)

2.4.2 The Veneziano model and duality

The duality relation (crossing) between the s-channel resonance and t-channel Regge poles
suggests the duality bootstrap. This has been achieved by the Veneziano approach [40],
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where a complete (though approximate) description of scattering can be obtained in terms
of the s-channel resonances only. Inserting the resonance contributions from the particles
contained in the trajectory α(s) and in its daughters, one obtains:

A(s, t) =
∑

n

cn(t)

α(s) − n
=

∑
n

cn(s)

α(t) − n
, (2.92)

where the last equality is due to the duality constraints. cn(t) is a polynomial of order n
in t . The contribution of highest spin j = n comes from the α(s) = n intercept in the
leading trajectory, while the ones of lower spin come from the presence of lower ‘daughter’
trajectories. The solution to this equation is given by the well-known Veneziano beta-
function amplitude:

A(s, t) = �[−α(s)]�[−α(t)]

�[−α(s) − α(t)]
. (2.93)

The Veneziano dual-resonance model for the scattering amplitude can be summarized by
the following conditions:

� Only infinitely narrow resonances appear, and the only singularities are poles on the real axis.
� There is an exact crossing symmetry.
� There is an asymptotic Regge behaviour with linear trajectories with universal slope.

However, one should notice that straight line trajectories are very far from the
expectation from a field theoretical argument which suggests a Yukawa-like potential. In-
stead, they follow from a harmonic oscillator potential, and seem to be supported by the
data.

2.4.3 Duality diagrams

The previous discussion can be visualized using duality diagrams introduced in [41]. It
consists to represent the quark content of non-exotic (ordinary) hadrons as:

� Ordinary baryons composed of three quarks will be represented by three quark lines oriented in the
same directions.

� Mesons composed by quark–anti-quark will be represented by quark lines going in opposite
directions.

The process is represented by the topological structure of the graph:

� Planar diagrams can be drawn without crossing quark lines, which coı̈ncide with the ones suggested
by duality and ordinary hadrons, and which give a non-vanishing contribution to the imaginary part
of the amplitude.

� Non-planar diagrams are the other possibility, but do not contribute to the imaginary part as they
are real.
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π+ π+

π– π–

t-channel

s-channel

(a)

π+ π+

π– π–

(b)

Fig. 2.9. Duality diagrams for π+π− scattering: (a) planar (s, t) graph; (b) non-planar (s, s̄) or (t, s̄)
graph.

π– π–

π+ π+

= =

Fig. 2.10. Dual-resonance diagram for π -π scattering.

In order to illustrate these rules, we can consider the scattering process:

π+π− → π+π− (s − channel),

π+π− → π+π− (t − channel),

π+π+ → π+π+ (s̄ − channel), (2.94)

shown in Fig. 2.9.
From the previous discussion, only the planar diagram contributes to the imaginary part

of the amplitude. Duality invokes that a sum of resonances (or Regge poles) exchanged
in the s channel is equivalent to the sum of Regge poles (or resonances) exchanged in the
t channel, which is shown in Fig. 2.10. Similar planar diagrams can be drawn for π -N
scattering as shown in Fig. 2.11. In the case of N -N (or in general baryon–antibaryon)
scattering, one has the dual-resonance diagram (Fig. 2.12).

It shows that the planar graph represents exchange of non-exotic objects in the s channel,
but exchange of exotics in the t channel. This feature signals that without exotics, the
approach cannot consistently explain the hadronic world.
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t-channel

s-channel

π–

N N

π– N

π–

(a) (b)

Fig. 2.11. Planar diagrams for π -N scattering: (a) ((s, t) or (s̄, t); (b) (s, s̄).

= =

N

N

N

N

Fig. 2.12. Dual-resonance diagram for N -N scattering.

One has expected that the previous approach based on superconvergence and duality,
and implemented by the dual-resonance model suggested by Veneziano [40] will bring new
insights in the developments of the theory of strong interactions. Alas, after the discovery of
QCD, such theories became unsuccessful, although we know, at present, that the Veneziano
model (actually it can be viewed as a string model) revives as the basics of superstring
theories with which one wishes to unify the three electromagnetic, weak and strong forces
with gravitation.
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The QCD story

We shall limit ourselves here to a qualitative survey of Quantum ChromoDynamics (QCD),
with the aim to present in a short and simple way the main idea behind the theory. Many
more complete and detailed reviews and books on QCD [2,3,42–52] and on Quantum Field
Theory [53] exist in the literature, which the interested readers may consult, while recent
results and developments in QCD both from theory and experiments may, for example, be
found in many conferences, for instance, in the proceedings of the QCD–Montpellier Series
of Conferences published regularly in Nucl. Phys. B (Proc. Suppl.) by Elsevier Publ. Co.

3.1 QCD and the notion of quarks

� QCD is by now expected (and widely accepted) to be the field theory describing the strong inter-
actions of quarks q [8,9] (elementary constituents of the matter) having three colours (blue, red,
yellow) which are glued together inside the nucleus by eight coloured (chromo) gluons which pro-
vide a vehicle for the Yukawa strong nuclear forces. However, the quark scheme is not only a pure
mathematical concept for classifying the hadronic world. There is indirect evidence of the existence
of quarks through the observation of two-jet events, such as the one from:

Z 0 → hadrons , (3.1)

as shown in Fig. 3.1.
� QCD originated from the natural development of the quark model of the early 1960s, where, as

we have discussed in the previous chapter, hadrons were classified under the representations of an
SU (3)F (now called a flavour group), the so-called eightfoldway of Gell-Mann and Ne’eman [7],
where ordinary mesons and baryons of this SU (3)F classification are respectively bound states q̄q
and qqq of the light quarks up (u), down (d) and strange (s). The masses of these quarks,1 which
are given in the next section, are much lower than the value of the QCD scale � ≈ 300 MeV, and
have the values at the scale 2 GeV2 [54]:

mu � 3.5 MeV , md � 6.3 MeV , ms � 119 MeV , (3.2)

where one can notice that ms/md � 20 is a huge number obtained originally [21,55–57] from current
algebra approaches [13]. These values have to be contrasted with the so-called constituent quark

1 As quarks are not directly observed, the definitions of their masses are only theoretical. For light quarks, I will quote the values
of running (or current) masses evaluated at a certain scale.

2 The original choice of scale is 1 GeV. We take 2 GeV in order to follow current practice.

31
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Table 3.1. Quantum numbers of the
new quarks

Quark c b t

Charge Q 2
3 − 1

3
2
3

C-charm 1 0 0
B-bottomness or beauty 0 −1 0
T -topness or topless 0 0 1

Fig. 3.1. Two-jet events from hadronic Z 0 decay.

values Mq ≈ 300 MeV, used in the previous chapter for the case of the quark and potential model
approaches [12], for explaining the mass-splittings of hadrons using the Gell-Mann–Okubo-like
mass formulae [11].

� Including the previous three light quarks, at present six quark flavours have been found and classified
according to their charge Q in units of the electron. They are:

Q = 2/3 : (u, c, t)

Q = −1/3 : (d, s, b) , (3.3)

where, for instance, in these triplet representations, the neutral currents of electroweak interactions
are flavour conserving. The new quarks c, b, t carry new quantum numbers as shown in Table 3.1.

� The charm quark was proposed in [58], in which the name charm was adopted by Bjorken and
Glashow [58]. The discovery of the charm quark through the finding of the c̄c bound state J/ψ

meson [59] at 3.1 GeV, indicates that its mass is about 1/2 of the one of the meson.3 Its discovery
has been crucial for avoiding the flavour changing neutral current responsible for the excess of Z 0

3 For heavy quarks (mq � �), the mass is defined as the on-shell mass (pole mass) analogous to the one of the electron (see next
section).
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exchange contributions in the K 0-K̄ 0 oscillations, and for the huge KL → µ+µ− and K ± → π±νν̄

experimentally unacceptable rates. The need for charm in this mechanism was indeed advocated a
long time ago by Glashow–Iliopoulos–Maiani (GIM suppression mechanism) [60]. Then, after the
charm discovery, the two generations of quarks (u, d) and (c, s) for the electroweak SU (2)L × U (1)
standard model (SM) of Glashow–Weinberg–Salam [61] were completed, and could be compared
with the two lepton doublets (e, νe) and (µ, νµ). These two quark doublets mix through the Cabibbo
mixing angle θc introduced a long time ago [15], and has the experimental value sin θc = 0.220 ±
0.003 from, for example, the K → π0e+νe process [16].

� The discovery in 1974 of the third τ charged lepton [62], having a mass 1.8 GeV, was the first
sign of the third generation, which was confirmed later on by the discovery of the ϒ , which is a
b̄b bound state [63] in 1977, with a b-mass Mb ≈ 4.6 GeV, expected to be about 1/2 of the one of
the ϒ . More recently, the third family has been completed by the discovery of the t quark in 1995
[64] from the analysis of the lepton + jet and dilepton channels originated from t̄ t → W −bW +b
processes at the collider experiments. This gives a top mass Mt � (174.3 ± 3.2 ± 4.0) GeV [16].
The b and t quarks have been predicted by Kobayashi and Maskawa [65], and the names bottom
and top were first used by Harari [66]. At present, we have found three families of leptons:

(
νe

e

) (
νµ

µ

) (
ντ

τ

)
(3.4)

and analogous three families of quarks:
(

u
d

) (
c
s

) (
t
b

)
. (3.5)

Quark families mix under a 3 × 3 unitary matrix, which is a generalization of the previous 2 × 2
Cabibbo unitary matrix, and which is called the CKM (Cabbibo–Kobayashi–Maskawa) mixing
matrix [67]. This matrix has three real parameters (mixing angles) and one C P violating phase
(see Appendix A3), which cannot be absorbed by a redefinition of the quark fields. LEP studies [68]
of the Z 0 width also indicate that it is unlikely to have more than three (almost) massless neutrinos,
such that, most probably, we only have these three generations in nature.

3.2 The notion of colours

� Historically [69], the introduction of colours has been motivated by the failure of the quark model
to expain the peculiar nature of the pion-nucleon �++ baryon, which has a total zero angular
momentum J = 3/2. In order to fulfill this property, one has to put its three u-quark constituents
with spins aligned up. This requirement is not allowed by Dirac statistics as the quarks are supposed
to be a spin 1/2 particle. This wrong statistic problem is solved when one gives three colours to the
quarks,4 such that the �++ can be represented as:

|�++, J = 3/2〉 = 1√
6
εαβγ |uα ↑, uβ ↑, uγ ↑, 〉 , (3.6)

with an antisymmetric wave function (α, β, γ are colour indices).

4 A possible solution, where quarks obey parastatistics of rank three, has been proposed by Greenberg [70], which can be satisfied
by the attribution, by Gell-Mann et al. [69], of the new internal colour quantum number to the quarks.
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� It is also known that quantum anomaly spoils the renormalizability of the SU (2) × U (1) Standard
Model of Electroweak interactions. Its disappearance can only be achieved if the quark number of
colour is 3.

3.3 The confinement hypothesis

� However, the theory is amusing as one has to avoid the existence of coloured states, i.e., they
should have infinite energy, such that all asymptotic states should be colourless. This leads to the
confinement hypothesis implying the non-observability of free quarks. There is indeed an indication
of such a property from a lattice measurement of heavy quark-antiquark bound state potential, where
it is found to be Coulomic at short distances and increases linearly at long distances (see also Section
3.8):

VQ̄ Q ∼ CF
αs(r )

r
+ σr (3.7)

with CF = 4/3 and σ is the QCD string tension. The linear rising term renders the separation of the
Q̄ Q pair energetically impossible.

� The confinement assumption also implies that QCD should be a local field theory that leads to local
observables described by local operators or currents built with gluons and/or quark fields. This
locality property is one of the basis of the current algebras that we have outlined in the previous
chapter.

� Confinement is also essential for explaining the short-range nature of the nuclear forces, while
massless gluons exchange is a long-range process. This is because nucleons are colour singlet
states which cannot exchange colour octet gluons but only coloureds states.

� Some qualitative ideas on the nature of confinement lead to the picture that quarks are bound by
strings or chromelectric flux tubes. Indeed, if a Q̄ Q pair is created at one space-time point in a given
process, and the quark and antiquark start to move away from each other in the centre of mass of the
system, then it soon becomes energetically possible to create additional pairs smoothly distributed
in rapidity between the two leading charges, which neutralize colour and allow the final state to
be reorganized into two jets of coloured hadrons, which communicate in the central region by a
number of wee hadrons. This phenomena is very similar to the case of broken magnet, where an
attempt to isolate a magnetic monopole by stretching a dipole, leads to the breaking of the magnet
into two new monopoles at the breaking point. with small energy. Alas, nobody has succeeded yet
in proving this scenario, which remains a great challenge due to the peculiar IR properties (infrared
slavery) of the theory. At present, the confinement hypothesis can still be considered a postulate.

3.4 Indirect evidence of quarks

Prior QCD, constituent quark models have been used for predicting some processes. The
calculations assume that one can simply produce free quarks, which, a priori, is in contra-
diction with the confinement postulate. (Indirect) evidence5 of quarks have been observed at
LEP from two hadronic jet events in the decay of the weak boson Z0 through the intermedi-
ate process Z0 → q̄q , where the quarks hadronize later on. However, one should remember

5 Some direct searches based on the expectation to observe spin 1/2 quark were not successful.
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that, in these hard processes, experimentalists only detect hadrons (pions, kaons, . . .), but
neither quarks nor gluons. It is impressive that these hard processes can be nicely explained
by perturbative QCD [52].

3.5 Evidence for colours
� In an analogous way, the existence of gluons has been seen in three hadronic jet decays of the Z 0

through the process Z 0 → q̄qg.
� The number of colours has also been tested from different experiments. Classical examples are:
♣ The e+e− → hadrons total cross-section Re+e− normalized to the e+e− → µ+µ− cross-section

is expected to be equal to the number of colours Nc times the sum of the square of the quark
charge, if one assumes the production of free q̄q pairs (parton model) before hadronization (see
Fig. 3.2):

Re+e− ≡ σ (e+e− → γ, Z 0 → hadrons)

σ (e+e− → µ+µ−)
≈ Nc

∑
u,d,s...

Q2
i . (3.8)

This fact has been observed in e+e− experiments for sufficiently large energy beyond the reso-
nances structure as shown in Fig. 3.3.

♦ Similarly, the decay rate of the weak Z 0 boson shown in Fig. 3.4 is also controlled by Nc. Its
hadronic branching ratio reads:

RZ ≡ �(Z 0 → hadrons)

�(Z 0 → e+e−)
≈ Nc(

v2
e + a2

e

) ∑
u,d,s...

(
v2

i + a2
i

)
, (3.9)

where vi and ai are the electroweak vector and axial-vector couplings of the q̄q or e+e− pairs to
the Z 0.

Experimentally, one has [16]:

RZ = 20.77 ± 0.08 . (3.10)

♥ The inclusive heavy lepton τ semi-hadronic rate Rτ normalized to its semi-leptonic one, shown
in Fig. 3.5, is expected to be equal to the colour number 3 from the parton model:

Rτ ≡ �(τ → ντ + hadrons)

�(τ → ντ + l + ν̄l )
≈ Nc . (3.11)

Experimentally, one has:

Rτ = 1 − ∑
e,µ Br (τ → ντ + l ν̄l )

Br (τ → ντ + l ν̄l )
= 3.647 ± 0.05 (3.12)

γ, Z 0

e+

e–

γ, Z 0

e+ q

qe–

~

Fig. 3.2. e + e− → hadrons process.
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Fig. 3.3. e + e− → hadrons data. The continuous lines are QCD fit.

Z 0 Z 0

q

q

~

Fig. 3.4. Z 0 → hadrons decay.

τ τ

ντ ντ

W −
W −

q

q'

~

Fig. 3.5. τ → ντ + hadrons decay.
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γ γ

γγ

π0 π0

Fig. 3.6. π0 → γ γ decay from the quark triangle.

where Br is the leptonic branching ratio. We shall see later on that the QCD radiative corrections
explain the 20% discrepancy between the parton model prediction and the data.

♠ The decay rate of the neutral pion into two photons which occurs through the quark triangle loop
(Abelian anomaly) shown in Fig. 3.6 is controlled by the square of the colour [71]:

�(π0 → γ γ ) = [
Nc

(
Q2

u − Q2
d

)]2
(

α2

64π 3

)
m3

π

f 2
π

= 7.7 eV , (3.13)

where fπ = 92.4 MeV is the pion decay constant controlling the decay π− → µν. It was shown
a long time before QCD that this prediction is not affected by quantum corrections [72]. This
prediction is in remarkable agreement with the data of (7.7 ± 0.6) eV [16].

3.6 The SU (3)c colour group

The previous properties:

� Quarks with three colours
� Quarks and anti-quarks are different objects
� Exact colour symmetry (hadrons have no colour multiplicity)

are sufficient to select the SU (3)c symmetric colour group for desribing the theory of
strong interactions, instead of the other Lie group candidates SO(3) and its isomorphic
SU (2) � Sp(1), which have real representations, and then cannot distinguish the particle
from its anti-particle. In this SU (3)c unitary group, quarks (anti-quarks) then belong to the
fundamental presentation 3 (resp 3∗), whereas gluons are in the adjoint 8. The previous Gell-
Mann eightfoldway [7] quark model classification, can now be viewed in a modern way,
where hadrons should be colour-singlet states. The SU (3)c decomposition into products of
3 and 3∗ representations gives for mesons:

q̄q : 3∗ ⊗ 3 = 1 ⊕ 8 (3.14)

and for baryons:

qqq : 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 , (3.15)

which guarantee the colour-singlet configurations of hadrons required by the confinement
postulate. and which are satisfied by the experimentally observed hadrons. On the contrary,
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some exotic combinations like diquarks:

qq : 3 ⊗ 3 = 3∗ ⊕ 6 , (3.16)

and four-quark states:

qqqq : 3 ⊗ 3 ⊗ 3 ⊗ 3 = 3 ⊕ 3 ⊕ 3 ⊕ 6∗ ⊕ 6∗ ⊕ 15 ⊕ 15 ⊕ 15 ⊕ 15′ (3.17)

do not satisfy the colour-singlet confinement constraints, and can induce coloured states in
the spectrum [73].

3.7 Asymptotic freedom

Gell-Mann postulated that, at short distances, the commutation relations of the local
hadronic currents imply that the quark fields entering them are free particles (asymptotic
freedom). These assumptions led to the success of the different current algebra supercon-
vergent sum rules and to the Bjorken scaling. However, such assumptions a priori contradict
the previous confinement postulate. As we shall see, QCD can satisfy simultaneously the
two conditions thanks to the property of the QCD gauge coupling g, which is the only
parameter that controls the QCD Lagrangian in the massless quarks limit (as we shall see
in the next chapter). ’t Hooft observed [74] that the slope of the first coefficient (Nc and nf

are respectively the colour and flavour numbers):

β1 = −1

2

(
11

Nc

3
− 2

3
nf

)
(3.18)

of the β-function [75,76] is negative at the origin of the coupling constant for a SU (3)c

Yang–Mills gauge theory, while, independently, Gross, Wilczek and Politzer [77] discovered
that for non-Abelian gauge theories, the origin of the coupling constant is an UV stable
fixed point in the deep Euclidian region. This asymptotic freedom6 property thus states,
after solving the renormalization group equation (RGE) (resummation of all leading logs
corrections), as we shall see in Section 11.7, that at large momenta Q, the running QCD
coupling falls off as:

αs ≡ g2

4π
� π

−β1 ln Q/�
,

where � is the characteristic QCD scale, which indicates that below its value, the perturba-
tive approximation breaks down. The situation in QCD is the opposite of the familiar QED
described by the U (1) Abelian theory, in which the effective charge α increases slowly
for increasing Q2 because the corresponding β function is positive (β1 = 2/3).7 At the
electron mass, α has the value 1/137, while it is 1/129 at an Z0 mass of a distance of
1/500 fm (It becomes infinite (so-called Landau pole [79]) at an energy much higher than

6 For historical reviews on the discovery of asymptotic freedom, see the talks given by David Gross and Gerard ’t Hooft at the
QCD 98 Montpellier Euroconference [78].

7 More discussions on QED will be given later.
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the mass of the universe). An intuitive understanding of this decrease of the QED effec-
tive coupling at long distance is provided by the dielectric screening due to the cloud of
virtual e+e− pairs created in the vacuum, through quantum effects, surrounding the elec-
tric charge. For QCD, and more generally, for non-Abelian theories, one then expects an
anti-screening effect generated by the gauge self-interactions of gluons, which spread out
the QCD colour charge, and makes the Yang–Mills vacuum like a paramagnetic substance
implying an anti-screening charge through relativistic invariance. This anti-screening or the
asymptotic freedom property are only true for non-Abelian theories [80]. This remarkable
asymptotic freedom property of QCD then permits a simple treatment of the different QCD
hard processes, which can be approximated by perturbative series in the strong coupling αs

at large momenta. This feature also confirms the success of the parton model in describing
(to lowest order of the αs-series expansion in the perturbative QCD language), the examples
of QCD processes Re+e− , RZ , Rτ and DIS mentioned previously, but also implies that for
Q2 → ∞, quarks become free particles.

3.8 Quantum mechanics and non-relativistic aspects of QCD

We have learned from previous sections that quarks are free at very short distances but tightly
bounded at long distances. For an heavy Q̄ Q bound state, the QCD potential is Coulomic
at short distances and increases linearly at long distances. This behaviour is typical for
quantum mechanical systems bound together by a potential which is not singular at short
distance and increases infinitely with distance at large distances. This is, for instance, the
case of the harmonic oscillator where its potential reads:

V (r ) = 1

2
mω2r2 (3.19)

The corresponding Green’s function of the system is:

G(�x, �x ′, t) =
(

mω

2πh̄ sin ωt

)3/2

exp

{
imω

2h̄ sin ωt
((�x2 + �x ′2) cos ωt − 2�x �x ′)

}
, (3.20)

which, for small t (ωt � 1), is well approximated by the function for the free particle:

G0(�x, �x ′, t) =
(

m

2πh̄

)3/2

exp

{
imω

2h̄t

(�x − �x ′)2
}

. (3.21)

Therefore, it is not so surprising that non-relativistic potential models of quarks [12,
81–94] were able to describe some characteristic features of the systems, and successfully
explain the complex hadron spectra made with heavy quarks. However, a purely quantum
mechanical description of the theory is not fully satisfactory, as it does not incorporate
Lorentz invariance. We shall come back to this subject in a future section.
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Field theory ingredients

In this chapter, we shall collect some of the field theory ingredients which will often
be encountered in this book. More detailed discussions and derivations can be found
in classic textbooks on quantum field theories [53] and some of the QCD books in
[42–46].

4.1 Wick’s theorem

Let us consider free boson or fermion fields ϕi (x) of a particle i , which one can express in
terms of the creation a† and annihilation a operators, and the corresponding ones b† and b
for the anti-particles, where a and b may (or may not) coincide:

ϕi (x) =
∑

n

c(n)
i (x)an +

∑
c̄(n)

i (x)b†
n . (4.1)

For a fermion field (u and v are Dirac spinors):

ψ(x) =
∫

dk̄[a(k)u(k) e−ikx + b†(k)v(k) eikx ] , (4.2)

and for a boson:

φ(x) =
∫

dk̄[a(k) e−ikx + b†(k) eikx ] . (4.3)

where the phase space measure is:

dk̄ ≡ d3k

(2π )32Ek
= d4k

(2π )4
2πδ(k2 − m2)θ (k0) . (4.4)

The Wick or normal ordered product [95]:

: ϕ1(x1)ϕ2(x2) : (4.5)

is obtained by placing all creator operators to the left of all annihilation operators, and
by taking care on the (anti)-commuting relations if the fields are (fermions) bosons.

40
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Therefore:

: ϕ1(x1)ϕ2(x2) : ≡
∑
n,n′

[
c(n)

1 (x1)c(n′)
2 (x2)anan′ + c̄(n)

1 (x1)c̄(n′)
2 (x2)b†

nb†
n′

+ c̄(n)
1 (x1)c(n′)

2 (x2)b†
nan′ + (−1)δc(n)

1 (x1)c̄(n′)
2 (x2)b†

n′an
]
, (4.6)

where δ = 1(0) for fermions (bosons). This results can be easily generalized to more factors
of fields.

4.2 Time-ordered product

A time-ordered product is obtained by rearranging the fields or operators in the natural
sequence of time. At a time t ′ > t , we first create a particle at a time t with ϕ† and annihilate
later on at a time t ′ with ϕ. This can be encoded by the amplitude:

θ (t ′ − t)ϕ(t ′, �x ′)ϕ†(t, �x) . (4.7)

If, for t ′ < t , an antiparticle is produced by ϕ(x ′), then it is annihilated by ϕ†(x) at the
time t , with the amplitude:

θ (t − t ′)ϕ†(t, �x)ϕ(t ′, �x ′) . (4.8)

The sum of the two equations gives the time-ordered product:

T ϕ(x ′)ϕ†(x) = θ (t ′ − t)ϕ(x ′)ϕ†(x) + (−1)δθ (t − t ′)ϕ†(x)ϕ(x ′) , (4.9)

where δ = 1(0) for fermion (boson), where one should also note that fermion-boson oper-
ators are taken to commute. The T -product is arranged from right to left with increasing
times, and then the appropriate name. One can also express it in terms of the Wick product:

T ϕ(x ′)ϕ†(x) =: ϕ(x ′)ϕ†(x) : +〈0|T ϕ(x ′)ϕ†(x)|0〉 . (4.10)

The above results can be generalized to the T products of n operators/fields:

T ϕ1(x1) · · ·ϕn(xn) = (−1)δϕi1 (xi1 ) · · · ϕin (xin ) , (4.11)

where in the RHS the times are ordered (ti1 > ti2 > · · · > tin ) and δ is the number of trans-
position of indices of the fermion operators/fields necessary for obtaining the required form
in the RHS. It can be written as:

T ϕ1(x1) · · · ϕn(xn) = T ϕ1(x1) · · · ϕn(xn−1)ϕn(xn)

= : ϕ1(x1) · · · ϕn(xn−1) : ϕn(xn)

+ 〈0|T ϕ(x1)ϕ(x2)|0〉 : ϕ1(x3) · · · ϕn(xn−1) : ϕn(xn) + perm.

+ 〈0|T ϕ1(x1)ϕ2(x2)|0〉〈0|T ϕ3(x3)ϕ4(x4)|0〉 : ϕ1(x5) · · · ϕn(xn−1) : ϕn(xn) + perm.

+ · · · , (4.12)
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where · · · stands for:

〈0|T ϕ1(x1)ϕ2(x2)|0〉 · · · 〈0|T ϕn−1(xn−1)ϕn(xn)|0〉 + permutations , (4.13)

if n is even, and for:

〈0|T ϕ1(x1)ϕ2(x2)|0〉 · · · 〈0|T ϕn−2(xn−2)ϕn−3(xn−3)|0〉ϕn(xn) + permutations , (4.14)

if n is odd. The vacuum expectation values or contractions give rise to the field propagators.

4.3 The S-matrix

4.3.1 Generalities

In field theory, one measures S-matrix elements, which is the probability amplitudes for
transition between states which contain definite numbers of particles for t ranging from
−∞ to +∞. They are usually named ‘in’ and ‘out’ states |α, in〉 and |β, out〉, where α, β

characterize particles momenta and quantum numbers. The S-matrix can be obtained from
the interaction Lagrangian:

S = T exp

[
i
∫

d4x LI

]
(4.15)

which one can expand as:

S = 1 + i
∫

d4x LI(x) + · · · i n

n!

∫
d4x1 · · · d4xn T LI(x1) · · ·LI(xn) . (4.16)

The S-matrix is relativistically invariant:

S = U(a, 	)SU−1(a, 	) , (4.17)

where U(a, 	) is a transformation under the Poincarè group. It is also unitary:

S†S = 1 . (4.18)

It can be related to the transition amplitude:

〈β, out|T |α, in〉 (4.19)

which gives the probability that the incoming state |α〉 will evolve in time to the outcoming
state |β〉 as:

S = 1 + iT (4.20)

4.3.2 Applications: cross-section and decay rate

We can illustrate the discussion by considering the scattering process:

(p1, J1) + (p2, J2) → (k1, j1) + · · · (kn, jn) . (4.21)
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of two initial particles with momenta p1 and p2 and spin J1 and J2, and n final states with
momenta pn and spin jn . The unpolarized cross-section of this process can be written as:

σ =
∑ W

F D
, (4.22)

where
∑

represents an averaging over initial particle polarizations; W is the transition
probability per unit of time and unit of volume, F is the incident particle flux and D the
target-particle density. In the laboratory frame of incident particle 1 on a target particle 2,
one has the kinematic variables:

λ
(
s, m2

1, m2
2

) = [s − (m1 + m2)2][s − (m1 − m2)2] ,

F = 2E1|v1 − v2| = λ1/2(s)/m2 ,

D = 2E2 , (4.23)

s = (p1 + p2)2 , (4.24)

where vi (i = 1, 2) is the velocity of the particle i (v2 = 0). The transition probability per
unit of time and unit of volume is:

W = 1

(2π )4δ4(0)

∫ n∏
j=1

d3k j

(2π )32E j
|〈 f |(S − 1)|i〉|2 , (4.25)

where the sum over the helicities of different particles is understood. We have used the
normalization of state |p, λ〉 having helicity λ and momentum p:

〈p′, λ′|p, λ〉 = (2π )32Eδ3(p′ − p)δλ′λ . (4.26)

Using trivial substitutions, one can deduce the well-known cross-section:

σ = 1

2λ1/2
(
s, m2

1, m2
2

) N
(2J1 + 1)(2J2 + 1)

×
∫

(2π )4δ4(Pf − Pi )|M(i → f )|2
n∏

j=1

d3k j

(2π )32E j
, (4.27)

where we have introduced the reduced amplitude transition M:

i〈 f |T |i〉 ≡ δ4(Pf − Pi )|M(i → f ) . (4.28)

Here:

Pf ≡
n∑
1

p f ; Pi = p1 + p2 , (4.29)

and the statistical factor is:

N =
∏

i

1

ni !
, (4.30)
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if one has ni identical particles in the final state. Analogously, the decay rate reads for a
particle of mass M at rest is:

�(i → f ) = N
2M

∫
(2π )4δ4(Pf − Pi )|M(i → f )|2

n∏
j=1

d3k j

(2π )32E j
, (4.31)

Repeated uses of the reduction formula will show that the transition matrix can be related
to the Green’s function of the relevant particles.

4.4 Reduction formula

Let’s consider the simplest case for the elastic scattering of two scalar particles. The S-matrix
of this process is:

〈k1k2|S|p1 p2〉 (4.32)

In terms of annihilation and creation operators, which satisfy the commutation relations:

[a(p), a†(p′)] = (2π )32Eδ3(p′ − p) , [a(p), a(p′)] = 0 , (4.33)

the scalar field reads:

φ(x) =
∫

d3k j

(2π )32E j
[a(p)e−i px + a†(p)eipx ] , (4.34)

which can be inverted:

a(p) = i
∫

d3x eipx
↔
∂ 0 φ(x) , (4.35)

where:

f
↔
∂0 g ≡ f (∂0g) − (∂0 f )g . (4.36)

Then, after some algebra:

〈k1k2 out|p1 p2 in〉 = 〈k1|aout (k2)|p1 p2 in〉
= i lim

x0→+∞

∫
d3x eik2x

↔
∂ 0 〈k1|φ(x)|p1 p2 in〉

= 〈k1|ain(k2)|p1 p2 in〉
+ i

∫
d4x ∂0[eik2x

↔
∂ 0 〈k1|φ(x)|p1 p2 in〉] . (4.37)

Using:

∂0( f ∂0g) = f ∂2
0 g

∂2
0 eik2x = (∇2 − m2)eik2x , (4.38)
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one can replace the last term of the previous equation by:

i
∫

d4x eik2x
(
∂2

x + m2
) 〈k1|φ(x)|p1 p2 in〉 . (4.39)

Using repeatedly the above manipulations, one obtains the Fourier transform of the
vacuum expectation value (VEV) of the I-product of four fields:

〈k1k2 out|p1 p2 in〉 = 〈k1k2 in|p1 p2 in〉
+ i4

∫
d4x1d4x2d4 y1d4 y2 ei[k1x1+k2x2−p1 y1−p2 y2]

× (
∂2

x1
+ m2

) (
∂2

x2
+ m2

) (
∂2

y1
+ m2

) (
∂2

y2
+ m2

) 〈k1|φ(x)|p1 p2 in〉
× 〈0|T [φ(x1)φ(x2)φ(y1)φ(y2)]|0〉 , (4.40)

where:

〈k1k2 out|p1 p2 in〉 − 〈k1k2 in|p1 p2 in〉 = 〈k1k2|(S − 1)|p1 p2〉
= (2π )4iδ(k1 + k2 − p1 − p2)〈k1k2|T |p1 p2〉 ,

(4.41)

and we have used the shorthand notation:

∂x ≡ ∂

∂xµ

. (4.42)

Similar manipulations can be extended to spinor fields.

4.5 Path integral in quantum mechanics

The path integral method, used long time ago by Feynman [96], has been revived by Fadeev
and Popov and De Witt [97] in its application to non-Abelian theory, and by ’t Hooft [98]
when he derives the Feynman rules for massive gauge theories, particularly for the Standard
Model of the Electroweak interactions. Detailed derivation of this method are described in
modern textbooks. We shall briefly outline the method here, but starting from some examples
in quantum mechanics.

4.5.1 Transition matrix of quantum mechanics in one dimension

The Hermitian operator ‘coordinates’ Qa and a conjuguate ‘momenta’ Pb, satisfy the canon-
ical commutation relations:

[Qa, Pa] = iδab , [Qa, Qb] = [Pa, Pb] = 0 (4.43)

to which correspond the eigenvectors |q〉 and |p〉 and the eigenvalues qa and pb. In the
Heisenberg picture, Q and P have a time dependence leading to:

|q; t〉 = exp(i Ht)|q〉 , |p; t〉 = exp(i Ht)|p〉 , (4.44)
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for the eigenstates, which satisfy the orthonormality and completeness conditions:

〈q ′; t |q; t〉 = δ(q ′ − q) , 〈p′; t |p; t〉 = δ(p′ − p) ,∫ ∏
a

dqa|q; t〉〈q; t | = 1 =
∫ ∏

a

dpa|p; t〉〈p; t | (4.45)

and:

〈q; t |p; t〉 =
∏

a

1√
2π

exp(iqa pa) . (4.46)

One should remember that, in the previous notation, the state |q; t〉 in the Heisenberg
picture coincides with the one of the Schrödinger picture |q(t)〉 at a given t . Now, we wish
to calculate the scalar product:

〈q ′; t ′|q; t〉 , (4.47)

which corresponds to the probability amplitude for measurements at time t ′ to give the state
|q ′; t ′〉, if we found that at the time t our system is in a definite state |q; t〉. This is an easy
task if the time t ′ and t are infinitely close to each other (t ≡ τ ; t ′ ≡ t + dτ and dτ → 0)
since from Eq. (4.44):

〈q ′; τ + dτ |q; τ 〉 = 〈q ′; τ | exp(−i Hdτ )|q; τ 〉 . (4.48)

Expanding |q; τ 〉 in terms of the P eigenstates |p; τ 〉 by using Eq. (4.46), one can write:

〈q ′; τ + dτ |q; τ 〉 =
∫ ∏

a

dpa〈q ′; τ | exp[−i H (Q(τ ), P(τ ))dτ ]|p; τ 〉〈p; τ |q; τ 〉

=
∫ ∏

a

dpa

2π
exp

[
−i H (q ′, p)dτ + i

∑
a

(q ′
a − qa)pa

]
, (4.49)

where each pa is integrated from −∞ to +∞. One can generalize this procedure by breaking
the interval t ′ − t into N + 1 sets of infinitesimal intervals, as shown in Fig. 4.1, and sum

q1
q0

t0 t1 tN+1 t

qN+1

q

Fig. 4.1. Subdivision of the time interval t ′ − t into N + 1 sets of infinitesimal intervals.
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over a complete set of states |q; τk〉 at each time τk . Then,

〈q ′; t ′|q; t〉 =
∫ [

N∏
k=1

∏
a

dqk,a

][
N∏

k=0

∏
a

dpk,a

2π

]

× exp

[
i

N+1∑
k=1

{
−H (qk, pk−1)dτ +

∑
a

(qk,a − qk−1,a)pk−1,a

} ]
, (4.50)

with q0 ≡ q and qN+1 ≡ q ′. In the limit τ → 0, and then N → ∞, one can assume that qa

and pa are (to leading order in the τ -expansion) independent of τ , such that the argument
of the exponential becomes an integral over τ . Making the formal substitutions:

(qa,k − qa,k−1) → q̇adτ ;
N+1∑
k=1

→
∫ t ′

t
;

∫ [
N∏

k=1

∏
a

dqk,a

]
→

∫ ∏
a

dqa(τ ) ,

(4.51)

one, then, obtains the path integral (≡ integration over all paths taken by q(τ ) from t to t ′):

〈q ′; t ′|q; t〉 =
∫

qa ≡ qa (t)
q ′

a ≡ qa (t ′)

∏
τ,a

dqa(τ )
∏
τ,b

dpb(τ )

2π

× exp

[
i
∫ t ′

t
dτ

{
−H (q(τ ), p(τ )) +

∑
a

q̇a(τ )pa(τ )

} ]
. (4.52)

One can perform the p integration. In order to read off the oscillating function in the
exponential, it is convenient to work in the Euclidian space by formally treating idτ to be
real. Then, the integral has a definite norm. For a Hamiltonian of the form:

H (P, Q) = P2

2m
+ V (Q) , (4.53)

where V (Q) is the potential, we have to perform a Gaussian integral:
∫ +∞

−∞

dx

2π
exp[−ax2 + bx] = 1√

4πa
exp[b2/4a] . (4.54)

Then, one can deduce from Eq. (4.52):

〈q ′; t ′|q; t〉 =
∫

qa ≡ qa (t)
q ′

a ≡ qa (t ′)

∏
τ,a

dqa(τ ) × exp

[
i
∫ t ′

t
L(τ )dτ

]
, (4.55)

where:

L ≡ m

2
q̇2 − V (q) , (4.56)

is the Lagrangian.
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4.5.2 The Green’s functions

One can extend the previous discussion of matrix transition to the analysis of a Green’s
function which is the time-ordered products of different (local) operators. This can be
illustrated by the example of a quantum mechanical two-point function, which is the matrix
element of the time-ordered product between ground states:

G(t, t ′) = 〈0|T Q(t1)Q(t2)|0〉 , (t1 > t2) , (4.57)

where |0〉 denotes the ground state. By inserting complete sets of states, it can be written
as:

G(t, t ′) =
∫

dqdq ′〈0|q ′; t ′〉〈q ′; t ′|T Q(t1)Q(t2)|q; t〉〈q; t |0〉 , (t1 > t2) . (4.58)

Introducing the wave function of the ground state:

〈0|q; t〉 = φ0(q) exp[−i E0t] ≡ φ0(q, t) , (4.59)

and using an analogue of the derivation of Eq. (4.52) for the matrix element:

〈q ′; t ′|T Q(t1)Q(t2)|q; t〉 =
∫

〈q ′| exp[−i H (t ′ − t1)]|q1〉〈q1|Q(t1) exp[−i H (t1 − t2)]|q2〉
×〈q2|Q(t2) exp[−i H (t2 − t)]|q; t〉dq1dq2 , (4.60)

one obtains in the Schrödinger picture:

G(t1, t2) =
∫

qa ≡ qa (t)
q ′

a ≡ q ′
a (t ′)

∏
τ,a

dqa(τ )
∏
τ,b

dpb(τ )

2π
φ0(q ′, t ′)φ∗

0 (q, t)q1(t1)q2(t2)

× exp

[
i
∫ t ′

t
dτ

{
−H (q(τ ), p(τ )) +

∑
a

q̇a(τ )pa(τ )

} ]
. (4.61)

Now, we can remove the wave functions by introducing a complete set of states. Then:

〈q ′; t ′|Q′; T ′〉 = 〈q ′| exp[−i H (t ′ − T ′)]|Q′〉 =
∑

n

〈q ′|n〉〈n| exp [−i H (t ′ − T ′)]|Q′〉

=
∑

n

φ∗
n (q ′)φn(Q′) exp[−i En(t ′ − T ′)] , (4.62)

where En and φn are the energy and wave functions of the state |n〉. The contribution of the
ground states can be isolated by taking the limit t ′ → i∞ and using the fact that En > E0

for n �= 0. In this way, one gets:

lim
t ′→−i∞

〈q ′; t ′|Q′; T ′〉 = φ∗
0 (q ′)φ0(Q′) exp[−E0|t ′|] exp[i E0T ′] . (4.63)

Similarly:

lim
t→+i∞

〈Q; T |q; t〉 = φ0(q)φ∗
0 (Q) exp[−E0|t |] exp[ −i E0T ] , (4.64)
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from which one can deduce:

N ≡ lim
t ′ → −i∞
t → +i∞

〈q ′; t ′|q; t〉 = φ∗
0 (q ′)φ0(q) exp[−E0(|t | + |t ′|)] . (4.65)

Therefore, one can derive after some straightforward algebra:

lim
t ′ → −i∞
t → +i∞

〈q ′; t ′|T Q(t1)Q(t2)|q; t〉 =
∫

d Q d Q′〈q ′; t ′|Q′; T ′〉

×〈Q′; T ′|T Q(t1)Q(t2)|Q; T 〉〈Q; T |q; t〉
= φ∗

0 (q ′)φ0(q) exp[−E0(|t | + |t ′|)]G(t1, t2) . (4.66)

Combining Eqs. (4.65) and (4.66), one can deduce the result:

G(t1, t2) = 1

N
∫

qa ≡ qa (t)
q ′

a ≡ q ′
a (t ′)

∏
τ,a

dqa(τ )
∏
τ,b

dpb(τ )

2π
q1(t1)q2(t2)

× exp

[
i
∫ t ′

t
dτ

{
−H (q(τ ), p(τ )) +

∑
a

q̇a(τ )pa(τ )

} ]
. (4.67)

This result for the two-point function can be generalized to n-point Green’s function.
This Green’s function can be generated as:

G(n)(τ1, τ2, . . . τn) = (−i)n δn Z [J ]

δ J (τ1) · · · δ J (τn)

∣∣∣∣∣
J=0

. (4.68)

by the generating functional:

Z [J ] = lim
t ′ → −i∞
t → +i∞

1

N
∫

Dq exp

{
i
∫ t ′

t
dτ

[
−m

2
q̇2 − V (q) + J (τ )q(τ )

]}
, (4.69)

which corresponds to the transition amplitude from a ground state at τ to the ground state
at τ ′ in the presence of an external source J (τ ), with the normalization Z [0] = 1. We have
introduced the symbolic notation D for the integration measure:

Dq ≡
∏
τ,a

dqa(τ ) . (4.70)

In order to elucidate the meaning of the previous expression, we recall that, by definition,
a functional is an application of the space of smooth functions f (x) into complex numbers:

J (x) 
−→ Z [J ] , (4.71)

while a functional derivative is defined as:

δZ [J ]

δ J (y)
= lim

ε→0

Z [J + εδy] − Z [J ]

ε
, (4.72)
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where δy = δ(x − y) is the δ-function at y. In the case of the functional integral:

Z [J ] =
∫

dx K (x)J (x) , (4.73)

the functional derivative is:

δZ [J ]

δ J (y)
= K (y) , (4.74)

which, after performing a Taylor expansion of the kernel K (x), leads to:

Kn(x1, . . . xn) = δn Z [J ]

δ J (x1) · · · δ J (xn)
. (4.75)

4.5.3 Euclidean Green’s function

The unphysical limits t ′ → −i∞, t → i∞ can be interpreted in terms of the Euclidean
Green’s functions:

S(n)(τ1, . . . , τn) = i nG(n)(−iτ1, . . . ,−iτn)

= δn ZE[J ]

δ J (τ1) · · · δ J (τn)

∣∣∣∣∣
J=0

. (4.76)

where ZE[J ] can be deduced from Z [J ] by the formal change τ” → iτ . In the Euclidean
region, the path integral is well-defined, as it converges because the potential is bounded
from below ((m/2)q̇2 + V (q) > 0), such that the exponential in Eq. (4.69) will give a
damping factor.

4.6 Path integral in quantum field theory

4.6.1 Scalar field quantization

For simplicity let’s consider a classical field φ(x) and the corresponding Lagrangian density
L(φ, ∂µφ) to which corresponds the action:

S =
∫

d4x L(φ, ∂µφ) . (4.77)

The field φ satisfies the Euler–Lagrange equation of motion:

∂µ

δL
δ(∂µφ)

− δL
δφ

= 0 . (4.78)

We denote by π (x) its conjuguate momentum:

π (x) = δL
δ (∂0φ)

, (4.79)
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which obeys the equal-time canonical commutation relations:

[π (�x, t), φ(�x ′, t)] = −iδ3(�x − �x ′) , (4.80)

while the Hamiltonian density is defined as:

H =
∫

d4x[π (x)∂0φ(x) − L(x)] (4.81)

Therefore, in order to use the previous results of quantum mechanics, one can consider a
field theory as a quantum mechanical system with infinite degrees of freedom. Therefore,
one can make the substitutions:

DqDp → Dφ(x)Dπ (x) ,

L(qi , q̇i ) →
∫

d3x L(φ, ∂µφ) ;

H (qi , pi ) →
∫

d3x H(φ, π ) . (4.82)

Using the fact that the ground state in field theory is the vacuum state, the generating
functional Z [J ] is the vacuum-to-vacuum transition amplitude in the presence of an external
source J (x), and read in the Euclidian space:1

Z [J ] =
∫

Dφ exp

{∫
d4x[L(φ(x)) + J (x)φ(x)]

}
, (4.83)

up to an inessential normalization factor; Here, x is the Euclidian coordinate (τ → it). In
field theory, we are interested in the connected Green’s function, which is:

S(n)(x1, . . . xn) =
{

1

Z [J ]

δn Z [J ]

δ J (x1) · · · δ J (xn)

} ∣∣∣∣∣
J=0

, (4.84)

where an extra factor of 1/Z [J ] has been inserted in order to remove the disconnected part
of the Green’s function.

4.6.2 Application to λφ4 theory

We can illustrate this result by working with the Lagrangian of λφ4 theory:

L = Lfree + LI (4.85)

with:

Lfree = 1

2
(∂µφ)(∂µφ) − 1

2
µ2φ ,

LI = − λ

4!
φ4 . (4.86)

1 We shall work in the Euclidian space in this subsection, where, as mentioned previously, the integral has a definite norm, and is
well defined. This space is useful for a path integral formulation of non-perturbative QCD. However, the derivation of Feynman
rule can still be done in the Minkowski space.
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In Euclidian space, the generating functional reads:

Z [J ] =
∫

Dφ exp

{
−

∫
d4x

[
1

2

(
∂φ

∂τ

)2

+ 1

2
(∇φ)2 + 1

2
µ2φ2 + λ

4!
φ4 + Jφ

]}
,

(4.87)

which one can rewrite as:

Z [J ] =
[

exp
∫

d4x LI

(
δ

δ J

) ]
Z0[J ] (4.88)

The free-field generating functional

Z0[J ] =
∫

Dφ exp

[ ∫
d4x (Lfree + Jφ)

]
. (4.89)

can be written in the form:

Z0[J ] =
∫

Dφ exp

{
−1

2

∫
d4xd4 y φ(x)K(x, y)φ(y) +

∫
d4z J (z)φ(z)

}
, (4.90)

where:

K(x, y) =
(

− ∂2

∂τ 2
− ∇2 + µ2

)
(4.91)

and the identity:

−
(

∂φ

∂τ

)2

− (∇φ)2 = φ

(
∂2

∂τ 2
− ∇2

)
φ (4.92)

has been used because their divergence is a total four-divergence. Integrating the Gaussian
integral:

lim
N→∞

∫
Dφ1 · · ·DφN exp

[
− 1

2

∑
i, j

φi Ki jφ j +
∑

k

Jkφk

]

∼ 1√
detK

exp

[
1

2

∑
i, j

Ji (K−1)i j J j

]
, (4.93)

one obtains:

Z0[J ] = exp

[
1

2

∫
d4xd4 y J (x)�(x, y)J (y)

]
, (4.94)

where �(x, y) is the inverse of K(x, y):∫
d4 y K(x, y)�(y, z) = δ4(x − z) , (4.95)
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which leads to the desired expression of the scalar propagator:

�(x, y) =
∫

d4k

(2π )4

exp[ik(x − y)]

k2 + µ2
. (4.96)

Perturbative expansion in powers of the interaction Lagrangian LI generates the Feynman
rules for different vertices. However, in order to keep only the connected Green’s function,
one should expand ln Z as defined in Eq. (4.84).

4.6.3 Fermion field quantization

The quantization of the fermion field can also be done by expressing the transition amplitude
as a sum over possible lines connecting the initial and final states. For a classical fermion
(anti-fermion) fields ψ, (ψ̄) and sources η, η̄, the generating functional reads:

Z [η, η̄] =
∫

Dψ(x)Dψ̄(x) exp

{
i
∫

d4x [L(ψψ̄) + ψ̄η + η̄ψ]

}
, (4.97)

where the functional integral must be taken over anti-commuting c number functions which
are elements of the Grassmann algebra:

θ (x), θ (x ′) = θ (x), θ̄ (x ′) = θ̄ (x), θ̄ (x ′) = 0 ,

[θ (x)]2 = 0 , (4.98)

where θ ≡ ψ or η. The fermion Lagrangian is:

L ≡ Lfree + LI , (4.99)

with:

Lfree(x) = ψ̄(x)(iγµ∂µ − m)ψ(x) ,

LI(x) = ψ̄(x)γµψ(x)Aµ(x) . (4.100)

Since the fermion fields always enter the Lagrangian quadratically, the previous functional
is a generalized Gaussian integral. Therefore, one can write:

Z [J ] =
∫

Dψ(x)Dψ̄(x) exp

{∫
d4x ψ̄ Aψ

}
= detA , (4.101)

where Z is the vacuum-to vacuum amplitude and the (connected) Feynman diagram gen-
erated by ln Z will be a set of single-closed fermion loops.

4.6.4 Gauge field quantization

Due to gauge invariance, gauge theories represent systems with constrained dynamic vari-
ables. Their quantization is more involved than the one of scalar field theory or of free
fermion discussed previously, and so we shall leave it for discussion in the next section.
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Lagrangian and gauge invariance

5.1 Introduction

After Einstein’s identification of the invariance group of space and time in 1905, symmetry
principles received an enthusiastic welcome in physics, with the hope that these princi-
ples could express the simplicity of nature in its deepest level. Since 1927 [99,100], it has
been recognized that Quantum ElectroDynamics (QED) has a local symmetry under the
transformations in which the electron field has a phase change that can vary point to point
in space–time, and the electromagnetic vector potential undergoes a corresponding trans-
formation. This kind of transformation is called a U (1) gauge symmetry due to the fact
that a simple phase change can be thought as a multiplication by a 1 × 1 unitary matrix.
Largely motivated by the challenge of giving a field-theoretical framework to the concept
of isospin invariance, Yang and Mills [101] in 1954 extended the idea of QED to the SU (2)
group of symmetry. However, it appears here that the symmetry would have to be approx-
imate because gauge invariance requires massless vector bosons like the photon, and it
seems obvious that strong interactions of pions were not mediated by massless but by the
massive ρ mesons. In 1961, there was the idea of dynamic breaking, i.e., the Hamiltonian
and commutation relations of a quantum theory could possess an exact symmetry and the
symmetry of the Hamiltonian might not turn to be a symmetry of the vacuum. This way of
breaking the symmetry would necessarily imply the existence of massless-spin zero par-
ticle, the Nambu–Goldstone boson [17] discussed previously. Later on, Higgs and others
[102] showed that if the broken symmetry is a local gauge symmetry, as in the case of
QED, the Nambu–Goldstone bosons could formally exist, but can be eliminated by a gauge
transformation, so that they are not physical particles. These Nambu–Goldstone bosons
appear as helicity states of massive vector particles. These ideas were the starting point
for building the SU (2)L × U (1) electroweak theory by Weinberg and Salam [61] as an im-
provement of the model proposed earlier by Glashow [61]. The spontaneous breaking of the
electroweak group into U (1) via a non-vanishing expectation value of the Higgs scalar field
gives masses to the W ± and Z0 but leaves the photon massless. At present time, one even
expects that nature has a richer symmetry (supersymmetry), which treats in the same manner
the fermions and the bosons. However, we do not have yet any direct evidence of a such
symmetry. In the following, we shall restrict ourselves to the discussion of the symmetry of
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QED and QCD described respectively by a U (1) Abelian and SU (3)c non-Abelian gauge
groups.

5.2 The notion of gauge invariance

In quantum mechanics, a multiplication of a state vector by a constant phase factor, eiα , does
not induce any observable consequences. Now if you take a wave function with two very
distant peaks, and multiply one by a phase factor, then you have to multiply the other by
the same phase. This is the local gauge invariance, i.e., independence under a space–time-
dependent phase factor exp (iα(x)), postulated by Weyl [100]. However, this requirement
does not even hold for free non-relativistic particles. Indeed, if ψ(�x, t) is the solution of the
Schrödinger equation:

− h̄2

2m
�∇2ψ(�x, t) = i h̄∂tψ(�x, t) , (5.1)

the quantity exp (iα(x)) ψ(�x, t) is not, in general, a solution of it. Then, gauge invariance
necessarily implies that a particle should interact with fields. If indeed, we consider the
Schrödinger equation in a magnetic field with a vector potential �A(�x, t), then the equation
becomes:

h̄2

2m

(
i �∇ − e

c
�A(�x, t)

)2
ψ(�x, t) = i h̄∂tψ(�x, t) . (5.2)

In this case, where the vector potential changes.1

�A(�x, t) → �A(�x, t) − c

e
�∇α(�x) , (5.3)

one can see that both ψ(�x, t) and exp (iα(x)) ψ(�x, t) are solutions of the Schrödinger
equation. From this example, we learn that a local gauge invariance of the wave function
necessary needs a coupling of the particle to a vector field. Such an invariance will be
satisfied by the gauge theory Lagrangian that we shall discuss below.

5.3 The QED Lagrangian as a prototype

The previous discussion can be illustrated in field theory by the simple Lagrangian of QED.
In so doing, one can consider the Lagrangian describing a free Dirac electron field having
a mass m:

Lfree = ψ̄(x)(i∂µγ µ − m)ψ(x) . (5.4)

Under a U (1) global phase transformation, one has:

ψ(x) → exp(−iθ1) ψ(x) , (5.5)

1 Fortunately, this gauge transformation does not influence the magnetic field.
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where θ is an arbitrary constant. Now, if one considers the case where θ depends
one the space–time coordinate, one can notice that the Lagrangian is no longer invari-
ant under the phase transformation as the derivative of the field has induced an extra-
term:

∂µψ(x) → exp(−iθ1) (∂µ − i∂µθ ) ψ(x) , (5.6)

which means that, for the theory to be consistent, the same phase convention should be taken
at all space–time points. However, this is not natural. Gauge symmetry requires that the U (1)
phase invariance should hold locally. This can be achieved, like for the case of quantum
mechanics above, by adding a new spin-1 contribution which can cancel the previous extra
term:

Aµ(x) → Aµ(x) − 1

e
∂µθ (x) , (5.7)

and by defining the covariant derivative:

Dµψ(x) ≡ (∂µ + ieAµ(x))ψ(x) , (5.8)

which transforms like the field itself:

∂µψ(x) → exp (iθ1) Dµψ(x) . (5.9)

Therefore, the Lagrangian:

L = ψ̄(x)(i Dµγ µ − m)ψ(x) = Lfree − eAµ(x)ψ̄(x)γ µψ(x) , (5.10)

is invariant under the local U (1) transformation. As in the case of quantum mechanics, the
gauge principle necessary needs a coupling of the electron field to the vector field, which is
given by the second term of the Lagrangian. A complete QED Lagrangian can be achieved
by adding the kinetic term of the electromagnetic field and a gauge term:

Lγ = −1

4
Fµν Fµν − 1

2αG
∂µ Aµ∂µ Aµ , (5.11)

which expresses that Aµ can propagate. Here, Fµν ≡ ∂µ Aν − ∂ν Aµ is the electromagnetic
field strength; αG is the gauge parameter which is 0(resp. 1) in the Landau(resp. Feynman)
gauge. On the other hand, a possible m2 Aµ Aµ mass term violates gauge invariance, which
then implies that the photon is massless. We have then shown that, with the alone gauge
principle, one can rederive the QED Lagrangian, which leads to a very impressive quantum
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field theory which applications have been tested to a very high degree of accuracy (see next
section).

5.4 The QCD Lagrangian

The case of QCD is very similar to the one of QED though more involved due to the
non-Abelian structure of its SU (3)c gauge group. The QCD Lagrangian density reads:

LQCD(x) = − 1

4
Gµν

a Ga
µν + i

n∑
j=1

ψ̄α
j γ

µ(Dµ)αβψ
β

j −
n∑

j=1

m j ψ̄
α
j ψ j,α

− 1

2αG
∂µ Aa

µ∂µ Aµ
a − ∂µϕ̄a Dµϕa , (5.12)

where Ga
µν ≡ ∂µ Aa

ν − ∂ν Aa
µ + g fabc Ab

µ Ac
ν (a ≡ 1, 2, . . . , 8) are the Yang–Mills field

strengths constructed from the gluon fields Aa
µ(x) [101]. ψ j is the field of the quark

flavour j while ϕa(x) are eight anti-commuting scalar fields in the 8 of SU (3). (Dµ)αβ ≡
δαβ∂µ − ig

∑
a

1
2λa

αβ Aa
µ are the covariant derivatives acting on the quark colour compo-

nent α, β ≡ red, blue and yellow; λa
αβ are the eight 3 × 3 colour matrices and fabc are real

structure constants which close the SU (3) Lie algebra:2

[Ta, Tb] = i fabc Tc , (5.13)

where (T a)αβ = 1
2λa

αβ in the fundamental colour 3 representation, while (Ta)bc = −i fabc

in the adjoint 8 representation of gluon basis. The last two terms in the Lagrangian are
respectively the gauge-fixing term necessary for a covariant quantization in the gluon sec-
tor [αG = 1(0) in the Feynman (Landau) gauge] and the Faddeev–Popov ghost term [97]
necessary to eliminate unphysical particles from the theory.

One can rewrite the above Lagrangian in a more explicit form:

LQCD = Lfree + Lqg
I + Lgg

I + LFPg
I , (5.14)

where:

Lfree = Lg
free + Lq

free + LFP
free , (5.15)

is the free-field Lagrangian containing the kinetic terms of the different fields, with:

Lg
free = −1

4

(
∂µ Aν

a − ∂ν Aµ
a

) (
∂µ Aν

a − ∂ν Aµ
a

) − 1

2αG
∂µ Aa

µ∂µ Aµ
a

Lq
free = i

n∑
j=1

ψ̄α
j γ

µ(∂µ)αβψ
β

j −
n∑

j=1

m j ψ̄
α
j ψ j,α

LF P
free = −∂µϕ̄a∂

µϕa . (5.16)

2 More general and useful properties of the λ matrices are given in Appendix B.
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The interaction Lagrangian of the gluon fields respectively with the quarks, gluons and
Faddeev–Popov ghosts reads:

Lqg
I = g Aµ

a

n∑
j=1

ψ̄α
j γ

µ

(
λa

2

)
αβ

ψ
β

j ,

Lgg
I = −g

2
f abc

(
∂µ Aν

a − ∂ν Aµ
a

)
Ab,µ Ac,ν − g2

4
f abc fade Aµ

b Aν
c Ad

µ Ae
ν ,

LF Pg
I = g fabc(∂µϕ̄a)ϕb Ac

µ . (5.17)

The new piece compared with the usual Abelian QED Lagrangian is the the appearance of
the gluon self-interaction LI

gg , which is a specific feature of the non-Abelian group SU (3)c.
Because of this new piece, the Faddeev–Popov ghosts fields are introduced (as mentioned
above) for a proper quantization of the theory, which can be done formally using path
integral techniques. This method is discussed in details in various textbooks and will be
briefly sketched in the next section.

5.5 Local invariance and BRST transformation

LQCD(x) is locally invariant under the BRST transformation [103]:

Aµ(x) → Aµ(x) + ωDµ ϕ ,

ψi (x) → exp(−igω �T · �ϕ) ψi ,

ϕ̄ → ϕ̄ + ω

αG
∂µ Aµ ,

φ → φ − 1

2
gω�ϕ × �ϕ , (5.18)

where ω(x) is an arbitrary parameter. In order to see the usefulness of the BRST transforma-
tions for generating the Slavnov–Taylor–Ward identities [104,20], let’s consider the gluon
propagator:

i Dab
µν(k) =

∫
d4x eikx 〈0|T Aa

µ(x)Ab
ν(0)|0〉 . (5.19)

We shall prove that order by order in perturbation theory, the non-transverse part of the
gluon propagator remains the same as for the free propagator:

kµkν i Dab
µν(k) = −iαGδab . (5.20)

In so doing, we start with the trivial identity:

〈0|∂µ Aa
µ(x)ϕ̄b(0)|0〉 = 0 . (5.21)

The BRST invariance implies:

〈0|∂µ Aa
µ(x)ϕ̄b(0)|0〉 = 〈0|∂µ

(
Aa

µ

)′
(x)(ϕ̄b)

′
(0)|0〉 , (5.22)
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where the new fields:

A′a
µ = Aa

µ + ωDµϕa ,

ϕ̄′a = ϕ̄a + ω

αG
∂µ Aa

µ , (5.23)

have been introduced. Then, one can deduce:
ω

αG
〈0|∂µ Aa

µ(x)∂ν Ab
ν(0)|0〉 = 0 . (5.24)

By taking its Fourier transform, one obtains the Ward identity written in Eq. (2.39). Using
the canonical commutation relation:[

�a
µ(x), Ab

ν(0)
]
δ(x0) = −igµνδ

abδ4(x) , (5.25)

where:

�a
µ(x) = −Ga

0µ(x) − 1

αG
g0µ∂ν Aa

ν (x) , (5.26)

we obtain: [
Aa

0(x), ∂ν Ab
ν(0)

]
δ(x0) = −iαGδ4(x) . (5.27)

Using Eq. (5.27) into the Ward identity in Eq. (2.39), one can deduce the result in
Eq. (5.20).
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Quantization using path integral

A quantization of a theory can be done either by considering the quark and gluon fields
as operators with canonical commutation relations or by introducing Feynman integrals
in functional spaces. The second procedure is very convenient for gauge theories, and
especially for the non-perturbative approaches. However, although this second method
preserves Lorentz invariance, it is not clear that the S-matrix calculated in this way is
unitary. On the contrary, Lorentz invariance is obscure from the canonical commutation
relations, while unitarity is obvious.

6.1 Path integral technique for QCD

The expression of the path integral can be obtained following the derivation discussed in
a previous chapter. However, the quantization of the gauge fields is more peculiar as the
source term Aa

µ Jµ
a is not gauge invariant and hence the generating functional itself. A gauge

invariant functional can be obtained (detailed derivations are given in many textbooks).
This can be achieved by first introducing an invariant measure (Faddeev–Popov ansatz).
One considers that the action is invariant under the gauge tranformation:

Aµ → Aθ
µ , (6.1)

where:

λ

2
Aθ

µ = U (θ )

[
λ

2
Aµ + 1

ig
U−1(θ )∂µU (θ )

]
U−1(θ ) , (6.2)

and:

U (θ ) = exp

[
−i

λ

2
θ (x)

]
. (6.3)

Then, one makes an expansion for small θ , which leads to:

(
Aθ

µ

)a = Aa
µ + f abcθb Aµ,c − 1

g
∂µθa . (6.4)
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The proper invariant measure becomes:

DA → DA �G[A]
∏
a,x

δ
[
Gµ Aa

µ(x) − Ba(x)
]
. (6.5)

Gµ has been introduced as:

Gµ Aa
µ = Ba , (6.6)

as a generalization of the (Lorentz) gauge fixing condition ∂µ Aµ = 0; Ba is an arbitrary
space–time function, independent of the gauge field; �G can be obtained from the volume
normalization condition:

1 = �G[A]
∫

Dθa
∏
a,x

δ
[
Gµ Aθa

µ (x) − Ba(x)
]
,

= �G[A]

det MG
, (6.7)

where:1

[MG(x, y)]ab = δ
[
Gµ

(
Aθ

µ

)a
(x)

]
δθb(y)

. (6.8)

By integrating over Ba(x) by the suitable choice of weight:

exp

[
− i

2αG

∫
d4x[B(x)]2

]
, (6.9)

where αG is the gauge-fixing term, the generating functional reads:

Z [J ] =
∫

DA det MG

∏
a,x

δ
[
Gµ Aa

µ(x) − Ba(x)
]

× exp

{
i
∫

d4x

[
Lkin − 1

2αG

(
Gµ Aa

µ

)2 + Aa
µ Jµ

a

]}
, (6.10)

where:

Lkin = −1

4
GµνGµν , (6.11)

is the gluon kinetic term; the last term in the exponent is the external source term. In a
covariant gauge, the matrix MG reads:

[MG(x, y)]ab =
[
δab

(
∂

∂xµ

)2

− g fabc∂
µ Ac

µ

]
δ4(x − y) , (6.12)

which depends on the gauge field Aa
µ such that a simple perturbative expansion of the

previous generating functional is not allowed. In this case, one needs to exponentiate det MG

1 One should note that in the case of axial (n.A0 = 0, n ≡ a space-like constant vector) and in a temporal gauge (A0 = 0), det MG

is a constant like in the case of an Abelian theory, where the canonical quantization can be easily done. This is not the case of
the covariant gauge as we shall see later on.
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and consider it as a part of the effective Lagrangian. This can be done by introducing the
Faddeev–Popov fictious ghost anti-commuting fields ϕ and ϕ̄:

det MG =
∫

DϕDϕ̄ exp

[
−i

∫
d4xd4 y ϕ̄a(x) (MG(x, y))ab ϕb(x)

]
. (6.13)

Therefore, the complete QCD generating functional is:

Z [ψ, A, ϕ] =
∫

DADψDψ̄DϕDϕ̄ exp

{
i
∫

d4x[LQCD + Lsource]

}
, (6.14)

where:

Lsource = Aµ Jµ + χ̄ϕ + ϕ̄χ + ψ̄η + η̄ψ , (6.15)

with χ, χ̄ and η, η̄ are respectively source functions for the ghost and fermion fields. The
generating functional can now be written in the familiar form as in the case of scalar fields
in Eq. (4.85), as the Lagrangian can be decomposed into:

LQCD = Lfree + LI , (6.16)

where, as one can see in Eq. (5.15), that Lfree has three parts. Therefore, the generating
functional reads:

Z [ψ, A, ϕ] = exp

{
i
∫

d4xLI

(
δ

iδ J a
µ

,
δ

iδη
,

δ

iδη̄
,

δ

iδχ
,

δ

iδχ̄

)}
Z0[J, χ, χ̄, η, η̄] ,

(6.17)

where Z0 is the generating function for free fields:

Z0 ≡ Z g
0 [J ]ZFP

0 [χ, χ̄ ]Zq
0 [η, η̄] , (6.18)

with:

Z g
0 [J ] =

∫
DA exp

{
i
∫

d4x
(Lg

free + AJ
)}

,

Zq
0 [η, η̄] =

∫
DψDψ̄ exp

{
i
∫

d4x
(Lq

free + ψ̄η + η̄ψ
)}

,

ZFP
0 [χ, χ̄ ] =

∫
DϕDϕ̄ exp

{
i
∫

d4x
(LFP

free + χ̄ϕ + ϕ̄χ
)}

. (6.19)

6.2 Feynman rules from the path integral

6.2.1 Free-field propagators

The propagator for a free field φ is defined as:

D(x, y) ≡ 〈0|T φ(x)φ(0)|0〉 = (−i)2 δ2 ln Z0

δ J (x)J (y)

∣∣∣∣∣
J=0

(6.20)
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Following closely the derivation of the scalar propagator in the case of scalar λφ4 theory
discussed in previous chapter, and by using the generalized Gaussian integral, one can
rewrite:

Z g
0 [J ] = exp

{
i
∫

d4xd4 y J aµ(x)Dab
µν(x − y)J bν(y)

}
,

Zq
0 [η, η̄] = exp

{
i
∫

d4xd4 y η̄(x)S(x − y)η(y)

}
,

ZFP
0 [χ, χ̄ ] = exp

{
i
∫

d4xd4 y χ̄ (x)Dab(x − y)χ (y)

}
, (6.21)

where Dab
µν, S, Dab are respectively the gluon, fermion and Faddeev–Popov ghost propa-

gators, which obey respectively the conditions:∫
d4 y K ac

µν(x − y)Dcb
νλ(y − z) = gµλδ

abδ4(x − z) ,∫
d4 y K ac(x − y)Dcb(y − z) = δabδ4(x − z) ,∫

d4 y 
(x − y)S(y − z) = δ4(x − z) , (6.22)

where:

K ab
µν = δab

[
−gµν

(
∂

∂xµ

)2

+
(

1 − 1

αG

)
∂µ∂ν

]
,

K ab = δab

(
∂

∂xµ

)2

,


 = −iγ µ∂µ + m . (6.23)

Solving these equations give the Feynman rules (visualized in Appendix E) in the momentum
space after Fourier transform:

Dab
µν(x) = (−i)δab

∫
d4k

(2π )4

e−ikx

k2 + iε′

(
gµν − (1 − αG)

kµkν

k2

)
,

Dab(x) = (−i)δab
∫

d4k

(2π )4

e−ikx

k2 + iε′ ,

S(x) = (i)
∫

d4k

(2π )4

e−ikx

k̂ − m + iε′ . (6.24)

6.2.2 Vertices

Perturbative series can be generated by expanding the exponential in Eq. (6.17):

Z [J, . . .] =
{

1 + i
∫

d4x LI

(
δ

iδ J a
µ

, . . .

)
+ · · ·

}
Z0[J, . . .] . (6.25)
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Let, for instance, the three-gluon vertex at order g:

�
a1a2a3
3µ1µ2µ3

(x1, x2, x3) = (−i)2 δ3

δ J1δ J2δ J3

∫
d4x L3g

I

(
δ

iδ J aµ

)
Z g

0 [J ]

∣∣∣∣∣
J=0

. (6.26)

From the three-gluon terms of the Lagrangian Lgg , one can deduce:

Z3g[J ] ≡
∫

d4x L3g
I

(
δ

iδ J aµ

)
Z G

0 [J ]

∣∣∣∣∣
J=0

=
∫

d4x

(−g

2

)
f abc

(
∂µ

δ

iδ J aν
− ∂ν

δ

iδ J aµ

)
δ

iδ J bµ

δ

iδ J cν
Z g

0 [J ] (6.27)

After some algebra, one obtains:

Z3g[J ] = −i
g

2
f abc

∫
d4xd4 y1d4 y2d4 y3

[
∂µ Daa1

νλ1
(x − y1) − ∂ν Daa1

µλ1
(x − y1)

]
× Dba2µ

λ2
(x − y2)Dca3ν

λ3
(x − y3)J a1λ1 (y1)J a2λ2 (y2)J a3λ3 (y3)Z g

0 [J ] , (6.28)

which gives:

�
a1a2a3
3µ1µ2µ3

(x1, x2, x3) = g f abc
∫

d4x
[
∂µ Daa1

νµ1
(x − x1) − ∂ν Daa1

µµ1
(x − x1)

]
× Dba2µ

µ2
(x − x2)Dca3ν

µ3
(x − x3) + permutations . (6.29)

Taking the Fourier transform, one then deduces:

�
a1a2a3
3µ1µ2µ3

(x1, x2, x3) =
∫

d4k1

(2π )4

d4k2

(2π )4
exp

[
i

3∑
i=1

ki xi

]
3∏

i=1

Dµi λi

× g f a1a2a3 [(k1 − k2)λ3 gλ1λ2 + (k2 − k3)λ1 gλ2λ3 + (k3 − k1)λ2 gλ3λ1 ] ,

(6.30)

with:

k1 + k2 + k3 = 0 (6.31)

and:

Dµν(k) ≡ 1

k2

[
gµν − (1 − αG)

kµkν

k2

]
. (6.32)

Equation (6.30) gives the Feynman rule for the three-gluon vertex to order g, which is given
in Appendix E. One can extend the previous analysis to derive the different Feynman rules
listed in Appendix E.
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6.3 Quantization of QED

QED is a particular aspect of the more general non-Abelian case discussed previously.
Under the U (1) gauge transformation, one has instead of Eq. (6.4):

Aθ
µ(x) = Aµ(x) − 1

g
∂µθ (x) , (6.33)

and the response matrix MG in Eq. (6.8) will be independent of Aµ for any choice of the
gauge, and then the Faddeev–Popov factor det MG plays no physical role and can be dropped
in the generating functional in Eq. (6.10).

6.4 Qualitative feature of quantization

For a qualitative physical picture of the quantization procedure, one can notice that the
gluon fields Aµ

a have four Lorentz degrees of freedom, while a massless spin-1 gluon has
only two physical polarizations. In QED, the gauge-fixing term is enough for making a
consistent quantization, as the U (1) gauge symmetry guarantees that the extra degrees of
freedom do not generate physical amplitudes, and the physical results is independent of
the gauge parameter αG . In QCD, life is more complicated. For instance, if one tries to
evaluate the cross-section of the scattering process q̄q → gg → q̄q, one notices that, due
to the propagation of the longitudinal and scalar gluon polarizations along the internal gluon
lines, the contribution of the higher-order diagrams shown in Fig. 6.1, violates unitarity.
In QED, the analogous process e+e− → γ γ → e+e− does not have these drawbacks as
unphysical contributions from the longitudinal and scalar components of the photons vanish

+

+ +

q

q

q

q q

q

q

q

q

q

q

q

q q

q q

Fig. 6.1. Gluon contributions to the q̄q → q̄q process.



6 Quantization using path integral 69

ϕ ϕ

ϕ

q

g

q

q

q ϕ

q

q

Fig. 6.2. Ghost contributions to the q̄q → q̄q process.

due to gauge invariance and to the conservation of the electromgnetic current. In order to
recover such a property in QCD, one can introduce unphysical scalar fields with negative
norms (ghosts) which eliminate the contributions of such unwanted terms from the diagrams
depicted in Fig. 6.2.

More generally, the introduction of the Faddeev–Popov ghosts, in addition to the gauge-
fixing term, guarantees a consistent quantization of the theory.
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QCD and its global invariance

7.1 U (1) global invariance

LQCD(x) is invariant under the U (1)B global transformation :

ψi (x) → exp(−iθ1)ψi (x) , (7.1)

to which corresponds the conserved baryonic current:

Jµ(x) =
∑

i

ψ̄ iγ
µψi (x) , (7.2)

and the baryonic charge generator of the U (1)B group:

B =
∫

d3x J 0(�x, t) . (7.3)

For massless quarks, LQCD(x) is also invariant under the axial U (1)A transformation:

ψi → (−iθ1γ5)ψi , (7.4)

acting on quark-flavour components. The corresponding current:

Jµ

5 (x) =
∑

i

ψ̄ iγ
µγ5ψi (x) , (7.5)

has an anomalous divergence:

∂µJµ

5 (x) = g2

4π2

n

8
εµνρσ Gµν

a Gρσ
a , (7.6)

where the rate of the change of the associated axial charge:

Q̇5 =
∫

d3x ∂0 J 0
5 (�x, t) , (7.7)

is zero in the absence of instanton-type solutions [105].
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7.2 SU (n)L × SU (n)R global chiral symmetry

As we have already dicussed in Part 1, and we shall partly repeat here,LQCD(x) also possesses
a SU (n)L × SU (n)R global chiral symmetry. In the massless quark limit (m j = 0), it is
invariant under the global chiral transformation:

ψi (x) → exp(−iθ ATA)ψi (x) ,

ψi (x) → exp(−iθ ATAγ5)ψi (x) , (7.8)

where T A(A ≡ 1, . . . , n2 − 1) are the infinitesimal generators of the SU (n) group acting
on the quark-flavour components. The associated Noether currents are the vector and axial-
vector currents:

V A
µ (x) = ψ̄ iγµ T A

i j ψi (x) ,

AA
µ(x) = ψ̄ iγµγ5 T A

i j ψi (x) , (7.9)

which are the ones of the algebra of currents of Gell-Mann [69,13]. The corresponding
charges, which are the generators of SU (n)L × SU (n)R are:

Q A
L =

∫
d3x

(
V A

0 − AA
0

)
,

Q A
R =

∫
d3x

(
V A

0 + AA
0

)
. (7.10)

The charges are conserved in the massless quark limit, and obeys the commutation relation:[
Qα

L , Qβ

L

] = i fαβγ Qγ

L ,[
Qα

R, Qβ

R

] = i fαβγ Qγ

R ,[
Qα

L , Qα
R

] = 0 , (7.11)

where α, β, γ = 1, . . . n. In the Nambu–Goldstone [17] realization of chiral symmetry, the
axial charge does not annihilate the vacuum, which is the basis of the successes of current
algebra and pion PCAC [13]. In this scheme, the chiral flavour group G ≡ SU (n)L ×
SU (n)R is broken spontaneously by the light quark (u, d, s) vacuum condensates down to
a subgroup H ≡ SU (n)L+R , where the vacua are symmetrical:

〈ψ̄uψu〉 = 〈ψ̄dψd〉 = 〈ψ̄ sψs〉 . (7.12)

The Goldstone theorem states that this spontaneous breaking mechanism is accompanied by
n2 − 1 massless Goldstone P (pions) bosons, which are associated with each unbroken gen-
erator of the coset space G/H . For n = 3, these Goldstone bosons can be identified with the
eight lightest mesons of the Gell-Mann eightfoldway (π+, π−, π0, η, K +, K −, K 0, K̄ 0).
On the other hand, the vector charge is assumed to annihilate the vacuum and the corre-
sponding symmetry is achieved à la Wigner–Weyl [18]. In the vector case, the particles are
classified in irreducible representations of SU (n)L+R and form parity doublets.
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Introduction

As in QED, the evaluation of QCD Feynman diagrams leads (in many cases) to divergent
results. Finite physical answers need a regularization and a renormalization of the QCD
parameters (vertices, coupling, masses. . .). However, the renormalization programme of
QED [106] cannot be extended to QCD in a naı̈ve way, as contrary to leptons which we
can (freely) observe, quarks are off-shell, such that the standard Pauli–Villars regularization
[107] and on-shell renormalization successful in QED cannot be used here. There exists
different versions of off-shell renormalization schemes, which can be applied to non-Abelian
gauge theories. Among them, we shall review the most elegant and powerful one, which is
the: Dimensional Regularization and Renormalization, the so-called M S scheme originally
proposed by ’t Hooft and Veltman, Bollini and Giambiagi and by Ashmore [108,109,123].1

The most important feature of the method is the concept of analytic continuation of the
dimension of space–time to complex n (n = 4 for low-energy space–time). This regulariza-
tion procedure has the great advantage of preserving the local invariance of the underlying
Lagrangian, and allows one to treat, in a gauge-invariant way, divergent Feynman integrals
to all orders of perturbation theory.

In the ε-regularization procedure, the UV and IR divergencies are transformed into poles
in ε, where the integrals are performed in 4 − ε space–time dimensions). In general the UV
poles are of the form:

∑
p=1

Z (p)

ε p
, (7.1)

and will appear as counterterms in the initial Lagrangian. However, these counterterms
are not arbitrary as they should obey constraints imposed by the Slavnov–Taylor identities
[103,104]. In the case of renormalizable theory like QCD, the Z (p) must be constants or
polynomial in the fermion (boson) mass after the introduction of the renormalized para-
meters.

Finally, the most relevant term entering in the renormalization group programme is the
Z (1)/ε, while the other Z (p) for p ≥ 2 are related to each other via the differential equation
of the renormalization group equation.

1 For reviews see e.g. [110–112] .
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In the following, we shall discuss successively the dimensional regularization and the
renormalization procedure. We shall also compare this M S scheme with some other schemes
proposed in the literature and discuss the link between these different schemes.



8

Dimensional regularization

We shall discuss here the procedure how these divergences can be removed in QCD. Our
discussion will be based on the previous QSSR1 book and review in [2,3].

8.1 On some other types of regularization

8.1.1 Pauli–Villars regularization

In QED, one regulates an UV divergent integral using a Pauli–Villars [107] regularization
(PVR), by replacing the propagator as:

1

q2 − m2
→ 1

q2 − m2
− 1

q2 − �2
UV

, (8.1)

where �UV is a UV cut-off. PVR respects translational and Lorentz invariance, and, in QED,
the gauge invariance. However, the renormalization programme of QED [106] cannot be
extended trivially to QCD. PVR, which is successful in QED, is not often convenient.
For instance, using PVR, the proof of unitarity for massless Yang–Mills theory is quite
cumbersome. For massive Yang–Mills such as the Electroweak Standard Model [61], PVR
does not maintain gauge invariance [113].

8.1.2 Analytic regularization

Like the case of PVR, the analytic regularization proposed in the literature [114], does not
also maintain gauge invariance. It consists by replacing the propagator as:

1

q2 − m2
→ 1

(q2 − m2)α
, (8.2)

where α is a complex number with Re α >1, which ensures the convergence of the integral.
The original propagator is recovered for α → 1.
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8.1.3 Lattice regularization

Another type of regularization is the lattice regularization [115] dedicated to lattice calcula-
tions of hadron parameters but not suitable for analytic gauge theories as it breaks translation
and Lorentz invariance. It is based on the fact that the space–time is discretized and made
of small cells of size a (lattice spacing). Due to the lattice structure of space–time, the
short-distance contribution to the space–time is eliminated and then leads to a convergent
integral.

8.2 Dimensional regularization

In QCD continuum theory or/and in the Standard Model, one uses instead the method
of dimensional regularization and renormalization (so-called MS scheme [108–112,123])
which is proven to preserve gauge invariance to all orders of perturbation theory. Its most
important feature is the concept of analytical continuation of the dimension of space–
time to complex n(n = 4 for low-energy space–time). In practice, this means that Dirac
algebra, Fierz rearrangments and the momentum integration are done in n dimensions, and
then analytically continued to four dimensions.1 As mentioned in the introduction, in this
approach, the IR and UV divergences are transformed into poles in ε ≡ n − 4, as we shall
see in the following explicit example of the two-point correlator of the pseudoscalar current.
However, there are different variants of dimensional regularization, where the difference
is due to the definitions of the Dirac matrices used in n dimensions, and in particular, on
the one of γ5 which is more delicate when one works in n > 4 space–time dimensions.
Among possible others, there are the so-called naı̈ve dimensional regularization (NDR) and
’t Hooft-Veltman (HV) [108,117] schemes, which we shall briefly sketch below.

8.2.1 Naı̈ve dimensional regularization

In this case, only the n-dimension metric tensor satisfying the properties is introduced:

gµν = gνµ , gµρgρ
ν = gµν , gµ

µ = n , (8.3)

while the γ matrices obey the same rules as in four dimensions (see Appendix D.5):

T r 1 = 4 , {γµ, γν} = 2gµν , {γµ, γ5} = 0 . (8.4)

where γ5 anti-commutes with the other Dirac matrices. NDR is very convenient and widely
used in the literature because of its easy implementation in a software program. The defini-
tion of γ5 in four dimensions given in Eqs. (D.10) and (D.11) has been proven to maintain
chiral symmetry to all orders of QCD perturbation series [118]. However, care must be
taken when odd parity fermion loops appear in the calculation due to the presence of the
parity-violating term T r (γ5γµγνγργσ ) [117,119], as in fact, one does not know how to deal
with such a term in n dimensions.

1 Useful packages for doing these n-dimension calculations are given in the Appendices D and F.
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8.2.2 Dimensional reduction for supersymmetry

Dimensional reduction [120] is a variant of dimensional regularization, and is convenient
for supersymmetric theories,2 because the conventional dimensional regularization does not
preserve supersymmetry. Indeed, in n dimensions, the numbers of bosonic and fermionic
degrees of freedom increases, the Fierz rearrangements need more covariants, while one
also has to worry about the supersymmetric anomalies and Ward identities. This is obvious
in the superfield language since the integral:∫

dn x(Dα Dα)(D̄α̇ D̄α̇)L(x, θ, θ̄ ) , (8.5)

is θ independent only for n = 4 [122]. Here, θ is a four-component anti-commuting variable,
Dα is a covariant derivative and x is the space-time variable. The dimensional reduction
technique is based on analytically continuing the number of co-ordinates and momenta, but
not the number of components of the fields. In other words, the Dirac algebra should be
done in four dimensions but the momentum integration has to be done in n = 4 − ε in order
to regulate UV divergences. In particular, the average of the momentum integral should be
done in n dimensions:∫

dnk

(2π )n
kµkν f (k2, m2) = 1

n
gµν

∫
dnk

(2π )n
k2 f (k2, m2) . (8.6)

More specifically, the tensor metric g̃µν is defined in the same way as in Eq. (8.3), except
that:

g̃µ
µ = 4 , g̃ρ

µgρ
ν = gµν , (8.7)

where the last equality is needed for preserving gauge invariance for n < 4.

8.2.3 ’t Hooft-Veltman regularization

The HV rule can be satisfied by introducing a new metric ĝ in addition to the previous g
n-dimensional and g̃ four-dimensional metrics. In 4–ε space–time, one has the same prop-
erties as in Eq. (8.3), except that:

ĝµ
µ = −ε . (8.8)

The difference with dimensional reduction is that, instead of the rule in Eq. (8.7), one
has:

g̃ρ
µgρ

ν = g̃µν , (8.9)

which does not lead to inconsistencies, while, one also has:

ĝρ
µgρ

ν = ĝµν , ĝµρ g̃ρ
ν = 0 . (8.10)

2 For a review on supersymmetry, see e.g. [121].
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The n-dimensional Dirac matrices are now split into 4- and −ε-dimensional parts:

γµ = γ̃µ + γ̂µ , (8.11)

where γ, γ̃ and γ̂ satisfy the usual commutation rule analogue to the one in Eq. (8.4), but,
in addition, one has the novel properties:

{γ̂µ, γ̃ν} = 0 , γ̂µγ̃ µ = 0 , g̃µ
ν γ̂µ = 0 , ĝµ

ν γ̃µ = 0 . (8.12)

The γ5 matrix can be be introduced [117] which anti-commutes with γ̃ but commutes
with γ̂ :

γ 2
5 = 1 , {γ5, γ̃µ} = 0 , [γ5, γ̂µ] = 0 . (8.13)

As γ5 does not have simple commutation rules, it is important to check that chiral Ward
identities are respected at each step of the calculation, where anomalous genuine terms have
to be cancelled by the counterterms of the Lagrangian [119,117]. For instance, in practice,
one has:

1

2
(1 + γ5)γµ(1 − γ5) = γ̃µ(1 − γ5) . (8.14)

Equivalently, one can represent the γ5 matrix as:

γ5 = i

4!
εµνρσ

n γµγνγργσ , (8.15)

where for n ≥ 4:

εµνρσ
n = εµνρσ for µνρσ = 0, . . . , 3 , εµνρσ

n = 0 for µνρσ > 3 . (8.16)

It is clear that contrary to the NDR scheme, the HV scheme is more cumbersome,
in particular, when one tries to implement it in the computer. Neverthless, it is the only
dimensional regularization scheme which has been demonstrated to be consistent [119,117].

8.2.4 Momentum integrals in n dimensions

Let us consider the typical one-loop integral:

I (m, r ) =
∫

dnk

(2π )n

(k2)r

[k2 − R2]m . (8.17)

It is convenient to rotate (Wick’s rotation) the path of integration in the complex k0 plane
[k ≡ (k0, �k)] by +π/2 without crossing the two poles:

k0 = ±
√

|�k|2 + R2 . (8.18)

Therefore, the k0 integration has the limits −i∞ to +i∞. Going to the Euclidian space,
one can define:

k0 ≡ i k̃0 , �k ≡ �̃k and k̃ ≡ (k̃0,
�̃k) , (8.19)
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such that the k̃0 integral goes from −∞ to +∞. It is easy to find:

I (m, r ) = (−1)r−mi
∫

dnk̃

(2π )n

(k̃2)r

[k̃2 − R2]m . (8.20)

Going over polar co-ordinates, one has:
∫

dnk̃ =
∫ ∞

0
ρn−1dρ

∫ π

0
dθn−1(sin θn−1)n−2 · · ·

∫ π

0
dθ2(sin θ2)

∫ 2π

0
dθ1 , (8.21)

where ρ is the length of the vector k̃. In this way, the integrand of I (m, r ) only depends on
ρ, and one can perform the angular integration using the formula:∫ π

0
dθ (sin θ )m = √

π

 ((m + 1)/2)


 ((m + 2)/2)
, (8.22)

where 
 is the gamma function defined and having the properties in Appendix F. Then, one
obtains:

I (m, r ) = (−1)r−m i
2(π )n/2


(n/2)

∫ ∞

0
dρ ρn−1 (ρ2)r

[ρ2 − R2]m , (8.23)

which leads to the basic formula:

I (m, r ) ≡
∫

dnk

(2π )n

(k2)r

[k2 − R2]m

= i

(16π2)n/4
(−1)r−m(R2)r−m+n/2 
(r + n/2)
(m − r − n/2)


(n/2)
(m)
. (8.24)

Using the symmetry of the integration, it is easy to show that:
∫

dnk

(2π )n

kµkν

[k2 − R2]m = 1

n
gµν

∫
dnk

(2π )n

k2

[k2 − R2]m . (8.25)

In the same way:

kµkνkρkσ → 1

n(n + 2)
(k2)2(gµνgρσ + gµρgνσ + gµσ gνρ) . (8.26)

In the case where r is odd: ∫
dnk

(2π )n

kµ1 · · · kµr

[k2 − R2]m = 0 . (8.27)

Finally, it is important to notice that tadpole type integral vanishes identically in dimen-
sional regularization: ∫

dnk

(2π )n
(k2)β−1 = 0 for β = 0, 1, 2, . . . (8.28)

We shall also see that the divergent part of I (m, r ) can be tranformed into ε ≡ 4 − n poles
thanks to the properties of the 
 function.
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8.2.5 Example of the pseudoscalar two-point correlator

Let us consider the pseudoscalar correlator:

�5(q2) ≡ i
∫

d4x eiqx 〈0|T JP (x) (JP (0))† |0〉 , (8.29)

where:

JP = (mi + m j )ψ̄ i (iγ5)ψ j , (8.30)

is the light quark pseudoscalar current; mi is the mass of the quark ψi . In order to simplify
the discussion, we shall work to lowest order of perturbative QCD and work with massless
quarks in the fermion loop given in the following diagram (Fig. 8.1):3

q

p

p-q

(8.31)

Using Feynman rules given in Appendix E, it reads:

i�5(q2) = (mi + m j )
2(−1)N

∫
d4 p

(2π )4
Tr

{
(iγ5)

i

p̂ + iε′ (iγ5)
i

p̂ − q̂ + iε′

}
, (8.32)

where one can notice that for large k2, one has a divergent integral:

I =
∫

d4k

k2
= ∞ . (8.33)

One can use either PVR, but it is more convenient to use dimensional regularization. In
so doing, one works in n ≡ 4 − ε space–time dimensions, such that the previous expression
becomes:

νε�5(q2) = (mi + m j )
2(−i)N

∫
dn p

(2π )n
T r

{
(iγ5)

1

p̂ + iε′ (iγ5)
1

p̂ − q̂ + iε′

}
. (8.34)

The arbitrary scale ν has been introduced for dealing with dimensionless quantities in
4 − ε dimensions.

One can parametrize the quark propagators à la Feynman (see Appendix E):

1

ab
=

∫ 1

0

dx

[(a − b)x + b]2 ≡
∫ 1

0

dx

[(p − l)2 − R2]2
, (8.35)

3 The case of massive quarks will be discussed later on in Section 11.14.
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where:

a = (p − q)2 + iε′ ,

b = p2 + iε′ ,

l = qx ,

R2 = −q2x(1 − x) − iε′ . (8.36)

One uses the properties of the Dirac matrices in n dimensions given previously:

T r p̂γ5( p̂ − q̂)γ5 = −4p(p − q) , (8.37)

and does the shift:

p → p̃ + l . (8.38)

Therefore, one arrives at the momentum integration of the type:
∫

dn p̃

(2π )n

p̃k

[ p̃2 − R2]2 , (8.39)

which one can evaluate using the formula given in the previous section. It is easy to obtain:

νε�B
5 (q2) = (mi + m j )

2 N

4π2

∫ 1

0
dx


(ε

2

) (
R2 − iε′

ν2

)−ε/2

×
(

3 + ε

2

)
q2x(1 − x) . (8.40)

where γE = 0.5772 . . . is the Euler constant. The loop UV divergence appears as a pole at
ε = 0 of the 
-function:

lim
ε→0



(ε

2

)

 2

ε
+ ln 4π − γE + O(ε) , (8.41)

which, as you may have noticed simplify the calculation, which is remarkable when one
does a higher order calculation. For large value of q2, one then obtains to leading order:

νε�B
5

(
q2

) = (mi + m j )
2q2 N

8π2

{
2

ε
+ ln 4π − γE − ln

(−q2

ν2

)}
(8.42)

As we have discussed in the introduction, the UV (and IR) divergences originated from
the 
-function, are transformed into poles in ε ≡ n − 4, and are, more generally, of the
form:

∑
p=1

Z (p)

ε p
, (8.43)

in the so-called [123] Minimal Subtraction (MS) scheme.
Later on, it has been remarked [124] that the combination in Eq. (8.41) appears always

in the stage of the calculation. Therefore, the authors in [124] find that it is natural to also
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subtract the constant terms ln 4π − γE together with the ε-pole:

2

ε
→ 2

ε̂
≡ 2

ε
+ ln 4π − γE (8.44)

This is the modified version of the MS scheme, and called: M S scheme, which will be used
in the forthcoming discussions of this book. These divergences will appear as counterterms
in the initial Langragian constrained by the Slavnov–Taylor identities [104]. One should
notice that for renormalizable theories the Z (p) are local, i.e. constants or polynomials
in the inverse of the square of some momentum. These features will be discussed in the
forthcoming section.
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The M S renormalization scheme

9.1 Renormalizability and power counting rules

The notion of a superficial degree of divergences, based on the power counting rule of a
given Feynman diagram, is often used for studying the renormalizability of the interactions
in the Lagrangian. For instance, if we consider the previous two-point correlator �5(q2),
we can see, for n-dimensions space–time, that, to lowest order, it behaves for large p2 as:

�5(q2) ∼ lim
p→∞ pn−2 , (9.1)

and its degree of divergence is:

d = n − 2 . (9.2)

More generally, for an arbitrary Green’s function G, the superficial degree of divergence
reads:

d = nl +
∑

v

δv − 2nB − nF , (9.3)

where:

n = space–time dimensions,

l = number of loops (independent integrals),

δv = number of momentum factors at the vertex v, (9.4)

nB = number of internal boson lines (we consider a theory with massless bosons), (9.5)

nF = number of internal fermion lines. (9.6)

For a given interaction Lagrangian term LI, which one can write symbolically as:

LI ∼ g(∂)δ(φ)b(ψ) f , (9.7)

where φ and ψ are the bosonic and fermion fields, one can define the index of divergence
of the interaction Lagrangian as:

r =
(

n − 2

2

)
b +

(
n − 1

2

)
f + δ − n , (9.8)

84
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where:

δ = number of space–time derivatives inLI,

b = number of boson fields inLI,

f = number of fermion lines inLI. (9.9)

Actually, using the fact that the action:

S =
∫

LI dn x (9.10)

is dimensionless, one can deduce from a dimensional analysis that:

n = dim[g] +
(

n − 2

2

)
b +

(
n − 1

2

)
f + δ , (9.11)

such that:

r = −dim[g] . (9.12)

One can define respectively by:

v = number of vertices corresponding toL1
I in the Green’s function G,

NB = number of external boson lines inG,

NF = number of external fermion lines inG, (9.13)

which obey the relations:

2nB + NB = vb; 2nF + NF = v f ,

l = nB + nF − v + 1 ,
∑

v

δv = vδ . (9.14)

Eliminating for instance the internal fields through Eq. (9.14), one can rewrite Eq. (9.3)
as:

d = rv −
(

n − 2

2

)
NB −

(
n − 1

2

)
NF + n , (9.15)

where r is the index divergence given above. This result can be generalized to any numbers
of interaction Lagrangians by the substitution:

rv →
∑

i

rivi (9.16)

From these definitions, one can classify the different theories as:

� If one of the ri is positive, the divergences cannot be removed by any finite numbers of renormal-
ization constants and interaction parameters. Then the theory is not renormalizable.

� If all ri ≤ 0, then there is a possibility to remove the divergences by finite numbers of renormalization
constants and interaction parameters. The theory is a candidate for a renormalizable theory.

� If ri < 0 for all i , then the theory is super renormalizable since the number of types of divergent
diagrams, and the number of diagrams are finite.
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� If ri = 0, the theory is renormalizable in a narrow sense, which is the case of QCD. As QCD has
a dimensionless coupling, then comes the conclusion from Eq. (9.12).

9.2 The QCD Lagrangian counterterms

As we have seen before, one can remove the UV divergences of a renormalizable
theory by finite numbers of counterterms to any orders of perturbation theory. In QCD,
the counterterms of the Langrangian are:

�LQCD = �3Y M
1

4
(∂µ Aν − ∂ν Aµ) (∂µ Aν − ∂µ Aν)

+ �1Y M
1

2
(∂µ Aν − ∂ν Aµ) g �Aν × �Aµ

+ �5
1

4
g2( �Aµ × �Aν) ( �Aµ × �Aν)

− �2F i
∑

j

ψ̄ j γ µ ∂µ ψ j + �4

∑
j

m j ψ̄ j ψ j

− �1F g ψ̄
λ

2
γ µ ψ �Aµ

+ �6
1

2αG
(∂µ

�Aµ)2 + �̃3 (∂µ ϕ̄)2 + �̃1 g ∂µ �ϕ Aµ × ψ , (9.17)

which are all we need for removing the UV divergences of the theory. We have used the
notation:

�Aµ × �Aν ≡ fabc Ab
µ Ac

ν . (9.18)

It is possible to rescale the fields in such a way that LQCD has the form in Eq. (5.12)
but in terms of ‘bare’ quantities. This manipulation is correlated to the introduction of
renormalization constants and then to the choices of renormalization schemes.

9.3 Dimensional renormalization

In QED, it is natural to use the on-shell renormalization scheme:

�5(q2)R = �5(q2) − �5(q2 = 0) , (9.19)

for defining a renormalized Green’s function, as the photon and electron are observed, and
then are on their mass-shells (for a electron self-energy diagram, on can, for example, do
the subtraction at p2 = m2

e), which is not the case of QCD, as quarks are off-shell due
to confinement. Therefore, there is a freedom to choose the renormalizaton schemes. We
shall discuss these different renormalization schemes and their relations in the following
sections. t’Hooft [123] has introduced the M S (renormalization) scheme, which is specific
for dimensional regularization. In this scheme, one only has to eliminate the 1/ε poles
[or in the M S scheme, the 1/ε̂ poles defined in Eq. (8.44)] of the Green’s functions. The
renormalization constants are mass-independent and will appear as counterterms in the
initial Lagrangian constrained by the Slavnov–Taylor identities [104].
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Table 9.1. Dimensions of the couplings and
fields in n dimensions

Name Notation Dimension

gauge coupling g 1
2 (4 − n)

quark mass mi 1

covariant gauge parameter αG 0

fermion field ψ j (x) 1
2 (n − 1)

gluon field Aa
µ (x) 1

2 (n − 2)

Faddeev–Popov field ϕa(x) 1
2 (n − 2)

9.4 Renormalization constants

Taking into account the dimension obtained in the 4 − ε world (see Table 9.1) via the mass
scale ν, one has relations between renormalized and bare parameters:

gR = ν−ε/2 gB Z−1/2
α

g2/4π ≡ αs ,

m R
j = m B

j Z−1
m ,

αR
G = αB

G Z−1
G ,(

ψα
j

)R = νε/2
(
ψα

j

)B
(Z2F )−1/2 ,(

Aa
µ

)
R

= νε/2
(

Aa
µ

)
B

(Z3Y M )−1/2 ,

(ϕa)R = νε/2(ϕa)B(Z̃3)−1/2 , (9.20)

where Zi ≡ 1 − �i . One can introduce the renormalization constant for the quark-gluon-
quark vertex as:

(gψ̄ Aψ)R = (gBψ̄ B ABψB)νε Z−1
1F , (9.21)

which corresponds to the Feynman diagrams (Fig. 9.1).

+

Analogously, one can introduce the three-gluon renormalization constant (Z1Y M ) corre-
sponding to the vertex (Fig. 9.2).



88 III M S scheme for QCD and QED

+ +
1

2
–

n

i=1
i

and, (Z̃1) ghost self-energy and (Z̃3) ghost-gluon-ghost vertex one (Fig. 9.3).

and (Z5) four-gluon vertices one. Then, one can deduce:

gY M
B = Z1Y M Z−3/2

3Y M gR ,

g̃B = Z̃−1
1 Z−1/2

3Y M gR ,

gF
B = Z1F Z−1/2

3Y M Z−1
2F gR ,(

g(5)
B

)2 = Z5 Z−2
3Y M g2

R , (9.22)

which are related to each other by BRS [103] invariance:

gY M
B = ...... = gB

(5) , (9.23)

leading to the Slavnov–Taylor [104] identities:

Z3Y M/Z1Y M = Z̃3/Z̃1 = Z2F/Z1F ,

Z5 = Z2
1Y M/Z3Y M . (9.24)

This is the analogue of the QED relation:

Z1F = Z2 . (9.25)

The mass renormalization constant is:

m B = (
Zm ≡ Z4 Z−1

2F

)
m R , (9.26)

and the gauge one is:

αB
G = αR

G Z−1
G Z3Y M . (9.27)

Z3Y M comes from the evaluation of the gluon propagator (Fig. 9.4).
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1

2
+ – +

n

i =1

i

Z2F and Zm come from the quark self-energy diagram, which can be parametrized as:

� = m B�1 + ( p̂ − m B)�2 , (9.28)

and leads to:

Z2F ≡ 1

1 − �2|pole
, Zm = 1 − �1|pole , (9.29)

More generally, for a Green’s function with NG, NF P and NF external gluons, ghost and
fermion fields, one can associate the renormalization constants:

Z� = (
Z1/2

3Y M

)−NG
(
Z1/2

3

)−NF P
(
Z1/2

2F

)−NF
. (9.30)

Expressions of these renormalization constants are known from standard diagram tech-
niques (see Table 11.1).

9.5 Check of the renormalizability of QCD

We are now in a position to check the renormalizability of QCD. We want to see if the
counterterms presented in Eq. (9.17) are sufficient for removing all divergences in Feynman
integrals to all orders.

If one looks at the superficial degree of divergences for the Feynman diagrams given in
Eq. (9.15), and using the fact in Eq. (9.12), we can see for QCD in four dimensions:

d = 4 − NB − 3

2
NF , (9.31)

for NB and NF external lines of bosons and fermions. Here, NB includes gluons NG and
Faddeev–Popov NFP ghosts. Remarking that the coupling in the ghost-gluon-ghost vertex
behaves like kµ (see Appendix E), the number of boson fields become:

NB = NG + NFP + 1

2
NFP . (9.32)

It is easy to see that the condition d ≥ 0 for a superficially divergent integral is obtained
for seven different cases of the set (NF , NG, NFP) discarding the case (0, 0, 0) (vacuum)



90 III M S scheme for QCD and QED

and the one (0, 1, 0) because of Lorentz invariance. These seven diagrams are displayed in
Fig. (9.5):

d = 2 d = 1

d = 1 d = 0 d = 0 d = 0

d = 1

and have the same structure as the counterterms. It is an easy exercise to show that these
divergences can all be absorbed by the counterterms. One should also notice that owing
to gauge and Lorentz invariances, the apparent degree of divergence 2, 1, 1, 1 of the self-
energies of gluons, ghost, fermions, and of the three-gluon vertex become logarithmic.
These features have explicitly shown the renormalizability of QCD, which is maintained to
all orders of perturbative QCD [113,108,125,104,103].
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Renormalization of operators using the
background field method

In the following chapters, in order to probe the hadron properties, we will have always
to deal with local hadronic currents or/and operators built from quark or/and gluon fields,
but not only with Green’s functions. Therefore, it is of prime importance to study the
renormalization of such operators. Renormalization of composite operators has been studied
[126,127] using background field technology and some further examples have been studied
explicitly in perturbation theory [128].

10.1 Outline of the background field approach

The basic idea of the method is to write the gauge field appearing in the classical action
as A + Q, where A is the background field and Q the quantum field which is the variable
of integration in the functional integral.1 The background field gauge is chosen, which
maintains the gauge invariance in terms of the A field, but breaks the one of the Q field.
This background field gauge invariance is further assured by coupling external sources only
to the Q field, which allows one to perform quantum calculations without losing the gauge
invariance of the background field. More explicitly, let us consider the generating functional
in Yang–Mills theory:2

Z [J ] =
∫

DQDφDφ̄ exp

(
i
∫

d4x[LYM + LFP + Lsource + Lgauge]

)
. (10.1)

where LYM, LFP are the QCD and Faddeev–Popov Lagrangians defined in Eq. (5.14)
without the fermion fields, and Lsource is defined in Eq. (6.15). The gauge fixing term is:

Lgauge = − 1

2αG
(Ga)2 , (10.2)

where (Ga) is, for example, Ga = ∂µ Qa
µ. Doing the shift:

Qµ
a (x) → Qµ

a (x) + Aµ
a (x) , (10.3)

1 We shall follow closely the discussion in [127].
2 Fermions do not play a role in this approach as they can be treated in the usual way.
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where Aµ
a (x) is the background field, the functional integral becomes:

Z̃ [J, A] =
∫

DQDφDφ̄ exp

(
i
∫

d4x[L̃YM + L̃source + L̃gauge]

)
, (10.4)

where:

L̃YM = −1

4

(
∂µ(A + Q)νa − ∂ν(A + Q)µa

) (
∂µ Aν

a − ∂ν Aµ
a

)
,

LFP = −∂µϕ̄a
(
∂µδab − g fabc(A + Q)µc

)
ϕa ,

L̃source = Qµ Jµ + χ̄ϕ + ϕ̄χ , (10.5)

where the term Aµ Jµ in the source has been omitted as Aµ is an external field to which one
does not need to attach a source. The gauge fixing term (background gauge) can be chosen
as:

L̃gauge = − 1

2αG
(Ga)2 , (10.6)

where:

Ga = ∂µ Qa
µ + g f abc Aµ

b Qµ
c . (10.7)

Like in the conventional approach, one can define the connected Green functions:

W̃ [J ] = −i ln Z̃ [J ] , (10.8)

and the effective action:

�̃[Q̃] = W̃ [J ] −
∫

d4x J a
µ Q̃a

µ , (10.9)

where:

Q̃a
µ = δW̃/δ J a

µ . (10.10)

Using the change of variable:

Qa
µ → Qa

µ − f abcθb Qc
µ , (10.11)

it is easy to show that Z̃ [J ] and hence W̃ [J ] are invariant under the infinitesimal transfor-
mations:

δAa
µ = g fabcθb Ac

µ − ∂µθa ,

δ J a
µ = g fabcθb J c

µ . (10.12)

Then, it follows that �̃[Q̃, A] is invariant under the infinitesimal transformations:

δAa
µ = g fabcθb Ac

µ − ∂µθa , (10.13)

and:

δ Q̃a
µ = g fabcθb Q̃c

µ , (10.14)
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in the background field gauge. In particular, �̃[0, A] should be an explicitly gauge-invariant
functional of A, since Eq. (10.13) is an ordinary gauge transformation of the background
field. The quantity �̃[0̃, A] is the gauge-invariant effective action which one computes in
the background field method. One can show that:

�̃[0̃, A] = �[Q̄]|Q̄=A , (10.15)

where the latter is the usual action calculated in an unconventional gauge depending on A.
Therefore, �̃[0̃, A] can be used to generate the S-matrix of a gauge theory in the same way
as the usual effective action is used. Feynman rules in the background gauge formalism
can be generated from L̃gauge in Eq. (10.6). Since the effective action only involves 1PI
diagrams, vertices with only one outgoing quantum line will never contribute. Furthermore,
the propagator of the A field is not defined, which does not matter as it is a classical field
which never appears in the loop. Compared with ordinary Feynman rules the only difference
is the appearance of the A field in external legs, which one denotes by a blob. These Feynman
rules are given in Appendix E.

10.2 On the UV divergences and β-function calculation

The UV divergences of �̃[0̃, A] can be absorbed by the renormalizations Z A, Zg, ZαG of
the A field, the coupling constant and the gauge parameter, as it is a sum of a 1PI diagrams
with A-field external legs and Q fields inside the loops. The renormalization of the gauge
parameter can be avoided by working in the Landau gauge αG = 0. Because explicit gauge
invariance is retained in the background field method, the renormalization constants Z A and
ZG are related, and the infinities must take the gauge-invariant form of a divergent constant
times the product of field strength Ga

µνGµν
a . Let’s now consider the bare field strength:

Ga,B
µν = Z1/2

A

[
∂µ Aa

ν − ∂ν Aa
µ + g fabc Zg Z1/2

A Ab
µ Ac

ν

]
, (10.16)

where we have used the fact that Aµ is a classical field for renormalizing Ab
µ Ac

ν . It will only
take the form constant times Ga

µν if:

Zg Z1/2 = 1 , (10.17)

which is a relation analogous to the one in QED. Equation (10.17) simplifies the computation
of the β-function as illustrated in the explicit calculation of [127]. In the following, we give
another application of the method to the renormalization of some composite operators.

10.3 Renormalization of composite operators

The first thing to do is to classify these operators into three classes:

Class I: gauge-invariant and do not vanish after using the equation of motion.
Class II: gauge-invariant but vanish after using the equation of motion.
Class III: gauge-dependent operators.
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Therefore any composite renormali zed operators can be written as:

O = Z I O B
I + Z I I O B

I I + Z I I I O B
I I I . (10.18)

The great advantage of the background field techniques is that for graphs with external
quark and background fields, one only needs gauge-invariant counterterms, i.e:

Z I I I = 0 , (10.19)

which is a consequence of the background field gauge invariance under quantization and
renormalization. We shall now study some useful examples.

10.3.1 The vector and axial-vector currents

A classics example of composite operator is the local electromagnetic or neutral vector
current:

V µ(x) = ψ̄γ µψ(x) , (10.20)

which is conserved to all orders of perturbation theory:

∂µV µ(x) = 0 , (10.21)

and does not require any renormalization. The axial-vector current:

Aµ

i j (x) = ψ̄ iγ
µγ5ψ j (x) , (10.22)

is partially conserved for SU (n)L × SU (n)R :

∂µ Aµ

i j (x) = (mi + m j )ψ̄ i (iγ5) ψ j (x) . (10.23)

It can be seen that for the divergence of the axial current, the mass renormalization
compensates that of the operator ψ̄γ5ψ , such that at the end it does not get renormalized.
We shall see, in the following, that for the U (1)A current, it needs to be renormalized.

10.3.2 Renormalization of GµνGµν

Let us illustrate the approach by studying the renormalization of the Ga
µνGµν

a gluon operator
in the presence of massive quarks. For that, we have to take all bare (B) operators of
dimension-four:

O B
1 = − i

4
GG ,

O B
2 = −

∑
j

ψ̄ j (D̂ + im j )ψ j ,

O B
3 = i

∑
j

m j ψ̄ jψ j , (10.24)
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where D̂ is the covariant derivative. The renormalized O R
1 operator is, in general, a combi-

nation of these three bare operators:

O R
1 = Z11 O B

1 + Z12 O B
2 + Z13 O B

3 . (10.25)

The renormalization constants Zi j are mass-independent in the M S scheme, where one
can notice that Z11 and Z12 can already be obtained in the massless limit. In order to evaluate
the Zi j , one inserts the zero momentum O1 operator into the gluon and quark propagators:

〈
Aµ

a O1 Aν
b

〉 = Z−1
α Z11

〈
Aµ

a O1 Aν
b

〉 + Z12
〈
Aµ

a O2 Aν
b

〉
,

〈ψ̄ O1 ψ〉 = Z11〈ψ̄ O1 ψ〉 + Z2F Z12〈ψ̄ O2 ψ〉 + Z2F Z13〈ψ̄ O3 ψ〉 . (10.26)

In practice, the insertions of O B
1 and O B

2 into the gluon propagator corresponds to the
Feynman rules:

O1 → −iδab(p2gµν − pµ pν) ,

O2 → i p̂ , (10.27)

and one has to calculate respectively:

A A

A A A A

AA

×

××

×

+

+

(10.28)

The insertions of O B
1 , O B

2 and O B
3 into the quark propagator correspond respectively to:

O1 → ig
λa

2
γ µ ,

O2 → i( p̂ − m j,B) ,

O3 → im j,B , (10.29)

which can be represented by the following diagrams (Fig. 10.1):
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× × ×

(10.30)

Evaluations of the previous diagrams give in the Landau gauge [128]:

Z (2)
11 = Z (2)

α , Z (2)
12 = 0, Z (2)

13 = −γ1

ε

(αs

π

)
, (10.31)

as Z (2)
2F = 1 in the Landau gauge (the index (2) means second order in αs). Therefore, one

can deduce:

(GG)R =
(

1 +
(αs

π

) β1

ε

)
(GG)B + 4

γ1

ε

(αs

π

) ∑
j

m j,B(ψ̄ jψ j )B , (10.32)

i.e., GG is not multiplicatively renormalizable. However, one can deduce from this expres-
sion the finite non-renormalized combination:

θµ
µ = 1

4
β(αs)GG +

∑
j

γm(αs)m j ψ̄ jψ j , (10.33)

which is the trace of the energy-momentum tensor; β(αs) and γm(αs) are the β function and
the mass-anomalous dimension defined in the previous section. The non-renormalization
of θµ

µ is also preserved by higher-order terms [128].

10.3.3 Renormalization of the axial anomaly

The renormalization of the axial anomaly has been also discussed in [129]. Here, the different
lowest dimension gauge-invariant pseudoscalar operators are:

O1 = − i

4
GG̃ ,

O2 =
∑

j

ψ̄ jγ5(i D̂ − m j )ψ j ,

O3 = i∂µ
∑

j

(ψ̄ jγµγ5ψ j ) ,

O4 =
∑

j

m j ψ̄ jγ5ψ j . (10.34)

Previously background field techniques have been used for studying the renormalizations
of these different operators, whereas the one of O2 has not been studied because it does not
appear in the triangle anomaly equation:

∂µ

(
Jµ5 ≡

∑
j

ψ̄ jγµγ5ψ j

)
= 2i

∑
j

m j ψ̄ jγ5ψ j −
(

2Q ≡ αs

4π
n f GG̃

)
, (10.35)
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where n f is the number of quark flavours. After renormalizations, the divergence of the
flavour singlet current and the gluon topological charge density mix as follows:

J R
µ5 = Z J B

µ5 ,

Q R = Q B − 1

2n f
(1 − Z )∂µ J B

µ5 , (10.36)

where the renormalization constant is in n-dimension space–time (n ≡ 4 − ε), and reads:

Z = 1 +
(αs

π

)2 3

4

4

3
n f

1

ε
. (10.37)

10.3.4 Renormalizations of higher-dimension operators

The renormalization of dimension-five and -six operators have been studied in [130,131]
and reviewed in detail in [3]. In the chiral limit, one can built the RGI mixed quark-gluon
d = 5 operator for N colours and n f flavours:

〈Ō5〉 = α−(γ5/β1)
s

〈
gψ̄σµν λa

2
ψGa

µν

〉
, (10.38)

with:

γ5 = − (N 2 − 5)

4N
, β1 = −1

6
(11N − 2n f ) . (10.39)

The triple gluon condensate does not mix under renormalization, and one can form the
renormalization group invariant (RGI) operator:

〈ŌG〉 = α−(γG/β1)
s 〈g fabcGaGbGc〉 : γG = 2 + 7N

6
. (10.40)

The renormalization of the four-quark operators involves, in general, the mixing of different
operators, such that the four-quark condensate:

〈O2〉 = 〈g2ψ̄ψψ̄ψ〉 , (10.41)

retained in the QSSR analysis within the vacuum saturation cannot be made RGI but pos-
sesses an intrinsic µ dependence. This µ dependence is only absent in the large Nc-limit,
where only the diagonal renormalization constant Z2,2 (notation in [130]) contributes. There-
fore, only in this limit, one can form a RGI condensate:

〈Ō2〉 = α−(γ2/β1)
s 〈Oψ 〉 : γ2 = 143N

33
. (10.42)

We shall see later on, the importance of these operators in the context of QSSR.
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The renormalization group

Renormalization invariance states that physical observables must be independent of the
renormalization scheme chosen in their theoretical evaluation. The differential approach
to renormalization invariance was pioneered by Stueckelberg–Peterman [75] and by Gell-
Mann–Low [76], where it has been pointed out that the QED coupling constant is momentum
dependent due to the definition of the renormalized charge. Such a consideration led to
write a differential equation for the photon propagator. Later on, the study of the scaling
behaviour in field theory (experimental observation of the Bjorken scaling [36] in deep
inelastic scattering) gave rise to the Callan–Symanzik equation (CSE) [132], which is a
very powerful technique for expressing the renormalization invariance constraints on the
short-distance behaviour of the Green functions. The CSE takes into account the fact that
scaling cannot be strictly implemented because of the necessity of a mass scale in the theory.
In the ε-regularization, such a mass scale renders the coupling constants dimensionless (see
Table 9.1). A generalization of the uses of the CSE to arbitrary Green functions has been
proposed [123,171]. The central idea was to treat g, mi , αG as coupling constants of various
interaction terms in the Lagrangian.

The meaning of the renormalization group can be seen from a simple example. Let us
consider a field φ. One can renormalize it in two different renormalization schemes which
we call R1 and R2. Then, the renormalized field in terms of the bare one is:

φR1 = Z (R1)φB , φR2 = Z (R2)φB , (11.1)

where: Z (Ri ) is the renormalization constant for each scheme Ri , and φB is the bare field.
As the bare field is by definition independent of the scheme, we can then, deduce:

φR1 = Z (R1, R2)φR2 , (11.2)

with:

Z (R1, R2) ≡ Z (R1)/Z (R2) , (11.3)

which should be finite as do the renormalized fields, despite the fact that the renormalization
constants Z (Ri ) are divergent. Analogous reasoning can be applied for other parameters
of the Lagrangian. The operation which relates quantities of two different renormaliza-
tion schemes can be interpreted as a transformation from R1 to R2. The set of all these

98
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transformations is called the renormalization group. One can use the invariance of physi-
cal quantities under this group in order to study the asymptotic behaviour of the Green’s
functions. This can be done as shown below using the renormalization group equation.

11.1 The renormalization group equation

The ε-regularized Green function reads:

�R(ν, p1, . . . , pN ; g, αG, mi ) = Z��B(ν, p1, . . . , pN ; g, αG, mi ) . (11.4)

The ν-independence of �B implies the zero of the total derivative:

ν
d�B

dν
= 0 , (11.5)

which is equivalent to:{
ν

∂

∂ν
+ ν

dαs

dν

∂

∂αs
+

∑
j

ν

m j

dm j

dν
m j

∂

∂m j
+ ν

dαG

dν

∂

∂αG
− 1

Z�

ν
d Z�

dν

}
�R = 0 . (11.6)

By introducing the universal β function and anomalous dimensions γi :

αsβ(αs) = ν
dαs

dν

∣∣∣∣
gB ,m B fixed

,

γm = − ν

m R
i

dm R
i

dν

∣∣∣∣
gB ,m B fixed

,

γi = ν

Zi

d Zi

dν

∣∣∣∣
gB ,m B fixed

, (11.7)

one can transform Eq. (11.6) into the renormalization group equation (RGE):{
ν

∂

∂ν
+ β(αs)αs

∂

∂αs
−

∑
j

γm(αs)m j
∂

∂m j
+ βG

∂

∂αG
− γ�

}
�R = 0 . (11.8)

For NG, NN P and NF external gluon, ghost and fermion lines:

γ� = −1

2
[NGγ3Y M + NFγ2F + NF P γ̃3] . (11.9)

The expressions of the previous universal parameters can be easily deduced from their
definitions as we shall show below.

11.2 The β function and the mass anomalous dimension

Noticing that, in the M S scheme, β(αs) is mass-independent, one can, therefore, write
[110,111]:

αsβ(αs, ε) = ν
dαR

s

dν
= ν

d

dν

(
αB

s ν−ε Z−1
α

) = −εαR
s − αR

s

1

Zα

ν
d Zα

dν
. (11.10)
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The fact that Zα is ν-independent allows us to also write:
{
αR

s β(αs, ε) + εαR
s + (

αR
s

)2
β(αs, ε)

∂

∂αR
s

}
Zα = 0 . (11.11)

Using the expression of the Zα in terms of the 1/ε poles into the previous differential
equation, one gets from the finite terms:

αR
s β(αs, ε) = −εαR

s + (
finite term ≡ αR

s β(αs)
)

. (11.12)

Using this relation into the 1/ε term, one can deduce:

β(αs) = αR
s

∂ Zα

∂αR
s

, (11.13)

i.e., β(αs) is nothing else than the coefficient of the 1/ε-term of Zα . The different coefficients
of β are given in Table 11.1, showing that β is negative for n ≤ 11 where n is the number
of flavours. We shall see in the discussion of the running coupling that this negativity is
important for an asymptotically free theory. We apply the same reasoning for obtaining the
quark mass anomalous dimension defined as:

γm(αs) = − ν

m R

dm R

dν

∣∣∣∣
gB ,m B fixed

≡ ν

Zm

d Zm

dν
. (11.14)

where B and R refer to renormalized and bare quantities. Using the fact that in the
M S scheme, Zm is only function of ν and αs , one gets:

ν
d Zm

dν
≡

{
ν

∂

∂ν
+ β(αs, ε)αs

∂

∂αs

}
Zm . (11.15)

To lowest order of αs , noting that the only dependence on Zm is from αs , and using the
previous expression of the β function in Eq. (11.10), the previous differential equation can
be written as:

ν
d Zm

dν
=

{
−εαs

∂

∂αs
+ αsβ(αs)

∂

∂αs

}
Zm . (11.16)

Using the expression of Zm , which is generically given by:

Zm = 1 +
∑

n

1

ε̂n
Z (n)

m , (11.17)

one can obtain that the mass anomalous dimension is given by the opposite of the 1/ε pole
coefficient in our sign convention (d = 4 − ε). Analogous reasoning applies to the other
anomalous dimensions, i.e., they are the opposite of the 1/ε̂-coefficient. Their expressions
are given in Table 11.1. The coefficients of the quark mass anomalous dimension and β

functions have been calculated in the M S scheme by: [133] (γ2), [134] (β2), [135] (γ3 and
β3) and [136] (γ4 and β4).
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11.3 Gauge invariance of β(αs) and γm in the M S scheme

One can also prove the gauge invariance of β and γm . This property leads to a great simplicity
in their evaluation, as one can perform the calculation in a given gauge like the Feynman
gauge αG = 1. For completing the proof, we start from a dimensionless Green’s function
� associated to a gauge-invariant amplitude. Using the fact that the bare Green’s function
is independent of the renormalization scale ν and of the gauge αG , one has the RGE:{

ν
∂

∂ν
+ β(αs)αs

∂

∂αs
− γm(αs)m

∂

∂m
+ βG

∂

∂αG

}
�R = 0 . (11.18)

The fact that it is gauge invariant gives:(
∂

∂αG
+ αsρ

∂

∂αs
+ σm

∂

∂m

)
�R = 0 , (11.19)

with:

αsρ ≡ dαs

dαG

∣∣∣∣
gB , ε fixed

and σ ≡ 1

m

dm

dαG

∣∣∣∣
gB , ε fixed

. (11.20)

We apply the commutators of the operators in Eqs. (11.18) and (11.19) into �R :

[{. . .} , (. . .)]�R = 0 . (11.21)

Eliminating ∂�R/∂αG with the help of Eq. (11.19), one obtains a third independent RGE:{[
Dβ̄ − β̄

∂(αsρ)

∂αs

]
αs

∂

∂αs
+

[
Dγ̄m − β̄αs

∂σ

∂αs

]
m

∂

∂m

}
�R(αs, αG, m) = 0 , (11.22)

where:

D ≡ ∂

∂αG
+ αsρ

∂

∂αs
, β̄ ≡ β − ρβG , γ̄m ≡ γm − σβG . (11.23)

However, �R depends only on the two conditions in Eqs. (11.18) and (11.19). Therefore
the third equation should be trivially satisfied:

Dβ̄ − β̄
∂(αsρ)

∂αs
= 0

Dγ̄m − β̄αs
∂σ

∂αs
= 0 . (11.24)

Therefore, the RGE becomes:{
ν

∂

∂ν
+ β̄(αs)αs

∂

∂αs
− γ̄m(αs)m

∂

∂m

}
�R = 0 , (11.25)

which shows that the physical consequences of the RGE are gauge invariant. Recalling that
in the M S scheme:

gB = νε/2gR

(
1 +

∑
n

an

ε̂n

)
≡ νε/2gR Z1/2

α , (11.26)
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and using the previous definition of ρ, one gets:

ρ = − 1

Zα

d Zα

dαG

∣∣∣∣
gB , ε fixed

= − 1

Zα

{
∂a1

∂αG

1

ε
+ ∂a2

∂αG

1

ε2
+ · · ·

}
. (11.27)

Then:

ρ
(

1 + a1

ε

)
= − ∂a1

∂αG

1

ε
+ O

(
1

ε2

)
, (11.28)

which is only satisfied if and only if ρ = 0 because ρ is independent of ε (see its definition
and its relation with β̄ and β). One should notice that it is also due to the fact that in the
M S scheme, Zα has no constant term other than 1 (the ln 4π − γ term being al-
ready absorbed into 1/ε̂). Inserting ρ = 0 into Eq. (11.24), one gets the desired
result:

∂β

∂αG
= 0 , (11.29)

showing that β is gauge independent. With similar proofs, one also obtains σ = 0, leading
to the gauge independence of γm .

11.4 Solutions of the RGE

One can now solve the RGE. If D is the dimension of � in units of mass and if one scales
the momenta p1, . . . , pN by a dimensionless factor λ, the Euler theorem on homogeneous
function gives:

{
λ

∂

∂λ
+

∑
j

m j
∂

∂m j
+ ν

∂

∂ν
− D

}
�R(λp1, . . . , λpN ; αs, αG, m j , ν) = 0 . (11.30)

Introducing for convenience the dimensionless variables:

t ≡ ln λ x j ≡ m j/ν , (11.31)

one arrives at the desired form of the RGE:{
− ∂

∂t
+ β(αs)αs

∂

∂αs
−

∑
j

(1 + γm(αs))x j
∂

∂x j
+ βG

∂

∂αG
+ D − γ�

}

× �R(et p1, . . . , et pN ; αs, αG, x j , ν) = 0 , (11.32)

with the solution:

�R(et p1, . . . , et pN ; αs, αG, x j , ν)

= λD�R(p1, . . . , pN ; ᾱs, αG, x̄ j , t = 0) exp

{
−

∫ t

0
dt ′γ�[ᾱs(t ′, αs)]

}
. (11.33)
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Table 11.1. Anomalous dimension γi = ν
Zi

d Zi
dν

≡ coefficient of −1/ε̂ and

coefficients of the β function in the M S scheme for SU (N )c × SU (n)F

Fermion field γ2F = (
αa
π

)
N 2−1

2N
αG
2 + O (

αs
π

)2

Gluon field γ3Y M = − (
αs
π

) {
N
4

(
13
3 − αG

) − 2
3

(
1
2

)
n
}

Ghost field γ̃3 = − (
αs
π

)
N
8 (3 − αG)

Mass γm = [γ1 ≡ 2]
(

αs
π

) + [
γ2 ≡ 1

6

(
101
2 − 5n

3

)] (
αs
π

)2

+ [
γ3 ≡ 1

96

[
3747 − (

160ζ3 − 2216
9

)
n − 140

27 n2
]] (

αs
π

)3

+ [
γ4 ≡ 1

128

[
4603055

162 + 135680
27 ζ5 − 8800ζ5

+ (− 91723
27 − 34192

9 ζ3 + 880ζ4 + 18400
9 ζ5

)
n

+ (
5242
243 + 800

9 ζ3 − 160
3 ζ4

)
n2 + (− 332

243 + 64
27 ζ3

)
n3

]] (
αs
π

)4

for N = 3 ; ζ3 = 1.2020569 . . . , ζ4

= 1.0823232 . . . , ζ5 = 1.0369277 . . .

Coupling constant β(αs) ≡ ν

αs

dαs
dν

= − ν

Zα

d Zα

dν

= [
β1 = − 1

2

(
11 − 2

3 n
)] (

αs
π

) + [
β2 = − 1

4

(
51 − 19

3 n
)] (

αs
π

)2

+ [
β3 = − 1

64

(
2857 − 5033

9 n + 325
27 n2

)] (
αs
π

)3

+ [
β4 = − 1

128

[(
149753

6 + 3564ζ3

) − (
1078361

162 + 6508
27 ζ3

)
n

+ (
50065
162 + 6472

81 ζ3

)
n2 + 1093

729 n3
]] (

αs
π

)4
for N = 3

Gauge βG = ν
dαG
dν

= −αGγ3Y M

Three-gluon γ1Y M = − [(
17
6 − 3

2 αG

)
N
4 − 2

3
1
2 n

] (
αs
π

)
Ghost-gluon-ghost γ̃1 = αG

N
4

(
αs
π

)
Fermion-gluon-fermion γ1F = 1

2

[
(3 + αG) N

4 − αG
N 2−1

2N

]

where ᾱs, ᾱG and x̄ j are respectively the running QCD coupling, gauge and mass, solutions
of the differential equations:

dᾱs

dt
= ᾱsβ(ᾱs) : ᾱs(0, αs) = αR

s (ν) ,

dᾱG

dt
= βG (ᾱs) : ᾱG(0, αs) = αG(ν) , (11.34)

and:

dx̄i

dt
= −[1 + γm (ᾱs)]x̄i (t) : x̄i (0, αs) = x R

i (ν) . (11.35)
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Their explicit expressions will be given later on. One should notice that the Green function
has acquired an extra dimension induced by the exponential factor, which explains the name
anomalous dimension.

11.5 Weinberg’s theorem

In connection with the power counting theorem, one can derive a theorem on the asymptotic
behaviour of the Green’s function at large external momenta. This theorem is known as
Weinberg’s theorem [137].

It states that if non-exceptional momenta1 are parametrized as:

pil = λkil : l = 1, m , (11.36)

the renormalized Feynman amplitude of a Feynman diagram G behaves as:

�R(p1, . . . , pn) ∼ λα ln λβ , (11.37)

when λ → ∞ and ki kept fixed. Here β is undetermined, while:

α = max d(H ) (11.38)

where d(H ) is the superficial degree of divergence of the subdiagram H consisting of
continuous path of lines connected to the external lines with momenta pi1 , . . . , pim . For
a renormalizable theory like QCD, the constant d(H ) can be obtained from Eq. (9.15) by
taking r = 0. In other word, the Weinberg theorem tells us that the asymptotic limit in the
deep Euclidean region λ → ∞ is given by the naı̈ve power counting times a logarithmic
factor.

11.6 The RGE for the two-point function in the M S scheme

In order to illustrate this discussion, let us consider the generic two-point correlator:

�(q2) ≡ i
∫

d4x eiqx 〈0|T J (x)H (JH (0))† |0〉 , (11.39)

where JH (x) is the hadronic current of quark and/or gluon fields. In n = 4 − ε dimen-
sion, �(q2) acquires an extra ν−ε dimension. The renormalized two-point correlator is
[28,110,111]:

�R(q2, αs, mi , ν) ≡ �B
(
q2, αB

s , m B
i , ε

) − ν−εC
(
q2, αB

s , m B
i , ε

)
, (11.40)

1 A momentum configuration (p1, . . . , pn ) of momenta are non-exceptional if no non-trivial partial sum pi1 + pi2 + · · · pim where,
(i j take any of the label 1, . . . n) vanishes. On the contrary, an example of vanishing trivial sum is p1 + p2 + · · · + pn = 0,
which is due to the energy-momentum conservation.
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where in the M S scheme, C is the ε-pole terms:

C
(
q2, αB

s , m B
i , ε

) =
∑

k

1

εk
Ck(q2, αs, m j ) , (11.41)

where, as usual, Ck are constants or polynomials in m2
j/q2. Using the fact that �B is

independent of ν, implies the differential equation:
{

ν
∂

∂ν
+ β(αs)αs

∂

∂αs
−

∑
j

γm(αs)m j
∂

∂m j

}
�R(q2, αs, mi , ν)

= −ν
d

dν

(
ν−ε

∑
k

1

εk
Ck

)
. (11.42)

Rewriting:

ν
d

dν

(
ν−ε

∑
k

1

εk
Ck

)
=

{
ν

∂

∂ν
+ ν

dαs

dν

∂

∂αs
−

∑
j

γm(αs)m j
∂

∂m j

}
ν−ε

∑
k

1

εk
Ck ,

(11.43)

using:

ν
dαs

dν
= −εαs + αsβ(αs) , (11.44)

and the fact that the equation is finite for ε → 0, one gets:

lim
ε→0

: ν
d

dν

(
ν−ε

∑
k

1

εk
Ck

)
= − ∂

∂αs
(αsC) , (11.45)

and the set of recursive equations for k ≥ 1:
{

αsβ(αs) −
∑

i

γmmi
∂

∂mi

}
Ck = ∂

∂αs
(αsCk+1) . (11.46)

The dimensionless condition of � reads:{
ν

∂

∂ν
+ λ

∂

∂λ
+

∑
j

m j
∂

∂m j

}
�(λ2, ν2, αs, mi , ν) = 0 , (11.47)

where t ≡ ln λ. Therefore, one arrives at the RGE for the two-point function:
{

− ∂

∂t
+ β(αs)αs

∂

∂αs
−

∑
j

(1 + γm(αs))x j
∂

∂x j

}
�(t, αs, xi ) = ∂

∂αs
(αsC) ≡ D ,

(11.48)
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with the solution:

�(t, αs, xi ) = � (t = 0, ᾱs(t), x̄i (t)) −
∫ t

0
dt ′ D[t − t ′, ᾱs(t ′), x̄i (t

′)] , (11.49)

where ᾱs and x̄i are running parameters solutions of the differential equations given in
Eq. (11.34), and which will be given explicitly in the following.

11.7 Running coupling

11.7.1 Lowest order expression and the definition of the QCD scale �

Solving the differential equation in Eq. (11.34), the expression of the running coupling, to
one-loop accuracy is:

a(0)
s (t, αs) = as(ν)

1 − β1as(ν)t
, (11.50)

where:

as ≡ αs

π
,

t ≡ 1

2
ln

−q2

ν2
, (11.51)

and β1 is the first coefficient of the β function given in Table 11.1. It shows that for t → +∞,
a(0)

s → 0 for β1 < 0, which is satisfied for the number of quark flavours n f ≤ 11. In this
case, the theory is asymptotically free and the use of perturbation theory is legitimate. The
point αs = 0 is an UV fixed point as shown in Fig. 11.1 because the β-function has a
negative slope at the origin.

0 αs

β (αs)

We can also re-write the solution as:

t =
∫

dz

z

1

β(z)
≡ ϕ(z) + constant (11.52)
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where the constant term is a renormalization group invariant (RGI) quantity, which one
identifies as:

t − ϕ(z) ≡ 1

2
ln ν2 + 1

β1as(ν)
= constant ≡ 1

2
ln �2 , (11.53)

where � is a RGI but renormalization scheme-dependent quantity. Therefore, the running
coupling, in terms of � to one-loop accuracy, reads:

a(0)
s (q2) = 1

−β1

1
1
2 ln −q2

�2

. (11.54)

11.7.2 Renormalization group invariance of the first two coefficients of β

Before discussing the high-order expression of the coupling, let us discuss the renormal-
ization group invariance of the first two coefficients of the β function. Let βa and βb the
β functions related to two different values of the subtraction νa and νb of the M S scheme.
Using Eq. (11.52), we have:

tb ≡ 1

2
ln

−q2

ν2
b

=
∫ ᾱs (tb,αs (ν2

b ))

αs (νa )

dz

z

1

βa(z)
≡ ϕ(z) . (11.55)

Applying the operator νb∂/∂νb to both sides of Eq. (11.55), and using the fact that
ᾱs(tb, αs(ν2

b )) obeys the differential equation:{
νb

∂

∂νb
+ βbαs(νb)

∂

∂αs(νb)

}
ᾱs(tb, αs(νb)) = 0 , (11.56)

one obtains:

−1 = −
(

1

αs(νa)βa

)
βbαs(νb)

∂αs(νa)

∂αs(νb)
=⇒ βa = βb

(
αs(νb)

αs(νa)

) (
∂αs(νb)

∂αs(νa)

)
. (11.57)

Using the αs expansion:

βa = βa
1

(αs

π

)
(νa) + βa

2

(αs

π

)2
(νa) + · · · ,

βb = βb
1

(αs

π

)
(νb) + βb

2

(αs

π

)2
(νb) + · · · , (11.58)

and the relation:

αs(νa) = αs(νb) + cα2
s (νb) , (11.59)

where c is an arbitrary constant depending on the subtraction scale, one can easily
deduce:

βa
1 = βb

1 and βa
2 = βb

2 , (11.60)

which achieves the proof of the RGI invariance of β1 and β2. The higher-order terms of the
β function will be affected by the coefficient c and hence on the subtraction scale.
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11.7.3 Higher order expression

The previous result can be extended to higher orders. To order α2
s , one can write the solution

of Eq. (11.52) as:

t =
∫

dz

z2

π

β1 (1 + (β2/β1)(z/π ))
+ constant

= π

β1

{
−1

z
+ β2

β1

1

π
ln

(
1 + (β2/β1)(z/π )

z

)}
+ constant , (11.61)

where the constant is a RGI quantity which has been fixed to be ln � to lowest order. At the
two-loop level, it is convenient to fix it as in [138]:

constant ≡ ln �(1 loop) − β2

β2
1

ln

(
− β1

2π

)
. (11.62)

Therefore, we get the RGI quantity to two loops:

ln ν + 1

β1as
− β2

β2
1

ln

(
1 + (β2/β1)(as)

asπ

)
= ln �(two loops) − β2

β2
1

ln

(
− β1

2π

)
. (11.63)

Expanding Eq. (11.61), and inserting the expression of the running αs to one loop, we
deduce:

as(q2)(2) = a(0)
s

{
1 − a(0)

s

β2

β1
ln ln

ν2

�2

}
. (11.64)

It is not difficult to show that, to order α2
s , one can relate the one- and two-loop values of

� as:

�(two loops) =
(

− β1

2π

)β2/β
2
1

�(1 loop) (11.65)

To three-loop accuracy the running coupling can be parametrized as:

as(ν) = a(0)
s

{
1 − a(0)

s

β2

β1
ln ln

ν2

�2

+ (
a(0)

s

)2
[
β2

2

β2
1

ln2 ln
ν2

�2
− β2

2

β2
1

ln ln
ν2

�2
− β2

2

β2
1

+ β3

β1

]
+ O(

a3
s

)}
, (11.66)

with βi are the O(ai
s) coefficients of the β function in the M S scheme for n f flavours (see

Table 2.2), which, for three flavours, read:

β1 = −9/2 , β2 = −8 , β3 = −20.1198 . (11.67)



11 The renormalization group 109

� is a renormalization group invariant scale but is renormalization scheme dependent. The
running coupling αs has been measured from LEP, τ decays2 and deep-inelastic scattering
data. We shall discuss these determinations in the next chapter. The present world average
is [16,139]:

αs(MZ ) = 0.1181 ± 0.0027 . (11.68)

11.8 Decoupling theorem

The decoupling theorem of Appelquist and Carazzone [140] states that the effect of heavy
particles (fermion, boson) of mass M2

H � −q2 can be ignored below their thresholds.
However, in the M S and M S schemes, these heavy particles could contribute to the universal
β and γ functions as they are mass independent, and therefore the M S and M S schemes
do not a priori satisfy this theorem. In order to satisfy this theorem, one should modify the
scheme. References [141–143] have proposed to absorb into the renormalization constant,
not only the 1/ε̂ pole but also terms of the type lnn MH/ν coming from heavy fermion or
boson loops (ν being the scale of the M S scheme). In such an effective theory, one can
relate the QCD scale of n light quarks to the one with n light plus one heavy flavour. To
one loop, this relation is:

�n+1 = �n

(
M2

H

p2

) 1
3β1

. (11.69)

At the heavy quark threshold p2 = 4M2
H , one can see that the heavy quark effect tends

to decrease slightly the value of �. One can see more explictly such effects in Table 11.2.

11.9 Input values of αs and matching conditions

We shall discuss below, how this decoupling is used in the practical evaluation of the running
coupling. In so doing, we run the value of αs(MZ ) in the range given in Table 11.2, to lower
scales by taking appropriately the threshold effects due to heavy quark productions. We run
this value until Mb = 4.6–4.7 GeV, using the two-loop relation:

αs

π
= a(0)

s

(
1 − a(0)

s

β2

β1
ln ln(−q2/�2)

)
(11.70)

and for n f flavours, we note that:

β1 = −11

2
+ n f

3
and β2 = −51

4
+ 19

12
n f . (11.71)

2 This process gives so far the most precise measurement of αs at MZ as a modest accuracy at the τ -mass becomes a precise value
at the Z -mass because the errors decrease faster than the running of αs . Also, here, compared with some other determinations, we
have relatively the best theoretical control including the perturbative corrections to order α4

s , the non-perturbative condensates
and the resummation of the asymptotic series.
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Table 11.2. Value of αs and � to two-loops at different scales
and flavours

αs(MZ ) �5[MeV] αs(Mb) �4[MeV] αs(Mc) �3[MeV] αs(Mτ )

0.112 160 0.198 240 0.312 290 0.277
0.118 225 0.218 325 0.372 375 0.319
0.124 310 0.241 432 0.463 480 0.378
0.127 360 0.254 495 0.528 540 0.417

Following references [144,145], we do the matching condition α(5)
s = α(4)

s at this
b-mass, in order to extract αs for four flavours. We continue iteratively this procedure
for completing Table 11.2, which is one of the basic inputs of numerous phenomeno-
logical analyses discussed in this book. We use here the value of the perturbative pole
mass to two-loops: Mb = 4.62 GeV and Mc = 1.42 GeV which we shall discuss later on.
Notice that doing a similar procedure at the three-loop level, we reproduce the value of
αs given in [139]. In this case, one can use the three-loop relation at the subtraction scale
MH [146]:

α
(n f −1)
s = α

(n f )
s

[
1 − 0.291667a2

s − [5.32389 − (n f − 1)0.26247]a3
s

]
, (11.72)

where: as ≡ α
(n f )
s /π .

11.10 Running gauge

The running gauge ᾱG is the solution of the differential equation in Eq. (11.35). To leading
order in αs , it reads [110]:

ᾱG(−q2) = α̂G[
1
2 ln (−q2/�)

]δ/−β1

{
1 + N

4δ

α̂G[
1
2 ln (−q2/�)

]δ/−β1

}−1

, (11.73)

where for SU (N )c × SU (n)F :

δ = 13

12
N − n

3
. (11.74)

α̂G is a renormalization group invariant parameter defined to one loop as:

α̂G = αG(ν)

1 − N
4δ

αG(ν)

(
1

−β1as(ν)

)δ/−β1

. (11.75)

It is interesting to notice that for n ≤ 9, the running gauge tends to the Landau gauge
(αG = 0) for −q2 → ∞. One also obtains:

ᾱG(q2) = αG(ν) , (11.76)
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for αG = 0 (Landau gauge) to all orders and for αG = 4δ (peculiar gauge) to lowest order
in αs .

11.11 Running masses

The running masses are solutions of the differential equation in Eq. (11.35). Analogously
to �, one can also introduce an invariant mass m̂i [28]. The expression of the running quark
mass in terms of the invariant mass m̂i is [28]:

m̄i (ν) = m̂i (−β1as(ν))−γ1/β1

{
1 + β2

β1

(
γ1

β1
− γ2

β2

)
as(ν)

+ 1

2

[
β2

2

β2
1

(
γ1

β1
− γ2

β2

)2

− β2
2

β2
1

(
γ1

β1
− γ2

β2

)
+ β3

β1

(
γ1

β1
− γ3

β3

) ]
a2

s (ν) + O(
a3

s

)}
,

(11.77)

where γi are the O(ai
s) coefficients of the quark-mass anomalous dimension (see

Table 11.1). For three flavours, we have:

γ1 = 2 , γ2 = 91/12 , γ3 = 24.8404 . (11.78)

As we shall see later on, QSSR is, at present, the most appropriate theoretical method for
extracting the absolute values of the light quark masses. A long list of these determinations
is given in the recent review [54] (see also [57] and the chapter on quark masses in this
book), where the QSSR results are compared with the ones from chiral perturbation theory
and lattice calculations. We only quote below the results:

m̄d (2 GeV) = (6.5 ± 1.2) MeV, m̄u(2 GeV) = (3.6 ± 0.6) MeV , (11.79)

and:

m̄s(2 GeV) = (117.4 ± 23.4) MeV , (11.80)

and the bounds from the positivity of the spectral functions:

90 MeV ≤ m̄s(2 GeV) ≤ 168 MeV . (11.81)

The running masses of the c and b quarks have been also extracted directly from the J/ψ

and ϒ sum rules. To two-loop (order αs) accuracy, one obtains [149]:

m̄c(Mc) = (
1.23+0.02

−0.04 ± 0.03
)

GeV m̄b(Mb) = (
4.23+0.03

−0.04 ± 0.02
)

MeV . (11.82)

From the D and B meson systems, one obtains to order α2
s [150]:

m̄c(Mc) = (
1.10 ± 0.04

)
GeV m̄b(Mb) = (

4.05 ± 0.06
)

MeV , (11.83)
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which agree with the former within the errors though the central values are slightly lower.
These results can be compared with different results based on non-relativistic and some
other approaches [16].

11.12 The perturbative pole mass

The notion of perturbative pole mass can be useful in the phenomenology of the heavy
quark systems. However, unlike in QED, where the pole mass is well-defined, due to
the observation of the lepton, this definition is ambiguous in QCD due to confinement.
Attempts to define the pole mass within perturbation theory have been done in the literature
[141,133,148]. By analogy with QED, one can define the pole mass as the pole of the quark
propagator. For definiteness, on can start with the bare quark propagator:

SF (p) = 1

p̂ − MB − iε
, (11.84)

After interaction, one has:

SF (p) =
(

1

1 − �2

)
1

p̂ − MB
[
1 + �1

1−�2

] (11.85)

which shows explicitly the wave function and the mass renormalization constants in
Eq. (9.20). An explicit evaluation of �1,2 in the M S scheme gives:

�B
1 = (gBν−ε/2)2 CF

(16π2)1−ε/4

∫ 1

0
dx

×
[
�(ε/2)

(
R2

ν2

)−ε/2

[2(2 − x) − ε(1 − x) + (1 − αG)(1 − 2x)]

+ (1 − αG)2x(1 − x)
p2

M2
B − p2x

]
(11.86)

�B
2 = (gBν−ε/2)2 CF

(16π2)1−ε/4

∫ 1

0
dx

×
[
�(ε/2)

(
R2

ν2

)−ε/2

[−2x + ε(1 − x) + (1 − αG)2(1 − x)]

+ (1 − αG)2x(1 − x)
p2

M2
B − p2x

]
, (11.87)

where:

R2 = (1 − x)
(
M2

B − p2x
) − iε′. (11.88)
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αG is the covariant gauge parameter and CF = (N 2 − 1)/(2N ) for SU (N )c. These para-
metric integrals lead to:

�B
1 =

(αs

π

)
CF

1

2

{
3

ε̂
+ 5

2
− 3

2
ln

M2
B − p2

ν2

+
(

1

2

)
M2

B

−p2

[
1 −

(
4 + M2

B

−p2

)
ln

(
1 − p2

M2
B

)]

+ (1 − αG)

[
− 1

2
− 1

2

M2
B

−p2
+ 1

2

M2
B

−p2

(
1 + M2

B

−p2

)
ln

(
1 − p2

M2
B

)]}
, (11.89)

�B
2 =

(αs

π

)
CF

1

4
[−1 + (1 − αG)]

{
2

ε̂
+ 1 − ln

M2
B − p2

ν2

+
(

M2
B

−p2

)2

ln

(
1 − p2

M2
B

)
− M2

B

−p2

}
, (11.90)

with:

1/ε̂ ≡ 1/ε + 1

2
(ln 4π − γ ) , (11.91)

which shows that �B
2 vanishes to order αs in the Landau gauge αG = 0. Their asymptotic

expressions are:

�B
1

∣∣
p2�M2 =

(αs

π

)
CF

1

2

{
3

ε̂
+ 5

2
− 3

2
ln

−p2

ν2
+ 1

2
(1 − αG) + O

(
M2

−p2
ln

−p2

M2

) }
,

�B
2

∣∣
p2�M2 =

(αs

π

)
CF

1

4
[−1 + (1 − αG)]

{
2

ε̂
+ 1 − ln

−p2

ν2
+ O

(
M2

−p2
ln

−p2

M2

) }
,

(11.92)

and:

�B
1

∣∣
p2�M2 =

(αs

π

)
CF

1

2

{
3

ε̂
− 3

2
ln

M2
B

ν2
+ 3

4
+ 5

6

(−p2

M2
B

)

+ (1 − αG)

[
−1

4
− 1

12

(−p2

M2
B

)] }
,

�B
2

∣∣
p2�M2 =

(αs

π

)
CF

1

4
[−1 + (1 − αG)]

{
2

ε̂
− ln

M2

ν2
+ 1

2
− 2

3

(−p2

M2
B

) }
, (11.93)

At p2 = M2 = ν2, one gets:

�B
1

∣∣
p2=M2=ν2 =

(αs

π

)
CF

1

2

[
3

ε̂
+ 2

]
, (11.94)
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which is gauge independent. It is related to the pole mass, which is defined at the pole
p2 = M2 of the full quark propagator through Eq. (11.85). In terms of the running mass,
the pole mass reads:

Mpole = m̄(p2)

{
1 + �1(p2 = M2)

1 − �2(p2 = M2)

}
, (11.95)

Therefore, the previous expressions gives [148]:

Mpole = m̄(p2)

{
1 +

(
4

3
+ ln

p2

M2

) (αs

π

)}
, (11.96)

which is gauge and renormalization scheme independent. The IR finiteness of the result to
order α2

s has been explicitly shown in [133]. The independence of Mpole on the choice of
the regularization scheme has been demonstrated in [148]. The extension of the previous
result to order α2

s is [151]:

Mpole = m̄(p2)

[
1 +

(
4

3
+ ln

p2

M2

) (αs

π

)

+
[

K Q +
(

221

24
− 13

36
n

)
ln

p2

M2
+

(
15

8
− n

12

)
ln2 p2

M2

] (αs

π

)2
]

, (11.97)

where, in the RHS, M is the pole mass and:

K Q = 17.1514 − 1.04137n + 4

3

∑
i 
=Q

�

(
r ≡ mi

MQ

)
. (11.98)

For 0 ≤ r ≤ 1, �(r ) can be approximated, within an accuracy of 1% by:

�(r ) � π2

8
r − 0.597r2 + 0.230r3 , (11.99)

while, its values in the following limiting cases are:

�(r → 0) � 3

4
ζ (2)r + O(r2) ,

�(r → ∞) � 1

4
ln2 r + 13

24
ln r + 1

4
ζ (2) + 151

288
+ O(r−2 ln r ) ,

�(r = 1) � 3

4
ζ (2) − 3

8
. (11.100)

As, one can notice, the behaviour of �(r → ∞) is quite bad, such that in the effective
field theory where the heavy quark mass tends to infinity, one should write a well-defined
relation in this limit. This can be achieved by introducing the coupling and light quark
masses in the effective field theory in terms of the corresponding quantities in the full
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theory [144]:

αeff
s (ν) = αs(ν)C(αs(ν), x)

meff(ν) = m(ν)H (αs(ν), x) , (11.101)

where x ≡ ln(m̄2
h/ν

2) and:

C(αs, x) = 1 +
∑
k≥1

Ck

(αs

π

)k
, Ck(x) =

∑
0≤i≤k

Cik xi ,

H (αs, x) = 1 +
∑
k≥1

Hk

(αs

π

)k
, Hk(x) =

∑
0≤i≤k

Hik xi , (11.102)

with:

C1 = x

6
, C2 = 11

72
+ 11

24
x + x2

36
,

H1 = 0 , H2 = 89

32
+ 5

36
x + x2

12
, (11.103)

and by expressing αeff
s in terms of the pole mass:

αeff
s = αs

{
1 + X

6

(αs

π

)
+

(
− 7

24
+ 19X

24
+ X2

36

) (αs

π

)2
}

, (11.104)

where X ≡ ln(M2
h/ν2). In this way, the previous expression becomes:

Mpole = m̄(p2)

[
1 +

(
4

3
+ ln

p2

m̄2

) (αs

π

)

+
[

K Q(m̄ f /m̄) +
(

173

24
− 13

36
n

)
ln

p2

m̄2
+

(
15

8
− n

12

)
ln2 p2

m̄2

] (αs

π

)2
]

,

(11.105)

where m̄ is the running mass of the finite mass heavy quark, n is the number of finite
mass quark flavours and the summation in K Q through �(m̄ f /m̄) runs over the n − 1
lightest quarks. For instance, in the case of the bottom quark mass, one uses n = 5, and
deduce:

Mb = m̄b(p2)

[
1 +

(
4

3
+ ln

p2

m̄2
b

) (
αeff

s

π

)

+
[

K Q(m̄ f /m̄b) + 389

72
ln

p2

m̄2
b

+ 35

24
ln2 p2

m̄2

] (αs

π

)2
]

, (11.106)

where, by neglecting the u and d quark masses:

K Q(m̄ f /m̄b) = 9.278 + 4

3

∑
f ≡s,c

�(m̄ f /m̄b) . (11.107)
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Finally, a recent order α3
s evaluation leads to [152]:

m̄(Mpole) = Mpole

[
1 − 4

3

(αs

π

)
+ [−14.3323 − 1.0414n]

(αs

π

)2

+ [−198.7068 + 26.9239n − 0.65269n2]
(αs

π

)3
]

. (11.108)

However, one should be careful when using the previous mass in the OPE, as, in order to
be consistent, one should use the same truncations in the mass definition and in the hadronic
correlator to be analysed. For this reason, the re-summed result obtained to leading order
in (β1αs) term within the large n f -limit [154], should also be used with care. Using the
previous relation with the pole and running mass as well as a direct estimate of the two-loop
order αs running mass from the ψ and ϒ-sum rules, one obtains the value of the pole mass
to two-loop accuracy [149]:3

M PT 2
c = (1.42 ± 0.03) GeV , M PT 2

b = (4.62 ± 0.02) GeV . (11.109)

It is informative to compare these values with those of the pole masses from non-
relativistic sum rules to two loops [149]:

M N R
c = (

1.45+0.04
−0.03 ± 0.03

)
GeV , M N R

b = (
4.69+0.02

−0.01 ± 0.02
)

GeV , (11.110)

and, recently, to three loops of order α2
s

4 including a resummation of the Coulombic
corrections [156]:

M N R
b = (4.60 ± 0.02) GeV , (11.111)

in good agreement with the former results.
If one uses the value of the running mass obtained to three-loop accuracy [156], and the

three-loop relation between the pole and the running mass, one obtains:5

M PT 3
b � (4.7 ± 0.07 ± 0.02) GeV , (11.112)

which, although slightly higher, is in agreement within the errors with the two-loop result.
Recent extension of the sum rules analysis [157,159] have led to more accurate values

of the pole mass. The one using the relation between the pole and the 1S meson mass gives
[159]:

M PT 3
b � (4.71 ± 0.03) GeV , (11.113)

in agreement with the two-loop αs result given in Eq. (11.109).
One can also compare the previous values with the dressed mass:

Mnr
b = (4.94 ± 0.10 ± 0.03) GeV , (11.114)

3 We shall discuss these different points in more details in the chapter on quark masses.
4 This result can be considered to be an improvment of the Voloshin value of 4.8 GeV [155].
5 This value is slightly lower than the one given in [149], as the value of the running mass used there is higher. However, the

results agree within the errors.
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obtained from a non-relativistic Balmer formula based on a b̄b Coulomb potential and
including higher order α4

s -corrections [94], or the mass obtained from the fit of the spectra
within potential models [12]:

Mpot
b � (4.8 ∼ 4.9) GeV. (11.115)

This non-relativistic mass is slightly higher than the one from the sum rules. One can
remark that the mass difference is :

Mnr
b − M PT

b ≈ (100 ∼ 200) MeV . (11.116)

The interpretation of this mass difference is not very well understood. If one has in
mind that the non-relativistic pole mass contains a non-perturbative part, which can be of
the same origin as the one induced by the truncation of the perturbative series at large
order, then one might eventually consider this value as a phenomenological estimate of
the renormalon contribution, which is comparable in strength with the estimate of about
100–133 MeV from the summation of higher-order corrections of large-order perturbation
theory [154].

An extension of the previous analysis of the J/ψ and ϒ-systems to the case of the D, B
and D∗, B∗ mesons leads to the value to order αs [149]:

M PT 2
b = (4.63 ± 0.08) GeV , (11.117)

in good agreement with the previous results, but less accurate. This result has been confirmed
by recent estimates to order α2

s [150]:

M PT 3
c = (1.47 ± 0.06) GeV , M PT 3

b = (4.69 ± 0.06) GeV , (11.118)

11.12.1 The b and c pole mass difference

One can also use the previous results, in order to deduce the mass difference between the b
and c (non)-relativistic pole masses:

Mb(Mb) − Mc(Mc) = (3.22 ± 0.03) GeV , (11.119)

in good agreement (within the errors) with potential model expectations [12,16], and with
the heavy quark symmetry (HQET) result from the B and D mass difference [164] (see also
Chapter 44):

Mb(Mb) − Mc(Mc) � (M̄ B − M̄ D)

{
1 − λ1

2M̄ B M̄ D
+ O

(
1

M3
Q

)}
� (3.4 ± 0.04) ,

(11.120)

where one has used the QSSR estimate of the heavy quark kinetic term inside the meson
[165,166]:

λ1 � −(0.5 ± 0.2) GeV2. (11.121)
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A direct comparison of this mass difference with the one from the analysis of the inclusive
B-decays needs however a better understanding of the mass definition and of the value of
the scale entering into these decay processes. If one chooses to evaluate these pole masses
at the scale ν = Mb, which might be a natural scale for this process, one obtains to two-loop
accuracy:

Mc(ν = Mb) = (1.08 ± 0.04) GeV, (11.122)

which leads to the mass difference:

Mb − Mc|ν=Mb = (3.54 ± 0.05) GeV . (11.123)

11.13 Alternative definitions to the pole mass

It has been argued that the pole masses can be affected by non-perturbative terms induced
by the resummation of the QCD perturbative series [154] (see chapter on power corrections)
and alternative definitions free from such ambiguities have been proposed (residual mass
[158] (see also [160]) and 1S mass [159]). Assuming that the QCD potential has no linear
power corrections, the residual or potential-subtracted (PS) mass is related to the pole mass
as:

MPS = Mpole + 1

2

∫
|�q|<µ

d3�q
(2π )3

V (�q) . (11.124)

The 1S mass is defined as half of the perturbative component to the 3S1 Q̄ Q ground state,
which is half of its static energy 〈2Mpole + V 〉.6 The running and short distance pole mass
defined at a given order of PT series will be used in the following discussions in this book.

11.14 M S scheme and RGE for the pseudoscalar two-point correlator

In order to illustrate the discussions in the previous sections, let us consider the two-point
correlator:

�5(q2) ≡ i
∫

d4x eiqx 〈0|T JP (x) (JP (0))† |0〉 , (11.125)

where:

JP = (mi + m j )ψ̄ i (iγ5)ψ j , (11.126)

is the light quark pseudoscalar current.

6 These definitions might still be affected by a dimension-two term advocated in [162,161,438], which might limit their accuracy
[163].
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11.14.1 Lowest order perturbative calculation

We shall be concerned with Fig. 8.1 discussed in Section 8.2.5 for massless quarks
(Fig. 11.2):

q

p

p-q

Using Feynman rules, it reads:

iνε�5(q2) = (mi + m j )
2(−1)N

∫
dn p

(2π )n

× Tr
{

(iγ5)
i

p̂ − mi + iε′ (iγ5)
i

p̂ − q̂ − m j + iε′

}
. (11.127)

Parametrizing the quark propagators à la Feynman (Appendix E) and using the properties
of the Dirac matrices (Appendix D) and momentum integrals (Appendix F) in n-dimensions,
one obtains for the bare correlator:

νε�B
5 (q2) = (mi + m j )

2 N

4π2

∫ 1

0
dx

(
2

ε
+ ln 4π − γ

) (
R2 − iε′

ν2

)−ε/2

×
{(

3 + ε

2

)
q2x(1 − x) − 2

(
1 + ε

4

) (
m2

i x + m2
j (1 − x) + mi m j

)}
,

(11.128)

where:

R2 ≡ −q2x(1 − x) + m2
i x + m2

j (1 − x) , (11.129)

and γ = 0.5772 . . . is the Euler constant. Two limiting cases are particularly interesting:

νε�B
5

(
q2 � m2

i, j

) = (mi + m j )
2q2 N

8π2

[ (
2

ε
+ ln 4π − γ − ln

(−q2

ν2

))

×
[

1 + 2

(
m2

i + m2
j − mi m j

)
−q2

]

+ 2 + ε

4
ln2

(−q2

ν2

)
− ε

2
(ln 4π − γ + 2) ln

(−q2

ν2

) ]
, (11.130)
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and:

νε�B
5 (q2 = 0) = (mi + m j )

N

4π2

[ (
m3

i ln
m2

i

ν2
+ m3

j ln
m2

j

ν2

)

−
(

2

ε
+ ln 4π − γ − 1

) (
m3

i + m3
j

) ]
. (11.131)

The case q = 0 is useful for the Ward identity discussed in Eq. (2.17) and for the definition
of the scale-invariant condensate which will be discussed in Part VII.

One can explicitly check the Ward identity perturbatively by evaluating the longitudinal
part of the axial-vector current correlator defined in Eq. (2.18). One obtains:

qµqν�
µν

5 = N

8π2
q2

∫ 1

0
dx

[
m2

i x + m2
j (1 − x) + mi m j

] (
R2 − iε′

ν2

)−ε/2

�(ε/2) ,

(11.132)

which by comparison gives:

qµqν�
µν

5 = �5(q2) − (mi + m j )
N

4π2

(
m3

i ln
m2

i

ν2
+ m3

j ln
m2

j

ν2

)
. (11.133)

Finally, one can extract the spectral function by using:

ln R2 = ln |R2| − iπθ (−R2) . (11.134)

Therefore, one can deduce:

Im�5(t) = Im
(
qµqν�

µν

5

)
= N

8π2
(mi + m j )

2t

(
1 − (mi − m j )2

t

)

× λ1/2

(
1,

m2
i

t
,

m2
j

t

)
θ [t − (mi + m j )

2] . (11.135)

11.14.2 Two-loop perturbative calculation in the M S scheme

For a pedagogical illustration, we consider a massless quark inside the quark loop. The
corresponding two-loop perturbative contribution comes from Fig. 11.3.

+ +

Fig. 11.3. Two-loop perturbative contribution to the pseudoscalar two-point function.
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A routine application of the previous rules leads to [167]:

�B
5 (q2) = νε

3

8π2

(
m B

i + m B
j

)2
q2

[
2

ε
+ ln 4π − γ + 2 − ln

(−q2

ν2

)

− ε

2
(ln 4π − γ + 2) ln

(−q2

ν2

)
+ ε

4
ln2

(−q2

ν2

)

+
(

gBν−ε/2

4π2

)2 [
4

ε2
+ 4

ε
(ln 4π − γ ) + 29

3ε
+ O(1)

] (−q2

ν2

)−ε
]

. (11.136)

Introducing the renormalized parameter (we shall omit the index R):

gBν−ε/2 = g
[
1 + O

(αs

π

)]
,

m B
i = mi

[
1 − 2

ε

(αs

π

)]
, (11.137)

one can deduce [167]:

�5(q2) = 3

8π2
(mi + m j )

2q2

[
2

ε
+ ln 4π − γ + 2 − ln

(−q2

ν2

)

+
(αs

π

) [
− 4

ε2
+ 5

3ε
+ ln2

(−q2

ν2

)

−
(

17

3
+ 2(ln 4π − γ )

)
ln

(−q2

ν2

) ]]
. (11.138)

This expression tells us that the lowest order term proportional to ε induce via the mass
renormalization a non-zero finite term. It also shows how the non-local:

1

ε
ln

(−q2

ν2

)
(11.139)

pole has disappeared after renormalization. The disappearance of this term is a double check
of the calculation as well. Finally, one can also use the RGE for checking the ln-coefficient.
This can be done by working with the RGE of the two-point correlator given in Section
11.6. In so doing, we consider the coefficient of the 1/ε-terms:

D = D0 +
(αs

π

)
D1 , (11.140)

with:

D0 = − 3

8π2
(xi + x j )

22e2t ,

D1 = − 3

8π2
(xi + x j )

2 10

3
e2t . (11.141)
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where xi ≡ mi/ν is a dimensionless mass and t ≡ −1/2 ln(−q2/ν2). Expressing �5 in
terms of xi , one has:

�5(t, αs, xi, j ) = − 3

8π2
(xi + x j )

2e2t q4

×
[
−2t + ln 4π − γ + 2 +

(αs

π

) (
4at2 + 2bt + c

) ]
, (11.142)

where a, b, c have to be determined. Using the RGE, one obtains the constraint:

D0 = − 3

8π2
(xi + x j )

22e2t ,

D1 = − 3

8π2
(xi + x j )

2e2t

× [−8at − 2b − 2γ1(ln 4π − γ + 2) + 2γ12t] , (11.143)

where γ1 = 2 is the mass anomalous dimension. The fact that D1 cannot depend on t
implies:

−4a + 2γ1 = 0 =⇒ a = 1 . (11.144)

The relation between C1 and D given in Eq. (11.48) implies:

C (0)
1 = D0 . (11.145)

C (1)
1 is not fixed by the RGE but we know it from the previous calculation:

C (1)
1 = 3

8π2
(xi + x j )

2e2t 5

3
, (11.146)

while we deduce from Eq. (11.48):

2C (1)
1 = D1 . (11.147)

The recursive relation implies:

C (1)
2 = 3

8π2
(xi + x j )

2e2t 2γ1 . (11.148)

Inserting the previous expressions into the one of D1, one can deduce:

−2b − 2γ1(ln 4π − γ + 2) = 10

3
. (11.149)

One can see that the RGE and an explicit evaluation of the 1/ε-coefficient to order αs

allows one to fix the coefficients of the 1/ε2, ln2 and ln at that order. This impressive result
allows to have a double check of the direct calculation.
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Other renormalization schemes

In previous chapters, we have concentrated our discussions on the modified minimal sub-
traction M S scheme, which is the most convenient one for QCD. However, it is known
that there is a freedom for choosing a renormalization scheme. Among different existing
off-shell renormalization schemes discussed in the literature, we choose to discuss the fol-
lowing schemes which have been widely used in the 1980s. We shall also discuss their
connections by comparing the renormalized QCD coupling in these different schemes.

12.1 The M S scheme

The M S scheme is the original minimal subtraction scheme proposed for dimensional renor-
malization. We have already discussed the difference between the M S and M S schemes,
which one can illustrate by the comparison of the renormalized coupling in the two schemes:

ν−εαB
s = αR

s

{
1 +

(αs

π

) (
β1

ε
+ δ

)
+ O

(αs

π

)2
}

, (12.1)

where δ is an arbitrary constant characteristic of the scheme used. In the M S scheme:

δM S = β1

2
[ln 4π − γ ] , (12.2)

and the running couplings in the two schemes are related as:

ᾱM S
s = ᾱM S

s

[
1 +

(
ᾱs

π

)
δ + O(

α2
s

)]
. (12.3)

This leading order relation can be translated by the relation between the scale � in the
two schemes:

�M S � �M S exp(δ/β1) , (12.4)

i.e., one obtains to this order:

�M S � 2.66 �M S . (12.5)

123
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Table 12.1. Value of δ(αG, n f ) in the MS and MOM schemes

Scheme δ(αG, n f )

M S 0

M S δM S ≡ (β1/2)[ ln 4π − γ ]

MOM Three-gluon δM S − 11
2 − 23

48 J − αG
9
16 (1 − J ) + α2

G
8 (3 − J ) − α3

G
16 + n f

3

(
1 + 2

3 J
)

Quark-gluon δM S − 1
16

(
89 − 85

9 J
) − αG

25
24

(
1 − 2

3 J
) + α2

G
16 (3 − J ) + 5n f

18

Ghost-gluon δM S − 5
48

(
41 + 3

2 J
) − αG

8 (9 − 2J ) − α2
G

16

(
3 − J

2

) + 5n f

18

12.2 The momentum subtraction scheme

In the momentum subtraction scheme (MOM scheme), the renormalized two-point (or in
general Green’s) function is defined as [168–170]:

	5(q2)R = 	5(q2) − 	5(q2 = −µ2, m2) , (12.6)

where µ is the subtraction point in the Euclidean region. The choice of µ is arbitrary. It is
often chosen at the symmetric point of the three-gluon vertex with which one defines the
renormalized QCD coupling. However, the choice of the vertex is also arbitrary, as one can
choose the quark-gluon-quark or ghost-gluon-ghost vertex for defining the renormalized
coupling. In this scheme, the renormalization constants and universal parameters are mass-
dependent, which is not convenient when one works with massive particles. However, due
to the Appelquist–Carazzone decoupling theorem, one may ignore the effect of the heavy
quarks having a mass larger than the momentum scale of the analysis. If one expresses the
renormalized QCD coupling αs in terms of the bare coupling αB

s in 4 − ε dimensions, one
has:

ν−εαB
s = αs

[
1 +

(
δ(αG, n f ) + β1

ε

)
αs + O(

α2
s

)]
, (12.7)

where δ(αG, n f ) is a finite term which depends on how αs is renormalized, and are given
in Table 12.1, where αG is the gauge parameter; β1 = −(1/2)(11 − 2n f /3) for SU (3)c ×
SU (n) f , and:

J ≡ −2
∫ 1

0
dx

ln x

x2 − x + 1
= 2.3439072. . . . . (12.8)

Therefore, one can derive the lowest order relation between the MOM and M S schemes
in the case of massless quarks [170]:

�mom = �MS exp

{
δ(αG, n f )

β1

}
. (12.9)
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In the usual case of three-gluon vertex, and for some particular values of the gauge
parameter, one has:

δ(0, 3) = −8.46 , δ(1, 3) = −7.68 , (12.10)

which leads to the numerically lowest order relation:

�mom � �MS

(
6.55 for αG = 0 : Landau gauge
5.51 for αG = 1 : Feynman gauge

)
(12.11)

12.3 The Weinberg renormalization scheme

The Weinberg scheme [171] is variant of the MOM scheme. In this scheme the renormalized
two-point function reads:

	5(q2, m2)R = 	5(q2, m2) − 	5(q2 = −µ2, m2 = 0) , (12.12)

and is renormalized at an off-shell space-like point q2 = −µ2 and putting the particle masses
to be zero. It coincides with the MOM scheme, in the case of massless theories. One can
see that, in this scheme, the renormalization constants are also quark-mass dependent. It
has been shown by [172] that the Weinberg scheme violates the Slavnov–Taylor identities
due to the arbitrariness of the subtraction point at a specific vertex, the gauge dependence
of the coupling and to the definition of the tensorial structure of the vertex at the subtraction
point.

12.4 The BLM scheme

The BLM (Brodsky–Lepage–Mackenzie) scheme has been introduced in [173] and has
been based on the analogy with QED where only the light fermion vacuum polarizations
(VP) contribute to the renormalization of the strong coupling constant. In QED, the running
effective charge can be defined as (see the next chapter on QED):

α(Q) = α

1 + e2
em(Q)
, (12.13)

where to lowest order in α, and using an on-shell renormalization:


em(Q) = − 1

4π2

(
2

3
ln

Q

me
− 5

3

)
. (12.14)

The scheme states that an observable O which has the perturbative expansion:

O = C0α(Q)

[
1 + C1

α(Q)

π
+ · · ·

]
(12.15)

can be replaced by:

O = C0α(Q∗
0)

[
1 + C∗

1
α(Q∗

1)

π
+ · · ·

]
(12.16)
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where all VP corrections are absorbed into the effective coupling by an appropriate and
unique choice of scales Q∗

0, Q∗
1, . . . . Since the number n f of light flavour dependences

usually enters the VP to this order, then, both Q∗
i and C∗

i are independent of n f , while,
in general, the scales Q∗

i can depend on the ratio of invariants. Taking the example of the
anomalous magnetic moment of the leptons, which can be expressed as (see QED section):

ae = α

2π

[
1 − 0.657

α

2π

]
, (12.17)

and the VP contribution to the muon anomaly gives:

AV P
α

π
a0

µ =
[

2

3
ln

mµ

me
− 25

18

]
α

π
a0

µ . (12.18)

For the muon, one can expect that, at a scale Q∗ ∼ mµ, the exact result can be expressed
as:

aµ = α(Q∗)

2π
, (12.19)

where the running coupling is defined in Eq. (12.13), such that Eq. (12.18) and Eq. (12.19)
must be equal. In this way, one obtains:

Q∗ = mµe5/12 . (12.20)

In this procedure, the electron and the muon anomaly have the same expression to this
order, as we replace:

aµ = α

2π

[
1 + α

π
(AV P + C1) + · · ·

]
, (12.21)

by:

aµ = α(Q∗)

2π

[
1 + α(Q∗)

π
C1 + · · ·

]
, (12.22)

where:

α(Q∗) � α

1 − (α/π )AV P
, (12.23)

and:

C1 = −0.657 . (12.24)

In the case of QCD, a similar approach can be made. The observable can be written as:

M = C0αM S(Q)[1 + (αM S(Q)/π ) (n f AV P + B)] . (12.25)

One can change the coupling by:

αM S(Q∗) = αM S(Q)

[
1 − β1(αM S(Q)/π ) ln

Q∗

Q
+ · · ·

]−1

. (12.26)
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and express the observable as:

M = C0αM S(Q∗)[1 + (αM S(Q∗)/π )C∗
1 + · · ·] . (12.27)

Then, one can deduce:

Q∗ = Q exp(3AV P ) ,

C∗
1 = 33

2
AV P + B , (12.28)

where the term 33
2 AV P in C∗

1 serves to remove the part of B which renormalizes the leading-
order coupling.

The ratio of these gluonic corrections to the light quark ones is fixed by the β function. In
some of the examples given by BLM, the value of Q∗ appears to be lower than the original
scale of the process, which might be inconvenient for the convergence of the QCD series.
Moreover, the scheme dependence of the result in Eq. (12.28) has been pointed out in [174],
while an extension of the BLM result beyond NLO shows an ambiguity in the prescription
[175]. Recent interest in the resummation of perturbative QCD series using large value of
β in the naı̈ve Abelization of QCD (see Renormalons section) has revived the use of the
BLM scheme despite these previous drawbacks of the procedure.

12.5 The PMS optimization scheme

The principle of minimal sensitivity (PMS) scheme has been introduced by Stevenson
[176] in QCD. It consists on the fact that physical quantities should be insensitive to a
small variation of unphysical parameters, and is based on variational approach. It is more
instructive to illustrate the method by the classical example of the e+e− → hadrons total
cross-section, which is known to high-accuracy in perturbative QCD. To order α2

s , the
corresponding Adler D-function reads:

D(q2) ≡ −q2
∫ ∞

0

dt

(t − q2)2
R(t) �

∑
i

Q2
i {1 + [D2 ≡ as (1 + as F3)] + · · ·} , (12.29)

where:

R ≡ σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
. (12.30)

Qi is the quark charge in units of e; F3 is renormalization scheme dependent; as ≡ ᾱs/π

is the QCD running coupling. The ν (subtraction scale) dependence of the dimensional
renormalization scheme can be introduced via:

τ ≡ −β1 ln(ν/�) . (12.31)

Using the differential equation obeyed by the running coupling:

−β1
∂as

∂τ
= asβ(as) = β1a2

s

(
1 + β2

β1
as

)
, (12.32)
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one obtains:

∂ D2

∂τ
= −a2

s

(
1 + β2

β1
as

)
(1 + 2F3as) + a2

s

∂ F3

∂τ
. (12.33)

Using the fact that D2 is independent of τ , the a2
s term in Eq. (12.33) must vanish, which

leads to:

F3(τ ) = τ − τ0 + F3(τ0) . (12.34)

The optimization criterion imposes that the remainder term of ∂ D2/∂τ also vanishes at
a critical value τ ≡ τc. The optimal value of F3 corresponds to:

β2

β1
+ 2Fopt

3

(
1 + β2

β1
as(τc)

)
= 0 , (12.35)

where the rôle of asβ2 can be increased by computing the next order terms. From this result,
one can deduce the optimal value of D2:

Dopt
2 = as(τc)

[
1 − (β2/β1)as(τc)

2[1 + (β2/β1)as(τc)]

]
. (12.36)

The last step of the analysis is to find as(τc). This can be done by integrating Eq. (12.32).
One obtains to two loops:

K̂ 2(as) ≡ τ =
∫ ∞

as

dx

x2[1 + (β2/β1)as(x)]
= 1

as
+ β2

β1
ln

(
(β2/β1)as

1 + (β2/β1)as

)
, (12.37)

where the upper limit of integration is equivalent to the choice of � in τ = −β1 ln(ν/�).
Using Eq. (11.53) by including next leading corrections, one can derive the relation:

�opt = �M S

(
−2

β2

β1

)β2/β1
2

. (12.38)

Rewriting Eq. (12.34) as:

F3 = K̂ 2(as) − ρ1(Q) , (12.39)

where:

ρ1(Q) ≡ τ0 − F3(τ0) , (12.40)

is a constant term independent of the unphysical variable τ at fixed Q, where at Q2 ≡
−q2 = ν2, it reads:

ρ1(Q2 = ν2) = −β1 ln(Q/�) − F3 . (12.41)

It is also a renormalization scheme invariant quantity, as the scheme dependence of �

cancels the one of F3. Substituting the value of F3 from Eq. (12.39) into Eq. (12.35), one
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gets the following transcendental equation for as(τc):

K̂ 2(as(τc)) + 1

2

β2

β1

(
1 + β2

β1
(as(τc)

)−1

= ρ1(Q) , (12.42)

where the solution as(τc) is the one to be used in Dopt
2 . As ρ1 behaves like 1/as , it needs to

be large for a good description of the process. The PMS scheme has been quite popular in
the period of 1980–1990.

At present, the interest in the method has decreased. This is probably related to the fact
that it does not yet incorporate the power corrections which plays a non-negligible rôle
in the extraction of the QCD coupling from different processes. However, an extension of
the method including these non-perturbative corrections, although small, should be more
attractive.

12.6 The effective charge scheme

Like the PMS, this scheme is also conceptually based on the construction of scheme-
invariant quantities from combinations of scheme-dependent coefficients [177]. In order to
illustrate the discussion, let’s start from the D function defined in Eq. (12.29), which we
rewrite as:1

Dn �
∑

i

Q2
i

{
1 + asd0

(
1 +

n−1∑
i=1

di a
i
s

)
+ · · ·

}
, (12.43)

where all higher order corrections and scheme dependence of the process are absorbed into
the definition of the coupling constant. The ECH approach imposes the condition that all
coefficients di = 0 for all i ≥ 2. Writing the β function as:

β(αs) = −β1as

(
1 +

n−1∑
i=1

ci a
i
s

)
, (12.44)

and:

DECH
n = Dn(as) + δDECH

n , (12.45)

these conditions imply for the remaining corrections to the physical quantities [178]:

δDECH
2 = d0d1(c1 + d2)

δDECH
3 = d0d1

(
c2 − 1

2
c1d1 − 2d2

1 + 3d2 + d2

)
. (12.46)

These conditions are realized provided that the expansion of the β function in terms of
as makes sense, which translates into the renormalization scheme-independent constraint:

c1as ≡ β2

β1
as < 1 , (12.47)

1 We neglect in this discussion the small contribution due to the light by the light-scattering diagram (see next chapter).
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which for four flavours corresponds to Q > 1.62λ. However, it is interesting to see the
modification of this constraint when non-perturbative terms are included in the QCD series.
In [178], relations between the corrections to Dn in the PMS and ECH scheme have been
also derived with the result:

δDPMS
2 = δDECH

2 + d0c2
1

4
δDPMS

3 = δDECH
3 , (12.48)

as well as an extension of the analysis to n = 4.
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M S scheme for QED

Related discussions can e.g. be found in [147,110,111]. QED which is an Abelian theory is
much simpler than the non-Abelian QCD. As we have mentioned in the introduction, QED
works well with the on-shell renormalization scheme and has been experimentally tested
with a high degree of accuracy (g − 2, . . .), such that it is a priori useless to introduce a
new scheme for studying it. However, it is interesting to know the relations of different
observables in the on-shell and M S schemes.

13.1 The QED Lagrangian

As we have already mentioned previously, the QED Lagrangian is quite simple, as we do
not need ghost fields for its quantization due to its Abelian character. Its expression is given
in Eq. (5.10), which we repeat below:

LQED ≡ Lγ + Ll + LI , (13.1)

with:

Lγ = −1

4
Fµν(x)Fµν(x) − 1

2αG
∂µ Aµ(x)∂ν Aν(x) ,

Ll = ψ̄(x) (i∂µγ µ − m)ψ(x) ,

LI = −eAµ(x)ψ̄(x)γ µψ(x) (13.2)

where Fµν(x) = ∂µ Aν(x) − ∂ν Aµ(x) is the photon field strengths of the photon field Aµ(x);
αG is the gauge parameter with αG = 0 (Landau gauge) and αG = 1 (Feynman gauge); ψ(x)
and m is the lepton field and mass; e is the electric charge.

13.2 Renormalization constants and RGE

The renormalization constants of the fields are defined analogously to the case of QCD in
Eqs. (9.20, 9.21, 9.22), and will not be repeated here. The QED Ward identity, analogous
to the one in Eq. (9.24), gives:

Z1F = Z2F , (13.3)
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which implies:

Zα = Z−1
3Y M ≡ Z−1

3 , (13.4)

while the gauge invariance of the QED Lagrangian implies that there is no renormalization
counterterm for gauge term of the Lagrangian. Then:

ZG = Z3 (13.5)

The RGE of QED has been originally introduced by [75,76] for improving the QED
perturbation series. It has the form in Eq. (11.32) with the solution in Eq. (11.33).

13.3 β function, running coupling and anomalous dimensions

The β function is known to order α3. It reads [179]:

β(α) ≡ ν

Z3

d Z3

dν

=
(

β1 = 2

3

) (α

π

)
+

(
β2 = 1

2

) (α

π

)2
+

(
β3 = −121

144

) (α

π

)3
, (13.6)

where, in the case of massless fermion, β1 and β2 are invariant under the renormalization
schemes. It is important to notice the crucial difference between QCD and QED, as here
the β function is positive, which means that the origin of the coupling is no longer an UV
fixed point and the QED coupling increases with q2. The running QED coupling is solution
of the differential equation analogue to the one in Eq. (11.34). Its solution to one loop is:

ᾱ(q2) = α(ν)

1 − (α(ν)/π ) β1
1
2 ln(−q2/ν2)

≡ π

β1
1
2 ln

(−q2/�2
em

) , (13.7)

where in the last identity, we have introduced the RGI parameter �em in analogy of QCD.
The anomalous dimensions are:

γF ≡ ν

Z2F

d Z2F

dν
= αG

2

(α

π

)
+ O(α2) ,

γm ≡ ν

Zm

d Zm

dν
=

(
γem ≡ 3

2

) (α

π

)
+ O(α2) ,

γ	 ≡ ν

Z	

d Z	

dν
= −1

2
[nγ β(α) + nFγF ] , (13.8)

where nγ and nF are respectively the number of external photon and fermion fields.

13.4 Effective charge and link between the M S and on-shell scheme

One can relate the electric charge in the QED on-shell scheme to the one in the
M S scheme, by using the fact that the QED effective charge is invariant under the choice
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of renormalizations:1

αeff(q
2) = αB

1 + e2
B
B

em

= αR

1 + e2
R
R

em

, (13.9)

where the indices R and B denote renormalized and bare quantities; α = e2/4π is the fine
structure constant; 
em is the electromagnetic vacuum polarization defined as:


µν
em(q) = i

∫
d4x eiqx 〈0|T Jµ(x)J ν(0)†|0〉 = − (gµνq2 − qµqν)
em(q2) , (13.10)

where Jµ = l̄γ µl is the local current built from the lepton field. Using the Feynman rule
given in Appendix E and the Dirac algebra in n dimensions in Appendix D, its expression
can be easily obtained, if one follows closely the derivation of the pseudoscalar two-point
function discussed previously. The bare two-point correlator reads to lowest order:


B
em(q2) = 1

12π2

{
2

ε
+ (ln 4π ) − γ − 3

∫ 1

0
dx 2x(1 − x) ln

−q2x(1 − x) + m2 − iε′

ν2

}
.

(13.11)

From this expression, one can deduce to leading order in m2/q2:


B
em(−q2 � m2) = 1

12π2

{
2

ε
+ (ln 4π ) − γ − ln

−q2

ν2
+ 5

3

− 6
m2

−q2
+ 6

(
m2

−q2

)2

ln
−q2

m2

}
, (13.12)

and:


B
em(q2 = 0) = 1

12π2

{
2

ε
+ (ln 4π ) − γ − ln

m2

ν2

}
. (13.13)

The renormalized vacuum polarization can be easily obtained:


o.s.
em � 1

12π2

{
−ln

−q2

m2
+ 5

3
+ · · ·

}


M S
em = 1

12π2

{
−ln

−q2

ν2
+ 5

3
+ · · ·

}
(13.14)

Using the fact that 
on−shell
em (q2 = 0) = 0 in Eq. (13.9), one can relate the charge in the

on-shell and M S scheme as.2

α(ν) = αo.s.

{
1 +

(αo.s.

π

) 1

3
ln

ν2

m2

}
(13.15)

1 The last equality comes from the fact that the charge renormalization constant Zα and the photon field renormalization constant
Z3 are related to each others from Eq. (13.4).

2 For a more elegant notation, we shall not put index for the M S coupling.
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Using this relation into Eq. (13.7), one can deduce the running coupling in the M S scheme
in terms of the one in the on-shell scheme evaluated at ν = m:

ᾱ(q2) = αo.s.

1 − (αo.s./π ) β1
1
2 ln (−q2/m2)

. (13.16)

Identifying this result with the one in Eq. (13.7), one can deduce for one fermion:

�em = m exp

(
π

β1αo.s.

)
. (13.17)

This result can be easily generalized to n fermions of mass mi :

�em =
(

n∏
i=1

mi

)
exp

(
π

nβ1αo.s.

)
. (13.18)

For the three observed charged leptons e, µ, τ , this leads to:

�em = 5.2 × 1093 GeV , (13.19)

which is an astronomical number. This is the scale at which one expects that the QED series
expansion breaks down, and is commonly called as the Landau pole. Using its definition
in Eq. (13.9), the effective QED charge can be expressed in terms of the running charge. It
reads, in the M S scheme:

αeff(q
2) � ᾱ(q2)

{
1 −

(
ᾱ

π

)
1

3

(
5

3

)
+ O

(
m2

q2

)}
. (13.20)

Analogous relation from Eq. (13.9) can also be obtained in the on-shell scheme. The iden-
tification of the two relations for αeff leads to the relation between the running coupling in
the M S and on-shell schemes:

ᾱ(q2) = ᾱo.s.(q
2)

{
1 +

(
ᾱo.s.

π

)
1

3
ln

−q2

m2
+ O

(
ᾱo.s.

π

)2
}

. (13.21)

This relation is useful in the analysis of electroweak processes where the Green’s functions
are often evaluated using the M S scheme.
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High-precision low-energy QED tests

As shown in the previous chapter, one expects that QED works well until an astronomical
value of �em, which is due to the non-asymptotically free property of the theory, where the
effective charge grows with the energy. Therefore, contrary to QCD, one expects that QED
is best tested at low energies which is the interesting experimental region.1

14.1 The lepton anomaly

Indeed, one of the most impressive and traditional test of QED is given by the measurements
of the leptons (e, µ) anomalous magnetic moments (lepton anomaly) aµ, where one notices
that from the electron to the muon, the running charge has increased from ᾱ(t = 0) to
ᾱ(t = ln(mµ/me)). The anomalous magnetic moment of charged leptons and for on-shell
photon (q2 = 0) is defined as:

al ≡ 1

2
(gl − 2) ≡ F2(0) , (14.1)

where F2(0) is the Pauli form factor related to the lepton-photon-lepton vertex as:

ū(p′)�µ(p2 = p′2 = m2)u(p) = ū(p′)γµu(p)F1(q2) − 1

2m
ū(p′)σµνqνu(p)F2(q2) .

(14.2)
The full vertex and the lowest order QED contribution are given by Fig. 14.1.
The lowest order contribution is:

a(2)
l = 1

2

(α

π

)
. (14.3)

14.1.1 The electron anomaly and measurement of fine structure constant α

In the case of the electron, the anomalous magnetic moment has been measured with a high
accuracy [181]:

aexp
e− = 115 965 218 84(43) × 10−13 ,

aexp
e+ = 115 965 218 79(43) × 10−13 . (14.4)

1 For some other low-energy tests of the fermion substructure beyond the standard model, see e.g. [180].
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q q

Fig. 14.1. Full vertex and lowest order QED contribution to al .

A comparison of this value with the theoretical prediction [182,183,184]:

aSM
e = 1

2

(α

π

)
− 0.328 478 444 00

(α

π

)2
+ 1.181 234 017

(α

π

)3

− 1.509 8(384)
(α

π

)4
+ 1.66(3) × 10−12(hadronic + electroweak loops) (14.5)

provides a very precise measurement of the QED charge (fine structure constant) at the
scale of the electron mass [185]:

α−1(ae) = 137.035 999 58(52) , (14.6)

which is more precise than the one from the quantum Hall effect [182]:

α−1(Hall) = 137.036 003 00(270) . (14.7)

A resolution of the two discrepancies can provide a bound on new physics which
is however not very strong as the new physics scale is constrained to be only larger than
100 GeV, assuming a generic effect of the order of m2

e/�
2.

14.1.2 The muon anomaly and the rôle of the hadronic contributions

In the case of the muon, higher order QED contributions are known up order α5. Typical
higher order QED diagrams are shown in Fig. 14.2.

The total QED contribution reads [184,186]:

aQED
µ = 1

2

(α

π

)
+ 0.765 857 376(27)

(α

π

)2
+ 24.050 508 98(44)

(α

π

)3

+ 126.07(41)
(α

π

)4
+ 930(170)

(α

π

)5

= 116 584 705.7(2.9) × 10−11 .

(14.8)

The electroweak contributions are known. In the standard model, the lowest order con-
tributions come from Fig. 14.3.
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Fig. 14.2. Typical higher order QED contributions to al .

+ +

HZ 0 ν

γ

W +

Fig. 14.3. Lowest order electroweak contribution to al .

It reads [186]:

aEW
µ (1 − loop) = Gµm2

µ

8
√

2

5

3π2

[
1 + 1

5
(1 − 4 sin2 θW )2 + O

(mµ

M

)2
]

� 195 × 10−11 ,

(14.9)

where the Gµ = 1.16637(1) × 10−5 GeV2, sin2 θW = 0.223 and M denotes MW or MHiggs.
The full two-loop contribution including hadronic electroweak loops and a leading log-
resummation is [186]:

aEW
µ (2 − loop) = −43(4) × 10−11 (14.10)

and gives the total contribution:

aEW
µ = 152(4) × 10−11 . (14.11)

14.1.3 The lowest order hadronic contributions

The main theoretical errors in the determination of the muon anomalous magnetic
moment are due to the strong interaction (hadronic loop) contributions, in the region
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H

Fig. 14.4. Lowest order hadronic contributions to al .

below 2 GeV, and mainly in the ρ meson region. The lowest order diagram is depicted in
Fig. 14.4.

Using a dispersion relation, the hadronic vacuum polarization contribution to the muon
anomaly can be expressed as [187–191]:

ahad
µ (l.o) = 1

4π3

∫ ∞

4m2
π

dt Kµ(t) σH (t) . (14.12)

Kµ(t) is the QED kernel function [192]:

Kµ(t) =
∫ 1

0
dx

x2(1 − x)

x2 + (
t/m2

µ

)
(1 − x)

= z2
µ

(
1 − z2

µ

2

)
+ (1 + zµ)2

(
1 + 1

z2
µ

)

×
[

ln(1 + zµ) − zµ + z2
µ

2

]

+
(

1 + zµ

1 − zµ

)
z2
µ ln zµ , (14.13)

with:

zµ = (1 − vµ)

(1 + vµ)
, and vµ =

√
1 − 4m2

µ

t
. (14.14)

Kµ(t) is a monotonically decreasing function of t . For large t , it behaves as:

Kµ

(
t > m2

µ

) � m2
µ

3t
, (14.15)

which will be useful for the analysis in the large t regime. Such properties then emphasize
the importance of the low-energy contribution to ahad

µ (l.o), where the QCD theory cannot
be (strictly speaking) applied. σH (t) ≡ σ (e+e− → hadrons) is the e+e− → hadrons total
cross-section which can be related to the hadronic two-point spectral function Im
(t)em

through the optical theorem:

Re+e− ≡ σ (e+e− → hadrons

σ (e+e− → µ+µ−)
= 12π Im
(t)em , (14.16)
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Fig. 14.5. Isovector spectral function from tau-decay and comparison with the e+e− data.

where:

σ (e+e− → µ+µ−) = 4πα2

3t
. (14.17)

Here,


µν
em ≡ i

∫
d4x eiqx 〈0|T Jµ

em(x)
(
J ν

em(x)
)† |0〉

= −(gµνq2 − qµqν)
em(q2) (14.18)

is the correlator built from the local electromagnetic current:

Jµ
em(x) = 2

3
ūγ µu − 1

3
d̄γ µd − 1

3
s̄γ µs + · · · (14.19)

The present most precise result comes from combining the e+e− → hadrons compiled
in [193–198,16] and the precise τ -decay data [193,199]. These data are shown in
Fig. 14.5.

An average of the results from e+e− → hadrons: ahad
µ [e+e−] = 7016(119) × 10−11 and

τ decay ahad
µ [τ ] = 7036(76) × 10−11 data leads to [201]:

ahad
µ (l.o) = 7021(76) × 10−11 , (14.20)
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Fig. 14.6. Lowest order hadronic vacuum polarization contributions to aµ from [207].

where the CVC hypothesis has been used in order to relate the electromagnetic to the
charged current through an isospin rotation [200]:

σH (t) = 4πα2

t
v1 , (14.21)

and where a correction due to the ω − ρ mixing has been applied. We follow the notation
of ALEPH [193], where:

Im

(1)
ūd,V ≡ 1

2π
v1 , (14.22)

is the charged vector two-point correlator:



µν

ūd,V ≡ i
∫

d4x eiqx 〈0|T Jµ

ūd (x)
(
J ν

ūd (0)
)† |0〉

= −(gµνq2 − qµqν)
(1)
ūd,V (q2)

+ qµqν

(0)
ūd,V (q2) , (14.23)

built from the local charged current Jµ

ūd,V (x) = ūγ µd(x). It is amusing to notice that the
central value here coincide with the old result in [209,215]. In [202], the impressive agree-
ment of the result of the hadronic contributions to the QED running coupling α and to
the muonium hyperfine splitting with other determinations (see next section) is a strong
support of the estimate obtained in [201]. In Fig. 14.6, we see that the most recent standard
model theoretical determinations [205,201] are in good agreement with the measured value
[206,207]. After the completion of this work, we became aware of recent determinations
[203] using recent e+e− → hadrons data from CMD-2 and BES [204] and of more precise
measurement of aexp

µ = 11 659 204(7) (5) × 10−10 [208]. The estimate based on τ -decay
agrees with ours whereas the one from e+e− differs by 1.4σ from ours, and leads to a
discrepancy of 3σ between aexp

µ and aSM
µ of the Standard Model predictions. However, a

new analysis of the scalar meson contributions (SN, hep − ph/0303004) gives an additional
effect aS

µ ≤ 13(11) 10−10, which reduces the discrepancy of aSM
µ and aexp

µ . The difference
between the results from e+e− and τ decay still needs to be understood.
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+ +

Fig. 14.7. Higher order hadronic vacuum polarization contributions to al .

Fig. 14.8. Light-by-light scattering hadronic contribution to aµ.

14.1.4 The higher order hadronic contributions

Higher order contributions were first discussed in [209]. They can be divided into two clases.
The one involving the vacuum polarization is given in Fig. 14.7, and can be related to the
measured e+e− → hadrons total cross-section, similar to the lowest order contribution. It
gives [201] after rescaling the result in [209,210]:

ahad
µ (h.o.)VP = −101.2(6.1) × 10−11 , (14.24)

The second class is the light-by-light scattering diagram shown in Fig. 14.8.
Contrary to the case of vacuum polarization, this contribution is not yet related to a

direct measurable quantity. In order to estimate this contribution, one has to introduce some
theoretical models. The ones used at present are based on chiral perturbation [211] and
ENJL model [212], where to both are added vector meson dominance and phenomenological
parametrization of the pion form factors. The different contributions can be classified in
diagrams Fig. 14.9, where the first two come from the quark (constituent) and boson loops,
whereas the last one is due to meson pole exchanges. The first two diagrams are quite
sensitive to the effects of rho-meson attached at the three off-shell photon legs which reduce
the contributions by about one order of magnitude. The third diagram with pseudoscalar
meson exhanges (anomaly) gives so far the most important contribution. There is a complete
agreement between the two model estimates (after correcting the sign of the pseudoscalar
and axial-vector contributions [213)], which may indirectly indicate that the results obtained
are model independent. However, there are still some subtle issues left to be understood
(is the inclusion of a quark loop a double counting?; why the inclusion of the rho-meson
decreases drastically the quark and pion loop contributions?; is a single pole dominance
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Table 14.1. ahad
µ (h.o)LL × 1011

Type of diagrams [211] [212]

π− loop −4.5(8.1) −19(13)
quark loop (not added in the sum) 9.7(11) 21(3)
π 0, η, η′ poles 82.7(6.4) 85(13)
axial-vector pole 1.74 2.5(1.0)
scalar pole −6.8(2.0)

Total 79.9(18.2) 61.7(23.8)

q

q

Q

M M π0, η, n', σ . . .

π+

µ

µ µ

q

Fig. 14.9. Different light-by-light scattering hadronic contributions to aµ.

justified?, . . . ). The results in [211] and [212], after correcting the sign of the pseudoscalar
and axial-vector contributions [213], are given in Table 14.1.

An arithmetic average of the central values and of the errors give:

ahad
µ (h.o)LL = 70.8(21.0) × 10−11 . (14.25)

One can remark the agreement in sign and magnitude with the contribution of a quark
constituent loop diagram (first used in [209]) without any hadrons [214] and YT01 in [205].
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Then, we deduce:

ahad
µ (h.o) = ahad

µ (h.o)VP + ahad
µ (h.o)LL = −30.4(21.9) × 10−11 , (14.26)

where one can notice a partial cancellation between the higher order vacuum polarization
and the light-by-light scattering contributions.

14.1.5 The total theoretical contributions to aµ

Summing up different contributions, the present theoretical status in the standard model is:

aSM
µ = aQED

µ + aEW
µ + ahad

µ

= 116 584 669.9(39.2) × 10−11 + ahad
µ (l.o.)

= 116 591 846.9(78.9) × 10−11 . (14.27)

This theoretical contribution can be compared with the experimental average [186] of
CERN78 [216] + BNL98 [207] + BNL99 [208]:

aexp
µ (average) = 116 592 023(151) × 10−11 . (14.28)

which is more weighted by the new BNL precise result:

aexp
µ (BNL99) = 116 592 020(160) × 10−11 . (14.29)

The comparison of the theoretical and experimental numbers gives:

anew
µ ≡ aexp

µ − aSM
µ = (176 ± 170) × 10−11 , (14.30)

which can indicate about σ deviation from the SM prediction. This result can be used to
give a lower bound on the presence of new physics beyond the standard model. Combining
this result with the world average of ahad

µ (l.o.), we can have the range at 90% confidence
level (CL):

−42 ≤ anew
µ × 1011 ≤ 413 (90% CL) . (14.31)

This range is expected to be improved in the near future both from accurate measure-
ments of aµ and of e+e− data necessary for reducing the theoretical errors in the determina-
tions of the hadronic contributions, being the major source of the theoretical uncertainties.
Constraints on some models (supersymmetry, radiative muon mass, leptoquarks) beyond
the standard model (SM) using this result have been discussed in [186,201]. The lower
bounds on the scale of the models using this new allowed range of anew

µ are typically:

m̃ ≥ 113 GeV : degenerate sparticle mass

M ≥ 1.7 TeV : compositeness

MS2 ≥ 55.5 GeV : Zee model singlet scalar

M ≥ 1.1 TeV : leptoquarks . (14.32)
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14.1.6 The τ anomaly

The different theoretical contributions to the τ anomaly have been discussed before in [215].
Compared to the case of the electron and of the muon, an eventual precise measurement of
aτ will provide a further test of the QED calculation at short distance t = ln (Mτ /ml) not
reached in the electron and muon case. Then, it can provide a measurement of the QED
running coupling ᾱ as given by the RGE discussed previously, and a test of an eventual sub-
structure of the τ lepton. As can be seen in details in [215], the relative weight of the hadronic
contributions has decreased compared, for example, with the weak interaction contributions.
Also, because of the large value of Mτ , the rôle of the ρ-meson has relatively decreased,
which renders, almost equal, the contribution of the hadrons below and above 1 GeV. This
is a positive feature which can allow a precise theoretical prediction of this observable. An
update of the theoretical predictions obtained in [215] is [201] (in units of 10−8):

aQED
τ = 117 327.1(1.2) ,

aEW
τ � 46.9(1.2) ,

ahad
τ (l.o) = 353.6(4.0) ,

ahad
τ (h.o)(LL) = 20.0(5.8) ,

ahad
τ (h.o) = 27.6(5.8) , (14.33)

which leads to:

aSM
τ = ahad

τ + aEW
τ + aQED

τ

= 117 755.2(7.2) × 10−8 . (14.34)

where we have used the present accurate value of Mτ = 1.77703 GeV. This value in
Eq. (14.34) can be compared with the present (inaccurate) experimental value [217]:

aexp
τ = 0.004 ± 0.027 ± 0.023 , (14.35)

which, we hope, can be improved in the near future.

14.2 Other high-precision low-energy tests of QED

14.2.1 Lowest order hadronic contributions

In addition to the high-precision measurements of the lepton anomalies, some QED high-
precision tests are also performed. As in the case of the lepton anomalies, the hadronic
contributions also play an important for the QED predictions of the running QED coupling
α(MZ ) and of the muonium hyperfine splittings ν. These contributions can be expressed in
a closed form as the convolution integral:2

Ohad = 1

4π3

∫ ∞

4m2
π

dt KO(t) σH (t) , (14.36)

2 For a recent estimate and review see e.g. Ref. [202] and references therein.
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where:

Ohad ≡ �αhad × 105 or �νhad . (14.37)

� For the QED running coupling �αhad × 105, the kernel is:

Kα(t) =
(π

α

) (
M2

Z

M2
Z − t

)
, (14.38)

where α−1(0) = 137.036 and MZ = 91.3 GeV. It behaves for large t like a constant.
� For the muonium hyperfine splitting �νhad, the kernel function is (see e.g. [220]):

Kν = −ρν

[
(xµ + 2) ln

1 + vµ

1 − vµ

−
(

xµ + 3

2

)
ln xµ

]
(14.39)

where:

ρν = 2νF
me

mu
, xµ = t

4m2
µ

vµ =
√

1 − 1

xµ

, (14.40)

and νF is the Fermi energy splitting:

νF = 445 903 192 0.(511)(34) Hz . (14.41)

It behaves for large t as:

Kν

(
t � m2

µ

) � ρν

(
m2

µ

t

) (
9

2
ln

t

m2
µ

+ 15

4

)
. (14.42)

The different asymptotic behaviours of these kernel functions will influence on the relative weights
of different regions contributions in the evaluation of the above integrals.

14.2.2 QED running coupling α(MZ )

Using the same data as for the anomalous magnetic moment, one can deduce the lowest
order hadronic contribution [202]:

�αhad = 2763.4(16.5) × 10−5 . (14.43)

We add the hadronic radiative corrections �αhad = (6.4 ± 2.7) × 10−5 from the radiative
modes π0γ , ηγ, π+π−γ . . . coming from the largest range given in [195] and YT01 [205].
Using the renormalization group evolution of the QED coupling:

α−1(MZ ) = α−1(0)[1 − �αQED − �αhad] , (14.44)

and the available results to three-loops [218] of �αQED = 3149.7687 × 10−5, one can
deduce:

α−1(MZ ) = 128.926(25) . (14.45)

The results in Eqs. (14.43) and (14.45) are in good agreement with other determinations
[205,219] as shown in Fig. 14.10, but more accurate, thanks to the combined e+e− and
τ -decay data.
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105∆α had α-1(MZ)

2700 2800 2900 128.85 128.90 128.95 129.00

ADH 98

DH 98

BP 01

MOR 01

J 01

YT 01

SN 01
(this work) 

Fig. 14.10. Recent determinations of �αhad and α−1(MZ ). The dashed vertical line is the mean central
value. References to the authors are in [218,219,195,205].

The above results are important for a precise determination of the Higgs mass from a
global fit of the electroweak data as shown in Fig. 14.11.

We expect that with this new improved estimate, the present lower bound of 114 GeV
for the Higgs mass from LEP data can be improved in the near future.

14.2.3 Muonium hyperfine splitting

Using again the same data input as in previous observables, the hadronic contribution to the
muonium hyperfine splitting is [202]:

�νhad = (232.5 ± 3.2) Hz , (14.46)

which is in excellent agreement with recent determinations shown in Table 14.2.
Here, due to the (ln t)/t behaviour of the kernel function, the contribution of the low-

energy region is dominant. However, the ρ-meson region contribution below 1 GeV is
47% compared with the 68% in the case of aµ, while the QCD continuum is about 10%
compared to 7.4% for aµ. The accuracy of our result is mainly due to the use of the τ -decay
data, explaining the similar accuracy of our final result with the one in [220] using new
Novosibirsk data. Combined with existing QED and electroweak contributions:

�νQED = 4 270 819(220) Hz , �νweak(l.o) = −G F√
2

memµ

(
3

4πα

)
νF � −65 Hz ,

|�νweak(h.o)| ≈ 0.7 Hz , �νhad(h.o) � 7(2) Hz , (14.47)
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Table 14.2. Recent determinations
of �νhad

Authors �νhad [Hz]

FKM 99 [221] 240 ± 7
CEK 01 [220] 233 ± 3
SN 01 [202] 232.5 ± 3.2

Fig. 14.11. χ2 of the global fit determinations of the Higgs mass using electroweak data.

one obtains the SM prediction:

νSM ≡ νF + �νQED + �νweak + �νhad + �νhad(h.o) , (14.48)

from which one can, for example, deduce [202]:

νSM

νF
= 1.000 957 83(5) , (14.49)

by noting that νF enters as an overall factor in the theoretical contributions. Combining this
result with the experimental value of ν:

νexp = 4 463 302 776(51) Hz , (14.50)

one can deduce the SM prediction:

νSM
F = 4 459 031 783(226) Hz , (14.51)
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where the error is dominated here by the QED contribution at fourth order. This result is a
factor of 2 more precise than the one in [220]. One can use this result in Eq. (14.51) in the
expression:

νF = ρF

(
me

mµ

)
1

(1 + me/mµ)3

(
1 + aµ

)
, (14.52)

where aµ = 1.165 920 3(15) × 10−3, and:

ρF = 16

3
(Zα)2 Z2cR∞ , (14.53)

and Z = 1 for muonium, α−1(0) = 137.035 999 58(52) [182,184], cR∞ = 3 289 841 960
368(25) kHz. Therefore, one can extract a value of the ratio of the muon over the electron
mass:

mµ

me
= 206.768 276(11) , (14.54)

to be compared with the PDG value 206.768 266(13) using the masses in MeV units. If one
uses the relation:

νF = ρF

(
µµ

µe
B

)
1

(1 + me/mµ)3
, (14.55)

one can also extract the one can deduce the ratio of magnetic moments:

µµ

µe
B

= 4.841 970 47(25) × 10−3 , (14.56)

compared with the one obtained from the PDG values of µµ/µp and µp/µ
e
B : µµ/µe

B =
4.841 970 87(14) × 10−3. In both applications, the results in Eqs. (14.54) and (14.56) are
in excellent agreement with the PDG values.

14.3 Conclusions

We have discussed the evaluation of the hadronic and QCD contributions ahad
l (l.o), �αhad

and �νhad respectively to the anomalous magnetic moment, the QED running coupling and
to the Muonium hyperfine splitting. Our self-contained results derived from the same input
data and QCD parameters are in excellent agreement with existing determinations and are
quite accurate. One of the immediate consequences of these results is the prediction of
aµ, aτ and α(MZ ). We have used the result for the muonium hyperfine splitting for a high
precision measurement of the ratios of the muon over the electron mass and of their magnetic
moments. These standard model predictions are in excellent agreement with those quoted
by PDG [16] and can be used for providing strong constraints on some model building
beyond the standard model.
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OPE for deep inelastic scattering

15.1 Introduction

Deep-inelastic scattering (DIS) are classical QCD processes playing an important rôle in
the understanding of perturbative QCD and of the nucleon structure function, where several
structure functions Fi (x, Q2)[x (fraction of proton momentum) and Q2 (squared of transfer
momentum)] can be predicted and measured from different targets and beams and different
polarizations. In the past DIS has been used for establishing the parton nature of quarks and
gluons and QCD as a theory of strong interactions.

At present (as we shall see later on), DIS provide quantitative tests of QCD (measurements
of quark and gluon densities in the nucleon, of αs(Q2), . . . ). The theory of scaling violations
for totally inclusive DIS processes are based on the operator product expansion (OPE) and
renormalization group equation.

The OPE has been introduced by Wilson [222] and was proven by Zimmermann [223]
in perturbation theory through the application of the BPHZ method. Let us consider the
time-ordered product of two scalar fields:

T φ(x)φ(0) (15.1)

which we can write, using the Wick’s theorem studied in Section (4.1), as:

T φ(x)φ(0) = 〈0|T (φ(x)φ(0)) |0〉+ : φ(x)φ(0) : (15.2)

The first term in the RHS is the scalar propagator:

〈0|T (φ(x)φ(0)) |0〉 = −i�(x) =
∫

d4 p

(2π )4
e−i px 1

p2 − m2 + iε
� i

(2π )2

1

x2 − i0
+ · · · ,

(15.3)

where · · · means less-singular terms. It is a c-number (unit operator) but singular for x → 0,
while the operator : φ(x)φ(0) : is regular. In general, any local operators J (x) and J ′(y)
can be expanded in a series of well-defined and regular operators Oi (x) multiplied with the
c-number Ci (x), the Wilson coefficients containing the singularity of the product J (x)J ′(y)

151
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for x = y. This leads to the OPE or Wilson expansion:

J (x)J ′(y) =
∞∑

n=0

Cn(x − y)On

(
x + y

2

)
n = 0, 1, 2, . . . . (15.4)

15.2 The OPE for free fields at short distance

As an application, let us consider the neutral vector current:

Jµ(x) =: ψ̄(x)γµψ(x) : , (15.5)

which is a normal ordered product of two quark fields. Applying the Wick theorem studied
in Part 1, one can write:

T (Jµ(x)Jν(0)) = −T r{〈0|T (ψ(0)ψ̄(x))|0〉γµ〈0|T (ψ(x)ψ̄(0))|0〉γν}
+ : ψ̄(x)γµ〈0|T (ψ(x)ψ̄(0))|0〉γνψ(0) :

+ : ψ̄(0)γν〈0|T (ψ(0)ψ̄(x))|0〉γµψ(x) :

+ : ψ̄(x)γµψ(x)ψ̄(0)γνψ(0) : , (15.6)

where the free propagator:

〈0|T (ψ(x)ψ̄(0))|0〉 = −i S(x) =
∫

d4 p

(2π )4
e−i px i

p̂ − m + iε
, (15.7)

is singular at short distance (x → 0). Therefore, by inspecting Eq. (15.6), one can see that
the first term is more singular than the second . . . , i.e. Eq. (15.6) is a typical example of an
OPE. Relating the free fermion propagator to the scalar one:

S(x) = (i ∂̂ + m)�(x) , (15.8)

one can extract the leading singularity for x → 0 from Eq. (15.3), which is quark mass
independent. As the singularity behaves like x2 (but not like x), it is on the light cone
and called light-cone singularity. From the expression of the Fourier transform of the
propagator:

∫
dx eiqx 1

(x − iε)n
= 2π

ei nπ
2


(n)
θ (q)qn−1 , (15.9)

one can see that the dominant contribution of the T-product of the two currents comes from
the most singular part of the c-number coefficients. Therefore, near the light cone, one
obtains [224]:

T (Jµ(x)Jν(0)) = (x2gµν − 2xµxν)

π4(x2 − iε)4
− xλ

(2π2(x2 − iε)2

× [
iσµλνρOρ

V (x) + εµλνρOρ

A(x)
] + Oµν(x) , (15.10)
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where O(x) are regular operators:

Oµ,V (x) = : ψ̄(x)γµψ(0) − ψ̄(0)γµψ(x) : ,

Oµ,A(x) = : ψ̄(x)γµγ5ψ(0) + ψ̄(0)γµγ5ψ(x) : ,

Oµν(x) = : ψ̄(x)γµψ(x)ψ̄(0)γνψ(0) : , (15.11)

and:

σµλνρ = gµλgνρ + gµρgνλ − gµνgνρ . (15.12)

We have used the relation:

γµγλγν = (σµλνρ + iεµλνργ5)γ ρ , (15.13)

where εµλνρ is the totally anti-symmetric rank 4 tensor with the properties defined in
Appendix D. Analogous expression can be derived for the current commutator:

T [Jµ(x), Jν(0)] , (15.14)

by using:

1

x2 − iε
= P

x2
+ iπδ(x2) , (15.15)

where P denotes principal value. Differentiating this expression, it is easy to obtain:

1

(x2 − iε)n
− 1

(x2 + iε)n
= 2iπ

(−1)n−1

(n − 1)!
δ(n)(x2) . (15.16)

Therefore:

T [Jµ(x)Jν(0)] − T [Jµ(x)Jν(0)]† ≡ ε(x0)[Jµ(x), Jν(0)]

= − i

3π3
δ(3)(x2)(x2gµν − 2xµxν)

− 1

π
xλδ(1)

[
iσµλνρOρ

V (x) + εµλνρOρ

A(x)
]

+Oµν(x) − Oνµ(x) , (15.17)

where:

ε(x0) = x0

|x0| , (15.18)

is the sign function.

15.3 Application of the OPE for free fields: parton model and Bjorken scaling

For simplicity, we consider the unpolarized process:

e + p → e + X (15.19)
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θk

q

h p

k '
'

Fig. 15.1. Kinematics of the e + p → e + X process.

which we have anticipated in Section 2.3. Here, we shall derive explicitly the structure
functions W1,2(Q2, ν) using OPE for free fields. The kinematics of the process is given in
Fig. 15.1.

There are three independent kinematic variables:

s = (p + k)2 , q2 = (k − k ′)2, W 2 = (p + q)2 , (15.20)

where k and k ′ are momenta of the initial and final electrons, p and q are respectively the
proton and photon momenta. In the laboratory frame (proton rest frame) and neglecting the
electron mass, one can rewrite:

s = Mp(2E + Mp) ,

q2 ≡ −(Q2 > 0) = −4E E ′ sin2 θ

2
,

W 2 = M2
p + 2Mp(E − E ′) + q2 , (15.21)

where E = k0, E ′ = k ′
0 are the energies of the incident and scattered electrons in the proton

rest frame, and θ is the scattering angle of the electron. The physical region is:

s ≥ M2
p , q2 ≤ 0 , W 2 ≥ (Mp + mπ )2 , (15.22)

mπ being the pion mass. It is usual to introduce:

ν ≡ p · q = Mp(E − E ′) , (15.23)

where ν/Mp is the energy transfer in the proton rest frame, in terms of which the physical
region condition on W 2 reads:

2ν + q2 ≥ mπ (2Mp + mπ ) . (15.24)

The inclusive differential cross-section of the unpolarized process can be written as:

E ′ dσ

d3k ′ = 1

32(2π )3

1

k · p

∑
σ,σ ′,λ

∑
X

(2π )4δ4(pX + k ′ − k − p)|〈eX |T |eN 〉|2 , (15.25)
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where σ ′, σ, λ are the spin components of the scattered, initial electrons and the target
proton. The amplitude is:

〈eX |T |eN 〉 = ūσ ′ (k ′)(eγµ)uσ (k)
1

q2
〈X |(−e)Jµ(0)|p, λ〉 . (15.26)

This leads to the expression of the cross-section as a convolution of the leptonic and
hadronic tensors:

E ′ dσ

d3k ′ = α2

4(k · p)q4
LµνW µν , (15.27)

where α = e2/(4π ) is the QED fine structure constant. The leptonic tensor is:

Lµν = 1

4
Tr{(k̂ + me)γ µ(k̂ ′ + me)γ ν}

= 4(k ′µkν + k ′νkµ) + (
2q2 + 4m2

e

)
gµν . (15.28)

The hadronic tensor can be written as:

Wµν = 1

2π

∫
d4x eiqx 1

2

∑
λ

〈p; λ|Jµ(x)Jν(0)|λ; p〉 . (15.29)

Using the property: ∫
d4x eiqx

∑
λ

〈p; λ|Jµ(0)Jν(x)|λ; p〉 = 0 , (15.30)

for physical process, which can be shown by using:∫
d4x eiqx

∑
λ

〈p; λ|Jµ(0)Jν(x)|λ; p〉

=
∑

X

(2π )4δ4(q − p + pX )
∑

λ

〈p; λ|Jµ(0)|X〉〈X |Jν(x)|λ; p〉 . (15.31)

The assumption that q − p + pX = 0 in the physical region (Eq. (15.22)) would lead to
the contradiction q0 ≥ 0. Therefore, one obtains:

Wµν = 1

2π

∫
d4x eiqx 1

2

∑
λ

〈p; λ|[Jµ(x), Jν(0)]|λ; p〉 . (15.32)

Causality requires that the commutator vanishes for x2 < 0, such that the integral is only
non-zero for x2 > 0. Using the optical theorem, one can relate the hadronic tensor to the
absorptive part of the forward Compton scattering amplitude:

Tµν =
∫

d4x eiqx 1

2

∑
λ

〈p; λ|T Jµ(x)Jν(0)|λ; p〉 , (15.33)

by the relation:

Wµν = 1

π
ImTµν , (15.34)
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which corresponds to the discontinuity of Tµν across the cut along the line q0 ≥ 0 in the
complex q0 plane:

ImTµν = 1

2i
[Tµν(q0 + iε) − Tµν(q0 − iε)] . (15.35)

Using the general Lorentz decomposition, one can express Wµν in terms of the invariants
Wi (so-called structure functions) introduced in Section 2.3:

Wµν = −
(

gµν − qµqν

q2

)
W1(Q2, ν) + 1

M2
p

(
pµ − p · q

q2
qµ

) (
pν − p · q

q2
qν

)
W2(Q2, ν)

+ iεµνρσ

pρqσ

2M2
p

W3(Q2, ν) . (15.36)

For unpolarized process, only W1,2 are relevant. Then, the differential cross-section has
the form:

dσ

d Q2dν
= πα2

4Mp E2 sin4 θ E E ′

{
2 sin2 θ

2
W1(Q2, ν) + cos2 θ

2
W2(Q2, ν)

}
. (15.37)

Coming back to the OPE of Wµν given in Eq. (15.17) between two proton states, one
can notice that the last term is less singular than the two former terms, such that we can
neglect it to a first approximation. The first term can also be omitted as it corresponds to a
disconnected diagram. Also noticing that the operators O are regular and finite for x → 0,
one can Taylor-expand the quark fields:

ψ(x) = ψ(0) + xµ[∂µψ(x)]x=0 + 1

2!
[∂µ1∂µ2ψ(x)]x=0 + · · · (15.38)

and write:

Oρ

V/A(x) =
∞∑
0

1

n!
xµ1 · · · xµnOρ

V/A,µ1···µn
(0) , (15.39)

where:

Oρ

V,µ1···µn
(x) = : [∂µ1 · · · ∂µn ψ̄(x)]γ ρψ(x) − ψ̄(x)γ ρ[∂µ1 · · · ∂µn ψ(x)] :

Oρ

A,µ1···µn
(x) = : [∂µ1 · · · ∂µn ψ̄(x)]γ ργ5ψ(x) + ψ̄(x)γ ργ5[∂µ1 · · · ∂µn ψ(x)] : (15.40)

For the unpolarized process which we discuss here, the operator Oρ

A will not also con-
tribute. One can express the matrix element:

〈p|Oρ

V,µ1···µn
(0)|p〉 = Ôn pρ pµ1 · · · pµn + terms containing gµν . (15.41)

where Ô is a Lorentz invariant constant reduced matrix element which depends on p2 = M2
p

and on quark masses. We have used the fact that the matrix element only depends on pµ

and is symmetric in the indices µ1, µ2, · · · µn . The terms containing gµν in Eq. (15.41) are
of the form pρ p2gµ1µ2 pµ3 · · · pµn and so on, which are less singular in x2 because gµ1µ2
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gives rise to x2, and can therefore be neglected. Therefore, the relevant part of Eq. (15.17)
for our process can be written as:

Wµν = − 1

2π2
σµλνρ pρ

∫
d4x eiqx xλε(x0)δ(1)(x2) f (p · x) , (15.42)

with:

f (z) =
∞∑

n=0

Ôn
zn

n!
, (15.43)

where one can also notice that due to the form of Oρ

V,µ1···µn
, Ôn vanishes for n even and the

summation in Eq. (15.43) only runs for n odd. Taking the Fourier transform:

f (z) =
∫ +∞

−∞
dζ eizζF(ζ ) , (15.44)

one can rewrite:

Wµν = − i

2π2
σµλνρ pρ ∂

∂qλ

∫ +∞

−∞
dζF(ζ )

∫
d4x ei(q+pζ )xε(x0)δ(1)(x2) . (15.45)

Using:

In ≡
∫

d4x eiqxδ(n)(x2) = iπ2

4n−1(n − 1)!
(q2)n−1ε(q0)θ (q2) , (15.46)

one obtains:

Wµν =
∫ +∞

−∞
dζF(ζ )

[ −(
p · q + ζ M2

p

)
gµν + 2ζ pµ pν + pµqν + pνqµ

]
× ε(q0 + ζ p0)δ

(
q2 + 2ζ p · q + ζ 2 M2

p

)
. (15.47)

In the Bjorken limit:

p · q → ∞, − q2 → ∞ and ζ ≡ x = −q2/(2p · q) fixed , (15.48)

one can neglect p2 = M2
p, and deduce:

Wµν = 1

2
F(x)

(
−gµν − q2

(p · q)2
pµ pν + pµqν + pνqµ

p · q

)
, (15.49)

which one can rewrite in terms of W1,2 defined in Eq. (15.36) with:

W1(ν, Q2) = 1

2
F(x) ≡ F1(x) ,

ν

M2
p

W2(ν, Q2) = x

2
F(x) ≡ F2(x) , (15.50)

as given in Eq. (2.83) in terms of the Bjorken scaling function F1,2(x). This result shows that
the assumption of free-field light-cone structure is equivalent to that of the parton model.
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15.4 Light-cone expansion in φ3
6(x) theory and operator twist

For simplifying our discussions, we shall work in φ3
6(x) theory with a mass m. The hadronic

current is:

J (x) = φ2(x) , (15.51)

and the OPE has the form given in Eq. (15.4). In the previous sections, we have used the
OPE at short distance x → 0, i.e. large q , such that we can neglect terms of order p · q
compared with q2. For instance, in this case, the tree level amplitude of a forward Compton
scattering reads:

1

(q + p)2 − m2
= 1

q2
+ O

(
1

q4

)
. (15.52)

In deep inelastic scatterings, the light-cone region x2 → 0 corresponds to the Bjorken
limit in Eq. (15.48). In this region, the tree level Compton amplitude reads:

F0(q, p) ≡ 1

(q + p)2 − m2
= 1

q2

1

1 + 2p·q
q2

� 1

q2
− 2p · q

q4
+ (2p · q)2

q6
+ · · · + O

(
1

q4

)
, (15.53)

which expresses that the dominant term of the amplitude in the Bjorken limit is due to an
infinite number of ‘composite operators’. This can be seen by taking the Fourier transform
of Eq. (15.53): ∫

d6q e−iqx F0(q, p) ∼ 1

x4
+ i

px

x4
− (px)2

8x4
+ · · · (15.54)

Its k-th term can be written as:

1

x4
xµ1 · · · xµk 〈p|Oµ1···µk |p〉 . (15.55)

In general the OPE near the light cone has the form (light-cone expansion):

J (x)J ′(0) =
∑
i,k

C (i)
k (x2)xµ1···µkO(i)

µ1···µk
(0) , (15.56)

where the index i specifies the type of composite operators. Identifying with Eq. (15.4), the
coefficient functions are:

Cn(x) ≡ C (i)
k (x2)xµ1...µk . (15.57)

In free-field theory, in order to match the mass dimension of both sides of Eq. (15.56),
the coefficient function should behave as:

C (i)
k (x2) ∼ (x2)−(dJo +dJ ′

o
+k−d (i)

o,k )/2
, (15.58)

where dJo , dJ ′
o

and d (i)
o are canonical dimensions of the current J, J ′ and of the operator

O(i)
µ1···µk

. This naı̈ve power counting is valid for free-field theory as no other mass scale is
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present in the OPE. The index:

τk ≡ d (i)
o,k − k ≡ dimension − spin (15.59)

which governs the strength of the singularity of the coefficient function is called the twist
of the composite operator O(i)

µ1···µk
[225]. k is called the spin of the operator and d is its

dimension. The operators of lowest twist dominate in the light-cone expansion. The scalar
field φ, the fermion field ψ and the gauge field Gµν have twist one. Taking the derivative
of these fields cannot reduce the twist as the derivative increases the dimension by one unit
but changes the spin by 1 or 0. Therefore, the minimum twist of an operator involving n
fields is n. In the light-cone expansion the dominant operators have twist 2. In the presence
of external field, the symmetric traceless tensors of rank k and twist 2 are e.g. of the form:

O(i)
s,µ1···µk

= φ∗ Dµ1 · · · Dµk φ ,

O(i)
f,µ1···µk

= i k−1

k!
{ψ̄γµ1 Dµ2 · · · Dµk ψ + permutations} ,

O(i)
g,µ1···µk

= 2
i k−2

k!
Tr{Gµ1α Dµ1 · · · Dµk Gα

µk
+ permutations} . (15.60)

where Dµ is the covariant derivative which is half the difference of the derivative acting to
the right and to the left. In the presence of an external field the scale dimension counting does
not hold. In the case of a theory with an UV fixed point, the scale invariance is recovered
with the anomalous dimension, and the canonical dimensions are replaced by the scale
dimensions dJ and d (i)

k . Therefore, the light-cone singularity reads for x2 → 0 [222]:

C (i)
k (x2) ∼ (x2)−(dJ +dJ ′ +k−d (i)

k )/2 . (15.61)

In QCD, this expression will only be modified by logarithmic corrections as we shall see
later on.
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Unpolarized lepton-hadron scattering

16.1 Moment sum rules

We shall consider the previous lepton-hadron unpolarized process studied in Section 15.3
governed by the T-product of two electromagnetic currents. The general Lorentz decompo-
sition of the hadronic tensor has the form:

Jµ(x)Jν(0) = (∂µ∂ ′
ν − gµν)OL (x)

+ (gµλ∂ρ∂
′
ν + gρν∂µ∂ ′

λ − gµλgρν∂ · ∂ − gµν∂λ∂
′
ρ)Oλρ

2 (x)

+ iεµνλρ∂
λOρ

3 (x)

+ i(εµνλρ∂ · ∂ ′ − εµσλρ∂ν∂
′σ + ενσλρ∂µ∂ ′σ )Oλρ

4 (x) , (16.1)

where ∂µ ≡ ∂/∂xµ and Oi are suitable bilocal operators, where OL corresponds to the
longitudinal structure functions W2 − 2xW1 defined in Eq. (15.36). The operators O3,4 do
not contribute to the unpolarized process. Using the result in Eq. (15.56), one can write an
OPE for the invariants. In the QCD deep inelastic scattering region, one can neglect quark
mass corrections such that we have a good realization of the SU (n) f flavour symmetry.
For the case n f = 2 here (isospin symmetry), the electromagnetic current corresponds to
the third component of SU (2) such that the product J (x)J (0) and the associate composite
operators O belong to the representations:

3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 . (16.2)

Therefore the lowest twist (τ = 2) gauge invariant operators which dominate the light-
cone expansion are, the non-singlet (λa/2 is the SU (n) f flavour matrix):

O(i)
N S,µ1···µk

= i k−1

k!

{
ψ̄

λa

2
γµ1 Dµ2 · · · Dµk ψ + permutations

}
, (16.3)

and singlet operators which mix under renormalizations:

O(i)
S,µ1···µk

= i k−1

k!
{ψ̄γµ1 Dµ2 · · · Dµk ψ + permutations} ,

O(i)
g,µ1···µk

= 2
i k−2

k!
T r
{
Gµ1α Dµ1 · · · Dµk Gα

µk
+ permutations

}
. (16.4)
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We have omitted terms containing gµν , the so-called trace terms. Substituting Eq. (15.56)
into Eq. (16.1), one can deduce in momentum space:

Tµν = i
∫

d4x eiqx 〈p|T Jµ(x)Jν(0)|p〉

= − (gµνq2 − qµqν)
∑
i,n

〈p|O(i)
L ,µ1···µn

(0)|p〉C (i)
L ,n(−q2)qµ1 · · · qµn

(−q2

2

)−n−1

+ (gµλqρqν + gρνqµqλ − q2gµλgρν − gµνqλqρ)

×
∑
i,n

〈p|O(i)λρ
2,µ1···µn

(0)|p〉C (i)
2,n(−q2)qµ1 · · · qµn

(−q2

2

)−n−1

, (16.5)

where we have defined the Fourier transform of the coefficient functions:

C (i)
L ,n(−q2)qµ1 · · · qµn

(−q2

2

)−n−1

= i
∫

d4x eiqx xµ1 · · · xµn C (i)
L ,n(x2) ,

C (i)
2,n+2(−q2)qµ1 · · · qµn 2

(−q2

2

)−n−2

= i
∫

d4x eiqx xµ1 · · · xµn C (i)
2,n(x2) , (16.6)

and we have used the simplified notation:

〈p|T Jµ(x)Jν(0)|p〉 ≡ 1

2

∑
λ

〈p; λ|T Jµ(x)Jν(0)|λ; p〉 . (16.7)

Using the tensor structures:

〈p|O(i)
L ,µ1···µn

(0)|p〉 = ÔL ,n pµ1 · · · pµn + · · ·
〈p|O(i)λρ

2,µ1···µn
(0)|p〉 = Ô2,n+2 pλ pρ pµ1 · · · pµn + · · · , (16.8)

where Ôi are reduced matrix elements not calculable in perturbation theory, and we have
omitted terms containing gµν , we finally deduce:

Tµν = 2ωn
∑

i,n even

eµνC (i)
L ,n(−q2)Ô(i)

L ,n − dµνC (i)
2,n(−q2)Ô(i)

2,n , (16.9)

with:

eµν ≡ gµν − qµqν/q2 ,

dµν ≡ gµν − q2 pµ pν/(p · q)2 − (pµqν + pνqµ)/(p · q) , (16.10)

where ω−1 ≡ Q2/(2p · q) is the Bjorken variable. Because of crossing symmetry:

Tµν(ω) = Tµν(−ω) , (16.11)

the sum runs only over even n. The unphysical relation in Eq. (16.9) (0 ≤ ω ≤ 1) can be
converted to a physical one ω ≥ 1 by using a Cauchy integral to both sides of Eq. (16.9).
Since Tµν is an analytic function in the complex ω plane with branch cuts along the real
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C

-1 1

ω

Fig. 16.1. Integration contour.

axis for ω ≤ −1 and ω ≥ 1, as shown in Fig. 16.1, it obeys the dispersion relation:

Tµν = 1

π

{∫ ∞

Q2/2
−
∫ −Q2/2

−∞

}
dν ′

ν ′ − ν
ImTµν(Q2, ν) + subtractions . (16.12)

Using the Cauchy integration to both sides of Eq. (16.9) along the contour in Fig. 16.1,
one obtains:

1

2iπ

∮
C

Tµν

ωn
= 2

π

∫ ∞

1

dω

ωn
ImTµν = 2

∫ 1

0
dx xn−2Wµν , (16.13)

where we have used the definitions in Eqs. (15.34) and (15.35) and the crossing symmetry
in Eq. (16.11).

Noting that:
∮

C
dω ωm−n = δm,n−1 , (16.14)

one can write:

Tµν = 2
∑

i

eµνC (i)
L ,n−1(−q2)Ô(i)

L ,n−1 − dµνC (i)
2,n−1(−q2)Ô(i)

2,n−1 . (16.15)

Equating Eqs. (16.15) and (16.13), one can deduce the moment sum rules for the structure
functions [226]:

M(n)
L (Q2) ≡

∫ 1

0
dx xn−2 FL (x, Q2) =

∑
i

C (i)
L ,n(−q2)Ô(i)

L ,n ,

M(n)
2 (Q2) ≡

∫ 1

0
dx xn−2 F2(x, Q2) =

∑
i

C (i)
2,n(−q2)Ô(i)

2,n , (16.16)
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where the structure functions FL ≡ F2 − 2x F1 (longitudinal structure functions) and F2

are defined through:

Wµν = ω[eµν FL + dµν F2] , (16.17)

and are related to the W1,2 in Eq. (15.36) as:

FL (x, Q2) = −W1(ν, Q2) +
(

1 + ν2

Q2

)
W2(ν, Q2) ,

F2(x, Q2) = ν

M2
p

W2(ν, Q2) . (16.18)

The coefficient functions C (i)
L ,n and C (i)

2,n in Eq. (16.16) are of short-distance nature and
are calculable using perturbative QCD. The reduced matrix elements Ô(i)

L ,n and Ô(i)
2,n are

of long-distance nature and cannot be calculable. They can be determined experimen-
tally, which can be done by measuring the moments in Eq. (16.16) at a fixed Q2

0 and
solve it for the reduced matrix elements. In practice, the moments are not very conve-
nient as they are expressed in such a way that direct predictions of the structure func-
tions cannot be made. Instead, one can take their inverse Mellin transform, which can be
obtained by analytically continuing from integer n to complex n following the Carlson
theorem [227].

One gets:

FL;2(x, Q2) = 1

2iπ

∫ c+i∞

c−i∞
dn ζ 1−nC (i)

L;2,n(Q2)Ô(i)
L;2,n , (16.19)

where C is an arbitrary real positive constant. Assuming (for simplifying the discussion)
that only one operator contributes to the moment, we can suppress the index i . Therefore,
one can deduce from the moments in Eq. (16.16):

ÔL;2,n = 1

CL;2,n
(
Q2

0

)
∫ 1

0
dx xn−2 FL;2

(
x, Q2

0

)
, (16.20)

which, when inserted into Eq. (16.19), gives after rearranging the integral:

FL;2(x, Q2) =
∫ 1

x

dy

y
K
( y

x
, Q2, Q2

0

)
FL;2

(
y, Q2

0

)
, (16.21)

where the kernel function is:

K
(
z, Q2, Q2

0

) = 1

2iπ

∫ c+i∞

c−i∞
dn z1−n CL;2,n(Q2)

CL;2,n
(
Q2

0

) . (16.22)

Equation (16.21) expresses that once we know the structure function at a given Q2
0 for all

x (0 < x < 1), one can predict its value at another Q2 using a perturbative QCD calculation
of the kernel function K .
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16.2 RGE for the Wilson coefficients

The Q2-dependence of the structure functions is completly contained into the one of the
Wilson coefficients. As the electromagnetic current is not renormalized, the anomalous
dimension of the composite operators should be cancelled by the one of the Wilson co-
efficients. Using the discussions in Chapter 11, we can write the RGE for the Wilson
coefficients:{

ν
∂

∂ν
+ β(αs)αs

∂

∂αs
−
∑

j

γm(αs)m j
∂

∂m j
− γ (i)

n

}
C (i)

n (−q2) = 0 . (16.23)

where γ (i)
n is the anomalous dimension of the composite operators Ô(i)

n , which can be proven
to be gauge invariant such that the gauge-dependent term in the RGE is absent here. In the
case of non-singlet structure functions, we have only one operator. In the case of singlet
operators, we have coupled RGE due to the mixing of the two operators presented previously
in Eq. (16.4). In this case, one should understand the anomalous dimension as a 2 × 2 matrix
and the Wilson coefficient as a two-component vector. The solution to the RGE is:

C (i)
n (Q2/ν2, αs, m) = C (i)

n (1, ᾱs(t), m̄(t)) exp

[
−
∫ t

0
dt ′γ (i)

n [ḡ(t ′)]
]

, (16.24)

where t = 1/2 log(Q2/ν2). One can also rewrite the solution as:

C (i)
n (Q2) = C (i)

n (1, ᾱs(t)) exp

[
−
∫ ᾱs

αs

dg
γ (i)

n (g)

β(g)

]
, (16.25)

where the β function has been defined in Chapter 11 (Table 11.1):

β = β1

(αs

π

)
+ β2

(αs

π

)2
+ · · · . (16.26)

16.3 Anomalous dimension of the non-singlet structure functions

In the following, one can safely suppress the index i because in the non-singlet case, only
one operator dominates the light-cone expansion. Therefore:

γ
(i)
N S,n ≡ γN S,n = γ 0

n

(αs

π

)
+ γ 1

n

(αs

π

)2
+ · · · (16.27)

In the following, we shall explicitly discuss the evaluation of γ 0
n . It comes from the

Feynman diagrams in Fig. 16.2.
Using the Feynman rules given in Appendix E for the composite operators, Fig. 16.2a

gives in the massless case and in the Feynman gauge:

V (a)
i j = i5g2

∑
a,l

λa
il

2

λa
l j

2

∫
d N k

(2π )N

γ µk̂�̂(� · k)n−1k̂γ ν

k4

(−gµν)

(p − k)2
. (16.28)

The relevant contribution to the anomalous dimension is the divergent part of the coef-
ficient of (� · p)n−1�̂. Using standard Feynman parametrization and shift of momentum
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k
k k

k

p

1
2

p-k

(a)

p p

p-k p-k

(b) (c)

(d)

1
2

Fig. 16.2. Diagrams involved in the evaluation of γ 0
n .

(see Appendix F), the divergent part is:

V (a)
i j

∣∣
ε pole = ig2δi j CF

∫ 1

0
dx(1 − x)

∫
d N k

(2π )N

N
[k2 + p2x(1 − x)]3 , (16.29)

where:

N = −2k2

N
γ αγ β�̂γβγαxn−1�̂(� · p)n−1 . (16.30)

Therefore:

V (a)
i j

∣∣
ε pole =

(αs

π

) 2

ε̂

CF

4

2

n(n + 1)
�̂(� · p)n−1 , (16.31)

where CF = (N 2
c − 1)/2Nc for SU (N )c and:

2

ε̂
≡ 2

ε
+ log 4π − γE . (16.32)

Figures 16.2b and c give the same result. It reads:

V (b)
i j = V (c)

i j = −i3g2CFδi j

∫
d N k

(2π )N

�µ�̂
[∑n−2

n=0(� · p)l[� · (p + k)]n−l−2
]
( p̂k̂)γµ

k2(k + p)2
.

(16.33)

The pole part of the coefficient of (� · p)n−1�̂ is:

V (b)
i j

∣∣
ε pole = 2ig2CFδi j�̂

∫ 1

0
dx
∫

d N k

(2π )N

∑n−2
n=0(� · p)l(� · k + x�k)n−l−1

[k2 + p2x(1 − x)]2

= −
(αs

π

) 2

ε̂

CF

2
δi j (� · p)n−1�̂

{∫ 1

0
dx

n−1∑
l=1

xl =
n∑

l=2

1

l

}
. (16.34)
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The diagrams in Fig. 16.2d give the same contributions as the fermion wave function
renormalization constant Z2F defined in Eqs. (9.22) and (9.29). In the Feynman gauge, it
gives:

V (d)
i j

∣∣
ε pole = −

(αs

π

) 2

ε̂

CF

4
δi j (� · p)n−1�̂ (16.35)

Adding the different contributions, one obtains the renormalization constant defined as:

Z N S
n ≡ 1 +

V (a+b+c+d)
i j

∣∣
ε pole

(� · p)n−1�̂
. (16.36)

Using the definition of the anomalous dimension:

γn = ν

Z

d Z

dν
≡ coefficient of −

(
1

ε̂

)
, (16.37)

one obtains the result:

γ 0
n = CF

2

[
1 − 2

n(n + 1)
+ 4

n∑
l=2

1

l

]
, (16.38)

or equivalently:

γ 0
n = CF

2

[
4S1,n − 3 − 2

n(n + 1)

]
, (16.39)

with

S1,n ≡
n∑

l=1

1

l
. (16.40)

The expression of S1,n can be analytically continued to complex n thanks to the Carlson
theorem [227] which we have used previously when taking the inverse Mellin transform.
In this case, one can write:

S1,n = n
∞∑

k=1

1

k(k + n)
= ψ(n + 1) + γE : ψ(z) ≡ d log �(z)

dz
. (16.41)

where the expression of γ 1
n is also known [228] and corrected in [232]. At this order,

the problem of even (resp. odd) structure functions arises. The corresponding anomalous
dimensions are γ 1,±

n . They read:

γ 1,±
n = 32

9
S1,n

[
67 + 8(2n + 1)

n2(n + 1)2

]
− 64S1,n S2,n − 32

9
[S2,n − S±

2,n/2]

[
2S1,n − 1

n(n + 1)

]

− 128

9
S̃±

n + 32

3
S2,n

[ 3

n(n + 1)
− 7
]

+ 16

9
S±

3,n/2 − 28

− 16
151n4 + 260n3 + 96n2 + 3n + 10

9n3(n + 1)3

± 32

9

(2n2 + 2n + 1)

n3(n + 1)3
+ 32n f

27

[
6S2,n − 10S1,n + 3

4
+ 11n2 + 5n − 3

n2(n + 1)2

]
, (16.42)
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where:

S+
l,n/2 = Sl,n/2 , S−

l,n/2 = Sl,(n−1)/2 , S̃±
n = −5

8
ζ3 ∓

∞∑
k=1

(−1)k

(k + n)2
Sl,n+k . (16.43)

16.4 Strategy for obtaining the Wilson coefficients

The main task in perturbative QCD is to calculate the Wilson coefficients. This can be
simplified by the key observation that they are independent of the states which sandwich
the light-cone expansion of the T-product of the electromagnetic current for the forward
Compton amplitude Tµν . For instance, instead of taking proton states, one could consider
quark or gluon Green’s function with the insertion of the T-product of electromagnetic
current. In the case of quark fields, the truncated (quark external line) Green’s function
reads:

�µν(q, p)trunc = i
∫

d4xd4x1d4x2 e−qx+p(x1−x2)〈0|T Jµ(x)Jν(0)ψ(x1)ψ̄(x2)|0〉 , (16.44)

where p is the quark momentum. Repeating the same reasoning as in the previous section,
one can write the OPE analogous to the one in Eq. (16.9):

�µν(q, p)trunc = 2ωn
∑

i,n even

eµνC (i)
L ,n(−q2)Ô(i,pert)

L ,n − dµνC (i)
2,n(−q2)Ô(i,pert)

2,n , (16.45)

where the Wilson coefficients are the same as in Eq. (16.9) but the ‘composite operators’
Ô(i,pert)

L:2,n are calculable in perturbative QCD. The strategy is to calculate �µν(q, p)trunc

and Ô(i,pert)
L:2,n in perturbation theory and then deduce the Wilson coefficients order by order

of perturbative QCD.

16.4.1 Non-singlet part of the Bjorken sum rule

In the non-singlet part of the Bjorken sum rule, the Wilson coefficients can be expressed as:

Cn,N S(1, αs(Q2)) = C0
n,N S

{
1 + C1

n,N S

(αs

π

)
+ · · ·

}
(16.46)

For their evaluation, we shall consider the quark Green’s functions:

Tµν(q, ψ) = i
∫

d4x eiqx 〈ψ |T Jµ(x)Jν(0)|ψ〉 , (16.47)

which has the decomposition:

Tµν(q) = eµνTL + dµνT2 , (16.48)

where eµν and eµν have been defined in Eq. (16.10). We shall also use:

Ô(i,pert)
L:2,n pµ1 · · · pµn = 〈ψ |O(i),µ1···µn

L:2,n |ψ〉 . (16.49)
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Fig. 16.3. Tree-level diagram for a photon-quark scattering.

The quark tree-level diagram shown in Fig. 16.3 leads to the amplitude:

T 0
µν = Q2

ψ

1

2

∑
λ

ūλ(p)

[
γµ

1

p̂ + q̂ − m
γν + γµ

1

p̂ − q̂ − m
γν

]
uλ(p) . (16.50)

where u j (p) is the quark spinor, and Qψ is its charge in units of e. Introducing the Bjorken
variables, one has:

T 0
µν = Q2

ψdµν

(
1

x − 1
− 1

x + 1

)
= 2Q2

qdµν

∑
n=2,4···

(
1

x

)n

, (16.51)

where dµν has been defined in Eq. (16.10). Then, ones find:

T 0
2 = Q2

ψ

2

x2 − 1
, T 0

L = 0 . (16.52)

These results are already known from the free-field theory discussed in the beginning of
this chapter. Solving the RGE for the Wilson coefficient, one obtains the modification due
to QCD at leading order:

C2,n(Q2) ∼
(

log
Q2

�2

)γ 0
n /2β1

, (16.53)

showing that the naı̈ve Bjorken scaling is modified by the running coupling of QCD to
leading order. To second order, one has [233]:

C1
n,N S = CF

4

(
2S2

1,n + 3S1,n − 2S2,n − 2S1,n

n(n + 1)
+ 3

n
+ 4

n + 1
+ 2

n2
− 9

)
. (16.54)

Therefore, to second order, the non-singlet moments read:

MN S
n (Q2) =

(
αs
(
Q2

0

)
αs(Q2)

)γ 0
n /β1

(
1 + β2/β1(αs(Q2)/π )

1 + β2/β1
(
αs
(
Q2

0

)
/π
)
)−pn

×
(

1 + C1
N S,n(αs(Q2)/π )

1 + C1
N S,n

(
αs
(
Q2

0

)
/π
)
)
MN S

n

(
Q2

0

)
, (16.55)
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where:

pn = γ 1
n /β2 − γ 0

n /β1 . (16.56)

This relation is well verified experimentally and used to measure the QCD coupling αs .

16.4.2 Callan–Gross scaling violation

To leading order, the longitudinal structure function, coming from the diagram in Fig. 16.3,
vanishes being defined as F2 − 2x F1. In the following, we analyze the structure function
to order αs .

Non-singlet part

To order αs , the non-singlet part comes from the diagram in Fig. 16.4.
The analysis is simplified by noting that TL is the only amplitude multiplied by qµqν .

The amplitude from the direct diagram is:

T i j
µν

∣∣
dir = −iCFδi j g

2 1

4

∑
σ

ū(p, σ )

×
∫

d N k

(2π )N

γα( p̂ + k̂)γ µ( p̂ + k̂ + q̂)γ ν( p̂ + k̂)γ α

(p + k)4(p + k + q)2k2
u(p, σ ) . (16.57)

Using:
∑

σ

ū(p, σ )Mu(p, σ ) = T r [ p̂M] , (16.58)

and extracting term proportionnal to qµqν , one obtains after usual manipulations:

T N S
L

∣∣
dir =

(αs

π

)
CF

2

x

∫ 1

0
ydy

∫ 1

0
dz

y(1 − yz)

[y − [1 − (1 − y − yz)/x]]2 , (16.59)

p+k

q p+k+q

p+k      + crossed

i,p j,p

Vµ Vν

Fig. 16.4. Diagrams contributing to F N S
L .
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Expanding in powers of 1/x and integrating, one obtains:

T N S
L

∣∣
dir =

(αs

π

)
CF

∞∑
n=1

1

n + 1

(
1

x

)n

. (16.60)

The crossed diagram doubles the even n contribution and cancels the odd one. Then, one
finally obtains:

T N S
L = 2

(αs

π

)
CF

∞∑
n=even

1

n + 1

(
1

x

)n

. (16.61)

Comparing with Eqs. (16.52) and (16.16), one can deduce the scaling violation QCD
correction to the Callan–Gross relation:

MN S
L ,n = δN S

L

(αs

π

) CF

n + 1
MN S

2,n , (16.62)

where for ep scattering δN S
L = 1/6. Taking the Mellin transforms, one can derive the non-

singlet part of the structure functions:

F N S
L (x, Q2) =

∫ 1

x
dy C L

N S(y, Q2)F N S
2

(
x

y
, Q2

)
, (16.63)

where:

C N S
L (y, Q2) = CF x(αs(Q2)/π ) + O(α2

s

)
, (16.64)

where the α2
s correction has been evaluated in [235].

Singlet part

The calculation of the singlet part is similar to that for the non-singlet. To the quark diagram
in Fig. 16.3, one has to add the gluonic diagram in Fig. 16.5.

p+k

k

q q

          + crossed

p p

Fig. 16.5. Diagrams contributing to the gluon component of the structure function.
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For electron-proton scattering, the singlet structure function can be decomposed as:

F S
L (x, Q2) =

∫ 1

x
dy

{
C L

S (y, Q2)F S
2

(
x

y
, Q2

)
+ C L

G(y, Q2)F S
G

(
x

y
, Q2

)}
, (16.65)

where:

C L
S (x, Q2) ≡ C L

N S + C L
QS ,

C L
QS(x, Q2) = C1,L

QS

(
αs(Q2)

π

)2

,

C L
G(x, Q2) = 4n f TR x(1 − x)

(
αs(Q2)

π

)
+ C1,L

G

(
αs(Q2)

π

)2

. (16.66)

C L
N S has been defined in Eq. (16.64). The coefficients C1,L

QS and C1,L
G have been evaluated in

[235–237]. The full longitudinal structure function is the sum of the non-singlet and quark
singlet components.

It is given by:

FL ≡ F2 − 2x F3 = F S
L + F N S

L . (16.67)

16.5 Singlet anomalous dimensions and moments

The singlet calculations are more involved than the case of non-singlet and longitudinal
structure functions. The corresponding anomalous dimension is a 2 × 2 matrix because of
the mixing of the operators in Eq. (16.4). Using an expansion of the anomalous dimension
and Wilson coefficient function:

γn = γ0n

(αs

π

)
+ γ1n

(αs

π

)2
+ · · ·

C (i)
n (1, αs(Q2)) = C0

n,i

{
1 + C1

n,i

(αs

π

)
+ · · ·

}
(16.68)

To leading order,

C (i)
n (1, αs(Q2)) = C0

n, j

(
αs
(
Q2

0

)
αs(Q2)

)γ0n/β1

i j

(16.69)

where the indices i, j ≡ q, g indicate quark and gluon composite operators respectively.
The calculation of C0

n,i is very analogous to the non-singlet case by considering the forward
Compton amplitude sandwiched between two quark states for C0

n,q and two gluon states for
C0

n,g . One obtains to this order:

C0
n,q =

{ 1 for Cn,2

0 for Cn,L
. (16.70)

Since the gluon does not couple to the photon to lowest order, one obtains:

C0
n,g(Q2) = 0 . (16.71)
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(a)

+ +

(b)

+ +

(c)

Fig. 16.6. Diagrams contributing to the singlet anomalous dimensions.

The anomalous dimension matrix reads to leading order:

γ0n =
⎛
⎝γ

qq
0n γ

qg
0n

γ
gq

0n γ
gg

0n

⎞
⎠ . (16.72)

The diagrams contributing to the anomalous dimensions are given in Fig. 16.6, in addition
to the contribution from the diagrams in Fig. 16.2. The results are [168,234]:

γ
qq
0n = CF

2

[
1 − 2

n(n + 1)
+ 4

n∑
j=2

1

j

]
,

γ
qg
0n = −2n f TR

n2 + n + 2

n(n + 1)(n + 2)
,

γ
gq

0n = −CF
n2 + n + 2

n(n2 − 1)
,

γ
gg

0n = 2

[
CG

(
1

12
− 1

n(n + 1)
− 1

(n + 1)(n + 2)
+

n∑
j=2

1

j

)
+ TR

n f

3

]
, (16.73)

where CF = (N 2
c − 1)/2Nc, TR = 1/2 and CG = Nc for SU (N )c. To this order, the mo-

ments in Eq. (16.16) read:

M2,n(Q2) =
∑

i

C0
n,i

(
αs
(
Q2

0

)
αs(Q2)

)γ0n/β1

iq

,

ML ,n(Q2) = 0 . (16.74)
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In order to make a comparison with experiment, it is convenient to diagonalize the
anomalous dimension matrix γon . On this basis, one can write:

M2,n(Q2) = C0
+,n

(
log

Q2

�2

)−γ +
0n/2β1

+ C0
−,n

(
log

Q2

�2

)−γ −
0n/2β1

, (16.75)

with:

γ ±
0n = 1

2

[
γ

qq
0n + γ

gg
0n ±

√(
γ

qq
0n + γ

gg
0n

)2 + 4γ
qg
0n γ

gq
0n

]
. (16.76)

To the next order, the expressions of the anomalous dimensions are known and the Wilson
coefficients read [233]:

C1
n,q = C1

n,N S = CF

4

(
2S2

1,n + 3S1,n − 2S2,n − 2S1,n

n(n + 1)
+ 3

n
+ 4

n + 1
+ 2

n2
− 9

)
,

C1
n,g = TF n f

(
−1

n
+ 1

n2

6

n + 1
− 6

n + 2
− S1,n

n2 + n + 2

n(n + 1)(n + 2)

)
. (16.77)

To this order, the moments in the singlet case have more involved expressions, because of
the mixing of operators. We refer the readers to, for example, the papers in [228,232,233],
the review in [49] and book [46] for some expositions of this case. Finally, the expressions
of few moments including three-loop corrections have been evaluated in [238].
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The Altarelli–Parisi equation

Although convenient, the use of OPE to deep inelastic scattering does not provide a trans-
parent physical intuition of the parton model. An elegant reformulation of the moments
which makes a close contact with the parton model picture is given by the Altarelli–Parisi
equation [239] and the review in [48].

17.1 The non-singlet case

One can illustrate this equation by taking the simple example of the non-singlet structure
functions, which one can write as an incoherent sum of quark parton densities q f (x). In
presence of external fields, the quark parton densities acquire a Q2 dependence, and the
structure function can be written as:

F N S
2,n (Q2) = x

∑
f

δN S
f q f (x, Q2) , (17.1)

where δN S
f are known coefficients. Using the QCD expression to lowest order, the corre-

sponding moments read:

MN S
2,n (Q2) = (log(Q2/�2))γ

0
n /β1 . (17.2)

From its definition, the moments of the quark densities are:

M f,n(Q2) ≡
∫ 1

0
dx xn−1q f (x, Q2) . (17.3)

Using Eq. (17.2), one can derive the evolution equation:

∂M f,n(t)

∂t
= −γ 0

n

(αs

π

)
(t)M f,n(t) , (17.4)

with t ≡ (1/2) log(Q2/ν2). Defining:

∫ 1

0
dz zn−1 P (0)

N S(z) = −γ 0
n , (17.5)

174
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and taking the Mellin transform of Eq. (17.3), one can deduce the Altarelli–Parisi equation
[239]:

∂q f (x, t)

∂t
= αs(t)

π

∫ 1

x

dy

y
P (0)

N S

(
x

y

)
q f (y, t) , (17.6)

which one can symbolically write as:

∂q f

∂t
= αs(t)

π
q f ⊗ P (0)

N S . (17.7)

In its infinitesimal form, the equation can be rewritten as:

q f (x, t) + dq f (x, t) =
∫ 1

0
dy

∫ 1

0
dz δ(zy − x)q f (x, t)

{
δ(z − 1) +

(αs

π

)
P (0)

N S(z)dt
}

.

(17.8)

One can interpret P (0)
N S(z) (splitting functions) as controlling the rate of change of the

parton distribution probability with respect to t . One can check that Eq. (17.5) is satisfied if:

P (0)
N S(z) = CF

{
3

2
δ(1 − z) + 1 + z2

(1 − z)+

}
, (17.9)

where for any function g:∫ 1

0

dz

(1 − z)+
g(z) ≡

∫ 1

0

dz

(1 − z)
[g(z) − g(1)] . (17.10)

17.2 The singlet case

In the case of singlet structure functions, analogous relations can be obtained. The Altarelli–
Parisi evolution-coupled equations are:1

∂q f (x, t)

∂t
= αs(t)

π

∫ 1

x

dy

y

{
P (0)

qq

(
x

y

)
q f (y, t) + P (0)

qg

(
x

y

)
G(y, t)

}
, (17.11)

∂G(x, t)

∂t
= αs(t)

π

∫ 1

x

dy

y

{
P (0)

gp

(
x

y

)
q f (y, t) + P (0)

gg

(
x

y

)
G(y, t)

}
. (17.12)

The splitting functions are:

P (0)
qq = P (0)

N S ,

P (0)
qg = T

n f
(x2 + (1 − x)2) ,

P (0)
gq = CF

1

x
(1 + (1 − x)2) ,

P (0)
gg = 2CG

(
1 − x

x
+ x(1 − x) + x

(1 − x)+

)
+ δ(1 − x)

(11CG − 4T )

6
, (17.13)

1 Recall our definition of t which is 1/2 of the one used in the original paper.
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where: T ≡ n f /2 , CF = (N 2 − 1)/(2N ) and CG = N . In the limit CF = CG = 2T
(supersymmetry of the massless QCD lagrangian where both gluons and Weyl fermions
transform according to the regular representation of the group), one has the remarkable
relation:

P (0)
qq + P (0)

qg = 2n f P (0)
gq + P (0)

gg . (17.14)

By taking the difference of Eq. (17.11) for qi and q j , where qi, j are any quark or anti-
quark densities, the gluon term drops out, and one recovers the previous simple result for
the non-singlet (or valence) evolution equations:

∂Vi j

∂t
= αs(t)

π
Vi j ⊗ P (0)

qq : Vi j (x, t) ≡ qi (x, t) − q j (x, t) . (17.15)

Defining:

	(x, t) ≡
∑

f

q f (x, t) =
∑

flavours

[q(x, t) + q̄(x, t)] , (17.16)

one can also obtain the evolution equations in terms of two independent densities:

∂	

∂t
= αs(t)

π

{
	 ⊗ P (0)

qq + G ⊗ 2n f P (0)
qg

}
,

∂G

∂t
= αs(t)

π

{
	 ⊗ P (0)

gq + G ⊗ P (0)
gg

}
, (17.17)

which are convenient to work with in the phenomenological analysis. The solution for a
quark i can be reconstructed by splitting it into its non-singlet qi − 	/2 and singlet 	/2
components.

17.3 Some physical interpretations and factorization theorem

We have seen in Eq. (17.8) that one can interpret the (splitting functions) P (0)
N S(z) as control-

ling the rate of change of the parton distribution probability with respect to t . This can be
understood by considering the scattering of an off-shell photon on the parton as depicted in
the different diagrams in Fig. 17.1.

Diagram 17.1a shows the free quark diagram in the parton model with a certain probability
q f (x) of having a fraction of the proton momentum q f (x). After a time t , the quark may
radiate into gluons as depicted in different diagrams shown in 17.1b and 17.1c. One can
show that, in the axial (physical) gauge, only diagram 17.1b contributes to the cross-section
and gives a term proportional to t :

σ (γ ∗q → q + g) � αs(t)

e

2

π [t P(x) + f (x)] . (17.18)
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p

q

p+qγµ

γ* γ*

p

k
g

(a) (b)

(c)

Fig. 17.1. Scattering of an off-shell photon on the parton.

P(x) is well-defined perturbatively, while f (x) depends on the IR regularization procedure.
One can generalize the above procedure to sum up the contributions of an arbitrary number
of gluons. In the leading log approximation, one can show [240] that only the ladder graphs
in Fig. 17.2 contribute and lead to the factorization theorem:

σ (γ ∗q → q + g) ∼
(

αs(t)

π

)n

lnn Q2

ν2
. (17.19)

It is also important to recall that the splitting functions P (0)
ab are universal (anoma-

lous dimension of the RGE) and consequently the parton densities depend only on the
the target and are independent of the nature and polarization of the probe (vector, axial-
vector, . . . ).

17.4 Polarized parton densities

The previous approach can be generalized to parton densities of definite helicity in a polar-
ized target. The quark and gluon densities qi± and G±, with helicity ± in a target of definite
polarization, are related to the unpolarized ones as:

pA+(x, t) + pA−(x, t) = pA(x, t) : s(pA ≡ qi , G) . (17.20)
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q

pf

γ*

Fig. 17.2. Ladder diagrams contributing at the leading log approximation.

The corresponding evolution equations can be written to leading order as:

∂pA±
∂t

= αs(t)

π

{∑
B

[
pB+ ⊗ P (0)

A± B+ + pB− ⊗ P (0)
A± B−

]}
. (17.21)

Parity and probability conservation gives:

P (0)
A± B− = P (0)

A− B∓ ,

P (0)
A+ B+ + P (0)

A− B+ = P (0)
A+ B− + P (0)

A− B− , (17.22)

which imply that (pA+ + pA− ) = pA and (pA+ − pA− ) = �pA evolve separately for any A.
The evolution equation for the difference is:

∂pA±
∂t

= αs(t)

π

∑
B

�pB ⊗ �P (0)
AB . (17.23)

The splitting function:

�P (0)
AB ≡ P (0)

A+ B+ − P (0)
A− B+ , (17.24)

measures the tendency of a parton A to remember the polarization of its parent B. From the
helicity conservation at the quark gluon vertex, it follows that the non-singlet kernel is the
same as in the unpolarized case:

�P (0)
qq ≡ P (0)

q+q+ − P (0)
qq . (17.25)
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One also finds:

�P (0)
qg = T

n f

1

2
(x2 − (1 − x)2) ,

�P (0)
gq = CF

2

1

x
(1 − (1 − x)2) ,

�P (0)
gg = CG

2

(
(1 + x4)

(
1

x
+ 1

(1 − x)+

)
− (1 − x)3

x

)

+ δ(1 − x)
(11CG − 4T )

12
. (17.26)

In this case, all charge moments are well defined, as the total helicity is finite though the
total number of gluons and quark pairs is infinite. To leading order, the net helicity is also
conserved, such that �P (0)

qg and �P (0)
qq are zero.

The previous evolution equations for parton densities with definite helicities are sufficient
for the prediction of scaling violations in leptoproduction on a longitudinal polarized target.
Additional information is needed for a transversely polarized target.
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More on unpolarized deep inelastic scatterings

18.1 Target mass corrections

Target mass corrections have been introduced by Nachtmann [229], and later on in [168]. If
one considers the NS part of the moments defined in Eq. (16.16), one can show [168] that
they can be written as:

M(n)
2 (Q2)

∣∣
mass =

∞∑
j=0

(
M2

N

Q2

) j
(n + j)!

j!(n − 2)!(n + 2 j)(n + 2 j − 1)
M(n)

2 (Q2) . (18.1)

Inverting this expression, one can express the structure function in terms of the Nachtmann
variable [229]:

ζ = 2x

1 +
√

1 + 4x2 M2
N

/
Q2

. (18.2)

In the region x → 1, higher twist contributions can also be important and can cancel the
target mass corrections [230], it is instructive to do an expansion in x . Keeping the leading
term, one obtains (see e.g. [46)]:

F N S
2

∣∣
mass(x, Q2) = F N S

2 (x, Q2) + x2 M2
N

Q2

×
{

6x
∫ 1

0

dy

y2
F N S

2 (y, Q2) − x∂ F N S
2 (x, Q2)

∂x
− 4F N S

2 (x, Q2)

}

+O
(

(3 ∼ 5)
x3 M2

N

(1 − x)Q2

)
, (18.3)

where the quality of the expansion can be controlled by the size of the next term. This
contribution can be compared with the higher-twist contribution in Eq. (18.6).

18.2 End points behaviour and the BFKL pomeron

18.2.1 The limit x → 1

The NLO perturbative expression of the non-singlet structure function indicates that for
x → 1, it behaves as [231]:

F N S ∼ (1 − x)2[ln(1−x)](αs/3π ) , (18.4)

180
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showing that perturbation theory fails. This result can be generalized to all orders by formally
replacing αs(Q2) by αs[(1 − x)Q2] [241]. One can also interpret this feature because, in
this limit, we are in the bound state regime where the reaction of the type:

γ ∗ + N → N (18.5)

dominates. In this limit, one may also expect that non-perturbative higher twist contributions
behave as [230]:

F H T
2 (x, Q2) ∼ p2

T

Q2

x

1 − x
F2(x, Q2) , (18.6)

where pT is the transverse momentum of partons in the nucleon.

18.2.2 The limit x → 0 for the non-singlet case

This limit has been studied extensively in hadron physics for the non-singlet scattering
process.1 It corresponds to the kinematic region where Q2 is fixed and the hadronic energy
ν going to infinity. This is the so-called Regge limit, where the cross-section of the photon
scattering off the proton is proportional to the structure function:

σ (γ ∗(Q2)p(s)) = 4π2α

Q2
F2(x, Q2) : s = Q2/x , (18.7)

and where the non-singlet amplitude can be expressed as:

T N S(ν → ∞) � f (Q2)sαρ (0) , (18.8)

due to exhange of Regge trajectories, either the ρ trajectory or the one degenerate to it. αρ(0)
is the universal intercept of the ρ trajectory, which has an experimental value of about 0.5.
Therefore, one can show that the structure function behaves as:

F N S
2 (x, Q2) ∼ x1−αρ (0) . (18.9)

18.2.3 The limit x → 0 for the singlet case and the BFKL pomeron

The singlet case is more subtle due to the coupled evolution equations from the presence
of the gluon density. At present, there is no consensus on the behaviour of the structure
functions at Q2

0 ∼ few GeV2. There are three proposals:

� Soft pomeron
In this case, the structure functions are expected to behave as a constant in the x = 0 limit. This
behaviour was first considered in [230] and completed later on. However, it has been known for a
long time that a soft pomeron for off-shell processes leads to inconsistencies [243].

� Hard pomeron
The previous remark then leads some people to postulate the hard pomeron exchange, where:

F S
(
x, Q2

0

) ∼ x−λq , FG
(
x, Q2

0

) ∼ x−λg . (18.10)

1 For a recent review, see e.g. [242].
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Fig. 18.1. Comparison of the measured and BFKL predictions of F2 for small x = 4 × 10−4 and large
Q2. For a running value of αs , the HERA data are in disagreement with the BFKL result (F2 should
decrease with Q2).

It has been proved that:

λq = λg (18.11)

and are Q2 independent.
� BFKL pomeron

The usual procedure used now is to assume a given behaviour at fixed Q2
0 and then evolve the

behaviour using the RGE for an arbitrary Q2. Using a different approach, BFKL [244] found a
different behaviour:

F2

(
x, Q2

) ∼ x−ωαs (Q2) : ω = 4CA ln 2

π
. (18.12)

which is not compatible with the RGE where the exponent is constant. A comparison of this
prediction with data for a given small x value is given in Fig. 18.1.

A number of speculations have been suggested in order to explain this difference (two different
regimes in x ? αs function of a soft scale of the order of �2 but not of Q2 ? . . . ).

18.3 Experimental tests and new developments

� In the previous section, we have discussed in detail the scaling violation to the Bjorken sum rule
as an illustration of the OPE approach and of the Altarelli–Parisi evolution equation. We have also
concentrated the discussions on the photon scattering off a proton. A test of this prediction is given
in Fig. 18.2.

We also give the new compiled data from PDG [16] in Figs. 18.3 and 18.4.
� In [245], a model which interpolates the soft and hard pomeron parametrization and which can be

used at low Q2 has been proposed. It has been assumed that the soft pomeron contribution is given
by an ordinary pomeron which is constant when x → 0, while one has to find a parametrization
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Fig. 18.2. Comparison of the measured and QCD predictions for F2 where the N S and S components
(dashed) are explicitly shown. The full curve is the sum of the two. Data points are SLAC data [246].

Fig. 18.3. The proton structure function F2 from ep scattering versus x at two values of Q2, exhibiting
scaling at the pivot point x ≈ 0.14.

where the cross-section does not blow up when Q2 → 0. This can be achieved by replacing the
coupling by:

αs

(
Q2

) → α̃s ≡ 2π

−β1 ln(Q2 + M2)/�2
, (18.13)



184 IV Deep inelastic scatterings at hadron colliders

Fig. 18.4. The proton structure function F2 from ep scattering versus Q2 at different values of x . A
constant c(x) = 0.3(ix − 0.4) has been added to F2 where ix is the number of the x bin ranging from
ix = 1(x = 0.85) to ix = 28(x = 0.000063).

and the soft pomeron term by:

C → C
Q2

Q2 + M2
, (18.14)

where M is a typical hadronic scale of the order of Mρ . In this way, the structure function takes the
form:

F2 = 〈
e2

q

〉
BSα̃

−d+(n=1+λ)
s Q−2λsλ + C

Q2

Q2 + M2
+ BN Sα̃

−d N S (n=1−λN S )
s Q2λN S

s−λN S
, (18.15)
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Fig. 18.5. Comparison of the measured and QCD model predictions for F2 at low x and small Q2.

with:

d+(1 + λ0) = 1 + λ0 , d N S
(
1 − λN S

0

) = 1 − λN S
0 , (18.16)

and:

d(n) ≡ γn/(−2β1) . (18.17)

The different fits give a good description of the HERA data at low x and small Q2, as shown in
Fig. 18.5.

The results of the fit give:

λ0 = 0.47 , λN S
0 = 0.522 . (18.18)

which are larger than a hard pomeron fit λ = 0.32 − 0.38 but are in the range given by a soft
pomeron fit λ = 0.44 ± 0.04 .

� We also know that deep inelastic scatterings and some other related sum rules have been traditionally
used for extracting the QCD coupling αs(Q2) and the scale � due to their sensitivity to leading
order to these quantities. The determinations of αs from different methods will be discussed in
Section 18.4, Chapter 25 and Part VI. Various more involved systematic tests of scaling violations
and modern analysis can, for example, be found in different textbooks [42–46], reviews [47–52]
and also the proceedings of the QCD series of the Montpellier-Conference.

18.4 Neutrino scattering sum rules

For (anti)-neutrino off-proton scattering, we have the following sum rules:

� The Adler sum rule ∫ 1

0

dx

x

(
F ν̄ p

2 − Fνp
2

) = 2 , (18.19)

valid for all Q2, and which has no corrections because it is related to an equal-time commutator
[247].
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Fig. 18.6. x F3 measured from electroweak scattering of (a) electrons on protons and (b) muons on
carbon versus x and for different Q2.

Fig. 18.7. x F3 measured from ν − Fe scattering versus Q2 and for different x .
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� The Gross–Llewellyn Smith sum rule
It reads [248]:

∫ 1

0

dx

x

[
F ν̄ p

3 (x, Q2) + Fνp
3 (x, Q2)

] = 3
{
1 − as(Q2) − 3.58 a2

s (Q2) − 19.0 a3
s (Q2)

}
, (18.20)

where higher order corrections have been evaluated by [249] and are shown in Fig. 18.6.
Data [16] from ν-Fe scattering is shown in Fig. 18.7.

18.5 Summary of αs measurements from DIS

The different analysis from DIS lead to the values of αs given in Table 25.3 and Fig. 25.13
from [139]. The most recent and precise result comes from the analysis of F2 by [250] using
data on protons from SLAC, BCDMS, E665 and HERA. It leads to:

αs(MZ0 ) = 0.1166 ± 0.0009 (stat) ± 0.0020 (syst) , (18.21)

where the systematic error has been multiplied by a factor 2 as a guess of the µ-dependence
and effects of power corrections not fully analysed in [250]. It reaches the accuracy of the
determination from, for example, the inclusive τ -decay data. However, the DIS data have
shown large fluctuations in recent years, and then are less satisfactory than those from e+e−

and τ -decay data. The previous value αs(MZ0 ) = 0.113 ± 0.005 from BCDMS, SLAC data
[251] and soon confirmed by the CCFR result from F2,3, become 0.119 ± 0.002 (stat) ±
0.003 (th) after a new energy calibration. Recent result on F2γ photon structure function is
also available from LEP leading to:

αs(MZ0 ) = 0.1198 ± 0.0028 (exp) +0.0034
−0.0046 (th) . (18.22)

These different DIS results are compared with other determinations given in Table 25.3
and Figs. 25.13 and 25.15. The overall agreement shows a great achievement of the pQCD
calculations.
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Polarized deep-inelastic processes and the proton
‘spin’ crisis

We extend the previous unpolarized deep-inelastic scattering analysis to the case of polar-
ized processes in the aim to study the ‘spin’ content of the proton and, later on (see next
chapter), of the photon from γ -γ scattering.1 Interest on such processes has been stimu-
lated by the EMC collaboration [253] finding that the first moment of the polarized proton
structure function g p

1 is unexpectedly suppressed compared with the naı̈ve quark model
prediction (OZI [254] violation), which has provoked an extensive discussion (see e.g.
[255–261]) of the parton model interpretation of QCD in deep inelastic scattering processes
involving the U (1) axial anomaly [262–264]. We shall be concerned here with the parity-
violating part of the hadronic tensor defined in Eq. (15.36) where the structure function is
defined as:

g1 ≡ ν

M2
p

W3 . (19.1)

Data [16] are shown in Fig. 19.1.

19.1 The case of massless quarks

We shall discuss here the approach based on a composite operator and proper vertex. This
discussion can be consulted in the reprinted paper [260] given in Section 19.4 at the end of
this chapter.

19.2 Extension of the method to massive quarks

We extend the previous approach to the case of massive quarks [261]. In this paper, a detailed
estimate of the slope of the topological susceptibility using the approach of QCD spectral
sum rules in the case of massive quarks is given.2 The result [261]:√

χ ′(0)|mq �=0 = (33.5 ± 3.9) MeV , (19.2)

1 It is a pleasure to thank Graham Shore for discussions related to this chapter.
2 A previous estimate of the slope of the topological charge using QSSR in pure Yang–Mills theory has been done

in [265] and confirmed later on by lattice calculations [266].

188
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Fig. 19.1. The spin-dependent structure function xg1 of proton, deuteron and neutron in DIS of
polarized electron/positron versus x and for different Q2 ranging from 0.01 to 100 GeV2 (SMC) for
proton and deuteron, and from 1 to 17 GeV2 (E154) for neutron.

compared to the massless quark values of (26.4 ± 4.1) MeV [260] is smaller than the OZI
expectation of (43.8 ± 5.0) MeV. As a result, the singlet polarized structure function:

a0 = a8

(√
6

fπ

) √
χ ′(0)|Q2 , (19.3)

where:

G(8)
A ≡ 1

2
√

3
a8 , G(0)

A ≡ a0 , (19.4)

has the value [261]:

a0(Q2 = 10 GeV2) = 0.31 ± 0.02

�1
p(Q2 = 10 GeV2) = 0.141 ± 0.005 , (19.5)

which is about the same as the one obtained in the chiral limit, and confirms the expectation
that the result is insensitve to the quark mass values. This result is in agreement with the data,
which may also confirm the proposal that the proton spin suppression is a target-independent
effect due to the screening of the topological charge of the QCD vacuum.
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19.3 Further tests of the universal topological charge screening

The previous proposal can be tested in different processes. This can be done either in
semi-inclusive polarized ep scattering (for a review see e.g. [267]) or in the γ γ polarized
process.

19.3.1 Polarized Bjorken sum rule

If the previous proposal requiring an identical suppression of the flavour singlet component
for the proton and neutron is correct, one expects that the Bjorken sum rule:

δ�
p−n
1 ≡ �

p
1 − �n

1 ≡
∫ 1

0
dx

[
g p

1 (x ; Q2) − gn
1 (x ; Q2)

]

= 1

6
gA

(
1 − as − 3.583a2

s − 20.215a3
s

) + ap − an

Q2
, (19.6)

should hold. The 1/Q2 higher twist term can be neglected at higher Q2. Using the experi-
mental value of gA, one may extract the value of αs . Instead, we use the previous sum rule
and that of the nucleon [260]:

δ�
p−n
1 (2 GeV2) � −(0.203 ± 0.029) , �n

1 (Q2 = 2 GeV2) � −(0.022 ± 0.011) ,

(19.7)
from which one can deduce the higher twist terms in units of GeV2:

ap � −0.117 ± 0.145 , an � −0.018 ± 0.025 , (19.8)

which, although consistent with zero are neverthless interesting.

19.3.2 Semi-inclusive polarized ep scattering

An alternative test of the previous proposal is to perform a DIS experiment on a target other
than the nucleon. This can be done by studying a semi-inclusive process in which a single
hadron carrying a large target energy fraction is detected in the target fragmentation region.
This is shown in the Fig. 19.2.

In terms of the fracture function [268] Mh/N
i (x, z, t, Q2) which represents the joint prob-

ability distribution for producing a parton i with momentum fraction x and a detected
hadron h carrying an energy fraction z = p′

2 · q/p2 · q from a nucleon N (t is the invariant
momentum transfer), the lowest order polarized cross-section reads [267]:

d�σ target

dxd Q2dzdt
= 4πα2 y(2 − y)

Q4
�Mh/N

1 (x, z, t, Q2) (19.9)

where:

�Mh/N
1 =

∑
i

Q2
i

2
�Mh/N

i , (19.10)
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N N

µ

µ

Fig. 19.2. Semi-inclusive process.

is equivalent to the inclusive structure function gN
1 , and where Qi is the charge of the quark

i in units of e. For large z → 1, the fracture function can be modelled by, for example, a
single region exchange and reads:

�Mh/N
1 � F(t)(1 − z)−2αR(t)gR

1

(
x

1 − z
, t, Q2

)
, (19.11)

where gR
1 is the structure function of the exchanged region R with trajectory αR(t). Inde-

pendently on the detailed model of the fracture functions, one can predict the ratio of the
moments:

M1(ep → eπ− X )

M1(en → eπ+ X )
� 2s + 2

2s − 1
� M1(ep → eD− X )

M1(en → eD0 X )
,

M1(ep → eK 0 X )

M1(en → eK + X )
� 2s + 1

2s − 1
, (19.12)

where:

M1 =
∫ 1−z

0
dx�Mh/N

1 · (x, z, t, Q2) , (19.13)

and:

s(Q2) =
(

C S
1

C N S
1

) (√
2n f

fπ

) √
χ ′(0) . (19.14)

C S
1 and C N S

1 are ratio fo the singlet and non-singlet Wilson coefficients. In the OZI limit,
s = 1, such that one expects a large deviation from the previous value of χ ′(0). In the small
limit z → 0, the previous ratios reduce to the first moment ratio g p

1 /gn
1 . In the whole range

of z, one expects a deviation of about a factor 2.5 from the OZI prediction.
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Fig. 1. The two-current matrix element 〈N|Jµ(q)Jν(−q)|N〉.

19.4 Reprinted paper

Target independence of the EMC–SMC effect
S. Narison, G. M. Snore and G. Veneziano

Reprinted from Nuclear Physics B, Volume B433, pp. 209–233, Copyright (1995) with permission from Elsevier
Science.

1. Introduction

The discovery by the EMC Collaboration [1] (see also Ref. [2]) of an unexpected sup-
pression of the first moment of the polarised proton structure function gp

1 has provoked an
extensive discussion of the parton model interpretation of QCD in deep inelastic scattering
processes involving the axial U(1) anomaly. (For reviews, see Refs. [3,4].) While it has so
far proved possible with careful redefinitions and interpretations [5] to preserve the essence
of the parton model description, it is becoming clear that these processes involve subtle
field theoretic properties of QCD which lead beyond both the original and QCD-improved
parton approximation. In this paper, we develop an alternative approach to deep inelas-
tic scattering emphasising field theoretic concepts such as the operator product expansion
(OPE), composite operator Green functions and proper vertices. This clarifies some of the
difficulties encountered in the parton description and gives a new insight into the underlying
reason for the EMC result. In particular, our analysis strongly suggests that the observed
suppression of the first moment of gp

1 is a generic QCD effect related to the anomaly and
is actually independent of the target. Rather than revealing a special property of the proton
structure, the EMC result reflects an anomalously small value of the first moment of the
QCD topological susceptibility [6,7].

The essential features of this method are easily described for a general deep inelastic
scattering process. The hadronic part of the scattering amplitude is given by the imaginary
part of the two-current matrix element 〈N | Jµ(q)Jν(−q) | N 〉 illustrated in Fig. 1, where
Jµ is the current coupling to the exchanged hard proton (or electroweak vector boson) and
| N 〉 denotes the target. The OPE is used to expand the large Q2 limit of the product of
currents as a sum of Wilson coefficients Ci (Q2) times renormalised composite operators
Oi as follows (suppressing Lorentz indices):

J (q)J (−q) ∼
Q2→∞

∑
i

Ci (Q2)Oi (0). (1.1)



19 Polarized deep-inelastic processes 193

Fig. 2. Decomposition of the matrix element into a composite operator propagator (denoted by the
double line) and a proper vertex (hatched).

The dominant contributions to the amplitude arise from the operators Oi of lowest twist.
Within this set of lowest twist operators, those of spin n contribute to the nth moment of
the structure functions, i.e.∫ 1

0
dx xn−1 F(x, Q2) =

∑
i

Cn
i (Q2)〈N | On

i (0) | N 〉. (1.2)

The Wilson coefficients are calculable in QCD perturbation theory, so the problem re-
duces to evaluating the target matrix elements of the corresponding operators. We now
introduce appropriately defined proper vertices ΓÕN N , which are chosen to be 1PI with
respect to a physically motivated basis set Õk of renormalised composite operators. The
matrix elements are then decomposed into products of these vertices with zero-momentum
composite operator propagators as follows:

〈N | Oi (0) | N 〉 =
∑

k

〈0 | Oi (0)Õk(0) | (0)〉�Õk N N . (1.3)

This is illustrated in Fig. 2. In essence, what we have done is to split the whole amplitude
into the product of a “hot” (high momentum) part described by QCD perturbation theory,
a “cold” part described by a (non-perturbative) composite operator propagator and finally
a target-dependent proper vertex.

All the target dependence is contained in the vertex function ΓÕNN. However, these are
not unique – they depend on the choice of the basis Õk of composite operators. This choice
is made on physical grounds based on the relevant degrees of freedom, the aim being to
parametrise the amplitude in terms of a minimal, but sufficient, set of vertex functions. A
good choice can often lead to an almost direct correspondence between the proper vertices
and physical couplings such as, e.g., the pion–nucleon coupling gπNN. In particular, it will
be wise to use, whenever possible, RG-invariant proper vertices.

Despite being non-perturbative, we can frequently evaluate the composite operator Green
functions using a combination of exact Ward identities and dynamical approximations
(see Sections 2 and 3). On the other hand, because of the target dependence, the proper
vertices are not readily calculable from first principles in QCD, so we are in general left
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Fig. 3. The original parton model representation of the scattering amplitude.

with a parametrisation of the amplitude in terms of a (hopefully small) set of unknown
vertices. These play the rôle of the non-perturbative (i.e. primordial or not-yet-evolved)
parton distributions in the usual treatment. Just as for parton distributions, many different
QCD processes can be related through parametrisation with the same set of vertex functions.

Now compare this approach with the parton model. In the original parton model, the
amplitude is approximated by Fig. 3, describing the scattering of a large Q2 photon with
a parton in the target nucleon. This picture is already sufficient to reveal Bjorken scaling.
It may be improved in the context of QCD by including gluonic corrections, exactly as in
the OPE, as shown in Fig. 4. These give the logarithmic scaling violations characteristic of
perturbative QCD. The total amplitude is therefore factorised into a perturbative scattering
amplitude for the hard photon with a parton (quark or gluon) and a parton distribution
function giving the probability of finding a particular parton with given fraction x of the
target momentum.

The question of whether the full QCD amplitude can be given a natural parton inter-
pretation depends on the composite operators Oi in the Wilson expansion. For example,
if the lowest twist operator for a given process is multilinear in the elementary quark and
gluon fields rather than simply quadratic then the diagram of Fig. 4 is not appropriate
and the process can only be described in terms of multi-parton distributions [8]. A more
subtle problem arises when the operators Oi are non-trivially renormalised and mix with
other composite operators under renormalisation. In this case, the parton interpretation is

Fig. 4. The QCD-improved parton model representation.
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preserved by defining parton distributions directly in terms of the operator matrix elements
(see, e.g., Ref. [8]). This procedure becomes especially delicate [5] in the case of polarised
deep inelastic scattering because of the special renormalisation properties of the relevant
Wilson operator J 0

µ5R due to the axial U(1) anomaly.
In this paper, rather than attempt to interpret the amplitude for polarised deep inelastic

scattering in terms of specially defined polarised quark and gluon distributions, we instead
focus the analysis on the composite operator level. By splitting the matrix elements in the
form of Eq. (1.3), we can exploit chiral Ward identities and the renormalisation group to
separate out generic features of QCD manifested in the composite operator propagator from
specific properties of the target. In the next section, we see how this clarifies the origin of
the suppression of the first moment of gp

1 observed in polarised µp scattering.

2. The first moment sum rule for gp
1

Our starting point is the familiar Ellis–Jaffe [9] sum rule for the first moment of the
polarised proton structure function gp

1. For NF = 3 and in the MS scheme [10], this reads1

Γ
p

1 (Q2) ≡
∫ 1

0
dx gp

1(x ; Q2)

= 1

6

{(
G(3)

A (0) + 1√
3

G(8)
A (0)

) [
1 − αs

π
− 3.583

(αs

π

)2
− 20.215

(αs

π

)3
]

+ 2

3
G(0)

A

(
0; Q2

) [
1 − 1

3

αs

π
− 0.550

(αs

π

)2
]}

, (2.1)

where the G(a)
A are form factors in the proton matrix elements of the axial current〈

P | J a
µ5R(k) | P

〉 = G(a)
A (k2)ūγµγ5u + G(a)

P (k2)kµūγ5u, (2.2)

and a is an SU(3) flavour index. In our normalisations (see Ref. [7])

G(3)
A = 1

2 (∆u − ∆d),

G(8)
A = 1

2
√

3
(∆u + ∆d − 2∆s), (2.3)

G(0)
A = ∆u + ∆d + ∆s ≡ ∆Σ.

We ignore heavy quarks and, for simplicity, set the light quark masses to zero in the formulae
below.

The axial current occurs here since it is the lowest twist, lowest spin, odd-parity operator
in the OPE of two electromagnetic currents, i.e.

Jµ(q)Jν(−q) ∼
Q2→∞

2
∑

a = 0,3,8

εµνα
β qα

Q2
Ca(Q2)J a

β5R + . . . . (2.4)

1We use the NLO and NNLO coefficients given in Ref. [11]. However, due to our definition (2.5) of the
renormalised composite operators, the radiative corrections of the singlet are different from the corresponding
terms in Ref. [11], which uses a different renormalisation of the singlet operators.



196 IV Deep inelastic scatterings at hadron colliders

The suffix R emphasises that the current is the renormalised composite operator. Under
renormalisation, the gluon topological density QR and the divergence of the flavour singlet
axial current J 0

µ5R mix as follows [12]:

J 0
µ5R = Z J 0

µ5B,

QR = QB − 1

2NF
(1 − Z )∂µ J 0

µ5B, (2.5)

where J 0
µ5B = ∑

q̄γµγ5q and QB = (αs/8π )tr(Gµν G̃µν) and we have quoted the formulae
for NF flavours. The mixing is such that the combination occurring in the axial anomaly
Ward identities, e.g.

〈0 | (
∂µ J 0

µ5R − 2NF QR
)Õk | 0〉 + 〈0 | δ5Õk | 0〉 = 0, (2.6)

is not renormalised.
Since J 0

µ5R is renormalised, its matrix elements satisfy renormalisation group equations

with an anomalous dimension γ , so that in particular G(0)
A (0; Q2) depends on the RG scale

(which is set to Q2 in Eq. (2.1)).
As we have emphasised elsewhere, G(0)

A does not, as was initially supposed, measure the
spin of the quark constituents of the proton. The RG non-invariance of J 0

µ5R (a consequence
of the anomaly) is itself sufficient to prevent this identification. The interest in the first
EMC data [1,2] on polarised µp scattering2, which allows the following result for G(0)

A to
be deduced:

G(0)
A (0; Q2 = 11 GeV2) ≡ ∆Σ = 0.19 ± 0.17, (2.7)

is rather that this value for G(0)
A represents a substantial violation of the OZI rule [13,14],

according to which we would expect

G(0)
A (0)OZI = 3F − D � 0.579 ± 0.021. (2.8)

Here, we have used [15,16]

F + D � 1.257 ± 0.008, F/D � 0.575 ± 0.016 (2.9)

as fitted from hyperon and β-decays. The assumption that the OZI rule is satisfied for G(0)
A (0)

is equivalent to the Ellis–Jaffe sum rule prediction for the first moment of gp
1.

It follows immediately from Eq. (2.2) (assuming the absence of a massless pseudoscalar
boson in the U(1) channel) that

G(0)
A

(
0; Q2

)
ūγ5u = 1

2M
〈P | ∂µ J 0

µ5R | P〉, (2.10)

2The combined SLAC/EMC data quoted in Ref. [1] gives

Γ
p

1 (Q2 = 11 GeV2) = 0.126 ± 0.010 ± 0.015.

The result for G(0)
A in Eq. (2.7) is extracted from the sum rule using the values for F and D given below and the

running coupling from tau-decay data [30] (see the remarks after Eq. (3.32)).
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where M is the proton mass. The anomalous chiral Ward identity then allows G(0)
A to be

re-expressed as the forward matrix element of the renormalised gluon topological density
QR, i.e.

G(0)
A (0; Q2)ūγ5u = 1

2M
2NF〈P | QR(0) | P〉. (2.11)

Notice that in terms of bare fields, QR contains both gluon and quark bilinears. This, together
with the explicit factor of αs in the definition of the topological density, is the source of the
difficully in giving a natural and unambiguous parton interpretation [5,3,4].

At this point, we apply the method described in the introduction. We choose as the com-
posite operator basis Õk the set of renormalised flavour singlet pseudoscalar operators, viz.
QR and Φ5R, where, up to a crucial normalisation factor discussed below, the corresponding
bare operator is simply the singlet i

∑
q̄γ5q . We then define Γ [QR, Φ5R; P, P] to be the

generating functional of proper vertces which are 1PI with respect to these composite fields
only. (Here, P and P denote interpolating fields for the proton – they play a purely passive
rôle in the construction.) Γ is obtained from the QCD generating functional by a Legendre
transform with respect to the sources for the composite operators QR and Φ5R only. We
may then write (cf. Eq. (1.3))

〈P | QR(0) | P〉 = 〈0 | QR(0)QR(0) | 0〉ΓQR PP + 〈0 | QR(0)Φ5R(0) | 0〉ΓΦ5R PP ,

(2.12)

where the propagators are at zero momentum.
The composite operator propagator in the first term in Eq. (2.12) is the zero-momentum

limit of an important quantity in QCD known as the topological susceptibility χ (k2), viz.

χ (k2) =
∫

dx eik·x i〈0 | T ∗ QR(x)QR(0) | 0〉. (2.13)

The second term is clearly independent of the normalisation of the renormalised quark
bilinear operator Φ5R. We choose to normalise this operator in such a way that the in-
verse two-point function ΓΦ5RΦ5R , which has to vanish at k2 = 0, is equal to k2, the correct
normalisation for a free, massless particle. With this normalisation, a straightforward but
intricate argument [7] using chiral Ward identities (see Appendix A) shows that the prop-
agator 〈0 | QRΦ5R | 0〉 at zero momentum is simply the square root of the first moment of
the topological susceptibility χ (k2). We therefore find

〈P | QR(0) | P〉 = χ (0)ΓQR PP +
√

χ ′(0)ΓΦ5R PP . (2.14)

The chiral Ward identities further show that for QCD with massless quarks, χ (0) actually
vanishes. (This is in contrast to pure Yang–Mills theory, where χ (0) is non-zero and is
related to the η′-mass in the large NC resolution of the U(1) problem [17,18].) Only the
second term in Eq. (2.14) remains. Remarkably, this means that the matrix element of the
renormalised gluon density QR measures the coupling of the proton to the renormalised
pseudoscalar quark operator Φ5R. This happens because the composite operator propagator
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matrix in the pseudoscalar (QR, Φ5R) sector is off-diagonal. We therefore arrive at our basic
result [7],

G(0)
A (0; Q2)ūγ5u = 1

2M
2NF

√
χ ′(0)ΓΦ5R PP . (2.15)

The renormalisation group properties of Eq. (2.15) are central to our argument. With the
normalisation of Φ5R chosen above, it can be shown [7] that the proper vertex ΓΦ5R PP is RG

invariant and so has no scale dependence. The scale dependence needed to match G(0)
A is

provided entirely by the topological susceptibility which, as shown in Appendix A, satisfies
the RGE

(
µ

∂

∂µ
+ β(αs)αs

∂

∂αs
− 2γ

)
χ ′(0) = 0. (2.16)

The challenge posed by the EMC data is to understand the origin of the OZI violation in
G(0)

A . The OZI approximation applied to the RHS of Eq. (2.15) would require3 (neglecting
flavour SU(3) breaking) ΓΦ5R PP � √

2 gη8NNuγ5u while
√

χ ′(0) � (1/
√

6) fπ .
Our proposal is that we should expect the source of the OZI violation to lie in RG

non-invariant terms, i.e. in χ ′(0). The reasoning is straightforward. In the absence of the
U(1) anomaly, the OZI rule would be an exact property of QCD. So the OZI violation is
a consequence of the anomaly. But it is the existence of the anomaly that is responsible
for the non-conservation and hence non-trivial renormalisation of the axial current J 0

µ5R.
We therefore expect to find OZI violations in quantities sensitive to the anomaly, which we
identify through their RG dependence on the anomalous dimensionγ . This seems reasonable
since, if the OZI rule were to be good for such quantities, it would mean approximating a
RG non-invariant, scale-dependent quantity by a scale-independent one. If this proposal is
correct, we expect

√
χ ′(0) to be significantly suppressed relative to its OZI approximation

of (1/
√

6) fπ . The proper vertex ΓΦ5R PP would behave exactly as expected according to the
OZI rule. That is, the Ellis–Jaffe violating suppression of the first moment of gp

1 observed by
EMC would not be a property of the proton at all, but would simply be due to an anomalously
small value of the first moment of the QCD topological susceptibility χ ′(0).

In the next section, we attempt to verify this hypothesis by evaluating χ ′(0) using QCD
spectral sum rules.

3To understand this, we note from Ref. [7] that Eq. (2.15) is equivalently written as one form of the U(1)
Goldbergen–Treiman relation, viz.

G(0)
A (0; Q2) = FηOZIgηOZINN,

where FηOZI and gηOZINN are respectively the decay constant and nucleon coupling of a state | ηOZI〉. | ηOZI〉 is an
unphysical state in QCD (i.e. not a mass eigenstate) which in the OZI or large NC limit, in which the anomaly is
absent, can be identified as the massless U(1) Goldstone boson. Simple quark counting rules then relate gηOZINN
to the η8–nucleon coupling gη8NN. This identification is the origin of our choice of normalisation of Φ5R. In the
OZI limit, ΓΦ5RNN becomes the Goldstone boson–nucleon coupling.
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3. QCD spectral sum rule estimate of χ′(0)

We now present an estimate of χ ′(0) in QCD with massless quarks using the method of
QCD spectral sum rules (QSSR) pioneered by Shifman, Vainshtein and Zakharov [19] and
reviewed recently in Ref. [20].

The correlation function χ (k2) is defined in Eq. (2.13) and its renormalisation group
equation is given in Appendix A. Including the inhomogeneous contact term [21], we
have (

µ
∂

∂µ
+ β(αs)αs

∂

∂αs
− 2γ

)
χ (k2) = − 1

(2NF)2
2β (L)k4, (3.1)

with the beta function

β(αs) ≡ 1

αs
µ

d

dµ
αs = β1

αs

π
+ β2

(αs

π

)2
, (3.2)

where, for QCD with NF flavours, β1 = − 1
2 (11 − 2

3 NF) and β2 = − 1
4 (51 − 19

3 NF), and the
anomalous dimension [12]

γ ≡ µ
d

dµ
log Z = −

(αs

π

)2
. (3.3)

The extra RG function β (L) (so called because it appears in the longitudinal part of the Green
function of two axial currents) is given by

1

(2NF)2
β (L) = − 1

32π2

(αs

π

)2
(

1 + 29

4

αs

π

)
. (3.4)

The RGE is solved in the standard way, giving

χ (k2, αs; µ) = exp

(
−2

∫ t

0
dt ′ γ (αs(t

′))
) [

χ
(
k2, αs(t); µ et

)

−2
∫ t

0
dt ′′β (L)(αs(t

′′)) exp

(
2

∫ t ′′

0
dt ′ γ (αs(t

′))

)]
, (3.5)

where αs(t) is the running coupling.
The perturbative expression for the two-point correlation function in the MS scheme is

[22]

χ (k2)P.T. � −
( αs

8π

)2 2

π2
k4 log

−k2

µ2

[
1 + αs

π

(
1
2β1 log

−k2

µ2
+ 29

4

)
+ . . .

]
.

(3.6)

The non-perturbative contribution from the gluon condensates (coming from the next lowest
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dimension operators in the OPE) is [23]

χ (k2)N.P. � − αs

16π2

[(
1 + 1

2β1
αs

π
log

−k2

µ2

)
〈αsG

2〉 − 2
αs

k2
〈gG3〉

]
. (3.7)

The RGE has been used to check the consistency of the leading log approximation in
the perturbative expression and to fix the radiative correction in the gluon condensate
contribution.

For the QSSR analysis of χ ′(0), we use the subtracted dispersion relations

1

k2

[
χ (k2) − χ (0)

] =
∫ ∞

0

dt

t

1

t − k2 − iε

1

π
Im χ (t) (3.8)

and

1

k4

[
χ (k2) − χ (0) − k2χ ′(0)

] =
∫ ∞

0

dt

t2

1

t − k2 − iε

1

π
Im χ (t). (3.9)

Then, taking the inverse Laplace transform [20] of both sides of the dispersion relations
and using the fact that χ (0) = 0 in massless QCD, we find4

∫ tc

0

dt

t
e−tτ 1

π
Im χ (t)

�
(

αs

8π

)2 2

π2
τ−2[1 − exp(−tcτ )(1 + tcτ )]

×
[

1 + αs

4π

(
29 + 4β1(1 − γE) − 8

β2

β1
log(− log τΛ2)

)]

+ αs

8π

(
1

2π
〈αsG

2〉 + αs

π
τ 〈gG3〉

)
(3.10)

and

χ ′(0) �
∫ tc

0

dt

t2
e−tτ 1

π
Im χ (t) −

(
αs

8π

)2 2

π2
τ−1[1 − exp(−tcτ )]

×
[

1 + αs

4π

(
29 − 4β1γE − 8

β2

β1
log(− log τΛ2)

)]

+ αs

8π

(
1

2π
τ 〈αsG

2〉 + αs

2π
τ 2〈gG3〉

)
. (3.11)

where αs is the running coupling expressed in terms of the QCD scale Λ from the two-loop
relation:

α(2)
s

π
= αs

π

(
1 − αs

π

β2

β1
log(− log τΛ2)

)
, (3.12)

with

αs

π
= 2

β1 log τΛ2
. (3.13)

4For the corresponding results in pure Yang–Mills theory, see Refs. [24,25].
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Fig. 5. (a) τ -behaviour of
√

χ ′(0) for different values of the continuum threshold tc.
(b) Behaviour of different τ -minima versus tc.

In these expressions, we have cut off the t-integration at some scale tc and used the pertur-
bation theory approximation to Im χ (t) for t > tc.

In order to extract a value for χ ′(0) from these sum rules, we keep only the lowest
resonance (the η′) contribution to the spectral function, i.e. we assume

1

π
Im χ (t) = 2m̃4

η′ f 2
η′δ

(
t − m̃2

η′
) + “QCD continuum” θ (t − tc), (3.14)

where m̃η′ is the mass of the η′ extrapolated for massless QCD, viz.

m̃2
η′ � m2

η′ − 2
3 m2

K � (0.87 GeV)2. (3.15)

To evaluate Eqs. (3.10) and (3.11), we use

Λ � 350 ± 100 MeV (3.16)

for the QCD scale parameter [26],

〈αsG
2〉 � 0.06 ± 0.02 GeV4 (3.17)

from a global fit of the light mesons and charmonium data [20], and parametrise the triple
gluon condensate as

〈g3G3〉 � 1.5 ± 0.5 GeV2〈αsG
2〉 (3.18)

using the dilute gas instanton model [19]. We show the result in Fig. 5a for χ ′(0) plotted
versus τ for different values of tc. In Fig. 5b we show the behaviour of the τ -minima for
different tc. Our optimal result corresponds to the range of values of tc corresponding to the
first appearance of the τ -minimum until the beginning of the tc stability region. The value
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of τ at which the stability occurs is around 0.4 to 0.6 GeV−2, which is quite small compared
with the light meson systems and is consistent with qualitative expectations [23] of a scale
hierarchy in the QSSR analysis of gluonium systems. This small value of τ also ensures
that higher dimension operators such as those arising from instanton-like effects will not
contribute in the OPE. We deduce

√
χ ′(0) � 22.3 ± 3.2 ± 2.8 ± 1.3 MeV, (3.19)

where the first error comes from 〈αsG2〉, the second one from Λ and the third from the
range of tc-values from 4.5 to 7.5 GeV2. The effects of the triple gluon condensate and the
radiative corrections are relatively unimportant, contributing about (3–10)% to χ ′(0). We
add a guessed error of 5% each from the unknown non-perturbative and radiative correction
terms. Finally, adding all these errors quadratically, we find the following Laplace sum rule
estimate of the first moment of the topological susceptibility evaluated at τ � 0.5 GeV−2:

√
χ ′(0) � 22.3 ± 4.8 MeV. (3.20)

As a check on the validity of this result, we now repeat the analysis using the finite energy
sum rule (FESR) local duality version of the spectral sum rules discussed in Ref. [25]. The
advantage of the FESR method is that it projects out the effects of the operators of a given
dimension [27] (in this case, dimension 4) in such a way that, at the order to which we are
working, the FESR analogues of the sum rules (3.10) and (3.11) are not affected by higher
dimension operators such as those induced by instanton-like effects.

The FESR sum rules are∫ tc

0

dt

t

1

π
Im χ (t)

�
(

αs

8π

)2 2

π2

t2
c

2

[
1 + αs

4π

(
29 − 4

β1

2
− 8

β2

β1
log(− log τΛ2)

)]

+ αs

8π

[
1

2π
〈αsG

2〉
]

(3.21)

and

χ ′(0) �
∫ tc

0

dt

t2

1

π
Im χ (t)

−
(

αs

8π

)2 2

π2
tc

[
1 + αs

4π

(
29 − 4β1 − 8

β2

β1
log(− log τΛ2)

)]
. (3.22)

Analysing Eqs. (3.21) and (3.22), we realise that the solution increases monotonically with
tc so that no firm prediction can be made, although the result gives a rough indication of
consistency with the previous Laplace sum rule. To overcome this problem, we repeat the
analysis using only the FESR (3.22) and using as an extra input the value of the parameter
fη′ extracted from the first Laplace sum rule (3.10). The value of fη′ is given in Appendix
B. This weakens the tc-dependence of the result and tc-stability now appears as an inflection
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Fig. 6. (a) As Fig. 5a for the parameter fη′ (b) FESR prediction of
√

χ ′(0) versus tc for different values
of fη′ .

point. We obtain the result shown in Fig. 6 for different values of fη′ and Λ, from which
we deduce that with tc � 6.5–9.5 GeV2,√

χ ′(0) � 25.5 ± 1.5 ± 2.0 ± 1.0 MeV, (3.23)

where the errors come from fη′ , Λ and tc respectively. Adding the errors quadratically and
including a further 5% error from the unknown higher order terms, we obtain at the scale
τ � 0.5 GeV−2

√
χ ′(0) � 26.5 ± 3.1 MeV, (3.24)

where we have run the result from tc = 8 GeV2 to the scale τ = 0.5 GeV−2 using the RGE
solution expressed in terms of Λ, viz.

χ ′(0; µ) � χ̂ ′(0) exp

(
8

β2
1 log(µ/Λ)

)
, (3.25)

where χ ′(0) is RG invariant. (Notice that the inhomogeneous term proportional to β (L) does
not contribute to the first moment at k2 = 0.) We see that the FESR result is consistent with
the Laplace one.

Taking the average of the Laplace and FESR results, we obtain our final estimate of the
first moment of the topological susceptibility at the scale τ = 0.5 GeV−2:√

χ ′(0) � 25.3 ± 2.6 MeV. (3.26)

This result should be compared with that obtained [24,25] in pure NC = 3 Yang–Mills
theory using a similar QSSR approach:√

−χ ′(0) |YM � 7 ± 3 MeV. (3.27)

It is important to notice that this pure Yang–Mills result has been confirmed by lattice
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calculations [28,29], which is a strong indication of the validity of the methods used in
deriving both (3.27) and (3.26). The introduction of massless quarks has changed the sign
of χ ′(0) and increased its absolute value by a factor of around 12. From the QSSR analysis,
this effect is due mainly to the low value of the η′-mass of 0.87 GeV (massless QCD) which
enters into the spectral function, compared with the pseudoscalar gluonium mass of about
1.36–1.66 GeV [24,20] in pure Yang–Mills theory.

To compare with the experimental result on the polarised proton structure function, we
use the RGE to run the result for χ ′(0) to the EMC scale of 10 GeV2. We find√

χ ′(0) |EMC � 23.2 ± 2.4 MeV. (3.28)

This is smaller by a factor of 1.64 ± 0.17 than the OZI value of (1/
√

6) fπ . We therefore
do indeed find a significant suppression of χ ′(0) relative to its OZI value.

To convert this result into a prediction for the singlet form factor, we take our fundamental
expression (2.15) for G(0)

A and equate the proper vertex ΓΦ5R PP with its OZI expression given
by the Goldstone boson–nucleon coupling. In this way, we obtain

G(0)
A (0) = G(0)

A (0)OZI

√
χ ′(0)

(1/
√

6) fπ
. (3.29)

Using the value of G(0)
A (0)OZI in Eq. (2.8) and including an additional error of approximately

10% for the use of the OZI approximation for the proper vertex, we arrive at our final
prediction:

G(0)
A (0; Q2 = 10 GeV2) � 0.353 ± 0.052. (3.30)

Substituting this result5 together with

G(8)
A ≡ 1

2
√

3
(3F − D),

(3.31)
G(3)

A ≡ 1
2 (F + D)

into the first moment sum rule (2.1), using the values of F and D from Eq. (2.9), and
neglecting the higher twist terms (which are certainly negligible at Q2 = 10 GeV2), we
deduce

Γ
p

1 (10 GeV2) � 0.143 ± 0.005. (3.32)

Here, we have used the coupling αs(mτ ) = 0.347 ± 0.030 extracted from tau-decay data
[30]. One should notice that the radiative corrections decrease the leading order result by
about 12%.

Our result, Eqs. (3.30) and (3.32), certainly goes in the right direction, i.e. that of reduc-
ing the prediction from the OZI (Ellis–Jaffe) value. At the time we obtained it, however,

5In terms of the quantities ∆u, ∆d and ∆s defined in Eq. (2.3), we have at Q2 = 10 GeV2 ∆u = 0.84 ±
0.01, ∆d = −0.41 ± 0.01, ∆s = −0.08 ± 0.02.
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Eq. (3.30) still appeared too high compared to the experimental result (2.7), which would
have implied further OZI violations in the proper vertex. Amusingly enough, while this
paper was being completed we learned of the new results from the SMC Collaboration
which, combined with the earlier proton data, gives the new world average [31]:

Γ
p

1 (10 GeV2) = 0.145 ± 0.008 ± 0.011 (3.33)

from which we deduce

G(0)
A (0; Q2 = 10 GeV2) ≡ ∆Σ = 0.37 ± 0.07 ± 0.10. (3.34)

These results are now in excellent agreement with our predictions.

4. Tests of the Bjorken sum rule and estimate of higher twist effects

Recently, the SMC Collaboration at CERN [31,32] and the E142 Collaboration at SLAC
[33] have produced data on the polarised neutron structure function gn

1. Since our proposal
requires that the flavour singlet suppression is identical for the proton and neutron, we see
no reason why the Bjorken sum rule [34],

δΓ
p−n

1 ≡ Γ
p

1 − Γ n
1

≡
∫ 1

0
dx

[
gp

1(x ; Q2) − gn
1(x ; Q2)

]

≡ 1
6 gA

[
1 − αs

π
− 3.583

(
αs

π

)2

− 20.215

(
αs

π

)3
]

+ ap − an

Q2
, (4.1)

should not hold, at least up to flavour SU(2) breaking. Provided the measurements are at
sufficiently high Q2, the higher twist corrections related to the coefficients ap − an can be
neglected. Analysis of the combined proton and deuteron data as performed in Ref. [35]
gives at Q2 = 5 GeV2 [31]

δΓ
p−n

1 � 0.203 ± 0.029, (4.2)

to be compared with the QCD prediction, with αs (5 GeV2) = 0.32 ± 0.02, of

δΓ
p−n

1 � 0.176 ± 0.003 + ap − an

Q2
, (4.3)

From this, one can deduce the difference of the higher twist coefficients (in units of GeV2)6,

ap − an � 0.135 ± 0.145. (4.4)

6Keeping the order αs term and using the estimate of the higher twist terms from QCD spectral sum rules, the
authors of Ref. [36] found Γ

p−n
1 � 0.180 ± 0.006, in agreement with the data in Eq. (4.2). Our attitude here is

different, as we will extract the size of the higher twist terms from the data in order to test the reliability of the
previous theoretical estimate of those terms.
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We can pursue an analogous analysis for the first moment of the neutron structure function,
which satisfies the sum rule (cf. Eq. (2.1))

Γ n
1 (Q2)

≡
∫ 1

0
dx gn

1(x ; Q2)

= 1

6

{(
−G(3)

A (0) + 1√
3

G(8)
A (0)

) [
1 − αs

π
− 3.583

(
αs

π

)2

− 20.215

(
αs

π

)3
]

+ 2
3 G(0)

A (0; Q2)

[
1 − 1

3

αs

π
− 0.550

(
αs

π

)2
]}

+ an

Q2
, (4.5)

where we have included the higher twist contribution. Evaluating this quantity at Q2 =
2 GeV2, where the SLAC data are available, we find

Γ n
1 (2 GeV2) � −(0.031 ± 0.006) + an

Q2
. (4.6)

Comparing this with the SLAC data [33],

Γ n
1 (2 GeV2) � −(0.022 ± 0.011), (4.7)

and using Eq. (4.4), we can extract the coefficients of the higher twist terms. In units of
GeV2, we find

ap � −0.117 ± 0.145,
(4.8)

an � 0.018 ± 0.025.

These values of the higher twist terms are consistent with the previous determinations
[37,38] from QCD spectral sum rules. However, these sum rules would be affected by a
more general choice of the nucleon interpolating field [20] (the one used in Refs. [37,38]
is not the optimal one) and by the well-known [20] large violation by a factor 2–3 of the
vacuum saturation of the four-quark condensate, which is assumed in Refs. [37,38] to be
satisfied to within (10–20)%. In addition, radiative corrections, which are known to be large
in the baryon sum rules [20], can also be important here. More accurate data on the Bjorken
and neutron sum rules, and/or a measurement of the proton sum rule at lower Q2, are
needed to improve the results in Eq. (4.8), which are necessary to test the validity of the
QCD spectral sum rule predictions in Ref. [38].

5. Further discussion

In this paper, we have presented evidence that the experimentally observed suppression
of the first moment of the polarised proton structure function gp

1 (the so-called EMC “proton
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spin” crisis) is a target-independent effect reflecting a suppression of the first moment of
the QCD topological susceptibility χ ′(0) relative to the OZI expectation. Not only does
G(0)

A (0) not measure the quark spin, its suppression is not even a property of the proton
structure.

It would be interesting to test this hypothesis directly by polarised deep inelastic scattering
experiments on other targets not simply related to the proton by flavour symmetry. We have
already studied the case of a photon target and have presented elsewhere [39] a new sum rule
for the first moment of the polarised photon structure function gγ

1 measurable in polarised
e+e− colliders. However, this turns out to be a special case because the electromagnetic
U(1) anomaly contributes at leading order and so the gγ

1 sum rule does not display the
suppression mechanism described here. Another possibility is to consider semi-inclusive
processes in which a particular hadron with a fraction z of the incoming momentum is
observed in the target fragmentation region. It was recently suggested [40] that such cross
sections should be described in terms of new, non-perturbative hybrid functions M(z, x , Q),
called “fracture functions”. To the extent that an OPE can be used, it would be possible
to represent M in terms of the forward matrix element of a composite operator between a
suitable proton-plus-hadron state. In this case, one would again factorise M into a composite
propagator of the usual type and a proper vertex involving four external hadron legs. If the
suppression of the polarised structure function indeed originates from the propagator, as we
suggest, such a suppression should also be found at the level of the (less inclusive) fracture
functions.

So far, we have only considered the first moment of gp
1. Of course, we would like to

extend our approach to higher moments and discuss the full x-dependence of the structure
function. This would require knowledge of the renormalisation properties and composite
operator Green functions of the higher spin axial currents and gluon densities [41], together
with the associated proper vertices.

Another possible line of development would be to try to develop techniques to estimate
the proper vertices themselves, rather than just the composite operator Green functions. To
the extent that the quenched approximation may be trusted for the proper vertices, lattice
calculations could already be suitable for the task, and QCD spectral sum rule techniques
could be used in conjunction to check the validity of that approximation. We recall that,
in contrast, the use of the quenched approximation directly for the matrix elements of
the operator Q can be shown to be completely unreliable since these are affected by low-
lying poles that should disappear after dynamical quark loops are added. This is another
example of how the apparent complication introduced by our splitting of matrix elements
into propagators and proper vertices can ultimately pay off.

Finally, it would be interesting to attempt to apply this analysis of deep inelastic scattering
using proper vertices to other QCD processes normally described in the language of the
parton model rather than in terms of the OPE. Semi-inclusive deep inelastic scattering is
one such example, but many other interesting possibilities can be considered, especially in
the context of hadron–hadron collisions.
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Appendix A

Chiral Ward identities and the renormalisation group

The anomalous chiral Ward identities for Green functions of the pseudoscalar operators
QR and Φ5R are (for zero quark masses)

ikµ〈0 | J 0
µ5R(k)Q R(−k) | 0〉 − 2NF〈0 | QR(k)QR(−k) | 0〉 = 0, (A.1)

ikµ〈0 | J 0
µ5R(k)Φ5R(−k) | 0〉 − 2NF〈0 | QR(k)Φ5R(−k) | 0〉

+ 〈0 | δ5Φ5R(−k) | 0〉 = 0. (A.2)

So, at zero momentum, assuming there is no physical massless U(1) boson,

〈0 | QR(0)QR(0) | 0〉 = 0, (A.3)

showing that the topological susceptibility χ (0) vanishes for massless QCD, and

〈0 | QR(0)Φ5R(0) | 0〉 = − 1

2NF
2〈ΦR〉, (A.4)

where 〈ΦR〉 is the VEV of the scalar partner of Φ5R and is non-vanishing because of the
quark condensate.

The field Φ5R is normalised such that the two-point proper vertex ΓΦ5RΦ5R = k2. This
means that ΓΦ5RΦ5R is (minus) a component of the inverse propagator matrix in the pseu-
doscalar sector, i.e.

ΓΦ5RΦ5R = 〈0 | QR QR | 0〉(〈0 | QRΦ5R | 0〉2 − 〈0 | QR QR | 0〉〈0 | Φ5RΦ5R | 0〉)−1.

(A.5)

Expanding to lowest order in k2 gives

ΓΦ5RΦ5R = χ ′(0)〈0 | QR(0)Φ5R(0) | 0〉−2k2 + O(k4), (A.6)

where we have written 〈0 | QR(k)QR(−k) | 0〉 = χ ′(0)k2 + O(k4). We therefore deduce

〈0 | QR(0)Φ5R(0) | 0〉 =
√

χ ′(0), (A.7)

as quoted in Eq. (2.15).
The renormalisation group equation for the topological susceptibility follows from the

definition of the renormalised composite operators, Eq. (2.4), and the chiral Ward identities.
The Ward identity for the two-current Green function is

ikµ〈0 | J 0
µ5R(k)J 0

ν5R(−k) | 0〉 − 2NF〈0 | QR(k)J 0
ν5R(−k) | 0〉 = 0. (A.8)

Combining Eqs. (A.1), (A.8) and (2.4), we find straightforwardly

〈0 | QR(k)QR(−k) | 0〉 = Z2〈0 | QB(k)QB(−k) | 0〉 + . . . . (A.9)

The dots denote the extra divergences associated with contact terms in the two-point Green
functions of composite operators. Taking these into account (see Refs. [21,7] for full details)
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we find the full RGE for χ (k2),(
µ

∂

∂µ
+ β(αs)αs

∂

∂αs
− 2γ

)
χ (k2) = − 1

(2NF)2
2β (L)(αs)k

4, (A.10)

where β(L) is a new RG function. The inhomogeneous term does not contribute at zero
momentum, however, and the required RGE (2.13) for χ ′(0) follows immediately.

Appendix B

Decay constants and the η′

We can estimate the parameter fη′ appearing in the spectral expansion using the first
Laplace QSSR, Eq. (3.10). fη′ is defined by

〈
0 | J 0

µ5R(k) | η′〉 = ikµ fη′ , (B.1)

and is RG non-invariant. On shell (see Ref. [7], Appendix D), the scale dependence is due
entirely to the anomalous dimension γ of the axial current so, using Eq. (3.3) and expressing
the result in terms of the QCD scale Λ, we may write

fη′ (µ) = f̂ η′ exp

(
4

β2
1 log(µ/Λ)

)
, (B.2)

where f̂ η′ is RG invariant. From the QSSR (3.10), we find the τ -stability starts at tc �
6.5 GeV2, while the tc-stability is reached for tc larger than 9.5 GeV2. In this region,
the radiative corrections are about 10% of the lowest order term, while the 〈g3G3〉 one
contributes about 10%. Under such conditions, our optimal result at τ � 0.6 GeV−2 is (see
Fig. 6a)

fη′ � 24.1 ± 0.6 ± 3.4 ± 0.3 MeV, (B.3)

where the first error comes from 〈αsG2〉, the second from Λ and the third from the
range of tc-values between 6.5 and 9.5 GeV2. Adding a 5% error from the unknown
QCD terms, adding the different errors quadratically and running to the EMC scale, we
obtain

fη′ |EMC � 23.6 ± 3.5 MeV. (B.4)

This value is strongly suppressed relative to the OZI prediction of
√

6 fπ for the η′-decay
constant.

However, as has been shown in Refs. [42,7], this fη′ is not the η′-decay constant measured
in, e.g., the decay η′ → γ γ . In fact, the analogues of the current algebra formulae

fπ gπgg = 1

π
αem (B.5)
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and

fπ gπNN = mNgA (B.6)

in the flavour singlet sector are [42,7]

Fgη′γ γ + 1

2NF
F2m2

η′ gGγ γ (0) = 4

π
αem (B.7)

and

Fgη′NN + 1

2NF
F2m2

η′ gGNN(0) = 2mNG(0)
A (0). (B.8)

Here, F is the RG-invariant decay constant defined by

F = 2〈φR〉
mη′

(∫
dx i〈0 | T ∗φ0

5R(x)φ0
5R(0) | 0〉

)−1/2

, (B.9)

where φ0
5R = iΣ q̄γ5q and 〈φ〉 = Σ〈qq〉. The extra terms gGγ γ and gGNN appearing in Eqs.

(B.7), (B.8) (which are properly defined as proper vertices [42,7]) may be thought of as the
couplings of the gluonic component of the η′. They arise because the η′ is not a Goldstone
boson in the U(1) channel and so the naive current algebra extensions of Eqs. (B.5), (B.6)
are not valid. At first sight, therefore, Eqs. (B.7) and (B.8) are not predictive since gGγ γ and
gGNN are unknown. However, if we follow our proposal that OZI violations are associated
with RG-non-invariant quantities we can make predictions.

Taking Eq. (B.7) first, we have shown [42] that gGγ γ is RG invariant. Since in the OZI limit
this term is absent, we therefore expect gGγ γ to be small, and so to a good approximation
we predict

Fgη′γ γ = 4

π
αem. (B.10)

Since F is RG invariant, we expect it to be well approximated by its OZI value
√

6 fπ .
Experimentally (see Ref. [43]), the relation (B.10) is very well satisfied.

In Eq. (B.8), on the other hand, gGNN is not RG invariant so we do not expect this term
to be small. In fact, this equation is just a rewriting of the U(1) GT formula quoted in the
text, for which our proposal is successful.

An important test of our picture of the pattern of OZI breaking is therefore to evaluate
the RG-invariant decay constant F from first principles and check that it is close to the OZI
prediction of

√
2NF fπ . Again, we can use QCD spectral sum rules.

We require the zero-momentum limit Φ5(0) of the two-point correlation function

Φ5(k2) =
∫

dx eik·x i〈0 | T ∗φ0
5R(x)φ0

5R(0) | 0〉 (B.11)

for QCD with 3 flavours and massless quarks. However, as there is a smooth behaviour of
the two-point correlator when the common light quark mass mR goes to zero, we shall work
(for convenience) with the RG-invariant correlation function

Ψ5(k2) ≡ 4m2
RΦ5(k2), (B.12)
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Fig. B.1. As Fig. 5a for the parameter f .

where mR is the average of the renormalised u and d quark masses. Now, in perturbation
theory, the difference between this flavour singlet correlation function and the corresponding
non-singlet one appears only at O(α2

s ) from the double-triangle anomaly-type diagrams.
Similarly for the non-perturbative condensate terms, the difference is only of O(α2

s ) arising
from the equivalent diagrams. Instanton-like effects appear as higher dimension operators.
So, at the order we are working, we can simply use the expression for the isotriplet (pion)
correlation function in QCD discussed in the literature [20].

The first Laplace sum rule to two loops reads [20]∫ tc

0
dt e−tτ 1

π
ImΨ5(t)

� 3NF

2π2
m2(τ )

{
τ−2[1 − exp(−tcτ )(1 + tcτ )]

×
{

1 − 2

β1L

[
11
3 + 2γE − 2

β1

(
γ̃2 − γ̃1

β2

β1

)
+ 2

γ̃1β2

β2
1

log L

]}

+ (
1
3π〈αsG

2〉 + 896
81 π3ραs〈uu〉2τ

) }
, (B.13)

where L = − log τΛ2 and [20]

ραs〈uu〉2 � (3.8 ± 2.0) × 10−4 GeV6,

m(τ ) ≡ 1
2 (mu + md)(τ ) � (− 1

2 log τΛ2
)γ̃1/β2 (12.1 ± 1.0) MeV. (B.14)

As before, we parametrise the spectral function keeping only the lowest (η′) resonance,
i.e.

1

π
ImΨ5(t) = 2m̃4

η′ f 2δ
(
t − m̃2

η′
) + “QCD continuum” θ (t − tc), (B.15)
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Fig. B.2. As Fig. 5a for Ψ5(0).

where the unknown parameter f , which is defined by

2mR〈0 | φ0
5R | η′〉 =

√
2 f m̃2

η′ , (B.16)

can be estimated from the sum rule (B.13). We study the τ -and tc-behaviours of f in Fig. B.1.
The τ -stability starts for tc � 4 GeV2, while stability in tc appears above tc � 7 GeV2, a
range which is equal to the one for the correlation function for Q(x). The value for the τ -
stability of about 0.9 GeV−2 is typical of light quark correlation functions. At the minimum,
we obtain

f =
√

NF(5.55 ± 0.08 ± 0.65 ± 0.35 ± 0.06 ± 0.03) MeV, (B.17)

where the errors come respectively from tc, Λ, m, 〈αsG2〉 and ραs〈uu〉2. Adding these errors
quadratically, we deduce

f =
√

NF(5.55 ± 0.75) MeV. (B.18)

With this value for f , we are now able to estimate Ψ5(0) itself using a second Laplace
sum rule [44,25]:

Ψ5(0) �
∫ tc

0

dt

t
e−tτ 1

π
ImΨ5(t) − 3NF

2π2
m2(τ )

(
τ−1[1 − exp(−tcτ )]

×
{

1 − 2

β1L

[
11
3 + 2γE − 2

β1

(
γ̃2 − γ̃1

β2

β1

)
+ 2

γ̃1β2

β2
1

log L

]}

+ (
1
3π〈αsG

2〉 + 1
2

896
81 π3ραs〈uu〉2τ

) )
, (B.19)
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where γ̃1, γ̃2 are the coefficients in the anomalous dimension for the light quark mass. For
three flavours, γ̃1 = 2 and γ̃2 = 91

12 . The sum rule analysis of this quantity shows a strong
tc-dependence and the τ -stability only appears at unrealistic values of tc larger than 8 GeV2.
In order to circumvent this difficulty, we work with a combination of the sum rules (B.13)
and (B.19) which has been used successfully in the past for measuring the deviation from
pion and kaon PCAC to a good accuracy [44]. The combined sum rule reads

Ψ5(0) �
∫ tc

0

dt

t
e−tτ (1 − tτ )

1

π
Im Ψ5(t) − 3NF

2π2
m2(τ )

(
τ−1[tcτ exp(−tcτ )]

×
{

1 − 2

β1L

[
11
3 + 2γE − 2

β1

(
γ̃2 − γ̃1

β2

β1

)
+ 2

γ̃1β2

β2
1

log L

]}

+ τ
(

2
3π〈αsG

2〉 + 3
2

896
81 π3ραs〈uu〉2τ

) )
. (B.20)

This sum rule is studied in Fig. B.2. The position of the stability is almost insensitive to the
value of tc due to some cancellations amongst the perturbative terms. However, this feature
also implies that the stability is obtained at values of τ larger than in the previous cases,
making the result sensitive to the errors on the four-quark condensates, which affects the
accuracy of the result. We deduce

Ψ5(0) � NF(3.70 ± 0.90 ± 0.30 ± 0.70 ± 2.00) × 10−6 GeV4, (B.21)

where the errors are due to f , Λ, 〈αsG2〉 and ραs〈uu〉2. Adding these errors quadratically,
we obtain

√
Ψ5(0) �

√
NF(1.92 ± 0.53) × 10−3 GeV2. (B.22)

Using this value in Eq. (B.9) (with m̃η′ ), after multiplying the numerator and denominator
by the overall 2mR factor and using Dashen’s formula for mR〈φR〉, we finally find

F � (1.55 ± 0.43)
√

2NF fπ , (B.23)

to be compared with the OZI prediction of
√

2NF fπ .
This result is again in broad agreement with our expectations, although of course the

errors are much too large to draw a definitive conclusion. Nevertheless, this confirmation
can be taken as providing extra support for the reliability of the estimate in the text for χ ′(0).
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20

Drell–Yan process

It corresponds to the sub-process, where the quark and anti-quark come from the two
scattering hadrons, and annihilate into vector bosons (photon, W ±, Z0) with large invariant
mass and then produce a lepton pair. A classical example is the annihilation into photon
and with the production of e+e−:

q̄q → e+e− , (20.1)

shown in Fig. 20.1. Drell–Yan process offers the possibility to test perturbative QCD as the
large scale is given by the invariant mass of the lepton pair (of the order of MW,Z at CERN
and Tevatron energies), while the parton densities enter quadratically in this process where
the final state is totally inclusive.

20.1 Kinematics

The kinematics of the process is characterized by the parton distribution qhi
f (x) for a quark

of flavour f issued from the hadron hi . The total momentum squared of the subprocess is:

Q2 = (x1 p1 + x2 p2)2 , (20.2)

and coincides with the invariant mass squared of the photon. The total energy squared of
the hadron is:

s = (p1 + p2)2 . (20.3)

For large s, one usually neglects the hadron mass, such that one can approximately write:

Q2 � x1x2s . (20.4)

Another useful variable is:

xF ≡ x1 − x2 , (20.5)

and the rapidity y defined as:

tanh y = x1 − x2

x1 + x2
or y = 1

2
ln

x1

x2
. (20.6)

216
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e+

e–

h1 x1p1

x2p2h2

γ

Fig. 20.1. Drell–Yan process.

Alternatively, in the hadron-hadron centre of mass where the photon momentum is:

q = (E ; q‖, q⊥) , (20.7)

one has:

xF = 2q‖/
√

s , y = 1

2
ln

E + q‖
E − q‖

. (20.8)

20.2 Parton model

20.2.1 Cross-section

In order to evaluate the production cross-section, one calculates the reduced cross-section
corresponding to the subprocess in Eq. (20.1), and write the total cross-section as a convo-
lution. Neglecting quark and electron masses, the point-like cross-section reads, to lowest
order:

σ̂l.o(q̄ + q → e+e−) = 4πα2 Q2
f

3Nc Q2
, (20.9)

where Q f is the quark charge in units of e. The full lowest order differential cross-section
reads:

dσl.o

d Q2
= 4πα2

3Nc Q2

∑
f

Q2
f

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2
δ (1 − z)

[
qh1

f (x1)q̄h2
f (x2) + q̄h1

f (x1)qh2
f (x2)

]
,

(20.10)

where:

τ ≡ Q2/s and z ≡ τ

x1x2
. (20.11)

τ quantifies the fraction of energy squared that goes into the lepton pair. If τ is small, then,
one of the xi is small and then favours the sea quark contribution. If the xi is maximal i.e.
around 1/3 ∼ 1/4, then the valence contribution will dominate. The Drell–Yan processes
are important as they can provide a non-trivial test of the validity of the parton approach
and of its extension in QCD through the factorization theorem. One expects that the parton



218 IV Deep inelastic scatterings at hadron colliders

densities measured in lepto-production for a given hadron target should be relevant to make
predictions on the Drell–Yan and some other DIS processes.

20.2.2 Approximate rules

There are typical rules for Drell–Yan processes.

Intensity rules

From the above-mentioned properties, one expects that, for large xi , the cross-section involv-
ing two valence quarks for producing the e+e− pair, is much larger than the one involving
one valence and one sea quarks. For an isoscalar target one, e.g., expects:

σ (π+N (I = 0))

σ (π−N (I = 0))
→ 1

4
. (20.12)

Scaling

In the region where the naı̈ve parton model is valid, one expects that the dimensioneless
quantities:

Q4 dσ

d Q4
, Q4 dσ

d Q2dxF
, Q4 dσ

d Q2dy
, (20.13)

should scale as functions of the scaling variables τ, xF and y independently of Q2.

Angular distribution of leptons

For large Q2, where the longitudinal structure function (WL ) is much smaller than the
transverse (WT ) one, the lepton pair angular distribution originated from an off-shell photon
is predominantly of the form:

dσ

d Q2d cos θ
∼ WT (Q2, τ )(1 + cos2 θ ) . (20.14)

Atomic number

The cross-section being proportional to the number of quarks or antiquarks in the target
nucleus, each contribution adding up incoherently, one expects a linear dependence with
the atomic number A in the Drell–Yan region.

20.3 Higher order corrections to the cross-section

The different processes relevant to the NLO corrections are:

q + q̄ → γ ∗

q + q̄ → γ ∗ + g

g + q(or q̄) → γ ∗ + q(or q̄) , (20.15)

where γ ∗ produces the lepton pairs e+e−. They are shown in Fig. 20.2.
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γ
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γ
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q
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e+
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e–
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q

q

+

q

e+

e–

Fig. 20.2. NLO corrections to the Drell–Yan process.

Technically, the evaluation of higher order corrections is not easy because of the interplay
between the IR and mass singularities. The NLO corrections have been obtained in [270],
and the NNLO corrections in [271]. The interactions with the spectator quarks induce a
1/Q2 power corrections analogue of the higher twist term in DIS. The expression of the
cross-section including the NLO corrections reads:

dσl.o

d Q2
= 4πα2

3Nc Q2

∑
f

Q2
f

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

{[
δ (1 − z) +

(αs

π

)
θ (1 − z)�q (z)

]

× [
qh1

f (x1)q̄h2
f (x2) + q̄h1

f (x1)qh2
f (x2)

]
,

+
(αs

π

)
θ (1 − z)�g(z)

[
qh1

f (x1) + q̄h2
f (x1)

]
gh2 (x2, Q2) + (1 ↔ 2)

}
, (20.16)
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where:

�q (z) = CF

2

[
3

(1 − z)+
− 6 − 4z + 2(1 + z2)

ln(1 − z)

(1 − z)+
+

(
1 + 4π2

3

)
δ(1 − z)

]
,

�g(z) = 1

2

[
[z2 + (1 − z)2] ln(1 − z) + 9z2

2
− 5z + 3

2

]
. (20.17)

In the case of p̄p collisions, the valence quarks and antiquarks contribution dominates in
the Drell–Yan region. In the case of pp collisions, the anti-quark comes from the sea such
that the contribution of the anti-quark and of the gluon are comparable.

20.4 The K factor

Noting that the correction term proportional to δ(1 − z) comes from vertex corrections and
from a radiation of zero momentum gluons, which cancels the IR singularity in the vertex,
one can separate this term from the others and rewrite:

δ(1 − z) +
(αs

π

)
�q (z) ≡ Kvertexδ(1 − z) +

(αs

π

)
�q (z)reg (20.18)

where �q (z)reg is the regular part of �q (z) and:

Kvertex = 1 + CF

2

(
1 + 4π2

3

) (αs

π

)
. (20.19)

One can notice that the radiative corrections in the regular part of the cross-section are
small. The most important correction comes from the π2 part of Kvertex, where it has been
noticed [272] that part of this large correction can be resummed and exponentiates:

1 + CF
π2

2

(αs

π

)
→ K (Q2) ≡ exp

(
CF

2
παs

)
, (20.20)

while the remaining correction:

1 + CF

2

(
1 + π2

3

) (αs

π

)
, (20.21)

is comfortably small. However, one should be aware of the fact that the resummation
procedure is not unique. Different phenomenology of the Drell–Yan processes have been
performed at Tevatron, which can be consulted from different contributions at various
conferences, like the QCD-Montpellier series.
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One ‘prompt photon’ inclusive production

We shall be concerned with the process:

h1 + h2 → γ + X . (21.1)

This process is very similar to the one hadron inclusive process:

e+e− → H + X (21.2)

with the hadron H replaced by a photon, which we shall study in the next part of this book.
As it has been studied in hadronic collisions rather than in e+e− [273], further difficulties
and complications arise in practice. However, in contrast to quarks, the photon does not
hadronize and their energies and directions can be measured with better accuracy than
hadron jets. To leading order, the production cross-section is O(ααs) which is relatively
smaller than the hadron cross-section O(α2

s ), while backgrounds due to photons initiated
from π0 and η productions, are experimentally difficult to separate. In terms of the photon
transverse momentum pT and rapidity variable, the cross-section can be written in the form
[273]:

dσ

dpTdη
= dσ dir

dpTdη
+ dσ brem

dpTdη
, (21.3)

where one distinguishes between the ‘direct’ and ‘bremsstrahlung’ photon productions,
which are known to NLO. Assuming factorization, they read:

dσ dir

dpTdη
=

∑
i, j=q,g

∫
dx1dx2 Fh1

i (x1, µ)Fh1
j (x2, µ)

(
αs(ν)

2π

)

×
(

dσ̂i j

dpTdη
+ αs(ν)

2π
K dir

i j (ν, µ, µ f )

)

dσ brem

dpTdη
=

∑
i, j,k=q,g

∫
dx1dx2 Fh1

i (x1, µ)Fh1
j (x2, µ)

dz

z2
Dγ /k(z, µ f )

(
αs(ν)

2π

)2

×
(

dσ̂ k
i j

dpTdη
+ αs(ν)

2π
K brem

i j,k (ν, µ, µ f )

)
. (21.4)
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Fhl
i are parton densities in the initial hadrons, which depend on the factorization scale µ;

Dγ /k is the parton to photon fragmentation function which depends on the fragmentation
scale µ f , while ν is the renormalization scale. σ̂ are the point-like cross-section, while
the K factors are higher-order QCD corrections evaluated in [274]. In principle the differ-
ential cross-section is function of the three arbitrary variables (µ, µ f , ν), and the optimal
physical results should present stabilities or extrema against their variations, which is not
often reached. In practice, the choice µ f = ν or µ f = ν = µ is chosen, which minimizes
the arbitrariness in the analysis. Using the NLO QCD predictions, the UA6 collaboration
determined αs from a measurement of the cross-section difference in the pT range from
about 4 to 8 GeV [275]:

σ ( p̄p → γ X ) − σ (pp → γ X ) , (21.5)

which is free from the poorly known sea quarks and gluons distributions, with the results:

αs(24.3 GeV) = 0.135 ± 0.006 (exp) +0.011
−0.005 (th) . (21.6)



Part V
Hard processes in e+e− collisions



Introduction

In this part, we study different hard and jet processes in e+e−. These concern:

� one hadron inclusive production.
� γ γ scatterings and the ‘spin’ of the photon.
� QCD jets.
� heavy quarkonia inclusive decays.
� e+e− → hadrons total cross-section.
� Z → hadrons inclusive decay
� τ → ντ+ hadrons semi-inclusive decays.

These processes are used as classical tests of perturbative QCD, where values of the running
QCD coupling have been extracted. A pedagogical introduction to the physics of e+e− can
be found in, for example, the book of [276]. More modern QCD phenomenology in e+e−

can be found in different reviews and in the proceedings of the QCD-Montpellier series of
conferences and many others.
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One hadron inclusive production

22.1 Process and fragmentation functions

We shall be concerned here with the one hadron production inclusive process:

e+e− → γ ∗(s) → H + X , (22.1)

which is the twin in the timelike region of the leptoproduction discussed previously on the
target H̄ :

γ ∗(−s) + H̄ → X . (22.2)

In the centre of mass of γ ∗:

q = (
√

s, 0) , (22.3)

the kinematics of the process can be described by the momentum p of the hadron H and
the fraction of beam energy z

√
s/2, where 0 ≤ z ≤ 1:

p = (z
√

s/2, p) . (22.4)

By formal analogy with leptoproduction, one can introduce the structure functions
F̄ H

1,2(z, Q2), such that the angular differential cross-section reads:

dσ

dzd cos θ
= 3

4
σ̃ (0)z

[
2F̄1(z, s) + z

2
sin2 θ F̄2(z, s)

]
, (22.5)

where in the naı̈ve parton with spin 1/2 quarks:

σ̃ (0) = 4πα2

3s
. (22.6)

Alternatively, one can introduce the transverse and longitudinal structure functions:

F̄ T (z, Q2) = 2F̄1(z, Q2)

F̄ L (z, Q2) = 2F̄1(z, Q2) + z F̄2(z, Q2) , (22.7)

with which one can express the differential cross-section:

dσ

dz
= σ̃ (0)z

[
F̄ T (z, s) + 1

2
F̄ L (z, s)

]
, (22.8)
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s
√

Fig. 22.1. Transverse F̄ T ≡ FT and longitudinal F̄ L ≡ FL fragmentation functions versus x at
√

Q =
91 GeV. FA is a parity-violating contribution coming from the interference between the vector and
axial-vector contributions.

where in the naı̈ve parton with spin 1/2 quarks:

F̄ L (z, s) = 0

F̄ T (z, s) = 3
∑

i

Q2
i

[
DH

0qi
(z) + DH

0q̄ i
(z)

]
. (22.9)

DH
0qi

is the fragmentation or decay function, which is the number of density of H in the jet
of parton p.

The data of these functions compiled by [16] are given in Fig. 22.1.

22.2 Inclusive density, correlations and hadron multiplicity

As in all inclusive processes, one can define the inclusive total cross-section:

σtot =
∑

H

σH , (22.10)
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as the sum of all exclusive channels production of H particles. The one particle inclusive
cross-section density is:

ρ(p) = 1

σtot

p0dσ

d3 p
, (22.11)

for a particle of momentum p. Similarly for two particles 1 and 2, the inclusive density is
defined as:

ρ(p1, p2) = 1

σtot

p0
1 p0

2dσ

d3 p1d3 p2
, (22.12)

and one can define their correlations:

C(p1, p2) = ρ(p1, p2) − ρ(p1)ρ(p2) . (22.13)

The average hadron mutiplicity for one inclusive particle are defined as:

〈nH 〉 =
∫

d3 p

p0
ρ(p) , (22.14)

and for two particles:

〈n1n2〉 =
∫

d3 p1d3 p2

p0
1 p0

2

ρ(p1, p2) . (22.15)

In the same way, one can also define the third isospin components for the hadron H :

I3 = 1

σ

∑
H

∫
d3 pI H

3
dσH

d3 p
. (22.16)

22.3 Parton model and QCD description

To the leading order approximation, one has for each parton p:

∑
H

∫ 1

0
dz I H

3 DH
0p(z) = I p

3

∑
H

∫ 1

0
dzDH

0p(z) = 1 , (22.17)

where the first equation reflects the non-singlet charge conservation sum rule, while the
second is the momentum conservation in the jet of parton p. The parton model description
of a one hadron inclusive production is shown in Fig. 22.2, where the photon produces a
hard parton p with four momentum k and with an energy fraction y of the beam energy:

k = (y
√

s/2, k) , (22.18)

such that, independently of other partons, the produced parton fragments into hadrons. One
expects that no hard interactions can take place between produced partons because their
separation in rapidity is too wide at higher energies. In the limit of massless partons and
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γ

e+

e–

q

q
H

Fig. 22.2. e+e− → γ ∗ → H+ all in the parton model.

negligible intrinsic transverse momentum of the fragments, one has the relation between
the hadron and parent parton:

p = (z/y)k . (22.19)

The cross-section for producing a hadron H with fraction z of the beam energy is obtained
as a convolution of the cross-section for producing a parton with energy fraction y times
the density of a hadrons H in the parton p with the fraction z/y of the proton momentum:

zF̄ H
a (z, s) = 1

σ̃ (0)

∫ 1

z

dy

y

∑
i

σγ ∗→pi
a (y, s)DH

0pi
(z/y) , (22.20)

where:

F̄ H
a = (

2F̄ H
1 , −z F̄ H

2

)
. (22.21)

In the case of the naı̈ve parton model, the cross-section reads:

σγ ∗→q = 3
∑

i

Q2
i δ(1 − z) . (22.22)

One can easily see that the inclusive quark production cross-section to order αs is:

σγ ∗→q (xq < 1) = CF

2

(αs

π

) ∫ 1

1−xq

dxq̄

x2
q + x2

q̄

(1 − xq )(1 − xq̄ )
= CF

2

(αs

π

) 1 + x2
q

1 − xq
t + · · ·

= 1

2

(αs

π

)
Pqq (xq )t + · · · (22.23)

where the log-divergence of the integral at xq̄ = 1 has been re-interpreted as a factor t ≡
(1/2) ln(Q2/ν2).

In the same way, the cross-section production of a gluon is:

σγ ∗→g(xg) = CF

2

(αs

π

) ∫ 1

1−xg

dxq

x2
q + (2 − xq̄ − xq )2

(1 − xq )(xq + xg − 1)

= 2
CF

2

(αs

π

) 1 + (1 − xg)2

xg
t + · · · = 2CF

(αs

π

)
Pgq (xg)t + · · · . (22.24)
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where the factor 2 indicates that the gluons can be emitted either by quark or by antiquarks.
Therefore, one can deduce:

zF̄ H
a (z, s) = 1

σ̃ (0)
3Q2

∫ 1

z

dy

y

{ [
δ(1 − y) +

(αs

π

) (
t Pqq (y) + 1

2
f̄ a

q (y)

)]

× [
DH

0q (z/y) + DH
0q̄ (z/y)

] +
(αs

π

) (
2t Pqq (y) + 1

2
f̄ a

g(y)

)
D0g(z/y)

}
,

(22.25)

where the sum over flavours is understood. As in the case of electroproduction for the struc-
ture functions, the fragmentation functions obey similar Altarelli–Parisi evolution equations.
To order αs , it reads:

∂

∂t
Dqi (z, t) =

(αs

π

)
[Pqq ⊗ Dqi + Pgq ⊗ Dg]

∂

∂t
Dg(z, t) =

(αs

π

) [
Pqg ⊗

∑
i

(Dqi + Dq̄i ) + Pgg ⊗ Dg

]
, (22.26)

where the only difference with electroproduction is the transposition Pqg ↔ Pgq . In terms
of the singlet and non-singlet fragmentation functions:

DN S = Dqi − Dq j

DS =
∑

i

(Dqi + Dq̄i ) , (22.27)

the evolution equations read:

∂

∂t
DS(z, t) =

(αs

π

)
[Pqq ⊗ DS + 2n f Pgq ⊗ Dg]

∂

∂t
Dg(z, t) =

(αs

π

)
[Pqg ⊗ DS + Pgg ⊗ Dg] . (22.28)

Factorization of the perturbative (hard gluon radiation) and non-perturbative (hadroniza-
tion) regime at a scale µ f in the time-like region has been proved by many authors (see,
however, the notion of fracture functions introduced in [268]). In this case, the inclusive
cross-section of the process can be expressed as:

dσ

dx
(e+e− → H + X ) =

∑
i

∫ 1

z

dy

y
Ci

(
y, µ2, µ2

f

)
DH

i

(
z/y, µ2

f

)
, (22.29)

where Ci are Wilson coefficients calculable perturbatively and correspond to the cross-
section for the creation of a hard parton i and a momentum fraction y of the beam energy;
Di is the fragmentation function (density of a hadron H in a parton i with fraction z/y of
the parton momentum). The coefficient functions vanish to lowest order for gluons and are
known to higher orders. However, the previous factorization assumption may not work, and
it can be more appropriate to introduce the notion of fracture functions. The phenomenology
of fragmentation functions has been discussed in the literature using different Monte-Carlo



s
√

Fig. 22.3. Charged-particle and flavour-dependent e+e− fragmentation functions versus x at
√

Q =
91 GeV. The data are shown for the inclusive, light (u, d, s), c and b quarks, and the gluon. The
distributions were scaled by c(flavour)= 10n , where n ranges from n = 0 (gluon) and n = 4 (all
flavours).

Fig. 22.4. All charged-particle e+e− fragmentation functions (a) for different c.m. energies
√

s, versus
x and (b) for different x versus

√
s. The data are shown for the inclusive, light (u, d, s), c and b quarks,

and the gluon. For plotting (a), the distributions were scaled by c(
√

s) = 10i , where i ranges from
i = 0 (

√
s = 12 GeV) to i = 12 (

√
s = 189 GeV).
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simulation programs (see e.g. [277]). Detailed analyses of the charged hadron fragmentation
functions have been performed by different LEP groups using data samples at PETRA, PEP
and LEP energies from c.m. energy in the range from 14 to 92 GeV. We show the data in
Figs. 22.3 and 22.4.

These analyses have been used for extracting αs and some QCD power-like corrections.
Combined ALEPH [278] and DELPHI [279] results give:

αs(MZ0 ) = 0.125+0.006
−0.007 (exp) ± 0.009 (theo) , (22.30)

where the theoretical uncertainties are mainly due to the scale variations.
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γ γ scatterings and the ‘spin’ of the photon

γ γ collisions in e+e− process are known to be an important source of hadrons as the
cross-section e+e− → e+e−+ hadrons increases logarithmically with the energy while the
annihilation process e+e− → hadrons decreases like 1/s. The dominant contribution comes
from two on-shell photons emitted at small angles using the so-called equivalent photon
approximation [280].

23.1 OPE and moment sum rules

The subprocess:

γ + γ → hadrons , (23.1)

depicted in Fig. 23.1, where one photon is far off-shell (large Q2) and the other almost on
shell (small k2), can be considered as a deep-inelastic scattering on a photon target with the
kinematic variables:

ν ≡ p2 · q , ν̃ = k · q , Q2 ≡ −q2 , x = Q2/2ν , y = Q2/2ν̃ , (23.2)

and the DIS limit:

Q2 , ν , ν̃ → ∞ , −k2/Q2 � 1 . (23.3)

One can also express these variables in terms of the energy E ′
1 and scattering angle θ1 of

the hard scattered electron, the energy E of the incident electron, the scattered angle θ2 of
the target electron and the invariant hadronic mass W . In this way, one has:

Q2 = 4E E ′
1 sin2 θ1

2
, −k2 � E E ′

2θ
2
2 , (23.4)

and:

x = E ′
1 sin2(θ1/2)

E − E ′
1 cos2(θ1/2)

, y = Q2

Q2 + W 2
. (23.5)

The formalism is very similar to the case of ep scattering discussed previously where the
gluon is now replaced by a photon. The derivation of the moment sum rules is based on the
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γ

γ

q

k

p1 p'1

p2 p'2

e+ e+

e– e–

Fig. 23.1. e+e− → e+e−+ hadrons process.

OPE of the T-product of two electromagnetic currents (−q2 → ∞):

iJµ(q)Jν(−q) ∼
∑

n=2,even

∑
h

Oh,n
µ1...µn

(0)
2n

(−q2)n+1

× [
Ch,n

1 (−q2)qµ1 . . . qµn (gµνq2 − qµqν)

+ Ch,n
2 (−q2)qµ3 . . . qµn (gµµ1 q2 − qµqµ1 )(gνµ2 q2 − qνqµ2 )

]
+

∑
n=1,odd

∑
h

Oh,n
3,µ1...µn

(0)
2n

(−q2)n
Ch,n

3 (−q2)qµ2 . . . qµn iεµναµ1 qα . (23.6)

where Oh,n
µ1...µn

and Oh,n
3,µ1...µn

are set of even and odd parity, twist-2 operators (including
photons) listed in Eqs. (15.60), (16.3) and (16.4). The sum h runs over non-singlet, sin-
glet, gluon and photon operators. Introducing this expression into the four-point function
Jµ Jν Aλ Aρ , one obtains:

〈0|Oh,n
µ1...µn

Aλ(k)Aρ(−k)|0〉

= 1

k4
Ôh,n(k2)kµ3 · · · kµn (k2gλµ1 gρµ2 − kλkµ1 gµ2ρ − kρkµ2 gµ1λ + kµ2 kµ1 gλρ)

(n ≥ 2, even) ,

and

〈0|Oh,n
3,µ1...µn

Aλ(k)Aρ(−k)|0〉 = 1

k4
Ôh,n

3 (k2)kµ2 · · · kµn iελρµ1αkα (n ≥ 2, odd) (23.7)

Therefore, the moments of the photon structure functions read:

M(n)
L ≡

∫ 1

0
dy yn−1 Fγ

L (y, Q2, k2) =
∑

h

Ch,n+1
L (Q2)Ôh,n+1(k2) ,

M(n)
2 ≡

∫ 1

0
dy yn−1 Fγ

2 (y, Q2, k2) =
∑

h

Ch,n+1
2 (Q2)Ôh,n+1(k2) ,

M(n)
1 ≡

∫ 1

0
dy yn−1gγ

1 (y, Q2, k2) =
∑

h

Ch,n
3 (Q2)Ôh,n

3 (k2) , (23.8)
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where CL ≡ C2 − C1 and C3 are Wilson coefficients and Ô are reduced operators or form
factors.

23.2 Unpolarized photon structure functions

One can introduce the ‘electron’ structure function Fe
2 similarly to the case of the proton

structure function in ep scattering given in Eq. (15.50) (the other structure functions Fe
1

and Fe
L are defined in a similar way). In terms of which, the unpolarized cross-section reads

[267]:

σ = 2πα2 1

s

∫ ∞

0

d Q2

Q2

∫ 1

0

dx

x2

[ (
xs

Q2
− 1 + Q2

2xs

)
Fe

2 − Q2

2xs
Fe

L

]
. (23.9)

The ‘electron’ structure function can be related to the conventional photon structure
function Fγ

i using the Altarelli–Parisi evolution equation [281]:

Fe
i (x, Q2) = α

2π

∫ ∞

0

dk2

k2

∫ 1

x

dy

y

x

y
Pγ e

(
x

y

)
Fγ

i (y, Q2, k2) , (23.10)

where i ≡ 2, L and:

Pγ e = 1

z
(1 − (1 − z)2) , (23.11)

is the splitting function. Using the previous evolution equation into the expression of the
cross-section, one can derive the x-moments of the cross-section:∫ 1

0
dx xn d3σ

d Q2dxdk2
= α3

Q4k2

∫ 1

0
zn Pγ e(z)

∫ 1

0
yn−1 Fγ

i (y, Q2, k2) . (23.12)

For n = 1,3, . . . , the z integral is finite, to which corresponds the moment sum rules of
the structure functions:

M(n)
i =

∫ 1

0
yn−1 Fγ

i (y, Q2, k2) =
∑

h

Ch,n+1
i (Q2)Ôh,n+1(k2) . (23.13)

One can notice that for n = 0 (total cross-section), the z integration is logarithmically
divergent. More explicitly, one can express the cross-section as:

d2σ

d Q2dy
(ee → eeX ) � d2σ

d Q2dy
(eγ → eeX )
(E) . (23.14)

where the photon flux factor is:


(E) ≡ α

2π

∫ 1

0
zn Pγ e(z)

∫ ∞

0

dk2

k2
≈ 2

α

π
ln

E

Emin
ln

Eθ2 max

me
(23.15)

after taking the cuts:

−k2
max = E2θ2

2 max , −k2
min = m2

e , Eγ ≥ Emin , zmin = Emin/E . (23.16)
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Assuming that the photon structure function is crudely approximately constant, and using
the differential cross-section:

d2σ

d Q2dy
(eγ → eX ) = 2πα2 1

Q4

(
1 − t + t2

2

)
1

y
Fγ

2 (y, Q2) , (23.17)

where t = Q2/ys, one can deduce for Q2/xs � 1:

σ = α3 4

Q2
min

ln
E

Emin
ln

Eθ2 max

me
ln

2E2

ν̃min
Fγ

2 , (23.18)

where further cuts ν̃max = s/2 and ν̃min have been taken for ν̃ ≡ k · q. One recovers the
result of [280] obtained using the equivalent photon approximation.

The parton model contribution to Fγ

2 comes from the box diagram and dominates over
the vector meson contribution. For large Q2, the parton model expression reads:

Fγ

2 (x, Q2) =
(

Nc

∑
i

Q4
i

)
8α2x Pqγ (x) ln Q2 (23.19)

where Pqγ (x) is the splitting function encountered previously in the case of ep scattering but
the gluon is now replaced by a photon. Witten [282] pointed out that QCD corrections affect
the parton model expression in Eq. (23.19), and his result has been extended to next order
in [283]. The moments of the photon structure functions can be expressed in a similar way
as in the case of gluons, where there is a mixing between the quark and photon operators.
It reads [282]:

∫ 1

0
dx xn−2 Fγ

2 (x, Q2) ∼ α

[
an ln

Q2

�2
+ ãn ln ln

Q2

�2
+ bn + O

(
1

ln Q2

�2

) ]
, (23.20)

where the VDM contributions are included in the 1/ ln Q2 term. an, ãn and bn have been
calculated in perturbation theory by the previous authors: an depends on the one-loop anoma-
lous dimension and one-loop β-function; ãn depends in addition on the two-loop β func-
tion. In addition to the previous dependences, bn depends also on the two-loop anomalous
dimensions and one-loop contribution to the Wilson coefficients, and is renormalization-
scheme dependent. Extensive phenomenology of this process exists in the literature (see for
example [49]).

23.3 Polarized process: the ‘spin’ of the photon

23.3.1 Moments and cross-section

We will be interested here in the polarized γ γ process, in which one can test the idea of
the universality of the topological charge screening discussed in the previous chapter. An
approach similar to the case of the unpolarized γ γ process gives the results in terms of the
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g1 structure function as defined in Eq. (19.1):

ge
1(x, Q2) = α

2π

∫ ∞

0

dk2

k2

∫ 1

x

dy

y

x

y

Pγ e

(
x

y

)
gγ

1 (y, Q2, k2) , (23.21)

where:


Pγ e = 2 − z , (23.22)

is the splitting function. The ratio of the polarized over the unpolarized cross-section is:


σ

σ
= 1

2

ãn

an

Q2
min

s
ln

Q2
max

Q2
min

[
1 + ln

Q2
max

�2

(
ln

Q2
min

�2

)−1
]

, (23.23)

where one can approximately take an � ãn . The moment is given in Eq. (23.8). The Wilson
coefficients have a 3 × 3 anomalous dimension matrix γ hh

n in the hadron sector and another
γ

hγ
n reflecting the mixing of the photon and singlet hadron operators. It explicitly reads:

M(n)
1 (Q2, k2) = Ch,n

3 (1, αs(Q2))T exp −
∫ t

0
dt ′γ hh

n (αs(t ′))Ôh,n
3 (k2, αs(µ), α)

+
[

Ch,n
3 (1, αs(Q2))T exp −

∫ t

0
dt ′γ hγ

n (αs(t ′)) + Cγ,n
3 (1, αs(Q2))

]

× Ôγ,n
3 (k2, αs(µ), α) . (23.24)

To leading order, one obtains:

M(n)
1 (Q2, k2) = α

4π
ãn ln

Q2

�2
n ≥ 3 odd. (23.25)

For n = 1, there is no operator Rγ,1, such that the lowest twist 2 operator is the axial current
Jµ5. To, leading order, one can write

M(n)
1 (Q2, k2) =

∑
a �=0

2Tr (Q2λa)Ôa,1
3 (k2, αs, α)

+ n−1
f Tr Q2 exp

{
−

∫ t

0
dt ′γ (αs(t ′))Ôγ,n

3 (k2, αs(µ), α)

}
. (23.26)

23.3.2 The gγ

1 sum rule and the axial anomaly

The AVV vertex and chiral Ward identities

Let us define the vertices:

�a
µλρ(p, k1, k2)≡〈0|J a

µ5(p)Jλ(k1)Jρ(k2)|0〉 : J a
µ5 = ψ̄γµγ5λ

aψ ,

�a
5λρ(p, k1, k2)≡〈0|J a

5 (p)Jλ(k1)Jρ(k2)|0〉 : 
a
5 = iψ̄γ5λ

aψ ,

�Qλρ(p, k1, k2)≡〈0|Q(p)Jλ(k1)Jρ(k2)|0〉 : Q = (αs/8π ) Tr G̃µνGµν , (23.27)
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where λa are SU (3) matrices. The conservation of the electromagnetic currents implies:

kλ
1�a

µλρ(p, k1, k2) = 0 = kρ

2 �a
µλρ(p, k1, k2) . (23.28)

The vertices obey the anomalous chiral Ward identities.

i pµ�a
µλρ − 2m�a

5λρ + Nc

4π2
laελραβkα

1 kβ

2 = 0 (a �= 0)

i pµ�0
µλρ − 2m�0

5λρ − 2n f �Qλρ + Nc

4π2
laελραβkα

1 kβ

2 = 0 , (23.29)

where: la = TrQ2λa is related to the quark charge Q in units of e. Then, for n f = 3,
l0 = 2/3, l3 = 1/6, and l8 = 1/(6

√
3). The AVV vertex function has the general Lorentz

decomposition:

−i〈0|J a
µ5(p)Jλ(k1)Jρ(k2)|0〉 = Aa

1εµλραkα
1 + Aa

2εµλραkα
2

+ Aa
3εµλαβkα

1 kβ

2 k2ρ + Aa
4εµραβkα

1 kβ

2 k1λ

+ Aa
5εµλαβkα

1 kβ

2 k1ρ + Aa
6εµραβkα

1 kβ

2 k2λ , (23.30)

where Aa
i (p2, k2

1, k2
2) are invariants. In the case of the n = 1 sum rule with p = 0, k1 =

−k2 = k, one can deduce away from the chiral limit m2
π �= 0:

Ôa,1
3 (k2) = 4πα

(
Aa

1 − Aa
2

)
(0, k2, k2) . (23.31)

Rewriting:

(
Aa

1 − Aa
2

)
(0, k2, k2) = Nc

4π2
Tr(Q2λa)Fa(k2, µ2) , (23.32)

one obtains for n f = 3:

M(1)
1 (Q2, k2) ≡

∫ 1

0
dy gγ

1 (y, Q2, k2)

= α

18π
[3F3(k2) + F8(k2) + 8F0(k2, Q2)] , (23.33)

where the singlet form factor F0 has a non-trivial Q2 dependence due the anomalous
dimension γ .

Non-singlet form factors

Using the conservation of the electromagnetic current on the AVV (amputated) vertex in
Eq. (23.28), one can derive:

Aa
1 = Aa

3k2
2 − Aa

5
1

2

(
k2

1 + k2
2 − p2

)
. (23.34)

Assuming a smooth behaviour of the form factors in the limit p → 0 and k1 → −k2 → ±k,
one obtains:

Aa
1(0, k2, k2) = k2

(
Aa

3 − Aa
5

)
(0, k2, k2) O(k2) , (23.35)
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by assuming in addition that there is no 1/k2 pole in the form factors Ai (i ≡ 3, 5) (and
i ≡ 4, 6 if one assumes that a similar result holds for Aa

2). Defining the form factor Fa :

2m�a
5λρ = Faελραβkα

1 kβ

2 , (23.36)

and considering the previous Ward identities, one obtains:

(
Aa

1 − Aa
2

)
(0, k2, k2) = −Fa(k2) + Nc

4π2
la . (23.37)

Identifying with the result in Eq. (23.32), one obtains:

Fa(k2) = 1 − Fa(k2)

Fa(0)
. (23.38)

Expressing the PVV vertex in terms of the pion field and coupling to γ γ , one obtains the
leading-order relation:

Fa(k2) = 1

8πα
fπ gπaγ ∗γ ∗ (k2) : fπ = 92.4 MeV , (23.39)

which gives:

Fa(k2) = 1 − gπaγ ∗γ ∗ (k2)

gπaγ γ (0)
. (23.40)

Using an OPE of the PVV vertex for large k2, one obtains:

〈πa|Jλ(k)Jρ(−k)|0〉 ∼ 2ελραµ

kα

k2
Ca,1

3 (k2)〈πa|J aµ

5 (0)|0〉 . (23.41)

Therefore, one can deduce:

Fa(k2) = 1 − 16π2

Nc

f 2
π

(−k2)
+ · · · (23.42)

Combining this result with the one in Eq. (23.40), one can deduce that the form factor
interpolates smoothly from 0 to 1 when k2 varies from zero to infinity. We can parametrize
this behaviour as:

Fa(k2) = −k2

−k2 + M2
a

, (23.43)

where:

M2
a �

(
16π2

Nc

)
f 2
π � 0.672 GeV2 , (23.44)

is a characteristic hadronic mass scale indicative of the non-perturbative realization of the
AVV vertex in the spontaneously broken chiral symmetry phase of QCD. It can be related to
the quark vacuum condensate in the QCD spectral function analysis of the vertex function.
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Singlet form factors

The situation is much more involved here due to the presence of the U (1) anomaly [255,256].
Defining the form factor as:

�Qλρ = 1

n f
F0ελραβkα

1 kβ

2 , (23.45)

and using the fact that A0
1 − A0

2 = O(k2), one can write:

F0(k2) = 1 − F0(k2, µ2)

F0(0)
. (23.46)

One can introduce the OZI Nambu–Goldstone boson η0 associated with the singlet pseu-
doscalar field 
0

5 defined in Eq. (23.27) and its decay constant fη0 , with η0 = 2〈
〉−1 fη0

0
5.

The latter being related to the first moment of the topological susceptibility:

fη0 = 2n f

√
χ ′(0) , (23.47)

with:

χ (p2) = i
∫

d4x eipx 〈0|T Q(x)Q†(0)|0〉 . (23.48)

An approach similar to the case of the non-singlet current gives:

F0(k2, µ2) = 1 − gη0γ ∗γ ∗ (k2)

gη0γ γ (0)
. (23.49)

However, the situation is more complicated as η0 is not a physical state, while gη0γ ∗γ ∗

and gη0γ γ are not RG invariants. Therefore, we approximate the η0 by the η′ and replace
the difference of the couplings by their OZI limit gη′γ ∗γ ∗ − gη′γ γ which is RG invariant. We
also replace the anomaly coefficient using the relation:

fη′ gη′γ γ = 2Nc
2

3

α

π
, (23.50)

where:

fη′ = 1

M ′
η

2〈
〉
[

i
∫

d4x eipx 〈0|T 
0
5(x)
0

5(0)|0〉
]−1/2

. (23.51)

The form factor reads [281]:

F0(k2, µ2) ∼ fη0 (0, µ2)

fη′

[
1 − 8π2

Ncn f
fη′ fη0 (0, µ2)

×
(
T exp −

∫ t

0
dt ′ γ (αs(t ′))

)
1

(−k2)
+ · · ·

]
. (23.52)



240 V Hard processes in e+e− collisions

The associated scale for interpolating the singlet form factor from 0 to 1 is:

M2
0 � 8π2

Ncn f
fη′ fη0 (0, k2) . (23.53)

The explanation of the proton spin proposed in the previous section requires a small value
of fη0 (0, Q2 = 11 GeV2) compared to its OZI value of

√
6 fπ .

Implications for the moment sum rules

Introducing the previous behaviour of the form factors, one can deduce from Eq. (23.33):∫ 1

0
dy gγ

1 (y, Q2, k2 = 0) = 0 , (23.54)

and for M2
ρ � −k2 � Q2:

∫ 1

0
dy gγ

1 (y, Q2, k2) � Nc
α

π
Q4

f

(
1 − c + c

fη0 (0, Q2)

fη′

)
, (23.55)

with:

c = 1

n f

(∑
f

Q2
f

)2/∑
f

Q4
f , (23.56)

where the deviation from the naı̈ve leading-order value comes from the effect of the U (1)
anomaly. Related phenomenology of the U (1) anomaly but on the η′(η) → γ γ decays is
reviewed in [284].
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QCD jets

24.1 Introduction

We shall focus our discussions for jet productions in e+e−. More complete discussions can,
for example, be found in [52] and the different contributions of the LEP groups at the QCD-
Montpellier conference series. The aim is to study final states which do not depend on the
identification of particular hadronic channels. High-energy e+e− experiments offer a such
opportunuity, although many aspects of the analysis can be extended to other processes. We
shall consider the parton process:

e+e− → γ ∗ → q̄q , (24.1)

if one assumes that quarks are produced as free particles. In that case, one obtains, the
angular distribution:

dσ (0)

d cos θ
= πα2 Q2

q

2s
(1 + cos θ ) , (24.2)

which after integration gives the parton model total-cross section:

σ (0) = 4πα2 Q2
q

3s
. (24.3)

24.2 IR divergences: Bloch–Nordsieck and KLN theorems

However, the process in Eq. (24.1) does not exist in practice as the production of quarks is
always accompained by the emission of gluons. Formally, this feature is signalled by the
appearance of the IR divergences when one evaluates the QCD radiative corrections given
by diagrams in Fig. 24.1.

The IR divergence from the vertex correction is cancelled by the one from soft gluon
radiation, which renders the total cross-section finite:

σ (1) = σ (0)

[
1 + 3CF

4

(αs

π

)]
, (24.4)

241
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e+

(a)

(b)

e– q p1k1

p2k2

q

e+

e– q

q e+

e– q

q

Fig. 24.1. αs corrections to e+e− → γ ∗ → q̄q. (a) vertex corrections. (b) gluon radiation.

which is the well-known inclusive cross-section. Therefore, only the sum of the cross-
sections:

e+e− → γ ∗ → q̄q + q̄qg + · · · (24.5)

is expected to be finite, and this is the quantity that one measures. This cancellation of IR
divergence is a general property already encountered in QED for soft and collinear pho-
tons and is known as the Bloch–Nordsieck theorem [285]. It states that soft divergence is
absent for a totally inclusive cross-section. However, new features appear in QCD at higher
orders due to the self-gluon interactions, or if one works in a covariant gauge, due to the
emission of soft ghosts and the appearance of ghost loops. The theorem has been general-
ized to QCD by the Kinoshita–Lee–Nauenberg (KLN) theorem [286]. The KLN theorem
states that in a theory with massless fields, transition rates are free of IR soft and collinear
(mass singularities) divergences if the summation over the initial and final degenerate states
(a massless quark accompanied by an arbitrary number of gluons cannot be distinguished
from a single quark) are carried out. That is, for a single-quark state of mass m, we should
add all final states that in the limit m → 0 have the same mass, including massless glu-
ons and quarks. In order to quantify this feature, one can mimic the IR problem in QED,
where, under certain conditions, the processes: e+e− → q̄q and e+e− → q̄qg, . . . are in-
distinguishable. This is realized if the gluon energy k0 is below a certain detection threshold
or if the angle formed by its three-momentum k with the quark momenta pi is smaller than
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e– e+θε

δ

Fig. 24.2. Two ‘fat’ jets with possible extra soft partons (inside the sphere).

the detector resolution [287]:

k0, pi0 ≤ ε
√

s
� (k, pi) , � (p1, p2) ≤ δ , (24.6)

where ε and δ which characterizes the detection efficiency are defined in Fig. 24.2.
The previous conditions can be generalized for more produced numbers of quarks and

gluons. If one considers the massless quark propagator in Fig. 24.2:

i

p̂1 + k̂
� i

p̂1 + k̂

2p1 · k
, (24.7)

which indicates that for soft partons k0, pi0 � 0 or for collinear momenta p1 ‖ k, the
denominator vanishes (collinear mass singularities). The conditions in Eq. (24.6) guarantee
that this does not happen because:

p1 · k ≥ 1

2
s(εδ)2 , (24.8)

which after integration over final particle momenta, corresponds for the cross-section, to
the singularity:

σ
(1)
sing ∼ αs ln ε ln δ . (24.9)

This result informs us that at higher energies this contribution becomes more and more
negligible as αs is smaller, such that the parton model description of the cross-section will
be much better and the events are more jet-like. However, the complete analysis is more
complicated because we see jets of hadrons (hadronization) not quark jets. This leads to
the introduction of fragmentation functions discussed previously.
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Fig. 24.3. Two-jet events seen in e+e− at PETRA (1979).

24.3 Two-jet events

It is instructive to compare Fig. 24.2 with the two jet events seen inside the detector
(Fig. 24.3).

Using the Sterman–Weinberg parametrization, one can explicitly show the different con-
tributions from Fig. (24.2), where each individual contributions are IR divergent, which
we regulate by attributing a mass λ to the gluons. The contribution of the diagrams in
Fig. (24.1b) for the production of a real gluon can be divided into three parts:

� A contribution of a q̄q jet plus a jet due to a hard gluon inside the cone with an energy greater than
ε
√

s from Fig. (24.2b), which is:

σ (hard)(b) = σ (0)CF

(αs

π

) [
−ln

(
δ
√

s

λ

)
(3 + 4 ln 2ε) − 2 ln2 2ε + 17

4
− π2

3
+ O(ε, δ)

]
.

(24.10)

� A contribution due to two jets from q̄q and the one due to a soft gluon inside the cone with an
energy smaller than ε

√
s, which is:

σ (soft)(b) = σ (0)CF

(αs

π

) [
2 ln2

(
2ε

√
s

λ

)
− π2

6
+ O(ε, δ)

]
. (24.11)
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� A contribution from the interference of the lowest order diagram with the vertex and self-energy
corrections, which is:

σ (interf)(c) = σ (0)
[
1 + CF

(αs

π

)] [
−2 ln2

(√
s

λ

)
+ 3 ln

(√
s

λ

)
− 7

4
+ π2

6
+ O(ε, δ)

]
.

(24.12)

The sum of the different contributions, where all but a fraction of the total energy is
emitted inside these cones, are IR finite (cancellation of soft and collinear singularities) and
reads:

σ = σ (0)

[
1 − CF

(αs

π

) [
(3 + 4 ln 2ε) ln δ − 5

2
+ π2

3
+ O(ε, δ)

]]
. (24.13)

Therefore, the fraction of events which have all but a fraction ε of their energy in some
pairs of cones with half-angle δ is:

R(2jet) = σ

σ (1)
= 1 − CF

(αs

π

) [
(3 + 4 ln 2ε) ln δ − 7

4
+ π2

3
+ O(ε, δ)

] ]
, (24.14)

where σ (1) is the inclusive total cross-section to order αs . This expression is valid if ε and
δ are not too small such that perturbation theory is valid [288]. Alternatively, one can take
another parametrization (e.g. cylindrical jet picture). Noting that the previous inclusive total
cross-section in Eq. (24.4) includes the two- and three-jet events, the two-jet events can be
obtained as:

σ (2jet) = σ (1) − σ (� 2jet) . (24.15)

where σ (� 2jet) does not contain two-jet events. The cross-section for the process:

e+e− → γ ∗ → q̄qg (24.16)

can be obtained from Fig. (24.2). Defining:

s = (p1 + p2 + k)2 and xi = 2p0i/
√

s , (24.17)

one obtains:

1

σ (0)

d2σ

dx1dx2
= CF

2

(αs

π

) x2
1 + x2

2

(1 − x1)(1 − x2)
, (24.18)

with:

x1 + x2 ≥ 1 , 0 ≤ xi ≤ 1 . (24.19)

Using the geometry of the q̄qg produced state given in Fig. 24.4, this process will not
be considered as a two-jet event if the angle θ between the quark momenta is smaller than
π − η0, where η0 is the resolution of the detector. Therefore, the not two-jet (three-jet)
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p2

p1

k
η

Fig. 24.4. Configuration of q̄qg produced state.

cross-section will be:

σ (� 2jet) =
∫ sup ∫

dx1dx2
d2σ

dx1dx2
, (24.20)

where sup corresponds to the domain:

x1 + x2 = 1 + x1x2

2
(1 + cos η0) . (24.21)

In the limit η0 = 0, which corresponds to a much better experimental precision, one
obtains:

σ (� 2jet) = σ (0) CF

2

(αs

π

) [
ln2 4

η2
0

− 3 ln
4

η2
0

+ π2

3
+ 7

2

]
, (24.22)

from which one can deduce the observed two-jet total cross-section:

σ (2jet) = σ (0)

{
1 − CF

2

(αs

π

) [
ln2 4

η2
0

− 3 ln
4

η2
0

+ π2

3
+ 2

]}
, (24.23)

which depends on the resolution η0. This result differs from that of Sterman–Weinberg,
which shows the dependence of the cross-section on the parametrization of the two-jet
event.

24.4 Three-jet events

Experimentally, three-jet events have been observed in e+e− experiments. We show these
events in Fig. 24.5.

It is interpreted in QCD as coming from quark-anti-quark plus a gluon emitted from one
of the quark.
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Fig. 24.5. Three-jet events seen at LEP.

The three-jet cross-section has been already evaluated in Eq. (24.20). For studying these
events, it is convenient to introduce the kinematic variables:

x1 = 2p01/
√

s , x2 = 2p02/
√

s , x3 = 2k0/
√

s = 2 − x1 − x2 . (24.24)

24.4.1 Thrust as a jet observable

Different observables have been proposed in the literature for a qualitative description of
final state topology. They are, for example, useful to define the axis or the plane of the
event and therefore longitudinal and transverse momentum distributions. These variables
should be linear in energy and/or momentum in order to meet the necessary condition of
cancellation of IR divergence. Thrust and spherocity are two alternative IR safe quantities
for a parametrization over the continuous range from the topology of a sphere to that of an
ideal collinear two-jet event. Spherocity is defined as [290]:

S =
(

4

π

)2

min

(∑
i |pi⊥|∑
i |pi|

)2

, (24.25)
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where pi⊥ is the transverse momentum with respect to the minimum direction (spherocity
axis). It has the extremal values:

0 ≤ S ≤ 1 S = 1 : sphere
0 : line

(24.26)

The thrust variable is defined as [289]:

T = 2max

∑ |pi‖|2√
s

, (24.27)

where the sum runs over all particles in a hemisphere; pi‖ are the components of particle
momenta along the jet axis contained in the hemisphere. The plane of the hemisphere is
chosen to be perpendicular to the jet axis. The latter is found by requiring T to be maximal.
This can be obtained by choosing an arbitrary jet axis characterized by the polar angles
(θ, φ), and evaluates T (θ, φ) as a function of these angles. In terms of partonic variables:

T = max {x1, x2, x3} , (24.28)

and, in general, it has the boundaries:

1/2 ≤ T ≤ 1 . (24.29)

Integrating the cross-section in Eq. (24.18) at fixed T , one finds the differential cross-
section:

(1 − T )
dσ

dT
= σ (0) CF

2

(αs

π

) [ (
6T − 6 + 4

T

)
ln

(
2T − 1

1 − T

)
+ 3

(
3T 2 − 8T + 4

) ]
,

(24.30)

The average value is [291]:

〈1 − T 〉q̄qg = CF

2

(αs

π

) [
− 3

4
ln 3 − 1

18
+ 4

∫ 1

2/3

dT

T
ln

(
2T − 1

1 − T

) ]

� 1.05
(αs

π

)
. (24.31)

Another alternative definition of thrust, mostly used at LEP, is:

T =max
n

∑
i |pi · n|∑

i |pi| , (24.32)

where p is the momenta of particles produced, while n is a unit vector. The thrust axis nT

is the direction at which the maximum is attained.

24.4.2 Other event-shape variables

Below we shall list some other event-shape parameters useful in the jet analysis. They are
IR safe quantities, i.e. free from IR divergences, which are insensitive to the emission of
soft or collinear partons at the logarithmic level.
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� Heavy (resp. light) jet mass A plane through the origin and orthogonal to the thrust axis nT

divides the event into two hemispheres H1 and H2, from which one obtains the corresponding
normalized hemisphere invariant masses:

Mi = 1

s

(∑
k

pk

)2

, i = 1, 2 , (24.33)

where s ≡ Evis is the square of the total visible energy of the events. The heavier (resp. lighter) of
the two hemispheres is called heavy (resp. light) jet mass Mh (resp. Ml ).

� The jet broadening corresponding to the definition in Eq. (24.32), is defined as:

Bk =
(∑

i∈Hk

|pi × nT|
) / (

2
∑

i

|pi|
)

. (24.34)

� The total jet broadening is defined as:

BT = B1 + B2 . (24.35)

� The wide jet broadening is defined as:

BW = max(B1, B2) . (24.36)

� The C parameter is defined as:

C = 3(λ1λ2 + λ2λ3 + λ3λ1) , (24.37)

where λi is the eigenvalue of the quantity:
(∑

i

(
pa

i pb
i

)/|pi|
) / ∑

i

|pi| . (24.38)

24.4.3 Event-shape distributions

One can generally study any particle distributions in terms of the shape parameters:

Hl =
∑
k,k ′

|p(k)||p(k ′)|
s

Pl(cos φkk ′ ) , (24.39)

where s is the square of the e+e− c.m. energy and Pl is the Legendre polynomials of the
angle φkk ′ between two final momenta; p(k) is the final momenta of the particle k. In the
massless limit, the energy–momentum conservation requires:

H0 = 1 and H1 = 0 , (24.40)

while collinear jets give:

Hl = 1 (l even)

= 0 (l odd) . (24.41)
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In general:

0 ≤ Hl ≤ H0 . (24.42)

For a continuous distribution of momenta, Hl corresponds to the multiple momenta:

Hl = 4π

2l + 1

∑
m

∣∣Am
l

∣∣2
, (24.43)

where:

Am
l =

∫
ρ(�) Y m

l (�)d� . (24.44)

� is the solid angle and:

ρ(�) ∼ |p(k)|√
s

. (24.45)

24.4.4 Energy-energy correlation

If ω is an angle between 0 and π , the energy-energy correlation is defined as [293]:

1

σ (0)

d�

d cos ω
= 2

NS�ω sin ω

N∑
A=1

∑
pairs in �ω

E Aa E Ab , (24.46)

where A labels the events. In each event, E Aa and E Ab are the energies of two particles
separated by an angle ω ± 1

2�ω. For small resolution �ω, one can impose the conditions:

ω − 1

2
�ω ≤ θab ≤ ω + 1

2
�ω

δ(ω − θab)�ω = δ(cos ω − cos θab)�ω sin ω . (24.47)

In terms of the partonic variables, one has:

cos θab = (
x2

c − x2
a − x2

b

)/
2xa xb c �= a, b

Ea Eb = s

4
xa xb , (24.48)

where a, b, c vary from 1 to 3 and x3 = 2 − x1 − x2, Substituting into the jet cross-section
in Eq. (24.18), one can deduce:

1

σ (0)

d�

d cos ω
= CF

2

(αs

π

) ∫
dx1

∫
dx2

x2
1 + x2

2

(1 − x1)(1 − x2)

∑
a<b

xa xbδ(cos ω − cos θab) .

(24.49)

After integration, one obtains:

1

σ (0)

d�

d cos ω
= CF

8

(αs

π

) (3 − 2z)

z5(1 − z)
[2(3 − 6z + 2z2) ln(1 − z) + 3z(2 − 3z)] , (24.50)
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where:

z = (1 − cos ω)/2 . (24.51)

The next order correction to this expression has been evaluated in [294].

24.4.5 Jade and Durham algorithms
� Jade algorithm Another popular jet definition is the so-called Jade algorithm [295]. For the three

jet, one uses the invariant mass cut y:

si j = (pi + p j )
2 > ycuts (i, j = 1, 2, 3) , (24.52)

where s is the squared of the sum of the measured energies of all particles of an event. In this
original Jade algorithm, one can define:

si j = 2Ei E j (1 − cos θi j ) , (24.53)

or the jet rates:

ycut = si j/s , (24.54)

where Ei and E j are the energies of the particles and θi j is the angle between them.
� Durham algorithm In its variant (Durham and Cambridge algorithms [296]), one defines instead:

si j = 2min
(
E2

i , E2
j

)
(1 − cos θi j ) or ycut = si j/s . (24.55)

These two definitions are the most used at LEP due to their less sensitivity to hadronization and
mass effects.

� Jet resolution parameter yn They are defined as the particular values of ycut at which events switch
from n − 1 to n-jet configuration.

The QCD expression of the fraction of the three-jet cross-section is of the form:

R3 = σ (3jet)

σ (0)
= CF

2

(αs

π

) [
2 ln2

(
y

1 − 2y

)
+ 3(1 − 2y) ln

(
y

1 − 2y

)

+ 5

2
− 6y − 9

2
y2 + Li2

(
y

1 − y

)
− π2

3

]
(24.56)

where:

Li2(z) ≡ −
∫ z

0

dx

1 − x
ln x , (24.57)

is the dilogarithm function with the properties given in Appendix F. The limit y = 0 reflects
the IR singularities. The fraction of the two-jet event is:

R2 = 1 − R3 . (24.58)

This result can be generalized for n-jet configuration provided that the constraint si j > ys
is satisfied for all i, j = 1, . . . , n. In this case, the pair i, j of particles or cluster of particles
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satisfying the previous cut condition is replaced or recombined into a single jet or a cluster
k with four-momentum pk = pi + p j . This procedure is repeated until all pair yi j are larger
than the jet resolution parameter cut ycut , and the remaining clusters of particles are called
jets. One has:

Rn =
(

ᾱs

π

)n−2 ∑
j=0

C j (y)C (n)
j

(
ᾱs

π

) j

, (24.59)

with:
∑

n

Rn = 1 . (24.60)

and ᾱs(s) corresponds to the summation of the higher-order term αs(ν2) j lnk(s/ν2). For
large y, the jet fractions Rn with n ≥ 3 are small, while for y → 0, the IR-divergence
reappears making the QCD series unreliable. Other jet algorithms in order to improve the
QCD predictions at low values of y have been proposed in the literature (see e.g. [297]).

24.5 QCD tests from jet analysis

� As we have mentioned previously, one observes jet of hadrons but not jets of quarks or/and gluons.
Therefore, one has to take into account the hadronization which is quantified into the fragmentation
functions. This effect is modelled through Monte-Carlo analysis and introduces theoretical uncer-
tainties not under control. Jet analyses, like the deep inelastic processes discussed in the previous
chapters, have been used to measure the value of the QCD coupling constant where complete results
for different energies (91.2, 133, 161, 172, 183, 189 GeV) from LEP studies will be shown in the
next chapter. At the Z0 mass, the average results from LEP and SLC are [139]:

αs(91.2 GeV) = 0.121 ± 0.001 (exp) ± 0.006 (th) . (24.61)

Recent ALEPH result from four-jets [298] at NLO (order α3
s ) leads to:

αs(91.2 GeV) = 0.1170 ± 0.0001 (stat) ± 0.0013 (syst) , (24.62)

where the analysis of the error needs to be reconsidered to being convincing.
� Three-jet events are also used to test the gluon spin, where for a spin zero gluon, the term x2

1 + x2
2

of the cross-section in Eq. (24.18) should be replaced by x2
3/4. The measured distributions agree

well with a spin-1 gluon and excludes the spin-0 one.
� One can also notice that the jet event-shape variables are functions of the colour group factors:

TF = 1/2 , CF = (
N 2

c − 1
)/

(2Nc) , CA = Nc , (24.63)

which originate from the SU (N )c algebra given in Appendix B at the different vertices. Combined
fit of these quantities favour the SU (3) group for QCD (see different contributions at the QCD-
Montpellier conference). In Fig. 24.6, one compares the scaling violation rates in the hadron spectra



24 QCD jets 253

dl
og

 D
H

(x
E
,κ

) 
/ d

lo
g 

κ

Fig. 24.6. Scaling violation rates in inclusive hadron distributions from
quarks and gluon jets.

from gluon and quark jets as a function of the hardness scale κ which caracterizes a given jet [299].
At large xE ∼ 1, one expects that the log-derivatives between the quark and gluon jet is close
to CA/CF , which is 9/4 for a SU (3)c QCD group. As shown in the figure, experimentally, one
obtains:

CA

CF
= 2.23 ± 0.09stat ± 0.06syst . (24.64)

In the same way, one expects that hadron multiplicity increases with the hardness of the jets
proportional to the multiplicity of secondary gluons and sea quarks. This is shown in Fig. 24.7. The
ratio of the slopes in the gluons and quarks jets are proportional to CA/CF , which is again verified
experimentally:

CA

CF
= 2.246 ± 0.062stat ± 0.08syst ± 0.095th . (24.65)

24.6 Jets from heavy quarkonia decays

Quarkonia decays can also produce gluon jets:

1−− → 3g

→ 2gγ

0−+ → 2g

→ gγ (24.66)
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Fig. 24.7. Charged hadron multiplicity in gluons and quark jets.

via OZI violating processes. To leading order, the differential decay rate for 1−− → 3g,
can be written as:

1

�
(0)
3g

d�3g

dx1dx2
= 1

π2 − 9

{(
1 − x1

x2x3

)2

+ (xi ↔ x j )

}
i, j = 1, 2, 3, (24.67)

where xi = 2k0
i /MV , ki is the gluon momenta and MV is the vector meson mass. �(0)

3g is the
lowest order decay rate:

�
(0)
3g = 160α3

s

81

|3S1(0)|2
M2

V

, (24.68)

where |3S1(0)| is the wave function at the origin. In terms of the thrust variable, one has
[291]:

1

�
(0)
3g

d�3g

dT
= 3

π2 − 9

{
4(1 − T )

T 2(2 − T )3
(5T 2 − 12T + 8) ln

2(1 − T )

T

+ 2(3T − 2)(1 − T )2

T 3(2 − T )2

}
, (24.69)
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and the average:

〈T 〉3g = 3

π2 − 9

{
6 ln(2/3) − 3

2
+ 4π2

3
+ 20

∫ 1

o
dx

ln x

2 + x

}
� 0.889 . (24.70)

24.7 Jets from ep, p̄p and pp collisions

QCD jets may also be produced in ep or hadronic reactions and from heavy quarkonia
decays. In ep scattering, and to leading order in αs , two identified jets in addition to the
beam jet from the remnants of the incoming proton, arise from photon gluon fusion and
from QCD Compton processes. This process has been also used for determining the QCD
coupling αs , where the theoretical uncertainties come from the scale variations and structure
functions, while the systematic ones come from the uses of jet algorithms and hadronization
models. The result from HERA is [300]

αs(MZ0 ) = 0.118 ± 0.002 (stat) ± 0.008 (syst) ± 0.007 (th) . (24.71)

Jets from hadronic collisions followed the previous strategies used in e+e−. However,
one has to separate (jet finders) the jets from the proton remnants from the ones from
reconstructed jets, which is different from the case of e+e− where all particles are assigned
to be jets. At present, one follows the jet definitions used in [301], where jets are defined
by concentrations of transverse energy ET = |E sin θ | in cones of radius:

R =
√

(�η)2 + (�φ)2 , (24.72)

where η = − ln tan(θ/2) is the pseusdorapidity, φ is the azimuthal and θ the polar angles
of a particle in the calorimeter of the detector, measured with respect of the point of beam
crossing. Jets study have been used by the CDF collaboration for determining αs , as a
function of ET and for a radius R = 0.7, with the result [302]:

αs(MZ0 ) = 0.1178 ± 0.0001 (stat) +0.008
−0.010 (syst) +0.007

−0.005 (th) ± 0.006 (pdf) , (24.73)

where the theoretical error is due to the scale dependence.
Analogously, heavy quark production has been also studied at Tevatron hadron colliders,

where there is a good agreement with QCD predictions for the top production, while the total
rate and ET distribution of b quarks produced by CDF exceeds the QCD predictions up to
the largest values of ET by a factor of 3–4. According to [303], this rare discrepancy between
the data and QCD predictions can be attributed to the inconsistency of the input B meson
fragmentation functions used in previous analysis (mismatch between the perturbative and
non-perturbative contributions). This result can be tested in some other processes.
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Total inclusive hadron productions

25.1 Heavy quarkonia OZI-violating decays

In the previous chapter, we have studied the QCD jets from the OZI-violating decays of
quarkonia, which occurs through the diagrams in Fig. 25.1.

OZI or Zweig rule [9,254] states that the decays of an heavy resonance involving discon-
nected diagrams such as in the previous figure are suppressed. In QCD, the rate behaves as
α3

s for a spin one and to order α2
s for a spin zero resonance. In the case of the b̄b states:

ϒ → hadrons ∼ Mϒα3
s (Mϒ )

ηb → hadrons ∼ Mηbα
2
s (Mηb ) . (25.1)

The rule works better for heavier and heavier resonances, which can be understood from
a 1/Nc argument [304]. Phenomenologically, a decay of a Q̄ Q resonance into a Q̄ Q pair
should involve a pair of open Q states Q̄q and q̄ Q. As the open Q states are too heavy, there
is not enough phase space for the Q̄ Q resonance to decay into them. An explanation of the
smallness of this width was one of the successes of QCD [305]. In QCD, the evaluation of
the width consists of replacing the sum over hadron states by the gluons. Let’s consider the
1−(3S1) quarkonia states described by the hadronic current:

Jµ

V (x) = Q̄γ µ Q . (25.2)

To lowest order of QCD, one has:

1− → hadrons � 1− → 3g . (25.3)

In this way, the onium decay is very similar to the one of positronium up to an overall
colour factor:

�(V → hadrons) � 64(π2 − 9)

9
CV

|3�1(0)|2
M2

V

α3
s

(
M2

V

)
, (25.4)

where |3�1(0)|2 is the square of the onium wave function at the origin, and is proportional
to the matrix element:

〈V |Q̄γ µ Q|0〉 , (25.5)

256
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Q q
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Fig. 25.1. Hadronic decays of an heavy quarkonium.

while:

CV = 1

16Nc

∑
abc

d2
abc = 5/18 (25.6)

is the colour factor. The wave function can be also related to the V → e+e− width as:

�(V → e+e−) = 16π Q2
Qα2

M2
V

|3�1(0)|2 . (25.7)

where QQ is the heavy quark charge in units of e. Therefore, one obtains the branching
ratio:

RV ≡ �(V → hadrons)

�(V → e+e−)
= 10(π2 − 9)

81π

α3
s

(
M2

V

)
Q2

Qα2
. (25.8)

Including the next-to-leading order (NLO) corrections, one obtains in the M S scheme:

�(V → e+e−) = �(V → e+e−)L O

[
1 + 4CF

(αs

π

)]
in [306]

�(V → hadrons) = �(V → hadrons)L O

[
1 − (3.8 ± 0.5)

(αs

π

)]
in [307] , (25.9)

and therefore (for n f = 4):

RV = 10(π2 − 9)

81π

α3
s

(
M2

V

)
Q2

Qα2

[
1 − (9.1 ± 0.5)

(αs

π

)]
, (25.10)

which is a huge coefficient correction, and requires an evaluation of the non-trivial next-to-
next-leading order (NNLO) contribution. The situation is much better for the ratio [308]:

Rγ ≡ �(V → γ̇ + hadrons)

�(V → hadrons)
= 36Q2

Q

5

α

αs
(
M2

V

) [
1 + (2.2 ± 0.6)

(αs

π

)]
, (25.11)
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where a large cancellation occurs because the leading-order amplitudes for V → 3g and
V → ggγ are of the same nature. The decays of a pseudoscalar 0−(1S0) state in the
M S scheme and, at the subtraction point ν = MP , are [309]:

�(P → γ γ ) = 48π

M2
P

Q4
Qα2|1�0(0)|2

[
1 −

(
5 − π2

4

)
CF

(αs

π

) ]

RP ≡ �(P → hadrons)

�(P → γ γ )
= 2

9Q4
Q

α2
s

(
M2

P

)
α2

[
1 +

(αs

π

) (
17.13 − 8

9
n f

) ]
(25.12)

and also have huge αs corrections. In the BLM scheme [173], where the vacuum polarization
corrections are absorbed into the definition of the QCD coupling (see previous chapter on
the renormalizations), one can decrease the strength of the coefficient:

RBL M
P � 2

9Q4
Q

α2
s (M∗)

α2

[
1 + 2.46

(αs

π

)
(M∗)

]
, (25.13)

but the scale at which the coupling is evaluated becomes too low M∗ � 0.26MP . Another
unclear situation is the possible effect of the analytical continuation from Euclidean (QCD
result) to the time-like (the process) regions (see e.g. [310] for related discussions). These
processes have been used to estimate the value of αs from J/� and ϒ decays [311], after
the inclusions of relativistic and finite mass corrections, and an estimate of higher-order
corrections. The analysis gives:

αs(MZ0 ) = 0.113+0.007
−0.005 , (25.14)

which is comparable with other results, although most probably, the error has been under-
estimated. The result needs to be confirmed by the inclusion of the NNLO terms.

25.2 Alternative extractions of αs from heavy quarkonia

Alternative to these non-relativistic approaches, are the QCD spectral sum rule (QSSR)
analysis which will be discussed in the following chapters. They have also been used to
extract the QCD coupling αs from the leptonic widths [312,155] after the resummation of
Coulombic corrections. However, the result should be affected by the value of the quark
mass and of the non-perturbative terms which are strongly correlated in the sum rule analysis
[3,148,149,313]. The result quoted in [139] is:

αs(MZ0 ) = 0.118 ± 0.006 . (25.15)

Using also QSSR, αs has been extracted from the meson mass-splitting to order αs [313],
with the NLO result:

M2
1 P1

M2
3 P1

� 1 + αs(σ )
[

13

α (exact) = 0.014+0.008
−0.004

] + O(
α2

s

)
, (25.16)
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where σ−1 � 1.3 GeV is the sum rule scale. Using the experimental value M2
1 P1

� 3526.1
GeV, one can deduce:

αs(1.3 GeV) = 0.64+0.36
−0.18 =⇒ αs(MZ0 ) = 0.127 ± 0.009 , (25.17)

in fair agreement with the different predictions given in the next section, although not
included in the ‘world summary table’ (Table VI.1). For a comparison, one can also use
non-perturbative lattice calculations of the ϒ mass splittings. The resulting value of αs(MZ0 )
ranges from 0.105 ± 0.004 (quenched approximation [314]) to 0.1174 ± 0.0024 [315] and
0.1118 ± 0.0017 [316] for two dynamic quarks, indicating that systematic errors are not
under good control. A more conservative lattice result has been adopted to be:

αs(MZ0 ) = 0.115 ± 0.006 , (25.18)

as quoted in the ‘world summary table’ (Table VI.1), given in Part VI [139].

25.3 e+e− → hadrons total cross-section

The inclusive e+e− → hadrons production is the simplest though fundamental deep inelastic
process. The data until LEP energies are shown in Figs. 25.2 and 25.3.

In the one photon approximation (below the Z0 mass), the hadronic production occurs
through the process shown in Fig. 25.4, in which the q̄q pairs interact through QCD forces,
and then exchange and emit gluons in different ways.

However, we do not yet have a good understanding on the way quarks and gluons
hadronize. At short distance x ∼ 1/

√
t , one can use perturbative QCD for predicting the

Fig. 25.2. e+e− → hadrons data at lower energies.
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Fig. 25.3. e+e− → hadrons data at LEP energies.
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Fig. 25.4. e+e− → hadrons inclusive process.

total inclusive productions:

σ (e+e− → hadrons) = σ (e+e− → q̄q + q̄qg + q̄qgg + · · ·) , (25.19)

as the details of the final hadronization is irrelevant for the inclusive sum, because the
probability to hadronize is one owing to the confinement assumption. Technically, one can
consider the two-point function of the electromagnetic hadronic current:

�µν
em(q2) = i

∫
d4xeiqx 〈0|TJµ(x)J ν†(0)|0〉 = −(gµνq2 − qµqν)�em(q2) , (25.20)
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where:

Jµ(x) = 2

3
ū(x)γµu(x) − 1

3
d̄(x)γµd(x) − 1

3
s̄(x)γµs(x) + · · · (25.21)

is the electromagnetic current associated to the quarks u, d, s. . . . Thanks to its analytic-
ity property, �em(q2) obeys the well-known Källen–Lehmann dispersion relation (Hilbert
representation):

�em(q2) =
∫ ∞

t<

dt

t − q2 − iε

1

π
Im�em(t) + · · · , (25.22)

where · · · represents subtraction terms, which are, in general, polynomial in q2; t< is the
hadronic threshold. Its imaginary (absorptive) part is related to the total cross-section:

σ (e+e− → hadrons) = 4π2α

q2
e2 1

π
Im�em(q2) , (25.23)

where:

−3θ (q)q2 1

π
Im�em(q2) =

∑
�

〈0|Jµ
em(0)|0〉〈0|J †

µ,em(0)|0〉(2π )3δ(4)(q − p�) . (25.24)

Normalized to the e+e− → µ+µ− total cross-section:

σ (e+e− → µ+µ−) = −4π2α2

3q2
, (25.25)

it reads:

Re+e− ≡ σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
= 12π Im�em(t + iε) . (25.26)

It is also convenient, in the perturbative calculation, to relate this quantity to the Adler
D-function [317] defined as:

D(Q2) ≡ −Q2 d

d Q2
�em(Q2) . (25.27)

In this way, one obtains:

R(t) = 1

2iπ

∫ t+iε

−t−iε

d Q2

Q2
D(Q2) , (25.28)

where it is necessary to transform the result into the physical region by taking into account
the effects due to the analytic continuation of the terms of the type:

lnn(−q2/ν2) → (ln(−q2/ν2) + iπ )n . (25.29)

Away from thresholds, one can neglect quark mass corrections, and obtain the perturbative
series in αs , in the M S scheme. To order α4

s , one has:

Re+e− = 3

(
n f∑
1

Q2
i

) [
1 + F2as(t) + F3a2

s (t) + F4a3
s (t)

] + F ′
4a3

s (t)

(∑
i

Qi

)2

, (25.30)
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where:

F2 = 1 in [318,319]

F3 = 1.9857 − 0.1153n f in [317,320]

F4 = −6.6368 − 1.2001n f − 0.005n2
f in [321]

F ′
4 = −1.2395 in [321] , (25.31)

where, for, for example, five flavours:

Re+e− = 11

3

[
1 + as(t) + 1.411a2

s (t) − 12.80a3
s (t) + O(

a4
s

)]
. (25.32)

The perturbative uncertainties are of the order a4
s and includes ambiguities related to the

choice of renormalization scale and scheme, which leads to slightly different predictions
for the truncated series. Because of the above functional forms of Re+e− , relative errors in
Re+e− lead to an absolute error in αs of the same size:


Re+e−

Re+e−
∼ 
αs , (25.33)

such that precise measurement of Re+e− still leads to large errors in αs . Re-analysis of
PETRA and TRISTAN data in the c.m. energy range from 20 to 65 GeV, gives at NNLO
[322]:

αs(42.4 GeV) = 0.175 ± 0.028 =⇒ αs(MZ0 ) = 0.126 ± 0.022 . (25.34)

25.4 Z → hadrons

On top of the Z0, LEP experiments have produced a large statistical data sample that allow
a precise measurement of αs . The hadronic Z0 width can be parametrized in a similar
way:

RZ ≡ �(Z0 → hadrons)

�(Z0 → e+e−)
= 3Rew

Z

[
1 +

∑
n≥1

F̃nan
s (MZ0 ) + O

(
m2

f

M2
Z

) ]
, (25.35)

where:

Rew
Z =

∑
i

(
v2

i + a2
i

)
(
v2

e + a2
e

) (1 + δew) (25.36)

contains the underlying Z → ∑
i q̄ i qi decay amplitude, ve is the weak coupling of fermion

to Z0; δew is the weak correction. The QCD correction coefficients F̃n are slightly different
from Fn due to the presence of both vector and axial-vector coupling. Combined LEP results
lead to [68]:

RZ = 20.768 ± 0.024 , (25.37)



25 Total inclusive hadron productions 263

which gives:

αs(MZ0 ) = 0.124 ± 0.004 (exp) ± 0.002 (MH, Mt)
+0.003
−0.001 (QCD) , (25.38)

where the second errors are from those from Mt and from MH ranging from 100 to 1000
GeV. The last errors come from the scheme and scale dependences at NNLO.

25.5 Inclusive semi-hadronic τ decays

The QCD evaluation of the inclusive semi-hadronic process:

τ → ντ + hadrons (25.39)

is diagramatically similar to the e+e− → hadrons process. One puts all possible gluon and
q̄q corrections to the QCD diagram in Fig. 25.5 and computes the sum of all partonic
subprocesses. As in e+e−, one considers the two-point correlator:

�
µν

L (q2) = i
∫

d4xeiqx 〈0|TJµ

L (x)J ν†
L (0)|0〉

= −(gµνq2 − qµqν)�(1)
L (q2) + qµqν)�(0)

L (q2) , (25.40)

associated with the charged current:

Jµ

L = ūγ µ(1 − γ5)(d cos θC + s sin θC ) , (25.41)

q

q

Hadrons

τ

ντ  

Fig. 25.5. τ → ντ + hadrons inclusive process.
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Fig. 25.6. Sum of the vector and axial-vector spectral functions from tau-decay.

where u, d and s are quark fields and θC is the Cabibbo angle. In terms of which, one can
express the inclusive semi-hadronic branching ratio:

Rτ ≡ �(τ → ντ + hadrons)

�(τ → ντ eνe)

= 12π

∫ M2
τ

0

ds

M2
τ

(
1 − s

M2
τ

)2 {(
1 + 2s

M2
τ

)
Im �

(1)
L + Im �

(0)
L

}
, (25.42)

where [16]:

Mτ = (
1777.00+0.30

−0.27

)
MeV . (25.43)

We have seen, in Part I of this book, that, in the naı̈ve parton model, one expects:

Rτ = Nc . (25.44)

We show in Fig. 25.6 the V + A spectral function measured by ALEPH.
In Fig. 14.5, we show its isovector component and a comparison with the e+e− data, and

in Fig. 25.7, we show the difference between the vector and axial-vector spectral function.
The experimental data either from the τ -lifetime:

R�
τ ≡

�τ −
∑
e,µ

�τ−→�

�τ−→�

(25.45)
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Fig. 25.7. Difference between the vector and axial-vector spectral functions from tau-decay.

or/and from the τ -leptonic branching ratios:

RB
τ ≡ 1 − Be − Bµ

Be
(25.46)

have the present average [323]:

Rτ = 3.649 ± 0.014 . (25.47)

This experimental value is indeed a good evidence for the existence of colour but it is
20% higher than the quark-parton model estimate, such that one (a priori) can expect that
QCD perturbative and/or non-perturbative corrections can resolve this discrepancy. From
the expression of the width, it is clear that Rτ in Eq. (25.45) cannot be calculated directly
from QCD for s ≤ �2. However, exploiting the analyticity of the correlators �(J ) and the
Cauchy theorem, one can express Rτ as a contour integral in the complex s-plane running
counter-clockwise around the circle of radius |s| = M2

τ shown in Fig. 25.8:

Rτ = 6iπ
∮

|s|=M2
τ

ds

M2
τ

(
1 − s

M2
τ

)2 {(
1 + 2s

M2
τ

)
�

(1)
(s) + �

(0)
(s)

}
. (25.48)

One should notice the existence of the double zero at s = M2
τ , which suppresses the un-

certainties near the time-like axis. As |s| = M2
τ � �2, one can use the standard operator

product expansion (OPE) à la SVZ [1] (as will be discussed in the following chapters) for
the estimate of the correlators. In this way, one can express the QCD expression of the decay
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Fig. 25.8. Integration contour in the complex s-plane used to get Eq. (25.48).

width as [324] (hereafter referred to as BNP [325]):

Rτ = 3(|Vud |2 + |Vus |2) SEW {1 + δEW + δ(0) + δN P} , (25.49)

where:

|Vud | � 0.9753 ± 0.0006, and |Vus | � 0.221 ± 0.003 , (25.50)

are the CKM mixing angles, while the Cabibbo angle is defined as:

sin2 θC ≡ |Vus |2
|Vud |2 + |Vus |2

. (25.51)

SEW = 1.0194 and δEW = 0.0010 are LO and NLO electroweak corrections [326,327].
Based on the SVZ-Operator Product Expansion [1],1 these non-perturbative corrections
have been estimated to be small by BNP [325]:

δN P � −(0.7 ± 0.4)% (25.52)

A direct measurement of these effects from τ decay gives [33,328]:

δN P ≡
∑
D≥4

(
cos2 θcδ

(D)
ud + sin2 θcδ

(D)
us

) � −(0.5 ± 0.7)% , (25.53)

and from the most recent analysis from e+e− data [329] (reprinted article):2

δN P � −(2.8 ± 0.6)10−2 , (25.54)

1 Here and in the rest of this section, we anticipate the discussions of the SVZ expansion and of the QCD condensates in Part VII,
which the reader may consult for understanding the origin of the non-perturbative corrections.

2 This result has been obtained by combining the fitted value of non-perturbative corrections in the vector channel with the
theoretical estimate which relates the vector and axial-vector terms.
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confirm the previous estimate of BNP. The smallness of these non-perturbative effects
are related to the fact that within the SVZ expansion the numerical leading contribution
behaves as (�/Mτ )6, while the radiative corrections are relatively large at the τ mass.
These properties indeed show that τ decay is a good laboratory ( or a lucky process as
stated by Gabriele Veneziano) for extracting αs . The perturbative QCD correction δ(0) gives
the dominant contribution, and can then be used to determine αs at the τ -mass scale.
It reads:

δ
(0)
B N P =

∑
n=1

(Kn + gn) an
τ ,

= aτ +
(

K2 − 19

24
β1

)
a2

τ

+
(

K3 − 19

12
K2β1 − 19

24
β2 + 265 − 24π2

288
β2

1

)
a3

τ + O(
a4

τ

)
, (25.55)

where, here:

aτ ≡ ᾱs(Mτ )

π
. (25.56)

Kn are the coefficients appearing in the D-function given in Eq. (25.31), which, for n = 3
flavours read:

K1 ≡ F2 = 1 , K2 ≡ F3 = 1.63982 , K3 ≡ F4 = 6.37101 , (25.57)

while gn are induced by the contour integral and depend on Km≤n and on βm≤n . For n = 3
flavours, one has:

g2 = 3.5626, g3 = 19.9949 , (25.58)

and

δ
(0)
B N P = aτ + 5.2023a2

τ + 26.366a3
τ + O(

a4
τ

)
, (25.59)

while a bold-guess of

K4 ≈ K3(K3/K2) ≈ 25 , (25.60)

confirmed by the estimate [178] (K4 ≈ 27.5) based on PMS [176] and ECH [177] renor-
malization invariant schemes, from the large β limit of QCD [330,331,154] (K4 ≈ 24.8)
and from an experimental measurement [332] (K4 ≈ 29 ± 5) gives [323]:

g4 ≈ 78 , (25.61)

which indicates that gn are larger than the corresponding Kn coefficients, and implies a
sizeable renormalization scale dependence [333,334]. As observed in [333], these large
corrections come from the running along the circle s = M2

τ exp(iφ) (0 ≤ φ ≤ 2π ), which
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leads to the imaginary logarithm log(−s/M2
τ ) = i(φ − π ), which are large in some parts

of the integration range, and leads to the small convergence radius aτ ≤ 0.11. Using this
remark, [333,335] deduce that the series is more convergent if one expands it in terms of
the contour coupling A(n):

A(n)(aτ ) = 1

2iπ

∮
|s|=M2

τ

ds

s

(
1 − 2

s

M2
τ

+ 2
s3

M6
τ

− s4

M8
τ

)
an

τ (s) , (25.62)

such that:

δ(0) =
∑
n≥1

Kn A(n)(aτ ) , (25.63)

where the QCD series is more convergent and the renormalization scale dependence is very
small [336]. The error in the truncation of the perturbative series can be estimated from the
last known term of the series [337]. In this way, one can deduce the conservative estimate
[323,338]:

δtrunc � (25 ± 50)a4
τ (25.64)

where the factor 2 has been included in the estimate of the error. In this way, the estimate
of the error is about the effect of K3 A(3), which appears to be conservative enough, and
is, therefore, realistic. This result agrees with the one (though slightly larger) from the
renormalons effect within an optimized PMS renormalization scheme, which has been
estimated to be [339] (see also [340]):

δren � 0.01 , (25.65)

for a typical value of αs(Mτ ) = 0.33. It also agrees with the fit from the e+e− data of the
1/M2

τ contribution [329,341]:

δ1/M2
τ ≈ 0.01 , (25.66)

confirmed later on from other channels [161] (hereafter referred to as CNZ). The existence
of the small D = 2 dimension term beyond the usual OPE expansion may be justified from
the short distance linear term of the QCD potential and from monopole studies [162] as
we shall see in the following chapters. The fit from e+e− data does not allow the existence
of an eventual huge contribution from the quark constituent mass advocated sometimes in
the literature, due to the small value of the contribution obtained from the fit as well as
to the opposite sign compared with the expected contribution from the known coefficient
of the quark mass. Indeed, the result of the fit would correspond to a tachyonic mass naturally
interpreted as the one of tachyonic gluon by [161]. These results indicate that those obtained
from a naı̈ve resummation of the QCD series [331,154], [342–344] may be an overestimate
of the true error.
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Table 25.1. Values of αs from Rτ .

Pert. Theory ALEPH OPAL

FOPT 0.322 ± 0.005 (exp) ± 0.019 (th) 0.324 ± 0.006 (exp) ± 0.013 (th)
CIPT 0.345 ± 0.007 (exp) ± 0.017 (th) 0.348 ± 0.010 (exp) ± 0.019 (th)
RCFT ∼ 0.306 ± 0.005 (exp) ± 0.011 (th)

Estimates of some other sources of the errors can be found in [338]. For a typical value
of Rτ = 3.56 ± 0.03, these errors have been classified as follows for αs(MZ ):

0.0003 electroweak

0.0010 Mτ → MZ

0.0005 RS-dependence

0.0009 µ-dependence

0.0005 quark masses

0.0009 SVZ condensates

0.0014 truncation of the PT series at α4
s

or UV renormalon and 1/M2
τ . (25.67)

Adding them in quadrature, the total theoretical error is expected to be:


αs(MZ ) � 0.0023 , (25.68)

which is reflected in Table 25.1 above. The most extensive determinations of αs from
τ -decays are based on recent sutudies from LEP, making use of the large amount of
statistical data available at LEP-1. Measurements of the vector and axial-vector differ-
ential hadronic mass distributions of τ -decays have been performed by the ALEPH and
OPAL collaborations [33,328], which allow a simultaneous measurement of αs and the
non-perturbative corrections, where, as mentioned earlier, these latter are found to be small.
At NNLO corrections, the resulting values of αs from recent measurements [33] are given
in Table 25.1, corresponding to the different structure of the perturbative series:

� FOPT: naı̈ve perturbative expansion in terms of αs(Mτ ) given in BNP.
� CIPT: contour-improved perturbation theory where δ(0) is expressed as a contour integral in the

complex-s plane.
� RCPT: renormalon chain-improved perturbation theory, where the leading terms of the β-functions

are resummed by insertion of renormalon chains (gluon lines with fermion loop insertions) as will
be seen in the next section.

The resulting mean value from the two experiments and from the different structure of
perturbative series is:

αs(Mτ ) = 0.323 ± 0.005 (exp) ± 0.030 (th) , (25.69)



270 V Hard processes in e+e− collisions

at Mτ = (1777.00+0.30
−0.27) MeV, which shows that FOPT gives the mean theoretical values.

Runned to MZ0 , and taking account of the different threshold effects, this value gives:

αs(MZ0 ) = 0.1181 ± 0.0007 (exp) ± 0.0030 (th) , (25.70)

which is in excellent agreement with the direct measurement at the Z0 peak and with a
similar error bar. This agreement of the two determinations of αs in two extreme regime
from Mτ to MZ0 provides a beautiful test of the QCD prediction of the running coupling
behaving as 1/ log, which is a very significant experimental verification of asymptotic
freedom.

25.5.1 Running of αs below the τ -mass

The analysis of the running of αs from the inclusive distribution of τ -decays [345] and from
e+e− → hadrons data [346,329] has been extended to a lower mass below Mτ , where one
does not find any deviation from the one expected from QCD. We show in Fig. 25.9 the
comparison of the theoretical prediction (FOPT) and ALEPH measurements of Rτ,V +A for
different values of the τ -mass.

In Fig. 25.10, one shows the running of αs(s0) below 3 GeV2 using FOPT. The other
structures of PT series (CIPT and RCPT) show the same behaviour [33].
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Fig. 25.9. Rτ,V +A as a function of the τ mass s0. The theoretical predictions is from FOPT.



25 Total inclusive hadron productions 271

Table 25.2. Values of αs from different
observables in τ -decays.

Observables αs

(
M2

τ

)
Rτ,V = 1.78 ± 0.03 0.35 ± 0.05
Rτ,A = 1.67 ± 0.03 0.34 ± 0.05
Rτ,excl = 3.58 ± 0.05 0.34 ± 0.04

Fig. 25.10. Running of αs from the theoretical predictions of Rτ,V +A from FOPT to four-loop RGE
evolution for two and three flavours. The shaded band is the data.

25.6 Some other τ -like processes

25.6.1 αs from other τ widths

One can also extend the previous analysis in order to extract the value of αs from the
vector, axial-vector and from the sum of the exclusive modes by applying a SU (2) isospin
rotation [347]. This analysis has been done in [338] using the compilation of data in [346].
The analysis and predictions are summarized in Table 25.2 from [338] where one should
remark that the errors in each separate channel are larger than in the total inclusive mode,
which comes from the fact that the non-perturbative contributions have larger errors in
each separate vector and axial-vector channel than in the sum. Indeed, from [338], one can
deduce the sum of the non-perturbative terms in each channel at the τ mass:

δV
N P � (2.4 ± 1.3)10−2, δA

N P � −(4.4 ± 2.1)10−2 . (25.71)

The larger error from the exclusive modes is mainly due to the data. These different
determinations are consistent with each others. In Fig. 25.11, we show the behaviour of
the vector and axial-vector components of τ decays versus an hypothetical heavy lepton of
mass

√
s0.
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Fig. 25.11. Behaviour of Rτ,V/A versus the τ mass s0. The theoretical prediction is from FOPT.

One can again notice that the pQCD prediction is in very good agreement with the data
for a value of s0 above 1 GeV2, confirming that the determination of αs from τ decays is
robust.

25.6.2 αs from e+e− → I = 1 hadrons data

We have discussed that the vector component of the τ decay can provide an estimate of αs

although the accuracy is less than in the case of the total inclusive mode. Equivalently, one
can use the e+e− data into the vector spectral function using an isospin rotation [347] in
order to estimate αs . In this way, the decay width reads [346]:

Rτ,V ≡ 3 cos2 θc

2πα2
SEW

∫ M2
τ

0
ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
s

M2
τ

σe+e−→ I=1 . (25.72)

This quantity has been used for studying the mass dependence of the prediction on αs .
Therefore, it can provide an independent test on the reliability of the result from τ decays
and a test of the isospin symmetry. The value of αs obtained in this way [346,338,329],
at the observed value of the τ mass, is given in Table 25.2. From this analysis we con-
clude that the e+e− data give a value of αs compatible with the one from τ decay
data. We show in Fig. 25.12, the behaviour of Rτ,1 versus the value of the τ mass using
FOPT.
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R
τ,

V
 (

M
)

M (GeV)

Fig. 25.12. Rτ,V versus the hypothetical τ mass M using e+e− data. The shaded region is the theoretical
predictions corresponding to the choice of parameters discussed in the text.

There is a good agreement between the data and the theory above 1.2 GeV. The shaded area
between the two dashed curves corresponds to the theoretical predictions forαs(M2

τ ) = 0.33.
The bigger allowed region at low value of M is due to the uncertainty in the leading non-
perturbative contribution taken to be:

δD=6
V (M) � (2.4 ± 1.3)10−2 ×

(
Mτ

M

)6

, (25.73)

as given in Eq. 25.71. The departure of the theoretical prediction from the data points below
1.2 GeV signals the important role of higher dimension non-perturbative contributions
which we shall discuss in the part of this book dedicated to QCD spectral sum rules. Here,
a reasonable fit represented by the continuous line corresponds to the choice:

αs
(
M2

τ

) = 0.33 , δD=6
V

(
M2

τ

) � 2.4 × 10−2 , δD=8
V

(
M2

τ

) � −9.5 × 10−3 . (25.74)

However, though the D = 8 condensate contribution is tiny at the τ mass, its effect at
1.2 GeV is 1.25 larger than the one of D = 6, which changes completely the shape of the
QCD prediction and can raise some doubt on the validity of the OPE at this scale.

25.6.3 Strange quark mass from τ -like processes

τ -like processes have also been used for extracting the strange quark running mass defined
in the previous chapter. These processes are:



274 V Hard processes in e+e− collisions

� The Cabibbo suppressed transition 
S = 1 measured in [33,328] and exploited in [348]:

τ → ντ + 
S = 1 hadrons (25.75)

� The I = 0 e+e− → hadrons process:

e+e− → I = 0 hadrons (25.76)

using the τ -like decay process [354] (see also [355]):

Rτ,0 ≡ 3 cos2 θc

2πα2
SEW

∫ M2
τ

0
ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
s

M2
τ

σe+e−→ I=0 . (25.77)

involving the I = 0 total cross-section or/and of its different combinations.

We shall discuss in details these processes in the chapter on quark masses.



Part VI
Summary of QCD tests and αs measurements



VI.1 The different observables

We have discussed in the previous two parts of this book, deep inelastic scatterings in hadron
colliders and different hard processes in e+e− annihilations. These hard processes have been
used for testing the underlying ideas of perturbative QCD at short distances. Among others,
one has studied and measured:

� Scaling violations in different parton model sum rules.
� Structure functions.
� Spin content of the proton.
� Fragmentation functions.
� Spin of the photon.
� One hadron inclusive production.
� Jets.
� Total inclusive e+e− cross-sections.
� Hadronic τ and Z 0 decays.

In all these hard processes, most of the perturbative QCD predictions based on the SU (3)c

colour group and on asymptotic freedom properties have been confirmed by the data.

VI.2 Different tests of QCD

The main outcomes of these analysis in the previous parts of the book are given in the
following sections.

VI.2.1 Deep inelastic scatterings

� A measurement of the scaling violations to parton model predictions in deep inelastic processes
using different moments of the structure functions as predicted by QCD. In the unpolarized case,
one has used these processes to extract the value of the QCD running coupling. In the polarized case,
one has been able to emphasize the important universal rôle of the QCD anomaly for explaining the
relative suppression of the first moment of the structure function compared to the OZI prediction
(so-called proton spin) and a proposal for testing its effect from the measurement of the photon spin
in γ -γ scattering processes, and of some semi-inclusive processes.

276



VI Summary of QCD tests and αs measurements 277

� An extension of the test of the validity of perturbation theory in the low-x region leading to a
modification of the Altarelli–Parisi evolution equations.

VI.2.2 QCD jets

� A confirmation of the vector nature of the gluon rather than its scalar nature from the measurement
of the moment distributions in three-jet events.

� A measurement of the ratio of the colour group factor CA/CF from the scaling violation rates in
inclusive hadron distributions and charged hadron multiplicites from gluon and quark jets, which
leads to

CA

CF
= 2.24 ± 0.11 , (VI.1)

in agreement with the QCD expectation:

CA

CF
= 9/4 = 2.25 . (VI.2)

This fact confirms the SU (3)c colour group structure of QCD for describing the strong inter-
actions, and the appearance of the different vertices involving gluon interactions. It also rules out
some other group candidates (Abelian, semi-simple Lie group . . . ).

� An extraction of the QCD running coupling αs .

Inclusive e+e−, Z → hadrons and τ → ντ hadrons processes
� Most precise extractions of the QCD running coupling αs using the high statistics LEP measurements

of the Z → hadrons and τ → ντ+ hadrons decays and the best QCD approximation available today
(NNLO and resummation of the asymptotic terms of the QCD series). Unlike the previous deep
inelastic and jet processes, one does not need to introduce structure and/or fragmentation functions
which can limit the accuracy of the predictions.

VI.3 Summary of the αs determinations

� In the massless quark limits which are a good approximation for the light quarks, QCD is a one-
parameter theory gouverned by its running coupling αs(Q2) evaluated at a scale Q, such that all
hard strong interaction processes, where one can apply perturbative QCD, should be described in
terms of this single input parameters.

� A determination of the values of the running QCD coupling αs(Q2) at different energies from various
processes as summarized in the table and figures from [139]. In this comparison, the coupling should
be defined in the same way everywhere. The M S scheme has been adopted as the most convenient
renormalization scheme for defining this coupling.

One can see that the running of the coupling shown in Fig. VI.1 from 1 to 100 GeV and at
LEP2 energies in Fig. VI.2 satisfies the 1/ log behaviour predicted by QCD. The slope of the curve
interpreted in terms of the first coefficient of the β function lead to an alternative measurement of
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Fig. VI.1. Summary of the different αs determinations at different energies from [139].

Fig. VI.2. αs determinations from hadronic event shapes at LEP2 energies.

the number of colours:

Nc = 3.03 ± 0.12 , (VI.3)

which is an internal consistency check of the results between data and QCD (Nc = 3 in QCD!).
� Evaluated at the common scale Q = MZ0 , the different experiments lead to consistent values of αs

as shown in Fig. VI.3, with the average value from the six most significant NNLO determinations
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Fig. VI.3. Summary of the different αs determinations at the common scale MZ0 from [139].

(total error less or equal than 0.008) [139]:1

αs(MZ0 ) = 0.1181 ± 0.0027 . (VI.4)

As a result, the corresponding value of the QCD scale for five flavours is:

�5 = (
210+34

−31

)
MeV . (VI.5)

1 The one coming from PDG 2000 [16] is slightly more precise than the average of different determinations from Table VI.1. This
is mainly due to the inclusion of the result from [250], where the error of 0.001 has been taken literally.
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Table VI.1. World summary of measurements of αs (status of July 2002) from
[139]: DIS = deep inelastic scattering; GLS-SR = Gross–Llewellyn-Smith sum rule;
Bj-SR = Bjorken sum rule; (N)NLO = (next-to-) next-to-leading order perturbation

theory; LGT = lattice gauge theory; resum. = resummed NLO). Some entries are still
preliminary.

�αs(MZ )
Q

Process [GeV] αs(Q) αs(MZ ) exp. theor. Theory

DIS [pol. strct. fctn.] 0.7–8 0.120 + 0.010
− 0.008

+ 0.004
− 0.005

+ 0.009
− 0.006 NLO

DIS [Bj-SR] 1.58 0.375 + 0.062
− 0.081 0.121 + 0.005

− 0.009 – – NNLO
DIS [GLS-SR] 1.73 0.280 + 0.070

− 0.068 0.112 + 0.009
− 0.012

+ 0.008
− 0.010 0.005 NNLO

τ -decays 1.78 0.323 ± 0.030 0.1181 ± 0.0031 0.0007 0.0030 NNLO
DIS [ν; xF3] 2.8–11 0.1153 ± 0.0073 0.0040 0.0061 NNLO
DIS [e/µ; F2] 1.9–15.2 0.1166 ± 0.0022 0.0009 0.0020 NNLO
DIS [e-p → jets] 6–100 0.118 ± 0.011 0.002 0.011 NLO
DIS & pp̄ →jets 1–400 0.119 ± 0.004 0.002 0.003 NLO
QQ̄ states 4.1 0.216 ± 0.022 0.115 ± 0.006 0.000 0.006 LGT
ϒ decays 4.75 0.217 ± 0.021 0.118 ± 0.006 – – NNLO
e+e− [Fγ

2 ] 1.4–28 0.1198 + 0.0044
− 0.0054 0.0028 + 0.0034

− 0.0046 NLO
e+e− [σhad] 10.52 0.20 ± 0.06 0.130 + 0.021

− 0.029
+ 0.021
− 0.029 0.002 NNLO

e+e− [ jets & shapes] 14.0 0.170 + 0.021
− 0.017 0.120 + 0.010

− 0.008 0.002 + 0.009
− 0.008 resum

e+e− [ jets & shapes] 22.0 0.151 + 0.015
− 0.013 0.118 + 0.009

− 0.008 0.003 + 0.009
− 0.007 resum

e+e− [ jets & shapes] 35.0 0.145 + 0.012
− 0.007 0.123 + 0.008

− 0.006 0.002 + 0.008
− 0.005 resum

e+e− [σhad] 42.4 0.144 ± 0.029 0.126 ± 0.022 0.022 0.002 NNLO
e+e− [ jets & shapes] 44.0 0.139 + 0.011

− 0.008 0.123 + 0.008
− 0.006 0.003 + 0.007

− 0.005 resum
e+e− [ jets & shapes] 58.0 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007 resum
pp̄ → bb̄X 20.0 0.145 + 0.018

− 0.019 0.113 ± 0.011 + 0.007
− 0.006

+ 0.008
− 0.009 NLO

pp̄, pp → γ X 24.3 0.135 + 0.012
− 0.008 0.110 + 0.008

− 0.005 0.004 + 0.007
− 0.003 NLO

σ (pp̄ → jets) 40–250 0.118 ± 0.012 + 0.008
− 0.010

+ 0.009
− 0.008 NLO

e+e− [
(Z0 → had.)] 91.2 0.1227+ 0.0048
− 0.0038 0.1227+ 0.0048

− 0.0038 0.0038 + 0.0029
− 0.0005 NNLO

e+e− scal. viol. 14–91.2 0.125 ± 0.011 + 0.006
− 0.007 0.009 NLO

e+e− four-jet rate 91.2 0.1170 ± 0.0026 0.1170 ± 0.0026 0.0001 0.0026 NLO
e+e− [ jets & shapes] 91.2 0.121 ± 0.006 0.121 ± 0.006 0.001 0.006 resum
e+e− [ jets & shapes] 133 0.113 ± 0.008 0.120 ± 0.007 0.003 0.006 resum
e+e− [ jets & shapes] 161 0.109 ± 0.007 0.118 ± 0.008 0.005 0.006 resum
e+e− [ jets & shapes] 172 0.104 ± 0.007 0.114 ± 0.008 0.005 0.006 resum
e+e− [ jets & shapes] 183 0.109 ± 0.005 0.121 ± 0.006 0.002 0.005 resum
e+e− [ jets & shapes] 189 0.109 ± 0.004 0.121 ± 0.005 0.001 0.005 resum
e+e− [ jets & shapes] 195 0.109 ± 0.005 0.122 ± 0.006 0.001 0.006 resum
e+e− [ jets & shapes] 201 0.110 ± 0.005 0.124 ± 0.006 0.002 0.006 resum
e+e− [ jets & shapes] 206 0.110 ± 0.005 0.124 ± 0.006 0.001 0.006 resum
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� However, one should have in mind that the different values of αs for each process are not obtained
within the same QCD approximations. In some processes, they are known very precisely to NNLO,
while in some others they are poorly known to NLO. In addition, the theoretical uncertainties are
also affected by the asymptotic behaviour of the perturbative series in powers of αs , and by small
non-perturbative effects which should be present in different processes. We shall come back to this
point in subsequent chapters.
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Introduction

The problems of power corrections have been intensively discussed during the last few
years [1,3,329–344,356–398].1 By power corrections to the parton model, one means terms
of the order of: (

�

Q

)n

∼ exp

(
nπ

αs(Q2)β1

)
, (26.1)

where Q is a typical momentum much larger than the QCD scale �, and β1 = −1/2(11 −
2n f /3) in our notation. A priori, this is problematic as these contributions are exponentially
small in the inverse of the running coupling, and can be related to many orders of the
perturbative expansion. In order to develop a phenomenology of these power corrections,
one then assumes that they are numerically important and are responsible for the breaking of
asymptotic freedom at intermediate energies. This fact has been firstly indicated in the QCD
spectral sum rules phenomenology [1,2,3,356–365] and in the analysis of renormalons [329–
380] and instantons [382–398]. However, as noticed in [162], the idea of power corrections
are not quite new but can be traced back to an old paper [416]. It has been considered an
e+e− pair at distance r placed into a centre of a conducting cage of size L . Assuming that
L � r , the potential energy of the pair can be approximated by:

Ve+e− (r ) � −α

r
+ const

αr2

L3
for L � r , (26.2)

where the second term can be viewed as a power correction to the Coulomb potential. In
classical electrodynamics, this correction corresponds to the interaction of a dipole with its
image, or can be also derived in terms of one-photon exchange. From this example, one
can derive, by analogy, the heavy quark potential of QCD, which at short distances looks
as [417]:

VQ̄ Q(r → 0) � C

r
+ const �3r2 , (26.3)

where C is calculable in perturbative QCD as series in αs , and where one should notice the
absence of a linear term at short distance. For deriving this expression, one has replaced L by
1/�, assuming that the gluon propagator is modified by IR effects at the scale 1/�. The shift

1 It is a pleasure to thank Valya Zakharov for reading this Part.
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of the atomic levels in the cage are sensitive to a local characteristic of the non-perturbative
fields, which on dimensional grounds reads [416,162]:

(δE)N P ∼ 〈0|E2|0〉
m3

e

, (26.4)

where 〈0|E2|0〉 corresponds to the difference of the mean value of E2 in one photon approx-
imation evaluated without and with the cage, and which is UV finite. Translated in QCD,
one can have the picture of the Q̄ Q bound states, in terms of the density of the colour field
strengths, or more popularly known as gluon condensate 〈0|αs(Ga

µν)2|0〉, first discussed in
[418]:

δEnl ∼ Cnl
〈0|αs

(
Ga

µν

)2|0〉
M4

Q

+ · · · (26.5)

Considering now the QCD correlation function, which generically reads:

�H (−q2) ≡ i
∫

d4x eiqx 〈0|T J (x)H (JH (0))† |0〉 , (26.6)

where JH (x) is the hadronic current of quark and/or gluon fields, a use of the standard OPE
leads to [1]:

�H (−q2) ∼ �H (−q2)parton

[
1 + aHαs(−q2) + bH

q4
+ · · ·

]
(26.7)

for massless quarks, and, where aH and bH are constants which depend on the hadron
quantum numbers. One should notice the absence of the 1/Q2 power term in the standard
OPE as we shall discuss in detail in the next chapter. We shall also see in the following
chapters how the resummation of the QCD asymptotic series and its phenomenological
picture can induce such a term.
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The SVZ expansion

27.1 The anatomy of the SVZ expansion

For definiteness, let us illustrate our discussion from the generic two-point correlator:

�H (q2) ≡ i
∫

d4x eiqx 〈0|T JH (x) (JH (0))† |0〉 , (27.1)

where JH (x) is the hadronic current of quark and/or gluon fields. Here, the analysis is in
principle much simpler than in the case of deep inelstic scatterings, because one has to
sandwich the T -product of currents between the vacuum rather than between two proton
states. Following SVZ [1], the breaking of ordinary perturbation theory at low q2 is due to
the manifestation of non-perturbative terms appearing as power corrections in the operator
product expansion (OPE) of the Green function à la Wilson [222]. In this way, one can
write:

�H (q2, m2) �
∑

D=0,2,4,...

1

(m2 − q2)D/2

∑
dimO=D

C(q2, m2, ν2)〈O(ν)〉 , (27.2)

provided that m2 − q2 � �2. For simplicity, m is the heaviest quark mass entering into the
correlator; ν is an arbitrary scale that separates the long- and short-distance dynamics; C
are the Wilson coefficients calculable in perturbative QCD by means of Feynman diagrams
techniques; 〈O〉 are the non-perturbative (non-calculable) condensates built from the
quarks or/and gluon fields. Though, separately, C and 〈O〉 are (in principle) ν-dependent,
this ν-dependence should (in principle) disappear in their product.

� The case D = 0 corresponds to the naı̈ve perturbative contribution.
� For D = 2 and owing to gauge invariance which forbids the formation of a condensate, one can

only have the contributions from the light quark running mass squared. Moreover, one may (or
may not) also expect that the summation of perturbation theory via UV renormalon technology
(see next section) could also induce such a term, while the possibility from the freezing mecha-
nism of the coupling constant is negligibly small as it is expected to be of the order of (αs/π )2

[338].
� For D = 4, the condensates that can be formed are the quark and gluon ones:

m〈ψ̄ψ〉 , 〈αs G2〉 , (27.3)
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where the former can be fixed by pion PCAC (see Part I) in the standard Gell-Man–Oakes–Renner
(GMOR) realization of chiral symmetry.

� For D = 5, one can only have, in the massless quark limit, the mixed quark-gluon condensate:

〈
ψ̄σµνλ

a
/

2Gµν
a ψ

〉
. (27.4)

� For D = 6 one has, in the chiral limit, the triple gluon and the four-quark condensates:

g3 fabc〈Ga GbGc〉 , αs〈ψ̄	1ψψ̄	2ψ〉 , (27.5)

where 	i are generic notations for any Dirac and/or colour matrices.
The validity of the SVZ expansion has been understood formally, using renormalon technology

(see next sections) and the mixing of operators under renormalizations. The SVZ expansion has
been also tested in the λφ4 [367,368] and QCD-like models [369] (Schwinger two-dimensional
gauge theories [370], the C P N−1 model [371], which both have instantons and θ -vacua; the Gross–
Neveu model [372] with dynamical chiral symmetry breaking [373] and 2-d O(N ) free non-linear
σ model [374,367], where both have the asymptotic freedom property of QCD).

Its phenomenological confirmation can be viewed from the unexpected accurate extraction of αs

from τ decays and from independent measurements of the QCD condensates (see chapter on QCD
condensates).

27.2 SVZ expansion in the λφ4 model

For a simple pedagogical introduction, let us illustrate the SVZ expansion for scalar field
theory.1 The bare Lagrangian of the theory reads:

Lφ = 1

2
(∂µφB)2 − 1

2
m2

Bφ2
B − λB

4!
φ4

B , (27.6)

where φ is the scalar field, m and λ are its mass and coupling. B refers to bare quantity.
It is known that for m2

B < 0, one has a spontaneous breaking mechanism where the field
acquires a non-vanishing expectation value, which is non-analytical in the coupling, such
that the model mimics non-perturbative effects. In order to further simplify our discussions,
let us, however, work in the case m2

B > 0, where no condensate breaks spontaneously the
symmetry and let us ignore (for the moment) renormalization effects. We shall be concerned
with the propagator:

D(q2) = i
∫

d4xeiqx 〈0|Tφ(x)φ(0)|0〉 , (27.7)

which we shall evaluate in two different ways. In the first one, we evaluate it using the
standard perturbative expansion in λ (Fig. 27.1).

1 We shall ignore in this illustrative example the radiative corrections discussed in [367,368].
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p

+ + . . .

ϕϕ

D(q)

Fig. 27.1. Lowest order perturbative contribution to the scalar correlator.

Fig. 27.2. Lowest order scalar condensate contribution to the scalar correlator.

Using, for instance, a Pauli–Villars regularization (the following conclusion is regular-
ization invariant), one obtains for −q2 � m2

B ≡ m2:

D(q2) � 1

q2
+ m2

q4

{
1 − λ

32π2

(
log

�2

m2
− �2

m2

)}
, (27.8)

where � is an arbitrary UV cut-off.
In the second method, one evaluates the propagator using the SVZ expansion for −q2 �

m2. Therefore, it reads:

D(q2) � C11 + Cφ〈φ2〉 + · · · (27.9)

By introducing the scale ν, which separates the long- and short-wavelength fluctuations,
one can extract C1 from the perturbative graph for p > ν (short fluctuations):

C1 � 1

q2
+ m2

q4

{
1 − λ

32π2

(
log

�2

ν2
− �2 − ν2

m2

)}
. (27.10)

The Wilson coefficient Cφ is associated to the φ2 ‘condensate’:

Cφ � λ

2q4
, (27.11)

and comes from Fig. 27.2.
The condensate 〈φ2〉 corresponds to the evaluation of the tadpole-like graph for p < ν

(large fluctuations), from which, one obtains:

〈φ2〉 � 1

16π2

(
ν2 − m2 log

ν2

m2

)
. (27.12)
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These results show that in this simple example, the SVZ expansion recovers (to this ap-
proximation) the usual calculation. However, the coincidence of the series is not trivial if
one goes to higher order. This will be the subject of the next discussion in QCD.

27.3 Renormalization group invariant (RGI) condensates

Now, the next step is to see if the condensates can be well-defined in perturbation theory,
namely if one can form quantities which are invariant under the RGE. This discussion has
already been anticipated when we discussed the renormalization of composite operators,
where it has been shown that, in general, these operators can mix under renormalizations
[126–131].

27.3.1 Scale invariant D = 4 condensates

� Generalities and definitions
In the previous section, it was demonstrated that the condensates:

m j 〈ψ̄ jψ j 〉 ,

〈
θµ
µ

〉 = 1

4
〈β(αs)GG〉 +

∑
j

γm(αs)m j 〈ψ̄ jψ j 〉 , (27.13)

are renormalization group invariant [126,128]. However, perturbative evaluations of the
quark-mass corrections to the correlation functions give rise to IR logarithms of the form
m4αn

s (ν) logk(m/ν) (k ≤ n + 1), where ν is the M S renormalization scale [167,399]. The mass
singularities arise from the region of small loop-momenta in the relevant Feynman diagrams, and
therefore should be absorbed (like the IR renormalons) into the non-perturbative condensates 〈O(ν)〉.
The IR logarithms are nothing more than the perturbative contributions to the D = 4 vacuum
condensates.

However, one should notice that the calculation of the D = 2 quark-mass corrections does not
produce any logarithms logk(m/ν), which is a consequence of the absence of the D = 2 operators
in QCD.

In order to be explicit, let us consider the pseudoscalar two-point correlator defined in Eq. (8.29).
At q = 0, one obtains from a perturbative calculation of the correlator [167]:

� R
5 (0)|pert = 3

4π2
(mi + m j )

(
m3

i Zi + m3
j Z j

)
, (27.14)

with:

Zi = 1 − log
m2

i

ν2
+ 2

3

(αs

π

) (
5 − 5 log

m2
i

ν2
+ 3 log2 m2

i

ν2

)
, (27.15)

which improves the non-perturbative Ward identity in Eq. (2.17), and which indicates that, in order
to absorb the mass singularities, one should add a perturbative piece to the quark condensate. In a
similar way, the perturbative piece to the gluon condensate reads [325]:

〈GG(ν)〉M S
pert = − 1

2π2

(αs

π

) ∑
i

m4
i (ν)

[
9 − 8 log

m2
i

ν2
+ 3 log2 m2

i

ν2

]
. (27.16)
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The summation of the log-terms using the RGE becomes more convenient by working with the
scale invariant non-normal ordered condensates [325]:2

〈αs GG〉 ≡
(

1 + 16

9
αs(ν) + O

(
α2

s

)) αs(ν)

π
〈 : GG(ν) : 〉M S

− 16

9

αs(ν)

π

(
1 + 19

24

αs(ν)

π
+ O

(
α2

s

)) ∑
i

mi 〈ψ̄ iψi 〉M S(ν)

− 1

3π

(
1 + 4

3

αs(ν)

π
+ O

(
α2

s

)) ∑
i

m4
i (ν) , (27.17)

and:

〈mi ψ̄ jψ j 〉 ≡ mi 〈 : ψ̄ jψ j : 〉M S(ν)

+ 3

7παs(ν)

(
1 − 53

24

αs(ν)

π
+ O

(
α2

s

))
mi (ν)m3

j (ν) , (27.18)

where one can notice the inverse power of αs in the expression for the quark condensate. The
use of these scale-invariant condensates in the OPE implies that the coefficient functions obey an
homogeneous RGE, which then facilitates the summation of the log(Q/ν) terms in the analysis.

Analogously to the invariant mass m̂i in Eq. (11.77), a spontaneous RGI mass µ̂i associated to
the quark vacuum condensate can also be introduced by taking into account the fact that the product
mi 〈ψ̄ψ〉 is RGI (at least to leading order in mi ) [28,110,2]. Then, one obtains:

〈 : ψ̄ iψi : 〉(ν) = − µ̂3
i (−β1as(ν))γ1/β1

{
1 + β2

β1

(
γ1

β1
− γ2

β2

)
as(ν) ,

+ 1

2

[
β2

2

β2
1

(
γ1

β1
− γ2

β2

)2

− β2
2

β2
1

(
γ1

β1
− γ2

β2

)
+ β3

β1

(
γ1

β1
− γ3

β3

) ]
a2

s (ν)

+ O(
a3

s , m3
i

)}−1

, (27.19)

where the values of the β functions and mass anomalous dimensions can be found in Table 11.1.
� Values of the light quark condensates

Assuming a GMOR realization of chiral symmetry as commonly accepted, the light quark conden-
sate can be estimated, to leading order of the light quark mass, from the PCAC relation given in
Eq. (2.22):

(mu + md )〈 : ψ̄uψu + ψ̄dψd : 〉 � −2m2
π f 2

π . (27.20)

Anticipating the values of the running masses in the next chapter, one can deduce:

1

2
〈ūu + d̄d〉(2 GeV) = −[(254 ± 15) MeV]3 . (27.21)

We shall also see, in the next chapter, that one has a large breaking from the SU (3)F flavour
symmetric value of the condensates as first noticed in [400] from the pseudoscalar sum rule, where

2 One should notice that the use of the Wick’s theorem in the evaluation of the Feynman diagrams generates automatically
normal-ordered condensates which we shall denote as 〈 : O : 〉
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a recent update estimate [354,419–421] (see also [423]) leads to the ratio of the normal ordered
condensates:

〈 : s̄s : 〉/〈 : ūu : 〉 = 0.66 ± 0.10 , (27.22)

in agreement within the errors with different baryon sum rules results [426–430]. Combining
Eq. (27.17) with this result, one can also deduce the ratio of the non-normal ordered condensates:

〈 s̄s 〉/〈 ūu 〉 = 0.75 ± 0.12 . (27.23)

� Value of the gluon condensate
The gluon condensate has been orginally estimated by SVZ from charmonium sum rules [1]. We
shall see in the next chapter that a re-extraction of this quantity from the e+e− → I = 1 hadrons
data and from the heavy quarkonia mass-splittings, lead to [329,313] (Sections 51.3 and 52.10):

〈αs G2〉 = (7.1 ± .9)10−2 GeV4 , (27.24)

as expected from various post-SVZ estimates [3,356–365], but about a factor of two higher than
the original SVZ estimate.

27.3.2 D = 5 mixed quark-gluon condensate

The renormalization of the mixed quark-gluon condensate has been studied in [130], where
it has been shown that the scale invariant, which one can form, is the combination:

〈Ō5〉 = αγM /−β1
s 〈O4 + x O1 + y O2〉 (27.25)

where the dimension-five gauge invariant operators are:

O1 ≡ im2
j 〈ψ̄ jψ j 〉 ,

O2 ≡ − i

4
m j 〈G2〉 ,

O3 ≡ −m j ψ̄ j (D̂ + im j )ψ j ,

O4 ≡ g

〈
ψ̄ jσ

µν λa

2
ψ j G

a
µν

〉
. (27.26)

For SU (3)C :

x = −1944

315
y = −72

63
γM = −1

3
, (27.27)

which indicates that working with 〈O4〉, is only valid to leading order in the quark mass-
expansion.

The value of the mixed quark-gluon condensate has been estimated from baryon sum
rules [424–430] to be about 0.8 GeV2, and alternatively from the heavy-light quark systems
B and B∗ [401]. Further discussions will be given in the next chapter. The QSSR value of
the mixed quark-gluon condensate is:

g

〈
ψ̄ jσ

µν λa

2
ψ j G

a
µν

〉
≡ M2

0 αγM /−β1
s 〈ψ̄ jψ j 〉 , (27.28)
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where:

M2
0 = (0.8 ± 0.01) GeV2 . (27.29)

For a conservative result, we shall adopt:

M2
0 = (0.8 ± 0.1) GeV2 , (27.30)

assuming a 10% uncertainty typical for the sum rule approach.

27.3.3 D = 6 gluon condensates

� Triple gluon condensate:
It reads:

〈OG〉 ≡ g3 fabc〈Ga GbGc〉 , (27.31)

and does not mix under renormalization with the other D = 6 operators. Its renormalization
improved expression is [130]:

〈ŌG〉 = α−γG /β1
s 〈OG〉 , (27.32)

where for SU (N ):

γG = 1

6
(2 + 7N ) . (27.33)

A crude estimate of this condensate can be obtained using a dilute gas instanton approximation
model (DIGA) (see next chapter). For an instanton size ρc ≈ 200 MeV, one obtains [382]:3

〈OG〉 ≈ (1.5 ± 0.5) GeV2〈αs G2〉 , (27.34)

where we have assumed a 30% error. This estimate is in good agreement with the SU (2) lattice
estimate [402]:

〈OG〉 ≈ (1.2 GeV2)〈αs G2〉 , (27.35)

although one should be careful in using this result (in particular the sign) as the latter has been
obtained in the Euclidean region.

� Gluon derivative condensate:

g2〈DG DG〉 ≡ g2
〈
DµGαµ

a DνGa
αν

〉
, (27.36)

It reduces to the four-quark condensates:

g4

〈∑
ψ̄γµ

λa

2
ψ

〉2

, (27.37)

after the use of the equation of motion.

3 The effect of the anomalous dimension has not been included in the analysis but it is negligible.
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27.3.4 D = 6 four-quark condensates

On the contrary, the four-quark condensates mix with each other [130,131]. In the chiral
limit and after the use of the equation of motion, one remains only with five operators:

O	 ≡ 〈ψ̄α	1ψαψ̄β	2ψβ〉 , (27.38)

where the colour indices (α, β) run from 1 to N . 	i is any Dirac and colour indices. One
can choose the basis:

	S = 1 , 	V = γµ ,

	P = γ5 , 	A = γµγ5 ,

	T = σµν ≡ i
2 [γµ, γν] . (27.39)

In the large N -limit, where the vacuum saturation is expected, one has:

〈ψ̄	1ψψ̄	2ψ〉 = 1

16N 2
[Tr 	1 Tr 	2 − Tr(	1	2)]〈ψ̄ψ〉2 . (27.40)

With the inclusion of the next 1/N -correction, one has [130]:

OS = 〈ψ̄ψ〉2
(
1 − 1

4N

)
, OP = 〈ψ̄ψ〉2

(− 1
4N

)
,

OV = 〈ψ̄ψ〉2
(− 1

N

)
, OA = 〈ψ̄ψ〉2

(
1
N

)
,

OT = 〈ψ̄ψ〉2
(− 3

4N

)
, (27.41)

indicating that in the large N -limit, only OS is relevant. However for finite N , the operators
mix with each other and signal the fact that the vacuum saturation is inconsistent with the
RGE, as one cannot form a RGI condensate. In the solely case of N → ∞, the situation
improves, as one can construct the RGI condensate:

〈Ō2〉 = αγ6/−β1
s 〈g2ψ̄ψψ̄ψ〉 , (27.42)

where:

γ6(N → ∞) = 143

33
N . (27.43)

The size of the four-quark condensates has been estimated from the e+e− → hadrons
data [403,404], [405–409] and from the τ → hadrons decay width [328,33]. It has been
noticed for the first time in [404] that the vacuum saturation assumption, used previously,
underestimates the real value of the four-quark condensate by a factor:

ρ � 2 − 3 , (27.44)

while in the e+e− analysis, there is a strong correlation between the four-quark and the
〈αs G2〉 condensates, as they appear in opposite signs in the OPE. This result has been also
found from baryon sum rules [424,426]. A recent analysis of the e+e− data gives [329]
(reprinted paper):

ραs〈ψ̄ψ〉2 = (5.8 ± 0.9)10−4 GeV6 , (27.45)

a result confirmed by the ALEPH and OPAL measurement from τ -decay data [328,33].
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27.3.5 Higher dimensions gluonic condensates

The dimension-eight gluonic condensates have been discussed in [410–412]. In general,
one can form eight operators:

O1 = 〈Tr G2 Tr G2〉 ,

O2 = 〈Tr GνµGρµ Tr Gντ Gρτ 〉 ,

O3 = 〈Tr GνµGτρ Tr GνµGτρ〉 ,

O4 = 〈
Tr GνµGτρ Tr Gν

τ Gµ
ρ

〉
,

O5 = 〈Tr GνµGµρ Gρτ Gτν〉 ,

O6 = 〈Tr GνµGνµGτρGτρ 〉 ,

O7 = 〈Tr GνµGνρ Gµτ Gρτ 〉 ,

O8 = 〈Tr GνµGρτ GνµGρτ 〉 . (27.46)

Using the symmetry properties of the colour indices and an explicit evaluation of the
trace, one can show that one has only six independent operators and the relation for N = 3
[411]:

O5 + 2O7 = O2 + 1

2
O4 ,

O8 + 2O6 = O3 + 1

2
O1 . (27.47)

The use of the vacuum saturation in the large N -limit gives:

O1 = 〈G2〉2 1
4

(
1 + 1

3
1

N 2−1

)
, O2 = 〈G2〉2 1

4

(
1
4 + 1

3
1

N 2−1

)
,

O3 = 〈G2〉2 1
4

(
1
6 + 7

6
1

N 2−1

)
, O4 = 〈G2〉2 1

4

(
1
12 + 1

2
1

N 2−1

)
,

O5 = 〈G2〉2 1
4N

(
1
2 − 1

12
1

N 2−1

)
, O6 = 〈G2〉2 1

4N

(
7
6 − 1

6
1

N 2−1

)
,

O7 = 〈G2〉2 1
4N

(
1
3 − 1

4
2

N 2−1

)
, O8 = 〈G2〉2 1

4N

(
1
3 − 1

N 2−1

)
, (27.48)

which indicates that only the first four operators are leading in 1/N , and they do not satisfy
the previous constraints. Moreover, the 1/N 2 corrections to these leading-term are also
large for N = 3 in the case of O3 and O4, and put some doubts on the validity of the
1/N -approximation. A modified factorization has been therefore proposed [411] based on
the evaluation of the typical G4 one-point function:

(27.49)
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within a heavy-quark mass expansion and on the approximate validity of the factorization
of the four-quark operator. In this way, one obtains the constraints:

O1 = 〈G2〉2

4
,

O3 = 2O4 ,

O6 = 1

4

1

N
〈G2〉2 ,

O5 = O7 ,

O8 = 4O7 − O6 , (27.50)

which leave one operator unconstrained.
Although theoretically interesting, these results are not very rewarding in practice. How-

ever, phenomenological fits from the τ decay [407,328,346] and e+e− → hadrons data
[329] (Section 52.10) indicate that the estimate based on the factorization assumption gives
about a factor 5 underestimate of the real value of the dimension-eight operators.

27.3.6 Relations among the different condensates

The heavy quark expansion has been used to derive the relations among the different conden-
sates by studying the OPE in the inverse of the quark mass of the corresponding one-point
function. More rigorously, the following results apply in the condensates of a heavy quark
Q, although it has been extended to the light quark one in the literature, in an attempt to
derive the light quark constituent mass from an effective QCD action [413].

A study of the 〈Q̄ Q〉 one-point function as shown in the following figure:

+ +< QQ > =

(27.51)

gives:

MQ〈Q̄ Q〉 = − 1

12π
〈αs G2〉 − 1

1440π2

g3〈G3〉
M2

Q

− 1

120π2

〈DG DG〉
M2

Q

, (27.52)

where the first term has been obtained orginally by SVZ [1] and the higher dimensions
corrections have been evaluated in [410,411].
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A similar relation has been also derived from the one-point function of the mixed quark-
gluon condensate [410,411,414]:

< QGQ > = + +

(27.53)

It reads:

MQ

〈
Q̄σµν λa

2
QGa

µν

〉
= − 5

24

(αs

π

)
g〈G3〉 , (27.54)

where we have dropped the non-local perturbative term, which has no physical relevance,
though its rôle is useful for absorbing the mk logn(m/ν) mass singularities (subtleties related
to these terms have been discussed in detail in [411]).

The previous relations show that the quark and mixed quark-gluon condensates vanish in
the world with an infinitely heavy quark mass. Due to the positivity of the G3-condensate,
the previous relation also shows that the mixed quark-gluon condensate is positive, which
is a less trivial result. Finally, a relation among the condensates has also been derived using
a Cauchy–Scharwz-like inequality [415]:

〈gψ̄Gψ〉2 ≤ 16π〈αs G2〉|〈ψ̄γ5ψψ̄γ5ψ〉| , (27.55)

which we should regard with a great caution as we can not control the error in deriving
this formula. However, it indicates that the previous values of the condensates obtained
from QSSR are self-consistent and disfavours the SVZ standard value of the gluon and
four-quark condensates.

27.3.7 Non-normal ordered condensates and cancellation of mass singularities

We have discussed in previous sections the mixing among different condensates and the
neccessity to form scale-invariant quantities which facilitates the log-resummation. This
definition is also intimately connected with the absence of quark-mass singularities in the
OPE. In order to show explicitly how these IR singularities are absorbed, it is informative
to write the renormalized non-normal-ordered condensates in terms of the normal-ordered
ones denoted by 〈 : O : 〉, where the latter appear naturally in the use of the Wick’s theorem
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for the calculation of the Feynman diagrams. To order αs , one has:

〈 ψ̄ψ 〉(ν) = 〈 : ψ̄ψ : 〉 − 3

4π2
m3

[
log

m2

ν2
− 1

]
− 1

12π

1

m
〈 : αs GG : 〉 ,

〈 αs GG 〉(ν) = 〈 : αs GG : 〉 + O(
α2

s

)
,

g

〈
ψ̄σµν λa

2
Ga

µνψ

〉
(ν) = g

〈
: ψ̄σµν λa

2
Ga

µνψ :

〉
+ m

2π
log

m2

ν2
〈 : αs GG : 〉 , (27.56)

where the non-local logarithms and additionnal terms are just those necessary to render
the results of the OPE free from IR singularities. Careful handling of these quantities are
required for correct treatments of the Green’s functions in which one or more internal
fermion masses are much smaller than the QCD scale. We also expect that most of the
perturbative results available in the literature (e.g. supersymmetric calculations or QCD
high-energy processes, . . . ), which are strongly affected by the change of the light quark
masses (or the IR scale of the theory), should be treated in an analogous way in order to
absorb such divergences.
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Technologies for evaluating the Wilson coefficients

There are nice expositions of these methods in the literature [431–434,3,362,45,399]. We
shall not try to replace these discussions, but for a pedagogical reason, we shall repeat within
our proper style some of these results. Let us remind ourselves that the evaluation of the
Green’s function of some local colourless currents is reduced to its evaluation in external
gluons or/and quark fields, assuming that the field is weak, namely its momentum is much
smaller than the characteristic scale of the problem. In this way, the expansion in power
series à la Wilson makes sense.

28.1 Fock–Schwinger fixed-point technology

28.1.1 Fock-Schwinger gauge

Let us now come to the methods for evaluating the Wilson coefficients appearing in the
SVZ-expansion. Among others, the Fock–Schwinger method is the most convenient one in
practice [431]. It corresponds to the choice of the Fock–Schwinger gauge [435,319]:

(x − x0)Aa
µ(x) = 0 , (28.1)

used often in QED. Aa
µ(x) is the four-potential and x0 is an arbitrary choice of coordinate

which plays the role of a gauge. As Eq. (28.1) breaks explicitly the translation invariance,
its restoration (cancellation of the x0 terms) for gauge-invariant quantities provides a double
check of the validity of the calculation. Unfortunately, due to algebraic complications, most
calculations have been done in the special choice x0 = 0 of the gauge.

28.1.2 Gluon fields and condensates

Using the identity:

Aµ(x) = ∂

∂xµ
[Aρ(x)xρ] − xρ

Aρ(x)

∂xµ
, (28.2)

and from Eq. (28.1) at x0 = 0:

xρ

Aρ

∂xµ
= xρGρµ + xρ

Aµ(x)

∂xρ

, (28.3)

299
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one can deduce:

Aµ(x) + xρ

Aµ(x)

∂xρ

= xρGρµ . (28.4)

By substituting x ≡ αz in the previous equation, it is easy to realize that this equation is
a full derivative:

d

dα
[αAµ(αz)] , (28.5)

which gives after integration:

Aµ(x) =
∫ 1

0
dα αGρµ(αx)xρ , (28.6)

which expresses the gauge field Aa
µ(x) in terms of the gluon-strength tensor Ga

µν . One can
use Eq. (28.6) by Taylor expanding Gρµ around xµ = 0:

Aa
µ =

∞∑
x=0

1

n!(n + 2)
xρxν1 · · · xνn ∂ν1 · · · ∂νn Ga

ρµ

∣∣
x=0 . (28.7)

By Taylor expanding Aµ(x), the gauge condition xµ Aµ(x) = 0 becomes:

xµ

[
Aµ(x) + xν1∂ν1 Aµ(x)(0) + 1

2
xν1 xν2∂ν1∂ν2 Aµ(x)(0) + · · ·

]
= 0 , (28.8)

for all x and leads to:

xµ Aµ(x)(0) = 0 ,

xµxν1∂ν1 Aµ(x)(0) = 0 ,

xµxν1 xν2∂ν1∂ν2 Aµ(x)(0) = 0 . (28.9)

Therefore:

xν1∂ν1 G(0) = xν1 [Dν1 , G(0)] ,

xν1 xν2∂ν1∂ν2 G(0) = xν1 xν2∂ν1 [Dν2 , G(0)] = xν1 xν2 [Dν1 , [Dν2 , G(0)]], . . . (28.10)

and then the useful formula:

Aµ(x) =
∞∑

x=0

1

n!(n + 2)
xρxν1 · · · xνn

[
Dν1 ,

[
Dν2 ,

[
. . .

[
Dνn , Ga

ρµ

∣∣
x=0

] · · · ]]] . (28.11)

One can immediately form the gluon normal ordered condensate:

Aµ(x)Aν(y) = 1

4
xλyρGλµGρν + · · ·

= 1

4d(d − 1)
xλyρ[gλρgµν − gλνgµρ]GαβGαβ + · · · , (28.12)

where d = 4 − ε is the space-time dimension.
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28.1.3 Light quark fields and condensates

Analogous arguments can be used for the quark fields. One obtains the Taylor expansion:

ψ(x) =
∑

n

1

n!
xν1 · · · xνn Dν1 Dν2 · · · Dνn ψ |x=0

ψ̄(x) =
∑

n

1

n!
xν1 · · · xνn ψ̄ D†

ν1
D†

ν2
· · · D†

νn
|x=0 , (28.13)

with:

ψ̄(0)∂†
ν1

= ∂ν1ψ̄ . (28.14)

From the previous expressions, one can also form the normal-ordered quark condensate:

〈 : ψ̄ i,α(x)ψi,α(0) : 〉 = 1

4N
δαβ

[ (
δi j + i

4
m xµ(γµ)i j

)
〈 : ψ̄ψ : 〉

− i

16
x2

(
δi j + i

6
m xµ(γµ)i j

) 〈
: ψ̄σµν λa

2
Ga

µνψ :

〉

+ i

288
x2 xµ(γµ)i j g

2

〈
: ψ̄γρ

λa

2
ψ

∑
f

ψ̄ f γ
ρ λa

2
ψ f :

〉]
. (28.15)

This expression tells us that one should be careful in evaluating the Wilson coefficients
of high-dimension condensates as the propagation of the 〈ψ̄ψ〉 condensate induces extra-
contributions due to the mixed and four-quark condensates. This effect has been one of the
main source of errors in the existing QSSR literature.

28.1.4 Mixed quark-gluon condensate

By combining the Taylor expressions of the quark and gluon fields, one can form the
normal-ordered mixed quark-gluon condensate:

〈 : ψ̄ i (x)Aρ(z)ψ j (0) : 〉 = 1

2
zµ〈 : ψ̄Gµρψ : 〉 + 1

2
xνzµ〈 : ψ̄ D†

νGµρψ : 〉 + · · ·

= zµ

96

[ [
σµρ − m

2
(xµxρ − xρxµ) + i

2
mxνσµρxν

]
i j

× 〈 : ψ̄στk Gτkψ : 〉 +
[

i

(
−2

3
zµγρ + 2

3
zργµ

)
+ 1

2
xνγνσµρ

]
i j

× g2

〈
: ψ̄γρ

λa

2
ψ

∑
f

ψ̄ f γ
ρ λa

2
ψ f :

〉 ]
. (28.16)

This expression also indicates that the propagation of the mixed quark-gluon condensate
induces a quartic condensate. Here, one should remark that the non-local condensates used
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in some literature can be identified with the LHS of Eqs. (28.15) and (28.16). In this
framework, the Wilson coefficients of these non-local condensates differ from the standard
SVZ expansion.

28.1.5 Gluon propagator

For a complete calculational purpose, one also likes to have the expression of the propaga-
tors. We only quote their expressions in this gauge. The gluon propagator reads:

Dµν(q) =
∫

d4xeiqx Dµν(x, 0)

= gµν

q2
+ g

2

q4
Gµν + g

4i

q6
(q D)Gµν − g

2i

3q6
gµνDαGαβ qβ

+ g
2

q8
(q D)DαGαβ gβ gµν + g

2

q8
(q2 D2Gµν − 4(q D)2Gµν)

+ g2 1

2q8
gµν(q2GαβGαβ − 4(qαGαβ)2) + g2 4

q6
GµαGαν , (28.17)

where:

Gµν ≡ Gab
µν = Ga

µνλ
b = f abcGc

µν(0) . (28.18)

28.1.6 Quark propagator

The quark propagator satisfies the Dirac equation:
(

i
∂

∂xµ

γµ + g Aµ(x)γµ − M

)
S(x, y) = δ(4)(x − y) , (28.19)

where: Aµ ≡ (λa/2)Aµ
a and M is the quark mass. Under the condition that the position of

the field is much smaller than the characteristic distance x − y, one can have the Taylor
expansion:

i S(x, y) = i S(0)(x, y) + g
∫

d4z i S(0)(x, z) i Â(z) i S(0)(z, y)

+ g2
∫

d4z′ d4z i S(0)(x, z′) i Â(z′) i S(0)(z′, z) i Â(z) i S(0)(z, y)

+ · · · , (28.20)

where S(0)(x, y) is the free quark propagator, and Â ≡ Aµγµ. This expression shows ex-
plicitly how many times the quark from the point y scatters 0,1, . . . external fields before
annihilating at x = 0.

We shall consider the case of the heavy quark propagators in the next section due to the
subtlety that the quark and gluon condensates are related to each other through Eq. (27.52).
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Let us now consider the massless quark propagator in external fields. It reads in the
x-space:

2π2S(x, y) = r̂

(r2)2
− 1

4

rα

r2
G̃αµ(0)γµγ5

+
{

i

2

r̂

(r2)2
yρxµGρµ(0) − 1

96

r̂

(r2)2
(x2 y2 − (xy)2)Gµν(0)Gµν(0)

}

+ operators of higher dimensions , (28.21)

where:

r = x − y Gµν ≡ g
λa

2
Ga

µν G̃αµ = 1

2
εαµνβGνβ . (28.22)

For two-point correlators without derivative currents, only the first two terms are operative
in the evaluation of the gluon condensate effects, while the other terms contribute in the
case of three-point functions or current with derivatives. The extension of this expression
including higher-dimension gluon operators can be done. For completeness, this expression
is:

S(p) =
∫

d4x eipx S(x, o) = 1

p̂
− pα

p4
gG̃αβγ βγ 5

+ 2

3
g

1

p6
[p2 DαGαβγ β − p̂DαGαβ pβ − pν Dν DαGαβγ β − 3i pν Dν DαG̃αβγ βγ 5]

+ 2

p8

[
i p2i pν Dν DαGαβγ β − i p̂pν Dν DαGαβγ β − i (pν Dν)2 pαGαβγ β

+ 2 (pν Dν)2 pαG̃αβγ βγ 5 − 1

2
Dν Dν p2 pαG̃αβγ βγ 5

]

+ 1

p8
g2[−2 p̂ pαGαβGβν pν + p2 pα(GαβGβν + GβνGαβ)γν

− p2 pα(GαβGβν − GβνGαβ)γν] + · · · (28.23)

where here Gαβ = (λa/2)Ga
αβ . The Wilson coefficient of the gluon condensate having di-

mension D is proportional to p−D+1.

28.2 Application of the Fock–Schwinger technology to the light quarks
pseudoscalar two-point correlator

In order to illustrate the discussions in the previous sections and chapters, let us consider
the two-point correlator:

�5(q2) ≡ i
∫

d4x eiqx 〈0|T JP (x) (JP (0))† |0〉 , (28.24)
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where:

JP = (mi + m j )ψ̄ i (iγ5)ψ j (28.25)

is the light quark pseudoscalar current. The lowest order perturbative result for massive
quarks and the two loop expression for massless quarks has been discussed for illustration
in previous chapters. Here, we shall discuss explicitly the evaluation of the non-perturbative
contributions.

28.2.1 Quark condensate 〈 : ψ̄ψ : 〉
In order to compute the Wilson coefficient, one can start from the Wick’s theorem and leave
one pair of 〈 : ψ̄ψ : 〉 without contraction. Therefore:

�5(q2) = (mu + md )2(γ5)i j (γ5)kl(−i)
∫

d4x eiqx

× [d(x)α j d̄(o)βk〈 : ū(x)αi u(0)βl : 〉 + u(0)βl ū(x)αi 〈 : d̄(0)βkd(x)α j : 〉] .

(28.26)

Using the definition of the propagator:

ψ̄ F
αi (x)ψ F ′

β j (y) = iδαβδF F ′
Si j (x − y)

= iδαβδF F ′
∫

d4 p

(2π )4
δi j (p)e−i p(x−y) , (28.27)

with:

SF
i j (p) = 1

p̂ − m F + iε′ , (28.28)

one obtains:

�5(q2) = (mu + md )2
∫

d4x
∫

d4 p

(2π )4
e−i(p−q)x

× [〈 : ū(x)αi u(0)βl : 〉[γ5Sd (p)γ5]il + 〈 : d̄(0)βkd(x)α j : 〉[γ5Sd (p)γ5]k j ] .

(28.29)

In terms of Feynman diagrams, Eq. (28.29) reads:

q

q

q q

q

+ (28.30)

where • • means that the two-quark fields condense at the same point, so that a Taylor
expansion in xµ of 〈 : ψ̄(x)ψ(0) : 〉 makes sense. Using Eq. (28.15), wherein we shall limit
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ourselves to the first two terms of the expansion, one obtains:

�5(q2) = (mu + md )2 3

12

×
[
〈 : ūu : 〉

{
Tr γ5Sd (q)γ5 − 1

4
mu

[
− ∂

∂pλ

Tr(γ5Sd (q)γ5γ
λ)

]
p=q

}

× (u ←→ d)

]
. (28.31)

Using the property:

− ∂

∂pλ

S(p) = S(p)γλS(p) , (28.32)

one can deduce the final result:

�5(q2)|ψ̄ψ = (mu + md )2

q2

[(
md − mu

2

)
〈 : ūu : 〉 + (u ←→ d)

]
. (28.33)

The minus sign is due to the γ5 chirality flip which acts on the term ∂/∂pλ. This implies
that for the scalar current, one has to change this minus sign.

28.2.2 Gluon condensate 〈 : αs G2 : 〉
The evaluation of the effect of the gluon condensate can be done by using the previous
expression of the quark propagators in external fields. Diagramatically, one has to compute
(Fig. 28.2):

q

p1
p1 p2

p3

p1-q

p1-q

p3

p1p3

p2

p2

+ +
q q q

(28.34)

As usual, we apply Wick’s theorem where all quark fields should be contracted but not the
gluon ones. The notation • • means again that the gluon fields are put at the same point,
such that the previous Taylor expansion in Eq. (28.20) is valid. Using Feynman rules, one
can deduce:

�5(q2)|G = (mu + md )2(−i)
g2

2

∫
d4 y d4z

∫ ∏
i = 13 d4 p1

(2π )4
〈 : Aa

λ(y)Aa
ρ(z) : 〉

× [
Tr[γ5S(p1 + q)γ λS(p3)γ ρ S(p2)γ5S(p1)]ei(q+p1−p3)y+i(p3−p2)z

+ Tr[γ5S(p1)γ5S(p2)γ ρ S(p3)γ λS(p1 − q)]ei(−p1+q+p3)y+i(p2−p3)z

+ Tr[γ5S(p1)γ ρ S(p2)γ5S(p3)γ λS(p1 − q)]ei(q−p1+p3)y+i(p1−p2)z
]
, (28.35)
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where we have omitted the flavour indices u, d as we shall work in the massless quark
limit. Now, one takes advantage of Eq. (28.12), which is valid in the Schwinger gauge.
Substituting it in Eq. (28.35), one gets:

�5(q2)|G = (mu + md )2(−i)
1

16d(d − 1)
〈g2Gµν

a Ga
µν〉[gντ gλρ − gνρgλτ ]

∫
d4 p1

(2π )4

×
[

2
∂

∂p1ν

∂

∂p2τ

Tr[γ5S(p1 + q)γ λS(p3)γ ρ S(p2)γ5S(p1)]p2=p3=p1+q

+ ∂

∂p3ν

∂

∂p2τ

Tr[γ5S(p1)γ ρ S(p2)γ5S(p3)γ λS(p1 − q)]p2=p1=p3=p1−q

]
,

(28.36)

where we have used the fact that the two self-energy-like diagrams give the same contribu-
tion. Using Eq. (28.32) and the properties of Dirac matrices and Feynman integrals given
in Appendices D and F and in that of QSSR1, one can deduce:

�5(q2)|G = − 1

8π

(mu + md )2

q2

〈
αs Gµν

a Ga
µν

〉
. (28.37)

28.2.3 Mixed quark-gluon condensate

This contribution corresponds to the diagram:

q
k

p p+k

+ +

(28.38)

As before, one again writes the Wick product where two quark fields should be contracted.
The first diagram gives:

�5(q2)
∣∣(1)

M = (mu + md )2
∫

d4x d4 y eiqx
∫

d4 p

(2π )4

d4k

(2π )4

× g〈 : ū(x)αi Aa
µu(0)βl : 〉(γ µ)mn(γ5)i j (γ5)kl

× e−i[p(x−y)+(p+k)y]Sd
jm(p)Sd

nk(p + k) + (u ←→ d) . (28.39)

We use now Eq. (28.16), the property in Eq. (28.32) and we do the Dirac algebra.
The self-energy-like diagram can be obtained by considering the propagation of the

〈ψ̄ψ〉 condensate in a weak external field as given in Eq. (28.15). Using iteratively the
property in Eq. (28.32) and doing as usual the Dirac algebra, one obtains the desired result.
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The sum of the mixed quark-gluon condensate contributions is:

�5(q2)|M = − (mu + md )2

2(q2)2
g[md〈ūGu〉 + mu〈d̄Gd〉] , (28.40)

with the shorthand notation:

g〈ψ̄Gψ〉 ≡ g

〈
: ψ̄σµν λa

2
Ga

µνψ :

〉
. (28.41)

The result for the scalar current can be deduced from Eq. (28.40) by changing the overall
-(md + mu)2 factor with (md − mu)2.

28.2.4 Four-quark condensates

Two classes of diagrams contribute to the four-quark condensates.

� Class 1: is that where the gluon fields once contracted give a hard momentum gluon propagator:

+ +

(28.42)

The computation of these diagrams can be done using standard perturbation theory, namely by
writing the Wick product, contracting the gluon fields and two pairs of quark fields and by taking
the vacuum expectation values (v.e.v) of the four-quark operators. Then, one obtains:

�5(q2)
∣∣(1)

4ψ
= (mu + md )2

2(q2)2
παs

〈
: ūσµνγ5

λa

2
u − d̄σµνγ5

λa

2
d :

〉2

. (28.43)

� Class 2 is that where the momentum of the gluon propagator is zero. This contribution is represented
by the diagrams:

+ +

(28.44)

The first two diagrams are generated by the propagation of the 〈 : ψ̄ψ : 〉 condensate in a weak
external field as given in Eq. (28.15). The third diagram is generated by the mixed quark-gluon
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condensate as in Eq. (28.16). Evaluation of these diagrams leads to:

�5(q2)
∣∣(2)

4ψ
= (mu + md )2

2(q2)2

παs

6

〈
:

(
ūγ µ λa

2
u + d̄γ µ λa

2
d

) ∑
u,d,s

ψ̄γµ

λa

2
ψ :

〉
. (28.45)

If one uses the vacuum saturation and the SU (2)F flavour symmetry of the quark condensates, the
sum of the four-quark contributions reads:

�5(q2)|4ψ = (mu + md )2

2(q2)2

112

27
ρπαs〈 : ψ̄ψ : 〉2 , (28.46)

where ρ measures the deviation from the vacuum saturation estimate.

28.2.5 Triple gluon condensate

The contribution of the triple gluon condensate g〈 : fabcGa
µνGb

νρGc
ρµ : 〉 has been evaluated

in [436,432] and comes from the diagrams:

+ + (28.47)

One can use here the quark propagator in the external field (Eq. (28.23)) and write the gluon
fields in terms of the field strengths as in Eqs. (28.11) and (28.12) in order to form the triple
condensate. The calculation can be done using standard perurbation theory. In the chiral limit
(mi, j = 0), the effect of the triple gluon condensate vanishes for any quark-bilinear currents.

28.3 Fock–Schwinger technology for heavy quarks

28.3.1 General procedure

The technology differs slightly from the light quark one as we can no longer neglect the quark
mass M which is the most important scale in the OPE. Moreover, due to the Wigner–Weyl
realization of chiral symmetry for the heavy quark systems, the heavy quark condensate
vanishes as 1/M and is correlated to the gluon condensate as in Eq. (27.52), which is the
most important non-perturbative scale in the heavy quark sector.

The Fock–Schwinger gauge [435,319] remains the most convenient working gauge and
the momentum space is also the most convenient working space [431]. Let the generic
heavy quark two-point correlator:

��(q2) = i
∫

d4x eiqx 〈0|T J�(x) (J�(0))† |0〉 , (28.48)

where:

J� = ψ̄ i (�)ψ j (28.49)
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and� is any Dirac matrices. The non-perturbative contributions to the correlator are typically
of the form:

��(q2, M2) = 〈gG · · · G〉
∫

d4k

(2π )4

Tr(� . . . , k̂, q̂, m, . . . � . . .)

(k2 − M2)[(k + q)2 − M2]n
. (28.50)

The trace can be done using some algebraic programs. It is convenient to express the
result as inverse powers of k2 − M2 and (k + q)2 − M2. After a Feynman parametrization,
one encounters integrals of the form:

I αβ
n (q2, M2) =

∫ 1

0
dx

xα(1 − x)β

[−q2x(1 − x) + M2]n
. (28.51)

By noting the symmetry x → (1 − x), one can re-expand the previous integral in x(1 − x)
and deduce the recursive relation:

I αα
n ≡ I α

n = 1

Q2

(
I α−1
n−1 − M2 I α−1

n

)
. (28.52)

This leads to the basic integral:

Jn =
∫ 1

0

dx

[1 − x(1 − x)q2/M2]n
, (28.53)

which reads:

Jn = (2n − 3)!!

(n − 1)!

[ (
v2 − 1

2v2

)n

v1/2 log
v + 1

v − 1
+

n−1∑
k=1

(k − 1)!

(2k − 1)!!

(
v2 − 1

2v2

)n−k
]

, (28.54)

where:

v ≡
(

1 − 4M2

q2

)1/2

. (28.55)

28.3.2 D = 4 gluon condensate of the electromagnetic correlator

We use the Fock–Schwinger gauge in order to express the gluon fields in terms of the field
strengths as in Eq. (28.12). The algorithm is very similar to the one used for the light quarks.
The first two self-energy-like diagrams normalized to 〈αs G2〉 give [431]:

Ca
G = − 1

96π

1

q4

[
2

(5v4 + 3)

v4
+ (v2 − 1)2(5v2 + 3)

v5
log

v − 1

v + 1

]
. (28.56)

The vertex-like diagram contributes as:

Cb
G = 1

48π

1

q4

[
2

2(v2 + 1)

v2
+ (v2 − 1)2

v3
log

v − 1

v + 1

]
, (28.57)
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where one can notice that each set of diagrams develops a non-transverse part:

qµqν�b
µν = − 1

16π

1

q4

(1 − v2)

v2

[
1 + (v2 + 1)

2v
log

v − 1

v + 1

]
, (28.58)

which vanishes in the sum. One can also express the sum of the transverse contribution in
terms of the basic integral in Eq. (28.53):

C4 ≡ Ca
G + Cb

G = 1

24π

1

q4
(−1 + 3J2 − 2J3) , (28.59)

which is a useful compact expression for further analysis.

28.3.3 D = 6 condensates of the electromagnetic correlator

The light four-quark condensates contribute through the diagram:

(28.60)

via the equation of motion of the gluon fields:

g Jµ
a ≡ DµGµν

a = −g2

2

∑
u,d,s

ψ̄γν

λa

2
ψ , (28.61)

while the triple gluon condensate contributes via the diagrams in Eq. (28.3.3):

+ + (28.62)

In order to reach the desired result, it is useful to express the v.e.v:

〈 : Dα DβGµνGρσ : 〉, 〈 : DαGµν DβGρσ : 〉, 〈
: g3 fabcGa

µνGb
αβGc

ρσ :
〉
. (28.63)

In so doing, one uses the colour trace due to two and three λ matrices, the previous
gluon field equation of motion and the Bianchi identity. After a lengthy but straightforward
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algebraic manipulation, one can express the result in terms of the two condensates:

C3G
〈
g3 fabcGa

µνGb
νρGc

ρµ

〉
, CJ J

〈
g4 J a

µ J a
µ

〉
, (28.64)

where the Wilson coefficients are [1,433]:

C3G = 1

72π2q6

[
2

15
+ 4J2 − 31

3
J3 + 43

5
J4 − 12

5
J5 + q2

10M2

]
,

CJ J = 1

36π2q6

[
41

45
+

(
2

3
− q2

3M2

)
J1 − J2 − 4

9
J3 − 26

15
J4 + 8

5
J5 + 3q2

5M2

]
.

(28.65)

28.3.4 Matching the heavy and light quark expansions

It is instructive to compare the coefficient functions obtained directly from a light quark
expansion and from the heavy quark one by taking the limit v = 1. In order to be explicit,
let us consider the coefficient of the gluon condensate 〈 : αs G2 : 〉. In the light quark-
expansion, one obtains [411]:

Ga
G(m = 0) = 0 ,

Gb
G(m = 0) = 1

12π

1

q4
〈 : αs G2 : 〉 . (28.66)

If one takes naively the heavy quark result, one obtains from Eqs. (28.56) and (28.57):

Ga
G(v → 1) = − 1

6π

1

q4
〈 : αs G2 : 〉 ,

Gb
G(v → 1) = 1

12π

1

q4
〈 : αs G2 : 〉 , (28.67)

which shows that the two limits do not coincide (!). This discrepancy can be restored by
including the effect of the quark condensate which is known to be correlated to that of the
gluon through Eq. (27.52).

One obtains in the two cases [411]:

Cψ (m = 0) = 2

q4
m〈 : ψ̄ψ : 〉 ,

Cψ (v) = 8

3

v + 2

(v + 1)2

1

q4
m〈 : ψ̄ψ : 〉 , (28.68)

where the two results coincide for v → 1. Using the relation in Eq. (27.56), one can in-
troduce the non-normal-ordered quark and gluon condensates, where an extra gluon con-
densate term has been induced by the quark condensate. This term cancels the extra part in
Ca

G(v → 1).
This lesson just tells us that one cannot directly take the v = 1 limit of the heavy quark

correlator in order to get the light-quark result without paying attention to the masked
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contribution of the quark condensate, which induces a gluon condensate effect. Some other
similar relations and properties hold for higher dimension condensates.

28.3.5 Cancellation of mass singularities

Let us now discuss another example related to the previous subtlety of the quark and gluon
condensates.

Let the example of the correlator of the vector current built from one light and one heavy
quark fields:

Jµ(x)i
j = ψ̄ iγ

µψ j . (28.69)

By keeping the quark mass terms and taking the limit −q2 → ∞ after integration, one
obtains for the transverse part [437]:

CT
G = 1

12π

(
1 − mi

m j
− m j

mi

)
1

q4
〈αs G2〉 (28.70)

which exhibits a dangerous mass singularity. The normal ordered quark condensate contri-
bution is:

Cψ = 1

q4
〈 : mi ψ̄ jψ j + m j ψ̄ iψi : 〉 , (28.71)

Expressing it in terms of the non-normal ordered quark condensate as defined Eq. (27.56)
and adding it to the previous gluon condensate contribution, one obtains the IR stable result:

CT
G = 1

12π

1

q4
〈 : αs G2 : 〉 . (28.72)

and:

Cψ = 1

q4
〈 mi ψ̄ jψ j + m j ψ̄ iψi 〉(ν) , (28.73)

However, the natural question to ask is the commutativity of the operation by taking the
limit mi, j = 0 before the loop integration. A positive answer to this question can only be
provided if one treats the IR integral in dimensional regularization and if one removes the
1/ε-pole at the very end of the calculation.

Indeed, in this calculation, one encounters integrals of the type:

I ≡
∫

dnl

(2π )n

(
q2

l2 + iε

)a (
q2

(l + q)2 + iε

)b

,

=
(−q2

4π

)n/2
�(a + b − n/2)�(n/2 − a)�(n/2 − b)

�(a)�(b)�(n − a − b)
(28.74)

where the IR singularity is transformed into 1/ε-pole, which can be removed. In general, the
extension of this method for the calculation of the Wilson coefficients of higher dimension
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condensates can be easily done provided one takes care of the mixing of the operators under
renormalizations as discussed earlier.

28.4 The plane wave method

This method exploits the fact that the Wilson’s expansion is an operator identity, namely
that one can single out a given operator by sandwiching it between appropriate states. Let
us consider the two-point correlator associated with the quark current:

J�(x) = ψ̄�ψ , (28.75)

characterized by the Dirac matrix �, and which possesses the generic OPE (omitting Lorentz
indices):

�(q2) � C11 + Cmψ̄ψ + GgG2 + DG

{
GαδGα

βqδqβ = 1

4
q2G2

}
. (28.76)

The first unit term corresponds to the usual perturbative calculation, which one obtains by
sandwiching the correlator between the vacua. The next term is obtained by sandwiching
the correlator between one-quark states and corresponds to the quark-current scattering
amplitude shown in Fig. 28.1.

The Wilson coefficient CG can be obtained by sandwiching the correlator between one-
gluon states. Therefore, the problem reduces to the evaluation of the forward gluon scattering
amplitude on a colour-singlet current. From Lorentz invariance, this amplitude can be
decomposed as:

T µν(q, k) ≡ i
∫

d4xeiqx 〈k, µ|T J�(x)
(
J�(0)

)† |k, ν〉
= Fµν

1 C(q, k) + Fµν

2 D(q, k) , (28.77)

where:

Fµν

1 = 4(k2gµν − kµkν) ≡ 〈k, µ|G2|k, ν〉 , (28.78)

and:

Fµν

2 = 2[k2qµqν − (k.q)(qµkν + qνkµ) + gµν(k · q)2] − q2(k2gµν − kµkν)

≡ 〈k, µ|GαδGαβqδqβ − 1

4
q2G2|k, ν〉 . (28.79)

Fig. 28.1. ‘Weak’ quark (full line)-current (dashed line) scattering amplitude.
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They correspond to the diagrams:

+ +

(28.80)

A comparison of Eqs (28.76) and (28.77)–(28.79) gives:

DG(q2) = CG(q, k)|kα=0. (28.81)

In practice, the plane wave method is convenient when one has external weak quark fields
as in Fig. 28.1. In the case of many ‘weak’ external gluon fields, the extraction of a partic-
ular operator from various possible candidates having the same dimensions becomes very
difficult. In one sense, this is the main inconvenience of this method.

28.5 On the calculation in a covariant gauge

The evaluation of the Wilson coefficients can be also obtained in a covariant gauge. Unlike
the usual perturbative term, and the quark condensate term, which are easily obtained in
this gauge, the evaluation of the Wilson coefficients of the gluon condensates is much more
cumbersome in this gauge than in that of Fock–Schwinger. A published evaluation of the
gluon condensate contribution in this gauge can be found in [626]. As applications of this
method, we give at the end of this part a compilation of QCD two-point functions useful
for further analysis.



29

Renormalons

29.1 Introduction

The renormalon problem is related to the well-known fact [372,375] (for more complete
reviews, see for example [162,154]) that the QCD series is unfortunately divergent (no
finite radius of convergence) like n!, which is the number of diagrams of nth order. Indeed,
a given observable can be expressed as a power series of the coupling g as:

F(g) =
∑

n

fngn , (29.1)

where the series are divergent:

fn(n → ∞) ∼ K ann!nb , (29.2)

and where the nth order grows like n!, such that it is not practicable to have a quantitative
meaning of Eq. (29.1). For the approximation to be meaningful, the approximation should
asymptotically approach the exact result in the complex g-plane, such that:

∣∣∣∣∣F(g)exact −
N∑

n=0

fngn

∣∣∣∣∣ < KN+1gN+1 , (29.3)

where the truncation error at order N should be bounded to the order gN+1. If fn behaves
like in Eq. (29.2), KN usually behaves as aN N !N b. The truncation error behaves similarly
as the terms of the series. It first decreases until:

N0 ∼ 1

|a|g , (29.4)

beyond which the approximation to F does not improve through the inclusion of higher-
order terms. For N0 � 1, the approximation is good up to terms of the order:

KN0 gN0 ∼ e−1/|a|g . (29.5)

Provided fn ∼ Kn , the best approximation is reached when the series is truncated at its
minimal term and the truncation error is given by the minimal term of the series.

315
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One can use the well-known technique (Borel transform) for improving the convergence
of a power series whose nth order grows like n!, by considering the related series:

B(z) ≡
∑

n

fn
zn

n!
. (29.6)

If fn grows not faster than n!, then B(z) will at least have a finite radius of convergence.
Using the usual formula: ∫ ∞

0
exp(−z/g)zndz = n!gn+1 , (29.7)

one can see that:

F̃ ≡ gF(g) =
∫ ∞

0
exp(−z/g)B(z)dz . (29.8)

The relation in Eq. (29.8) is true order by order in perturbation theory, but there are
arguments that it cannot be true for the full Greens functions. From Eq. (29.8), in order
to calculate F(g), one needs B(z) only for real positive values of z less than or of the
order g, which can be obtained from the series in Eq. (29.1) if the singularities of B(z) in
the complex plane are all at distances from the origin much greater than g. Even if a few
poles z1, z2, . . . have moduli of order g, one can calculate B(z) by using power series for
(z − z1)(z − z2) . . . B(z), where we should know the position of the poles. Singularities of
B(z) on the positive real axis are much worse, as they invalidate Eq. (29.8). One can distort
the contour integral to avoid singularities on the positive real axis, but the ambiguities
come from the question of distortion of the contour below or above the singularity? In
the following, we will show that some of the singularities of the Borel transform B(z) are
associated with terms in the OPE (renormalons) and the others with solutions of the classical
field equations (instantons).

In order to illustrate this discussion, let us assume that:

F(g)exact = K an�(n + 1 + b) (29.9)

For positive b, its Borel transform is:

B[F](z) = K
�(1 + b)

(1 − az)1+b
, (29.10)

while for negative integer b = −l, one can write:

B[F](z) = (−1)l

�(l)
(1 − az)l−1 ln(1 − az) + polynomial in z. (29.11)

In the case of QCD and QED, where one expects a > 0 (non-alternating series), one has
singularities in the positive z axis, such that the Borel integral does not exist. However, it
may still be defined by taking the contour above or below the singularities, where it acquires
an imaginary part:

Im F̃(g) = ∓π
K

a
e−1/(ag)(ag)b , (29.12)
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+ . . . + . . . ... ... ...

Fig. 29.1. Renormalon chains contributions to the QCD Adler D-function.

where the sign depends on whether the integration is taken in the upper or lower complex
plane. The difference in the two definitions is the so-called ambiguity of the Borel integral.
As it behaves as an exponential in the coupling, it is of non-perturbative origin and induces
power corrections.

In the following, we shall discuss for definiteness, the Adler D-function in QCD:

D(Q2 = −q2) ≡ −4π2 Q2 d�(Q2)

d Q2
, (29.13)

built from the electromagnetic current Jµ(x) = ψ̄γµψ and which governs the e+e− →
hadrons total cross-section. For the D-function, the unnecessary ν-dependence appearing
in the two-point correlator �(q2) from the leading-log term is not there, i.e., D is RGI.
Therefore, its perturbative expansion reads:

D
(

as ≡ αs

π

)
=

∑
n

Knan
s , (29.14)

where as(Q2) is the running coupling and Kn are pure numbers which are, however,
RS-dependent.

Renormalon effects are associated to the insertion of n bubbles of quark loops into gluon
lines (gluon chains) exchanged between the two quark lines in the D-function built from
the quark current as shown in Fig. 29.1.

It is well-known that they induce a n! growth into the perturbative series. This difficulty
can be (in principle) cured by working with the Borel transform D̃ of the correlator D(s):

D(as) − D(0) =
∫ ∞

0
db D̃(b) exp(−b/as) , (29.15)

which possesses an explicit 1/n! suppression factor. However, life is not so simple because
of the features described in the following.

29.2 Convergence of the Borel integral

The b-integral does not converge for b → ∞. This can be seen from the fact that, in the
chiral limit, hadrons have a non-zero mass in QCD, such that D̃ should have singularities at
Q = M0, where M0 is the mass of any hadrons having the quantum number of the photon
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Fig. 29.2. Singularities in the Borel plane of the QCD Adler D-function.

(or gluons). As for large Q, D̃ is only function of:

as(Q2) = 1

(−β1/2)[ log Q2/	2 + (2n + 1)iπ ]
, (29.16)

one can see that it has an infinite number of singularities in αs , where αs = 0, corresponding
to M0 = ∞, is an accumulation point of these singularities. However, the singularities at
αs = αs(M0) can arise through the behaviour:

lim
b→∞

D̃ ∼ exp −bβ1[ log Q2/	2 + (2n + 1)iπ ] , (29.17)

which indicates that the b-integral does not converge for b → ∞. However, a large b-region
corresponds to large Q2 where D̃ decreases rapidly like αs , such that the αs-singularities are
very weak and justify the uses of the Borel integral for studying, without any ambiguities,
the asymptotic behaviour of QCD at large Q2. In general, D̃ develops singularities at
b = kb0 ≡ 2πk/(−β1) in the real b-axis, where the integral is also ambiguous.

29.3 The Borel plane in QCD

There are three known types of singularities in the Borel plane of QCD as shown in Fig. 29.2.

� UV renormalons occur in the negative real axis (β1 is negative in our notation.), and are harm-
less since the integration contour in Eq. (29.15) is along the positive b-axis. At the nth order of
perturbation theory, integrand of the form:

d4 p

p6
lnn p2 , (29.18)

gives a n! factor and reflects the fact that such integrals are less convergent for large n.
� IR renormalons are singularities in the positive b-axis, which are due to the IR region of the Feynman

integrals.
� Instanton–anti-instanton singularities occur because far separated instanton–anti-instanton pairs

which can exist cannot be properly treated in a perturbative expansion around αs = 0.

29.4 IR renormalons

The IR renormalons correspond to the singularities at k = +2, + 3, . . . , and are generated
by the low-energy behaviour of these higher-order diagrams, where fermion bubbles are
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inserted into the internal gluon line exchanged between the two fermion lines. In order
to illustrate this feature, let us consider the one-gluon exchange diagram with a gluon of
momentum p, where we shall focus on the low-p region R.1 Then:

D (as(Q)) ∼
∫

R

d4 p

p2
as(p2)F(p) . (29.19)

where F(P2 ≡ −p2) behaves as P2. Using:

as(p) � as(Q)

1 − β1as(Q) log (P2/Q2)
, (29.20)

and:

D̃(b) = 1

2iπ

∫ as+i∞

as−i∞
d(1/as)eb/asD(as) , (29.21)

one obtains:

D̃(b) ∼
∫

R
P2d P2

(
P2

Q2

)−b/b0

, (29.22)

which gives the singularity near b = −4π/β1:

D̃(b) ∼
(

1 + bβ1

4π

)−1

, (29.23)

or to two loops, i.e., for two gluons-exchange:

D̃(b) ∼
(

1 + bβ1

4π

)−1+2β2/β
2
1

, (29.24)

for b > 2b0 ≡ −4π/β1. This indicates that the pole at b = 2b0 gives rise to an IR ambiguity,
if one tries to reconstruct D(as) from D̃(b) taken from perturbation theory. Converting
the as-dependence into a Q-one, one can expect that the non-perturbative corrections to
perturbation theory are of the size 1/Q4. More generally, diagrams with one chain of gluons
contribute as:

D(as) ∼
∑

n

n

(
αs

kb0

)n

=⇒ B (D) ≡ D̃(b) ∼ − kb0

b − kb0
, (29.25)

for b > kb0, which indicates that the pole at b = kb0 gives rise to an IR ambiguity:

δD(as) ∼ exp

(
−kb0

αs

)
∼

(
	2

−q2

)k

, (29.26)

if one tries to reconstruct D(as) from D̃(b) taken from perturbation theory. However, dif-
ferent prescriptions for defining D in perturbation theory for b > kb0 can be compensated
by the changes in the value of the non-perturbative condensates introduced via the SVZ

1 IR renormalons have been studied in the O(N ) non-linear σ model [374] and in QCD [376,377]. Here, we shall limit ourselves
to the QCD case.
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expansion, which one must add to perturbation theory in order to obtain a reliable result
[162,342].

The absence of a k = 1 singularity is related to the absence of any gauge invariant
operator of dimension 2. The absence of this singularity has been proved [331] from an
explicit calculation in the limit of large n f -number of flavours, where it has been shown
that the relation:

B (Im�) (b) ∼ sin (πb/b0)

(πb/b0)
D̃(b) , (29.27)

implies thatB (Im�) has only a zero at k = 1 but not the other alternative where D̃ has a pole
at this point, which follows from the simple factorization of the Q2 dependence in the Borel
transform of the D-function in the large β-limit. Then, one can conclude that no 1/Q2-
ambiguity can be generated by the IR renormalons and they are intimately connected to the
gauge invariant condensates in the SVZ-expansion. Restricting to the lowest IR renormalon
pole, one can derive the perturbative contribution to the gluon condensate [378]:

〈0|αs G2|0〉ren

24π Q4
=

∑
n large

3

2π

(
αs(Q2)

π

)n+1 (−β1

4

)n

. (29.28)

One should notice that renormalons are target-blind:

〈p|αs G2|p〉ren = 〈0|αs G2|0〉ren . (29.29)

They cannot also produce a non-vanishing quark condensate 〈q̄q〉 as they respect the
symmetries of the QCD Lagrangian, and cannot bring some insights on confinement due to
their ‘perturbative’ origin.

However, at the one-loop level, renormalons are not the only way to probe the IR regions
perturbatively. Another possibility is the introduction of the gluon mass λ [478] as a fit
parameter, while an IR perturbative contribution to the gluon condensate has been obtained
in [479]:

〈0|αs G2|0〉pert = 3αs

π2
λ4 ln λ2 . (29.30)

A similar result has been obtained in a QCD-like model [369,374], which is an alter-
native to the renormalon contribution for massless gluon. Phenomenology using gluon
mass has been developed [366], while in [162], a one-to-one correspondence between the
two approaches has been proposed. Keeping only IR-sensitive contributions, a one-loop
calculation with a gluon mass λ can be translated as:

C0αs ln λ2 + C1αs

√
λ2

Q
+ C2αs

λ2 ln λ2

Q2
+ · · · →

C ′
0αs ln 	2 + C ′

1αs
	

Q
+ C ′

2αs
	2

Q2
+ · · · . (29.31)

where Ci , C ′
i are coefficients.
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29.5 UV renormalons

The UV renormalon singularities correspond to k = −1, −2, . . . , and are generated by the
high-energy behaviour of the virtual momenta. They lead to a Borel-summable series thanks
to the asymptotic freedom property of the theory. After a Borel sum, they cannot limit the
applicability of perturbation theory [377,379], although they can induce an uncertainty in
the truncated perturbative series when the Borel sum is not done. Their contributions are
dominated by the leading singularity at k = −1:

Kn ∼ n!

(−b0)n , (29.32)

which gives rise to an asymptotic series:

|K1a| > |K2a2| · · · > KN−1aN−1 ∼ |KN aN | < |KN+1aN+1| < · · · , (29.33)

where the successive terms decrease like N ∼ b0/a, at which the minimum value is attained,
while the series explodes afterwards. The alternating sign of Kn guarantees that the series is
Borel summable. For a truncated series, the accuracy is limited by the size of the minimum
term:

4π2δD(a) ≡ |KN aN | ∼ N ! nN ∼
√

2π Ne−N ∼ exp(−b0/a) ∼ 	2/ − q2 , (29.34)

which indicates that the UV renormalon can contribute as 1/Q2 [161,162,297–300].
However, this result is subtraction-scale dependent [162], as a more careful analysis

shows that the ambiguity scales as:

A
√

αs(ν)

(
	2 Q2

µ4

)
, (29.35)

where A and 	 absorb this renormalization scheme (RS)-dependence, whilst µ is an arbi-
trary UV cut-off. However, it can be shown that the results obtained in the limit of infinite
numbers of flavours within the one-chain approximation, can be strongly affected by the
UV renormalon induced by the two-, three-, . . . chains of gluons [342,343], such that, it
is premature to deduce any reliable quantitative estimates from this approach. However,
some more optimistic authors have considered a more refined version of the one-chain of
gluons approximation, involving next-to-leading β functions and RS-invariant quantities.
The analysis indicates that the UV renormalon effect is much smaller [339,340] than naı̈vely
expected [344,331], and than that of the perturbative error based on the last calculated coef-
ficient term of the series (theorem of divergent series [337]) [338,323]. Taking into account
the different existing (qualitative) estimates of UV renormalon effects [331–340], one can
conclude that the estimate of the perturbative errors based on the last calculated term of the
QCD series [338,323] gives a reasonable or presumably an overestimate of the true error. It
is also clear that the UV renormalon contribution cannot be considered as a new source of
uncertainty, but it is of the same nature as the perturbative error. An independent extraction of
such a contribution is needed. The only available alternative attempt for doing this, is its phe-
nomenological extraction from the e+e− → I = 1 hadrons data [341,329](Section 52.10)],
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from QSSR. It has been noticed from the analysis of [329], that the obtained constraint is
strongly correlated to the value of the gluon condensate. Postulating that a new term of
dimension-two exists in the QCD series, the OPE is modified as:

D(Q2) = 1 +
(αs

π

)
+ · · · + d2

Q2
+ · · · (29.36)

one obtains [329]:

d2 ≈ (0.03 ∼ 0.05) GeV2 , (29.37)

if one uses the value of the gluon condensate 〈αs G2〉 � 0.08 GeV4. This term would induce
an effect of about 1% in the QCD expression of the τ -width [325], which is a negligible effect.

29.6 Some phenomenology in the large β-limit

The large β-limit corresponds to the case where one takes large numbers of quark flavours
and neglect the remainder terms of the β-function:

β1(n f → ∞) � n f /3 , (29.38)

and then corresponds to the abelianisation of QCD.

29.6.1 The D-function

In this limit the D-function can be expressed as:

D(Q2) = 1 +
(αs

π

) ∑
n=0

αn
s

[
dn

(
β1

2π

)n

+ δn

]
, (29.39)

where d0 = 1 and δ0 = 0. The coefficient dn comes from the bubble diagrams. Its Borel
transform reads:

B(D)(b) =
∑
n=0

dn

n!
bn = 32

3

(
Q2

ν2
eC

)−b
b

1 − (1 − b)2

∞∑
j=2

(−1) j j

( j2 − (1 − b)2)2
, (29.40)

where in the M S scheme C = −5/3. The UV renormalon poles at b = −1, −2, . . . are
double poles, while the IR renormalon poles at b = 3, 4, . . . are double poles and a single
pole at b = 2. It is informative to decompose the Borel transform into the sum of leading
poles:

B(D)(b) = e−5/3

[
4

9

1

(1 + u)2
+ 10

9

1

(1 + u)

]
+ e10/3 2

(2 − u)

e−10/3

[
− 2

9

1

(2 + u)2
− 1

2(2 + u)

]
+ · · · (29.41)



29 Renormalons 323

Working in the M S scheme, the ambiguity in summing the series can be quantified as
(see e.g. [154]):

δD(Q2)ren =
(

4

−β1

)
e10/3

π

	4

Q4
≈ 0.06 GeV4

Q4
. (29.42)

This effect is smaller than the non-perturbative gluon condensate contribution:

δD(Q2)cond � 2π

3

〈0|αs G2|0〉
Q4

� 0.14 GeV4

Q4
, (29.43)

where we have used the most recent QSSR determination [313,329]. This result is not
significant for raising doubts on the existence of the non-perturbative gluon condensate in
the SVZ expansion [1], although it can contribute to its perturbative component.

29.6.2 Semi-hadronic inclusive τ decays

Semi-hadronic tau decays have been discussed in details in BNP [325]. We shall be interested
here in its asymptotic perturbative expansion, which have been discussed by many authors
[331–345]. In the large β-function limit, one can write, the branching ratio [154]:

Rτ = 3(|Vud |2 + |Vus |2)

{
1 +

(αs

π

) ∑
n=0

αn
s

[
dτ

n

(
β1

2π

)n

+ δτ
n

]}
, (29.44)

where one can neglect the remainder δτ
n . The Borel transform is [154]:

B(Rτ )(b) = B(D)(b) sin(πb)

[
1

πb
+ 2

π (1 − b)
− 2

π (3 − b)
+ 1

π (4 − b)

]
, (29.45)

where the sinus attenuates all renormalon poles except those at b = 3, 4. The point b = 1 is
regular but will not be suppressed by a factor αs when one uses the Cauchy contour integral
for evaluating Rτ .

Taking the leading renormalon poles, one can approximately have:

B(Rτ )(b) � e−5/3 2

15(1 + u)
+ e−10/3 2

135(2 + u)
+ e5

[
8

3(3 − u)2
− 8

9(3 − u)

]
+ · · ·

(29.46)

Expressing the rate as in BNP:

Rτ = 3(|Vud |2 + |Vus |2)SEW [1 + δPT + δEW + δN P ] , (29.47)

one can compare the measured value of δPT with the one obtained from the large β-limit
prediction. One can notice that the value of αs(Mτ ) can reduce by 15% compared to the
one from the truncated series but this effect is smaller than one obtained by adding the α3

s

correction. Another point is that the error induced by the 	2/M2
τ term which arises when
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the series is truncated at the onset of UV renormalon divergence is numerically very small
due to the smallness of its coefficient. Therefore, the induced uncertainty is negligible in
the M S scheme.

29.7 Power corrections for jet shapes

The phenomenology of power corrections in jets and DIS has been developed [162,366],
while numerous experimental studies have been devoted for measuring these contributions
[480,481]. Renormalons are most useful in these frameworks as they can fix unambiguously
the power n of the corrections (	/Q)n . However, in order to find relations between various
corrections, models are still needed as one expects [342,162] that any number of renormalon
chains gives power corrections of the same order, and there is no way to evaluate all of them.
Some other reservations to be made in the renormalon approach are also the extrapolation
of the small QCD coupling expansion in the UV regime down to the IR domain where the
QCD coupling is of order one, and where, terms which dominate in the UV region do not
necessarily dominate in the IR region.

For definiteness, let us consider the thrust variable defined in the previous chapters
dedicated to jets:

T =max
n

∑
i |pi · n|∑

i |pi| , (29.48)

where p is the momenta of particles produced and n is a unit vector. From perturbation
theory T �= 1 due to the emission of gluons from quarks. The contribution due to a soft
gluon emission can be quantified as [162]:

〈1 − T 〉soft ∼
∫ 	

0

dω

ω

ω

Q
αs ∼ 	

Q
, (29.49)

where dω/ω is the standard factor for the gluon emission; ω/Q comes from the definition
of T while αs is of the order one. Alternatively, if one attributes to the gluon an intrinsic
invariant mass squared ζ Q2, and evaluate the thrust mean value, one obtains [366,154]:

〈1 − T 〉 = CF

(αs

π

)
[0.788 − k

√
ζ + · · · ] , (29.50)

where
√

ζ ∼ 	/Q, and its coefficient depends on the definition of thrust used (k = −7.32
with the previous definition, while it is 4 for the definition used in [366]). One can generalize
the previous result by using an universality picture. That can be done by keeping terms which
contributes perturbatively as αn

s lnk Q and extrapolating such terms in the IR region where,
however, they no longer dominate! In this way, the 1/Q correction can be expressed in
terms of the universal factor [162]:

Esoft =
∫

dk⊥γeik(αs(k2
⊥)) , (29.51)

where γeik is the so-called eikonal anomalous dimension, and the integral over the
Landau pole is understood as the principal value. In this way, on gets the different relations
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among the event-shape variables (see the definitions in the jet chapters from Eqs. (24.32)
to (24.37))[162]:

〈1 − T 〉1/Q = 2

3π
〈C〉1/Q

=
(〈

M2
h + M2

l

〉
Q2

)
1/Q

(29.52)

and: (〈
M2

h

〉
Q2

)
1/Q

≈
(〈

M2
l

〉
Q2

)
1/Q

. (29.53)

These relations are well verified experimentally [480]:

1

2
〈1 − T 〉1/Q = C

Q
(0.511 ± 0.009)

1

3π
〈C〉1/Q = C

Q
(0.482 ± 0.008)

2

(〈
M2

h

〉
Q2

)
1/Q

= C

Q
(0.616 ± 0.018) , (29.54)

where C is a constant.

29.8 Power corrections in deep inelastic scattering

Power corrections in deep inelastic scattering have been developed at the single renormalon
chain level [482], and an alternative derivation using Landau pole of the power corrections
has been given in [162].

29.8.1 Drell–Yan process

The inclusive cross-section can be expressed in terms of the moments:

∫
dτ τ n−1 dσ (Q2, τ )

d Q2
= Mn

[
1 + αsCλ

√
λ

2

Q

]
, (29.55)

where Q is the invariant mass of the lepton pair;
√

s is the invariant mass of the q̄q from
the initial hadrons h1,2 and τ = Q2/s; λ is the gluon mass. To one loop, one finds [154]:

Cλ = 0 for n · 	/
√

s � 1 . (29.56)

An understanding of this result from general arguments based on the inclusive nature of
momenta has been given in [162].
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29.8.2 Non-singlet proton structure functions F2

A systematic measurement of power corrections in DIS for the moments of the non-singlet
structure functions F2 has been performed [481]. The moments:

M(n)
2 (Q2) ≡

∫ 1

0
dx xn−2 F2(x, Q2) , (29.57)

have been parametrized as:

M(n)
2 (Q2) = M(n)

2,PT

(
1 + C (n)

2

τ 2

Q2
+ C (n)

4

λ4

Q4
· · ·

)
, (29.58)

where M(n)
2,PT is the perturbative QCD prediction. The n-dependence of the power cor-

rections has been included into C (n)
2,4. In the range of Q2 values from 5 to 260 GeV2, and

studying different figures, the analysis leads to a non-vanishing contribution:

τ 2 � (0.2 ± 0.1) GeV2 , (29.59)

if λ4 = 0 and (0.25 ± 0.2) GeV2 if λ4 �= 0. This result and the n-dependence agree with
the renormalon-based result [162].

29.8.3 Gross–Llewellyn Smith and polarized Bjorken sum rules

Power corrections to other DIS sum rules (Gross–Llewellyn Smith (GLS), polarized Bjorken
(PBj) sum rules) have been also analysed from the renormalon approach [331]. In the
large β-limit, one can approximately assume them to be the same because the perturbative
contributions differ only by light-by-light scattering starting at α3

s . Let’s remind ourselves
of the GLS sum rule given in Eq. (29.60):∫ 1

0

dx

x
[F ν̄ p

3 (x, Q2) + Fνp
3 (x, Q2)]

= 3
{
1 − as(Q2) − 3.58 a2

s (Q2) − 19.0 a3
s (Q2) + δGL S

}
, (29.60)

to which we add the power correction (twist-4) term δGL S . In the large β-limit, one obtains
in the M S scheme [154]:

δGL S � e5/3

(
− 16

9β1

)
	2

Q2
≈ 0.1 GeV2

Q2
, (29.61)

which is comparable in strength but differs in sign with the twist-4 QSSR estimate [483]
and fit using the CCFR data [249]:

δH T ≈ − (0.10 ± 0.05) GeV2

Q2
. (29.62)

However, an extraction of this power correction from the polarized Bjorken sum rule
[260] leads to an inaccurate value consistent with zero as given in Eq. (19.8).
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29.9 Power corrections to the heavy quark pole mass

We have defined in the chapter on perturbation theory the notion of pole mass, which is
defined at the pole of the propagator. We have seen that this definition is not renormalized
[141,147,133], independent of the regularization procedure [148] and free from IR singu-
larities [133]. However, when this mass is related to the short distance M S running mass,
one can notice its sensitivity to long distances. In the renormalon approach, this difference
is given by the self-energy diagram with one-gluon chain:

M(p2 = m̄2) = m̄(ν) + (−i)
∫

dnk

(2π )n
αs(ke−5/6)

γ µ( p̂ + k̂ + m)γµ

k2[(p − k)2 − m2]

∣∣∣∣
p2=m2

. (29.63)

It shows that for p2 = m2, the integral behaves for small k like d4k/k3, which implies
that the series gives an IR renormalon singularity at b = −π/β1. The asymptotic behaviour
of the series expansion reads [331,154]:

M(p2 = m̄2) = m̄(ν) + CF
e5/6

π
ν

∑
n

(−β1

π

)n

n!αn+1
s . (29.64)

Writing:

δm ≡ Mpole ≡ M(p2 = m̄2) − m̄(m̄) = m̄(m̄)
CF

4

(αs

π

) ∑
n=0

[dn(−β1/π )n + δn]αn+1
s ,

(29.65)

its Borel transform reads, in the large β-limit, [331]:

B[δm/m̄] =
(

m̄2

ν2

)−u

e5u/36(1 − u)
�(u)�(1 − 2u)

�(3 − u)
+ · · · , (29.66)

where · · · indicates subtraction terms which are rapidly convergent and give negligible
contributions to the coefficients dn for increasing n. Comparisons of the values of dn with the
available calculations [151,153] show that the asymptotic series reproduce approximately
the first two coefficients [331]. One can also notice that the series is rapidly dominated by
the IR renormalon contributions and the series start to diverge to order α3

s for the charm
quark mass, and to order α4

s for the bottom. An intuitive derivation of this IR effect can
be obtained from the Coulomb potential. In this way, the IR correction to the heavy quark
mass is [162]:

δm

m̄
= − 1

2m̄

∫
|�q|<µ

d3�q
(2π )3

V (�q) � −CFαs
µ

m̄
, (29.67)

where:

V (�q) = −4πCF
αs(�q)

�q2
. (29.68)
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It has also been noticed [158,159] that the IR singularity of the Borel transform for the pole
mass in Eq. (29.66) is cancelled by that of the potential [486,162]:

B[V (�r )] = −(4πCF )(ν2e−C )u
∫

d3�q
(2π )3

ei �q·�r

(�q2)1+u

= −CF

r
(ν2r2e−C )u �((1/2) + u)�((1/2) − u)

π�(1 + 2u)
. (29.69)

This leads to the proposal of a new mass definition that is less IR sensitive than the pole mass
in this approximation (see Section 11.13). In, for example, the derivations of the inclusive
B-decays using a 1/mb expansion, which behaves to leading order as m5

b, it has been noticed
that the use of the pole mass definition introduces an ambiguity of the order of 	/mb when
summing the series, which does not match with any non-perturbative parameters of the heavy
quark expansion. This problem does not appear when one expresses the width in terms of
the short distance M S-mass, where a cancellation of the leading divergence between that
of the width and of the relation between the pole and running mass occurs.
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Beyond the SVZ expansion

30.1 Tachyonic gluon mass

We have extensively discussed power corrections related to the IR regions, where the phys-
ical picture is simply the increase of the running coupling at large distance. Unconventional
1/Q2 corrections which go beyond this simple picture have been also analysed in the litera-
ture [161,162,342,341,329,344]. A lattice calculation of [487] shows that the 1/Q2 correc-
tion arises within a dispersive approach or from a removal of the Landau pole of the running
coupling [162,488]. We have sketched this point when presenting the UV renormalons in
the previous chapter. Following the presentation in [162], the leading UV renormalon gives
the series expansion:

F =
( ∑

n

anαs(Q2)

)
U V

=
∑

n

n!(−b0)nαn
s (Q2) . (30.1)

Using its Borel transform, one has the integral representation:

B[F] =
∫

dz exp(−z)
(αsb0z)N

1 + αsb0z
, (30.2)

where N = 1/b0αs is the value of n for which the absolute value of the terms reaches its
minimum. The integral is of the form:

(
anα

n
s (Q2)

)
n=N

� 1

2

�2

Q2
, (30.3)

where one can notice that the correction comes from the large virtual momenta p2 ∼
Q2 exp(N ), which is very different with the case of IR renormalon. However, in a theory
such as lattice, which possesses an intrinsic UV cut-off, this effect can be irrelevant. There-
fore, the alternative dispersive approach of the coupling can be used. The coupling can be
parametrized as:

1

ln Q2/�2
→ 1

ln Q2/�2
− �2

Q2 − �2
. (30.4)

This modification can be justified if one argues that at finite order of perturbation theory
the coupling satisfies dispersion relations with cuts at physical s > 0. More explicitly, one

329
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has:
∑

n

anαs(Q2) →
∑

n

anαs(Q2) −
∑

n

ann!bn
0
�2

Q2
. (30.5)

In the case:

an = n!(−b0)n , (30.6)

the power correction in the second term is still poorly defined. Taking its Borel transform,
one obtains: (∑

n

(−1)n �2

Q2

)
Borel

= 1

2

�2

Q2
, (30.7)

showing that the power corrections from the procedures in Eqs (30.2) and (30.5) are the
same, which may indicate that the Borel summation of the UV renormalon series and the
removal of the Landau pole from dispersion relation can be intimately connected.

Another issue is the short distance (r � �) modification of the QCD potential, which
becomes (k is the string tension):

lim
r→0

V (r ) = −CF
αs(r )

r
+ kr , (30.8)

while in standard QCD, the leading power correction at short distance is r2. This leads to
the introduction of new small-size non-perturbative corrections and of a new picture of the
QCD vacuum. In [161] one discusses this modification of the standard picture in terms of the
phenomenology of the tachyonic gluon mass which is assumed to mimic the short-distance
non-perturbative effects of QCD. We have seen previously that the 1/Q2 corrections to DIS
can be explained from the IR region and is consistent with the OPE. In this picture, the
constant term of the linear correction can be expressed as [162]:

k ≈ −4

6
αsλ

2 , (30.9)

where λ2 < 0 is the tachyonic gluon mass. In this framework, the standard picture of the
OPE within the SVZ expansion gets modified due to the presence of the new 1/Q2 term. A
systematic evaluation of this contribution using Feynman diagrams has been developed in
CNZ. For the current–current two-point functions, it corresponds, to lowest order in αs , to
the evaluation of the diagram in Fig. 30.1.

. . .+

Fig. 30.1. Lowest order diagram contributing to 1/Q2. The cross in the gluon propagator corresponds
to the tachyonic gluon mass insertion λ2.
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The value of the tachyonic gluon mass has been extracted phenomenologically using
previous analysis in [341,329] from e+e− data. Analyses of some other channels by CNZ
have confirmed such findings. The pion and ρ meson channels give the intersection range:

(αs/π )λ2 � −(0.06 ∼ 0.07) GeV2 , or λ2(1.25GeV2) ≈ −(0.34 ∼ 0.52) GeV2 ,

(30.10)
leading to the value of the string tension:

√
k � (369 ± 14) MeV , (30.11)

in agreement with the lattice results. The consequences of this result in some paradoxical
QCD spectral sum rules channels have been also studied by CNZ, and lead to a resolution
of different puzzles for the sum rule scales. One finds, for instance, for these scales:

M2
π � 4M2

ρ , (30.12)

in agreement with the expectations of [382]. Analogous expectations in the gluonium chan-
nel has been also recovered. However, this change in the scale does not affect the predictions
on the QCD parameters from the sum rules (quark mass, . . . ).

30.2 Instantons

Instanton–anti-instanton singularities occur for b = 4π in the positive real axis [375]. They
occur because far-separated instanton–anti-instanton pairs cannot be properly treated in a
perturbative expansion around αs = 0. Due to graph counting rules, perturbation theory has
a singularity at b = 4π , such that perturbation theory alone cannot give an unambiguous
answer to the Borel integral for b > 4π . However, the singularity at b = 4π in perturbation
theory should also appear in the valley method for instanton-anti-instanton pairs. In addition,
a proper definition of D̃(b) for b > 4π , including non-perturbative and non-analytic terms
in b should also emerge from the valley method.

In QCD, one expects an important rôle of the instantons due to the topologically non-
trivial fluctuations of the gauge fields [381,264], where they are expected to explain the
large mass of the η′ compared with the usual pseudoscalar mesons [262–264].

30.2.1 ’t Hooft instanton solution

For a pedagogical introduction, let us start from the example of the Riemann integral (see
e.g. [51]):

I =
∫ +∞

−∞
F(x)e−λ(x)dx , (30.13)

where λ(x) is some positive-definite functions. If λ(x) has a minimum at the position x0,
one can approximate this function by:

λ(x) � λ0 + λ′′

2
(x − x0)2 + · · · , (30.14)
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and obtain:

I � F(x0)e−λ0

√
2π

λ′′ . (30.15)

If instead, λ(x) has several minimas λ0,i at positions x0,i , one can approximately
write:

I �
∑

i

F(x0,i )e
−λ0,i

√
2π

λ′′
i

. (30.16)

A similar procedure can be done in the evaluation of a functional integral. If the action
S[�] has a minimum for a field �0(x), then this field gives a classical contribution to the
functional integral analogously to Eq. (30.15):∫

F[�]D� ∼ F[�0]e−S[�0] , (30.17)

where corrections to this result are quantum corrections. If the field �0(x) leads to a min-
imum of the action S[�], it is a solution of the Euler–Lagrange equations for that action.
Hence solutions of the classical equations of motion lead to classical contributions to the
functional integral in Eq. (30.17). There exist classical solutions of pure SU (2) Yang–Mills
theory which can be embedded in any SU (N ) gauge theory, which are called instantons.
The ’t Hooft instanton solution of the Yang–Mills equation is [264]:

Ga
µν = 4ηa

µνρ
2

g[(x − x0)2 + ρ2]2 , (30.18)

where x0 is the instanton position and ηa
µν is the t’Hooft anti-symmetric symbol with the

properties:

ηa
µν = εa

µν for µ, ν = 1, 2, 3

ηa
4ν = −δa

ν

ηa
4µ = δa

µ

ηa
44 = 0 , (30.19)

where εi jk is the totally anti-symmetric tensor in three-dimensions, while a = 1, 2, 3 for
the (subgroup) SU (2). The anti-instanton solution is obtained by replacing ηa

µν by its
dual:

η̃a
µν = (−1)δµ4+δν4ηa

µν . (30.20)

In Euclidian space–time, these solutions would correspond to particles of size ρ at a position
x0, while in Minkowskian space–time, the solutions are not particles but can be considered
as contributions to the tunnelling between different vacua. The action corresponding to the
solution in Eq. (30.18), is easily obtained:

S[Ga]cl = − 1

4g

∫
d4x Ga

µνGµν
a = 8π2

g2
. (30.21)
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The instanton fields are self-dual:

G̃a
µν = 1

2
εµναβGa

αβ = Ga
µν . (30.22)

The action of a self-dual field configuration is determined by its topological charge defined
as:

Q =
∫

d4x

(
g2

32π2

)
Ga

µν G̃µν
a , (30.23)

where an instanton has topological charge +1, and an anti-instanton −1. According to
Eq. (30.17), the contribution of a single instanton to the vacuum expectation value of the
functional F[G] of Ga

µν is:

F[G]e−S[G] = F[G]e
− 8π2

g2 . (30.24)

From Eqs. (30.21) and (30.24), one can deduce that instantons give genuine non-perturbative
contributions, since the exponential cannot be expanded in a convergent power series of g
and its asymptotic expansion in g is identically zero.

30.2.2 Instanton phenomenology

Qualitative estimates of the instanton effects based on the dilute gas approximation have
been done in the literature [382–385], while an instanton liquid model has also been pro-
posed [386]. However, the results obtained in these papers, for example, for the pseudoscalar
quark currents are controversial, which come mainly from the uncontrolled use of the chiral
symmetry-breaking parameters entering the analysis. Indeed, one does not know exactly if
one should use the light quark current masses or the quark condensate. Moreover, the effects
depend also crucially on the size of the instanton, whose value is very inaccurate. In practice,
in this model, the instantons contribute as operators of dimension larger or equal than 9–11.
For Q2 ≥ 1 GeV2, no appreciable evidence of these effects has been detected in the phe-
nomenological analysis, (even in the pseudoscalar channel, where one often claims that the
effects are important!), as we shall see later on. A quantitative estimate of these effects from
e+e− → I = 1 hadrons data indeed shows that they are small [387,329], as expected from
[385]. A program for measuring instanton induced hard scattering processes at HERA has
been proposed [388]. In DIS, one expects to probe small-size instantons, which, in princi-
ple, are calculable, where the cross-section behaves as the square of the instanton density
D ∼ e− 2π

αs times a function F(ε = √
s/Q′) of the total energy over the invariant mass of

the particle produced:

σ ∼ e− 4π
αs

F(ε) . (30.25)

30.2.3 Dilute gas approximation

In principle, the superposition of two instanton solutions will not be a solution of the
Euler–Lagrange equations, due to the non-linearity of these equations for a non-Abelian
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gauge theory. If one considers two far-away solutions, the superposition should be a good
approximation for two instanton solutions (topological charge 2). In the dilute gas instanton
approximation (DIGA), the instanton contribution can be estimated very roughly [382]. In
so doing, one starts from the dilute gas density:

d(ρ) ≈ C

(
2π

αs(ρ)

)6

exp

( −2π

αs(ρ)

)
: C ≈ 0.06 for QCD , (30.26)

where ρ is the instanton radius. Using the previous t’Hooft instanton solution of the Yang–
Mills equation the gluon condensates of 2n dimensions can be represented as:

〈O2n〉 ≡ 〈 (
gGa

µν

)
1
· · · (gGa

µν

)
n

〉 =
∫ ρc

0
dρ

d(ρ)

ρ2n+1
, (30.27)

where ρc is the critical cut-off size of the instanton. By introducing the approximate
relation:

2π

αs(ρ)
≈ 2π

αs(ρc)
+ 11 log(ρc/ρ) , (30.28)

one obtains:

〈O2n〉 ≈ 1

(11 − 2n)

1

ρ2n
c

(
2π

αs(ρc)

)6

exp

(
− 2π

αs(ρc)

)

×
6∑

k=0

6!

(6 − k)!

(
11

2(11 − 2n)
αs(ρc)

)k

, (30.29)

indicating that, for condensates of a critical dimension:

2n = 11 , (30.30)

one has a phase transition which separates the large-size instantons (2n ≤ 11), that is, ordi-
nary low-dimension condensates, with the small-size instanton (instanton–anti-instanton or
one-instanton) effects. As emphasized in the previous derivation, the small-size instanton
is very sensitive to the value of the instanton radius ρc, which renders (among many other
unknown) uncertain the quantitative estimate of its effect. Some other reasons, as we shall
see below are the inconsistency of the size and distance between instanton ensembles. For
these different reasons, the estimate based on DIGA should only be considered at the qual-
itative level. Using the general expression in Eq. (30.29) for estimating, the contribution of
the instanton to the NP gluon condensate 〈g2G2〉, and using the value of αs(ρc) ≈ 1, one
can deduce:

〈
g2G2

〉1/4
inst ≥ 4

ρc
. (30.31)

Using the previous expression of the topological charge and the self-duality relation, one
obtains for nd dilute instantons in a volume V greater than the instanton size, the instanton
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density:1

n0 ≡ nd

V
= 1

V

∫
V

Q(x)d4x = 1

32π2
〈g2G2〉inst . (30.32)

Therefore the average distance dI between two instantons is:

dI ≡ n−1/4
0 =

(
32π2

2〈g2G2〉inst

)1/4

. (30.33)

These two equations give the ratio:

dI

ρc
≤ 0.7 , (30.34)

which is smaller than 1. It may indicate that the dilute gas approximation is inconsistent, or it
can indicate that higher unknown perturbative corrections or non-perturbative contributions
(multi-instantons) to the classical result are important. Alternatively, one can integrate the
tunnelling rate in order to get the phenomenological value of the instanton density [389]:

nphen =
∫ ρc

0
dρ n0(ρ) , (30.35)

which for nphen = 1 fm−4, gives ρc = 1 fm using the SVZ value of the gluon condensate,
which is rather pessimistic.2

30.2.4 The instanton liquid model

A more promising picture is the instanton liquid model [386,390]. The non-perturbative
contribution to the instanton density defined previously can be estimated from the gluon
condensate. The interaction of an instanton with an arbitrary external field Ga

µν is:

Sint = 2π2ρ2

g2
η̄a

µνU abGb
µν , (30.36)

which is a dipole interaction, and then does not contribute to the average action to first order.
U is an unitary matrix describing the orientation of the instanton in colour space. One can
deduce [391]:

n(ρ) = n0(ρ)

[
1 + π4ρ4

2g4
〈G2〉 + · · ·

]
, (30.37)

which has been exponentiated by [392]. In this way, and using nphen = 1 fm, one obtains
using the SVZ value of the condensate:

ρc = 1/3 fm , (30.38)

1 In the classical field approach, the quantity below has no g2 factor.
2 However, the SVZ value of the gluon condensate has been underestimated by a factor of about 2 [329,313] such that the value

of ρc becomes 0.5 fm which leads to a more optimistic situation.
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which is rather small. This result gives a different picture of the QCD vacuum. The instanton
size being smaller than the separation between instantons implies that the vacuum is dilute.
Also, the field inside the instanton is very strong:

Gµν � �2 , (30.39)

implying that the semi-classical approximation is valid. The action is large:

S = 8π2/g2 ∼ 10 − 15 � 1 . (30.40)

Also, instantons retain their individuality and are not destroyed by interactions:

δSint � S0 , (30.41)

while interactions are important for the structure of the instanton ensemble:

(exp |δSint| ∼ 20 � 1) . (30.42)

The phenomenology of the instanton liquid model has been published in [386], which
readers can consult for more details.

30.3 Lattice measurements of power corrections

Recent lattice measurements of the V ± A and (pseudo)scalar (S, P) two-point correlators
have been done in [393] in the x-space and have been compared with different models of
power corrections (SVZ, ILM). Using the expressions of the correlators in the momentum
space given in the previous section, and using the Fourier transform formulae in Table G.1
from [394] given in Appendix G, the different QCD expressions of the V + A and S + P
correlators of interest here3 in the x-space normalized to the perturbative contributions are
[394]:


V +A


V +A
pert

→ 1 − αs

4π
λ2 · x2 − π

48

〈
αs

(
Ga

µν

)2〉
x4 ln x2 + 2π3

81
αs〈q̄q〉2x6 ln x2 , (30.43)

where we adopt the convention ln x2 < 0. We have added to the usual SVZ-expansion the
quadratic x2 correction from [161]. In the V − A channel, the usual SVZ expansion works
quite well but for a small radius of convergence. In the V + A channel, the SVZ-expansion
as well as the ILM describe quite well the quantity Q2
(Q2), which is expected not to have
a 1/Q2-term [161]:

Q2 · 
V +A

Q2 · 
V +A
pert

→ 1 − π

96

〈
αs

(
Ga

µν

)2〉
x4 + 2π3

81
αs〈q̄q〉2x6 ln x2. (30.44)

This is to be contrasted to the case of 
(Q2), which needs also to be measured on the
lattice, in order to test the existence of the 1/Q2 in the V + A channel. However, the channel

3 Some other correlators in the x-space are given in Chapter 39.
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Table 30.1. Different parameters used in the
analysis of the S + P data in units of GeVd (d is

the dimension of the operator)

Sources 〈αs G2〉 αs〈ψ̄ψ〉2 (αs/π )λ2

SET 1 (SVZ) [1] 0.04 0.256 0
SET 2 [313,329] 0.07 5.8 × 10−4 0
SET 3 [313,329,161] 0.07 5.8 × 10−4 −0.12

SET 2

SVZ

[        ]

R
P

S

Fig. 30.2. S + P channel: comparison of the lattice data from [393] with the OPE predictions for the
two sets of QCD condensate values given in Table 30.1 . The dot-dashed curve is the prediction for
SET 3 where the contribution of the x2-term has been added to SET 2. The bold dashed curve is SET
3 + a fitted value of the D = 8 condensate contributions. The diamond curve is the prediction from
the instanton liquid model of [386].

which is crucial for the present analysis is the (S + P) one. In this channel:

RP+S ≡ 1

2

(

P


P
pert

+ 
S


S
pert

)

→ 1 − αs

2π
λ2x2 + π

96

〈
αs

(
Ga

µν

)2〉
x4 + 4π3

81
αs〈q̄q〉2x6 ln x2 . (30.45)

As shown in Fig. 30.2, neither the SVZ-expansion nor the ILM can describe the lattice
data, where we have used the sets of condensate values given in Table 30.1.

If such data are confirmed, it may indicate a strong evidence of the quadratic 1/Q2 power
correction. We can see in Fig. 30.2, that for large x , the data is better fitted by including
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[        ]

R
V

A

Fig. 30.3. V + A channel: comparison of the lattice data from [393] with the OPE predictions for the
SET 3 QCD condensates values given in Table 30.1 including a fitted value of the D = 8 contributions.
The diamond curve is the prediction from the instanton liquid model of [386].

both the 1/Q2 correction and a D = 8 dimension condensates where the latter differ notably
from the vacuum saturation estimate, with the size:

C8O8 � +
( x

0.58

)8
, (30.46)

compared with the one from a modified vacuum saturation [399,411]:

C8O8|fac � + 3395

30855168
〈αs G2〉2x8 ≈

( x

1.2

)8
. (30.47)

For completeness we also show in Fig. 30.3, a fit of the V + A channel including the
D = 8 condensate contributions. One can notice that like in the case of the S + P channel,
the value of the D = 8 condensates differs notably from the vacuum saturation estimate. It
reads:

C8O8 � +
( x

0.7

)8
, (30.48)

compared with the one from a modified vacuum saturation [399,411]:

C8O8|fac � + 2

3428352
〈αs G2〉2x8 ≈

( x

2.5

)8
. (30.49)

One can conclude from the lattice measurement of the S + P correlators that, if the
data have to be explained by power corrrections, it can only be done by the presence
of λ2 quadratic corrections at moderate distance (less than 0.5 fm). For larger distances,
one needs to add the contributions of higher eight-dimension condensates. It has been
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argued [395] that the λ2 correction can be better understood within the effective Higgs-like
theories which are common within the monopole mechanism of confinement, where, in the
presence of a magnetically charged (effective) scalar field, the symmetry of the theory is
SU (3)colour × U (1)magnetic. Upon the spontaneous breaking of the magnetic U (1) the gauge
boson acquires a non-vanishing mass and its mass squared is the only parameter of dimension
d = 2 consistent with the symmetry. Moreover, in exchanges between (colour) charged
particles the gauge-boson mass appears to be the tachyonic mass as was demonstrated on
the U (1) example in [396,397]. Detailed analysis of various power corrections within the
Higgs-like models can be found in [396–398]. Moreover, if the monopole size is indeed as
small as indicated above, then the effective Higgs-like theories can apply at all distances
∼ (0.1 ÷ 0.5) fm.





Part VIII
QCD two-point functions





31

References guide to original works

In this chapter, we give a compilation of the different Wilson coefficients, as applications
of the discussions in the previous chapter.1 In order to minimize the missprint errors in
the transcription of the formulae, we have used as much as possible the transfer of the
formulae from the original files. These QCD two-point functions are useful for further uses
in high-energy physics processes (e+e− → hadrons total cross-section, Higgs decays, . . .),
and not only for the QCD spectral sum rules analysis.

31.1 Electromagnetic current

� Historically, the electromagnetic spectral function has been obtained to order α in QED [318,319].
� In the massless quark limit, the order α2

s correction has been obtained by [317], while the order
α3

s terms have been computed in [321]. The order α4
s terms have been estimated [178] using the

principle of minimal sensitivity (PMS) [176] and effective charge (ECH) approaches [177], or using
τ decay data [332]. The order α4

s n2
f has been computed recently in [438].

� The non-perturbative corrections were orginally obtained by SVZ [1]. Radiative corrections to the
non-perturbative quark condensate have been calculated for the first time in [439].

� This observable is the most accurate quantity known in QCD today.

31.2 (Pseudo)scalar and (axial-)vector currents

� The results for the bilinear (pseudo)scalar and (axial)-vector quark correlators come essentially
from [325,399,440,441,444].

� The αs correction to the massless pseudoscalar correlator as well as the non-perturbative corrections
were computed for the first time in [167]. The α2

s term has been obtained in [445]. The α3
s correction

has been obtained in [446].

31.3 Quark mass corrections to the (pseudo)scalar and (axial)-vector
quark correlators

� Quark mass corrections to the quark current–current correlators have been calculated to higher
orders in [325,399,440,441], where it has been emphasized that the perturbative terms resulting
from the relation between the normal and non-normal ordered quark condensates are essential for
removing the mass logarithms singularities.

1 This list of references might not be complete but only representative.
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� The complete αs correction to the massive (pseudo)scalar and (axial-)vector correlator has been
evaluated in [399], while the α2

s corrections come from [448,449].

31.4 Tachyonic gluon corrections to the (pseudo)scalar and (axial)-vector
quark correlators

� Dimension two contributions due to tachyonic gluon mass have been obtained for the first time
in [161].

31.5 Tensor quark correlators

� The correlator associated to the quark tensor current has been evaluated in [357,451]. It has been
revised and corrected in [452].

31.6 Baryonic correlators

� Radiative corrections and non-perturbative effects to the light baryonic correlators have been
calculated in [424–430].

� Correlators of heavy baryons have been evaluated in [453,454].

31.7 Four-quark correlators

� The two-point correlator associated to the four-quark current has been evaluated in [465,466] for
analysing the four-quark states.

� Analogous correlators have been evaluated for the study of the �S = 2 [467,468] and �I = 1/2
kaon weak decays [469,470]. These results have been revised in [471].

� Similar correlators for the analysis of the B̄ B mixing have been obtained in [472] to lowest order
and including non-perturbative corrections. Radiative corrections including non-factorizable ones
have been evaluated in [473]. SU (3) breaking corrections are given in [474].

31.8 Gluonia correlators

� Radiative perturbative corrections to the bilinear gluonic correlators have been computed in [455],
while the non-perturbative terms have been obtained in [382,456].

� The two-point correlator associated to three-gluonic current including non-perturbative corrections
has been computed in [457].

� The off-diagonal quark-gluon two-point correlators have been calculated in [458,450,457].

31.9 Hybrid correlators

� The two-point correlator associated to the hybrid massless quark and gluonic current has been
calculated in [459,460], where the final correct expression is given in [461]. The contribution of the
tachyonic gluon acting as a new operator of dimension two has been obtained in [462].

� Two-point correlator associated to the heavy hybrid meson have been calculated in [463]. The
contribution of the tachyonic gluon has been obtained in [464].
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(Pseudo)scalar correlators

We shall be concerned with the two-point correlators:

�5(q2)i
j ≡ i

∫
d4x eiqx 〈0|T ∂µ Aµ(x) j

i

(
∂ν Aν(0) j

i

)†|0〉 ,

�(q2)i
j ≡ i

∫
d4x eiqx 〈0|T ∂µV µ(x) j

i

(
∂νV ν(0) j

i

)†|0〉 , (32.1)

associated to the pseudoscalar and scalar currents:

∂µ Aµ

i j = (mi + m j )ψ̄ i (iγ5) ψ j

∂µV µ

i j = (mi − m j )ψ̄ i (i)ψ j (32.2)

Here the indices i, j correspond to the light quark flavours u, d, s; mi is the mass of
the quark i . It will be convenient to introduce the notation:

m± = mi ± m j . (32.3)

The result of the scalar current can be deduced from the one of the pseudoscalar by the
change m j into −m j or, equivalently, by the change m+ into m− and vice-versa.

32.1 Exact two-loop perturbative expression in the M S scheme

The complete two-loop result for the pseudoscalar correlator, using the M S renormalized
mass is:

�5(q2)i
j = 3

8π2
(mi + m j )

2

[
(q2 − (mi − m j )

2)

[
K +

(αs

π

) L

3

]
+ M +

(αs

π

) N

3

]
,

(32.4)

with:

K ≡ 1 + 1

2
li + 1

2
(1 + xi ) fi + (i ←→ j) ,

L ≡ 3K 2 + 2K + 6 − 2E I − 10xi f 2
i

+ mi
[

(3K − 2) ∂K/∂mi − 2
(
E + m2

j

)
∂ I/∂mi

] + (i ←→ j) ,

M ≡ −m2
i (1 + li ) + (i ←→ j) ,
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N ≡ −1

8
q2(12K 2 − 4K + 5) + 3m2

i (1 + fi )(1 + x j f j )

− 2m2
i

(
5 + 5li + 3l2

i

) + (i ←→ j) ,

I ≡ [F(xi ) + F(x j ) − F(xi x j ) − F(1)]/q2,

E ≡ 1

2

(
m2

i + m2
j − q2

)
,

li ≡ log
(
ν2/m2

i

)
, fi ≡ log xi

(1 − xi )
,

xi, j ≡ m2
i, j/{E + E[1 − (mi m j/E)2]1/2} ,

F(x) ≡
∫ x

o
dy

(
log y

1 − y

)2

log

(
x

y

)
=

∞∑
n=1

[(2 − n log x)2 + 2]xn/n3 . (32.5)

This expression reproduces the massless result given previously in Section 11.14. The
use of these results at q = 0 lead to the two-loop expression given in Eq. (27.14).

32.2 Three-loop expressions in the chiral limit

To order α2
s , the correlator reads:1

(16π2)�5(q2)

= −q2m2
+

[ [
−12 − 6 ln

ν2

−q2

]

+
(αs

π

) [
−131

2
+ 24 ζ (3) − 34 ln

µ2

Q2
− 6 ln2 µ2

Q2

]

+
(αs

π

)2
[
−17645

24
+ 353 ζ (3) + 3

2
ζ (4) − 50 ζ (5)

+ 511

18
n f − 8 ζ (3) n f − 10801

24
ln

ν2

−q2
+ 117 ζ (3) ln

ν2

−q2

+ 65

4
n f ln

ν2

−q2
− 4 ζ (3) n f ln

ν2

−q2
− 106 ln2 ν2

−q2
+ 11

3
n f ln2 ν2

−q2

− 19

2
ln3 ν2

−q2
+ 1

3
n f ln3 ν2

−q2

] ]
. (32.6)

The same equation with n f = 3 reads:

(16π2)�5(q2)

= −q2m2
+

[ [
−12 − 6 ln

ν2

−q2

]

+
(αs

π

) [
−131

2
+ 24 ζ (3) − 34 ln

ν2

−q2
− 6 ln2 ν2

−q2

]

1 From now, we shall omit the indices i and j on �5(q2)i
j .
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+
(αs

π

)2
[
−15601

24
+ 329 ζ (3) + 3

2
ζ (4) − 50 ζ (5) − 9631

24
ln

ν2

−q2

+ 105 ζ (3) ln
ν2

−q2
− 95 ln2 ν2

−q2
− 17

2
ln3 ν2

−q2

] ]
. (32.7)

32.3 Dimension-two

For a practical application, one should substract the mass singularities with the help of
the Ward identity in Eqs. (2.17) and (27.14) and by working with the non-normal ordered
condensate. To next-to-leading order in the quark mass terms, the IR stable result is:

�±(q2)|(D=2) = 3

8π2
(mi + m j )

2
[
A
(
m2

i ± m2
j

) ∓ Bmi m j
]
, (32.8)

where:

A ≡ 2l − 2 + CF

(αs

π

) [
−3l2 + 8l − 25

2
+ 6ζ (3)

]
,

B ≡ 2l − 4 + CF

(αs

π

)
[−3l2 + 14l − 22 + 6ζ (3)] , (32.9)

with: CF = (N 2 − 1)/(2N ) and l = log (−q2/ν2); �+ and �− are the pseudoscalar and
scalar correlators.

32.4 Dimension-four

In terms of the non-normal ordered quark condensate, where the m4 log m2 terms have been
absorbed, one obtains:

�±(q2)
∣∣(D=4)
m4 = 3

8π2
(mi ± m j )

2 1

−2q2

[
m4

i + 4m2
i m2

j + m4
j

+ 2
(
m4

i ∓ 2m3
i m j ∓ 2m3

j mi + m4
j

)
l
]
. (32.10)

To lowest order in αs and to all orders in the quark mass, the normal ordered quark
condensate contribution reads:

�±(q2)
∣∣(D=4)
ψ

= −(mi ± m j )
2

[
〈 : ψ̄ iψi : 〉

2mi

[
1 − q2

±
q2 − m2

i − m2
j

f (zi )

]
+ (i ←→ j)

]
,

(32.11)

where:

f (zi ) = 1

2zi
[1 −

√
1 − 4zi ] ,

zi ≡ m2
i q2

(
q2 − m2

j + m2
i

)2 ,
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q± ≡ q2 − (mi ± m j )
2 ,

u ≡
√

1 − 4mi m j

q2−
. (32.12)

To order αs and to leading order in the quark mass, one obtains:

�±(q20
∣∣(D=4)
ψ

= (mi ± m j )2

−q2

[
1

2

[
1 + CF

(αs

π

) (
−3

2
l + 11

4

) ]
〈mi ψ̄ iψi + m j ψ̄ jψ j 〉

∓
[

1 + CF

(αs

π

) (
−3

2
l + 7

2

) ]
〈m j ψ̄ iψi + mi ψ̄ jψ j 〉

]
, (32.13)

To all orders in the quark mass, one obtains the contribution of the normal ordered gluon
condensates:

�±(q2)
∣∣(D=4)
G

= −(mi ± m j )
2 1

48π
〈 : αs GG : 〉

×
[

q2

q4±

[
3(3 + u2)(1 − u2)

2u3
log

u + 1

u − 1
− 3u4 + 4u2 + 9

u2(1 − u2)

]
± 4

mi m j

]
,

(32.14)

where the expression of the scalar correlator can be deduced from the former by the ad-
ditional change of u into 1/u. The previous expression still contains mass singularities.
The introduction of non-normal ordered condensates as given in Eq. (27.17) leads to a
cancellation of these terms. One obtains the IR stable result:

�±(q2)
∣∣(D=4)
G = (mi ± m j )

2 1

−q2

1

8π
〈αs GG〉

×
[

1 + 2

3

m2
i + m2

j

q2
± 2mi m j

q2
(3 − 2l)

]
, (32.15)

where the mass-logs have cancelled.

32.5 Dimension-five

To all order in the quark mass, the contribution of the normal ordered mixed quark-gluon
condensate reads:

�±(q2)
∣∣(D=5)
mix = −(mi ± m j )

2〈 : ψ̄ i Gψi : 〉 1

2m3
i q2±

[
q2 − m2

j ∓ mi m j

−
[(

q2 − m2
j

)2 ∓ mi m j
(
q2 − m2

j + m2
i

) − m2
i m2

j

]
q2 − m2

j − m2
i

f (zi )

]

+ (i ←→ j) . (32.16)
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The leading contribution of the non-normal ordered condensate is:

�±(q2)
∣∣(D=6)
mix = ∓ (mi ± m j )2

2q2
g〈mi ψ̄ j Gψ j + m j ψ̄ i Gψi 〉 . (32.17)

32.6 Dimension-six

The leading contributions are:

�±(q2)
∣∣(D=6)
4ψ

= (mi ± m j )2

q4
παs

[
∓ 4〈ψ̄ iσµνTAψ j ψ̄ jσµνTAψi 〉

+ 4

3

〈
9ψ̄ iγµTAψi + ψ̄ jγµTAψ j )

∑
u,d,s

ψ̄kγ
µT Aψk

〉]
. (32.18)

Using the vacuum saturation-like parametrization, one can write:

�±(q2)
∣∣(D=6)
4ψ

= − (mi ± m j )2

q4

(
4CF

3N

)
παs[〈ψ̄ iψi 〉2 + 〈ψ̄ jψ j 〉2 ∓ 9〈ψ̄ iψi 〉〈ψ̄ jψ j 〉] .

(32.19)

32.7 Exact two-loop expression of the spectral function

The complete two-loop pseudoscalar spectral function expressed in terms of the pole mass
reads:

1

π
Im�5(t) = 3

8π2
(mi + m j )

2 q̄4

t
v

[
1 + 4

3

(αs

π

) [
3

8
(7 − v2)

+
∑

i

(v + v−1) [Li2(αiα j ) − Li2(αi ) − log αi log βi ]

+ Ai log αi + Bi log βi

]
+ O(

α2
s

)]
, (32.20)

where:

Li2(x) = −
∫ x

0

dx

x
log(1 − x) ,

Ai = 3

4

(
3mi + m j

mi + m j

)
− 19 + 2v2 + 3v4

32v
− mi (mi − m j )

q̄2v(1 + v)

(
1 + v + 2v

1 + αi

)
,

Bi = 2 + 2

(
m2

i − m2
j

)
q̄2v

,

αi = mi

m j

1 − v

1 + v
,

βi = (1 + v)2

4v

√
1 + αi , (32.21)
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with:

q̄2 ≡ t − (mi − m j )
2 ,

v ≡
√

1 − 4mi m j

q̄2
, (32.22)

while A j , α j , B j and β j can be obtained by interchanging the label i and j . The spectral
function of the scalar current ∂µ

(
ψ̄ iγµψ j

)
can be obtained from the former by changing

the sign of m j . For mi = 0, one has Ai = 0 and βi = 1, which guarantee the absence of
mass singularities. In this case, the expression simplifies and reads (m ≡ mi ):

1

π
Im�5(t) = 3

8π2
x(1 − x)2t2

[
1 + 4

3

(αs

π

) [
9

4
+ Li2(x)

+ log x log (1 − x) − 3

2
log

(
1

x
− 1

)
− log (1 − x)

+ x log

(
1

x
− 1

)
− x

1 − x
log x

]]
θ (t − m2) , (32.23)

where x ≡ m2/t .
The order α2

s corrections to the (pseudo)scalar spectral function has been also obtained
recently for massive quarks [448] where the result is available in a Mathematica package
Rvs.m from the url: http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp00/ttp00-25.

32.8 Heavy-light correlator

We have given in the previous section the expression of the spectral function when one of
the quark mass goes to zero. In the following, we give useful lowest order expressions in αs

when m ≡ mi � M ≡ m j for the (pseudo)scalar current. In taking the small mass m limit,
different cares have been taken in order to have IR stable results. Expressing the correlator as:

�± = (m ± M)2
[
�

pert
± + �

ψ̄ψ
± 〈ψ̄ψ〉 + �

Q̄ Q
± 〈Q̄ Q〉 + �G2

± 〈αs G2〉 +

�
ψ̄Gψ
± 〈ψ̄ λa

2
σµνGa

µνψ〉 + �
Q̄G Q
± 〈Q̄

λa

2
σµνGa

µν Q〉
]

(32.24)

One obtains[488] (W ≡ M2 − q2):

�
pert
± = N

8π2

[
2q2 − 3M2 + M4

q2
ln

M2

W
− (2M2 − q2) ln

µ2

W

±2mM

(
2 − M2

q2
ln

M2

W
+ ln

µ2

W

)
− 2m2

(
1 + ln

µ2

W

)

∓2
m3 M

W

(
1 − M2

q2
ln

M2

W
− ln

m2

W

)

+ m4

W 2

[
M2 − 3

2
q2 − M4

q2
ln

M2

W
− (2M2 − q2) ln

m2

W

]]
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�
ψ̄ψ
± =

[
∓ Mq2

W
+ mq2(2M2 − q2)

2W 2
∓ m2 M3q2

W 3

]

�
Q̄ Q
± =

[
− M

2
± m ∓ m3

W

]
for − q2 > M2

�G2

± = 1

12πW

[
± Mq2

m
− q4

2W
± mq4 MW 2

(
q2 + 6M2 ln

mM

W

)

−m2q4

W 3

(
q2 + 7M2 + 6M2 ln

mM

W

) ]

�
ψ̄Gψ
± =

[
± Mq6

2W 3
− mM2q6

2W 4

]

�
Q̄G Q
± = ±mq2

2W
for − q2 > M2 (32.25)

One can notice that some of these terms are IR singular and behave like log m and 1/m.
In order to have an IR stable result, one should work with the renormalized condensates
defined in Eq. (27.56). In this way, one obtains:

�̄
pert
± = �

pert
± + 3

π2

[
M3

q2

[
log

M2

µ2
− 1

]
�

Q̄ Q
± + m3

q2

[
log

m2

µ2
− 1

]
�

ψ̄ψ
±

]
,

�̄
Q̄ Q
± = �

Q̄ Q
± ,

�̄
ψ̄ψ
± = �

ψ̄ψ
± ,

�̄G2

± = �G2

± + 1

12M
�

Q̄ Q
± + 1

12m
�

ψ̄ψ
± − M

2q2
log

M2

µ2
�

Q̄G Q
± − m

2q2
log

m2

µ2
�

ψ̄Gψ
± ,

�̄
Q̄G Q
± = �

Q̄G Q
± ,

�̄
ψ̄Gψ
± = �

ψ̄Gψ
± = ∓ M

2
. (32.26)

Therefore, one can deduce for small m:

�̄
pert
± = 3

16π2

[
4q2

∓ − (M4 + 4M2m2 + m4)
1

q2

−2
[
q2∓ − M2 − m2 + (M4 ∓ 2M3m ∓ 2Mm3 + m4)

1

q2

]
log

−q2

µ2

]
.

�̄G2

± = −1

8
− (M2 + m2)

12q2
∓ Mm

4q2

[
3 − 2 log

−q2

µ2

]
, (32.27)

where:

q2
∓ = q2 − (M ∓ m)2 , (32.28)

and where all IR infinities have disappeared.



33

(Axial-)vector two-point functions

The Wilson coefficients for the OPE of these correlators were first calculated by SVZ to
leading order in αs and in the quark mass terms. Calculations of the coefficients beyond the
leading order exist in the literature. These results are collected here.

We shall be concerned with the two-point correlator for the vector V µ

i j = ψ̄ iγ
µψ j and

axial-vector currents Aµ

i j = ψ̄ iγ
µγ5ψ j :

�
µν

i j,V (q) ≡ i
∫

d4x eiqx 〈0|T V µ(x) j
i

(
V ν(0) j

i

)†|0〉 ,

�
µν

i j,A(q) ≡ i
∫

d4x eiqx 〈0|T Aµ(x) j
i

(
Aν(0) j

i

)†|0〉 . (33.1)

Here the indices i, j correspond to the light quark flavours u, d, s. The vector (V ) and
axial-vector (A) correlators have the Lorentz decomposition:

�
µν

i j,V/A = −(gµνq2 − qµqν)�(1)
i j,V/A

(
q2, m2

i , m2
j

) + qµqν�
(0)
i j,V/A

(
q2, m2

i , m2
j

)
, (33.2)

where mi is the mass of the quark i ; �
(J )
i j is the correlator associated to the hadrons of spin

J = 0, 1. The (pseudo)scalar correlators �(5)(q2)i
j is related to �

(0)
i j via the non-anomalous

Ward identity in Eq. (2.17). It will be convenient to introduce the notation:

�
(1+0)
i j ≡ �

(1)
i j + �

(0)
i j . (33.3)

The result of the axial-vector current can be deduced from the one of the vector by the
change m j into −m j or, equivalently, by the change m− into m+ and vice-versa.

33.1 Exact two-loop perturbative expression in the M S scheme

The complete two-loop result for the vector correlator is:

�
(1+0)
i j,V ≡ −1

3

[
1 +

(αs

π

) 15

4

]
+ P K

+ αli + βl j + 2(α − β)(αZi − βZ j )

+ 2

3

(αs

π

) [
1

2
P L + αli (1 + 2li ) + βl j (1 + 2l j )

352
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− 1

4
(1 + 2Ni + 2N j )

(
1 + 6

(mi − m j )2

q2

)

+ xi f 2
i + x j f 2

j + 1

2
(Ni − N j )

2

− (α − β)(G(xi ) − G(x j )) − (3 − 2 (α + β)) K 2

−
(

1

2
+ α (2 + li ) + β(2 + l j )

) ]
, (33.4)

with:

α ≡ −m2
i

/
q2 ,

β ≡ −m2
j

/
q2 ,

P ≡ 1 − α − β − 2(α − β) ,

Ni ≡ α(1 + fi )(1 + x j f j ) ,

N j ≡ β(1 + f j )(1 + xi fi ) ,

Zi ≡ 1 + li + 2

3

(αs

π

) (
5 + 5li + 3l2

i

)
,

G(x) ≡ x F ′(x) =
∫ x

o
dy

(
log y

1 − y

)2

=
∞∑

n=1

[(1 − n log x)2 + 1]xn/n2 , (33.5)

where K has been defined in Eq. (32.5). The log-mass terms appearing there should be
cancelled once one introduces the contributions of non-normal ordered condensates.

33.2 Three-loop expression including the m2-terms

Including the m2-term to order α2
s , the correlator reads:

(16π2)�(0+1)
V

= +
[

20

3
+ 4 ln

ν2

−q2

]

+ αs

π

[
55

3
− 16 ζ (3) + 4 ln

ν2

−q2

]

+
(αs

π

)2
[

41927

216
− 1658

9
ζ (3) + 100

3
ζ (5) − 3701

324
n f + 76

9
ζ (3) n f

+ 365

6
ln

ν2

−q2
− 44 ζ (3) ln

ν2

−q2
− 11

3
n f ln

ν2

−q2

+ 8

3
ζ (3) n f ln

ν2

−q2
+ 11

2
ln2 ν2

−q2
− 1

3
n f ln2 ν2

−q2

]
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+ m2
−

−q2

[
−6 + αs

π

(
−12 − 12 ln

ν2

−q2

)]

+ m2
+

−q2

[
−6 + αs

π

(
−16 − 12 ln

ν2

−q2

)]

+
(αs

π

)2 m2
−

−q2

[
−4681

24
− 34 ζ (3) + 115 ζ (5) + 55

12
n f + 8

3
ζ (3) n f

− 215

2
ln

ν2

−q2
+ 11

3
n f ln

ν2

−q2
− 57

2
ln2 ν2

−q2
+ n f ln2 ν2

−q2

]

+
(αs

π

)2 m2
+

−q2

[
−19691

72
− 124

9
ζ (3) + 1045

9
ζ (5) + 95

12
n f − 253

2
ln

ν2

−q2

+ 13

3
n f ln

ν2

−q2
− 57

2
ln2 ν2

−q2
+ n f ln2 ν2

−q2

]

+
(αs

π

)2
∑

f m2
f

−q2

[
128

3
− 32 ζ (3)

]
. (33.6)

(16π2)�(0+1)
A

= +
[

20

3
+ 4 ln

ν2

−q2

]

+ αs

π

[
55

3
− 16 ζ (3) + 4 ln

ν2

−q2

]

+
(αs

π

)2
[

34525

216
− 1430

9
ζ (3) + 100

3
ζ (5) + 299

6
ln

ν2

−q2
− 36 ζ (3) ln

ν2

−q2

+ 9

2
ln2 ν2

−q2

]

+ m2
−

−q2

[
−6 + αs

π

(
−12 − 12 ln

ν2

−q2

)]

+ m2
+

−q2

[
−6 + αs

π

(
−16 − 12 ln

ν2

−q2

)]

+ m2
−

−q2

(αs

π

)2
[
−4351

24
− 26 ζ (3) + 115 ζ (5) − 193

2
ln

ν2

−q2
− 51

2
ln2 ν2

−q2

]

+ m2
+

−q2

(αs

π

)2
[
−17981

72
− 124

9
ζ (3) + 1045

9
ζ (5) − 227

2
ln

ν2

−q2
− 51

2
ln2 ν2

−q2

]

+
∑

f

m2
f

(αs

π

)2
[

128

3
− 32 ζ (3)

]
. (33.7)

33.3 Dimension-four

The dynamic operators of dimension-four are the gluon and quark condensates. Let us
start by giving the contributions coming from the normal ordered condensates, which are
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obtained from a direct calculation of the Feynman diagrams within the Wick’s theorem.
One obtains:

[
�

(1)
i j,V/A

](D=4)
ψ

= − 1

3mi q2
〈 : ψ̄ iψi : 〉

[
1 + 2

(
m2

j − m2
i

)
q2

−
[
q2 + m2

j + m2
i − 2

(
m2

j − m2
i

)2
/q2

]
q2 − m2

j + m2
i

f (zi )

]
+ (i ←→ j) ,

(33.8)

[
�

(1)
i j,V/A

](D=4)
G

= 1

48π
〈 : αs GG : 〉 1

q4±

[
3(1 + u2)(1 − u2)2

2u5
log

u + 1

u − 1
− 3u4 + 2u2 + 3

u4

]
,

(33.9)

where the result for the axial-vector can be obtained by the additionnal change of u into 1/u.
Let us now use the previous results and truncate the series to the D = 4 contributions

but including radiative corrections. In so doing, we shall consider these quark and gluon
operators defined previously in the M S scheme. The remaining D = 4 operators are product
of the running quark masses. In terms of the scale invariant condensates defined previously,
the contributions to the correlators are:

Q4
[
�

(1+0)
i j,V/A(−Q2)

](D=4)

= 1

12

[
1 − 11

18

(αs

π

)
(Q)

] 〈αs

π
GG

〉

+
[

1 −
(αs

π

)
(Q) − 13

3

(αs

π

)2
(Q)

]
〈mi ψ̄ iψi + m j ψ̄ jψ j 〉

±
[

4

3

(αs

π

)
(Q) + 59

6

(αs

π

)2
(Q)

]
〈m j ψ̄ iψi + mi ψ̄ jψ j 〉

+
[

4

27

(αs

π

)
(Q) +

(
−257

486
+ 4

3
ζ (3)

) (αs

π

)2
(Q)

] ∑
k

〈mkψ̄kψk〉

+ 3

2π2

[
1 +

(
76

9
− 4

3
ζ (3)

) (αs

π

)2
(Q)

]
m2

i (Q)m2
j (Q)

+ 1

4π2

[
−12

7

(αs

π

)−1
(Q) + 1

] [
m4

i (Q) + m4
j (Q)

]

∓ 4

7π2
mi (Q)m j (Q)

[
m2

i (Q) + m2
j (Q)

]

− 1

28π2

[
1 −

(
65

6
− 16ζ (3)

) (αs

π

)
(Q)

] ∑
k

m4
k(Q) , (33.10)

and:

Q4
[
�

(0)
i j,V/A(−Q2)

](D=4)

= 〈(mi ∓ m j )(ψ̄ iψi ∓ ψ̄ jψ j )〉
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+ 1

4π2

[
−12

7

(αs

π

)−1
(Q) + 11

14

]
[mi (Q) ∓ m j (Q)]

[
m3

i (Q) ∓ m3
j (Q)

]

∓ 3

4π2
mi (Q)m j (Q)[mi (Q) ∓ m j (Q)]2 . (33.11)

33.4 Dimension-five

This contribution is due to the mixed quark-gluon condensate. It has been evaluated to all
orders in the quark mass. In terms of the normal ordered condensate, it reads:

[
�

(1)
i j,V/A(−Q2)

](D=5)
mix = −〈 : ψ̄ i Gψi : 〉 1

3m3
i q4q2±q2±

×
[

[q2 + 2m j (m j ∓ mi )]
(
q2 − m2

j

)2 − m2
i q2

(
q2 + m2

j

)
− 2m j m

2
i (m j ∓ mi )

(
2m2

j − m2
i

)

− P(q2, mi , m j )

q2 − m2
j + m2

i

f (zi )

]
+ (i ←→ j) , (33.12)

with:

P(q2, mi , m j ) = [q2 + 2m j (m j ∓ mi )]
(
q2 − m2

j

)3

− m2
j m

2
i q2

(
4m2

j ∓ 6m j mi + m2
i

)
− m2

i q4
(
q2 + m2

j

)
+ 2m j m

2
i (m j ∓ mi )

(
3m4

j − 3m2
j m

2
i + m4

i

)
. (33.13)

33.5 Dimension-six

Here we shall consider the contributions which do not vanish for massless quarks. Then
we shall neglect the triple gluon condensate contribution g3〈 fabcGa

µνGb
νρGc

ρµ〉, where the
coefficient vanishes in the chiral limit. Therefore, we have:

Q6
[
�

(1+0)
i j,V/A(−Q2)

](D=6)

= −8π2

[
1 +

(
431

96
− 9

8
L

)(αs

π

)
(ν)

] (αs

π

)
(ν)

〈
ψ̄ iγµ

(
γ5

1

)
Taψ j ψ̄ jγµ

(
γ5

1

)
Taψi (ν)

〉

+ 5π2

4
(3 + 4L)

(αs

π

)2
(ν)

〈
ψ̄ iγµ

(
1
γ5

)
Taψ j ψ̄ jγµ

(
1
γ5

)
Taψi (ν)

〉

+ 2π2

3
(3 + 4L)

(αs

π

)2
(ν)

〈
ψ̄ iγµ

(
1
γ5

)
ψ j ψ̄ jγµ

(
1
γ5

)
ψi (ν)

〉

− 8π2

9

[
1 +

(
107

48
− 95

72
L

) (αs

π

)
(ν)

] (αs

π

)
(ν)

×
∑

k

〈(ψ̄ iγµTaψi + ψ̄ jγµTaψ j )ψ̄kγ
µTaψk(ν)〉
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+ 5π2

54
(−7 + 6L)

(αs

π

)2
(ν)

∑
k

〈(ψ̄ iγµγ5Taψi + ψ̄ jγµγ5Taψ j )ψ̄kγ
µγ5Taψk(ν)〉

+ 4π2

81
(−7 + 6L)

(αs

π

)2
(ν)

∑
k

〈(ψ̄ iγµγ5ψi + ψ̄ jγµγ5ψ j )ψ̄kγ
µγ5ψk(ν)〉

+ 4π2

81
(1 + 6L)

(αs

π

)2
(ν)

∑
k,l

〈ψ̄kγµTaψkψ̄ lγ
µTaψl(ν)〉 . (33.14)

where L ≡ log(Q2/ν2). The upper component of ( 1
γ5

) or ( γ5
1 ) is for the vector(V ) correlator,

while the lower one is for the axial-vector (A).

33.6 Vector spectral function to higher order

33.6.1 Complete two-loop perturbative expression of the spectral function

In the case where one of the quark mass is zero, the spectral function of the vector current
reads:

Im�(1)(t) = (2 + x)

3m2t
Im�5(t)

− 1

6π

(αs

π

) [
(3 + x)(1 − x)3 log

x

1 − x

+ 2x log x + (3 − x2)(1 − x)
]

, (33.15)

where x ≡ m2/t , and becomes:

1

π
Im�(1)(t) = 1

8π2

[
(2 + x)

[
1 + 4

3

(αs

π

) [
13

4
+ 2 log x + log x log (1 − x)

+ 3

2
log

x

1 − x
− log(1 − x) − x log

x

1 − x
− x

1 − x
log x

]]

+ 4

3

(αs

π

) [
−(3 + x)(1 − x) log

x

1 − x
− 2x

(1 − x)2
log x

− 5 − 2x − 2x

1 − x

]]
θ (t − m2) . (33.16)

For the case of the electromagnetic current, one has the well-known QED result, which
is accurately reproduced by the Schwinger interpolating formula:

1

π
Im�(1)(t) = 1

4π
v

(
3 − v2

2

) [
1 + 4

3
αs f (v)

]
θ (t − 4m2) , (33.17)

where:

v ≡ √
1 − 4x ,

f (v) ≡ π

2v
− (3 + v)

4

(
π

2
− 3

4π

)
. (33.18)
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33.6.2 Four-loop perturbative expression of the spectral function

The neutral vector spectral function can be related to the e+e− → hadrons total cross-section
as:

Re+e− (t) ≡ σ (e+e− → hadrons(γ ))

σ (e+e− → µ+µ−(γ ))
= 12π Im�em(t + iε) , (33.19)

where Im�em is associated to the conserved electromagnetic current Jµ
em ≡∑

i Qi ψ̄ iγ
µψi (i = u, d, s, . . .). However, the perturbative calculation has been done

in the Euclidian region and corresponds to the D-function:

D(Q2) ≡ −Q2 d

d Q2
�em(Q2) , (33.20)

which can be related to Re+e− through:

R(s) = 1

2iπ

∫ −s+iε

−s−iε

d Q2

Q2
D(Q2) , (33.21)

where it is necessary to transform the result into the physical region by taking into account
the effects due to the analytic continuation of the terms of the type:

logn(−q2/ν2) → (log(t/ν2) + iπ )n . (33.22)

The asymptotic four-loop expression reads:

(16π2)
1

π
Im�em(t) = 3

(∑
i

Q2
i

) [
1 + ᾱs

π
+ F3

(
ᾱs

π

)2

+ F4

(
ᾱs

π

)3
]

+
(∑

i

Qi

)2

F ′
4

(
ᾱs

π

)3

, (33.23)

where ᾱs is the running coupling evaluated at the scale t and:

F3 = 1.9857 − 0.1153n ,

F4 = −6.6368 − 1.2001n − 0.0052n2 ,

F ′
4 = −1.2395 . (33.24)

The last term comes from the light-by-light diagrams specific for the neutral electromag-
netic current. The expression of the D-function reads:

(16π2)D(−Q2) = 3

(∑
i

Q2
i

) [
1 +

(αs

π

)
+

[
F3 + b1

2
L

] (αs

π

)2

+
[

F4 +
(

F3β1 + β2

2

)
L + β2

1

4

(
L2 + π2

3

)] (αs

π

)3
]

+
(∑

i

Qi

)2

F ′
4

(αs

π

)3
, (33.25)

where the values of the β-function have been given in Table 11.1 and L ≡ ln(Q2/ν2).
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33.7 Heavy-light correlator

In the following, we give useful lowest order expressions in αs when m ≡ mi 
 M ≡ m j

for the (axial-)vector current. The notations are the same as in previous section but differs
from �V/A given in [488]. They are related as:

�
(1)
V/A = �V/A − (M ∓ m)2

q2
�∓ − (M ∓ m)

q2

[
〈Q̄ Q ∓ q̄q〉

]
, (33.26a)

where �
(1)
V/A is the gµν coefficients in [488], �∓ has been given in Section (32.8), and:

�V/A = �V/A

∣∣∣
pert

+ �V/A

∣∣∣
ψ̄ψ

〈ψ̄ψ〉 + �V/A

∣∣∣
Q̄ Q

〈Q̄ Q〉 + �V/A

∣∣∣
G2

〈αs G2〉 +

�V/A

∣∣∣
ψ̄Gψ

〈ψ̄ λa

2
σµνGa

µνψ〉 + �
(1)
V/A

∣∣∣
Q̄G Q

〈Q̄
λa

2
σµνGa

µν Q〉. (33.26b)

The different contributions read:

�V/A

∣∣∣
pert

= 3

24π2

[
10

3
q2 + 4M2 − 4

M4

q2
+ 2(2M2 − 3q2)

M4

q4
ln

M2

W
+ 2q2 ln

µ2

W

+6m2

(
1 + 2

M2

q2
− 2

M4

q4
ln

M2

W

)

−3
m4

W 2

[ (2M2 − q2)2

q2
− 2(2M2 − 3q2)

M4

q4
ln

M2

W
+ 2q2 ln

m2

W

]]

�V/A

∣∣∣
ψ̄ψ

=
[

mq4

W 2
+ 2m3q4(4M2 − q2)

3W 4

]

�V/A

∣∣∣
Q̄ Q

=
[

M − 2M3

3q2
+ 2m2 M

q2

]
for − q2 > M2

�V/A

∣∣∣
G2

= − q4

12πW 2

[
1 + 2m2

W 2

(
q2 + 7M2 + 6M2 ln

mM

W

) ]

�V/A

∣∣∣
ψ̄Gψ

= −mM2q6

W 4

�V/A

∣∣∣
Q̄G Q

= ∓mM2

3W
for − q2 > M2 . (33.27a)

with W ≡ M2 − q2. Introducing the renormalized condensates defined in Eq. (27.56), and
using relations similar to Eq. (32.26), one can deduce:

�̄V/A

∣∣∣
pert

= 3

24π2

[
10q2 + 18(M2 + m2) − 9(3M4 − 4M2m2 + 3m4)

1

q2

−6
[
q2 − 3(M4 + m4)

1

q2

]
log

−q2

µ2

]
,
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�̄V/A

∣∣∣
ψ̄ψ

= �V/A

∣∣∣
ψ̄ψ

,

�̄V/A

∣∣∣
Q̄ Q

= �V/A

∣∣∣
Q̄ Q

,

�̄V/A

∣∣∣
G2

= 1

12
− (M2 + m2)

18q2
,

�̄V/A

∣∣∣
ψ̄Gψ

= �V/A

∣∣∣
ψ̄Gψ

, (33.27b)

from which the expressions for �
(1)
V/A can be easily derived.

33.8 Beyond the SVZ expansion: tachyonic gluon contributions to the (axial-)vector
and (pseudo)scalar correlators

Here, we shall give contributions coming from the dimension D = 2 operators induced by
a tachyonic gluon mass. This contribution has been introduced in [161], where one expects
that the gluon mass phenomenologically mimics the resummation of the QCD perturbative
series due to renormalons.

33.8.1 Vector correlator

This effect can be systematically obtained from the Feynman diagram given in Fig. 30.1. The
derivation of the results is explictly given in [161]. Here, we only quote these results which
are consistent if one uses normal non-ordered condensates for the D = 4 contribution. To
first order in αs and expanding in λ2, m2

1,2 we obtain:

(16π2)�(1)
V =

[
20

3
+ 6

m2
−

Q2
− 6

m2
+

Q2
+ 4lµQ + 6

m2
−

Q2
lµQ

]

+ αs

π

[
55

3
− 16 ζ (3) + 107

2

m2
−

Q2
− 24 ζ (3)

m2
−

Q2
− 16

m2
+

Q2

+ 4lµQ + 22
m2

−
Q2

lµQ − 12
m2

+
Q2

lµQ + 6
m2

−
Q2

l2
µQ

]

+ αs

π

λ2

Q2

[
− 128

3
+ 32 ζ (3) − 76

3

m2
−

Q2
+ 16 ζ (3)

m2
−

Q2

− 8
m2

+
Q2

+ 12
m2

−
Q2

lµQ − 12
m2

+
Q2

lµQ

]
, (33.28)

The above result is in the M S scheme and the notations are as follows: m± = m1 ± m2

and lµQ = log(µ2/Q2). Note that the terms of order λ2/Q2 in Eq. (33.28) are µ independent
and, thus, do not depend on the way the overall UV subtraction of the vector correlator is



33 (Axial-)vector two-point functions 361

implemented. The quark mass-logs appearing in the λ2m2/Q4 terms have been absorbed
after adding the contribution of the quark condensate to the correlators and its modified
renormalization group invariant combination:

〈ψ̄ iψi 〉 = 3m3
i

4π2

[
1 + ln

(
µ2

m2
i

)
+ 2

αs

π

(
ln2

(
µ2

m2
i

)
+ 5

3
ln

(
µ2

m2
i

)
+ 5

3

)]

+ miλ
2

4π2

αs

π

(
−5 + 6 ln

µ2

m2
i

)
. (33.29)

In the light-quark case relevant to the ρ-channels we can neglect the m2 terms and �ρ(M2)
simplifies greatly:

1

π
Im �ρ(s) = 1

4π2

{
1 +

(αs

π

) [
1 − 1.05

λ2

s
δ(s)

]}
. (33.30)

33.8.2 (Pseudo)scalar correlator

In the chiral limit (mu � md = 0), the QCD expression of the absorptive part of the
(pseudo)scalar correlator reads:

1

π
Imψ(5)(s) � (mi + (−)m j )

2 3

8π2
s

[
1 +

(αs

π

) (
−2L + 17

3
− 4

λ2

s

)]
, (33.31)

where one should notice that the coefficient of the λ2 term:

bπ ≈ 4bρ . (33.32)
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Tensor-quark correlator

We shall be concerned with the two-point correlator:

�2,µνρσ ≡ i
∫

d4x eiqx 〈0|T θq
µν(x)θq

ρσ (0)†|0〉

= 1

2

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
�2(q2) , (34.1)

where

θq
µν(x) = i q̄(x)(γµ D̄ν + γν D̄µ)q(x) (34.2)

is the quark component of the energy-momentum tensor θ
q
µν(x). Here, D̄µ ≡ �Dµ − Dµ is

the covariant derivative. The previous current mixes under renormalization with the gluonic
current:

θ g
µν(x) = −GαµGα

ν + 1

4
gµνGαβGαβ , (34.3)

as:

θq,R
µν = Z11θ

q,B
µν + Z12θ

g,B
µν

θ g,R
µν = Z21θ

q,B
µν + Z22θ

g,B
µν . (34.4)

The indices B and R refer respectively to bare and renormalized quantities. The renor-
malization constants have been evaluated in [450]. For the quark currents, they read in 4 − ε

dimension space–time:

Z11 = 1 +
(αs

π

) 1

ε̂

4

3
CF , Z12 = −

(αs

π

) 1

ε̂

4

3
(34.5)

with: ε̂−1 = ε−1 + (ln 4π − γE )/2. To the order, we are working, only Z11 is relevant. The
corresponding anomalous dimension is:

γ11 = − ν

Z11

d Z11

dν
=

(
16

9
≡ γ 1

11

) (αs

π

)
. (34.6)
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The renormalized perturbative contribution to the correlator to order αs is [452]:

�R
2,pert(q

2 ≡ −Q2) = − 3

10π2
Q4 log

Q2

ν2

[
1 −

(αs

π

) (
473

135
− 8

9
log

Q2

ν2

) ]
. (34.7)

The bare quark and mixed condensate contributions read:

�R
2,q+m(q2) = 1

q2

[
−8m3〈ψ̄ψ〉B + 16

3
mg

〈
ψ̄σµν

λa

2
ψGµν

a

〉B
]

. (34.8)

The evaluation of the gluon condensate is much more cumbersome. Evaluating the
Feynman integrals for arbitrary mass and expanding the result in powers of m2/q2, one
obtains:

�B
2,G(q2) =

(αs

π

)
〈G2〉B

[
8

9

(−2

ε̂
+ ln

m2

ν2

)
+ 3

m2

q2
+ 8

9

(
1 − 3

m2

q2

)
ln − q2

m2

]
. (34.9)

In order to remove the IR logarithm appearing in the bare result, one has to write the
heavy- to light-quark expansions of the condensates discussed in previous chapters:

〈ψ̄ψ〉 = − 1

12π

(αs

π

)
〈G2〉 + · · · ,〈

ψ̄σµν

λa

2
ψGµν

a

〉
= m

2

(
−2

ε̂
+ ln

m2

ν2

) (αs

π

)
〈G2〉 + · · · . (34.10)

In this way, one obtains the bare gluon condensate contribution:

�B
2,G(q2) =

(αs

π

)
〈G2〉B 1

3

[
8

3

(
1 − 3

m2

q2

) (−2

ε̂
+ log −q2

ν2

)
+ 7

m2

q2

]
. (34.11)

The remaining m2/ε̂q2 pole can be eliminated by the introduction of the renormalized
mixed condensate [130] discussed in previous chapters:

〈
ψ̄σµν

λa

2
ψGµν

a

〉B

=
〈
ψ̄σµν

λa

2
ψGµν

a

〉R

− m

ε̂

(αs

π

)
〈G2〉R . (34.12)

Then, one obtains the renormalized result:

�R
2,G(q2) =

(αs

π

)
〈G2〉R 1

3

[
8

3

(
1 − 3

m2

q2

)
log −q2

ν2
+ 7

m2

q2

]
. (34.13)

This explicit exercise has shown how delicate is the evaluation of the Wilson coefficients
of the non-perturbative condensate contributions.

The four-quark condensate contribution is:

�2,4q (q2) = 64π

9q2
ρ

(αs

π

)
〈ψ̄ψ〉2 , (34.14)

where ρ is the deviation from the vacuum saturation estimate.
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Baryonic correlators

35.1 Light baryons

35.1.1 The decuplet

The simplest interpolating field for the �( 3
2 ) is [424–430]:

�µ = 1√
2

: (ψT Cψ)

(
gµλ − 1

4
γµγλ

)
ψ : , (35.1)

where C is the charge conjugation matrix and colour indices. The corresponding correlator
is:

Sµν = i
∫

d4q eiqx 〈0|T �µ(x)�µ(0)†|0〉
= (q̂ F1 + F2) gµν + · · · (35.2)

Using the SVZ-expansion, the form factor can be expressed as:

−F1 = q4 A1 log −q2

ν2
+ A2π log −q2

ν2
〈αs G2〉 + ms A3π

2〈ψ̄ψ〉 + A4
π4

q2
〈ψ̄ψ〉2

−F2 = ms B1q4 log −q2

ν2
+ B2π

2 log −q2

ν2
〈ψ̄ψ〉q2 + B3π

2

〈
ψ̄σµν λa

2
Ga

µνψ

〉
, (35.3)

where Ai and Bi are Wilson coefficients determined from perturbative calculation of the
QCD diagrams shown in Fig. 35.1. The different expressions of these Wilson coefficients
compiled in [426] are given in Tables 35.1 and 35.2 to lowest order of αs . In the table, we
also introduce the parameters controlling the SU (3) breaking of the condensates:

χ3 = 〈s̄s〉
〈ūu〉 , and χ5 =

〈
s̄σµνλaGa

µνs
〉

〈
ūσµνλaGa

µνu
〉 . (35.4)
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+ + . . .

+ + . . .
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. . .+

+. . .+

(a)

(b) (c)

(d) (e)

Fig. 35.1. Feynman diagrams corresponding to the OPE of the baryon correlator: (a) perturbative;
(b) quark condensate; (c) gluon condensate; (d) mixed condensate; (e) four-quark condensate.

35.1.2 The octet

The nucleon can be in general interpolated by the lowest dimension operators:

N = 1√
2

: [ (ψCγ5ψ) ψ + b (ψCψ) γ5ψ] : (35.5)

where b is an arbitrary parameter. We shall discuss the different choices of b in the sum rule
analysis. The corresponding correlator is:

Sµν = i
∫

d4q eiqx 〈0|T N (x)N (0)†|0〉
= q̂ F1 + F2 + · · · , (35.6)

Using the SVZ-expansion, the form factor can be expressed as in Eq. (35.3). The corre-
sponding Wilson coefficients are given Tables 35.1 and 35.2.
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Table 35.1. Wilson coefficients in the OPE of the form factor F1.

Type A1 A2 A3 A4

3/2

� 1
20 − 5

36 0 32
3


∗ 1
20 − 5

36 − 2
3 (4 − χ3) 32

9 (1 + 2χ3)

�∗ 1
20 − 5

36 − 4
3 (2 + χ3) 32

9 χ3(2 + χ3)

� 1
20 − 5

36 −6χ3
32
3 χ2

3

1/2

N 1
256 (5 + 2b + 5b2) 1

256 (5 + 2b + 5b2) 0 2
6 (7 − 2b − 5b2)


 1
256 (5 + 2b + 5b2) 1

256 (5 + 2b + 5b2) − 1
48 [4(5 − 4b − b2) 1

9 [(11 + 2b − 13b2)

− 3(5 + 2b + 5b2)χ3] + 2(5 − 4b − b2)χ3]


 1
256 (5 + 2b + 5b2) 1

256 (5 + 2b + 5b2) − 1
16 [12(1 − b2) 1

3 [(1 − b)2

− (5 + 2b + 5b2)χ3] + 6(1 − b2)χ3]

� 1
256 (5 + 2b + 5b2) 1

256 (5 + 2b + 5b2) − 3
8 [2(1 − b2) 1

3 χ3[6(1 − b2)

− (1 + b)2χ3] + (1 − b)2χ3]

Table 35.2. Wilson coefficients in the OPE of the form factor F2.

Type B1 B2 B3

3/2

� 0 − 8
3

4
3


∗ 1
8 − 8

9 (2 + χ3) 4
9 (2 + χ5)

�∗ 1
4 − 8

9 (1 + 2χ3) − 4
9 (1 + 2χ5)

� 3
8 − 8

3 χ3
4
3 χ5

1/2

N 0 − 1
8 (7 − 2b − 5b2) 3

8 (1 − b2)


 1
192 (11 + 2b − 13b2) − 1

24 [2(5 − 4b − b2) 1
32 (1 − b2)(10 + 4χ5)

+ (11 + 2b − 13b2)χ3]


 1
64 (1 − b)2 − 1

8 [6(1 − b2) 3
9 (1 − b2)

+ (1 − b)2χ3]

� 3
32 (1 − b2) − 1

8 [(1 − b)2 3
8 (1 − b2)χ5

+ 6(1 − b2)χ3]
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35.1.3 Radiative corrections

As the current gets renormalized, the previous correlators have anomalous dimensions.
These anomalous dimensions are equal for the � and N and read:

γ = −2 ×
(

2

3

)
. (35.7)

Radiative corrections to these lowest-order terms have been first obtained in the chiral
limit in [424] and corrected in [428,425]. For the nucleon, one has [428,425]:

A1 = 1

256
(5 + 2b + 5b2)

[
1 + 71

12

(αs

π

)
− 1

2
log −q2

ν2

]

B2 = −1

8

[
7

[
1 +

(αs

π

) 15

14

]
− 2b

[
1 +

(αs

π

) 3

2

]
− 5b2

[
1 +

(αs

π

) 9

10

]]
. (35.8)

35.2 Heavy baryons

Analogous correlators but for baryons containing heavy quarks have been evaluated in
[453,454,731].

35.2.1 Spin 1/2 baryons

Let us consider the baryonic current:

J = r1 (utCγ 5c)b + r2 (utCc)γ 5b + r3 (utCγ 5γ µc)γµb , (35.9)

which has the quantum numbers of the 
(bcu); r1, r2 and r3 are arbitrary mixing parameters
where, in terms of the b parameter used in [454]:

r1 = (5 + b)/ 2
√

6; r2 = (1 + 5b)/ 2
√

6; r3 = (1 − b)/ 2
√

6 . (35.10)

The choice of operators in [453] is recovered in the particular case where:

r1 = 1; r2 = k; r3 = 0 . (35.11)

The associated two-point correlator is:

i
∫

d4x ei p·x 〈0|TJ (x) J̄ (0)|0〉 = p/F1 + F2 . (35.12)

The QCD expressions of the form factors F1 and F2 can be parametrized as:

Fi = FPert
i + FG

i + FMix
i , (35.13)

where:

Im FPert
2 (t) = 1

128π3t

{(
2r2

3 + r2
2 − r2

1

)
mb

{
6

[
m2

bt2 + (
m4

b − 2m2
bm2

c − m4
c

)
t

+ 2m2
bm4

c

] L1 − 6t
[
m2

b t + (
m2

b − m2
c

)2]L2
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− [
t2 + 5

(
2m2

b − m2
c

)
t + m4

b − 5m2
bm2

c − 2m4
c

]
λ

1/2
bc

}
− 2r1r3 mc

{
6

[
m2

c t2 + (
m4

c − 2m2
cm2

b − m4
b

)
t + 2m2

cm4
b

]L1

+ 6t
[
m2

c t + (
m2

c − m2
b

)2]L2

− [
t2 + 5

(
2m2

c − m2
b

)
t + m4

c − 5m2
cm2

b − 2m4
b

]
λcb

}}
(35.14)

Im Fψ

2 (t) = 〈ψ̄ψ〉
8π t

λ
1/2
bc

{−(
r2

1 + r2
2 + 4r2

3

)
mbmc + r1r3

(
m2

b + m2
c − t

)}
(35.15)

Im FG
2 (t) = 〈αs G2〉

384π2t

{[
2

r2
3

mb

(−2t + 7m2
b + 2m2

c

)

+ r2
1 − r2

2

mb

(
2t + 5m2

b − 2m2
c

) + 2
r1r3

mc

(
2t − 2m2

b − m2
c

)

+ 12r2r3 mc

]
λ

1/2
bc

+ 6
[(

r2
2 − r2

1

)
mb t + 2r2

3 mbm2
c − r1r3mct − r2r3mc

(
t − 2m2

b

)]L1

− 6t
[(

r2
2 − r2

1

)
mb + (r1 + r2)r3mc

] L2

}
(35.16)

Im FMix
2 (t) = M2

0 〈ψ̄ψ〉
64π t λ

3/2
bc

{
2
(
r2

1 + r2
2

)
mbmc

[−t3 + t2
(
m2

b + 3m2
c

)

+ t
(
m2

b + m2
c

)(
m2

b − 3m2
c

) − (
m2

b − m2
c

)3]
+ 4r2

3 mbmc
[−t3 + t2

(
3m2

b + m2
c

)
+ t

(−3m4
b − 6m2

bm2
c + m4

c

) + (
m2

b − m2
c

)3
]

+ 2r1r3
[
t4 + t3

( − 3m2
b − 2m2

c

) + 3t2m2
b

(
m2

b − m2
c

)
+ t

( − m6
b + 4m4

bm2
c + 3m2

bm4
c + 2m6

c

) + m2
c

(
m2

b − m2
c

)3]
+ 2r2r3

[
t4 + t3

( − 4m2
b − 3m2

c

) + 3t2
(
2m4

b + m2
bm2

c + m4
c

)
− t

(
m2

b − m2
c

)(
4m4

b + m2
bm2

c − m4
c

) + m2
b

(
m2

b − m2
c

)3]}
(35.17)

Im FPert
1 (t) = 1

512π3t2

{(
r2

1 + r2
2 + 4r2

3

) {
12

[
t2

(
m4

b + m4
c

) − 2m4
bm4

c

] L1

− 12t2
(
m4

b − m4
c

)L2

+ [
t3 − 7t2

(
m2

b + m2
c

) + t
( − 7m4

b + 12m2
bm2

c − 7m4
c

)
+ m6

b − 7m4
bm2

c − 7m2
bm4

c + m6
c

]
λ

1/2
bc

}
− 4r1r3 mbmc

{
12

[
t2

(
m2

b + m2
c

) − 4tm2
bm2

c + 2m2
bm2

c

(
m2

b + m2
c

)]L1

− 12t2
(
m2

b − m2
c

)L2

− 2
[
2t2 + 5t

(
m2

b + m2
c

) − m4
b − 10m2

bm2
c − m4

c

]
λcb

}}
(35.18)
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Im Fψ

1 (t) = 〈ψ̄ψ〉
16π t2

λ
1/2
bc

{(
2r2

3 + r2
2 − r2

1

)
mc

(
t + m2

b − m2
c

)

+2r1r3 mb
(
m2

b − m2
c − t

)}
(35.19)

Im FG
1 (t) = 〈αs G2〉

768π2t2

{[−4r2
3

(
t + 3m2

b

) − (
r2

2 + r2
1

) (
t − 3m2

b + 3m2
c

)

+ 4
r1r3

mbmc

(
2t

(
m2

b + m2
c

) − 2m4
b − 11m2

bm2
c − 2m4

c

)

− 36r2r3 mbmc
]
λ

1/2
bc

+ 12mbmc
[−2r2

3 mbmc + 2r1r3
(
t − 2m2

b − 3m2
c

)
+ 2r2r3

(
t − m2

b − 2m2
c

)]L1
}

(35.20)

Im FMix
1 (t) = M2

0 〈ψ̄ψ〉
64π t2 λ

3/2
bc

{
2
(
r2

1 − r2
2

)
mc

[−t4 + t3
(
2m2

b + 5m2
c

)

− t2
(
2m4

b + 3m2
bm2

c + 9m4
c

) + t
(
m2

b − m2
c

)(
2m4

b − m2
bm2

c − 7m4
c

)
− (

m2
b − m2

c

)3(
m2

b − 2m2
c

)]
+ 2r2

3 mc
[
t3

(
m2

b − m2
c

) + t2
( − 3m4

b + 4m2
bm2

c + 3m4
c

)
+ 3t

(
m2

b − m2
c

)(
m2

b + m2
c

)2 − (
m2

b − m2
c

)3(
m2

b + m2
c

)]
+ 2r1r3 mb

[−t4 + t3
(
5m2

b + m2
c

) + t2
(−9m4

b − 4m2
bm2

c + m4
c

)
+ t

(
m2

b − m2
c

)(
7m4

b + 4m2
bm2

c + m4
c

) − 2m2
b

(
m2

b − m2
c

)3]
+ 2r2r3mb

[−t4 + 2t3
(
2m2

b + m2
c

) − 2t2
(
3m4

b + m4
c

)
+ 2t

(
2m6

b − 3m4
bm2

c + m6
c

) − (
m2

b − m2
c

)4]}
, (35.21)

with:

L1(t) = 1

2
log

1 + v

1 − v
; v =

√√√√1 − 4m2
bm2

c(
t − m2

b − m2
c

)2

λ
1/2
bc = (

t − m2
b − m2

c

)
v; L2 = log

(
m2

b + m2
c

)
t + (

m2
b − m2

c

)(
λ

1/2
bc − m2

b + m2
c

)
2mbmc t

.

= λ1/2
(
m2

b, m2
c, t

)
(35.22)

35.2.2 Spin 3/2 baryon

Let us consider the two-point correlator:

Sµν(q2) = i
∫

d4x 〈0|T Jµ(x)Jν(0)|0〉 ≡ gµν(q̂ F1 + F2) + · · · (35.23)
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built from the simplest interpolating �∗
Q operator:

J
�∗

Q
µ = 1√

3
εαβλ : 2

(
QT

α Cγ µuβ

)
Qλ + (

QT
α Cγµ Qβ

)
uλ : , (35.24)

where Q and u are respectively the heavy- and light-quark fields. The QCD expressions of
the form factors for a heavy quark of mass M are [453]:

ImFpert
1 (x) = M4

480π3

[
60(−1 + 4x − 4x2 − 2x3)Lv

+ v

x2
(3 − 19x + 98x2 − 130x3 − 60x4)

]
,

ImFpert
2 (x) = M5

288π3x2
[24(−2 + 3x − 5x3)Lv + v(9 + 34x − 10x2 − 60x3)] ,

ImFG
1 (x) = −〈αs G2〉

12π2

[
x2(2 + x)Lv + v

24
(1 + 26x + 12x2)

]
,

ImFG
2 (x) = −〈αs G2〉

36π2
M

[
(2 + 3x2)Lv + v

12

(
11 + 18x − 8

x

)]
,

ImFψ

1 (x) = −M〈ψ̄ψ〉 v

3π
, ImFψ

2 (x) = −M2〈ψ̄ψ〉 v

18π

(
7 + 2

x

)
,

ImFmix
1 (x) = M2

0
〈ψ̄ψ〉

9π

x2

Mv3
(2 − 11x) ,

ImFmix
2 (x) = M2

0
〈ψ̄ψ〉
36π

1

v3
(2 − 11x + 12x2 − 30x3) , (35.25)

with:

x = M2

t
, v ≡ √

1 − 4x , Lv = ln

(
1 + v

1 − v

)
. (35.26)
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Four-quark correlators

We shall be concerned here with the two-point correlators associated with the four-quark
operators. These operators can describe a four-quark state but play also a crucial rôle for
describing the flavour changing �S = 1 for the �I = 1/2 rule processes of the weak
hamiltonian and the �S = 2 and �B = 2 for the K − K̄ and B − B̄ oscillations.

36.1 Four-quark states

The two-point function associated to the colour singlet operator:

O± = 1√
2

∑
�=1,γ5

s̄�s(ū�u ± d̄�d) (36.1)

has been evaluated in [465] to leading order in αs and including non-perturbative corrections.
It is shown in Fig. 36.1, and reads:

�4(q2) = q8 ln
−q2

ν2

{
− 1

40960π6
+ 1

1020π6

(
m2

s

q2

)
+ 1

q4

[
ms〈s̄s〉
128π4

+ 〈αs G2〉
64π5

]

− 1

q6

[
1

64π4

〈
s̄σµν

λa

2
Gµν

a s

〉
+ 3

8π2
(〈ūu〉2 + 〈s̄s〉2)

] }

−
(

8

3q2

)
ms〈s̄s〉〈ūu〉2 , (36.2)

which is free from non-local 1
ε

ln −q2/ν2 pole absorbed by the addition of evanescent
diagrams. The two-point correlator associated to the operator:

O± = 1√
2

∑
�=1,γ5

s̄�λas(ū�λau ± d̄�λad) , (36.3)

has been analysed in citeSN4Q and can be easily deduced from the former to leading order
using the Fierz transform.
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+
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+

(a)

(b)

(d) (e)

(c)

Fig. 36.1. Feynman diagrams corresponding to the OPE of the four-quark correlator: (a) perturbative;
(b) quark condensate; (c) gluon condensate; (d) mixed condensate; (e) four-quark condensate.

36.2 �S = 1 correlator and �I = 1/2 rule

In these weak processes, the short-distance Hamiltonian can be described by the four-quark
operators Qi (x) obtained from the operator product expansion:

Heff = G F√
2

Vud V ∗
us

∑
i

Ci (µ
2)Qi , (36.4)

where Vuq are elements of the CKM mixing matrix, while Ci is the Wilson coefficient
obtained from pQCD calculation. The relevant two-point function for these processes is:

�(q2) ≡ i
∫

dx eiqx 〈0| T {Heff(x)Heff(0)†}|0〉

=
(

G F√
2

)2

|Vud V ∗
us |2

∑
i, j

Ci (µ
2) C∗

j (µ2) �i j (q
2) . (36.5)
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This vacuum-to-vacuum correlator can be studied with perturbative QCD methods, al-
lowing for a consistent combination of Wilson-coefficients Ci (µ2) and two-point func-
tions of the four-quark operators, �i j , in such a way that the renormalization scheme and
scale dependences exactly cancel (to the computed order). The associated spectral function
1
π

Im��S=1(q2) is a quantity with definite physical information. It describes in an inclusive
way how the weak Hamiltonian couples the vacuum to physical states of a given invariant
mass. In the following we shall analyse the four-quark correlators but build a RS com-
bination that is useful for the physical processes. Here, we shall consider the correlators
associated to the �S = 1 operators:

Q1 = 4 (s̄Lγ µdL ) (ūLγµuL ) , Q2 = 4
(
s̄α

Lγ µdβ

L

)(
ūβ

Lγµuα
L

)
. (36.6)

It is usual to work in the diagonal basis:

Q± = 1

2
(Q1 ± Q2) , (36.7)

and to define the RS-invariant operators [476]:

Q̄± ≡
[
1 +

(αs

π

)
B±

]
Q± , (36.8)

where in the t’Hooft–Veltman (HV) and naı̈ve dimensional regularization (NDR) schemes
(see Chapter 8):

B H V
± = 7

8

(
±1 − 1

N

)
, B N DR

± = 11

8

(
±1 − 1

N

)
. (36.9)

In this basis, the corresponding correlator is:

�̄±± = 1

2

[
1 + 2

(αs

π

)
B±

]
[�11 ± �12] , (36.10)

and is RS-invariant.

1

π
Im�̄±±(s, µ2) = θ (s)

s4

(4π )6
A±

{
1 +

(αs

π

) [
3

2

(
± 1 − 1

N

)
ln

∣∣∣∣ s

µ2

∣∣∣∣
+ 3

4
N ∓ 101

20
+ 43

10

1

N

] }
, (36.11)

with:

A± = 2

45
N (N ± 1) . (36.12)

The coefficient of the logarithm is just equal to the leading-order anomalous dimensions
γ

(1)
± of Q±. Introducing the µ2-dependent Wilson coefficient:

C±(µ2) = αs(µ2)γ
(1)
± /β1

[
1 − αs(µ2)

4π
R±

]
, (36.13)
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where the NLO correction R± can be found in [476], it is possible to form the RGI spectral
functions:

1

π
Im�̂±±(s) = 1

π
Im�̄±±(s)C2

±(s) (36.14)

For N = 3 the two spectral functions read:

1

π
Im�̂++(s) = θ (s)

8

15

s4

(4π )6
αs(s)−4/9

[
1 − 3649

1620

(αs

π

) ]
,

1

π
Im�̂−−(s) = θ (s)

4

15

s4

(4π )6
αs(s)8/9

[
1 + 9139

810

(αs

π

) ]
. (36.15)

Taking αs(s)/π ≈ 0.1, at the NLO we find a moderate suppression of Im�̂++ by roughly
20%, whereas Im�̂−− acquires a huge enhancement on the order of 100%. Because Im�̂++
solely receives contributions from �I = 3/2, and Im�̂−− is a mixture of both �I = 1/2
and �I = 3/2, this pattern of the radiative corrections entails a strong enhancement of
the �I = 1/2 amplitude, which can provide a promising picture for the emergence of the
�I = 1/2–rule.

36.3 The �S = 2 correlator

Here, we shall consider the correlator associated to the �S = 2 operator:

O�S=2 = (s̄Lγ µdL ) (s̄LγµdL ) (36.16)

where:

ψL ≡ 1

2
(1 − γ5)ψ . (36.17)

We shall analyse its phenomenological application in the next chapter. The QCD expres-
sion of the spectral function reads [468]:

1

π
Im��S=2(t) = 1

(16π2)3

1

10

(
1 + 1

N

)
t4αs(t)−4/9

{
1 − A

(αs

π

)

− 40m̄2
s

t
− 20π2

t2
(16πms〈s̄s〉 − 〈αs G2〉)

}
. (36.18)

The coefficient of the perturbative correction is RS dependent. In [471], it has been shown
that one can define a RS invariant combination Q̂�S=2:

Q̂�S=2 ≡ αs(ν)γ�S=2/β1

[
1 −

(αs

π

)
Z
]

Q�S=2 , (36.19)

where Z depends on the regularization scheme used [475]; γ�S=2 is the anomalous dimen-
sion of the operator Q�S=2 defined as:

Q�S=2 ≡ 1

2

[O�S=2 + (
s̄α

Lγ µdβ

L

)(
s̄β

Lγµdα
L

)]
. (36.20)
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It coincides with O�S=2 in the HV scheme since in HV Fierz symmetry is respected for
current–current operators while O�S=2 renormalizes into itself. This is not the case for the
NDR scheme where the γ5 matrix is naı̈vely anti-commuting while the rest of the calculation
is done in n-dimensions. Within this RS invariant combination one obtains [471]:

A = −3649

1620
, (36.21)

where the global effect reduces by about 20% the lowest-order result.

36.4 The �B = 2 correlator

We shall consider the two-point correlator:

ψ�B=2(q2) ≡ i
∫

d4x eiqx 〈0|T Oq (x)(Oq (0))†|0〉 , (36.22)

built from the �B = 2 weak operator Oq defined as:

Oq (x) ≡ (b̄γµLq)(b̄γµLq) , (36.23)

with: L ≡ (1 − γ5)/2 and q ≡ d, s. This correlator has been firstly evaluated to lowest
order in [472] in the case of massless light quark mass and including non-perturbative
corrections. The perturbative radiative corrections including non-factorizable corrections
have been obtained in [473]. The SU (3) breaking correction has been evaluated in
[474]. The lowest-order perturbative contribution for ms �= 0 to the two-point correlator is
[474]:

1

π
Imψ

pert
�B=2(t) = θ (t − 4(mb + ms)2) × t4

1536π6
×

∫ (1−√
δ−√

δ′)2

(
√

δ+√
δ′)2

dz
∫ (1−√

z)2

(
√

δ+√
δ′)2

du zu

× λ1/2(1, z, u)λ1/2

(
1,

δ

z
,
δ′

z

)
λ1/2

(
1,

δ

u
,
δ′

u

)

×
[

4 f

(
δ

z
,
δ′

z

)
f

(
δ

u
,
δ′

u

)
− 2 f

(
δ

z
,
δ′

z

)
g

(
δ

u
,
δ′

u

)

− 2g

(
δ

z
,
δ′

z

)
f

(
δ

u
,
δ′

u

)
+ (1 − z − u)2

zu
g

(
δ

z
,
δ′

z

)
g

(
δ

u
,
δ′

u

)]
.

(36.24)

Here δ ≡ m2
b/t and δ′ ≡ m2

s /t , respectively. The functions f (x, y) and g(x, y) are defined
by

f (x, y) ≡ 2 − x − y − (x − y)2 ,

g(x, y) ≡ 1 + x + y − 2(x − y)2 . (36.25)
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The function λ(x, y, z) is a phase space factor,

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx . (36.26)

We include the αs correction from factorizable diagrams to the ms contribution by using
the results for the two-point correlators of currents [477]. This can be done using the
convolution formula:

1

π
Imψ

αs
�B=2(t) = θ (t − 4(mb + ms)2) × t2

6π4

∫ (1−√
δ−√

δ′)2

(
√

δ+√
δ′)2

dz
∫ (1−√

z)2

(
√

δ+√
δ′)2

duλ1/2(1, z, u)

× {
Im�0

µν(zt)Im�αsµν(ut) + Im�αs
µν(zt)Im�0µν(ut)

}
(36.27)

Here �0
µν(q2) and �αs

µν(q2) are respectively the lowest and the next-to-leading order QCD
contribution to the two-point correlator �µν(q2) which is defined by

�µν(q2) ≡ i
∫

d4xeiqx × 〈0|T (b̄L (x)γµsL (x))(s̄L (0)γνbL (0))|0〉 . (36.28)

The quark condensate contribution reads:

1

π
Imψ s̄s

�B=2(t) = θ (t − 4(mb + ms)2)
1

384π3
ms〈s̄s〉

×
∫ (

√
t−mb)2

(mb+ms )2
dq2

1

√
λ1

(
4 + 2q2 ∂

∂q2

)

×
[√

λ0

{
λ1

(
1 + m2

b

q2
− q2

1

q2

)
q2

1

+ f1

(
1 − m2

b

q2
+ q2

1

q2

) (
q2 − m2

b − q2
1

)}]
. (36.29)

Here λ0, λ1, and f1 are defined by

λ0 ≡ λ

(
1,

q2
1

q2
,

m2
b

q2

)
,

λ1 ≡ λ

(
1,

m2
b

q2
1

,
m2

s

q2
1

)
,

f1 ≡ 1 + m2
b

q2
1

+ m2
s

q2
1

− 2

(
m2

b − m2
s

)2

q4
1

. (36.30)

The gluon condensate contribution reads in the case ms = 0 [472]:

1

π
ImψG2

�B=2(t) = t2

(16π2)2

1

π
〈αs G2〉

∫ 1

x0

dx
∫ y+

y−
dy

× {−(�/2y2)[� − y(1 − y)][2xy + (1 − x)2(1 − y)]
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+ (δx/3y3)(1 − x)2(1 − y)3[2� − y(1 − y)]}

−
∫ (1−√

δ)2

δ

dz z(1 − δ/z)2λ1/2(1, z, δ) , (36.31)

where:

� ≡ δ(y/x + 1 − y) − y(1 − y) (36.32)

and the parametric integration limits are given by:

x0 = δ/(1 −
√

δ)2 ,

y± = 1

2
[1 + δ(1 − 1/x) ± λ1/2(1, δ, δ/x)] . (36.33)
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Gluonia correlators

37.1 Pseudoscalar gluonia

We shall be concerned with the correlator:

χ (k2) =
∫

dx eik.x i〈0|T Q R(x) Q R(0)|0〉 , (37.1)

where Q R(x) is the renormalized gluon topological density which mixes under renormal-
ization with the divergence of the flavour singlet axial current J 0

µ5R mix as follows [129]
(see Section 10.3.3 in Part III):

J 0
µ5R = Z J 0

µ5B

Q R = Q B − 1

2n f
(1 − Z )∂µ J 0

µ5B , (37.2)

where:

J 0
µ5B =

∑
q̄γµγ5q

Q B = αs

8π
Tr Gµν G̃µν (37.3)

and we have quoted the formulae for n f flavours. The correlation function χ (k2) obeys the
inhomogeneous RGE [260]:

(
µ

∂

∂µ
+ β(αs)αs

∂

∂αs
− 2γ

)
χ (k2) = − 1

(2n f )2
2β (L)k4 . (37.4)

The anomalous dimension is:

γ ≡ µ
d

dµ
log Z = −

(αs

π

)2
. (37.5)

The extra RG function β (L) (so called because it appears in the longitudinal part of the
Green function of two axial currents) is given by

1

(2n f )2
β (L) = − 1

32π2

(αs

π

)2
[

1 + 29

4

(αs

π

)]
. (37.6)
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(a)

(b) (c)

(d)

Fig. 37.1. Feynman diagrams corresponding to the OPE of the gluonium correlator: (a) perturbative;
(b) two-gluon condensate; (c) three-gluon condensate; (d) four-gluon condensate.

The RGE is solved in the standard way, giving

χ (k2, αs ; µ) = e−2
∫ t

0 dt ′γ (αs (t ′))
[
χ (k2, αs(t); µet )

−2
∫ t

0
dt ′′β (L)(αs(t ′′))e2

∫ t ′′
0 dt ′γ (αs (t ′))

]
, (37.7)

where αs(t) is the running coupling. The different QCD diagrams contributing to the cor-
relator are shown in Fig. 37.1.

The perturbative expression for the two-point correlation function in the M S scheme is
[455]:

χ (k2)P.T. � −
( αs

8π

)2 2

π2
k4 log

−k2

µ2

[
1 +

(αs

π

) (
1

2
β1 log

−k2

µ2
+ 29

4

)
+ · · ·

]
(37.8)

The non-perturbative contribution from the gluon condensates (coming from the next
lowest dimension operators in the OPE) is [382]:

χ (k2)N.P. � − αs

16π2

[(
1 + 1

2
β1

(αs

π

)
log

−k2

µ2

)
〈αs G2〉 − 2

αs

k2
〈gG3〉

]
. (37.9)
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(b)

(d)

(a)

(c)

Fig. 37.2. Feynman diagrams corresponding to the OPE of the meson-gluonium correlator: (a) per-
turbative; (b) diagram which mixes with (a) under renormalization; (c) quark condensate; (d) gluon
condensate.

37.2 Pseudoscalar meson-gluonium mixing

Let us consider the off-diagonal two-point correlator:

�−
gq (q2) =

∫
dx eiq.x i〈0|T Q R(x) ∂µ Jµ

5 (0)|0〉 (37.10)

shown in Fig. 37.2.
Its QCD expression reads [458]:

(8π )2�−
gq (q2) = αs

(αs

π

) 3

π2
m2

s q2 log −q2

ν2

[
log −q2

ν2
− 2

3

(
11

4
− 3γE

)]

− 8αs

(αs

π

)
ms〈s̄s〉 log −q2

ν2

+ 2
(αs

π

)
〈αs G2〉

(
m2

s

q2

)
log − q2

m2
s

, (37.11)

where one can notice that the mixing from the OPE vanishes in the chiral limit. However,
one should notice that this mixing acts on the gluonium propagator, that is, it affects the mass
splitting but not its decay width which is governed by a three-point function. Unfortunately,
several authors mix these two features in the literature. This feature may justify why the
lattice prediction in the world without quark can give a prediction that is almost compatible
with the experimentally observed gluonium candidate.
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37.3 Scalar gluonia

We shall be concerned with the correlator:

�s(q2) ≡ 16i
∫

d4x eiqx 〈0|T θµ
µ (x)θµ

µ (0)†|0〉 , (37.12)

where θµν is the improved QCD energy-momentum tensor (neglecting heavy quarks) whose
anomalous trace reads, in standard notations:

θµ
µ (x) = 1

4
β(αs)G2 + (1 + γm(αs))

∑
u,d,s

mi ψ̄ iψi . (37.13)

Its leading-order perturbative and non-perturbative expressions in αs have been obtained
by the authors of [382]. To two-loop accuracy in the M S scheme, its perturbative expression
has been obtained by [455], while the radiative correction to the gluon condensate has been
derived in [456]. Using a simplified version of the OPE:

�s(q2) =
∑

D=0,4,···
CD〈OD〉 , (37.14)

one obtains for three flavours and by normalizing the result with (β(αs)/αs)2:

C0 = −2
(αs

π

)2
(−q2)2 log −q2

ν2

{
1 + 59

4

(αs

π

)
+ β1

2

(αs

π

)
log −q2

ν2

}

C4〈O4〉 = 4αs

{
1 + 49

12

(αs

π

)
+ β1

2

(αs

π

)
log −q2

ν2

}
〈αs G2〉

C6〈O6〉 = 2αs

{
1 − 29

4
αs log −q2

ν2

}
g3 fabc〈GaGbGc〉

C8〈O8〉 = 14
〈 (

αs fabcGa
µρGbρ

ν

)2 〉 − 〈 (
αs fabcGa

µνGb
ρλ

)2 〉
. (37.15)

37.4 Scalar meson-gluonium mixing

Let’s consider the off-diagonal two-point correlator:

�+
gq (q2) =

∫
dx eiq.x i〈0|T J2g(x) J †

q (0)|0〉 , (37.16)

where:

J2g = αs G2 , Jq = 2mq̄q . (37.17)

Its perturbative QCD expression reads [458]:

�+
gq (q2) = αs

(αs

π

) 3

π2
m2

s q2 log −q2

ν2

[
log −q2

ν2
− 2

3
(4 − 3γE )

]
. (37.18)

The evaluation of the quark and gluon condensates is very similar to the case of the
pseudoscalar channel, which the reader can easily evaluate as an exercise. The result
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+ + . . .

Fig. 37.3. Feynman diagrams corresponding to the OPE of the tri-gluonium correlator: (a) perturbative;
(b) gluon condensate.

indicates that the mixing also vanishes in the chiral limit like in the case of the pseudoscalar
channel.

37.5 Scalar tri-gluonium correlator

Here, one studies the correlator in Fig. 37.3 associated to the interpolating trigluon current:

J3g = g3 fabc〈GaGbGc〉 (37.19)

Its QCD expression reads [457]:

ψ3(q2) = −α2
s

{
3αs

10π
q8 log −q2

ν2
+ 18πq4〈αs G2〉

− 27

2

(
q2 log −q2

ν2

)
g3 fabc〈GaGbGc〉 + αsπ

336 × 64 (φ7 − φ5)

}
, (37.20)

with:

φ5 = 1

16
Tr〈GνµGµρGρτ Gτν〉

φ7 = 1

16
Tr〈GνµGνρGµρGµτ 〉 . (37.21)

37.6 Scalar di- and tri-gluonium mixing

We shall be concerned with the off-diagonal correlator:

ψ23(q2) ≡ i
∫

d4x eiqx 〈0|T J2g(x)J3g(0)†|0〉 . (37.22)

Its QCD expression reads [457]:

ψ23(q2) = α2
s

{
log −q2

ν2

[
9

4π3
g2q6 − 9

4π
g2〈G2〉q2

]
− 24πg〈 fabcGaGbGc〉

}
. (37.23)
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37.7 Tensor gluonium

We shall be concerned with the two-point correlator:

�T
µνρσ ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θ g
ρσ (0)†|0〉

= 1

2

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
ψT (q2) , (37.24)

where:

θ g
µν = −Gα

µGνα + 1

4
gµνGαβ

Gαβ . (37.25)

and:

ηµν ≡ gµν − qµqν

q2
. (37.26)

To leading order in αs and including the non-perturbative condensates, the QCD expres-
sion of the correlator reads [382]:

�T (q2 ≡ −Q2) = − 1

20π2
(Q4) log

Q2

ν2
+ 5

12

g2

Q4
〈2O1 − O2〉 , (37.27)

where:

O1 = ( fabcGµαGνα)2 and O2 = ( fabcGµνGαβ)2 . (37.28)

Using the vacuum saturation hypothesis, one can write:

〈2O1 − O2〉 � − 3

16
〈G2〉2 . (37.29)

37.8 Tensor meson-gluonium mixing

We shall be concerned with the off-diagonal two-point correlator:

�T
gq,µνρσ ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θq
ρσ (0)†|0〉

= 1

2

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
�T

gq (q2) , (37.30)

where

θq
µν(x) = i q̄(x)(γµ D̄ν + γν D̄µ)q(x) . (37.31)

Here, D̄µ ≡ �Dµ − Dµ is the covariant derivative, and the other quantities have already
been defined earlier. Taking into account the mixing of the currents, one obtains [452]:

�T
gq (q2 ≡ −Q2) � q4

15π2

(αs

π

) (
log2 Q2

ν2
− 91

15
log

Q2

ν2

)
− 7

36
log

Q2

ν2

(αs

π

)
〈G2〉 .

(37.32)
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. . .+

Fig. 37.4. Lowest order tachyonic gluon contribution to the gluonic correlator. The cross in the internal
gluon propagator corresponds to the tachyonic gluon mass insertion λ2.

37.9 Contributions beyond the OPE: tachyonic gluon mass

As we have seen previously, there are also contributions beyond the SVZ-expansion. We
shall first be concerned with the two-point correlator:

�s(Q2) ≡ i
∫

d4x eiqx 〈0|T J2g(x)(J2g(0))†|0) (37.33)

associated to the scalar gluonium current:

J2g = αs
(
Ga

µν

)2
. (37.34)

Its evaluation leads to:

1

π
Im�s(s) ≈ (parton model)

(
1 − 6λ2

s
+ · · ·

)
. (37.35)

The tachyonic gluon contribution comes from the diagram in Fig. 37.4.
Thus, one can expect that the λ2 correction in this channel is relatively much larger since

it is not proportional to an extra power of αs . Let us consider now the case of the tensor
gluonium with the correlator:

ψT
µνρσ (q) ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θ g
ρσ (0)†|0〉

= ψT
4

(
qµqνqρqσ − q2

4
(qµqνgρσ + qρqσ gµν) + q4

16
(gµνgρσ )

)

+ ψT
2

(
q2

4
gµνgρσ − qµqνgρσ − qρqσ gµν + qµqσ gνρ + qνqσ gµρ

+ qµqρgνσ + qνqρgµσ

)

+ ψT
0

(
gµσ gνρ + gµρgνσ − 1

2
gµνgρσ

)
, (37.36)

where θ
g
µν has been defined in Eq. (37.25). A direct calculation gives the following results
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for the structure functions ψT
i and their respective Borel/Laplace transforms:

π2ψT
4 = lµQ

15
+ 17

450
− λ2 1

3Q2
===⇒ 1

15

(
1 − 5

λ2

M2

)
, (37.37)

π2ψT
2 = Q2lµQ

20
+ 9Q2

200
+ λ2

(
lµQ

6
− 2

9

)
===⇒ − M2

20

(
1 − 10

3

λ2

M2

)
, (37.38)

π2ψT
0 = Q4lµQ

20
+ 9Q4

200
+ λ2 Q2

(
lµQ

4
− 1

12

)
===⇒ M4

20

(
1 − 5

2

λ2

M2

)
. (37.39)

If, instead of considering θ
g
µν , we would introduce the total energy-momentum tensor of

interacting quarks and gluons θµν , then various functions components of ψµνρσ are related
to each other because of the energy-momentum conservation. Indeed, requiring that

ψT
µνρσ qµ ≡ 0

we immediately obtain:

ψT
2 = 3

4
Q2ψT

4 and ψT
0 = 3

4
Q4ψT

4 ,

and, as a consequence, the following representation of the function in Eq. 37.36:

ψT
µνρσ (q) =

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
ψT (Q2) , (37.40)

where:

ψT (Q2) ≡ Q4 3

4
ψT

4 (Q2), ηµν ≡ gµν − qµqν

q2
. (37.41)
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Hybrid correlators

38.1 Light hybrid correlators

We shall be concerned with the two-point correlator (standard notations):

�
µν

V/A(q2) ≡ i
∫

d4x eiqx 〈0|T Oµ

V/A(x)
(Oν

V/A(0)
)† |0〉

= −(gµνq2 − qµqν)�(1)
V/A(q2) + qµqν�

(0)
V/A(q2), (38.1)

built from the hadronic local currents OV/A
µ (x):

Oµ

V (x) ≡: gψ̄ iλaγνψ j G
µν
a : , Oµ

A(x) ≡: gψ̄ iλaγνγ5ψ j G
µν
a : (38.2)

which select the specific quantum numbers of the hybrid mesons; A and V refer respectively
to the vector and axial-vector currents. The invariant �(1) and �(0) refer to the spin one and
zero mesons. The correlator is represented in Fig. 38.1.

The perturbative QCD expressions of the invariants are:

1

π
Im�

(1)
V/A(t)pert = αs

60π3
t2

{
1 + αs

π

[
121

16
− 257

360
n f +

(
35

36
− n f

6

)
log

ν2

t

]}

1

π
Im�

(0)
V/A(t)pert = αs

120π3
t2

{
1 + αs

π

[
1997

432
− 167

360
n f +

(
35

36
− n f

6

)
log

ν2

t

]}
.

(38.3)

The anomalous dimension of the current can be easily deduced to be:

γH = β1 + 32

9
, (38.4)

where β1 = −1/2(11 − 2n f /3) is the first coefficient of the beta function. The short-
distance tachyonic gluon mass effect is given by the diagram in Fig. 38.2 and reads [462]:

1

π
Im�

(1)
V/A(t)λ = − αs

60π3

35

4
λ2t

1

π
Im�

(0)
V/A(t)λ = αs

120π3

15

2
λ2t . (38.5)
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+

(a) (b)

+

(c) (d)

+

(e) (f)

Fig. 38.1. Feynman diagrams corresponding to the OPE of the hybrid correlator: (a) perturbative;
(b) quark condensate; (c) gluon condensate; (d) mixed condensate; (e) three-gluon condensate;
(f) four-quark condensate.

. . .+

Fig. 38.2. Lowest order tachyonic gluon contribution to the hybrid correlator. The cross in the internal
gluon propagator corresponds to the tachyonic gluon mass insertion λ2.

The (corrected) contributions of the dimension-four and -six terms have been obtained
by [461] and reads in the limit m2 = 0:

�
(1)
V (q2)N P = − 1

9π
[αs〈G2〉 + 8αsm〈ψ̄ψ〉] log −q2

ν2

+ 1

q2

[
16π

9
αs〈ψ̄ψ〉2 + 1

48π2
g3〈G3〉 − 83

432

αs

π
mg〈ψ̄Gψ〉

]
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�
(0)
A (q2)N P = −

[
1

6π
[αs〈G2〉 − 8αsm〈ψ̄ψ〉]

− 11

18

αs

π

1

q2
mg〈ψ̄Gψ〉 + O

(
1

q2

) ]
log −q2

ν2
, (38.6)

where one can notice from [461] the miraculous cancellation of the log-coefficient of the
D = 6 condensates in �

(1)
V .

38.2 Heavy hybrid correlators

Analogous hybrid correlators but for heavy quarks have been evaluated in [463] for unequal
masses and for the (axial-)vector channels. In the following, we shall present the results
for the equal mass case m in the vector channel which has been checked and completed in
[464]. Using the same normalization of currents as in the case of light quarks, one obtains
the perturbative spectral functions [464]:

1

π
Im�

(1)
V,pert = m6αs NCF

16π3

1

t

(
7

3
+ 1

60z2
− 5z

3
− 3z2

4
+ z3

15
+ ln z + 2z ln z

)

1

π
Im�

(1+0)
V,pert = −m4αs NCF

16π3

(
2

3
− 1

15z3
+ 1

2z2
− 2

z
+ z − z2

10
− 2 ln z

)
, (38.7)

where z = t/m2. Note that, in [463], the result is given in integral forms. The contributions
of the tachyonic gluon with a mass squared −λ2 is [464]:

1

π
Im�

(1)
V,λ = m4λ2αs NCF

16π3

1

t

(
−2 − 1

12z2
− 2

3z
+ 10z

3
− 7z2

12
− 3 ln z

)

1

π
Im�

(1+0)
V,λ = −m2λ2αs NCF

16π3

(
−4

3
+ 1

3z3
− 4

3z2
+ 2

z
+ z

3

)
. (38.8)

The contributions of the gluon condensate have been obtained in [463] and expressed in
terms of the correlators of bilinear quark currents:

1

π
Im�

(1)
V,G2 = 4π

9
〈αs G2〉t2Im�V (t)

1

π
Im�

(0)
V,G2 = −2π

3
〈αs G2〉t2Im�V (t) , (38.9)

where:

Im�V (t) = N

24π
v(3 − v2) (38.10)

is the vector bilinear current spectral function and where v2 = 1 − 4m2/t is the square of
the heavy quark velocity.
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Correlators in x-space

In previous chapters we have discussed correlators in the momentum space. In some ap-
plications, some authors prefer to work in the x-space. From the pure theoretical point of
view, the use of the x-space is no better than the use of the momentum space, which is
the traditional tool of QSSR [1,3]. However, each representation has its own advantages
and inconveniences. The x-space approach is described in detail, for example in [386]. In
particular, the current correlators are measured in the most direct way on the lattice [393].
In the coordinate space, the two-point functions obey a dispersion representation:

�(x) = 1

4π2

∫ ∞

0
dt

√
t

x
K1(x

√
t) Im�(t) , (39.1)

where K1(z) is the modified Bessel function, which behaves for small z as:

K (z → 0) � 1

z
+ z

2
ln z . (39.2)

In the limit x → 0, �(x) coincides with the free-field correlator. For the sake of com-
pleteness, we begin with a summary of theoretical expressions for the current correlators,
both in the Q− and x−spaces. We will focus on the (V ± A) and (S ± P) channels since
the recent lattice data [393] refer to these channels.

39.1 (Axial-)vector correlators

In case of (V ± A) currents the correlator is defined as:

�µν(q) = i
∫

d4x eiqx 〈T Jµ(x)Jν(0)†〉 = (qµqν − gµνq2)�(q2) , (39.3)

where −q2 ≡ Q2 > 0 in the Euclidean space–time. For the sake of definiteness we fix the
flavour structure of the light-quark current Jµ as:

J V ±A
µ = ūγµ(1 ± γ5)d . (39.4)
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In the chiral limit one has in the (V + A) case (see, e.g., [1,3] and previous chapters):

�V +A(Q2) = 1

2π2

{
−

(
1 + αs

π

)
ln

Q2

ν2
− αs

π

λ2

Q2
+ π

3

〈
αs

(
Ga

µν

)2〉
Q4

+ 256π3

81

αs〈q̄q〉2

Q6

}
.

(39.5)

The corresponding relation for the (V − A) case reads as:

�V −A(Q2) = 4mq < q̄q >

Q4
− 64π

9

αs〈q̄q〉2

Q6
+ 8π

αs M2
0 〈q̄q〉2

Q8
, (39.6)

where M2
0 ≈ 0.8 GeV2 parametrizes the mixed condensate as discussed in previous chapters.

In the x-space the same correlators, upon dividing by �V +A
pert where �V +A

pert stands for the
perturbative correlator, are obtained by applying the equations collected for convenience in
the Table G.1 from [394] given in Appendix G. Therefore, one obtains [394]:

�V +A

�V +A
pert

→ 1 − αs

4π
λ2 · x2 − π

48

〈
αs

(
Ga

µν

)2〉
x4 ln x2 + 2π3

81
αs〈q̄q〉2x6 ln x2 . (39.7)

Note that ln x2 is negative since we start from small x . In the (V − A) case:

�V −A

�V +A
pert

→ π2

2
mq〈q̄q〉x4 ln x2 − π3

9
αs〈q̄q〉2x6 ln x2 . (39.8)

The x-transform of the Q2 · �(Q2) is given by:

Q2 · �V +A

Q2 · �V +A
pert

→ 1 − π

96

〈
αs

(
Ga

µν

)2〉
x4 + 2π3

81
αs〈q̄q〉2x6 ln x2. (39.9)

Similarly:

Q2 · �V −A

Q2 · �V +A
pert

→ −π3

9
αs〈q̄q〉2x6 ln x2 . (39.10)

39.2 (Pseudo)scalar correlators

Next, we will concentrate on the currents having the quantum numbers of the pion and of
a0(980)-meson. The correlator of two pseudoscalar currents is defined as

�P (Q2) ≡ i
∫

d4x eiqx 〈T {Jπ (x)Jπ (0)}〉 , (39.11)

where

J P = i(mu + md )ūγ5d , (39.12)
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In the momentum space, it reads in terms of the renormalized coupling, masses and
condensates:

�P (Q2) ≡ i
∫

d4x eiqx 〈T {Jπ (x)Jπ (0)}〉

= 3

8π2
(mu + md )2

{[
1 +

(
17

3
− ln

Q2

ν2

)
αs

π

]
Q2 ln

Q2

ν2
+ 4αs

π
λ2 ln

Q2

ν2

+ π

3

〈
αs

(
Ga

µν

)2〉
Q2

+ 896π3

81

αs〈q̄q〉2

Q4

}
. (39.13)

Here, the standard OPE terms can be found in [1,3,167] as compiled in previous chapters,
while the gluon-mass correction was introduced first in [161]. It is more convenient to
introduce the running QCD coupling ᾱs(Q2), the quark running mass m̄i (Q2) and condensate
〈q̄q〉(Q2),1 into the second derivative in Q2 of �P (Q2) defined in Eq. (39.13), which obeys
an homogeneous RGE:

∂2�P

(∂ Q2)2
= 3

8π2

(m̄u + m̄d )2

Q2

{
1 + 11

3

ᾱs

π
− 4αs

π

λ2

Q2

+ 2
π

3

〈
αs

(
Ga

µν

)2〉
Q4

+ 2 · 3
896π3

81

ᾱs〈q̄q〉2

Q6

}
. (39.14)

In what follows, we shall work with the appropriate ratio where the pure perturbative
corrections are absorbed into the overall normalization and concentrate on the power correc-
tions assuming that these corrections are responsible for the observed rather sharp variations
of the correlation functions. Thus, in the x-space we have for the pion channel [394]:

�P

�P
pert

→ 1 − αs

2π
λ2x2 + π

96

〈
αs

(
Ga

µν

)2〉
x4 − 7π3

81
αs〈q̄q〉2x6 ln x2 . (39.15)

Note that the coefficient in front of the last term in Eq. (39.15) differs both in the absolute
value and sign from the corresponding expression in [386].

Similarly, in the S-channel, the correlator associated with the scalar current having the
quantum number of the a0:

J S = i(mu − md )ūd (39.16)

is obtained from Eq. (39.13) by changing mi into −mi and by taking the coefficient in front
of the 1/Q6 correction to be −1408π3/81 instead of 896π3/81 in Eq. (39.13). This term
was found first in [666].

Therefore, we have in the x−space:

�S

�S
pert

→ 1 − αs

2π
λ2x2 + π

96

〈
αs

(
Ga

µν

)2〉
x4 + 11π3

81
αs〈q̄q〉2x6 ln x2 . (39.17)

1 We assume that αsλ
2 does not run like 〈αs (Ga

µν )2〉.
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The channel which is crucial for the analysis in [393,394] is the (S + P), which is
less affected by some eventual direct instanton contributions than the individual S and P
correlators. In this channel:

RP+S ≡ 1

2

(
�P

�P
pert

+ �S

�S
pert

)
→ 1 − αs

2π
λ2x2

+ π

96

〈
αs

(
Ga

µν

)2〉
x4 + 4π3

81
αs〈q̄q〉2x6 ln x2 . (39.18)

This expression concludes the summary of the power corrections to the current correlators.
We shall see later on that the QCD expressions of the two-point functions given in this

part of the book are crucial inputs in the discussions of QCD spectral sum rules analysis and
in various high-energy processes (e+e− → hadrons total cross-section, Higgs decays, . . .).
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Introduction

In the previous parts of this book, we have studied different methods based on power
corrections, namely renormalons, instantons and the SVZ-expansion in terms of condensates
and eventual quadratic corrections, which are one important aspect of non-perturbative
QCD. In this part, we shall shortly discuss the other most popular non-perturbative methods
used in QCD for studying the low-energy properties of the hadrons and of QCD. These are:

� Lattice gauge theory
� Chiral perturbation theory (ChPT)
� Models of the QCD effective action
� Heavy quark effective theory (HQET)
� Potential approaches for quarkonia.

The method and phenomenology of QCD Spectral Sum Rules (QSSR) which will be
discussed in more details will be devoted to a new part. Here, we do not aim to present a
complete review and references but we shall limit ourselves to the outline of the general
features of the different approaches. A more extensive list of non-perturbative methods,
which will not be discussed here, such as the:

� Skyrme model
� Bag models
� Discretized light-cone quantization

can be found in [3]. We shall shortly discuss in the chapter dedicated to the heavy quarks,
the two approaches:

� Potential and quark models
� Stochastic vacuum model
� Non-relativistic effective theories

which are discussed in details in some other reviews (see e.g. [51]). We shall complete this
part by a short discussion on monopole and confinement.
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Lattice gauge theory

41.1 Introduction

In this chapter, we shall discuss very briefly the main idea behind the lattice approach in
QCD. More detailed discussions and some introductions can be found in different textbooks
on lattice gauge theories [489] and some non-specialized reviews. (see e.g., Yndurain’s book
[46] or Dosch’s review [51]). More recent reviews on the lattice results can be found in
different contributions at the annual Lattice conferences (Nucl. Phys. B (Proc, Suppl.)). The
starting point is the Euclidian generating functional:

Z =
∫

Dψ(x)Dψ̄(x) exp

{
−S ≡

∫
d4x LQCD

}
, (41.1)

where the QCD action S is positive, thus providing the convergence factor. It is convenient
to write the Lagrangian in a matrix notation:

Gµν ≡
∑

a

λa

2
Ga

µν , (41.2)

where λa are the generators of the SU (3)c gauge transformation group:

U (x) = exp

{
ig

λa

2
Aa(x)

}
. (41.3)

Therefore, it reads:

LQCD(x) = 1

2

∑
µν

G2
µν(x) + ψ̄(x)(∂µγµ + m)ψ(x) − igψ̄γµ Aµ(x)ψ(x) , (41.4)

where, in this notation, the gauge transformations become:

Aµ(x) → U−1(x)Aµ(x)U (x) + i

g
U−1(x)∂µ(x)U (x)

Gµν(x) → U−1(x)Gµν(x)U (x) ,

ψ(x) → U−1(x)ψ(x) . (41.5)

Next we introduce the essential ingredients for the lattice formulation of QCD. Here,
one expects that all expressions introduced below are well-defined, and, in principle, can be

396
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evaluated numerically. This feature has made lattice gauge theory one of the most important
non-perturbative methods for QCD. The functional integral introduced before has to be
understood as the limiting value of a high-dimensional volume integral where the fields at
the lattice points i, j , . . . are the integration variables. For definiteness, we shall consider
a finite hypercube lattice, with lattice spacing a and volume V = (Na)4 with periodic
boundary conditions. The physical (continuum) limit is reached for V → ∞ first and after
a → 0. The lattice provides a regularization as a is finite, such that UV divergences do
not occur. As long as N is bounded from above, IR divergences are prevented. The UV
divergences will reappear as 1/a or/and log a, when one goes to the continuum limit, where
a → 0.

� A point on the lattice is denoted by its coordinates in units of a, i.e. by the integers: (n) ≡
(n1, n2, n3, n4), representing the point with coordinates X = (an1, an2, an3, an4).

� The neighbour of the point (n) in the µ-direction is denoted by (n + µ).
� The link from point n to its neighbour in the µ-direction, n + µ is denoted by (n, n + µ). Its plays

an essential rôle in the lattice.

41.2 Gluons on the lattice: the Wegner–Wilson action

� An element of the gauge group is attached to each link, while its inverse is attached to the link in
the opposite direction [490,491]:

(n, n + µ) → U (n, n + µ) , (n + µ, n) → U−1(n, n + µ) , (41.6)

where the group elements U (n, n + µ) can be expressed by the generators λa/2 of the group as:

U (n, n + µ) = exp

{
ig

aλa

2
Aa

µa(n)

}
. (41.7)

� In a local gauge theory, an element of the gauge group is attached to each point on the lattice:

U (n) = exp

{
ig

λa

2
�a(n)

}
. (41.8)

The gauge transformation for the group element U (n, n + µ) is defined as:

U (n, n + µ) → U (n)U (n, n + µ)U−1(n + µ) , (41.9)

where one may notice that there is no inhomogeneous term on the lattice version of gauge
transformation.

� The continuum limit is achieved by connecting quantities attached to neighbouring lattice points
through the Taylor expansion and retaining the lowest-order contribution in the lattice spacing a:

U (n + µ) = U (x) + a∂µU (x) + O(a2) . (41.10)

Using the expansion:

U (n, n + µ) = 1 + iag
λa

2
Aa(x) + O(a2) , (41.11)

the gauge tranformation in Eq. (41.9), becomes the one of the continuum limit in Eq. (41.5).
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j+ν k+ν

n+ν

n+µ
n+µ
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k

(a)

a
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Fig. 41.1. Plaquette: a group element U (n, n + µ) is attached to each link.

� The Wegner–Wilson loop [490,491] corresponds to the product of group elements U (n, n + µ)
along a closed contour L . It is defined as:

W [L] = U (n, n + µ)U (n + µ, n + µ + λ) · · · U (n + ν, n) . (41.12)

Using the property UU−1 = 1 and the fact that the trace is cyclic: TrABC = TrBCA = . . . , it is
easy to show that, under the gauge transformations in Eq. (41.9):

T r W [L] is gauge invariant . (41.13)

� A Plaquette is the simplest non-trivial Wegner–Wilson loop, which is the product of four group
elements attached to a square with a sidelength a and lattice points as corners (see Fig. 41.1).

P(n, µ, ν) = U (n + µ, n + µ + ν)U (n + µ + ν, j + ν)U ( j + ν, j)U ( j, j + µ)

= U (n + µ, n + µ + ν)U−1(n + ν, j + µ + ν)U−1( j, j + ν)U ( j, j + µ)

= e[iga Aν (n+µ)]e [−iga Aµ(n+ν)]e[−iga Aν (n)]e[−iga Aµ(n)] (41.14)

Using the Campbell–Hausdorff formula:

eax eay � eax+ay+a2[x,y]+O(a3) , (41.15)

with each pair of the previous exponentials, one obtains:

P(n, µ, ν) = e{−iag(Aν (n+µ)−Aµ(n+ν))+a2g2[Aν (n+µ),Aµ(n+ν)]/2+iO(a3)}

× e{−iag(Aν (n)−Aµ(n))+a2g2[Aν (n),Aµ(n)]/2+iO(a3)} , (41.16)

Using the Taylor expansion:

Aµ( j + ν) = Aµ(n) + a∂ν Aµ(n) + O(a2) , (41.17)

and applying again Eq. (41.15), one can deduce the form of the plaquette in the continuum
limit:

P(n, µ, ν) = e{ia2g2[Gµν (n)+O(a)]} , (41.18)

with the usual definition of the field tensor:

Gµν(x) ≡ Ga
µν

λa

2
= ∂µ Aν(x) − ∂ν Aµ(x) − ig[Aν, Aµ] . (41.19)
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In terms of the plaquette, one can now define a positive real and gauge-invariant action
on the lattice:

Sg = − 1

g2

∑
n

∑
µ<ν

Tr{P(n, µ, ν) + P†(n, µ, ν)} . (41.20)

It is customary to express the action in terms of the variable:

β ≡ 2Nc

g2
. (41.21)

In the continuum limit, one can write:

Sg = − 1

g2

∑
n

∑
µ<ν

2Re Tr exp{ia2gGµν(n) + O(a)}

= − 1

g2

∑
n

∑
µ,ν

Re Tr
{

1 + ia2gGµν(n) − 1

2
a4g2Gµν(n)Gµν(n)

}
, (41.22)

where the sum over µ, ν gets a factor 1/2 because µν and νµ define the same plaquette.
Using the fact that Trλa = 0, one recovers the usual continuum action given in Eq. (41.4):

Sg = 1

2

∑
n

∑
µ,ν

a4Gµν(n)Gµν(n) + O(a6) + constant . (41.23)

The vacuum expectation value of a function of the fields F[U (n, n + µ)] is:

〈F[U (n, n + µ)]〉 = 1∫ DU eSg

∫
DU eSg F[U (n, n + µ)] , (41.24)

where the invariant measure on the group attached to the link is:

DU ≡
∏
n,ν

dU (n, n + ν) . (41.25)

For an Abelian group, the measure is:

dU (n, n + ν) = d(a Aν(n)) with : −π/a ≤ Aν(n) ≤ π/a . (41.26)

For a non-Abelian SU (N )c group, one has:

dU (n, n + ν) =
√

det

[
1 − cos a Aν(n)

(a Aν(n))2

] N 2
c −1∏

b=1

d
(
a Ab

ν(n)
)
. (41.27)

41.3 Quarks on the lattice

In this section, we turn to the less understood subject of the formulation of quarks (fermions)
on the lattice, where the complications are already present at the free-field level. Since
fermions obey Pauli exclusion principle, they are described at the classical level by anti-
commuting variables forming the so-called Grassmann algebra, which anticommute them-
selves but commute with complex numbers. To each lattice points, with coordinates (n),
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are attached Nc × 8 anticommuting quantities:

ψc
α(n) , ψ̄c

α(n) , (41.28)

where the spinor α runs from 1 to 4, the colour index c from 1 to Nc. The field transform
as:

ψc
α(n) → Ucc′ψc′

α (n) , ψ̄c
α(n) → U−1

cc′ ψ
c′
α (n) , (41.29)

Therefore terms like:

ψ̄c
α(n)ψc

α(n) , ψ̄c
α(n + µ)Ucc′ (n + µ, n)ψc′

α (n) , (41.30)

are gauge invariant. It is usual to start from the free continuum Lagrangian in Eq. (41.4):

Lfree = ψ̄(x)(∂γµ + m)ψ(x) , (41.31)

which possesses a SU (n f )L × SU (n f )R global symmetry in the massless limit m = 0. As
in previous section, one introduces a four-dimensional hypercubic lattice of N 4 sites. To
each site n, one associates an independent four-component spinor variable:

ψn ≡ ψ(an) → ψ(x) (41.32)

characterizing the quark fields. For simplifying the lattice action, one defines the derivative
symetrically:

∂µψ → 1

2a
(ψn+µ − ψn−µ) . (41.33)

Therefore, the lattice action reads:

Sfree =
∑
n,k

ψ̄n Mnkψk (41.34)

with:

Mnk = 1

2
a3

∑
µ

γµ(δk,n+µ − δk,n−µ) + a4mδnk . (41.35)

Now, one can put this action into a path integral:

Zfree =
∫

DψDψ̄ e−S , (41.36)

where:

Dψ ≡
∏

k

dψk , (41.37)

after a relatively long, though straightforward manipulation, one finds:

Zfree = (−1)2N+1

(2N + 1)!
det M . (41.38)



41 Lattice gauge theory 401

The quark propagator can be obtained by inverting M , which one can do with the help
of a (finite) Fourier transform:

(M−1)nk = a−4(2N + 1)−4
∑

j

M̃−1
j exp

{
2iπ

2N + 1

∑
µ

jµ(n − k)µ

}
, (41.39)

and by using the relation:

N∑
jµ=−N

exp
2iπ

2N + 1
jµ(n − k)µ = (2N + 1)δnµkµ

. (41.40)

Therefore, one finds:

S( j) = M̃−1
j =

(
m + i

a

∑
µ

γµ sin
2π jµ

2N + 1

)−1

. (41.41)

In the case of a large lattice, one has:

2π jµ
2N + 1

≡ apµ , (41.42)

which leads to the p-space propagator:

S(p) =
(

m + i

a

∑
µ

γµ sin apµ

)−1

. (41.43)

Replacing the sum over j by integrals:

1

2N + 1

N∑
jµ=−N

→ a
∫ +π/a

−π/a

dpµ

2π
, (41.44)

Equation (41.39) becomes:

(M−1)nk =
∫ +π/a

−π/a

d4 p

(2π )4

ei
∑

µ pµ(an−ak)µ

m + (i/a)
∑

µ γµ sin apµ

. (41.45)

In the continuum limit (a → 0, an → x, ak → y), this previous equation becomes:

(M−1)nk → S(x − y) =
∫ +∞

∞

d4 p

(2π )4

ei
∑

µ pµ(x−y)µ

m + i
∑

µ γµ pµ

, (41.46)

which is the Euclidian propagator. However, by analysing Eq. (41.43), for example in the
case m = 0, one can see that, for finite a, it has too many poles as the denominator van-
ishes for pµ = 0 and pµ = π/a. On the hypercube lattice, one has 24 = 16 poles instead
of one! This fermion doubling is catastrophic as one loses asymptotic freedom, the exis-
tence of the U (1) anomaly (the 16 fermions contribute with alternate signs to the anomaly
triangle), . . . Several solutions to this fermion doubling problem have been proposed in the
literature [489]. One of the most popular is the one proposed by Wilson [492]. It consists
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of adding to the Lagrangian a quadratic term:

LW
q = mψ̄nψn + 4r

a
ψ̄nψn + 1

2a

∑
µ

{(r + γµ)ψn+µ + (r − γµ)ψn−µ} , (41.47)

where r is arbitrary. In the large lattice limit, the corresponding p-space propagator is:

SW (p) =
(

m + 1

a

∑
µ

[
iγµ sin apµ + r

a
(1 − cos apµ)

])−1

. (41.48)

One can notice that for small momentum, the new term is of the order of a and thus drops
out. When a component p is near π/a, the addition increases the mass of the unwanted
state by 2r/a:

m + r

a

∑
ν

(1 − cos apν) = m + 2rnπ

a
, (41.49)

where the sum ν runs over apν = π , and nπ is the number of extra particles. Therefore, in
the continuum limit, all extra states have infinite mass and then decouple. Only one species
of physical particle mass m survives for apµ = 0. However, it was shown [493] that the
propagator in Eq. (41.48) breaks chiral invariance. One hopes that, working with Wilson
fermions, one can recover chiral symmetry in the continuum limit.

41.4 Quark and gluon interactions

Now, one can formulate the quark and gluon interactions on the lattice. In the case of Abelian
theory:

Lfree + LAψ = mψ̄nψn

+ 1

2a
ψ̄n

∑
µ

γµ[U (n, n + µ)ψn+µ − U (n − µ, n)ψn−µ] , (41.50)

which is invariant under the gauge transformation in Eq. (41.9) of the link matrices (gλa/2 ≡
e electric charge). Using the expansions:

lim
a→0

U (n, n + µ) = 1 − iag Aµ + O(a2) , (41.51)

and:

lim
a→0

ψ(n + µ) = ψ(n) + a∂µψ(n) + O(a2) , (41.52)

it is easy to show that the previous Lagrangian gives the correct continuum limit:

lim
a→0

{Lfree + LAψ } = mψ̄(x)ψ(x) + ψ̄(x)γ µ∂µψ(x) − ieψ̄(x)γ µ Aµψ(x) . (41.53)
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In QCD, the interaction between quarks and gluons can be introduced as in the Abelian
case. For Wilson fermions, the action reads:

Sgq = a4
∑

n

ψ̄n

(
m + 4r

a

)
ψn

+ 1

2a

∑
n,µ

ψ̄n[(r + γµ)U (n, n + µ)ψn+µ + (r − γµ)U−1(n − µ, n)ψn−µ] .

(41.54)

The continuum limit of the action can also be obtained:

lim
a→0

Sgq = a4

{
m

∑
n

ψ̄nψn + 1

2

∑
n,ν

[ψ̄nγµ∂muψn − ∂µψ̄nγµψn

− igψ̄nγµψn Aµ] + r

2a
∂µ[ψ̄nγ

µψn]

}
. (41.55)

The last term vanishes after summation over n (integration over x), such that the contin-
uum limit reproduces the usual QCD action in Eq. (41.4). Therefore, the corresponding full
generating functional for Wilson fermions is:

Z =
∫

DU Dψ Dψ̄ e−(Sg+Sgq ) , (41.56)

where the measures have been defined in Eqs. (41.25) and (41.37). One should notice that
unlike the continuum case, the gauge-fixing term is not necessary to obtain some vacuum
expectation values (except the gluon propagator or some gauge-dependent quantities), as
Eq. (41.56) averages over all gauges. In order to define the Green’s functions, one has
to define the integration over the Grassmann variables. which obey the following general
properties:∫

dη1dη2 · · · dηn (η1η2 · · · ηn) = 1, all other integrals are zero. (41.57)

For instance, one has: ∫
dη1dη2η1η2 = 1 = −

∫
dη1dη2η2η1 ,

∫
dη1dη2η2 = 0 =

∫
dη1η2 . (41.58)

With the previous properties, any analytic function of the Grassmann variables can be inte-
grated. This can be done by Taylor-expanding it and then by applying Eq. (41.57). For in-
stance, the integral over the Grassmann algebra with four generators η̄ j , η j , j = 1, 2 reads:

∫ 2∏
j=1

dη j dη̄ j exp

[
2∑

i, j=1

η̄i Ai jη j

]
=

∫ 2∏
j=1

dη j dη̄ j [η̄1 A11η1η̄2 A22η2 + η̄1 A12η2η̄2 A21η1]

= A11 A22 − A12 A21 = detA . (41.59)
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Collecting the different results in the previous section, the vacuum expectation value of
a function of the gauge and fermion fields is defined as:

〈F[Amua(p), ψ̄(n)ψ(k)]〉 = 1

N
∫

DUDψ̄c
α(n)Dψc

α(n)F[Amua(p), ψ̄(n)ψ(k)]e−Slatt

(41.60)
with:

N =
∫

DUDψ̄c
α(n)Dψc

α(n)e−Slatt : Slatt = Sg + Sgq . (41.61)

From the lattice action, one can, for example, derive different Feynman rules on the
lattice. For example, the propagators can be obtained from the quadratic terms of the fields
entering into the action. The quark propagator has been already given in the previous section
(see e.g. Eq. (41.48) for the Wilson fermion). In the Feynman gauge, the gluon propagator
is:

Dcb
µν(p) = δcbδµν

1

2a−2
∑

ρ(1 − cos apρ)
. (41.62)

Feynman rules for the vertices are more involved as the interactions are non-polynomial
functions of the fields, and there are infinite numbers of vertices associated with higher
powers of the lattice spacing a. More discussions can be found in [494].

41.5 Some applications of the lattice

A large spectrum of the lattice applications can be found in the different references given in
the introduction of this chapter. Here, we shall limit with very few examples as an illustration
of the method.

41.5.1 The QCD coupling and the weak coupling regime

We have noticed that for finite a, QCD on the lattice is UV finite, such that we do not
worry to distinguish between bare and renormalized quantities. Hower, for a → 0, loop
diagrams become divergent in the weak coupling limit, and the lattice can be considered as
a regularization procedure with the cut-off 1/a → ∞. To leading order of pQCD, the QCD
coupling reads:

g2(a) = 4π2

β1 log �latta
. (41.63)

The scale �latt can be related to the one of the M S scheme by simply evaluating one-loop
renormalization for αs , including constant terms using the two different schemes and by
equating. The lattice calculation has been done in [495] but is quite cumbersome due to the
peculiarity of the lattice regularization (Lorentz invariance, . . . ). For n f = 0 fermions, one
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obtains to one loop:

�latt � �0
mom

83.5
� �0

M S

39
. (41.64)

The present values are (see previous chapters and [16]):

�0
M S

≈ 400 MeV =⇒ �latt ≈ 10 MeV , (41.65)

showing that �latt has a very small value. From Eq. (41.63), one can also derive the leading-
order relation between the lattice spacing a and �latt:

a = �−1
latte

4π2

β1g2(a) (41.66)

valid for small a and for weak coupling:

a�latt, g2(a) � 1 . (41.67)

In order to check if one has reached the continuum limit from the numerical analysis, one
should see if the lattice results behave as predicted by the renormalization group equation.

41.5.2 Wilson loop, confinement and the strong coupling regime

Here one considers the Green’s function of a pair of a static infinitely heavy (m → ∞)
quark and anti-quark at lattice points j and j + nµ. A gauge-invariant function of such a
state is given by:

J (k) = ψ̄kU (k, k + ν) · · · U (k + (n − 1)ν, k + nν)ψ(k + nν) . (41.68)

Its propagation in the Euclidian space–time is described by the Green’s function:

G(k, l) = 〈J (l)† J (k)〉 , (41.69)

where the lattice point l is displaced with respect to k by r units in four-direction. Since, in the
action, the fermionic variables ψ̄ψ occur quadratically, hence the integration is Gaussian,
such that the integration over the fermion fields will not pose (in principle) any problem. It
is possible to show that for m → ∞, the Green’s function behaves as:

G(k, l) ∼
( p

m

)2n
〈T r W [L]〉U : p ≡ a3/2 (41.70)

where W (L) is the rectangular Wilson loop with corners k, k + ν, l, l + ν, and 〈. . .〉U corre-
sponds to the vacuum expectation value in Eq. (41.24) over the gauge field U . One can sketch
the derivation of this result by considering the integration over the fermion fields at the point
k. In the integrand one has from Eq. (41.68) the term ψ̄(k). The integral will not vanish if
one has an additional factor ψ(k), which one can obtain by expanding the action e−Slatt . This
expansion leads, among others, to the term: pψ̄(k + µ)(r + γµ)U−1(k, k + µ)ψ(k) . After
fermion integration at the point k, the fermion field ψ̄(k) is no longer present, but now we
have a fermion field at the position k + µ and the previous factor p . . . . We thus hopped
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with the fermion field from k to k + µ, such that we may hop from k to j , and from j + ν

to k + ν. For other points, we need to expand the mass term in e−Slatt , which yields a factor
m for each points. The final factor (p/m)2n and the group elements U attached to the links
of the loop are obtained after dividing by the normalization factor N .

On the other hand, one knows that the Wilson loop measures the response of the gauge
fields to an external quark-like source passing around its perimeter. For a timelike loop,
this represents the production of a quark pair at the earliest time, moving them along the
world lines dictated by the sides of the loop, and then annihilating at the latest time. If the
loop is a rectangle of dimensions T and R, a transfer matrix argument suggests that for
large T :

lim
T →∞

〈W [L]〉U = −exp[−E(R)T ] (41.71)

where E(R) is the static quark–anti-quark energy separated by a distance R. In the strong
coupling regime 1/g2 → 0, one obtains to leading order:

〈W [L]〉U ∼
(

1

g

)RT/a2

, (41.72)

showing that in that approximation the static energy of the quarks increases linearly with
the spatial distance R:

lim
R→∞

E(R) = σ R , (41.73)

where σ is called the string tension and characterizes long-distance physics effects. There-
fore a separation of the two quarks would need infinite energy. Unfortunately, this result is
also obtained for Abelian theory. Since we do not observe confinement in QED, we have to
assume that there is a phase transition between the confining phase in the strong-coupling
regime and the deconfined phase in the weak-coupling regime. There is no formal proof
that such a transition does not exist in non-Abelian QCD. A numerical evaluation of the
expectation value 〈W [L]〉U indicates that the area law in Eq. (41.72) is also verified for weak
coupling, strongly indicating that confinement is a consequence of the QCD-Lagrangian.
Phenomenologically, the string tension can be related to the slope of the Regge trajectory
if one uses a string model for describing the hadrons [496]:

α′ = (2πσ )−1 , (41.74)

where using the phenomenological value α′ � 1 GeV−2, one finds:

σ � (400 MeV)2 . (41.75)

Using the previous equations, one can notice that this quantity is proportional to the QCD
coupling g2, i.e. �lattice. This is a remarkable feature as one is able to relate a long-distance
(σ ) to a short-distance (�latt) quantities.
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41.5.3 Some other applications and limitations of the lattice

Some observables like hadron masses, . . . can also be obtained by calculating numerically
Green’s functions of interpolating fields on the lattice. In so doing, let us consider the vector
current:

Jµ(x) = ψ̄(k)γuψ(k) , (41.76)

which has the quantum number of the ρ-meson. After a rotation in the Euclidian space–time,
the two-point correlator reads (we omit indices for simplicity):

�(T ) ≡ 〈J (T )J (0)〉 = 〈J (0)e−H T J (0)〉 (41.77)

Inserting a complete set of energy eigenstates and taking the large T limit, one may select
the lowest ground state ρ-meson contribution:

�(T ) =
∑

n

|〈J (0)|n〉|2e−En T → |〈J (0)|0〉|2e−E0T , (41.78)

where E0 is equal to the ρ-meson mass Mρ . In this way, one can recover the whole hadron
spectrum, . . . However, in practice, there are many difficulties and questions which the
lattice experimentalists should clearly answer. Besides the usual statistical and finite size
(about 1% if the lattice size L ≥ 3 fermi, and mπ L ≥ 6) errors inherent to the numerical
lattice calculations, which can be minimized using modern technology, there are still large
uncertainties related to the uses of field theory on the lattice.

� When one approximates the functional integral by a product of Riemann integrals, when do we
reach the continuum limit ? The renormalization group analysis shows that one should expect an
exponential dependence of the lattice spacing on the coupling constant. This can be reached if the
lattice spacing a is relatively small like the coupling g.

� However, if the lattice spacing a is small say a fraction of a fermi, the lattice should be large
enough in order to accommodate a hadron of a typical size of one fermi. Therefore, the lattice
should at least have 4 × 104 lattice points. Since for SU (3), we have, for each lattice point, eight
groups of integrations and 24 fermionic integrations, it is clear that one needs very sophisticated
integraltion methods. However, even with these sophisticated integration methods, one has to do
some approximations, as an exact evaluation of the fermionic integrals are not possible with most
of the present computers.

� In the case of (quenched approximation), one ignores quark loops, thus simplifying the evaluation
of the integral, but with a brutal non-inclusion of the fermion determinant into the action. This
implies a modification of chiral symmetry (χ S) for mq = 0 as well as the disappearance of the
QCD anomaly: Mη′ ≈ mπ . At present, some progress towards including active quark flavours has
been achieved by some groups.

� Another obstacle is the small values of the light quark masses. Generally, one evaluates the Green’s
functions at large mass and then extrapolates the results to zero quark mass values with the help
of the mass dependence expected from chiral perturbation theory (ChPT) (see next section). For
a typical value of the lattice spacing 1/a � 2 GeV, and keeping the condition mπ L ≥ 6, one
requires L/a ≥ 90 in order to avoid finite volume effects. At present the lattice size L/a is about
32 (quenched) and about 24 (unquenched) which is far below this limit.



408 IX QCD non-perturbative methods

� There are also discretization errors specific to each lattice actions, which are O(a) for the Wilson
(explicit breaking of χ S) and domain walls (extra fifth dimension for preserving χ S) actions. The
errors are O(a2) for the staggered (reduction of quark couplings with high-momenta gluons) and
O(aαs) for the Clover (inclusion of the mixed quark-gluon operator) actions.

� There are also errors due to the mixing of different operators at finite a.
� How good is the separation of the ground state from the rest of the spectra in the large Euclidian

time limit if the mass splitting between the ground state and the first radial excitation is accidentally
small?

The list of difficulties which we have given is not exhaustive but lattice experts know all
of them completely. These difficulties will have to be resolved before reliable lattice results
on the hadron and QCD parameters, will be available. We hope that such difficulties can
be solved gradually in the future. However, it is unfortunate that most non-lattice experts
and especially experimentalists blindly use the present lattice results without asking about
their reliability, although this is, however, difficult to quantify by non-experts in the field.
Some lattice results will be presented in subsequent chapters as a comparison with the QCD
spectral-sum rules results.
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Chiral perturbation theory

42.1 Introduction

In the general introduction of this book, we have discussed that, below the vector meson
resonances region (E ≤ Mρ), the hadronic spectrum of light flavours only consists of an
octet of quasi-Goldstone pseudoscalar mesons (π, K , η), whose interactions can be easily
understood using the global symmetry of the QCD Lagrangian. In the limit of massless
quarks, the QCD Lagrangian is invariant under the rotations of the left and right quark
fields triplets:

ψL ≡ 1

2
(1 − γ5)ψ , ψR ≡ 1

2
(1 + γ5)ψ , ψ ≡ u, d, s . (42.1)

These rotations generate the chiral group SU (3)L × SU (3)R , which at the level of
hadronic spectrum is broken down to the diagonal flavour SU (3)V (V ≡ L + R) group
of the eightfoldway [7]. The Goldstone bosons are associated to the spontaneous break-
down of chiral symmetry and obey low-energy theorems which are the basis of successful
predictions of current algebra and pion PCAC [13]. Since there is a mass gap separating the
Goldstone bosons from the rest of the hadronic spectrum, one can build an effective field
theory including the symmetry of QCD where the Goldstone bosons are the only dynamic
degrees of freedom [497]. This allows to a systematic analysis of the low-energy implica-
tions of the QCD symmetries which simplifies current algebra calculations and allows an
investigation of higher-order corrections in the sense of perturbative field theory [498]. This
approach is known as chiral perturbation theory (ChPT), which is a low-energy effective
field theory of QCD, where many excellent reviews and lectures have been devoted to the
subject [500–502]. Our presentation has been mainly inspired from the reviews in [500,501]
and the works of Gasser–Leutwyler [499].

A well-known example of effective theories is the low-energy limit of QED (Eγ � me).
In this limit the γ γ scattering process can be described by the effective Euler–Heisenberg
Lagrangian:

Leff = −1

4
Fµν(x)Fµν(x) + A

m4
e

(Fµν(x)Fµν(x))2 + B

m4
e

Fµν(x)Fνσ (x)Fσρ(x)Fρµ(x) + · · ·
(42.2)

409
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which is only based on the gauge, Lorentz and parity invariance conditions. The coefficients
A and B are known and can be computed by integrating out the electron field from the
original QED generating functional, or equivalently by computing the corresponding γ γ

box diagram. They read [503]:

A = −α2

36
, B = 7

90
α2 . (42.3)

However, this QED example is academic since perturbation theory in terms of the QED
coupling α is known to work at high accuracy. In QCD, due to confinement which induces
that quark and gluon are not asymptotic states, the effective approach is more useful as we
know the symmetry properties of QCD, from which we can write the effective theory in
terms of hadronic asymptotic states, and parametrize the unknown dynamics of the theory
in terms of some few couplings.

In the following discussions, we shall limit ourselves to the presentation of the main idea
behind the method and illustrate its applications for the estimate of the light quark mass
ratios.

42.2 PCAC relation from ChPT

One can also derive the previous PCAC relation ontained in Part I of this book using ChPT.
In this approach, it is convenient to formulate the strong interactions of the pseudoscalar
mesons in terms of an effective low-energy QCD Lagrangian described by the octet of
Goldstone fields:

φ(x) = 1√
2

�λ.�ϕ(x) =

⎛
⎜⎝

π0√
2

+ η√
6

π+ K +

π− − π0√
2

+ η√
6

K 0

K − K̄ 0 − 2√
6
η

⎞
⎟⎠ , (42.4)

instead of in terms of the usual quark and gluon fields. The associated 3 × 3 unitary matrix:

U (φ) = exp(i
√

2φ/ fπ ) , (42.5)

transforms linearly under the global chiral rotations, although �ϕ transforms non-linearly.
The unique lowest order (in derivative) effective Lagrangian, satisfying chiral symmetry
and generating non-trivial interaction is:

L = f 2

4
Tr{∂µU †∂µU } , (42.6)

where f is a constant which cannot be fixed by symmetry requirements alone. Expanding
U (φ) in a power series of φ, the Lagrangian reads:

L = 1

2
Tr{∂µφ∂µφ} + 1

12 f 2
Tr{(φ∂µφ)(φ∂µφ)} + O

(
φ6

f 4

)
, (42.7)
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where one should note that the φ4 interaction fixes the π–π scattering amplitude [504]:

T (π+π0 → π+π0) = t

f 2
(42.8)

where t ≡ (p′
+ − p+)2 is the usual kinematic variable. Now, one can go to a step further by

introducing the couplings of external sources to the usual massless QCD Lagrangian:

LQCD(x) = Lmassless
QCD (x) + ψ̄γ µ(vµ + γ5aµ)ψψ̄γ µ (s − iγ5) ψ , (42.9)

where vµ, aµ, s and p are Hermitian 3 × 3 matrices in flavour and colour singlets. The
Lagrangian L is now invariant under the local SU (3)L × SU (3)R gauge transformations.
The generalized effective Lagrangian satisfying the local invariance reads to lowest order:

L(2)
eff = f 2

4
Tr{DµU †DµU } + U †χ + χ †U , (42.10)

where Dµ is the covariant derivative:

DµU = ∂µU − i(vµ + aµ)U + iU (vµ − aµ) (42.11)

and:

χ = 2B(s + i p) . (42.12)

B is a constant which, like f , cannot be fixed by symmetry requirements alone. With the
choice of directions:

s + i p = M + · · ·
rµ = vµ + aµ = eQ Aµ + · · ·
lµ = vµ − aµ = eQ Aµ + e√

2 sin θW

(W †
µT+ + h.c.) + · · · , (42.13)

where Aµ and Wµ are the photon and W − bosons,

M = diag(mu, md , ms), Q = 1

3
diag(2, −1, −1) , (42.14)

and:

T+ =
⎛
⎝ 0 Vud Vus

0 0 0
0 0 0

⎞
⎠ , (42.15)

one can break chiral symmetry explicitly and select the electroweak standard model cou-
plings. The Green functions are obtained as functional derivatives of the generating func-
tional:

exp{i Z} =
∫

DψDψ̄DAµ exp

{
i
∫

d4x LQCD

}
=

∫
D exp

{
i
∫

d4x Leff

}
. (42.16)
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At lowest order in momenta, the generating functional reduces to the classical action:

S2 =
∫

d4x L(2)
eff (x) . (42.17)

The Noether currents can be derived by taking appropriate derivatives with respect to the
external fields:

Jµ

L = δS2

δlµ
= i

2
f 2 DµU †U = f√

2
Dµφ − i

2
(φ �Dµφ) + · · ·

Jµ

R = δS2

δrµ

= i

2
f 2 DµUU † = − f√

2
Dµφ − i

2
(φ �Dµφ) + · · · , (42.18)

which shows the indentification of the coupling f with the decay constant fπ = 92.4 MeV
to order p2:

〈0|Jµ

A |π〉 ≡ i
√

2 fπ pµ . (42.19)

In a similar way:

ψ̄ i
Lψ

j
R = − δS2

δ(s − i p)i j
= − f 2

2
B U i j

ψ̄ i
Rψ

j
L = − δS2

δ(s + i p)i j
= − f 2

2
B(U i j )† , (42.20)

which implies:

〈0|ψ̄ jψ i |0〉 = − f 2 Bδi j , (42.21)

By taking s = M and p = 0, the χ term in Eq. (42.10) gives a quadratic pseudoscalar
mass plus additional interactions proportional to the quark mass. Expanding in powers of
φ, one obtains:

f 2

4
2BTr{M(U + U †)} = B

{
−Tr (Mφ2) + 1

6 f 2
Tr (Mφ4) + · · ·

}
. (42.22)

An explicit evaluation of the trace in the quadratic mass term provides:

M2
π± = (mu + md )B + O(

m2
q

)
,

M2
π0 = (mu + md )B − ε + O(

ε2, m2
q

)
,

M2
K + = (mu + ms)B + O(

m2
q

)
,

M2
K 0 = (md + ms)B + O(

m2
q

)
,

M2
η8

= 1

3
(mu + md + 4ms) B + ε + O(

ε2, m2
q

)
, (42.23)

where:

ε = B

4

(mu − md )2

(ms − m̂)
, m̂ = 1

2
(mu + md ), (42.24)
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originates from the small mixing between the π0 and η8 fields. Previous relations explain
why the masses of the multiplet break strongly explicitly the eightfoldway symmetry be-
cause ms 
 md > mu . Using also these results in Eqs. (42.21) and (42.23), one can deduce
the pion PCAC relation given in Part I of this book, namely:

(mu + md )〈ūu + d̄d〉 = −2 f 2
π m2

π . (42.25)

However, there is no rigorous evidence on the dominance of this linear quark mass
term over the quadratic one in the previous relation in Eq. (42.23) leading to the previous
PCAC relation where the quark mass is a quadratic function of the pseudoscalar mass. Some
alternative scenario (so-called Generalized ChPT ), where the value of the 〈ψ̄ψ〉 condensate
is smaller than the ‘standard’ value, is discussed in the literature [505]. We might expect
that lattice calculations will clarify this issue in the near future, and at present, there are
some lattice indications that M2

P behaves like mq [506]. We shall see in the next section
that direct extractions of the light quark masses from QCD spectral sum rules also favour
the result that mq ∼ M2

P .

42.3 Current algebra quark mass ratios

The ratios of the expressions in Eq. (42.23) imply the old current algebra mass ratios
[21],[55–57]:

M2
π±

(mu + md )
= M2

K +

(mu + ms)
= M2

K 0

(md + ms)
≈ 3M2

η8

(mu + md + 4ms)
, (42.26)

while the estimate of their absolute values needs more QCD theoretical inputs (renormal-
ization and scale dependence). Neglecting the m2 1 and small O(ε) corrections, one can
deduce the mass ratios [55]:

mu

md
≈ M2

π+ − M2
K 0 + M2

K +

M2
π+ + M2

K 0 − M2
K +

≈ 0.66

ms

md
≈ −M2

π+ + M2
K 0 + M2

K +

M2
π+ + M2

K 0 − M2
K +

≈ 20 , (42.27)

where the electromagnetic part of the K + − K 0 squared mass-difference has been subtracted
by using the fact that it is the same for the K + and π+ [507]:

(
M2

K 0 − M2
K +

)
QCD 
 (

M2
K 0 − M2

K +
) − (

M2
π0 − M2

π+
)
. (42.28)

Up to order (md − mu), one can also derive the quadratic Gell-Mann–Okubo mass relation
[11]:2

3M2
η8

≈ 4M2
K − M2

π . (42.29)

1 This is not justified in the approach of [505].
2 Analogous GMO mass formula for vector mesons might be affected by large perturbative m2

s corrections [32].
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One should also note that the φ4 interaction in Eq. (42.22) gives a mass correction to the
π–π scattering amplitude given in Eq. (42.8):

T (π+π0 → π+π0) = t − M2
π

f 2
π

, (42.30)

in good agreement with the current algebra result [504].

42.4 Chiral perturbation theory to order p4

Improvements of this lowest order effective Lagrangian with the inclusion of p4- and
p6-terms are actively discussed in the literature [502]. To order p4, three different sources
contribute to the generating functional:

� The most general effective Lagrangian L(4)
eff to order p4 to be considered at the tree level.

� The one-loop graphs generated from the lowest order L(2)
eff Lagrangian.

� The Wess–Zumino–Witten functional [508,509] induced by the non-Abelian chiral anomaly [510].

42.4.1 The chiral Lagrangian to order (p4)

The most general expression of the O(p4) Lagrangian is:

L(4)
eff = L1 Tr (DµU †DµU )2 + L2 TrDµU †DνUTrDµU †DνU

+ L3 TrDµU †DµU DνU †DνU

+ L4 TrDµU †DµUTr (χ †U + U †χ ) + L5 TrDµU †DµU (χ †U + U †χ )

+ L6 [Tr (χ †U + U †χ )]2 + L7 [Tr (χ †U − U †χ )]2

+ L8 Tr(Uχ †Uχ † + U †χU †χ )

+ i L9 Tr
(
Fµν

R DµU DνU † + Fµν

L DµU †DνU
) + L10 TrU †Fµν

R U FLµν

+ H1 Tr
(
Fµν

R FRµν + Fµν

L FLµν

) + H2 Trχ †χ . (42.31)

In this Lagrangian the parameters Li , i = 1, 2, 3, . . . , 10 are dimensionless coupling
constants, which like fπ and B in the lowest order effective Lagrangian, are not fixed by
chiral symmetry requirements alone. The terms proportional to the coupling constants H1

and H2 involve only the external fields. As a result these coupling constants cannot be fixed
from low-energy observables alone. By contrast, most of the other couplings can be fixed
from low-energy observables. The Li constants, like fπ and B, are in principle calculable
parameters in terms of the intrinsic �QCD scale only.

42.4.2 Chiral loops

Here, we consider that ChPT is an effective field theory for low energies despite the fact
that a simple power counting shows that loops generated by the lowest order Lagrangian
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are highly divergent as a consequence of the fact that the non-linear sigma model in four-
dimensions is not renormalizable and then needs an infinite number of local counterterms.
In order to define the loop integrals it is necessary to fix a regularization that preserves the
symmetries of the Lagrangian, which can be done by using the well-known dimensional
regularization technique. Since by construction, the O(p4) Lagrangian L(4)

eff contains all
possible terms which are allowed by chiral invariance, all the one-loop divergences from
L(2)

eff can be absorbed by suitable renormalizations of the Li and H1,2 constants. This feature
can be understood by power counting where one-loop divergences can only give rise to
local O(p4) terms. This program has been explicitly realized by Gasser and Leutwyler in
[498], and leads to the renormalized low-energy couplings:

Li = LR
i (ν) + γi λloop, i = 1, 2, 3, . . . 10; Hi = H R

i (ν) + γ̃ j λloop, j = 1, 2,

(42.32)
where for n = 4 − ε space-time dimension:

λloop = ν−ε

16π2

{
−1

ε
− 1

2
[log(4π ) + �

′
(1) + 1]

}
, j = 1, 2; (42.33)

and γi , x γ̃ j have the following rational values:

γ1 = 3

32
, γ2 = 3

16
, γ3 = 0 , γ4 = 1

8
,

γ5 = 3

8
, γ6 = 11

144
, γ7 = 0 , γ8 = 5

48
,

γ9 = 1

4
, γ10 = −1

4
, γ̃1 = −1

8
, γ̃2 = 5

24
. (42.34)

The renormalized coupling constants depend as usual on the scale ν introduced by the
dimensional regularization. The running in ν is governed by the coefficients γi (and γ̃ j ),
which play the rôle of one–loop β–functions:

L r
i (ν) = L r

i (ν
′
) + γi

16π2
log

ν
′

ν
. (42.35)

The ν–scale dependence cancels however in the fullO(p4) calculation of a given physical
observable. The non-polynomial contribution to a specific physical process will in general
have a logarithmic ν–scale dependence (the so called chiral logarithms), which cancels
with the ν–dependence of the tree level contribution modulated by the Li (ν)–constants.
A typical O(p4) amplitude will then consist of a non-polynomial part, coming from the
loop computation, plus a polynomial in momenta and pseudoscalar masses, which depends
on the unknown constants Li . The non-polynomial part (the so-called chiral logarithms)
is completely predicted as a function of the lowest-order coupling f and the Goldstone
masses.

Finally, it is important to notice that ChPT is an expansion in powers of momenta over
some typical hadronic scale, usually called the scale of chiral symmetry breaking �χ .
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The variation of the loop contribution under a rescaling of µ provides a natural order-of-
magnitude estimate3 of �χ [498,512] :

�χ ∼ 4π fπ ∼ 1.2 GeV ≈ Mρ ≈ Mp . (42.36)

This result has been recovered from the analysis of the connection between the low- and
high-energy behaviours of the pion form factor [281].

42.4.3 The non-Abelian chiral anomaly

Although the QCD Lagrangian with external sources is formally invariant under local
chiral transformations, this is no longer true for the associated generating functional. The
anomalies of the fermionic determinant break chiral symmetry at the quantum level. The
anomalous change of the generating functional under an infinitesimal chiral transformation:

gL ,R = 1 + iα ∓ iβ + · · · (42.37)

is given by [510]:

δZ [v, a, s, p] = − Nc

16π2

∫
d4x trβ(x) �(x), (42.38)

where:

�(x) = εµνσρ

[
vµνvσρ + 4

3
∇µaν∇σ aρ + 2

3
i {vµν, aσ aρ}

+ 8

3
i aσ vµνaρ + 4

3
aµaνaσ aρ

]
, ε0123 = 1; (42.39)

and:

vµν = ∂µvν − ∂νvµ − i [vµ, vν], ∇µaν = ∂µaν − i [vµ, aν] (42.40)

This anomalous variation of Z is an O(p4) effect in the chiral counting. Chiral symmetry
is the basic requirement to construct the effective χPT Lagrangian. Since chiral symmetry
is explicitly violated by the anomaly at the fundamental QCD level, one is forced to add
an effective functional with the property that its change under chiral gauge transformations
reproduces Eq. (42.38). Such a functional was first constructed by Wess and Zumino [508].
An interesting topological interpretation was later found by Witten [509]. The functional
in question, has the following explicit form:

�[U, �, r ]W Z W = − i Nc

240π2

∫
dσ i jklm Tr

{
�L

i �L
j �L

k �L
l �L

m

}

− i Nc

48π2

∫
d4x εµναβ(W (U, �, r )µναβ − W (1, �, r )µναβ) , (42.41)

3 Since the loop amplitude increases with the number of possible Goldstone mesons in the internal lines, this estimate results in a
slight dependence of �χ on the number of light-quark flavours N f [511]: �χ ∼ 4π fπ /

√
N f .
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with:

W (U, �, r )µναβ = Tr
{

U�µ�ν�αU †rβ + 1

4
U�µU †rνU�αU †rβ + iU∂µ�ν�αU †rβ

+ i∂µrνU�αU †rβ − i�L
µ�νU †rαU�β + �L

µU †∂νrαU�β

− �L
µ�L

ν U †rαU�β + �L
µ�ν∂α�β + �L

µ∂ν�α�β

− i �L
µ�ν�α�β + 1

2
�L

µ�ν�
L
α �β − i�L

µ�L
ν �L

α �β

}

− (L ↔ R) , (42.42)

where:

�L
µ = U †∂µU , �R

µ = U∂µU † , (42.43)

and (L ↔ R) stands for the interchanges U ↔ U †, �µ ↔ rµ and �L
µ ↔ �R

µ . The integration
in the first term of Eq. (42.41) is over a five-dimensional manifold whose boundary is four-
dimensional Minkowski space. The integrand is a surface term; therefore both the first and
the second terms of �W Z W are O(p4) according to the chiral counting rules.

Since the effect of anomalies is perturbatively calculable, their translation from the fun-
damental quark-gluon level to the effective chiral level is unaffected by hadronization
problems. Despite its apparent complexity, the anomalous action [Eq. (42.41)] has no free
parameters. It is responsible for the π0 → 2γ , η → 2γ decays, and the γ 3π , γπ+π−η

interactions among others. The five-dimensional surface term generates interactions among
five or more Goldstone bosons.

42.5 Some low-energy phenomenology to order p4

At lowest order in momenta, the predictive power of the chiral Lagrangian was quite impres-
sive; with only two low-energy couplings, it was possible to describe all Green functions
associated with the pseudoscalar-meson interactions, and to reproduce all old current algebra
results [13]. The symmetry constraints become less powerful at higher orders. Ten additional
constants appear in the L4 Lagrangian, and many more would be needed at O(p6).

Higher-order terms in the chiral expansion are much more sensitive to the non-trivial
aspects of the underlying QCD dynamics. With p � MK (Mπ ), we expectO(p4) corrections
to the lowest-order amplitudes at the level of p2/�2

χ ≤ 20% (2%). We need to include those
corrections if we aim to increase the accuracy of the ChPT predictions beyond this level.
Although the number of free constants in L4 looks quite big, only a few of them contribute
to a given observable. In the absence of external fields, for instance, the Lagrangian reduces
to the first three terms; elastic ππ and π K scatterings are then sensitive to L1,2,3. The
two-derivative couplings L4,5 generate mass corrections to the meson decay constants (and
mass-dependent wave-function renormalizations). Pseudoscalar masses are affected by the
non-derivative terms L6,7,8; L9 is mainly responsible for the charged-meson electromagnetic
radius and L10, finally, only contributes to amplitudes with at least two external vector or
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Table 42.1. Phenomenological values of the renormalized
couplings Lr

i (Mρ).

i Lr
i (Mρ) × 103 Source

1 0.7 ± 0.5 Ke4, ππ → ππ

2 1.2 ± 0.4 Ke4, ππ → ππ

3 −3.6 ± 1.3 Ke4, ππ → ππ

4 −0.3 ± 0.5 Zweig rule
5 1.4 ± 0.5 FK : Fπ

6 −0.2 ± 0.3 Zweig rule
7 −0.4 ± 0.2 Gell-Mann–Okubo, L5, L8, sum rules
8 0.9 ± 0.3 MK 0 − MK + , L5, (ms − m̂) : (md − mu)
9 6.9 ± 0.7 〈r 2〉π

em

10 −5.5 ± 0.7 π → eνγ

axial-vector fields, like the radiative semi-leptonic decay π → eνγ . Table 42.1 summarizes
the present status of the phenomenological determination of the renormalized constants
Li [499,502], evaluated at a scale µ = Mρ . The values of these couplings at any other
renormalization scale can be trivially obtained, through the logarithmic running given in
Eq. (42.35).

42.5.1 Decay constants

In the isospin limit (mu = md = m̂), the O(p4) calculation of the meson-decay constants
gives [499]:

fπ = f

{
1 − 2µπ − µK + 4M2

π

f 2
Lr

5(µ) + 8M2
K + 4M2

π

f 2
Lr

4(µ)

}
,

fK = f

{
1 − 3

4
µπ − 3

2
µK − 3

4
µη8 + 4M2

K

f 2
Lr

5(µ) + 8M2
K + 4M2

π

f 2
Lr

4(µ)

}
,

fη8 = f

{
1 − 3µK + 4M2

η8

f 2
Lr

5(µ) + 8M2
K + 4M2

π

f 2
Lr

4(µ)

}
, (42.44)

where:

µP ≡ M2
P

32π2 f 2
log

(
M2

P

µ2

)
. (42.45)

The result depends on twoO(p4) couplings, L4 and L5. The L4 term generates a universal
shift of all meson-decay constants, δ f 2 = 16L4 BTrM, which can be eliminated taking
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ratios. From the experimental value [513]:

fK

fπ
= 1.22 ± 0.01 , (42.46)

one can then fix L5(µ); this gives the result quoted in Table 42.1. Moreover, one gets the
absolute prediction [499]:

fη8

fπ
= 1.3 ± 0.05 . (42.47)

Taking into account isospin violations, one can also predict [499] a tiny difference between
fK ± and fK 0 , proportional to md − mu .

42.5.2 Electromagnetic form factors

At O(p2) the electromagnetic coupling of the Goldstone bosons is just the minimal one,
obtained through the covariant derivative. The next-order corrections generate a momentum-
dependent form factor:

Fφ±
V (p2) = 1 + 1

6
〈r2〉φ±

V p2 + · · · ; Fφ0

V (p2) = 1

6
〈r2〉φ0

V p2 + · · · (42.48)

The pion electromagnetic radius 〈r2〉φV gets local contributions from the L9 term, plus
logarithmic loop corrections [499]:

〈r2〉π±
V = 12Lr

9(µ)

f 2
− 1

32π2 f 2

{
2 log

(
M2

π

µ2

)
+ log

(
M2

K

µ2

)
+ 3

}
(42.49)

The measured electromagnetic pion radius, 〈r2〉π±
V = 0.439 ± 0.008 fm2 [514], is used

as input to estimate the coupling L9.

� The factor 1/(16π2 f 2) is a characterisitc factor of a loop-expansion, where chiral logs are expected
to contribute as p2/(16π 2 f 2) log in physical processes.

� The form factor provides a good example of the importance of higher-order local terms in the chiral
expansion [515]. If one tries to ignore the L9 contribution, using instead some physical cut-off
pmax to regularize the loops, one needs an unrealistic value pmax ∼ 60 GeV, in order to reproduce
the experimental value. This fact shows that the pion charge radius is dominated by the Lr

9(µ)
contribution, for any reasonable value of µ, which can be better understood from a 1/Nc (number
of colour) counting rules, where for large Nc, L9 and f 2

π are order Nc, implying that the chiral loops
are 1/Nc suppressed compared to the tree level contributions.

� The phenomenological value of dimensionless couplig L9 might be understood as originating from
the f 2

π /4 factor from L(4)
eff divided by the chiral symmetry breaking scale �2

χ , which leads to the
order of magnitude value of about 10−3; an expected value for all other Li couplings as found
experimentally in Table 42.1.
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The kaon electromagnetic radius reads:

〈r2〉K 0

V = − 1

16π2 f 2
log

(
MK

Mπ

)
, (42.50)

〈r2〉K ±
V = 〈r2〉π±

V + 〈r2〉K 0

V . (42.51)

Since neutral bosons do not couple to the photon at tree level, 〈r2〉K 0

V only gets a loop
contribution, which is moreover finite (there cannot be any divergence because there exists
no counterterm to renormalize it). The predicted value:

〈r2〉K 0

V = −0.04 ± 0.03 fm2 , (42.52)

is in perfect agreement with the experimental determination [516]

〈r2〉K 0

V = −0.054 ± 0.026 fm2 . (42.53)

The measured K + charge radius [517]:

〈r2〉K ±
V = 0.28 ± 0.07 fm2 , (42.54)

has a larger experimental uncertainty. Within present errors, it is in agreement with the
parameter-free relation in Eq. (42.51).

42.5.3 Kl3 decays

The semi-leptonic decays K + → π0l+νl and K 0 → π−l+νl are governed by the corre-
sponding hadronic matrix elements of the vector current [t ≡ (PK − Pπ )2]:

〈π |s̄γ µu|K 〉 = CKπ [(PK + Pπ )µ f Kπ
+ (t) + (PK − Pπ )µ f Kπ

− (t)] , (42.55)

where CK +π0 = 1/
√

2, CK 0π− = 1. At lowest order, the two form factors reduce to trivial
constants: f Kπ

+ (t) = 1 and f Kπ
− (t) = 0. There is however a sizeable correction to f K +π0

+ (t),
due to π0η mixing, which is proportional to (md − mu):

f K +π0

+ (0) = 1 + 3

4

md − mu

ms − m̂
= 1.017 . (42.56)

This number should be compared with the experimental ratio:

f K +π0

+ (0)

f K 0π−
+ (0)

= 1.028 ± 0.010 . (42.57)

TheO(p4) corrections to f Kπ
+ (0) can be expressed in a parameter-free manner in terms of

the physical meson masses [499]. Including those contributions, one gets the more precise
values:

f K 0π−
+ (0) = 0.977 ,

f K +π0

+ (0)

f K 0π−
+ (0)

= 1.022 , (42.58)

which are in perfect agreement with the experimental result of Eq. (42.57). The accurate
ChPT calculation of these quantities allows us to extract [513] the most precise determination
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of the Cabibbo–Kobayashi–Maskawa matrix element Vus :

|Vus | = 0.2196 ± 0.0023 . (42.59)

At O(p4), the form factors get momentum-dependent contributions. Since L9 is the only
unknown chiral coupling occurring in f Kπ

+ (t) at this order, the slope λ+ of this form factor
can be fully predicted:

λ+ ≡ 1

6
〈r2〉Kπ

V M2
π = 0.031 ± 0.003 . (42.60)

This number is in excellent agreement with the experimental determinations [16],
λ+ = 0.0300 ± 0.0016 (K 0

e3) and λ+ = 0.0286 ± 0.0022 (K ±
e3). Contrary to this case, the

experimental determination of the slope of the form factor f Kπ
0 is still controversial. It is

predicted to be [499]:

λ0 ≡ 1

6
〈r2〉Kπ

S M2
π = 0.017 ± 0.004 , (42.61)

and is determined by the constant L5.

42.5.4 Ratios of light quark masses to order p4

Ratios of light quark masses to this order have been discussed in details in [57]. Here, we
outline the different derivations of the results obtained there. The relations in Eq. (42.23)
get modified at O(p4). The additional contributions depend on the low-energy constants
L4, L5, L6, L7 and L8. It is possible, however, to obtain one relation between the quark
and meson masses, which does not contain any of the O(p4) couplings. The dimensionless
ratios

Q1 ≡ M2
K

M2
π

, Q2 ≡
(
M2

K 0 − M2
K +

)
QCD

M2
K − M2

π

, (42.62)

get the same O(p4) correction [499]:

Q1 = ms + m̂

2m̂
{1 + �m} , Q2 = md − mu

ms − m̂
{1 + �m} , (42.63)

where

�m = −µπ + µη8 + 8

f 2

(
M2

K − M2
π

) [
2Lr

8(µ) − Lr
5(µ)

]
. (42.64)

Therefore, at this order, the ratio Q1/Q2 is just given by the corresponding ratio of quark
masses,

Q2 ≡ Q1

Q2
= m2

s − m̂2

m2
d − m2

u

. (42.65)

where Q2 = 22.7 ± 0.8 using the value of the η → π+π−π0 decay rate from the PDG
average [16], though this value can well be in the range 22–26, to be compared with the
Dashen’s formula [507] value of 24.2 including next-to-leading chiral corrections [518];
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Fig. 42.1. ms/md versus mu/md from [57].

m̂ ≡ (1/2)(mu + md ). To a good approximation, Eq. (42.65) constrains the quark-mass
ratios to be on the ellipse,

(
mu

md

)2

+ 1

Q2

(
ms

md

)2

= 1 , (42.66)

In Fig. 42.1, one shows the range spanned by the corrections to the GMO mass formula:

�M : M2
η8

= (1/3)
(
4M2

K − M2
π

)
(1 + �M ) , (42.67)

where to order p4, one has:

�M ≡
(

M2
8 − M2

π

4M2
K − M2

π

)
�GMO , (42.68)

with:

�GMO ≡ 4M2
K − 3M2

η8
− M2

π

M2
η8

− M2
π

. (42.69)

Neglecting the mass difference md − mu , one gets [499]

�GMO = −2
(
4M2

K µK − 3M2
η8

µη8 − M2
πµπ

)
M2

η8
− M2

π

− 6

f 2

(
M2

η8
− M2

π

) [
12Lr

7(µ) + 6Lr
8(µ) − Lr

5(µ)
]

. (42.70)
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Experimentally, correcting the masses for electromagnetic effects, one obtains:

�GMO = 0.21. (42.71)

Since L5 is already known, this allows the combination 2L7 + L8 to be fixed. However, in
order to determine the individual quark-mass ratios from Eqs. (42.63), we would need to fix
the constant L8. However, there is no way to find an observable that isolates this coupling.
The reason is an accidental symmetry of the Lagrangian L2 + L4, which remains invariant
under the following simultaneous change [519] of the quark-mass matrix and some of the
chiral couplings:

M′ = αM + β (M†)−1 detM , B ′
0 = B0/α ,

L ′
6 = L6 − ζ , L ′

7 = L7 − ζ , L ′
8 = L8 + 2ζ , (42.72)

where α and β are arbitrary constants, and ζ = β f 2/(32αB0). The only information on
the quark-mass matrix M that we used to construct the effective Lagrangian was that it
transforms as M → gRMg†

L .
The matrix M′ transforms in the same manner; therefore, symmetry alone does not

allow us to distinguish between M and M′. In order to resolve this ambiguity, additional
information outside the framework of the pseudoscalar meson chiral Lagrangian has been
used, by the introduction of the ratio:

R ≡ (ms − m̂)/(md − mu) . (42.73)

Its value comes from the analysis of isospin breaking in the ω − ρ mixing and from the
baryon spectrum [499]. At the intersection of different ranges, one deduces from Fig. 42.1:

mu

md
= 0.553 ± 0.043 ,

ms

md
= 18.9 ± 0.8 ,

2ms

(md + mu)
= 24.4 ± 1.5 . (42.74)

However, the possibility to have a mu = 0 advocated in [519], where chiral symmetry can be
still broken by, for example, instantons, appears to be unlikely as it implies too strong flavour
symmetry breaking and is not supported by the QSSR results from two-point correlators of
the divergences of the axial and vector currents, as will be shown in the following chapters.
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Models of the QCD effective action

43.1 Introduction

Our purpose is to briefly present the general features of different models of the low-energy
hadronic interactions based on the effective action of QCD using a well-defined set of
approximations. In this chapter, we shall follow closely the discussions in [500]. The chiral
symmetry of the underlying QCD theory implies that the generating functional �(v, a, s, p)
of the Green’s functions of quark currents:

ei�(v,a,s,p) = 1

Z

∫
DGµ det �D exp

(
−i

∫
d4x

1

4
�Gµν

�Gµν

)
, (43.1)

with: �D the Dirac operator

�D = γ µ(∂µ + igs Gµ) − iγ µ(vµ + γ5aµ) + i(s − iγ5 p) ; (43.2)

Gµ is the gluon field, �Gµν the gluon field strength tensor; and vµ, aµ, s, p external field
sources; the normalization factor Z is such that �(0, 0) = 1, admits a low-energy represen-
tation:

ei�(v,a,s,p) = 1

Z

∫
DU exp

[
i
∫

d4x Leff(U ; v, a, s, p)

]
, (43.3)

in terms of an effective Lagrangian Leff(U ; v, a, s, p) with U (x) a 3 × 3 unitary matrix
containing the octet of pseudoscalar fields (π, K , η). However, the single term in Leff

which is known from first principles, is the one associated with the existence of anomalies
in the fermionic determinant [510]. The corresponding effective action is the Wess and
Zumino [508,509] functional that we have discussed in the previous section. All possible
other terms in Leff, are not fixed by symmetry requirements alone. The desire is to build
some effective dynamical QCD models with a mimimum set of parameters that can fix
the different coupling constants of the effective chiral Lagrangian, and that are needed for
making progress in the phenomenology of non-leptonic flavour dynamics. In the following,
we shall list the following models:

� QCD in the large–Nc limit.
� Low-lying resonances dominance models.
� The constituent chiral quark model.

424
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� Effective action approach models.
� The extended Nambu and Jona-Lasinio Model (ENJL model.)

43.2 QCD in the large–Nc limit

43.2.1 Large Nc counting rules for mesons

The study of QCD in the limit of large Nc was suggested by t’Hooft [520], soon after the
discovery of asymptotic freedom, as an attempt to get an insight into the non-perturbative
aspects of QCD. The large Nc limit of QCD corresponds to the case where the number of
colours is sent to infinity and the QCD coupling αs sent to zero in such a way that:

Ncαs = constant . (43.4)

Therefore the Green’s function of the theory is proportional to a power of Nc [520–522].
Denoting by Gqw the general connected Green’s function containing q quark currents and
w winding number densities:

Gqw = 〈0|T J1(x − 1) · · · Jq (xq )Q(y1) · · · Q(yw)|0〉connect (43.5)

with:

Ji = ψ̄�iψ , Q(x) = g2

8π2
Tr (Gµν G̃µν) , (43.6)

where �i is neutral colour matrices acting on the spin and quark flavours. For large Nc, the
Green’s function behaves as:

Gqw = O(
N 2−w

c

)
, q = 0

= O(
N 1−w

c

)
, q �= 0 . (43.7)

This counting rule holds only for generic momenta, but is modified by, for example,
the exchange of an η′ pole, which at zero momentum produces an additionnal power of
Nc (M2

η′ ∼ 1/Nc in the chiral limit). This counting rule can be understood in the following
way: the leading contributions to the Green’s functions containing quark currents (q �= 0)
arise from graphs with a single quark loop (planar diagrams with the quark loop running at
the edge of the diagram). These graphs are given by the functional integral over the gluon
field of the product of the form Tr

(
�i1 S�i2 S . . . �iq S

)
, where i1, . . . iq is some permutation

of 1, . . . , q and where S denotes the quark propagator in the presence of the gluon field. In the
chiral limit, the propagator is flavour independent, and the leading contribution to the Green’s
function depends on the flavour of the current only through the trace Tr

(
λi1 , . . . , λiq

)
where

λi is the flavour factor in the matrix �i . From Eq. (43.7), one can deduce the large-Nc

behaviour of the generating functional:

Z (v, a, s, p, θ ) = N 2
c f0(θ/Nc) + Nc f1(v, a, s, p, θ/Nc) + O(1) , (43.8)

where the functional f0(α) and f1(v, a, s, p, α) are independent of Nc. One can deduce the
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counting rule for one particle matrix elements [522]:

〈0|J |meson〉 = O(
N 1/2

c

)
, 〈0|J |glueball〉 = O(1) ,

〈0|Q|meson〉 = O(
N−1/2

c

)
, 〈0|Q|glueball〉 = O(1) . (43.9)

Every additional meson in a vertex brings a suppression factor 1/N−1/2
c . Therefore, three-

meson amplitudes are of order 1/N−1/2
c , four-meson amplitudes are of order 1/Nc, . . . . Loop

corrections in the meson sector are suppressed by powers of 1/Nc, and are consistent with
a semiclassical expansion in powers of h̄.

43.2.2 Chiral Lagrangian in the large Nc-limit

It would be a major breakthrough, if one could derive the low-energy effective Lagrangian
of the interactions between Nambu–Goldstone modes in the large-Nc limit of QCD. To
analyse the large Nc behaviour of the effective Lagrangian, it suffices to expand the matrix
in terms of the meson fields and to look at the terms independent of these fields. The desired
results are obtained by comparing these terms with those in Eq. (43.8). As examples, one
obtains:

f = O(
N 1/2

c

)
, B = γ = O(1) , (43.10)

where γ quantifies the η − η′ mixing. For the non-vanishing coupling constants, one has
obtained the large Nc behaviour [499]:

O(
N 2

c

)
: L7 ,

O(Nc) : L1, L2, L3, L5, L8, L9, L10, H1, H2 ,

O(1) : 2L1 − L2, L4, L6 . (43.11)

So far, it has only been possible to obtain constraints among various coupling constants
in this limit; but not their values in terms, say, of �QCD. A typical example is the relation:

2L1 = L2 , (43.12)

which, as first noticed by Gasser and Leutwyler [499], follows in the large-Nc limit of QCD.
Unfortunately, nobody can claim as yet to be able to compute, say L2, in that limit. Often
in the literature, there appear statements about ‘large-Nc predictions’ but, in fact, they have
been all derived with some extra ad hoc assumptions.

An interesting approach to do approximate calculations within the framework of the
1/Nc-expansion is the one proposed by Bardeen, Buras and Gérard [524], which they
have applied extensively to the calculation of non-leptonic weak matrix elements. The
basic idea is to start with the factorized form of the four-quark operators in the effective
weak Hamiltonian, and to do one-loop chiral perturbation theory, keeping track of the
quadratic divergences which appear. If one was able to work with the full hadronic low-
energy effective Lagrangian, it would be possible to obtain a smooth matching between the
scale dependence of the Wilson coefficients, calculated at short distances, and the hadronic
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matrix elements calculated with the full hadronic low-energy effective Lagrangian. The
hope with the approach proposed by [524] is that the numerical matching of the quadratic
long-distance scale with the logarithmic short-distance scale, may turn out to be already a
good first approximation to the problem one would like to solve. The technology of their
approach is explained with detail in their papers.

43.2.3 Minimal hadronic ansatz to large Nc QCD

The hadronic spectrum predicted by large Nc–QCD seems a priori different from the real
world, as one expects here the presence of an infinite sum of narrow resonances with specific
quantum numbers [520]. This feature can be better understood from the Coleman–Witten
theorem [525] which states that if QCD at Nc = 3 is confined, and if confinement persists
for large Nc, then, in this limit, the chiral U (n f ) × U (n f ) invariance of the QCD Lagrangian
with n f massless flavours is spontaneously broken down to the diagonal U (n f ) subgroup.
Though, the real world has a much more complicated structure, one expects that the hadronic
world predicted by large Nc can give an approximate good prediction of this real world,
when observables in terms of spectral functions are involved, as in this case, one needs only
to know the global properties of the hadronic spectrum.

The left–right correlation function

Of particular interest for our purposes is the correlation function (Q2 ≡ −q2 ≥ 0 for q2

space-like):

�
µν

L R(q) = 2i
∫

d4x eiq·x 〈0|T(Lµ(x)Rν(0)†)|0〉 , (43.13)

with colour singlet currents:

Rµ (Lµ) = d̄(x)γ µ 1

2
(1 ± γ5)u(x) . (43.14)

In the chiral limit, (mu,d,s → 0 ,) this correlation function has only a transverse component

�
µν

L R(Q2) = (qµqν − gµνq2)�L R(Q2) . (43.15)

The self-energy like function �L R(Q2) vanishes order by order in perturbative QCD
(pQCD) and is an order parameter of ChSB for all values of Q2; therefore it obeys an
unsubtracted dispersion relation

�L R(Q2) =
∫ ∞

0
dt

1

t + Q2

1

π
Im�L R(t) . (43.16)

In large Nc–QCD, the spectral function 1
π

Im�L R(t) consists of the difference of an
infinite number of narrow vector and axial-vector states, together with the Goldstone pole
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of the pion:

1

π
Im�L R(t) =

∑
V

f 2
V M2

V δ
(
t − M2

V

) − F2
0 δ(t) −

∑
A

f 2
A M2

Aδ
(
t − M2

A

)
. (43.17)

The low Q2 behaviour of �L R(Q2), namely the long-distance behaviour of the correlation
function in Eq. (43.13), is governed by chiral perturbation theory:

−Q2�L R(Q2)|Q2→0 = f 2
0 +4L10 Q2+O(Q4) , (43.18)

where f0 is the pion coupling constant in the chiral limit, and L10 is one of the coupling
constants of the O(p4) effective chiral Lagrangian. The high Q2 behaviour of �L R(Q2),
that is, the short-distance behaviour of the correlation function in Eq. (43.13), is governed
by the operator product expansion (OPE) of the two local currents in Eq. (43.13) [1],

lim
Q2→∞

Q6�L R(Q2) =
[
−4π2 αs

π
+O(

α2
s

)]〈ψ̄ψ〉2 , (43.19)

which implies the two Weinberg sum rules:
∫ ∞

0
dtIm�L R(t) =

∑
V

f 2
VM2

V −
∑

A

f 2
AM2

A − F2
0 = 0 , (43.20)

and: ∫ ∞

0
dttIm�L R(t) =

∑
V

f 2
V M4

V −
∑

A

f 2
A M4

A = 0 . (43.21)

In fact, as pointed out in [526], in large Nc QCD, there exist an infinite number of
Weinberg-like sum rules. In full generality, the moments of the �L R spectral function with
n = 3, 4, . . . ,∫ ∞

0
dt tn−1

[
1

π
Im�V (t) − 1

π
Im�A(t)

]
=

∑
V

f 2
V M2n

V −
∑

A

f 2
A M2n

A , (43.22)

govern the short-distance expansion of the �L R(Q2) function;

�L R(Q2)|Q2〉∞ =
(∑

V

f 2
V M6

V −
∑

A

f 2
A M6

A

)
1

Q6
+

(∑
V

f 2
V M8

V −
∑

A

f 2
A M8

A

)
1

Q8
+ · · · .

(43.23)

On the other hand, inverse moments of the �L R spectral function, with the pion pole
removed, (which we denote by Im�̃A(t),) determine a class of coupling constants of the
low-energy effective chiral Lagrangian.

For example:
∫ ∞

0
dt

1

t

[
1

π
Im�V (t) − 1

π
Im�̃A(t)

]
=

∑
V

f 2
V −

∑
A

f 2
A = −4L10 . (43.24)
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Moments with higher inverse powers of t are associated with couplings of composite
operators of higher dimension in the chiral Lagrangian. Tests of the two Weinberg sum
rules in Eqs. (43.20) and (43.21) and of the L10 sum rule in Eq. (43.24), albeit in a different
context to the one we are interested in here, have also been discussed in the literature, (see
e.g. [527,528], [33,34]).

The minimal ansatz

We shall now consider the approximation which we call the minimal hadronic ansatz to
large Nc–QCD. In the case of the left–right two-point function in Eq. (43.13), this is the
approximation where the hadronic spectrum consists of one vector state V , one axial-vector
state A and the Goldstone pion, with the ordering [526] MV < MA. This is the minimal
spectrum which is required to satisfy the two Weinberg sum rules in Eqs. (43.20) and
(43.21.) In this approximation, �L R(Q2) has a very simple form:

−Q2�L R(Q2) = f 2
0(

1 + Q2

M2
V

)(
1 + Q2

M2
A

)

= M2
A M2

V

Q4

f 2
0(

1 + M2
V

Q2

)(
1 + M2

A
Q2

) . (43.25)

This equation shows, explicitly, a remarkable short-distance ⇀↽ long-distance dual-
ity [529]. Indeed, with gA defined as:

M2
V = gA M2

A and z ≡ Q2

M2
V

, (43.26)

the non-local order parameters corresponding to the long-distance expansion for z〉0, which
are couplings of the effective chiral Lagrangian i.e.:

−Q2�L R(Q2)|z〉0 = f 2
0

{
1 − (1 + gA)z + (

1 + gA + g2
A

)
z2 + · · · } , (43.27)

are correlated to the local-order parameters of the short-distance OPE for z〉∞ in a very
simple way:

−Q2�L R(Q2)|z〉∞ = f 2
0

1

gA

1

z2

{
1−

(
1+ 1

gA

)
1

z
+

(
1 + 1

gA
+ 1

g2
A

)
1

z2
+ · · ·

}
;

(43.28)

in other words, there is a one-to-one correspondence between the two expansions by
changing

gA ⇀↽
1

gA
and zn ⇀↽

1

gA

1

zn+2
. (43.29)

The moments of the �L R spectral function, when evaluated in the minimal hadronic
ansatz approximation, can be converted into a very simple set of finite energy sum rules
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(FESR’s), corresponding to the OPE in Eq. (43.28):∫ s0

0
dt t2 1

π
Im�L R(t) = − f 2

0 M4
V

1

gA
, (43.30)

∫ s0

0
dt t3 1

π
Im�L R(t) = − f 2

0 M6
V

1+ 1
gA

gA
, (43.31)

∫ s0

0
dt t4 1

π
Im�L R(t) = − f 2

0 M8
V

1+ 1
gA

+ 1
g2

A

gA
, (43.32)

· · · · · · .

where the upper limit of integration s0 denotes the onset of the pQCD continuum which, in
the chiral limit, is common to the vector and axial-vector spectral functions. It is important
to realize that s0 is not a free parameter. Its value is fixed by the requirement that the OPE of
the correlation function of two vector currents, (or two axial-vector currents,) in the chiral
limit, have no 1/Q2 term, which results in an implicit equation for s0 [405,530]. In the
minimal hadronic ansatz approximation the onset of the pQCD continuum, which we shall
call s∗

0 , is then fixed by the equation

Nc

16π2

2

3
s∗

0 (1 + O(αs)) = f 2
0

1

1 − gA
. (43.33)

Also, the moments which correspond to the chiral expansion in Eq. (43.27) are given by
another simple set of FESR’s:∫ s0

0
dt

1

π
Im�̃L R(t) = f 2

0 , (43.34)

∫ s0

0

dt

t

1

π
Im�̃L R(t) = f 2

0

M2
V

(1+gA) , (43.35)

∫ s0

0

dt

t2

1

π
Im�̃L R(t) = f 2

0

M4
V

(
1+ gA+g2

A

)
, (43.36)

· · · · · · .

These duality relations have been tested by comparing moments of the physical spectral
function 1/π Im�

exp
L R(t) determined from experiment (tau-decay data) to the predictions of

the minimal hadronic ansatz as shown in the RHS of Eqs. (43.30) to (43.32) and Eqs. (43.34)
to (43.36), where one finds that the tau-decay data is consistent with the simple pattern of
duality properties between short and long distances which follow from the minimal hadronic
ansatz of a narrow resonances in the large Nc limit of QCD.

43.2.4 Baryons in the large Nc limit

Many features of the baryon sector have been also understood using the 1/Nc expansion,
where a new SU (4) symmetry connects the u ↑, u ↓, d ↑, u ↓ states in the baryon (see
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e.g. the review of Manohar in [502]). A systematic computation of the 1/Nc corrections
then becomes possible, and some results obtained previously from the quark and Skyrme
models [3] can be proved to order 1/Nc or 1/N 2

c . However, in the large Nc limit, baryons are
more difficult to study than mesons, as the number of quarks in the baryon is Nc. Large Nc

counting rules for baryons were given by Witten [522]. In particular, if one assumes that the
baryon mass and axial coupling gA are of order Nc, one can deduce using a non-relativistic
quark model:

gA = Nc + 2

3
, (43.37)

which is equal to the well-known quark model prediction 5/3 for Nc = 3. Phenomenology
of multicolour QCD in the baryon sector using QCD spectral sum rules has been studied in
[531] for Nc flavour, and in [532] for two flavours. In the latter case (see the details of the
derivation in [532,3]), the Skyrme parameter has been obtained to be:

e � 9/N 1/2
c , (43.38)

in agreement with large Nc-expectations.

43.3 Lowest meson dominance models

There has been quite a lot of progress during the last few years in understanding the rôle
of resonances in ChPT. At the phenomenological level [533,534], it turns out that the
observed values of the Li -constants are practically saturated by the contribution from the
lowest resonance exchanges between the pseudoscalar particles; and particularly by vector-
exchange, whenever vector mesons can contribute. The specific form of an effective chiral
invariant Lagrangian describing the couplings of vector and axial-vector particles to the
(pseudo) Nambu–Goldstone modes is not uniquely fixed by chiral symmetry requirements
alone. When the vector fields describing heavy vector particles are integrated out, different
field theory descriptions may lead to different predictions for the Li -couplings. It has been
shown however that, if a few QCD short-distance constraints are imposed, the ambiguities
of different formulations are then removed [535]. The most compact effective Lagrangian
formulation, compatible with the short-distance constraints, has two free parameters: fπ
and MV . When the vector and axial-vector fields are integrated out, it leads to specific
predictions for five of the Li constants:

L (V )
1 = L (V )

2

/
2 = −L (V )

3

/
6 = L (V )

9

/
8 = −L (V +A)

10

/
6 = f 2

π

16M2
V

� 0.6 × 10−3 , (43.39)

in good agreement, within errors, with experiment. [See Table 42.1]
It is fair to conclude that the old phenomenological concept of vector meson dominance

(VMD) [14] can now be formulated in a way that is compatible with the chiral symmetry
properties and the short-distance behaviour of QCD.
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43.4 The constituent chiral quark model

This model was introduced by Georgi and Manohar [512], in an attempt to reconcile the suc-
cessful features of the constituent quark model [81], with the chiral symmetry requirements
of QCD. The basic assumption of the model is the idea that between the scale of chiral
symmetry breaking �χ and the confinement scale ∼ �QCD the underlying QCD theory,
may admit a useful effective Lagrangian realization in terms of constituent quark fields Q;
pseudoscalar particles; and, perhaps, ‘gluons’. The Lagrangian in question has the form:

LGM
eff = i Q̄γµ(∂µ + igs Gµ + �µ)Q

+ i

2
gA Q̄γ5γ

µξµ Q − MQ Q̄ Q

+ 1

4
f 2
π tr DµU DµU † − 1

4
�Gµν

�Gµν . (43.40)

Some explanations about the notation here are in order. Remember that under chiral
rotations (VL , VR), U transforms like: U → VRU VL . The unitary matrix U is the product
of the so-called left and right coset representatives: U = ξRξ

†
L and, without lost of generality,

one can always choose the gauge where ξ
†
L = ξR ≡ ξ . The coset representative ξ , (U = ξξ †,)

transforms as:

ξ → VRξh† = hξV †
L h ∈ SU (3)V , (43.41)

where h denotes the rotation induced by the chiral transformation (VL , VR) in the diagonal
SU (3)V . In Eq. (43.40) the constituent quark fields Q transform as:

Q → hQ, h ∈ SU (3)V . (43.42)

In the presence of external sources:1

�µ = 1

2
{ξ †[∂µ − i(vµ + aµ)]ξ + ξ [∂µ − i(vµ − aµ)]ξ †} (43.43)

and:

ξµ = iξ †DµUξ † . (43.44)

The free parameters of the theory are fπ , MQ , and gA. The QCD coupling constant is
assumed to have entered a regime (below �χ ,) where its running is frozen and is taken to
be constant.

The merit of this model is that it automatically incorporates the phenomenological suc-
cesses of the constituent quark model, in a way compatible with chiral symmetry. This model
indeed appears in practically all QCD low-energy models where quarks are not confined.
The weak point of the model is its ‘vagueness’ about the gluonic sector. In the absence of
a dynamic justification for the ‘freezing’ of the QCD running coupling constant, it is very
unclear what the ‘left out’ gluonic interactions mean; and in fact, in most applications, they
are simply ignored.

1 The original formulation of the model of Georgi and Manohar [512] was in fact made without external fields.
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43.5 Effective action approach models

The basic idea in this class of models is to make some kind of drastic approximation to
compute the non–anomalous part of the QCD-fermionic determinant in the presence of
external vµ and aµ fields, but with the external s and p fields frozen to the quark matrix:

s + i p = M = diag(mu, md , ms) . (43.45)

Although the integral over the quark fields in Eq. (42.16) can be done explicitly, we do
not know how to perform analytically the remaining integration over the gluon fields. A
perturbative evaluation of the gluonic contribution would obviously fail in reproducing the
correct dynamics of Spontaneous Chiral Symmetry Breaking (SCSB). A possible way out
is to parametrize phenomenologically the SCSB and make a weak gluon-field expansion
around the resulting physical vacuum. The simplest parametrization [413] is obtained by
adding to the QCD Lagrangian the chiral invariant term:

�LQCD = −MQ(q̄ RUqL + q̄ LU †qR) , (43.46)

which serves to introduce the U field, and a mass parameter MQ , which regulates the IR
behaviour of the low-energy effective action. In the presence of this term the operator q̄q
acquires a vacuum expectation value; therefore, Eq. (43.46) is an effective way to generate
the order parameter due to SCSB. Making a chiral rotation of the quark fields, QL ≡
u(φ)qL , Q R ≡ u(φ)†qR , with U = u2, the interaction Eq. (43.46) reduces to a mass-term
for the dressed quarks Q; the parameter MQ can then be interpreted as a constituent-quark
mass.

The derivation of the low-energy effective chiral Lagrangian within this framework has
been extensively discussed by [413]. In the chiral and large-NC limits, and including the
leading gluonic contributions, one gets:

8L1 = 4L2 = L9 = NC

48π2

[
1 + O(

1/M6
Q

)]
,

L3 = L10 = − NC

96π2

[
1 + π2

5NC

〈
αs
π

GG
〉

M4
Q

+ O(
1/M6

Q

)]
, (43.47)

where the positive sign of the corrections helps for a better agreement with experiments. Due
to dimensional reasons, the leading contributions to theO(p4) couplings only depend on NC

and geometrical factors. It is remarkable that L1, L2 and L9 do not get any gluonic correction
at this order; this result is independent of the way SCSB has been parametrized (MQ can
be taken to be infinite). Table 43.1 compares the predictions obtained with only the leading
term in Eq. (43.47) (i.e. neglecting the gluonic correction) with the phenomenological
determination of the Li couplings. The numerical agreement is quite impressive; both the
order of magnitude and the sign are correctly reproduced (notice that this is just a free-
quark result!). Moreover, the gluonic corrections shift the values of L3 and L10 in the right
direction, making them more negative.
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Table 43.1. Leading-order (αs = 0) predictions for the Li ’s, within the
QCD-inspired model in Eq. (43.46). The phenomenological values are shown in

the second row for comparison. All numbers are given in units of 10−3

L1 L2 L3 L9 L10

L th
i (αs = 0) 0.79 1.58 −3.17 6.33 −3.17

Lr
i (Mρ) 0.4 ± 0.3 1.4 ± 0.3 −3.5 ± 1.1 6.9 ± 0.7 −5.5 ± 0.7

The results in Eq. (43.47) obey almost all relations in (43.39). In the same way, one also
obtains a relation between the quark constituent mass and the pion decay constant [413]:

f 2
π = Nc

16π2
4M2

Q

[
log

�2

M2
Q

+ π2

6Nc

< αs
π

GG >

M4
Q

+ 1

360Nc

< g3GGG >

M6
Q

+ · · ·
]

.

(43.48)

The authors mention that the gluon condensate appearing here has nothing to do with the
one from QCD spectral sum rules phenomenology, which is hard to digest as the quantity
〈αs G2〉 has a very weak scale dependence. This approach has been also extended to the
estimate of four-fermion non-leptonic weak operators, which the interested readers can find
in [537]. Analogous result has been derived in [538] using a variational mass expansion.

43.6 The Extended Nambu–Jona-Lasinio Model

There have been many suggestions in the literature proposing that Nambu and Jona-
Lasinio [539]-like models are relevant models for low-energy hadron dynamics. In e.g.
[540,541], one assumes that at intermediate energies below or of the order of the sponta-
neous chiral symmetry breaking scale �χ , the leading operators of higher dimension which,
after integration of the high-frequency modes of the quark and gluon fields down to the scale
�χ , become relevant in the QCD Lagrangian, are those which can be cast in the form of
four-fermion operators, i.e.:

LQCD =⇒ Lχ

QCD + LS,P + LV,A + · · · , (43.49)

where:

LS,P = 1

Nc

8π2

�2
χ

GS

∑
i, j

(
q̄ i

RqL j
)(

q̄ j
LqRi

)
, (43.50)

and:

LV,A = − 1

Nc

8π2

�2
χ

GV

∑
i, j

[(
q̄ i

Lγ µqL j
)(

q̄ j
LγµqLi

) + L ↔ R
]
. (43.51)

Here i , j denote u, d , and s flavour indices and summation over colour degrees of
freedom within each bracket is understood; qL ,R ≡ 1

2 (1 ± γ5)q. The couplings GS,V are
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dimensionless functions of the UV integration cut-off �. They are expected to grow as
� approaches the critical value �χ , where spontaneous chiral symmetry breaking occurs.
(This is the reason why the operators LS,P and LV,A become relevant). In QCD, and with
the factor N−1

c pulled out, both couplings GS and GV are O(1) in the large-Nc limit. These
constants are in principle calculable functions of the ratio �/�QCD. In practice however,
the calculation requires non-perturbative knowledge of QCD in the region where � � �χ ,
and we shall take GS and GV , as well as �χ , as independent unknown parameters. The χ

index in Lχ

QCD means that only the low-frequency modes � ≤ �χ of the quark and gluon
fields are to be considered from now onwards.

Notice that in QCD, couplings of the type LS,P and LV,A appear naturally from gluon
exchange between two QCD colour currents. Using Fierz rearrangement, one has in the
large-Nc limit:

g2
s

∑
a

(
q̄γ µ λa

2
q

) (
q̄γµ

λa

2
q

)
⇒ 1

Nc

8π2

�2
χ

4
αs Nc

π

∑
i, j

(
q̄ i

RqL j
)(

q̄ j
LqRi

)

− 1

Nc

8π2

�2
χ

αs Nc

π

∑
i, j

[(
q̄ i

Lγ µqL j
)(

q̄ j
LγµqLi

)

+ L ↔ R
]
; (43.52)

i.e.; GV = GS/4 = αs Nc/π in this case. The two operators LS,P and LV,A have, however,
different anomalous dimensions, and it is therefore not surprising that GS �= 4GV for the
corresponding physical values.

If furthermore, one assumes that the relevant gluonic effects for low-energy physics are
those already absorbed in the new couplings GS and GV , then:

Lχ

QCD ⇒ i q̄ �Dq (43.53)

in Eq. (43.49) with �D the Dirac operator given in Eq. (43.2), where now the gluon field Gµ

plays the rôle of an external colour field source. There is no gluonic kinetic term any longer.
As is well known from the early work of Nambu and Jona-Lasinio [539], the operator

LS,P, for values of GS > 1, is at the origin of the spontaneous chiral symmetry breaking. This
can best be seen following the standard procedure of introducing auxiliary field variables to
convert the four-fermion coupling operators into bilinear quark operators. For this purpose,
one introduces a 3 × 3 auxiliary field matrix M(x) in flavour space; the so called collective
field variables, which under chiral-SU (3) transform as:

M → VR MV †
L ; (43.54)

and uses the functional integral identity:

exp

[
i
∫

d4x
1

Nc

8π2

�χ

GS

∑
i, j

(
q̄ i

RqL j
)(

q̄ j
LqRi

)]

=
∫

DM exp

[
i
∫

d4x

{
−(q̄ L M†qR + h.c.) − Nc

�2
χ

8π2

1

GS
tr M M†

}]
. (43.55)
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By polar decomposition:

M = ξ Hξ †, (43.56)

with ξξ † = U unitary and H hermitian.
Next, we look for translational-invariant solutions, which minimize the effective action;

∂�eff

∂ M

∣∣∣∣
H=<H>=MQ ,ξ=1;v=a=s=p=0.

= 0 .

The minimum is reached when all the eigenvalues of < H > are equal, i.e., < H >=
MQ1; and the minimum condition leads to

Tr

(
x

∣∣∣∣ 1

�D
∣∣∣∣ x

)
= −2MQ Nc

�2
χ

8π2

1

GS

∫
d4x . (43.57)

The trace in the LHS of this equation is formally proportional to < ψ̄ψ >. The calculation,
however, requires a regularization, with �χ the UV cut-off. We choose the proper time
regularization. [See e.g. [540] for technical details.] Then:

< ψ̄ψ >= − Nc

16π2
4M3

Q�

(
−1,

M2
Q

�χ

)
; (43.58)

and the minimum condition in Eq. (43.57) leads to the so-called gap equation:

MQ

GS
= MQ

{
exp

(
− M2

Q

�2
χ

)
− M2

Q

�2
χ

�

(
0,

M2
Q

�2
χ

)}
. (43.59)

The functions:

�

(
n − 2, x ≡ M2

Q

�2
χ

)
=

∫ ∞

x

dz

z
e−z zn−2 ; n = 1, 2, 3, . . . , (43.60)

are incomplete gamma functions. Equations (43.58) and (43.59) show the existence of two
phases with regards to chiral symmetry. The unbroken phase corresponds to the trivial solu-
tion MQ = 0, which implies < ψ̄ψ > = 0. The broken phase corresponds to the possibility
that the coupling GS increases as we decrease the UV cut-off � down to �χ , allowing
for solutions to Eq. (43.59) with MQ > 0 and therefore < ψ̄ψ > �= 0 and negative. In
this phase the Hermitian auxiliary field H (x) develops a non-vanishing vacuum expecta-
tion value, which is at the origin of a constituent chiral quark mass term [see the RHS of
Eq. (43.55)]:

−MQ(q̄ LU †qR + q̄ RUqL ) = −MQ Q̄ Q , (43.61)

like the one which appears in the Georgi–Manohar model [512]; and like the one proposed
in the effective action approach of [413]. In the presence of the operator LV,A, we need two
more auxiliary 3 × 3 complex field matrices Lµ(x) and Rµ(x) to rearrange the Lagrangian in
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Eq. (43.49) into an equivalent Lagrangian which is only quadratic in the quark fields. Under
chiral (VL , VR) transformations these collective field variables are chosen to transform as
follows:

Lµ〉VL LµV †
L , Rµ〉VR RµV †

R .

Then, the following functional identity follows:

exp

(
−i

∫
d4x

1

Nc

8π2

�2
χ

GV

∑
i, j

[(
q̄ i

Lγ µqL j
)(

q̄ j
LγµqLi

) + L ↔ R
])

=
∫
DLµ DRµ exp

[
i
∫

d4x

{
q̄ Lγ µLµqL + Nc

�2
χ

8π2

1

GV

1

4
tr LµLµ + L ↔ R

}]
.

(43.62)

It is convenient to trade the auxiliary field matrices Lµ(x) and Rµ(x) by new vector field
matrices:

W (±)
µ = ξ Lµξ † ± ξ †Rµξ ,

which transform homogeneously under chiral transformations (VL , VR); i.e.:

W (±)
µ 〉hW (±)

µ h† ,

with h the SU (3)V rotation induced by (VL , VR). The fermionic determinant can then be
obtained using standard techniques, like for example the heat kernel expansion we described
earlier. When computing the resulting effective action, there appears a mixing term between
the fields W (−)

µ and ξµ. One needs a new redefinition of the auxiliary field W (−)
µ :

W (−)
µ 〉Ŵ (−)

µ + (1 − gA)ξµ ,

in order to diagonalize the quadratic form in the variables W (−)
µ and ξµ. It is this mixing

which is at the origin of an effective axial coupling of the constituent quarks with the
Nambu–Goldstone modes:

1

2
igA Q̄γ µγ5ξµ Q ,

a term like the axial coupling which appears in the Georgi–Manohar model. but with a
specific form for the axial coupling constant gA:

gA = 1

1 + GV
4M2

Q

�2
χ

�
(
0,

MQ

�2
χ

) . (43.63)

In terms of Feynman diagrams this result can be understood as an infinite sum of con-
stituent quark bubbles, with a coupling at the end to the pion field. These are the diagrams
generated by the GV four-fermion coupling to leading order in the 1/Nc expansion. The
quark propagators in these diagrams are constituent quark propagators, solution of the
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Schwinger–Dyson which is at the origin of the gap equation in Eq. (43.59). In the limit
where GV = 0, gA = 1; but in general [542], gA �= 1 to leading order in the 1/Nc expansion.

Kinetic terms for the auxiliary field variables are also generated by the functional integral
over the quark fields Q and Q̄. The resulting Lagrangian, after wave-function rescaling of
the auxiliary fields, has the form of a constituent chiral quark model, with scalar S(x), vector
V (x), and axial-vector A(x) field couplings:

LE N J L
eff = i Q̄γ µ

(
∂µ + �µ − i√

2 fV

Vµ

)
Q − MQ Q̄ Q

+ i

2
gA Q̄γ5γ

µ

(
ξµ −

√
2

f A
Aµ

)
Q − 1

λS
Q̄S(x)Q

+ 1

2
tr
[
∂µS∂µS − M2

S SS
]

− 1

4
tr[(∂µVν − ∂νVµ)(∂µV ν − ∂νV µ) − 2MV VµV µ]

− 1

4
tr
[
(∂µ Aν − ∂ν Aµ)(∂µ Aν − ∂ν Aµ) − 2M2

A Aµ Aµ
]

+ 1

4
f 2
π trDµU DµU † + O(p4)terms , (43.64)

where �µ and ξµ are the same as those defined in Eqs.(43.43) and (43.44), and the coupling
constants and masses are now expressed in terms of only three input parameters. As input
parameters, we can either fix: GS , GV , and �χ ; or the more physical parameters:

MQ , �χ , gA . (43.65)

The coupling constants are then:

f 2
π = Nc

16π2
4M2

Q gA�
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0, M2

Q/�2
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)
,

f 2
V = Nc

16π2
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3
�
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and the masses:
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Table 43.2. The Li -coupling constants in the ENJL model of [540], with gA

defined in Eq.(43.63), and �n ≡ �(n, M2
Q/�2

χ ). The second column gives the
results corresponding to the input parameter values in Eq. (43.68). The third

column gives the experimental values of Table 42.1.

The Li couplings of O(p4) in the ENJL–model Fit 1 Experiment

L1 = Nc
16π2

1
48

[(
1 − g2

A

)2
�0 + 4g2

A

(
1 − g2

A

)
�1 + 2g4

A�2

]
0.85 0.7 ± 0.5

L2 = 2L1 1.7 1.2 ± 0.4

L3 = − Nc
16π2

1
8

{[(
1 − g2

A

)2
�0 + 4g2

A

(
1 − g2

A

)
�1+ −4.2 −3.6 ± 1.3

− 2
3 g4

A

[
2�1 − 4�2 + 3 1

�0
(�0 − �1)2

] }

L5 = Nc
16π2

1
4 g3

A[�0 − �1] 1.6 1.4 ± 0.5

L8 = Nc
16π2

1
16 g2

A

[
�0 − 2

3 �1

]
0.8 0.9 ± 0.3

L9 = Nc
16π2

1
6

[(
1 − g2

A

)
�0 + 2g2

A�1

]
7.1 6.9 ± 0.7

L10 = − Nc
16π2

1
6

[(
1 − g2

A

)
�0 + g2

A�1

] −5.9 −5.5 0.7

In the absence of the vector and axial-vector four-fermion-like coupling i.e., when
GV = 0: gA = 1, MV 〉∞ and MA〉∞. Then the vector and axial-vector interactions de-
couple, and the model becomes equivalent to the Constituent Chiral Quark Model of [512],
with gA = 1 and a non-trivial coupling to a scalar field.

The functional integration over the quark fields and the auxiliary S(x), V (x), and A(x)
fields results in an effective action among the Nambu–Goldstone boson particles, with all
the couplings fixed by the three parameters MQ , �χ , and gA. The explicit results one gets
for the Li constants which appear in the large-Nc limit at O(p4) in the chiral expansion
are shown in Table 43.2. The reason why the constant L7 does not appear in this table is
that, phenomenologically, this constant gets a large contribution from the integration of the
heavy singlet η′ particle. However, in the chiral limit, the mass of the η′ is induced by the
axial-U (1) anomaly, which only appears to next-to-leading order in the 1/Nc expansion.
By definition, the ENJL model, as formulated here, ignores this effect. In order to take
these next-to-leading effects in 1/Nc systematically, together with the chiral expansion,
one has to resort to a U (3) × U (3) formulation of the effective theory [543]. The constants
L4 and L6 are of next-to-leading order in the 1/Nc expansion; this is the reason why
they do not appear in Table 43.2 either. We also show in Table 43.2 the numerical results
of the fit 1 discussed in [540]. These results correspond to the set of input parameter
values:

MQ = 265 MeV , �χ = 1165 MeV , gA = 0.61 . (43.68)

The overall picture which emerges from this simple model is quite remarkable. The main
improvement with respect to the results obtained in the effective action approach model
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discussed in the previous section is on the constants L5 and L8, where the combined effect
of the vector and scalar degrees of freedom leads to rather simple results modulated by pow-
ers of the gA-constant, which agree very well with the phenomenological determinations.
One of the characteristic features of the ENJL model, is that it interpolates successfully
between pure VMD-type predictions and those of the constituent chiral quark model. A
nice illustration is the result for L9 in Table 43.2, where the first term is the one coming
from vector–exchange, whereas the second one comes from the chiral quark loop integral.

There is no difficulty to reproduce the anomalous Wess–Zumino–Witten functional within
the ENJL model [544] QCD two-point functions, beyond the low-energy expansion, have
also been evaluated in the ENJL model [541]. This involves calculations to leading order in
the 1/Nc expansion (i.e., an infinite number of chains of fermion bubbles; but no loops of
chains) and to all orders in powers of momenta Q2/�2

χ . As a result, vector and axial-vector
correlation functions have a VMD-like form, but with slowly varying couplings and masses.
For the transverse invariant functions for example, the results are:

�
(1)
V (Q2) = 2 f 2

V (Q2)M2
V (Q2)

M2
V (Q2) − Q2

, (43.69)

and:

�
(1)
A (Q2) = 2 f 2

π (Q2)

Q2
+ 2 f 2
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M2
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, (43.70)

where:
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. (43.71)

The product:
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(43.72)

is scale invariant. With:

gA(Q2) = 1

1 + GV
4MQ2

�2
χ

∫ 1
0 dx�(0, xQ)

, (43.73)

the other couplings are fixed by:

f 2
A(Q2) = g2

A(Q2) f 2
V (Q2) , (43.74)

and the relations

f 2
V (Q2)M2

V (Q2) = f 2
A(Q2)M2

A(Q2) + f 2
π (Q2) ,

f 2
V (Q2)M4

V (Q2) = f 2
A(Q2)M4

A(Q2) , (43.75)

where the last two equalities are the Q2-dependent version of the first- and second-Weinberg
sum rules [26]. In the case of the scalar two-point function there appears a pole in the
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Q2-summed expression at:

MS = 2MQ . (43.76)

The case of the other two-point functions is somewhat more involved because they mix
through the four-fermion interaction terms. In principle, the ENJL model can be applied
to obtain a systematic calculation of the low-energy constants of the weak non-leptonic
Lagrangian (BK -parameter, . . .). These applications can be found in some more dedicated
reviews.



44

Heavy quark effective theory

44.1 Introduction

Over a decade, a lot of experimental informations on heavy-quark decays and masses have
been obtained from e+e− and hadron collider experiments. These have led to a detailed
knowledge of the flavour sector of the standard model and to the discoveries of the B0 − B̄0

mixing, rare decays induced by penguin operators, . . . The experimental progress in the
heavy flavour physics has been accompanied by some theoretical progress. Among other
approaches, the discovery of the heavy-quark symmetry has led to the development of the
heavy quark effective theory (HQET), which provides a systematic analysis of the properties
of a hadron containing a heavy quark in terms of an expansion of the inverse of the heavy
quark mass. Detailed discussions and references to the original works can be found in
different reviews and lectures (see e.g. [545]).

44.2 Heavy-quark symmetry

When the mass of the heavy quark is much larger than the QCD scale �QCD, the QCD
running coupling αs(m Q) is small, implying that at this scale of the order of the Compton
wavelength λQ ∼ 1/m Q , one can safely use perturbative QCD for describing the hadrons.
In this case the Q̄ Q-bound states with the size λQ/αs(m Q) � Rhad ∼ 1 fermi are like the
hydrogen atom. However, systems composed of a heavy quark plus a light quark are more
complicated because the size of the system is of the order of Rhad while the typical momenta
exchanged between the heavy and light quarks is of the order of �QCD. Therefore, the heavy
quark is surrounded by strongly interacting clouds of light quarks, antiquarks and gluons.
In this case, the simplification is provided by the fact that the Compton wavelength λQ is
much smaller than the hadron size Rhad. To resolve the quantum numbers of the heavy quark
would require a hard probe; the soft gluons exchanged between the heavy quark and the light
constituents can only resolve distances much larger than λQ . Therefore, the light degrees
of freedom are blind to the flavour (mass) and spin orientation of the heavy quark. They
experience only its colour field, which extends over large distances because of confinement.
In the rest frame of the heavy quark, it is in fact only the electric colour field that is important.
Since the heavy-quark spin participates in interactions only through such relativistic effects,

442
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it decouples for m Q → ∞. It then follows that, in the limit m Q → ∞, hadronic systems
which differ only in the flavour or spin quantum numbers of the heavy quark have the same
configuration of their light degrees of freedom. Although this observation still does not
allow us to calculate what this configuration is, it provides relations between the properties
of, for example, the heavy mesons B, D, B∗ and D∗ in the ideal case where the b and
c quark masses are infinitely heavy and the corrections to this limit are negligible. These
relations result from some approximate symmetries of the effective strong interactions of
heavy quarks at low energies. The configuration of light degrees of freedom in a hadron
containing a single heavy quark with velocity v does not change if this quark is replaced
by another heavy quark with different flavour or spin, but with the same velocity. Both
heavy quarks lead to the same static colour field. For nh heavy-quark flavours, there is thus
an SU(2nh) spin-flavour symmetry group, under which the effective strong interactions are
invariant. These symmetries are in close correspondence to familiar properties of atoms. The
flavour symmetry is analogous to the fact that different isotopes have the same chemistry,
since to good approximation the wave function of the electrons is independent of the mass
of the nucleus. The electrons only see the total nuclear charge. The spin symmetry is
analogous to the fact that the hyperfine levels in atoms are nearly degenerate. The nuclear
spin decouples in the limit me/m N → 0. This heavy-quark symmetry looks quite similar
to the chiral symmetry (m → 0) but in the opposite way (m Q → ∞), although there is a
striking difference.

Whereas chiral symmetry is a symmetry of the QCD Lagrangian in the limit of vanishing
quark masses, heavy-quark symmetry is not a symmetry of the Lagrangian (not even an
approximate one), but rather a symmetry of an effective theory that is a good approximation
to QCD in a certain kinematic region. It is realized only in systems in which a heavy
quark interacts predominantly by the exchange of soft gluons. In such systems the heavy
quark is almost on-shell; its momentum fluctuates around the mass shell by an amount of
order �QCD. The corresponding fluctuations in the velocity of the heavy quark vanish as
�QCD/m Q → 0. The velocity becomes a conserved quantity and is no longer a dynamical
degree of freedom [546]. Nevertheless, results derived on the basis of heavy-quark symmetry
are model-independent consequences of QCD in a well-defined limit. To this end, it is
however necessary to cast the QCD Lagrangian for a heavy quark:

LQ = Q̄ (i �D − m Q) Q , (44.1)

into a form suitable for taking the limit m Q → ∞.

44.3 Heavy quark effective theory

44.3.1 Introduction

As the effects of infinitely heavy quark are irrelevant at low energies, it becomes useful to
built a low-energy effective theory, where the heavy quark no longer appears. This is very
similar to the Fermi’s theory where weak interactions in weak processes can be approximated
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by a four-fermion interaction governed by the weak coupling G F . The removal of the heavy
particle degrees of freedom can be done in the following ways [547–549]:

� One integrates out the heavy fields in the generating functional of the Green’s functions of the
theory, which is possible as the heavy particles do not appear as an external source. The resulting
action is nonlocal, as in full QCD the heavy particle with mass M � m Q can appear in virtual
processes and propagate over a short but finite distance �x ∼ 1/M .

� Thus, one needs to get a local effective Lagrangian, which can be done by rewriting the non-local
effective action as an infinite series of local terms in an operator product expansion (OPE) [222],
which approximately corresponds to an expansion in powers of 1/M . In this step, the short- and
long-distance physics is disentangled, and their domain is separated by a scale ν such that �QCD �
ν � m Q . The long-distance physics corresponds to interactions at low energies and is the same in
the full and the effective theory below ν.

� In a third step, one needs to add, in a perturbative way using renormalization-group techniques,
short-distance effects arising from quantum corrections involving large virtual momenta (of order
M), which have not been described correctly in the effective theory once the heavy particle has been
integrated out. These short-distance effects lead to a renormalization of the coefficients of the local
operators in the effective Lagrangian. An example is the effective Lagrangian for non-leptonic weak
decays, in which radiative corrections from hard gluons with virtual momenta in the range between
mW and some low renormalization scale µ give rise to Wilson coefficients, which renormalize the
local four-fermion interactions [550–552]. The fact that the physics must be independent of the
arbitrary scale ν allows us to derive renormalization-group equations, which can be employed to
deal with the short-distance effects in an efficient way.

However, one should notice that the HQET approach is peculiar as it is motivated to describe
the properties and decays of hadrons which do contain a heavy quark. Hence, it is not
possible to remove the heavy quark completely from the effective theory, but only to integrate
out the ‘small components’ in the full heavy-quark field, which describe the fluctuations
around the mass shell.

44.3.2 The HQET Lagrangian

The starting point in the construction of the HQET is the observation that a heavy quark
bound inside a hadron moves with the hadron’s velocity v and is almost on-shell. Its mo-
mentum can be written as:

pµ

Q = m Qvµ + kµ , (44.2)

where the components of the so-called residual momentum k are much smaller than m Q .
Note that v is a four-velocity, so that v2 = 1. Interactions of the heavy quark with light
degrees of freedom change the residual momentum by an amount of order �k ∼ �QCD, but
the corresponding changes in the heavy-quark velocity vanish as �QCD/m Q → 0. In this
situation, it is appropriate to introduce large- and small-component fields, hv and Hv , by:

hv(x) = eim Qv·x P+ Q(x) , Hv(x) = eim Qv·x P− Q(x) , (44.3)
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Fig. 44.1. Virtual fluctuations involving pair creation of heavy quarks. Time flows to the right.

where P+ and P− are projection operators defined as:

P± = 1 ± �v
2

. (44.4)

It follows that

Q(x) = e−im Qv·x [hv(x) + Hv(x)] . (44.5)

Because of the projection operators, the new fields satisfy �vhv = hv and �vHv = −Hv .
In the rest frame, i.e. for vµ = (1, 0, 0, 0), hv corresponds to the upper two components of
Q, while Hv corresponds to the lower ones. Whereas hv annihilates a heavy quark with
velocity v, Hv creates a heavy antiquark with velocity v.

In terms of the new fields, the QCD Lagrangian (44.1) for a heavy quark takes the form:

LQ = h̄v iv · D hv − H̄ v (iv · D + 2m Q) Hv + h̄v i �D⊥ Hv + H̄ v i �D⊥hv , (44.6)

where Dµ

⊥ = Dµ − vµ v · D is orthogonal to the heavy-quark velocity: v · D⊥ = 0. In the
rest frame, Dµ

⊥ = (0, 	D ) contains the spatial components of the covariant derivative. From
Eq. (44.6), it is apparent that hv describes massless degrees of freedom, whereas Hv cor-
responds to fluctuations with twice the heavy-quark mass. These are the heavy degrees of
freedom that will be eliminated in the construction of the effective theory. The fields are
mixed by the presence of the third and fourth terms, which describe pair creation or annihi-
lation of heavy quarks and antiquarks. As shown in the first diagram in Fig. 44.1, in a virtual
process, a heavy quark propagating forward in time can turn into an antiquark propagating
backward in time, and then turn back into a quark. The energy of the intermediate quantum
state hh H̄ is larger than the energy of the incoming heavy quark by at least 2m Q . Because
of this large energy gap, the virtual quantum fluctuation can only propagate over a short
distance �x ∼ 1/m Q . On hadronic scales set by Rhad = 1/�QCD, the process essentially
looks like a local interaction of the form:

h̄v i �D⊥
1

2m Q
i �D⊥hv , (44.7)

where we have simply replaced the propagator for Hv by 1/2m Q . A more correct treatment
is to integrate out the small-component field Hv , thereby deriving a non-local effective
action for the large-component field hv , which can then be expanded in terms of local
operators. Before doing this, let us mention a second type of virtual corrections involving
pair creation, namely heavy-quark loops. An example is shown in the second diagram in
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Fig. 44.1. Heavy-quark loops cannot be described in terms of the effective fields hv and Hv ,
since the quark velocities inside a loop are not conserved and are in no way related to hadron
velocities. However, such short-distance processes are proportional to the small coupling
constant αs(m Q) and can be calculated in perturbation theory. They lead to corrections that
are added onto the low-energy effective theory in the renormalization procedure.

On a classical level, the heavy degrees of freedom represented by Hv can be eliminated
using the equation of motion. Taking the variation of the Lagrangian with respect to the
field H̄ v , we obtain:

(iv · D + 2m Q) Hv = i �D⊥hv . (44.8)

This equation can formally be solved to give:

Hv = 1

2m Q + iv · D
i �D⊥hv , (44.9)

showing that the small-component field Hv is indeed of order 1/m Q . We can now insert
this solution into Eq. (44.6) to obtain the non-local effective Lagrangian:

Leff = h̄v iv · D hv + h̄v i �D⊥
1

2m Q + iv · D
i �D⊥hv . (44.10)

Clearly, the second term corresponds to the first class of virtual processes shown in
Fig. 44.1.

One can derive this Lagrangian in a more elegant way using the generating functional
for QCD Green functions containing heavy-quark fields [553]. To this end, one starts from
the field redefinition in Eq. (44.5) and couples the large-component fields hv to external
sources ρv . Green functions with an arbitrary number of hv fields can be constructed by
taking derivatives with respect to ρv . No sources are needed for the heavy degrees of
freedom represented by Hv . The functional integral over these fields is Gaussian and can
be performed explicitly, leading to the effective action:

Seff =
∫

d4x Leff − i ln � , (44.11)

with Leff as given in Eq. (44.10). The appearance of the logarithm of the determinant:

� = exp

(
1

2
Tr ln[2m Q + iv · D − iη]

)
(44.12)

is a quantum effect not present in the classical derivation presented above. However, in this
case the determinant can be regulated in a gauge-invariant way, and by choosing the gauge
v · A = 0 one can show that ln � is just an irrelevant constant [553,554].

Because of the phase factor in Eq. (44.5), the x dependence of the effective heavy-quark
field hv is weak. In momentum space, derivatives acting on hv produce powers of the residual
momentum k, which is much smaller than m Q . Hence, the non-local effective Lagrangian
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Fig. 44.2. Feynman rules of the HQET (i, j and a are colour indices). A heavy quark with velocity v

is represented by a double line. The residual momentum k is defined in Eq. (44.2).

in Eq. (44.10) allows for a derivative expansion:

Leff = h̄v iv · D hv + 1

2m Q

∞∑
n=0

h̄v i �D⊥

(
− iv · D

2m Q

)n

i �D⊥hv . (44.13)

Taking into account that hv contains a P+ projection operator, and using the identity

P+ i �D⊥ i �D⊥ P+ = P+
[
(i D⊥)2 + g

2
σµν Gµν

]
P+ , (44.14)

where i[Dµ, Dν] = g Gµν is the gluon field-strength tensor, one finds that [555,556]

Leff = h̄v iv ·D hv + 1

2m Q
h̄v (i D⊥)2 hv + gs

4m Q
h̄v σµν Gµν hv + O

(
1/m2

Q

)
. (44.15)

In the limit m Q → ∞, only the first term remains:

L∞ = h̄v iv · D hv . (44.16)

This is the effective Lagrangian of the HQET. It gives rise to the Feynman rules shown in
Fig. 44.2.

44.3.3 Symmetries of the Lagrangian

Study of these symmetries can be, for example, found in [546]. Since there appear no Dirac
matrices, interactions of the heavy quark with gluons leave its spin unchanged. Associated
with this is an SU(2) symmetry group, under which L∞ is invariant. The action of this
symmetry on the heavy-quark fields becomes most transparent in the rest frame, where the
generators Si of SU(2) can be chosen as:

Si = 1

2

(
σ i 0
0 σ i

)
; [Si , S j ] = iεi jk Sk . (44.17)

Here σ i are the Pauli matrices. An infinitesimal SU(2) transformation hv → (1 +
i	ε · 	S ) hv leaves the Lagrangian invariant:

δL∞ = h̄v [iv · D, i	ε · 	S ] hv = 0 . (44.18)
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Another symmetry of the HQET arises since the mass of the heavy quark does not appear
in the effective Lagrangian. For nh heavy quarks moving at the same velocity, Eq. (44.16)
can be extended by writing:

L∞ =
nh∑

i=1

h̄i
v iv · D hi

v . (44.19)

This is invariant under rotations in flavour space. When combined with the spin symmetry,
the symmetry group is promoted to SU(2nh). This is the heavy-quark spin-flavour symme-
try [557,546]. Its physical content is that, in the limit m Q → ∞, the strong interactions of
a heavy quark become independent of its mass and spin.

Now, let us consider the operators appearing at order 1/m Q in the effective Lagrangian
in Eq. (44.15). They can be easily identified in the rest frame. The first operator:

Okin = 1

2m Q
h̄v (i D⊥)2 hv → − 1

2m Q
h̄v (i 	D )2 hv , (44.20)

is the gauge-covariant extension of the kinetic energy arising from the residual motion of
the heavy quark. The second operator is the non-Abelian analogue of the Pauli interaction,
which describes the colour-magnetic coupling of the heavy-quark spin to the gluon field:

Omag = gs

4m Q
h̄v σµν Gµν hv → − gs

m Q
h̄v

	S · 	Bc hv . (44.21)

Here 	S is the spin operator defined in (44.17), and Bi
c = − 1

2εi jk G jk are the components
of the colour-magnetic field. The chromo-magnetic interaction is a relativistic effect, which
scales like 1/m Q . This is the origin of the heavy-quark spin symmetry.

44.3.4 Heavy quark wave-function renormalization in HQET

As an illustration of the previous discussion, we consider the heavy quark wave-function
renormalization using dimensional regularization in n = 4 − ε-space–time, which we have
discussed in length in previous sections. For QCD, one introduces renormalized quantities by
Qbare = Z1/2

Q Qren, Abare = Z1/2
A Aren, αbare

s = µ2ε Zα αren
s , etc., where µ is an arbitrary mass

scale introduced to render the renormalized coupling constant dimensionless. Similarly, in
the HQET one defines the renormalized heavy-quark field by hbare

v = Z1/2
h hren

v . From now
on, the superscript “ren” will be omitted. In the minimal subtraction M S scheme, Zh can
be computed from the 1/ε pole in the heavy-quark self energy using:

1 − Z−1
h = 1

ε
pole of

∂�(v · k)

∂v · k
. (44.22)

As long as v · k < 0, the self-energy is IR finite and real. The result is gauge-dependent,
however. Evaluating the diagram shown in Fig. 44.3 in the Feynman gauge, we obtain at
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k k

v

Fig. 44.3. One-loop self-energy −i�(v · k) of a heavy quark in the HQET.

one-loop order:

�(v · k) = −ig2
s tata

∫
dnt

(2π )n

1

(t2 + iη)[v · (t + k) + iη]

= −2iCF g2
s

∫ ∞

0
dλ

∫
dnt

(2π )n

1

[t2 + 2λ v · (t + k) + iη]2

= CFαs

2π
�(ε)

∫ ∞

0
dλ

(
λ2 + λω

4πµ2

)−ε

, (44.23)

where CF = 4/3 is a colour factor, λ is a dimensionful Feynman parameter, and ω =
−2v · k > 0 acts as an IR cutoff. A straightforward calculation leads to:

∂�(v · k)

∂v · k
= CFαs

π
�(1 + ε)

(
ω2

4πµ2

)−ε
1∫

0

dz z−1+2ε (1 − z)−ε

= CFαs

π
�(2ε) �(1 − ε)

(
ω2

4πµ2

)−ε

, (44.24)

where we have substituted λ = ω (1 − z)/z. From an expansion around ε = 0, we obtain:

Zh = 1 + CFαs

2πε
. (44.25)

This result was first derived by Politzer and Wise [572].

44.3.5 Residual mass term and definition of the heavy quark mass

In the derivation presented earlier in this section, m Q has been chosen to be the mass in
the Lagrangian. Using this parameter in the phase redefinition in Eq. (44.5) we obtained
the effective Lagrangian in Eq. (44.16), in which the heavy-quark mass no longer appears.
However, this treatment has its subtleties. The symmetries of the HQET allow a residual
mass δm for the heavy quark, provided that δm is of order �QCD and is the same for all
heavy-quark flavours. Even if we arrange that such a mass term is not present at the tree
level, it will in general be induced by quantum corrections. (This is unavoidable if the theory
is regulated with a dimensionful cutoff.) Therefore, instead of Eq. (44.16) we should write
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the effective Lagrangian in the more general form [558]:

L∞ = h̄v iv · D hv − δm h̄vhv . (44.26)

If we redefine the expansion parameter according to m Q → m Q + �m, the residual
mass changes in the opposite way: δm → δm − �m. This implies that there is a unique
choice of the expansion parameter m Q such that δm = 0. Requiring δm = 0, as it is usually
done implicitly in the HQET, defines a heavy-quark mass, which in perturbation theory
coincides with the pole mass [133,147,148]. This, in turn, defines for each heavy hadron
HQ a parameter �̄ (sometimes called the binding energy) through

�̄ = (m HQ − m Q)|m Q→∞ . (44.27)

If one prefers to work with another choice of the expansion parameter, the values of
non-perturbative parameters such as �̄ change, but at the same time one has to include the
residual mass term in the HQET Lagrangian. However, like the pole mass, the previous
definition might be affected by renormalons as we have discussed in previous chapters.

44.4 Hadron spectroscopy from HQET

The spin-flavour symmetry leads to many interesting relations between the properties of
hadrons containing a heavy quark. The most direct consequences concern the spectroscopy
of such states [559,560]. In the limit m Q → ∞, the spin of the heavy quark and the total
angular momentum j of the light degrees of freedom are separately conserved by the strong
interactions. Because of heavy-quark symmetry, the dynamics is independent of the spin
and mass of the heavy quark. Hadronic states can thus be classified by the quantum numbers
(flavour, spin, parity, etc.) of their light degrees of freedom [561]. The spin symmetry predicts
that, for fixed j �= 0, there is a doublet of degenerate states with total spin J = j ± 1

2 .
The flavour symmetry relates the properties of states with different heavy-quark flavour.
In general, the mass of a hadron HQ containing a heavy quark Q obeys an expansion of

the form:

m HQ = m Q + �̄ + �m2

2m Q
+ O(1/m2

Q) . (44.28)

The parameter �̄ represents contributions arising from terms in the Lagrangian that are
independent of the heavy-quark mass [558], whereas the quantity �m2 originates from
the terms of order 1/m Q in the effective Lagrangian of the HQET. For the ground-state
pseudoscalar and vector mesons, one can parametrize the contributions from the kinetic
energy and the chromomagnetic interaction in terms of two quantities λ1 and λ2, in such a
way that [562]:

�m2 = −λ1 + 2
[
J (J + 1) − 3

2

]
λ2 , (44.29)

where J = j ± 1/2 is the total spin of the states. The hadronic parameters �̄, λ1 and λ2 are
independent of m Q . They characterize the properties of the light constituents.
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Consider, as a first example, the SU(3) mass splittings for heavy mesons. The heavy
quark expansion predicts that:

m BS − m Bd = �̄s − �̄d + O(1/mb) ,

m DS − m Dd = �̄s − �̄d + O(1/mc) , (44.30)

where we have indicated that the value of the parameter �̄ depends on the flavour of the
light quark. Thus, to the extent that the charm and bottom quarks can both be considered
sufficiently heavy, the mass splittings should be similar in the two systems. This prediction
is confirmed experimentally, since:

m BS − m Bd = (90 ± 3) MeV ,

m DS − m Dd = (99 ± 1) MeV . (44.31)

As a second example, consider the spin splittings between the ground-state pseudoscalar
(J = 0) and vector (J = 1) mesons, which are the members of the spin-doublet with j = 1

2 .
From Eqs. (44.28) and (44.29), it follows that

m2
B∗ − m2

B = 4λ2 + O(1/mb) ,

m2
D∗ − m2

D = 4λ2 + O(1/mc) . (44.32)

The data are compatible with this prediction:

m2
B∗ − m2

B ≈ 0.49 GeV2 ,

m2
D∗ − m2

D ≈ 0.55 GeV2 . (44.33)

Assuming that the B system is close to the heavy-quark limit, one can obtain the value:

λ2 ≈ 0.12 GeV2 (44.34)

for one of the hadronic parameters in Eq. (44.29). This quantity plays an important role
in the phenomenology of inclusive decays of heavy hadrons. Similar relations can also be
obtained in the case of heavy baryons:

m�b − m B − 3λ2

2m B
� 311 MeV ,

m�c − m D − 3λ2

2m D
� 320 MeV , (44.35)

which are close to each other to be compared with the data. The dominant correction in
Eq. (44.35) comes from the contribution of the chromo-magnetic interaction to the masses
of the heavy mesons,1 which adds a term 3λ2/2m Q on the right-hand side.

The mass formula in Eq. (44.28) can also be used to derive information on the heavy-quark
masses from the observed hadron masses. Introducing the ‘spin-averaged’ meson masses

1 Because of spin symmetry, there is no such contribution to the masses of �Q baryons.
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m̄ B = 1
4 (m B + 3m B∗ ) ≈ 5.31 GeV and m̄ D = 1

4 (m D + 3m D∗ ) ≈ 1.97 GeV, we find that:

mb − mc = (m̄ B − m̄ D)

{
1 − λ1

2m̄ Bm̄ D
+ O

(
1/m3

Q

)}
. (44.36)

Using theoretical estimates for the parameter λ1, which lie in the range (for a complete
reference, see e.g. [545]):

λ1 = −(0.3 ± 0.2) GeV2 , (44.37)

this relation leads to:

mb − mc = (3.39 ± 0.03 ± 0.03) GeV , (44.38)

where the first error reflects the uncertainty in the value of λ1, and the second one takes into
account unknown higher-order corrections. The fact that the difference of the pole masses,
mb − mc, is known rather precisely is important for the analysis of inclusive decays of
heavy hadrons.

44.5 The B̄ → D∗l ν̄ exclusive process

We shall be concerned here with the semi-leptonic decay process B̄ → D∗l ν̄ shown
schematically in Fig. 44.4, and which has the largest branching fraction of all B-meson
decay modes.

The strength of the b → c transition vertex is governed by the element Vcb of the CKM
matrix, which is a fundamental parameter of the Standard Model. A primary goal of the
study of semi-leptonic decays of B mesons is to extract with high precision the values of
|Vcb| (as well as |Vub| for b → u transitions).

44.5.1 Semi-leptonic form factors: the Isgur–Wise function

Heavy-quark symmetry implies relations between the weak decay form factors of heavy
mesons, which are of particular interest. These relations have been derived by Isgur and
Wise [557], generalizing ideas developed by Nussinov and Wetzel [563], and by Voloshin
and Shifman [564,565].

Consider the elastic scattering of a B meson, B̄(v) → B̄(v′), induced by a vector current
coupled to the b quark. Before the action of the current, the light degrees of freedom inside
the B meson orbit around the heavy quark, which acts as a static source of colour. On

Fig. 44.4. Semi-leptonic decays of B mesons.
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t < t0 t = t0 t > t0

Fig. 44.5. Elastic transition induced by an external heavy-quark current.

average, the b quark and the B meson have the same velocity v. The action of the current
is to replace instantaneously (at time t = t0) the colour source by one moving at a velocity
v′, as indicated in Fig. 44.5. If v = v′, nothing happens; the light degrees of freedom do
not realize that there was a current acting on the heavy quark. If the velocities are different,
however, the light constituents suddenly find themselves interacting with a moving colour
source. Soft gluons have to be exchanged to rearrange them so as to form a B meson
moving at velocity v′. This rearrangement leads to a form-factor suppression, reflecting the
fact that, as the velocities become more and more different, the probability for an elastic
transition decreases. The important observation is that, in the limit mb → ∞, the form factor
can only depend on the Lorentz boost γ = v · v′ connecting the rest frames of the initial-
and final-state mesons. Thus, in this limit a dimensionless probability function ξ (v · v′)
describes the transition. It is called the Isgur–Wise function [557]. In the HQET, which
provides the appropriate framework for taking the limit mb → ∞, the hadronic matrix
element describing the scattering process can thus be written as:

1

m B
〈B̄(v′)| b̄v′γ µbv |B̄(v)〉 = ξ (v · v′) (v + v′)µ . (44.39)

Here bv and bv′ are the velocity-dependent heavy-quark fields of the HQET. It is important
that the function ξ (v · v′) does not depend on mb. The factor 1/m B on the left-hand side
compensates for a trivial dependence on the heavy-meson mass caused by the relativistic
normalization of meson states, which is conventionally taken to be:

〈B̄(p′)|B̄(p)〉 = 2m Bv0 (2π )3 δ3( 	p − 	p ′) . (44.40)

Note that there is no term proportional to (v − v′)µ in Eq. (44.39). This can be seen by
contracting the matrix element with (v − v′)µ, which must give zero since �vbv = bv and
b̄v′ �v′ = b̄v′ .

It is more conventional to write the above matrix element in terms of an elastic form
factor Fel(q2) depending on the momentum transfer q2 = (p − p′)2:

〈B̄(v′)| b̄ γ µb |B̄(v)〉 = Fel(q
2) (p + p′)µ , (44.41)

where p(′) = m Bv(′). Comparing this with Eq. (44.39), we find that

Fel(q
2) = ξ (v · v′) , q2 = −2m2

B(v · v′ − 1) . (44.42)

Because of current conservation, the elastic form factor is normalized to unity at q2 = 0.
This condition implies the normalization of the Isgur–Wise function at the kinematic point
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v · v′ = 1, i.e. for v = v′:

ξ (1) = 1 . (44.43)

It is in accordance with the intuitive argument that the probability for an elastic transition
is unity if there is no velocity change. Since for v = v′ the final-state meson is at rest in the
rest frame of the initial meson, the point v · v′ = 1 is referred to as the zero-recoil limit.

The heavy-quark flavour symmetry can be used to replace the b quark in the final-state
meson by a c quark, thereby turning the B meson into a D meson. Then the scattering process
turns into a weak decay process. In the infinite-mass limit, the replacement bv′ → cv′ is a
symmetry transformation, under which the effective Lagrangian is invariant. Hence, the
matrix element:

1√
m Bm D

〈D(v′)| c̄v′γ µbv |B̄(v)〉 = ξ (v · v′) (v + v′)µ (44.44)

is still determined by the same function ξ (v · v′). This is interesting, since in general the
matrix element of a flavour-changing current between two pseudoscalar mesons is described
by two form factors:

〈D(v′)| c̄ γ µb |B̄(v)〉 = f+(q2) (p + p′)µ − f−(q2) (p − p′)µ . (44.45)

Comparing the above two equations, we find that:

f±(q2) = m B ± m D

2
√

m Bm D
ξ (v · v′) ,

q2 = m2
B + m2

D − 2m Bm D v · v′ . (44.46)

Thus, the heavy-quark flavour symmetry relates two a priori independent form factors
to one and the same function. Moreover, the normalization of the Isgur–Wise function at
v · v′ = 1 now implies a non-trivial normalization of the form factors f±(q2) at the point
of maximum momentum transfer, q2

max = (m B − m D)2:

f±
(
q2

max

) = m B ± m D

2
√

m Bm D
. (44.47)

The heavy-quark spin symmetry leads to additional relations among weak decay form
factors. It can be used to relate matrix elements involving vector mesons to those involving
pseudoscalar mesons. A vector meson with longitudinal polarization is related to a pseu-
doscalar meson by a rotation of the heavy-quark spin. Hence, the spin-symmetry transfor-
mation c⇑

v′ → c⇓
v′ relates B̄ → D with B̄ → D∗ transitions. The result of this transformation

is [557]:

1√
m Bm D∗

〈D∗(v′, ε)| c̄v′γ µbv |B̄(v)〉 = iεµναβ ε∗
ν v′

αvβ ξ (v · v′) ,

1√
m Bm D∗

〈D∗(v′, ε)| c̄v′γ µγ5 bv |B̄(v)〉 = [ε∗µ (v · v′ + 1) − v′µ ε∗ · v]ξ (v · v′) ,

(44.48)
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where ε denotes the polarization vector of the D∗ meson. Once again, the matrix elements
are completely described in terms of the Isgur–Wise function. Now this is even more
remarkable, since in general four form factors, V (q2) for the vector current, and Ai (q2),
i = 0, 1, 2, for the axial current, are required to parametrize these matrix elements. In the
heavy-quark limit, they obey the relations [566]

m B + m D∗

2
√

m Bm D∗
ξ (v · v′) = V (q2) = A0(q2) = A1(q2)

=
[

1 − q2

(m B + m D)2

]−1

A1(q2) ,

q2 = m2
B + m2

D∗ − 2m Bm D∗ v · v′ . (44.49)

Equations (44.46) and (44.49) summarize the relations imposed by heavy-quark symme-
try on the weak decay form factors describing the semi-leptonic decay processes B̄ → D � ν̄

and B̄ → D∗� ν̄. These relations are model-independent consequences of QCD in the limit
where mb, mc � �QCD. They play a crucial role in the determination of the CKM matrix
element |Vcb|. In terms of the recoil variable w = v · v′, the differential semi-leptonic decay
rates in the heavy-quark limit become [567]:

d�(B̄ → D � ν̄)

dw
= G2

F

48π3
|Vcb|2 (m B + m D)2 m3

D (w2 − 1)3/2 ξ 2(w) ,

d�(B̄ → D∗� ν̄)

dw
= G2

F

48π3
|Vcb|2 (m B − m D∗ )2 m3

D∗
√

w2 − 1 (w + 1)2

×
[

1 + 4w

w + 1

m2
B − 2w m Bm D∗ + m2

D∗

(m B − m D∗ )2

]
ξ 2(w) . (44.50)

44.5.2 The Luke’s theorem for the 1/m Q corrections

These expressions receive symmetry-breaking corrections, since the masses of the heavy
quarks are not infinitely large. Perturbative corrections of order αn

s (m Q) can be calculated
order-by-order in perturbation theory. A more difficult task is to control the non-perturbative
power corrections of order (�QCD/m Q)n . The HQET provides a systematic framework
for analysing these corrections. For the case of weak-decay form factors the analysis of
the 1/m Q corrections was performed by Luke [568], where, in the zero-recoil limit, an
analogue of the Ademollo–Gatto theorem [569] can be proved. This is Luke’s theorem [568],
which states that the matrix elements describing the leading 1/m Q corrections to weak
decay amplitudes vanish at zero recoil. This theorem is valid to all orders in perturbation
theory [562,570,571], and then protects the B̄ → D∗� ν̄ decay rate from receiving first-order
1/m Q corrections at zero recoil [567]. A similar statement is not true for the decay B̄ →
D � ν̄. The reason is simple but somewhat subtle. Luke’s theorem protects only those form
factors not multiplied by kinematic factors that vanish for v = v′. By angular momentum
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conservation, the two pseudoscalar mesons in the decay B̄ → D � ν̄ must be in a relative
p wave, and hence the amplitude is proportional to the velocity |	vD| of the D meson in the
B-meson rest frame. This leads to a factor (w2 − 1) in the decay rate. In such a situation,
kinematically suppressed form factors can contribute [566]. Later, the authors in [562] have
analysed the structure of 1/m2

Q corrections for both meson and baryon weak decay form
factors [562].

44.5.3 Short-distance corrections and matching conditions

We have shown previously that HQET reproduces correctly the non-perturbative part of the
full theory but does not contain correctly its short-distance part. This can be understood by
denoting that the heavy quark only participates to strong interactions through its interaction
with gluons, where hard gluons can resolve the spin and flavour quantum numbers of a
heavy quark. Their effects lead to a renormalization of the coefficients of the operators in
the HQET. A new feature of such short-distance corrections is that through the running
coupling constant they induce a logarithmic dependence on the heavy-quark mass [564],
which can be calculated in perturbation theory, since αs(m Q) is small.

Let us for example, consider the matrix elements of the vector current V = q̄ γ µ Q.
In QCD this current is partially conserved and needs no renormalization. Therefore, its
matrix elements are free of UV divergences. Still, these matrix elements have a logarithmic
dependence on m Q from the exchange of hard gluons with virtual momenta of the order of the
heavy-quark mass. If one goes over to the effective theory by taking the limit m Q → ∞,
these logarithms diverge. Consequently, the vector current in the effective theory does
require a renormalization [572]. Its matrix elements depend on an arbitrary renormalization
scale ν, which separates the regions of short- and long-distance physics. If ν is chosen such
that �QCD � ν � m Q , the effective coupling constant in the region between ν and m Q is
small, and perturbation theory can be used to compute the short-distance corrections. These
corrections have to be added to the matrix elements of the effective theory, which contain
the long-distance physics below the scale ν. The relation between matrix elements in the
full and in the effective theory is:

〈 V (m Q) 〉QCD = C0(m Q, ν) 〈V0(ν)〉HQET + C1(m Q, ν)

m Q
〈V1(ν)〉HQET + · · · , (44.51)

where we have indicated that matrix elements in the full theory depend on m Q , whereas
matrix elements in the effective theory are mass-independent, but do depend on the renor-
malization scale. The Wilson coefficients Ci (m Q, ν) are defined by this relation. Order by
order in perturbation theory, they can be computed from a comparison of the matrix ele-
ments in the two theories. Since the effective theory is constructed to reproduce correctly
the low-energy behaviour of the full theory, this matching procedure is independent of any
long-distance physics, such as IR singularities, non-perturbative effects, and the nature of
the external states used in the matrix elements.
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The coefficient functions can be evaluated in perturbation theory using the renormaliza-
tion group equation. Most of the existing calculations of short-distance corrections in the
HQET can be found, for example, in [545].

44.5.4 Determination of |Vcb| from HQET

For this purpose, one considers the decay rate given Eq. (44.50), where the Isgur–Wise
function ξ 2(w) is replaced by the functionF(w), which takes into account corrections of the
order αs(m Q) and �QCD/m Q to the Isgur–Wise function. The aim is to measure the quantity
|Vcb|F(w) as a function of w, and and to extract |Vcb| from an extrapolation of the data to the
zero-recoil point w = 1, where the B and the D∗ mesons have a common rest frame. At this
kinematic point, heavy-quark symmetry helps us to calculate the normalization F(1) with
small and controlled theoretical errors. Since the range of w values accessible in this decay
is rather small (1 < w < 1.5), the extrapolation can be done using an expansion around
w = 1:

F(w) = F(1) [1 − �̂2 (w − 1) + ĉ (w − 1)2 . . .] . (44.52)

The slope �̂ 2 and the curvature ĉ, and indeed more generally the complete shape of the
form factor, are tightly constrained by analyticity and unitarity requirements [573,574].
In the long run, the statistics of the experimental results close to zero recoil will be such
that these theoretical constraints will not be crucial to get a precision measurement of |Vcb|.
They will, however, enable strong consistency checks. Measurements of the recoil spectrum
have been performed by several experimental groups. Figure 44.6 shows, as an example,
the data reported some time ago by the CLEO Collaboration. The weighted average of the
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Fig. 44.6. CLEO data for the product |Vcb|F(w), as extracted from the recoil spectrum in B̄ → D∗� ν̄

decays [575]. The line shows a linear fit to the data.
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experimental results is [576]:

|Vcb|F(1) = (35.2 ± 2.6) × 10−3 . (44.53)

Heavy-quark symmetry implies that the general structure of the symmetry-breaking cor-
rections to the form factor at zero recoil is [567]:

F(1) = ηA

(
1 + 0 × �QCD

m Q
+ const × �2

QCD

m2
Q

+ · · ·
)

≡ ηA (1 + δ1/m2 ) , (44.54)

where ηA is a short-distance correction arising from the finite renormalization of the flavour-
changing axial current at zero recoil, and δ1/m2 parametrizes second-order (and higher)
power corrections. The absence of first-order power corrections at zero recoil is a conse-
quence of Luke’s theorem [568]. The one-loop expression for ηA has been known for a long
time [577,565,578]:

ηA = 1 + αs(M)

π

(
mb + mc

mb − mc
ln

mb

mc
− 8

3

)
≈ 0.96 . (44.55)

The scale M ≈ 0.51
√

mbmc in the running coupling constant can be fixed [579] by
adopting the BLM prescription [173]. This lowest order value has been confirmed by the
two-loop result [580]:

ηA|2−loop � 0.960 ± 0.007 . (44.56)

The different analysis of power corrections are more uncertain. The results are in the
range:

δ1/m2 � −(0.055 ± 0.025) . (44.57)

These different results lead to:

F(1) = 0.91 ± 0.03 (44.58)

for the normalization of the hadronic form factor at zero recoil. Thus, the corrections to the
heavy-quark limit amount to a moderate decrease of the form factor of about 10%. This can
be used to extract from the experimental result Eq. (44.53) the model-independent value

|Vcb| = (38.7 ± 2.8exp ± 1.3th) × 10−3 . (44.59)

There are some other predictions on the different form factors which one can obtain in
the same way from HQET, and which agree with the still present inaccurate data.

44.6 The inclusive B̄ → Xl ν̄ weak process

We have already discussed different inclusive processes (e+e− → hadrons, τ semi-leptonic
decays, . . . ) in the second part of this book. Here, we shall be concerned with the inclusive
B̄ → Xl ν̄ weak process involving a heavy quark. From a theoretical point of view such
decays have two advantages: first, bound-state effects related to the initial state, such as
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the ‘Fermi motion’ of the heavy quark inside the hadron [581,582], can be accounted for
in a systematic way using the heavy-quark expansion; secondly, the fact that the final state
consists of a sum over many hadronic channels eliminates bound-state effects related to the
properties of individual hadrons. This second feature is based on the hypothesis of quark-
hadron duality, which is an important concept in QCD phenomenology. The assumption of
duality is that cross-sections and decay rates, which are defined in the physical region (i.e.
the region of time-like momenta), are calculable in QCD after a ‘smearing’ or ‘averaging’
procedure has been applied [583]. In semi-leptonic decays, it is the integration over the
lepton and neutrino phase space that provides a smearing over the invariant hadronic mass
of the final state (so-called global duality). For non-leptonic decays, on the other hand, the
total hadronic mass is fixed, and it is only the fact that one sums over many hadronic states
that provides an averaging (so-called local duality2). Clearly, local duality is a stronger
assumption than global duality. It is important to stress that quark-hadron duality cannot
yet be derived from first principles; still, it is a necessary assumption for many applications
of QCD. The success of the QCD predictions for the hadronic τ widths is a strong test of
the validity of global duality [325,328,346,345].

Using the optical theorem, the inclusive decay width of a hadron Hb containing a b quark
can be written in the form:

�(Hb → X ) = 1

m Hb

Im 〈Hb| T |Hb〉 , (44.60)

where the transition operator T is given by:

T = i
∫

d4x T {Leff(x),Leff(0)} . (44.61)

Inserting a complete set of states inside the time-ordered product, we recover the standard
expression

�(Hb → X ) = 1

2m Hb

∑
X

(2π )4 δ4(pH − pX ) |〈X |Leff |Hb〉|2 (44.62)

for the decay rate. For the case of semi-leptonic and non-leptonic decays, Leff is the
effective Fermi weak Lagrangian, which, in practice is corrected for short-distance ef-
fects [550,551,584–586] arising from the exchange of gluons with virtualities between mW

and mb. In the case of the inclusive semi-leptonic decay rate, for instance, the sum would
include only those states X containing a lepton-neutrino pair. In perturbation theory, some
contributions to the transition operator are given by the two-loop diagrams shown on the
left-hand side in Fig. 44.7. Because of the large mass of the b quark, the momenta flowing
through the internal propagator lines are large. It is thus possible to construct an OPE for
the transition operator, in which T is represented as a series of local operators containing
the heavy-quark fields. The operator with the lowest dimension, d = 3, is b̄b. It arises by
contracting the internal lines of the first diagram. In the usual OPE, the only gauge-invariant

2 This terminology may differ with the local duality used in the QCD spectral sum rules analysis which will be discussed in a
future part of this book.
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b b bb
→

b b

g

bgs σµνG µνb

→

Fig. 44.7. Perturbative contributions to the transition operator T (left), and the corresponding operators
in the OPE (right). The open squares represent a four-fermion interaction of the effective Lagrangian
Leff, and the black circles represent local operators in the OPE.

operator with dimension four is b̄ i �D b; however, the equations of motion imply that between
physical states this operator can be replaced by mbb̄b. The first operator that is different
from b̄b has dimension five and contains the gluon field. It is given by b̄ gsσµνGµνb. This
operator arises from diagrams in which a gluon is emitted from one of the internal lines, such
as the second diagram shown in Fig. 44.7. For dimensional reasons, the matrix elements
of such higher-dimensional operators are suppressed by inverse powers of the heavy-quark
mass. Thus, any inclusive decay rate of a hadron Hb can be written as [587–589]:

�(Hb → X f ) = G2
F m5

b

192π3

{
c f

3 〈b̄b〉H + c f
5

〈b̄ gsσµνGµνb〉H

m2
b

+ · · ·
}

, (44.63)

where the prefactor arises naturally from the loop integrations, c f
n are calculable coefficient

functions (which also contain the relevant CKM matrix elements) depending on the quantum
numbers f of the final state, and 〈O〉H are the (normalized) forward matrix elements of
local operators, for which we use the short-hand notation:

〈O〉H = 1

2m Hb

〈Hb| O |Hb〉 . (44.64)

In the next step, these matrix elements are systematically expanded in powers of 1/mb,
using the technology of the HQET. The result is [562,587,589]:

〈b̄b〉H = 1 − µ2
π (Hb) − µ2

G(Hb)

2m2
b

+ O
(
1/m3

b

)
,

〈b̄ gsσµνGµνb〉H = 2µ2
G(Hb) + O(1/mb) , (44.65)
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where we have defined the HQET matrix elements:

µ2
π (Hb) = 1

2m Hb

〈Hb(v)| b̄v (i 	D)2 bv |Hb(v)〉 ,

µ2
G(Hb) = 1

2m Hb

〈Hb(v)| b̄v

gs

2
σµνGµνbv |Hb(v)〉 . (44.66)

Here (i 	D)2 = (iv · D)2 − (i D)2; in the rest frame, this is the square of the operator for
the spatial momentum of the heavy quark. Inserting these results into Eq. (44.63) yields:

�(Hb → X f ) = G2
F m5

b

192π3

{
c f

3

(
1 − µ2

π (Hb) − µ2
G(Hb)

2m2
b

)
+ 2c f

5

µ2
G(Hb)

m2
b

+ · · ·
}

. (44.67)

It is instructive to understand the appearance of the ‘kinetic energy’ contribution µ2
π ,

which is the gauge-covariant extension of the square of the b-quark momentum inside
the heavy hadron. This contribution is the field-theory analogue of the Lorentz factor
(1 − 	v 2

b )1/2 � 1 − 	k 2/2m2
b, in accordance with the fact that the lifetime, τ = 1/�, for

a moving particle increases due to time dilatation.
The main result of the heavy-quark expansion for inclusive decay rates is the observation

that the free quark decay (i.e. the parton model) provides the first term in a systematic 1/mb

expansion [590]. For dimensional reasons, the corresponding rate is proportional to the fifth
power of the b-quark mass. The non-perturbative corrections, which arise from bound-state
effects inside the B meson, are suppressed by at least two powers of the heavy-quark mass;
thus they are of relative order (�QCD/mb)2. Note that the absence of first-order power
corrections is a consequence of the equations of motion, as there is no independent gauge-
invariant operator of dimension four that could appear in the OPE. The fact that bound-state
effects in inclusive decays are strongly suppressed explains a posteriori the success of the
parton model in describing such processes [591,592].

The hadronic matrix elements appearing in the heavy-quark expansion in Eq. (44.67) can
be determined to some extent from the known masses of heavy hadron states. For the B
meson, one finds that:

µ2
π (B) = −λ1 = (0.3 ± 0.2) GeV2 ,

µ2
G(B) = 3λ2 ≈ 0.36 GeV2 , (44.68)

where λ1 and λ2 are the parameters appearing in the mass formula of Eq. (44.29). For the
ground-state baryon �b, in which the light constituents have total spin zero, it follows that:

µ2
G(�b) = 0 , (44.69)

while the matrix element µ2
π (�b) obeys the relation:

(m�b − m�c ) − (m̄ B − m̄ D) = [
µ2

π (B) − µ2
π (�b)

] (
1

2mc
− 1

2mb

)
+ O

(
1/m2

Q

)
,

(44.70)
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where m̄ B and m̄ D denote the spin-averaged masses introduced in connection with
Eq. (44.36). The above relation implies:

µ2
π (B) − µ2

π (�b) = (0.01 ± 0.03) GeV2 . (44.71)

What remains to be calculated, then, is the coefficient functions c f
n for a given inclusive

decay channel.
To illustrate this general formalism, we discuss as an example the determination of |Vcb|

from inclusive semi-leptonic B decays. In this case the short-distance coefficients in the
general expression (44.67) are given by [587–589]

cSL
3 = |Vcb|2[1 − 8x2 + 8x6 − x8 − 12x4 ln x2 + O(αs)] ,

cSL
5 = −6|Vcb|2(1 − x2)4 . (44.72)

Here x = mc/mb, and mb and mc are the masses of the b and c quarks, defined to a given
order in perturbation theory [133,147,148]. The O(αs) terms in cSL

3 are known exactly [593],
and reliable estimates exist for the O(α2

s ) corrections [594]. The theoretical uncertainties in
this determination of |Vcb| are quite different from those entering the analysis of exclusive
decays. The main sources are the dependence on the heavy-quark masses, higher-order
perturbative corrections, and above all the assumption of global quark-hadron duality. A
conservative estimate of the total theoretical error on the extracted value of |Vcb| yields [595]:

|Vcb| = (0.040 ± 0.003)

[
BSL

10.5%

]1/2[1.6 ps

τB

]1/2

= (40 ± 1exp ± 3th) × 10−3 . (44.73)

The value of |Vcb| extracted from the inclusive semi-leptonic width is in excellent agree-
ment with the value in Eq. (44.59) obtained from the analysis of the exclusive decay
B̄ → D∗� ν̄. This agreement is gratifying given the differences of the methods used, and it
provides an indirect test of global quark-hadron duality.

Combining the two measurements gives the final result:

|Vcb| = 0.039 ± 0.002 . (44.74)

After Vud and Vus , this is the third-best known entry in the CKM matrix.

44.7 Rare B decays and CP-violation

One of the main objectives of B-factories is to test the CKM mechanism, which predicts
that all CP violation results from a single complex phase in the quark mixing matrix.

Indeed, the determination of the sides and angles of the ‘unitarity triangle’ V ∗
ubVud +

V ∗
cbVcd + V ∗

tbVtd = 0 depicted in Fig. 44.8 plays a central role in the B factory program.
Adopting the standard phase conventions for the CKM matrix, only the two smallest el-
ements in this relation, V ∗

ub and Vtd , have non-vanishing imaginary parts (to an excellent
approximation). In the standard model the angle β = −arg(Vtd ) can be determined in a
theoretically clean way by measuring the mixing-induced CP asymmetry in the decays
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td~V
ub
*~V

βγ

(ρ,η)

(1,0)(0,0)

CP  Violation

α

Fig. 44.8. The rescaled unitarity triangle representing the relation 1 + V ∗
ub Vud

V ∗
cb Vcd

+ V ∗
tb Vtd

V ∗
cb Vcd

= 0. The apex

is determined by the Wolfenstein parameters (ρ̄, η̄). The area of the triangle is proportional to the
strength of CP violation in the standard model.

B → J/ψ KS . Recents results from CDF [596] and especially from B-factories: Babar
[597] and Belle [598] indicate a large value of β. The angle γ = arg(V ∗

ub), or equivalently
the combination α = 180◦ − β − γ , is much harder to determine [595]. After the different
announcements of evidence for a CP asymmetry in the decays B → J/ψ KS and by direct
CP violation in K → ππ decays by the KTeV and NA48 groups [599], there are a lot
of efforts for investigating theoretically these rare B decay processes. Among others, two
competing groups [600,601] work actively on these processes, but they have not yet reached
any mutual agreements for their results.
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Potential approaches to quarkonia

45.1 The Schrödinger equation

As mentioned earlier, when the heavy quark mass m Q is much larger than the QCD scale
�QCD, the running coupling αs(m Q) is small implying that at this scale of the order of
the Compton wavelengh λ ∼ 1/m Q , one can safely use perturbative QCD for describing
the hadrons. In this case the heavy Q̄ Q bound states with the size λ/αs(m Q) � Rhad ∼ 1
fermi are hydrogen-like atoms to which ordinary quantum mechanics can be applied. In
the non-relativistic limit (NR), it is possible to show that the interaction between the two Q̄
and Q states can be described by a local potential V (�r ), where �r is the relative coordinate
between Q and Q̄ (spin is neglected for the moment). The energy levels and wave functions
of the bound states can be found by solving the Schrödinger equation in three-dimensions:

Enl�nlm(�r ) =
[
− h̄2

2µ
� + V (�r )

]
�nlm(�r ) (45.1)

where µ ≡ m Q/2 is the reduced mass of the system; �nlm(�r ) is the Schrödinger wave
function; V (�r ) is the interaction potential and Enl is the energy eigenvalue; n, l and m are
respectively the principal quantum number, angular orbital, and eigenvalue of lz on the
z-axis; h̄ = 1 in standard units:

� ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (45.2)

is the Laplacian. In the case of central pontential, the wave function can be decomposed
into its radial Rnl(r ) and spherical harmonic Ylm(θ, φ) components:

�nlm(�r ) = Rnl(r )Ylm(θ, φ) . (45.3)

In terms of the reduced wave function:

unl(r ) ≡ r Rnl(r ) , (45.4)

the Schrödinger equation becomes:

−d2unl

dr2
= − h̄2

2µ

[
Enl − V (r ) − l(l + 1)h̄2

2µr2

]
unl(r ) , (45.5)

464
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Fig. 45.1. Current situation of the charmonium system and transitions interpreted from some models.
Dashed lines are uncertain states. γ ∗ refers to processes involving virtual photons, including decays
into e+e− and µ+µ−.

with the boundary conditions:

unl(0) = 0 ,
dunl

dr

∣∣∣∣∣
u=0

= Rnl(0) , (45.6)

except that even parity solutions are inconsistent with the above boundary conditions. The
wave function is normalized such that:∫

d3�r |�nlm(�r )|2 =
∫ ∞

0
dr |unl(r )|2 = 1 . (45.7)

It shows that the system is now described by the effective potential:

Veff(r ) ≡ V (r ) + l(l + 1)h̄2

2µr2
, (45.8)

Obviously, the main uncertainty for a quantitative spectroscopy is the choice of the correct
Q̄ Q potential V (r ) as far as its exact form is not yet known from first principles. We show
in Fig. 45.1 the spectra of charmonium and in Fig. 45.2 those for the bottomium systems
from [16]

45.2 The QCD static Coulomb potential

First, the model has to recover the short distance QCD Coulomb static potential. The expres-
sion of this potential can be derived from the tree-level scattering amplitude of the process:

A[Q(p1, λ1, i1) + Q̄((p2, λ2, i2) → Q(p′
1, λ

′
1, i ′

1) + Q̄((p′
2, λ

′
2, i ′

2)] , (45.9)

shown at tree level in Fig. 45.3; i, j and λi are respectively colour and spinor indices.
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Fig. 45.2. Same as in Fig. 45.1 but for the Bottomium system.

In a covariant Feynman gauge, it is easy to obtain:

A = 1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1

(
g2

4π2

)
ū(p′

1, λ
′
1)γ µu(p1, λ1)

gµν

k2
v̄(p2, λ2)γ µv(p′

2, λ
′
2) , (45.10)

where λa are colour matrices. It can again be rearranged by using the relation:

v̄(p2, λ2)γµv(p′
2, λ

′
2) = −ū(p′

2, λ
′
2)γµu(p2, λ2) . (45.11)

The non-relativistic amplitude is related to A as:

TNR = 1

4
√

p10 p′
10 p20 p′

20

A . (45.12)

In the non-relativistic limit:

p0 ≡
√

�p2 + m2
Q 	 m Q + �p2

2m Q
+ �p4

8m2
Q

,

k2 = (p10 − p20)2 − �k2 	 −�k2 + �p2 − �p′2

4m2
Q

, (45.13)
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Q

Q

p2, λ2, i2

p1,
λ1,

i 1

p'1, λ'1, i '1

p' 2,
λ' 2,

i ' 2

Fig. 45.3. Tree-level diagram for Q̄ Q scattering.

and

1√
2p0

u(p, λ) 	
((

1 − �p2/4m2
Q

)
χ (λ)

(1/2m Q) �p · �σχ (λ)

)
(45.14)

where the Pauli matrices �σ act on the two-component spinor χ (λi ). In the static limit, one
can retain only the leading term in Eq. (45.13), and obtains:

TNR(Born) 	 −1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1

(
g2

4π2

)
χ †(λ′

1)χ †(λ′
2)

1
�k2

χ (λ1)χ (λ2)

= −1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1
δλ1λ

′
1
δλ2λ

′
2

(
g2

4π2

)
1
�k2

. (45.15)

On the other hand, the non-relativistic amplitude can be related to the potential as:

TNR(Born) = − 1

4π2

∫
d3�r ei�k�rχ †(λ′

1)χ †V (�r )(λ′
2)

1
�k2

χ (λ1)χ . (45.16)

By identification, taking the inverse Fourier transform, and using:

1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1
=

{−CF : Singlet
1

2Nc
= 1

6
: Octet

(45.17)

one obtains the expression.1

V (r � 1/�QCD) = −
(

CF ≡ 4

3

)
αs

r
: Singlet

=
(

1

2Nc

)
αs

r
: Octet , (45.18)

where the running of the QCD coupling and the form of the potential have been verified
on the lattice. Using this form of the potential, the eigenvalue of the previous Schrödinger

1 We shall only consider the singlet case in the following.
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equation in Eq. (45.5) is the so-called binding energy:

Enl = 2m Q − C2
Fα2

s

4n2
m Q . (45.19)

45.3 Potential models

The model dependence enters into the large distance part (r � 1/�QCD) of the potential.
Many phenomenological QCD-motivated forms of the potential have been proposed in the
literature [12,81–94].

45.3.1 Cornell potential

The simplest phenomenological form is the Cornell linear potential [82]:

V (r � 1/�QCD) 	 σr (45.20)

where σ is the QCD string tension.

45.3.2 Richardson potential

In the Richardson potential [83], the QCD coupling in the Coulomb potential is allowed
to run, and an interpolating formula for the Fourier transform of the potential has been
proposed:

Ṽ (q) = −4

3

(
48π2

33 − 2n f

)
1

q2 ln
(
1 + q2/�2

QCD

) . (45.21)

which behaves as:

Ṽ (q � �QCD) ∼ 1

q2 ln
(
q2/�2

QCD

) , V (q � �QCD) ∼ 1

q2
. (45.22)

The charmonium and upsilon spectroscopy fix the parameters to be:

�QCD ≈ 400 MeV , σ 	 (400 MeV)2 . (45.23)

45.3.3 Martin potential

Some more empirical models are the Martin potential [12,84–86]:

V (r ) ∼ A + Brn , (45.24)

where the different terms are fixed from the fit of the rich quarkonia families. The power of
the potential is found to be:

n 	 0.1 . (45.25)
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Martin’s potential is neither Coulombic at short distance nor linear at long distance, but
is strongly constrained inside the region 0.1 ∼ 1 fermi. Its slight modification outside this
region does not affect the results as the wave function vanishes rapidly.

From the concavity properties of the potential [12,84–86]:

dV

dr
> 0 ,

d2V

dr2
< 0 =⇒ d

dr

(
1

r

dV

dr

)
< 0 , (45.26)

some impressive sets of inequalities can be derived. If n is the number of nodes of the radial
wave functions, and l the orbital angular momentum, one has for n ≥ 0:

E(n, l + 1) >
1

2
[E(n + 1, l) + E(n, l)] , (45.27)

which is satisfied by the observed masses:

Mϒ ′ − Mϒ > Mϒ ′ − Mϒ” . . . (45.28)

The flavour independence assumption leads to the concavity relation:

2E(Q̄q) > E(Q̄ Q) + E(Q̄q) , (45.29)

which is well satisfied by the observed masses. In particular, one expects to have:

MBc ≥ 1

2
[Mψ + Mϒ ] , (45.30)

while the lower bound can also be obtained [86]. Analogous inequalities have also been
derived among baryons and mesons.

However, despite the great phenomenological success of various types of potential mod-
els, some difficulties arise in attempting to relate them to field theory. Leutwyler and
Voloshin criticize the locality of the potentials [90], whilst Bell and Bertlmann [91–93]
do not see their flavour independence.

45.4 QCD corrections to the static Coulomb potential: Leutwyler–Voloshin model

In this section, we shall consider the Coulomb static potential given in Eq. (45.18) and we
shall investigate the different QCD corrections to it.

45.4.1 Relativistic corrections

In this case, the interaction betwen the Q and Q̄ can be described by the Breit-fermi potential
describing the positronium e+e− bound state (see e.g. Schwinger [319], Bertstetski et al.
[53]). It gives the relativistic corrections:

V (0)(r ) = V (0)
stat(r ) + V (0)

rel (45.31)



470 IX QCD non-perturbative methods

where:

V (0)
rel ≡ V (0)

orb + V (0)
tens + V (0)

L S + V (0)
H F , (45.32)

which corresponds respectively to the purely orbital (spin independent + kinetic energy),
tensor, spin-orbit and hyperfine potentials. They read:

V (0)
orb = − 1

4m3
Q

�2 + CFαs

m2
Q

1

r
�

V (0)
tens = CFαs

4m2
Q

1

r3
S12

V (0)
LS = 3CFαs

2m2
Q

1

r3
�L · �S

V (0)
HF = 4πCFαs

3m2
Q

�S2δ(�r ) . (45.33)

Here �L, �S and S12 are respectively the orbital angular momentum, total spin and tensor
operators defined as:

�L = −i�r × � , �S = 1

2
(σ1 + σ2) , S12 = 2

∑
i j

(
2

rir j

r2
− δi j

)
Si S j . (45.34)

In Eq. (45.33), one should notice that r−1 and � do not commute, which is not important
as one only considers diagonal matrix element of r−1� between the � states. Another
peculiar point is that one has to take the expectation values of terms containing �L �S and S12

to be zero between states with zero angular momentum as their angular average vanishes.
This is despite the fact that the factor 1/r3 is singular at the origin.

Noting that, in the Coulombic approximation, from the average value:

〈�k2/m2
Q

〉
nl

=
(

CFαs

2n

)2

, (45.35)

one can, for example, deduce the shift of the spin-independent energy levels:

E (0)
nl → E (0)

nl + [
δrel Enl ≡ 〈

V (0)
orb

〉
nl

]
, (45.36)

with:

δrel Enl =
(

CFαs

m2
Qa3

) (
2l + 1 − 4n

(2l + 1)n4

)
− 2

m3
Qa4

[
1

(2l + 1)n4
− 3

8n5

]
, (45.37)

where:

a ≡ 2

m QCFαs
, (45.38)

is the Bohr radius. Analogously, the hyperfine splittings can be obtained from 〈V (0)
H F 〉n0,
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which in the case n = 1 gives:

Mϒ − Mηb = δH F E10 ≡ 〈
V (0)

H F

〉
10 = 8CFαs

3m2
Qa3

. (45.39)

45.4.2 Radiative and non-perturbative corrections

Radiative corrections to the previous lowest order relativistic corrections are known.
The readers can find a compilation of the results obtained within the M S scheme in, for
example, [46].

A priori, one may expect that non-perturbative corrections to the static potential have
complicated structure. However, as the heavy quarks move in a short distance region
〈�k2〉 ∼ a � 1/�QCD, one can be convinced that the first known leading non-perturbative
correction in 1/m Q is due to the gluon condensate. Treating the interaction Hamiltonian as
a perturbation to the Coulomb potential and using a dipole approximation:

HI = −g

2

(
λa

q − λa
q̄

)�x �Ea , (45.40)

where �Ea is the colour electric field which is related to the gluon condensate as:

〈0|g2 �Ea �Ea|0〉 = −π〈G2〉 , (45.41)

the energy levels are determined by the quadratic Stark-effect of the chromoelectric field:

δNP Enl = 〈�nl|0|HI
1

E (0)
n − H (8)

Coul

HI |0〉|�nl〉 = π

18
〈αs G2〉〈�nl|�x 1

E (0)
n − H (8)

Coul

�x |�nl〉 ,

(45.42)

which contributes to the level shift as [90]:

δN P Enl = m Q
εnln6π〈αs G2〉
(m QCF α̃s)4

, (45.43)

where:

εnl = 2

9

1

n3(2l + 1)
[(l + 1)[F(n, l) − F(−n, l)] + l[F(n, −l − 1) − F(−n, −l − 1)]] ,

(45.44)

with:

F(n, l) = 2n[n2 − (l + 1)2] + (n + l + 2)(n + l + 1)

×
[

(n − l)(n + l + 3)

9n + 16
+ 4

(2n − l)2

9n + 8

]
. (45.45)

Some particular values are:

ε10 = 624

425
, ε20 = 1051

663
, ε21 = 9929

9945
. (45.46)
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The main feature of the result is that the level shift grows like n6, showing that, even for
heavy quarks, the non-perturbative corrections are important for excited states.

45.4.3 Validity range

The validity of the previous result can only be realized if the shift is much smaller than the
Schrödinger binding energy in Eq. (45.19), which needs that n2/m Q � 1. Taking n = 1,
this leads to the condition:

m Q � 5 GeV , (45.47)

indicating that the model is quite inaccurate when applied to the bottomium system.

45.4.4 Some phenomenological applications

Collecting all different corrections, the vector-pseudoscalar mass-difference is [46]:

Mϒ − Mηb = 8CFαs

3m2
Qa3

[1 + δαs + δN P ]2

×
(αs

π

) {
1 +

[
−β1

(
ln

aµ

2
− 1

)
+ 21

4
(ln CF α̃s + 1) + bH F

]

+ 1161

8704

π〈αs G2〉
m4

Q α̃6
s

}
, (45.48)

where:

bH F = 11CA − 9CF

18
, δαs = −3β1

2

(αs

π

) (
ln

aµ

2
− γE

)
,

δN P = 1

2

[
270 459

108 800
+ 1 838 781

2 890 000

]
π〈αs G2〉

m4
Q α̃6

s

. (45.49)

The leptonic width of the ϒ is:

�(ϒ → e+e−) = �(0) × [1 + δαs + δN P ]2

(
1 − 4CFαs

π

)
, (45.50)

where:

�(0) = 16π

(
Qbα

Mϒ

)2

|ψ(0)|2 . (45.51)

The wave function is found to be:

|ψ(0)|2 = 2
[
m QCF α̃3

s (µ2)
]
, (45.52)

Using:

�QCD(n f = 4, 3 loops) = (0.23 ± 0.06) GeV , 〈αs G2〉 = (0.06 ± 0.02) GeV4 ,

(45.53)
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they lead to the numerical predictions:

Mϒ − Mηb = (47 ± 13) MeV , �(ϒ → e+e−) 	 (1.1 ± 0.3) keV . (45.54)

The electronic width is quite inaccurate but agrees within the errors with the data (1.32 ±
0.04) keV. The prediction for the mass splitting will be compared with the other QCD-based
predictions in subsequent chapters. Some other predictions for the mass splittings are also
available [46], which in general are in good agreement with the data. This method has been
also used in [90,94,46] for extracting the values of the quark pole masses. We quote below
the corresponding values of the M S running masses:

m̄b
(
m2

b

) = 4440+43
−28 MeV , m̄c

(
m2

c

) = 1531+132
−127 MeV , (45.55)

which are systematically higher than predictions from QCD spectral sum rules methods
(see however, [602] and the next chapter on quark masses).

45.5 Bell–Bertlmann equivalent potentials

‘Equivalent’ potential reproducing the Leutwyler–Voloshin spectrum has been proposed
in [93]. Using the form of the Stark effect in Eq. (45.42), in the static limit (m Q → ∞)
where one can neglect the kinetic term p2/m Q , the energy denominator becomes a potential
difference:

E (0)
n − H 8

coul

m Q→∞→ V 0
coul − V 8

coul = 9β

8

1

r
, (45.56)

which leads to the cubic potential:

Vstatic = 4π

81β
〈αs G2〉r3 . (45.57)

This potential accounts for large quantum numbers, as the distance in a Coulombic state
behaves as:

〈r〉Coul
n ∼ n2 . (45.58)

Corrections of order 1/m Q to this potential approximate low quantum numbers. There-
fore, one arrives at the ‘equivalent’ potential [93]:

δV (r ) = 4π

81β
〈αs G2〉

[
r3 − 304

81

r2

m Qβ
+ 53

10

r

(m Qβ)2
− 113

100

1

(m Qβ)3

]
, (45.59)

which differs from the effective potential models as it is flavour dependent.
Another ‘equivalent’ potential has been proposed in [91–93] for interpreting the QCD

spectral sum rule non-relativistic moments (see Part X, QCD spectral sum rules):

R(τN ) = − d

dτN
ln

[
M(τN ) ≡

∫
d E e−EτN Im�(E)

]
τ→∞−→ E0 , (45.60)
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in a potential theory, where E0 is the energy of the ground state. Im�(E) is the spectral
function which can be parametrized within the potential theory as:

Im�(E) = 3

8m2
Q

∑
n

4π |ψn(0)|2δ(E − En) , (45.61)

which shows that the moments M is nothing but the time-dependent Green function:

M(τN ) = 3

8m2
Q

4π〈�x |e−HτN |�x〉|�x=0 , (45.62)

where H ≡ p2/m Q + V is the total Hamiltonian of the system. Perturbing the kinetic term
by the potential with respect to the time τN :

e−HτN = e
− p2

m Q
τN −

∫ τN

0
dτ ′

N e
− p2

m Q
(τN −τ ′

N )
V e

− p2

m Q
τ ′

N , (45.63)

one obtains for a power-like potential: V = ∑
n vnrn:

M(τN ) = 3

8m2
Q

4π

(
m Q

4πτN

)3/2
[

1 −
∑

n

vn�
(n

2
+ 1

)
m Q

(
τN

m Q

)n/2+1
]

. (45.64)

An identification of this term with the QCD moments in Eq. (49.45) leads to the ‘equivalent’
potential:

V (r ) = −4

3

αs

r
+ π

144
〈αs G2〉m Qr4 , (45.65)

which differs from the effective potential models and from the previous Leutwyler–Voloshin
‘equivalent’ potential. The main feature of the BB ‘equivalent’ potentials is that they are
flavour dependent in contrast to the effective potential models.

45.6 Stochastic vacuum model

We have seen previously that for excited states the Voloshin–Leutwyler approach [90]
cannnot be applied as n2/m Q is no longer smaller than 1. It has been noted in [603], that
this is due to the fact that the correlators 〈Gµν(x)Gαβ(x)〉 have been taken to be independent
of x , although they should decrease exponentially for large spacelike x . Splitting the field
strength Ga

µν into a chromomagnetic piece Ba and a chromoelectric one Ei
a = G0i , one can

show that in the non-relativistic limit, the spin-independent piece of the splitting will only
involve Ei

a . Therefore, the non-perturbative correlator reads:

〈E(x)E(0)〉 = 1

12

[
δi j�(x) + xi x j

∂

xµ

∂

xµ

D1(x2)

]
(45.66)

with:

�(x) ≡ D(x2) + D1(x2) + x2 ∂

xµ

∂

xµ

D1(x2) . (45.67)
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If one neglects the x dependence of the correlator, the only surviving part is:

�(0) = 2π〈αs G2〉 . (45.68)

Therefore, Eq. (45.66) indicates that one can derive the Voloshin–Leutwyler formula for
small n, but one can also obtain another potential for large n if one takes into account the
x dependence of the correlator.

Defining the correlation time TQ for quarks as:

〈xi (τ1)x j (τ2)〉nl = δi j

3
〈�x2

nl〉 exp

[
−|τ1 − τ2|

TQ

]
, (45.69)

and the one TG for gluons:

〈
Ei

a(τ1)E j
b(τ2)

〉
E

= δi j

3

δab

8
〈E2〉 exp

[
−|τ1 − τ2|

TG

]
, (45.70)

one can also find that the sum rule approach within the Bell–Bertlmann ‘equivalent’ potential
is applicable for TG � TQ [604]. These features are the basis of the stochastic model
discussed in details in [605,51].

45.6.1 The model

One assumes that the quarks and the gluons background fields fluctuate stochastically
according to a Markov process. Let us consider the stochastic variable ξ (t) depending on
one or several variables t . It will be distributed according to some distribution which fixes
the vacuum expectation values:

〈ξ (t)〉 , 〈ξ (t1)ξ (t2)〉 , . . . (45.71)

The cumulants or linked clusters are defined by:

〈
P exp

∫
dt [ξ (t)]

〉
= exp

[ ∫
dt 〈〈ξ (t)〉〉 + 1

2!

∫ ∫
dt1dt2 〈〈ξ (t1)ξ (t2)〉〉 + · · ·

]
,

(45.72)

where the path ordering prescription:

�(t, t ′, C) ≡
〈
P exp

∫
C

dt [ξ (t)]

〉
= lim

ti+1−ti →0

N+1∏
i=1

exp

[
ξ

(
ti+1 + ti

2

)
(ti+1 − ti )

]
,

(45.73)

with ti are ordered points on the path C with tN = t ′ and t1 = t , should be introduced if the
stochastic variable ξ (t) are non-commuting. In the case of commuting stochastic variables
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which we shall consider here, an expansion of Eq. (45.72) gives:

〈〈ξ (t)〉〉 = 〈ξ (t)〉 ,

〈〈ξ (t1)ξ (t2)〉〉 = 〈ξ (t1)ξ (t2)〉 − 〈〈ξ (t1)〉〉〈〈ξ (t2)〉〉 ,

... (45.74)

A centered Gaussian process is a process where only the n = 2 cumulants occur, that is,
all expectation values can be determined by the correlators with n = 2:

〈ξ (t)〉 = 〈ξ (t1)ξ (t2)ξ (t3)〉 = · · · = 0 ,

〈ξ (t1)ξ (t2)〉 = 〈〈ξ (t1)ξ (t2)〉〉 ,

... (45.75)

It can be shown [605,51] that assumptions where the contributions of low frequency fields
can be described by a functional integral (stochastic process) with converging clusters leads
to an area law of the Wilson loop and then to linear confinement for static sources.

For that purpose, we consider the Wegner–Wilson loop in a pure gauge theory:

W [C] =
∫

DAµ e− 1
4 G2

µν (x) exp

[
ig

∫
C

Aµ(x)dxµ

]
. (45.76)

Denoting:

〈...〉A =
∫

· · ·
∏
k<µ

d Aµ e− 1
4 G2

µν (x) , (45.77)

these low frequency contributions to the Wilson loop are defined as:

W [C]A =
〈
exp

[
ig

∫
C

Aµ(x)dxµ

]〉
A

=
〈
exp

[
ig

∫
F

Gµν(x)dσµν(x)

]〉
A

. (45.78)

F is an area whose border is the loop C ; dσµν(x) (µ < ν) is the surface element of F at
point x , and Gµν is the field strength. One has used the Stokes theorem which transforms
the line into surface integral. These low frequency contributions are given by the cluster
expansion:

W [C]A = exp

[
− g2

2!

∫
dσµν(x)dσαβ(x ′) 〈〈Gµν(x)Gαβ(x ′)〉〉 + · · ·

]
, (45.79)

〈Gµν〉 = 0 due to Lorentz invariance. Lorentz and translational invariances also yield the
most general decomposition:

〈Gµν(x1)Gαβ(x ′
1)〉A = 1

12
〈G2〉

{
(δµαδνβ − δµβδνα)D(x2)κ +

[(
1

2

∂

∂xµ

(xαδνβ − xβδνα)

+ 1

2

∂

∂xν

(xβδµα − xαδµβ)

)
D1(x2)(1 − κ)

]}
, (45.80)
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where 〈G2〉 ≡ 〈Gµν(0)Gµν(0)〉 and κ a parameter. One can insert this expression into the
cluster expansion in Eq. (45.79). Assuming that the correlator falls off for |x − x ′| > λ and
using |F | � λ2, one obtains:

W [C]A 	 exp[−κ(g2G2〉λ2|F |K [1 + O(1/F)]] , (45.81)

where the constant K depends on the shape of the scalar function D(x2). To leading order
(two-cluster) of the cluster expansion, one can notice that the result is proportional to κ

as D1 in Eq. (45.80) does not contribute to the term proportional to the area loop. The
assumption of a convergent cluster expansion thus leads to the area law of the Wilson loop
if the tensor structure with D in Eq. (45.80) does not vanish. Thus leading apparently to a
natural linear confinement for Abelian theory as well. However, one can show that the use
of the Maxwell equations for QED:

∂αεαµνβGµν = 0 , (45.82)

implies that:

κ = 0 , (45.83)

and hence that we have no area law and then no confinement. For QCD, we have instead:

∂αεαµνβGa
µν = −igεαµνβ fabc Ab

µ Ac
ν �= 0 , (45.84)

indicating that there is no reason why κ should be equal to zero. A lattice measurement
shows that, for QCD, the correlator D(x2) is dominant as one finds [606]:

κ ≈ 0.74 . (45.85)

45.6.2 Application to the static potential

We shall discuss here the application of the model to static potential.2 Let us consider the
gauge-invariant non-local operator:

O(x, x ′) ≡ Q̄(x)φ(x, x ′)Q(x ′) , (45.86)

where Q(x) is the heavy quark field, and φ(x, x ′) is the string along the straightline:

φ(x, x ′) = P exp

[
ig

∫
C

Aµ[x + λ(x ′ − x)]
(
x ′ − x

)
µ

dλ

]
. (45.87)

Applying the previous operator to the vacuum state of hadrons leads to a gauge- and
Lorentz-invariant state composed of a quark at a position x and an antiquark at a position
x ′. The evolution of this operator is given by the Green’s function:

G(x, x ′; y, y′) =
∫

DADQDQ̄ e−SO(x, x ′)O†(y, y′) . (45.88)

2 Some other applications of the model can be found in more specialized reviews (see e.g. [51]).
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The QCD action is:

S =
∫

dx Q̄(x)[iγµ (∂µ + ig Aµ) − m Q]Q(x) + SY M , (45.89)

with:

SY M ≡ (1/4)Ga
µνGµν

a . (45.90)

Doing the integration over fermion fields, one obtains:

G(x, x ′; y, y′) =
∫

DA e−SY M Det[A]Tr[S(x ′, y′; A)φ(y′, y)S(y, x ; A)] , (45.91)

where:

S(x, y, A) = δ(x − y)

[iγµ (∂µ + ig Aµ) − m Q]
, (45.92)

is the quark propagator in external field; Det[A] is the functional determinant from
the quark field integration, and describes internal fermion loops as power series of g. Using
iγ0 = γ4, one obtains to leading order in 1/m Q and g:

S(x, y, A) 	 φ(x, y)δ(�x − �y) ×
[

e−m Q (x4−y4)θ (x4 − y4)

(
1 + γ0

2

)

+ e−m Q (y4−x4)θ (y4 − x4)

(
1 − γ0

2

)]
+ O

(
1

m Q

)
(45.93)

Therefore, to this approximation, the Green’s function becomes:

G[(�x, 0), (�x ′, 0); (�y, T ), (�y′, T )] 	 δ(�x − �y)δ(�x ′ − �y′)e−2m Q T

×
∫

DA e−SY M Tr[φ(y, x)φ(x, x ′)φ(x ′, y′)φ(y′, y)]

≡ δ(�x − �y)δ(�x ′ − �y′)e−2m Q T Tr W [L] , (45.94)

where the Wegner–Wilson loop has been defined in Eq. (45.76). The second loop
integral entering in Eq. (45.76) is defined along the rectangle with corners [(�x, 0),
(�x ′, 0), (�y′, T ), (�y, T )]. Using the fact that the Green’s function scales like e−En T , where En

is the energy of the system, one can deduce:

En = − lim
T →∞

1

T
ln Tr W [L] + 2m Q . (45.95)

The term 2m Q is the rest energy of the two quarks, while the first term can be identified
with the potential V (�x − �x ′) of the system. Evaluating the rectangular Wegner–Wilson loop
using a strong coupling or lattice calculations, one finds in terms of the string tension σ

[491]:

V (�x − �x ′) = σ (�x − �x ′) . (45.96)
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Using the cluster decomposition in Eq. (45.79), one obtains, from the area law of the
Wegner–Wilson loop, the spin-independent part of the potential:

V0(r ) = 1

24Nc
〈g2G2〉

[
r
∫ r

0
dρ

∫ +∞

−∞
dτ D(τ 2 + ρ2)

+
∫ r

0
ρdρ

∫ +∞

−∞
dτ

[
−D(τ 2 + ρ2) + 1

2
D1(τ 2 + ρ2)

] ]
, (45.97)

where:

lim
r→∞ V0(r ) ∼ σr , (45.98)

corresponding to the standard linear potential. At short distance:

lim
r→0

V0(r ) ∼ r2 , (45.99)

which recovers the form expected from renormalon calculations (see previous chapter on
renormalons).

However, one should notice that this result is only valid for:

T −1 � En , (45.100)

which corresponds to the regime where r is small but the state is located on average at a
large distance from the centre of mass. Collecting the previous result, the full non-relativistic
potential, from the stochastic model, is:

V (r ) = −CF
αs

r
+ V0(r ) . (45.101)

To this expression one can add spin-dependent corrections to order 1/m2
Q (see e.g. [51]),

which can also be expressed in terms of the correlators D(x) and D1(x). One should notice
that the spin-dependent part of the confining potential is known phenomenologically to be
specifically different from the Coulomb potential, while good results are obtained if one
assumes that the confining potential leads to the same spin-dependent force as a scalar
exchange [607]. Radiative corrections can also be included into the Coulombic potential.
Predictions for the higher excited mass splittings using the model are quite sucessful.

45.7 Non-relativistic effective theories for quarkonia

In a previous section, we have anticipated the different regimes (short and long distances)
appearing in the Q̄ Q system. In the present approach, it is convenient to introduce two UV
scales �1,2 which characterize such regimes, and which are ordered by the heavy quark
velocity v � 1:

� The quark mass m Q is called the hard scale.
� The momentum m Qv is the soft scale (S).
� The binding energy m Qv2 is the ultrasoft scale (US).
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Therefore, one can have the regime hierarchy:

m Qv2, �QCD � �1 � m Qv � �2 � m Q . (45.102)

In this way, �1 is the cut-off of the quark energy and of the gluon energy and momentum,
whilst �2 is the cut-off of the relative momentum �p of the quark-antiquark system. For a
Coulombic system, one has:

v ∼ αs . (45.103)

As the two scales are largely separated, one can (in principle) integrate out the UV scales
step by step: after integrating out the heavy quark mass m Q , one obtains the usual non-
relativistic QCD (NRQCD) effective theory [608]. The Lagrangian of NRQCD is written in
terms of an expansion in 1/m Q . Potential NRQCD (pNRQCD) is obtained by integrating out
from NRQCD the soft scale S [609]. In this way, the Lagrangian of pNRQCD is expressed
as an expansion in terms of 1/m Q and of the relative coordinate �r (multipole expansion) of
the Q̄ and Q.

The integration of the degrees of freedom is done using matching conditions (see e.g.
[610,611,612,613] for details), namely by comparing the shell amplitudes order by order
in QCD and NRQCD. The matching from QCD to NRQCD can always be done perturba-
tively since, by definition of the heavy quark, m Q � �QCD. The matching from NRQCD
to pNRQCD can only be carried out perturbatively when m Qv � �QCD. This condition is
assumed to be satisfied in the following discussion. Therefore, the matching coefficients in
both NRQCD and pNRQCD can be computed order by order in αs . The non-analytical
behaviour in 1/m Q appears through logs in the matching coefficients of the NRQCD
Lagrangian:

CH ∼ Aαs

(
ln

m Q

µ
+ B

)
, (45.104)

where µ denotes the matching scale between QCD and NRQCD. In practice, one can
choose:

�2
2

m Q
� �1 , (45.105)

If one denotes by �mp any scale below �1, the relevant small dimensionless scales
involved in the analysis are:

p

m Q
,

1

rm Q
, and �mpr � 1 . (45.106)

Decomposing the Q̄ Q state into a singlet S( �R, �r , t) and an octet O( �R, �r , t) states
( �R ≡ (�x1 + �x2)/2, r ≡ (�x1 + �x2), the minimal form in terms of the derivatives of the
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pNRQCD Lagrangian reads:

LpNRQCD = −1

4
Ga

µνGµν a

+ Tr

{
S†

(
i∂0 − p2

m Q
+ p4

4m3
Q

−V (0)
s (r ) − V (1)

s

m Q
− V (2)

s

m2
Q

+ · · ·
)

S

+ O†
(

i D0 − p2

m
− V (0)

o (r ) + · · ·
)

O

}

+ gVA(r )Tr{O†r · E S + S†r · E O} + g
VB(r )

2
Tr{O†r · E O + O†Or · E} ,

(45.107)

where the dots indicate higher-order potentials in the 1/m Q expansion; p ≡ �p; E is the
chromoelectric field. One has neglected the centre-of-mass variables R and only kept O(r )
terms in the multipole expansion.

The structure of the potentials up to O(1/m2) are:

� To order 1/m0
Q , one has the Coulomb potential.

V (0)
s (r ) ≡ −CF

α̃s(r )

r
. (45.108)

� To order 1/m Q , and using dimensions plus time reversal V (1)
s (r ), one can only have the following

structure:

V (1)
s ≡ −CF CA D(1)

s

2r 2
, CA = Nc . (45.109)

� To order 1/m2
Q , and using the present accuracy for the matching, one obtains the following potential:

V (2)
s = −CF D(2)

1,s

2

{
1

r
, p2

}
+ CF D(2)

2,s

2

1

r 3
L2 + πCF D(2)

d,sδ
(3)(r) +

4πCF D(2)
S2,s

3
S2δ(3)(r)

+ 3CF D(2)
L S,s

2

1

r 3
L · S + CF D(2)

S12,s

4

1

r 3
S12(r̂) . (45.110)

Note that p appears analytically in the potentials, with a power (pn), which is constrained
by the power in 1/m Q . The different matching coefficients : α̃, D(1), D(2) . . . in pNRQCD
can be obtained by performing the matching between NRQCD and pNRQCD. A detailed
description of the procedure can be found in [609,612,613]. They read:

α̃s(r, µ) = αs(r )

{
1 + (a1 + 2γEβ0)

αs(r )

4π
+

[
γE

(
a1β0 + β1

2

)

+
(

π2

12
+ γ 2

E

)
β2

0 + a2

4

]
α2

s (r )

4 π2
+ C3

A

12

α3
s (r )

π
ln rµ

}
. (45.111)
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In terms of the β function defined in the first part of the this book (Table 11.1), they read
for SU (n) f flavours:

β0 ≡ −2β1 = 11 − 2

3
n f , β1 ≡ −8β2 = 2

(
51 − 19

3
n f

)
. (45.112)

The one- and two-loop coefficients a1, a2 have been obtained in [614]. They read:

a1 = 31

9
CA − 20

9
TF n f , (45.113)

a2 =
(

4343

162
+ 4π2 − π4

4
+ 22

3
ζ3

)
C2

A

−
(

55

3
− 16ζ3

)
CF TF n f + 400

81
T 2

F n2
f

−
(

1798

81
+ 56

3
ζ3

)
CATF n f , (45.114)

respectively. For SU (3)c, one has TF = 1/2:

α̃s = αM S
s

{
1 +

(
αM S

s

π

)
(2.6 − 0.3n f )

+
(

αM S
s

π

)2

(53.4 − 7.2n f + 0.2n2
f ) + · · ·

}
. (45.115)

which shows that the convergence of the QCD series is not good. The other coefficients are
[615,611–613,616]:

D(1)
s = α2

s (r )

{
1 + 2

3
(4CF + 2CA)

αs

π
ln rµ

}
,

D(2)
1,s = αs(r )

{
1 + 4

3
CA

αs

π
ln rµ

}
;

D(2)
2,s = αs(r ) ,

D(2)
d,s 	 αs(r )

{
1 + αs

π

[
2CF

3
+ 17CA

3

]
ln m Qr + 16

3

αs

π

(
CA

2
− CF

)
ln rµ

}
,

D(2)
S2,s 	 αs(r )

(
1 − 7CA

4

αs

π
ln m Qr

)
,

D(2)
L S,s 	 αs(r )

(
1 − 2CA

3

αs

π
ln m Qr

)
,

D(2)
S12,s

	 αs(r )
(

1 − CA
αs

π
ln m Qr

)
. (45.116)

The previous results can e.g. be used to compute the O(m Qα5
s ) corrections to the heavy

quarkonium spectrum. The N 3L L correction to the energy shift of the ϒ(1S) is found to



45 Potential approaches to quarkonia 483

be [609]:

δEn=1; l=0; j=1 	 1730

81π
mbα

4
s (µ)αs(µ′) ln [1/αs(µ′)] 	 (80 ∼ 100) MeV , (45.117)

where we note that µ is the matching scale from QCD to NRQCD: m Qv < µ < m Q ,
while m Qv2 < µ′ < m Qv is the one from NRQCD to pNRQCD. One should notice that
the correction is relatively large, and the perturbative series has a bad convergence. This
convergence might be improved by working with a renormalon-free quark mass definition
other than the pole mass, which will then facilitate the main motivation of the approach for
exploring the dynamics of the quark-antiquark bound states using the perturbative approach.
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On monopole and confinement

Though our knowledge of confinement is, at present, quite poor, it is necessary to discuss
briefly the approach of monopoles where some activities have been investigated recently
for understanding the mechanism of confinement.1 One of the most favoured mechanism
of confinement is the one due to monopole condensation [620], where one has to see if the
monopole condensation occurs in the confined phase but not in the deconfined one. Dual-
superconductivity mechanism of confinement assumes the formation of an Abrikosov-type
tube between heavy quarks introduced into the vacuum via the Wilson loop,2 while the tube
itself is a classical solution of the equations of motion of the Higgs-type model Lagrangian
of the action:

Seff =
∫

d4x

[
|Dµφ|2 + 1

4
G2

µν + V (|φ|2)

]
, (46.1)

where φ is a scalar field with a non-zero magnetic charge, Gµν is the field strength tensor
built from the dual-gluon field Bµ, Dµ is the covariant derivative, and V (|φ|2) is the potential
energy:

V (|φ|2) = m2

2
|φ|2 − λ

4
|φ|4 , (46.2)

ensuring that 〈φ〉 �= 0 in the vacuum. If m2 < 0, the potential has the typical Mexican shape
and |φ|2 = m2/λ. However, the relation of these effective fields to the fundamental ones of
QCD is not yet clear, which is the main limitations of the use of this effective theory. How-
ever, there is not, at present, any answer to this question, and the answer can only come from
the data, which are, at present, lattice measurements. This lack of understanding concerns
the nature of non-perturbative field configurations defined as monopoles in non-Abelian
gauge theories. The few knowledge one has is that monopoles are intrinsically U (1) config-
urations. However, it is not a priori clear which U (1) subgroup of e.g. SU (2) is to be taken
for classifying the monopoles. If one takes the most successful maximal Abelian projection
[617–619], and associates a conserved magnetic charge to any operator in the adjoint rep-
resentation, we still have very little understanding of the field configurations describing

1 For reviews, see e.g. [617–619].
2 The energy of the flux tube is proportional to the length of the flux implying that an infinite energy is needed for dissociating at

infinite distance a monopole–antimonopole pair.
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monopoles in this projection, and in particular on the monopole size. Lattice measurements
indicate that magnetic charges condense in the confined phase, and is independent of the
specific choice of the Abelian projection [619]. On the other, a lattice measurement of the
monopole size gives the radius [621]:

Rmono ≈ 0.06 fm , (46.3)

defined in terms of the full non-Abelian action associated with the monopole and not in
terms of the projected action. It is relatively small compared with the temperature of the
confinement–deconfinement phase transition:

Tc ≈ 300 MeV , (46.4)

corresponding to a distance dmono ∼ 1/Tc ∼ 0.5 fm. An attempt to understand the origin
of this scale hierarchy has been investigated in [617] using monopole cluster assuming that
monopole condensation occurs when the monopole action is UV divergent. However, one
expects that the onset of condensation in the standard field theoretical language corresponds
to the zero mass of the magnetically charged field φ. This apparent contradiction can be
understood from the kinematical relation between the physical mass mphys entering in the
propagator of the scalar field and the mass M ≡ S/L defined in terms of the Euclidian
action, where L is the length of the trajectory and S the corresponding action on a cubic
lattice with spacing a. To leading order in ma:

m2
phys · a = M − ln 7

a
, (46.5)

where ln 7 originates from the fact that a trajectory of length L can be realized on a cubic
lattice in NL = 7L/a various ways. At each step, the trajectory can be continued on an
adjacent cube, where in four dimensions one has eight such cubes. Zakharov [617] argues
that the data on monopole action imply a fine tuning:

Mmono(a) − ln 7

a
� Mmono(a) ∼ �QCD , (46.6)

where ln 7 is of pure geometrical origin and Mmono is the monopole energy defined on a
compact U (1) group as:

Mmono(a) = 1

8π

∫
�B2d3r ∼

( c

e2

) (
1

a

)
, (46.7)

where c is a constant, e is the electric charge and gm = 1/2e is the magnetic charge. Analysis
of lattice data [618] suggests that the actual physical size Rphys of the monopole can be much
smaller than that in Eq. (46.3). By Rphys one means the distance where the excess of the
monopole action is parametrically smaller than the action associated with the zero-point
fluctuations. Using the running of the QCD coupling and the condition due to the U (1)
critical coupling e2

c ≈ 1 at which the monopole condenses, one obtains the scale:

Mphys ≈ 1 TeV (46.8)
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giving the electroweak scale rather than the QCD one of the order of �QCD, therefore
indicating that QCD projected onto the scalar-filed theory via monopoles corresponds to a
fine-tuned theory. This result suggests a SU (2) lattice measurements at β = 4 rather than
the present results at β = 2.6, which is too low to see the dissolution of monopoles at short
distance. This is a subject that deserves further investigations.

It is also often stated that the symmetry responsible for confinement is different in pure
gauge theory and in the presence of quarks. In pure gauge theory, the order parameter is
the vacuum expectation value of the Polyakov line, and the symmetry is Z N , the centre of
the group. Since in the presence of quarks, Z N is explicitly broken, one might expect that the
order parameter is the chiral quark 〈ψ̄ψ〉 condensate, which is responsible for spontaneous
breaking of the chiral symmetry, although it is also known that the quark masses explicitly
break chiral symmetry. However, the relation between confinement and chiral symmetry is
not clear at all. Lattice simulations indicate that the two transitions take place at the same
temperature, but there is no explanation of this numerical observation.

Another point is that if dual superconductivity in all Abelian projections is the symmetry
behind confinement, then it should also work in full QCD.

Finally, there are the recent attempts [622,623] to tackle the confinement problem using
QCD perturbation theory. The approach is based on a gluon chain model in the large NC

QCD, which gives a string-like picture of hadrons although confinement is not built in.
One can modify the Born approximation by introducing a non-local counterterm for an IR
renormalization of the Coulomb potential, which now possesses a linear term proportional
to the QCD string tension. The arbitrary IR subtraction point can be optimized by using a
variational method. It reaches its optimal value at that of the string tension. The procedure
induces a mass to the gluon which, in some sense, is similar to the tachyonic gluon mass
introduced by [161] at short distance. Some further examples of the applications of the
approach to confinement are discussed in [623].

From this short summary, we conclude that though there has been progress towards an
understanding of confinement via monopole condensation, but there remain some unclar-
ified points that still need further investigation. The perturbative approach to confinement
looks promising.
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Introduction

We have discussed in the previous part several of the most popular QCD non-perturbative
methods other than the QCD spectral sum rules (QSSR). Now, we shall dedicate this part of
the book to the discussion of this non-perturbative approach, which has been used success-
fully for understanding the hadron properties and hadronic matrix elements, using those
parameters (QCD coupling, quark masses and QCD condensates), derived from QCD first
principles. This method was introduced by SVZ in 1979 [1] and reviewed in a book [3],
numerous reviews and lecture notes [356–365]. Its basic concepts, based on the operator
product expansion and dispersion relations, are well understood in quantum field theory,
and is a fully relativistic approach in contrast to potential models, for example. Its applica-
tions are quite simple and transparent. However, on the one hand it has a limited accuracy
(usually about 10–20% depending on the process), and some uses of the method in some
QCD-like models show that its accuracy cannot be improved iteratively. On the other hand,
confinement is not a result of the method but is put into it via the introduction of different
QCD condensates. In practice, one has to introduce some assumptions, and the results are
obtained from self-consistency.

However, in some cases, results obtained from the sum rules disagree with each other
and have led to some polemics, which some people use to discredit the approach. We shall
see how it is important to check that the results satisfy some stability criteria and that the
matching between the low-energy hadronic region and the perturbative region described by
QCD, which is called global duality tests in the literature, are obtained.

A further limitation of the method comes from the fact that the Green’s function is
computed in the Euclidian region from which observable quantities can be extracted by
duality. Due to the approximate nature of the method, one can only extract the properties
of the ground state of given quantum numbers but not those of its radial excitations, which
are smeared by the perturbative QCD continuum used to parametrize these states of higher
masses.

In this part, we shall follow closely the discussions in [3], not with the aim of reproducing
this book, but to update the different discussions therein. However, the present book cannot
replace the former as we shall not repeat the detailed derivations already included therein.
We shall also not be able to give a complete presentation of the different existing QSSR
results due to the large number of its applications. Instead, we will try to limit ourselves to
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some specific applications, which in my opinion, are representative of the QSSR results. This
part of the book is organized as follows: in the first two chapters, we give an introduction to
the method of QSSR and in the remaining chapters, we shall review the main developments
and results from the method.

In the first part of this book, we have already discussed some current algebra sum rules
prior to QCD, such as the Adler–Weisberger sum rules, the Weinberg and DMO sum rules,
the electromagnetic π+-π0 mass difference. These current algebra sum rules are prototype
QSSR. We shall discuss some of them in the context of QCD.



48

Theoretical foundations

48.1 Generalities and dispersion relations

The fundamental concepts behind QCD spectral sum rules are the operator product expan-
sion (OPE) and quark-hadron duality through the dispersion relation obeyed by the Green’s
functions due to their analytic properties. For illustrating the discussions, we shall consider,
for definiteness, the generic two-point correlator:

�H (q2) = i
∫

d4xeiqx 〈0|TJH (x)J †
H (0)|0〉 , (48.1)

where JH (x) is a local gauge-invariant operators built from quark and/or gluon fields. In most
applications, JH (x) are Noether currents associated to the global transformations of flavour
degrees of freedom, such the vector ψ̄γµψ or axial-vector ψ̄γµγ5ψ current, but can also be
the operators of gluon fields describing the gluonium Tr GµνGµν , or operators describing the
baryons ψ�1ψ�2ψ , the hybrids ψ̄γµλaGµν

a ψ or weak matrix elements ψ̄�1ψψ̄�2ψ . . . .
Thanks to its analyticity property, it has been shown [624] that �(q2) obeys the well-known
Källen–Lehmann dispersion relation or Hilbert representation:

�H (q2) =
∫ ∞

t<

dt

t − q2 − iε

1

π
Im�H (t) + P(q2) (48.2)

where P(q2) represents subtraction terms, which are, in general, polynomial in q2, with
its degree depending on the convergence properties of the spectral function Im�H (t) for
t → ∞:

P(q2) ≡ a + bq2 + · · · ; (48.3)

t< is the hadronic threshold, which we shall take to be zero for simplifying the notation. The
previous representation is a QCD spectral sum rule, which shows the duality between the
LHS calculable theoretically in QCD, using the OPE, provided that −q2 is much larger than
	2, with the RHS, where the spectral function Im�H (t) can be measured experimentally.
In the case of the electromagnetic current:

Jµ
em(x) = 2

3
ū(x)γ µu(x) − 1

3
d̄(x)γ µd(x) − 1

3
s̄(x)γ µs(x) + · · · (48.4)
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Fig. 48.1. Hadronic spectral function of Eq. (48.6).

Physical region

Complex     planeq 2 -

Fig. 48.2. The complex q2-plane.

the spectral function is related to the e+e− → hadrons total cross-section σH (t) through the
optical theorem:

σH (t) = 4π2α

t

1

π
Im�em(t) , (48.5)

with:

−3θ (q)
t

π
Im�em(t) =

∑
�

〈0|Jµ
em(0)|�〉〈�|Jµ

em(0)†|0〉(2π )3δ(4)(q − p�) , (48.6)

where the sum runs over all possible physical states, and the integration over the corre-
sponding phase space is understood. This is represented in Fig. 48.1.

In this case, the lowest possible state is the two pions. Therefore, the function �(q2) is
analytic in the complex q2-plane but for a cut near the real axis 4m2

π ≤ q2 ≤ ∞ shown in
Fig. 48.2.

48.2 Explicit derivation of the dispersion relation

In so doing, we consider the lowest order two-point function:

�µν(q2) ≡ i
∫

d4xeiqx 〈0|TJµ

V (x)
(
J ν

V

)†
(0)|0〉

= −(gµνq2 − qµqν)�(q2) , (48.7)
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shown in Fig. 8.31 but built from the electromagnetic current:

Jµ

V = eψ̄γ µψ , (48.8)

where ψ is a massive quark field with mass m. We follow the same procedure as for the
pseudoscalar current for evaluating this lowest-order diagram. It is easy to show that the
renormalized two-point function subtracted at q2 = 0 if we choose on-shell renormalization
reads:

�R(q2) ≡ �(q2) − �(0) = −α

π

∫ 1

0
dx 2x(1 − x) log

(
1 − q2

m2 − iε
x(1 − x)

)
. (48.9)

With the change of variables y = 1 − 2x , and using the fact that the resulting integral is
symmetric when y → −y, we get:

�R(q2) = α

π

∫ 1

0
dy(1 − y2) log

[
1 − q2

4m2 − iε
(1 − y2)

]
. (48.10)

Integrating by parts this equation using the identity: 1 − y2 = ∂
∂y (y − 1

3 y3), one obtains
the integral:

�R(q2) = α

π

∫ 1

0
dy 2y

(
y − 1

3
y3

)
q2

4m2 − q2(1 − y2) − iε
. (48.11)

With a new change of variables: t = 4m2/(1 − y2), we finally obtains the representation
of the renormalized two-point function:

�R(q2)

q2
= α

π

∫ ∞

4m2

dt

t

1

t − q2 − iε

1

3

(
1 + 2m2

t

) √
1 − 4m2

t
. (48.12)

The reason why this representation is interesting is that it is in fact a dispersion relation.
We have succeeded in rewriting the initial Feynman parametric representation in Eq. (48.9)
as a dispersion relation by simple changes of variables. Using the identity:

1

t − q2 − iε
= PP

1

t − q2
+ iπδ(t − q2) , (48.13)

we immediately see that:

1

π
Im�(t) = α

π

1

3

(
1 + 2m2

t

) √
1 − 4m2

t
θ (t − 4m2) . (48.14)

Equation (48.12) is a particular case of the general dispersion relation written in Eq. (48.2),
when the arbitrary polynomial is just a constant, and we have got rid of the constant because
the on-shell renormalized �R is defined as:

�R(q2) = �(q2) − �(0) =
∫ ∞

0

dt

t

q2

t − q2 − iε

1

π
Im�(t) . (48.15)
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It is perhaps worth insisting on the fact that asymptotically:

lim
t→∞

1

π
Im�(t) =⇒ α

π

1

3
; (48.16)

i.e. the electromagnetic spectral function goes to a constant. In fact, it is this constant which
fixes the value of the lowest-order contribution to the β–function associated with the charge
renormalization in QED.

48.3 General proof of the dispersion relation

We shall now sketch a proof of the dispersion relation property for two-point functions in
full generality following [361]. The key of the proof lies in the definition of the time-ordered
product implicit in Eq. (48.1):

T (JH (x)JH (0)† = θ (x)JH (x)JH (0)† + θ (−x)JH (0)† JH (x) , (48.17)

and the use of translation invariance. The function θ (x) is the Heaviside function: θ (x) = 1
if x0 > 0 and θ (x) = 0 if x0 < 0, which has the integral representation:

θ (x) = 1

2π i

∫ +∞

−∞
dw

eiwx

w − iε
. (48.18)

First we insert a complete set of states
∑

� |�〉〈�| between the two currents in the
T–product definition. This leads to matrix elements of the type 〈0|JH (x)|�〉 to which we
apply translation invariance:

〈0|J (x)|�〉 = 〈0|U−1U JH (x)U−1U |�〉 , (48.19)

where U is the unitary operator induced by translations in space–time:

U(a)JH (x)U−1(a) = JH (x + a) and U(a)|�〉 = eip� ·a|�〉 , (48.20)

and p� denotes the sum of the energy–momenta of all the particles which define the state |�〉.
The choice a ≡ −x factors out the x-dependence of the matrix element into an exponential:

〈0|JH (x)|�〉 = e−i p� ·x 〈0|JH (0)|�〉 . (48.21)

All the particles in the state |�〉 are on-shell. This constrains the total energy–momentum
p� to be a time–like vector: p2

� = t with t ≥ 0. With these constraints on p� we can insert
the identity:

∫ ∞

0
dt

∫
d4 p θ (p) δ(p2 − t) δ(4)(p − p�) = 1 , (48.22)

inside the sum
∑

� over the complete set of states. Interchanging the order of sum over �

and integration over t and p, there appears naturally the definition of the spectral function
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associated with the J -operator∑
�

〈0|JH (0)|�〉〈�|JH (0)†|0〉 (2π )4δ(4)(p − p�) ≡ 2πρ(p2) . (48.23)

The spectral function ρ(p2) is a scalar function of the Lorentz invariant p2 and the masses
of the particles in the states |�〉 only. By construction it is a real function and non-negative:

ρ(p2)∗ = ρ(p2) ≥ 0 . (48.24)

We can now rewrite the two-point function in Eq. (48.1) as follows:

�H (q2) =
∫

d4x eiq·x
∫ ∞

0
dt ρ(t)

×
∫

d4 p

(2π )3
[iθ (x) e−i p·xθ (p)δ(p2 − t) + iθ (−x) eip·xθ (p)δ(p2 − t)]. (48.25)

Here, one can recognize the familiar functions of free field theory:

�+(x) =
∫

d4 p

(2π )3
e−i p·xθ (p)δ(p2 − t) (48.26)

and:

�−(x) =
∫

d4 p

(2π )3
eip·xθ (p)δ(p2 − t)

=
∫

d4 p

(2π )3
e−i p·xθ (−p)δ(p2 − t) ; (48.27)

and therefore the Feynman propagator function:

�F(x ; t) = iθ (x)�+(x ; t) + iθ (−x)�−(x ; t)

=
∫

d4 p

(2π )4

e−i p·x

t − p2 − iε
, (48.28)

where the last expression can be obtained using the representation in Eq. (48.18) of the
θ–function (see e.g. ref. [625]). The two-point function �(q2) appears then to be the Fourier
transform of a scalar free-field propagating with an arbitrary mass squared t weighted by
the spectral function density ρ(t) and integrated over all possible values of t :

�H (q2) =
∫

d4x eiq·x
∫ ∞

0
dt ρ(t) �F(x ; t) . (48.29)

Integrating over x and p results finally in the wanted representation:

�H (q2) =
∫ ∞

0
dt ρ(t)

1

t − q2 − iε
. (48.30)

With:

�H (q2) = Re�H (q2) + iIm�H (q2) , (48.31)
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and the use of the identity in Eq. (48.13), it follows that:

ρ(t) ≡ 1

π
Im�H (t) , (48.32)

which identifies the spectral function with the imaginary part of the two-point function.
Notice that the formal manipulations above avoid the question of convergence of the

principal value integral:

Re�H (q2) = PP
∫ ∞

0
dt

1

t − q2

1

π
Im�H (t) . (48.33)

The convergence of the integral in the UV limit (t → ∞) depends on the behaviour of
the spectral function at large t-values. When doing above the exchange of sum over �

and integrations we have implicitly assumed good convergence properties; but in general
the product of the distributions θ (x) and

∫ ∞
0 dt ρ(t) �+(x ; t) may not be a well-defined

distribution. The ambiguity manifests by the presence of an arbitrary polynomial in q2 in
the RHS of the PP-integral:

Re�(q2) = PP
∫ ∞

0
dt

1

t − q2

1

π
Im�H (t) + P(q2) . (48.34)

Notice that the coefficients of the arbitrary polynomial P(q2) have no discontinuities; in
other words, the ambiguity of short-distance behaviour reflects only in the evaluation of the
real part of the two-point function, not in the imaginary part. The physical meaning of these
coefficients depends of course on the choice of the local operator JH (x) in the two-point
function. In some cases the coefficients in question are fixed by low-energy theorems; e.g.
if �(0) is known, we can trade the constant a in Eq. (48.34) for �(0):

Re�H (q2) = Re�H (0) + PP
∫ ∞

0

dt

t

q2

t − q2

1

π
Im�H (t) + bq2 + · · · . (48.35)

while the constant b is related to its slope �′
H (0). In other cases the constants can be absorbed

by renormalization constants. In general, it is always possible to get rid of the polynomial
terms by taking an appropriate number of derivatives with respect to q2. Various examples
will be in the next chapter.

48.4 The QCD side of the sum rules

Using the SVZ expansion, one can express the two-point correlator in terms of the QCD
condensates, where for large Euclidian q2, one obtains:

�H =
∑

D=0,2,4,...

1

(−s)D/2

∑
dim O=D

C (J )(s, µ) 〈O(µ)〉 , (48.36)

where µ is an arbitrary scale that separates the long- and short-distance dynamics; C (J ) are
the Wilson coefficients calculable in perturbative QCD, while 〈O〉 are the non-perturbative
quark and/or gluon condensates. The unit operator is the naı̈ve perturbative contribution.
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Table 48.1. Values of perturbative QCD parameters used or obtained in the sum rules
analysis (see chapter on αs and on quark masses)

Perturbative QCD parameters Values Sources

QCD coupling
αs(MZ ) 0.118 ± 0.002 [139,16]

Quark running masses to O
(
α2

s

)
see Section 11.11

m̄d (2 GeV) (3.6 ± 0.6) MeV average from different channels
m̄d (2 GeV) (6.5 ± 1.2) MeV ”
m̄s(2 GeV) (117.4 ± 23.4) MeV ”
m̄c(mc) (1.23 ± 0.05) GeV average from the J/ψ and D, D∗

m̄b(mb) (4.24 ± 0.06) GeV average from the ϒ and B, B∗

Perturbative pole masses O
(
α2

s

)
see Section 11.12

Mc (1.43 ± 0.04) GeV average from the J/ψ and D, D∗

Mb (4.66 ± 0.06) GeV average from the ϒ and B, B∗

One expects that, for enough large q2 (usually of the order of 1–2 GeV2), the first two-three
lowest dimension condensates can give a good approximation of the QCD correlator. In
practice, one usually truncates the series until the dimension-six condensates, which are
already small corrections in the analysis. The well-known condensate is the quark 〈ψ̄ψ〉
condensate responsible for the spontaneous breaking of chiral symmetry and is related to
the pion and decay amplitude squared through the GMOR relation:

(mu + md )〈ūu + d̄d〉 = −2m2
π f 2

π (48.37)

with fπ = 93.2 MeV. The other condensates are less known, and are not calculable from
QCD first principles though one can determine them from phenomenological analysis. We
summarize in Tables 48.1 and 48.2 the values of these QCD parameters which will be useful
for the discussion in this part (Part X) of the book.

We have already anticipated the discussions of the theoretical input of the sum rules
analysis in the previous chapters:

� In Part III, we discussed the different ingredients for treating and evaluating, within the M S scheme
and using the renormalization group equation, the perturbative contributions to the unit operator.
We have also given there and in Part VI the value of the running QCD coupling and the light and
heavy quark masses in Sections 11.7, 11.11 and 11.12, entering the QCD Lagrangian and useful in
the sum rules analysis.

� In Part VII, we have discussed the different non-perturbative contributions:
– In Chapter 27, we have studied the operator product expansion (OPE) and classified the conden-

sates versus their dimensions. We have also constructed renormalization group invariant conden-
sates and given the values of some of the condensates which have been determined mainly from
the sum rules.
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Table 48.2. Values of the non-perturbative QCD (NPQCD) parameters used or obtained
in the sum rules analysis

Dimension NPQCD parameters Values Sources

2 (αs/π )λ2 −(0.06–0.07) GeV2 Chapter 30

3 1
2 〈ūu + d̄d〉(2 GeV) −[(254 ± 15) MeV]3 Chapter 27

〈s̄s〉/〈ūu〉 0.75 ± 0.12 non-normal ordered
0.66 ± 0.10 normal ordered

4 〈αs G2〉 (7 ± 1)10−2 GeV4 Chapter 27

5 g
〈
ψ̄σµν

λa

2 ψGµν
a

〉 ≡ M2
0 α1/3β1

s 〈ψ̄ψ〉 M2
0 = (0.80 ± 0.02) GeV2 ”

6 g3 fabc〈Ga GbGc〉 (1.2 GeV2)〈αs G2〉 ”

ραs〈ψ̄ψ〉2 (5.8 ± 0.9)10−4 GeV6 ”

– In Chapter 28, we discuss in details the evaluation of the Wilson coefficients in the OPE. In so
doing, we give as an explicit example the evaluation of the light quark pseudoscalar two-point
function including dimension-six condensates. We also discuss the evaluation of the heavy quark
correlators.

– In Part VIII, we give a compilation of different QCD two-point functions including radiative
corrections to the unit operator and the contributions of different condensates.

– In Chapter 29, we discuss the modifications of the OPE due to IR and UV renormalons. IR
renormalons introduce perturbative contributions, which lead to some ambiguities for defining
the condensates at higher order of perturbation theories, though such ambiguities can be absorbed
by the Wilson coefficients when computing the Green’s functions. In practice, the IR renormalon
effects are so tiny such that they do not affect in a significant way the phenomenology of the
sum rules. UV renormalons have also been discussed so far, and affect the uncertainties of the
PT series. Again, within the sum rules uncertainties, these effects are not quantifiable in the sum
rules analysis.

– In Chapter 30, we have discussed the different scenarios beyond the SVZ expansion. In the
following, we shall only discuss the modification due to the tachyonic gluon mass which modifies
the OPE due to the presence of the new D = 2 ‘condensate’, not present in the original SVZ-
expansion owing to the fact that one cannot form a D = 2 local gauge-invariant operator in QCD.
We shall not discuss the effects of (direct) instantons which act like high-dimension operators
and should be suppressed like other high-dimension condensates in the sum rule working region.
However, some other schools expect that this contribution is dominant for the (pseudo)scalar
channels but surprisingly are not there if one works with the longitudinal part of the axial-vector
correlator, though the two are related to each others by Ward identity. However, the inclusion of
the large instanton effects leads to inconsistencies in the scalar channel. Another confusion for
the sum rule practitioners is the fact that the instanton liquid model does not use a novel OPE but
provides an alternative way of parametrizing the condensates. However, the fact that the analysis
is done in the coordinate rather than in the momentum space may probe a new region not explored
in the momentum space. Interested readers may consult [386] where this method is explored in
detail.
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Survey of QCD spectral sum rules

QCD spectral sum rules are different versions and/or improvments of the previous Hilbert
representation in Eq. (48.2). For the purposes of more general discussions, let us forget
QCD for the moment, namely the theoretical side Re �(q2), and we shall concentrate on
the RHS spectral integral.

In some channels such as e+e− → hadrons or τ → ντ+ hadrons data, the spectral func-
tion Im�(t) is known from the data, and the sum rules can be used for determining the
QCD parameters given in Tables 48.1 and 48.2. In other channels, the sum rules are used
for determining the properties of the hadrons for a guide to their experimental searches.
In this case, one has to introduce a model for parametrizing the spectral function. For this
purpose, the most common model used in the sum rule analysis is the so-called naı̈ve duality
ansatz, where the spectral function reads:

Im�(t) = f 2
H M2d

H δ
(
t − M2

H

) + θ (t − tc)Im�QCD(t) . (49.1)

fH is the coupling having the dimension of mass of the lowest hadron ground state H to the
hadronic current; d is the power of t in the asymptotic t-behaviour of the spectral function
(d = 0 for the vector two-point function, . . . ); tc is the ‘QCD continuum’ threshold above
which the spectral function is approximated by the discontinuity Im�QCD(t) of the QCD
diagram, which is expected to smear the contributions of the higher mass radial excitations.
We shall test later on in some examples the accuracy of this simple duality ansatz for
reproducing the measured spectral function.

An alternative parametrization can be provided by approximating the spectral function
with an infinite sum of narrow resonances:

Im�(t) =
∑

H

f 2
H M2

Hδ
(
t − M2

H

)
, (49.2)

where the model is supported by the large Nc-behaviour of QCD as discussed in the previous
part of this book.

49.1 Moment sum rules in QCD

In QCD the number of derivatives required to obtain a well-defined two-point function is
fixed by the asymptotic freedom property of the theory. For a gauge-invariant local operator

499
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JH (x), the asymptotic behaviour of the associated two-point function is of the type:

lim
t→∞

1

π
Im�(t) ∼ Atd

{
1 + a1

αs(t)

π
+ · · ·

}
, (49.3)

with A and a1 calculable coefficients, and d a known integer d = 0, 1, 2, . . . , depending
on the dimensions of the operator JH (x). It is then sufficient to take d + 1 derivatives with
respect to q2 to get rid of the arbitrary polynomial and obtain a convergent integral. The
functions defined by the moment integrals (Q2 ≡ −q2):

�(m)(Q2) = (−1)m

(m − d − 1)!
(Q2)m−d ∂m

(∂ Q2)m
�(q2)

=
∫ ∞

0
dt

m(m − 1) · · · (m − d)

(t + Q2)d+1

(
Q2

t + Q2

)m−d
1

π
Im�(t) , (49.4)

for m ≥ d + 1 are then well-defined functions calculable in perturbative QCD at sufficiently
large Q2-values. To our knowledge, these sum rules were first discussed by Yndurain [631]
in connection with the study of e+e− → hadrons data and used later on for heavy-quark
systems [632,1,434]. One can notice that for high-derivative moments, the rôle of the ground
state is enhanced in the sum rule. Therefore the sum rule in Eq. (49.4) is a good candidate
for studying the low-energy properties of hadrons as we shall see later on.

A classical example of moments sum rules is the D-function defined in Eq. (33.20),
which is superconvergent and therefore obeys an homogeneous RGE. From Eq. (33.25),
one can deduce for three massless flavours:

D(Q2) ≡ −Q2 d

d Q2
�em(Q2) =

∫ ∞

0

dt

(t + Q2)2

1

π
Im�em(t)

= 2

16π2

[
1 +

(
ᾱs

π

)
+ 1.64

(
ᾱs

π

)2

+ 6.37

(
ᾱs

π

)3

+ · · · + non − perturbative

]
.

(49.5)

However, when trying to confront this sum rule with experiment, there appears the prob-
lem that the integrand in the RHS is only known experimentally from the threshold up
to finite values of t . This brings in a question of matching whatever is known about the
low-energy hadronic spectral function with its asymptotic behaviour as predicted by pQCD.

49.2 Laplace sum rule (LSR)

This type of sum rule is derived from the previous dispersion relation in Eq. (48.2) by
applying to both sides the inverse Laplace operator [1]:1 (Q2 ≡ −q2 ≥ 0):

L̂ ≡ lim
n, Q2→∞

(−1)n (Q2)n

(n − 1)!

∂n

∂ Q2)n
, (49.6)

1 This sum rule was originally called the Borel sum rule by SVZ [1].
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where n/Q2 ≡ τ is fixed, which is the Laplace sum rule variable. It has been found in the
study of the radiative corrections that sum rule expression of these radiative terms naturally
have the properties of the Laplace transform [626], whilst later on [405], it has also been
noticed that the operator L̂ is an algebraic form of the Laplace inversion operator. These
observations led to simplifications in the derivation of the QCD expressions of the sum rules
once one knows the expression of the two-point correlator �(q2). Useful expressions are
collected in Appendix G. Therefore, one gets the exponential form of the sum rule:

L̂� = τ

∫ ∞

0
dt e−tτ 1

π
Im�(t) . (49.7)

As can be seen in the derivation of the Laplace sum rule, one has to assume that various
derivatives exist. For an approximate truncated series as in QCD improved by the renormal-
ization group equation, this existence is satisfied as in the case of the moment sum rules.
The advantages of L̂� are two-fold:

� First, the use of various derivatives helps to eliminate the subtraction terms in Eq. (48.2), which are
often polynomials in q2.

� Second, the exponential factor increases the role of the ground state into the spectral integral if the
QSSR variable τ is not too small, but still not too large for the perturbative calculation to make sense.
In practice τ is about the value of the hadronic scale. This fact is welcome for low-energy physics.

49.3 Ratio of moments

From Eq. (49.7), one can derive the ratio of moments [91–93]:

R(τ ) = − d

dτ
log

∫ ∞

0
dt e−tτ 1

π
Im�(t) , (49.8)

or the finite energy-like [1]:

Rc(τ ) =
∫ tc

0 dt t e−tτ 1
π

Im�(t)∫ tc
0 dt e−tτ 1

π
Im�(t)

. (49.9)

Its non-relativistic version is obtained by transforming the variable t into the non-
relativistic energy E and τN = 4mτ . In this way, the ratio becomes:

R(τN ) = − d

dτN
log

∫ ∞

0
d E e−EτN

1

π
Im�(t) , (49.10)

where τN can be interpreted as the imaginary time variable. The advantage of the ratio of
moments can be explicitly seen in the following way:

� If one uses the simple duality ansatz ‘one resonance’ plus ‘QCD continuum’ for parametrizing the
spectral function, one can see that the two sum rules in Eqs. (49.8) and (49.9) give an expression of
the mass squared of the ground state. More precisely, for large τ values, the RHS of the sum rule
tends to the mass squared of the lowest resonance.
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pQCD
Non--Perturbative

τ

R (  )τ

Fig. 49.1. Expected behaviour of R(τ ) at short and long distances.

� For small τ -values, the ratio of moments has the parton model behaviour:

R(τ ) = (d + 1)τ−1[1 + QCD corrections] , (49.11)

where d is the only reminiscence left from the number of subtractions needed in the dispersion
relation for the initial two-point function. For large τ values, the ratio of moments is dominated by
the non-perturbative corrections. In the sum rule window compromise region, where the moments
stabilize, these non-perturbative corrections are small though vital for stablizing the result. These
features lead to the expected behaviour of R given in Fig. 49.1.

� Because of the positivity property of a spectral function Im�(t) ≥ 0, the function − logM(τ ) is a
concave function of τ ; or in other words, the slope of the function R(τ ) must always be negative.
This of course implies severe restrictions on the way that the two asymptotic regimes illustrated in
Fig. 49.1 can be joined. The proof of this property is rather straightforward. It can be understood
very simply by making an analogy with statistical mechanics:R(τ ) can be viewed as the equilibrium
‘energy’ 〈t〉 of a system with variable ‘energy’ t in thermal equilibrium with a second system at
‘temperature’ 1/τ . In this analogy, Im�(t) represents the ‘density of states’ with ‘energy’ t . Then
the mean squared ‘energy fluctuation’ is given by:

− d

dτ
R(τ ) ≡ 〈(t − 〈t〉)2〉 = 〈t2〉 − 〈t〉2 ≥ 0 , (49.12)

which by definition is a positive quantity.
� In its non-relativistic version, the ratio of moments tends to the ground state energy E0 for large

imaginary time τN → ∞. In the corresponding theoretical perturbative expansion, the minimum of
R gives an approximation of this ground state energy:

minR(τN ) = E0 , (49.13)

and the mass of the ground state is given by:

M = 2m + R(τN ) . (49.14)
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θ

Fig. 49.2. Contour integral in the complex q2-plane, with q2 = −Q2 exp(iθ ).

49.4 Finite energy sum rule (FESR)

Another version of QSSR is the FESR:

Mn(Q2) ≡
∫ Q2

0
dt tn 1

π
Im�QCD(t) �

∫ Q2

0
dt tn 1

π
Im�exp(t) : n = 0, 1, . . . ,

(49.15)

which was known a long time before QCD [627]. The previous FESR can be derived in
many ways. One way to derive the FESR is the use of the Cauchy theorem on a finite radius
contour in the complex q2 plane (Fig. 49.2) à la Shankar [628].

Avoiding the cut along the real axis, it leads to [628,28,31]:

1

2π i

∮
dzzn�(z) = 0 . (49.16)

If one neglects the contribution of the little circle around the origin which is safer if
�(0) = 0, one deduces the moments:

Mn(Q2) =
∫ Q2

0
dt tn 1

π
Im�(t) = (−1)n+1 (Q2)n−1

2π
.

∫ +π

−π

dθ ei(n+1)θ�(Q2eiθ ) ,

(49.17)

where the LHS can be measured from the data and comes from the paths above and below
the real axis which pick up the discontinuity of �(q2) and then its imaginary part. The RHS
comes from the big circle of radius Q2, which can be computed in QCD provided it is large
enough. The sum rule results from the matching of these two contributions. However, as
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the FESR diverges for increasing n, the real axis is dominated by the high Q2 region. For
the RHS to reproduce this correctly, more information on the behaviour of the two-point
correlator in the region of the big circle near the cut is needed. This means that more and
more non-leading terms in the series expansion become important at large n and can destroy
the convergences of the series.

49.5 Features of FESR and an example

Now, let us return to the FESR in Eq. (49.15). Contrary to the LSR in Eq. (49.7), where the
role of the lowest ground state is enhanced by the exponential factor, the FESR is governed
by the effects of high-mass resonances; that is it needs a good control of the continuum
contributions to the sum rule. In some cases, where a stability in tc (continuum threshold)
does not occur, this is a great disadvantage.

Taking the example of the isovector part of the electromagnetic current (the ρ-meson
channel), one can show that FESR can provide a useful way for a correct matching between
the low-energy hadronic spectral function and the onset of QCD perturbative continuum.
In this sense, it complements the analysis from the LSR. Using the naı̈ve duality ansatz for
the hadronic spectral function, the spectral function reads:

1

π
Im�(t)I=1 = M2

ρ

4γ 2
ρ

δ
(
t − M2

ρ

) + Nc

16π2

2

3
θ (t − tc)[1 + · · · ] , (49.18)

where the ρ-meson coupling γρ � 2.55 is normalized in Eq. (2.52). Using the n = 0 FESR
moments, one can derive the constraint:

M2
ρ

4γ 2
ρ

� Nc

16π2

2

3
tc[1 + · · · ] . (49.19)

Using the experimental values of the ρ-meson parameters, and adding QCD corrections,
one obtains (see details in [405,3]):

tc � 1.7 GeV2 , (49.20)

which is reasonably high for pQCD calculation to make sense. It is worthwhile to notice
that the FESR fixes both the lowest ground state parameters and the correlated value of
the QCD continuum threshold tc, as contrary to the LSR, the FESR is weighted by the
high-energy region for positive values of the degree n of the moment. However in some
cases, this property become a great inconvenience of the method.

In general, this value of tc is slightly different from the phenomenological value of the
first radial excitation mass. This might be not so surprising as the QCD model, which gives
a smearing of the high-energy region, cannot take into account the complicated structure of
the resonances in this region.
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Fig. 49.3. Points in the complex q2-plane where the two-point function in Eq. (49.22) is evaluated.

49.6 The Gaussian sum rules

Another way of deriving the FESR which casts light upon the meaning of local duality is
the Gaussian sum rule which reads [405,406]:

G(s, σ ) = 1√
4πσ

∫ ∞

0
dt e− (t+s)2

4σ
1

π
Im�(t) , (49.21)

for a Gaussian centred at s with a finite width resolution
√

4πσ . Let us discuss how to get
the Gaussian transform from a generic two-point function like �(q2) in Eq. (48.1). First,
one evaluates �(q2) at a complex point q2 = s + i� (s and � are real positive variables)
and at its complex conjugate q2 = s − i� (see Fig. 49.3) and defines the combination,
(one assumes for simplicity that the dispersion relation for �(q2) requires at most one
subtraction, but the argument can be easily generalized as in the case discussed for the
Laplace transform):

�(s + i�)

i�
+ �(s − i�)

−i�
=

∫ ∞

0
dt

1

(t − s)2 + �2

1

π
Im�(t) . (49.22)

The integral in the RHS brings in the convolution with a Lorentz-like kernel which we
can write as a Laplace transform

1

(t − s)2 + �2
=

∫ ∞

0
dx e−x�2

e−x(t−s)2
. (49.23)

Applying the techniques developed in the previous Section 49.2 to this integral repre-
sentation allows us to construct the inverse Laplace transform operator which is needed to
obtain the Gaussian transform in Eq. (49.21) from the Lorentz transform in Eq. (48.2). It is
the operator:

L ≡ lim
N ,�2→∞

∣∣∣ 1
N �2=4τ

(−1)N

(N − 1)!

(
�2

)N ∂ N

(
∂�2

)N . (49.24)

We then have the desired relation:

1√
4πτ

2τL
[
�(s + i�)

i�
+ �(s − i�)

−i�

]
(49.25)
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=⇒ 1√
4πτ

∫ ∞

0
dt exp

(
− (s − t)2

4τ

)
1

π
Im�(t) . (49.26)

One can also note that Eq. (49.21) can be derived by applying the inverse Laplace operator:

L̂ ≡ lim
n,τ 2→∞

(−τ 2)n

(n − 1)!

dn

(dτ 2)n
, (49.27)

where n/τ 2 ≡ σ is fixed, to the already Laplace-transformed quantity:

F(τ ) = e−sτ τ−1
∫ ∞

0
dt e−tτ 1

π
Im�(t) . (49.28)

One can already note from Eq. (49.21) that in limit σ = 0, where the Gaussian kernel
becomes a delta function, one has the strict local duality:

G(s, 0) = 1

π
Im�(s) . (49.29)

Also, Eq. (49.21) obeys the heat-evolution equation:
(

∂2

∂s2
− ∂

∂σ

)
G(s, σ ) = 0 , (49.30)

with the initial condition in Eq. (49.29), where now s is the position, σ the time evolution
and 1

π
Im�(t) the temperature distribution in the region 0 ≤ s ≤ ∞. The two boundary

conditions for σ > 0:

G(s = 0, σ ) = 0 ,
∂G

∂s
(s, σ )

∣∣
s=0 = 0 , (49.31)

lead to two independent solutions U−(s, σ ) and U+(s, σ ) where G(s, σ ) = 1
2 (U+ + U−)

(s, σ ). These solutions can be expressed in terms of Hermite polynomials. The conservation
of the total heat implies the duality relation:∫ +∞

−∞
ds G(s, σ ) =

∫ ∞

0
ds

1

π
Im�(s) =

∫ ∞

0
ds U+(s, σ ) , (49.32)

where the last equality comes from the symmetry properties of U+(s, σ ). A relation in-
volving higher moments of the spectral function can also be deduced using the generating
function of Hermite polynomials and leads to the sum rules:

σ n
∫ ∞

0
ds H2n

(
s

2
√

σ

)
U+(s, σ ) =

∫ ∞

0
dt t2n 1

π
Im�(t) ,

σ n+1/2
∫ ∞

0
ds H2n+1

(
s

2
√

σ

)
U−(s, σ ) =

∫ ∞

0
dt t2n+1 1

π
Im�(t) , (49.33)

which only become useful once statements about the restriction to finite intervals can be
made. In this case, Eq. (49.33) leads to the FESR in Eq. (49.15).

In [405,361], the example of the ρ meson has been taken for illustrating the Gaussian
sum rules and summarized in the following figures. Figure 49.4 shows the evolution in
the pseudo-‘time’ variable σ of the Gaussian transform of the spectral function ansatz
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Fig. 49.4. The Gaussian transform of the spectral function in Eq. (49.18).
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Fig. 49.5. The Gaussian transform of the spectral function in Eq. (49.35).

in Eq. (49.18) with the onset of the continuum tc fixed by the finite energy sum rule in
Eq. (49.19).

In the ‘heat evolution’ analogy the spectral function in Eq. (49.18) corresponds to the
initial ‘heat distribution’ in the s–axis. The picture shows the evolution in ‘time’ of this
‘heat distribution’ in the interval 0.1 GeV4 ≤ σ ≤ 1 GeV4. We observe that asymptotically
in ‘time’, i.e. for σ large, the spectral function evolves very well to the asymptotic ‘heat
distribution’ predicted by pQCD i.e.:

lim
σ→∞ G(s, σ ) = 1

16π2

(
1 − erf

(
s

2
√

σ

))
[1 + · · ·] , (49.34)

where erf(x) denotes the error function erf(x) = 2√
π

∫ x
0 dy e−y2

. By contrast, Fig. 49.5 shows
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the same evolution in the limit case of only a delta-function ansatz for the spectral function:

1

π
Im�I=1(t) = f 2

ρ M2
ρδ

(
t − M2

ρ

)
, (49.35)

with no continuum.
Clearly the corresponding asymptotic ‘heat distribution’ fails to reproduce the shape

predicted by pQCD. Global duality of a given hadronic spectral function ansatz with QCD
is only obtained provided that the hadronic parameters are constrained to satisfy a system
of finite-energy sum rules equations.

49.7 FESR from the zeta prescription

Finally, the last (but not the least) way of deriving Eq. (49.15) is simply to take the coefficient
of the τ variable in the two sides of the LSR in Eq. (49.7) [629,667]. This latter method
can be formalized by using the zeta function prescription inspired from the non-relativistic
approach [406]. In fact, if H is a Hamilton operator, the associated zeta-function can be
written as:

ζ (n) = 1

�(n)

∫ ∞

0
dt τ n−1T r e−Ht , (49.36)

which is equivalent, in field theory, to:

ζ (n) = 1

�(n)

∫ ∞

0
dt e−tτ 1

π
Im�(t) , (49.37)

where the last integral is the familiar Laplace transform of Im�(t). If this Laplace-transform
and its successive derivatives are a series in τ , then, one can easily derive Eq. (49.15) by
comparing the exact expression of ζ (n = 0) with its approximate form.

49.8 Analytic continuation

Various versions of this method have been discussed in the literature [630]. In most cases,
the problem is formulated in terms of norm problems for the input errors and is quite similar
to the standard χ2–minimization used in numerical analysis. More explicity let us take a
simple example. A polynomial in t is used for approximating the 1/(t − q2) term of Eq.
(48.2) in the real axis [630]. Then, applying the Cauchy theorem to the finite Q2 contour in
the complex Q2 plane, one arrives at the sum rule:

�(q2) = 1

2iπ

∮
C

dt

(
1

t − q2
−

∑
an

tn

)
�(t)

+
[
�n ≡ 1

π

∫ Q2

0
dt

(
1

t − q2
−

∑
n

antn

)]
Im�(t) , (49.38)

where �n is the ‘fit error’ which should tend to zero, if the result is optimal. An important
difference with the previous sum rules is that in the RHS the data enters only in �n whilst
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the main part of �(q2) is given by its theoretical side. However, it is difficult to appreciate
the reliability of the results coming from the method due to:

� The ad hoc uses of the polynomial parametrization (or in general of the kernels in the integrals)
and to the strong dependence of the results on the values of the input errors.

� Its form in Eq. (49.38) where the dependence of the sum rule on the arbitrary subtraction scale is
unclear.

� The way of extrapolating the QCD information up to small q2 which is model dependent.

Due to these weak points, all the beautiful mathematical forms used to formulate the sum
rule might lose their efficiency in its physical applications. More refinements and more phe-
nomenological tests of this approach are needed before a definite claim about its superiority
can be made.

49.9 Summary

We have given a brief general survey of spectral function sum rule methods which we believe
can be applied for a general class of QCD-like theories. As one can see all the methods
presented here have their own advantages and disadvantages. For the particular case of QCD
where the theory has not yet been solved exactly, some questions, though important, such
as the existence of high derivatives at high Q2 as well as a correct and convincing way of
estimating the true theoretical systematic errors in the sum rules analysis remain academic.
We have checked in a QCD-like model such as the non-linear σ model in two dimensions,
as suggested by Gabriele Veneziano, that the high derivatives for a two-point correlator
exist unambiguously. Also, one can always test a posteriori whether the assumptions used
for the analysis make sense.

In this review, we shall mainly concentrate on the uses of the LSR in Eq. (49.7) to
Eq. (49.9) owing to their sensitivity with respect to the low-energy behaviour of the spectral
functions. However, in most cases, we shall also discuss for a comparison, the constraints
from FESR in Eq. (49.15) which complement the LSR results.

49.10 Optimization criteria

One can notice that the sum rule variables τ (LSR variable) or n (finite number of deriva-
tives) and the continuum threshold tc are, in general, free parameters in the sum rule
analysis.

� In the original work of SVZ [1], the optimal result from the sum rule is obtained inside a window in
τ or n, where one has a balance between the QCD continuum and the non-perturbative condensates
contributions in the sum rule. In QSSR1 [3], one has shown that this feature corresponds to the
existence of a minimum in τ or n, as can be illustrated by the example of three-dimensional harmonic
oscillator in quantum mechanics and of the charmonium sum rules [91–93].
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49.10.1 The harmonic oscillator

For this purpose, let consider the harmonic oscillator potential:

V (r ) = 1

2
mω2r2, (49.39)

and the ‘correlation function’ for the S-wave states:

F(τ ) =
∑

(Rn)2e−Enτ : n = 0, 2, 4, . . . , (49.40)

where Rn is the radial wave function for zero angular momentum and En the corresponding
eigenvalue. τ is the parameter which regulates the energy resolution of the sum rule and
plays the role of an ‘imaginary time’ variable. The exact solution of the LHS for the harmonic
oscillator potential V (r ) reads:

F(τ )exact = 2√
2π

( mω

sinh ωτ

)3/2
, (49.41)

where one can see that, in the limit τ → ∞, the exact expression:

R(τ )exact ≡ − d

dτ
log F(τ ) (49.42)

tends to the lowest eigenvalue:

E0 = 3

2
ω . (49.43)

At finite τ and for a truncated series in τ , one can write the approximate solution:

R(τ )approx ≡ E0

[
1

ωτ
+ ωτ

3
− (ωτ )3

45
+ 2(ωτ )5

945
+ · · ·

]
, (49.44)

where the first term is the free motion, and the next ones are higher-order corrections in
τ to this term. One can notice that in this approximate solution, one cannot take formally
the limit τ → ∞, as the asymptotic series will blow up. Therefore, a comparison of the
exact and approximate solution can only be done in a compromise region where the series
converge and where the S states contribution is dominant. This is exactly the situation which
we shall encounter in the QCD sum rule analysis. The τ behaviour of Rapprox(τ ) in shown
in the Fig. 49.6, which one can compare with the eigenvalue E0. One can notice that it
stays above E0 as a consequence of the positivity of R. The agreement between Rapprox

and Rexact increases if one adds more and more terms in the τ expansion. The minimum of
Rapprox provides an upper bound to the value of E0 while the distance between Rapprox and
E0 controls the strength of the continuum contribution to the sum rule. One can notice that
the optimal information from Rapprox is obtained at the minimum, where there is a balance
between the higher order terms in the expansion and the higher states contributions.

We shall see that this quantum mechanics example mimics quite well the case of QCD.
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Fig. 49.6. The ratio of moments normalized to the ground-state energy versus the imaginary time for
the case of the harmonic oscillator potential. (2) and (4): approximate series including the second and
fourth order terms;−−−−exact solution.

49.10.2 Non-relativistic charmonium sum rules

Retaining the correction due to the gluon condensate, the QCD expression of the non-
relativistic QCD moments is [91–93]:

M(τN ) ≡
∫

d Ee−EτN Im�(E)

= 3

8m2
4π

(
m

4πτN

)3/2 [
1 + 4

3
αs

√
πmτ

1/2
N − 4π

288m
〈αs G2〉τ 3

N

]
, (49.45)

where τN is the imaginary time variable, from which one can deduce the ratio of moments:

R(τN ) = 3

2τN
− 2

3
αs

√
πmτ

−1/2
N + 4π

96m
〈αs G2〉τ 2

N , (49.46)

where m is the charm quark (pole) mass. Using the QCD parameters given in Tables 48.1
and 48.2, one can show in Fig. 49.7 the τN behaviour of the ratio of moments. One can
notice a strict ressemblence with the case of the harmonic oscillator.
The moments have the following features:

� The exact ratio reaches its limit E0 very quickly as shown in Fig. 49.7.
� The theoretical curve which is a good approximation for small times stabilizes at medium time and

blows up at large time indicating a breaking of the approximation for τN ≥ τ c
N . At the minimum,

one has:

minR(
τ c

N

) = E exact
0 (49.47)

within about 10% accuracy, indicating a good description of the ground state energy. This slight
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Fig. 49.7. The ratio of moments normalized to the ground-state energy versus the imaginary time in
the case of the charmonium sum rules.

discrepancy can be reduced by including the contribution of the QCD continuum into the spectral
function.

� However, it is quite surprising that, for a clearly emerging level where one would expect a
dominance of the confinement force, while the moment shows that there exists a window where
perturbation theory still works but the individual energy levels clearly emerge. For this reason,
Bell–Bertlmann called it magic moments.

49.10.3 Implications for QCD

� However, by working with a truncated series as in QCD, we do not often have, in some other
channels, a nice minimum for Rapprox. This minimum is replaced in some cases by an inflexion
point where the optimal information on the resonance properties is obtained.

� Moreover, we need also a similar optimization for the value of the QCD contimuum threshold tc,
which, a priori, is also a free parameter. Optimal estimate can be obtained if the result presents
stability in tc. In various examples, this procedure can lead to an overestimate of the result, such
that one can safely consider the result obtained in this way as an upper bound. On the contrary, a
lower bound can be obtained at the value of tc where one starts to have a minimum or an infexion
point with respect to the changes of the sum rule variables τ or n. A further test of the tc value is its
comparison with the one obtained from FESR constraints.

� We conclude from the previous analysis that the optimal and most conservative results from the sum
rule discussed in this book will obey the τ or n optimization criterion (SVZ window), but in addition
the corresponding tc values are in the range where we start to have these τ or n minimum until
the one where we have a stability in tc. In many examples, the value of tc from a FESR constraint
belongs to this range. In some cases, tc can be higher than the value intuitively expected around the
mass of the radial excitation, which is not very surprising as the QCD continuum is an average of
all the higher-state contributions. Finally, one can also test that at the optimal region, the OPE still
makes sense as the QCD series converge quite well.
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49.11 Modelling the e+e− → I = 1 hadrons data using a QCD-duality ansatz

Due to the complexity and to the absence of the data in some channels, it appears necessary
to introduce a simple model for parametrizing the spectral function. In the example of the
ρ meson, we have used the parametrization:

1

π
Im�ρ(t) = M2

ρ

4γ 2
ρ

δ
(
t − M2

ρ

) + �(t − tc) ‘QCD continuum’ , (49.48)

where the first term is the lowest resonance contribution, whilst the second one takes into
account all discontinuities coming from the QCD diagrams. γρ is the ρ-meson coupling to
the vector current:

Vµ = 1

2
(ūγµu − d̄γµd) , (49.49)

and is normalized as in Eq. (2.52). We have also seen that the lowest FESR moment leads
to the constraint:

M2
ρ

4γ 2
ρ

� tc
8π2

[
1 +

(αs

π

)
+ O(

ᾱ2
s

)]
, (49.50)

which, given the experimental value γρ � 2.55, leads to:

tc � 1.7 GeV2 . (49.51)

As first noticed in [405], this FESR constraint shows that the properties of the lowest
ground state is correlated to the value of the QCD continuum threshold, and permits one
to check the (in)consistencies of various predictions done in the early literature on the sum
rules.

We compare the prediction of this model with the available complete e+e− → I = 1
hadrons data for the ratio of moments R(τ ) as shown in Fig. 49.8.2

We have used the e+e− total cross-section shown in Fig. 49.9.
One can notice that the deviation of this naı̈ve and simple model (dashed curve) from the

data (black points) is at most 15%,3 and that is very good. One can also notice that the QCD
duality ansatz prediction is below the complete data one, which can be understood because
the QCD continuum might give an underestimate of the radial excitation contributions as
it only gives a smearing of the higher-state effects and does not account for the complex
resonance structure between 1 and 2 GeV.

49.12 Test of the QCD-duality ansatz in the charmonium sum rules

Let us now test the validity of the QCD-duality ansatz in the heavy quark sector. In so doing,
we consider the charmonium family (J/ψ, ψ ′, . . . ), which couples to the charm current

2 More details discussions can be found in QSSR1 [3].
3 The continuous curve corresponds to another set: γρ = 2.2 and tc = 2.2 GeV2, which gives a worse prediction.
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via:

〈 0|c̄γ µc|ψ 〉 =
√

2
M2

ψ

2γψ

εµ , (49.52)

and the corresponding two-point correlator. The coupling γψ is normalized as in Eq. (1.51).
The QCD continuum is simply approximated by the step function:

1

π
Im�ψ (t)cont = 1

4π2

[
1 +

(αs

π

)
(t)

]
�(t − tc) , (49.53)

which one can improve by including the available quark mass and higher-order radiative
corrections. We show in Fig. 49.10 the ratio of the Q2 = 0 moments:4

rn ≡ Mn

Mn−1
, (49.54)

by using the data for the different leptonic widths of the J/ψ family and by including
the QCD continuum. One can notice that for larger value of n ≥ 6, the ratio of moments
is completely saturated by the lowest mass resonance, which shows that the QCD duality
ansatz parametrization is a good approximation in the sum rule analysis of the heavy quark
sector.

49.13 HQET sum rules

QCD spectral sum rules are often used in the Heavy Quark Effective Theory (HQET) for
the estimate of meson masses and decay constants [164]. One considers the correlation

4 More detaileds discussions can be found in QSSR1 [2].
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functions of quark currents, where the heavy quarks are represented by their effective fields
hv(x), v being the heavy quark four-velocity. For this purpose, let’s consider the two-point
correlation function:

�(ω) = i
∫

d4x eik·x 〈0|T {JH (x)J †
H (0)}|0〉 (49.55)

where ω = 2v · k and JH (x) = h̄v(x)iγ5q(x) is the interpolating current of the pseudoscalar
heavy-light mesons in HQET. In HQET, the corresponding decay constant fB can be ex-
pressed in terms of the parameter F̂ as:

fB = Ĉ(mb)F̂

[
1 − A

mb
+ O

(
1

m2
b

)]
, (49.56)

where the coefficient Ĉ(mb) can be computed in perturbation theory. One can notice that due
to the heavy quark spin symmetry, F̂ can also be computed from the two-point correlation
function of the vector currents JV (x) = h̄v(x)(γµ − vµ)q(x) interpolating heavy-light 1−

mesons. Isolating the ground state contribution from the integral over the excited states and
the continuum, one can write the dispersion relation:

�(ω) = F̂2

2�̄ − ω
+

∫ ∞

E0

d E
Im�(E)

E − ω
+ subtractions . (49.57)

The variable E is related to the usual t variable as:

t = (E + mb)2 . (49.58)

The parameter �̄ � MB − mb represents the binding energy of the light degrees of free-
dom in the heavy meson. Here mb represents the heavy quark pole mass. The dispersion
relation, Eq. (49.57), is then matched with the QCD expression, obtained for negative ω

using the SVZ expansion:

�(ω) = �pert(ω) +
∑

d

Cd
〈Od〉

(−ω)d
. (49.59)

It is also convenient in the Laplace sum rule analysis to introduce the non-relativistic
variable:

τN = 4mbτ . (49.60)

49.13.1 Decay constant, meson-quark mass gap, kinetic energy
and chromomagnetic operator

Different applications of this method to the two-point functions of heavy-light meson and
baryon currents have been focused on the estimate of the decay constant, the hadron-quark
mass gap �̄, the kinetic energy λ1 and the chromomagnetic interaction parameter λ2.
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The value of the B meson decay constant obtained from the analysis is [164,166]:

F̂ = (0.4 ± 0.06) GeV3/2 , A = (0.9 ± 0.2) GeV , (49.61)

which one can compare with the result obtained from the full theory discussed later on in
the chapter of quark masses and decay constants.

The meson-quark mass gap �̄ is in important input in HQET approach. Recall (see
previous chapter on HQET) that it can be defined as [164,166]:5

MHQ = m Q + �̄ + �m2

2m Q
, (49.62)

with:

�m2 = −λ1 + 2

[
J (J + 1) − 3

2

]
λ2 , (49.63)

J = j ± 1/2 being the total spin of the hadron states. Taking, for definiteness, the case of
the B meson, one has:

λ1 ≡ 1

2MB
〈B(v)|Okin|B(v)〉 and λ2 ≡ − 1

3MB
〈B(v)|Omag|B(v)〉 (49.64)

which correspond respectively to the matrix elements of the kinetic and of the chromomag-
netic operators:

Okin ≡ h̄(i D)2h and Omag ≡ 1

4
gs h̄σµνGµνh , (49.65)

where h is the heavy quark field and Gµν the gluon field strength tensor.
The estimate of �̄ from HQET-sum rules leads to [165]:

�̄ � (0.52 − 0.70) GeV , (49.66)

in good agreement with the previous results [164,633], although less accurate as we have
taken a larger range of variation for the continuum energy. An anologous sum rule in the
full QCD theory leads to [634]:

�̄ � (0.6 − 0.80) GeV , (49.67)

which combined together leads to the intersecting range of values [165]:

�̄ � (0.65 ± 0.05) GeV . (49.68)

The sum rule estimate of the kinetic energy gives [165]:

λ1 � −(0.5 ± 0.2) GeV2 (49.69)

where the large error, compared with the previous result of [166], is due to the absence
of the stability point with respect to the variation of the continuum energy threshold. By

5 We are aware of the fact that in the lattice calculations, �̄ defined in this way can be affected by renormalons [798].
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combining the previous estimates with the one of the chromomagnetic energy:

λ2 � 1

4

(
M2

B∗ − M2
B

) + O (1/mb) � 0.49 GeV2 , (49.70)

one deduces the value of the pole mass to two-loop accuracy:

Mb ≡ mb = (4.61 ± 0.05) GeV , (49.71)

in good agreement with the previous values from the sum rules in the full theory and (within
the errors) with the HQET results in [164,633].

49.13.2 Isgur–Wise function

This approach has been also extended to the three-point function for studying the Isgur–
Wise function for the B → D(∗) semi-leptonic transition [164]. Compared with the sum
rule in the full theory, the HQET sum rules have a much simpler QCD expression because
it is a series in 1/Mb. Therefore, the evaluation of radiative corrections like the one for the
three-point function becomes feasible. We shall come back to this point in the chapter on
B and D exclusive weak decays.

49.14 Vertex sum rules and form factors

The extension of QSSR two-point function sum rules into vertex or three-point function
sum rules has been discussed by many authors [635–641] and in many reviews on sum rules
[356–365], with the aim of estimating the three-hadron couplings and to study the q2-
dependence of the hadron form factors. In most of these applications, the vertex is saturated
by the lowest hadronic state plus a QCD continuum, while the QCD expressions are eval-
uated in the Euclidian region using a configuration that is best suited to the processes
considered. The mathematical validity of the spectral representation for the three-point
function is not well established in general,6 although one may expect that, in the case of
narrow resonances, it simplifies, due to the disappearance of some anomalous thresholds.7

Among other choices, the symmetric configuration:

p2 = q2 = (p + q)2 = −(Q2 � �2) , (49.72)

for the vertex depicted in Fig. 49.11 appears to be convenient for extracting the trilinear
boson couplings, as we are only left with one variable in the sum rule analysis, while its
QCD side is guaranteed to be safe from some eventual IR singularities. In this narrow-width
approximation, one can write the duality diagrams between the two sides of the vertex sum
rules (Fig. 49.12).

6 To our knowledge, the most serious attempts to study such a problem is in [640] within perturbation theory.
7 Related discussions will be done in the next chapter, taking the example of the Bc meson semi-leptonic decays.
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Fig. 49.11. Hadronic vertex.
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=
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Fig. 49.12. Duality between a QCD vertex and a hadronic vertex in a narrow width approximation.

The discussions on the theoretical validity of the symmetric configuration method and
its first phenomenological applications in QCD, for the case of trilinear mesons [637] and
meson-baryon-baryon couplings, can be found in [636]. Some other applications of this
method will be discussed later on in following chapters for the estimate of the decay widths
of scalar mesons, gluonia and hybrids. The case of the heavy meson exclusive decays will
be extensively discussed.

The uses of vertex sum rules for studying the q2-dependence of different light and heavy
hadron form factors have been also discussed extensively in the literature and will be
discussed in later chapters. In connection to this, we shall also discuss light-cone sum rules
that are an alternative to the vertex sum rules.

49.14.1 Spectral representation

The hadronic vertex in Fig. 49.11, can be represented by the spectral representation:

T (p2, q2, (p + q)2) = 1

π

∫
dt1 dt2 dt3

ImT (t1, t2, t3)

(t1 − p2)(t2 − q2)(t3 − (p + q)2)
. (49.73)
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In the symmetric representation given in Eq. (49.72), it takes the simple form:

T (Q2) = 2

π

∫ 1

0
xdx

∫ 1

0
dy

∫ ∞

0
dt1dt2dt3

ImT (t1, t2, t3)

[Q2 + (t1 − t2)xy + (t2 − t3)x + t3]3 ,

(49.74)

after a Feynmann parametrization of the propagators. In this form, it is trivial to apply the
Laplace sum rule operator for improving the duality relation. One obtains:

L̂[
T

] = τ 3

π

∫ 1

0
xdx

∫ 1

0
dy

∫ ∞

0
dt1dt2dt3 e−[(t1−t2)xy+(t2−t3)x+t3]τ ImT (t1, t2, t3) , (49.75)

where the rôle of the depressive factor is only manifest when the mass of the first ex-
cited state is much higher than any of the lowest ground states involved in the three
channels.

An alternative choice of configurations often used in the literature is to take one of the
three-moment fixed or small. In this case, one assumes the validity of the double-dispersion
relation:

T (q2, p2) =
∫ ∞

0
dt1

∫ ∞

0
dt2

ImT (t1, t2, (p + q)2)

(t1 − p2)(t2 − q2)
+ · · · . (49.76)

One can apply a double ‘Borel’ transformation for each variable p2 and q2 provided that
the subtraction terms are not of the form [641]:

(p2)n
∫ ∞

0

�(t)dt

(t − q2)
or (q2)n

∫ ∞

0

�(t)dt

(t − p2)
, (49.77)

which would induce non-controllable contributions to the sum rule. However, treating
(p2, q2) as independent variables may not be justified, as the spectral representation should
be done in a (q2, p2) plane along a straight-line which is a combination of the variables p2

and q2 [635].

49.14.2 Illustration from the evaluation of the gωρπ coupling

The relevant three-point function is:

Tµν(p, q) = i
∫

d4x e−i p·x ei(p+q)·y〈| T J ρ
µ (x)Jπ (y)Jω

ν (0) | 0〉
= εµναβ pαqβ T (Q2, (p − q)2) . (49.78)

where T is the invariant amplitude. The quark interpolating currents are normalized as:

J ρ
µ =: ūγµd : Jω

ν = 1

6
: ūγνu + d̄γνd : Jπ = (mu + md ) : d̄(iγ5)u : .

(49.79)
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Fig. 49.13. Duality between the QCD and hadronic vertices for gωρπ : (a), (b) and (c) are respectively
the QCD perturbative, quark condensate and mixed quark condensate contributions; (d) is the gωρπ

coupling.

The QCD expression of the vertex at the symmetric point can be evaluated from the
diagrams depicted in Fig. 49.13 and gives [637]:

T (p, q) = 1

16π2

(mu + md )

Q2

{
(mu + md )Ix,y − 〈ūu〉

Q2

(
1 + 5

36

M2
0

Q2

) }
. (49.80)

We have parametrized the mixed quark condensate effects by introducing the scale M2
0 �

0.8 GeV2. Ix,y is a typical Feynman parameter integral:

Ix,y =
∫ 1

0
dx

∫ 1−x

0
dy

1

x(1 − x) + y(1 − y) − xy
= 2.34 . (49.81)

Using a narrow width approximation (NWA) and retaining the lowest mass resonances,
one obtains:

Texp =
√

2 fπm2
π

Q2 + m2
π

√
2M2

ρ

2γρ

√
2M2

ω

2γω

|gωρπ | . (49.82)

We have used the usual normalization:

〈0|Jπ |π〉 =
√

2m2
π fπ , 〈0|J ρ

µ |ρ〉 =
√

2
M2

ρ

2γρ

εµ , 〈0|Jω
ν |ω〉 = M2

ω

2γω

εν . (49.83)

The hadronic coupling is normalized as:

〈ω(p1, ε1)|ρ(p2, ε2)π (p3)〉 = |gωρπ |εµνρσ ε
µ

1 εν
2 pρ

1 pσ
2 . (49.84)

Invoking quark-hadron duality and taking the Laplace transform, one obtains in the chiral
limit and for γω � 3γρ, Mρ � Mω:

|gωρπ | � 6γ 2
ρ

M4
ρ

(mu + md )〈ūu〉
fπm2

π

τ−1eM2
ρτ

(
1 + 5

36
M2

0 τ

)
. (49.85)
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One can eliminate the quark condensate contribution using the GMOR relation:

(mu + md )〈ūu〉 = − f 2
π m2

π . (49.86)

However, one should not take literally the fπ dependence of the result as the fπ depen-
dence of τ is not known. Using γρ = 2, 55, it leads at the stability point τ � 1.4 GeV−2

to:

|gωρπ | ≈ 19 GeV−1 (49.87)

in satisfactory agreement with the phenomenological determination of about 17 GeV−1

from ω → 3π or ω → π0γ decay using the Gell–Sharp–Wagner model [642]. One should
notice that even at these large τ -values, the contribution of the mixed condensate is only
about 15% indicating the convergence of the OPE. The effect of radial excitations have also
been shown [637] to be negligible.

Similar approaches have been used in some other channels [636,3] (see also forthcoming
chapters).

49.15 Light-cone sum rules

49.15.1 Basics and illustration by the π0 → γ ∗γ ∗ process

The method of light-cone sum rules (LCSR) [643] is an alternative to the vertex sum rules
for studying hadronic form factors.8 It combines the SVZ technique and the theory of hard
exclusive processes [644]. The basic idea is to expand the products of currents near the light
cone. It can be illustrated by the analysis of the pion form factor in the process π0 → γ γ

for on-shell pion (p2 = m2
π = 0) in the chiral limit. The corresponding amplitude, is:

Tµν(p, q) = i
∫

d4x e−iq·x 〈π0(p) | T J em
µ (x)J em

ν (0) | 0〉
= εµναβ pαqβ F(Q2, (p − q)2) , (49.88)

where p is the pion momentum, q and (p − q) are the photon momenta, Q2 = −q2, J em
µ

is the quark electromagnetic current and F is the invariant amplitude. To derive the LCSR,
one has to calculate the correlation function of Eq. (49.88) in QCD, in the region of large
Q2 and |(p − q)2| and to use a dispersion relation to match the result of this calculation
with hadronic matrix elements:

Tµν(p, q) = 1

π

∫ ∞

sh
0

ds
I mTµν(Q2, s)

s − (p − q)2
. (49.89)

The spectral function cn be saturated by the lowest masses ρ and ω mesons via:

〈V |J em
ν (0) | 0〉 = εν

√
2

M2
V

2γV
: V ≡ ρ, ω . (49.90)

8 Various recent applications of this method are reviewed in [360].
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The correlation function in Eq. (49.88) can be calculated by expanding the T product of
quark currents near the light cone x2 = 0, which, for large Q2 and |(p − q)2|, is expected
to give the dominant contribution. This expansion is different from the local OPE as it
no longer involves QCD vacuum condensates, but a summation of infinite series of local
operators. It is convenient to introduce the DIS variables:

ν ≡ p · q , ξ = 2ν/Q2 . (49.91)

The leading contribution to the amplitude can be obtained by contracting the quark fields
ψ in Eq. (49.88), using the propagator of the free massless quark:

i S0(x, 0) = 〈0 | T {ψ(x)ψ̄(0)} | 0〉 = i � x
2π2x4

, (49.92)

and transforming γµγαγν → −iεµανργ
ργ5 + · · · . Then, one obtains:

Tµν(p, q) = −iεµναρ

∫
d4x

xα

π2x4
e−iq·x 〈π0(p) | ψ̄(x)γ ργ5ψ(0) |0〉 . (49.93)

Expanding the local operators around x = 0:

ψ̄(x)γργ5ψ(0) =
∑

n

1

n!
ψ̄(0)( D · x)nγργ5ψ(0) , (49.94)

the matrix elements of these operators have the following general decomposition:

〈π0(p)|ψ̄ Dα1 Dα2 · · · Dαr γργ5ψ |0〉 = (−i)n pα1 pα2 · · · pαr pρ Mn

+ (−i)ngα1α2 pα3 · · · pαr pρ M ′
n + · · · ,

(49.95)

where Mn, M ′
n are matrix elements coming respectively from twist-2 and twist-4 local

operators. Substituting the decomposition Eq. (49.94) in Eq. (49.93), integrating over x and
using the definitions Eq. (49.95) and Eq. (49.91) one obtains:

F(Q2, (p − q)2) = 1

Q2

∞∑
n=0

ξ n Mn + 4

Q4

∞∑
n=2

ξ n−2

n(n − 1)
M ′

n + · · · . (49.96)

Since the variable ξ ∼ 1 in a generic exclusive kinematics with p �= 0, all terms should
be kept in each series in this expression. The second term containing M ′

n and further similar
terms are suppressed by powers of a small parameter 1/Q2 as compared with the first term
containing Mn . Keeping the lowest twist contribution, at x2 = 0 (and p2 = 0), the matrix
element in Eq. (49.93) has the following parametrization ( fπ = 92.4 MeV):

〈π0(p)|ψ̄(x)γµγ5ψ(0)|0〉x2=0 = −i pµ fπ

∫ 1

0
du eiup·xϕπ (u, µ) , (49.97)

where the function ϕπ (u, µ) is the pion light-cone distribution amplitude of twist 2, nor-
malized to unity:

∫ 1
0 ϕπ (u, µ)du = 1. Furthermore, expanding both sides of Eq. (49.97)

and comparing the LHS with the expansions, Eqs. (49.94) and (49.95), we find that the
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moments of ϕπ (u) are related to the matrix elements of local twist-2 operators:

Mn = −i fπ

∫ 1

0
du unϕπ (u, µ) . (49.98)

The function ϕπ (u), multiplied by fπ , is a universal non-perturbative object encoding the
long-distance dynamics of the pion. Together with the corresponding higher-twist distribu-
tion amplitudes, ϕπ (u) plays a similar role as the vacuum condensates play in SVZ sum
rules. However, to our opinion, a connection between the distribution amplitude and the
vacuum condensates has not been yet clarified and needs further investigation. Substituting
the definition Eq. (49.97) in Eq. (49.93), integrating over x , restoring the electromagnetic
charge factor and summing the u and d quark contributions, one obtains the correlation
function in the twist 2 approximation:

F (2)(Q2, (p − q)2) = 2

3
fπ

∫ 1

0

du ϕπ (u, µ)

ūQ2 − u(p − q)2
, (49.99)

where ū = 1 − u. We are now in a position to obtain a sum rule from the dispersion relation,
Eq. (49.89), matching it with the result of the light-cone expansion. We define the matrix
element

〈π0(p)| j em
µ |ρ0(p − q)〉 = Fρπ (Q2)m−1

ρ εµναβε(ρ)νqα pβ , (49.100)

in terms of the transition form factor Fρπ (Q2). We parametrize the higher state contributions
by the QCD continuum ansatz from a threshold tc and write a dispersion relation for F (2).
It is easy to obtain, the duality relation, to leading twist-2 accuracy:

√
2Mρ

2γρ

Fρπ (Q2)

m2
ρ − (p − q)2

+ 1

π

∫ ∞

tc

ds
Im F(Q2, s)

s − (p − q)2
=

√
2 fπ
3

∫ 1

0

du ϕπ (u)

ūQ2 − u(p − q)2
,

(49.101)

where γρ is the coupling normalized as usual in this book:

〈0| 1√
2

(ūγµu − d̄γµd)|ρ〉 = εµ

√
2M2

ρ

2γρ

(49.102)

Introducing the continuum threshold:

uρ
c = Q2/(tc + Q2) (49.103)

and taking the Laplace transform, one obtains the LCSR for the form factor of the γ ∗ρ → π

transition to twist-2 accuracy [645,360]:

Fρπ (Q2) = 2

3

fπ
Mρ

γρ

∫ 1

uc

du

u
ϕπ (u, µ) exp

(
− ūQ2

uM2
+ m2

ρ

M2

)
. (49.104)
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ρ → ππ form factor

Another example of the application of LCSR is the calculation of the pion electromagnetic
form factor defined as:

〈π (p′)| j em
µ |π (p)〉 = Fπ (q2)(p + p′)µ , (49.105)

where q = p′ − p and j em
µ is the electromagnetic current:

j em
µ = euūγµu + ed d̄γµd . (49.106)

The resulting LCSR, at zeroth order in αs and in the twist 2 approximation, reads [649]:

Fπ (Q2) =
∫ 1

uπ
c

du ϕπ (u, µu) exp

(
− ūQ2

uM2

)
Q2→∞−→ ϕ′

π (0, M2)

Q4

∫ tπ
c

0
ds s e−s/M2

, (49.107)

where ϕ′
π (0) = −ϕ′

π (1), and uπ
c = Q2/(tπ

c + Q2), sπ
0 is the duality threshold in the pion

channel. The factorization scale µ2
u = ūQ2 + uM2 corresponds to the average quark vir-

tuality in the correlation function. At O(αs), one recovers the leading ∼ 1/Q2 asymptotic
behaviour corresponding to the hard scattering mechanism. Including this contribution in
the LCSR and retaining the first two terms of the sum rule expansion in powers of 1/Q2

one obtains [650]:

Fπ (Q2)= 2αs

3π Q2

∫ sπ
0

0
ds e−s/M2

∫ 1

0
du

ϕπ (u)

ū
+ ϕ′

π (0)
∫ s0

0

ds s e−s/M2

Q4
+ O

(
αs

Q4

)
.

(49.108)

The O(1/Q2) term in Eq. (49.108) coincides with the well-known expression for the asymp-
totics of the pion form factor [644]:

Fπ (Q2) = 8παs f 2
π

9Q2

∣∣∣∣
∫ 1

0
du

ϕπ (u)

ū

∣∣∣∣
2

, (49.109)

obtained by the convolution of two twist-2 distribution amplitudes ϕπ (u) of the initial and
final pion with the O(αs) quark hard-scattering kernel.

49.15.2 Distribution amplitudes

The model dependence and main uncertainties of the LCSR approach is in the parametriza-
tion of the distribution amplitude. It can be expanded using the conformal symmetry
of massless QCD [360,646]. The conformal spin (partial wave) decomposition allows to
represent each distribution amplitude as a sum of certain orthogonal polynomials in the
variable u. The coefficients of these polynomials are multiplicatively renormalizable, and
have growing anomalous dimensions, so that, at sufficiently large normalization scale µ,
only the first few terms in this expansion are relevant. The part of the distribution ampli-
tude, which does not receive logarithmic renormalization is called asymptotic. Within this



526 X QCD spectral sum rules

expansion, one can write:

ϕπ (u, µ) = 6uū

[
1 +

∑
n=2,4, ...

an(µ)C3/2
n (u − ū)

]
, (49.110)

where C3/2
n are the Gegenbauer polynomials (for a derivation, see, e.g., [167]). The coeffi-

cients an are multiplicatively renormalizable:

an(µ) = an(µ0)

(
αs(µ)

αs(µ0)

)γn/β0

, (49.111)

and:

γn = CF

[
−3 − 2

(n + 1)(n + 2)
+ 4

(
n+1∑
k=1

1

k

)]
(49.112)

are the anomalous dimensions [647]. At µ → ∞, an(µ) vanish, and the limit an = 0 cor-
responds to the asymptotic distribution amplitude

ϕ(as)
π (u) = 6uū . (49.113)

The values of the non-asymptotic coefficients an at a certain intermediate scale µ0 can
be estimated from two-point sum rules [647,648,3] for the moments

∫
unϕπ (u, µ)du at

low n. This method is attractive because it employs non-perturbative information expressed
in terms of quark and gluon condensates. However, in practice the two-point sum rule
determination of an is not very accurate, such that one should consider conservatively the
large range spanned by an from different analysis.
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Weinberg and DMO sum rules

As mentioned earlier in Subsection 2.2.7 of Part I, Weinberg and DMO sum rules are
prototypes of QSSR, whilst their derivation is based on the asymptotic realization of chiral
and flavour symmetries, or alternatively, in the world with massless quarks and without
any interactions with external gluon fields. The convergence of these sum rules has been
tested in QCD when the quark masses and non-perturbative power corrections are switched
on [28,29,31,32]. The analysis has been reviewed in details in [30,3,34], where the QCD
corrections to the WSR have been given explicitly.

We shall follow the notations and conventions in Subsection 2.2.7 of Part I. We shall be
concerned here with the two-point correlator:

�
µν

L R(q) ≡ i
∫

d4x eiqx 〈0|T Jµ

L (x)
(
J ν

R(0)
)† |0〉

= −(gµνq2 − qµqν)�(1)
L R(q2) + qµqν�

(0)
L R(q2) , (50.1)

built from the left- and right-handed components of the local weak current:

Jµ

L = ūγ µ(1 − γ5)d, Jµ

R = ūγ µ(1 + γ5)d , (50.2)

and/or using isospin rotation relating the neutral and charged weak currents. The indices
(1) and (0) corresponds to the spins of the hadrons entering into the spectral function. In
the chiral limit, the longitudinal part �

(0)
L R(q2) of the two-point correlator vanishes, once the

pion pole has been subtracted. The spectral function is normalized as:

1

2π
Im�

(1)
L R ≡ 1

2π
Im�L R ≡ 1

4π2
(v − a) , (50.3)

where the last term is the notation in [193,199].

50.1 Sacrosanct Weinberg sum rules (WSR) in the chiral limit

Here, we shall follow closely the discussions in [34].
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50.1.1 The sum rules

The ‘sacrosanct’ Weinberg sum rules read in the chiral limit:

I0 ≡
∫ ∞

0
ds

1

2π
Im�L R = f 2

π ,

I1 ≡
∫ ∞

0
ds s

1

2π
Im�L R = 0 ,

I−1 ≡
∫ ∞

0

ds

s

1

2π
Im�L R = −4L10 ,

Iem ≡
∫ ∞

0
ds

(
s log

s

µ2

)
1

2π
Im�L R = −4π

3α
f 2
π

(
m2

π± − m2
π0

)
, (50.4)

where fπ |exp = (92.4 ± 0.26) MeV is the experimental pion decay constant that should be
used here as we shall use data from τ -decays involving physical pions; mπ± − mπ0 |exp �
4.5936(5) MeV; L10 ≡ f 2

π 〈r2
π 〉/3 − FA [where 〈r2

π 〉 = (0.439 ± 0.008) f m2 is the mean
pion radius and FA = 0.0058 ± 0.0008 is the axial-vector pion form factor for π → eνγ ]
is one of the low-energy constants of the effective chiral Lagrangian [498–502]. The last
sum rule Iem is often called DMO sum rule and it governs the electro-magnetic mass shift
of the pion.

It has been shown that in the case of massless quarks, the SU (n)L × SU (n)R chiral
symmetry is not spontaneously broken by perturbative QCD radiative corrections in QCD to
all orders of perturbation theory, in the framework where the Dirac matrix γ5 anti-commutes
with the remaining ones [118]. Therefore the WSR remains valid in this case.

Recent measurement of the difference between the vector and axial-vector spectral func-
tion has been performed by ALEPH/OPAL using hadronic τ -decay data [33] as shown in
Fig. 25.7. This has permitted us to have a detailed analysis of the spectral part of the WSR.
In order to exploit these sum rules using the ALEPH/OPAL data, we shall work with their
finite energy sum rule (FESR) versions (see e.g. [28,325] for such a derivation). In the chiral
limit (mq = 0 and 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉), this is equivalent to truncate the LHS at tc until
which the data are available, while the RHS of the integral remains valid to leading order
in the 1/tc expansion in the chiral limit, because, in this limit the breaking of these sum
rules by higher dimension D = 6 condensates, which is of the order of 1/t3

c , is numerically
negligible [29]. The analysis of these different sum rules using the τ decay data is shown
in Fig. 50.1.

50.1.2 Matching between the low- and high-energy regions

In order to fix the tc values which separate the low and high energy parts of the spectral
functions, we require that the second Weinberg sum rule (WSR) I1 should be satisfied by
the present data. As shown in Fig. 50.1, this is obtained for two values of tc:

tc � (1.4 ∼ 1.5) GeV2 and (2.4 ∼ 2.6) GeV2 . (50.5)
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Fig. 50.1. Measurements of the different WSR until an energy cut tc from τ -decay data by OPAL [33].
A similar result has been obtained by ALEPH. The RHS of the sum rules is given by the straight line
(±1σ ) when two lines are present.

Although the second value is interesting from the point of view of the QCD perturbative
calculations (better convergence of the QCD series), its exact value is strongly affected by
the inaccuracy of the data near the τ -mass (with the low values of the ALEPH/OPAL data
points, the second Weinberg sum rule is only satisfied at the former value of tc).

After having these tc solutions, we can improve the constraints by requiring that the first
Weinberg sum rule I0 reproduces the experimental value of fπ 1 within an accuracy that is
twice the experimental error. This condition allows us to fix tc in a very narrow margin due

1 Although we are working here in the chiral limit, the data are obtained for physical pions, such that the corresponding value of
fπ should also correspond to the experimental one.
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to the sensitivity of the result on the changes of tc values:2

tc = (1.475 ± 0.015) GeV2 . (50.6)

50.2 L10, mπ± − mπ0 and fπ in the chiral limit

Using the previous value of tc into the I−1 sum rule, we deduce:

L10 � −(6.26 ± 0.04) × 10−3 , (50.7)

which agrees quite well with more involved analysis including chiral symmetry breakings
[651,33], and with the one using a lowest meson dominance (LMD) of the spectral integral
[500].

Analogously, one obtains from the Iem(tc) FESR:

�mπ ≡ mπ± − mπ0 � (4.84 ± 0.21) MeV . (50.8)

This result is 1σ higher than the data 4.5936(5) MeV, but agrees within the errors with
the more detailed analysis from τ -decays [30,33] and with the LMD result of about 5
MeV [500]. We have checked that moving the subtraction point µ from 2 to 4 GeV slightly
decreases the value of �mπ by 3.7%, which is relatively weak as expected. Indeed, in the
chiral limit, the µ dependence does not appear in the RHS of the Iem sum rule, and so it
looks natural to choose:

µ2 = tc , (50.9)

because tc is the only external scale in the analysis. At this scale the result increases slightly
by 2.5%. One can also notice that the prediction for �m is more stable when one changes
the value of tc = µ2. Therefore, the final predictions from the value of tc in Eq. (50.6) fixed
from the first and second Weinberg sum rules are:

�m � (4.96 ± 0.22) MeV ,

L10 � −(6.42 ± 0.04) × 10−3 , (50.10)

which we consider as our ‘best’ predictions.
For some more conservative results, we also give the predictions obtained from the second

tc–value given in Eq. (50.5). In this way, one obtains:

fπ = (87 ± 4) MeV ,

�m � (3.4 ± 0.3) MeV ,

L10 � −(5.91 ± 0.08) × 10−3 , (50.11)

where one can notice that the results are systematically lower than those obtained in Eq.
(50.10) from the first tc value given previously, which may disfavour a posteriori the second
choice of tc values, although, in principle, we do not have a strong argument favouring one

2 For the second set of tc-values in Eq. (50.5), one obtains a slightly lower value: fπ = (84.1 ± 4.4) MeV.
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with respect to the other. However, approach based on 1/Nc expansion and a saturation of
the spectral function by the lowest state within a narrow width approximation (NWA) as
discussed in Section 43.2 favours the former value of tc given in Eq. (50.6) [500]. A similar
value of tc is also obtained from the FESR constraint using the naı̈ve duality ansatz of the
vector spectral function. Taking as a conservative value the largest range spanned by the
two sets of results, one obtains:

fπ = (86.8 ± 7.1) MeV ,

�m � (4.1 ± 0.9) MeV ,

L10 � −(5.8 ± 0.2) × 10−3 , (50.12)

which we found to be quite satisfactory in the chiral limit. The previous tests are very
useful, as they will allow us to gauge the confidence level of the sum rule predictions in the
following chapters.

50.3 Masses and power corrections to the Weinberg sum rules

It has been shown [28,29,31,32] that:

� The SU (n)L × SU (n)R chiral symmetry is broken by massive quarks. The first WSR is broken to
order αs mumd but is still convergent, whereas the second WSR is not convergent in its mathematical
sense. However, this non-convergence does not affect the success of the A1 mass prediction from
the second WSR, as phenomenologically the light running quark mass effects are small.

� The SU (n)L × SU (n)R chiral symmetry is broken spontaneously by the dimension-six four-quark
condensate, which affects the WSR. However, the effect is relatively small and vanishes as 1/q4,
where q2 is the typical scale of the sum rule.

Using the QCD expressions of the vector and axial-vector two-point correlators given in
Part VIII from [325], it is easy to derive the different power corrections to the Weinberg
sum rules. Introducing the running coupling ᾱs and masses m̄i evaluated at Q2, one can
deduce for the spin 1 + 0 combination:

Q2
[
�

(1+0)
i j,L R

](D=4) = − 1

π2

(
ᾱs

π

)
m̄i m̄ j

Q4
[
�

(1+0)
i j,L R

](D=4) = 4

3

(
ᾱs

π

)
〈m j ψ̄ iψi + mi ψ̄ jψ j 〉 − 8

7π2
m̄i m̄ j

[
m̄2

i + m̄2
j

]

Q6
[
�

(1+0)
i j,L R

](D=6) = 8π

(
ᾱs

π

)
[〈(ψ̄ iγµTaψ j )(ψ̄ jγµTaψi )〉

−〈(ψ̄ iγµγ5Taψ j )(ψ̄ jγµγ5Taψi )〉]
� −64π

9
ραs〈ūu〉2

Q8
[
�

(1+0)
i j,L R

](D=8) ≈ 8παs M2
0 〈ūu〉2 , (50.13)
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where ρ = 1 in the large Nc-limit; Ta ≡ λa/2 is the SU (3)c matrix defined in Appendix B;
M2

0 � 0.8 GeV2 is the scale introduced in Chapter 27 in order to parametrize the mixed
condensate. The D = 8 contribution comes from [652]. For the spin 0 component of the
two-point function, one can also deduce from [325]:

Q2
[
�

(0)
i j,L R

](D=2) = 3

2π2
mi m j

[
ln

Q2

ν2
+ O(1)

]

Q4
[
�

(0)
i j,L R

](D=4) = 〈(mi − m j )(ψ̄ iψi − ψ̄ jψ j )〉 − 〈(mi + m j )(ψ̄ iψi + ψ̄ jψ j )〉

+ 1

4π2

[
− 12

7

(
ᾱs

π

)−1

+ 11

14

]{
[m̄i − m̄ j ]

[
m̄3

i − m̄3
j

]

− [m̄i + m̄ j ]
[
m̄3

i + m̄3
j

]}
− 3

4π2
m̄i m̄ j [m̄i − m̄ j ]

2 + 3

4π2
m̄i m̄ j [m̄i + m̄ j ]

2 . (50.14)

With these expressions, it is easy to derive the QCD expressions of the different WSR.
The phenomenology of these FESR sum rules and especially their Laplace transform have
been explictly discussed in [3], which the readers may also consult.

50.4 DMO sum rules in QCD

The DMO sum rule which controls the SU (n) flavour symmetry has been analyzed in QCD
in [31], [32] and in [354]. Phenomenologically, it has been used to extract the value of the
quark masses and to predict the splittings due to SU (3) breakings among the mesons. In
particular, its τ -like version has been used to extract the value of the running strange quark
mass, which has the advantage to be model-independent. We shall come back to this point
in the chapter on light quark masses.
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The QCD coupling αs

In this chapter, we shall outline the different determinations of the QCD coupling αs from
τ decay, e+e− → I = 1 hadrons processes and heavy quark systems. This discussion has
been already anticipated in Sections 25.5, 25.6 and Part VI and will not be repeated in detail
here This chapter will complete these discussions.

51.1 αs from e+e− → I = 1 hadrons and τ -decays data

These channels have the great advantage that the spectral functions are measured in a
region where pQCD is applicable and therefore the analysis does not suffer from any
model dependence in the parametrization of the spectral functions. The τ decays and τ -like
decays in e+e− → I = 1 hadron processes (see previous Sections 25.5 and 25.6) are another
prototype of QCD spectral sum rules like the Weinberg sum rules

� The determinations of the QCD coupling from hadronic τ -decays and e+e− → I = 1 hadrons have
been already discussed in details in Sections 25.5, 25.6 and are based on the approach proposed by
BNP [325] for τ -like decay processes. It relies on the fact that the non-perturbative contributions
based on the ‘standard SVZ expansion’ give a tiny correction at the τ mass. In addition, recent
analysis [161] including the new D = 2 dimension tachyonic gluon mass term not considered in
the analysis of [325] shows that this effect is small and does not affect in a significant way the
determination carried out without this term. It tends to reduce slightly (about 10%) the central value
of αs improving the agreement between the τ -decay prediction and the world average at the Z 0

mass. However, this change is marginal as it is of similar size to the theoretical error in the αs

determination from τ -decay.
� The previous original BNP approach [325] has been generalized to higher moments [333] that have

been exploited by the different experimental groups [328,33] for extracting αs . The mean value
coming from the different structure of pQCD series of the ALEPH/OPAL [33] measurements is:

αs(Mτ ) = 0.323 ± 0.005(exp) ± 0.030(th) . (51.1)

This rather modest accuracy runned until the Z 0 mass leads to the precise determinations:

αs(MZ0 ) = 0.1181 ± 0.0007 (exp) ± 0.0030(th) , (51.2)

which is in excellent agreement with the different determinations summarized in Part VI.
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� In [346,338,391] and [329] (reprinted in Section 52.10) e+e− → I = 1 hadrons below 2 GeV and
the sum of exclusive �S = 0 τ -decay data have been also used to extract the value of αs as a
cross-check of the value obtained from inclusive τ -decay data. This result has been given in Section
25.6. The most recent analysis in [329] gives:

αs(Mτ ) = 0.33 ± 0.03 , (51.3)

which is in excellent agreement with the τ -decay data result.
� Stability of the previous determinations using lower τ -mass values has been tested using e+e− →

I = 1 hadrons below 2 GeV [346] and the inclusive distributions of τ -decay [345,33]. This test is
reassuring as it indicates that for reasonable values of Mτ larger than 1 GeV, pQCD still applies,
while the OPE parametrized by the few lowest dimension condensates describes the data quite well.
It also indicates that the contribution near the real axis where QCD does not apply is negligible
due to the phase space double suppression factor (1 − s/M2

τ )2. It also indicates that quark-hadron
duality which is the main idea behind this dispersion relation approach and then behind the QCD
spectral sum rule approach is fulfilled by QCD.

51.2 αs from heavy quarkonia mass-splittings

Examining the pioneering SVZ charmonium sum rule [1] (as one can also see in details
in [3] and in the next chapter) the QCD side of this sum rule contains three relevant QCD
parameters, namely the charm quark mass, the perturbative radiative correction αs and the
gluon condensate 〈αs G2〉. In order to extract more reliably one of these parameters, one has
to find appropriate sum rules or their combinations which can disentangle these parameters.

� In [313] (Section 51.3), it is observed that a double ratio RP1
1
/RP3

1
of Laplace sum rules for the P

charmonium states can be used for extracting the value of αs :

RP1
1

RP3
1

�
M2

P1
1

M2
P3

1

� 1 + αs

[
�13

α (exact) = 0.014−0.004
+0.008

]
, (51.4)

where the gluon condensate effect vanishes to leading order. Using the experimental mass, one can
deduce at the optimization point σ � (0.6 ± 0.1) GeV−2:

αs(σ−1 = 1.3 GeV) = 0.64+0.36
−0.18 ± 0.02 =⇒ αs(MZ ) = 0.127 ± 0.009 ± 0.002 . (51.5)

� The non-relativistic q2 = 0 moments sum rules for the ϒ have also been used in [155] in order to
extract αs . Recent improvements [156] of the previous analysis including the new α2

s corrections
of the two-point correlator [447] leads to the value:

αs(Mb) = 0.233+0.045
−0.030 , (51.6)

which runned until MZ gives:

αs(MZ ) = 0.120+0.010
−0.008 . (51.7)

These results are less accurate than the determination from τ -decay, e+e− and LEP data
but are still interesting for an independent determination of αs .
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51.3 Reprinted paper

Heavy quarkonia mass-splittings in QCD: gluon condensate,
αs and 1/m-expansion

S. Narison
Reprinted from Physics Letters B, Volume 387, pp. 162–172, copyright (1996) with permission from Elsevier
Science.

1. The double ratio of moments

QCD spectral sum rule (QSSR) after SVZ [1] (for a recent review, see, e.g. [2]) has shown
since 15 years, its impressive ability for describing the complex phenomena of hadronic
physics with the few universal “fundamental” parameters of the QCD Lagrangian (QCD
coupling αs , quark masses and vacuum condensates built from the quarks and/or gluon
fields), without waiting for a complete understanding of the confinement problem. In the
example of the two-point correlator:

�Q(q2) ≡ i
∫

d4 x eiqx〈0|T JQ(x) (JQ(o))†|0〉 , (1)

associated to the generic hadronic current: JQ(x) ≡ Q̄�Q(x) of the heavy Q-quark (� is a
Dirac matrix which specifies the hadron quantum numbers), the SVZ-expansion reads:

�Q(q2) �
∑

D=0,2,...

∑
dim 0=D

C (J )
(
q2, M2

Q, µ
)〈O(µ)〉(

M2
Q − q2

)D/2 , (2)

where µ is an arbitrary scale that separates the long- and short-distance dynamics; C (J ) are
the Wilson co-efficients calculable in perturbative QCD by means of Feynman diagrams
techniques; 〈O〉 are the non-perturbative condensates of dimension D built from the quarks
or/and gluon fields (D = 0 corresponds to the case of the naı̈ve perturbative contribution).
Owing to gauge invariance, the lowest dimension condensates that can be formed are the
D = 4 light quark mq〈ψ̄ψ〉 and gluon 〈αs G2〉 ones, where the former is fixed by the pion
PCAC relation, whilst the latter is known to be (0.07 ± 0.01) GeV4 from more recent analy-
sis of the light [3] quark systems [2]. The validity of the SVZ-expansion has been understood
formally, using renormalon techniques (absorption of the IR renormalon ambiguity into the
definitions of the condensates and absence of some extra 1/q2-terms not included in the
OPE) [4,5] and/or by building renormalization-invariant combinations of the condensates
(Appendix of [6] and references therein). The SVZ expansion is phenomenologically con-
firmed from the unexpected accurate determination of the QCD coupling αs and from a
measurement of the condensates from semi-inclusive τ -decays [6–8].

The previous QCD information is transmitted to the data through the spectral function
Im �Q(t) via the Källen–Lehmann dispersion relation (global duality) obeyed by the
hadronic correlators, which can be improved from the uses of different versions of the
sum rules [1,9–11]. In this paper, we shall use the simple duality ansatz parametrization:
“one narrow resonance”+“QCD continuum”, from a threshold tc, which gives a good
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description of the spectral integral in the sum rule analysis, as has been tested successfully
in the light-quark channel from the e+e− → I = 1 hadron data and in the heavy-quark ones
from the e+e− → ψ or ϒ data. We shall work with the relativistic version of the Laplace
or exponential sum rules where the QCD expression known to order αs is given in terms of
the pole mass m(p2 = m2) [11–14]:1

L(σ, m2) ≡
∞∫

4m2

dt exp(−tσ )
1

π
Im �Q(t)

= 4m2 AH (ω)

[
1 + αsaH (ω) + π

36

〈αs G2〉
m4

bH (ω)

]
,

RH (σ ) ≡ − d

dσ
logLH (σ, m2) = 4m2 FH (ω)

×
[

1 + αs PH (ω) + π

36

〈αs G2〉
m4

Q H (ω)

]
, (3)

where

ω ≡ 1/x = 4m2σ (4)

is a dimensionless variable, while σ ≡ τ (notation used in the literature) is the exponen-
tial Laplace sum rule variable; FH , PH and Q H are complete QCD Whittaker functions
compiled in [12–14]; H specifies the hadronic channel studied. In principle, the pair (σ, tc)
are free external parameters in the analysis, so that the optimal result should be insensitive
to their variations. Stability criteria, which are equivalent to the variational method, state
that the best results should be obtained at the minimas or at the inflexion points in n or
σ , while stability in tc is useful to control the sensitivity of the result in the changes of
tc-values. These stability criteria are satisfied in the heavy quark channels studied here, as
the continuum effect is negligible and does not exceed 1% of the ground state contribution
[2,12], such that at the minimum in σ , one expects to a good approximation:

minσ R(σ ) � M2
H . (5)

Moreover, one can a posteriori check that, at the stability point, where we have an equi-
librium between the continuum and the non-perturbative contributions, which are both
small, the OPE is still convergent such that the SVZ-expansion makes sense. The previous
approximation can be improved by working with the double ratio of moments2:

RHH
′ (x) ≡ RH

RH ′
� M2

H

M2
H ′

= �HH
′

0

[
1 + αs�

HH
′

αs
+ 4π

9
〈αs G2〉σ 2x2�HH

′

G

]
, (6)

1For consistency, we shall work with the two-loop order αs expression of the pole mass [15].
2This method has also been used in [16] for studying the mass splittings of the heavy-light quark systems.
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provided that each ratio of moments stabilizes at about the same value of σ , as in this case,
there is a cancellation of the different leading terms such as the heavy quark mass (and its
ambiguous definition used in some previous literatures), the negligible continuum effect
(which is already small in the ratio of moments), and each leading QCD corrections. We
shall limit ourselves here to the αs-correction for the perturbative contribution and to the
leading order one in αs for the gluon condensate effects. To the order we are working, the
gluon condensate is well-defined as the ambiguity only comes from higher order terms
in αs , which have, however, a smaller numerical effect than the one from the error of the
phenomenological estimate of the condensate.

2. Test of the 1/m-expansion

For this purpose, we use the complete horrible results expressed in terms of the pole
mass to order αs given by [12] and checked by various authors [2], which we expand with
the help of the Mathematica program. We obtain for different channels the expressions
given in Table 1. By comparing the complete and truncated series in 1/m, one can notice
that, at the c and b mass scales, the convergence of the 1/m-expansion is quite bad due to
the increases of the numerical coefficients with the power of 1/m and to the alternate signs
of the 1/m series.

3. Balmer-mass formula from the ratio of moments

The Balmer formula derived from a non-relativistic approach (m → ∞) of the
Schrödinger levels reads [17] (see also [18–20]). for the S3

1 vector meson:

MS3
1

� 2m

[
1 − 2

9
α2

s + 0.23
π

(mαs)4
〈αs G2〉

]
. (7)

It is instructive to compare this result with the mass formula obtained from the ratio of
moments within the 1/m-expansion. Using the different QCD corrections in Table 1, one
obtains the mass formula at the minimum in σ of R:

MS3
1

�
√
R(σmin) � 2m

(
1 + 3

16m2σ

)

×
[

1 −
√

π

6m

αs(σ )√
σ

+ π

12
σ 2〈αs G2〉

]
. (8)

In the case of the b-quark, where we expect the static approximation to be more reliable,
the minimum of this quantity is obtained to leading order at:

√
σcoul � 9

4mαs
√

π
� 0.85 GeV−1 , (9)
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Table 1. Expanded expressions of different QCD corrections in the case
of the pole mass m(p2 = m2) known to order αs

Vector S3
1

π AV
3

16
√

π
x3/2

(
1 − 3

4 x + 45
32 x2 − 525

128 x3 + · · ·)
aV

4
3
√

π

(
π√

x + 0.040 + 1.952
√

x − 1.539x − · · ·
)

.

bV − 1
2x3 + 3

2x2 + 27
8x − 21

8 + · · ·
FV 1 + 3

2 x − 5
4 x2 + 5x3 − · · ·

PV − 2
3

√
πx + 2.704x3/2 − 10.093x5/2 + 52.93x7/2 − · · ·

QV
3

2x2 − 1
4x + 13

8 − 41
4 x + · · ·

S-waves splitting

�VP
0 1 − x2

2 + 7
2 x3 − · · ·

�VP
α

√
π

9 x3/2 + 1.539x2 − 3.0258x5/2 − 7.719x3 + 26.307x7/2 + · · ·
�VP

G
5
x

(
1 − 4

5 x + 11
10 x2 + 17

10 x3 − · · ·)

P-waves splittings

�01
0 1

�01
α −3.18x2(1 − 10.17x + 102.1x2 + · · ·)

�01
G − 2

x + 5
2 − 55

4 x + · · ·
�13

α 1.06x2(1 − 9.5x + 81.1x2 − · · ·)
�AT

0 1 + x2 − 23
2 x3 + · · ·

�AT
α −0.1576x3/2 − 2.545x2 + 3.95x5/2 − · · ·

�AT
G − 6

x + 31
4 − 89

8 x − 1715
8 x2 + · · ·

P-versus S-waves splittings

�VS
0 1 − x + 5x2 − 30x3 + · · ·

�VS
α − 2

9

√
πx − 0.336x3/2 + 4.244x2 + 7.458x5/2 − 42.017x3 − · · ·

�VS
G − 3

x2 − 2
x − 41

4 + 389
4 x − · · ·

�VA
0 �VS

0

�VA
α − 2

9

√
πx − 0.336x3/2 + 1.06x2 + 7.458x5/2 − 9.655x3 · · ·

�VA
G − 3

x2 − 4
x − 31

4 + 167
2 x − · · ·

�VT
0 1 − x + 6x2 − 85

2 x3 + · · ·
�VT

α − 2
9

√
πx − 0.493x3/2 − 1.484x2 + 11.409x5/2 + 18.248x3 − · · ·

�VT
G − 3

x2 − 10
x + 579

8 x − 16719
16 x2 + · · ·

where we have used for 5 flavours3: αs(σ ) � 0.32 ± 0.06 after evolving the value
αs(Mz) = 0.118 ± 0.006 from LEP [21] and τ -decay data [6–8]. The inclusion of the gluon

3In the approximation we are working, the effect of the number of flavours enters only through the β-function
and therefore is not significant.
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condensate correction shifts the value of σmin to:
√

σmin � 0.74
√

σcoul . (10)

These previous values of σ confirm the more involved numerical analysis in [12] and indicate
the relevance of the gluon condensate in the analysis of the spectrum. By introducing the
previous leading order expression of σcoul into the sum rule, one obtains:

Mϒ � 2mb

(
1 + π

27
α2

s

) [
1 − 2

9

(
π

3

)
α2

s +
(

27

128

)(
3

π

)2
π

(mbαs)4
〈αs G2〉

]
, (11)

where one can deduce by identification in the static limit (mb → ∞) that the Coulombic
effect is exactly the same in the two approaches. The apparent factor π/3 is due to the
fact that we use here the approximate Schwinger interpolating formula for the two-point
correlator. The gluon condensate coefficient is also about the same in the two approaches.
This agreement indicates the consistency of the potential model and sum rule approach in
the static limit, though a new extra α2

s correction due to the ν2 (finite mass) terms in the
free part appears here (for some derivations of the relativistic correction in the potential
approach see [22,23]), and tends to reduce the Coulombic interactions. On the other hand, at
the b-quark mass scale, the dominance of the gluon condensate contribution indicates that the
b-quark is not enough heavy for this system to be Coulombic rendering the non-relativistic
potential approach to be a crude approximation at this scale.

4. S3
1 – S1

0 hyperfine and P – S-wave splittings

In the non-relativistic approach used in [20], the hyperfine and S–P wave splittings are
given to leading order by:

M
(
S3

1

) − M
(
S1

0

) � 2m
(CFαs)4

6

[
1 + 3.255

π

2m4α6
s

〈αs G2〉
]

,

M
(
P3

1

) − M
(
S1

3

) � 2m

[
3(CFαs)2

32
+ 25π

(CF mαs)4
〈αs G2〉

]
, (12)

where CF = 4/3. Using the double ratio of moments and the QCD corrections given in
Table 1, one obtains at σcoul:

M
(
S3

1

) − M
(
S1

0

)
M

(
S3

1

) ≈ −4π2

(
αs

9

)4

+ 8

9

(√
παs

9

)3

αs + 45

32m4α2
s

〈αs G2〉 + · · · ,

M
(
P3

1

) − M
(
S3

1

)
M

(
S3

1

) ≈ 4π

81
α2

s + 2π

81
α2

s + 27

8m4α2
s

〈αs G2〉 + · · · , (13)

where the corrections are, respectively, relativistic, Coulombic and non-perturbative. By
comparing the sum rules in Eqs. (8) and (13), one can realize that the leading x or 1/σ -
terms cancel in the hyperfine splitting, while the x-expansion is slowly convergent for the
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αs-term at the b-mass. Comparing now this result with the one from the non-relativistic ap-
proach, it is interesting to notice that both approaches lead to the same αs-behaviour of the
Coulombic and gluon condensate contributions. A one to one correspondence of each QCD
corrections is not very conclusive, and needs an evaluation of the correlator at the next-next-
to-leading order for a better control of the α2

s x terms. However, as the Coulombic potential
is a fundamental aspect of QCD, we shall, however, expect that, after the resummation of
the higher order terms in αs , the coefficient of the α4

s -term in the hyperfine splitting will
be the same in the two alternative approaches. In the case of the S – P wave splitting, the
sum of the α2

s corrections agrees from the two methods, though one can also notice that the
relativistic correction is larger than the Coulombic one. The discrepancy for the coefficients
of the gluon condensate in the two approaches is more subtle and may reflect the difficulty of
Bell-Bertlmann [19] to find a bridge between the field theory after SVZ (flavour-dependent
confining potential) and the potential models (flavour-independence). Resolving the differ-
ent puzzles encountered during this comparison is outside the scope of the present paper.

5. Leptonic width and quarkonia wave function

Using the sum rule LH and saturating it by the vector S3
1 state, we obtain, to a good

approximation, the sum rule:

MV �V → e+e− � (αeQ)2 e2δm MV σ

72
√

π

σ−3/2

m
×

[
1 + 8

3

√
πσmαs − 4π

9
〈αs G2〉mσ 5/2

]
,

(14)

where eQ is the quark charge in units of e; δm ≡ MV − 2m is the meson-quark mass gap. In
the case of the b-quark, we use [15] δm � 0.26 GeV, and the value of σmin given in Eq. (10).
Then:

�ϒ(S3
1 )→ e+e− � 1.2 keV , (15)

in agreement with the value found from the data, 1.3 keV. However, one should remark from
Eq. (14) that the αs correction is huge and needs an evaluation of the higher order terms
(the gluon condensate effect is negligible), while the exponential factor effect is large, such
that one can reciprocally use the data on the width to fix either αs or/and the quark mass.
Larger value of the heavy quark mass at the two-loop level (see, e.g. [26]) corresponding to
a negative value of δm, would imply a smaller value of the leptonic width in disagreement
with the data.

In the non-relativistic approach, one can express the quarkonia leptonic width in terms
of its wave function �(0)Q :

�V → e+e− = 16πα2

M2
V

e2
Q |�(0)|2Q

(
1 − 4CF

αs

π

)
, (16)

where (see, e.g. [20]):

16π |�(0)|2Q
(

1 − 4CF
αs

π

)
� 2(mCFαs)3 ≈ 15 GeV3 . (17)
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In our approach, one can deduce:

16π |�(0)|2Q
(

1 − 4CF
αs

π

)
� 1

72
√

π
e2δm MV σ σ−3/2 MV

m

×
[

1 + 8

3

√
πσmαs − 4π

9
〈αs G2〉mσ 5/2

]
� 18.3 GeV3 .

(18)

Using the expression of σcoul, one can find that, to leading order, the two approaches give
a similar behaviour for �(0)Q in αs and in m and about the same value of this quantity,
though, one should notice that in the present approach, the QCD coupling αs is evaluated at
the scale σ as dictated by the renormalization group equation obeyed by the Laplace sum
rule [27] but not at the resonance mass!

6. Gluon condensate from Mψ(S3
1 ) – Mηc(S1

0 )

The value of σ , at which, the S-wave charmonium ratio of sum rules stabilize is [12]:

σ � (0.9 ± 0.1) GeV−2 . (19)

Using the range of the charm quark pole mass to order αs accuracy [15]4: mc � 1.2–1.5 GeV
one can deduce the conservative value of x:

ω ≡ 1/x � 6.6 ± 1.8 . (20)

The ratio of the mass squared of the vector V (S3
1 ) and the pseudoscalar P(S1

0 ) is controlled
by the double ratio of moments given generically in Eq. (6), where the exact expressions of
the corrections read:

�VP
0 � 0.995+0.001

−0.004 , �VP
α � 0.0233−0.009

+0.011 ,

�VP
G � 29.77+8.86

−10.23 , (21)

where each terms lead to be about 0.5, 2 and 7% of the leading order one. One can understand
from the approximate expressions in Table 1 that the leading x-corrections appearing in the
ratio of moments cancel in the double ratio, while the remaining corrections are relatively
small. However, the x-expansion is not convergent for the αs-term at the charm mass, which
invalidates the use of the 1/m-expansion done in [28] in this channel. Using for 4 flavours
[15]: αs(σ ) � 0.48+0.17

−0.10, and the experimental data [25]: Rexp
VP = 1.082, one can deduce the

value of the gluon condensate:

〈αs G2〉 � (0.10 ± 0.04) GeV4 . (22)

We have estimated the error due to higher order effects by replacing the coefficient of αs

with the one obtained from the effective Coulombic potential, which tends to reduce the

4For a recent review on the heavy quark masses, see e.g. [24,25].
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estimate to 0.07 GeV4. We have tested the convergence of the QCD series in σ , by using the
numerical estimate of the dimension-six gluon condensate g〈 fabcGaGbGc〉 contributions
given in [14]. This effect is about 0.1% of the zeroth order term and does not influence
the previous estimate in Eq. (22), which also indicates the good convergence of the ratio of
exponential moments already at the charm mass scale in contrast with the q2 = 0 moments
studied in [1,29]. We also expect that in the double ratio of moments used here, the radiative
corrections to the gluon condensate effects (their expression for the two-point correlator is
however available in the literature [30]) are much smaller than in the individual moments,
such that they will give a negligible effect in the estimate of the gluon condensate. This
value obtained at the same level of αs-accuracy as previous sum rule results, confirm the
ones of Bell-Bertlmann [11,12,14,30,2] from the ratio of exponential moments and from
FESR-like sum rule for quarkonia [31,2] claiming that the SVZ value [1] has been under-
estimated by about a factor 2 (see also [29,32]). Our value is also in agreement with the
more recent estimate (0.07 ± 0.01) GeV4 from the τ -like sum rules [3], and FESR [34] in
e+e− → I = 1 hadrons. A more complete comparison of different determinations is done in
Table 2.

7. Charmonium P-wave splittings

The analysis of the different ratios of moments for the P-wave charmonium shows [11–
14] that they are optimized for:

σ � (0.6 ± 0.1) GeV−2 , =⇒ αs(σ ) � 0.41+0.11
−0.07 , 1/x = 4.5 ± 1.5 . (23)

In the case of the Scalar P3
0 -axial P3

1 mass splitting, the different exact QCD coefficient
corrections of the corresponding double ratio of moments read:

�01
0 = 1 , �01

α � −(
0.045−0.014

+0.028

)
, �01

G � −(
7.75+2.84

−2.77

)
. (24)

Using the correlated values of the different parameters, one obtains the mass-splitting
�M3

10 ≡ MP3
1

− MP3
0

� (60−16
+35) MeV, where we have used the experimental value MP3

1
=

3.51 GeV. Adding the 〈gG3〉 dimension-six condensate effect, which is about −1.6% of the
leading term in R01, one can finally deduce the prediction in Table 2, which is in excellent
agreement with the data. One should remark that the previous predictions indicate that, for
the method to reproduce correctly the mass-splittings of the S and P-wave charmonium
states, one needs both larger values of αs and 〈αs G2〉 than the ones favoured in the early
days of the sum rules.

In the case of the Tensor P3
2 -axial P3

1 mass splitting, the different exact QCD corrections
for the double ratio of the tensor over the axial meson moments read:

�TA
0 = (

0.989+0.003
−0.006

)
, �TA

α = (
0.029−0.004

+0.013

)
, �TA

G = (
22.1+8.5

−8.2

)
, (25)

from which, one can deduce the prediction in Table 2, which is slightly higher than the
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Table 2. Predictions for the gluon condensate, for the different mass-splittings (in units of
MeV) and for the leptonic widths (in units of keV). We use αs(MZ ) = 0.118 ± 0.006 from

LEP and τ -decay

Observables Input Predictions Data/comments

〈αs G2〉[GeV]4 × 102 M� − Mηc = 108 10 ± 4 This work
Mc.o.m.

χb − Mγ = 440 6.5 ± 2.5 –
Average 7.5 ± 2.5 Mass splittings
Charmonium masses ≈ 4 SVZ-value [1]

q2 = 0-mom.
– 5.3 ± 1.2 q2-mom. [9]
– 10 ± 2 exp. mom. [11,12]
– 9.2 ± 3.4 mom. [31]
e+e− → I = 1 hadrons 4 ± 1 ratio of mom. [33]
– 13+5

−7 FESR [34]
– 7 ± 1 τ -like decay [3]
τ -decay (axial) 6.9 ± 2.6 [35]
τ -decay data
ALEPH 7.5 ± 3.1 [8]
CLEO 2.0 ± 3.8 [8]

αs(1.3 GeV) Mχc(P1
1 ) − Mχc(P3

1 ) 0.64+0.36
−0.18 ± 0.02 αs(MZ ) � 0.127 ± 0.011

Mχc(P1
1 ) − Mχc(P3

1 ) αs from LEP/τ -decay 10.1−4.1
+9.9 11.1 (c.o.m.)

15.6 (data)
Mχc(P3

1 ) − Mχc(P3
0 ) 〈αs G2〉average 89−16

+35 95

Mχc(P3
2 ) − Mχc(P3

1 ) – 77+26
−11 50

Mγ − Mηb 〈αs G2〉average 13−7
+10 order αs

63−29
+51 coeff.αs : Coul. pot.

Mχb(P3
0 ) − MY – 475+75

−64 400

Mχb(P3
1 ) − MY – 485+25

−68 432

Mχb(P3
2 ) − MY – 500 ± 71 453

Mχb(P1
1 ) − MY c.o.m. 492+56

−69 440

MT − 2mt 〈αs G2〉average −906 two-loop pole mass
MT − Mηt – 1.8 order αs

93 coeff.αs : Coul. pot.
Mχt − MT – 1800 –
�γ→e+e− – 1.2 1.32
�T →e+e− – 0.16 –

data of 50 MeV. This small discrepancy may be attributed to the unaccounted effects
of the dimension-six condensate or/and to the (usual) increasing role of the contin-
uum for state with higher spins. However, the prediction is quite satisfactory within our
approximation.
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8. αs from the P1
1 -P3

1 axial mass splitting

The corresponding double ratio of moments has the nice feature to be independent of
the gluon condensate to leading order in αs and reads:

M2
P1

1

M2
P3

1

� 1 + αs
(
�13

α (exact) = 0.014−0.004
+0.008

)
. (26)

The recent experimental value MP1
1

= 3526.1 MeV of the P1
1 state denoted by hc(1P) in

PDG [25] almost coincides with the one of the center of mass energy:

Mc.o.m
P = 1

9

[
5MP3

2
+ 3MP3

1
+ MP3

0

] � 3521.6 MeV (27)

as expected from the short range nature of the spin-spin force [36]. Using this experimental
value, one can deduce:

αs(σ−1 � 1.3 GeV) � 0.64+0.36
−0.18 ± 0.02 =⇒ αs(MZ ) � 0.127 ± 0.009 ± 0.002 .

(28)

The error is twice bigger than the one from LEP and τ decay data, but its value is perfectly
consistent with the latter. The theoretical error is mainly due to the uncertainty in �α , while
a naı̈ve exponential resummation of the higher order αs terms leads to the second error much
smaller than the previous ones. This value of αs can be useful for an alternative derivation
of this fundamental quantity at low energies and for testing its q2-evolution. Reciprocally,
using the value of αs from LEP and τ -decay data as input, one can deduce the prediction
of the center of mass (c.o.m) of the P3

J states given in Table 2.

9. Υ − ηb mass splitting

For the bottomium, the analysis of the ratios of moments for the S and P waves shows
that they are optimized at the same value of σ , namely [12]:

σ = (0.35 ± 0.05) GeV−2 , (29)

which implies for 5 flavours: αs(σ ) � 0.32 ± 0.06. Using the conservative values of the
two-loop b-quark pole mass: mb � 4.2−4.7 GeV, one can deduce:

1/x � 28 ± 7 , (30)

where one might (a priori) expect a good convergence of the 1/m expansion.
The splitting between the vector ϒ(S3

1 ) and the pseudoscalar ηb(S1
0 ) can be done in a

similar way than the charmonium one. The double ratio of moments reads numerically:

RVP � M2
V

M2
P

� (
0.9995+0.0002

−0.0003

) × [
1+ αs

(
2.4−0.7

+1.4

) × 10−3

+ (0.03 ± 0.01) GeV−4〈αs G2〉] , (31)
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where we have used the exact expressions of the QCD corrections. This leads to the mass
splitting in Table 2. To this order of perturbation theory, this result is in the range of the
potential model estimates [36,37,20], with the exception of the one in [17,22], where in the
latter it has been shown that the square of the quark velocity v2 correction can cause a large
value of about 100 MeV for the splitting. One should also notice that, to this approximation,
the gluon condensate gives still the dominant effect at the b-mass scale (0.2% of the leading
order) compared to the one 0.08% from the αs-term. However, the 1/m series of the QCD αs

correction is badly convergent, showing that the static limit approximation is quantitatively
inaccurate in the b-channel. Therefore, one expects that the corresponding prediction of
(13−7

+10) MeV is a very crude estimate. In order to control the effect of the unknown higher
order terms, it is legitimate to introduce into the sum rule, the coefficient of the Coulombic
effect from the QCD potential as given by the α2

s -term in Eq. (12)5. Therefore, we deduce
the “improved” final estimate in Table 2:

Mϒ − Mηb ≈ (
63−29

+51

)
MeV , (32)

implying the possible observation of the ηb from the γ radiative decay.

10. ϒ − χb mass splittings and new estimate of the gluon condensate

As the S and P wave ratios of moments are optimized at the same value of σ , we can
compare directly, with a good accuracy, the different P states with the ϒ(S3

1 ) one. As the
coefficient of the α2

s corrections, after inserting the expression of σmin, are comparable with
the one from the Coulombic potential, we expect that the prediction of this splitting is more
accurate than in the case of the hyperfine. The different double ratios of moments read
numerically for the values in Eqs. (28)–(29):

RVS � M2
V

M2
S

� (
0.9696+0.0054

−0.0083

) × [
1 − αs

(
0.071−0.006

+0.011

) − (
0.50+0.18

−0.11

)
GeV−4〈αs G2〉] ,

RVA � M2
V

M2
A

� (
0.9696+0.0054

−0.0083

) × [
1 − αs

(
0.074−0.007

+0.012

) − (
0.54+0.18

−0.12

)
GeV−4〈αs G2〉] ,

RVT � M2
V

M2
T

� (
0.9704+0.0051

−0.0084

) × [
1 − αs

(
0.077−0.008

+0.006

) − (
0.57+0.16

−0.13

)
GeV−4〈αs G2〉] ,

(33)

where V , S, A, T refer respectively to the γ and to the different χb states P3
0 , P3

1 , P3
2 . Using

the value of the gluon condensate obtained previously, these sum rules lead to the mass
splittings in Table 2, which is in good agreement with the corresponding data, but definitely
higher than the previous predictions of [39], where, among other effects, the values of αs

and of the gluon condensate used there are too low. Reciprocally, one can use the data for
re-extracting independently the value of the gluon condensate. As usually observed in the

5In this case, the gluon condensate contribution is smaller than the Coulombic one as has been observed in [38].



546 X QCD spectral sum rules

literature, the prediction is more accurate for the c.o.m., than for the individual mass. The
corresponding numerical sum rule is:

Mc.o.m.
χb

− Mϒ

Mϒ

� (
1.53+0.26

−0.42

) × 10−2 + (
1.20+0.1

−0.2

) × 10−2 + (
0.28+0.08

−0.06

)
GeV−4〈αs G2〉 ,

(34)

which leads to:

〈αs G2〉 � (6.9 ± 2.5) × 10−2 GeV4 . (35)

We expect that this result is more reliable than the one obtained from the Mψ − Mηc as the
latter can be more affected by the noncalculated next-next-to-leading perturbative radiative
corrections than the former. An average of the two results from the ψ − ηc and ϒ − χb

mass splittings leads to:

〈αs G2〉 � (7.5 ± 2.5) × 10−2 GeV4 , (36)

where we have retained the most precise error.

11. Update average value of 〈αs G2〉

The previous result can be compared with different fits of the heavy and light quark
channels given in Table 2, and which range from 4 (SVZ) to 14 in units of 10−2 GeV4.
The most recent estimate from e+e− → I = 1 hadrons data using τ -like decay is (7 ±
1) × 10−2 GeV4, where one should also notice that the different post-SVZ estimates favour
higher values of the gluon condensate. If one considers this latter as the update of the light
quark channel estimates and the former as an update of the heavy quark one, one can deduce
the update average from the sum rule:

〈αs G2〉 � (7.1 ± 0.9) × 10−2 GeV4 . (37)

More accurate measurements of this quantity than the already available results from τ -decay
data [8] are needed for testing the previous phenomenological estimates.

12. Toponium: illustration of the infinite mass limit

Since only in the case of the toponium, the 1/m-expansion is ideal, we have extended the
previous analysis in this channel, though, we are aware that this application can be purely
academic because of the eventual non-existence of the corresponding bound states. We
use the top mass: mt � (173 ± 14) GeV, obtained from the average of the CDF candidates
(174 ± 16) GeV and of the electroweak data (169 ± 26) GeV as compiled by PDG [25].
We shall work with the ratio of moments in the vector channel for determining the mass of
the S3

1 state, and use with a good confidence the leading terms of the expressions given in
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Table 1. Using the sum rules in Eqs. (8) and (11) and the value of the minimum σ−1/2 �
20 GeV from Eq. (9), we deduce the result for the meson-quark mass gap given in Table 2.
For the splittings, we use the sum rules in Eqs. (12) and (13), while, for the leptonic width,
we use the sum rule in Eq. (14). Our results are summarized in Table 2.

13. Conclusions

We have used new double ratios of exponential sum rules for directly extracting the mass-
splittings of different heavy quarkonia states. Therefore, we have obtained from Mψ − Mηc

and Mχb − Mϒ a more precise estimate of the value of the gluon condensate given in Eq.
(36), which combined with the one from τ -like decay in e+e− → I = 1 hadrons data leads
to the update average in Eq. (37) from the sum rule. We have also used Mχc(P1

1 ) − Mχc(P3
1 )

for an alternative extraction of αs at low energy (see Eq. (28)), with a value consistent with
the one from LEP and τ -decay. Our numerical results are summarized in Table 2, where a
comparison with different estimates and experimental data is done.

We have also attempted to connect the sum rules and the potential model approaches,
using a 1/m-expansion. We found, that the Coulombic corrections, which are quite well
understood in QCD, agree, in general, in the two approaches, except in the radiative cor-
rections of the hyperfine splitting which requires the knowledge of the next-next-to-leading
αs-corrections. Relativistic corrections due to finite value of the quark mass have been in-
cluded in our analysis. However, the coefficients of the gluon condensate disagree in the
two approaches, which may be related to the difficulty encountered by Bell-Bertlmann in
finding a bridge between a field theory after SVZ and potential models.
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52

The QCD condensates

We anticipated this discussion in Chapter 27 when we discussed the anatomy of the SVZ
expansion. Here, we shall review the different determinations of the QCD condensates from
QSSR.

Indeed, a good control of the values of the QCD condensates is necessary in the phe-
nomenological applications of QSSR. The non-vanishing value of the light quark conden-
sate, which we shall discuss in the next section, is intimately related to the GMOR realization
of chiral symmetry, as can be inferred from the PCAC relation. SVZ [1,654] have also pos-
tulated that QCD is spontaneously broken by the gluon condensate, which they confirm
from their analysis of the charmonium sum rule. The non-vanishing value of the gluon
condensate and the gluon correlation length has been also checked on the lattice [402].
Since the pioneering work of SVZ, [1] a lot of effort has been devoted to this issue as can
be found in the long list of published papers in this subject (for reviews see e.g. [3],[51,46],
[356–363]). The condensates have been extracted from the light mesons [403–409], [325],
[33,328], [341,387], and in [329] (Section 52.10), from the baryons [424–430], from the
heavy quarkonia [433,434], and [313] (Section 51.3), and from the heavy-light mesons
[401].

The e+e− → hadrons and τ -decays data have been always used as a laboratory for testing
the perturbative and non-perturbative structure of QCD [1,3,325], [403–409], [346,338,341]
and [329,161] (Sections 19.4 and 52.10). As already mentioned, these channels have the
great advantage that the spectral functions are measured in a region where pQCD is ap-
plicable and therefore the analysis does not suffer from any model dependence in the
parametrization of the spectral functions. Therefore, one expects that the determinations
from these channels are model-independent.

52.1 Dimension-two tachyonic gluon mass

� e+e− → I = 1 hadrons below 2 GeV has been also used for extracting the hypothetical dimension-
two term beyond the SVZ expansion which has been interpreted in [161] as the effect due to a
tachyonic gluon mass. In [341,329], ratios of Laplace sum rules and τ -like sum rules which can
disentangle the leading radiative perturbative corrections from the non-perturbative contributions
have been used. As a result, one is able to extract the tiny contribution due to the dimension-two

550
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terms. The outcome of the analysis is:

d2 ≡ −1.05
(αs

π

)
λ2 � (0.03 ∼ 0.07) GeV2 . (52.1)

This is not the case of other attempts (see e.g. [653]), where in these approaches theαs contribution
masks the one of the tachyonic gluon mass.

� In [161], an alternative estimate of this quantity has been produced in the pseudoscalar channel
where one can notice that the size of this contribution is about four times the one in the ρ-meson
channel, such that its effect is more sizeable. At the optimization scale of the sum rule, one obtains:(αs

π

)
λ2 � −(0.12 ± 0.06) GeV2 , (52.2)

which is more precise than the etimate using e+e− data but still inaccurate.
� The value quoted in Table 48.2 corresponds to the intersection of these two estimates which we

take to be: (αs

π

)
λ2 � −(0.06 ∼ 0.07) GeV2 . (52.3)

52.2 Dimension-three quark condensate

The derivation of the 〈ψ̄ψ〉 condensate from the sum rules will be discussed in the chapter
on light quark masses and light baryons.

52.3 Dimension-four gluon condensate

� The estimate of the gluon condensate from τ -decays [328,33] is not very conclusive, which one can
understand from [325] because its contribution has an extra αs correction in the QCD expression of
the τ width. In this case, the analysis of e+e− data from the usual QSSR (in particular the Laplace
sum rule) is superior. Most recent results using e+e− data have been obtained in the Section 52.10.
It reads:

〈αs G2〉 � (7.1 ± 0.7) × 10−2 GeV4 , (52.4)

showing that the original SVZ result has been underestimated by a factor of about 2. An analogous
result has been already obtained in the past by Bell–Bertlmann [91–93] using Laplace sum rules for
heavy quark systems and adding a quantum mechanics argument for supporting their result. Similar
conclusions have been reached in [655–658], while the validity of the SVZ value has been also ques-
tioned in [659]. Analogously [405,406] use high moments in n of FESR in e+e− → I = 1 hadrons
and have found larger values of the different condensates but the results were not very convincing
due to the large sensitivity of the moments on the high-energy tails of the spectral functions.

� In [3], we have reworked in detail the different estimates of the gluon condensate from charmonium
systems and come to the conclusions that using the standard sum rules of SVZ, one cannot
extract an accurate value of the gluon condensate from the charmonium sum rules because of the
uncertainties induced by the correlated value and definition of the charm quark mass. The emerging
value from different heavy quark sum rules analysis is [3]:

〈αs G2〉 � (4 ∼ 6) × 10−2 GeV4 . (52.5)
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� However, working with sum rules which can disentangle these different contributions, one can
extract a more precise result. In Section 51.3, one has observed after examining the different QCD
contributions in various quarkonia sum rules that the ones for the J/� − ηc and ϒ − ηb mass
splittings is quite sensitive to the value of the gluon condensate, which one can disentangle from
the quark mass and leading αs corrections. In the case of the J/ψ-ηc, the sum rule reads:

RV P ≡ M2
J/ψ

M2
ηc

= 
V P
0

[
1 + αs(σ )
V P

αs
+ 4π

9
〈αs G2〉σ 2x2
V P

G

]
, (52.6)

where σ � (0.9 ± 0.1) GeV−2; 1/x ≡ 4M2
c σ � (6.6 ± 1.8) if one uses the conservative value

of the charm pole mass Mc � (1.2 ∼ 1.5) GeV, while numerically, the complete non-expanded
expressions in the quark mass read:


V P
0 = 0.995+0.001

−0.004 
V P
αs

= 0.0233−0.009
+0.011 
V P

G = 29.77+8.86
−10.23 , (52.7)

which leads, respectively, to a correction of about 0.5, 2 and 7% of the leading order term for
a typical value of the QCD parameters. It is informative to give the expression of these terms in
the limit where the quark mass is large. In this way, one obtains to leading order in x from the
table in Section 51.3


V P
0 = 1 − x2

2

V P

αs
=

√
π

9
x3/2 + 1.539x2 
V P

G = 5

x

(
1 − 4

5
x

)
, (52.8)

which shows, in particular, that the x dependence appearing in the gluon condensate correction is
partially compensated by the 1/x behaviour of 
V P

G . Using the experimental value Rexp
V P = 1.082

and αs(σ ) = 0.48+0.17
−0.10 for four flavours, one obtains:

〈αs G2〉 = (10 ± 4)10−2 GeV4. (52.9)

A similar analysis for the ϒ-χb mass-splitting gives a much more accurate result as we work
at higher scales. Numerically, the sum rule reads [313]:

Mc.o.m
χb

− Mϒ

Mϒ

� (
1.53+0.26

−0.42

) × 10−2 + (
1.20+0.10

−0.20

) × 10−2 + (
0.28+0.08

−0.06

)
GeV−4〈αs G2〉 , (52.10)

where Mc.o.m
χb

is the centre of mass energy:

Mc.o.m = 1

9

[
5MP3

2
+ 3MP3

0
+ MP3

0

]
, (52.11)

with P3
0 , P3

1 and P3
2 refer respectively to the scalar, axial vector and tensor χb states. Using the

experimental value of these mass-splittings, the analysis leads to:

〈αs G2〉 = (6.9 ± 2.5)10−2 GeV4 , (52.12)

The two channels give the average:

〈αs G2〉 = (7.5 ± 2.5)10−2 GeV4 , (52.13)

in good agreement with the previous value from e+e− → I = 1 hadrons data, although less precise.
� The average of these results from different sources reads:

〈αs G2〉 = (7.1 ± 0.9)10−2 GeV4 , (52.14)
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which we consider as a final estimate from the sum rules compiled in Table 48.2. Lattice
calculations support the above phenomenological estimate [402].

We then conclude from the previous analysis that the gluon condensate also breaks sponta-
neously QCD in a similar way that the quark condensate does for chiral symmetry. A more
physical intuitive picture of the non-vanishing value of the gluon condensate is given in
[654].

52.4 Dimension-five mixed quark-gluon condensate

� As discussed previously in Chapter 27, the mixed condensate can be parametrized as:〈
ψ̄

λa

2
σµνGµν

a ψ

〉
≡ M2

0 αγM /−β1
s 〈ψ̄ψ〉 , (52.15)

where γM = 1/3 is the anomalous dimension. Due to its important rôle in the baryon sum rules
analysis of odd dimension F2 part of the correlator, the size of the mixed condensate has been
initially obtained from this channel [424–430], where the result also appears to be independent of
the choice of the nucleon interpolating currents. It reads:

M2
0 � 0.8 GeV2 . (52.16)

� Alternatively, the mixed condensate has been also obtained from the heavy-light quark systems
[401], as it has been noticed that the B and B∗ masses are quite sensitive to this quantity, which
acts in opposing directions. A priori, this latter method is more reliable than the previous baryon
sum rules, due to the smaller complication of this meson channel. It gives a result that is consistent
with the one from the baryon sum rules, and extraordinarily accurate:

M2
0 = (0.80 ± 0.01) GeV2 , (52.17)

to the order we have used.
� From these two completely independent analyses, we deduce the value given in Table 48.2:

M2
0 = (0.8 ± 0.1) GeV2 , (52.18)

where we have estimated the error to be about 10% typical of the sum rule analysis. This result is
in agreement, with the quenched lattice estimate [660], and with the one from an effective quark
interaction model [661]. The result from an instanton liquid model [662] appears to be too high.
The analysis of [663] also indicates that the mixed condensate shows a SU (3)F breaking analogous
to the one of the quark condensate. However, this result is opposite with the one from baryon sum
rules [426]. The discrepancy of these two results needs clarification.

52.5 Dimension-six four-quark condensates

In Section 52.10 the e+e− → I = 1 hadrons data have been used for estimating the non-
perturbative condensates. The result obtained in [329] after using different forms of the sum
rules and the last iteration of different steps is quoted in Table 48.2. It reads:

δ
(6)
V � = (3.7 ± 0.6) × 10−2 (52.19)
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Fig. 52.1. Dimension-six condensate contributions to Rτ,V/A.

which is normalized as in Eq. (25.49):

M6
τ δ

(6)
V/A =

(
7

−11

)
256π3

27
ραs〈ψ̄ψ〉2 , (52.20)

where ρ = 1 if one uses vacuum saturation for the estimate of the four-quark operators.
For a comparison, Fig. 52.1 (figure taken from ALEPH) shows the different estimates from
τ -decay in the vector (V) and axial-vector (A) channels. The ALEPH result is [33]:

δ
(6)
V � −δ

(6)
A = (2.9 ± 0.4) × 10−2 , δ

(6)
V +A = −(0.1 ± 0.4) × 10−2 . (52.21)

The BNP [325] result shown in Fig. 52.1 is based on the vacuum saturation assumption
for the ratio of the axial-vector over the vector channel contributions. One should, however,
notice that the result of Section 52.10 quoted by ALEPH in this figure corresponds to the
first iteration result in the section. The improved result obtained in Section 52.10 and quoted
in Table 48.2 has a central value slightly higher and more precise than the one quoted in
Fig. 52.1. It corresponds to the value quoted in Eq. (52.19) which is more precise and in
excellent agreement with the ALEPH result.

We conclude from the previous analysis that the vacuum saturation or equivalently the
leading 1/Nc is a very crude estimate of the four-quark condensate values. In most cases,
the real value is two to three times the vacuum saturation value. These recent results confirm
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earlier estimates from e+e− data using the ratio of moments [404] and from baryon sum
rules [424].

52.6 Dimension-six gluon condensates

These condensates have already been discussed in Chapter 27. To my knowledge, there
are no sum rules estimates of these quantities. Therefore, we have nothing to add to the
discussions in the previous chapter. We shall use the value given in Table 48.2 coming from
a conservative range from lattice [402] and DIGA model.

52.7 Dimension-eight condensates

In Section 52.10, the analysis has been pursued for fixing the size of the dimension-eight
condensates appearing in the OPE of the vector channel. The final result quoted there is:

d8,V ≡ M8
τ δ

(8)
V � −(1.5 ± 0.6) GeV8 , (52.22)

normalized in the same way as in Eq. (25.49), although a value of −(0.85 ± 0.18) GeV8

has also been obtained in the first stage of the iteration. This result is consistent with the
one about −0.95 GeV8 in [346] and the one from ALEPH [33]:

d8,V = −(0.9 ± 0.1) GeV8 (52.23)

and of OPAL [33]:

d8,V = −(0.8 ± 0.1) GeV8 (52.24)

from τ -decay data. We can consider as a final result from the different estimates the
(arithmetic) average value:

d8,V ≡ M8
τ δ

(8)
V � −(1.1 ± 0.3) GeV8 (52.25)

The axial-vector channel is only accessible from τ -decay data. The results from
ALEPH is:

d8,A = (0.8 ± 0.1) GeV8 , (52.26)

and from OPAL:

d8,A = (0.4 ± 0.2) GeV8 , (52.27)

where the two central values differ almost by a factor 2. We adopt the average of the two
results as a final estimate:

d8,A ≡ M8
τ δ

(8)
V � (0.6 ± 0.2) GeV8 . (52.28)
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These estimates are about one order of magnitude bigger than the rough estimate coming
from the vacuum saturation [325]:1

d8,V ≈ d8,A ≈ − 39

162
π2〈αs G2〉2 ≈ 0.01 GeV8 . (52.29)

A fit of the (pseudo)scalar channel [394] also shows that the size of the D = 8 condensates
needed to reproduce the lattice data [393] at large x is also much bigger than the one from
the vacuum saturation estimate of these operators.

52.8 Instanton like-contributions

In Section 52.10 an attempt has been made to estimate the contributions of the dimension-
nine operators which can mimic the instanton-like effects to the vector correlator [382–387].
The result of the analysis is:

δ
(9)
V ≡ δinst

V = −(7.0 ± 26.5)10−4

(
1.78

Mτ

)9

, (52.30)

which is completely negligible in the sum rule working region. This result confirms the
alternative phenomenological estimate [387]:

δinst
V ≈ 3 × 10−3 , (52.31)

and theoretical estimate [385]:

δinst
V ≈ 2 × 10−5 (52.32)

at the τ mass. In [384], one also expects a further cancellation for the sum of the vector and
axial-vector channels:

δinst
V +A ≈ 1

20
δinst

V . (52.33)

Although there is a concensus over the negligible effect of small size instantons in
the V/A channels, the situation in the (pseudo)scalar channel is more controversial. In
[385], one also expects that the instanton effect is negligible at the sum rule working scale
of about 1 GeV, while in [383] one expects that it breaks completely the OPE in this
channel.

In the remaining part of the discussions of this book, we shall adopt the pragmatic attitude
that the usual OPE describes the (pseudo)scalar channel and the inclusion of the quadratic
term restores the discrepancy between the scales in the ρ and π meson sum rules [161]. This
attitude is supported by the lattice result for the (pseudo)scalar two-point function [393],
which can be fitted quite well until large x by the OPE including quadratic λ2 term and the
dimension-eight condensate.

1 A missprint of a factor 1/π2 has been corrected in the BNP formula.
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52.9 Sum of non-perturbative contributions to e+e− → I = 1 hadrons
and τ decays

A fit of the sum of the different non-perturbative terms entering in the QCD expression of
τ decays has been also done by ALEPH and OPAL [33,328]. Using the normalization in
Section 25.5, ALEPH obtains:

δN P,V = 0.020 ± 0.017 , δN P,A = −0.027 ± 0.009 , δN P,V +A = −0.003 ± 0.005 ,

(52.34)
while OPAL obtains for different structures of the perturbative QCD series:

δN P,V = 0.016 ± 0.004 , δN P,A = −0.023 ± 0.004 , δN P,V +A = −0.0035 ± 0.0035 .

(52.35)

In Section 52.10, the sum of the different non-perturbative contributions including the
dimension-nine condensates from e+e− data is found to be:

δN P,V = 0.024 ± 0.009 (52.36)

in good agreement with the former results from τ -decays.

52.10 Reprinted paper

QCD tests from e+e− → I = 1 hadrons data and implication
on the value of αs from τ-decays

S. Narison
Reprinted from Physics Letters B, Volume 361. pp. 121–130, Copyright (1995) with permission from Elsevier
Science.

1. Introduction

Measurements of the QCD scale � and of the q2-evolution of the QCD coupling are
one of the most important tests of perturbative QCD. At present LEP and τ -decay data
[1–7] indicate that the value of αs is systematically higher than the one extracted from
deep-inelastic low-energy data1. The existing estimate of αs from QCD spectral sum rules
[9] à la SVZ [10] in e+e− data [11,12] apparently favours a low value of αs , a result, which
is, however, in contradiction with the recent CVC-test performed by [13] using e+e− data. It
is therefore essential to test the reliability of the low-energy predictions before speculating
on the phenomenological consequences implied by the previous discrepancy.

Deep-inelastic scattering processes need a better control of the parton distributions and of
the power corrections in order to be competitive with the LEP and tau-decay measurements.
In addition, perturbative corrections in these processes should be pushed so far such that the
remaining uncertainties will only be due to the re-summation of the perturbative series at
large order. Indeed, the τ -decay rate has been calculated including the α3

s -term [3], while an

1However, new results of jet studies in deep-inelastic ep-scattering at HERA for photon momentum transfer
10 ≤ Q2 [GeV2] ≤ 4000 give a value of αs [8] compatible with the LEP-average.
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estimate [14] and a measurement [15] of the α4
s coefficient is done. Moreover, a resummation

of the (β1αs)n of the perturbative series is now available [16].
The QCD spectral sum rule (QSSR) [9] à la SVZ [10] applied to the I = 1 part of the

e+e− → hadrons total cross-section has a QCD expression very similar to the τ -decay
inclusive width, such that on a theoretical basis, one can also have a good control of it.

In a previous paper [17], we have derived in a model-independent way the running
mass of the strange quark from the difference between the I = 1 and I = 0 parts of the
e+e− → hadrons total cross-section. In this paper, we pursue this analysis by re-examining
the estimate of αs and of the condensates including the instanton-like and the marginal
D = 2-like operators obtained from the I = 1 channel of the e+e− data. In so doing, we
re-examine the exponential Laplace sum rule used by [11] in e+e−, which is a generalization
of the ρ-meson sum rule studied originally by SVZ [10]. We also expect that the Laplace
sum rule gives a more reliable result than the FESR due to the presence of the exponential
weight factor which suppresses the effects of higher meson masses in the sum rule. This
is important in the particular channel studied here as the data are very inaccurate above
1.4–1.8 GeV, where, at this energy, the optimal result from FESR satisfies the so-called
heat evolution test [12,18,19]. That makes the FESR prediction strongly dependent on the
way the data in this region are parametrized, a feature which we have examined [13,20] for
criticizing the work of [21]. We also test the existing and controversial estimates [18,19] of
the D = 2-type operator obtained from QSSR. Combining our different non-perturbative
results with the recent resummed perturbative series [16], we re-estimate and confirm the
value of αs from τ -decays.

2. αs from e+e− → I = 1 hadrons data

Existing estimates of αs or � from different aspects of QSSR for e+e− → I = 1 hadrons
data [11,12] lead to values much smaller than the present LEP and τ -decay measurements
[3–7]. However, such results contradict the stability-test on the extraction of αs from τ -like
inclusive decay [13] obtained using CVC in e+e− [22] for different values of the τ -mass.
In the following, we shall re-examine the reliability of these sum rule results.

We shall not reconsider the result from FESR [12] due to the drawbacks of this method
mentioned previously, and also, because the FESR-analysis has been re-used recently
[18,19] in the determination of the D =2-type operator, which we shall come back later on.

�3 and the condensates have been extracted in [11] from the Laplace sum rule:

L1 ≡ 2

3
τ

∫ ∞

4m2
π

ds e−st R I=1(s) (1)

and from its τ ≡ 1/M2 derivative:

L2 ≡ 2

3
τ 2

∫ ∞

4m2
π

ds s e−sτ RI=1(s) , (2)

where:

RI ≡ σ (e+e− → I hadrons)

σ (e+e− → µ+µ−)
. (3)
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In the chiral limit mu = md = 0, the QCD expressions of the sum rule can be written as:

Li = 1 +
∑

D=0,2,4,...



(D)
i . (4)

The perturbative corrections can be deduced from the ones of RI=1 obtained to order α3
s :

RI=1(s) = 3

2

{
1 + as + F3a2

s + F4a3
s + O(

a4
s

)}
, (5)

where, for 3 flavours: F3 = 1.623 [23], F4 = 6.370 [24]; the expression of the running cou-
pling to three-loop accuracy is:

as(v) = a(0)
s

{
1 − a(0)

s

β2

β1
log log

v2

�2

+ (
a(0)

s

)2
[
β2

2

β2
1

log2 log
v2

�2
− β2

2

β2
1

log log
v2

�2

− β2
2

β2
1

+ β3

β1

]
+ O(

a3
s

)}
, (6)

with:

a(0)
s ≡ 1

−β1 log(v/�)
(7)

and βi are the O(ai
s) coefficients of the β-function in the MS scheme for nf flavours:

β1 = −11

2
+ 1

3
n f

β2 = −51

4
+ 19

12
n f

β3 = 1

64

[
−2857 + 5033

9
n f − 325

27
n2

f

]
. (8)

For three flavours, we have:

β1 = −9/2, β2 = −8, β3 = −20.1198 . (9)

In the chiral limit, the D = 2-contribution vanishes. It has also been proved recently [16]
that renormalon-type contributions induced by the resummation of the QCD series at large
order cannot induce such a term.

In the chiral limit, the D = 4 non-perturbative corrections read [10,3]:



(4)
1 = π

3
τ 2〈αs G2〉

(
1 − 11

18

αs

π

)



(4)
2 = −


(4)
1 . (10)
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The D = 6 non-perturbative corrections read [10]:



(6)
1 = −448π3

81
τ 3ρ〈ūu〉2



(6)
2 = −2


(6)
1 . (11)

We shall use, in the first iteration of the analysis, the conservative values of the condensates
[9,3]:

〈αs G2〉 = (0.06 ± 0.03) GeV4,

ρ〈ūu〉2 = (3.8 ± 2.0)10−4 GeV6, (12)

and high values of � from LEP and tau-decay data [1–4] for 3 flavours:

�3 = 375+105
−85 MeV, (13)

corresponding to αs(MZ ) = 0.118 ± 0.06.

The phenomenological side of the sum rule has been parametrized using analogous data
as [11] and updated using the data used in [13]. The confrontation of the QCD and the
phenomenological sides of the sum rules is done in Fig. 1a and in Fig. 2a for a giving
value of �3 = 375 MeV and varying the condensates in the range given previously. One
can conclude that one has a good agreement between the two sides of L1 for M ≥ 0.8 GeV
and of L2 for M ≥ 1.0 ∼ 1.2 GeV. The effects of the condensates are important below 1
GeV for L1 and below 1.3 GeV for L2. In Fig. 1b and Fig. 2b, we fix the condensates at
their central values and we vary �3 in the range given above. One can notice that a value of
�3 as high as 525 MeV is still allowed by the data, while the shape of the QCD curve for
L2 changes drastically for a high value of �3. This phenomena is not informative as, below
1 GeV, higher dimension condensates can already show up and may break the Operator
Product Expansion (OPE).

By comparing these results with the ones of [11], one can notice that our QCD prediction
for L1 corresponding to the previous set of parameters is as good as the one of [11] obtained
from a different set of the QCD parameters, while for that of L2, the agreement between the
two sides of the sum rule is obtained here at a slightly larger value of M for high values of �3.

One can clearly conclude from our analysis is that the exponential Laplace sum rules
applied to e+e− → I = 1 hadrons data do not exclude values of �3 obtained from LEP
and τ -decay data. Contrary to some claims in the literature, the sum rules cannot also give
a precise information on the real value of �3 if the condensates are allowed to move inside
the conservative range of values given in Eq. (12). It is also important and reassuring, that
our analysis supports the value of �3 obtained from τ -decay and used in e+e− via CVC
[22] for the stability-test of the prediction for different values of the τ -mass [13] as we shall
see also below.
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Fig. 1. (a) The Laplace sum ruleL1 versus the sum rule parameter M. The dashed curves correspond to
the experimental data. The full curves correspond to the QCD prediction for �3 = 375 MeV, 〈αs G2〉 =
0.06 ± 0.03 GeV4 and ραs〈ūu〉2 = (3.8 ± 2.0)10−4 GeV6. (b) The same as Fig. 1a but for different
values of �3 and for 〈αs G2〉 = 0.06 GeV4 and ραs〈ūu〉2 = 3.8 10−4 GeV6.

3. The condensates from τ -like decays

In so doing, we shall work with the vector component of the τ decay-like quantity
deduced from CVC [22]:

Rτ,1 ≡ 3 cos2 θc

2πα2
SEW ×

M2
τ∫

0

ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
S

M2
τ

σe+e− → I = 1 , (14)

where SEW = 1.0194 is the electroweak correction from the summation of the leading-log
contributions [25].
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Fig. 2. (a) The same as Fig. 1a but for L2. (b) The same as Fig. 1b but for L2.

Fig. 3. Experimental value of the ratio of Laplace sum rules R(τ ) versus the sum rule variable
τ = 1/M2.
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This quantity has been used in [13] in order to test the stability of the αs-prediction
obtained at the τ -mass of 1.78 GeV. It has also been used to test CVC for different exclusive
channels [13,26]. Here, we shall again exploit this quantity in order to deduce model-
independent informations on the values of the QCD condensates. The QCD expression of
Rτ,1 reads:

Rτ,1 = 3

2
cos2 θc SEW ×

(
1 + δEW + δ(0) +

∑
D=2,4,...

δ
(D)
1

)
, (15)

where δEW = 0.0010 is the electroweak correction coming from the constant term [27]; the
perturbative corrections read [3]:

δ(0)

(
as ≡ αs(Mτ )

π

)
+ 5.2023a2

s + 26.366a3
s + · · · , (16)

The a4
s coefficient has also been estimated to be about 103 [14,15], though we shall use

(78 ± 25) a4
s where the error reflects the uncalculated higher order terms of the D-function,

while the first term is induced by the lower order coefficients after the use of the Cauchy
integration.

In the chiral limit mi = 0, the quadratic mass-corrections contributing to δ
(2)
1 vanish.

Moreover, it has been proved [16] that the summation of the perturbative series cannot
induce such a term, while the one induced eventually by the freezing mechanism is safely
negligible [28,18]. Therefore, we shall neglect this term in the first step of our analysis. We
shall test, later on, the internal consistency of the approach if a such term is included into
the OPE.

In the chiral limit mi = 0, the D = 4 contributions read [3]:

δ
(4)
1 = 11

4
πa2

s

〈αs G2〉
M4

τ

, (17)

which, due to the Cauchy integral and to the particular s-structure of the inclusive rate, the
gluon condensate starts at O(a2

s ). This is a great advantage compared with the ordinary sum
rule discussed previously. The D = 6 contributions read [3]:

δ
(6)
1 � 7

256π3

27

ραs〈ψ̄ iψi 〉2

M6
τ

, (18)

The contribution of the D = 8 operators in the chiral limit reads [3]:

δ
(8)
1 = −39π2

162

〈αs G2〉2

M8
τ

. (19)

The phenomenological parametrization of Rτ,1 has been done using the same data input as
in [18,13]. We give in Table 1 its value for different values of the tau-mass. Neglecting the
D = 4-contribution which is of the order α2

s , we perform a two-parameter fit of the data
for each value of �3 corresponding to the world average value of αs(MZ ) = 0.118 ± 0.006
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Table 1. Phenomenological
estimate of Rτ,1

Mτ [GeV] Rτ,1

1.0 1.608 ± 0.064
1.2 1.900 ± 0.075
1.4 1.853 ± 0.072
1.6 1.793 ± 0.070
1.8 1.790 ± 0.081
2.0 1.818 ± 0.097

Table 2. Estimates of d6 and d8 from Rτ,1 for different
values of �3

�3 [MeV] d6 [GeV6] −d8 [GeV8]

480 −0.07 ± 0.43 1.15 ± 0.40
375 0.27 ± 0.34 0.69 ± 0.31
290 0.58 ± 0.29 0.83 ± 0.27

[1,2] and by letting the D = 6 and D = 8 condensates as free-parameters. We show the
results of the fitting procedure in Table 2 for different values of �3.

The errors take into account the effects of the τ -mass moved from 1.6 to 2.0 GeV, which
is a negligible effect, and the one due to the data. One can notice that the estimate of the
D = 8 condensates is quite accurate, while the one of the D = 6 is not very conclusive
for �3 ≥ 350 MeV. Indeed, only below this value, one sees that the D = 6 contribution is
clearly positive as expected from the vacuum saturation estimate. This fact also explains
the anomalous low value of −d8 around this transition region. Using the average value of
�3 in Eq. (13), we can deduce the result:

d8 ≡ M8
τ δ

(8)
1 = −(0.85 ± 0.18) GeV8

d6 ≡ M6
τ δ

(6)
1 = (0.34 ± 0.20) GeV6 , (20)

which we shall improve again later on once we succeed to fix the value of d6.

4. The condensates from the ratio of the Laplace sum rules

Let us now improve the estimate of the D = 6 condensates. In so doing, one can remark
that, though there are large discrepancies in the estimate of the absolute values of the
condensates from different approaches, there is a consensus in the estimate of the ratio of
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the D = 4 over the D = 6 condensates:2

r46 [GeV−2] ≡ 〈αs G2〉
ραs〈ūu〉2

= 94.80 ± 23 [29]

96.20 ± 35 [12]

114.6 ± 16 [30]

92.50 ± 50 [32] . (21)

from which we deduce the average:

r46 = (105.9 ± 11.9) GeV−2 . (22)

We use the previous informations on d8 and r46 for fitting the value of the D = 4 condensates
from the ratio of the Laplace sum rules:

R(τ ) ≡ τ−2 L2

L1
, (23)

used previously by [29] for a simultaneous estimate of the D = 4 and D = 6 condensates.
We recall that the advantage of this quantity is its less sensitivity to the leading order
perturbative corrections. The phenomenological value of R(τ ) is given in Fig. 2. Using a
one-parameter fit, we deduce:

〈αs G2〉 = (6.1 ± 0.7) 10−2 GeV4 . (24)

Then, we re-inject this value of the gluon condensate into the tau-like width in Eq. (14),
from which we re-deduce the value of the D = 8 condensate. After a re-iteration of this
procedure, we deduce our final results:〈
αs G2

〉 = (7.1 ± 0.7) 10−2 GeV4 ,

d8 = −(1.5 ± 0.6) GeV8 . (25)

Using the mean value of r46, we also obtain:

ραs〈ūu〉2 = (5.8 ± 0.9) 10−4 GeV6 . (26)

We consider these results as an improvement and a confirmation of the previous result in
Eq. (12). It is also informative to compare these results with the ALEPH and CLEO II
measurements of these condensates from the moments distributions of the τ -decay width.
The most accurate measurement leads to [5]:

〈αs G2〉 = (7.8 ± 3.1) 10−2 GeV4 , (27)

while the one of d6 has the same absolute value as previously but comes with the wrong sign.
Our value of d8 is in good agreement with the one d8 � −0.95 GeV8 in [13,6] obtained from

2We have multiplied the original error given by [30] by a factor 10. The constraint obtained in [31] is not very
conclusive as it leads to r46 ≤ 110 GeV−2 and does not exclude negative values of the condensates which are
forbidden from positivity arguments.
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the same quantity, but it is about one order of magnitude higher than the vacuum saturation
estimate proposed by [33] and about a factor 5 higher than the CLEO II measurement.
However, it is lower by a factor 2∼3 than the FESR result from the vector channel [32]3.
The discrepancy with the vacuum saturation indicates that this approximation is very crude,
while the one with the FESR is not very surprising, as the FESR approach done in the
vector and axial-vector channels [12,32] tends always to overestimate the values of the
QCD condensates. The discrepancy with the CLEO II measurement can be understood
from the wrong sign of the D = 6 condensate obtained there and to its correlation with the
D = 8 one.

5. Instanton contribution

Let us now extract the size of the instanton-like contribution by assuming that it acts
like a D ≥ 9 operator. A good place for doing it is Rτ,1 as, in the Laplace sum rules, this
contribution is suppressed by a 8! factor implying a weaker constraint. Using the previous
values of the D = 6 and D = 8 condensates, we deduce:

δ
(9)
1 ≡ δinst

V = −(7.0 ± 26.5) 10−4(1.78/Mτ )9 , (28)

which, though inaccurate indicates that the instanton contribution is negligible for the vector
current and has been overestimated in [34] (δinst

V ≈ 0.03 ∼ 0.05). Our result supports the
negligible effects found from an alternative phenomenological [35] (δinst

V ≈ 3 × 10−3) and
theoretical [36] (δinst

V ≈ 2 × 10−5) analysis. Further cancellations in the sum of the vector
and axial-vector components of the tau widths are however expected [34,35] (δinst ≈ 1

20δinst
V ).

6. Test of the size of the 1/M2
τ -term

Let us now study the size of the 1/M2
τ -term. From the QCD point of view, its possible

existence from the resummation of the PTS due to renormalon contributions [28] has not
been confirmed [16], while some other arguments [28,37] advocating its existence are
not convincing and seems to be a pure speculation. Postulating its existence (whatever its
origin!), [18] has estimated the strength of this term by using FESR and the ratio of moments
R(τ ). As already mentioned earlier, the advantage in working with the ratio of moments is
that the leading order perturbative corrections disappear such that in a compromise region
where the high-dimension condensates are still negligible, there is a possibility to pick up
the 1/M2

τ -contribution. Indeed, using usual stability criteria and allowing a large range of
values around the optimal result, [18] has obtained the conservative value:

d2 ≡ C2 ≡ δ2
1 M2

τ � (0.03 ∼ 0.08) GeV2 , (29)

3In the normalization of [32], our value of d8 translates into C8〈O8〉 = (0.18 ± 0.04) GeV8.
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Table 3. Estimates of 〈αs G2〉 from R(τ ) for different
values of d2

d2 [GeV]2 [18] −d2 [GeV]2 [19] 〈αs G2〉 102 [GeV4]

0.03 7.8 ± 0.5
0.05 8.1 ± 0.5
0.07 8.6 ± 0.5
0.09 9.1 ± 0.5

0.2 3.2 ± 0.29
0.3 1.2 ± 0.29
0.4 −0.7 ± 0.6

while the estimate of [18] from FESR applied to the vector current has not been very
conclusive, as it leads to the inaccurate value:

d2 � (0.02 ± 0.12) GeV2 . (30)

However, the recent FESR analysis from the axial-vector current [19] obtained at about
the same value of the continuum threshold tc satisfying the so-called evolution test [12],
disagrees in sign and magnitude with our previous estimate from the ratio of moments and
is surprisingly very precise compared with the result in Eq. (30) obtained from the same
method for the vector current. If one assumes like [19] a quadratic dependence in �3, the
result of [19] becomes for the value of �3 in Eq. (13):

d2 � −(0.3 ± 0.1) GeV2 , (31)

We test the reliability of this result, by remarking that d2 (if it exists!) is strongly correlated
to d4 in the analysis of the ratio of Laplace sum rules R(τ ), while this is not the case between
d2 or d4 with d6 and d8. Using our previous values of d6 and d8, one can study the variation
of d4 given the value of d2. The results given in Table 3 indicate that the present value of
the gluon condensate excludes the value of d2 in Eq. (31) and can only permit a negligible
fluctuation around zero of this contribution, which should not exceed the value 0.03 ∼ 0.05.
This result rules out the possibility to have a sizeable 1/M2

τ -term [28,37] and justifies its
neglect in the analysis of the τ -width. More precise measurement of the gluon condensate
or more statistics in the τ -decay data will improve this constraint.

7. Sum of the non-perturbative corrections to Rτ

Using our previous estimates, it is also informative to deduce the sum of the non-
perturbative contributions to the decay widths of the observed heavy lepton of mass 1.78
GeV. In so doing, we add the contributions of operators of dimensions D = 4 to D = 9 and
we neglect the expected small δ(2)-contribution.
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Table 4. QCD predictions for Rτ using the contour
coupling-expansion

αs(Mτ ) a3
s a4

s a6
s a8

s

0.26 3.364 ± 0.022 3.370 3.380 ± 0.019 3.381
0.28 3.402 ± 0.024 3.411 3.426 ± 0.019 3.426
0.30 3.442 ± 0.026 3.453 3.474 ± 0.021 3.472
0.32 3.484 ± 0.030 3.498 3.526 ± 0.023 3.520
0.34 3.526 ± 0.033 3.546 3.582 ± 0.031 3.568
0.36 3.571 ± 0.040 3.594 3.640 ± 0.045 3.613
0.38 3.616 ± 0.040 3.645 3.706 ± 0.069 3.655
0.40 3.664 ± 0.040 3.700 3.775 ± 0.108 3.685

For the vector component of the tau hadronic width, we obtain:4

δNP
V ≡

9∑
D=4

δ
(D)
1 = (2.38 ± 0.89)10−2 , (32)

while using the expression of the corrections for the axial-vector component given in [3],
we deduce:

δNP
A = −(7.95 ± 1.12)10−2 , (33)

and then:

δNP ≡ 1

2

(
δNP

V + δNP
A

) = −(2.79 ± 0.62)10−2 , (34)

Our result confirms the smallness of the non-perturbative corrections measured by the
ALEPH and CLEO II groups [5]:

δNP
exp = (0.3 ± 0.5)10−2 , (35)

though the exact size of the experimental number is not yet very conclusive.

8. Implication on the value of αs from Rτ

Before combining the previous non-perturbative results with the perturbative correction
to Rτ , let us test the accuracy of the resummed (αsβ1)n perturbative result of [16]. In so doing,
we fix αs(Mτ ) to be equal to 0.32 and we compare the resummed value of δ(0) including the
δ3

s -corrections with the one where the coefficients have been calculated in the MS scheme
[23]. We consider the two cases where Rτ is expanded in terms of the usual coupling αs or
in terms of the contour coupling [4]. In both cases, one can notice that the approximation

4We have used, for Mτ = 1.78 GeV, the conservative values: δ
(9)
V ≈ δ

(9)
A � −(0.7 ± 2.7)10−3 and δ(9) ≈

1/20δ
(9)
V [34].
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used in the resummation technique tends to overestimate the perturbative correction by
about 10%. Therefore, we shall reduce systematically by 10%, the prediction from this
method from the α5

s to α9
s contributions. We shall use the coefficient 27.46 of α4

s estimated
in [14,15]. Noting that, to the order where the perturbative series (PTS) is estimated, one
has alternate signs in the PTS, which is an indication for reaching the asymptotic regime.
Therefore, we can consider, as the best estimate of the resummed PTS, its value at the
minimum. That is reached, either for truncating the PTS by including the α6

s or the α8
s

contributions. The corresponding value of Rτ including our non-perturbative contributions
in Eq. (34) is given in Table 4. We show for comparison the value of Rτ including the
α3

s -term, where we have used the perturbative estimate in [6] (the small difference with the
previous papers [4,13,6,7,20] comes from the different non-perturbative term used here),
while the error quoted there comes from the naı̈ve estimate ±50a4

s . However, one can see
that the estimate of this perturbative error has taken properly the inclusion of the higher
order terms, while the truncation of the series at α3

s already gives a quite good evaluation of
the PTS. One can also notice that there is negligible difference between the PTS to order α6

s

and α8
s for small values of αs , while the difference increases for larger values. We consider,

as a final perturbative estimate of Rτ , the one given by the PTS including the α6
s -term at

which we encounter the first minimum. The error given in this column is the sum of the
non-perturbative one from Eq. (34) with the perturbative conservative uncertainty, which
we have estimated like the effect due to the last term i.e ±34.53(−β1as/2)6 at which the
minimum is reached, which is a legitimate procedure for asymptotic series [38]. We have
also added to the latter the one due to the small fluctuation of the minimum of the PTS from
the inclusion of the α6

s or α8
s -terms. One can notice that for αs ≤ 0.32, the error in Rτ is

dominated by the non-perturbative one, while for larger value of αs , it is mainly due to the
one from the PTS. Using the value of Rτ in Table 4, we deduce:

αs(Mτ ) = 0.33 ± 0.030, (36)

where we have used the experimental average [2]:

Rτ = 3.56 ± 0.03. (37)

Our result from the optimized resummed PTS is in good agreement with the most recent
estimate obtained to order α3

s [6,5,7]:

αs(Mτ ) = 0.33 ± 0.030. (38)

9. Conclusion

Our analysis of the isovector component of the e+e− → hadrons data has shown that
there is a consistent picture on the extraction of αs from high-energy LEP and low-energy
τ and e+e− data.
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It has also been shown that the values of the condensates obtained from QCD spectral
sum rules based on stability criteria are reproduced and improved by fitting the τ -like decay
widths and the ratio of the Laplace sum rules. Our estimates are in good agreement with the
determination of the condensates from the τ -hadronic width moment-distributions [5],
which needs to be improved from accurate measurements of the e+e− data or/and for more
data sample of the τ -decay widths which can be reached at the τ -charm factory machine.

Finally, our consistency test of the effect of the 1/M2
τ -term, whatever its origin, does

not support the recent estimate of this quantity from FESR axial-vector channel [19] and
only permits a small fluctuation around zero due to its strong correlation with the D = 4
condensate effects in the ratio of Laplace sum rules analysis, indicating that it cannot affect
in a sensible way the accuracy of the determination of αs from tau decays.

As a by-product, we have reconsidered the estimate of αs(Mτ ) from the τ -widths taking
into account the recent resummed result of the perturbative series. Our result in Eq. (36) is
a further support of the existing estimates.

Acknowledgements

It is a pleasure to thank A. Pich for exchanges and for carefully reading the manuscript.

References

[1] S. Bethke, talk given at the QCD94 Workshop, 7–13th July 1994, Montpellier,
France and references therein; I. Hinchliffe, talk given at the 1994 Meeting of the
American Physical Society, Albuquerque (1994); B. Weber, talk given at the
IHEP-Conference, Glasgow (1994).

[2] PDG94, L. Montanet et al., Phys. Rev. D 50 (1994), Part 1, 1175.
[3] E. Braaten, S. Narison and A. Pich, Nucl. Phys. B 373 (1992) 581.
[4] F. Le Diberder and A. Pich, Phys. Lett. B 286 (1992) 147; B 289 (1992) 165.
[5] ALEPH Collaboration: D. Buskulic et al., Phys. Lett. B 307 (1993) 209; CLEOII

Collaboration: R. Stroynowski, talk given at TAU94 Sept. 1994, Montreux,
Switzerland; for a review of the different LEP data on tau decays, see e.g: L. Duflot,
talks given at the QCD94 Workshop, 7–13th July 1994, Montpellier, France and
TAU94 Sept. 1994, Montreux, Switzerland.

[6] A. Pich, talk given at the QCD94 Workshop, 7–13th July 1994, Montpellier, France.
[7] S. Narison, talk given at TAU94 Sept. 1994, Montreux, Switzerland.
[8] Hl Collaboration, Phys. Lett. B 346 (1995) 415.
[9] S. Narison, QCD spectral sum rules Lecture notes in physics, Vol 26 (1989).

[10] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B 147 (1979) 385, 448.
[11] S.I. Eidelman, L.M. Kurdadze and A.I. Vainshtein, Phys. Lett. B 82 (1979) 278.
[12] R.A. Bertlmann, G. Launer and E. de Rafael, Nucl. Phys. B 250 (1985) 61; R.A.

Bertlmann, C.A. Dominguez, M. Loewe, M. Perrottet and E. de Rafael, Z. Phys. C 39
(1988) 231.

[13] S. Narison and A. Pich, Phys. Lett. B 304 (1993) 359.
[14] A.L. Kataev, talk given at the QCD94 Workshop, 7–13th July 1994, Montpellier,

France.



52 The QCD condensates 571

[15] F. Le Diberder, talk given at the QCD94 Workshop, 7–13th July 1994, Montpellier,
France.

[16] P. Ball, M. Beneke and V.M. Braun, CERN-TH/95-26 (1995) and references therein;
C.N. Lovett-Turner and C.J. Maxwell, University of Durham preprint DTP/95/36
(1995).

[17] S. Narison, Montpellier preprint PM95/06 (1995).
[18] S. Narison, Phys. Lett. B 300 (1993) 293.
[19] C.A. Dominguez, Phys. Lett. B 345 (1995) 291.
[20] S. Narison, talk given at the QCD-LEP meeting on αs (published by S. Bethke and

W. Bernreuther as Aachen preprint PITHA 94/33).
[21] T.N. Truong, Ecole polytechnique preprint, EP-CPth.A266.1093 (1993); Phys. Rev.

D 47 (1993) 3999; talk given at the QCD-LEP meeting on αs (published by S. Bethke
and W. Bernreuther as Aachen preprint PITHA 94/33).

[22] F.J. Gilman and S.H. Rhie, Phys. Rev. D 31 (1985) 1066; F.J. Gilman and D.H.
Miller, Phys. Rev. D 17 (1978) 1846; F.J. Gilman, Phys. Rev. D 35 (1987) 3541.

[23] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Phys. Lett. B 85 (1979) 277; M. Dine
and J. Sapirstein, Phys. Rev. Lett. 43 (1979) 668; W. Celmaster and R.J. Gonsalves,
Phys. Rev. Lett. 44 (1980) 560.

[24] S.G. Gorishny, A.L. Kataev and S.A. Larin, Phys. Lett. B 259 (1991) 144; L.R.
Surguladze and M.A. Samuel, Phys. Rev. Lett. 66 (1991) 560, 2416 (E).

[25] W. Marciano and A. Sirlin, Phys. Rev. Lett. 61 (1988) 1815; 56 (1986) 22.
[26] S.I. Eidelman and V.N. Ivanchenko, Phys. Lett. B 257 (1991) 437; talk given at the

TAU94 Workshop, Sept. 1994, Montreux, Suisse.
[27] E. Braaten and C.S. Li, Phys. Rev. D 42 (1990) 3888.
[28] G. Altarelli, in: QCD-20 years later, eds. P.M. Zerwas and H.A. Kastrup, WSC

(1994) 308; talk given at the TAU94 Workshop, Sept. 1994, Montreux, Suisse; G.
Altarelli, P. Nason and G. Ridolfi, CERN-TH.7537/94 (1994).

[29] G. Launer, S. Narison and R. Tarrach, Z. Phys. C 26 (1984) 433.
[30] J. Bordes, V. Gimenez and J.A. Peñarrocha, Phys. Lett. B 201 (1988) 365.
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53

Light and heavy quark masses, chiral condensates
and weak leptonic decay constants

We review the present status for the determinations of the light and heavy quark masses, the
light quark chiral condensate and the decay constants of light and heavy-light (pseudo)scalar
mesons from QCD spectral sum rules (QSSR). Bounds on the light quark running masses at
2 GeV are found to be (see Tables 53.1 and 53.2): 6 MeV < (m̄d + m̄u)(2) < 11 MeV and
71 MeV< m̄s(2) < 148 MeV. The agreement of the ratio ms/(mu + md ) = 24.2 in
Eq. (53.45) from pseudoscalar sum rules with the one (24.4 ± 1.5) from ChPT indicates
the consistency of the pseudoscalar sum rule approach. QSSR predictions from different
channels for the light quark running masses lead to (see Section 53.9.3): m̄s(2) = (117.4 ±
23.4) MeV, (m̄d + m̄u)(2) = (10.1 ± 1.8) MeV, (m̄d − m̄u)(2) = (2.8 ± 0.6) MeV with the
corresponding values of the RG invariant masses. The different QSSR predictions for the
heavy quark masses lead to the running masss values: m̄c(m̄c) = (1.23 ± 0.05) GeV and
m̄b(m̄b) = (4.24 ± 0.06) GeV (see Tables 53.5 and 53.6), from which one can extract the
scale independent ratio mb/ms = 48.8 ± 9.8. Runned until MZ , the b-quark mass becomes:
m̄b(MZ ) = (2.83 ± 0.04) GeV in good agreement with the average of direct measurements
(2.82 ± 0.63) GeV from three-jet heavy quark production at LEP, and then supports the
QCD running predictions based on the renormalization group equation. As a result, we
have updated our old predictions of the weak decay constants fπ ′(1.3), fK ′(1.46), fa0(0.98)

and fK ∗
0 (1.43) [see Eqs. (53.75) and (53.77)]. We obtain from a global fit of the light

(pseudo)scalar and Bs mesons, the flavour breakings of the normal ordered chiral con-
densate ratio: 〈s̄s〉/〈ūu〉 = 0.66 ± 0.10 [see Eq. (53.100)]. The last section is dedicated to
the QSSR determinations of fD(s) and fB(s) .

53.1 Introduction

One of the most important parameters of the standard model and chiral symmetry is the light
and heavy quark masses. Light quark masses and chiral condensates are useful for a much
better understanding of the realizations of chiral symmetry breaking [55–57] and for some
eventual explanation of the origin of quark masses in unified models of interactions [664].
Within some popular parametrizations of the hadronic matrix elements [665], the strange
quark mass can also largely influence the Standard Model prediction of the C P violating

572
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parameters ε′/ε, which have been measured recently [599]. However, contrary to the QED
case where leptons are observed, and then the physical masses can be identified with the pole
of the propagator (on-shell mass value),1 the quark masses are difficult to define because of
confinement which does not allow us to observe free quarks. However, despite this difficulty,
one can consistently treat the quark masses in perturbation theory like the QCD coupling
constant.They obey a differential equation, where its boundary condition can be identified
with the renormalized mass of the QCD Lagrangian. The corresponding solution is the
running mass, which is gauge invariant but renormalization scheme and scale dependent,
and the associated renormalization group-invariant mass. To our knowledge, these notions
have been introduced for the first time in [28]. In practice, these masses are conveniently
defined within the standard M S scheme discussed in previous chapters. In addition to the
determination of the ratios of light quark masses (which are scale independent) from current
algebra [55], and from chiral perturbation theory (ChPT), its modern version [498–502],
a lot of effort reflected in the literature [16] has been put into extracting directly from the
data the running quark masses using the SVZ [1] QCD spectral sum rules (QSSR) [3], LEP
experiments and lattice simulations. The content of these notes is:

� a review of the light and heavy quark mass determinations from the different QCD approaches;
� a review of the direct determinations of the quark vacuum condensate using QSSR and an update

of the analysis of its flavour breakings using a global fit of the meson systems;
� an update of the determinations of the light (pseudo)scalar decay constants, which, in particular,

are useful for understanding the q̄q contents of the light scalar mesons; and
� a review of the determinations of the weak leptonic decay of the heavy-light pseudoscalar mesons

D(s) and B(s).

This review develops and updates the review papers [54,364] and some parts of the book
[3]. It also updates previous results from original works.

53.2 Quark mass definitions and ratios of light quark masses

Let us remind ourselves of the meaning of quark masses in QCD. One starts from the mass
term of the QCD Lagrangian:

Lm = mi ψ̄ iψi , (53.1)

where mi and ψi are respectively the quark mass and field. The renormalized mass will
be improved by the uses of the RGE leading to the running mass, for which a definition is
given in Section 11.11. We shall also use the short-distance pole masses defined in Section
11.12 and the alternative definition in Section 11.13. Finally, we often use the value of the
ratios of quark masses from ChPT given in Eq. (42.5.4).

1 For a first explicit definition of the perturbative quark pole mass in the M S scheme, see [147,133] (renormalization-scheme
invariance) and [148] (regularization-scheme invariance).
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53.3 Bounds on the light quark masses

In QSSR, the estimate and lower bounds of the sum of the light quark masses from the
pseudoscalar sum rule were first found in [167,626], while a bound on the quark mass
difference was first derived in [666]. The literature in this subject of light quark masses
increases with time.2 However, it is in some sense quite disappointing that in most of the
published papers no noticeable progress has been made since the early pioneering studies.
The most impressive progress comes from the QCD side of the sum rules where new
calculations have become available both on the perturbative radiative corrections known
to order α3

s [167,667,442] and on the non-perturbative corrections [1,3].3 Another new
contribution is due to the inclusion of the tachyonic gluon mass as a manifestation of the
resummation of the pQCD series [162,161,394]. Alas, no sharp result is available on the
exact size of direct instanton contributions advocated to be important in this channel [383],
while [385] claims the opposite. Though the instanton situation remains controversial, recent
analysis [668,669] using the results of [670] based on the Instanton Liquid Model (ILM) of
[386] indicates that this effect is negligible justifying the neglect of this effect in different
analysis of this channel. However, it might happen that adding together the effect of the
tachyonic gluon to that of the direct instanton might also lead to a double counting in a
sense that there can be two alternative ways for parametrizing the non-perturbative vacuum
[394]. In the absence of precise control of the origin and size of these effects, we shall
consider them as new sources of errors in the sum rule analysis.

53.3.1 Bounds on the sum of light quark masses from pseudoscalar channels

Lower bounds for (m̄u + m̄d ) based on moments inequalities and the positivity of the
spectral functions have been obtained, for the first time, in [167,626]. These bounds have
been rederived recently in [671,672] to order αs . As checked in [54] for the lowest moment
and redone in [669] for higher moments, the inclusion of the α3

s term decrease by about 10
to 15% the strength of these bounds, which is within the expected accuracy of the result.

For definiteness, we shall discuss in details the pseudoscalar two-point function in the
ūs channel. The analysis in the ūd channel is equivalent. It is convenient to start from the
second derivative of the two-point function which is superficially convergent:

� ′′(Q2) =
∫ ∞

0
dt

2

(t + Q2)3

1

π
Im�5(t) . (53.2)

The bounds follow from the restriction of the sum over all possible hadronic states which
can contribute to the spectral function to the state(s) with the lowest invariant mass. The
lowest hadronic state which contributes to the corresponding spectral function is the K –pole.

2 Previous works are reviewed in [54,3].
3 See also Part VIII on two-point functions where more references to original works are given.
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From Eq. (53.2) we then have:

� ′′
5 (Q2) = 2(

M2
K + Q2

)3 2 f 2
K M4

K +
∫ ∞

t0

dt
2

(t + Q2)3

1

π
Im�5(t) , (53.3)

where t0 = (MK + 2mπ )2 is the threshold of the hadronic continuum.
It is convenient to introduce the moments �N (Q2) of the hadronic continuum integral:

�N (Q2) =
∫ ∞

t0

dt
2

(t + Q2)3
×
(

t0 + Q2

t + Q2

)N
1

π
Im�5(t) . (53.4)

One is then confronted with a typical moment problem (see e.g. [673].) The positivity
of the continuum spectral function 1

π
Im�5(t) constrains the moments �N (Q2) and hence

the LHS of Eq. (53.3) where the light quark masses appear. The most general constraints
among the first three moments for N = 0, 1, 2 are:

�0(Q2) ≥ 0, �1(Q2) ≥ 0, �2(Q2) ≥ 0 ; (53.5)

�0(Q2) − �1(Q2) ≥ 0, �1(Q2) − �2(Q2) ≥ 0 ; (53.6)

�0(Q2)�2(Q2) − (�1(Q2))2 ≥ 0 . (53.7)

The inequalities in Eq. (53.6) are in fact trivial unless 2Q2 < t0, which constrains the
region in Q2 to too small values for pQCD to be applicable. The other inequalities lead
however to interesting bounds which we next discuss.

The inequality �0(Q2) ≥ 0 results in a first bound on the running masses:

[ms(Q2) + mu(Q2)]2 ≥ 16π2

Nc

2 f 2
K M4

K

Q4
× 1(

1 + M2
K

Q2

)3

1[
1 + 11

3
αs (Q2)

π
+ · · · ] , (53.8)

where the dots represent higher order terms which have been calculated up to O(α3
s ), as

well as non-perturbative power corrections of O(1/Q4) and strange quark mass corrections
of O(m2

s /Q2) and O(m4
s /Q4) including O(αs) terms. Notice that this bound is non-trivial

in the large–Nc limit ( f 2
K ∼ O(Nc)) and in the chiral limit (ms ∼ M2

K ). The bound is of
course a function of the choice of the Euclidean Q-value at which the RHS in Eq. (53.8) is
evaluated. For the bound to be meaningful, the choice of Q has to be made sufficiently large.
In [671] it is shown that Q ≥ 1.4 GeV is already a safe choice to trust the pQCD corrections
as such. The lower bound which follows from Eq. (53.8) for mu + ms at a renormalization
scale µ2 = 4 GeV2 results in the solid curves shown in Fig. 53.1.

The resulting value of the bound at Q = 1.4 GeV is:

(ms + mu)(2) ≥ 80 MeV =⇒ (mu + md )(2) ≥ 6.6 MeV , (53.9)

if one uses either ChPT and the previous SR analysis for the mass ratios. Radiative cor-
rections tend to decrease the strengths of these bounds. Their contributions to the second
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Fig. 53.1. Lower bound in MeV to order αs for (ms + mu)(2) versus Q in GeV from Eq. (53.8) for
�3 = 290 MeV (upper curve) and 380 MeV (lower curve).
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Fig. 53.2. The same curves as those in Fig. 53.1 but from the quadratic inequality to order αs .

moment of the two-point function are (see previous part of the book):

�
′′
5(q2) = 3

8π2

(m̄u + m̄s)2

Q2

[
1 + 11

3

(
ᾱs

π

)
+ 14.179

(
ᾱs

π

)2

+ 77.368

(
ᾱs

π

)3
]

. (53.10)

At this scale, the PT series converges quite well and behaves as:

Parton[1 + 0.45 + 0.22 + 0.15] . (53.11)

Including these higher order corrections, the bounds become:

(ms + mu) (2) > (71.4 ± 3.7) MeV =⇒ (mu + md ) (2) > (5.9 ± 0.3) MeV , (53.12)

The bound will be saturated in the extreme limit where the continuum contribution to the
spectral function is neglected.

The quadratic inequality in Eq. (53.7) results in improved lower bounds for the quark
masses which we show in Fig. 53.2.
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Fig. 53.3. Lower bound in MeV for (md + mu)(2) from the quadratic inequality to order αs .

The quadratic bound is saturated for a δ–like spectral function representation of the
hadronic continuum of states at an arbitrary position and with an arbitrary weight. This is
certainly less restrictive than the extreme limit with the full hadronic continuum neglected,
and it is therefore not surprising that the quadratic bound happens to be better than those
from �N (Q2) for N = 0, 1, and 2. Notice however that the quadratic bound in Fig. 53.2
is plotted at higher Q-values than the bound in Fig. 53.1. This is due to the fact that the
coefficients of the perturbative series in αs(Q2) become larger for the higher moments. In
[671] it is shown that for the evaluation of the quadratic bound Q ≥ 2 GeV is already a safe
choice.

Similar bounds can be obtained for (mu + md ) when one considers the two–point function
associated with the divergence of the axial current:

∂µ Aµ(x) = (md + mu) :d̄(x)iγ5u(x): . (53.13)

The method to derive the bounds is exactly the same as the one discussed above and
therefore we only show, in Fig. 53.3 below, the results for the corresponding lower bounds
which one obtains from the quadratic inequality. At Q = 2 GeV, one can deduce the lower
bounds from the quadratic inequality:

(ms + mu)(2) > 105 MeV , (mu + md )(2) > 7 MeV . (53.14)

The convergence of the QCD series is less good here than in the lowest moment. It behaves
as [669]:

Parton

[
1 + 25

3

(
ᾱs

π

)
+ 61.79

(
ᾱs

π

)2

+ 517.15

(
ᾱs

π

)3
]

, (53.15)

which numerically reads:

Parton[1 + 0.83 + 0.61 + 0.51] . (53.16)
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Table 53.1. Lower bounds on m̄u,d,s (2) in MeV

Observables Sources Authors

m̄u + m̄d

6 π LRT97 [671], Y97 [672]
(
updated here to orderα3

s

)
6.8 〈ψ̄ψ〉 + GMOR DN98 [423] (leading order)
m̄d − m̄u

1.1 Kπ Y97 [672]
(
updated here to orderα3

s

)
m̄s

71.4 K LRT97 [671]
(
updated here to orderα3

s

)
90 〈ψ̄ψ〉 + ChPT DN98 [423] (leading order)

This leads to the radiatively corrected lower bound to order α3
s :

(ms + mu) (2) > (82.7 ± 13.3) MeV , (mu + md )(2) > (6 ± 1) MeV , (53.17)

where the error is induced by the truncation of the QCD series which we have estimated to be
about the contribution of the last known α3

s term of the series.4 From the previous analysis,
and taking into account the uncertainties induced by the higher order QCD corrections, the
best lower bound comes from the lowest inequality and is given in Eq. (53.12). The result
is summarized in Table 53.1.

53.3.2 Lower bound on the light quark mass difference from the scalar sum rule

As in [666], one can extract lower bound on the light quark mass difference (mu − md ) and
(mu − ms) working with the two-point function associated to the divergence of the vector
current:

∂µV µ
ūq = (mu − mq ) : ψ̄u(i)ψq : . (53.18)

The most recent analysis has been done in [672]. We have updated the result by including
the α3

s -term. It is given in Table 53.1.

53.3.3 Bounds on the sum of light quark masses from the quark condensate and
e+e− → I = 0 hadrons data.

Among the different results in [423], we shall use the range of the chiral 〈ψ̄ψ〉 ≡ 〈ūu〉 �
〈d̄d〉 condensate from the vector form factor of D → K ∗lν. Using three-point function sum

4 In [668], alternative bound has been derived using a Hölder type inequality. The lower bound obtained from this method, which
is about 4.2 MeV is weaker than the one obtained previously.
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rules, the form factor reads to leading order:

V (0) = mc(m D + mK ∗ )

4 fD fK ∗m2
DmK ∗

exp
[(

m2
D − m2

c

)
τ1 + m2

K ∗τ2
]

(53.19)

× 〈ψ̄ψ〉
{

−1 + M2
0

(
−τ1

3
+ m2

c

4
τ 2

1 + 2m2
c − mc ms

6
τ1τ2

)

− 16π

9
αsρ〈ψ̄ψ〉

(
2mc

9
τ1τ2 − m3

c

36
τ 3

1

− 2m3
c − m2

cms

36
τ 2

1 τ2 + −mc

9
τ 2

1 + 2ms

9
τ 2

2 + 2

9
msτ1τ2 + 4

9

τ2

mc

)

+ em2
cτ1

〈ψ̄ψ〉
∫ s20

0
ds2

∫ s10

s2+m2
c

ds1 ρv(s1, s2)e−s1τ1−s2τ2

}

withρv(s1, s2) = 3

4π2 (s1 − s2)3

{
ms

(
(s1 + s2)

(
s1 −m2

c

)−2s1s2
)

+ mc
(
(s1 + s2)s2 − 2s2

(
s1 − m2

c

))}
. (53.20)

The factor ρ � 2 ∼ 3 expresses the uncertainty in the factorization of the four quark con-
densate. In our numerical analysis, we start from standard values of the QCD parameters and
use fK ∗ = 0.15 GeV( fπ = 93.3 MeV). The value of fD � (1.35 ± 0.07) fπ is consistently
determined by a two-point function sum rule including radiative corrections as we shall see
in the next chapter, where the sum rule expression can, for example, be found in [3]. The fol-
lowing parameters enter only marginally: ms(1 GeV) = (0.15 ∼ 0.19) GeV, s10 = (5 ∼ 7)
GeV2, s20 = (1.5 ∼ 2) GeV2. Using the conservative range of the charm quark mass:
mc(pole) between 1.29 and 1.55 GeV (the lower limit comes from the estimate in [3] and
the upper limit is one-half of the J/� mass), one can deduce the running condensate value
at 1 GeV [423]:

0.6 ≤ 〈ψ̄ψ〉/[−225 MeV]3 ≤ 1.5 . (53.21)

This result has been confirmed by the lattice [674]. Using the GMOR relation:

2m2
π f 2

π = −(mu + md )〈ūu + d̄d〉 + O(
m2

q

)
. (53.22)

one can translate the upper bound into a lower bound on the sum of light quark masses. The
lower bound on the chiral condensate can be used in conjunction with the positivity of the m2

q

correction in order to give an upper bound to the quark mass value. In this way, one obtains:

6.8 MeV ≤ (m̄u + m̄d )(2 GeV) ≤ 11.4 MeV . (53.23)

The resulting values are quoted in Tables 53.1 and 53.2. We expect that these bounds are
satisfied within the typical 10% accuracy of the sum rule approach.

We also show in Table 53.2 the upper bound obtained in [354] by using the positivity
of the spectral function from the analysis of the e+e− → I = 0 hadrons data where the
determination will be discussed in the next section.
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Table 53.2. Upper bounds on m̄u,d,s (2) in MeV

Observables Sources Authors

m̄u + m̄d

11.4 〈ψ̄ψ〉 + GMOR DN98 [423] (leading order)
m̄s

148 〈ψ̄ψ〉 + ChPT DN98 [423] (leading order)
147 ± 21 e+e− + τ -decay SN99 [354]

(
to orderα3

s

)

53.4 Sum of light quark masses from pseudoscalar sum rules

53.4.1 The (pseudo)scalar Laplace sum rules

The Laplace sum rule for the (pseudo)scalar two-point correlator reads (see [3,167,376,
400,582]:

∫ tc

0
dt exp (−tτ )

1

π
Im�(5)(t) � (m̄u ± m̄d )2 3

8π2
τ−2

[
(1 − ρ1)

(
1 + δ

(0)
±
) +

6∑
n=2

δ
(n)
±

]
,

(53.24)

where the indices 5 and + refer to the pseudoscalar current. Here, τ is the Laplace sum rule
variable, tc is the QCD continuum threshold and m̄i is the running mass to three loops:

ρ1 ≡ (1 + tcτ ) exp(−tcτ ) . (53.25)

Using the results compiled in the previous chapter, the perturbative QCD corrections read
for n flavours:

δ
(0)
± =

(
ᾱs

π

)[
11

3
− γ1γE

]

+
(

ᾱs

π

)2
[

10801

144
− 39

2
ζ (3) −

(
65

24
− 2

3
ζ (3)

)
n

− 1

2

(
1 − γ 2

E

) [17

3
(2γ1 − β1) + 2γ2

]

+
(

3γ 2
E − 6γE − π2

2

)
γ1

12
(2γ1 − β1)

]

δ
(2)
± = −2τ

[[
1 +

(
ᾱs

π

)
CF (4 + 3γE )

] (
m̄2

i + m̄2
j

)

∓
[

1 +
(

ᾱs

π

)
CF (7 + 3γE )

]
m̄i m̄ j

]
, (53.26)
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where CF = 4/3 and γE = 0.5772 . . . is the Euler constant; γ1, γ2 and β1, β2 are respec-
tively the mass-anomalous dimensions and β-function coefficients defined in a previous
chapter. For three colours and three flavours, they read:

γ1 = 2 , γ2 = 91/12 , β1 = −9/2 , β2 = −8 . (53.27)

In practice, the perturbative correction to the sum rule simplifies as:

δ
(0)
± = 4.82as + 21.98a2

s + 53.14a3
s + O(

a4
s

)
: as ≡

(
ᾱs

π

)
. (53.28)

Introducing the RGI condensates defined in the previous chapter, the non-perturbative
contributions are [325]:
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± = 4π2

3
τ 2
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4

〈αs

π
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〉
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(
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(
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δ
(6)
± = ∓8π2

3
τ 3

[
1
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[
m j

〈
ψ̄ iσ

µν λa

2
Ga

µνψi

〉
+ mi

〈
ψ̄ jσ

µν λa

2
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µνψ j
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− 16

27
πᾱs[〈ψ̄ jψ j 〉2 + 〈ψ̄ iψi 〉2 ∓ 9〈ψ̄ jψ j 〉〈ψ̄ iψi 〉]

]
. (53.29)

Beyond the SVZ expansion, one can have two contributions:

� The direct instanton contribution can be obtained from [386] and reads:

δinst
+ = ρ2

c

τ 3
exp (−rc) [K0(rc) + K1(rc)] (53.30)

with: rc ≡ ρ2
c /(2τ ); ρc ≈ 1/600 MeV−1 being the instanton radius; Ki is the MacDonald func-

tion. However, one should notice that analogous contribution in the scalar channel leads to some
contradictions ([386] and private communication from Valya Zakharov).
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� The tachyon gluon mass contribution can be deduced from [161]:

δtach
± = −4

(
ᾱs

π

)
λ2 , (53.31)

where (αs/π )λ2 � −0.06 GeV2 [161],

which completes the different QCD contributions to the two-point correlator.

53.4.2 The ūd channel

From the experimental side, we do not still have a complete measurement of the pseudoscalar
spectral function. In the past [3], one has introduced the radial excitation π ′ of the pion
using a NWA where the decay constant has been fixed from chiral symmetry argument [57]
and from the pseudoscalar sum rule analysis itself [422,675,3], through the quantity:

rπ ≡ M4
π ′ f 2

π ′

m4
π f 2

π

. (53.32)

Below the QCD continuum tc, the spectral function is usually saturated by the pion pole
and its first radial excitation and reads:

∫ tc

0
dt exp(−tτ )

1

π
Im�5(t) � 2m4

π f 2
π exp

(−m2
πτ

)[
1 + rπ exp

[(
m2

π − M2
π ′
)
τ
]]

.

(53.33)

The theoretical estimate of the spectral function enters through the not yet measured ratio
rπ . Detailed discussions of the sum rule analysis can be found in [3,420,422]. However,
this channel is quite peculiar due to the Goldstone nature of the pion, where the value of the
sum rule scale (1/τ for Laplace and tc for FESR) is relatively large, being about 2 GeV2,
compared with the pion mass where the duality between QCD and the pion is lost. Hopefully,
this paradox can be cured by the presence of the new 1/q2 [162,161,394] due to the tachyonic
gluon mass, which enlarges the duality region to lower scale and then minimizes the role of
the higher states into the sum rule. This naı̈ve NWA parametrization has been improved in
[676] by the introduction of threshold effect and finite width corrections. Within the advent
of ChPT, one has been able to improve the previous parametrization by imposing constraints
consistent with the chiral symmetry of QCD [677]. In this way, the spectral function reads:

1

π
Im�5(t) � 2m4

π f 2
π

[
δ
(
t − m2

π

) + θ
(
t − 9m2

π

) 1(
16π2 f 2

π

)2

t

18
ρ3π (t)

]
, (53.34)

with:

ρ3π (t) =
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π
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[
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π
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π

]

+ 1(
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π

) [3(u − m2
π

) − t + 10m2
π

]}
, (53.35)
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where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca is the usual phase space factor. Based
on this parametrization but including finite width corrections, a recent re-analysis of this
sum rule has been given to order α2

s [677]. Result from the LSR is, in general, expected
to be more reliable than the one from the FESR due to the presence of the exponential
factor which suppresses the high-energy tail of the spectral function, although the two
analysis are complementary. In [677], FESR has been used for matching by duality the
phenomenological and theoretical parts of the sum rule. This matching has been achieved
in the energy region around 2 GeV2, where the optimal value of mu + md has been extracted.
In [54], the LSR analysis has been updated by including the α3

s correction obtained in [442].
In this way, we get:

(m̄u + m̄d )(2 GeV) = (9.3 ± 1.8) MeV , (53.36)

where we have converted the original result obtained at the traditional 1 GeV to the lattice
choice of scale of 2 GeV through:

m̄i (1 GeV) � (1.38 ± 0.06) m̄i (2 GeV) , (53.37)

for running, to order α3
s , the results from 1 to 2 GeV. This number corresponds to the average

value of the QCD scale �3 � (375 ± 50) MeV from PDG [16] and [139]. Analogous value
of (9.8 ± 1.9) MeV for the quark mass has also been obtained in [678] to order α3

s as an
update of the [677] result. We take as a final result the average from [54] and [678]:

(m̄u + m̄d )(2 GeV) = (9.6 ± 1.8) MeV . (53.38)

The inclusion of the tachyonic gluon mass term reduces this value to [161]:

�tach(m̄u + m̄d )(2 GeV) � −0.5 MeV . (53.39)

As already mentioned, adding to this effect the one of direct instanton might lead to a
double counting in a sense that they can be alternative ways for parametrizing the non-
perturbative QCD vacuum. Considering this contribution as another source of errors, it
gives:

�inst(m̄u + m̄d )(2 GeV) � −0.5 MeV . (53.40)

Therefore, adding different sources of errors, we deduce from the analysis:

(m̄u + m̄d )(2 GeV) = (9.6 ± 1.8 ± 0.4 ± 0.5 ± 0.5) MeV , (53.41)

leading to the conservative result for the sum of light quark masses:

(m̄u + m̄d )(2 GeV) = (9.6 ± 2.0) MeV . (53.42)

The first error comes from the SR analysis, the second one comes from the running mass
evolution and the two last errors come, respectively, from the (eventual) tachyonic gluon
and direct instanton contributions. This result is in agreement with previous determinations
[3,419–423,679,680], although we expect that the errors given there have been underesti-
mated. One can understand that the new result is lower than the old result [3,420] obtained
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Table 53.3. QSSR determinations of m̄s (2) in MeV to order α3
s . Some older results have

been updated by the inclusion of the higher-order terms. The error contains the evolution
from 1 to 2 GeV. In addition, the errors in the (pseudo)scalar channels contain those due
to the small size instanton and tachyonic gluon mass. Their quadratic sum increases the
original errors by 8.9%. The estimated error in the average comes from an arithmetic

average of the different errors

Channels m̄s (2) Comments Authors

Pion SR + ChPT 117.1 ± 25.4 O (
α3

s

)
SN99 [54]Eq. (53.43)

〈ψ̄ψ〉 + ChPT 129.3 ± 23.2 N , B − B∗ (l.o) DN98 [423] Eq. (53.52)
117.1 ± 49.0 D → K ∗lν (l.o) DN98 [423] Eq. (53.53)

Kaon SR 119.6 ± 18.4 updated to O (
α3

s

)
SN89 [420,3]

112.3 ± 23.2 O (
α3

s

)
DPS99[681]

116 ± 12.8 ” KM01 [669]
Scalar SR 148.9 ± 19.2 O (

α3
s

)
CPS97 [443]

103.6 ± 15.4 ” CFNP97 [682]
115.9 ± 24.0 ” J98 [683]
115.2 ± 13.0 ” M99 [684]
99 ± 18.3 ” JOP01 [685]

τ -like φ SR: e+-e− + τ -decay 129.2 ± 25.6 average: O (
α3

s

)
SN99[354]

�S = −1 part of τ -decay 169.5+46.7
−57 O (

α2
s

)
ALEPH99∗ [348]

144.9 ± 38.4 ” CKP98 [349]
114 ± 23 ” PP99 [350]
125.7 ± 25.4 ” KKP00 [351]
115 ± 21 ” KM01 [352]
116+20

−25 ” CDGHKK01[353]
Average 117.4 ± 23.4

∗ Not included in the average.

without the α2
s and α3

s terms as both corrections enter with a positive sign in the LSR anal-
ysis. However, it is easy to check that the QCD perturbative series converge quite well in
the region where the optimal result from LSR is obtained. Combining the previous value in
Eq. (53.42) with the ChPT mass ratio, one can also deduce:

m̄s(2 GeV) = (117.1 ± 25.4) MeV . (53.43)

53.4.3 The ūs channel and QSSR prediction for the ratio ms/(mu + md )

Doing analogous analysis for the kaon channel, one can also derive the value of the sum
(mu + ms). The results obtained from [420] updated to order α3

s and from [681] are shown
in Table 53.3 given in [54] but updated. We add to the original errors the one from the
tachyonic gluon (5.5%), from the direct instanton (5.5%) and the one due to the evolution
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from 1 to 2 GeV (4.4%), which altogether increases the original errors by 8.9%. Therefore,
we deduce the (arithmetic) average from the kaon channel:

m̄s(2 GeV) = (116.0 ± 18.1) MeV , (53.44)

One should notice here that, unlike the case of the pion, the result is less sensitive to
the contribution of the higher states continuum due to the relatively higher value of MK ,
although the parametrization of the spectral function still gives larger errors than the QCD
series. It is interesting to deduce from Eqs. (53.42) and (53.44), the sum rule prediction for
the scale invariant quark mass ratios:

r3 ≡ 2ms

mu + md
� 24.2 , (53.45)

where we expect that the ratio is more precise than the absolute values due to the cancellation
of the systematics of the SR method. This ratio compares quite well with the ChPT ratio [57]:

rC A
3 = 24.4 ± 1.5 , (53.46)

and confirms the self-consistency of the pseudoscalar SR approach. This is a non-trivial
test of the SR method used in this channel and may confirm a posteriori the neglect of less
controlled contributions like direct instantons for example.

53.5 Direct extraction of the chiral condensate 〈ūu〉
As mentioned in previous section, the chiral ūu condensate can be extracted directly from
the nucleon, B∗-B splitting and vector form factor of D → K ∗lν, which are particularly
sensitive to it and to the mixed condensate 〈ψ̄σµν(λa/2)Ga

µνψ〉 ≡ M2
0 〈ψ̄ψ〉 [423]. We have

already used the result from the D → K ∗lν form factor in order to derive upper and lower
bounds on (mu + md ). Here, we shall use information from the nucleon and from the B∗-B
splitting in order to give a more accurate estimate. In the nucleon sum rules [424–430,3],
which seem, at first sight, a very good place for determining 〈ψ̄ψ〉, we have two form
factors for which spectral sum rules can be constructed, namely the form factor F1 which
is proportional to the Dirac matrix γ p and F2 which is proportional to the unit matrix. In
F1 the four quark condensates play an important role, but these are not chiral symmetry
breaking and are related to the condensate 〈ψ̄ψ〉 only by the factorization hypothesis [1]
which is known to be violated by a factor of two to three [424,404,3]. The form factor F2

is dominated by the condensate 〈ψ̄ψ〉 and the mixed condensate 〈ψ̄σ Gψ〉, such that the
baryon mass is essentially determined by the ratio M2

0 of the two condensates:

M2
0 = 〈ψ̄σ Gψ〉/〈ψ̄ψ〉 . (53.47)

Therefore, from the nucleon sum rules one gets quite a reliable determination of M2
0

[430,426]:

M2
0 = (.8 ± .1) GeV2. (53.48)
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A sum rule based on the ratio F2/F1 would in principle be ideally suited for a determi-
nation of 〈ψ̄ψ〉 but this sum rule is completely unstable [426] due to fact that odd parity
baryonic excitations contribute with different signs to the spectral functions of F1 and F2. In
the correlators of heavy mesons (B, B∗ and D, D∗) the chiral condensate gives a significant
direct contribution in contrast to the light meson sum rules [3], since, here, it is multiplied
by the heavy quark mass. However, the dominant contribution to the meson mass comes
from the heavy quark mass and therefore a change of a factor two in the value of 〈ψ̄ψ〉
leads only to a negligible shift of the mass. However, from the B-B∗ splitting one gets a
precise determination of the mixed condensate 〈ψ̄σ Gψ〉 with the value [401]:

〈ψ̄σ Gψ〉 = − (9 ± 1) × 10−3 GeV5 , (53.49)

which combined with the value of M2
0 given in Eq. (53.48) gives our first result for the value

of 〈ψ̄ψ〉 at the nucleon scale:

〈ψ̄ψ〉(MN ) = − [(225 ± 9 ± 9) MeV]3 , (53.50)

where the last error is our estimate of the systematics and higher-order contributions. Using
the GMOR relation, one can translate the previous result into a prediction on the sum of
light quark masses. The resulting value is [423]:

(m̄u + m̄d )(2 GeV) = (10.6 ± 1.8 ± 0.5) MeV , (53.51)

where we have added the second error due to the quark mass evolution. Combining this
value with the ChPT mass ratio, one obtains:

m̄s(2 GeV) � 129.3 ± 23.2 MeV . (53.52)

Alternatively, one can use the central value of the range given in Eq. (53.21) in order to
deduce the estimate:

(m̄u + m̄d )(2 GeV) = (9.6 ± 4 ± 0.4) MeV =⇒ m̄s(2 GeV) � (117.1 ± 49.0) MeV .

(53.53)
The results for ms are shown in Table 53.3.

53.6 Final estimate of (mu + md ) from QSSR and consequences on mu, md and ms

One can also notice the impressive agreement of the previous results from pseudoscalar and
from the other channels. As the two results in Eqs. (53.42), (53.51) and (53.53) come from
completely independent analysis, we can take their geometric average and deduce the final
value from QSSR:

(m̄u + m̄d )(2 GeV) = (10.1 ± 1.3 ± 1.3) MeV , (53.54)
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where the last error is our estimate of the systematics. One can combine this result with the
one for the light quark mass ratios from ChPT [57]:

rC A
2 ≡ mu

md
= 0.553 ± 0.043 , rC A

3 ≡ 2ms

(md + mu)
= 24.4 ± 1.5 . (53.55)

Therefore, one can deduce the running masses at 2 GeV:

m̄u(2) = (3.6 ± 0.6) MeV , m̄d (2) = (6.5 ± 1.2) MeV , m̄s(2) = (123.2 ± 23.2) MeV .

(53.56)

Alternatively, we can use the relation between the invariant mass m̂q and running mass
m̄q (2) to order α3

s in order to get:

m̂q = (1.14 ± 0.05) m̄q (2) , (53.57)

for �3 = (375 ± 50) MeV. Therefore, one can deduce the invariant masses:

m̂u = (4.1 ± 0.7) MeV , m̂d = (7.4 ± 1.4) MeV , m̂s = (140.4 ± 26.4) MeV .

(53.58)

53.7 Light quark mass from the scalar sum rules

As can be seen from Eq. (53.24), one can also (in principle) use the isovector-scalar sum
rule for extracting the quark mass-differences (md − mu) and (ms − mu), and the isoscalar-
scalar sum rules for extracting the sum (md + mu).

53.7.1 The scalar ūd channel

In the isovector channel, the analysis relies heavily on the less controlled nature of the
a0(980) [3,420,422,666], which has been speculated to be a four-quark state [73]. However,
it appears that its q̄q nature is favoured by the present data [690], and further tests are
needed for confirming its real q̄q assignment.

In the I = 0 channel, the situation of the π -π continuum is much more involved due to
the possible gluonium nature of the low mass and wide σ meson [686,687,689,688,690],
which couples strongly to π -π and then can be missed in the quenched lattice calculation
of scalar gluonia states.

Assuming that these previous states are quarkonia states, bounds on the quark mass
difference and sum of quark masses have been derived in [666,671,672], while an estimate
of the sum of the quark masses has been recently derived in [691]. However, in view of
the hadronic uncertainties, we expect that the results from the pseudoscalar channels are
much more reliable than the ones obtained from the scalar channel. Instead, we think that
it is more useful to use these sum rules the other way around. Using the values of the quark
masses from the pseudoscalar sum rules and their ratio from ChPT, one can extract their
decay constants, which are useful for testing the q̄q nature of the scalar resonances [3,688]
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(we shall come back to this point in the next section). The agreement of the values of the
quark masses from the isovector scalar channel with the ones from the pseudoscalar channel
can be interpreted as a strong indication for the q̄q nature of the a0(980). In the isoscalar
channel, the value of the sum of light quark masses obtained recently in [691], although
slightly lower, agrees within the errors with that from the pseudoscalar channel. This result
supports the maximal quarkonium-gluonium scheme for the broad low mass σ and narrow
f0(980) meson: the narrowness of the f0 is due to a destructive interference, while the broad
nature of the σ is due to a contructive interference allowing its strong coupling with π -π .
These features are very important for the scalar meson phenomenology, and need to be
tested further.

53.7.2 The scalar ūs channel

Here, the analysis is mostly affected by the parametrization of the Kπ phase shift data,
which strongly affects the resulting value of the strange quark mass as can be seen from the
different determinations given in Table 53.3.

53.8 Light quark mass difference from (MK + − MK 0 )QCD

The mass difference (md − mu) can be related to the QCD part of the kaon mass difference
(MK + − MK 0 )QCD from the current algebra relation [57]:

rC A
2 ≡ (md − mu)

(md + mu)
= m2

π

M2
K

(
M2

K 0 − M2
K +
)

QCD

M2
K − m2

π

m2
s − m̂2

(mu + md )2
= (0.52 ± 0.05)10−3

(
r2

3 − 1
)
,

(53.59)
where 2m̂ = mu + md ; the QCD part of the K + − K 0 mass difference comes from the
estimate of the electromagnetic term using the Dashen theorem including next-to-leading
chiral corrections [677]. Using the sum rule prediction of r3 from the ratio of (mu + md )
in Eq. (53.54) with the average value of ms in Table 53.3 or the ChPT ratio given in the
previous section, one can deduce to order α3

s :

(m̄d − m̄u) (2 GeV) = (2.8 ± 0.6) MeV . (53.60)

An analogous result has been obtained from the heavy-light meson mass-differences
[692]. We shall come back to the values of these masses at the end of this chapter.

53.9 The strange quark mass from e+e− and τ decays

53.9.1 e+e− → I = 0 hadrons data and the φ-meson channel

Its extraction from the vector channel has been done in [693,3] and more recently in
[354], while its estimate from an improved Gell-Mann–Okubo mass formula, including
the quadratic mass corrections, has been done in [32,399,3]. More recently, the vector
channel has been re-analysed in [354] using a τ -like inclusive decay sum rule in a modern
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version of the Das–Mathur–Okubo (DMO) sum rule [27] discussed in a previous chapter.
The analysis in this vector channel is interesting as we have complete data from e+e− in
this channel, which is not the case of (pseudo) scalar channels where some theoretical in-
puts related to the realization of chiral symmetry have to be used in the parametrization of
spectral function. One can combine the e+e− → I = 0, 1 hadrons and the rotated recent
�S = 0 component of the τ -decay data in order to extract ms . Unlike previous sum rules,
one has the advantage to have a complete measurement of the spectral function in the region
covered by the analysis. We shall work with:

Rτ,φ ≡ 3|Vud |2
2πα2

SEW

∫ M2
τ

0
ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
s

M2
τ

σe+e−→φ,φ′,... ,

and the SU (3)-breaking combinations [354]:

�1φ ≡ Rτ,1 − Rτ,φ, �10 ≡ Rτ,1 − 3Rτ,0 , (53.61)

which vanish in the SU (3) symmetry limit; �10 involves the difference of the isoscalar
(Rτ,0) and isovector (Rτ,1) sum rules à la DMO. The PT series converges quite well at the
optimization scale of about 1.6 GeV [354]. For example, normalized to m̄2

s , one has:

�1φ � −12
m̄2

s

M2
τ

{
1 + 13

3
as + 30.4a2

s + (173.4 ± 109.2)a3
s

}

+ 36
m̄4

s

M2
τ

− 36α2
s

〈mss̄s − mdd̄d〉
M4

τ

. (53.62)

The different combinations �1φ and �10 have the advantage to be free (to leading order)
from flavour-blind combinations like the tachyonic gluon mass and instanton contributions.
We have checked using the result in [161] that, to non-leading in m2

s , the tachyonic gluon
contribution is also negligible. It has been argued in [355] that �10 can be affected by large
SU (2) breakings. This claim has been tested using some other sum rules not affected by
these terms [354] but has not been confirmed. The average from different combinations is
given in Table 53.3. An upper bound deduced from the positivity of Rτ,φ is also given in
Table 53.2.

53.9.2 Tau decays

As in the case of e+e−, one can use tau decays for extracting the value of ms . However,
data from τ decays are more accurate than those from e+e−. A suitable combination of sum
rules that are sensitive to leading order to the SU (3) breaking parameter is needed. It is easy
to construct such a combination which is very similar to the one for e+e−. One can work
with the DMO-like sum rule involving the difference between the �S = 0 and �S = −1
processes [348–353]:

δRkl
τ ≡ Rkl

τ,V +A

|Vud |2 − Rkl
τ,S

|Vus |2 = 3SEW

∑
D≥2

{
δ

kl(D)
ud − δkl(D)

us

}
, (53.63)
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where the moments are defined as:

Rkl
τ ≡

∫ M2
τ

0
ds

(
1 − s

M2
τ

)k ( s

M2
τ

)l d Rτ

ds
, (53.64)

with R00
τ ≡ Rτ is the usual τ -hadronic width. The QCD expression reads:

δRkl
τ � 24SEW

{
m̄2

s

M2
τ

�
(2)
kl − 2π2 〈mss̄s − mdd̄d〉

M4
τ

�
(4)
kl

}
, (53.65)

where �
(D)
kl are perturbative coefficients known to order α2

s :

�
(D)
kl ≡ 1

4

{
3�

(D)
kl

∣∣
L+T + �

(D)
kl

∣∣
L

}
, (53.66)

where the indices T and L refer to the tranverse and longitudinal parts of the spectral
functions. For D = 2, the L part converges quite badly while the L + T converge quite
well such that the combination can still have an acceptable convergence. For the lowest
moments, one has:

�
(2)
00 = 0.973 + 0.481 + 0.372 + 0.337 + · · ·

�
(2)
10 = 1.039 + 0.558 + 0.482 + 0.477 + · · ·

�
(2)
20 = 1.115 + 0.643 + 0.608 + 0.647 + · · · (53.67)

The authors advocate that although the convergence is quite bad, the behaviour of the series
is typical for an asymptotic series close to their point of minimum sensistivity. Therefore,
the mathematical procedure for doing a reasonable estimate of the series is to truncate the
expansion where the terms reach their minimum value. However, the estimate of the errors
is still arbitrary. The authors assume that the error is given by the last term of the series.
The result of the analysis is given in Table 53.3. The different numbers given in the table
reflects the difference of methods used to get ms but the results are consistent with each
other within the errors. As in the case of the e+e− DMO-like sum rule, the combination used
here is not affected to leading order by flavour-blind contribution like the tachyonic gluon
and instanton contribution. We have checked [161] that the contribution of the tachyonic
gluon to order m2

s αsλ
2/M2

τ gives a tiny correction and does not affect the estimate done
without the inclusion of this term.

53.9.3 Summary for the estimate of light quark masses

Here, we summarize the results from the previous analysis:

� The sum (m̄u + m̄d ) of the running up and down quark masses from the pion sum rules is given in
Eq. (53.42), while the one of the strange quark mass from the kaon channel is given in Eq. (53.44).
Their values lead to the pseudoscalar sum rules prediction for the mass ratio in Eq. (53.45) which
agrees nicely with the ChPT mass ratio.
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� The sum (m̄u + m̄d ) of the running up and down quark masses averaged from the pseudoscalar
sum rule and from a direct extraction of the chiral condensate 〈ūu〉 obtained from a global fit of
the nucleon, B∗-B mass-splitting and the vector part of the D∗ → K ∗lν form factor is given in Eq.
(53.51) and reads for �3 = (375 ± 50) MeV:

(m̄u + m̄d )(2 GeV) = (10.1 ± 1.8) MeV , (53.68)

implying with the help of the ChPT mass ratio mu/md , the value:

m̄u(2 GeV) = (3.6 ± 0.6) MeV , m̄d (2 GeV) = (6.5 ± 1.2) MeV , (53.69)

which leads to the invariant mass in Eq. (53.58):

m̂u = (4.1 ± 0.7) MeV , m̂d = (7.4 ± 1.4) MeV , (53.70)

� We have combined the result in Eq. (53.54) with the sum rule prediction for ms/(mu + md ) in
order to deduce the quark mass difference (md − mu) from the QCD part of the K 0 − K + mass
difference. We obtain the result in Eq. (53.60):

(m̄d − m̄u)(2 GeV) = (2.8 ± 0.6) MeV . (53.71)

This result indeed agrees with the one taking the difference of the mass given previously. The
fact that (mu + md ) �= (md − mu) does not favour the possibility of having mu = 0.

� We give in Table 53.3 the different sum rules determinations of ms . The results from the pion SR
and 〈ψ̄ψ〉 come from the determination of (mu + md ) to which we have added the ChPT contraint
on ms/(mu + md ). One can see from this table that different determinations are in good agreement
with each others. Doing an average of these different results, we obtain:

m̄s(2 GeV) = (117.4 ± 23.4) MeV =⇒ m̂s = (133.8 ± 27.3) MeV . (53.72)

Aware on the possible correlations between these estimates, we have estimated the error as an
arithmetic average which is about 10% as generally expected for the systematics of the SR approach.

It is informative to compare the above results with the average of different quenched and
unquenched lattice values [694]:

m̄ud (2 GeV) ≈ 1

2
(m̄u + m̄d )(2 GeV) = (4.5 ± 0.6 ± 0.8) MeV ,

m̄s(2 GeV) = (110 ± 15 ± 20) MeV , (53.73)

where the last error is an estimate of the quenching error. We show in Table 53.4 a com-
pilation of the lattice unquenched results including comments on the lattice characterisitcs
(action, lattice spacing a, β). Also shown is the ratio over ms/mud and quenched (quen)
over unquenched (unq) results.

53.10 Decay constants of light (pseudo)scalar mesons

53.10.1 Pseudoscalar mesons

Due to the Goldstone nature of the pion and kaon, we have seen that their radial excitations
play an essential rôle in the sum rule. This unusual property allows a determination of
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Table 53.4. Simulation details and physical results of unquenched lattice calculations of
light-quark masses from [694], where original references are quoted

Action a−1[GeV] #(β,Ksea ) Zm m̄s(2) ms
mud

m̄quen
s

m̄unq
s

SESAM 98 Wilson 2.3 4 PT 151(30) (mK ,φ) 55(12) 1.10(24)

MILC 99 Fatlink 1.9 1 PT
113(11)
125(9)

(mK )
(mφ)

22(4) 1.08(13)

APE 00 Wilson 2.6 2 NP-RI
112(15)
108(26)

(mK )
(mφ)

26(2) 1.09(20)

CP-PACS 00 MF-Clover a → 0 12 PT
88+4

−6

90+5
−11

(mK )
(mφ)

26(2) 1.25(7)

JLQCD 00 NP-Clover 2.0 5 PT

94(2)†

88(3)‡

109(4)†

102(6)‡

(mK )

(mφ)
– –

QCDSF +
UKQCD 00

NP-Clover 2.0 6 PT 90(5) (mK ) 26(2) –

† From vector WI; ‡ from axial WI. The errors on the ratios ms/mud and m̄quen
s /m̄unq

s are estimates
based on the original data.
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Fig. 53.4. LSR analysis of the ratio rπ ≡ M4
π ′ f 2

π ′/M4
π f 2

π . For a given value rπ = 9.5, we show the
value of (m̄d + m̄u)(2) for two values of the QCD continuum tc.

the radial excitation parameters. In the strange quark channels, an update of the results in
[354,422,420,3,675] gives:

rK ≡ M4
K ′ f 2

K ′/M4
K f 2

K � 9.5 ± 2.5 � rπ , (53.74)

where rπ has been defined previously. The optimal value has been obtained at the LSR scale
τ ≈ 0.5 GeV−2 and tc � 4.5 − 6.5 GeV2 as shown in Fig. 53.4. This result implies for
π ′(1.3) and K ′(1.46):

fπ ′ � (3.3 ± 0.6) MeV , fK ′ � (39.8 ± 7.0) MeV . (53.75)
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Fig. 53.5. LSR analysis of the decay constant fa0 of the a0(.98) meson normalized as fπ = 92.4 MeV.
We use (m̄d − m̄u)(2) = 2.8 MeV.
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Fig. 53.6. LSR analysis of the decay constant fK∗0 of the K ∗
0 (1.43) meson normalized as fπ =

92.4 MeV. We use m̄s(2) = 117.4 MeV.

It is easy to see that the result satisfies the relation:

fK ′

fπ ′
≈ M2

K

m2
π

≈ ms

md
, (53.76)

as expected from chiral symmetry arguments.

53.10.2 Scalar mesons

We expect that the scalar channel is more useful for giving the decay constants of the
mesons which are not well known rather than predicting the value of the quark masses.
Such a programme has been initiated in [420,422,3]. Since then, the estimate of the de-
cay constants has not mainly changed. The analysis is shown in Figs. 53.5 and 53.6.
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A recent estimate gives [354]:

fa0 = (1.6 ± 0.15 ± 0.35 ± 0.25) MeV , fK ∗
0

� (46.3 ± 2.5 ± 5 ± 5) MeV , (53.77)

where the errors are due respectively to the choice of tc from 4.5 to 8 GeV2, the value of
the quark mass difference obtained previously and the one of �3. The decay constants are
normalized as:

〈0|∂µV µ(x)|a0〉 =
√

2 fa M2
a , (53.78)

corresponding to fπ = 92.4 MeV. We have used the experimental masses 0.98 and 1.43 GeV
in our analysis.5 It is also interesting to notice that the ratio of the decay constants are:

fK ∗
0

fa0

� 29 ≈ ms − mu

md − mu
� 40 , (53.79)

as naı̈vely expected. We are aware that the values of these decay constants might have been
overestimated due to the eventual proliferations of nearby radial excitations. Therefore,
it will be interesting to have a direct measurement of these decay constants for testing
these predictions. The values of these decay constants will be given like other meson decay
constants in Table 54.1 in the next chapter.

53.11 Flavour breaking of the quark condensates

53.11.1 SU (3) corrections to kaon PCAC

Let us remind ourselves that the (pseudo)scalar two-point function obeys the twice-
subtracted dispersion relation:

�(5)(q
2) = �(5)(0) + q2� ′

(5)(0) + q4
∫ ∞

0

dt

t2(t − q2 − iε)
Im�(5)(t) . (53.80)

The deviation from kaon PCAC was first studied in [400] using the once-subtracted
pseudoscalar sum rule of the quantity:

�(5)(q2) − �(5)(0)

q2
(53.81)

sensitive to the value of the value of the correlator at q2 = 0.6 The Ward identity obeyed
by the (pseudo)scalar two-point function leads to the low-energy theorem:

�(5)(0) = −(mi ± m j )〈ψ̄iψi ± ψ̄ jψ j 〉 , (53.82)

in terms of the normal ordered condensates. However, as emphasized in different papers
[167,399,444,442], �(5)(0) contains a perturbative piece which cancels the mass singu-
larities appearing in the OPE evaluation of �(5)(q2). This leads to the fact that the quark

5 The masses of the a0 and K ∗
0 are also nicely reproduced by the ratio of moments [357,3].

6 This sum rule has also been used in [260,261,265] for estimating the U (1)A topological suceptibility and its slope. The result
has been confirmed on the lattice [266].



53 Light and heavy quark masses, etc. 595

1.000.25 0.50 0.75 1.25 1.50 1.75

−1.0

−0.5

0.5

0

1.0

1.5

τ [GeV-2]ψ
5(

0)
 / 

2M
2

f2
K

K

Fig. 53.7. LSR analysis of the subtraction constant �5(0). We use m̄s(2) = 117.4 MeV, rK = 9.5 and
tc = 6 GeV2. The curves correspond to different truncations of the PT series: to O(αs): dotted-dashed;
to O(α2

s ): dashed; to O(α3
s ): continuous.

condensate entering in Eq. 53.82 are defined as a non-normal ordered condensate, which
has a slight dependence on the scale and renormalization scheme. This mass correction
effect is only quantitatively relevant for the ūs channel but not for the ūd one. To order α3

s

for the perturbative term and to leading order for the condensates, the (pseudo)scalar sum
rule for the ūs channel reads, by neglecting the up quark mass:∫ tc

0

dt

t
exp (−tτ )

1

π
Im�(5)(t) � �(5)(0)

+ (m̄u ± m̄s)2 3

8π2
τ−1

{
(1 − ρ0)

[
1 + 6.82

(
ᾱs

π

)
+ 58.55

(
ᾱs

π

)2

+ 537.6

(
ᾱs

π

)3
]

+ 3.15m̄2
s τ

[
1 + 3.32

(
ᾱs

π

)]

−
[

π

3
〈αs G2〉 − 8π2

3

[(
m̄s − m̄u

2

)
〈ūu〉 ± (u ↔ s)

]]
τ 2

+ 1

2
(2 ∓ 9)

(
128

81

)
π3ραs〈ūu〉2τ 3

}
, (53.83)

where we have neglected the SU (3) breaking for the four-quark condensates. This assump-
tion does not, however, affect the analysis due to the small contribution of this operator at
the optimization scale. The analysis is shown in Fig. 53.7. Examining the different curves,
on can notice that they deviate notably from the kaon PCAC prediction:

�5(0) � 2M2
K f 2

K , (53.84)

therefore confirming the early findings in [400]. The LSR indicates a slight stability point
at τ ≈ (0.50 ∼ 0.75) GeV−2, where:

�5(0) � (0.5 ± 0.2)2M2
K f 2

K . (53.85)
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However, at this scale, PT series has a bad convergence:

Pert = Parton × {
1 + 2.17αs + 5.93α2

s + 17.34α3
s

}
� Parton × {1 + 0.86 + 0.92 + 1.06} , (53.86)

which might not be of concern if one considers that an asymptotic series close to its point
of minimum sensitivity can be truncated when its reaches the extremum value and the
last term added as a truncation error.7 This convergence might a priori be improved if
one works with the combination of sum rules which is less sensitive to the high-energy
behaviour of the spectral function (and then to the perturbative contribution) than the former
[675,680,420,3,354]. The modified sum rule reads [3].8∫ ∞

0

dt

t
exp(−tτ ) (1 − tτ )

1

π
Im�(5)(t) � �(5)(0) + (m̄u ± m̄s)2 3

8π2
τ−1

×
{

2

(
ᾱs

π

)[
1 + 18.3

(
ᾱs

π

)
+ 242.2

(
ᾱs

π

)2]
+ 5.15m̄2

s τ
[
1 + 5.0

(
ᾱs

π

)]

+ 2

[
π

3
〈αs G2〉 − 8π2

3
m̄s

[
〈ūu〉 ∓ 1

2
〈s̄s〉

]]
τ 2 + 3

2
(2 ∓ 9)

(
128

81

)
π3ραs〈ūu〉2τ 3

}
.

(53.87)

The analysis also leads to a similar result. The LSR has been also studied recently
in [695], by including threshold effects and higher mass resonances, which enlarge the
region of stability in the LSR variable. Within the previous hadronic parametrization, one
obtains:

�5(0) � (0.56 ± 0.04 ± 0.15)2M2
K f 2

K , (53.88)

where we have added the error due to our estimate of the truncation of the QCD PT series
as deduced from Fig. 53.7. An alternative estimate is obtained with the use of FESR [679].
Parametrizing the subtraction constant as:

�5(0)u
s = 2M2

K f 2
K (1 − δK ) , (53.89)

one has the sum rule [679]:

δK � 3

16π2

m̄2
s tc

f 2
K M2

K

{
1 + 23

3
as + O(

a2
s

)} − rK

(
MK

MK ′

)2

, (53.90)

which gives, after using the correlated values of the input parameters [420,3,354]:

δK = 0.34+0.23
−0.17 , (53.91)

7 A similar argument has been used for the extraction of the strange quark mass from τ -decay data discussed in the previous
section, where the QCD series has also quite bad behaviour.

8 Notice that we have not yet introduced the QCD continuum into the LHS of the sum rule.
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leading to:

�5(0) � (0.66 ± 0.20)2M2
K f 2

K , (53.92)

confirming the large violation of kaon PCAC obtained from LSR.

53.11.2 Subtraction constant from the scalar sum rule

One can do a similar analysis for the scalar channel. The analysis from LSR is shown in
Fig. 53.8. One can also see that there is a slight stability for τ ≈ (0.50 ∼ 0.75) GeV−2,
which gives:

�(0) ≈ −10−3 GeV4 , (53.93)

in agreement with previous results [3,420,422,675]. In [695], using LSR, a similar result
but from a larger range of LSR stability, has been obtained within an Omnés representation
for relating the scalar form factor to the Kπ phase shift data:

�(0) � −(1.06 ± 0.21 ± 0.20)10−3 GeV4 , (53.94)

where the last term is our estimate of the error due to the truncation of the QCD series. We
show the analysis in Fig. 53.9.

One can use an alternative approach by working with FESR:

�(0)u
s = 2M2

K ∗
0

f 2
K ∗

0
− 3

16π2
m̄2

s tc

{
1 + 23

3
as + O(

a2
s

)}
, (53.95)
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Fig. 53.9. LSR analysis of the subtraction constant �(0) versus the sum rule scale using Kπ phase
shift data, from [695].

which gives [354]:

�(0)u
s = − (

7.8+5.5
−2.7

)
10−4 GeV4. (53.96)

53.11.3 〈s̄s〉/〈ūu〉 from the (pseudo)scalar sum rules

We take the arithmetic average of the previous determinations for our final estimate:

�5(0) � (0.57 ± 0.19)2M2
K f 2

K , �(0) � −(0.92 ± 0.35)10−3 GeV4 , (53.97)

Taking the ratio of the scalar over the pseudoscalar subtraction constants expressed in terms
of the normal-ordered condensates, one can deduce:

〈s̄s〉/〈ūu〉 = 0.57 ± 0.12 . (53.98)

53.11.4 〈s̄s〉/〈ūu〉 from the Bs meson

One can also extract the flavour breakings of the condensates from a sum rule analysis of
the Bs and B∗

s masses, which are sensitive to the chiral condensate as it enters like mb〈s̄s〉
in the OPE of the heavy-light meson (see next section). The masses of the mesons are found
to decrease linearly with the value of the chiral condensate. Using the observed value of the
Bs meson mass MBs = 5.375 GeV, one can deduce from Fig. 3 of [401]:

〈s̄s〉/〈ūu〉 � 0.75 ± 0.08 , (53.99)

where the error is the expected typical sum rule estimate. The effect of the strange quark
mass is less important than the one here, such that the result given in [401] remains valid
although obtained with slightly different values of ms and �5. This estimate is expected to
be more reliable than the one from the (pseudo)scalar light mesons, which are affected by
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the bad convergence of the PT QCD series. Using this value of ratio of the condensates in
the (old) curve of the B∗

s mass, leads to a value higher than the measured one, which needs
to be clarified.

53.11.5 Final sum rule estimate of 〈s̄s〉/〈ūu〉
Using the previous results, one can deduce that the sum rules from the light (pseudo)scalar
and from the Bs meson predict for the normal ordered condensate ratio:

〈s̄s〉/〈ūu〉 � 0.66 ± 0.10 , (53.100)

confirming earlier findings [675,3,420,354] on the large flavour breaking of the chiral con-
densate. This number comes from the arithmetic average of the two values in Eqs. (53.98)
and (53.99). If one instead works with the non-normal ordered condensate, one should add
to the expression in Eq. (53.82) a small perturbative part first obtained by Becchi et al. [167]
(see also [3,399,441]):

〈s̄s〉M S = 〈s̄s〉 − 3

2π2

2

7

(
1

as
− 53

24

)
m̄3

s . (53.101)

This leads to the ratio of the non-normal ordered condensates:

〈s̄s〉/〈ūu〉|M S = 0.75 ± 0.12. (53.102)

The previous estimates are in good agreement with those from chiral perturbation theory
[57] (see also [696]). They are also in fair agreement with the one from the baryonic sum
rules [424–430], although we expect that the result from the latter is less accurate due to the
complexity of the analysis in this channel (choice of the interpolating operators, eventual
large effects of the continuum due to the nearby Roper resonances, . . . ).

53.11.6 SU (2) breaking of the quark condensate

The SU (2) breaking of the quark condensate has been studied for the first time in [680] and
in [679,3]. Using similar approaches, the estimate is [3,420]:

〈d̄d〉/〈ūu〉 � 1 − 9 × 10−3 . (53.103)

The previous estimate is in good agreement with the one from FESR [679].

53.12 Heavy quark masses

In the previous part of this book, we have already discussed the different definitions of the
heavy quark masses and given their values. Contrary to the light quark masses, the definition
of pole quark masses p2 = M2

H can (in principle) be introduced perturbatively for heavy
quarks [147,133,148], similarly to that of the electron, as here the quark mass is much
heavier than the QCD scale � such that the perturbative approach makes sense. However, a
complication arises due to the resummation of the QCD series [154] such that the pole mass
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definition has an intrinsic ambiguity, which can be an obstacle to its improved accuracy
determination, although the effect is relatively small. Alternative definitions that are free
from such ambiguities have been proposed in the literature [157,159]. In this section, we
shall discuss the determinations of the perturbative running quark masses which do not have
such problems.

53.12.1 The quarkonia channel

Charmonium and bottomium are the standard channels for extracting the charm and bottom
quark masses. Most of the sum rule analysis are based on the Q2 = 0 moments (MOM)
originally introduced by SVZ for the study of the charmonium systems:

Mn ≡ 1

n!

(
− d

d Q2

)n

�

∣∣∣∣
Q2=0

=
∫ ∞

4m2

dt

tn+1

1

π
Im�(t) , (53.104)

but convenient for the bottomium systems due to a much better convergence of the OPE.
In [357], the Q2 �= 0 moments have been introduced for improving the convergence of the
QCD series:

Mn
(
Q2

0

) ≡ 1

n!

(
− d

d Q2

)n

�

∣∣∣∣
Q2=Q2

0

=
∫ ∞

4m2

dt(
t + Q2

0

)n+1

1

π
Im�(t) , (53.105)

The spectral function can be related to the e+e− → Q Q̄ total cross-section via the optical
theorem:

Im�(t + iε) = 1

12π Q2
Q

σ (e+e− → Q Q̄)

σ (e+e− → µ+µ−)
. (53.106)

QQ is the heavy quark charge in units of e. The contribution to the spectral function is as
usual saturated by the lowest few resonances plus the QCD continuum above the threshold tc:

Im�Q(t) = 3

4α2

1

Q2
Q

∑
i

�i Miδ
(
t − M2

i

) + θ (t − tc)Im�
QCD
Q (t), (53.107)

where �i is the electronic width of the resonances with the value given in PDG [16].
Retaining the observed resonances, the value of

√
tc fixed from stability analysis is about

(11 ∼ 12) GeV for the ϒ-and about 5 GeV for the J/�-families. However, the result will
be practically independent from this choice of tc due to the almost complete dominance
of the lowest ground state to the spectral function at the stability point. An alternative
approach that is used in [148,149] is the LSR:

L(τ ) =
∫ ∞

4m2
dt exp−tτ 1

π
Im�(t) . (53.108)

This sum rule is particularly convenient for the analysis of the charmonium systems as
the corresponding OPE converges faster than the moment sum rules. It has been noted in
[149] that the ratios of sum rules (and their finite energy sum rule (FESR) variants) are



53 Light and heavy quark masses, etc. 601

more appropriate for the estimate of the quark mass as these ratios equate directly the mass
squared of ground state to that of the quark:

Rn ≡ M(n)

M(n+1)
and Rτ ≡ − d

dτ
logL , (53.109)

They also eliminate, to leading order, some artefact dependence due to the sum rules (expo-
nential weight factor or number of derivatives) and some other systematic errors appearing
in each of the individual moments. For the perturbative part, we shall use (without expanding
in 1/M) the Schwinger interpolating formula to two loops:

Im�
pert
Q (t) � 3

12π
vQ

(
3 − v2

Q

2

){
1 + 4

3
αs f (vQ)

}
, (53.110)

where:

vQ =
√

1 − 4M2
Q

/
t , f (vQ) = π

2vQ
− (3 + vQ)

4

(
π

2
− 3

4π

)
(53.111)

are respectively the quark velocity and the Schwinger function [319]. We express this
spectral function in terms of the running mass by using the two-loops relation given in a
previous chapter and including the αs log(t/M2

Q)-term appearing for off-shell quark. We
shall add to this perturbative expression the lowest dimension 〈αs G2〉 non-perturbative
effect (it has been explained in a previous part of this book that, for a heavy-heavy quark
correlator, the heavy-quark condensate contribution is already absorbed into the gluon
one), which among the available higher-dimension condensate terms can only give a non-
negligible contribution. The gluon condensate contribution to the moments M(n) and so to
Rn can be copied from the original work of SVZ [1] and reads:

M(n)
G = −M(n)

pert
(n + 3)!

(n − 1)!(2n + 5)

4π

9

〈αs G2〉(
4M2

Q

)2 , (53.112)

where M(n)
pert is the lowest perturbative expression of the moments. The one to the Laplace

ratio Rτ can be also copied from the original work of Bertlmann [93], which has been
expanded recently in 1/MQ by [697]. It reads:

RG
τ � (

4M2
Q

)2π

3
〈αs G2〉τ 2

(
1 + 4

3ω
− 5

12ω2

)
, (53.113)

where ω ≡ 4M2
Qτ . The results of the analysis from the ratios of moments and Laplace sum

rules give the values of the running masses to order αs :9

m̄c(m̄c) = (1.23 ± 0.03 ± 0.03) GeV , m̄b(m̄b) = (4.23 ± 0.04 ± 0.02) GeV ,

(53.114)

where the errors are respectively due to αs(MZ ) = 0.118 ± 0.006 and 〈αs G2〉 = (0.06 ±
0.03) GeV4 used in the original work. These running masses can be converted into the pole

9 The inclusion of the α2
s correction is under study.
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Table 53.5. QSSR direct determinations of m̄c(m̄c) in M S scheme and of the pole mass Mc

from J/�-family, e+e− data and D-meson and comparisons with lattice results.
Determinations from some other sources are quoted in PDG [16]. The results are given in
units of GeV. The estimated error in the SR average comes from an arithmetic average of

the different errors. The average for the pole masses is given at NLO. The one of the
running masses is almost unchanged from NLO to NNLO determinations. ⇐= means that
the perturbative relations between the different mass definitions have been used to get the

quoted values

Sources m̄c(m̄c) Mc Comments Authors

J/�-family
MOM and LSR at NLO (1.27 ± 0.02) ⇐= (1.45 ± 0.05) ⇐= m

(−m2
c

)
SN89 [148]

= (1.26 ± 0.02)
Ratio of LSR at NLO (1.23 ± 0.04) =⇒ (1.42 ± 0.03) SN94 [149]
NRSR at NLO (1.23 ± 0.04) ⇐= (1.45 ± 0.04) SN94 [149]
SR at NLO (1.22 ± 0.06) ⇐= (1.46 ± 0.04) DGP94 [697]
NRSR at NNLO (1.23 ± 0.09) (1.70 ± 0.13)∗ EJ01 [699]

e+e−data
FESR at NLO (1.37 ± 0.09) PS01 [700]
MOM at NNLO (1.30 ± 0.03) KS01 [701]
NLO (1.04 ± 0.04) ⇐= 1.33 ∼ 1.4 M01 [702]

D meson
Ratio of LSR at NNLO (1.1 ± 0.04) (1.47 ± 0.04) SN01 [150]

SR average (1.23 ± 0.05) (1.43 ± 0.04)

Quenched lattice
(1.33 ± 0.08) FNAL98 [703]
(1.20 ± 0.23) NRQCD99 [704]
(1.26 ± 0.13) APE01 [705]

∗ Not included in the average.

masses at this order. Non-relativistic versions of these sum rules (NRSR) introduced by
[155] have also been used in [148,149] for determining the b quark mass. These NRSR
approaches have been improved by the inclusion of higher-order QCD corrections and
resummation of the Coulomb corrections from ladder gluonic exchanges. Some recent
different determinations are given in Tables 53.5 and 53.6.

53.12.2 The heavy-light D and B meson channels

Heavy quark masses can also be extracted from the heavy-light quark channels because
the corresponding correlators are sensitive to leading order to the values of these masses
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Table 53.6. The same as in Table 53.5 but for the b-quark

Sources m̄b(m̄b) Mb Comments Authors

Υ-family
MOM and LSR (4.24 ± 0.05) ⇐= (4.67 ± 0.10) ⇐= mb

(−m2
b

)
SN89 [148]

at NLO = (4.23 ± 0.05)
Ratio of LSR at NLO (4.23 ± 0.04) =⇒ (4.62 ± 0.02) SN94 [149]
NRSR at NLO (4.29 ± 0.04) ⇐= (4.69 ± 0.03) SN94 [149]
FESR at NLO (4.22 ± 0.05) ⇐= (4.67 ± 0.05) SN95 [149]

(4.14 ± 0.04) ⇐= (4.75 ± 0.04) KPP98 [706]
NRSR at NNLO (4.20 ± 0.10) PP99, MY99 [707]
MOM at NNLO (4.19 ± 0.06) JP99 [708]
NR at NNNLO (4.45 ± 0.04) PY00, LS00 [94,709]
NR at NNNLO (4.21 ± 0.09) P01 [602]
NR at NNLO (4.25 ± 0.08) ⇐= Residual mass BS99 [710]
NR at NNLO (4.20 ± 0.06) ⇐= 1S mass H00 [711]
MOM at NNNLO (4.21 ± 0.05) KS01 [701]

B and B∗ mesons
Ratio of LSR at NLO (4.24 ± 0.07) ⇐= (4.63 ± 0.08) SN94 [149]
Ratio of LSR (4.05 ± 0.06) (4.69 ± 0.06) B-meson only SN01 [150]

at NNLO

SR average (4.24 ± 0.06) (4.66 ± 0.06) =⇒ m̄b(MZ ) = (2.83 ± 0.04)

Average LEP
Three-jets at MZ (4.23 ± 0.94) ⇐= m̄b(MZ ) = (2.82 ± 0.63) LEP [712]

Unquenched lattice
(4.23 ± 0.09) APE00 [713]

[3,401,149,698,150]. Again, we shall be concerned here with the LSR L(τ ) and the ratio
R(τ ). The latter sum rule, or its slight modification, is useful, as it is equal to the resonance
mass squared, in the simple duality ansatz parametrization of the spectral function:

1

π
Imψ5(t) � f 2

D M4
Dδ
(
t − M2

D

) + “QCD continuum”θ (t − tc) , (53.115)

where fD is the decay constant analogue to10 fπ = 130.56 MeV. The QCD side of the sum
rule reads:

LQCD(τ ) = M2
Q

{∫ ∞

M2
Q

dt e−tτ 1

8π2

[
3t(1 − x)2

(
1 + 4

3

(αs

π

)
f (x)

)
+
(αs

π

)2
R2s

]

+ [C4〈O4〉 + C6〈O6〉τ ] e−M2
Qτ

}
, (53.116)

10 Notice that we have adopted here the lattice normalization for avoiding confusion. We shall discuss its determination in the
next chapter.
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where R2s is the new α2
s -term obtained semi-analytically in [448] and is available as a

Mathematica package program Rvs.m. Neglecting md , the other terms are:

x ≡ M2
Q/t ,

f (x) = 9

4
+ 2Li2(x) + log x log(1 − x) − 3

2
log(1/x − 1)

− log(1 − x) + x log(1/x − 1) − (x/(1 − x)) log x,

C4〈O4〉 = − MQ〈d̄d〉 + 〈αs G2〉/12π

C6〈O6〉 = M3
Qτ

2

(
1 − 1

2
M2

Qτ

)
g

〈
d̄σµν

λa

2
Gµν

a d

〉

−
(

8π

27

)(
2 − M2

Qτ

2
− M4

Qτ 2

6

)
ραs〈ψ̄ψ〉2 . (53.117)

The previous sum rules can be expressed in terms of the running mass m̄ Q(ν).11 From
this expression, one can easily deduce the expression of the ratio R(τ ), where the unknown
decay constant disappears, and from which we obtain the running quark masses:

m̄c(mc) = (1.10 ± 0.04) GeV . (53.118)

The analysis is shown in Fig. 53.10, where a simultaneous fit of the decay constant from
L and of m̄c(m̄c) from R is shown.12

Our optimal results correspond to the case where both stability in τ and in tc are reached.
However, for a more conservative estimate of the errors we allow deviations from the
stability points, and we take:

tc � (6 ∼ 9.5) GeV2 , τ � (1.2 ± 0.2) GeV−2 , (53.119)

and where the lowest value of tc corresponds to the beginning of the τ -stability region.
Values outside the above ranges are not consistent with the stability criteria. One can check
that the dominant non-perturbative contribution is due to the dimension-four Mc〈d̄d〉 light
quark condensate, and test that the OPE is not broken by high-dimension condensates at
the optimization scale. However, the perturbative radiative corrections converge slowly, as
the value of fD increases by 12% after the inclusion of the αs correction and the sum of the
lowest order plusαs-correction increases by 21% after the inclusion of theα2

s term, indicating
that the total amount of corrections of 21% is still a reasonnable correction despite the slow
convergence of the perturbative series, which might be improved using a resummed series.
However, as the radiative corrections are both positive, we expect that this slow convergence
will not affect the final estimate in a significant way. A similar analysis is done for the pole
mass. The discussions presented previously also apply here, including the one of the radiative
corrections. We quote the final result:

Mc = (1.46 ± 0.04) GeV , (53.120)

11 It is clear that, for the non-perturbative terms which are known to leading order of perturbation theory, one can use either the
running or the pole mass. However, we shall see that this distinction does not notably affect the present result.

12 We shall discuss the decay constant in the next section.
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Fig. 53.10. Laplace sum rule analysis of fD and m̄c(m̄c).

where the error is slightly smaller here due to the absence of the subtraction scale uncer-
tainties. One can cross-check that the two values of m̄c(mc) and Mc give the ratio:

Mc/m̄c(mc) � 1.33 , (53.121)

which satisfies quite well the three-loop perturbative relation Mc/m̄c(mc) = 1.33. This
could be a non-trivial result if one has in mind that the quark pole mass definition can be
affected by non-perturbative corrections not present in the standard SVZ-OPE. In particular,
it may signal that 1/q2 correction of the type discussed in [162,161,394], if present, will
only affect weakly the standard SVZ-phenomenology as observed explicitly in the light
quark, gluonia and hybrid channels [161]. Using analogous analysis for the B meson, we
obtain at the optimization scale τ = 0.375 GeV−2 and tc = 38 GeV2:

m̄b(mb) = (4.05 ± 0.06) GeV , (53.122)
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while using the pole mass as a free parameter, we get:

Mb = (4.69 ± 0.06) GeV . (53.123)

One can again cross-check that the two values of m̄b(mb) and Mb lead to:

Mb/m̄b(mb) = 1.16 , (53.124)

to be compared with 1.15 from the three-loop perturbative relation between Mb and m̄b,
and might indirectly indicate the smallness of the 1/q2 correction if any. One can imme-
diately notice the agreement of the results from quarkonia and heavy-light quark channels.
Comparisons with other determinations are given in Tables 53.5 and 53.6.

Summary for the heavy quark masses and consequences

From Tables 53.5 and 53.6, we conclude that the running c and b quark masses to order α2
s

from the different sum rules analysis are likely to be:

m̄c(m̄c) = (1.23 ± 0.05) GeV , m̄b(m̄b) = (4.24 ± 0.06) GeV , (53.125)

where the estimated errors come from the arithmetical average of different errors. We have
not tried to minimize the errors from weighted average as the correlations between these
different determinations are not clear at all. However, as one can see in the tables, the quoted
errors are typical for each individual determination. These results are consistent with other
determinations given in [16] and in particular with the LEP average from three-jet events and
lattice values reported in the tables. Using the previous relation between the short distance
perturbative pole and running masses, one obtains, to order αs :

M PT 2
c = (1.41 ± 0.06) GeV , M PT 2

b = (4.63 ± 0.07) GeV , (53.126)

and to order α2
s :

M PT 3
c = (1.64 ± 0.07) GeV , M PT 3

b = (4.88 ± 0.07) GeV , (53.127)

which are consistent with the average values to order αs quoted in the tables and in [149].
However, one should notice the large effects due to radiative corrections which can reflect
the uncertainties in the pole mass definition. From the previous values of the running masses,
one can also deduce the values of the RG invariant masses to order α2

s :

m̂c = (1.21 ± 0.07) GeV , m̂b = (6.9 ± 0.2) GeV . (53.128)

We have used �4 = 325 ± 40 MeV and �5 = 225 ± 30 MeV. Taking into account thresh-
old effects and using matching conditions, we can also evaluate the running masses at the
scale 2 GeV and obtain:

m̄c(2) = (1.23 ± 0.05) GeV , m̄b(2) = (5.78 ± 0.26) GeV . (53.129)
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Combining the values of mb and ms obtained in the previous section, one can deduce the
scale-independent mass ratio:

mb

ms
= 48.8 ± 9.8 , (53.130)

which is useful for model building.
One can also run the value of mb at the Z -mass, and obtains the value of m̄b(MZ ) quoted

in the table:

m̄b(MZ ) = (2.83 ± 0.04) GeV. (53.131)

This value compares quite well with the ones measured at MZ from three-jet heavy quark
production at LEP where the average (2.83 ± 0.04) GeV of different measurements [712]
is also given in the table. This is a first indication for the running of mb in favour of the
QCD predictions based on the renormalization group equation.

53.13 The weak leptonic decay constants fD(s) and fB(s)

In this section,13 we summarize the different results obtained from the QCD spectral sum
rules (QSSR) on the leptonic decay constants of the B and D mesons which are useful in the
analysis of the leptonic decay and on the B-B̄ mixings. Intensive studies have been carried
out on this subject during the last few years using QSSR and lattice calculations.

The leptonic constant of the pseudoscalar P ≡ D, B meson is defined as:

〈0|∂µ Aµ|P〉 = fP M2
P

�P , (53.132)

where �P is the pseudoscalar meson field and fP is the pseudoscalar decay constant which
controls the P → lν leptonic decay width, normalized as fπ = 130.56 MeV.14 The current:

∂µ Aµ(x)i
j = (mi + M j )ψ̄ i (iγ5)ψ j (i ≡ u, d, s; j ≡ c, b) , (53.133)

is the divergence of the axial current. In the sum rule analysis, we shall be concerned with
the pseudoscalar two-point correlator:

�5(q2) = i
∫

d4xeiqx 〈0|T∂µ Aµ(x)i
j

(
∂µ Aµ(0)i

j

)† |0〉 . (53.134)

In the case of the B(ūb) meson, the decay width into τντ reads:

�(B → τντ + B → τντ γ ) = G2
F |Vub|2
4π

MB

(
1 − M2

τ

M2
B

)2

M2
τ f 2

B , (53.135)

where Mτ expresses the helicity suppression of the decay rate into light leptons e and µ.

13 This is an extension and an update of the some parts of the reviews given in [364].
14 In this chapter, we adopt this normalization used by the lattice and experimental groups. In the previous sections, we have used

fπ ≡ fπ /
√

2 = 92.4 MeV.
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Fig. 53.11. Different measurements of fDs compared with theoretical predictions from [714].

This expression shows that a good determination of fB will allow a precise extraction
of the CKM mixing angle Vub. One the other hand, fB and the so-called bag parameter
BB also control the matrix element of the �B = 2 B0-B̄0 mixing matrix, which is of a
non-perturbative origin, as we shall discuss in another chapter.

However, contrary to the case of the π and K mesons, the leptonic width of the heavy
meson is small as the corresponding decay constant vanishes as 1/

√
MQ , while the presence

of the neutrino in the final state renders the reconstruction of the signal and the rejection of
background difficult. Moreover, the B leptonic rate is Cabibbo suppressed, which makes it
unreachable with present measurements. (∼ |Vub|2), while the Ds leptonic rate is Cabbibbo
favoured (∼ |Vcs |2). Recent measurements of fDs are given in Fig. 53.11, where the quoted
average is [714]:

fDs � (264 ± 37) MeV . (53.136)

53.13.1 Upper bound on the value of fD

Within the QSSR framework, the decay constants of the B and D mesons have been firstly
estimated in [414], while the first upper bounds on their values have been derived in [29]
and updated in the recent review [364]. Indeed, a rigorous upper bound on these couplings
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can be derived from the second-lowest superconvergent moment:

M(2) ≡ 1

2!

∂2�5(q2)

(∂q2)2

∣∣∣∣∣
q2=0

, (53.137)

where for this low moment, the OPE behaves well. Using the positivity of the higher-state
contributions to the spectral function, one can deduce [29,399]:

fP ≤ MP

4π

{
1 + 3

mq

MQ
+ 0.751ᾱs + · · ·

}
, (53.138)

where one should not misinterpret the mass dependence in this expression compared with
that expected from heavy-quark symmetry. Applying this result to the D meson, one obtains:

fD ≤ 2.14 fπ , (53.139)

which is not dependent to leading order on the value of the charm quark mass. Although
presumably quite weak, this bound, when combined with the recent determination of the
SU (3)F breaking effects to two loops on the ratio of decay constants [716]:

fDs

fD
� (1.15 ± 0.04) , (53.140)

implies

fDs ≤ (2.46 ± 0.09) fπ � (321.2 ± 11.8) MeV , (53.141)

which is useful for a comparison with the recent measurement of fDs , with the average
value given previously. One cannot push, however, the uses of the moments to higher n
values in this D channel, in order to minimize the continuum contribution to the sum rule
with the aim of derive an estimate of the decay constant from this method, and to derive its
‘correct’ mass dependence, because the QCD series will not converge at higher n values.

53.13.2 Estimate of the D decay constant fD

The decay constant fD can be extracted from the pseudoscalar Laplace sum rules given
in Eq. (53.116).15 Prior to 1987, the different sum rules estimate of the decay constant fP

were inconsistent among each other. To our knowledge, the first attempt to understand such
discrepancies was reported in [717,718] (see also [719]), where it was shown, for the first
time and a long time before the lattice results, that:

fD ≈ fB ≈ (1.2 ∼ 1.5) fπ , (53.142)

which differs from that expected from the heavy-quark symmetry scaling law [720]:

fB ≈
√

MD

MB
fD

(
αs(Mc)

αs(Mb)

)−1/β1

, (53.143)

15 For reviews, see for example [715,360].
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valid in the extreme case where the heavy-quark mass is infinite.16 It has also been un-
derstood that the apparent disagreement among different existing QSSR numerical results
in the literature is not only due to the choice of the continuum threshold tc [its effect is
(7 ∼ 10)% of the result when one moves tc from the one at the beginning of sum rule vari-
able to the one where the tc stability is reached.]17 as misleadingly claimed in the literature.
Indeed, the main effect is also due to the different values of the quark masses used,18 which
is shown explicitly in the table of [716].

In the D channel, the most appropriate sum rule is the (relativistic) Laplace sum rule,
as the OPE of the q2 = 0 moments does not converge for larger values of the number of
derivatives n, at which the D meson contribution to the spectral integral is optimized. The
results from different groups are consistent with each others for a given value of the c-quark
mass. For the D meson, the optimal result is obtained for:

6 ≤ tc ≤ 9.5 GeV2 , τ � (1.2 ± 0.2) GeV−2 . (53.144)

where the QCD corrections are still reasonnably small. The most recent estimate including
α2

s corrections from a simultaneous fit of the set either ( fD, m̄c(mc)) or ( fD, Mpole
c ) is given

in Fig. 53.10. The obtained values of the quark masses have been quoted in Table 53.5. The
resulting value of fD is [150]:

fD � (203 ± 23) MeV , (53.145)

in agreement with the recent evaluation (195 ± 20) MeV at order α2
s but using the pole mass

as input [722].

53.13.3 Ratio of the decay constants fDs / fD and fBs / fB

The SU (3) breaking ratios fDs / fD and fBs / fB have been obtained semi-analytically in
[716]. In order to have a qualitative understanding of the size of these corrections, we start
from the global hadron-quark duality sum rule:∫ ωc

0
dω Im�res

5 (ω) �
∫ ωc

0
dω Im�

q̄ Q
5 (ω) , (53.146)

where ωc is the continuum energy defined as:

t = (E + MQ)2 ≡ M2
Q + ωMQ . (53.147)

Keeping the leading order terms in αs and in 1/MQ , it leads to:

RP � ρP

{
1 + 3

(
ms

ωc

)(
1 − ms

MQ

)
− 6

(
ms

ωc

2
)

−
(

ms

MQ

)(
1 − ms

MQ

)}
, (53.148)

16 Finite mass corrections to this formula will be discussed later on.
17 In some papers in the literature, the value of tc is taken smaller than the previous range. In this case, the tc effect is larger than

the one given here.
18 A critical review on the discrepancy between different existing estimates is given in [721].
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Table 53.7. Estimate of fB(s) to order α2
s and fBs / fB to order αs from QSSR and

comparison with the lattice

Sources fB (MeV) fB(s)/ fB fBs (MeV) Comments Authors

QSSR
LSR 203 ± 23 1.16 ± 0.04 =⇒ 236 ± 30 Mpole, m̄b: output SN94,01 [716,150]

210 ± 19 244 ± 21 m̄b: input JL01 [724]
HQETSR 206 ± 20 Mpole: input PS01 [722]

SR average 207 ± 21 =⇒ 240 ± 24

Unq. lattice
200 ± 30 1.16 ± 0.04 =⇒ 232 ± 35 average LAT01 [725]

where:

ρP ≡
(

MP

MPs

)2 (
1 + ms

MQ

)
. (53.149)

The value of ω is fixed from stability criteria to be [717,721,634,165]:

ωc � (3.1 ± 0.1) GeV. (53.150)

The sum rule indicates that the SU (3) breaking corrections are of two types, the one
ms/MQ and the other ms/ωc. More quantitatively, we work with the Laplace sum rule:

L =
∫ ωc

0
dω e−ωτ Im�res

5 (ω). (53.151)

Analogously the Laplace sum rule gives:

R2
P � ρ2

P

{
1 + 2(2.2 ± 0.2)

(
ms

ωc

)(
1 − ms

MQ

)
− 2 (8.2 ± 1.6)

(
ms

ωc

2
)}

, (53.152)

where the numerical integration includes a slight MQ dependence. Including msαs and
m2

s αs-corrections, the resulting values of the ratio are:

RD ≡ fDs

fD
= 1.15 ± 0.04 , RB ≡ fBs

fB
= 1.16 ± 0.05 . (53.153)

This result implies:

fDs � (235 ± 24) MeV , (53.154)

which agrees within the errors with the data [714] and lattice [723] averages both quoted in
Fig. 53.11. This feature increases confidence in the use of the QSSR method for predicting
the not yet measured decay constant of the B meson.
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53.13.4 Estimate of the B decay constant fB

For the estimate of fB , one can either work with the Laplace, the moments or their non-
relativistic variants because the b-quark mass is relatively heavy. The optimal result which
we shall give here comes from the Laplace relativistic sum rules. They corresponds to the
conservative range of parameters:

0.6 ≤ E (b)
c ≡ √

tc − MB ≤ 1.8 GeV , τ � 0.38 GeV−2 , (53.155)

which have been used in the previous section for getting the b-quark mass. As shown in the
figure given in [726,727], the dominant corrections come from the 〈ūu〉 quark condensate
with the strengh (30∼40)% of the lowest order term in fB , while the higher condensate
effects are smaller, which are respectively −(20∼30)% , + (5∼8)% for the d = 5 and 6
condensates. This shows, despite the large value of the quark condensate contribution, that
the OPE is convergent. It has been noticed in [726,727], that the convergence of the OPE is
faster for the relativistic LSR than for the moments, such that the most precise result should
come from the LSR. In both cases the perturbative corrections are small. One obtains from
the relativistic LSR , the results to order α2

s [150]:

fB � (203 ± 23) MeV � (1.55 ± 0.18) fπ , (53.156)

and to order αs (see previous discussion) [716]:

fBs

fB
� 1.16 ± 0.04 . (53.157)

These values of fB and fD agree quite well with the previous QSSR findings in [716],
[3] and [719]. They also agree with the non-relativistic sum rules estimate in the full theory
[717], in HQET [633,722] and in [634,165]. However, unlike the relativistic sum rules, the
HQET sum rule is strongly affected by the huge perturbative radiative corrections of about
100%, which is important at the sum rule scale of about 1 GeV at which the HQET sum
rule optimizes. These results are also in good agreement with the lattice average estimate
given in Table 53.7.

53.13.5 Static limit and 1/Mb-corrections to fB

As noticed previously, the first result fB � fD in [716], which has been confirmed by recent
estimates from different approaches, shows a large violation of the scaling law expected
from heavy-quark symmetry. This result suggests that finite quark mass corrections are still
huge at the D and B meson masses. The first attempt to understand this problem analytically
is in [718] in terms of large corrections of the type Ec/Mb if one expresses in this paper the
continuum threshold tc in terms of the threshold energy Ec:

tc ≡ (Ec + Mb)2. (53.158)

More recently different approaches have been investigated for the estimate of the size of
these corrections.
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In the lattice approach, these mass corrections have been estimated from a fit of the
obtained value of the meson decay constant at finite and infinite (static limit) values of the
heavy quark mass and by assuming that these corrections are polynomial in 1/MQ up to log.
corrections. A similar analysis has been done with the sum rule in the full theory [726,727],
by studying numerically the quark mass dependence of the decay constant up to the quark
mass value (MQ ≤ 15 GeV) until which one may expect that the sum rule analysis is still
valid. In so doing, we use the parametrization:

fB

√
MB � f̃ Bα1/β1

s

{
1 − 2

3

αs

π
− A

Mb
+ B

M2
b

}
, (53.159)

by including the quadratic mass corrections. The analysis gives:19

f̃ B ≡ ( fB

√
MB)∞ � (0.65 ± 0.06) GeV3/2 , (53.160)

which one can compare with the results from the HQET Laplace sum rule [633] and
[165,728]:

f̃ B � (0.35 ± 0.10) GeV3/2 , (53.161)

and from FESR [165]:

f̃ B � (0.57 ± 0.10) GeV3/2 , (53.162)

Taking the average of these three (independent) determinations, one can deduce:

f̃ B � (0.58 ± 0.09) GeV3/2 , (53.163)

where we have evaluated an arithmetic average of the errors. This result is in good agreement
with the lattice value given in [723,729] using non-perturbative clover fermions. One can
translate this result into the value of fB in the static limit approximation:

f stat
B � (1.9 ± 0.3) fπ . (53.164)

We can also use the previous value of f stat
B together with the previous values of fB and fD

at the ‘physical’ quark masses in order to determine numerically the coefficients A and B of
the 1/Mb and 1/M2

b corrections. In so doing, we use the values of the quark ‘pole’ masses
given in Tables 53.5 and 53.6. Then, we obtain from a quadratic fit:

A ≈ 0.98 GeV and B ≈ 0.35 GeV2 , (53.165)

while a linear fit gives a large uncertainty:

A ≈ (0.74 ∼ 0.91) GeV . (53.166)

One can notice that the fit of these coefficients depends strongly on the input values of fD

and fB . Indeed, using some other set of values as in [726,727,634], one obtains values about
two-times smaller. Therefore, we consider as a conservative value of these coefficients an

19 The numbers given in [726,727] correspond to the quark mass Mb = 4.6 GeV and should be rescaled until the meson mass
MB . In the following, we shall also work with fB normalized to be

√
2 bigger than in the original papers.
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uncertainty of about 50%. The value of A obtained is comparable with the one from HQET
sum rules [166] and [726,634] of about 0.7 ∼ 1.2 GeV. A similar value of A has been also
obtained from the recent NR lattice calculations with dynamic fermions and using a linear
fit [729]:

A ≈ 0.7 GeV . (53.167)

One can qualitatively compare this result with the one obtained from the analytic expres-
sion of the moment in the full theory [3,718,728]:

f 2
B ≈ 1

π2

E3
c

Mb

[
1 − 2

3

αs

π
− 3(n + 2)Ec

Mb
+ · · · − π2

2

〈ūu〉
E3

c

+ · · ·
]

. (53.168)

Here, one can notice that the size of the 1/Mb corrections depends on the number of
moments, such that their estimate using literally the expression of the moments can be
inconclusive. A qualitative estimate of these corrections can be done from the semi-local
duality sum rule, which has more intuitive physical meaning due to its direct connection
with the leptonic width and total cross-section through the optical theorem. It corresponds
to n = −2, and leads to the interpolating formula [728]:

√
2 fB

√
MB ≈ E3/2

c

π
α1/β1

s

(
Mb

MB

)3/2
{

1 − 2

3

αs

π
+ 3

88

E2
c

M2
b

− π2

2

〈ūu〉
E3

c

+ · · ·
}

, (53.169)

from which, one obtains:

A ≈ 3

2
(MB − Mb) � 1 GeV,

B ≈ 3

88
E2

c + 27

32
(MB − Mb)2 � 0.45 GeV2 , (53.170)

which is in good agreement with the previous numerical estimate.

53.14 Conclusions

We have reviewed the determinations of the quark masses and leptonic decay constants of
(pseudo)scalar mesons which are useful in particle physics phenomenology. The impressive
agreements of the QSSR results with the data when they are measured and/or with lattice
calculations in different channels indicate the self-consistency of the QSSR approach, mak-
ing it one of the most powerful semi-analytical QCD non-perturbative approaches available
today. Applications of these results for studying the B-B̄ mixings and C P-violation will
be discussed in the next chapter.
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Hadron spectroscopy

54.1 Light q̄q mesons

The spectroscopy of the light mesons has been discussed extensively in the literature, using
LSR [1,357,3,32,452], FESR [405,629], and Yndurain’s moments within positivity [730].
Detailed derivations of the analysis in some channels can e.g. be found in QSSR1 [3].
In addition to the currents associated to the (axial)-vector and (pseudo)scalar channels,
discussed in previous chapters, we shall also be concerned with the 2++ tensor current,
where its renormalization has been discussed in Part VIII, while the corresponding sum
rule has been re-analysed in [452]. The analysis is summarized in Table 54.1, where one
can deduce from Table 54.1, that the predictions for the couplings are quite good compared
with available data, whereas in some cases the meson masses are overestimated.

54.2 Light baryons

As mentioned earlier, the light baryon systems have been studied in [424–430]. The decuplet
and the octet baryons can be respectively described by the operators:

�µ = 1√
2

: ψT Cγλψ

(
gµλ − γ µγ λ

4

)
ψ , (54.1)

and:

N = 1√
2

: [ (ψCλ5ψ) ψ + b (ψCψ) λ5ψ] , (54.2)

where C is the charge conjugation matrix, b is an arbitrary mixing parameter and ψ is the
valence quark field. We have suppressed the colour indices. The corresponding two-point
correlator:

S(q) = i
∫

d4x eiqx 〈 0|T O(x)O†(0)|0 〉 , (54.3)

can be parametrized (without loss of generalities) in terms of two invariants:

S(q) = (q̂ F1 + F2) � + · · · , (54.4)

where for the decuplet (�(3/2)) � ≡ gµν , and for the octet (nucleon) � = 1. The expres-
sions of the form factors are known including radiative corrections and non-perturbative

615
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Table 54.1. Light meson masses and couplings from QSSR. The coupling fP are in units of
MeV and normalized as fπ = 92.4 MeV, while γV has no dimension and is normalized as

γρ = 2.55 (Eq. 2.52). WSR refer to Weinberg sum rules in QCD (previous chapter)

J PC Meson Coupling Mass (GeV) tc (GeV2) τ (GeV−2) References

1−− ρ γρ � 2.5 ∼ 2.8 0.80 ∼ 0.85 1.4 ∼ 1.7 0.4 ∼ 1 [3]
K ∗ γK ∗ � 2.0 ∼ 2.5 1.4 ∼ 2 0.6 ∼ 1 [3]

1++ A1 γA1 � (1.2 ∼ 1.9)γρ 1.28 2.0 ∼ 2.3 0.6 ∼ 1 WSR [29,3]

0−+ π fπ � (74 ∼ 96) π+ − π0 � 1.8 ∼ 2.3 0.7 ∼ 1.6 [30,29,3]
4.6 × 10−3

K ′ M4
K ′ f 2

K ′
M4

K f 2
K

� 9.5 ± 2.5 1.8 ∼ 2.3 0.7 ∼ 1.6 [3]

0++ a0(ūd) fa � (1.6 ± 0.5) 1.0 ∼ 1.05 1.3 ∼ 1.6 0.4 ∼ 0.8 [3,420,422]
f0(ūu + d̄d) f f0 � fa M f0 � Ma0 SU (2)

K ∗
0 (ūs) fK ∗

0
� (46.3 ± 7.5) 1.3 ∼ 1.4 1.8 ∼ 2.3 0.7 ∼ 1.6 [419,3,420,422]

f0(s̄s) f3 � (22 ∼ 28) 1.474 ± 0.044 � t K ∗0
c 0.3 ∼ 0.5 [688,3]

2++ f2 f f2 � (132 ∼ 184) 1.4 ∼ 1.6 2.5 ∼ 3.5 0.6 ∼ 1.2 [452,3]

f ′
2 f f ′

2
� (112 ∼ 152)

M f ′
2

M f2
� 1.14 ∼ 1.26 3 ∼ 4 0.6 ∼ 1.2 [452,3]

terms. These terms are tabulated in [426] (see chapter on two-point function). The relevant
quantities for the analysis are the LSR:

Li (τ ) =
∫ tc

0
dt e−tτ 1

π
ImFi (t) : i = 1, 2 (54.5)

and their ratios:

Rii (τ ) =
∫ tc

0 dt t e−tτ 1
π

ImFi (t)∫ tc
0 dt e−tτ 1

π
ImFi (t)

, (54.6)

and:

R12(τ ) =
∫ tc

0 dt e−tτ 1
π

ImF2(t)∫ tc
0 dt e−tτ 1

π
ImF1(t)

. (54.7)

The baryon contribution to the spectral function can be introduced through its coupling
and using a duality ansatz parametrization:

1

π
ImF2(t) = MB |Z B |2δ(t − M2

B

) + �(t − tc) ‘QCD continuum’ ,

1

π
ImF1(t) = |Z B |2δ(t − M2

B

) + �(t − tc) ‘QCD continuum’ . (54.8)

Qualitatively, R12 can provide a good explanation of the proton mass in terms of the
chiral condensate:

MN ≈ 32π2〈ψ̄ψ〉τ
(

7 − 2b − 5b2

5 + 2b + 5b2

)
. (54.9)
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Table 54.2. Light baryon masses and couplings from QSSR

Baryon Coupling (GeV6) Mass (GeV) Mass (GeV) (exp) tc (GeV2)

Octet: J P = (1/2)+

N 0.14 1.05 0.94 1.58
� 0.27 1.16 1.19 2.09

 0.23 1.24 1.1 2.15
� 0.31 1.33 1.31 2.42

Decuplet: J P = (3/2)+

� 1.15 1.21 1.23 2.2
� 5.16 1.61 1.67 4.08
�∗ 1.89 1.35 1.38 2.78
�∗ 3.07 1.48 1.51 3.39

One can optimize this relation in the change of the mixing parameter b by requiring that
its first derivative in b is zero (Principle of Minimal Sensitivity), which gives:

b = −1

5
, (54.10)

which is the optimal choice of Chung et al. [424] obtained after an involved numerical
analysis. The value of the sum rule at which the sum rule is optimized is approximately
τ−2 ≈ M2

N , from which one can deduce the interesting sum rule:

MN ≈
[
−π2 152

3
〈ψ̄ψ〉

]1/3

≈ 1.8 GeV , (54.11)

which is not too bad taking into account the crude approximation used to get this formula.
However, it shows the rôle of the non-leading terms in correctly fixing the mass of the
nucleon. A comparison of the numerical ability of these different sum rules has been dis-
cussed in [2], where it has been noted that L2 and R22 are the most advantageous sum rule
(stability, small radiative correction, . . . ). The results from this analysis are given in [426]
and discussed in details in [3]. We show them in Table 54.2.

We have only quoted in Table 54.2 the central value, where the error is typically about
10%. The different sum rules optimize for τ around 0.8 ∼ 1.2 GeV−2, while the tc values
quoted in the table come from the lowest FESR moment. The results for the octet corresponds
to the optimal value b = −1/5 discussed earlier. A compromise value:

M2
0 � 0.8 GeV2 , (54.12)

of the scale parametrizing the mixed condensate is needed, as also required for fitting the
heavy-light B and B∗ meson masses [401]. The SU (3) mass-splittings need large flavour
breakings of the chiral condensates 〈s̄s〉 and 〈s̄Gs〉, which, at the order we are working to,
seem to act in opposite directions. In particular, the � mass can be reproduced for a 40%
increase of the mixed condensate value compared with its SU (3) symmetric value.
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54.3 Spectroscopy of the heavy-light hadrons

54.3.1 Beautiful mesons

The masses and mass-splittings of heavy-light mesons made with q̄b quarks (q is the light
quark u, d and s) have been analysed in [401] using the ratio rn and double ratios dn of
q2 = 0 moments:

dn ≡ r H
n

r H ′
n

, (54.13)

where rn has been defined analogously to Eq. (54.6); H and H ′ are the indices of the
corresponding meson. The analysis shows a good n � 7 ∼ 9 and tc � (40 ∼ 60) GeV2

stabilities, which indicates that the sum rule can give a much better prediction for the ratio
than for the absolute values of the meson masses. The observed masses of the B and B∗

mesons have been used for fixing the b quark mass and the value of the mixed condensate.
The predictions for the mass splittings are given in the table of [313] (Section 51.3). The
main features of the results are summarized below.

� Splittings between the chiral partners
Typically, the mass splitting between the meson and its chiral partner is [313]:

Bδ(0++) − B(0−+) ≈ B∗
A(1++) − B∗(1−−) � (417 ± 212) MeV , (54.14)

which is mainly due to the chiral quark condensate as expected from general arguments.
� Splittings due to SU (3) breakings

The SU (3) breaking mass-splitting is given in [313], as function of the ratio of the normal ordered
condensate χ = 〈s̄s〉/〈ūu〉. Using the experimental value Bs = 5.37 GeV, one can deduce:

χ ≈ 0.75 , (54.15)

in agreement with the result obtained from the light meson systems discussed previously. The mass
of the B∗

s meson is also given in [401] as a function of χ . Using the previous value of χ , into the
prediction of the B∗

s in [401] leads to a value slightly higher than the data [16], and needs to be
reconsidered.

� Decay constants and couplings
Besides the decay constants fB(s) of the B(s) mesons which plays an important role in the B0

(s) − B̄0
(s)

mixing matrix elements, which we shall discuss in more details in the next chapter, we give below
the findings of [401] for the couplings and decay constants of the other mesons to order αs :

fBδ
� (1.99 ± 0.39) fπ , fB∗ ≡ MB∗

2γB∗
� fB∗

A
� (1.78 ± 0.22) fπ (54.16)

compared with the values of fB and fBs obtained to the same order in [717,698,716].

54.3.2 Baryons with one heavy quark

The masses and couplings of the baryons (Quu) where Q ≡ b, c have been estimated [453]
using q2 = 0 moments and LSR. In the case of charmed baryons, the LSR stabilizes at
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τ � 0.4 GeV−2 and for tc in the range 8 to 16 GeV2, where the first value corresponds to
the beginning of τ stability, while the second one to the tc stability. Moreover, a study of
the stability on the change of the mixing parameter b for the �Q currents lead to the range:

−0.5 ≤ b ≤ 0.5 , (54.17)

in favour of the Chung et al. [424] choice b = −1/5 in the light baryons sector. In the case
of beautiful baryons, the optimal results are obtained for τ � 0.2 GeV−2 (LSR), n � 4 ∼ 6
(moments), and for tc � 40 ∼ 50 GeV2. The analysis leads, to a good accuracy, to the mass
difference [453]:

�b − �c � 3.4 GeV , �∗
b − �∗

c � 3.3 GeV . (54.18)

Using the experimental value of �c, one can then predict [453]:

�b � 5.85 GeV , (54.19)

in agreement with the potential model estimate. The corresponding couplings are:

|Z�c |2 � (4.2 ∼ 7.7) × 10−4 GeV6 , |Z�b |2 � (0.10 ∼ 0.45) × 10−2 GeV6 , (54.20)

where we have used the same normalization as in the light baryon systems. To a lesser
accuracy, one has also obtained [453]:

�∗
c � (2.15 ∼ 2.92) GeV , �∗

b � (5.4 ∼ 6.2) GeV , (54.21)

in agreement with potential model estimates. The corresponding couplings are:

|Z�∗
c
|2 � (1.1 ∼ 2.2) × 10−3 GeV6 , |Z�b |2 � (2.0 ∼ 5.4) × 10−3 GeV6 . (54.22)

The analysis has been also applied to the 
Q baryon. One has obtained [453]:

�c − 
c ≤ 207 MeV , �b − 
b ≤ 163 MeV , (54.23)

where the bounds should be understood as ‘practical’ though not ‘rigorous’. One can also
notice that the value of the 
Q mass decreases with the value of the gluon condensate.
Finally, the previous analysis for the baryons has been extended in the case where the b
quark mass tends to infinity (HQET sum rule) [454]. In so doing one has considered the
combination of form factors:

SB(DB) = MQIm F B
1 (t) ± Im F B

2 (t) , (54.24)

corresponding, respectively, to the positive B+
Q and negative B−

Q parity states. Doing the
analysis for the �Q , and taking a conservative range of the QCD continuum energy Ec ≈
(1.5 ∼ 3) GeV, one obtains the mass gap:

δM�+ ≡ �+ − Mb ≈ (1.1 ∼ 2.1) GeV , δM�− ≡ �− − Mb ≈ (1.8 ∼ 2.5) GeV ,

(54.25)
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respectively for the positive and negative parity states. This result shows that the baryon
mass gap is systematically higher than the meson mass one which is about 0.65 GeV.
Analogous analysis for the 
± baryons shows that, to the approximation we are working,
the δM
+ sum rule does not present any stability, while one finds that the �− and 
− are
almost degenerate.

54.4 Hadrons with charm and beauty

From the point of view of quark-gluon interactions, the Bc(b̄c) meson is intermediate
between the c̄c and b̄b systems, and it shares with the two heavy-quarkonia common dynamic
properties. It is possible to consider the heavy quark and anti-quark as non-relativistic
particles, and describe the bound state, adding then the relativistic corrections. On the other
hand, Bc, being the lightest hadron with open beauty and charm, decays weakly. Therefore,
it provides us with a rather unique possibility of investigating weak decay form factors in
a quarkonium system.

The spectroscopy of the (c̄b) mesons and of the (bcq), (ccq) and (bbq) baryons (q ≡ d
or s), the decay constant and the (semi)leptonic decay modes of the Bc meson have been
extensively discussed in [731] using combined informations from potential models and
QSSR. As a result, one obtains [731]:

� Spectra
The spectra of the Bc-like hadrons from potential models are:

MBc (b̄c) = (6.26 ± 0.02) GeV , MB∗
c (b̄c) = (6.33 ± 0.02) GeV,

M
(bcu) = (6.93 ± 0.05) GeV, M�(bcs) = (7.00 ± 0.05) GeV,

M�∗(ccu) = (3.63 ± 0.05) GeV, M�∗(bbu) = (10.21 ± 0.05) GeV, (54.26)

which are consistent with, but more precise than, the sum-rule results given in [453,454].
� The decay constant fBc and other residues

The decay constant of the Bc meson is better determined from QSSR than from potential models.
The average of the LSR and q2 = 0 moments sum rule gives the result [731]:

fBc � (2.94 ± 0.12) fπ , (54.27)

which leads to the leptonic decay rate into τντ of about (3.0 ± 0.4) × (Vcb/0.037)2 ×
1010 s−1. This result has been obtained for τ � (0.04 ∼ 0.12) GeV−2, for n � 2 ∼ 3, and for
tc � 50 ∼ 67 GeV2, or equivalently for Ec � (1.0 ∼ 2.1) GeV, where tc ≡ (Mb + Mc + Ec)2. By
comparing it with fB , one can notice that their difference is about Mc as intuitively expected.
Residues of the different baryons have been also estimated. Their values with the corresponding
normalizations can be found in [731,453,454].

� Semi-leptonic decays of the Bc

We have also studied the semi-leptonic decay of the Bc mesons and the q2-dependence of the form
factors, which differs from the usual VDM expectation. We shall come back to this point in the next
chapter.
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Detection of these particles in the next B-factory machine will then serve as a stringent
test of the results from combined potential models and QSSR analysis obtained in [731].

54.5 Mass splittings of heavy quarkonia

The mass splittings of heavy quarkonia have been studied recently using double ratios
of exponential sum rules [313] (Section 51.3). One can notice that the sum rule analysis
of the mass splittings is insensitive to the change of the continuum threshold tc, whilst it
optimizes at the sum rule scale σ ≡ τ � 0.9 (respectively 0.35) GeV−2 for the charmonium
(respectively bottomium) systems. As emphasized earlier, some observed mass splittings
can be used for fixing the QCD parameters αs and gluon condensate (see the table of Section
51.3). In this section, we give the different predictions obtained once we know these QCD
parameters. These predictions are given in the table of Section 51.3. One can notice that
there is a fair agreement between the theoretical predictions and the data when available.
For a particular interest is the prediction on the ϒ − ηb mass-splitting in the range 30 ∼ 110
MeV, which can imply the observation of the ηb through the ϒ radiative decay. The (non)
observation of the ηb through this process is a test of the validity of the resummed Coulombic
correction, which differs from the correction obtained from the truncation of the QCD series.
In this latter case, the predicted mass splitting is only of the order of 3 to 20 MeV.

54.6 Gluonia spectra

The properties of gluonia from QSSR and some low-energy theorems have been discussed
recently in the update work of [688] where complete references to the original works can
also be found), which we shall summarize. The most relevant papers for our discussions
will be those in [3,734] and [455–457] for the sum rules analysis, those in [686] for the
low-energy theorems and vertex sum rules and those in [687,458,450] for the mixings.1

We shall consider the lowest dimension gluonic currents that can be built from the gluon
fields and which are gauge invariant:

Js = β(αs)GαβGαβ,

θ g
µν = −Gα

µGνα + 1

4
gµνGαβGαβ

Q(x) =
( αs

8π

)
tr Gαβ G̃αβ, (54.28)

where the sum over colour is understood. The β function has been defined in Chapter 2,
while

G̃µν = 1

2
εµναβGαβ , (54.29)

is the dual of the gluon field strengths. These currents have respectively the quantum numbers
of the J PC = 0++, 2++ and 0−+ gluonia,2 which are familiar in QCD. The former two

1 Some theoretical reviews and experimental results on the status of gluonia can be found in [688,365,690,735–738].
2 The pseudotensor 2−+ will not be considered here.
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enter into the QCD energy-momentum tensor θµν , while the later is the U(1)A axial-anomaly
current. We shall also consider the scalar three-gluon local current:

J3G = g3 fabcGaGbGc . (54.30)

The spectra of the gluonia has been obtained from a QSSR analysis of the generic two-
point correlator:

ψG(q2) ≡ i
∫

d4x eiqx 〈0|T JG(x) (JG(0))† |0〉 , (54.31)

built from the previous gluonic currents JG(x), using the LSR and its ratio R(τ ). The
gluonium contribution to the spectral function enters through its coupling:

〈 0|JG(x)|G 〉 =
√

2 fG M2
G . (54.32)

The results of the analysis are summarized in Table 54.3.
The mass of the three-gluonic bound state as well as its small mixing with the two-gluonic

state have been obtained in [457]. The predictions obtained in the table show that the 0++

gluonium is the lightest gluonia, which is in good agreement with lattice calculations [739]
and QCD-like inequalities [740] results. This agreement is an a posteriori confirmation of
the fact that the neglect of the instanton contributions qualitatively discussed in [382] is
a good approximation. Moreover, different analysis in the literature also shows that using
current models, instanton effects are negligible in the mass calculations.

One should notice that, in addition to the G(1.5) also found from lattice quenched sim-
ulation, the low-mass σB coupled to the gluonic current is needed in the QSSR analysis
for a consistency of the subtracted and unsubtracted sum rules which optimize in different
energy regimes. Moreover, a low-mass σB is also found in different experiments [690] and
is needed in the linear σ model [741,742,743].

54.7 Unmixed scalar gluonia

54.7.1 Masses and decay constants

The mass spectrum of the scalar gluonium has been given in Table 54.3, where, as previously
mentioned, a low-mass scalar σB below 1 GeV (we have chosen 1 GeV for definiteness
in our discussion but a lower value is not also excluded) is needed in addition to the one
G of 1.5 GeV, in order to have consistency between the results from the substracted and
unsubtracted sum rules.

54.7.2 σB and σ ′
B couplings to ππ

The decays of pure gluonia states have been estimated from the vertex function shown in
Fig. 54.1 constrained by a low-energy theorem (LET):

V (q2) ≡ 〈P|θµ
µ |P〉 = q2 + 2m2

P , P ≡ π, K , η , (54.33)
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Table 54.3. Gluonia masses and couplings from QSSR

Mass (GeV)

J PC Name Estimate Upper bound fG (MeV)
√

tc (GeV)

0++ G 1.5 ± 0.2 2.16 ± 0.22 390 ± 145 2.0 ∼ 2.1
σB ≤ 1.00 (input) ≥ 1000
σ ′

B 1.37 (input) 600
3G 3.1 62

2++ T 2.0 ± 0.1 2.7 ± 0.4 80 ± 14 2.2

0−+ P 2.05 ± 0.19 2.34 ± 0.42 8 ∼ 17 2.2
E/ι 1.44 (input) 7 : J/ψ → γ ι

γ5

γ5

 θµ
µ . . .+

Fig. 54.1. QCD diagram contributing to the scalar gluonium decay into two pseudoscalar Goldstone
bosons.

where q is the scalar meson momentum. In the chiral limit, it obeys the dispersion relation:

V (q2) = q2
∫

dt

t − q2 − iε

1

π
ImV (t) , (54.34)

which gives the first Narison–Veneziano (NV) sum rule [686]:

1

4

∑
S≡σB ,σ ′

B ,G

gSππ

√
2 fS � 0 . (54.35)

Using V ′(0) = 1, and a σB meson dominance,3 it leads to the second NV sum rule:

1

4

∑
S≡σB ,σ ′

B ,G

gS P P

√
2 fS

M2
S

= 1 . (54.36)

These two sum rules are a generalization of the Goldberger–Treiman relation. It gives
the value of the σBπ+π− and σ ′

Bπ+π− couplings given in Table 54.4 leading to the un-
expected large width of the lowest mass scalar gluonium into pairs of Goldstone bosons.4

3 We could identify the G(1.5 ∼ 1.6) with the one observed at GAMS [744] which coupling to ππ is negligible, while for
definiteness, we use as input Mσ ′

B
≈ 1.37 GeV.

4 Similar results have been obtained in [689].
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Table 54.4. Unmixed scalar gluonia and quarkonia decays

Name Mass (GeV) ππ (GeV) K K (MeV) ηη (MeV) ηη′ (MeV) (4π )S (MeV) γ γ (keV)

σB 0.75 ∼ 1.0 0.2 ∼ 0.8 SU (3) SU (3) 0.2 ∼ 0.3
(input)

σ ′
B 1.37 0.8 ∼ 2.0 SU (3) SU (3) 43 ∼ 316 0.7

(input) (exp)
G 1.5 ≈ 0 ≈ 0 1.1 ∼ 2.2 5 ∼ 10 60 ∼ 138 0.5

S2 1. 0.12 SU (3) SU (3) 0.67
S′

2 1.3 ≈ π ′ 0.3 SU (3) SU (3) 4.4
S3 1.474 ± 0.044 73 ± 27 15 ± 6 0.4
S′

3 ≈ 1.7 112 SU (3) 1.1

The behaviour of this width versus the mass of the σB has been given in [688], where it has
been shown that a σB of about 600 MeV cannot have a width larger than 150 MeV. The
couplings behave analytically as:5

gσBππ ≈ 4√
2 fσB

1(
1 − M2

σB

/
M2

σ ′
B

) , gσ ′
Bππ ≈ gσBππ

(
fσB

fσ ′
B

)
. (54.37)

The unexpected relatively large width of the σB indicates a large violation of the OZI rule
in the U (1) scalar sector like in the case of the η′ decay. As a result from these sum rules,
one expects that the scalar gluonium σB has an universal coupling (up to SU (3) symmetry
breaking terms) to pairs of Goldstone bosons, which is a characteristic feature that should
be tested experimentally.

54.7.3 G(1.5) coupling to ηη′

The coupling of the scalar gluonium to the pairs of U (1)A mesons (η′η′, ηη′) is gouverned
by a three-point function made with a glue line shown in Fig. 54.2.

Analogous low-energy theorem [686] gives at q2 = 0:

〈η1|θµ
µ |η1〉 = 2M2

η1
, (54.38)

where η1 is the unmixed U (1) singlet state of mass Mη1 � 0.76 GeV. Writing the dispersion
relation for the vertex, one obtains the NV sum rule:

1

4

∑
S≡σB ,σ ′

B ,G

gSη1η1

√
2 fS = 2M2

η1
. (54.39)

5 In some LσM approaches, the coupling vanishes in the chiral limit as a reflection of the arbitrariness of the scalar potential term
of the effective Lagrangian.
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 θµ
µ . . .+

Q(x)

Q(y)

Fig. 54.2. QCD diagram contributing to the scalar gluonium decay into 2 U (1)A pseudoscalar mesons.
Q(x) represents the gluon part of the axial-anomaly.

Assuming a G(1.5) dominance of the vertex, the sum rule leads to:

gGη1η1 ≈ (1.2 ∼ 1.7) GeV . (54.40)

Introducing the ‘physical’ η′ and η through:

η′ ≡ cos θPη1 − sin θPη8 , η ≡ sin θPη1 + cos θPη8 , (54.41)

where [16,200] θP � −(18 ± 2)◦ is the pseudoscalar mixing angle, one obtains the width
given in Table 54.4. The previous scheme is also known to predict (see NV and [746]):

r ≡ �Gηη

�Gηη′
� 0.22 , gGηη � sin θP gGηη′ , (54.42)

typical for the U (1)A anomaly dominance in the decays into η′ and η. It can be compared
with the GAMS data r � 0.34 ± 0.13, and implies the width �Gηη in Table 54.4. This result
can then suggest that the G(1.6) seen by the GAMS group is a pure gluonium, which is
not the case of the particle seen by Crystal Barrel [735] which corresponds to r ≈ 1. It
also shows that the G(1.6) is a relatively narrow state, which may justify the validity of the
lattice quenched approximation in the evaluation of its mass.

54.7.4 σ ′
B(1.37) and G(1.5) couplings to 4π

Within our scheme, we expect that the 4π are mainly S-waves initiated from the decay of
pairs of σB . Using:

〈σB |θµ
µ |σB〉 = 2M2

σB
, (54.43)

and writing the dispersion relation for the vertex, one obtains the sum rule:

1

4

∑
i=σB ,σ ′

B ,G

gSσBσB

√
2 fS = 2M2

σB
. (54.44)

We identify the σ ′
B with the observed f0(1.37), and use its observed width into 4π , which

is about (46 ∼ 316) MeV [16] (S-wave part). Neglecting, to a first approximation, the σB

contribution to the sum rule, we can deduce:

gGσBσB ≈ (2.7 ∼ 4.3) GeV , (54.45)
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γ

γ

γ g

γ g

 θµ
µ

Fig. 54.3. Vertex controlling the gluonium couplings to J/ψ(γ )γ : (a) box diagram; (b) anomaly
diagram.

which leads to the width of 60–138 MeV, much larger than the one into ηη and ηη′ in
Table 54.4. This feature seems to be satisfied by the states seen by GAMS [744] and Crystal
Barrel [735]. Our previous approaches show the consistency in interpreting the G(1.6) seen
at GAMS as an ‘almost’ pure gluonium state (ratio of the ηη′ versus the ηη widths), while
the state seen by the Crystal Barrel, though having a gluon component in its wave function,
cannot be a pure gluonium because of its prominent decays into ηη and π+π−. We shall
see later on that the Crystal Barrel state can be better explained from a mixing of the GAMS
gluonium with the S3(s̄s) and σ ′

B states.

54.7.5 σB , σ ′
B and G couplings to γ γ

The two-photon widths of the σB, σ ′
B and G can be obtained by identifying the Euler–

Heisenberg effective Lagrangian (see Fig. 54.3) [747]:6

Lγ g = ααs Q2
q

180m2
q

[28Fµν FνλGλσ Gσµ + 14FµνGνλFλσ Gσµ − FµνGµν FαβGαβ

− Fµν FµνGαβGαβ] , (54.46)

with the scalar-γ γ Lagrangian

LSγ γ = gSγ γ σB(x)F (1)
µν F (2)

µν . (54.47)

This leads to the sum rule:

gSγ γ � α

60

√
2 fS M2

S

(
π

−β1

) ∑
q≡u,d,s

Q2
q

m4
q

, (54.48)

6 Fµν is the photon field strength, Qq is the quark charge in units of e, −β1 = 9/2 for three flavours, and mq is the ‘constituent’
quark mass, which we shall take to be mu � md � Mρ/2, ms � Mφ/2 .
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from which we deduce the couplings:7

gSγ γ ≈ (0.4 ∼ 0.8)α GeV−1 , (54.49)

(S ≡ σB, σ ′
B, G) and the widths in Table 54.3, smaller (as expected) than the well-known

quarkonia width: �( f2 → γ γ ) � 2.6 keV. Alternatively, one can use the trace anomaly:
〈0|θµ

µ |γ1γ2〉 and the fact that its RHS is O(k2), in order to get the sum rule [748,382]
(R ≡ 3

∑
Q2

i ):

〈0|1

4
β(αs)G2|γ1γ2〉 � −〈0|αR

3π
Fµν

1 Fµν

2 |γ1γ2〉 , (54.50)

from which one can deduce the couplings:
√

2

4

∑
S≡σB ,σ ′

B ,G

fSgSγ γ � αR

3π
. (54.51)

It is easy to check that the previous values of the couplings also satisfy the trace anomaly
sum rule.

54.7.6 J/ψ → γ S radiative decays

As stated in [747], one can estimate the width of this process, using dispersion relation
techniques, by saturating the spectral function by the J/ψ plus a continuum. The glue
part of the amplitude can be converted into a physical non-perturbative matrix element
〈0|αs G2|S〉 known through the decay constant fS estimated from QSSR. By assuming that
the continuum is small, one obtains:8

�(J/ψ → γ S) � α3π

β2
1 656100

(
MJ/ψ

Mc

)4 (
Mσ

Mc

)4
(
1 − M2

S

/
M2

J/ψ

)3

�(J/ψ → e+e−)
f 2
σ . (54.52)

This leads to:9

B(J/ψ → γ S) × B(S → all) ≈ (0.4 ∼ 1) × 10−3. (54.53)

for S ≡ σB, σ ′
B, G. These branching ratios can be compared with the observed B(J/ψ →

γ f2) � 1.6 × 10−3. TheσB could already have been produced, but might have been confused
with the ππ background. The ‘pure gluonium’ G production rate is relatively small, contrary
to the naı̈ve expectation for a glueball production. In our approach, this is due to the
relatively small value of its decay constant, which controls the non-perturbative dynamics.
Its observation from this process should wait for the τCF machine. However, we do not
exclude the possibility that a state resulting from a quarkonium-gluonium mixing may be
produced at higher rates.

7 Here and in the following, we shall use MσB ≈ (0.75 ∼ 1.0) GeV.
8 We use Mc � 1.5 GeV for the charm constituent quark mass and −β1 = 7/2 for six flavours.
9 From the previous results, one can also deduce the corresponding stickiness which is proportional to �(J/ψ → Xγ )/�(X →

γ γ ) in [736].
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γ5

γ5

. . .+
1

Fig. 54.4. QCD diagram contributing to the scalar q̄q decay into two pseudoscalar mesons Goldstone
bosons.

54.7.7 φ → σBγ and Ds → σBlν decays

From the previous approaches, one also expects to produce the σB from φ radiative decays
[749,688]. Similar analysis can also be done for the Ds → σBlν semi-leptonic decays [750],
where the ππ final state is uniquely produced from a glue rich channel. One should note
that due to the large OZI-violation of the σB → ππ process, one expects that the φ → σBγ

and Ds → σBlν decay rates are sizeable.

54.8 Unmixed scalar quarkonia

The masses of pure q̄q states are given in Table 54.1 and have been obtained using QSSR
[3] and [688]. Here S2 and S3 denote isoscalar (I = 0) scalar states ūu + d̄d and s̄s and
their radial excitations S′

2 and S′
3. QSSR predicts a degeneracy between the isovector a0

10

and isoscalar mass S2 of about 1 GeV in the absence of mixing, while due to SU (3) breaking
the mass of the S3 is predicted to be in the range of 1.3 ∼ 1.4 GeV. Their widths have been
estimated using QSSR for the vertex shown in Fig. 54.4 [751,3] and [688]. These results are
compiled in Table 54.4 and indicate that the q̄q interpretation of the wide σ (0.6) and κ(0.9)
indicated by some recent data is incompatible with these QSSR results. The discrepancy
with the κ mass is more intriguing, where in this isovector channel, one expects no possible
gluon component. The existence of this particle should be further tested from independent
and cleaner processes. In the table we quote the updated values from [688], where we have
used the fact that the G couplings to ππ and K K are negligible as indicated by the GAMS
data [744].

54.9 Mixing schemes for scalar mesons

Previous results for the decay widths of unmixed scalar states can be used using phenomeno-
logical mixing schemes in order to explain or to predict the widths of the observed scalar
mesons.

10 One should notice (see Chapter 53), that the a0 is the particle naturally associated to the divergence of the SU (2) vector current,
and which satifies the different chiral symmetry breaking constraints: md − mu , . . .
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54.9.1 Nature of the σ and f0(0.98)

Below or around 1 GeV, one can use a two-component mixing as in [687,688] between the
gluonium σB and quarkonium S2, and fixes the mixing angle from the predicted �(σB →
γ γ ) in Table 54.4 and the observed �( f0 → γ γ ) ≈ 0.3 keV. In this way one obtains a
maximal mixing angle:

|θS| � (40 ∼ 45)◦ , (54.54)

indicating that the f0 and σ have a large amount of glue and quarks in their wave functions,
which is a situation quite similar to the case of the η′ in the pseudoscalar channel (mass
given by its gluon component but strong coupling to quarkonia).

By recapitulating, our scheme suggests that around 1 GeV, there are two mesons that
have 1/2 gluon and 1/2 quark in their wave functions resulting from a maximal destructive
mixing of a quarkonium (S2) and gluonium (σB) states:

� The f0(0.98) is narrow, with a width ≤ 134 MeV, and couples strongly to K̄ K , with the strength
g f0 K + K −/g f0π+π− � 2, a property seen in ππ and γ γ scatterings [742] and in p̄p [737] experiments.
Its production from φ radiative decays is [749]:

�(φ → f0(980)γ ) � 1.3 × 10−4 , (54.55)

in good agreement with recent data from Novosibirsk and Daphne of about 1.1 × 10−4.
� The σ , with a mass around (0.75 ∼ 1) GeV, is large, with a width of about (400 ∼ 900) MeV, and

has universal couplings to ππ and K K . However, our analysis shows that a σ with lower mass
cannot be large.

54.9.2 Nature of the f0(1.37), f0(1.5) and f J (1.7)

We use a three-component mixing scheme between the σ ′(1.37), S3(1.47) and G(1.5) bare
states in order to explain the nature of the above-mentioned three observed states. In order
to fix the different angles of the CKM-like 3 × 3 mixing matrices, we use the following
input deduced from the present Crystal Barrel data [752]:

�( f0(1.50) → ππ ) � (20 ∼ 31) MeV �( f0(1.50) → K̄ K ) � (3.6 ∼ 5.6) MeV

�( f0(1.50) → ηη) � (2.6 ∼ 3.3) MeV �( f0(1.50) → 4π0) � (68 ∼ 105) MeV,

(54.56)

and:

�( f0(1.50) → ηη′) � 1.3 MeV . (54.57)

We shall also use the widths of the σ ′ given in the previous table. The resulting values of
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the mixing angles read:⎛
⎝ f0(1.37)

f0(1.50)
f0(1.60)

⎞
⎠ ≈

⎛
⎝ 0.01 ∼ 0.22 −(0.44 ∼ 0.7) 0.89 ∼ 0.67

0.11 ∼ 0.16 0.89 ∼ 0.71 0.43 ∼ 0.69
−(0.99 ∼ 0.96) −(0.47 ∼ 0.52) 0.14 ∼ 0.27

⎞
⎠

⎛
⎝ σ ′(1.37)

S3(1.47)
G(1.5)

⎞
⎠ ,

(54.58)

where the first (respectively second) numbers correspond to the case of large (respectively
narrow) σ ′ widths. From the previous schemes, we deduce the predictions in units of
MeV:11

�( f0(1.37) → ππ ) ≈ (22 ∼ 48) �( f0(1.37) → ηη) ≤ 1. �( f0(1.37) → ηη′) ≤ 2.5 ,

(54.59)

and

�( f0(1.5) → K̄ K ) ≈ (3 ∼ 12) �( f0(1.5) → ηη) ≈ (1 ∼ 2) �( f0(1.5) → ηη′) ≤ 1 ,

(54.60)

despite the crude approximation used, these are in good agreement with the data. These re-
sults suggest that the observed f0(1.37) and f0(1.5) comes from a maximal mixing between
gluonia (σ ′ and G) and quarkonia S3. The mixing of the S3 and G with the quarkonium S′

2,
which we have neglected compared with the σ ′, can restore the small discrepancy with the
data. One should notice that the state seen by GAMS [744] is more likely to be similar to the
unmixed gluonium state G (dominance of the 4π and ηη′ decays), as already emphasized in
[686], which can be due to some specific features of the central production for the GAMS
experiment.12

Nature of the f J (1.71)

For the f0(1.6), we obtain in units of GeV:

�( f0(1.6) → K̄ K ) ≈ (0.5 ∼ 1.6) �( f0(1.6) → ππ ) ≈ (0.9 ∼ 2.)

�( f0(1.6) → ηη) ≈ (0.04 ∼ 0.6) �( f0(1.6) → ηη′) ≈ (0.03 ∼ 0.07) , (54.61)

and

�( f0(1.6) → (4π )S) ≈ (0.02 ∼ 0.2) , (54.62)

which suggests that the f0(1.6) is very broad and can again be confused with the continuum.
Therefore, the f J (1.7) observed to decay into K̄ K with a width of the order (100 ∼ 180)
MeV, can be essentially composed by the radial excitation S′

3(1.7 ∼ 2.4) GeV of the S3(s̄s),
as they have about the same width into K̄ K (see Section 6.4). This can also explain the
smallness of the f J (1.7) width into ππ and 4π . Our predictions of the f J (1.71) width can
agree with the result of the OBELIX collaboration [737], while its small decay width into 4π

11 Recall that we have used as inputs: �( f0(1.37) → K̄ K ) ≈ 0, �( f0(1.5) → ππ ) ≈ 25 MeV, while our best prediction for
�( f0(1.5) → (4π )S ) is about 150 MeV. The present data also favour negative values of the f0ηη, f0η

′η and f0 K K couplings.
12 Some alternative scenarios are discussed in [754,755].
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is consistent with the best fit of the Crystal Barrel collaboration (see Abele et al. in [752]),
which is consistent with the fact that the f0(1.37) likes to decay into 4π . However, the f0(1.6)
and the f J (1.71) can presumably interfere destructively for giving the dip around 1.5 ∼ 1.6
GeV seen in the K̄ K mass distribution from the Crystal Barrel and p̄ p annihilations at rest
[753,737].

54.10 Mixing and decays of the tensor gluonium

The mass mixing between the tensor gluonium and quarkonium states has been estimated
to be small:

θT � −10◦ , (54.63)

in [450] and [2] using the off-diagonal two-point correlator:

ψ gq
µνρσ ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θq
ρσ (0)†|0〉

= 1

2

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
ψgq (q2) , (54.64)

where

θq
µν(x) = i q̄(x)(γµ D̄ν + γν D̄µ)q(x) . (54.65)

Here, D̄µ ≡ �Dµ − Dµ is the covariant derivative, and the other quantities have been
defined earlier.

The hadronic width of the tensor gluonium has been constrained to be [452,450]:

�(T → ππ + K K + ηη) ≤ (119 ± 36) MeV , (54.66)

from the f2 → ππ data, and assuming an universal coupling of the T to pairs of Goldstone
bosons. A vertex sum rule analogous to the case of the scalar gluonia assumed to be saturated
by the f2 and T leads to:

�(T → ππ ) ≤ 70 MeV . (54.67)

These results show that the tensor gluonium cannot be wide. Its width into γ γ can be
related to that of the scalar gluonium G using a non-relativistic relation. In this way one
obtains:

�(T → γ γ ) � 4

15

(
MT

M0+

)3

�(0++ → γ γ ) � 0.06 keV, (54.68)

which shows again a small value typical of a gluonium state.
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54.11 Mixing and decays of the pseudoscalar gluonium

The mass mixing angle between the pseudoscalar gluonium and quarkonium states has also
been estimated from the off-diagonal two-point correlator, with the value [458,3,734]:

θP � 12◦, (54.69)

from which one can deduce:

�(P → γ γ ) � tan2 θP

(
MP

Mη′

)3

�(η′ → γ γ ) ≈ 1.3 keV

�(P → ργ ) � tan2 θP

(
kP

kη′

)3

�(η′ → ργ ) ≈ 0.3 MeV , (54.70)

where ki is the momentum of the particle i . We have used �(η′ → γ γ ) � 4.3 keV and
�(η′ → ργ ) � 72 keV. Measurements of the P widths can test the amount of glue inside
the P-meson.

Some other aplications of the sum rules in the pseudoscalar channel will be discussed
later on. These concern the estimate of the topological charge and its implications to the
proton spin.

54.12 Test of the four-quark nature of the a0(980)

The four-quark nature of the a0(980) and f0(975) has been conjectured from the bag model
approach [73,757] in order to explain their degeneracy and their large couplings to K +K −

pairs, where in this scheme, their quark content would be:

|a0〉 = 1√
2

s̄s(ūu − d̄d)

| f0〉 = 1√
2

s̄s(ūu + d̄d) . (54.71)

On the other hand, this scheme is unlikely as it does not explain why the usual q̄q scalar
states are absent, whilst in addition, it leads to a proliferation of states (many cryptoex-
otics, . . . ). Moreover, the relation of this model with the usual chiral and flavour symmetries
is not obvious. Within the framework of QSSR, the two-point correlator associated to the
colour singlet operators:

O±
1 = 1√

2

∑
�=1,γ5

s̄�s(ū�u − d̄�d) , (54.72)

has been firstly studied in [465], where the LSR analysis leads to:

ME � 1 GeV , fE � 2.5 MeV , (54.73)

where E corresponds to exotic and fE is normalized as fπ = 92.4 MeV. In [756], one has



54 Hadron spectroscopy 633

γ5

γ5

. . .+Os

Fig. 54.5. QCD diagram contributing to the a0 decay into two pseudoscalar bosons in the assumption
of a four-quark state.

also introduced the operator:

O±
2 = 1√

2

∑
�=1,γ5

s̄�λas(ū�u − d̄�λad) , (54.74)

and studied the more general combination:

O± = O±
1 + tO±

2 . (54.75)

In this case the decay constant fE becomes function of t as:

fE �
(

1 + 32

9
t2

)1/2

. (54.76)

A sum rule analysis of the vertex shown in Fig. 54.5 leads to the a0 → ηπ, K̄ K widths
[756,3]:

�(a0 → ηπ ) � (52 ∼ 88) MeV

(
1 + 32

9
t2

)−1

, (54.77)

and:

ga0 K̄ K �
√

3

2
ga0ηπ ×

(
1 + 16

3
t

)
� (5 ∼ 8) GeV . (54.78)

These results indicate that the a0 K̄ K coupling can strongly deviate from the SU (3) ex-
pectation owing to the extra (1 + 16

3 t) factor, which is a result expected in this scenario.
However, an estimate of the γ γ width within the same framework, as shown in Fig. 54.6,
gives:

�(E → γ γ ) ≈ (2 ∼ 5) × 10−4 keV , (54.79)

which is too small compared with the data for the a0 of about 0.3 keV. The smallness of this
quantity can be better understood if one compares the ratio of the γ γ couplings obtained
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. . .+Os

Fig. 54.6. QCD diagram contributing to the a0 decay into two photons in the assumption of a four-quark
state.

from QSSR for the q̄q and four-quark representation of the a0. At the stability point, one
obtains:

gEγ γ

ga0γ γ

� −
(αs

π

) 4t

27

〈s̄s〉
M2

E fE

fa0

(md − mu)
, (54.80)

where fa0 is proportional to the running quark mass difference md − mu . This relation
shows the relative suppression of gEγ γ with respect to the one in the q̄q scheme reproduced
correctly by the QSSR method. The coefficients in the previous equation does not support
the rough estimate [758]:

�(E → γ γ )(q̄q)2 ≈ 0.24α2
s �(a0 → γ γ )q̄q , (54.81)

which overestimates the width by about two orders of magnitude (≈ 1/16π2). This negative
result does not support the four-quark nature of the a0. Further experimental tests are needed
for checking this result. We plan to come back to this point in a future work.

54.13 Light hybrids

Hybrid mesons are interesting due to the exotic quantum numbers, such that they are not
expected to mix with ordinary mesons. A lot of studies have investigated their activities
within QSSR [459,460] and the final correct QCD result has been obtained in [461]. In this
approach, one can consider the colourless, local and gauge-invariant operators:

Oµ

V (x) =: gψ̄λaγνψGµν
a : Oµ

A(x) =: gψ̄λaγνγ5ψGµν
a : (54.82)

corresponding to the vector and axial-vector channels. They are the only lowest dimension
operators that can be used to study the quantum numbers of the exotic mesons 1−+ an 0−−.
The corresponding two-point correlator can be decomposed into its transverse spin 1 and
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Table 54.5. Light hybrid masses and couplings from QSSR

J PC Name Mass (GeV) fH (MeV)
√

tc (GeV)

1−+ ρ̃(ūgd) 1.6 ∼ 1.7 25 ∼ 50 Mρ̃ + 0.2
φ̃(s̄gs) Mρ̃ + 0.6

0−− η̃(ūgu + d̄gd) 3.8 – 4.1

. . .+

γµ

γ5

γ5

. . .+Oν Oν

Q(x)

(a) (b)

Fig. 54.7. QCD diagram contributing to the ρ̃ decay into (a) πρ and (b) πη′. Q(x) represents the
gluon component of the axial-anomaly.

longitudinal spin 0 parts:

�
µν

V/A(q2) ≡ i
∫

d4x eiqx 〈 0|T Oµ

V/A(x)
(Oν

V/A(0)
)† |0 〉

= −(gµνq2 − qµqν)�(1)
V/A(q2) + qµqν�

(0)
V/A(q2) . (54.83)

54.13.1 Spectra

The masses of the light hybrids have been obtained in [461,3,462] using LSR within stability
criteria and a two-parameter fit of the ratio of moments. The inclusion of the contribution
of a new D = 2 operator due to tachyonic gluon mass has been considered in [462], but
the effect on the mass and coupling predictions is negligible. The updated results [462] are
given in Table 54.5.

54.13.2 Decay widths of the ρ̃

The different exclusive decays of the ρ̃ have been studied in [461,3,462] using vertex sum
rules shown in Fig. 54.7.

We give the results in Table 54.6. These results show that the ρπ is the dominant mode,
while η′π is the most characteristic signal for detecting the ρ̃.
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Table 54.6. Decay modes of the ρ̃ from QSSR

Decay modes Width (MeV) Comments

ρπ 274
K ∗K 8
γπ 3
ππ, K K ≈ 0 O (

m2
q

)
η′π 3 U (1) anomaly
ηπ

�(ρ̃→ηπ )
�(ρ̃→η′π ) � 3.1 tan2 θP

Table 54.7. Heavy hybrid masses from QSSR

J PC b̄gb c̄gc b̄gu c̄gu

0++ 10.9 5.0 6.8 4.0
0−− 11.4 5.4 7.7 4.5
1+− 10.6 4.1 – –
1++ 10.9 4.7 6.5 3.4

54.14 Heavy hybrids

The heavy hybrids have been studied within QSSR in [463]. Unfortunately, no indepen-
dent group has checked their calculations.13 The results presenting τ stability are given in
Table 54.7.

One should notice that the results obtained in [463] have no tc stability as they increase
with tc. The results in the table correspond to the beginning of τ stability. They correspond to
the value of

√
tc of about (0.3–0.4) and (0.6–0.7) GeV above the meson masses respectively

for the c̄gc and b̄gb. For the c̄gu and b̄gu, the
√

tc values are respectively 0.2 and (0.3–0.4)
GeV above the meson masses. One can see from this table that the splitting between two
opposite C-parity states is typically (300 ∼ 500) MeV, while the spin zero state is much
heavier than the spin one, which is similar to the case of light hybrids. These results are in
general in agreement with lattice values [759].

54.14.1 Conclusions

There are some progress in the long-term study and experimental search for the exotics.
Before some definite conclusions, one still needs improvments of the present data, and some
improved unquenched lattice estimates which should complement the QCD spectral sum
rule (QSSR) and low-energy theorem (LET) results. Our results cannot absolutely exclude
the existence of the 1−+ state at 1.4 GeV seen recently in hadronic machines (BNL and

13 Recently, we have checked some of these results [464].
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Crystal Barrel) [760], but at the same time predict the existence of a 1−− hybrid almost
degenerate with the 1−+, and which could manifest in e+e− → hadrons by mixing with the
radial excitations of the ρ mesons. The relatively low value of tc might also indicate a rich
population of (axial-)vector hybrid states in the region aroud 1.8 GeV. In our analysis, the
lightest 0− states are in the range of the charmonium states, such that they could mix with
these states as well. A search for heavy hybrid mesons at LHCb or some other B-factories
should be useful for testing the theoretical predictions.



55

D, B and Bc exclusive weak decays

This chapter1 contains a discussion of the different results obtained from the vertex sum
rules for the weak semi-leptonic decays of the D, B and Bc. Intensive activities have been
devoted to these processes during the last few years using different non-perturbative QCD
approaches (QSSR [3,364,761–771]; light-cone sum rules [360,780–782]; lattice calcula-
tions [723]; heavy quark symmetry [164], and a perturbative factorization treatment within
a heavy quark approach [784,600,601]). Here, we shall concentrate on the study of the
previous decays from the point of view of QSSR from which we can extract the values of
the form factors and some CKM mixing angles.

55.1 Heavy to light exclusive decays of the B and D mesons

55.1.1 Introduction and notations

One can extend the analysis carried out for the two-point correlator to the more complicated
case of three-point function, in order to study the form factors related to the heavy to light
transitions: B → K ∗γ and B → ρ/π semi-leptonic decays. In contrast to the heavy to
heavy transitions, where the symmetry of the heavy quarks can be exploited and which
considerably simplifies the analysis, the heavy to light processes need non-perturbative
approaches such as lattice or/and QSSR. For the QSSR approach, which we shall discuss
here, we can consider the generic process:

B(D) → L + γ (l ν̄) , (55.1)

and the corresponding three-point function:

V (p, p′, q2) ≡ −
∫

d4x d4 y ei(p′x−py) 〈0|T JL (x)O(0)J †
B(y)|0〉 , (55.2)

where JL , JB are the currents of the light and B mesons; O is the weak operator specific
for each process (penguin for the K ∗γ , weak current for the semi-leptonic); q ≡ p − p′

1 This is an extension and an update of the part of book [3] and the review given in [364].

638
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and q2 ≡ t .2 The vertex obeys the double dispersion relation:

V (p2, p′2) �
∫ ∞

M2
b

ds

s − p2 − iε

∫ ∞

m2
L

ds ′

s ′ − p′2 − iε

1

π2
ImV (s, s ′) . (55.3)

As usual, the QCD part enters the LHS of the sum rule, while the experimental
observables can be introduced through the spectral function after the introduction of the
intermediate states:

V (p2, p′2) � 〈0|JL (x)|L〉〈L|O(0)|B〉〈B|JB(y)|0〉(
M2

L − p′2)(M2
B − p2

) + higher states . (55.4)

ML and MB are respectively the masses of the final L and B mesons. The matrix elements are:

〈0|JP,B(x)|P, B〉 =
√

2 fP,B M2
P,B , 〈0|Jµ

V (x)|V 〉 =
√

2M2
V

2γV
εµ , (55.5)

respectively, for pseudoscalar and vector states, where fπ = 92.4 MeV and γρ = 2.55.
The meson decay constants have been obtained either from the meson leptonic width or
from the analysis of the two-point function discussed in the previous chapter of this book.
Here, we shall be interested on the evaluation of the matrix element:

〈L|O(0)|B〉 . (55.6)

The improvement of the dispersion relation can be done in the way discussed previously
for the two-point function. In the case of the heavy to light transition, where the two sum rule
scales are quite different, the only possible improvement with a good Mb behaviour at large
Mb (convergence of the QCD series3) is the so-called hybrid sum rule (HSR) corresponding
to the uses of the moments for the heavy-quark channel and to the Laplace for the light one
[721,761]:

H(n, τ ′) = 1

π2

∫ ∞

M2
b

ds

sn+1

∫ ∞

0
ds ′ e−τ ′s ′

ImV (s, s ′) . (55.7)

Assuming that the higher state contributions to the spectral function are approximated
by those of the QCD continuum from a threshold tc and t ′

c, and assuming that the QCD
contribution also obeys a double dispersion relation, one obtains the FESR:

H(n, τ ′) = 1

π2

∫ tc

M2
b

ds

sn+1

∫ t ′
c

0
ds ′ e−τ ′s ′

ImV (s, s ′) . (55.8)

2 It has to be noticed that we shall use here, like in [761–764], the pseudoscalar current JP = (mu + md )ū(iγ 5)d for describing
the pion, where the QCD expression of the form factor can be deduced from the one in [767] by taking mc = 0 and by remarking
that the additional effect due to the light quark condensate for B → π relative to B → D vanishes in the sum rule analysis. In
the literature [768,771], the axial-vector current has been used. However, as it is already well known in the case of the two-point
correlator of the axial-vector current, by keeping its qµqν part, (which is similarly done in the case of the three-point function)
one obtains the contribution from the π plus the A1 mesons but not the π contribution alone. Although, the A1 effect can be
numerically small in the sum rule analysis due to its higher mass, the mass behaviour of the form factor obtained in this way
differs significantly from the one where the pseudoscalar current has been used due to the different QCD expressions of the form
factor in the two cases.

3 One should notice here that contrary to the case of the double exponential (Borel) sum rule where the mixed condensate explodes,
the OPE behaves quite well, at least to leading order in αs .
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Finally, in order to minimize the effects of the sum rule parameters into the analysis, it
is usual to introduce the two-point sum rule expression of the decay constants and use a
suitable relation between the three-point and two-point sum rules variables. These relations
are [773] (obvious index notations):

τ3 = τ2

2
(55.9)

for the double Laplace sum rule (DLSR), and [763]:

n3 = 1

2

(
n2 − 1

2

)
, (55.10)

for the hybrid sum rule (HSR) and lead to a cancellation of the τ or n dependences in
the sum rule analysis [768,731,761–766]. The different form factors entering the previous
semi-leptonic and radiative processes are defined as:

〈ρ(p′)|ūγµ(1 − γ5)b|B(p)〉 = (MB + Mρ)A1ε
∗
µ − A2

MB + Mρ

ε∗ p′(p + p′)µ

+ 2V

MB + Mρ

εµνρσ pρ p′σ ,

〈π (p′)|ūγµb|B(p)〉 = f+(p + p′)µ + f−(p − p′)µ ,

(55.11)

and:

〈K ∗(p′)|s̄σµν

(
1 + γ5

2

)
qνb|B(p)〉 = iεµνρσ ε∗ν pρ p′σ F B→K ∗

1

+ {
ε∗
µ

(
M2

B − M2
ρ

) − ε∗q(p + p′)µ
} F B→K ∗

1

2
.

(55.12)

For completeness, we give the relations of these form factors to the decay rates of the
B meson. In the case of the pseudoscalar final state, we have:

d	+
dt

= G2
F |Vbq |2

192π3 M3
B

λ3/2
(
M2

B, M2
L , t

)
F2

+(t), (55.13)

while for the vector final state:

d	+
dt

= G2
F |Vbu |2

192π3 M3
B

〈1/2
(
M2

B, M2
L , t

)

×
[

2
(
F A

0

)2 + 〈F2
V + 1

4M2
F

((
M2

B − M2
L − t

)
F A

0 + 〈F A
+

)2
]

,

λ = λ
(
M2

B, M2
L , t

)
. (55.14)
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We have introduced the notation (often used in the literature):

F+ = f+ ;F A
0 = (MB + ML )A1;

F A
+ = −A2

MB + ML
;FV = 0

V

MB + ML
.

(55.15)

55.1.2 Estimate of the form factors and of Vub

In the numerical analysis, we obtain at q2 = 0, the value of the B → K ∗γ form factor
[762]:

F B→ρ

1 � 0.27 ± 0.03 ,
F B→K ∗

1

F B→ρ

1

� 1.14 ± 0.02 , (55.16)

which leads to the branching ratio (4.5 ± 1.1) × 10−5, in perfect agreement with the CLEO
data [16] Br (B0 → K ∗0γ = (4.55 ± 0.7 ± 0.34) × 10−5, and with the estimate in
[781,820] and in [723]. for the D meson, one obtains:

F D→ρ

1 � 0.62 ± 0.10 ,
F D→K ∗

1

F D→ρ

1

� 1.22 ± 0.04 . (55.17)

One should also notice that, in this case, the coefficient of the 1/M2
b correction is very large,

which makes the extrapolation of the c-quark results to higher values of the quark mass
dangerous. This extrapolation is often done in some lattice calculations.

For the semi-leptonic decays B → ρ, π + lν, QSSR gives a good determination of the
ratios of the form factors with the values for the B-decays [763]:

A2(0)

A1(0)
� V (0)

A1(0)
� 1.11 ± 0.01 ,

A1(0)

F B→ρ

1 (0)
� 1.18 ± 0.06 ,

A1(0)

f+(0)
� 1.40 ± 0.06 ,

(55.18)

although their absolute values are quite inaccurate [761] and [771]. The direct determi-
nations of the absolute values are given in Table 55.1, showing that different results are
consistent with each others. The precise measurement of the ratios is due to the cancellation
of systematic errors.

Combining these results with the ‘world average’ value of f+(0) = 0.25 ± 0.02 and the
one of F B→ρ

1 (0), one can deduce the rates:

	π � (4.3 ± 0.7)|Vub|2 × 1012 s−1 , 	ρ/	π � 0.9 ± 0.2 . (55.19)

These results indicate:

� The possibility to reach Vub with a good accuracy from the exclusive modes. Using the accurate B
lifetime τB+ = (1.655 ± 0.027) × 10−12 s, and the measured branching ratio into π [16], one can
deduce:

Vub = (3.6 ± 0.3) × 10−3 , (55.20)

inside the range (2 − 5) × 10−3 given by PDG.
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Table 55.1. Values of the different form factors in the D, B semi-leptonic processes at zero
momentum from hybrid (HSR), double Laplace (DLSR)∗ and light cone (LCSR) sum rules

Process f+(0) A1(0) A2(0) V (0) Ref.

D0 → π−l ν̄ 0.7 ± 0.2 [769]
0.5 ± 0.2 [771]
0.65 ± 0.10 [772]
0.80+0.21

−0.14 [16] Data

D0 → K −l ν̄ 0.8 ± 0.2 [769]
0.6 ± 0.13 [773]
0.75 ± 0.12 [772]
0.6 ± 0.1 [775]
0.76 ± 0.03 [16] Data

D+ → scalar 0.42 − 0.57 [776]
(ūu, s̄d) l ν̄

D+
s → η l ν̄ 0.50 ± 0.15 [777]

D0 → ρ−l ν̄ 0.5 ± 0.2 0.4 ± 0.1 1.0 ± 0.2 [771]
0.34 ± 0.08 0.57 ± 0.08 0.98 ± 0.11 [772]

D0 → K ∗−l ν̄ 0.50 ± 0.15 0.60 ± 0.15 1.1 ± 0.25 [773]
0.54 ± 0.04 0.67 ± 0.08 1.1 ± 0.1 [772]
0.58 ± 0.03 0.41 ± 0.06 1.06 ± 0.09 [16] Data

B̄0 → π+l ν̄ 0.23 ± 0.02 [761] (DLSR + HSR)
0.26 ± 0.02 [771]
0.24 ± 0.03 [774]
0.29 ± 0.04 [772]
0.24 − 0.29 [778] (LCSR)

B̄0 → Dl ν̄ 1.0 ± 0.2 [767]
0.62 ± 0.06 [761]

B̄0 → ρ+ l ν̄ 0.35 ± 0.16 0.42 ± 0.12 0.47 ± 0.14 [761] (DLSR + HSR)
0.5 ± 0.1 0.4 ± 0.2 0.6 ± 0.2 [771]

B̄0 → K ∗+ν̄ν 0.37 ± 0.03 0.40 ± 0.03 0.47 ± 0.03 [779]

B̄0 → D∗l ν̄ 0.46 ± 0.02 0.53 ± 0.09 0.58 ± 0.03 [761] (DLSR + HSR)

∗ If not mentioned DLSR have been used.

� One should also notice that the ratio between the widths into ρ and into π is about 1 due to
the non-pole behaviour of AB

1 , while in different pole models, it ranges from 3 to 10. This re-
sult is in agreement within 1σ with the data (1.5 ± 0.5). Data on B → K (K ∗) + ψ(ψ ′) decays
[785] also favour this non-pole behaviour, while LCSR and lattice calculations indicate a slight
increase of A1 for increasing q2. However, the arguments given in [782] for explaining the failure of
the standard QSSR approach is unclear to us and should deserve a further investigation. In the case
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of the non-pole behaviour, one obtains a large negative value of the asymmetry α, contrary to the
case of the pole models.

55.1.3 SU (3)F breaking in B̄/D → Kl ν̄ and determination of Vcd/Vcs and Vcs

We extend the previous analysis for the estimate of the SU (3)F breaking in the ratio of the
form factors:

RP ≡ f P→K
+ (0)/ f P→π

+ (0) , (55.21)

where P ≡ B̄, D. As mentioned before, we use the hybrid moments for the B and the
double exponential sum rules for the D. The analytic expression of RP is given in [764],
which leads to the numerical result:

RB = 1.007 ± 0.020 , RD = 1.102 ± 0.007 , (55.22)

where one should notice that for Mb → ∞, the SU(3) breaking vanishes, while its size at
finite mass is typically of the same sign and magnitude as the one of fDs or of the B → K ∗γ
discussed before. The previous value of RD can be used with the data [16]:

Br (D+ → π0lν)

Br (D+ → K̄ 0lν)
= (8.5 ± 3.4)% , (55.23)

for deducing the value of |Vcd |/|Vcs |
We can also determine directly from QSSR the absolute value of the D → K form factor.

We obtain [764]:

f D→K
+ (0) � 0.80 ± 0.16 . (55.24)

The data from D lifetime and De3 [16] gives:∣∣ f D→K
+ (0)

∣∣2∣∣Vcs

∣∣2 � 0.531 ± 0.027 . (55.25)

Using the previous prediction for f D→K
+ (0) leads to:

Vcs = 0.91 ± 0.18 , (55.26)

which differs slightly from the PDG prediction as the value of the form factor used there
was 0.7 ± 0.1. It is also expected that the most reliable result is the lower bound derived
from Eq. (55.25) and from f D→K

+ (0) ≤ 1, which is:

Vcs ≥ 0.73 . (55.27)

55.1.4 Large Mb-limit of the form factors

We have studied analytically the large Mb limit of some of the previous form factors [762–
764]. We found that, within the approximation at which we are working, and to leading
order in Mb, they are dominated, for Mb → ∞, by the effect of the light-quark condensate,
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which dictates (to leading order) the Mb behaviour of the form factors to be typically of the
form:

F(0) ∼ 〈d̄d〉
fB

{
1 + IF

M2
b

}
, (55.28)

whereIF is the integral from the perturbative triangle graph, which is constant as t ′2
c Ec/〈d̄d〉

(t ′
c and Ec are the continuum thresholds of the light and b quarks) for large values of

Mb. It indicates that at q2 = 0 and to leading order in 1/Mb, all form factors behave like√
Mb, although, in most cases, the coefficient of the 1/M2

b term is large, which explains
the numerical dominance of the perturbative contribution at finite Mb. It should be finally
noticed that owing to the overall 1/ fB factor, all form factors for the heavy to light transitions
have a large 1/Mb correction.

55.1.5 q2-behaviour of the form factors

Although the sum rules give a reliable prediction for the value of the form factors at zero
momentum transfer, the analysis of their q2 behaviour is more delicate due to the eventual
presence of non-Landau singularities [774] above a critical value:

tcr = (MQ + mq2 )2 , (55.29)

for a Q̄q1 meson decaying semi-leptonically into a q̄1q2 meson, where the weak current is
q̄2γµq1; MQ and mq are constituent quark masses. Much below tcr , the sum rule result is
expected to provide the right q2-behaviour of the form factor. The study of the q2 behaviours
of the B semi-leptonic form factors shows that, with the exception of the A1 form factor,
their q2 dependence is only due to the non-leading (in 1/Mb) perturbative graph, so that for
Mb → ∞, these form factors remain almost constant from q2 = 0 to q2

max, with a cautious
for the accuracy of the result at q2

max. The resulting Mb behaviour at q2
max is the one expected

from the heavy quark symmetry. The numerical effect of this q2-dependence at finite values
of Mb is a polynomial in q2 (which can be resummed), and mimics the pole parametrization
quite well for a pole mass of about 6–7 GeV. The situation for the A1 is drastically different
from the other ones, as here the Wilson coefficient of the 〈d̄d〉 condensate contains a q2

dependence with a wrong sign and reads [763]:

A1(q2) ∼ 〈d̄d〉
fB

{
1 − q2

M2
b

}
, (55.30)

which, for q2
max ≡ (MB − Mρ)2, gives the expected behaviour:

A1
(
q2

max

) ∼ 1√
Mb

. (55.31)

One can notice that the q2 dependence of A1 is in complete contradiction with the pole
behaviour due to its wrong sign. This result may explain the numerical analysis of [771].
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One should notice that a recent phenomenological analysis of the data [783] on the large
longitudinal polarization observed in B → K ∗ + ψ and a relatively small ratio of the rates
B → K ∗ + ψ over B → K + ψ [785] can only be simultaneously explained if the A1(q2)
form factor decreases as indicated by our previous result, while larger choices of increasing
or/and monotonically form factors fail to explain the data [786]. It is important to test this
anomalous feature of the A1-form factor from some other data. One should notice that
the q2 behaviour of A1 has also been studied from lattice calculations [723] and light-cone
sum rule (LCSR) [780,782]. The latter result shows a slower increase of A1 for increasing
q2. Contrary to the interpretation given in [782] where the arguments given there are not
clear to us (in particular the connection between the LCSR and the SVZ sum rule), the
increase of the form factor may indicate that non-leading contributions at finite Mb, not
accounted for in our approximation, can be numerically important, and competes with the
leading-order contribution presented here. We plan to come back to this point in the near
future. Finally, as a complement of the heavy quark symmetry which will be discussed in the
next section, we have also presented in Table 55.1 the results for the B → D, D∗ l ν̄ form
factors.

55.2 Slope of the Isgur–Wise function and value of Vcb

Using heavy quark symmetry in the infinite quark mass limit, the different form factors
of the semi-leptonic B → D∗ and B → D can be related to each others and expressed in
terms of a single form factor:

f+(q2) = V (q2) = A0(q2) = A2(q2) =
(

1 − q2

(MB + MD)2

)−1

A1(q2) , (55.32)

where:

A1(q2) = MB + MD

2
√

MB MD
ζ (y) . (55.33)

ζ (y ≡ v.v′) is the so-called Isgur–Wise (IW) function and contains all non-perturbative
QCD effects (v and v′ are respectively the B and D meson velocity). At zero recoil y = 1,
or at q2

max, it is normalized as ζ (1) = 1 from the conservation of the vector current. In this
limit, the B → D∗ decay distribution can be written as:

d	

dy
= G2

F

48π3
(MB − MD∗ )2 M3

D∗
√

y2 − 1(y + 1)2

×
[

1 + 4y

y + 1

M2
B − 2yMB MD∗ + M2

D∗

(MB − MD∗ )2

]
|Vcb|2F2(y) , (55.34)

where F(y) is the IW function including perturbative and power corrections. Near zero
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recoil, one can write the expansion:

F(1) = ηA

[
1 + C2

M2
Q

+ · · ·
]

, (55.35)

where ηA includes the perturbative corrections, which to two-loop accuracy reads [580]:

ηa = 0.960 ± 0.007 , (55.36)

while, there is no 1/M correction in virtue of the Luke’s theorem [568]. There are some
attempts to estimate the size of the 1/M2 terms in the literature [164,562,587], which remain
not under good control. The resuting compromise value is:

F(1) � 0.91(6) , (55.37)

where we have multiplied the quoted error by a factor 2 in order to be more conservative.
Let me now discuss the slope of the IW function. De Rafael and Taron [789] have exploited
the analyticity of the elastic b-number form factor F defined as:

〈B(p′)|b̄γ µb|B(p)〉 = (p + p′)µF(q2) , (55.38)

which is normalized as F(0) = 1 in the large mass limit MB � MD . Using the positivity of
the vector spectral function and a mapping in order to get a bound on the slope of F outside
the physical cut, they obtained a rigorous though weak bound:

F ′(vv′ = 1) ≥ −6 . (55.39)

Including the effects of the ϒ states below B̄ B thresholds by assuming that the ϒ B̄ B
couplings are of the order of 1, the bound becomes stronger:

F ′(vv′ = 1) ≥ −1.5 . (55.40)

Using QSSR, we can estimate the part of these couplings entering in the elastic form
factor. We obtain the value of their sum [765]:∑

gϒ B̄ B � 0.34 ± 0.02 . (55.41)

In order to be conservative, we have multiplied the previous estimate by a factor 3 larger.
We thus obtain the improved bound:

F ′(vv′ = 1) ≥ −1.34 , (55.42)

but the gain over the previous one is not much. Using the relation of the form factor with
the slope of the IW function, which differs by −16/75 log αs(Mb) [790], one can deduce
the final bound [765]:4

ζ ′(1) ≥ −1.04 . (55.43)

4 Voloshin in [791] derives also the upper bound ρ2 ≤ 1/4 + �̄/[2(MB′ − MB )], which, however, depends crucially on the less
controlled value of �̄ and the mass of the radial excitation MB′ .
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The previous bound combined with the Bjorken lower bound [792] leads to the allowed
domain:

1

4
≤ ρ2 ≡ −ζ ′(1) ≤ 1.04 . (55.44)

However, one can also use the QSSR expression of the IW function from vertex sum
rules [655] in order to extract the slope analytically. To leading order in 1/M , the physical
IW function reads [Rep. 18.5]:

ζphys(y ≡ vv′) =
(

2

1 + y

)2
{

1 + αs

π
f (y) − 〈d̄d〉τ 3g(y)

+ 〈αs G2〉τ 4h(y) + g〈d̄Gd〉τ 5k(y)

}
, (55.45)

where τ is the Laplace sum rule variable and f, h and k are analytic functions of y. From
this expression, one can derive the analytic form of the slope [765]:

ζ ′
phys(y = 1) � −1 + δpert + δN P , (55.46)

where at the τ -stability region:

δpert � −δN P � −0.04 , (55.47)

which shows the near-cancellation of the non-leading non-perturbative corrections at this
leading order in 1/M . Adding a generous 50% error of 0.02 for the correction terms, we
finally deduce the leading order result in 1/M :

ζ ′
phys(y = 1) � −1 ± 0.02 . (55.48)

Using this result in different existing model parametrizations, we deduce the value of the
mixing angle, to leading order in 1/M :

Vcb �
(

1.48 ps

τb

)1/2

× (37.3 ± 1.2 ± 1.4) × 10−3, (55.49)

where the first error comes from the data and the second one from the model-dependence.5

In order to discuss the effects due to the 1/M corrections, we proceed in the following
phenomenological way:

� We use the predicted value of the form factor 0.91 ± 0.03 at y =1,
� We also use the value 0.53 ± 0.09 at q2 = 0 [761]6 from the sum rule in the full theory (i.e without

using a 1/M-expansion).
� We join the two results, where the model dependence of the analysis enters through the concavity

of the form factor between these two extreme boundaries.

5 A recent analysis [574] relates the curvature with the slope, such that in this case, the model dependence of the result disappears.
6 This value is just on top of the CLEO data [793].
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Table 55.2. Different QSSR estimates of the slope of the
IW-function compared with the lattice result

−ζ ′ ≡ ρ2 References Comments

0.84 ± 0.02 [795] Numerical fit
0.70 ± 0.1 [796]
0.70 ± 0.25 [797]
1.00 ± 0.02 [765] Analytic expression
0.91 ± 0.04 QSSR average(
0.9+0.2 +0.4

−0.3 −0.4

)
[798] Lattice

If we use the value of the concavity given by [574], the form factor can be parametrized
as:

F(y) = F(1){1 + ζ̂ ′(y − 1) + ĉ(y − 1)2] , (55.50)

where:

ζ̂ ′ = ζ ′ − (0.16 ± 0.02) , ĉ ≈ −0.66ζ̂ ′ − 0.11 . (55.51)

Therefore, we can deduce the slope:

ζ ′ � −(0.75 ± 0.1) , (55.52)

which can indicate that the 1/M correction also tends to decrease the value of |ζ ′|. This
leads to the final estimate:

Vcb �
(

1.48 ps

τb

)1/2

× (38.8 ± 1.2 ± 1.5 ± 1.5) × 10−3 , (55.53)

where the new last error is induced by the error from the slope, while the model dependence
only brings a relatively small error. Using the measured B0-lifetime τB = 1.548 ± 0.032 ps,
one obtains:

Vcb � (37.9 ± 2.4) × 10−3 , (55.54)

compared with the value 0.0402 ± 0.0019 from LEP measurements of exclusive and inclu-
sive decays [16] and CLEO data [793]. Our result for the slope is also in good agreement
with the data. Finally, we compare the different results from the sum rules in Table 55.2,
from which we deduce the weighted average from the sum rules given in Table 55.2, where
we have taken the error of the most precise determinations which we have multiplied by
a factor 2 in order to be conservative. This average is in good agreement with the lattice
value, which is also given in this table.
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55.3 B∗(D∗) → B(D) π (γ ) couplings and decays

In [766], we have further applied the vertex sum rules in order to study the decays and
couplings of the B∗(D∗) → B(D) π (γ ), using systematically a 1/Mb expansion in the full
theory. The couplings are defined as:

〈B∗(p)B(p′)π (q)〉 = gB∗ Bπqµεµ ,

〈B∗(p)B(p′)γ (q)〉 = −egB∗ Bγ pα p′
βεµναβεµε′

ν , (55.55)

where q ≡ p′ − p and −Q2 ≡ q2 ≤ 0, while εµ are the polarization of the vector particles.
Our numerical predictions for the couplings are:7

gB∗ Bπ � 14 ± 4 , gD∗ Dπ � 6.3 ± 1.9 , (55.56)

in good agreement with the results in [800] obtained by combining QSSR with soft pion
techniques. These results lead to the prediction:

	D∗−→D0π− � 1.54	D∗0→D0π0 � (8 ± 5) keV , (55.57)

where we have assumed an isospin invariance for the couplings.
We notice that in the large Mb limit, the perturbative graph gives the leading contribution

like some other heavy-to-heavy processes studied within the same approach. In this limit,
we obtain:

gB∗Bπ � 2MB√
2 fπ

g∞
{

1 + E B
c

Mb
+ π2

2

〈ūu〉(
E B

c

)3

}
, (55.58)

where g∞ is the static coupling:

g∞ ≡ NC

2

(
mu + md

m2
π

) (
0.12E∞

c

) � (0.15 ± 0.03) , (55.59)

for E∞
c � (1.6 ± 0.1) GeV.

In the same way, we have also estimated the B∗ Bγ and D∗ Dγ couplings. We obtain:

	B∗−→B−γ � 2.5	B∗0→B0γ � (0.10 ± 0.03) keV . (55.60)

For the D∗ meson, one obtains:

	D∗0→D0γ � (7.3 ± 2.7) keV , 	D∗−→D−γ � (0.03 ± 0.08) keV , (55.61)

which despite the large errors, shows in the analysis that the heavy quark contribution acts
in the right direction for explaining the large charge dependence of the observed rates:

	D∗0→D0π0/	D∗0→D0γ , 	D∗−→D0π−/	D∗−→D−γ . (55.62)

7 The application of the 1/M expansion to the D and D∗ mesons might be a very crude approximation. A comparison of the result
with the recent CLEO data [799] gD∗ Dπ = 17.9 ± 0.3 ± 1.9 needs further investigation using a complete QCD expression of
the vertex.
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Table 55.3. Comparison of semi-leptonic form factors for different decays. We compare
the dimensionless quantities f+, A1, A2, V related to F A

0 , F A
+ and FV through Eq. (55.15)

Channels Reference f+ V A2 A1

cc̄ [731] 0.55 ± 0.10 0.48 ± 0.07 0.30 ± 0.05 0.30 ± 0.05
[801] 0.20 ± 0.01 0.37 ± 0.1 0.27 ± 0.03 0.28 ± 0.01

bs̄ [731] 0.60 ± 0.12 1.6 ± 0.3 0.06 ± 0.06 0.40 ± 0.10
[801] 0.30 ± 0.05 2.1 ± 0.25 0.39 ± 0.05 0.35 ± 0.20

B → D(∗) [771] 0.75 ± 0.05 0.8 ± 0.1 0.68 ± 0.08 0.65 ± 0.10
[803] 0.69 0.71 0.69 0.65
[48] 0.62 ± 0.06 0.58 ± 0.03 0.53 ± 0.09 0.46 ± 0.02

Bc → ηc Bc → Bs Bc → B Bc → D
Bc → J/ψ Bc → B∗

s Bc → B∗ Bc → D∗

F+(0) 0.55 ± 0.10 0.60 ± 0.12 0.48 ± 0.14 0.18 ± 0.08
FV (0) [GeV−1] 0.048 ± 0.007 0.15 ± 0.02 0.11 ± 0.02 0.02 ± 0.01
F A

+ (0) [GeV−1] −0.030 ± 0.003 −0.005 ± 0.005 0.005 ± 0.005 0.010 ± 0.010
F A

0 (0) [GeV] 3.0 ± 0.5 3.3 ± 0.7 1.7 ± 0.7 0.8 ± 0.4

One should also notice that the non-leading 1/Mb corrections are large in the two chan-
nels. For the P P∗π coupling, these corrections coming mainly from the perturbative graph
tend to cancel, which imply the validity of the HQET result:

gB∗ Bπ fB∗
√

MB � gD∗ Dπ fD∗
√

MD . (55.63)

For the electromagnetic, these large corrections are necessary to explain the large charge
dependence of the ratio of the D∗0 → D0γ over the D∗− → D−γ observed widths.
However, the new CLEO data give 	D∗−→D−γ � (96 ± 22) keV indicating that the 1/M
approach for the absolute width can be a bad approximation.

55.4 Weak semi-leptonic decays of the Bc mesons

The analysis of the semi-leptonic decays of the Bc meson has been performed in [731] using
QSSR methods. The procedure is very similar to the one used in the previous sections. The
principal results of the sum rules evaluation of the form factors in Eq (55.11) are collected
in Table 55.3. The value with the lower (resp. larger) modulus corresponds to the value of
the continuum energy Ec = 1 GeV (resp. 2 GeV). In Fig. 55.1, we show the q2 behaviour
of the Bc → ηc l ν̄ process, which shows a net deviation of the QSSR prediction from the
monopole fit:

F+(t) = F+(0)

1 − t/M2
pole

, (55.64)
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Fig. 55.1. q2 behaviour of the Bc → ηcl ν̄ form factor: QSSR predictions with polynomial fit (contin-
uous line) for two values of Ec; monopole parametrization with Mpole = MB∗

c = 6.33 GeV.

with Mpole = MB∗
c
, which can be tested experimentally. The same feature is observed in

other channels. For the Bc → J/ψ l ν̄ process, one obtains the fitted QSSR pole mass:

FV : Mpole � 4.08 GeV , F A
+ : Mpole � 4.44 GeV , F A

0 : Mpole � 4.62 GeV .

(55.65)
However, the question is, whether it is known if the previous q2-behaviour deviation

from the monopole model is an artifact of sum rule or something more fundamental. In
VDM, the vector current couples to the hadrons with appropriate flavour content, where
the intermediate vector mesons leads to the pole of the form factor F+(t) at t ≡ q2 = M2

V

giving the t-behaviour in Eq. (55.64), while an intuitive quark model form factor determined
by the Fourier transform of the hadron wave function gives:

F+(t) = 1 + 〈r2〉
6

t + O(t2) , (55.66)

where 〈r2〉 is the hadron mean-squared radius in the quark model. For light hadrons, the
vector meson is the ρ meson. Expanding Eq. (55.64) in t , and identifying with Eq. (55.66),
one obtains:

√
〈r2〉π =

√
6

Mρ

� 0.6 fm , (55.67)

which is a reasonable value for the quark model, while for the case of the Bc meson, the
vector meson is the B∗

c with a mass of 6.4 GeV leading to a mean radius of about 0.08 fm,
which is too small for a reliable validity of the non-relativistic quark model. This feature
might indicate that the non-relativistic picture is not reasonable, such that, we have, instead,
to discuss the problem within a relativistic field theory approach such as QSSR. We compare
in Table 55.4 different theoretical predictions based on QCD-like models.
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Table 55.4. Partial decay rates for Bc and B∗
c

mesons

Channels Reference Rates in 1010s−1

Bslν [731] 0.35 ± 0.10
[801] 0.18

B∗
s lν [731] 0.35 ± 0.10

[801] 0.87
bs̄lν [731]

[801]
[802] 2.91

ηclν [731] 0.27 ± 0.07
[801] 0.03

J/ψlν [731] 0.32 ± 0.08
[801] 0.21

cc̄lν [731]
[801]
[802] 6.90

55.4.1 Anomalous thresholds

Another subtle point in the vertex sum rule approach is the eventual existence of anomalous
thresholds in the study of the q2 behaviour of the form factors [804–806]. Let’s illustrate
the analysis from the study of the process Bc(b̄c) → �(c̄c)l ν̄. The interaction between b̄
and c leads to the formation of the vector meson B∗

c (c̄b) allowing us to approximate the
singularity by the pole of the vector meson mass near the normal threshold tn = (Mb + Mc)2,
where t should be large enough for ensuring the b̄ and c quark on-mass shell. Anomalous
threshold occurs, if under a certain condition, for smaller value ta of t , one is able to give
on-shell mass b a gentle kick in order to transform it into an on-shell mass c. The derivation
of the existence of anomalous thresholds can be simply done using dual diagrams [804]
shown in Fig. 55.2. The dual (b) of the QCD three-point function (a) can be obtained by
transforming the plane segments A, B, C, O of the planar diagram (a) into points of the
dual diagram connected by lines with lengths given by the masses of the particles dividing
the segments. If the point O of the dual diagram is inside the triangle ABC , then there
exists an anomalous threshold and its value is given by the square of the distance AB. For
the Bc of mass 6.25 GeV, anomalous thresholds do exist for the decay Bc → ηc, J/�

provided the quark mass fulfill the conditions: mc < 2.1 GeV and mb < 5.9 GeV, which
are satisfied by any quark models. The exact position of the anomalous threshold depends
strongly on the value of the quark masses. Using the constituent (pole) masses mb = 4.9
GeV and mc = 1.57 GeV, one would obtain

√
ta = 4.6 GeV, while the minimum possible

value is
√

ta ≥ mb − mc = 3.3 GeV. These values are consistent with the effective pole
mass of about 4.2 GeV found in the sum rule analysis. Everything looks consistent except
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Fig. 55.2. QCD three-point function (a) and its dual diagram (b).

that quarks are not free particles while perturbation theory breaks down if one tries to
approach the pole of the quark propagators. Therefore, an anomalous threshold should not
be present in the t-dependence of the (hadronic) form factors. The same conclusion holds
for the normal thresholds, as in the e+e− process, we do not observe a quark-antiquark state
but hadrons. Quark-hadron duality tells us that the discontinuity across the quark-antiquark
cut, if viewed from a certain distance or smeared over some energy interval describes the
hadronic production in e+e− quite well. In a QCD-like model, [805,806] found that although
quark anomalous thresholds are absent, at some distance from the calculated threshold, the
amplitude can be quite well approximated by anomalous singularities at the quark level.



56

B0
(s)-B̄0

(s) mixing, kaon CP violation

In this chapter, we provide the basics of the phenomenological description of the B0-B̄0

and K 0-K̄ 0 systems, and summarize the different results obtained from QCD spectral sum
rules (QSSR), on the bag constant parameters entering in the analysis of the B0

(s)-B̄0
(s) mass

differences, and on different operators entering in the analysis of kaon CP violation. There
is practically no theory behind this description. It is only based on first principles: the
superposition principle, Lorentz invariance, and general invariance properties under the P,
C and T symmetries. The basic idea is to reduce the description of this system to a minimum
of phenomenological parameters which, eventually, an underlying theory, like the Standard
Model (SM) should be able to predict.

56.1 Standard formalism

This section has been inspired from the lectures given in [500].

56.1.1 Phenomenology of B0-B̄0 and K 0-K̄ 0 mixings

In the absence of the weak interactions, the K 0 and K̄ 01 particles produced by the strong
interactions are stable eigenstates of strangeness with eigenvalues ±1. In the presence of
the weak interaction they become unstable. The states with an exponential time dependence
law (τ is the proper time):

|KL〉 → e−i MLτ |KL〉 and |KS〉 → e−i MSτ |KS〉 , (56.1)

are linear superpositions of the eigenstates of strangeness:

|KL〉 = 1√
| p |2 + | q |2

(p | K 0〉 + q |K̄ 0〉) (56.2)

|KS〉 = 1√
| p |2 + | q |2

(p | K 0〉 − q |K̄ 0〉) , (56.3)

where p and q are complex numbers and CPT invariance, which is a property of the SM in

1 Discussions for the B0 and B̄0 particles are very similar.
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any case, has been assumed. The parameters ML ,S in Eq. (56.1) are also complex:

ML ,S = mL ,S − i

2
�L ,S , (56.4)

with mL ,S the masses and �L ,S the decay widths of the long-lived and short-lived neutral
kaon states.

As we shall see, experimentally, the |KS〉 and |KL〉 states are very close to the CP
eigenstates:

∣∣K 0
1

〉 = 1√
2

(|K 0〉− |K̄ 0〉) and
∣∣K 0

2

〉 = 1√
2

(|K 0〉+ |K̄ 0〉) (56.5)

with:

CP
∣∣K 0

1

〉 = +∣∣K 0
1

〉
and CP

∣∣K 0
2

〉 = −∣∣K 0
2

〉
. (56.6)

This is characterized by the small complex parameter ε̃:

ε̃ = p − q

p + q
; (56.7)

in terms of which:

|KL ,S〉 = 1√
1+ |ε̃ |2

(∣∣K 0
2,1

〉 + ε̃
∣∣K 0

1,2

〉)
. (56.8)

According to Eqs. (56.1) and (56.2), a state initially pure |K 0〉 evolves, in a period of
time τ to a state which is a superposition of |K 0〉 and |K̄ 0〉:

|K 0〉 → 1

2
[e−i MLτ + e−i MSτ ] |K 0〉 + 1

2

p

q
[e−i MLτ − e−i MSτ ] |K̄ 0〉 ; (56.9)

and, likewise:

| K̄ 0〉 → 1

2
[e−i MLτ + e−i MSτ ] | K̄ 0〉 + 1

2

q

p
[e−i MLτ − e−i MSτ ] | K 0〉 . (56.10)

For a small period of time δτ we then have:

| K 0〉 → | K 0〉 − iδτ (M11 | K 0〉 + M12 | K̄ 0〉) ; (56.11)

| K̄ 0〉 → | K̄ 0〉 − iδτ (M21 | K 0〉 + M22 | K̄ 0〉), (56.12)

where:

Mi j = 1

2

(
ML + MS

p
q (ML − MS)

q
p (ML − MS) ML + MS

)
. (56.13)

This is the complex mass matrix of the K 0 − K̄ 0 system.
In full generality, the mass matrix Mi j admits a decomposition, similar to the one of the

complex parameters ML ,S in Eq. (56.4), in terms of an absorptive part �i j and a dispersive
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part Mi j :

Mi j = Mi j − i

2
�i j . (56.14)

In a given quantum field theory, like, for example, the Standard Electroweak Model, the
complex K 0 − K̄ 0 mass matrix is defined via the transition matrix T which characterizes
S-matrix elements. More precisely, the off-diagonal absorptive matrix element �12 for
example, is given by the sum of products of on-shell matrix elements:

�12 =
∑

�

∫
d�(〈� | T | K̄ 0〉)∗ 〈� | T | K 0〉 , (56.15)

where the sum is extended to all possible states | �〉 to which the states | K 0〉 and | K̄ 0〉 can
decay. The symbol d� denotes the phase space measure appropriate to the particle content
of the state �. The corresponding matrix element M12 is defined by the dispersive principal
part integral:

M12 = 1

π
℘

∫
ds

1

m2
K − s

�12(s) + ‘local − terms’ . (56.16)

The fact that M11 = M22 in Eq. (56.13) is a consequence of CPT invariance. In general, if
we have a transition between an initial state | IN 〉 and a final state | FN 〉, CPT invariance
relates the matrix elements of this transition to the one between the corresponding CPT-

transformed states | FN
′
〉 and | IN

′
〉, where | IN

′
〉 denotes the state obtained from | IN 〉 by

interchanging all particles into antiparticles (this is the meaning of the bar symbol in IN ),
and taking the mirror image of the kinematic variables: [(E, �p) → (E, − �p) ; (σ 0, �σ ) →
(−σ 0, �σ )], as well as their motion reversal image: [(E, �p) → (E, − �p) ; (σ 0, �σ ) →
(σ 0, −�σ )]. (These kinematic changes are the meaning of the prime symbol in IN

′ 〉.)
Altogether, CPT invariance implies then:

〈FN | T | IN 〉 = 〈IN
′
| T | FN

′
〉 . (56.17)

Since, for the K 0-states: | (K̄ 0)
′ 〉 = |K 0〉, the CPT invariance relation implies:

M11 = M22 . (56.18)

The off–diagonal matrix elements in Eq. (56.13) are also related by CPT invariance, plus
the hermiticity property of the T -matrix in the absence of strong final-state interactions;
certainly the case when the | I N 〉 and | F N 〉 states are | K 0〉 and | K̄ 0〉. In general, in the
absence of strong final-state interactions, we have:

〈IN
′
| T | FN

′
〉 = (〈FN

′
| T | IN

′
〉)∗ . (56.19)

This relation, together with the CPT invariance relation in Eq. (56.17) implies then:

M12 = (M21)∗ . (56.20)
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There are a number of interesting constraints between the various phenomenological
parameters we have introduced. With M12 and �12 defined in Eqs. (56.16) and (56.15) and
using Eqs. (56.13), (56.4) and (56.7), we have:

q

p
= 1 − ε̃

1 + ε̃
= 1

2

�m + i 1
2��

M12 − i
2�12

= M21 − i
2�21

1
2

(
�m + i

2��
) , (56.21)

where

�m ≡ mL − mS and �� ≡ �S − �L . (56.22)

As already discussed, CPT invariance implies:

M21 = (M12)∗ and �21 = (�12)∗ . (56.23)

Experimentally, the masses mL ,S and widths �L ,S are well measured, and in what follows
they will be used as known parameters. (There is no way for theory at present to do better
than experiments in the determination of these parameters . . . ) The precise values for the
masses and widths can be found in PDG [16]. Nevertheless, it is important to keep in mind
some orders of magnitude:

�−1
S 	 0.9 × 10−10s ; (56.24)

�L 	 1.7 × 10−3�S ; (56.25)

�m 	 0.5�S. (56.26)

56.1.2 The Bell–Steinberger unitarity constraint

Let us consider a state | 	〉 to be an arbitrary superposition of the short-lived and long-lived
kaon states:

| 	〉 = α | KS〉 + β | KL〉 . (56.27)

The total decay rate of this state must be compensated by a decrease of its norm:
∑

�

| 〈� | T | 	〉 |2= − d

dτ
| 	 |2 . (56.28)

The change in rate is governed by the mass matrix defined by Eq. (56.11). Equating terms
proportional to | α |2 and | β |2 in both sides of Eq. (56.28) results in the trivial relations:

�L =
∑

�

∫
d� | 〈� | T | KL〉 |2 , (56.29)

�S =
∑

�

∫
d� | 〈� | T | KS〉 |2 . (56.30)

The mixed terms, proportional to αβ∗ and α∗β, lead however to a highly non-trivial relation,
first derived by Bell and Steinberger [807]:

−i(M∗
L − MS)〈KL | KS〉 =

∑
�

∫
d� (〈� | T | KL〉)∗ 〈� | T | KS〉 . (56.31)
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Notice that

〈KL | KS〉 = | p |2 − | q |2
| p |2 + | q |2 = 2Reε̃

1+ | ε̃ |2 . (56.32)

The LHS of Eq. (56.31) can be expressed in terms of measurable physical parameters with
the result:(

�S + �L

2
− i�m

)
2Reε̃

1+ | ε̃ |2 =
∑

�

∫
d� (〈� | T | KL〉)∗ 〈� | T | KS〉 . (56.33)

The RHS of this equation can be bounded, using the Schwartz inequality, with the result:∣∣∣∣�S + �L

2
− i�m

∣∣∣∣ 2Reε̃

1+ | ε̃ |2 ≤
√

�L�S . (56.34)

Inserting the experimental values for �S,L and �m, results in an interesting bound for
the non-orthogonality of the KL and KS states [see Eq. (56.32)]:

2Reε̃

1+ | ε̃ |2 ≤ 2.9 × 10−2 , (56.35)

indicating also that the admixture of K 0
1 (K 0

2 ) in KL (KS) has to be rather small.
It is possible to obtain further information from the unitarity constraint in Eq. (56.33), if

one uses the experimental fact that the 2π states are by far the dominant terms in the sum
over hadronic states �.

One can then write the RHS of Eq. (56.33) in the form:

∑
ππ

∫
d(ππ ) (〈ππ | T | KL〉)∗ 〈ππ | T | KS〉 + γ�S . (56.36)

It is possible to obtain a bound for γ , by considering other states than 2π in the sum of
the RHS in Eq. (56.33) and applying the Schwartz inequality to individual sets of states
separated by selection rules.

The contribution from the various semi-leptonic modes, for example, is known to be
smaller than: ∣∣∣∣∣

∑
lep.modes

∫
· · ·

∣∣∣∣∣ � 10−3�S ; (56.37)

and the contribution from the 3π -states:∣∣∣∣∣
∑
3π

∫
· · ·

∣∣∣∣∣ � 10−3�S . (56.38)

We conclude that, to a good approximation, we can restrict the Bell–Steinberger relation
to 2π -states. We shall later come back to this inequality, but first we have to discuss the
phenomenology of the dominant K → ππ transitions.
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56.1.3 K → 2π amplitudes

In the limit where CP is conserved the states KS(KL ) become eigenstates of CP; namely, the
states K 0

1 (K 0
2 ) introduced in Eq. (56.5) with eigenvalues CP = +1(CP = −1). On the other

hand a state of two-pions with total angular momentum J = 0 has CP = +1. Therefore,
the observation of a transition from the long-lived component of the neutral kaon system to
a two-pion final state is evidence for CP violation. The first observation of such a transition
to the π+π− mode was made by Christenson et al. [808] in 1964, with the result:

�L (+, −)

�L (all)
= (2 ± 0.4) × 10−3 . (56.39)

Since then the transition to the π0π0 mode has also been observed, as well as the phases
of the amplitude ratios:

η+− = 〈π+π− | T | KL〉
〈π+π− | T | KS〉 and η00 = 〈π0π0 | T | KL〉

〈π0π0 | T | KS〉 , (56.40)

with the results [16]:

η+− = (2.269 ± 0.023) × 10−3ei(44.3±0.8)◦ ; (56.41)

η00 = (2.259 ± 0.023) × 10−3ei(43.3±1.3)◦ . (56.42)

In order to make a phenomenological analysis of K → ππ transitions, it is convenient to
express the states | π+π−〉 and | π0π0〉 in terms of well defined isospin I = 0, and I = 2
states. (The I = 1 state in this case is forbidden by Bose statistics.):

| +−〉 =
√

2

3
| 0〉 +

√
1

3
| 2〉 ; (56.43)

| 00〉 =
√

2

3
| 2〉 −

√
1

3
| 0〉 . (56.44)

The reason for introducing pure isospin states, is that the matrix elements of transitions
from K 0 and the K̄ 0 states to the same (ππ )I -state can be related by CPT invariance plus
Watson’s theorem on final-state interactions. The relation in question is the following:

e−2iδI 〈I | T | K 0〉 = (〈I | T | K̄ 0〉)∗ , (56.45)

where δI denotes the appropriate J = 0, isospin I ππ phase-shift at the energy of the neutral
kaon mass.

The proof of this relation is rather simple. With S = 1 + iT , the unitarity of the S matrix,
SS† = 1, implies:

T †T = i(T † − T ) . (56.46)

If one takes matrix elements of this operator relation between an initial state K 0, and a
final 2π -state with isospin I , we then have:∑

F

〈I | T † | F〉〈F | T | K 0〉 = i〈I | T † | K 0〉 − i〈I | T | K 0〉 , (56.47)
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where we have inserted a complete set of states
∑ | F〉〈F |= 1 between T and T †. The

crucial observation is that, in the strong interaction sector of the S matrix, only the state
F = I can contribute to the T †-matrix element. All the other states are suppressed by
selection rules; for example, the 3π -states have opposite G-parity than the 2π -states; the
πlν-states are not related to 2π -states by the strong interactions alone; etc. Then, introducing
the ππ phase-shift definition:

〈I | S | I 〉 = e2iδI , (56.48)

results in the relation:

i(e−2iδI − 1)〈I | T | K 0〉 = i〈I | T † | K 0〉 − i〈I | T | K 0〉 ,

= i(〈K 0 | T | I 〉)∗ − i〈I | T | K 0〉 . (56.49)

We can next use CPT invariance [recall Eq. (56.17), which in our case implies the relation:
〈K 0 | T | I 〉∗ = (〈I | T | K̄ 0〉)∗.] The result in Eq. (56.45) then follows.

As a consequence of the relation we have proved, we can use in full generality the
following parametrization for K 0(K̄ 0) → (ππ )I amplitudes:

〈I | T | K 0〉 = i AI eiδI ; (56.50)

〈I | T | K̄ 0〉 = −i A∗
I eiδI . (56.51)

One possible quantity we can introduce to characterize the amount of CP violation in
K → 2π transitions is the parameter:

ε = A[KL → (ππ )I=0]

A[KS → (ππ )I=0]
. (56.52)

This parameter is related to the ε̃–parameter introduced in Eq. (56.7); as well as to the
complex A0-amplitude defined in Eqs. (56.50) and (56.51), in the following way:

ε = (1 + ε̃)A0 − (1 − ε̃)A∗
0

(1 + ε̃)A0 + (1 − ε̃)A∗
0

. (56.53)

namely:

ε = ε̃ + i ImA0
ReA0

1 + i ε̃ ImA0
ReA0

. (56.54)

This is a good place to comment on the history of phase conventions in neutral K -
decays. In their pioneering paper on the phenomenology of the K − K̄ system, Wu and
Yang [809] chose to freeze the arbitrary relative phase between the K 0 and K̄ 0 states,
with the choice ImA0 = 0. With this convention, ε = ε̃. In fact, the parameter ε is phase-
convention independent; while neither ε̃, nor AI are. Indeed, under a small arbitrary phase
change of the K 0-state:

| K 0〉 → e−iϕ | K 0〉 , (56.55)
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the parameters AI , M12, and ε̃ change as follows:

ImAI → ImAI − ϕReAI ; (56.56)

ImM12 → ImM12 + ϕ�m ; (56.57)

ε̃ → ε̃ + iϕ ; (56.58)

while ε remains invariant. The Wu–Yang phase convention was made prior to the devel-
opment of the electroweak theory. In the standard model, the conventional way by which
the freedom in the choice of relative phases of the quark fields has been frozen, is not
compatible with the Wu–Yang convention. Since ε is convention independent, we shall
keep it as one of the fundamental parameters. Then, however, we need a second parameter
which characterizes the amount of intrinsic CP violation specific to the K → 2π decay, by
contrast to the CP violation in the K 0 − K̄ 0 mass matrix. The parameter we are looking for
has to be sensitive then to the lack of relative reality of the the two isospin amplitudes A0

and A2. This is the origin of the famous ε′–parameter, which we shall next discuss.
In general, we can define three independent ratios of the KL ,S → (2π )I=0,2 transition

amplitudes. One is the ε parameter in Eq. (56.52). Two other natural ratios are

A[KL → (ππ )I=2]

A[KS → (ππ )I=0]
and ω ≡ A[KS → (ππ )I=2]

A[KS → (ππ )I=0]
. (56.59)

Both ratios can be expressed in terms of the ε̃ parameter introduced in Eq. (56.7), and
the complex AI amplitudes defined in Eqs. (56.50) and (56.51):

A[KL → (ππ )I=2]

A[KS → (ππ )I=0]
= (1 + ε̃)A2 − (1 − ε̃)A∗

2

(1 + ε̃)A0 + (1 − ε̃)A∗
0

ei(δ2−δ0)

= i ImA2
ReA0

+ ε̃ ReA2
ReA0

1 + i ε̃ ImA0
ReA0

ei(δ2−δ0) ; (56.60)

and:

ω ≡ A[KS → (ππ )I=2]

A[KS → (ππ )I=0]
= (1 + ε̃)A2 + (1 − ε̃)A∗

2

(1 + ε̃)A0 + (1 − ε̃)A∗
0

ei(δ2−δ0)

=
ReA2
ReA0

+ ε̃ ImA2
ReA0

1 + i ε̃ ImA0
ReA0

ei(δ2−δ0) . (56.61)

The ε′ parameter is then defined as the following combination of these ratios:

ε′ = 1√
2

(
A[KL → (ππ )I=2]

A[KS → (ππ )I=0]
− ε × ω

)
. (56.62)

From these results, and using the expression for ε we obtained in Eq. (56.54), we finally
get:

ε′ = i√
2

(1 − ε̃2)ei(δ2−δ0)

(ReA0 + i ε̃ImA0)2
(ImA2ReA0 − ImA0ReA2) , (56.63)
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an expression which clearly shows the proportionality to the lack of relative reality between
the A0 and A2 amplitudes.

We shall next establish contact with the parameters η+− and η00, which were introduced
in Eq. (56.40), and which are directly accessible to experiment. Using Eqs. (56.43), (56.44),
as well as the definitions of ε, ε′, and ω above, one finds:

η+− = ε + ε′ 1

1 + 1√
2
ω

; (56.64)

η00 = ε − 2ε′ 1

1 − √
2ω

. (56.65)

So far, we have made no approximations in our phenomenological analysis of the
K 0 − K̄ 0 mass matrix and K → 2π decays. It is however useful to try to thin down in
some way the exact expressions we have derived, by taking into account the relative size
of the various phenomenological parameters which appear in the expressions above. The
strategy will be to neglect first, terms which are products of CP violation parameters. For ex-
ample, in Eq. (56.61), we have introduced the parameter ω, which a priori we can reasonably
expect to be dominated by the term:

ω 	 ReA2

ReA0
ei(δ2−δ0), (56.66)

where experimentally [16]:

δ2 − δ0 = −(42 ± 4)0 . (56.67)

We can justify this approximation by the fact that non-leptonic �I = 3
2 transitions,

although suppressed with respect to the �I = 1
2 transitions, are nevertheless larger than the

observed CP violation effects. Notice that the amplitude A2 is responsible for the deviation
from an exact �I = 1

2 rule. The ratio ReA2
ReA0

can be obtained from the experimentally known
branching ratios �(KS → π+π−) and �(KS → π0π0).

More precisely, correcting for the phase–space effects, one must compare the normalized
decay rates:

γ (1, 2) ≡ �(K → π1π2)

1
16π M

√
1 − (m1+m2)2

M2

√
1 − (m1−m2)2

M2

, (56.68)

where the denominator here is the two-body phase space factor for the mode K → π1π2,
(M is the mass of the K -particle and m1,2 the pion masses.) Then, we have:

γS(+−)

2γS(00)
= 1 + 3

√
2

ReA2

ReA0
cos(δ2 − δ1) + O

(α

π

)
. (56.69)

Experimentally, from the PDG [16], one finds:

γS(+−)

2γS(00)
= 1.109 ± 0.012 , (56.70)
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and using the present experimental information on (δ2 − δ1), we find, with neglect of radia-
tive corrections:

ReA2

ReA0
= (+22.2)−1 . (56.71)

We shall discuss later some of the qualitative dynamical explanations, within the standard
model, of how this small number appears. It is fair to say however, that a reliable calculation
of this ratio is still lacking at present. Using the approximations:

ε̃ ImA0 � ReA0 and ε̃2 � 1 , (56.72)

we can rewrite ε′ in a simpler form:

ε′ 	 1√
2

ei(δ2−δ0+ π
2 ) ReA2

ReA0

(
ImA2

ReA2
− ImA0

ReA0

)
, (56.73)

clearly showing the fact that ε′ is proportional to direct CP–violation in K → 2π transitions
and is also suppressed by the �I = 1

2 selection rule.
The same approximations in Eq. (56.72), when applied to ε, lead to:

ε 	 ε̃ + i
ImA0

ReA0
. (56.74)

Let us next go back to the mass matrix equations in Eq. (56.21) which, expanding in
powers of ε̃, we can rewrite as follows:

1 − 2ε̃ 	 ReM12 − i
2 Re�12

1
2

(
�m + i

2��
) − i

ImM12 − i
2 Im�12

1
2

(
�m + i

2��
) . (56.75)

To a first approximation, neglecting CP violation effects altogether, we find that:

ReM12 	 �m

2
and Re�12 	 −��

2
. (56.76)

If furthermore, we restrict the sum over intermediate states in �12 [see Eq. (56.15)] to 2π

states, an approximation which we have already seen to be rather good [see Eqs. (56.37)
and (56.38)] we can write

�12 	 (−i A∗
0eiδ0 )∗i A0eiδ0 = −(ReA0 + iImA0)2 , (56.77)

from where it follows that:

Im�12

Re�12
	 2ReA0ImA0

ReA2
0 + ImA2

0

	 2
ImA0

ReA0
. (56.78)

Then, using the empirical fact that �m 	 �S
2 , and �L � �S , we finally arrive at the

simplified expression:

ε̃ 	 1

1 + i

(
i
ImM12

�m
+ ImA0

ReA0

)
, (56.79)
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and, using Eq. (56.74):

ε 	 1√
2

ei π
4

(
ImM12

�m
+ ImA0

ReA0

)
. (56.80)

This is as much as one can do, within a strict phenomenological analysis of the CP
violation in K decays. We have reduced the problem to the knowledge of two parameters:
ε in Eq. (56.80), and ε′ in Eq. (56.73). Their present experimental values are [16,599]:

ε 	 (2.280 ± 0.013) × 10−3ei(43.5±0.1)0
, Re(ε′/ε) 	 (17.2 ± 1.8) × 10−4 . (56.81)

We shall come back to these parameters in the next section. There, we shall discuss what
predictions for these fundamental parameters can be made at present within the framework of
the Standard Model. As we shall see, the main difficulty comes from the lack of quantitative
understanding of the low-energy sector of the strong interactions. In terms of QCD, the sector
in question is the one of the interactions between the states with lowest masses: the octet
of the pseudoscalar particles (π, K , η) and presumably the singlet (σ, η′).

56.2 B0
(s)-B̄0

(s) mixing

56.2.1 Introduction

B0
(s) and B̄0

(s) are not eigenstates of the weak Hamiltonian, such that their oscillation fre-
quency is governed by their mass difference �Mq . The measurement by the UA1 collabo-
ration [810] of a large value of �Md was the first indication of an heavy top quark mass. In
the SM, the mass difference is approximately given by [665,475]:

�Mq 	 G2
F

4π2
M2

W |Vtq V ∗
tb|2S0

(
m2

t

M2
W

)
ηBCB(ν)

1

2MBq

〈
B̄0

q

∣∣Oq (ν)
∣∣B0

q

〉
, (56.82)

where the �B = 2 local operator Oq is defined as:

Oq (x) ≡ (b̄γµLq)(b̄γµLq) , (56.83)

with: L ≡ (1 − γ5)/2 and q ≡ d, s,; S0, ηB and CB(ν) are short-distance quantities
and Wilson coefficients which are calculable perturbatively [811,475,665,812], while the
matrix element 〈B̄0

q |Oq |B0
q 〉 requires non-perturbative QCD calculations, and is usually

parametrized for SU (N )c colours as:

〈
B̄0

q

∣∣Oq

∣∣B0
q

〉 = Nc

(
1 + 1

Nc

)
f 2

Bq
M2

Bq
BBq . (56.84)

fBq is the Bq decay constant normalized as fπ = 92.4 MeV, and BBq is the so-called bag
parameter which is BBq 	 1 if one uses a vacuum saturation of the matrix element. From
Eq. (56.82), it is clear that the measurement of �Md provides a measurement of the CKM
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mixing angle |Vtd | if one uses |Vtb| 	 1. One can also extract this quantity from the ratio:

�Ms

�Md
=

∣∣∣∣ Vts

Vtd

∣∣∣∣
2 MBd

MBs

〈
B̄0

s

∣∣Os

∣∣B0
s

〉
〈
B̄0

d

∣∣Od

∣∣B0
d

〉 ≡
∣∣∣∣ Vts

Vtd

∣∣∣∣
2 MBd

MBs

ξ 2 , (56.85)

since in the SM with three generations and unitarity constraints, |Vts | 	 |Vcb|. Here:

ξ ≡
√

gs

gd
≡ fBs

√
BBs

fB
√

BB
. (56.86)

The great advantage of Eq. (56.85) compared with the former relation in Eq. (56.82) is that
in the ratio, different systematics in the evaluation of the matrix element tends to cancel
out, thus providing a more accurate prediction. However, unlike �Md = 0.473(17) ps−1,
which is measured with a good precision [16], the determination of �Ms is an experimental
challenge due to the rapid oscillation of the B0

s -B̄0
s system. At present, only a lower bound

of 13.1 ps−1 is available at the 95% confidence level from experiments [16], but this bound
already provides a strong constraint on |Vtd |.

56.2.2 Two-point function sum rule

Pich [813] has extended the analysis of the K 0-K̄ 0 systems of [814], using a two-point
correlator of the four-quark operators in the analysis of the quantity fB

√
BB which governs

the B0-B̄0 mass difference. The two-point correlator defined as:

ψH (q2) ≡ i
∫

d4x eiqx 〈0|T Oq (x)(Oq (0))†|0〉 , (56.87)

is built from the �B = 2 weak operator defined previously. Its QCD expression is given
in the chapter on the two-point function. The hadronic part of the spectral function can be
conveniently parametrized using the effective realization [813]:

Oeff
q = 2

3

(
gB ≡ f 2

B−q BBq

)
∂µ B0

q∂µ B0
q + · · · , (56.88)

where · · · corresponds to higher mass hadronic states. It leads to the general form [814]:

1

π
Im	̂had(t) = θ

(
t − 4M2

B

)2

9

( gB

4π

)2
t2 ·

∫ (
√

t−√
t20)2

t10

dt1

∫ (
√

t−√
t1)2

t20

dt2 λ1/2

(
1,

t1
t
,

t2
t

)

.

{ (
t1
t

+ t2
t

− 1

)2 1

π
Im�(0)(t1)

1

π
Im�(0)(t2)

+ 2λ

(
1,

t1
t
,

t2
t

)
1

π
Im�(1)(t1)

1

π
Im�(0)(t2)

+
[ (

t1
t

+ t2
t

− 1

)2

+ 8
t1t2
t2

]
1

π
Im�(1)(t1)

1

π
Im�(1)(t2)

}

+ �(t − tc)
1

π
Im	QCD(t), (56.89)
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where the index i = 0, 1 refers to the hadronic states with spin 0, 1, and:

1

π
Im�(i)(t) ≡ 1

π
Im�

(i)
V (t) + 1

π
Im�

(i)
A (t) , (56.90)

are the correlators associated to the vector (index V ) and axial-vector (index A) currents;
λ1/2 is the usual phase space factor. In the following, we shall retain the contributions from
the B-B̄ and B∗-B̄∗ states, and we (reasonnably) assume that:

gB 	 gB∗ , (56.91)

which is supported by the HQET and QSSR results ( fB ≈ fB∗ ) and the vacuum saturation
assumption (BB ≈ BB∗ ≈ 1) a posteriori recovered from our analysis. The corresponding
Laplace (resp. moment) sum rules are:

L(τ ) =
∫ ∞

4M2
B

dt e−tτ ImψH (t) , Mn =
∫ ∞

4M2
B

dt tn ImψH (t) , (56.92)

The two-point function approach is very convenient due to its simple analytic properties
which is not the case for the approach based on three-point functions.2 However, it involves
non-trivial QCD calculations which become technically complicated when one includes the
contributions of radiative corrections due to non-factorizable diagrams. These perturbative
radiative corrections due to factorizable and non-factorizable diagrams have been already
computed in [816] (referred as NP), where it has been found that the factorizable corrections
are large while the non-factorizable ones are negligibly small. NP analysis has confirmed
the estimate in [323] from lowest order calculations, where under some assumptions on
the contributions of higher mass resonances to the spectral function, the value of the bag
constant BB has been found to be:

BBd

(
4m2

b

) 	 (1 ± 0.15) . (56.93)

This value is comparable with the value BBd = 1 from the vacuum saturation estimate,
which is expected to be quite a good approximation due to the relative high scale of the
B-meson mass. Equivalently, the corresponding RGI quantity is:

B̂ Bd 	 (1.5 ± 0.2) , (56.94)

where we have used the relation:

BBq (ν) = B̂ Bq α
− γ0

β1
s

{
1 −

(
5165

12696

) (αs

π

)}
, (56.95)

with γ0 = 1 as the anomalous dimension of the operator Oq and β1 = −23/6 for five
flavours. The NLO corrections have been obtained in the M S scheme [665]. We have also
used, to this order, the value [148,149,3]:

m̄b(mb) = (4.24 ± 0.06) GeV , (56.96)

and �5 = (250 ± 50) MeV [139]. In a forthcoming paper [817], we study ( for the first
time), from the QSSR method, the SU (3) breaking effects on the ratio: ξ defined previously

2 For detailed criticisms, see [3].
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in Eq. (56.86), where a similar analysis of the ratios of the decay constants has given the
values [716]:

fDs

fD
	 1.15 ± 0.04 ,

fBs

fB
	 1.16 ± 0.04 . (56.97)

56.2.3 Results and implications on |Vts |2/|Vtd |2 and �Ms

We deduce by taking the average from the moments and Laplace sum rules results [817]:

ξ ≡ fBs

√
BBs

fB
√

BB
	 1.18 ± 0.03 , fB

√
B̂ B 	 (247 ± 59) GeV, (56.98)

in units where fπ = 130.7 MeV. For the ratio, one expects small errors due to the cancellation
of the systematics, while for fB

√
B̂ B , the error estimate comes mainly from the one of mb

and the estimate of higher-order terms of the QCD series. These results can be compared
with different lattice determinations compiled in [823,723]. By comparing the ratio with
the one of fBs / fBd in Eq. (56.97),3 one can conclude (to a good approximation) that:

B̂ Bs ≈ B̂ Bd 	 (1.65 ± 0.38) =⇒ BBd,s

(
4m2

b

) 	 (1.10 ± 0.25) , (56.99)

indicating a negligible SU (3) breaking for the bag parameter. For a consistency, we have
used the estimate to order αs [698]:

fB 	 (1.47 ± 0.10) fπ , (56.100)

and we have assumed that the error from fB compensates the one in Eq. (56.98). The result
is in excellent agreement with the previous result of [816] in Eqs. (56.93) and (56.94). Using
the experimental values:

�Md = 0.472(17) ps−1 , �Ms ≥ 13.1 ps−1 (95% CL) , (56.101)

one can deduce from Eq. (56.85):

ρsd ≡
∣∣∣∣ Vts

Vtd

∣∣∣∣
2

≥ 20.0(1.1) . (56.102)

Alternatively, using:

ρsd 	 1

λ2[(1 − ρ̄)2 + η̄2]
	 28.4(2.9) , (56.103)

with [723]:

λ 	 0.2237(33) , ρ̄ ≡ ρ

(
1 − λ2

2

)
	 0.223(38) ,

η̄ ≡ η

(
1 − λ2

2

)
	 0.316(40) , (56.104)

3 One can notice that similar strengths of the SU (3) breakings are obtained for the B → K ∗γ and B → Klν form factors [818].
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λ, ρ, η being the Wolfenstein parameters, we deduce:

�Ms 	 18.6(2.2)ps−1 , (56.105)

in good agreement with the present experimental lower bound.

56.2.4 Conclusions

We have applied QCD spectral sum rules for extracting (for the first time) the SU (3) break-
ing parameter in Eq. (56.98). The phenomenological consequences of our results for the
B0

d,s-B̄0
d,s mass differences and CKM mixing angle have been discussed. An extension of

this work to the study of the B0
s,d -B̄0

s,d width difference is in progress.

56.3 The �S = 2 transition of the K 0-K̄ 0 mixing

56.3.1 Estimate of the bag constant BK

This parameter plays an important rôle for the C P violation parameter in connection with
the previous quantities fB and BB . The BK -parameter is associated to the K 0-K̄ 0 mixing
matrix as:

〈
K̄ 0

∣∣b̄γ L
µ dd̄γ L

µ b
∣∣K 0

〉 = 4

3
f 2

K M2
K BK (ν) , (56.106)

where as before, one has also introduced the RGI parameter B̂K . We estimate this quantity
using the four-quark two-point correlator as in [814,815]. Using the Laplace sum rule (LSR)
and adopting the parametrization of the spectral function in [814], we have obtained the
conservative estimate [815]:

B̂K 	 (0.58 ± 0.22) , (56.107)

where the central value is slightly higher than the one from FESR [814]: B̂K 	 (0.39 ±
0.10). This difference might be attributed to the fact that FESR is strongly affected by the
higher radial excitation contributions that are not under good control. LSR has the advantage
is less sensitive to these effects due to the exponential factor which suppresses their relative
contributions. One can also notice that this result from the two-point function sum rule is
more accurate than the one from the three-point function [3], which ranges from 0.2 to 1.3,
although the result of [3] is in good agreement with ours. This inaccuracy can be intuitively
understood from the relative complexity of the three-point function sum rule analysis for
parametrizing the higher-states contributions to the spectral function.

56.3.2 Estimate of the CP violation parameters (ρ̄, η̄)

We are now ready to discuss the implications of the previous results for the estimate of the
CKM parameters (ρ̄, η̄) defined in the standard way within the Wolfenstein parametrization
[16,665,500,820].
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Within this parametrization, one can express the CP violation of the kaon system as:

|ε| = Cε A2λ6η̄[ − η1S(xc) + η2S(xt )(A2λ4(1 − ρ̄)) + η3S(xc, xt )]B̂K , (56.108)

where:

Cε = G2
F f 2

K MK M2
W

3
√

2π2�MK

; (56.109)

S(xi ), S(xi , x j ), η1 	 1.38, η2 	 0.574, η3 	 0.47 are short-distance functions calculable
perturbatively [811,475,665,812] with xq ≡ m2

q/M2
W ; (A, λ, ρ̄, η̄) are set of CKM parame-

ters within the Wolfenstein parametrization. For a self-consistent analysis, it is essential to
use the previous values of fB , BB and BK , which are all obtained from a unique method.
Using the phenomenological analysis in [723,820], one can approximately obtain:

|ε| 	 4

3
B̂K Im(V ∗

ts Vtd )(18.9 − 14.4ρ̄) , (56.110)

where Im(V ∗
ts Vtd ) 	 (1.2 ± 0.2) × 10−4 and ρ̄ 	 0.2 ± 0.1. With such values, one can, for

example, deduce:

|ε| 	 (14.8 ± 5.6) × 10−4 , (56.111)

which agrees within about 1σ with the experimental value in Eq. (56.81).

56.4 Kaon penguin matrix elements and ε′/ε

56.4.1 SM theory of ε′/ε

In the SM, it is customary to study the �S = 1 process from the weak Hamiltonian:

Heff = G F√
2

Vud V ∗
us

10∑
i=1

Ci (µ)Qi (µ) , (56.112)

where Ci (µ) are known perturbative Wilson coefficients including complete NLO QCD
corrections [665], which read in the notation of [665]:

Ci (µ) ≡ zi (µ) − Vtd V ∗
ts

Vud V ∗
us

yi (µ) , (56.113)

where Vi j are elements of the CKM-matrix; Qi (µ) are non-perturbative hadronic matrix
elements which need to be estimated from different non-perturbative methods of
QCD (chiral perturbation theory, lattice, QCD spectral sum rules, . . .). In the choice of
basis of [665], the dominant contributions come from the four-quark operators which are
classified as:

� Current-current:

Q1 ≡ (s̄αuβ )V −A(ūβdα)V −A , Q2 ≡ (s̄u)V −A (ūd)V −A . (56.114)
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� QCD penguins:

Q3 ≡ (s̄d)V −A

∑
u,d,s

(ψ̄ψ)V −A , Q4 ≡ (s̄αdβ )V −A

∑
u,d,s

(ψ̄βψα)V −A ,

Q5 ≡ (s̄d)V −A

∑
u,d,s

(ψ̄ψ)V +A , Q6 ≡ (s̄αdβ )V −A

∑
u,d,s

(ψ̄βψα)V +A . (56.115)

� Electroweak penguins:

Q7 ≡ 3

2
(s̄d)V −A

∑
u,d,s

eψ (ψ̄ψ)V +A , Q8 ≡ 3

2
(s̄αdβ )V −A

∑
u,d,s

eψ (ψ̄βψα)V +A ,

Q9 ≡ 3

2
(s̄d)V −A

∑
u,d,s

eψ (ψ̄ψ)V −A , Q10 ≡ 3

2
(s̄αdβ )V −A

∑
u,d,s

eψ (ψ̄βψα)V −A,

(56.116)

where α, β are colour indices; eψ denotes the electric charges4 reflecting the electroweak
nature of Q7,...10, while V − (+)A ≡ (1 − (+)γ5) γµ. Using an OPE of the amplitudes, one
obtains:

ε′

ε
	 Imλt

[
P (1/2) − P (3/2)

]
ei� , (56.117)

where � ≡ �ε′ − �ε ≈ 0 (see previous section); λt ≡ Vtd V ∗
ts can be expressed in terms of

the CKM matrix elements as (δ being the CKM phase) [665,820]:

Imλt ≈ |Vub||Vcb|sin δ 	 (1.33 ± 0.14) × 10−4 , (56.118)

from B-decays and ε. The QCD quantities P (I ) read:

P (1/2) = G F |ω|
2|ε|ReA0

∑
i

Ci (µ)〈(ππ )I=0|Qi |K 0〉0 (1 − �I B) ,

P (3/2) = G F

2|ε|ReA2

∑
i

Ci (µ)〈(ππ )I=2|Qi |K 0〉2 . (56.119)

�I B 	 (0.16 ± 0.03) quantifies the SU (2)-isospin breaking effect, which includes the one
of the π0-η mixing [821], and which reduces the usual value of (0.25 ± 0.08) [665] due to
η′-η mixing. It is also expected that the QCD- and electroweak-penguin operators:

Q3/2
8 ≈ B3/2

8

/
m2

s + O(1/Nc) , Q1/2
6 ≈ B1/2

6

/
m2

s + O(1/Nc) , (56.120)

give the dominant contributions to the ratio ε′/ε [822]; B are the bag factors which are ex-
pected to be 1 in the large Nc-limit. Therefore, a simplified approximate but very informative

4 Though apparently suppressed, the effect of the electroweak penguins are enhanced by 1/ω as we shall see later on in
Eq. (56.119).
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expression of the theoretical predictions can be derived [665]:

ε′

ε
≈ 13 Imλt

(
110

m̄s(2) [MeV]

)2

×
[

B1/2
6 (1 − �I B) − 0.4B3/2

8

( mt

165 GeV

)] (
�

(4)
M S

340 MeV

)
, (56.121)

where the average value B̂K = 0.80 ± 0.15 of the �S = 2 process has been used. This value
includes the conservative value 0.58 ± 0.22 from Laplace sum rules [815]. The values of
the top quark mass and the QCD scale �

(4)
M S

[16,139] are under quite good control and have
small effects. A recent review of the light quark mass determinations [54] also indicates
that the strange quark mass is also under control and a low value advocated in the previous
literature to explain the present data on ε′/ε is unlikely to be due to the lower bound
constraints from the positivity of the QCD spectral function or from the positivity of the
m2 corrections to the GMOR PCAC relation. For a consistency with the approach used in
this paper, we shall use the average value of the light quark masses from QCD spectral sum
rules(QSSR), e+e− and τ -decays given in [54] (previous chapter):

m̄s(2) 	 (117 ± 23) MeV , m̄d (2) 	 (6.5 ± 1.2) MeV , m̄u(2) 	 (3.6 ± 0.6) MeV .

(56.122)

Using the previous experimental values, one can deduce the constraint in [54] updated:

B68 ≡ B1/2
6 − 0.48B3/2

8 	 1.4 ± 0.6 (resp. ≥ 0.5) , (56.123)

if one uses the value of ms in Eq. (56.122) (resp. the lower bound of 71 MeV reported in
[54]). This result shows a possible violation of more than 2σ for the leading 1/Nc vacuum
saturation prediction ≈ 0.52 corresponding to B1/2

6 ≈ B3/2
8 ≈ 1. Consulting the available

predictions reviewed in [665], which we will summarize and update in Table 56.1, one
can notice that the values of the B parameters have large errors. One can also see that
results from QCD first principles (lattice and 1/Nc) fail to explain the data, which however
can be accomodated by various QCD-like models. We shall come back to this discussion
when we shall compare our results with presently available predictions. It is, therefore,
clear that the present estimate of the four-quark operators, and in particular the estimates
of the dominant penguin ones given previously in Eq. (56.120), need to be re-investigated.
Due to the complex structures and large size of these operators, they should be difficult
to extract unambiguously from different approaches. In this paper, we present alternative
theoretical approaches based also on first principles of QCD (τ–decay data, analyticity), for
predicting the size of the QCD- and electroweak-penguin operators given in Eq. (56.120).
In performing this analysis, we shall also encounter the electroweak penguin operator:

Q3/2
7 ≈ B3/2

7

/
m2

s + O(1/Nc) . (56.124)
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Table 56.1. Penguin B parameters for the �S = 1 process from different approaches at
µ = 2 GeV. We use the value ms(2) = (117 ± 23) MeV from [54], and predictions based
on dispersion relations [833,832] have been rescaled according to it. We also use for our
results fπ = 92.4 MeV [16], but we give in the text their ms and fπ dependences. Results

without any comments on the scheme have been obtained in the M S − N DR−scheme
(see discussions on γ5 in Appendix D). However, at the present accuracy, one cannot

differentiate these results from the ones of M S − H V −scheme. More recent results can
also found in [838].

Methods B1/2
6 B3/2

8 B3/2
7 Comments

Lattice [823,824,825] 0.6 ∼ 0.8 0.7 ∼ 1.1 0.5 ∼ 0.8 Huge NLO
unreliable at matching [826]

Large Nc [827] 0.7 ∼ 1.3 0.4 ∼ 0.7 −0.10 ∼ 0.04 O(p0/Nc, p2)
scheme?

1.5 ∼ 1.7 − − O(p2/Nc); mq = 0
scheme?

Models
Chiral QM [828] 1.2 ∼ 1.7 ∼ 0.9 ≈ B3/2

8 µ = 0.8 GeV
rel. with M S?

ENJL + IVB [829] 2.5 ± 0.4 1.4 ± 0.2 0.8 ± 0.1 N L O in 1/Nc

mq = 0
Lσ -model [830] ∼ 2 ∼ 1.2 − Not unique

µ ≈ 1 GeV; scheme?
NL σ -model [831] 1.6 ∼ 3.0 0.7 ∼ 0.9 − Mσ : free; SU (3)F trunc.

µ ≈ 1 GeV; scheme?

Dispersive
Large Nc+ LMD − − 0.9 N L O in 1/Nc,
+ LSD–match. [832] strong µ-dep.
DMO-like SR [833] − 1.6 ± 0.4 0.8 ± 0.2 mq = 0

huge NLO Strong s, µ–dep.
FSI [834] 1.4 ± 0.3 0.7 ± 0.2 − Debate for fixing

the Slope [835]

This work [836,34]
DMO-like SR: – 2.2 ± 1.5 0.7 ± 0.2 mq = 0
[833] revisited inaccurate Strong s, µ–dep.
τ -like SR − − inaccurate tc–changes
RV −A

τ − 1.7 ± 0.4 − mq = 0
S2 ≡ (ūu + d̄d) 1.0 ± 0.4 − − M S scheme
from QSSR ≤ 1.5 ± 0.4 ms(2) ≥ 90 MeV
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56.4.2 Soft pion and kaon reductions of 〈(ππ )I=2|Q3/2
7,8 |K 0〉 to vacuum condensates

We shall consider here the kaon electroweak penguin matrix elements:

〈Q3/2
7,8

〉
2π

≡ 〈
(ππ )I=2

∣∣Q3/2
7,8

∣∣K 0
〉
, (56.125)

defined as:

Q3/2
7 ≡ 3

2
(s̄d)V −A

∑
u,d,s

eψ (ψ̄ψ)V +A ,

Q3/2
8 ≡ 3

2
(s̄αdβ)V −A

∑
u,d,s

eψ (ψ̄βψα)V +A , (56.126)

where α, β are colour indices; eψ denotes the electric charges. In the chiral limit mu,d,s ∼
m2

π 	 m2
K = 0, one can use soft pion and kaon techniques in order to relate the previous

amplitude to the four-quark vacuum condensates [833] (see also [832]):5

〈Q3/2
7

〉
2π

	 − 2

f 3
π

〈O3/2
7

〉
,

〈Q3/2
8

〉
2π

	 − 2

f 3
π

{
1

3

〈O3/2
7

〉 + 1

2

〈O3/2
8

〉}
, (56.127)

where we use the shorthand notations: 〈0|O3/2
7,8 |0〉 ≡ 〈O3/2

7,8 〉, and fπ = (92.42 ± 0.26)
MeV.6 Here:

O3/2
7 =

∑
u,d,s

ψ̄γµ

τ3

2
ψψ̄γµ

τ3

2
ψ − ψ̄γµγ5

τ3

2
ψψ̄γµγ5

τ3

2
ψ ,

O3/2
8 =

∑
u,d,s

ψ̄γµλa
τ3

2
ψψ̄γµλa

τ3

2
ψ − ψ̄γµγ5λa

τ3

2
ψψ̄γµγ5λa

τ3

2
ψ , (56.128)

where τ3 and λa are flavour and colour matrices. Using further pion and kaon reductions in
the chiral limit, one can relate this matrix element to the B-parameters [833]:

B3/2
7 	 3

2

(mu + md )

m2
π

(mu + ms)

m2
K

1

fπ

〈Q3/2
7

〉
2π

B3/2
8 	 1

2

(mu + md )

m2
π

(mu + ms)

m2
K

1

fπ

〈Q3/2
8

〉
2π

(56.129)

where all QCD quantities will be evaluated in the N DR-M S scheme and at the scale Mτ .

5 In the following discussion, we shall use a normalization of the matrix elements which differ by a factor 2 from the one
used in [833,836]. This is due to the uses of the operator Q3/2

8 in Eq. 56.126 currently used in the literature rather the one:
(s̄αdβ )V −A[(ūβuα )V +A − (d̄βdα )V +A + (s̄β sα )V +A] used in [833] and [836].

6 In the chiral limit fπ would be about 87 MeV. However, it is not clear to us what value of fπ should be used here because we
shall use real data from τ -decay. Therefore, we shall leave it as a free parameter which the reader can fix at his convenience.
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56.4.3 The 〈O3/2
7,8 〉 condensates from DMO-like sum rules in the chiral limit

In previous papers [833,832], the vacuum condensates 〈O3/2
7,8 〉 have been extracted using

Das–Mathur–Okubo(DMO)- and Weinberg-like sum rules based on the difference of the
vector and axial-vector spectral functions ρV,A of the I = 1 component of the neutral
current:

2π
〈
αsO3/2

8

〉 =
∫ ∞

0
ds s2 µ2

s + µ2
(ρV − ρA) ,

16π2

3

〈O3/2
7

〉 =
∫ ∞

0
ds s2log

(
s + µ2

s

)
(ρV − ρA) , (56.130)

where µ is the subtraction point. In this normalization, the first Weinberg sum rule gives in
the chiral limit: ∫ ∞

0
ds (ρV − ρA) = f 2

π . (56.131)

Due to the quadratic divergence of the integrand, the previous sum rules are expected to be
sensitive to the high energy tails of the spectral functions where the present ALEPH/OPAL
data from τ -decay [193,199] are inaccurate. This inaccuracy can a priori affect the estimate
of the four-quark vacuum condensates. On the other hand, the explicit µ–dependence of
the analysis can also induce another uncertainty. En passant, we check below the effects of
these two parameters tc and µ. After evaluating the spectral integrals, we obtain at µ = 2
GeV and for our previous values of tc 	 (1.48 ± 0.02) GeV2 (see Chapter on Weinberg
sum rules), the values (in units of 10−3 GeV6) using the cut-off momentum scheme (c.o):

αs
〈O3/2

8

〉
c.o 	 −(0.69 ± 0.06) ,

〈O3/2
7

〉
c.o 	 −(0.11 ± 0.01) , (56.132)

where the errors come mainly from the small changes of tc-values. If instead, we use the
second set of values of tc 	 (2.4 ∼ 2.6) GeV2 (see Chapter on Weinberg sum rules), we
obtain by setting µ = 2 GeV:

αs
〈O3/2

8

〉
c.o 	 −(0.6 ± 0.3) ,

〈O3/2
7

〉
c.o 	 −(0.10 ± 0.03) , (56.133)

which is consistent with the one in Eq. (56.132), but with larger errors as expected. We have
also checked that both 〈O3/2

8 〉 and 〈O3/2
7 〉 increase in absolute value when µ increases where

a stronger change is obtained for 〈O3/2
7 〉, a feature which has been already noticed in [832].

In order to give a more conservative estimate, we consider as our final value the largest range
spanned by our results from the two different sets of tc-values. This corresponds to the one
in Eq. (56.133) which is the less accurate prediction. We shall use the relation between the
momentum cut-off (c.o) and M S schemes given in [833]:

〈O3/2
7

〉
M S

	 〈O3/2
7

〉
c.o

+ 3

8
as

(
3

2
+ 2ds

) 〈O3/2
8

〉
〈O3/2

8

〉
M S

	
(

1 − 119

24
as ±

(
119

24
as

)2
) 〈O3/2

8

〉
c.o

− as
〈O3/2

7

〉
, (56.134)



56 B0
(s)-B̄0

(s) mixing, kaon CP violation 675

where ds = −5/6 (resp 1/6) in the so-called Naı̈ve Dimensional Regularization NDR (resp.
t’Hooft-Veltmann HV) schemes;7 as ≡ αs/π . One can notice that the as coefficient is large
in the second relation (50% correction), and the situation is worse because of the relative
minus sign between the two contributions. Therefore, we have added a rough estimate of the
a2

s corrections based on the naı̈ve growth of the PT series, which here gives 50% corrections
of the sum of the two first terms. For a consistency of the whole approach, we shall use the
value of αs obtained from τ -decay, which is [193,199]:

αs(Mτ )|exp = 0.341 ± 0.05 =⇒ αs(2 GeV) 	 0.321 ± 0.05 . (56.135)

Then, we deduce (in units of 10−4 GeV6) at 2 GeV:
〈O3/2

7

〉
M S

	 −(0.7 ± 0.2) ,
〈O3/2

8

〉
M S

	 −(9.1 ± 6.4) , (56.136)

where the large error in 〈O3/2
8 〉 comes from the estimate of the a2

s corrections appearing in
Eq. (56.134). In terms of the B factor and with the mean value of the light quark masses
quoted in [54], this result, at µ = 2 GeV, can be translated into:

B3/2
7 	 (0.7 ± 0.2)

(
ms(2) [MeV]

119

)2

k4 ,

B3/2
8 	 (2.5 ± 1.3)

(
ms(2) [MeV]

119

)2

k4 , (56.137)

where:

k ≡ 92.4

fπ [MeV]
. (56.138)

� Our results in Eqs. (56.136) compare quite well with the ones obtained by [833] in the M S scheme
(in units of 10−4 GeV6) at 2 GeV:

〈O3/2
8

〉
M S

	 −(6.7 ± 0.9) ,
〈O3/2

7

〉
M S

	 −(0.70 ± 0.10) , (56.139)

using the same sum rules but presumably a slightly different method for the uses of the data and
for the choice of the cut-off in the evaluation of the spectral integral.

� Our errors in the evaluation of the spectral integrals, leading to the values in Eqs. (56.132) and
(56.133), are mainly due to the slight change of the cut-off value tc.8

� The error due to the passage into the M S scheme is due mainly to the truncation of the QCD series,
and is important (50%) for 〈O3/2

8 〉 and B3/2
8 , which is the main source of errors in our estimate.

� As noticed earlier, in the analysis of the pion mass difference, it looks more natural to do the
subtraction at tc. We also found that moving the value of µ can affects the value of B3/2

7,8 .

For the above reasons, we expect that the results given in [833] for 〈O3/2
8 〉 although interest-

ing are quite fragile, while the errors quoted there have been presumably underestimated.

7 The two schemes differ by the treatment of the γ5 matrix (see Section 8.2).
8 A slight deviation from such a value affects notably previous predictions as the tc-stability of the results (tc ≈ 2 GeV2) does

not coincide with the one required by the second Weinberg sum rules. At the stability point the predictions are about a factor 3
higher than the one obtained previously.
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Therefore, we think that a reconsideration of these results using alternative methods are
mandatory.9

56.4.4 The 〈O3/2
7,8 〉 condensates from hadronic tau inclusive decays

In the following, we shall not introduce any new sum rule, but, instead, we shall exploit
known informations from the total τ -decay rate and available results from it, which have
not the previous drawbacks. The V -A total τ -decay rate, for the I = 1 hadronic component,
can be deduced from BNP [325], and reads:10

Rτ,V −A = 3

2
|Vud |2SEW

∑
D=2,4,...

δ
(D)
V −A . (56.140)

|Vud | = 0.9753 ± 0.0006 is the CKM-mixing angle, while SEW = 1.0194 is the electroweak
corrections [326]. In the following, we shall use the BNP results forRτ,V/A in order to deduce
Rτ,V −A:

� The chiral invariant D = 2 term due to a short distance tachyonic gluon mass [162,161] cancels in
the V -A combination. Therefore, the D = 2 contributions come only from the quark mass terms:

M2
τ δ

(2)
V −A 	 8

[
1 + 25

3
as(Mτ )

]
mumd , (56.141)

as can be obtained from the first calculation [28], where mu ≡ mu(Mτ ) 	 (3.6 ± 0.6) MeV, md ≡
md (Mτ ) 	 (6.5 ± 1.2) MeV [54] (previous chapter) are respectively the running coupling and
quark masses evaluated at the scale Mτ .

� The dimension-four condensate contribution reads:

M4
τ δ

(4)
V −A 	 32π2

(
1 + 9

2
a2

s

)
m2

π f 2
π + O (

m4
u,d

)
, (56.142)

where we have used the SU (2) relation 〈ūu〉 = 〈d̄d〉 and the Gell-Mann–Oakes–Renner PCAC
relation:

(mu + md )〈ūu + d̄d〉 = −2m2
π f 2

π . (56.143)

� By inspecting the structure of the combination of dimension-six condensates entering in Rτ,V/A

given by BNP [325], which are renormalizaton group invariants, and using a SU (2) isospin rotation
which relates the charged and neutral (axial)-vector currents, the D = 6 contribution reads:

M6
τ δ

(6)
V −A = −2 × 48π 4as

[[
1 + 235

48
as ±

(
235

48
as

)2

− λ2

M2
τ

] 〈O3/2
8

〉 + as

〈O3/2
7

〉]
, (56.144)

where the overall factor 2 in front expresses the different normalization between the neutral isovec-
tor and charged currents used respectively in [833] and [325], whilst all quantities are evaluated
at the scale µ = Mτ . The last two terms in the Wilson coefficients of 〈O3/2

8 〉 are new: the first
term is an estimate of the NNLO term by assuming a naı̈ve geometric growth of the as series; the
second one is the effect of a tachyonic gluon mass introduced in [161], which takes into account

9 In recent works [838], these results have been also reconsidered.
10 Hereafter we shall work in the M S− NDR scheme.



56 B0
(s)-B̄0

(s) mixing, kaon CP violation 677

the re-summation of the QCD asymptotic series, with: asλ
2 	 −0.06 GeV2.11 Using the values of

αs(Mτ ) given previously, the corresponding QCD series behaves quite well as:

Coef.
〈O3/2

8

〉 	 1 + (0.53 ± 0.08) ± 0.28 + 0.18 , (56.145)

where the first error comes from the one of αs , while the second one is due to the unknown a2
s -term,

which introduces an uncertainty of 16% for the whole series. The last term is due to the tachyonic
gluon mass. This leads to the numerical value:

M6
τ δ

(6)
V −A 	 −(1.015 ± 0.149) × 103

[
(1.71 ± 0.29)

〈O3/2
8

〉 + as

〈O3/2
7

〉]
, (56.146)

� If, one estimates the D = 8 contribution using a vacuum saturation assumption, the relevant V -A
combination vanishes to leading order of the chiral symmetry breaking terms. Instead, we shall
use the combined ALEPH/OPAL [193,199] fit for δ

(8)
V/A, and deduce:

δ
(8)
V −A

∣∣
exp

= −(1.58 ± 0.12) × 10−2 . (56.147)

We shall also use the combined ALEPH/OPAL data for Rτ,V/A, in order to obtain:

Rτ,V −A|exp = (5.0 ± 1.7) × 10−2 , (56.148)

Using the previous information in the expression of the rate given in Eq. (56.140), one
can deduce:

δ
(6)
V −A 	 (4.49 ± 1.18) × 10−2 . (56.149)

This result is in good agreement with the result obtained by using the ALEPH/OPAL
fitted mean value for δ

(6)
V/A:

δ
(6)
V −A|fit 	 (4.80 ± 0.29) × 10−2 . (56.150)

We shall use as a final result the average of these two determinations, which coincides with
the most precise one in Eq. (56.150). We shall also use the result:〈O3/2

7

〉
〈O3/2

8

〉 	 1

8.3

(
resp.

3

16

)
, (56.151)

where, for the first number we use the value of the ratio of B3/2
7 /B3/2

8 which is about
0.7 ∼ 0.8 from, for example, lattice calculations quoted in Table 56.1, and the formulae
in Eqs. (56.127) to (56.129); for the second number we use the vacuum saturation for the
four-quark vacuum condensates [1]. The result in Eq. (56.151) is also comparable with the
estimate of [833] from the sum rules given in Eq. (56.130). Therefore, at the scale µ = Mτ ,
Eqs. (56.144), (56.150) and (56.151) lead, in the M S scheme, to:〈O3/2

8

〉
(Mτ ) 	 −(0.94 ± 0.21) × 10−3 GeV6 , (56.152)

where the main errors come from the estimate of the unknown higher-order radiative cor-
rections. It is instructive to compare this result with the one using the vacuum saturation

11 This contribution may compete with the dimension-eight operators discussed in [837].
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assumption for the four-quark condensate (see e.g. BNP):

〈O3/2
8

〉|v.s 	 −32

18
〈ūu〉2 (Mτ ) 	 −0.65 × 10−3 GeV6 , (56.153)

which shows about 1σ violation of this assumption. We have used for the estimate of 〈ψ̄ψ〉
the value of (mu + md )(Mτ ) 	 10 MeV [54] and the GMOR pion PCAC relation. However,
this violation of the vacuum saturation is not quite surprising, as a similar fact has also been
observed in other channels [3,193,199], although it also appears that the vacuum saturation
gives a quite good approximate value of the ratio of the condensates [3,193,199]. The re-
sult in Eq. (56.152) is comparable with the value −(0.98 ± 0.26) × 10−3 GeV6 at µ = 2
GeV ≈ Mτ obtained by [833] using a DMO-like sum rule, but, as discussed previously, the
DMO-like sum rule result is very sensitive to the value of µ if one fixes tc as 1.48 GeV2 (see
chapter on Weinberg sum rules) according to the criterion discussed above. Here, the choice
µ = Mτ is well-defined, and then the result becomes more accurate (as mentioned previ-
ously our errors come mainly from the estimated unknown α3

s term of the QCD series). Using
Eqs. (56.127) and (56.151), our previous results in Eq. (56.136) forO3/2

7 and in Eq. (56.152)
for O3/2

8 can be translated into the prediction on the weak matrix elements in the chi-
ral limit and at the scale 2 GeV for the NDR scheme (k ≡ 92.4/ fπ [MeV] is defined in
Eq. (56.138)):12

〈
(ππ )I=2|Q3/2

7 |K 0
〉
(2) 	 (0.18 ± 0.05) GeV3 k3

〈
(ππ )I=2|Q3/2

8 |K 0
〉
(2) 	 (1.35 ± 0.30) GeV3 k3 , (56.154)

normalized to fπ , which avoids the ambiguity on the real value of fπ to be used in such
an expression. Our result is in agreement with different determinations from dispersive
approaches [832,833,838]. Our result is higher by about a factor of 2 than the quenched
lattice result [823]. A resolution of this discrepancy can only be found after the inclusion
of chiral corrections in Eqs. (56.127) to (56.129), and after the use of dynamic fermions
on the lattice. However, some parts of the chiral corrections in the estimate of the vacuum
condensates are already included into the QCD expression of the τ -decay rate and these
corrections are negligibly small. We might expect that chiral corrections, which are smooth
functions of m2

π will not strongly affect the relation in Eqs. (56.127) to (56.129), although
an evaluation of their exact size is mandatory. Using the previous mean values of the light
quark running masses [54], we deduce in the chiral limit and at the scale Mτ :

B3/2
8 	 (1.70 ± 0.39)

(
ms(Mτ ) [MeV]

119

)2

k4 , (56.155)

where k is defined in Eq. (56.138). One should notice that, contrary to the B-factor, the
result in Eq. (56.154) is independent to leading order of the value of the light quark masses.

12 As already mentioned, this normalization differs by a factor 2 than the one used in [833,836].
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56.4.5 Impact of the results on the CP violation parameter ε′/ε

One can combine the previous result of B8 with the value of the B6 parameter of the QCD
penguin diagram [665]:

〈Q1/2
6

〉
2π

≡ 〈
(π+π−)I=0

∣∣Q1/2
6

∣∣K 0
〉

	 −[2〈π+|ūγ5d|0〉〈π−|s̄u|K 0〉
+ 〈π+π−|d̄d + ūu|0〉〈0|s̄γ5d|K 0〉 ]

	 − 4

√
3

2

(
m2

K

ms + md

)2

×
√

2 ( fK − fπ ) B1/2
6 (mc) . (56.156)

We have estimated the 〈Q1/2
6 〉2π matrix element by relating its first term to the K → π lνl

semi-leptonic form factors as usually done (see e.g. [822]), while the second term has been
obtained from the contribution of the S2 ≡ (ūu + d̄d) scalar meson having its mass and
coupling fixed by QCD spectral sum rules [3,688] and in the scheme where the observed
low mass σ meson results from a maximal mixing between the S2 and the σB associated to
the gluon component of the trace of the anomaly [686,680,688]:13

θµ
µ = 1

4
β(αs)G2 + (1 + γm(αs))

∑
u,d,s

mi ψ̄ iψi , (56.157)

where β and γm are the β function and mass anomalous dimension. In this way, one obtains
at the scale mc:

B1/2
6 (mc) 	 3.7

(
ms + md

ms − mu

)2

×
[
(0.65 ± 0.09) − (0.53 ± 0.13)

(
(ms − mu) [MeV]

142.6

)]
,

(56.158)

which satisfies the double chiral constraint. We have used the running charm quark mass
mc(mc) = 1.2 ± 0.05 GeV [54]. Evaluating the running quark masses at 2 GeV, with the
values given in [54], one deduces:

B1/2
6 (2) 	 (1.1 ± 0.4) for ms(2) = 117 MeV ,

≤ (2.1 ± 0.4) for ms(2) ≥ 71MeV . (56.159)

The errors added quadratically have been relatively enhanced by the partial cancellations
of the two contributions. Therefore, we deduce the combination:

B68 ≡ B3/2
6 − 0.48B3/2

8

	 (0.3 ± 0.4) for ms(2) = 117 MeV ,

≤ (1.3 ± 0.4) for ms(2) ≥ 71 MeV , (56.160)

13 Present data appear to favour this scheme [690].
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where we have added the errors quadratically. Using the approximate simplified expresssion
[665]:

ε′

ε
≈ 14.5 × 10−4

(
110

m̄s(2) [MeV]

)2

B68 , (56.161)

one can deduce the result in units of 10−4:
ε′

ε
	 (4 ± 5) for ms(2) = 117 MeV ,

≤ (45 ± 14) , for ms(2) ≥ 71 MeV , (56.162)

where the errors come mainly fromB68 (40%). The upper bound, though rather weak, agrees
quite well with the experimental world average data [599]:

ε′

ε
	 (17.2 ± 1.8) × 10−4 . (56.163)

We expect that the failure of the inaccurate estimate for reproducing the data is not
naı̈vely due to the value of the quark mass, but may indicate the need for other important
contributions than the single q̄q scalar meson S2 (not the observed σ )-meson which have
not been considered so far in the analysis. Among others, a much better understanding of
the effects of the gluonium (expected large component of the σ -meson [686,688,687]) in
the amplitude, through presumably a new operator, needs to be studied. This effect might be
signalled by the success of the final state interaction approach within an effective approach
(quark and gluon content blind) for reproducing the previous data [835].

56.4.6 Summary and conclusions

We have explored the V -A component of the hadronic tau decays for predicting non-
perturbative QCD parameters. Our main results are summarized as:

� Electroweak penguins:
– Eq. (56.137): B3/2

7 ,
– Eq. (56.155): B3/2

8

– Eq. (56.154): 〈(ππ )I=2|Q3/2
8 |K 0〉 .

� QCD penguin: Eq. (56.159).
� ε ′/ε: Eq. (56.162) .

Our results are compared with some other predictions in Table 56.1 (see also [838]).
However, as mentioned in the table caption, a direct comparison of these results is not
straightforward due to the different schemes and values of the scale where the results have
been obtained. In most of the approaches, the values of B3/2

7 are in agreement within the
errors and are safely in the range 0.5 ∼ 1.0. For B3/2

8 the predictions can differ by a factor 2
and cover the range 0.7 ∼ 2.1. There are strong disagreements by a factor 4 for the values
of B1/2

6 which range from 0.6 ∼ 3.0. We are still far from having good control of these non-
perturbative parameters. This weak point does not permit us to give a reliable prediction of
the CP violation parameter ε′/ε. Therefore, no definite bound for new physics effects can
be derived at present, before improvements of these SM predictions.
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Thermal behaviour of QCD

57.1 The QCD phases

We study here the uses of QCD spectral sum rules (QSSR) in a matter with non-zero
temperature T and non-zero chemical potential µ (so-called Quark-Gluon Plasma (QGP)).
Since the corresponding critical temperature for the colour deconfinement is expected to be
rather small (Tc ≤ 1 GeV), these new states of matter can be investigated in high-energy
hadron collisions. At high enough temperature T ≥ Tc ≈ 150 − 200 MeV corresponding
to a vacuum pressure of about 500 MeV/fm3, QGP phase occurs and can be understood
without confinement. In this phase, one also expects that chiral symmetry is restored (chiral
symmetry restoration). However, it is a priori unclear, if the QGP phase and the chiral
symmetry restoration occurs at the same temperature or not. Untuitively, one can expect
that the deconfinement phase occurs before the chiral symmetry restoration. An attempt to
show that the two phases are reached at the same temperature has been made in [839] using
the FESR version of the Weinberg sum rules, which we shall discuss later on, where the
constraint has been obtained by assuming that in the QGP phase, the continuum threshold
starts from zero. In the QGP phase, the thermodynamics of the plasma is governed by
the Stefan–Boltzmann law, as in an ordinary black body transition. This feature has been
confirmed by a large number of lattice simulations. The RHIC-BNL heavy ion program is
dedicated to the study of transitions to this phase. Actually, the AGS (2 + 2 GeV per nucleon
in the c.o.m.), CERN-SPS (10 + 10 GeV) and RHIC (100 + 100 GeV) are expected to reach
this phase transition. The phase diagram of QCD is shown in Fig. 57.1 in the T plane versus
the baryonic chemical potential µ normalized per quark (not per baryon).

CS2 (two flavours) and CS3 (three flavours) are colour superconducting phases cor-
responding to large density and low T regions, which are not crossed by the heavy ion
collisions but belong to the neutron star physics. The small drop of CS matter is expected to
be due to one Cooper pair composed with a (ud scalar diquark) and one massive quark [840].
Some new crystalline phases due to oscillating 〈q̄q(x)〉 condensates may also appear [841],
which may compete with CS2 at µ ≈ 400 MeV. Hadronic phase at small value of (T, µ)
and the QGP phase at large value of (T, µ) have been known for a long time. However, it
is not quite clear if the phase transition line separating them starts at (T = Tc, µ = 0) but
at an endpoint E , a remnant of the so-called QCD tricritical point which QCD possesses in
the massless quark limit.
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F

QGP

CSC3
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matter

Fig. 57.1. QCD phase diagram.

57.2 Big-bang versus heavy ion collisions

� In both cases, the expansion law is roughly the Hubble law v(r ) ∼ r , but strongly isotropic in the
case of the heavy ion collisions.

� The acceleration history is not well measured (for Big Bang, one uses distant supernovae) but both
show small dipole components.

� In both cases, the major puzzle is how the large entropy was actually produced, and why it happened
so early, with a subsequent expansion close to the adiabatic expansion of equilibrated hot medium.

57.3 Hadronic correlations at finite temperature

The analysis of hadronic correlations at finite temperature is of great interest in connection
with the modifications of hadronic properties in hot hadronic matter. The structure of the
QCD correlations at intermediate distances also reflects the changes in the interaction be-
tween quarks and gluons. In the context of QSSR, this analysis has been extensively studied
[839,842–851]. However, further assumptions on the T -behaviour of the condensates or
information from some other approaches [852–854] are needed in the analysis as well as
some assumptions on the shape of the hadron spectrum, which limit the accuracy of the
results. Neverthless, interesting quantitative results can be extracted. We shall be concerned
here with the retarted (advanced) correlator (the causal one does not have useful analytic
properties [855]) of the hadronic current J (x) (generic notation):

�R(ω, q) = i
∫

d4x eiqx theta(x0)〈〈[J(x), J†(0)]〉〉 , (57.1)

where q ≡ (ω, q) and 〈〈. . .〉〉 stands for the Gibbs average:

〈〈. . .〉〉 =
∑

n

Wn〈n| . . . |n〉 , Wn ≡ exp[(� − E ′
n)/T ] . (57.2)

|n〉 is a complete set of the eigenstates of the QCD effective Hamiltonian:

H ′|n〉 = E ′|n〉 , H = H − µN , (57.3)

where H is the usual Hamiltonian, N is some conserved additive quantum num-
ber (baryonic charge, strangeness, . . . ), µ is the corresponding chemical potential,
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and � = −T ln T r exp(−H ′/T ). The two-point correlator is analytic in the upper half-
plane of the complex variable ω and obeys the dispersion relation:

�R(ω, q) =
∫ +∞

−∞

du

u − ω − iε
ρ(u, q) . (57.4)

The spectral density ρ is:

ρ(ω, q) = (2π )3
∑
n,m

〈n|J |m〉〈m|J |n〉

× Wn[1 − exp(−ω/T )]δ(ω − ωmn)δ(3)(q − kmn) , (57.5)

where:

ωmn = E ′
m − En , kmn = km − kn . (57.6)

Noting that in the set of discrete points of the imaginary half-axis, the retarded correlator
in Eq. (57.1) coı̈ncides with the corresponding Matsubara Green functions [856]:

�R(iωn) = G(ωn − iµ) , (57.7)

where:

ωn = 2πnT , n = 0, 1, 2, . . . , (57.8)

one can then calculate it using Feynmann diagram techniques in the Matsubara representa-
tion [856] (imaginary time formalism). 1 For ω → ∞, the correlator in Eq. (57.1) tends to its
perturbative QCD value. Therefore, it is reasonable to use quarks and gluons in Eq. (57.5),
in order to get its asymptotic behaviour. Using the OPE, one can add, to the perturbative
part, the NP contributions due to the quark and gluon condensates:

�R(q) =
∑

n

Cn(q)〈〈On〉〉 , (57.9)

where Cn is the Wilson coefficient obtained at zero temperature. The temperature depen-
dence appears when one takes the Gibbs averages 〈〈. . .〉〉 of the local operatorsOn . Summing
up all contributions from different On , one expects to recover the Matsubara results. The
radiative corrections appearing in the evaluation of the condensates should be of the form
αs(ν) ln(T/ν) as only T is the dimensional scale in the calculation of condensates at finite
T , such that it is important to determine the T value above which one can rely on the calcu-
lation. Formally, T should be much bigger than the QCD scale 
. For the time being, we
shall ignore radiative corrections and assume that perturbation theory works for T around
150 MeV.

1 Real time formalism as discussed in [857] is not convenient for the problem discussed here, where one evaluates the spectral
function.
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57.4 Asymptotic behaviour of the correlator in hot hadronic matter

Let us consider the correlator associated with the light quark vector current:

Jµ(x) = ψ̄γµψ (57.10)

which has the quantum number of the photon γ . The imaginary part of the correlator
defined as in Eq. (57.5) is then the probability of the absorption of a virtual γ -quanta of
time-like momenta ω2 − q2 > 4m2

q (mq → 0) by the matter. The virtual quanta consisting
of free fermions nF (E) are converted into a quark-antiquark pair at a rate proportional to
[1 − nF (E1)][1 − nF (E2)] according to Pauli’s principle where E1,2 are the quark energies.
At the same time, the γ -quanta are produced with the rate nF (E1)nF (E2). Therefore, the
rate of the disappearance of time-like γ -quanta in the fermionic medium ρ

g
µν is:

ρg
µν(ω, q) =

∑
s

∫
LIPS(E1, k1, E2, k2)

× 〈0|Jµ|ψ̄ψ〉〈ψ̄ψ |Jν |0〉 {[1 − nF (E1)][1 − nF (E2)] − nF (E1)nF (E2)} ,

(57.11)

where:

LIPS(E1, k1, E2, k2) ≡ d3k1

2E1(2π )3

d3k2

2E2(2π )3
δ(ω − E1 − E2)δ(3)(q − k1 − k2) . (57.12)

The numbers of fermions and bosons inside the plasma are:

nF (z) = 1/(1 + ez) , nB = 1/(1 − ez) . (57.13)

The γ -virtual space-like quanta (ω2 − q2 < 0) can be absorbed by the (anti) quarks of the
medium at a rate, proportional to nF (E1)[1 − nF (E2)] and emitted at the rate nF (E2)[1 −
nF (E1)] : E1 = ω + E2. Thus, it disappears at a scattering rate:

ρs
µν(ω, q) =

∑
g

∫
LIPS(E1, k1, −E2, −k2)

× 〈ψ |Jµ|ψ̄〉〈ψ̄ |Jν |ψ〉 {nF (E1)[1 − nF (E2)] − nF (E2)[1 − nF (E1)]} ,

(57.14)

where one can notice that the location of the singularities at T �= 0 differs qualitatively from
that at T = 0 as shown in Fig. 57.2.

Therefore the spectral function reads:

ρ(ω, q) = θ (ω2 − q2 − tc)ρg + θ (ω2 − q2)ρs , (57.15)

where tc is some threshold and the spectral function does not vanish for both time-like
and space-like momenta. ρs corresponds to the scattering term which increases with the
particle density and appears as we use a mixed state of matter instead of the vacuum, when
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−q +q Reω− s0+q2 s0+q2
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Fig. 57.2. Location of singularities in the complex ω plane.

averaging the initial commutator. At T �= 0, the correlator of the vector isovector current:

Jµ = 1

2
(ūγµu − d̄γµd) , (57.16)

contains two invariants �T and �L , which, in the rest frame of matter, can be defined as
follows:

�00 = q2�L , �i j =
(

δi j − qi q j

q2

)
�T + qi q j

q2
ω2�L . (57.17)

Using Eqs. (57.11) to (57.14), one can deduce Im �L ,T . To lowest order in αs , the
Euclidian asymptotic of the form factors reads [842]:

ρ
g
L = 3

32π2

∫ +v

−v

dx (1 − x2) th(q+/2T ) ,

ρs
L = 3

32π2

∫ +v

−v

(1 − x2)[2nF (q+/2T ) − 2nF (q−/2T )] ,

ρ
g
T = 3

64π2
(ω2 − q2)

∫ +v

−v

dx (2 + x2 − v2) th(q+/4T ) ,

ρs
T = 3

64π2
(ω2 − q2)

∫ +v

−v

dx (2 + x2 − v2) [2nF (q+/2T ) − 2nF (q−/2T )] ,

(57.18)

where: q+ ≡ qx + ω; q− ≡ qx − ω and:

v =
√

1 − 4m2
q

(ω2 − q2)
. (57.19)

In the case of a resonance at rest with respect to the medium (q → 0), one knows that
the two previous form factors are proportional to each other [858]:

�T (q = 0) = (ω2 − q2)�L |q=0 . (57.20)
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Therefore, considering the longitudinal form factor, one has:

ρ
g
L (q = 0, ω) = th

(
ω2 − 4m2

q

)
th(ω/4T )ρ0(ω2) ,

ρs
L (q = 0, ω) = δ(ω2)

∫ ∞

4m2
q

du22nF (u/2T )ρ0(u2) , (57.21)

with:

ρ0(ω2) = 3

16π2
v(3 − v2) , v =

√
1 − 4m2

q

ω2
, (57.22)

where the term ρs is due to the scattering with matter and vanishes for T = 0.
Systematic expansion of the spectral function can be done using the so-called hard thermal

loop expansion [859], where the order parameters are the ‘hard scale’ of the order of T or
larger and the ‘soft scale’ of the order of gT (g being the QCD coupling, which is assumed
to be small), where, at this soft scale, collective effects in the plasma lead to effective
(resummed) propagators and vertices parametrizing the modification of the physics at this
scale, which one can formulate using an effective Lagrangian [860].

To one loop, the vector spectral function behaves as [861]:

ρg(ω, q) ∼ αs T 2

[
ln

(
ωT

m2

)
+ constant

]
(57.23)

where m2 ∼ αs T 2 is related to the quark thermal mass. Therefore, the large ln(1/αs) dom-
inates over the constant term. However, the two-loop contribution is of the same order as
the one-loop graph due to the enhancement factor 1/m2 ∼ 1/αs which compensates the αs

factor associated to the quark-gluon coupling from the gluon exchange. This 1/m2 factor
originates from the presence of collinear singularities. This result questions the validity of
the QCD perturbative calculation in this regime. Phenomenological applications of these
results to the the lepton pair production in the quark-gluon plasma are discussed in [861].

57.5 Quark condensate at finite T

The temperature dependence of the 〈ψ̄ψ〉 quark condensate can be expressed as:

〈〈ψ̄ψ〉〉 = T r
(
ψ̄ψ exp −H/T

)
T r (exp −H/T )

. (57.24)

It has been studied in [852] using an effective Lagrangian approach, where one has
exploited the fact that, at low temperatures, the behaviour of the partition function is dom-
inated by the contributions from the lightest particles occuring in the spectrum. In QCD,
this lightest particle is the pion, which is massless in the chiral limit. Interaction among
the pions generates power corrections controlled by the expansion parameter T 2/8 f 2

π ,
while the contribution due to a massive state i is suppressed as exp(−Mi/T ), where Mi is
the corresponding hadron mass. At low temperature, one can express the pressure as the
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temperature-dependent part of the free energy density:

P = E0 − Z , (57.25)

where E0 is the vacuum energy density and Z is the partition function:

Z = −T lim
L→∞

L−3 ln[T r exp(−H/T )] . (57.26)

The quark condensate is given by the log-derivative of the partition function with respect
to the quark mass:

〈〈ψ̄ψ〉〉 = ∂ Z

∂m
, (57.27)

where at zero temperature:

〈ψ̄ψ〉 = ∂ E0

∂m
. (57.28)

Therefore, at finite temperature:

〈〈ψ̄ψ〉〉 = 〈ψ̄ψ〉
(

1 + c

F2

∂ P

∂m2
π

)
, (57.29)

where:

c � 0.90 ± 0.15 (57.30)

is a constant (c = 1 in the massless case) fixed from π -π scattering data, while F =
88 MeV is the value of the pion decay constant in the chiral limit ( fπ = 92.4 MeV).
In the massless limit:

P = π2

30
T 2

(
1 + 16

9
x2

T ln

q

T
+ O(T 6)

)
. (57.31)

The log-scale is related to the p4-term of the effective Lagrangian and is fixed from π -π
scattering analysis to be:


q � (470 ± 110) MeV . (57.32)

To order T 8, the temperature dependence of the condensate in the chiral limit reads:

〈〈ψ̄ψ〉〉 = 〈ψ̄ψ〉
(

1 − xT − 1

6
x2

T − 16

9
x3

T ln

q

T
+ O(T 8)

)
, (57.33)

where:

xT = T 2

8F2
, (57.34)

indicating that the temperature scale is set by
√

8F � 250 MeV. The behaviour of the
condensate versus T is given in Fig. 57.3 for massless quarks. One can deduce that the
condensate gradually melts for increasing T , and vanishes for massless quarks at Tc ≈
190 MeV, indicating the occurence of a phase transition at this temperature.
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Fig. 57.3. T -behaviour of the quark condensate in the chiral limit from [852]. Here and in the following
〈q̄q〉 ≡ 〈ψ̄ψ〉.

The inclusion of the quark masses can be obtained on the basis of Eq. 57.29. It is shown
that the effect shifts the value of Tc to higher value of about 240 MeV.

Using a dilute gas approximation (i.e. neglecting the self-interactions of hadrons, as
they manifest as the product of their density ni n j ∼ exp[−(Mi + M j )/T ]) in the low-
temperature region, the effect of massive states induces a positive correction of order T 2 to
the condensate:

�〈ψ̄ψ〉 � −〈ψ̄ψ〉 T 2

F2

∑
i

h1

(
T

Mi

)
m

m2
π

Mi
∂ Mi

∂m
, (57.35)

with:

h1(τ ) ≡ 1

2π2τ 2

∫ ∞

0
dx sh2x[exp(chx/τ ) − 1]−1 , (57.36)

and:

∂ Mi

∂m
= 1

2Mi
〈pi |ψ̄ψ |pi 〉 , (57.37)

where |pi 〉 denotes a one-particle state of momentum p. Therefore, Eq. (57.37) counts
the number of valence quarks of type u and d inside the hadrons. One can estimate the
uncertainties in this approximation by considering the kaon mass formula:

M2
K = (m + ms)B , (57.38)

from which one can deduce:

m
∂ MK

∂m
= m

2(m + ms)
MK [1 + corrections] . (57.39)

A comparison of the numerical value from Eqs. (57.37) and (57.39) show that the naı̈ve
relation in Eq. (57.37) underestimates the real value by a factor about 1.4. The effect of
massive states is such that it accelerates the melting of the condensate and implies a fast
drop until the phase transition of about 200 MeV. We show in Figs. 57.4 and 57.5, the sum
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Fig. 57.4. T -behaviour of the quark condensate in the chiral limit including massive states.
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Fig. 57.5. T -behaviour of the quark condensate in the massive quark limit including massive states.

of the different effects in the case of massless and massive quarks. The uncertainties in
evaluating the quantity in Eq. (57.37) are given by the shaded region in Figs. 57.4 and 57.5.

One can deduce that the critical temperature is:

Tc � 170 MeV (mu = md = 0)

190 MeV (mu, md �= 0) . (57.40)

Such a value of Tc has been confirmed by lattice simulation with two dynamical Kogut–
Susskind fermions [862]:

Tc(n f = 2) � 150 MeV , (57.41)

and by instanton liquid model [386]. In the case of the 〈s̄s〉, the ms corrections shifts Tc to
higher values of about 250 MeV [863]. Similar analysis can be done respectively for the
entropy density S, energy density U and heat capacity Cv:

S = ∂ P

∂T
, U = T S − P , Cv = ∂U

∂T
= T

∂S

∂T
, (57.42)

where for massless quarks, P is given in Eq. (57.31).
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57.6 fπ at finite temperature

In [853], the T dependence of the pion decay constant has been also studied within the
composite model framework. It has been found that:

f 2
π (T )

f 2
π (0)

� 〈〈ψ̄ψ〉〉
〈ψ̄ψ〉 . (57.43)

Near the critical temperature, the relation [839]:

fπ (T )

fπ (0)
� (3.0 ∼ 3.2)

(
1 − T

Tc

)1/2

, (57.44)

might be more accurate than the one derived from Eq. (57.33) in the chiral limit.

57.7 Gluon condensate

Using naı̈ve dimensional counting, it has been argued in [842] that the perturbative contri-
bution to the Gibbs average of the gluon condensate is of the form:

〈〈G2〉〉 ∼ 〈G2〉 + cT 4αs(T ) , (57.45)

such that this pertubative contribution is negligible. Using a more involved estimate, they
relate this temperature effect to the trace of the gluonic part of the energy momentum tensor
sandwiched between two pion states:

〈〈G2〉〉 ∼ 〈G2〉 + F(mπ , T )〈π |G2|π〉 , (57.46)

where F is a function that is dependent on mπ and T . An explicit evaluation gives [854]:

〈〈G2〉〉 ∼ 〈G2〉 − π3 16384

3465
n2

f

(
n2

f − 1
)
x4

T

(
ln


q

T
− 1

4

)
, (57.47)

where the temperature-dependent term is a very small correction, although showing that
the gluon condensate melts very smoothly for increasing temperature.

57.8 Four-quark condensate

The temperature dependence of the four-quark condensate has been often estimated using
the vacuum saturation assumption:

〈〈O4〉〉 ≡ 〈〈ψ̄�1ψψ̄�2ψ〉〉 ∼ 〈〈ψ〉〉2 , (57.48)

which should only be taken very qualitatively, as there are evidences that, already at zero
temperature, the vacuum saturation assumption is violated by a factor of 2 to 3 (see previous
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sections). In [848], the temperature dependence of the four-quark operators in different
channels has been studied within the sum rule itself, where the approximate behaviour:

〈〈O4〉〉 ≈ 〈O4〉
[

1 − T 2

(330 MeV)2

]
, (57.49)

has been obtained to be compared with that:

〈〈O4〉〉 ∼ 〈ψ̄ψ〉2

[
1 − T 2

(177 MeV)2

]
, (57.50)

which one would have obtained if the vacuum saturation for the four-quark condensate has
been used together with the previous T -dependence of 〈ψ̄ψ〉. The smooth dependence of
the four-quark dependence can be qualitatevely understood when using the fact that at the
optimization scale of the LSR, one has the relation:

Mρ ∼ 〈〈αsO4〉〉1/6 , (57.51)

and as one will see later on, the ρ-meson mass varies smoothly with temperature below Tc.

57.9 The ρ-meson spectrum in hot hadronic matter

The ρ meson mass spectrum was originally studied in [842] using Laplace transform sum
rules. The ρ coupling to the longitudinal part of the spectral function is introduced as:

ρl = M2
ρ

2γ̃ 2
ρ

δ
(
ω2 − q2 − m2

l

)
. (57.52)

The LSR reads:

F(τ ) � 4π2
M2

ρ

2γ̃ 2
ρ

exp
( − M2

ρτ
)

=
∫ tc

0
dt exp(−tτ )th(

√
t/4T )

+ 2
∫ ∞

0
dt [n f (

√
t/2T ) − 1

3
n f (

√
t/2T )]

+ π

3
〈αs G2〉τ − 2π3αs〈ψ̄ψ〉2τ 2 . (57.53)

Instead, we work with moments:

R(τ ) ≡ − d

dτ
lnF(τ ) , (57.54)

which is convenient for studying the spectrum as it free from the unknown longitudinal
coupling γ̃ρ . In addition, width corrections which might be large here partially cancel in the
ratio. Stability of the LSR moments versus the usual parameters (τ, tc) has been studied in
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detail in [843] using different values of the QCD input parameters, where, in the analysis,
the small variations of the gluon and four-quark condensates with temperature have been
neglected. This analysis is shown in Fig. 57.6.

The optimal result of theρ-meson mass from [843] is shown in Fig. 57.7, where the smooth
T -dependence decrease of the spectrum differs from the sharp change at Tc obtained from
[842]. This difference is understood to be due to the effect of the change of the continuum
threshold from 0.8 to 1.5 GeV2 with T in [842], where stability in the variable τ of the
LSR has not yet been reached. This result also differs from the expectation [864] that
Mρ(T ) > Mρ(0). We conclude from this figure that the hot fermi gas does not lead to a
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drastic change of the spectra in the region below 200 MeV. Such behaviour just indicates
that the ρ-meson mass at zero and at T ≤ Tc has qualitatively the same feature, and a
posteriori indicates that the quark hadron duality used at zero temperature is also applicable
here. This feature just indicates that some criticisms [847] on the non-validity of the quark-
gluon basis at small T in Eq. (57.2) are obviously wrong, as in this region the quark-hadron
duality is expected to work better. In the same way, some other arguments raised by [847]
like the non-consideration of non-peturbative effects (confinement) within the approach of
[842] reviewed here are not at all justified, as has been demonstrated in the analysis of the
exactly solvable QCD-like two-dimensional sigma O(N ) and Schwinger models [846]. The
analysis of [843] has been completed by giving sets of FESR:

4π2
M2

ρ

γ̃ 2
ρ

�
∫ tc

0
dt th(

√
t/4T) + 2

∫ ∞

0
dt

(
nF − 1

3
nB

)

4π2
M4

ρ

γ̃ 2
ρ

�
∫ tc

0
dt t th(

√
t/4T) − 1

3
π〈αsG

2〉

4π2
M6

ρ

γ̃ 2
ρ

�
∫ tc

0
dt t2 th(

√
t/4T) − 896

81
π3αs〈ψ̄ψ〉2 , (57.55)

that are necessary for checking the consistency of the parameters obtained from the LSR.
However, one should understand that the accuracy of the constraints decreases with increas-
ing dimensions. These FESR have been used in [845] for studying the T dependence of the
continuum threshold tc, a result which has been confirmed by [839] within the framework
of composite models. Namely a smooth dependence with T has been found:

tc(T )

tc(0)
� fπ (T )

fπ (0)
. (57.56)

57.10 ρ-meson coupling and width

The T dependence of the ρ meson coupling has been also studied in [849] in which a smooth
dependence was found as well:

1

γ̃ρ(T )
� 1

γ̃ρ(0)

(
1 − 2

3
xT + · · ·

)
. (57.57)

These smooth dependences of the rho-meson mass and coupling were confirmed later
in [850].

The T -dependence of the ρ-meson width has been proposed in [865] by using the relation
between the ρππ coupling and fπ through the KSFR relation (see Part I):

gρππ = Mρ√
2 fπ

, (57.58)
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and its relation to the ρ → ππ width:

�ρ→ππ = g2
ρππ

4π

Mρ

12
, (57.59)

from which, it is easy to deduce the desired T -dependence:

�ρ(T ) � �ρ(0)

(
1 − T 2

4 f 2
π

)−1

, (57.60)

showing that for increasing T -values, the ρ-meson becomes broader and difficult to assign
as a true resonance. This result has been confirmed from a recent study of the T -dependence
of the imaginary part of the ρ-meson propagator [866].

Therefore, one can conclude from our previous analysis that the ρ-meson mass is almost
insensitive to the T -variation, while its non-identification as a resonance is mainly due to
the large increase of its hadronic ππ width at non-zero temperature. As a result, the study of
dilepton-invariant mass in nuclear collisions through Drell–Yan processes at the rho-meson
mass energy will not reveal a clear resonance structure.

57.11 Deconfinement phase and chiral symmetry restoration

We mentioned in the introduction that the Weinberg sum rules have been used in [839] for
studying the relation between the deconfinement temperature Td and the chiral symmetry
restoration temperature Tc. At finite temperature the first Weinberg sum rule reads [845]:

8π2 f 2
π (T ) �

∫ tc(T )

0
dω2 th(ω/4T ) + 2

∫ ∞

0
dω2 nF (ω/2T ) , (57.61)

where tc is the continuum threshold separating the hadron from the continuum. Assuming
that in the QGP, tc(Td ) = 0, one can derive the constraint [839]:

fπ (Td ) = Tc√
6

(
Td

Tc

)
, (57.62)

relating the chiral restoration temperature Tc with the deconfinement one Td . The graphical
resolution of the previous equality is obtained for:

Td ≈ Tc , (57.63)

showing that the chiral restoration and the deconfinement phase are obtained at about the
same temperature.

57.12 Hadronic couplings

The extension of the present framework for evaluating the meson trilinear couplings has
been done in [845] using the symmetric point configuration of the vertex firstly proposed
in [636,637]. It has been found that the couplings vanish like f n

π , where n is a positive
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model-dependent number, showing that hadrons decouple in the deconfinement phase. It is
also remarkable to notice that the π0γ γ coupling vanishes at high temperature indicating
the absence of the QED anomaly in the QGP phase. This result has been confirmed by some
field theory model calculation [867].

57.13 Nucleon sum rules and neutron electric dipole moment

The extension of the previous application for studying the nucleon sum rule is straightfor-
ward. Noting (see previous section) that:

MN ∼ 〈ψ̄ψ〉τ (57.64)

where τ is the sum rule scale variable, one also expects that its T -dependence is similar
to that of 〈ψψ〉. Finally, nucleon sum rules have been also used in [851] for studying the
T -dependence of the ratio of the neutron electric dipole moment over the QCD-θ angle
responsible for the strong C P problem, where a smooth variation with temperature has
been obtained.
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More on spectral sum rules

QSSR have wider applications and can also be applied to theories other than QCD as it is
based on first principles of analyticity and duality.

58.1 Some other applications in QCD

Some other applications of QSSR have been already reviewed in details in the book [3],
which we list below:

� Baryons at large Nc.
� String tension from Wilson loops.
� Relation between lattice correlators and chiral symmetry breaking in the continuum limit.
� Two-dimensional QCD.

58.2 Electroweak models with dynamic symmetry breaking

QSSR has been also extended in order to give dynamic constraints on fermions and W, Z
bosons assumed to be bound states of preons (haplons) where the structures may manifest
at the TeV scale. The analysis has been done by assuming that at that scale, one can
have a strong interaction theory of preons that is closely analogous to QCD describing the
electroweak interactions, with the exception that one has to be careful on the chirality of
the theories:

� In [868] and [869],1 (reviewed in [870]), QSSR (Laplace and FESR) have been used in order to test
the consistency of the compositeness assumption for the W and Z bosons and its spin zero partners,
in the haplon model proposed by Fritzsch and Mandelbaum [871],2 leading to a duality constraint
between the boson masses and couplings with the continuum threshold (compositeness scale).

� In [873], QSSR has been used for an alternative derivation of the Dashen formula and some con-
straints among the Goldstone parameters with the condensate in supersymmetric QCD.

� In [874], analogous constraints have been derived between the ‘composite’ fermions and the vacuum
structure of the (non)-supersymmetric theory, where it is found that for supersymmetric theories,
there are unlikely to be composite fermions below the TeV scale.

1 Some phenomenological implications of the scenario are also discussed in this paper.
2 However, the obtained constraints are more general and can be applied to some other classes of composite models discussed in

[872].
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Epilogue

We have tried to put together an elementary introduction to QCD and its modern devel-
opments in order to have as far as possible a complete QCD handbook, which I hope will
be useful for a large spectrum of readers. After reading this book, I hope that the reader
have learned more on the developments and aspects of perturbative and non-perturbative
QCD, which, owing to the gluonic self-interactions, are based on asymptotic freedom,
dynamical symmetry breaking and confinement. The former enables us to apply perturba-
tion theory at large momenta where the coupling is small, and this has given successful
predictions for various hard processes in terms of the single-order parameter αs(Q). The
running of the QCD coupling (and of the quark masses) as predicted by QCD and the
renormalization group equation has been verified experimentally at different energy scales.
On the other hand, the growth of the coupling at low energies indicates that QCD dy-
namics are governed by the confinement of quarks and gluons into colour-singlet hadronic
states. However, a rigorous proof of this property is still lacking and remains one of the
challenging problems in QCD. At present, non-perturbative approaches such as QCD spec-
tral sum rules, lattice calculations provide an indirect evidence that QCD also provides
the proper pattern of chiral symmetry breaking, where the quark and gluon condensates
breaks dynamically the symmetry of the QCD Lagrangian. Thus, we have at present
an overwhelming experimental and theoretical evidence that QCD gauge theory is the
most robust theory of hadrons, though we have still to tackle the longstanding problem of
confinement.

Some remarks concerning the presentation of this book have to be made:

� The readers may have noticed that, some specialized topics, like, for example, monopoles and more
generally confinement, have not been discussed in details due to space–time limitations, but, mainly,
due to the fact that our understanding on these subjects is not yet mature.

� Unlike, the case of the book and review in [3,2], we have not discussed in detail the derivation
of each results from QCD spectral sum rules, but we have only summarized the different results
after discussing some particular examples. The readers who wish to look into more details in the
derivation of the QSSR results can then consult the previous references and the original papers.

I hope that, after reading this book, the readers have acquired the necessary information
and technology for tackling new research projects in this field, which, after looking at the
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large number of QCD publications and conferences, has been and still remains one the most
active fields in high-energy physics.

‘Physics will change even more . . . If it radical and unfamiliar . . . we think that the future
will be only more radical and not less, only more strange and not more familiar, and that it
will have its own new insights for inquiring human spirit.’

(Oppenheimer, Reith Lectures, BBC, 1953)
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Appendix A

Physical constants and units

A.1 High-energy physics conversion constants and units

Table A.1. High-energy physics conversion constants and units

Quantity Name Value

Speed of light c 299 792 458 m s−1

Reduced Planck constant h̄ ≡ h/2π 1.054 572 66(63) ×10−34 J s =
6.582 122 0(20) ×10−23 MeV s

Conversion constants h̄c 197.327 053(59) MeV fm
(h̄c)2 0.389 379 66(23) GeV2 mbarn

Units where h̄ = c = 1 Mass, energy 1 eV = 1.602 177 33(49) × 10−19 J
1 GeV = 103 MeV = 106 keV = 109 eV
1 erg = 10−7 J
1 eV/c2 = 1.782 662 70(54) ×10−36 kg

Length 1 GeV−1 = 0.197 327 053 fm =
0.197 327. . . × 10−13 cm

1 in = 0.0254 m 1 Å = 0.1 nm
Lifetime 1 GeV−1 = 6 582 122 0 × 10−25 s

Decay rate 1 GeV = (1/6 582 122 0) × 1025 s−1

Cross-section 1 GeV−2 = 0.389 379 66(23) × 106 barn
1 barn = 10−28 m2 1 nb = 10−9 barn

Others 0 ◦C = 273.15 K 1 G = 10−4 T
kT at 300 K = [38.681 49(33)]−1 eV
1 atmosphere = 760 torr = 101 325 Pa
1 dyne = 10−5 N

A.2 High-energy physical constants

A complete list of physical constants is given in PDG [16]. Among them, we have:
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Table A.2. Some high-energy physical constants

Observable Symbol Value

Electron mass me 0.510 999 06(15) MeV/c2

= 9.109 389 7(54) ×10−31 kg
Muon mass mµ 105.658357(5) MeV/c2

Tau mass mτ 1777.03+30
−26MeV/c2

Proton mass m p 938.272 31(28) MeV/c2

= 1836.152 701(37) me

Electron charge e 1.602 177 33(49) ×10−19 C
= 4.803 206 8(15) ×10−10 esu

Permittivity of free space ε0 8.854 187 817. . . × 10−12 F m−1

Fine structure constant α = e2/4πε0h̄c 1/137.035 999 58(52) at q2 = m2
e

1/128 at q2 = M2
Z

Electron anomaly ae ≡ 1
2 (ge − 2) 115 965 218 84(43) × 10−13

Muon anomaly aµ ≡ 1
2 (gµ − 2) 116 592 023(151) × 10−11

Tau anomaly aτ ≡ 1
2 (gτ − 2) 0.004 ± 0.027 ± 0.023

Electron radius re = e2/4πε0mec2 2.817 940 92(38) ×10−15 m
Bohr radius (mnucleus = ∞) a∞ = 4πε0h̄2/mec2 0.529 177 249(24) ×10−10 m

= reα
−2

Electron Compton wavelength λe/2π = h̄/mec 3.861 593 23(35) × 10−13 m
= re/α

Rydberg energy hcR∞ = mec2α2/2 13.605 698 1(40) eV
Thomson cross-section σT = 8πr 2

e /3 0.665 246 16(18) barn

Bohr magneton µB = eh̄/2me 5.788 382 63(52) ×10−11 MeV T−1

Nuclear magneton µB = eh̄/2m P 3.152 451 66(28) ×10−14 MeV T−1

Electron cyclotron freq./field ωe
cycl/B = e/me 1.758 819 62(53) ×1011 rad s−1 T−1

Fermi coupling constant G F/(h̄c)2 1.166 39(2) × 10−5 GeV−2

Weak mixing angle sin2 θW (MZ ) M S 0.2315(4)
W ± boson mass MW 80.33(15) GeV/c2

Z 0 boson mass MZ 91.187(7) GeV/c2

Strong coupling constant αs(MZ ) 0.118(3)

A.3 CKM weak mixing matrix

In the electroweak standard model SU (2)L × U (1), where both quarks and leptons
left-handed doublets and right-handed singlets, the quark mixing matrix can be
represented as:

(
d ′
s ′
b′

)
=

(
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

) (
d
s
b

)
, (A.1)
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where from weak decays, the mixing matrix has the value:(
0.9745 − 0.9757 0.219 − 0.224 0.002 − 0.005

0.218 − 0.224 0.9736 − 0.9750 0.036 − 0.046
0.004 − 0.014 0.034 − 0.046 0.9989 − 0.9993

)
(A.2)

In the Wolfenstein parametrization:

Vus � λ , Vub � λ3 A(ρ − iη)
Vcb � λ2 A , Vtd � λ3 A(1 − ρ − iη) (A.3)

A.4 Some astrophysical constants

Table A.3. Some astrophysical constants

Observable Symbol Value

Newton gravitation constant G N 6 672 59(85) ×10−11 m3kg−1s−2

Astronomical unit AU 1.495 978 706 6(2) ×1011 m
Tropical year(equinox to equinox) yr 31 556 925.2 s
Age of the universe t0 15(5) Gyr
Planck mass

√
h̄c/G N 1.221 047(79) ×1019 GeV/c2

parsec(1AU/1 arc sec) pc 3.085 677 580 7(4) ×1016m = 3.262 . . . ly
light year ly 0.306 6 . . . pc = 0.9461 . . . ×1016 m
Solar mass M� 1.968 92(25) ×1030 kg
Solar luminosity L� 3.846 ×1026 W
Solar equatorial radius R� 76.96 ×108 m
Earth mass M⊕ 5.973 70(76) ×1024 kg
Earth equatorial radius R⊕ 6.378 140 ×106 m
Hubble constant H0 100 h0 km s−1Mpc−1 =

h0 × (9.778 13 Gyr)−1

Normalized Hubble constant h0 0.5 ≤ h0 ≤ 0.85
Critical density of the universe ρc = 3H 2

0 /8πG N 2.775 366 27 ×1011h2
0 M�Mpc−3

Local halo density ρhalo (2 − 13)10−25 g cm−3 ≈
(0.1 − 0.7) GeV/c2 cm−3

Scaled cosmological constant λ0 = �c2/3H 2
0 −1 < λ0 < 2

Scale factor for cosmological
constant c2/3H 2

0 2.853 ×1051h2
0 m2



Appendix B

Weight factors for SU (N )c

B.1 Definition

The generators Ta of the SU (N )c Lie algebra obey the commutation relation:

[Ta, Tb] = i fabcTc (B.1)

and the trace properties:

T r Ta = 0 . (B.2)

fabc are constants which are real and totally antisymmetric and normalized as:

fabc fdbc = Nδad . (B.3)

B.2 Adjoint representation of the gluon fields

In this representation, one has:

(Ta)bc = −i fabc , (B.4)

with the properties:

fabe fcde = 2

N
[δacδbd − δadδbc] + daceddbe − dadedbce ,

fabedcde + faceddbe + fadedbce = 0 , (B.5)

where dabc is a real and totally symmetric tensor:

dabb = 0 ,

dabcddbc = (N − 4/N ) δad . (B.6)

In this representation, the trace properties are:

T r Ta Tb = Nδab ,

T r Ta TbTc = i

2
Nδab ,

T r Ta TbTcTd = δabδcd + δadδbc + N

4
(dabedcde − daceddbe + dadedbce) . (B.7)
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B.3 Fundamental representation of the quark fields

In this case:

Ta = 1

2
λa , (B.8)

with the properties:

[λa, λb] = 2i fabcλc ,

{λa, λb} = 4

n
δab + 2dabcλc ,

λaλb = 2

N
δab + dabcλc + i fabcλc . (B.9)

The trace properties are:

T r λa = 0
T r λaλb = 2δab

T r λaλbλc = 2(dabc + i fabc)

T r λaλbλcλd = 4

N
(δabδcd − δacδbd + δadδbc)

+ 2(dabedcde − dacedabe + dadedbce)
+ 2i(dabe fcde − dace fabe + dade fbce) . (B.10)

Some other useful relations are:

(λa)αβ(λa)γ δ = 2

(
δαδδβγ − 1

N
δαβδγ δ

)

= 2(N 2 − 1)

N 2
δαδδβγ − 1

N
(λa)αβ(λa)γ δ ,

(λa)αβ(λa)βγ = 4

(
C2(R) ≡ N 2 − 1

2N

)
δαγ ,

(λbλaλb)αβ = − 2

N
(λa)αβ ,

(λaλb)αβ(Tb)ca = N (λc)αβ . (B.11)

In the adjoint representation:

(Ta)bc(Ta)cd = (C2(G) ≡ N ) δbd . (B.12)

B.4 The case of SU (3)c

In this case, one can write explicitly:

λ1 =
(

0 1 0
1 0 0
0 0 0

)
λ2 =

(
0 −i 0
i 0 0
0 0 0

)
λ3 =

(
1 0 0
0 −1 0
0 0 0

)

λ4 =
(

0 0 1
0 0 0
1 0 0

)
λ5 =

(
0 0 −i
0 0 0
i 0 0

)
λ6 =

(
0 0 0
0 0 1
0 1 0

)
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λ7 =
(

0 0 0
0 0 −i
0 i 0

)
λ8 = 1√

3

(
1 0 0
0 1 0
0 0 −2

)
. (B.13)

Therefore:

f123 = +1

f147 = f156 = f246 = f257 = f345 = − f367 = 1

2
,

f458 = f678 =
√

3

2
, (B.14)

and:

d118 = d228 = d338 = d888 = 1√
3

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1

2
,

d448 = d558 = d668 = d778 = − 1

2
√

3
. (B.15)

The other components which cannot be obtained by permutation of indices of the above
ones are zero.



Appendix C

Coordinates and momenta

The space–time coordinates (t, x, y, z) ≡ (t, �x) are denoted by the contravariant
four-vector x , which is defined as:1

xµ ≡ (t, x, y, z) ≡ (x0, x1, x2, x3) . (C.1)

The covariant four-vector is defined as:

xµ ≡ (t, −x, −y, −z) ≡ (x0, x1, x2, x3) = gµνzν , (C.2)

where:

gµν =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ . (C.3)

The three-vector is also often denoted as:

�x ≡ x (C.4)

The momentum vector is defined in the same way:

pµ = (E, px , py, pz) (C.5)

The scalar products are:

x2 = xµxµ = t2 − �x2 ,

p1 · p2 = pµ

1 p2,µ = E1 E2 − �p1 �p2 ,

x · p = t E − �x · �p (C.6)

The derivative operator is:

∂µ ≡ ∂

∂xµ

≡
(

∂

∂t
, − �∇

)
≡

(
∂

∂t
, − ∂

∂x
, − ∂

∂y
, − ∂

∂z

)
. (C.7)

The Dalembertian operator is:

∇2 ≡ ∂xµ∂xµ = ∂2

∂t2
− �∇2

. (C.8)

1 We shall follow the notations of Bjorken–Drell and Landau–Lifchitz.
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The electromagnetic four-vector potential is:

Aµ = (�, �A) (C.9)

The electromagnetic field strength is:

Fµν = ∂

∂xν

Aµ − ∂

∂xµ

Aν (C.10)

The electromagnetic and magnetic fields are:

E = (F01, F02, F03) B = (F23, F31, F12) (C.11)

The gluon field tensor is:

Ga
µν = ∂

∂xν

Aa
µ − ∂

∂xµ

Aa
ν + g fabc Ab

µ Ac
ν (C.12)

where Aa
µ is the guon fields and a = 1, 2, . . . 8 are the colour indices. The electromagnetic

covariant derivative is:

Dµ = ∂µ + ieAµ (C.13)

The gluon covariant derivative acting on the quark colour componet α, β = red, blue,
yellow is:

(Dµ)αβ ≡ δαβ∂µ − ig
∑

a

1

2
λa

αβ Aa
µ , (C.14)

where λa
αβ are eight 3 × 3 colour matrices.



Appendix D

Dirac equation and matrices

D.1 Definition and notations

If ψ is a generic notation of a fermion field, it can be expressed in terms of the usual
annihilation and creation operators as:

ψ(x) =
∫

d3 p

(2π )32E

∑
λ

[u( �p, λ)a( �p, λ)e−i pxv( �p, λ)b†( �p, λ)eipx ] (D.1)

where the integration is over the mass hyperboloid with p2 = m2 and p0 > 0. λ is the two
possible fermion helicities. The annihilation and creation operators satisfy the
commutation relations:

[a(p), a†(p′)] = [b(p), b†(p′)] = (2π )32Eδ3(p′ − p) , (D.2)

[a(p), a(p′)] = 0 = [b(p), b(p′)] .

The fermion spinors u(p) (particle) and v(p) (anti-particle) of mass m obey the Dirac
equation:

( p̂ − m)u(p) = 0 = ū(p)( p̂ − m) ,

( p̂ + m)v(p) = 0 = v̄(p)( p̂ − m) , (D.3)

and normalized as:

ū( �p, λ)u( �p, λ) = 2m = −v̄( �p, λ)v( �p, λ) (D.4)

with:

ū = u†γ 0

v̄ = v†γ 0 ,

p̂ = γµ pµ = γ0 p0 − γ · p , (D.5)

where γµ are the Dirac matrices. In four dimensions, these matrices can be defined as:

γ5 =
(

0 1
1 0

)
γµ =

(
0 σµ

−σµ 0

)
for µ = 1, 2, 3 γ0 =

(−1 0
0 1

)
(D.6)

in terms of the Pauli matrices σ :

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(D.7)
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They obey the properties:

{γµ, γν} = 2gµν , σµν ≡ i

2
[γµ, γν] , (D.8)

and:

(γ5)2 = 1 , and γ5γµ = −γµγ5 , (D.9)

with the definition:

γ5 = iγ0γ1γ2γ3 (D.10)

or:

γ5 = 1

4!
εµνλργ

µγ νγ ργ σ . (D.11)

The Dirac matrices are (anti)hermitians:

γµ = −γ +
µ , µ = 1, 2, 3 , γ +

0 = γ0 and γ +
5 = γ5 . (D.12)

D.2 CPT transformations

The action of the operators:
C ≡ charge conjugation, P ≡ parity transformation, T ≡ time reversal ,
on the fermion field ψ(t, �r ) are:

C ψ(t, �r ) = γ2ψ
†(t, �r )

T ψ(t, �r ) = −iγ1γ3ψ
†(−t, �r )

PT ψ(t, �r ) = γ0γ1γ3ψ
†(−t, −�r )

CPT ψ(t, �r ) = γ2γ0γ1γ3ψ(−t, −�r )
= iγ5ψ(−t, −�r ) , (D.13)

where:

ψ† = ψ̄γ0 . (D.14)

D.3 Polarizations

In the evaluation of unpolarized cross-section, one has to sum over polarizations of, for
example, fermions:∑

λ

u(p, λ)ū(p, λ) = p̂ + m ,
∑

λ

v(p, λ)v̄(p, λ) = p̂ − m , (D.15)

while for polarized cross-section, one inserts the projection matrices:

u

(
p, λ = ±1

2

)
ū

(
p, λ = ±1

2

)
= 1

2
( p̂ + m)

(
1 ± γ5ŝ

2

)
,

v

(
p, λ = ±1

2

)
v̄

(
p, λ = ±1

2

)
= 1

2
( p̂ − m)

(
1 ± γ5ŝ

2

)
, (D.16)
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where: s is the polarization four-vector of the (anti-)particle with energy-momnetum p:

s · p = 0 and s2 = −1 . (D.17)

For a photon or massless vector boson, the polarization is transverse:

εµ = (0, �ε) with �p · �ε = 0 . (D.18)

For unpolarized cross-section involving (massless) photons, one has to sum over
polarizations: ∑

polar.

ε∗
µεµ = −gµν . (D.19)

D.4 Fierz identities

In some calculations, it is useful to arrange products of fermion bilinears using Fierz
identities. Denoting by ψi the field of a fermion i , one has in four dimensions:

(ψ̄1ψ4)(ψ̄3ψ2) = 1

4

∑
µ

(ψ̄1γµψ2)(ψ̄3γ
µψ4) . (D.20)

Similar relation can be obtained by the substitution:

ψ4 → γνψ4 , ψ2 → γρψ2 , (D.21)

and by using the decomposition:

γµγν = 1

4

∑
σ

(T r γµγνγσ )γ σ . (D.22)

A typical Fierz rearrangement is the one of weak four-fermion operator:

(ψ̄1Lγ µψ2L )(ψ̄3Lγµψ4L ) = −(ψ̄1Lγ µψ4L )(ψ̄3Lγµψ2L ) (D.23)

where:

ψi L ≡ 1

2
(1 − γ5)ψi . (D.24)

Additional relations can be obtained by using:

(σµ)αβ(σµ)γ δ = 2εαγ εβδ . (D.25)

D.5 Dirac algebra in n-dimensions

The (anti)-commutation properties of the Dirac matrices in four dimensions given in
Eq. (D.8) are maintained, but the algebra becomes:1

γµγ µ = n1 = gµνgµν ,

γµγαγ µ = (2 − n)γα ,

γµγαγβγ µ = 4gαβ1 + (n − 4)γαγβ ,

γµγαγβγγ γ µ = −2γγ γβγα − (n − 4)γαγβγγ . (D.26)

1 See also the discussions in Section 8.2 for different aspects of dimensional regularization.
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The traces in n dimensions can be chosen to be the same as in four dimensions. The usual
properties are:

T r 1 = 4 (D.27)

and:

T r (γ µ1 . . . γ µm ) = 0 for m odd ,

T r (γ µ1 . . . γ µm ) = −T r (γ µm γ µ1 . . . γ µm−1 )

+ 2
m−1∑
i=1

(−1)i+1T r (γ µ1 . . . γ µi−1γ µi+1γ µm−1 ) gµi µm . (D.28)

Therefore, one can deduce:

T r γµγν = 4gµν ,

T r γµγνγργσ = 4(gµνgρσ − gµρgνσ + gµσ gνρ) ,

T r γλµνρστ = gλµTνρστ − gνλTµρστ + gλρTµνστ − gλσ Tµνρτ + gλτ Tµνρσ , (D.29)

with:

γλµνρστ ≡ γλγµγνγργσ γτ , Tµνρσ ≡ T r γµγνγργσ . (D.30)

The definition of γ5 is more delicate in n-dimensions. There are many definitions in the
literature (see e.g. [116] and the review in [2]). These definitions are good if the
corresponding Green’s functions satisfy constraints imposed by the Ward identities, and
do not induce unphysical anomalous term [116,119], which cannot be absorbed in the
Lagrangian counterterms. The most convenient and unambiguous definition is the one
encountered in four dimensions, which is either the one in Eq. (D.10) or the one in Eq.
(D.11), although the one in Eq. (D.10) does not exist for n < 4. In both cases, the most
important properties are:

(γ5)2 = 1, γ
†
5 = γ5, and γ5γµ = −γµγ5 . (D.31)

and:

[γ5, σµν] = 0 and γ5σµ,ν = i

2
εµνρσ σ ρσ . (D.32)

The traces involving γ5 are:

T r γ5 = 0 ,

T r γ5γµγν = 0 ,

T r γ5γµγνγργσ = 4iεµνρσ ,

T r γ5γλγµγνγργσ γτ = 4i[gµλενρστ − gλνεµρστ + gµνελρστ + gστ ελµνρ

− gρτ ελµνσ + gρσ ελµντ ]
T r γ5γµ1 . . . γµm = for m odd . (D.33)

Finally, in order to complete the presentation of the Dirac algebra in n dimensions, it is
also useful to remind the hermiticity:

γ 0γ µγ 0 = (γ µ)† , γ 0γ5γ
0 = −γ

†
5 = −γ5 , (D.34)
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and the parity properties:

CγµC−1 = −γ T
µ Cγ5C−1 = γ T

5 ,

CσµνC−1 = −σ T
µν C(γ5γµ)C−1 = (γ5γµ)T , (D.35)

where C is the charge conjuguate operator normalized as:

C2 = −1 . (D.36)

D.6 The totally anti-symmetric tensor

The totally anti-symmetric tensor has the same definition as in four dimensions:

εµνρσ =
⎧⎨
⎩

0, if two indices are equal
−1, if µνρσ = 0123
+1, if µνρσ = 1230 ,

(D.37)

while one can choose its properties as:

εµναβερναβ = −(n − 3)(n − 2)(n − 1)gρ
µ ,

εµναβερσαβ = −(n − 3)(n − 2)
(
gρ

µgσ
ν − gρ

ν gσ
µ

)
,

εµναβερστβ = −(n − 3)

∣∣∣∣∣∣
gρ

µ gσ
µ gτ

µ

gρ
ν gσ

ν gτ
ν

gρ
α gσ

α gτ
α

∣∣∣∣∣∣ (D.38)



Appendix E

Feynman rules

E.1 Factors induced by external or internal lines

ingoing quark:

p

(2π )−3/2u(p, λ)

ingoing antiquark:

p

-p (2π )−3/2v̄(p, λ)

outgoing quark:
p

(2π )−3/2ū(p, λ)

outgoing antiquark:

p

-p (2π )−3/2v(p, λ)

ingoing gluon:

k

(2π )−3/2εµ(k, η)

outgoing gluon:

k

(2π )−3/2ε∗
µ(k, η)

E.2 Factors induced by closed loops∫
dn p

(2π )n
for each loop integration
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(−1) for each closed fermion or ghost loop

1

2!
for or or

1

3!
for

E.3 Propagators and vertices

Propagators

quark:

p

i j i
p̂−m+iε′ δi j

gluon: µ, a ν, b

k

(−i) δab
k2+iε′

[
gµν − (1 − αG) kµkν

k2

]

ghost:

p

a b (−i) δab
k2+iε′

Vertices

quark-gluon-quark:

i

j

µ, a

(ig)γµT a
i j

ghost-gluon-ghost:

a

c

µ, b

pµ
(−ig) f abc pµ
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3-gluon:

k, µ

q, ν

 a

b c

r, ρ

(g f abc)[gµν(k + q)ρ − gνρ(q + r )µ
+ gρµ(r − k)ν]

4-gluon:

a, µ d, ρ

c, σb, ν (−ig2)[ f abe f cde(gµσ gνρ − gµρgνσ )
+ f ace f bde × (gµνgσρ − gµρgνσ )
+ f ade f cbe × (gµσ gνρ − gµνgσρ)]

E.4 Composite operators in deep-inelastic scattering

We define � ≡ 1 or γ5 and � to be an arbitrary four-vector with �2 = 0. The composite
operators are defined at x = 0.

k k

n

: q̄γµ1 · · · ∂µn q : �̂(� · k)n−1�

k k

n

µ ν : Gµµ1∂µ2 · · · ∂νG : gµν(� · k)n + k2�µ�ν(� · k)n−2−
(kµ�ν + kν�µ)(� · k)n−1
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k

n

p1, α p2, β p3, a : q̄αγµ1 · · · gBµ
a T a

i j · · · γµn �qβ : gT a
αβ�µ�̂

∑n−2
j=0(� · · · p1) j

× (� · · · p2)n− j−2�

n

p1, a, µ p2, b, ν p3, c, ρ : Gµµ1∂µ2 · · · gBµi · · · Gµnν : ig
3! f abc

{
�nu[�ρ p3,µ(� · · · p1)

+ p1,ρ�µ(� · p3) − gµρ

× (� · p1)(� · p3) − �µ�ρ

× (p3 · p1)] + ∑n−2
j=1(−1) j

× (� · p1) j−1(� · p3)n− j−2

+ gµρ�ν − gνρ�µ)(� · p3)
+ �ρ(�µ p3,ν − p3,µ�ν)

]
× (� · p3)n−2 + perm.

}

E.5 Rules in the background field approach

The background field is represented by A. The combinations of gauge fields not shown
below vanish. For instance, there is no quadrilinear vertices with three or four background
fields. We use the conventions in [127].

k, µ

 a

A

b c

r, ρ (g f abc)
[
gµν

(
k + q − r

αG

)
ρ

− gνρ(q + r )µ

+ gρµ

(
r − k − q

αG

)
ν

]

c, µ
q

p

b

a

A

(−g) f bca(p + q)µ
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i j

a, µ
A

(ig)T (a)
i j γµ

a, µ

d, ρ

c, σb, ν

A

≡

a, µ d, ρ

c, σb, ν

a b

d, νc, µ
A

(−ig2) f ace f edbgµν

a b

d, νc, µ
A A

(−ig2)
(

f ace f edb + f adx f xcb
)

gµν

a, µ

d, ρ

c, σb, ν

A

A

(−ig2)
[

f abe f cde
(
gµσ gνρ − gµρgνσ

+ 1
αG

gµνgσρ
) + f ace f bde

× (gµνgσρ − gµρgνσ ) + f ade f cbe

× (
gµσ gνρ − gµνgσρ + 1

αG
gµρgνσ

)]



Appendix F

Feynman integrals

F.1 Feynman parametrization

The Feynman parametrization is needed to recombine the product of denominators
appearing in the momentum integral. We shall discuss the most usual ways of
parametrization.

F.1.1 Schwinger representation

The first one consists of an exponentiation of the propagator denominators and leads to:

1

a1· · ·an
=

∫ ∞

0
dz1· · ·

∫ ∞

0
dzn exp

(
−

n∑
i=1

ai zi

)
. (F.1)

In connection to this, the following Gaussian integral is useful:
∫

dnk

(2π )n
e−αk2 = 1

(4πα)n/2
. (F.2)

F.1.2 Original Feynman parametrization

The second alternative is obtained from the original Feynman parametrization:

1

a1· · ·an
= (n − 1)!

∫ 1

0
dz1· · ·

∫ 1

0
dzn δ

(
1 −

∑
i

zi

)
1(∑

i ai zi
)n . (F.3)

After a suitable change of variables, one can eliminate the δ-function and one obtains:

1

a1· · ·an
= (n − 1)!

∫ 1

0
un−2

1 du1

∫ 1

0
un−3

2 du2· · ·
∫ 1

0
dun−1

× [(a1 − a2)u1· · ·un−1 + (a2 − a3)u1· · ·un−2 + · · · + an]−n . (F.4)

This parametrization is quite convenient as it allows possible cancellations among terms
of two propagators, and has the advantage to provide finite bounds of integration, which is
convenient in various numerical integration calculations encountered e.g. in QED
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calculations (g-2, . . . ). A particularly useful case of Eq. (F.4) are:

1

aαbβ
= �(α + β)

�(α)�(β)

∫ 1

0
dx

xα−1(1 − x)β−1

[(a − b)x + b]α+β
, (F.5)

and:

1

anbmcr
= �(n + m + r )

�(n)�(m)�(r )

∫ 1

0
dx xm+n−1(1 − x)r−1

×
∫ 1

0
dy

(1 − y)m−1 yn−1

[(a − b)xy + (b − c)x + c]m+n+r , (F.6)

entering in a one-loop calculation. In the case where a1 is ln k2, the following
representation integral is useful:

1

(ln k2)n+1
= 1

�(n + 1)

∫ ∞

0
dx xn(k2)−x . (F.7)

F.2 The � function

It is defined for complex z by the Euler integral:

�(z) =
∫ ∞

0
dt t z−1e−t , (F.8)

If the previous integral does not exist, it can be defined, using an analytic continuation, by:

�(z) =
∞∑

n=0

(−1)n

n!(z + n)
+

∫ ∞

1
dt t z−1e−t , (F.9)

which expresses that �(z) is analytic in the entire z-plane but contains simple poles at
z = 0, −1, −2, . . . . It has the properties:

�(1 + z) = z�(z) , (F.10)

and:

�(1 + z) = exp

{
−zγE +

∞∑
n=2

(−1)n zn

n
ζ (n)

}
, (F.11)

with:

γE ≡ γ = lim
n→∞

{
1 + 1

2
+ · · · + 1

n

}
= 0.577 215 664 9. . . (F.12)

and:

ζ (n) =
∞∑

k=1

1

kn
, (F.13)

is the Riemann function: with:

ζ (2) = π2

6
, ζ (3) = 1.202 056 903 1. . . , ζ (4) = π4

90
. (F.14)
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The following expansion is particularly useful in dimensional regularization:

lim
ε→0

�(1 + ε) = 1 − εγE + ε2

2

(
γ 2

E + π2

6

)
− ε3

3

(
γ 3

E

2
+ π2

4
γE + ζ (3)

)
+ O(ε4) ,

(F.15)
from which one can deduce �(ε) with the help of Eq. (F.10). For integer n, one has:

�(n) = (n − 1)! , (F.16)

while one also has the following properties:

�

(
1

2

)
= √

π ,

�(x)�(1 − x) = π

sin πx
(F.17)

F.3 The beta function B(x, y)

It is defined as:

B(x, y) =
∫ 1

0
dt t x−1(1 − t)y−1 = �(x)�(y)

�(x + y)
, (F.18)

and has the useful properties:

B(x + 1, y) =
(

x

x + y

)
B(x, y) ,

B(x, 1 + y) =
(

y

x + y

)
B(x, y) . (F.19)

Therefore, one can deduce:

B(1 + az, 1 + bz)

= 1

1 + (a + b)z
exp

{
−zγE +

∞∑
n=2

(−1)n zn

n
ζ (n)[an + bn − (a + b)n]

}
. (F.20)

In the limit ε → 0, it has the Taylor expansion:

lim
ε→0

B (1 − aε, 1 − bε) = 1 − ε(a + b) + ε2

[
(a + b)2 − ab

π2

6

]

+ ε3(a + b)[ − (a + b)2 + abζ (2) + abζ (3)] + · · · ,

lim
ε→0

B
(

n − ε

2
, 1 − ε

2

)
= 1

n

{
1 + ε

2

[
2

n
+

n−1∑
j=1

1

j

]}
+ O(ε2) ,

lim
ε→0

B
(

n − ε

2
, 2 − ε

2

)
= 1

n(n + 1)

{
1 − ε

2

[
1 − 2

n
− 2

n + 1
−

n−1∑
j=1

1

j

]}
+ O(ε2) ,

(F.21)
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F.4 The incomplete beta function Ba(x, y)

It is defined as:

Ba(x, y) =
∫ a

0
dt t x−1(1 − t)y−1 . (F.22)

Defining the function:

Ia(x, y) = Ba(x, y)

B1(x, y)
, (F.23)

one has the properties:

aIa(x, y) − Ia(x + 1, y) + (1 − a)Ia(x + 1, y − 1) = 0 ,

(x + y − xa)Ia(x, y) − y Ia(x, y + 1) − x(1 − a)Ia(x + 1, y − 1) = 0 ,

y Ia(x, y + 1) + x Ia(x + 1, y) − (x + y)Ia(x, y) = 0 . (F.24)

F.5 The hypergeometric function 2 F1(a, b, c; z)

It is defined as:

2 F1(a, b, c; z) = �(c)

�(b)�(c − b)

∫ 1

0
dt tb−1(1 − t)c−b−1(1 − t z)−a (F.25)

for Re c and Re b > 0, and arg(1 – z)< π . It has the properties:

2 F1(a, b, c; z) = 1 + ab

1.c
z + a(a + 1)b(b + 1)

1.2.c(c + 1)
z2 + · · ·

= �(c)

�(b)�(c − b)

∞∑
n=0

�(a + n)�(b + n)

�(c + n)

zn

n!
. (F.26)

The hypergeometric function enters frequently in the calculation of multiloop Feynman
integrals when the Gegenbauer polynomial techniques are used.

F.6 One-loop massless integrals

The most useful integral is:

I (α, β) ≡
∫

dnk

(2π )n

1

(k2 + iε′)α
1

[(k − q)2 + iε′]β

= i

(16π2)n/4
(−1)−α−β(−q2)−α−β+n/2 � (α + β − n/2)

�(α)�(β)
B

(n

2
− β,

n

2
− α

)
.

(F.27)

Combining this result with the one in Eq. (8.24), one can derive in n = 4 − ε
dimensions:

I µ(α, β) ≡
∫

dnk

(2π )n

kµ

(k2 + iε′)α((k − q)2 + iε′)β
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Table F.1. Some values of I (α, β)

α β I (α, β)νε
(

16π2

i

)
(q2)α+β−2

1 1 2
ε̃

+ 2

2 1 − 2
ε̃

+ 0
3 1 −1

2 2 − 4
ε̃

− 2
4 1 −1/3

3 2 − 4
ε̃

− 5

Table F.2. Some values of I µ(α, β)

α β I µ(α, β)νε
(

16π2

i

)
(qµ)−1(q2)α+β−2

1 1 1
ε̃

+ 1
2 1 +1

1 2 − 2
ε̃

− 1

3 1 − 1
ε̃

− 1
2

2 2 − 2
ε̃

− 1

1 3 1
ε̃

− 1
2

= ν−ε i

16π2

( −q2

4πν2

)−ε/2

(q2)2−α−βqµ

× �(3 − α − ε/2)�(2 − β − ε/2)�(α + β − 2 + ε/2)

�(α)�(β)�(5 − α − β − ε)
, (F.28)

I µν(α, β) ≡
∫

dnk

(2π )n

kµkν

(k2 + iε′)α(k − q)2 + iε′)β

= ν−ε i

16π2

( −q2

4πν2

)−ε/2

(q2)2−α−β

×
{

gµνq2 �(3 − α − ε/2)�(3 − β − ε/2)�(α + β + ε/2)

2�(α)�(β)�(6 − α − β − ε)

+ qµqν �(4 − α − ε/2)�(2 − β − ε/2)�(α + β − 2 + ε/2)

2�(α)�(β)�(6 − α − β − ε)

}
. (F.29)

We give (Tables F.1–F.3 in values of the integrals for some values of α and β, where:

2

ε̃
≡ 2

ε
− γE − ln

−q2

4πν2
. (F.30)
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Table F.3. Some values of
I µν(α, β) ≡ ν−ε

(
i

16π2

)
(q2)2−α−β[Aq2gµν + Bqµqν]

α β A B

1 1 − 1
6ε̃

− 2
9

2
3ε̃

+ 13
18

2 1 1
2ε̃

+ 1
2

1
2

1 2 1
2ε̃

+ 1
2 − 2

ε̃
− 3

2

3 1 − 1
2ε̃

− 1
4

1
2

2 2 1
2 − 2

ε̃
− 2

1 3 − 1
2ε̃

− 1
4

2
ε̃

+ 1
2

F.7 Two- and three-loop massless integrals

Most of the integral encountered in the evaluation of loop diagrams can be reduced to the
following integrals by means of the formula:

kq = 1

2
[k2 + q2 − (k − q)2] . (F.31)

These integral come from [2] and reads:

I2 ≡
{∫

dnk1

(2π )n

1

k2
1(k1 − q)2

}2

,

= (−1)

(16π2)n/2
(−1)−4(−q2)−4+n

{
�

(
2 − n

2

)
B

(n

2
− 1,

n

2
− 1

)}2

= (−1)

(4π )4−ε
(−q2)−ε4

{
1

ε2
+ 1

ε
(2 − γ ) + 3 − 2γ + γ 2

2
− π2

24

}
for n = 4 − ε ,

I3 ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

1

k2
1(k1 − k2)2(k1 − q)2

= (−1)

(16π2)n/2
(−1)−3+n(−q2)−3+n� (3 − n) B

(n

2
− 1,

n

2
− 1

)
B

(n

2
− 1, n − 2

)

= (−1)−ε

(4π )4−ε
(q2)(−q2)−ε 1

2

{
1

ε
+ 13

4
− γ

}
for n = 4 − ε ,

I4 ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

1

k2
1(k1 − q)2(k1 − k2)2(k2 − q)2

= (−1)

(16π2)n/2
(−1)−4+n(−q2)−4+n � (2 − n/2) �(4 − n)

� (3 − n/2)

× B
(n

2
− 1,

n

2
− 1

)
B

(n

2
− 1, n − 3

)

= (−1)1−ε

(4π )4−ε
(−q2)−ε

{
2

ε2
+ 5 − 2γ

ε
+ 19

2
− 5γ γ 2 − π2

12

}
for n = 4 − ε ,

I5 ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

k2
1

k2
1(k1 − q)2(k1 − k2)2(k2 − q)2
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= 4

(4π )4−ε
(−q2)1−ε � (ε)

ε
B

(
1 − ε

2
, 2 − ε

2

)
B

(
2 − ε

2
, 1 − ε

)

= 1

(4π )4−ε
(−q2)1−ε

{
1

ε2
+ 1

ε

(
11

4
− γ

)

+ 1

2

(
89

8
− 11

2
γ + γ 2 − π2

12

)}
for n = 4 − ε . (F.32)

Some more complicated integrals entering in the three-loop calculation has been done
analytically in [875] using Gegenbauer techniques. Within our notations and conventions,
these integrals are generally of the form:

I (α, β, λ, δ) ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

1

k2α
1 (k1 − q)2β(k1 − k2)2γ (k2 − q)2δ

= (−1)

(4π )4−ε
(−q2)−ε(q2)4−α−β−γ−δ �(γ + δ − 2 + ε/2)

�(γ )�(δ)

× �(α + β + γ + δ − 4 + ε)

�(α)�(β + γ + δ − 2 + ε/2)
B

(
2 − γ − ε

2
, 2 − δ − ε

2

)

× B
(

2 − α − ε

2
, 4 − β − γ − δ − ε

)
for n = 4 − ε . (F.33)

One also has:

Iλ(α, β) ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

1

k2α
1 (k1 − q)2β(k1 − k2)2k2

2(k2 − q)2

= (−1)

(16π2)λ+1
(−1)2λ−1−α−β(−q2)2λ−1−α−β Fλ(α, β) (F.34)

for α, β ≥ 1 and where:

λ ≡ n/2 − 1 ,

F1(1, 1) = 6
∞∑

k=o

1

(k + 1)3
= 6ζ (3) ,

Fλ(α > 1, β > 1) = �(1 − 2λ)�(λ − α)�(λ − β)�(λ)�(α + β − 2λ)

�(α)�(β)�(3λ − α − β)

×
{

�(3λ − α − β)

�(1 + λ − α − β)
− �(α + β − λ)

�(α + β + 1 − 3λ)
+ �(α)

�(1 + α − 2λ)

−�(2λ − α)

�(1 − α)
+ �(β)

�(1 + β − 2λ)
− �(2λ − β)

�(1 − β)

}
. (F.35)

A final type of integral is:

Iλ(α, β, γ ) ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

1

k2α
1 (k1 − q)2(k1 − k2)2βk2γ

2 (k2 − q)2

= (−1)

(4π4+ε
(q2)2−α−β−γ 2λ − 1 − α − βFλ(α, β, γ ) . (F.36)
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where:

Fλ(α, β, γ ) = �(λ + 1 − α)�(λ + 1 − β)�(λ + 1 − γ )�(λ)

�(α)�(β)�(γ )�(2λ)

×
∞∑

m,n=0

(−1)m

m!n!(n + λ)

�(n + 2λ)�(m + n + α + β + γ − 2λ)

�(1 + 3λ − m − α − β − γ )�(m + n + λ + 1)

×
{

1

(n + β)(m + n + α + β − λ)
+ 1

(m + n + α)(m + n + α + β − λ)

+ 1

(m + n + α)(n + 2λ − β)
+ (α ↔ γ )

}
, (F.37)

where the series is convergent for (A ≡ α + β + γ ):

A < 3λ + 1 , A < 2λ + 2 , A < λ + 4 . (F.38)

F.8 One-loop massive integrals

I (α, β, m2) ≡
∫

dnk

(2π )n

1

(k2 + iε′)α
1

[k2 − m2 + iε′]β

= ν−ε i

16π2
(−m2)2−α−β

(
m2

4πν2

)−ε/2

× � (2 − α − ε/2) � (α + β − 2 + ε/2)

�(2 − ε/2)�(β)

I (α, β, q2, m2) ≡
∫

dnk

(2π )n

1

[(k − q)2 − m2 + iε′]α
1

(k2 + iε′)β

= ν−ε i

16π2
(q2)2−α−β

( −q2

4πν2

)−ε/2

×� (2 − β − ε/2) � (α + β − 2 + ε/2)

�(2 − ε/2)�(α)

(
1 − m2

q2

)2−α−β−ε/2

× 2 F1

(
α + β − 2 + ε/2, 2 − β − ε/2, 2 − ε/2;

1

1 − m2

q2

)

I µ(α, β, q2, m2) ≡
∫

dnk

(2π )n

kµ

[(k − q)2 − m2 + iε′]α
1

(k2 + iε′)β

= ν−ε i

16π2
(q2)2−α−β

( −q2

4πν2

)−ε/2

× qµ � (2 − β − ε/2) � (α + β − 2 + ε/2)

�(2 − ε/2)�(α)

(
1 − m2

q2

)2−α−β−ε/2

× 2 F1

(
α + β − 2 + ε/2, 3 − β − ε/2, 3 − ε/2;

1

1 − m2

q2

)
(F.39)
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One also has:

Ĩ (α, β, q2, m2) ≡
∫

dnk

(2π )n

1

[(k − q)2 − m2 + iε′]α
1

(k2 − m2 + iε′)β

= ν−ε i

16π2
(q2)2−α−β

( −q2

4πν2

)−ε/2
� (α + β − 2 + ε/2)

�(α)�(β)

×
∫ 1

0
dx xα−1(1 − x)β−1

[
x(1 − x) − m2

q2

]2−α−β−ε/2

, (F.40)

with:

Ĩ (α, β, q2, m2) = Ĩ (β, α, q2, m2) . (F.41)

For α + β > 2, one can rewrite the x-integral by letting ε → 0. For some particular
values of α and β, one has, by using the definition of ε̃ in Eq. (F.30):

I (1, 1, q2, m2) = ν−ε i

16π2

{
2

ε̃
− m2

q2
ln

m2

−q2
−

(
1 − m2

q2

)
ln

(
1 − m2

q2

)
+ 2

}
,

I (1, 2, q2, m2) = ν−ε i

16π2

1

q2 − m2

{
− 2

ε̃
− m2

q2
ln

m2

−q2
+

(
1 + m2

q2

)
ln

(
1 − m2

q2

) }
,

I µ(1, 1, q2, m2) = ν−ε i

16π2

qµ

2

{
2

ε̃
− m2

q2

(
2 − m2

q2

)
ln

m2

q2
−

(
1 − m2

q2

)2

× ln

(
1 − m2

q2

)
− m2

q2
+ 2

}
,

I µ(1, 2, q2, m2) = ν−ε i

16π2

qµ

q2

{
− m2

q2
ln

m2

−q2
+ m2

q2
ln

(
1 − m2

q2

)
+ 1

}
,

Ĩ (1, 1, q2, m2) = ν−ε i

16π2

{
2

ε̃
−

√
1 − 4m2/q2 ln

√
1 − 4m2/q2 + 1√
1 − 4m2/q2 − 1

+ 2

}
,

Ĩ (1, 2, q2, m2) = ν−ε i

16π2

{
1

q2
√

1 − 4m2/q2
ln

√
1 − 4m2/q2 + 1√
1 − 4m2/q2 − 1

}
, (F.42)

F.9 A two-loop massive integral

Iλ(α, β, m2) ≡
∫

dnk1

(2π )n

∫
dnk2

(2π )n

1(
k2

1 + m2
)α(

k2
2 + m2

)β
(k1 − k2)2

= (−1)

(4π )4+ε
(m2)3−α−β+ε B(α − λ, β − λ)�(α + β − 2λ − 1)

(1 + ε/2)�(α)�(β)
. (F.43)
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F.10 The dilogarithm function

For complex z, it is defined as:

Li2(z) ≡ −
∫ z

0

dt

t
ln(1 − t). (F.44)

When z is real and bigger than one, the log. is complex, and there is a branch cut from
z = 1 to ∞. Therefore, the function develops an imaginary part:

Li2(x + i0) → −iπ ln x . (F.45)

For z ≤ 1, one can write as:

Li2(z) =
∞∑

n=1

zn

n2
, (F.46)

which is convenient for numerical calculations. In particular, its values are:

Li2(1) = π2

6
, Li2(−1) = −π2

12
,

Li2

(
1

2

)
= π2

12
− 1

2
ln2 2 , Li2(2 − i0) = π2

4
− iπ ln 2 . (F.47)

Some of its useful properties are:

Li2 (x) + Li2(1 − x) + ln x ln(1 − x) = π2

6
,

Li2

(
− 1

x

)
+ Li2(−x) + 1

2
ln2 x = −π2

6
: x > 0 ,

Li2

(
1

x

)
+ Li2(x) + 1

2
ln2 x = π2

3
− iπ ln x : x > 1 ,

Li2(x) + Li2

(
x

1 − x

)
= π2

2
− 2iπ ln x + iπ ln(x − 1) − 1

2
ln2(1 − x) : x > 1 ,

Li2(x) + Li2

(
− x

1 − x

)
= −1

2
ln2(1 − x) : x < 1 ,

Li2

(
1

1 + x

)
− Li2(−x) = π2

6
− 1

2
ln(1 + x) ln

(
1 + x

x2

)
,

Li2(1 − x) − Li2

(
1

x

)
= −π2

6
+ 1

2
ln x ln

x

(x − 1)2
,

Li2(x) + Li2(−x) = 1

2
Li2(x2) ,

Li2(z) = 1

1 + z

[
2(1 − z) ln(1 − z) + z

[
3 +

∞∑
n=1

zn

n2(n + 1)2

] ]
. (F.48)
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F.11 Some useful logarithmic integrals

∫
dx xn ln(ax − b) = 1

n + 1

{
xn+1 −

(
b

a

)n+1

ln(ax − b) −
n+1∑
i=1

(
b

a

)n+1−i x i

i

}

∫ 1

0
dx xn ln x = − 1

(n + 1)2
(F.49)

Defining:

In =
∫ 1

0
dx xn ln[a − x(1 − x)] , (F.50)

one has:

I0 = −2 + ln a + √
1 − 4a ln

√
1 − 4a + 1√
1 − 4a − 1

,

I1 = 1

2
I0 ,

I2 = 1

3

[
− 13

6
+ 2a + ln a + (1 − a)

√
1 − 4a ln

√
1 − 4a + 1√
1 − 4a − 1

]
,

I3 = 1

2
[I0 − 3I1 + 3I2] , (F.51)

where one has exploited the invariance under the change x ↔ (1 − x) allowing to deduce
the integrals odd in n from the even ones. In addition to the properties of dilogarithm
functions [876], one also needs [877,45,3]:∫ x

0

dt

t
ln(1 + t2) = −1

2
Li2(−x2) ,

∫ x>0

0

dt

t
ln(1 − t + t2) = −1

3
Li2(−x3) + Li2(−x) ,

∫ x>0

0

dt

t
ln(1 + t + t2) = −1

3
Li2(x3) + Li2(x) ,

∫ 1

0

dt

1 + t
ln(1 + t) ln2 t = −3

2
ζ 2(2) + 4S4 + 7

2
ζ (3) ln 2 − ζ (2) ln2 2 + 1

6
ln4 2

∫ 1

0

dt

1 + t
ln2(1 + t) ln t = −4

5
ζ 2(2) + 2S4 + 7

4
ζ (3) ln 2 − 1

2
ζ (2) ln2 2 + 1

12
ln4 2 ,

∫ 1

0

dt

t
ln t ln2(1 + t) = 7

10
ζ 2(2) = −1

3

∫ 1

0

dt

1 + t
ln2 t ,

∫ 1

0

dt

t
ln(1 + t)Li2(−t) = 1

8
ζ 2(2) ,

∫ 1

0

dt

1 + t
Li2(−t) ln(1 + t) = −6

5
ζ 2(2) − 3S4 − 21

8
ζ (3) ln 2 + 1

2
ζ (2) ln2 2 − 1

8
ln4 2 ,

∫ 1

0

dt

1 + t
Li2(−t) ln t = 13

8
ζ 2(2) − 4S4 − 7

2
ζ (3) ln 2 + ζ (2) ln2 2 − 1

6
ln4 2 ,
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∫ 1

0

dt

1 + t
ln2(1 + t) ln(1 − t) = −4

5
ζ 2(2) + 2S4 + 2ζ (3) ln 2 − ζ (2) ln2 2 + 1

3
ln4 2 ,

(F.52)

with:

S4 ≡
∞∑

n=1

1

2nn4
= 0.571 479 061 6 . . . (F.53)

Some other useful integrals are:
∫ 1

0
dt tα−1(1 − t)β−1 ln t = �(α)�(β)

�(α + β)
[S1(α − 1) − S1(α + β − 1)] ,

∫ 1

0
dt tα−1(1 − t)β−1 ln2 t = �(α)�(β)

�(α + β)
[[S1(α − 1) − S1(α + β − 1)]2

+ S2(α + β − 1) − S2(α − 1)] , (F.54)

where:

Sl(n) ≡
n∑

k=1

1

kl
: l = 1, 2, 3, . . . (F.55)

Differentiating with respect to β, one gets:
∫ 1

0
dt tα−1(1 − t)β−1 ln t ln(1 − t) = �(α)�(β)

�(α + β)
[S2(α + β − 1) − ζ (2)

+ [
S1(α − 1) − S1(α + β − 1)]

× [S1(β − 1) − S1(α + β − 1)]].

×
∫ 1

0
dx

1 − xα

1 − x
= S1(α) . (F.56)

Integrals of the form:
∫ 1

0
dt tα−1(1 − t)β lnm t, (F.57)

for integer or half-integer values of α and β are also useful and are given in [876]. For
some particular values, one has:

∫ 1

0

dt

(1 − t)2
ln2 t = −4ζ (3) + π2

3
+ 2 ,

∫ 1

0

dt

(1 − t)2
t3/2 ln2 t = −21ζ (3) + π2 + 16, (F.58)

and: ∫ 1

0

dt

(1 − t)
tα−1 lnm t = (−1)mm![ζ (m + 1) − Sm+1(α − 1)] . (F.59)
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F.12 Further useful functions

The functions:

S1(z) =
∞∑

k=1

z

k(z + k)
, Sl(z) = ζ (l) −

∞∑
k=1

1

(z + k)l
, (F.60)

appear often in the evaluation of the parametric integrals. For z = n integer, it can be
reduced to the one in Eq. (F.55). They have the properties:

S1(z + 1) = S1(z) + 1

z + 1
,

Sl(∞) = ζ (l) ,

d Sl(z)

dz
= l[ζ (l + 1) − Sl+1(z)], (F.61)

for l = 1, 2, 3, . . . They are related to the psi-function defined as:

ψ(z) ≡ d

dz
ln �(z) , (F.62)

with the properties:

ψ(z) = −γE − 1

z
+ S1(z) , ψ(1) = −γE ,

dl

dzl
ψ(z) = l!(−1)l+1[ζ (l + 1) − Sl+1(z − 1)] for l ≥ 1, (F.63)

and therefore:

ψ ′(1) = ζ (2) , ψ ′(2) = ζ (2) − 1 , ψ ′′(1) = −2ζ (3) . (F.64)



Appendix G

Useful formulae for the sum rules

G.1 Laplace sum rule

Let the Laplace transform operator (Q2 ≡ −q2 > 0):

L ≡ lim
n, Q2 → ∞
n/Q2 ≡ τ fixed

(−1)n (Q2)n

(n − 1)!

∂n

(∂ Q2)n
. (G.1)

Then, one has the properties:

L
[

1

(Q2 + m2)α

]
= 1

�(α)
ταe−m2τ ,

L
[

1

(Q2)α
ln

Q2

ν2

]
= 1

�(α)
τα[ −ln τν2 + ψ(α)] ,

L
[

1

(Q2)α
ln2 Q2

ν2

]
= 1

�(α)
τα[ ln2 τν2 − 2ψ(α) ln τν2 + ψ2(α) − ψ ′(α)] ,

L
[

1

(Q2)α
ln3 Q2

ν2

]
= 1

�(α)
τα[ − ln3 τν2 + 3ψ(α) ln2 τν2

− (3ψ2(α) −ψ ′(α)) ln τν2+ ψ3(α) −3ψ(α)ψ ′(α) + ψ ′′(α)] ,

L
[

1

xα

1

(ln x)β

]
= y µ(y, β − 1, α − 1),

�
y → 0

1

�(α)
yα 1

(− ln y)β

[
1 + (β)ψ(α)

1

ln y
+ O

(
1

ln2 y

)]
,

L
[

ln ln x

xα(ln x)β

] �
y → 0

1

�(α)
yα ln ln y

(− ln y)β

[
1 + βψ(α)

1

ln y
+ O

(
1

ln2 y

)]
, (G.2)

where:

µ(y, β, α) =
∫ ∞

0
dx

xβ

�(β + 1)

yα+x

�(α + x + 1)
,

µ(y, −m, α) = (−1)m−1 dm−1

(dx)m−1

(
yα−x

�(α + x + 1)

)
x=0

m = 1, 2, . . . , (G.3)

732
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with the properties:

µ(y, −1, α) = yα

�(α + 1)
,

µ(y, −2, α) = yα

�(α + 1)
[ − ln y + ψ(α + 1)] ,

µ(y, −3, α) = yα

�(α + 1)
[ ln2 y − 2ψ(α + 1) ln y + ψ2(α + 1) − ψ ′(α + 1)] . (G.4)

For the treatment of the QCD continuum, we need the integral:∫ tc

0
dt tn e−tτ = (n − 1)!τ−n (1 − ρn) , (G.5)

where:

ρn = e−tcτ

(
1 + tcτ + · · · + (tcτ )n

n!

)
. (G.6)

G.2 Finite energy sum rule

For the FESR, the integral: ∫ tc

0
dt tn ln

t

ν2
, (G.7)

induces the extra-term:

tn+1
c

n + 1

(
−1

n

)
, (G.8)

after a renormalization group improvement of the QCD series.

G.3 Coordinate space integrals

In some applications, one works in the x-space instead of the usual momentum one. Using
the Fourier transform:

f (x) =
∫

d4q

(2π )4
eiqx f (q) , (G.9)

one has the correspondence (Q2 ≡ −q2 > 0) for x → 0 [394]:

G.4 Cauchy contour integrals

We shall be concerned with the integral entering e.g. into the τ -like decay processes (see
Section 25.5), and which can be evaluated using the Cauchy contour integral along the
circle of radius Mτ .

Ii j =
∮

|s|=M2
τ

dt(−t)i

(
ln

ν2

−t

) j

. (G.10)

Results are given for some particular values of i and j [878]. L ≡ ln ν2/M2
τ .
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Table G.1. Some useful Fourier
transforms

Q-space x-space

Q2 ln Q2 8
π2

1
x6

ln Q2 − 1
π2

1
x4

1
Q2

1
4π2

1
x2

1
Q2 ln Q2 − 1

4π2
1

x2 ln2 x2

1
Q4 − 1

16π2 ln x2

1
Q4 ln Q2 1

64π2 ln2 x2

1
Q6

1
8 × 16π2 x2 ln x2

1
Q6 ln Q2 − 1

496π2 x2 ln2 x2

1
Q8 − 1

8 × 16 × 24π2 x4 ln x2

1
Q8 ln Q2 1

496 × 24π2 x4 ln2 x2

Table G.2. Some useful Cauchy integrals

i j Ii j/2iπ i j Ii j/2iπ

−3 0 0 −2 0 0

1 − 1
2 1 1

2 1
2 − L 2 −2 + 2L

3 − 3
4 + 3

2 L − 3
2 π L2 + 1

2 π 2 3 6 − 6L + 3L2 − π 2

−1 0 −1 0 0 0

1 −L 1 −1

2 −L2 + π2

3 2 −2 − 2L

3 −L3 + π 2 L 3 −6 − 6L − 3L2 + π 2

1 0 0 2 0 0

1 1
2 1 − 1

3

2 1
2 + L 2 − 2

9 − 2
3 L

3 3
4 + 3

2 L + 3
2 L2 − π2

2 3 − 2
9 − 2

3 L − L2 + π2

3

3 0 0

1 1
4

2 1
8 + 1

2 L

3 3
32 + 3

8 L + 3
4 L2 − π2

4
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quark-gluon plasma (QGP), 681



778 Index

quark-hadron duality, 22, 521, 653
quenched approximation, 407

rapidity variable, 221
ratio of moments, 501
Regge limit, 181
Regge poles, 27
Regge trajectories, 27
regularization, 76, 77, 98, 289, 312
renormalizability, 84, 89
renormalization constants, 87
Renormalization Group Equation (RGE), 99, 102,

104, 105, 118, 121, 122, 164, 290, 291, 294
Renormalization Group Invariant (RGI), 107, 109,

317, 668
renormalization of operators, 91
renormalization scheme, 98, 109
renormalon, 268, 285, 287, 288, 290, 315, 316, 317,

318, 320, 321, 324
residual mass, 118
residual mass term, 449
retarted correlator, 682
Richardson potential, 468
Riemann function, 720
running coupling, 106, 109, 270, 317, 358
running gauge, 110
running mass, 111, 287, 497, 601, 604

scalar, 60, 305, 307, 344, 345, 347, 348, 350, 352,
593

scalar correlator, 336, 343, 345, 361
scalar correlator in x-space, 336, 390
scalar current, 345
scalar field theory, 288
scalar gluonia correlator, 381
scalar Lagrangian, 288
scalar mesons, 628
scalar product, 707
scalar sum rule, 587, 597
scaling violation, 169
Schrödinger equation, 464
Schrödinger picture, 46
Schwinger interpolating formula, 601
Schwinger representation, 719
semi-inclusive polarized process, 190
semileptonic decay, 452, 620, 638, 641, 643, 650
short-distance, 496
singlet, 170, 175
singlet form factor, 239
Skyrme model, 395
Skyrme parameter, 431
Slavnov-Taylor identities, 61, 83, 88
slope of the topological susceptibility, 188
small-size instanton, 334
soft divergence, 242
soft gluon, 241
soft photon theorem, 13
soft pion techniques, 22, 673
soft pion theorem, 13, 16, 17, 19
soft pomeron, 181, 182

space-time coordinate, 707
spectral function, 21, 22, 23, 120, 264, 343, 349, 350,

357, 358, 491
spectral representation, 519
spectral sum rules beyond QCD, 696
spectroscopy, 615
spherocity, 247
spin crisis, 188
spin of the photon, 232, 235
splitting function, 175, 178, 235
static limit, 612, 613
static potential, 465, 477
stochastic vacuum model, 395, 474
strange quark, 31
strange quark mass, 273, 588
string tension, 34, 406
strong coupling, 405
strong interaction, 696
structure function, 156, 162, 163, 164, 174, 175, 183,

189, 326
subtraction constant, 594, 597
superconvergent sum rules, 21, 609
superficial degree of divergence, 84, 104
superfield, 78
supersymmetry, 176
SVZ expansion, 266, 287, 288, 289, 290, 302, 496
SVZ expansion: beyond, 329

tachyonic gluon, 360
tachyonic gluon mass, 329, 384, 550, 574
target mass correction, 180
Taylor expansion, 300, 301, 302, 304, 305
telescope, 3
tensor gluonium, 631
tensor gluonium correlator, 383
tensor-quark correlator, 344, 362
thermal QCD, 681
three-gluon condensate, 555
three-loop expression, 108, 346, 353
three-point function, 303, 638, 639, 668
threshold, 261, 610, 644, 646, 696
thrust, 247, 324
time-ordered product, 41, 151
top quark, 33
topological charge, 97, 189, 235, 333
topological susceptibility, 188
totally anti-symmetric tensor, 713
transition matrix, 45
tri- and di-gluonium mixing, 382
tri-gluonium correlator, 382
triple gluon condensate, 293, 308, 310, 356
twist, 158, 159, 524
two-loop expression, 345, 346, 349, 352, 357, 646
two-point function, 105, 287, 341, 352, 639, 668,

684
two-point function in x-space, 389

ultraviolet, 289, 321
ultraviolet divergence, 77
universe, 3
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up quark, 31
UV fixed point, 106
UV renormalon, 321

vacuum polarization, 133
vacuum saturation, 294, 295, 308, 338, 349, 678
vector, 14, 15, 23, 71, 344, 352, 357, 645, 646, 649
vector correlator, 336, 343, 352, 360
vector correlator in x-space, 336, 389
vector current, 312
vector spectral function, 357
Veneziano amplitude, 28
Veneziano model, 27
vertex, 66, 715
vertex sum rule, 518, 638, 647, 649

Ward identity, 15, 120, 290, 347, 352, 594
weak coupling, 404
wee hadrons, 34
Wegner–Wilson action, 397

Wegner–Wilson loop, 398, 405, 476
Weinberg renormalization scheme, 125
Weinberg sum rule, 21, 22, 23, 428, 527, 531
Weinberg’s theorem, 104
Weyl fermion, 176
Wick or normal ordered product, 40
Wick’s rotation, 79
Wick’s theorem, 40, 151, 291, 297, 304, 305, 306,

307, 355
Wigner–Weyl, 15, 71
Wilson coefficient, 164, 167, 229, 287, 289, 299, 301,

302, 303, 304, 311, 312, 313, 314, 343, 352, 496,
644

Wilson fermion, 401
Wilson loop, 405
Wolfenstein parametrization, 703

Yang-Mills, 60, 332, 334

zeta prescription, 508




