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Personal Note

We feel some dissatisfaction with current trends in Economic Theory. Novelty

has fallen by the wayside. Models have become overly complicated and

excessively sophisticated mathematically. Papers are too long and contain few

new fundamental ideas. Authors go to great lengths to masquerade theoretical

work as being applied.

This book contains a collection of models in Economic Theory that are

simple in their approach and straightforward mathematically. They include

new concepts and are presented concisely, without any pretend claims

regarding their direct applied usefulness. At best, the models have helped us to

understand various social institutions, such as power, status, social norms, and

preference biases as a means to achieve harmony in economic environments.

Needless to say, we do not advocate for the adoption of any of these institutions

but, rather, investigate their rationales. Our main objective is to disrupt the

convention that every economic model should be either a market with prices

or a strategic game.

This project began just over a decade ago and developed from a series of

papers, most of which we wrote jointly. The book brings the papers together in

a unified language and an accessible style. It can be used to teach a unit in an

advanced Economic Theory course or as a source for independent study.

We wish to acknowledge generous assistance from two outstanding individ-

uals: Martin Osborne, who was kind, as always, and shared with us the format

of the book which he originally designed (so, if you are happy with the format,

you should thank him) and Áron Tóbiás, who contributed so much of his time

to carefully reviewing a draft of the book and saved us (and you) from a large

number of errors. We are also grateful to Tuval Danenberg for his comments.

MR: I am grateful to the support of my wife, Emel Yildirim-Richter, without

whom this project would never have been completed.

URLs: https://mrichter.co and https://arielrubinstein.tau.ac.il





Notation and Terminology

While the the book uses standard notation, we emphasize the following

notational conventions:

Superscripts: A superscript always indicates an agent. For example, x i is the

choice of agent i and%i is his preference relation.

Subscripts: A subscript is used for all other indices. In particular, when an

element x is a member of some Euclidean space, then xk denotes the k th

component of the vector x .

Profile: The notation (x i )i∈N indicates a profile of choices, one for each agent

i ∈ N . Often, we omit the subscript “i ∈ N ” and will simply use the notation

(x i ). Given a set Y , the set Y N is the set of all possible profiles of choices from Y .

Ordering : An ordering is a binary relation on a set that satisfies reflexivity,

completeness, and transitivity. A strict ordering is an ordering that is

antisymmetric (that is, it has no indifferences). An agent i ’s ordering is denoted

by %i . The expression x %i y means that “agent i weakly prefers x to y ” and

x �i y means that “agent i strictly prefers x to y ”.

Pareto Dominance: Let (%i )i∈N be a profile of orderings on a set Y . The profile

(a i ) ∈ Y N Pareto-dominates the vector (b i ) ∈ Y N if a i %i b i for all i ∈N with at

least one strict inequality. Given any subset of Y N , we say that a profile (a i ) is

Pareto-optimal in that subset if it does not contain any other profile that Pareto-

dominates (a i ).





0 Introduction

0.1 The Book

We regard Economic Theory as a collection of models, each viewed as a story

or a fable rather than as a testable scientific model to be verified or refuted

(see Rubinstein (2012)). Models in Economic Theory are “useful” in the same

sense that fables are. Perhaps, there is no boy who literally “cried wolf”,

but we nevertheless tell the story to teach our children about the dangers of

exaggeration. Likewise, the fables we tell in Economic Theory are not meant to

be “true” but, rather, are intended to draw our attention to some aspect of real

economic life. We view the construction and analysis of models in Economic

Theory as a cultural endeavour rather than a scientific one.

Almost all models of interaction between agents in current Economic

Theory belong to one of two families: Markets or Games. In market

models, there are conflicts over limited resources that are resolved through

the emergence of prices, which are taken as given by the agents. These prices

bring order to the economic chaos by orchestrating the behaviour of selfish

agents. In game-theoretical models, each agent (player) chooses a strategy,

and an equilibrium is a profile of strategies such that each agent’s strategy is

individually optimal, given the correct prediction of other players’ behavior.

In other words, in a market, each agent chooses his best alternative given the

prevailing prices, while in a game, each agent chooses his best strategy based

on correct forecasts of what other agents intend to do.

While market models dominated Economic Theory for most of the 20th

century, Game Theory subsequently captured the crown. In the last few

decades, Economic Theory has seen another change: economic theorists

have liberated themselves from the rigid assumption of full rationality in the

pursuit of materialistic goals. The Bounded Rationality literature replaced the

©2024 Michael Richter and Ariel Rubinstein, CC BY-NC-ND 4.0 https://doi.org/10.11647/OBP.0404.00



2 Chapter 0. Introduction

rationality assumption with explicit reference to decision procedures, while

the Behavioral Economics literature added realistic psychological motives to

purely materialistic considerations. However, these developments left in place

the standard view of economic interactions as being resolved through prices or

games.

This short book is aimed primarily at young economists. It is intended

to demonstrate models of interaction between agents with NO PRICES and

NO GAMES. We do not claim that these models are any more (or less) “true”,

“realistic”, or “useful” than others. In fact, we do not believe that these

adjectives are even relevant to models in Economic Theory. As mentioned, we

view these models as economic stories: they are interesting; they capture some

aspect of reality; they are elegant; they are novel; or ... not.

In the models we study, agents are purely self-interested, and equilibrium

reflects a social institution that systematically alters either the agents’ choice

sets or their preferences. In this respect, the models are closer to market models

than to game-theoretical models, and, as in the case of market models, an

equilibrium will not be just a profile of choices made by individuals, but will

also specify an additional price-like element that uniformly affects all agents.

While we do not have any applied message, working on these topics has

brought us to the realization that economic harmony can be achieved by

institutions other than prices or games. Of course, this realization could have

happened even without any models, but they illuminate how such institutions

may function in bringing harmony to economic situations. We focus on four

institutions: Power (Chapter 1), Social Norms governing what is permissible

and what is forbidden (Chapter 2), Status (Chapter 3), and Preference Biases

(Chapter 4). In the last part of the book (Chapter 5), we compare our approach

to other more established ones. We refrain from any normative assessments of

the institutions. Such judgements are left to the reader.



0.2 The Notion of an Economy 3

0.2 The Notion of an Economy

The stage on which this book’s plots will be performed is a formal model

called an economy. The model is intended to abstractly capture situations

in which each agent in a society chooses an alternative and there exists a

fundamental tension between the agents’ personal desires and society-wide

feasibility constraints. (For example, in a Walrasian economy, consumers

have unquenchable desires, but overall resources are limited.) The model’s

abstraction allows us to consider examples that are “economics” in the

conventional sense of the term, but also others that are not. Nevertheless, the

term “economy” will be used throughout since all of the models feature the

fundamental economic conundrum: individuals’ desires cannot all be satisfied

due to feasibility constraints on the profiles of choices that can be made in the

society.

Definition: Economy

An economy is a tuple ‹N , X , (%i )i∈N , F ›where:

• N = {1, . . . , n} is the set of agents.

• X is a set of personal alternatives.

Each agent chooses an element from X . In its most general form,

no structure is imposed on X ; however, we sometimes consider the

special case where X is a subset of a Euclidean space.

• %i is agent i ’s preference relation over the set X .

The fact that preferences are defined over X rather than over the

set of choice profiles embodies the assumption that there are no

externalities: each agent cares only about his chosen alternative

irrespective of what other agents choose (as in the case of markets, but

unlike in the case of games).
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• F ⊂ X N is a non-empty set of feasible profiles.

A choice profile (x i )i∈N specifies an element x i ∈ X for each agent

i ∈N . The set X N is comprised of all choice profiles. Not all profiles are

feasible, and the feasibility constraint is given by a set F ⊂ X N . Unless

stated otherwise, we assume that F is closed under all permutations

(i.e. the feasibility constraint is anonymous and does not discriminate

between agents). We usually abbreviate (x i )i∈N as (x i ).

An economy without preferences, ‹N , X , F ›, is called an environment.

Sometimes, we consider an extended version of an economy which

specifies for each agent i an element e i in X , with the interpretation that i

always has the right to choose e i . The vector (e i ) is required to be in F , namely

the allocation of these initial rights is feasible. The role of the vector (e i ) is

analogous to that of the profile of initial endowments in the standard exchange

economy.

Definition: Extended Economy

An extended economy is a tuple ‹N , X , (%i )i∈N , F, (e i )i∈N ›where:

• ‹N , X , (%i )i∈N , F › is an economy.

• (e i )i∈N is a feasible initial profile.

0.3 Examples of Economies

We now introduce some economies which appear throughout the book. As

mentioned, some of the examples are traditional economic settings while

others demonstrate the framework’s ability to model a variety of alternative

social situations.
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Example: The Housing Economy

The set X contains n distinct elements called houses (recall that n is the

number of agents) and each agent i has preferences %i over the houses.

Each agent chooses a house, but no two agents can occupy the same

one. That is, F is the set of profiles that assigns a distinct house to every

agent. This economy is the iconic model of Shapley and Scarf (1974). The

model is attractive due to its simplicity and its usefulness as a platform

for introducing a rich variety of concepts.

If each agent’s ideal is distinct, then the situation is “bliss”, there are

no conflicting desires, and so there is no need for a social institution to

achieve harmony in the society. However, bliss does not usually exist,

and, therefore, we need social institutions to resolve the conflict between

agents’ desires and societal feasibility.

Example: The Division Economy

There are K commodities, and the set of alternatives X = RK
+ consists

of the non-negative bundles of those commodities. Preference relations

are monotonic, continuous, and convex. As in standard market

settings, there are limited resources, and the set of feasible profiles

F = {(x i ) |Σi x i = e } is the set of all partitions of a total endowment

e ∈ RK
+ among the agents. If we would add initial endowments to

the model, then we would obtain the classical framework used by

economists since Edgeworth (1881) to discuss voluntary exchange and

competitive equilibrium. Bliss is always impossible, unlimited wants

must be constrained in the face of limited resources, and achieving social

harmony requires some social institution.
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Example: The Give-and-Take Economy

There are situations in life in which redistribution is imposed by an

authority that forces individuals to comply, and there are others in which

redistribution is accomplished by means of voluntary exchange between

individuals. There are further situations (e.g. a soup kitchen) in which

exchange is carried out by unilateral actions: some individuals give while

others take without any exercise of power, commitments to “return the

favour”, or coercion by an authority. These actions are self-motivated:

some people like to give, while others like to take. But typically, such

motives will not balance each other out, and social norms are needed to

achieve harmony.

Formally, we consider the following give-and-take economy, which

was first studied by Sprumont (1991). Let X = [−1,1], where a positive

x represents a withdrawal of x from a social fund (i.e. taking) and a

negative x represents a contribution of |x | to the social fund (i.e. giving).

Preferences are assumed to be continuous and strictly convex (that is,

single-peaked) but need not be monotonic. Feasibility requires that the

social fund is balanced, that is, F = {(x i ) |Σi x i = 0}.

Example: The Clubs Economy

The set X consists of a finite set of clubs (see Buchanan (1965)). Each

agent chooses a single club to become a member of. Agents have

preferences over the clubs and not over the clubs’ members. The

feasibility constraint is defined by the limits on how many people can

belong to each club. Specifically, there is a vector of positive integers

(qx )x∈X where qx is the quota for club x (for non-triviality, we require that

the sum of the quotas is at least n). The set of feasible profiles are those

for which no club is chosen by more people than allowed by its capacity.
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Example: The Stay Close Economy

This example illustrates the potential of our abstract concept to expand

the scope of classical economic analysis. It does not involve goods

but nonetheless fits squarely into our concept of an economy. In this

example, X is a set of locations in some geographical area. Each agent

chooses a location in X and has preferences over the locations. Not every

profile of locations is feasible because the society is under threat and its

survival depends upon the ability of its members to quickly reach one

another in the case of danger. Therefore, all members need to live close

enough to each other so that whenever one of them is attacked the others

can quickly come to his defence. Formally, the feasibility constraint

F requires that the distance between any two agents does not exceed

some constant d . When d is very large, every agent can choose his ideal

location, but when d is small, this is no longer feasible.

We refer to the special case when d = 0 as the consensus economy.

This fits, for example, the situation of a political party whose members

need to present a united front. That is, in order to maintain cohesion, all

members of the party need to express the same position.

Example: The Matching Economy

Matching problems are classics of Cooperative Game Theory. Agents

have to find a match, and each agent has a preference relation over his

potential partners. This situation fits our framework by letting the set

of alternatives X be the set of agents N . That is, each agent chooses

a partner, which can be himself. Each has a preference relation on X

that places himself at the bottom. The feasibility constraint F stipulates

that for any i and j , if i chooses j , then j must choose i . Note that this

feasibility constraint differs from those in the previous examples in that

F is not closed under all permutations.
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Example: The Sequential Production Economy

A group of n agents works in n shifts to transform an initial product x 0

into a different product. Each works one shift, and the agents may work

in any order. An agent’s ability to produce a product, which might be just

an intermediate product, depends on the output of the previous shift.

The group possesses a technology that enables certain transformations

of one product into another.

More precisely, X is a set of products that includes x 0. Each agent has

preferences for the product that he produces (rather than for the final

product). The common production technology is a correspondence T

from X to X where T (x ) is the set of outputs which x can be transformed

into. Any agent can choose to be “idle” and not transform the product

produced in the previous shift, that is x ∈ T (x ). Thus, F is the set

of all permutations of profiles (x 1, . . . ,x n ) such that x m ∈ T (x m−1) for

m = 1, . . . , n .

0.4 Equilibrium Concepts

This book introduces and analyzes several solution concepts and applies

them to a variety of economic environments. In general, a solution concept

relates to some domain of economic environments and determines for each

environment a set of harmonious outcomes. These outcomes are harmonious

in the sense that the assumed forces that may disturb harmony are neutralized.

In our setting, the domain of a solution concept is a class of economies and a

candidate for equilibrium typically includes two components:

(i) A profile of choices — one choice for each agent.

(ii) A specification of certain parameters that systematically influence

either agents’ choice problems or their preference relations.

Harmony is achieved in equilibrium as follows: agents make individually

optimal choices, and the parameters restrict their choice sets (or, in one case,
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biases their preferences) to be compatible in the sense that the resulting profile

of choices is feasible. The concepts will differ in the parameters and in how

they restrict agents’ choice sets.

The solution concepts discussed in the book can be divided into two

groups. In the choice group, each agent’s choice set depends on a price-like

equilibrium parameter but not on the equilibrium profile of choices. Such

choices must be individually optimal and compatible. These concepts are

similar in structure to the notion of competitive equilibrium whose parameters

are prices and each agent’s choice set (budget set) is determined solely by his

initial endowment and the prices.

Three of our solution concepts belong to this group:

Y-equilibrium (Chapter 2). The price-like parameter in a Y-equilibrium is a

set of alternatives which is interpreted as the set of “permissible” alternatives

that uniformly binds all agents. When making a choice, an agent only needs

to know the set of permissible alternatives and nothing else. In equilibrium,

the permissible set is a maximal set of alternatives from among those which

satisfy the following property: if every agent chooses a preference-maximizing

alternative from this set, then the resulting choice profile is feasible.

Initial Status Equilibrium (Chapter 3). This concept relates to an extended

economy wherein the notion of an economy is enriched with an additional

element: a feasible profile of alternatives, one for each agent, in which the

alternative designated to an agent is interpreted as one that he always has the

right to choose. The price-like parameter in an initial status equilibrium is an

ordering of the alternatives that can be interpreted as “status” or “value”. An

agent’s choice set is comprised of all alternatives which have a weakly lower

status than his endowment. In equilibrium, a status ordering prevails such

that each agent’s designated alternative is his most preferred from among his

choice set, namely the set of all alternatives that are of weakly lower status than

his initial alternative. As always, an equilibrium profile of choices has to be

feasible.
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Biased Preferences Equilibrium (Chapter 4). The price-like parameter in a

biased preferences equilibrium is a vector that systematically biases agents’

preferences. In this model, agents’ choice sets are fixed and unaffected by the

parameters. Rather, in an equilibrium, a systematic bias prevails such that each

agent chooses a most-preferred alternative from his choice set, according to his

biased preferences, and the profile of choices is feasible.

In the deviation group of solution concepts, an equilibrium is a profile of

choices that is immune to any single agent’s deviation from his prescribed al-

ternative to any alternative in a set determined by the equilibrium parameters.

This is the approach taken in Game Theory. For example, a Nash equilibrium is

a profile of actions such that, for each agent, the outcome of that profile is not

worse for him than any other outcome he can achieve given the other players’

choices in the profile.

Two of our solution concepts fall into this group:

Jungle Equilibrium (Chapter 1). In this case, the economy is extended with

an exogenous power ranking of the agents; but, in an equilibrium, there are

no additional parameters. In the jungle, an agent can steal from those that are

weaker than himself; therefore, his choice set is determined by his equilibrium

choice as well as the choices of those who are weaker than him. A jungle

equilibrium is a profile of choices such that each agent’s assigned choice is

preference-maximal from among the set of the alternatives he can obtain by

stealing resources from weaker agents.

Status Equilibrium (Chapter 3). Again, the price-like equilibrium parameter is

an ordering over the alternatives that connotes status (or value). However, in

this case, an agent’s choice set depends not only on this parameter but also

on his own equilibrium alternative. In detail, his choice set is the set of all

alternatives which are weakly lower-ranked than his equilibrium alternative

(rather than his initial alternative). An equilibrium is a status ordering and a

profile of optimal choices such that the profile of choices is feasible.
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The book analyzes each of these solution concepts both in the abstract, by

means of general propositions, and more concretely, by applying the solution

concepts to a variety of economic environments (some familiar and some

novel).





1 Equilibrium in the Jungle

The standard economic approach treats economic activity as voluntary: all

involved parties are doing whatever they do of their own free will. When

analyzed using the competitive equilibrium approach, economic agents

operate within bounds set by a price system that they take as given, but their

decisions are free — no one forces them to act. When analyzed using the game-

theoretical approach, agents behave strategically, and in equilibrium they best

respond to correct predictions about the other agents’ behavior, and, again, no

one can force anyone to take a particular action.

However, life is not just a series of voluntary actions. An agent (or a group

of agents) might use power to seize assets from others or to force others to

do things against their will. Resources are often transferred from one agent

to another based on the exercise of power, rather than due to the satisfaction of

mutual wants. While an agent can use power to force another to behave against

his best interests, there is often no need to actually use power since the mere

threat of doing so can be sufficient to persuade a weaker agent to give in.

Economic Theory typically ignores the use of power as a driver of social

activity. In the words of Hirshleifer (1994) (see also Bowles and Gintis (1992)

and Grossman (1995) who express similar sentiments):

. . . the mainline Marshallian tradition has . . . almost entirely

overlooked what I will call the dark side of the force — to wit,

crime, war, and politics. . . . Appropriating, grabbing, confiscat-

ing what you want — and, on the flip side, defending, protecting,

sequestering what you already have — that’s economic activity

too.

As the title of the book promises, we consider economic interactions that

are harmonized without the emergence of a price system or the use of strategic

©2024 Michael Richter and Ariel Rubinstein, CC BY-NC-ND 4.0 https://doi.org/10.11647/OBP.0404.01



14 Chapter 1. Equilibrium in the Jungle

deliberation. In this chapter, we shine a spotlight on the use of power by

presenting a model where a power relation between the agents together with

their preferences determine the outcome of their economic interactions.

The first notion of power that comes to mind is brute force. But power

takes many softer forms. For example, power based on rank and seniority plays

an important role in the allocation of resources, and the power of rhetoric or

charm often allows one person to convince another to perform some action.

This chapter closely follows Piccione and Rubinstein (2007) which intro-

duces and analyzes an elementary model of a society referred to as the jungle,

in which economic transactions are governed only by coercion. The model

consists of a set of agents with exogenous preferences over a set of assets and a

power ordering of the agents. The ordering is unambiguous and known to all.

Power means that a stronger agent is able to take things away from a weaker

agent without the weaker agent’s consent.

The jungle model is designed to mirror the standard model of an exchange

economy. In both models, agents have preferences over assets and the total

stock of assets is given. The distribution of power in the jungle replaces the

initial distribution of assets in the market. Just as the acquisition of initial

endowments is ignored in an exchange economy model, so is the acquisition

of power ignored in the jungle model.

The jungle model makes no reference to property rights. An individual

holds assets rather than owning them. There is no legal system that protects

an individual’s assets. Rather, a weaker agent can be forced to give up assets

or coerced into an unfavourable exchange by a stronger agent. These features

are in contrast to the standard exchange economy where property rights are

perfectly enforced and exchanges are carried out only by mutual consent.

The solution concept we employ is called the jungle equilibrium. It is a

feasible allocation of the assets such that no agent wishes to take assets from an

agent (or agents) weaker than himself. In this chapter, we will apply versions

of the concept to two different economies. The first is a version of Shapley and

Scarf (1974)’s housing economy in which the set of assets is a discrete set of
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houses where each house can be occupied by only one agent and each agent

can hold only one house. The second is the division economy where a bundle

of divisible goods is allocated among the agents. Throughout, we will deal

with standard issues, such as existence, uniqueness, and the two fundamental

theorems of welfare.

1.1 The Housing Jungle: Model and Equilibrium

Recall that the housing economy is a tuple ‹N , X , (%i )i∈N , F › where N is a finite

set of n agents, X is a set of n houses, each agent i ∈ N has a strict preference

relation %i over X (there are no indifferences), and F is the set of feasible

profiles, which consists of all profiles (x i ) ∈ X N such that x i 6= x j for every two

agents i and j . This definition of F stipulates that every agent occupies exactly

one house and every house is occupied by exactly one agent.

Note again that in this economy and throughout the book, there are no

externalities in preferences (as in the standard market model). Each agent’s

preferences are defined over X , that is, an agent only cares about his own house

and not about who occupies the others.

The jungle model’s key ingredient is a power relation B, which is a strict

ordering (complete, asymmetric, and transitive) on the set of individuals. The

term i B j is read as “agent i is stronger than agent j ”, which means that i can

confiscate any house occupied by j . In summary,

Definition: Jungle Housing Economy

A jungle housing economy is a tuple ‹N , X , (%i )i∈N , F,B›where:

• N = {1, . . . , n} is the set of agents.

• X is the set of houses and |X |= n .

• %i is agent i ’s strict ordering over the houses.

• F is the set of all profiles (x i )i∈N such that x i 6= x j for any two
agents i , j .

• The power relationB is a strict ordering on the set of agents N .

Without loss of generality, we assume that 1B 2B ∙ ∙ ∙B n .
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Comments on the notion of power

The power relation is exogenous: The model does not specify the source

of power. As mentioned earlier, this is analogous to market settings where

the initial endowments are taken as given without specifying their source.

Naturally, one can think about models (not discussed here) in which the

attainment of power (or initial endowments) is also a part of the model.

The exercise of power does not involve a loss of resources: We have in mind

that an agent i who prefers a house currently occupied by a weaker agent

j can confiscate it at no cost: i simply presents himself at j ’s door and j ,

recognizing his relative weakness, will move out. This is analogous to the

standard exchange model where the exercise of trade and the enforcement of

property rights are costless.

Power is exercised by an individual, not by a group: A stronger agent can force

a weaker one to take an action, but a group of agents cannot form a coalition in

order to force some action on another agent. Nor can the defendant then form

a rival coalition. This is analogous to the standard exchange economy setting

where agents act individually and coalitions cannot be formed (for example,

for the purpose of price manipulation).

The power relation is transitive: One can think of situations in which it is not.

For example, suppose that there are three components of power: agility, speed,

and strength, and one agent can defeat another by being superior in a majority

of them. A Condorcet-like configuration is possible where agent 1 is superior to

agent 2 in agility and speed, agent 2 is superior to agent 3 in speed and strength,

and agent 3 is superior to agent 1 in agility and strength. Thus, 1 B 2B 3B 1.

The outcome of a confrontation is deterministic: If i is stronger than j , then

both are aware that, in any contest between them, i will win with certainty.

However, uncertainty about the outcome of a confrontation is also plausible.

One could think of a model where the power relation is replaced with a function

that specifies for each pair of agents the probability of each of them winning a

confrontation between them.



1.1 The Housing Jungle: Model and Equilibrium 17

A jungle equilibrium is a profile of choices that is stable given the forces at

play. In the jungle housing economy, there are two forces which can lead to

instability. First, an agent prefers a house that is occupied by a weaker agent.

Second, two individuals intend to occupy the same house. Formally:

Definition: Jungle Equilibrium

A jungle equilibrium for a jungle housing economy is a profile of houses

(x i ) such that:

(i) There are no two agents i , j ∈N for which i B j and x j �i x i .

(ii) The profile (x i ) is in F .

We start our investigation with an existence result:

Proposition 1.1: Existence of a Jungle Equilibrium

Every jungle housing economy has a jungle equilibrium.

Proof:

Let ‹N , X , (%i )i∈N , F,B› be a jungle housing economy. Recall that the

agents are ordered by power, 1 � 2 � ∙ ∙ ∙� n . Existence is shown using

the serial dictatorship procedure: Agent 1 is assigned his favourite house

x 1 ∈ X ; agent 2 is assigned his favourite house from among the remaining

houses, x 2 ∈ X −{x 1}; and successively, each agent, in order of power, is

assigned his favourite house from among those remaining after houses

have been assigned to all agents stronger than him. Since the number

of houses equals the number of agents, the procedure assigns a house

to every agent. Furthermore, the procedure assigns every house only

once and thus the profile (x i ) is in F . The profile is a jungle equilibrium

because for every i the house x i is the%i -best among all the houses that

are possessed by agents not stronger than him.

Note that the serial dictatorship procedure used in the proof is not the

equilibrium concept itself but, rather, is a simple algorithm used to prove
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that an equilibrium exists. Proposition 1.1 above leaves open the possibility

that other equilibria may exist. However, we will now show that, given the

assumption that all preference relations are strict, the equilibrium is unique.

Proposition 1.2: Uniqueness

Every jungle housing economy has a unique equilibrium.

Proof:

Consider the jungle housing economy ‹N , X , (%i )i∈N , F,B›. Assume,

contrary to the claim, that (a i ) and (b i ) are two different equilibria of

the jungle. Denote by i ∗ the strongest individual i for whom a i 6= b i .

Suppose that a i ∗ �i ∗ b i ∗ . Since the set of houses allocated to individuals

1 through i ∗ − 1 is the same in both (a i ) and (b i ), it must be that in (b i ),

the house a i ∗ is held by an agent j who is weaker than i ∗. Thus, i ∗ B j

and b j = a i ∗ �i ∗ b i ∗ which contradicts (b i ) being an equilibrium.

1.2 The Jungle Equilibrium: Welfare

We move to discuss two fundamental welfare theorems. In abstract, the first

states that, for any initial conditions, equilibrium outcomes are Pareto-optimal

profiles; while the second states that Pareto-optimal profiles are equilibrium

outcomes for some initial conditions. In the jungle housing economy, the

initial condition is the power relation. We now bring proofs of the fundamental

welfare theorems for the jungle housing economy (Abdulkadıroğlu and Sönmez

(1998) show equivalent results that the set of allocations obtained by a serial

dictatorship of some order is equal to the set of Pareto-optimal allocations).

Proposition 1.3: The First Welfare Theorem

The jungle equilibrium is Pareto optimal.
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Proof:

Recall the assumption that preferences are strict. Let (x i ) be the jungle

equilibrium. Assume that, contrary to the claim, there is a feasible profile

(y i ) that Pareto dominates (x i ). Let i be the strongest agent for whom

y i 6= x i . Then, y i �i x i and x j = y i for some agent j weaker than i ,

contradicting the fact that (x i ) is a jungle equilibrium.

The above proof relies on the strictness of the agents’ preferences. If some

individuals have indifferences in their preferences, then a jungle equilibrium

might not be Pareto optimal. For example, in the case of two agents and two

houses a and b , if a ∼1 b and a �2 b , then both (x 1,x 2) = (a ,b ) and (b , a ) are

jungle equilibria, but the profile (a ,b ) is not Pareto optimal.

We now move to the second welfare theorem. Since the initial conditions

for the jungle housing economy are a power relation, the appropriate second

welfare theorem states that for any Pareto-optimal profile, there is a power

relation for which the jungle equilibrium is precisely that profile. Recall that

in the standard exchange model, the social planner assigns initial endowments

to the agents with the expectation that trade between them will yield the

desired allocation of the total endowment. Analogously, in the jungle housing

economy, the social planner assigns the power relation with the expectation

that the law of the jungle will yield the desired allocation of the houses.

Proposition 1.4: The Second Welfare Theorem

Given any housing economy ‹N , X , (%i )i∈N , F › and Pareto-optimal profile

(x i ), there exists a power relation B such that (x i ) is the unique jungle

equilibrium of the jungle housing economy ‹N , X , (%i )i∈N , F,B›.

Proof:

First, note that in every Pareto-optimal profile (x i ), at least one individual

is allocated his favourite house: Otherwise, start with some agent i 0,
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and define i k+1 to be the agent who holds i k ’s favourite house (i k+1 6= i k

because no agent’s favourite house is his current house). Since N is finite,

there will eventually be some l such that k > l ≥ 0 and i k+1 = i l . Then,

assigning y i j = x i j+1 for each l ≤ j ≤ k , and keeping y j = x j for all other

agents, we obtain a feasible allocation (y i )which Pareto-dominates (x i ).

We construct a power relation B as follows: Let i 1 be an agent for

whom x i 1 is his first-best house and make him the most powerful agent.

Now remove i 1 from the set of individuals and x i 1 from the set of houses.

The inductive process continues as follows: at the beginning of the

k + 1st stage, k agents have been assigned power. The allocation of

the remaining houses among the remaining agents is Pareto optimal;

therefore, identify an agent i k+1 for whom x i k+1 is his favourite house

from among X −{x i 1 , . . . , x i k } and make him the (k + 1)st-most powerful

individual.

By construction, for each agent i , the house x i is preferred by i over

every house that is allocated to an individual weaker than him according

toB. Thus, (x i ) is a jungle equilibrium of ‹N , X , (%i )i∈N , F,B›.

Externalities: To incorporate externalities, we modify the model by defining

the agents’ preferences over the set of feasible profiles (rather than the set of

houses) and by allowing indifferences. The definition of a jungle equilibrium

also needs to be modified. When deciding whether to confiscate a house, an

agent compares the current profile to the one that would result if he does so.

One way to proceed is by interpreting i B j to mean that agent i can force

j to exchange houses: i takes over the house occupied by j and forces j to

accept the house i previously occupied. Thus, an equilibrium of the jungle

with externalities ‹N , X , (%i )i∈N , F,B › is a feasible profile (a i ) such that for no

two agents j , j ′ ∈N is it the case that j B j ′ and (b i ) �j (a i ), where (b i ) is the

allocation that differs from (a i ) only in the fact that b j = a j ′ and b j ′ = a j .
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In the model with externalities, a jungle equilibrium does not necessarily

exist. For example, consider a case with 3 agents where 1 B 2 B 3 and

X = {a ,b , c }. Think of the houses as being located clockwise on a circle:

a → b → c → a . Suppose that agent 1 top-ranks the three profiles where he

is the clockwise neighbour of 2. Likewise, agent 2 top-ranks the three profiles

where he is the clockwise neighbour of 1. There is no equilibrium because in

any profile, agent 3 is the clockwise neighbour of either agent 1 or 2, in which

case the other agent desires agent 3’s position and is stronger than him. It is also

easy to find an example with three individuals in which a jungle equilibrium

exists but is not Pareto optimal.

1.3 Comparison to the Competitive Equilibrium

Shapley and Scarf (1974) used the extended housing economy for studying

the notion of competitive equilibrium in a simple setting with discrete goods.

Recall that the extended housing economy is a tuple ‹N , X , (%i )i∈N , F, (e i )i∈N ›

where ‹N , X , (%i )i∈N , F › is a housing economy and (e i ) is a feasible profile

which is interpreted as an initial allocation of the houses. Thus, instead of a

power relation, the housing economy model is enriched with the specification

of an initial endowment for each agent. Shapley and Scarf (1974) define a

competitive equilibrium for this extended economy to be a profile of prices (one

real number to each house) and a profile of houses such that: (i) each agent

prefers his assigned house to any that is not more expensive than his initial

endowment and (ii) the housing assignment is feasible. Formally:

Definition: Competitive Equilibrium

A competitive equilibrium for an extended housing economy is a tuple

‹(px )x∈X , (x i )i∈N ›where (px )x∈X is a profile of prices and (x i ) is a profile of

houses such that:

(i) For every individual i , the house x i is%i -maximal in {x | pe i ≥ px }.

(ii) The profile (x i ) is in F .
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The following proposition, due to Shapley and Scarf (1974), shows that a

competitive equilibrium exists. The proof, due to David Gale, uses an algorithm

which is based on the notion of a top-trading cycle. Given any group of agents

with initial endowments, a top-trading cycle is a cycle of agents all of whom

most prefer the house of the next agent in the cycle from among those that

the group members are endowed with. If an agent prefers his own house to all

others then he makes a cycle of length one. We will see that a top-trading cycle

always exists.

The top-trading cycle algorithm proceeds as follows: at each stage, a top-

trading cycle is identified. Each agent in the cycle is exclusively assigned the

house of the next agent in the cycle (which he prefers from among the houses

that were not assigned previously). All houses in the cycle are assigned the

same price, which is lower than the prices of all previously assigned houses,

and both the assigned agents and the assigned houses are removed.

Proposition 1.5: Existence of Competitive Equilibrium

For any extended housing economy, a competitive equilibrium exists.

Proof:

Let ‹N , X , (%i )i∈N , F, (e i )i∈N › be an extended housing economy. We first

show that a top-trading cycle exists for every group of agents G . Start

arbitrarily with an agent i 0 ∈G , and define i k+1 ∈ G as the initial holder

of i k ’s favourite house from the set of houses belonging to G . Since the

group is finite, there will eventually be some l such that k ≥ l ≥ 0 and

i k+1 = i l . Then, the sequence (i l , . . . , i k ) constitutes a top-trading cycle.

See Figure 1.1 for an illustration of the argument where l = 2 and k = 5.

i 0 i 1 i 2 = i 6 i 3 i 4 i 5
wants wants wants wants wants

wants

Figure 1.1 The Top–Trading Cycle algorithm.
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The algorithm constructs a partition {I1, . . . , Il , . . . , I L} of N as follows:

First, find a top-trading cycle from the group of all agents. Set I1 to be the

set of members of this cycle and assign to each of them the house he most

prefers. Continue inductively: at stage l +1, find a top-trading cycle from

among the group N − I1− . . .− Il and for each member of the cycle assign

the house which he most prefers from among those initially held by the

group. Set Il+1 to be the set of members in the cycle. Continue in this

fashion until a partition is completed. Choose a sequence of numbers

p1 > p2 > . . . > pL > 0 and, for each x ∈ X , define px = pl where the

agent who initially occupies x is in Il . The assigned profile (x i ) together

with the price vector (px ) constitutes a competitive equilibrium because

(x i ) ∈ F , and every agent i in Il chooses his favourite house from within

his “budget set”, namely the set of houses initially held by the members

of Il ∪ . . .∪ IL .

Comparing the above construction to that of the jungle equilibrium clarifies

the source of power in the market vs. the source of power in the jungle. In Gale’s

construction, in each round some agents obtain their favourite house from

among those not allocated in previous rounds. So too in the jungle equilibrium.

However, in the case of competitive equilibrium, the order is determined by the

existence of a “top-trading cycle” which indicates the parties’ joint interest in

making an exchange, whereas in the jungle the order is determined by power,

independently of the agents’ preferences.

Given that the preference relations are assumed to be strict, there is

a unique competitive equilibrium allocation (for a proof, see Osborne and

Rubinstein (2023)). However, this allocation can be supported by many price

systems, and it can even be that one house is more expensive than another in

one equilibrium price system but less expensive in another.

The two fundamental welfare theorems hold for the competitive equilib-

rium in this model:
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(a) Any competitive equilibrium ‹(px ), (x i )› is Pareto-optimal since if (y i ) ∈ F

Pareto dominates (x i ) then py i ≥ px i for all i with strict inequality for any agent

i for whom y i �i x i and thusΣi∈N py i >Σi∈N px i which contradicts the fact that

the two sums must be equal.

(b) For any Pareto-optimal allocation (x i ) there is a price vector (px ) such

that ‹(px ), (x i )› is a competitive equilibrium. By Proposition 1.5 a competitive

equilibrium exists for the extended economy with the initial allocation (x i ). Its

allocation (y i ) is weakly Pareto superior to (x i ) and since (x i ) is Pareto-optimal

it must coincide with (x i ). Therefore, if we start with (e i ) = (x i ) the proof

constructs a competitive equilibrium in which each agent i keeps x i .

Power and Wealth: Since the jungle equilibrium is Pareto optimal, it can

be supported by prices as a competitive equilibrium. This invites a natural

question: what is the relationship between power and wealth?

First, there is always a price system in which “stronger” in the jungle

economy means “richer” in the competitive equilibrium of the extended hous-

ing economy with the initial endowment profile being the jungle equilibrium

of the jungle economy. Formally, let (x i ) be the jungle equilibrium in the

housing economy jungle ‹N , X , (%i )i∈N , F,B›. The extended housing economy

‹N , X , (%i )i∈N , F, (e i = x i )i∈N › has a competitive equilibrium ‹(px ), (x i )› where

px i > px j whenever i � j . However, other equilibrium price vectors may exist.

For example, if the strongest agent top-ranks his own house while all other

agents bottom-rank it, then there also exists a competitive price vector in which

the strongest agent is the poorest.

In fact, if we modify the economy somewhat, then there may be no jungle

equilibrium in which the statement “stronger = richer” holds. For example,

recall the clubs economy where each agent chooses one club from the set X ,

and no more than qx agents can choose club x . Consider the economy with 4

agents, where X = {a ,b} and qa = qb = 2. If the preferences are such that agent

1 prefers a and all other agents prefer b , then the unique jungle equilibrium is

(a ,b ,b , a ). However, in this equilibrium, every agent obtains his first-best club

except for agent 4 and to prevent agent 4 from getting what he wants it must
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be that pb > pa . Thus, any price vector which supports the jungle equilibrium

allocation must have the property that the strongest agent is the poorest.

1.4 Comments on the Jungle Equilibrium

Comparative statics: The jungle equilibrium satisfies the expected compara-

tive statics property that advancing an agent in the power ranking cannot hurt

the agent. To see this, recall that there is a unique jungle equilibrium and it can

be calculated via a serial dictatorship procedure. When an individual agent

becomes stronger, all agents who are still stronger than him will continue to

make the same choices, while the individual now gets to choose earlier and,

therefore, has a strictly larger set of houses to choose from.

On the other hand, in the case of competitive equilibrium, improving an

agent’s initial house endowment, according to his own preferences, might

make him worse off in equilibrium. Although the new house is better for him,

it might be unattractive to other agents. Thus, when applying the top-trading

cycle algorithm, it could be that he initially appeared in the first cycle and, after

the “improvement”, he now appears in the last cycle and, therefore, ends up

worse off in the new equilibrium than in the old one.

Manipulability: The jungle equilibrium is immune to preference misrepresen-

tations by an agent. Again, the unique jungle equilibrium can be calculated by

the serial dictatorship algorithm. When it is an agent’s turn to choose, the set

of alternatives that he chooses from is unaffected by his declared preferences,

and, thus, he can do no better by misrepresenting his preferences. This non-

manipulability property also holds for competitive equilibria.

Indifferences: Even if some of the agents’ preferences are not strict, the serial

dictatorship procedure still produces a jungle equilibrium. However, it is not

necessarily unique since, when an agent has to make a choice, he might have

more than one maximal option and each produces a different equilibrium.

Note that indifferences can also create a multiplicity of competitive equilib-

rium profiles in the housing economy market.
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Equilibrium and Dynamics: The jungle equilibrium concept is static, like

most solution concepts in Economic Theory. The following is an example of

dynamics that lead to a jungle equilibrium: At the beginning, all agents are

assigned to be “homeless”. At stage t + 1, given the assignment of the agents

at stage t to X ∪ {homeless}, every homeless agent chooses his favourite house

from among those that, at the end of stage t , are either: i) vacant or ii) assigned

to an agent weaker than him. Every agent who currently occupies a house

chooses to stay there. At the end of stage t +1, if a house is chosen by only one

agent, then he settles there. If more than one agent chooses the same house,

then the strongest among them settles there and all the rest remain homeless.

Proposition 1.6: Equilibrium Dynamics

The above dynamics converges in at most n stages to the jungle

equilibrium.

Proof:

Let Ht be the set of homeless agents at the beginning of stage t and i t

be the most powerful among them. If there are any homeless agents at

stage t + 1, then i t � i t+1: To see why, note that at stage t , i t will obtain

a home because all homeless agents are weaker than him and so he will

win at any home which he approaches. Furthermore, all agents stronger

than i t remain in their homes as no one challenges them. Thus, in the

beginning of stage t + 1, all homeless agents must be weaker than i t .

Therefore, after at most n stages, all agents have a home and the process

terminates at a profile (x i ).

Suppose that (x i ) is different than the jungle equilibrium profile (y i ).

Take i to be the strongest agent for whom x i 6= y i . Thus, i B j where j is

the agent who holds y i , i.e. x j = y i .

By Proposition 1.2, y i is �i -maximum in X − {y 1, . . . , y i−1} = X −

{x 1, . . . , x i−1} and therefore y i �i x i . At the stage in the algorithm where i

selected x i it must be that y i was being held by someone stronger than
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i . But, in the algorithm, when a house changes hands, it can only go to

someone stronger so as it eventually reaches j it must be that j B i , a

contradiction.

A different power relation for each house: A key assumption in the jungle

model is the uniformity of the power relation: if an agent i is able to evict agent

j from one house, then he is able to evict him from any house. An extension of

the model allows for dependence of the power relation on the house in dispute.

Suppose that, for each house x ∈ X , there is a strict power ordering Bx where

i Bx j means that agent i is stronger than agent j in a fight over house x . That

is, if agent j occupies x and i Bx j , then agent i can confiscate x if he wishes to

do so. An equilibrium in the economy with house-dependent power relations

‹N , X , (%i )i∈N , F, (Bx )x∈X › is a profile (x i ) such that there are no two agents i and

j such that i prefers the house occupied by j to the house he occupies (x j �i x i )

and i is stronger than j regarding x j (i Bx j j ).

As commented on in Rubinstein and Yıldız (2022), the notion of a jungle

equilibrium in ‹N , X , (%i )i∈N , F, (Bx )x∈X › is equivalent to pairwise stability in the

two-sided matching problem between N and X where each agent i ∈N has the

preference%i over X and each house x ∈ X has the preference relationBx over

N . An assignment (x i ) is pairwise stable if there is no pair i and x j such that

i prefers x j over x i (x j �i x i ) and x j “prefers” i over j (i Bx j j ). Therefore, an

assignment is pairwise stable in the auxiliary matching problem if and only if it

is a jungle equilibrium with house-dependent power relations.

Gale and Shapley (1962) showed, using the deferred acceptance algorithm,

that a pairwise stable matching exists in any two-sided matching problem.

Thus, in the jungle with house-dependent power relations, a jungle equilib-

rium also exists. Since the pairwise stable matching need not be unique,

neither is the jungle equilibrium when the power relation is house-dependent.

Finally, Gale and Sotomayor (1985)’s analysis implies that there is always a

jungle equilibrium (x i ) which is weakly Pareto optimal, in the sense that there

is no assignment (z i ) such that z i �i x i for every i ∈N .
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1.5 The Division Jungle

We now apply the jungle concept to a version of the division economy. To the

definition of a division economy from Chapter 0, we add a profile (X i )i∈N of

personal consumption sets, which represent bounds on each agent’s ability

to consume. These sets can be thought of as either physical limits on what

a person can consume or what possessions he can protect. Note that, in the

housing economy, there is an implicit assumption of a similar nature, namely

that an agent can hold only one house. The following is the formal definition of

a jungle division economy (throughout, when comparing bundles, the notation

x ≤ y means that xk ≤ yk for every commodity k ):

Definition: Jungle Division Economy

A jungle division economy is a tuple ‹N , (X i )i∈N , (%i )i∈N , F,B›where:

• N = {1, . . . , n} is the set of agents.

• X i ⊆ RK
+ is agent i ’s personal consumption set in a K -commodity

world. The sets X i are assumed to be compact, convex, and satisfy

free disposal (that is, if x i ∈ X i , y ∈RK
+ and y ≤ x i , then y ∈ X i ).

• %i are preferences over X i and assumed to satisfy continuity, strict

monotonicity, and strict convexity.

• F is the set of all profiles of bundles (x i ) such that:

(i) x i ∈ X i for all i , and

(ii) Σi∈N x i≤ e where e ∈RK
+ is an aggregate bundle available

for distribution among the agents.

• � is a strict power ordering over N .

Given a profile (x i ), denote the “leftover” bundle e −Σi∈N x i as x 0.

We now turn to modifying the definition of a jungle equilibrium to fit the

division jungle. There are (at least) two possible definitions that coincide with

that of the housing economy. The first is a strong jungle equilibrium which
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is a feasible profile such that no agent can assemble a preferable bundle by

combining his own bundle with all bundles held by weaker agents and the

leftover bundle. By this definition, the stability of a profile is disturbed by the

possibility that an agent can attack more than one weaker agent. The second

definition is a weak jungle equilibrium, which is a feasible profile such that no

agent can assemble a preferable bundle by combining his own bundle with one

other that is either held by a weaker agent or is the leftover bundle. Formally:

Definition: Strong Jungle Equilibrium

A strong jungle equilibrium is a feasible profile (x i ) with the property

that there is no agent i and bundle y i ∈ X i such that:

(i) y i �i x i .

(ii) y i ≤ x i +ΣiBj x j + x 0 (the agent takes from weaker agents and from

the leftover bundle and potentially disposes of some of his possessions).

Definition: Weak Jungle Equilibrium

A weak jungle equilibrium is a feasible profile (x i )with the property that

there is no agent i and bundle y i ∈ X i such that:

(i) y i �i x i .

(ii) Either (a) or (b) holds.

(a) y i ≤ x i +x j for some j for whom i B j (the agent steals from a

single weaker agent and then may dispose of some of his possessions);

or

(b) y i ≤ x i + x 0 (the agent takes from the leftover bundle and then

may dispose of some of his possessions).

Note that the above definitions use inequalities rather than equalities. This

is because, when a stronger agent seizes other resources, he might be put

outside of his consumption set and, thus, needs either to take less or to dispose

of some goods in order to remain in his consumption set. Obviously, any strong

jungle equilibrium is also a weak jungle equilibrium.
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Proposition 1.7: Strong Jungle Equilibrium: Existence and Uniqueness

There exists a unique strong jungle equilibrium.

Proof:

Here again, we proceed by applying the serial dictatorship procedure

and constructing a feasible profile (x i ) as follows: Start with the strongest

agent 1 and define x 1 as the %1-best bundle in the set {z ∈ X 1 | z ≤ e }

which is closed and convex. Proceed inductively by defining x i to be

the%i -best bundle in the closed and convex set {z ∈ X i | z ≤ e −Σi−1
j=1x j }.

The profile (x i ), which is feasible by construction, is a strong jungle

equilibrium. By the same proof as that of Proposition 1.2, the

equilibrium is unique.

Monotonicity is not used in the above proof. For existence, only continuity

of the preference relations is needed to ensure that the inductive procedure

used in the proof leads to a strong jungle equilibrium. Strict convexity

guarantees uniqueness.

Example: The Pie Jungle

In the pie jungle, there is a single pie of size 1. The consumption set

for every agent i is X i = X = [0, 1] where x ∈ X is interpreted as taking

x of the pie. We deviate slightly from the assumptions made above and

assume that every agent i has strictly convex preferences on X with a

peak at peaki (and thus the preferences are not monotonic). In this case,

the weak and strong jungle equilibria coincide, and the unique strong

jungle equilibrium is as follows: Let m be the minimal number for which

Σi=1,...,m peaki > 1. Each of the m − 1 strongest agents chooses his own

peak, the m th agent gets the leftovers and the rest get nothing. If there

is no such m , that is, if Σi=1,...,n peaki ≤ 1, then all agents choose their

respective peaks.
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Is there a weak jungle equilibrium that is not a strong jungle equilibrium?

The following proposition (whose proof is more technical than the others in

the book) states that the two definitions are equivalent under “smoothness”

assumptions on both the agents’ preferences and on the consumption sets.

Essentially, smoothness means that indifference curves and the frontiers of the

consumption sets are smooth, in the sense that there is a unique tangent at

any point. Formally, we will use the term smooth to describe an economy if the

following holds for every i :

• Agent i ’s preference relation is represented by a strictly quasiconcave,

increasing and continuously differentiable utility function u i :RK
+ →R, with

a strictly positive gradient vector ∇u i (x ) at every bundle x .

• There exists a strictly quasiconvex and continuously differentiable function

g i :RK
+ → R such that X i = {x i ∈ RK

+ | g
i (x i ) ≤ 0} with a gradient ∇g i (x ) that

is a strictly positive vector at every bundle x .

Proposition 1.8: Equivalence of the Jungle Equilibrium Definitions

For a smooth jungle economy, the two definitions of jungle equilibrium

coincide.

Proof:

Let (x i ) be a weak jungle equilibrium which is different than the strong

jungle equilibrium (y i ). We can suppose that x 1 6= y 1, since otherwise

induction could be applied to the jungle economy with players N \{1}

and an adjusted endowment vector e −x 1.

The bundle y 1 is the unique �1-maximum bundle in {x ∈ X 1 | x ≤ e }.

Therefore, y 1 �1 x 1 and in turn ek ≥ y 1
k > x 1

k for some k . Thus, x 1 6= e .

Also, it must be that g 1(x 1) = 0. If not, that is g 1(x 1) < 0, then since

ek > x 1
k , agent 1 could improve upon x 1 by seizing a small amount of

good k either from an agent who holds some of that good (recall that

agent 1 is the strongest agent) or from the leftovers, contradicting that

(x i ) is a weak jungle equilibrium.
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By definition, u 1(y 1) > u 1(x 1) and g 1(y 1) ≤ g 1(x 1) = 0. Perturb

y 1 by removing a small amount of good k (for which y 1
k > x 1

k ) so

that, by continuity, u 1(y 1) > u 1(x 1) and g 1(y 1) < g 1(x 1). Then, by the

assumptions that u 1 is strictly quasiconcave and that ∇u 1(x 1) 6= 0, it

follows that ∇u 1(x 1) ∙
�

y 1−x 1
�
> 0. Likewise, it follows that ∇g 1(x 1) ∙

�
y 1−x 1

�
< 0. By the Lemma below, there is a vector z in RK such that

(i) z k > 0 for some k for which y 1
k − x 1

k > 0; (ii) z l < 0 for some l for

which y 1
l − x 1

l < 0; (iii) z h = 0 for all h 6= k , l ; and (iv) ∇u 1(x 1) ∙ z > 0

and ∇g 1(z 1) ∙ z < 0. That is, z is a vector which is non-zero in only two

components, k and l . With respect to k , the component z k is positive,

and the fact that y 1
k > x 1

k means there is an i 6= 1 (which can be 0) such

that x i
k > 0. With respect to l , the component z l is negative, and the fact

that y 1
l < x 1

l means that x 1
l > 0. By (iv), for small enough ε > 0, adding

εz k units of commodity k and subtracting −εz l units of commodity l

strictly improves agent 1’s utility and keeps him within his consumption

set. Let ε be small enough so that εz k units of commodity k can be taken

from one weaker agent (or from the leftover x 0). This contradicts (x i )

being a weak equilibrium.

Lemma:

Let a and b be strictly positive vectors in Rn , and suppose that a ∙ z > 0

and b ∙ z < 0 for some z ∈ Rn . Then, there exists Δ ∈ Rn such that: (i)

Δk > 0 for some k for which z k > 0; (ii) Δl < 0 for some l for which

z l < 0; (iii)Δh = 0 for all h 6= k , l ; and (iv) a ∙Δ> 0 and b ∙Δ< 0.

Proof:

First note that there are l and k such that z l < 0 and z k > 0. Define

λm =
a m

bm
for every m . Let λh be the smallest λl associated with z l < 0.

It is impossible that λh ≥ λk for all k such that z k > 0, since in that case

a ∙z =Σn
i=1λi z i bi ≤Σn

i=1λh z i bi =λhb ∙z , contradicting b ∙z being negative
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and a ∙ z being positive. Thus, there is k such that λh < λk and z k > 0.

Any vector Δ = (0, . . . ,0,Δk , 0, . . . , 0,Δh , 0, . . . , 0) satisfying Δk > 0, Δh < 0

and bk

bh
< −Δh

Δk
< a k

a h
. Thus, a ∙Δ> 0 and b ∙Δ< 0.

1.6 The Division Jungle: Comments on Welfare

The first fundamental welfare theorem: For the division economy, a first

fundamental welfare theorem still holds, namely, the strong jungle equilibrium

is Pareto optimal. The proof is similar to that of the housing economy: Suppose

(z i ) is a strong jungle equilibrium which is not Pareto optimal. Let (y i )∈ F be a

Pareto-superior profile. Let j be the strongest agent for whom y j 6= z j . Both y j

and z j belong to the set {x j ∈ X j | x j ≤ e −Σj−1
i=1 y i }= {x j ∈ X j | x j ≤ e −Σj−1

i=1 z i }.

Since z j is j ’s unique top-ranked bundle in this set, it holds that z j �j y j , a

contradiction. Note that for non-smooth economies a weak jungle equilibrium

might be not Pareto optimal.

The second fundamental welfare theorem: On the other hand, the second

fundamental welfare theorem cannot have an analogue for the division

jungle. This is because in the division jungle there are finitely many power

relations and typically infinitely many Pareto-optimal profiles. This cardinality

mismatch implies that for a division economy, not every Pareto-optimal profile

can be obtained as a jungle equilibrium by appending some power relation to

that economy.

Power and wealth: Making a statement about the relation between power and

wealth in the division economy is more involved than in the housing economy

since the existence of a competitive equilibrium price vector that supports the

jungle equilibrium is not guaranteed, even if all of the agents’ consumption sets

are the same. For a discussion of this issue, see Piccione and Rubinstein (2007).
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1.7 A Didactic Perspective

The discussion in this chapter also has a didactic purpose, as expressed in the

personal concluding remarks made by one of us in Piccione and Rubinstein

(2007), which are essentially quoted here (with some small changes):

When I present the model in public lectures, I ask the audience

to imagine that they are attending the first lecture of a course

at the University of the Jungle, entitled Introduction to the

Principles of Economics. The analogy of such a presentation

to the way we introduce the market equilibrium in a standard

Microeconomics course serves as a device to shed light on the

implicit message that Microeconomics students receive from us.

Being faithful to the classical economic tradition, the jungle

model does not stray far from the standard exchange economy.

We use terminology that is familiar to any economics student.

After having defined the notion of jungle equilibrium, we

conduct the same type of analysis that can be found in any

microeconomics textbook on competitive equilibrium. We show

existence and then discuss the first and second fundamental

welfare theorems. We emphasise the analogy between the

initial endowments in an exchange economy and the initial

distribution of power in the jungle: both are used to determine

the equilibrium distribution of commodities among the agents.

Were I teaching this model, I would also add the standard

comments regarding externalities and the place for government

intervention.

There are arguments which attempt to dismiss the comparison

between markets and jungles:

One might argue that the market has the virtue of providing

incentives to “produce” and to enlarge the size of the “pie” to
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be distributed among the agents. On the other hand, one could

also argue that the jungle provides incentives to develop power.

In the market economy, agents invest effort in producing more

goods. In the jungle economy, agents invest effort in becoming

stronger, an asset for a society that needs to defend itself against

invaders or invade others in order to accumulate resources.

One might argue that market mechanisms preserve resources

that would otherwise have been wasted in conflict. Note,

however, that under complete information a stronger agent

can persuade a weaker one to part with his goods using only

the threat of force. Societies often create rituals that help

individuals gauge the power of others and thereby avoid the

costs of conflict. Under incomplete information, the market

also wastes resources. And finally, I have not mentioned the

obvious transaction costs that are also associated with market

institutions.

One might argue that labour is a good that should be treated

differently. However, the long history of slavery shows this to be

inaccurate.

One might also argue that the virtue of the market system is

that it exploits people’s natural desire to acquire wealth. In

contrast, the jungle just uses people’s natural willingness to

exercise power and to dominate.

Obviously, I am not arguing in favour of adopting the jungle

system. The comparison between the jungle and market

mechanisms depends on our assessment of the characteristics

with which agents enter the model. If the distribution of the

initial holdings in the market reflects social values that we wish

to promote, we might regard the market outcome as agreeable.
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However, if the initial wealth is allocated unfairly, dishonestly

or arbitrarily, then we might not favour the market system.

Similarly, if power is desirable then we might advocate for the

jungle system, but if the distribution of power reflects brute force

that threatens lives then we would clearly not be in favour.



2 The Permissible and the Forbidden

Picture in your mind a family consisting of n members. The grandparents have

prepared a holiday feast and all are sitting happily around a long table. When

the main dish is served, the grandparents act as dictators, putting a portion of

it on each family member’s plate and making sure they eat it to the last bite.

And then, dessert arrives and with it a dramatic turn of events. Grandma and

Grandpa enter the room with their famous homemade pie. Everyone loves their

pie and gazes eagerly at its entrance. Given the chance, each family member

would gladly eat more than 1/n of the pie. At this point, the grandparents

declare that they will not interfere in the division of the pie and will let the

younger generation use their academic knowledge to decide how the pie is

divided.

One member of the family, an economist, suggests that each family

member should be endowed with 1/n of the pie and — since some perhaps

appreciate the pie more, while others perhaps less — a market should operate

under the table where members can exchange slices of the pie for money.

Another member of the family, a game theorist, suggests that the grandparents

conduct an auction. He claims that this might be fun and, more importantly,

the pie will be divided optimally. Hopefully, in your family, neither markets nor

auctions are used to resolve such a conflict and, instead, harmony is achieved

by means of a social norm: each family member does not dare to even consider

taking more than the socially acceptable amount, say q , of the pie.

Obviously, not every q will bring harmony to the family. If q > 1/n , then

a family crisis would erupt since there would not be enough pie to satisfy the

family members. All family members would race to get their slice, and some

will be disappointed because they are unable to realize their anticipation of

eating q of the pie. If q < 1/n , then no conflict arises, but the members of the

family would feel uneasy looking at the leftovers on the table and, next year,

©2024 Michael Richter and Ariel Rubinstein, CC BY-NC-ND 4.0 https://doi.org/10.11647/OBP.0404.02
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would feel justified in taking a bit more. If q = 1/n , then harmony prevails. It is

optimal for each family member to take q , and any loosening of the norm will

lead to demands which cannot be satisfied.

We think of a bound on the portion that one can take as an example of a

natural social norm that specifies what is considered permissible (“done”) and

forbidden (“not done”). Such a norm resolves the family’s allocation problem

but not with prices or games.

Following Richter and Rubinstein (2020), we analyze the Y-equilibrium

concept. It is defined as a set of permissible alternatives (which is the same for

all agents) combined with a profile of choices (one for each agent) such that:

(i) each agent’s choice is optimal from among the permissible alternatives;

(ii) the profile of choices is feasible; and

(iii) the set of permissible alternatives is maximal in the sense that there is no

superset of permissible alternatives from which a profile satisfying (i) and

(ii) can be found.

By this definition, two forces make a permissible set unstable: the first

modifies the permissible set in the case that the profile of (intended) choices

is not feasible, while the second loosens restrictions on the permissible set as

long as a new profile of optimal choices is feasible.

The Y-equilibrium concept reflects a decentralized institution for achieving

harmony in a society. We envision that, without a central authority, the same

invisible hand that calculates equilibrium prices so “effectively” is also able

to determine a maximal set of permissible alternatives that are compatible

with self-maximizing behavior. The above forces adjust the social norm until

harmony is achieved. While we do not provide a general dynamic process

that converges to Y-equilibrium, in Richter and Rubinstein (2020), for several

examples, we demonstrated natural tâtonnement-like processes that lead to a

Y-equilibrium.

We now proceed to the formal definition of the equilibrium notion.
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2.1 The Y-Equilibrium Concept

Recall that an economy is a tuple ‹N , X , (%i )i∈N , F › where N is the set of agents,

X is the set of alternatives that each agent chooses from, %i is agent i ’s

preferences on X , and F ⊆ X N is the set of feasible choice profiles.

A candidate for an equilibrium is a configuration which consists of a subset

of X , called a permissible set, together with a profile of choices:

Definition: Configuration

A configuration is a pair ‹Y , (y i )i∈N › where Y ⊆ X and (y i )i∈N is a profile

of elements in Y . We refer to Y as a permissible set and to (y i )i∈N as an

outcome.

As explained in Chapter 0, a candidate for a solution in this book has a structure

analogous to that of a competitive equilibrium. It is comprised of a profile of

choices (one for each agent) and an additional parameter. In a configuration,

the additional parameter is a permissible set, that is taken by all agents as given

and uniformly binds the choices of all agents. Analogously, in a competitive

equilibrium, the additional parameter is a price system, that is taken by all

agents as given and uniformly binds the exchanges of all agents.

Before defining the equilibrium concept, we need an additional concept:

a para-equilibrium is a configuration where each individual maximizes his

interests given the permissible set and the resulting choice profile is feasible.

Definition: Para-equilibrium

A para-equilibrium is a configuration ‹Y , (y i )› satisfying:

(i) For all i , y i is a%i -maximal alternative in Y .

(ii) The profile (y i ) is in F .

A Y-equilibrium is a para-equilibrium such that any expansion of the permissi-

ble set will lead to a violation of feasibility if agents self-maximize with respect

to the expanded permissible set.
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Definition: Y-equilibrium

A Y-equilibrium is a para-equilibrium ‹Y , (y i )› such that there is no para-

equilibrium ‹Z , (z i )› for which Z is a strict superset of Y .

As mentioned earlier, we view the permissible set not as being determined

by an authority but, rather, as evolving through an invisible-hand-like process

with two forces: First, if the profile of intended choices from the permissible

set is not feasible, then alternatives are removed or added to the permissible

set. Second, when the profile of chosen alternatives is feasible, additional

alternatives are added to the permissible set as long as harmony is not

disturbed. Note that (y i ) can differ from (z i ), that is, when assessing the

existence of a larger permissible set, choices can adapt to the loosening.

We take the permissible set to be uniform for all agents, although we

are aware that there are situations in life where norms are nonuniform,

such as allowing handicapped drivers to park in places where others are not

permitted. The uniformity of the permissible set in our model is analogous

to the uniformity of the price system in models of competitive equilibrium

(although prices are often not uniform in real life). In some circumstances,

uniformity can be viewed as an expression of equality of opportunity. It also is

a simplicity property: in order to be followed, norms must be simple and clear,

and norms are simpler when they do not distinguish between agents based on

their names or preferences.

Example: A Housing Economy

Consider the housing economy with N = {1,2}, X = {a ,b , c , d , e }, and

preferences a �1 b �1 c �1 d �1 e and a �2 c �2 b �2 e �2 d . One

para-equilibrium is Y = {d , e }, y 1 = d , y 2 = e . This is not a Y-equilibrium

since Y = {b , c , d , e } with y 1 = b , y 2 = c is also a para-equilibrium with

a larger permissible set. The latter is the unique Y-equilibrium since the

alternative a cannot be a member of any para-equilibrium permissible
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set as it is the top-ranked for both agents. Incidentally, the Y-equilibrium

outcome is not Pareto-optimal because a is left unassigned.

Existence: Not every economy has a Y-equilibrium. In any housing economy,

if at least two agents have the same strict preferences over the houses, then no

Y-equilibrium exists. This is because, whatever the permissible set is, those two

agents will pick the same house, which violates feasibility. This demonstrates

that social norms regarding “the permissible and the forbidden” do not resolve

conflicts when agents have similar preferences yet feasibility requires them to

make different choices.

Example: A Single Pie

Consider the grandparents’ pie economy discussed in the beginning of

the chapter. There are n family members, and a pie of size 1 is to be

divided among them. The set of alternatives is X = [0, 1] where x ∈ X is a

share of the pie. Each agent prefers to get as large a share as possible. The

feasibility constraint states that the sum of their choices cannot exceed 1

(though some pie can be left over).

To see that this economy has a unique Y-equilibrium, notice first

that the pair ‹Y = [0,1/n ], (y i ≡ 1/n )› is a para-equilibrium. There

is no para-equilibrium with a point above 1/n in the permissible set

since, then, every agent would choose a point above 1/n , which is not

feasible. Therefore, the above pair is a Y-equilibrium. There is no other Y-

equilibrium since the permissible set in any para-equilibrium is a subset

of [0,1/n ].

Example: The Quorum Economy

Consider an economy with a finite set of clubs, X . Agents have

preferences over the clubs (without regard to the clubs’ memberships).

In order to operate, each club x needs a minimal quorum of mx ≤ n
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(rather than having a maximal capacity as in the clubs economy). That is,

feasibility requires that each club x is either empty or chosen by at least

mx members. A special case is the consensus economy where mx = n

for all x , that is, feasibility requires that all agents make the same choice.

In general, if every agent were to choose his favourite club, then there

would be non-empty clubs with less than a quorum. The role of the

permissible set is to help the agents to coordinate their choices while

imposing minimal restrictions on the permissible clubs.

A Y-equilibrium always exists: First, a para-equilibrium exists because

any configuration Y = {x } combined with all agents choosing x is a

para-equilibrium. Second, since the set of subsets of X is finite, there

is a para-equilibrium with a permissible set that cannot be expanded.

However, Pareto optimality is not guaranteed, as illustrated by the

following example. Let n = 6, X = {a ,b , c }, and mx = 3 for all x .

Two agents have the preferences a � b � c , two have the preferences

b � c � a , and two have the preferences c � a � b . Obviously, there

is no para-equilibrium with Y = X . Furthermore, there is no para-

equilibrium with exactly two permissible clubs since four of the agents

would choose one club and only two would choose the other, violating

feasibility. As above, having a single club open is a para-equilibrium and

since there are no multi-club para-equilibria, it is a Y-equilibrium. Thus,

there are three Y-equilibria, each with a single different club open. Each

Y-equilibrium outcome is not Pareto-optimal since there is an unopened

club that is strictly preferred by four agents and, therefore, there is a

Pareto improvement where exactly three of those four agents switch to

that more-preferred club.

The Y-equilibrium concept is not meant to be normative in any sense.

However, it has two fairness properties:

(i) All agents face the same choice set. Analogously, in the standard competitive

equilibrium, all agents face the same trading opportunities.
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(ii) It is envy-free (see Foley (1966) and Varian (1974)). Envy-freeness ensures

that no agent can complain that someone else is assigned an alternative that

he prefers.

Definition: Envy-freeness

A profile (y i )i∈N is envy-free if, for all i 6= j , y i %i y j .

The concepts of para-equilibrium and envy-freeness are closely related. A

profile is envy-free if and only if it is the outcome of some para-equilibrium:

First, any para-equilibrium outcome is envy-free (no agent can envy another’s

choice since all agents choose from the same set). Second, if a profile (y i ) is

envy-free, then ‹{y 1, . . . , y n}, (y i )› is a para-equilibrium.

2.2 Y-Equilibrium, Pareto Optimality, and Envy-Freeness

We have seen that Y-equilibrium profiles need not be overall Pareto-optimal.

Nonetheless, they still satisfy some efficiency criterion. We now show that the

Y-equilibrium profiles are precisely those which are Pareto optimal from among

the set of feasible envy-free profiles.

Proposition 2.1: Y-equilibrium Outcome Characterization

A profile is a Y-equilibrium outcome if and only if it is Pareto-optimal

among all feasible envy-free profiles.

Proof:

Let ‹Y , (y i )› be a Y-equilibrium. The profile (y i ) is feasible and envy-

free. If it is not Pareto-optimal among the feasible envy-free profiles, then

there is a feasible envy-free profile (z i ) that Pareto-dominates (y i ). The

configuration ‹Y ∪ {z 1, . . . , z n}, (z i )› is a para-equilibrium (since z i %i z j

for all i , j , and z i %i y i %i y for all i and y ∈ Y ). By Pareto dominance,

z i �i y i for at least one agent i and therefore z i /∈ Y . Thus, Y ∪{z 1, . . . , z n}

is a strict superset of Y , contradicting the definition of Y-equilibrium.



44 Chapter 2. The Permissible and the Forbidden

In the other direction, let (y i ) be Pareto-optimal among the feasible

envy-free profiles. Let Y be the set of all elements in this profile plus

any element which is weakly inferior to y i for every agent i , namely,

Y =
⋃

i {y
i } ∪ {x | for all i , y i %i x }. The configuration ‹Y , (y i )› is a

para-equilibrium. In order to show that it is also a Y-equilibrium, we

need to invalidate the existence of a para-equilibrium ‹Z , (z i )› for which

Z ) Y . If it exists, then, z i %i y i for all i and (z i ) is envy-free. Let

x ∈ Z − Y . By the definition of Y , there is an agent j for whom x �j y j

and, consequently, z j %j x �j y j . Therefore, (z i ) is a feasible envy-

free profile that Pareto-dominates (y i ), contradicting (y i ) being Pareto-

optimal among the feasible envy-free profiles. Thus, no such para-

equilibrium ‹Z , (z i )› exists and, therefore, ‹Y , (y i )› is a Y-equilibrium.

We do not take overall Pareto optimality as a necessary condition for the

plausibility or desirability of a solution concept. Still, a natural question is:

What condition guarantees that any Y-equilibrium outcome is overall Pareto-

optimal (and not just among the envy-free profiles)? One such condition is the

imitation property: F satisfies the imitation property if, whenever a profile is

in F , so is any profile for which one agent adopts the alternative chosen by

another agent instead of his own. That is, for any (a i ) ∈ F and any i , j ∈N , the

profile where a i is replaced with a j is also in F . An example where the imitation

property holds is the stay close economy (described in Chapter 0) since, if one

agent adopts another’s position, the maximal distance between any two agents

does not increase.

Proposition 2.2: The Imitation Property and Pareto Optimality

Assume that F satisfies the imitation property. Then, a profile is a Y-

equilibrium outcome if and only if it is overall Pareto optimal.
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Proof:

Let ‹Y , (y i )› be a Y-equilibrium. Assume by contradiction that there is a

feasible profile (z i ) which Pareto-dominates (y i ). We construct a profile

(x i ) as follows: Assign x 1, a %1-maximal alternative from {z 1, ..., z N }, to

agent 1. Assign x 2, a %2-maximal alternative from {x 1, z 2, . . . , z N }, to

agent 2, and so on. In this construction, the profile selected at each

stage is feasible (due to the imitation property) and x i %i z i for all i .

Furthermore, for every agent i , the alternative x i is %i -maximal from

{x 1, . . . , x i−1, z i , . . . , z N } ⊇ {x 1, . . . ,x N }. Thus, (x i ) is feasible and envy-

free. It weakly Pareto-dominates (z i ) and thus Pareto-dominates (y i ),

contradicting Proposition 2.1.

The other direction follows immediately from Proposition 2.1

because, under the imitation condition on F , every Pareto-optimal

profile is envy-free and, therefore, is also Pareto-optimal among the

envy-free allocations.

2.3 Euclidean Economies

In many common economic models, such as Walrasian economies, the set

of alternatives is taken to be a subset of a Euclidean space with standard

closedness, convexity, and differentiability restrictions on the alternatives, the

preference relations, and the feasibility set. We now consider our framework in

a Euclidean setting.

Definition: Euclidean Economy

A Euclidean economy is an economy ‹N , X , (%i )i∈N , F › such that:

(i) The set X is a closed subset of some Euclidean space.

(ii) For each i , the preferences%i are continuous.

(iii) The feasibility set F is anonymous (closed under permutations),

compact, and contains at least one constant profile.



46 Chapter 2. The Permissible and the Forbidden

A Euclidean economy is convex if X , F , and the preferences are convex.

A Euclidean economy is differentiable if the preferences are strictly

convex and differentiable (i.e. have differentiable utility representations

or, more generally, satisfy the condition suggested in Rubinstein (2005)).

Note that in any Y-equilibrium of a Euclidean economy, the permissible

set must be closed since, if ‹Y , (y i )› is a para-equilibrium, then by continuity,

‹c l (Y ), (y i )› is also a para-equilibrium. We now show that any Euclidean

economy has a Y-equilibrium.

Proposition 2.3: Existence of a Y-equilibrium in Euclidean Economies

Every Euclidean economy has a Y-equilibrium.

Proof:

Let EFF be the set of envy-free feasible profiles. It is non-empty

because there is a feasible constant profile (which is trivially envy-free).

It is closed since F is closed, and envy-freeness is defined by weak

inequalities and preferences are continuous. It is compact because it is a

closed subset of F , which is a compact set.

Since each %i is continuous and X is a subset of a Euclidean space,

there is a continuous utility function u i representing %i . Thus, there

is at least one profile (z i ) ∈ EFF that maximizes Σi u i (x i ) over EFF and,

therefore, it is Pareto optimal in EFF. By Proposition 2.1, (z i ) is a

Y-equilibrium outcome.

2.4 The “Kosher” Economy

Previously, we discussed an economy in which one pie is allocated among a

group of family members. We now consider an economy with two pies where

each agent can consume a portion from only one of the two pies. We call it the
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“Kosher” economy because it reminds us of the Jewish kosher rule stipulating

that diners can consume either a meat dish or a dairy dish but not both.

Of course, the situation where consumption is mutually exclusive is much

broader and includes, for example, a situation where the two pies stand for

consumption goods in two different locations at the same time (see Malinvaud

(1972)). Formally, there are two pies in the economy and at least two agents.

Each agent chooses a share of a single pie, that is, X consists of all objects of the

type (a ,0), which represents consuming a share a ∈ [0,1] from the first pie and

of the type (0,b ), which represents consuming a share b ∈ [0,1] from the second

pie. A bundle, which consists of a strictly positive share of each pie, is not an

alternative. A profile is feasible if the sum of the agents’ shares of each pie does

not exceed 1. Agents have continuous and strictly monotonic preferences over

X .

The Kosher economy is Euclidean and thus, by Proposition 2.3, has a

Y-equilibrium. We will show that its permissible set is unique and specifies

a maximal quota for each pie. Furthermore, every Y-equilibrium outcome is

either Pareto optimal or “almost Pareto optimal”: either both pies are fully

consumed and the equilibrium outcome is Pareto optimal, or one pie is fully

consumed and a small amount of the other pie is wasted.

Claim: Y-equilibrium in the Kosher Economy

In any Kosher economy:

(i) There is a unique Y-equilibrium permissible set.

(ii) In any Y-equilibrium, at least one of the pies is fully consumed.

(iii) In any Y-equilibrium, if one pie is not fully consumed, then the

unallocated portion is not larger than the quota for that pie.

Proof:

By Proposition 2.3, a Y-equilibrium exists. As mentioned earlier, its

permissible set must be closed. It also must include all dominated

consumption bundles (otherwise such alternatives could be added
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in without altering the agents’ choices because all preferences are

monotonic). Therefore, any Y-equilibrium permissible set is specified

by two quotas, a Y and bY , and will be denoted by a Y �bY = {(a ,0) | a ≤

a Y }∪ {(0,b ) |b ≤bY }.

(i) Assume not. Let ‹a Y �bY , (y i )› and ‹a Z �bZ , (z i )› be two Y-equilibria

with different permissible sets. The permissible sets cannot be nested.

Therefore, without loss of generality, it holds that a Y > a Z and bZ > bY .

Take the permissible set a Y � bZ and attach to each agent an optimal

bundle from {(a Y ,0), (0,bZ )}. The number of agents assigned (a Y ,0) is

weakly less than the number of agents assigned (a Y ,0) from a Y � bY

because any agent i for whom (a Y , 0) %i (0,bZ ), also satisfies (a Y ,0) �i

(0,bY ). Thus, the first pie is not over-demanded. Likewise, the second

pie is also not over-demanded, and thus, there is a para-equilibrium with

the permissible set a Y �bZ . This set is a strict superset of the initial two

permissible sets, contradicting their being Y-equilibria.

(ii) Assume not, that is, there is a Y-equilibrium ‹a � b , (y i )› where k

agents choose (a ,0) while the other n − k agents choose (0,b ) and no

pie is fully consumed, that is, k a < 1 and (n −k )b < 1.

It cannot be that k = 0 (or n−k = 0), since then ‹a�1/n , y i = (0,1/n )›

is a para-equilibrium with a larger permissible set. Thus, both k and

n − k are positive. Let a ′ = 1/k > a and b ′ = 1/(n − k )> b . Consider the

agents’ preferences over the set a ′�b ′. If at least k agents weakly prefer

(a ′,0) to (0,b ′) and at least n − k agents weakly prefer the reverse, then

set Y ′ = a ′�b ′.

If not, then without loss of generality, suppose that strictly fewer than

k agents weakly prefer (a ′, 0) to (0,b ′). Let bλ = (1− λ)b + λb ′. At least

k agents strictly prefer (a ′, 0) to (0,b ). Take the maximal λ for which

there are at least k agents who weakly prefer (a ′,0) to (0,bλ), which exists

because preferences are monotonic and continuous. At any γ > λ, fewer
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than k agents prefer (a ′,0), so more than n−k agents strictly prefer (0,bγ)

to (a ′,0), and therefore by continuity more than n − k agents weakly

prefer (0,bλ) to (a ′,0). Set Y ′ = a ′�bλ.

In both cases, Y ′ ) a � b . In order to reach a contradiction we

construct a para-equilibrium with permissible set being Y ′. Let Na = {i |

(a ′,0) �i (0,bλ)}, Nb = {i | (0,bλ) �i (a ′,0)} and NI = {i | (a ′,0) ∼i (0,bλ)}.

Since |Na |+ |NI | ≥ k , it follows that |Nb | ≤ n −k . Likewise |Na | ≤ k . Thus,

there is a para-equilibrium with permissible set Y ′ where all agents from

Na are assigned to pie A, all agents from Nb are assigned to pie B , and

the agents in NI are partitioned so that exactly k agents are assigned to

A.

(iii) Suppose ‹a �b , (y i )› is a Y-equilibrium where k agents choose (a ,0)

and the leftover portion 1 − k a > a . If every agent who chooses (0,b )

strictly prefers (0,b ) to (a , 0), then a can be slightly increased without

changing consumption patterns, thus violating the maximality of the

Y-equilibrium. Otherwise, there is an agent i for whom y i = (0,b ) ∼i

(a ,0). Then, modifying the equilibrium by assigning agent i to (a ,0)

instead of (0,b ) is also a Y-equilibrium (it is a para-equilibrium and since

we started with a Y-equilibrium there is no larger para-equilibrium) in

which neither pie is fully consumed, contradicting (ii).

2.5 Convex Y-Equilibrium

Up until now, we have not imposed any restrictions on the structure of the

permissible set. In the rest of the chapter, we will study convex Euclidean

economies (which have convexity and continuity-type requirements on the set

of alternatives, the preferences, and the feasible set), and we will require that

the permissible set be convex.

There are two motivations for requiring a permissible set to be convex:
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(i) Suppose that on a certain highway, you are told that it is permitted to drive

at 20 mph and at 80 mph. Naturally, you conclude that it is also permitted

to drive at 50 mph. In contrast, if you are told that it is forbidden to drive

on that highway both at 20 mph and at 80 mph, you wouldn’t instinctively

conclude that 50 mph is also forbidden. This highlights an asymmetry between

the permissible and the forbidden. Forbidden actions are usually “extreme”,

while permissible actions are generally a sort of “middle ground”. (As always,

exceptions exist: on an ice road in Estonia, it is only permitted to drive at speeds

in the intervals 10–25 kph and 40–70 kph.)

(ii) As mentioned earlier, for a norm to be accepted and internalized, simplicity

is a virtue. In this vein, the restriction of attention to convex permissible sets

can also be viewed as a simplicity requirement. In the one-dimensional case

described above, a convex permissible set is simply a minimum and maximum

speed. We will demonstrate later that, in higher-dimensional spaces, the

equilibrium convex permissible sets are simple in the sense that they can be

described by a small number of linear inequalities.

The requirement that the permissible set is convex is similar in spirit to the

standard assumption that agents choose from budget sets that are determined

by common linear prices. The linearity of prices is a form of simplicity and is

an attractive assumption even if in reality prices are often not linear.

Definition: Convex Y-equilibrium

A para-equilibrium ‹Y , (y i )› of a convex Euclidean economy is convex

if Y is convex. A convex Y-equilibrium is a convex para-equilibrium

‹Y , (y i )› such that there is no other convex para-equilibrium ‹Z , (z i )›with

a larger permissible set Z ) Y .

As in the Y-equilibrium case for Euclidean economies, any convex Y-

equilibrium has a closed permissible set. If not, then the closure of its permis-

sible set, which is also convex, together with the same profile of alternatives,

would constitute a convex para-equilibrium with a larger permissible set.
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A Y-equilibrium with a convex permissible set is a convex Y-equilibrium.

However, a convex Y-equilibrium need not be a Y-equilibrium (it might be that

there is no larger convex para-equilibrium permissible set, but there is a larger

non-convex para-equilibrium permissible set).

2.6 Pareto Optimality and Existence of Convex Y-Equilibrium

Proposition 2.1 states that the Y-equilibrium profiles are exactly those which

are Pareto-optimal among the para-equilibrium profiles (which are the feasible

envy-free profiles). For convex Y-equilibria, there is a partial analogue: profiles

which are Pareto-optimal among the convex para-equilibrium profiles are

convex Y-equilibria profiles. However, when discussing the exchange economy,

we will see that there can be convex Y-equilibrium profiles that are not Pareto-

optimal among the convex para-equilibrium profiles.

Proposition 2.4: A Sufficient Condition for a Profile to be a Convex

Y-equilibrium Outcome

For convex Euclidean economies, any profile which is Pareto-optimal

among the convex para-equilibrium outcomes is a convex Y-equilibrium

outcome.

Proof:

Given a convex Euclidean economy, let (y i )be a convex para-equilibrium

outcome that is Pareto-optimal among the convex para-equilibrium

outcomes. Let P be the collection of all convex sets Y for which ‹Y , (y i )›

is a convex para-equilibrium. Endow P with the partial order ⊇. We will

use Zorn’s Lemma to show that P has a maximal element. (A reminder

of Zorn’s Lemma: Given a partially ordered set P , if every chain — a

completely ordered subset of P — has an upper bound in P , then the

set P has at least one maximal element.)
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Given a chain C of elements in P , let U be the union of the sets in C .

Clearly, U is an upper bound on C , and we now show that U is in P . The

set U is convex since for any two points x , y ∈ U , there is some Y ∈ C

such that x , y ∈ Y and, since any convex combination of x and y is in Y ,

it is also in U . To show that the tuple ‹U , (y i )› is a para-equilibrium, it

suffices to show that, for each i , the element y i is %i -maximal in U . If

there is an x ∈U such that x �i y i for some i , then there is Y ∈ C such

that x ∈ Y , contradicting that ‹Y , (y i )› is a para-equilibrium.

Let Y ∗ be a maximal element of P . It is left to show that ‹Y ∗, (y i )› is a

Y-equilibrium. Suppose that there is a convex para-equilibrium ‹Z , (z i )›

such that Z ) Y ∗. It must be that z i %i y i for all i . Since (y i ) is Pareto-

optimal from among the convex para-equilibrium outcomes, it must be

that z i ∼i y i for all i . Then, ‹Z , (y i )› is also a convex para-equilibrium,

contradicting the maximality of Y ∗.

For Euclidean economies, we have already shown that a Y-equilibrium always

exists (Proposition 2.3). The following proposition demonstrates that a convex

Y-equilibrium also exists.

Proposition 2.5: Existence of a Convex Y-equilibrium

Every convex Euclidean economy has a convex Y-equilibrium.

Proof:

Let O be the set of convex para-equilibrium outcomes. The set O is

not empty since F contains a constant profile (y i ≡ y ∗) and the pair

‹{y ∗}, (y i ≡ y ∗)› is trivially a convex para-equilibrium.
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The set O is compact. To see this, since O ⊆ F and F is compact,

it suffices to show that O is closed. Take a sequence ‹Yt , (y i
t )› of para-

equilibria such that (y i
t ) converges to (z i ) as t → ∞. Let Z ⊆ X be

the convex hull of the limit allocations {z 1, . . . , z n}. The configuration

‹Z , (z i )› is a convex para-equilibrium since if there is an agent j and a

convex combination of the {z 1, . . . , z n} such that Σi∈Nλi z i �j z j , then by

continuity, for some large enough t , Σi∈Nλi y i
t �

j y j
t . Since Yt is convex,

it holds that Σi∈Nλi y i
t ∈ Yt , but this violates ‹Yt , (y i

t )› being a convex

para-equilibrium.

Since O is compact, the same argument as in Proposition 2.3 implies

the existence of a profile that is Pareto-optimal in O and, by Proposition

2.4, it is a convex Y-equilibrium outcome.

2.7 A Structure Theorem for Convex Y-equilibrium

Much of Economic Theory deals with establishing conditions that guarantee

the existence of a solution concept. Theorems about the structure of equilib-

rium are less common, although, in our opinion, are more interesting. We now

show that our assumptions on the economy, together with a differentiability

condition, guarantee that the permissible set of convex equilibria is an

intersection of at most n half-spaces (recall that n is the number of agents).

Thus, the requirement that the permissible set is convex implies that the

convex Y-equilibrium permissible set takes a relatively simple form.

Proposition 2.6: The Structure of Convex Y-equilibria

Let ‹Y , (y i )› be a convex Y-equilibrium in a differentiable Euclidean

economy. Let J = {i | y i is not the %i -global maximum in X }. Then,

there is a profile of closed half-spaces (H j )j∈J , such that Y = ∩j∈J H j .
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Figure 2.1 An illustration of Proposition 2.6 (note that J = {1,4,5})

Proof:

First, note that if J = ;, that is, every agent is assigned his first-best,

then Y = X (which is the degenerate case where Y is the intersection

of an empty set of half-spaces). Otherwise, for every j ∈ J , let H j be the

unique half-space of alternatives containing y j such that y j is strictly

preferred to all other elements in H j . Its existence is guaranteed by

the assumptions of differentiability and strict convexity of the agents’

preference relations.

We first show that Y is a subset of ∩j∈J H j : Suppose that for some

j ∈ J there is an alternative w j ∈ Y −H j . By the differentiability and

strict convexity of j ’s preferences, and for small ε > 0, it holds that

εw j +(1− ε)y j �j y j . By convexity of Y it holds that εw j +(1− ε)y j ∈ Y .

Therefore, y j is not%j -maximal in Y , a contradiction.

To show that the permissible set Y is equal to ∩j∈J H j , it remains to

be shown that ‹∩j∈J H j , (y i )› is a convex para-equilibrium. This follows

from:
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(i) The set ∩j∈J H j is convex.

(ii) For each agent i , y i ∈ Y ⊆∩j∈J H j .

(iii) For each j ∈ J , y j is the%j -maximum in H j and, thus, also in ∩j∈J H j .

(iv) For each i /∈ J , y i is the%i -global maximum and, thus, also in ∩j∈J H j .

2.8 The Division Economy

A leading economic problem is the division of a bundle among the members

of a society. The grandparents single pie economy is its simplest version. The

only convex Y-equilibrium is the intuitively appealing norm that forbids taking

more than 1/n th of the pie. For the multi-good division economy, the analogous

norm which allows an agent to take up to 1/n th of the total bundle is typically

not a Y-equilibrium permissible set because it does not allow any trades. We

proceed by exploring the properties of convex Y-equilibria in a differentiable

division economy, formally defined as:

Definition: Differentiable Division Economy

A differentiable division economy ‹N , X , (%i )i∈N , F › is a differentiable

Euclidean economy such that:

(i) The set of alternatives is all bundles with m commodities, i.e. X =Rm
+ .

(ii) Every preference relation %i is strictly monotonic (besides being

continuous, strictly convex, and differentiable).

(iii) There is a bundle e ∈Rm
++ such that (x i )∈ F if and only if Σi x i ≤ e .

The following claim draws a connection between convex Y-equilibrium and

egalitarian competitive equilibrium (see Foley (1966) and Varian (1974)) which

is a competitive equilibrium of the exchange economy in which each agent is

initially endowed with 1/n of the total bundle. We will see that every egalitarian

competitive equilibrium outcome is a convex Y-equilibrium outcome and, if at

least one agent selects an interior bundle, then its permissible set is identical

to the egalitarian competitive equilibrium’s common budget set.
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Claim: Egalitarian Competitive Equilibria and Convex Y-equilibria

Let ‹p , (y i )› be an egalitarian competitive equilibrium in a differentiable

division economy. Then, there is a convex Y-equilibrium with the same

allocation ‹Y , (y i )›. Furthermore, if at least one of the bundles y j is

strictly positive, then Y must be B = {y | p ∙ y ≤ p ∙ e /n}.

Proof:

The pair ‹B , (y i )› is a convex para-equilibrium and (y i ) is overall Pareto-

optimal by the standard first welfare theorem. Thus, by Proposition 2.4,

(y i ) is a convex Y-equilibrium outcome.

If ‹Y , (y i )› is a convex Y-equilibrium, then by Proposition 2.6,

Y = ∩i∈N H i , where H i is the lower half-space of %i at y i (since no agent

has his first-best, it holds that J = N ). For all i , B ⊆ H i , since otherwise

there exists z i ∈ B\H i and, by differentiability and strict convexity, y i

would not be %i -optimal in B . If for some j the bundle y j has a zero

coordinate, then it can be that B ( H j , but if for any j the bundle y j is

strictly positive, then H j = B and, therefore, Y = ∩i H i = B .

Comments:

Every overall Pareto-optimal interior convex Y-equilibrium profile is an

egalitarian competitive equilibrium allocation:

Let ‹Y , (y i )› be a convex Y-equilibrium such that each bundle y i is interior.

By monotonicity, the alternative y i is never %i -globally maximal and thus,

by Proposition 2.6, Y = ∩i∈N H i where H i is the lower half-space of %i at y i

and, by monotonicity, there is a positive vector p i and a positive number w i

such that H i = {x | p i ∙x ≤w i }. Since every y i is interior and the allocation is

Pareto optimal, the half-spaces must be parallel (otherwise, any two agents

on non-parallel half-spaces could make a Pareto-improving local exchange)

that is, there is a positive vector p such that p i = p for all i . It follows that

Y = {x | p ∙ x ≤ w } for some positive vector p and a positive number w . By
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monotonicity, p ∙ y i = w for all i . Since p ∙ e = p ∙ Σi∈N y i = nw , we have

p ∙ y i = w = p ∙ (e /n ). Thus, (y i ) is a competitive egalitarian equilibrium

allocation with price vector p .

There can exist a non-interior Pareto-optimal convex equilibrium outcome

that is not an egalitarian competitive equilibrium allocation:

Here is a simple example: Let n = 3, m = 2, e = (5,5) and the agents’ preferences

be represented by the utility functions specified in Figure 2.2, panel (a) (a

slight modification of the preferences will make the preference relations strictly

convex):

u 1(x1,x2) = x1

u 2(x1,x2) = x1+x2

u 3(x1,x2) = x2

(a) Utility functions

1

2

3
y 3

y 2

y 1
Y

1 2 3

u 3

u 2

u 1

(b) Illustration

Figure 2.2 A convex Y-equilibrium with a non-egalitarian Pareto-optimal outcome.

Let y 1 = (3,0), y 2 = (2,2) and y 3 = (0,3) (Figure 2.2., panel (b)). The

allocation (y i ) is Pareto-optimal: If (z i ) Pareto-dominates (y i ), then z i
1+ z i

2 ≥

y i
1 + y i

2 for all i with at least one inequality. Thus, Σi (z i
1+ z i

2)> Σ(y
i

1 + y i
2 ) = 10,

which is not feasible. The set Y is the intersection of (H i ) where each H i is a

half-space of bundles below i ’s indifference curve, which includes y i .

The pair ‹Y , (y i )› is a convex para-equilibrium and, by Proposition 2.4, (y i )

is a convex Y-equilibrium outcome. To see this directly, note that if there were a

larger convex para-equilibrium, ‹Z , (z i )›, then Z would contain an element that

is not in Y . Any such element is strictly preferred to y i for at least one agent i .

Thus, (z i ) would Pareto-dominate (y i ).
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There can exist a non Pareto-optimal interior convex equilibrium outcome:

Consider the economy (depicted in Fig-

ure 2.3) with two agents, two goods, to-

tal bundle e = (3,3), and kinked utility

functions as depicted (a small devia-

tion could make them strictly convex).

Agent 1’s indifference curve has slope

−1.25, and agent 2’s indifference curve

has slope−0.8. The depicted allocation

y 1 = (2,1) and y 2 = (1,2) is not Pareto-

optimal since it is mutually beneficial

to have agent 1 get one additional unit

of good 1 and one unit fewer of good 2.

1

2

y 1 = (2,1)

y 2 = (1,2)

Y

1 2

u 2

u 1

Expansion Path2

Expansion Path1

Figure 2.3 A non Pareto-optimal con-
vex equilibrium.

The configuration ‹Y , (y i )› is a convex para-equilibrium. In any larger

convex para-equilibrium, ‹Z , (z i )›, the convex set Z includes a bundle that is

strictly better for at least one of the agents and, therefore, z 1 6= y 1 and z 2 6= y 2.

Given the agents’ indifference curves, in z 1 agent 1 receives more of good 1

and less of good 2 than in y 1. Furthermore, agent 1 must not prefer another

bundle on the line segment between z 1 and the corner (2,2). This means that

the slope between these two points has to be at least −1.25 or, in other words,

z 1
2 − 2 ≥ −1.25z 1

1 + 2.5, which implies z 1
2 + z 1

1 ≥ 4.5− 0.25z 1
1 > 3 where the last

inequality is due to 3 ≥ e1 ≥ z 1
1. Likewise, agent 2’s total demands are greater

than 3, and such demands are infeasible.

Initial Endowments: Recall that a division economy differs from the standard

exchange economy as it does not specify an initial distribution of the goods.

One way to incorporate initial endowments into our framework is by the

following notion of a trade economy. Let (e i ) be an initial endowment profile.

Let X =Rm where a member of X is interpreted as a trade (and thus includes

negative components as well). Set F to include all profiles of trades (t i ) such

that Σi t i = 0 and for every agent i , the post-trade bundle t i + e i ≥ 0. As to the

preferences, assume that each agent i has a basic preference relation %i
c over
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the set of bundles (satisfying the standard division economy assumptions).

Among trades that give an agent a non-negative amount of every good, agent

i ’s preferences %i on X are induced from their basic preferences by t i %i s i if

t i + e i %i
c s i + e i . Every agent prefers the no-exchange option 0 to any trade

which leaves them with a negative amount of any good.

Analogous results to the previous claims for the division economy also hold

for the trade economy: (i) the profile of trades in any competitive equilibrium

in the standard exchange economy is a convex Y-equilibrium outcome in this

trade economy, and (ii) any Pareto-optimal convex Y-equilibrium outcome in

the trade economy, where at least one agent has a strictly positive post-trade

allocation, is a profile of trades in a competitive equilibrium of the standard

exchange economy.

2.9 The Give-and-Take Economy

Recall that in the give-and-take economy, the set of alternatives is X = [−1,1],

where a positive x represents a withdrawal of x from a social fund while a

negative x represents a contribution of −x . Feasibility requires that the social

fund be balanced, that is, (x i ) ∈ F iff Σi x i = 0. All agents have strictly convex

preferences over X with agent i ’s ideal denoted by peaki . As mentioned earlier,

the give-and-take economy is an economic situation in which the market plays

no role. We will see that norms regarding what is permissible and what is

forbidden can serve as an effective non-market tool for achieving harmony.

The case Σi peaki = 0 is “bliss”: everything is permitted and ‹X , (peaki )›

is a convex Y-equilibrium. However, in general, there is tension between

feasibility and the agents’ desires. The following claim characterizes the convex

Y-equilibrium for the case where the sum of what people ideally want to take

is greater than what people ideally want to give. We will see now that, in this

case, there is a unique convex Y-equilibrium. In it, people are allowed to give

as much as they want but there is a bound on the maximum that can be taken,

and its outcome is Pareto optimal.
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Claim: A Characterization of the Convex Y-equilibrium

Consider a give-and-take economy with Σpeaki > 0. There is a unique

convex Y-equilibrium ‹Y , (y i )›. The set Y takes the form [−1, m ] for some

m > 0, and (y i ) is Pareto optimal.

Proof:

Consider a permissible set of the form [−1, m ]. If m < 0, then all agents

must give. If m ≥ 0, then every agent who wants to give will select his

peak, and every agent who wants to take is either at his peak or has a

peak to the right of m and makes do with taking m . Let D(m ) be the sum

of all agents’ choices given the permissible set [−1, m ]. The function D is

continuous, strictly increasing for any m smaller than max{peaki }, and is

constant with value Σi peaki > 0 for any larger m . In particular, D(0)≤ 0

and D(1)> 0. Thus, there is a unique m ∗ ≥ 0 for which D(m ∗) = 0.

The permissible set [−1, m ∗], together with the agents’ optimal

choices from that set, constitutes a convex para-equilibrium. It is also a

convex Y-equilibrium because there is no convex para-equilibrium with

a larger permissible set. If there were, it would have the form [−1, m ]

where m >m ∗, but then agents would take too much (since D(m )> 0).

The profile (y i ) is Pareto optimal: For each i , y i is at or to the left of his

peak. Thus, if (z i )∈ F Pareto-dominates (y i ), then y i ≤ z i for all i with at

least one strict inequality, thus 0=Σy i <Σz i , violating feasibility.

To prove uniqueness of the convex equilibrium, it remains to be

shown that any closed convex para-equilibrium permissible set [x , y ] is

included in [−1, m ∗]. In order for the social fund to be balanced, it must

be that x ≤ 0 ≤ y . In equilibrium, agents who wish to give will do so at

either their peak or at x if peaki < x . Therefore, the total giving in [x , y ]

is not more than that in [−1, m ∗]. Since the social fund is balanced, the

total taking in [x , y ] must also be less than or equal to that in [−1, m ∗],

and therefore y ≤m ∗. Thus, [x , y ]⊆ [−1, m ∗].
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Comment: For this economy, while convex Y-equilibria are Pareto-optimal, a

Y-equilibrium outcome need not be. A detailed example appears in Richter

and Rubinstein (2020). The essence of the example is as follows: Let

X = {−2,−1,0,1,2} and n = 2. The agents’ “convex” preference relations are

1�1 0�1 −1�1 −2�1 2 and 1�2 2�2 0�2 −1�2 −2. The “convex” permissible

set Y = {−2,−1,0}, together with the profile y 1 = y 2 = 0, is a “convex”

Y-equilibrium with a Pareto-optimal outcome. However, it is easy to verify that

the non-convex permissible set Y = {−2,2} with the profile y 1 =−2, y 2 = 2 is a

Y-equilibrium whose outcome is Pareto dominated by z 1 =−1, z 2 = 1.

2.10 The Stay Close Economy

The stay close economy is a convex Euclidean economy in which X is a closed

convex set of locations and F is the set of profiles for which the distance

between any two agents is at most d ∗. That is, each member of the group

chooses a position (for example, a political stance or a geographical location),

and the group’s survival requires that the members “stay close” to each other. As

always, each agent has strictly convex preferences for his own location without

regard to the location of others. The potential source of conflict is that the

group members have a diverse set of ideal locations which fails the closeness

requirement. Note that the set F satisfies the imitation condition defined in

Section 2.3. When d ∗ = 0, this economy is called a consensus economy.

In a centralized society, the authorities can coerce agents into occupying

locations that guarantee survival. In a market, members would have to pay

each other to stay close by. The Y-equilibrium idea is that there are norms

that determine the borders of the permissible locations and strike a balance

between societal harmony and individual liberty. Each agent chooses his most

preferred location within the borders, and the outcome is that they all live close

enough to one another. The borders are maximally liberal in the sense that if

the borders are enlarged in any way, then the resulting individual choices would

not be “close enough”.
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A modified serial dictatorship provides a simple method for finding a

Pareto-optimal profile and proving its existence: agent 1 selects his ideal point

x 1 = peak1 in X , then agent 2 selects his most preferred point from among those

that are “close enough” to x 1, and each subsequent agent i selects his most

preferred point x i from among those which are “close enough” to all of those

previously selected, that is, {x | d (x ,x j )≤ d ∗, for every j < i }.

The following claim establishes that every Pareto-optimal profile is both

a Y-equilibrium outcome and a convex Y-equilibrium outcome. As a partial

converse, it also shows that Y-equilibrium outcomes are Pareto optimal;

however, convex Y-equilibrium outcomes may or may not be.

Claim: Pareto Optimality and Y-equilibrium

For a stay close economy:

(i) A Y-equilibrium and a convex Y-equilibrium exist. Moreover, any

Pareto-optimal allocation is both a Y-equilibrium outcome and a convex

Y-equilibrium outcome.

(ii) Every Y-equilibrium outcome is Pareto optimal. However, a convex

Y-equilibrium outcome need not be.

(iii) If X is a subset of a one-dimensional Euclidean space, then any

convex Y-equilibrium outcome is Pareto optimal.

Proof:

(i) The modified serial dictatorship algorithm above establishes the ex-

istence of Pareto-optimal allocations. Given a Pareto-optimal allocation

(y i ), let Y be the convex hull of {y 1, . . . , y n}. Any point Σjλj y j in Y is

at most d ∗ away from every y i since d (Σjλj y j , y i ) ≤ Σjλj d (y j , y i ) ≤

Σjλj d ∗ ≤ d ∗ (the first inequality is due to the triangle inequality). Each

y i is %i -maximal in Y since any agent moving to another location in

Y preserves feasibility and (y i ) is Pareto optimal. Therefore, ‹Y , (y i )› is

a convex para-equilibrium. By Proposition 2.1, (y i ) is a Y-equilibrium

profile and, by Proposition 2.4, it is also a convex Y-equilibrium profile.
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(ii) Since F satisfies the imitation property, by Proposition 2.2, any Y-

equilibrium outcome is Pareto optimal. The following economy shows

that a convex Y-equilibrium can be

non Pareto-optimal: Let n = 2, d ∗ = 0,

X = R2, and agents’ preferences be

given by U 1(x1,x2) = 2x2 − (x2 − x1)2

and U 2(x1,x2) = 2x2 − (x2 + x1)2 (see

Figure 2.4). From Y = {(x1,x2) | x2 ≤ 0},

both agents choose y 1 = y 2 = (0,0)

and the pair ‹Y , (y i )› is a convex para-

equilibrium. If there were a larger

convex para-equilibrium set, then there

y 1=y 2=(0,0)

U 1

U 1

U 2

U 2

Expansion Path1Expansion Path2

Y

Figure 2.4 Non Pareto-op-
timal convex equilibrium in
a consensus economy

would be one of the form Z = {(x1,x2) | x2 ≤ z } with z > 0. From Z , agent

1 prefers (z , z ) and agent 2 prefers (−z , z ), and this profile is not in F . The

equilibrium outcome is not Pareto optimal since both agents prefer (0,1)

to (0,0). This example can be easily modified for any d ∗ > 0 by setting

Y = {(x1,x2) | x2 ≤ d ∗/2}, y 1 = (d ∗/2, d ∗/2) and y 2 = (−d ∗/2, d ∗/2).

(iii) Let ‹Y , (y i )› be a convex Y-equilibrium, L be the minimum of the

agents’ peaks, R be the maximum, y =mini y i , and y =maxi y i .

If R − L ≤ d ∗, then Y = X and every agent chooses his peak, which is

obviously a Pareto-optimal outcome.

If R−L > d ∗, then it must be that y−y = d ∗, since otherwise y−y < d ∗,

and there is an agent who is not at his peak. Thus, his choice must be

on the boundary of Y . This boundary can be slightly enlarged and the

profile of agents’ new optimal choices will be feasible.

By the convexity of Y , each agent who chooses y is at his peak or

wants to move to the right, each agent who chooses y is at his peak or

wants to move to the left, and the others choose their peaks. Thus, any

profile that Pareto dominates (y i )must increase the maximum distance

between agents, which violates feasibility since y − y = d ∗.





3 Status and Indoctrination

We now turn to a different notion of economic harmony studied in Richter

and Rubinstein (2015). As always in this book, an equilibrium is a profile

of alternatives (one for each agent) and an additional parameter. Here, the

parameter is a commonly accepted ordering on the set of all alternatives that

affects the choices agents can make. We refer to it as a public ordering.

We have in mind three interpretations of a public ordering:

Values. When the alternatives are objects, the public ordering may reflect their

“value” or “worth”. A holder of an object can exchange it for any lower-valued

object, but not for a higher-valued one. This interpretation aligns with the

standard notion of the “more expensive” relation — a holder of a bundle in a

market can exchange it for a cheaper one, but not for a more expensive one.

Prestige. When the alternatives are positions in a society, the public ordering

may reflect the prestige of these positions. According to this interpretation, an

agent can exchange his position for any less prestigious one, but not a more

prestigious one.

Under the above two interpretations, society restricts an agent’s ability to

replace the alternative he has. He can only move “down” to a “less valuable”

or “less prestigious” one, but not “up”. In contrast, in the next interpretation,

the public ordering’s meaning is reversed: lower-ranked alternatives are more

“valuable” for society.

Indoctrination. Agents are indoctrinated by society regarding the interests

of society as a whole. A public ordering inversely ranks the alternatives

according to their benefit to society: the lower ranked an alternative is, the

more beneficial it is to society. An agent is only willing to replace his assigned

alternative with one that is better for society (i.e. lower-ranked by the public

ordering). The indoctrination does not affect the agent’s basic preferences (in

©2024 Michael Richter and Ariel Rubinstein, CC BY-NC-ND 4.0 https://doi.org/10.11647/OBP.0404.03
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contrast to the biased preferences model discussed in Chapter 4) but, rather,

modifies his choice set. An agent only considers moving from one alternative

to another if it benefits society (and will only make such a move if he also

personally benefits).

With the above interpretations in mind, we will discuss two types of

equilibria, which fit into the two categories of equilibrium discussed in Section

0.4. The first is the status equilibrium: it is a feasible profile of choices and

a public ordering such that no agent strictly prefers any alternative that is

weakly lower-ranked by the public ordering than the one assigned to him.

Thus, the public ordering limits the agents’ deviations from the equilibrium

profile: an agent who is assigned an alternative only considers deviating to

alternatives that are weakly lower-ranked (by the public ordering) than the one

he is assigned. Deviations are purely self-serving and contemplated without

regard to feasibility.

In the taxonomy of Section 0.4, the status equilibrium belongs to the

deviation group (like Nash equilibrium). In the last section of the chapter,

we will study the initial status equilibrium concept, which fits into the choice

group (like competitive equilibrium). This concept operates on an extended

economy (in which the model of an economy is extended to include an initial

profile). In the initial profile, each agent is assigned an alternative that he can

always choose and which, together with the public ordering, determine the

agent’s choice set. An initial status equilibrium consists of a feasible profile

and a public ordering, but this time the profile of choices must be such that no

agent strictly prefers any alternative that is weakly lower-ranked by the public

ordering than the one initially assigned to him. Thus, the public ordering limits

an agent’s choice set: he only considers alternatives that are weakly lower-

ranked than his initial alternative.
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3.1 Status Equilibrium

Definition: Status Equilibrium

Given an economy ‹N , X , (%i )i∈N , F ›, a status equilibrium is a pair

‹P , (x i )i∈N › where (x i )i∈N is a profile and P is an ordering (a complete,

reflexive, and transitive binary relation) on X satisfying:

Feasibility: the profile (x i ) is in F .

Personal optimality: for every agent i , the element x i is %i -maximal in

{z ∈ X | x i Pz }.

The ordering P is referred to as a public ordering.

As mentioned, under the first two interpretations of a public ordering, it

ranks the alternatives by value or prestige. The term a Pb means that a is

more expensive than b or that a is more prestigious than b . An equilibrium

public ordering stabilizes the equilibrium profile in the sense that every agent

is satisfied with his assignment given that he is bounded by the worth (or

prestige) of his assigned alternative. Under the third interpretation, P is a

social motive that systematically affects an agent’s willingness to exchange his

assigned alternative. The term a Pb means that “a is less socially desirable

than b ” (this is not a mistake... less and not more). If an agent i is assigned

x i , then he cannot bear the idea of exchanging it for an alternative that is

less socially desirable and, therefore, he only considers more socially desirable

alternatives (i.e. those which are lower-ranked by P). Under this interpretation,

an equilibrium consists of a public ordering and a feasible profile in which

no agent both: i) wishes to exchange his assigned alternative, according to

his personal preferences and ii) is able to justify the exchange as furthering

society’s interests, according to the public ordering.

Proposition 3.1: A Second Welfare Theorem

Any Pareto-optimal profile is a status equilibrium profile.
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Proof:

Let (a i ) be a Pareto-optimal profile. Define the binary relation D on

A = {a 1, . . . , a n} by x Dy if x is desired by a holder of y , that is, there are

i and j such that x = a i �j a j = y . If D has a cycle, then there is a set of

agents who can permute their alternatives among themselves (recall that

F is closed under permutations) so that all of them are strictly better off,

contradicting (a i ) being Pareto-optimal. Since D has no cycles, it can be

extended to a complete ordering over A. Then, D can be extended to a

strict ordering P on the entire set X by putting all elements in X−A above

all elements in A (making all unassigned elements “unaffordable”) and

arbitrarily ranking the elements in X − A among themselves. Personal

optimality holds since, for every agent i , the alternative a i is optimal in

{x | a i Px } (if a i Px , then x = a j for some j , and if i were to prefer it, then

x Da i , which contradicts a i Px since P extends D).

By the same proof, any feasible profile (Pareto-optimal or not) for which

the relation D does not have cycles is a status equilibrium profile. In particular,

in the consensus economy, where all agents have to make the same choice,

any profile that assigns the same element x ∗ to all agents is supported by any

public ordering that ranks x ∗ as the unique lowest element in X and thus all

other alternatives are “blocked”. Such a profile might be not Pareto-optimal.

Thus, any Pareto-optimal profile is a status equilibrium profile, but a status

equilibrium profile does not have to be Pareto-optimal.

3.2 Status Equilibrium – Examples

Example: The Jobs Economy

Let X be a non-singleton set of types of jobs. Each agent holds strict

preferences on X . Feasibility is given by a vector (n x )x∈X where n x is

the number of available jobs of type x (non-emptiness of F requires that

Σx∈X n x ≥ n).



3.2 Status Equilibrium – Examples 69

A public ordering in this example has a natural interpretation of social

status, which is often associated with a job. Once an agent is assigned

to a job, he cannot switch to a higher-status job but he can switch to

any job of equal or lower status (e.g. a professor can move to a lower-

ranked university but not to a higher-ranked one). The housing model of

Shapley and Scarf (1974) is the special case where n x ≡ 1 and |X |= n .

Claim: The following holds for the jobs economy:

(i) If Σx n x = n , then the First Welfare Theorem holds: every status

equilibrium profile is Pareto-optimal.

(ii) If Σx n x > n , then the First Welfare Theorem fails: there is always a

status equilibrium profile that is not Pareto-optimal.

Proof: (i) Let ‹P , (x i )› be a status equilibrium. Assume by contradiction

that the feasible profile (y i ) Pareto-dominates (x i ). Let j be an agent for

whom x j is P-maximal from among {x i | y i 6= x i }. Since preferences are

strict, it must be that y j �j x j and, therefore, y j Px j . Since Σx n x = n , it

must be that in any feasible profile, all jobs are filled. Therefore, there

is another agent whose original job is y j and whose new job is not,

contradicting the P-maximality of x j from among {x i | y i 6= x i }.

(ii) Let (x i ) be a Pareto-optimal profile. By Proposition 3.1, there is a

public ordering such that ‹P, (x i )› is a status equilibrium. Let z denote

a job with spare capacity, and let j be an agent who does not have job

z (which exists since Σx n x > n and |X | > 1). Let (y i ) be the feasible

profile obtained from (x i ) by moving j from x j to z . Since (x i ) is Pareto-

optimal, every agent who does not have job z strictly prefers his assigned

job to z and thus, (y i ) is not Pareto-optimal. Let P ′ be the public ordering

obtained from P by moving z to the bottom rank. The pair ‹P ′, (y i )› is

clearly a status equilibrium.
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Example: R-Monotonic Preferences

Let R be a strict partial ordering (irreflexive, transitive, and anti-

symmetric but not necessarily complete) on X . A preference relation

% is R-monotonic if a � b whenever a Rb . For example, let X be a set

of bundles and R be defined by x Ry if the bundle x contains weakly

more than y of every good and strictly more of at least one. In this case,

R-monotonicity is the standard notion of strong monotonicity.

It will now be shown that, for any economy with R-monotonic

preferences, any status equilibrium profile can also be supported as

a status equilibrium with an R-monotonic public ordering. Thus, a

stronger assumption on agents’ preferences (R-monotonicity) leads to

stronger conclusions about the equilibrium public ordering (being R-

monotonic).

Claim: Let R be a strict partial ordering and let ‹N , X , (%i )i∈N , F › be an

economy where every preference %i is R-monotonic. If ‹P , (x i )i∈N › is a

status equilibrium, then there is an R-monotonic ordering Q such that

‹Q , (x i )i∈N › is also a status equilibrium.

Proof: Define the desire binary relation D as y Dz if there is an agent who

is assigned z and strictly prefers y (and thus, it must be that y Pz strictly).

Let S = R ∪D . The relation S is acyclic: if not, let z 1S1z 2S2z 3S3 . . . z mSm z 1

be a minimal cycle where each Si is either R or D .

• It cannot be that all Si are R because R is acyclic.

• It cannot be that all Si are D since z i−1Dz i implies z i−1Pz i strictly and

thus, a D-cycle implies a strict P-cycle, which is impossible.

• It cannot be that the cycle S1, . . . ,Sm contains both D and R . This is

because, if it did, then it would contain an R followed by a D . However,

if a Rb Dc , then there is a j such that c = x j and b �j c . Since �j

extends R , it follows that a �j b and therefore, a �j c and so a Dc .

Therefore, the cycle can be shortened.



3.3 A Detour: Convex Preferences 71

Thus, S is a strict partial ordering. Extend S to an ordering Q . Since S

extends R , so does Q and thus, Q is R-monotonic. Since S extends D , so

does Q and thus, ‹Q , (x i )› is a status equilibrium.

3.3 A Detour: Convex Preferences

In Section 3.4, we will refine the notion of a status equilibrium by imposing

some structure to the public ordering. In preparation, we make a detour to the

concept of convex preferences.

One conventional definition of convex preferences for Euclidean spaces

requires that if a is weakly preferred to b , then any convex combination of a

and b is also weakly preferred to b . This definition is equivalent to requiring

that all upper contours (sets of the type {x | x � a }) are convex sets. Both

of these definitions refer to the term “convex combination”, which itself uses

an algebraic structure on the space of alternatives and so does not apply to

economies where the set X lacks such a structure.

Following Richter and Rubinstein (2019), we suggest an alternative defini-

tion of convex preferences which generalizes the standard Euclidean notion

and is also applicable to spaces without algebraic structure. A cornerstone of

this approach is the view that preferences are built from primitive building

blocks. Here, we take the building blocks to be the members of a set of

orderings Λ, which we call primitive orderings. Each primitive ordering is a

complete, reflexive, and transitive binary relation over the set X (indifferences

are allowed). We interpret the primitive orderings as expressions of objective

attributes of the alternatives that are in the vocabulary of all agents.

The assumption behind this definition is that, when thinking about

replacing an alternative b ∈ X , an agent has in mind a necessary criterion

(primitive ordering) that is critical, in the sense that, for an alternative to be

better than b , it must be better by this criterion. Note that the critical criterion

can depend on b .
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For example, imagine a department chair who is contemplating replacing

b , who is a weak teacher. In this case, the critical consideration may be

pedagogical ability, and any teacher who is pedagogically worse than b will be

rejected. However, this does not mean that any candidate who is pedagogically

better than b will be preferred. Again, the critical criterion can vary from one

alternative to another: when the department chair considers replacing c , who

is a great teacher and a poor researcher, he may feel that research ability is now

critical, and thus, any candidate who is a worse researcher than c will be judged

to be a worse candidate than c .

Definition: Λ-convex Preferences

Let X be a set of objects and Λ be a set of orderings on X referred to as

primitive orderings. The symbolD represents a generic member of Λ.

A preference relation% on X is Λ-convex if:

∀b ∈ X , ∃D∈Λ such that for x 6=b it is necessary for x �b that x Bb .

A preference relation% on X is Λ-strictly convex if:

∀ b ∈ X , ∃D∈Λ such that for x 6=b it is necessary for x %b that x Bb .

In both definitions, the orderingD is called a critical direction at b (there

can be multiple critical directions).

Three comments:

(i) Every (strict) primitive ordering in Λ is Λ-(strictly) convex: for each

alternative, the primitive ordering itself is a critical direction.

(ii) A “Pareto” property holds: If b and c are distinct, b D c for every D ∈ Λ,

and % is Λ-convex, then b % c . This is because there is a critical ordering D

attached to b and b D c and therefore, c cannot be strictly preferred to b . For

Λ-strictly convex preferences, the conclusion is stronger, namely, b � c .

(iii) In Richter and Rubinstein (2019), we also suggested other similar

definitions of convex preferences and discussed their connection to Edelman

and Jamison (1985)’s notion of “abstract convexity”.
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Underpinning our convexity notion is the ab-

straction of a concept that plays a fundamental

role in economic analysis when we talk about

convex preferences on a Euclidean space: for

each alternative, there is a hyperplane which

contains it, such that all weakly preferred alter-

natives lie on one side of the hyperplane. In the

same spirit, our notion of convex preferences

requires that for every alternative there is an

ordering that puts all preferred alternatives on

one side of the ordering.

%

D

Figure 3.1 A supporting hy-
perplane and its correspond-
ing critical direction

The definition of convex preferences is attractive for several reasons:

(a) It is compelling as a procedural assumption of preference formation.

(b) It emphasizes and allows for the dependence of the convexity property on

the specification of the considerations used to construct preferences.

(c) It generalizes standard convexity for Euclidean spaces, as will be shown

later.

(d) It does not require any algebraic structure.

Example: Left and Right

Let X = [0,1], and suppose that Λ contains two orderings: the rightist DR

(which ranks elements to the right higher) and the leftistDL (which ranks

elements to the left higher). A preference relation is single-peaked if:

(i) it has a unique maximum point (peak) in X ; and

(ii) it is strictly increasing below the peak and strictly decreasing above it.

Claim: Let Λ= {DL ,DR} and X = [0, 1]. A continuous preference relation

is Λ-strictly convex if and only if it is single-peaked.

Proof: Suppose % is singled-peaked. At any b > peak, the ordering DL

is critical, while at any b < peak the ordering DR is critical. At the peak,

both orderings are critical.
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Suppose% is Λ-strictly convex. Since the preferences are continuous

and X is compact, there is a %-maximal element. It is unique since if

there are two%-maximal elements y < z , and x is between y and z , then

y DL x and z DR x and both y and z are weakly preferred to x . Therefore,

there is no critical direction at x .

Let M be the %-maximal element. For every y < x < M , the critical

ordering at x must be DR and thus y ≺ x . Therefore, % is strictly

increasing to the left of M . Likewise, for every x >M , the critical ordering

must be DL , and % is strictly decreasing to the right of M . Thus, the

preferences are single-peaked with the peak at M . �

The next example shows that, for continuous preferences, the Λ-convexity

notion used here generalizes the standard notion of convex preferences on

Euclidean spaces.

Example: Euclidean Space with Algebraic Linear Orderings

Let X be an open convex subset of a Euclidean space. For any vector

v 6= 0, define the algebraic linear ordering ≥v by x ≥v y if v ∙x ≥ v ∙ y . Let

Ψ be the set of all algebraic linear orderings.

Claim: Let% be a continuous preference relation on X . Then:

% is convex by the standard definition if and only if % is Ψ-convex.

Proof: Assume % is convex by the standard definition. That is, for every

b ∈ X , the set U�(b ) = {z | z � b} is convex. Since% is continuous, by the

separating hyperplane theorem, there exists ≥v ∈ Ψ such that for every

x ∈U�(b ) it holds that x >v b . That is, ≥v is a critical direction.

Assume % is Ψ-convex. Let a , c be elements in X such that a , c � b ,

and let z be an element on the line between a and c . By Ψ-convexity,

there is a critical direction ≥v at z . Then, z ≥v a or z ≥v c or both, and

since& is Ψ-convex, it follows that z % a or z % c , and thus z � b . �
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Construction of Convex Preferences: For a finite set X , if all orderings in Λ

are strict, then the following procedure builds a Λ-convex preference relation:

Take an alternative x1 which is at the bottom of one of the primitive orderings,

and place it at the bottom of %. Then, let x2 be an alternative at the bottom of

X −{x1}with respect to one of the primitive orderings, and place it (strongly or

weakly) above x1. Continue this procedure until all alternatives are exhausted.

The constructed preference is Λ-convex since the position of each b ∈ X in %

was determined when b was at the bottom of some primitive ordering, which

is then a critical direction at b since any strictly preferred alternative is ranked

strictly higher than b by that ordering.

If X is finite and all orderings in Λ are strict, then every Λ-convex preference

relation % can be constructed by the procedure described above (see Richter

and Rubinstein (2019)): To apply the construction to obtain%, at every stage we

must identify an alternative and a primitive ordering D so that the alternative

is both%-minimal andD-minimal from among the remaining alternatives. To

start, pick x ∈ X which is%-minimal, and letD ∈Λ be a critical direction at x . If

x isD-minimal, then set x1 = x . If not, then pick y which is minimal according

to the sameD. The alternative y is also%-minimal sinceD is a critical direction

at x and x D y , and then set x1 = y . Continue inductively with the remaining

alternatives.

Utility Representation: We say that a preference relation % over X has a Λ-

maxmin representation if there is a profile of functions (UD)D∈Λ such that for

every D ∈ Λ the function UD is a utility representation of D and the function

U (x ) =minDUD(x ) is well-defined and represents %.

IfΛ is finite and% has aΛ-maxmin representation (UD), then% isΛ-convex:

For any b ∈ X , take the orderingD∈Λ for which UD(b ) is minimal. The ordering

D is a critical direction at b because b D x implies UD(b ) ≥ UD(x ) and thus,

U (b ) ≥U (x ) and b % x . In Richter and Rubinstein (2019), it is shown that for

finite X , the converse is also true: any Λ-strictly convex preference relation has

a Λ-maxmin representation.
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The existence of such a representation means that we can identify every

alternative in the set X by a vector of numbers in RΛ such that:

(i) for every primitive ordering, the values that are attached to the elements in

X at the corresponding coordinate are consistent with that primitive ordering’s

ranking; and

(ii) the preferences are represented by the minimum value attached to an

alternative across the different dimensions.

3.4 Primitive Equilibrium

In the canonical consumer model, the set of alternatives (bundles) is a subset

of a Euclidean space and the following holds:

(i) Agents have standard convex preferences.

(ii) The “more expensive than” ordering is induced by a linear price system.

In the language of this chapter:

(i) Agents have Ψ-convex preferences where Ψ is the set of all algebraic linear

orderings (as shown in Section 3.3).

(ii) The “more expensive than” ordering ≥p on the set of alternatives (defined

by x ≥p y if p ∙x ≥ p ∙ y ) is a member of Ψ.

An important point is that the same set of primitive orderings appears in

(i) and (ii) above. This suggests two new definitions. First, we enrich the

notion of an economy with a set of primitives orderings Λ and require that

all agents’ preference relations are Λ-convex. We refer to such an economy by

the term convex economy. Second, we refine the status equilibrium notion and

require that the public ordering is one of the primitive orderings in Λ. We refer

to such an equilibrium as a primitive equilibrium. Formally:
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Definition: Convex Economy

A convex economy is a tuple ‹N , X , (%i )i∈N , F,Λ› where ‹N , X , (%i )i∈N , F ›

is an economy, Λ is a set of primitive orderings over X , and all preferences

are Λ-convex.

Definition: Primitive Equilibrium

Let ‹N , X , (%i )i∈N , F,Λ› be a convex economy. A primitive equilibrium is

a status equilibrium ‹D, (x i )i∈N ›whereD ∈Λ.

Obviously, any primitive equilibrium is a status equilibrium, and when Λ is

the set of all orderings, any status equilibrium is a primitive equilibrium.

Example: The Give-and-Take Convex Economy

We return to the give-and-take economy. Recall that X = [−1,1] and F

is the set of all profiles that sum up to 0. Let Λ consist of the two natural

orderings: the rightistDR (which favours taking) and the leftistDL (which

favours giving). Assume that every agent i holds continuous Λ-strictly

convex preferences (with a single peak denoted by peaki ).

When Σi peaki = 0, there is no conflict of interest in the economy and

either primitive ordering, together with all agents choosing their peaks,

is a primitive equilibrium. In fact, these are the only primitive equilibria

(if ‹DL , (x i )i∈N › is an equilibrium, then peaki ≤ x i for all i and therefore,

x i = peaki for all i ).

A more interesting case is Σi peaki > 0 where agents wish to take more

than they wish to give. Let F≤ be the set of all feasible profiles with all

agents at or to the left of their peaks. We now verify that F≤ is equal

to the set of all Pareto-optimal profiles. Any (x i ) ∈ F≤ is Pareto-optimal

because any profile (y i ) that Pareto-dominates it must rank x i ≤ y i for all

i , with at least one strict inequality; however, such a profile is infeasible

because 0 = Σx i < Σy i . On the other hand, if (x i ) is feasible and not



78 Chapter 3. Status and Indoctrination

in F≤, then peaki < x i for some agent i and, by the assumption that

Σi peaki > 0, there is an agent j for whom x j < peakj . Transferring some

small amount from i (who takes too much) to j (who gives too much)

would be a feasible Pareto improvement. The following claim shows that

the First and Second Welfare Theorems hold for this example.

Claim: In the give-and-take convex economy with Σi peaki > 0, the

primitive equilibria are all tuples ‹DR , (x i )i∈N › where (x i ) is a Pareto-

optimal profile.

Proof: A pair ‹DL , (x i )i∈N › cannot be a primitive equilibrium since

then peaki ≤ x i for all i and thus 0 < Σi peaki ≤ Σi x i . If ‹DR

, (x i )i∈N ›„ is a primitive equilibrium, then (x i ) is in F≤, hence Pareto-

optimal. Obviously, any pair ‹DR , (x i )i∈N ›where (x i ) is in F≤ is a primitive

equilibrium. �

The rightist ordering reflects the norm that an agent should not take

more (or not give less) than his assignment. This is a reasonable norm

for governing a voluntary public fund in a society where the “aggregate”

tendency of agents is to take rather than give. Under the alternative

interpretation of status, the public is indoctrinated with the idea that

giving less or taking more than expected is shameful.

Example: The Consensus Economy

In this example, different political positions are represented by points on

a line. The (finite or infinite) set X ⊆ R consists of all possible political

positions. As in the previous example, the set of primitive orderings

Λ consists of the rightist and the leftist orderings, and every agent i

has a continuous and Λ-strictly convex preference relation with a peak

denoted by peaki . Denote by l the leftmost peak and by r the rightmost

peak, and assume that −1< l < r < 1. Harmony requires consensus, and

thus F is the set of all constant profiles. The set of Pareto-optimal profiles
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consists of all profiles (x ∗, . . . ,x ∗)with x ∗ ∈ [l , r ].

−1 1

l = peak1 peak2 peak3 = r

Figure 3.2 Primitive equilibrium positions – red; Pareto-optimal positions – green

The pair ‹DL , (x ∗, ...,x ∗)› is a primitive equilibrium if and only if r ≤ x ∗.

Likewise, the pair ‹DR , (x ∗, ...,x ∗)› is a primitive equilibrium if and only if

x ∗ ≤ l . Therefore, except for the boundaries, the primitive equilibrium

profiles and the Pareto-optimal profiles are almost completely disjoint.

Thus, the First and Second Welfare Theorems both fail for this economy.

Example: A Convex Economy with No Primitive Equilibrium

Primitive equilibria can fail to exist even when a status equilibrium

exists. Consider the convex housing economy with four agents and four

houses arranged on a line a −−b −−c −−d , with Λ = {DL ,DR}. Agents

1 and 2 hold the preferences DL , while 3 and 4 hold the preferences DR .

A status equilibrium exists (for example, the profile (a ,b , c , d ) with the

public ordering a Pd Pb Pc ). However, there are no primitive equilibria

since any primitive ordering bottom-ranks an extreme alternative z

(which is either a or d ) and since there are two agents who top-rank z ,

at least one of them is not assigned z and strictly prefers z , violating the

definition of primitive equilibrium.

3.5 A First Welfare Theorem

We have just seen that the consensus economy has primitive equilibrium

profiles that are not Pareto-optimal. The following are two other illuminating

examples in which primitive equilibrium profiles can be non Pareto-optimal:

(i) In a single-agent convex economy, every feasible alternative x ∗ (preference-

maximal or not) together with a critical direction of the preferences at x ∗ is a
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primitive equilibrium.

(ii) In a convex economy where all agents’ preferences are equal to the same

primitive orderingD, every feasible profile (whether it is Pareto-optimal or not)

combined with the public ordering D is a primitive equilibrium.

The following condition on convex environments, ‹N , X , F,Λ›, plays a key

role in explaining why the First Welfare Theorem is valid in the standard

division economy but not in the above examples.

Definition: Condition D

A convex environment ‹N , X , F,Λ› satisfies condition D if there is no

primitive ordering D and two distinct feasible profiles (a i ) and (b i ) such

that b i B a i or b i = a i for all i .

Three prominent convex economies that satisfy condition D are: (i) the

housing economy with any set of primitive orderings, (ii) the standard division

economy with Λ being the set of all algebraic linear orderings and F requiring

that all goods are fully allocated, and (iii) the give-and-take economy. The

following proposition shows that condition D is necessary and sufficient for

the First Welfare Theorem.

Proposition 3.2: A First Welfare Theorem

Let ‹N , X , F,Λ› be a convex environment.

(i) If the convex environment satisfies condition D , then for any profile

of Λ-convex preferences (%i )i∈N any primitive equilibrium profile (a i ) of

the convex economy ‹N , X , (%i )i∈N , F,Λ› is weakly Pareto-optimal (there

is no other feasible (b i ) such that for all i either b i �i a i or b i = a i ).

(ii) If the convex environment fails condition D , then there are Λ-convex

preferences (%i )i∈N such that the convex economy ‹N , X , (%i )i∈N , F,Λ›

has a primitive equilibrium profile that is not weakly Pareto-optimal.
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Proof:

(i) Consider a primitive equilibrium ‹D, (a i )›. If (a i ) is not weakly Pareto-

optimal, then there is another feasible profile (b i ) such that for all i either

b i �i a i or b i = a i . Then, for all i , either b i B a i or b i = a i , contradicting

condition D .

(ii) Since condition D fails, there exist two distinct feasible profiles, (a i )

and (b i ), and a primitive orderingD such that for all i , a i Bb i or a i =b i .

Extend the convex environment to a convex economy by endowing each

agent with the same Λ-convex preference relation D. Then, ‹D, (b i )› is a

primitive equilibrium that is not weakly Pareto-optimal.

Note that when condition D is satisfied, every primitive equilibrium profile

is weakly Pareto-optimal, but it might be not Pareto optimal. For example, for

the housing economy with two houses, two agents, preferences a �1 b and

a ∼2 b , and any set of primitive orderings, condition D holds, but ‹a �b , (b , a )›

is a primitive equilibrium with a Pareto-nonoptimal profile.

3.6 A Second Welfare Theorem

We have seen that the Second Welfare Theorem does not generally hold.

Essentially, it requires the following Richness property:

Definition: Richness

The convex economy ‹N , X , (%i ), F,Λ› satisfies Richness if the following

holds: Let (a i ) be a feasible profile and Di and Dj be two different

primitive orderings such that (recall the notation B (D, a i ) = {x | a i D x }):

(i) a i is%i -maximal in B (Di , a i ) but not in B (Dj , a i ); and

(ii) a j is%j -maximal in B (Dj , a j ) but not in B (Di , a j ).

Then, there is a pair of alternatives (b i ,b j ) 6= (a i , a j ) such that:

(I) (b i ,b j , a−i ,j )∈ F and (II) (b i ,b j ) Pareto-dominates (a i , a j )

(That is, b i %i a i and b j %j a j with at least one strict preference.)
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The Richness property is illustrated in Figure

3.3 using an Edgeworth box. It states that,

for any feasible profile (a i ), if D1 is a criti-

cal direction for agent 1 at a 1 and D2 is a

critical direction for agent 2 at a 2, and the

directions are not identical, then there is a

feasible mutually beneficial reconfiguration of

their bundles (b 1,b 2), which leaves all other

agents unchanged.

•

•

%2

%1

D2
D1

(a 1, a 2)

(b 1,b 2)

Figure 3.3 Richness

Proposition 3.3: A Second Welfare Theorem

Let ‹N , X , (%i )i∈N , F,Λ› be a convex economy that satisfies Richness.

Then, any Pareto-optimal profile is a primitive equilibrium profile.

Proof:

Let (x i )i∈N be a Pareto-optimal profile. Let Oi be the set of all critical

directions of%i at x i (that is, the set of all D∈ Λ satisfying that for any z ,

if z �i x i , then z B x i ). By the Λ-convexity of the preferences, Oi 6= ; .

If ∩iOi were empty, then there would be two agents i and j such

that Oi and O j are non-nested sets. Take Di∈ Oi\O j and Dj∈ O j \Oi .

The element x i is %i -maximal in B (Di ,x i ) but not in B (Dj ,x i ), and

analogously for agent j . By the Richness property, there is a pair of

elements (b i ,b j ) such that the modified profile obtained by replacing the

pair (x i ,x j ) with (b i ,b j ) is feasible and Pareto-dominates (x i )i∈N , which

contradicts the Pareto-optimality of (x i ). Thus, there existsD∈∩iOi , and

therefore, ‹D, (x i )i∈N › is a primitive equilibrium.

In Richter and Rubinstein (2015), it is shown that under the following two

additional assumptions the Richness property is also necessary for the Second

Welfare Theorem to hold: (i) differentiability of preferences and (ii) there are no

two alternatives, x and x ′, such that x D x ′ for all primitive orderingsD.
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3.7 Primitive Equilibrium – Examples

Example: The Division Economy

Let X = RL
+ be the set of bundles in an L-commodity world. Let z = (z l )

be the vector of total endowment which has to be fully divided, that is,

(x i ) is feasible if Σn
i=1x i = z . Let Ψ+ be the set of all positive algebraic

orderings, namely all ≥v where v ∈ RL
+\{0}. Let the set of primitive

orderings Λ be a non-empty (finite or infinite) subset of Ψ+. All agents

hold monotonic Λ-convex preference relations. Two simple cases: When

Λ contains a single ordering ≥v , all agents hold the same preference

relation, %=≥v . When Λ = {≥(1,0),≥(0,1)}, every indifference curve is

“right-angled”.

The First Welfare Theorem holds since the economy satisfies condi-

tion D and thus, by Proposition 3.2, any primitive equilibrium profile is

weakly Pareto-optimal. The Richness property used in Proposition 3.3

holds and thus any Pareto-optimal allocation is a primitive equilibrium

profile. Note that this is somewhat stronger than the textbook Second

Welfare Theorem which states that any Pareto-optimal allocation is

an equilibrium allocation supported by some linear ordering while

Proposition 3.3 states that the equilibrium public ordering can be drawn

from Λ.

Example: The Set Allocation Economy

A non-empty finite set of distinct indivisible goods Z is to be partitioned

among the agents. Unlike in the housing economy, an agent can have

more than one good or none at all. Let X be the set of all subsets

of Z . We will use lower-case letters for goods and the Greek symbols

Θ and Φ for collections of goods. The set F contains all profiles that

allocate each item in Z to exactly one agent. For every v , a positive-

valued function on Z , let Dv be the ordering of X represented by the
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utility function v (Θ) = Σz∈Θv (z ). That is, v (Θ) is the sum of the v -

values attached to the individual items in the set Θ. Let Λ be the set of

such strict orderings. It turns out (see Richter and Rubinstein (2019))

that the Λ-convex preferences are exactly all preferences that are weakly

monotonic with respect to the inclusion relation. We assume that all

agents’ preference relations are strict and Λ-convex.

In this economy, a primitive equilibrium has the interpretation that

a price is attached to each good and the price of a collection of goods is

the sum of the prices of the goods in the collection. In contrast, a status

equilibrium has the interpretation that there is a price for each collection.

Claim: For the set allocation economy: the set of primitive equilibrium

profiles ⊆ the set of Pareto-optimal profiles ⊆ the set of status equilib-

rium profiles, and these inclusions can be strict.

Proof: To establish the first inclusion, by Proposition 3.2 it suffices to

verify that condition D holds. Take a primitive ordering Dv . For any two

distinct feasible profiles, (Θi ) and (Φi ), it holds that Σi v (Θi ) = Σi v (Φi ) =

v (Z ). Thus, it cannot be that v (Θi )≥ v (Φi ) for all i with at least one strict

inequality.

However, there can be Pareto-optimal profiles that are not primitive

equilibrium profiles. For example, let Z = {a ,b , c , d } and n = 2. Both

agents have preferences that rank any cardinally larger set higher and are

therefore, Λ-convex. To simplify notation, denote the set of goods {x , y }

as x y . Table 3.1 depicts the agents’ preferences over two-element sets:

%1 %2

a c ,b d a d ,b c

ab c d

a d ,b c , c d ab , a c ,b d

Table 3.1 Preferences with a Pareto-optimal profile that is not a primitive
equilibrium profile (highlighted).
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The profile (x 1,x 2) = (ab , c d ) is Pareto-optimal. However, there is no

public ordering ≥v that supports this profile as a primitive equilibrium.

If there were, then a c >v ab (to ensure that ab is optimal for agent 1),

which implies that v (c ) > v (b ). Similarly, we can conclude that v (b ) >

v (d )> v (a )> v (c ), a contradiction.

For the second inclusion, recall that by Proposition 3.1, any Pareto-

optimal profile is a status equilibrium profile. However, there are

set allocation economies with status equilibrium profiles that are not

Pareto-optimal. For example, suppose that Z = {a ,b , c , d }, n = 2, and

both agents have the same Λ-convex preferences %∗ satisfying that the

sets a c and b d are%∗-superior to ab and c d . Then, ‹P =%∗, (ab , c d )› is

a status equilibrium that is not Pareto-optimal. �

This example demonstrates a stark contrast between equilibria with

item-pricing (where the price of a bundle is the sum of the individual

items’ prices) and those with bundle-pricing (where a price is attached

to each bundle). The following table summarizes the above claim:

Item-pricing Bundle-pricing

equilibria equilibria

First Welfare Theorem Ø X

Second Welfare Theorem X Ø

Table 3.2 Depiction of the Claim

3.8 Initial Status Equilibrium

In this section, we extend the definition of a status equilibrium to cover

extended economies. To remind the reader, an extended economy is

an economy with the specification of an additional feasible profile (e i )i∈N

interpreted as an “initial profile”. It specifies an alternative for each agent which
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he has the absolute right to choose, independently of other agents’ choices

and of the equilibrium parameters. When the alternatives are assets, the initial

profile can be thought of as specifying initial ownership.

Definition: Initial Status Equilibrium

Given an extended economy ‹N , X , (%i )i∈N , F, (e i )i∈N ›:

An initial status equilibrium is a pair ‹P , (x i )i∈N › where P is an ordering

on X and (x i ) is a feasible profile such that every agent i ’s assigned

alternative x i is%i -optimal in his “budget set” B (P , e i ) = {x ∈ X | e i Px }.

In an initial status equilibrium, an agent’s choice set consists of all alternatives

that are weakly P-inferior to his initial alternative. In contrast, in a status

equilibrium, an agent’s choice set consists of all alternatives that are weakly

P-inferior to his equilibrium alternative.

Two comments:

(i) If x i is %i -maximal in B (P , e i ), then x i is also %i -maximal in B (P ,x i ).

Thus, any initial status equilibrium of an extended economy is also a status

equilibrium of the underlying economy.

(ii) If ‹P , (x i )› is a status equilibrium, then for every strict ordering P ′ which

is a tiebreaking of P , the pair ‹P ′, (x i )› is also a status equilibrium. This is

not the case for an initial status equilibrium: Consider the extended housing

economy with two houses a and b , two agents, initial profile (e 1, e 2) = (a ,b ),

and preference relations b �1 a and a �2 b . The public ordering that equally

ranks a and b and the profile (b , a ) constitute an initial status equilibrium for

the extended economy. However, breaking this indifference will invalidate the

equilibrium since one of the two agents will not be able to “afford” the other

house.

Even though a status equilibrium exists when a Pareto-optimal profile does

(Proposition 3.1), the following example demonstrates that the existence of an

initial status equilibrium is not guaranteed even for finite extended economies.
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Example: An Extended Jobs Economy

Consider the jobs economy of Section 3.2 with 3 agents, two jobs a and

b , and capacities n a = 2 and nb = 1. Assume that agents 1 and 2 prefer b

and agent 3 prefers a .

There are two Pareto-optimal profiles (b , a , a ) and (a ,b , a ), both of

which are status equilibrium profiles (with the public ordering b Pa ). If

either of those profiles is the initial profile, then it is also an initial status

equilibrium profile.

However, if the initial profile is (a , a ,b ), where each agent starts with

the alternative he dislikes, then an initial status equilibrium does not

exist. To see why, note that an equilibrium public ordering cannot rank

a weakly above b , because then agents 1 and 2 would both choose b ,

violating feasibility. Nor can it be that b is ranked strictly above a ,

because then all three agents would choose a , again violating feasibility.

The “problem” is that the initial status equilibrium concept does not

allow for the exchange of a and b between 1 and 3 (or between 2 and

3) due to the equilibrium concept’s inability in allowing different budget

sets for two agents with the same initial alternative.

The reader may wonder why no equilibrium exists in this extended

economy whereas an equilibrium does exist in the standard competitive

market model. The reason is that, in the standard competitive market

model there is also money in the economy and a monetary amount

can be attached to the transaction of exchanging a for b so that at

least one of the two agents who prefer b to a would be indifferent

between conducting the transaction or refraining from it. Then, the

public ordering in the standard market is not merely ordinal but cardinal,

indicating the monetary amount required to exchange a lower-ranked

good for a higher-ranked one.

Thus, the existence of an initial status equilibrium is not guaranteed when the

initial profile assigns identical elements to different agents. However, whenever
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every agent has a distinct initial alternative, the following proposition estab-

lishes the existence of an initial status equilibrium. Furthermore, it shows

that if in addition there is a strict partial ordering R such that all individual

preferences are R-monotonic (that is, if a Rb then a �i b for all i ), then there

is an R-monotonic equilibrium public ordering. Taking R to be the empty

binary relation gives the baseline result of Shapley and Scarf (1974) (presented

in Section 1.3).

Proposition 3.4: Existence of an Initial Status Equilibrium

Any extended economy ‹N , X , (%i )i∈N , F, (e i )i∈N › where all initial alter-

natives are distinct has an initial status equilibrium. If, in addition,

all preference relations are R-monotonic with respect to a strict partial

ordering R , then the public ordering can be taken to be R-monotonic as

well.

Proof:

Let Y be the set of alternatives in the initial profile (e i ). For any Z ⊆ Y ,

define M (Z ) = {i | e i = z for some z ∈ Z } to be the set of agents initially

assigned to alternatives in Z . Following the construction

in Proposition 1.5, select a sequence of top trading

cycles, B 1, . . . , B T . Define a partial ordering P on Y by

a Pb if a ∈ B t , b ∈ B s , and t ≤ s (all elements in the same

B t are P-indifferent). We need to extend P to all of X .

Partition X\Y into sets A1, . . . , AT+1 as follows: For any

x ∈ X\Y , let x ∈ At where t is the smallest index such

that there is an agent i ∈ M (B t ) who strictly prefers x

over all elements in B t . If there is no such t , then let

x ∈ AT+1. Place the elements in any At below B t−1 and

above B t . Define P on At as any arbitrary expansion of

R . To see that P expands R everywhere, consider a and

b such that a Rb (and thus, all agents prefer a to b ).

AT+1

B T

AT

B 2

A2

B 1

A1

Figure 3.4
The Con-
struction
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• If b ∈ Y , then b ∈ B t for some t . If a ∈ Y , then it must belong to

an earlier trading cycle because no agent would top-rank b when a is

present, and thus, a Pb . If a /∈ Y , then the agent who top-ranks b ∈ B t

prefers a to all elements of B t . Therefore, a ∈ As with s ≤ t , thus, a Pb .

• If b ∈ At for some t ≤ T , then for some i ∈M (B t ) it holds that b �i y

for all y ∈ B t . Thus, i also prefers a over all y ∈ B t . If a ∈ Y , then a

belongs to a previous trading cycle and if a /∈ Y , then it belongs to As

with s ≤ t . In either case a Pb (for the case that a ,b ∈ At , recall that P

expands R on At ).

• If b ∈ AT+1 and a /∈ AT+1, then a Pb and if a ∈ AT+1, then a Pb because

P expands R on AT+1.

The profile (y i ), which assigns to each agent i ∈ M (B t ) the element y i

that e i points to in the top trading cycle B t , together with P , constitutes

an initial status equilibrium: First, (y i ) is feasible since it is a permutation

of the initial profile. Second, for every i , e i Py i because y i and e i are in

the same cycle. Third, suppose that z �i y i for some agent i . Then,

if z ∈ Y , it belongs to an earlier cycle. If z /∈ Y , then i prefers z to all

elements of B t , and so z ∈ As for s ≤ t . In either event, z Py i .

Example: The Extended Give-and-Take Economy

Extend the give-and-take economy by adding an initial profile (e i )i∈N

that is feasible, Σe i = 0. Each agent i for whom e i > 0 has the right to

take e i from the public fund, while each agent i for whom e i < 0 has the

right to contribute −e i . Remember that every agent i has continuous

and strictly convex (and thus single-peaked) preferences with a peak at

peaki . As before, we focus on the case where Σpeaki > 0. Here, we adopt

the interpretation that a Pb means that b is more socially beneficial than

a . Each agent chooses how much to give or take from the alternatives

that are more socially beneficial than his initial assignment.
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The existence of an initial status equilibrium for this extended

economy is guaranteed by Proposition 3.4 only for the case that all e i

are distinct. Here, we construct a simple initial status equilibrium with

an attractive structure which also demonstrates existence even when the

e i are not distinct.

Let Pz be the ordering that places all alternatives between −1 and

z equally at the bottom and is strictly increasing from z to 1. Every

agent i faces the interval budget set [−1,max{z , e i }] and so has a unique

optimal choice which is continuous in z , weakly increasing, and strictly

increasing for z ∈ [e i , peaki ] (in the case that e i < peaki ). Given the total

indifference ordering P1, every agent would choose peaki , and the sum of

their chosen actions would be Σi peaki > 0. Given the strictly increasing

ordering P−1, every agent i chooses an alternative x i ≤ e i and the sum of

the chosen alternatives is non-positive since Σi x i ≤ Σi e i = 0. Thus, by

the continuity of the agents’ choices in z , there is a z ∗ ∈ [−1,1] for which

the sum of the chosen elements is 0. The ordering Pz ∗ together with the

profile of optimal choices from the corresponding budget sets is an initial

status equilibrium.



4 Biased Preferences Equilibrium

In any economy, the core tension is between agents’ wants and societal

feasibility, and an equilibrium notion finds a balance between them. In

Chapters 2 and 3, we investigated equilibrium notions that invoke various

social mechanisms to achieve that balance: norms emerge that affect agents’

opportunity sets such that if every agent optimizes his preference relation, then

the profile of optimal choices is feasible.

This chapter takes a different approach. We follow Rubinstein and Wolinksy

(2022) who propose a solution concept which captures a different social

mechanism that can resolve the fundamental conflict between wants and

feasibility: agents’ preference relations are systematically biased. The bias does

not affect the agents’ opportunity sets but, rather, their preferences, which are

systematically biased in such a way that the profile of agents’ biased optimal

choices is feasible.

Recall Aesop’s classic fable (translation from Gibbs (2002)):

Driven by hunger, a fox tried to reach some grapes hanging high

on the vine but was unable to, although he leaped with all his

strength. As he went away, the fox remarked “Oh, you aren’t even

ripe yet! I don’t need any sour grapes.”

In this fable, there is one agent, the Fox, and two alternatives, “picking the

grapes” and “not picking the grapes”. The economic problem is that the Fox

initially prefers the former alternative but only the latter alternative is feasible.

The conflict in the fable is resolved not by restricting the Fox’s opportunities

but, rather, by biasing his preferences so that he now prefers not to pick the

grapes (which in his mind are turned to “sour grapes”).

©2024 Michael Richter and Ariel Rubinstein, CC BY-NC-ND 4.0 https://doi.org/10.11647/OBP.0404.04
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Preference biases are not just a matter for fables. Introspection tells us that

feasibility often influences our preferences in everyday life. We often assign

greater value to what we can obtain (such as being an economist) and less to

what we cannot (such as being a mathematician). However, we do not deny

that there are also circumstances where the opposite is true, and the more

unobtainable something is the more desirable it becomes.

The Fox biased his preferences, and harmony was achieved. Similarly,

we envision biases as a mechanism for bringing harmony to a multi-agent

economy. These biases, like prices, will be systematic and apply uniformly

to all agents. Every agent’s final preferences are determined by both the

commonly shared bias and his initial preferences. Thus, in contrast to a

competitive equilibrium where prices affect choice sets and preferences are

fixed, in a biased preferences equilibrium biases affect preferences and choice

sets are fixed. This illustrates the dual roles played by prices and preferences in

standard economic settings.

Note the difference between this chapter’s approach and the one taken by

other economic models. In some of those models, the change in preferences is

a side effect of an agent’s action (for example, smoking may influence the desire

to smoke in the future, as modelled by Becker and Murphy (1988)). In others,

the change in preferences is the outcome of a deliberate action by an interested

party (for example, advertisers seek to influence customers’ preferences to

their own advantage, as modelled by Bagwell (2007)). By contrast, this chapter

models social situations in which preferences invisibly respond to feasibility

pressures, just as price adjustments achieve harmony in a competitive market.

4.1 The Economy and the Equilibrium Concept

In this chapter, the notion of an economy is modified to accommodate

modelling systematic preference biases.
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Definition: An Economy

An economy is a tuple ‹N , (X i )i∈N , K , ((u i
k )k∈K )i∈N , F ›where:

• For each agent i , X i is his fixed personal choice set.

• The set K is a set of considerations common to all agents.

• For each agent i , (u i
k )k∈K is a tuple of consideration functions over X i

such that i ’s utility function over X i is Σk u i
k (x ).

• The set of feasible profiles, F , is a subset of Πi∈N X i .

This definition modifies our notion of an economy in two ways. First, and

less importantly, different agents can have different choice sets. This allows for

modelling a variety of settings. For example, an exchange economy with a set

of goods K , a fixed price vector p , and initial endowment profile (e i ) can be

modelled by setting X i = {x ∈ RK
+ | p ∙ x = p ∙ e i } and F = {(x i ) |Σx i =Σe i }.

Another example is a two-sided matching market with two equally-sized

populations A and B . This can be modelled by setting X i = B for any i ∈ A

and X j = A for any j ∈ B , while F is the set of all profiles (x i ) for which for every

i , j , x i = j implies x j = i .

The second and more important modification of the original definition

of an economy is the use of a different notion of preferences. Rather than

specifying an ordinal preference relation over the set of alternatives, we use the

following type of utility function that enables us to model systematic biases.

All agents share the same set of considerations K . Each agent i is characterized

not by an ordinal preference relation, but by a vector of consideration functions

u i = (u i
k )k∈K where u i

k (x ) represents the impact of consideration k on his

overall evaluation of the alternative x . The consideration functions are not

constant and, where applicable, are differentiable. Agent i ’s overall utility from

an alternative x is the sum of the utilities obtained from those considerations,

i.e. Σk∈K u i
k (x ).

A preference bias is modelled as a systematic and uniform change in the

weights placed on the considerations. Let Λ = RK
++ be the set of biases. A bias
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λ= (λk )k∈K transforms every vector of consideration functions u = (u k )k∈K into

the vector of biased consideration functions T (u ,λ) = (λk u k )k∈K . That is, if an

agent i enters the model with the vector of consideration functions (u i
k ) and

the bias vector is (λk ), then the agent behaves as if his vector of consideration

functions is (λk u i
k ) and chooses from X i by maximizing Σk∈Kλk u i

k (x ). The

preferences are unbiased when λ = (c , . . . , c ) because (u i
k ) and (c u i

k ) induce

the same preferences. Thus, any bias can be normalized to sum to 1 and

therefore, can be naturally interpreted as a vector of weights on the different

considerations.

The specification of K consideration functions is important beyond induc-

ing an agent’s preference relation. Two vectors of consideration functions,

u = (u k ) and v = (vk ), can induce the same preference relation, and yet

their biased preferences, T (u ,λ) and T (v,λ), may induce different preference

relations, as shown in the following example:

Let K = {1,2}, X 1 = X 2 = {0, 1}× {0, 1} (the four corners of the unit square),

u 1(x ) = x1, u 2(x ) = 4x2, and v1(x ) = x1, v2(x ) = 2x2. Both (u k ) and (vk ) induce

the same preferences (1,1) � (0, 1) � (1,0) � (0,0), but when the bias vector

is λ = (3,1), the preferences induced by T ((u k ),λ) are unchanged while the

preferences induced by T ((vk ),λ) become (1,1)� (1,0)� (0,1)� (0,0).

On the other hand, when the set of alternatives X is the positive

orthant of an Euclidean space, any two additively separable, monotonic, and

differentiable utility functions that represent the same preferences on X are

transformed by the bias map T into the same biased preferences.

Claim: Preference Preservation in Euclidean Spaces

Let X = R|K |+ be the common set of alternatives. Let u = (u k )k∈K

and v = (vk )k∈K be vectors of consideration functions, so that both u k

and vk depend only on xk and are differentiable with strictly positive

derivatives. If u and v induce identical preference relations, then for any

λ, the biased preferences induced by T (u ,λ) and T (v,λ) are identical.
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Proof:

The case K = {1} is vacuous since the only admissible preference relation

is the increasing ordering on R+.

Let |K | ≥ 2. Since u and v represent the same preferences, then

at any x ∈ X the gradient of the utility function V (x ) = Σvk (xk ) is a

rescaling of the gradient of U (x ) = Σu k (xk ). That is, for every x , there

is a strictly positive scalar μ(x ) > 0 such that ∇V (x ) = μ(x )∇U (x ). It

suffices to show that μ(x ) is a constant μ since then v ′k (xk ) = μu ′k (xk )

for all k and xk , and therefore vk (xk ) = μu k (xk ) + ck for some ck . Thus,

Σλk vk (xk ) = Σλk (μu k (xk )+ck ) =μΣλk u k (xk )+Σλk ck and therefore, the

biased utility functions are an affine transformation of each other and,

as such, represent the same preferences over X .

To show that μ(x ) is a constant, notice that if two bundles x and y

share a coordinate xk = yk , then μ(x ) = μ(y ) since v ′k (xk ) = μ(x )u ′k (xk )

and v ′k (yk ) = μ(y )u ′k (yk ). If they do not share a coordinate, then let z be

a bundle such that z 1 = x1 and z 2 = y2. Since z shares a coordinate with

each of them, it must be that μ(x ) =μ(z ) =μ(y ).

Generalizing the bias concept. The bias notion has been formalized for

preference relations induced from an additively separable representation

Σk u k (x ). In particular, when X is a subset of a Euclidean space and u k is a

function only of xk , a bias vector (λk )multiplies the subjective tradeoff between

any two goods k and l by λk/λl .

This suggests a generalization of the bias concept to more general

preference relations where the biased preference tradeoffs are obtained by

systematically multiplying the agent’s unbiased tradeoffs. This generalization

can be shown when K = 2 and preferences are differentiable. More precisely,

for any preference relation%, denote the marginal rate of substitution between

k and l at a bundle x by MRSk ,l (x ,%). For every vector of biases (λ1,λ2), there

is another preference relation %′ for which MRS1,2(x ,%′) = λ1

λ2
MRS1,2(x ,%) for

every bundle x . However, this is not always possible when K > 2:
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Example: The Difficulty in Extending the Bias Notion

Let K = {1,2,3} and % be represented by u where u (x1,x2,0) = 2x1 and

u (x1,x2,1) = x1 + x2. Let the bias vector be λ = (λk ) = (1,2,1). Suppose

that there are biased preferences %λ such that for any two goods k and

l , MRSk ,l (x ,%λ) = λk

λl
MRSk ,l (x ,%) at every alternative x . Then:

(i) The MRS1,2 is unchanged (and remains∞) at every (x1,x2,0).

(ii) The MRS1,2 is changed from 1 to 1/2 at every (x1,x2,1).

(iii) The MRS1,3 is unchanged at any alternative.

By (i) and (iii), it holds that (3, 5, 1) ∼λ (4,5,0) ∼λ (4,6,0) ∼λ (2,6,1)

because u (3,5,1) = u (4,5,0) = u (4, 6, 0) = u (2,6,1). But then, (3,5,1) ∼λ

(2,6,1), contradicting (ii). Thus, there is no preference relation %λ for

which all biased marginal rates of substitution are λ-scaled versions of

the original.

We now define the solution concept. As explained above, harmony will be

achieved by a uniform social shift of the weights placed on the consideration

functions. An equilibrium consists of a profile (x i ) of alternatives and a bias λ

such that: (i) for every agent i , the alternative x i is optimal in X i according to

his biased preferences; and (ii) the profile is feasible.

Definition: Biased Preferences Equilibrium

A biased preferences equilibrium is a tuple ‹λ, (x i )›where λ ∈Λ and (x i ) is

a profile of choices, such that:

(i) For every agent i , the alternative x i is optimal in X i according to the

preferences induced by T (u i ,λ).

(ii) The profile (x i ) is in F .

We will refer to a profile of alternatives that is Pareto-optimal according to

the agents’ initial preferences as pre-Pareto optimal. Obviously, since agents

choose optimally given their biased preferences, a profile of biased preferences

equilibrium choices is always ex-post Pareto optimal.
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Example: The Kosher Economy

We return to the “kosher” economy with two pies of size 1. The feasibility

constraint stipulates that the total consumption of neither pie exceeds 1.

The consumption sets X i = {(a 1, 0) | 0≤ a 1 ≤ 1} ∪ {(0, a 2) | 0≤ a 2 ≤ 1} are

the same for all agents. Each agent i has two continuous and concave

consideration functions, v i
1(x1) and v i

2(x2), where xk is the amount

consumed of pie k . Denote v i
k ’s peak by peaki

k . Thus, each agent i will

choose either peaki
1 of pie 1 or peaki

2 of pie 2. Given a bias λ, he will

choose pie k only if λk v i
k (peaki

k )≥λl v i
l (peaki

l )where l is the other pie.

Let αi = v i
1(peaki

1)/v
i
2(peaki

2) and assume that all αi are distinct.

Without loss of generality, suppose that α1 > α2 > ∙ ∙ ∙ > αn . Given a bias

vector λ, denote μ=λ2/λ1. An agent i will choose peaki
1 of pie 1 if αi >μ,

peaki
2 of pie 2 if αi <μ, and will be indifferent between them if αi =μ.

In the following economy, there is a unique biased preferences

equilibrium profile, but it is not pre-Pareto optimal. Agents 1, . . . ,4

initially prefer to consume from the first pie (since their αi are above 1),

while agent 5 initially prefers to consume from the second (α5 < 1).

Agent αi peaki
1 peaki

2

1 5 0.3 0.2

2 4 0.6 0.2

3 3 0.5 0.1

4 2 0.1 0.7

5 1/3 0.3 0.1

Table 4.1 An equilibrium in the Kosher economy

The biased preferences equilibrium profile is unique: agents 1 and 2

choose their peaks from the first pie while the others choose their peaks

from the second pie. It is supported by any bias for which 3 ≤μ≤ 4. This

is not a pre-Pareto optimal profile since there is a surplus of 0.1 of the

first pie, and agent 4 initially prefers 0.1 of pie 1 to 0.7 of the second pie.
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Giving him the leftovers from the first pie is a Pareto improvement that is

impossible in the biased preferences equilibrium because blocking agent

3 from consuming from the first pie forces the bias to be such that agent

4 is also biased towards consuming a slice of the second pie.

Of course, an equilibrium may not exist. For example, if the above

table is modified so that peak3
2 = 0.4 (instead of 0.1), then no biased

preferences equilibrium exists.

In the rest of the chapter, we analyze the biased preferences equilibrium

for several examples: the give-and-take economy, the exchange economy with

fixed prices, and a few housing-type economies.

4.2 The Give-and-Take Economy

We return to an old friend: the give-and-take economy. Recall that, in this

economy, each agent decides how much to contribute to or withdraw from a

social fund, and feasibility requires that the total contributions equal the total

withdrawals. All agents face the same choice set [−1,1], where, as usual, a

positive number represents the amount taken from (and a negative number

the amount given to) the social fund. To fit it into the current framework, let

the two considerations be g (giving) and t (taking). The consideration g is

generous (people like to give), while the consideration t is selfish (people like to

take). Initially, an agent i ’s choice balances between these two considerations

by choosing the maximizer of u i
g (x ) + u i

t (x ), where u i
g is a strictly decreasing

function and u i
t is a strictly increasing function, both of which are strictly

concave. Denote by peaki the unique maximizer of u i
g (x )+u i

t (x ), which is agent

i ’s most-preferred choice in [−1, 1], and assume that it is interior.

Any bias λ pushes all agents’ preferences in the same direction by

systematically altering the tradeoff between generosity and selfishness. Denote

μ=λt /λg . Aμ above 1 biases the agents’ preferences towards selfishness, while

a μ below 1 biases the agents’ preferences towards generosity.



4.2 The Give-and-Take Economy 99

Under the above assumptions, there is a unique equilibrium profile, and it

is pre-Pareto optimal:

Proposition 4.1: Uniqueness and Pre-Pareto Optimality

(i) The give-and-take economy has a unique biased preferences

equilibrium (up to a rescaling of the bias vector).

(ii) The equilibrium profile is pre-Pareto optimal.

Proof:

(i) Given the bias (1,μ), each agent i optimizes u i
g (x )+μ ∙u

i
t (x ) and has a

unique optimal choice denoted by x i (μ). Since all of the x i functions

are increasing and continuous, so is the net overall “demand” from

the social fund, Σi x i (μ). This sum is positive when μ is sufficiently

large and negative when μ is sufficiently small. Therefore, there is a μ∗

for which the sum is zero, and ‹(1,μ∗), (x i (μ∗))› is a biased preferences

equilibrium. The parameter μ∗ is unique since x i (μ) is strictly increasing

when −1< x i (μ)< 1, and it must be that x i (μ∗) is interior for some i (if

μ≥ 1, then for every i , x i (μ∗)≥ peaki >−1 and it cannot be that for every

i , x i (μ∗) = 1; the case μ≤ 1 is analogous).

(ii) If μ∗ = 1, then every agent’s equilibrium choice is his unbiased first-

best. If μ∗ > 1, then every agent i chooses x i (μ∗) ≥ peaki , and any ex-

ante Pareto improvement (y i ) must satisfy y i ≤ x i (μ∗) with at least one

strict inequality, but that contradicts feasibility since 0 = Σx i (μ∗) > Σy i .

Thus, the equilibrium profile is pre-Pareto optimal. The case μ∗ < 1 is

analogous.

Note that in the biased preferences equilibrium, balancing the social fund

is a shared responsibility of all agents: when the sum of the agents’ peaks is

positive (i.e. there is an overall preference for taking), the equilibrium bias

(μ∗ < 1) overweighs generosity and every agent chooses a point below his peak.

This is essentially true for primitive equilibria (in every equilibrium profile all
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agents are assigned to alternatives weakly below their peaks). In contrast, in

a Y-equilibrium, there is a uniform cap on withdrawals and only the greediest

agents are impacted, and in a jungle equilibrium, only the weakest agents are

restricted.

4.3 The Fixed-Prices Exchange Economy

The next example is related to the literature on economies with fixed prices (see

Benassy (1986) and the references therein). Let X = RK
++ be the set of bundles

in a world with a set of goods K . Every agent i has an initial endowment

e i ∈ X , and exchange takes place according to a fixed price vector p = (pk ).

Accordingly, X i = {x ∈ X | p ∙ x = p ∙ e i }, and the set of feasible profiles is

F = {(x i )∈Πi X i |Σi x i =Σi e i }. All agents share the same considerations, one

for each good. Each consideration function u i
k (x ) is a function of only xk , which

is assumed to be increasing, twice-differentiable, and strictly concave.

In economies with fixed prices, rationing is typically the mechanism used

to achieve harmony. That is, upper bounds are established on the consumable

quantity of each good. In contrast, in a biased preferences equilibrium,

economic harmony is achieved by means of a systematic adjustment of

preferences.

Proposition 4.2: Biased Preferences Equilibria in Exchange Economies

with Fixed Prices

In any exchange economy with fixed prices:

(i) A biased preferences equilibrium exists.

(ii) All biased preferences equilibrium outcomes are pre-Pareto optimal.

Proof:

(i) To illustrate, consider the two-good two-agent case, which can be

depicted using an Edgeworth Box (see Figure 4.1). Assume that agents

do not like consuming on the boundary, i.e. the derivative of every
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consideration function u i
k at 0 is infinity. Let (x 1,x 2) be a Pareto-optimal

feasible allocation of e 1+ e 2, which always exists. Then, at (x 1,x 2), both

agents have the same marginal rate of substitution μ. If μ = p1/p2,

then no bias is needed, that is, ‹λ = (1,1), (x i )› is a biased preferences

equilibrium. If μ 6= p1/p2, then the bias λ = (p1, p2μ) modifies both

preferences so that the MRS1,2 of the biased preferences of each i at x i

is μλ1/λ2 = p1/p2. Thus, ‹λ, (x i )› is a biased preferences equilibrium.

(x 1,x 2)

p1

p2

u 1
u 1

u 2

u 2

(e 1, e 2)

λ (x 1,x 2)

p1

p2

T (u 1,λ)

T (u 2,λ) (e 1, e 2)

Figure 4.1 Equilibrium in an Edgeworth Box

For the case of more than two goods and any number of agents, Keiding

(1981) (following Balasko (1979)) showed that there is a vector q = (qk )

and an allocation (x i ) such that p ∙x i = p ∙e i for all i , and if y i �i x i , then

q ∙ y i > q ∙ x i . Therefore, for every agent i , any good l that he consumes

and any other good k , it holds that MRSk ,l at x i is bounded from above

by qk/ql . Consequently, by setting λ= (pk/qk )k∈K , it holds that for agent

i ’s biased preferences and any good l that he consumes, the MRSk ,l at x i

is bounded from above by pk/pl = λk qk/λl ql (the bound is an equality

if x i
k > 0). Therefore, for every agent i , given the price vector p and

the initial bundle e i , the bundle x i is optimal for i ’s biased preferences.

Thus, ‹λ, (x i )› is a biased preferences equilibrium.

(ii) Let ‹λ, (x i )› be a biased preferences equilibrium. Then, for each agent

i and any good l that he consumes, the MRSk ,l of the biased preferences

T (λ, u i ) at x i is bounded from above by pk/pl . Therefore, the MRSk ,l of



102 Chapter 4. Biased Preferences Equilibrium

his initial preferences at x i is bounded from above by pk /λk

pl /λl
. Thus, (x i )

is a Walrasian equilibrium outcome in the unbiased economy with price

vector
�

pk/λk
�

and initial endowment (x i ). Therefore, by the standard

First Welfare Theorem, (x i ) is pre-Pareto optimal.

We now consider an example with two goods and linear preferences where

the biased preferences equilibrium can easily be calculated.

Example: Linear Preferences

Suppose that there are two agents, two goods, and that for every agent

i , the two consideration functions are linear, that is, u i
1(x1) = x1 and

u i
2(x2) = αi x2 where every αi is a positive number. Consider the

configuration depicted in Figure 4.2:

T (λ, u 1)T (λ, u 2)u 1u 2u 1u 2T (λ, u 1)T (λ, u 2)

p1

p2

u 1

u 1

u 2

u 2

T (u 1,λ)

T (λ, u 1)

T (u 2,λ)

T (λ, u 2)

(e 1, e 2)
contract curve

biased preferences equilibrium

Figure 4.2 Biased linear preferences in an Edgeworth Box (dashed line = the
budget lines; black solid lines = initial preferences; red solid lines = biased
preferences; blue line = the contract curve for the initial preferences)

In this example (other configurations can be analyzed similarly):

(i) Agent 2 likes good 2 more than agent 1 does, that is, α2 >α1.

(ii) The ratio p1/p2 is greater than both agents’ (constant) personal

marginal rates of substitution, that is, p1/p2 > 1/α1 > 1/α2.
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(iii) In any feasible allocation, both agents must consume positive

amounts of good 1.

The economy is not in harmony because, given (ii), both agents wish to

purchase only good 2.

In any biased preferences equilibrium, there is an agent i who consumes

good 2, and by (iii), he also consumes good 1. By the linearity of the

preferences, agent i must be indifferent between all alternatives in X i ,

that is, p1/p2 = λ1/(αiλ2). If i = 1, then by (i), agent 2 does not consume

good 1, violating (iii). Thus, it must be that i = 2, and the bias satisfies

p1/p2 =λ1/(α2λ2).

Such a bias is part of the equilibrium depicted in Figure 4.2, where

agent 1 consumes only good 1, and agent 2 (who is indifferent between

all bundles in his budget set) consumes all of good 2 and the remainder of

good 1. It follows that this is the unique biased preferences equilibrium.

Failure of Individual Rationality: An interesting feature of a biased prefer-

ences equilibrium is that, even though it is pre-Pareto optimal, “Individual

Rationality” can fail: in an equilibrium, an agent might choose a bundle that

is inferior to his endowment bundle when judged by his initial preferences, as

in the previous example. By his original preferences, agent 1 is worse off in the

equilibrium than he was with his initial endowment, since he trades some of his

good 2 endowment for good 1, but ex-ante he would prefer to do the opposite.

Example: Non-Convex Preferences

In the standard exchange economy with non-convex preferences, a

competitive equilibrium may not exist: there may be no price vector for

which the sum of the demands equals the total bundle. Nevertheless,

there may be a price vector for which a biased preferences equilibrium

exists. Thus, prices and biased preferences together may achieve har-

mony when the standard competitive equilibrium tools fail to do so.
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To illustrate, consider the division economy where both agents have

the non-convex preferences represented by (x1)2 + 2(x2)2 and the initial

endowments are e 1 = (1, 1) and e 2 = (2,2). There is no standard

competitive equilibrium. Given any price vector, each agent will

consume only one of the two goods, and since the agents have the

same preferences, any equilibrium price vector must make each agent

indifferent between the two goods, i.e. p = (1,
p

2). But, then agent 2 will

demand more than 3 units of one of the goods.

In contrast, a biased preferences equilibrium exists. Let p = (2,1) and

λ = (8,1). Each agent’s biased utility function is 4(x1)2 + (x2)2. Agent 1’s

optimal bundles are (1.5,0) and (0, 3), and agent 2’s optimal bundles are

(3,0) and (0,6). Thus, the bias λ, together with the allocation x 1 = (0,3)

and x 2 = (3,0), is a biased preferences equilibrium in the exchange

economy with fixed prices p .

Note that agent 1 is initially poorer than agent 2, but in the

equilibrium, agent 1 is actually better off according to the initial

preferences!

4.4 Housing-Type Economies

We return to the classic housing economy of Shapley and Scarf (1974), in which

there is a set N of agents and an equally-sized set H of houses. Each agent i

chooses a single house, that is, X i = H . Let v i (h) > 0 be agent i ’s valuation of

house h. The model can be enriched to fit our framework by taking the set of

considerations to be H and setting u i
h(x

i ) = v i (h) if x i = h and 0 otherwise.

Given a bias vector (λh), an agent i derives utility λh v i (h) from house h.

Example:

The following table presents the consideration function values in a

housing economy with two agents.
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h1 h2

v 1(h) 4 3

v 2(h) 3 1

Table 4.2 House utilities

Both agents initially prefer house h1. To achieve harmony, the bias must

boost h2 so that one agent will choose it, but not to the extent that

both will. For example, a biased preferences equilibrium is obtained

by the bias (1,2), which results in agent 1 choosing h2 and agent 2

choosing h1. Of course, other biases are possible but, in all biased

preferences equilibria, agent 1 gets h2 and agent 2 gets h1. Note that,

in the biased preferences equilibrium profile, the product of the ex-ante

values (3 ∙3= 9) is larger than that in the other assignment (4 ∙ 1= 4). We

will see below that this is not a coincidence.

We say that a feasible profile (x i ) is Nash maximal if it maximizesΠi∈N v i (x i )

over all feasible profiles. We now show that the set of biased preferences

equilibrium profiles is precisely the set of Nash-maximal profiles and thus, any

biased preferences equilibrium profile is pre-Pareto optimal. The proof is a

direct application of Shapley and Shubik (1971) (see also Gale (1984) for a proof

using the KKM Lemma).

Proposition 4.3: Biased Preferences Equilibrium =Nash Maximality

In the housing economy, the set of biased preferences equilibrium

profiles is the set of Nash-maximal profiles.

Proof:

Let (hi )i∈N be a Nash-maximal profile, that is, it maximizes Σi∈N ln(v i (x i ))

over all feasible assignments. By Shapley and Shubik (1971), there exists

a price vector (ph) so that for each agent i , the house hi is a maximizer of
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ln(v i (x i ))−px i , and therefore, it is also a maximizer of v i (x i )/e px i . Thus,

‹(λh = 1/e ph )h∈H , (hi )i∈N › constitutes a biased preferences equilibrium.

In the other direction, let ‹λ, (hi )› be a biased preferences equilibrium

and (x i ) be any other assignment. For each i , λhi v i (hi ) ≥ λx i v i (x i ) and

therefore, Πiλhi v i (hi ) ≥ Πiλx i v i (x i ). Since Πiλhi = Πiλx i , it follows that

Πi v i (hi )≥Πi v i (x i ), that is, (hi ) is Nash maximal.

We proceed with two modifications to the housing economy:

Example: The Partnership Economy

As in Shapley and Shubik (1971), the agents are composed of two equally-

sized populations, A and B . Each agent chooses a unique partner from

the other population, that is, X i = B for any i ∈ A and X j = A for any

j ∈ B . A profile is feasible if for every i , j , if i chooses j , then j chooses

i . An agent i ’s valuation of a partnership with j is v i (j )> 0. Importantly,

the ex-ante valuations are assumed to be symmetric, that is, v i (j ) = v j (i ),

but the biased valuations might not be.

Example: Let A = {1,2} and B = {3, 4}. Table 4.3 presents the original

valuations (left bi-matrix) and the equilibrium biased valuations (right

bi-matrix). Each cell gives the values of i and j of being matched. The

Nash-maximal matching is 1↔4 and 2↔3 (depicted), which is a biased

preferences equilibrium with the bias λ= (2,1,2,1).

3 4

1 1, 1 3, 3

2 3, 3 4, 4

T (∙,λ)→
3 4

1 2, 2 3, 6

2 6, 3 4, 4

Table 4.3 A Biased Preferences Equilibrium

Claim: In the partnership economy, the set of biased preferences

equilibrium outcomes is the set of all Nash-maximal profiles.
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Proof: Let (a i ) be a Nash-maximal profile, that is, one that maximizes

Σi∈N ln(v i (x i )) over F . Since the utility functions are symmetric, i.e.

(v i (j ) = v j (i )), the profile (a i ) also maximizes both Σi∈A ln(v i (x i )) and

Σi∈B ln(v i (x i )) over F . Taking the agents to be A and the houses to be

B , Shapley and Shubik (1971) showed that a price vector (p j )j∈B exists,

such that for every agent i ∈ A, the choice of a i maximizes ln(v i (j ))−p j

over all j ∈ X i = B and therefore, maximizes v i (j )/e p j as well. Reversing

roles, there is a price vector (p j )j∈A with analogous optimality properties.

Therefore, ‹(λj = 1/e p j )j∈N , (a i )i∈N › constitutes a biased preferences

equilibrium.

In the other direction, let ‹(λj )j∈N , (a i )i∈N › be a biased preferences

equilibrium, and let (x i ) ∈ F . For every i , it holds that λa i v i (a i ) ≥

λx i v i (x i ). Therefore, Πi [λa i v i (a i )] ≥ Πi [λx i v i (x i )]. Since Πiλa i = Πiλx i ,

it follows that Πi v i (a i ) ≥Πi v i (x i ). That is, (a i ) is Nash maximal. �

The condition that the value of a match between any two agents is the

same for both of them is sufficient for the A-Nash-maximal matching to

be B-Nash-maximal as well. Without this condition, a biased preferences

equilibrium may not exist:

Example: Consider an assignment economy where A = {1,2}, B = {3,4},

and 3 �1 4, 1 �4 2, 4 �2 3, 2 �3 1. No utility presentation of these

preferences is consistent with the assumption that the value of a match

is identical for both partners (since it requires that v 1(3)> v 1(4) = v 4(1)>

v 4(2) = v 2(4)> v 2(3) = v 3(2)> v 3(1) = v 1(3)).

Suppose that 1↔3 is a match in a biased preferences equilibrium.

Then, λ1 > λ2 (so that agent 3 chooses agent 1 over agent 2). But then,

agent 4 will also choose agent 1, violating feasibility. Likewise, 1↔4

cannot be a match in a biased preferences equilibrium.
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Example: A Production Economy

In the production economy (related to Atakan et al. (2023)), there is a set

of indivisible goods K and two equally-sized groups of agents: consumers

(C ) and producers (P). Every i ∈C consumes exactly one unit of a single

good, that is X i = K , and u i
k > 0 is consumer i ’s utility from consuming

good k (which he wishes to maximize). Every producer i ∈ P must

produce exactly one unit of a single good, that is, X i = K , and c i
k > 0

is producer i ’s utility-cost from producing good k (which he wishes to

minimize). The set F consists of all profiles satisfying that, for every good

k , the number of its consumers is equal to the number of its producers.

Note that this economy differs from the partnership economy in that

consumers and producers choose a good rather than a partner and the

biases are applied to the goods rather than to the agents.

A bias vector λ = (λk )k∈K alters consumer i ’s utility vector from

(u i
k )k∈K to (λk u i

k )k∈K and producer i ’s utility-cost vector from (c i
k )k∈K to

(λk c i
k )k∈K . Thus, a bias λ simultaneously rescales both the consumers’

utility and the producers’ utility-costs of good k by the same factor λk .

Thus, an increase in λk is analogous to that of a decrease in the price of

good k in a regular exchange economy: it makes the good more desirable

to buyers and less desirable to sellers. Underlying a bias could be some

trait such as quality: a high bias, like a high quality level, makes the good

more desirable to consumers and increases the utility-cost to produce it.

The following claim again uses a Shapley and Shubik (1971)-style

argument to characterize the biased preferences equilibrium profiles. It

implies that they exist and are pre-Pareto optimal.

Claim: In the production economy, the biased preferences equilibrium

profiles are precisely the solutions of:

max
(x i )∈F

Π
i∈C

u i
x i

Π
i∈P

c i
x i

(*)
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Proof: Let ‹λ, (x i )› be a biased preferences equilibrium, and let (y i ) ∈ F .

It follows that λx i u i
x i ≥ λy i u i

y i for every i ∈ C and λx i c i
x i ≤ λy i c i

y i for

every i ∈ P . Combined with the equality Πi∈Cλz i =Πi∈Pλz i , which holds

for all (z i )∈ F , we conclude that:

Π
i∈C

u i
x i

Π
i∈P

c i
x i

=
Π

i∈C
λx i u i

x i

Π
i∈P
λx i c i

x i

≥
Π

i∈C
λy i u i

y i

Π
i∈P
λy i c i

y i

=
Π

i∈C
u i

y i

Π
i∈P

c i
y i

and therefore (x i ) is a solution of (*).

In the other direction, let (x i ) be a solution of (*). Let (x i
k ) be the

allocation matrix with a row for each agent and a column for each good,

where x i
k = 1 if i chooses k and x i

k = 0 otherwise. The matrix solves the

following linear maximization problem:

max
(m i

k )
ΣkΣi∈C [ln(u

i
k )m

i
k ]+ΣkΣi∈P [− ln(c i

k )m
i
k ]

such that Σi∈C m i
k −Σi∈P m i

k = 0 ∀k (μk )

m i
k ≥ 0 ∀i , k (γi

k )

Σk m i
k = 1 ∀i (ψi )

The above problem always has a solution which is a binary matrix (that

is, x i
k = 0 or 1, for every i , k ). To understand why, Birkhoff (1946) (and his

extensions in Budish et al. (2013)) shows that any matrix of real numbers

that satisfies the above constraints is a convex combination of binary

matrices that also satisfy them. Since the target function is linear, any

such binary matrix is also a solution to the linear programming problem.

The constraints in the above optimization are labelled by their

shadow values, which appear in the parenthesis to the right. Let

λ = (e μk )k∈K . We will now verify that ‹λ, (x i )› is a biased preferences

equilibrium.
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The matrix (x i
k ) satisfies the following conditions for every i ∈ C and

k ∈ K :

ln(u i
k )+μk +γ

i
k +ψ

i = 0, γi
k x i

k = 0 and γi
k ≤ 0

If x i
k = 1, then for any k ′ ∈ K : ln(u i

k )+μk +ψi = 0≥ ln(u i
k ′)+μk ′+ψi and

therefore, λk u i
k ≥ λk ′u i

k ′ , that is, k is i ’s most preferred good according

to the λ-biased preferences. Likewise, for every i ∈ P and k ∈ K :

− ln(c i
k )−μk +γ

i
k +ψ

i = 0, γi
k x i

k = 0 and γi
k ≤ 0

If x i
k = 1, then for any k ′: − ln(c i

k )−μk +ψi = 0≥− ln(c i
k ′)−μk ′ +ψi and

therefore, c i
kλk ≤ c i

k ′λk ′ , that is, k minimizes i ’s λ-biased utility-costs. �

Example: Table 4.4 (left panel) depicts a production economy with two

goods, two consumers (C1 and C2), and two producers (P1 and P2). The

right panel indicates a biased preferences equilibrium with λ = (1,3)

where Consumer 1 and Producer 1 choose Good 1, and Consumer 2 and

Producer 2 choose Good 2.

Good 1 Good 2

C1 4 1

C2 4 2

P1 2 1

P2 4 1

T (∙,λ)→
1∙ Good 1 3∙ Good 2

C1 4 3

C2 4 6

P1 2 3

P2 4 3

Table 4.4 A Biased Preferences Equilibrium in a Production Economy.
The left panel presents the initial utilities and utility-costs for the agents and the
right panel presents the biased utilities and utility-costs with the bias λ= (1,3).

Initially, both consumers prefer to consume good 1, while both pro-

ducers prefer to produce good 2. In the solution of (*) (with the value

(4 ∙ 2)/(2 ∙ 1)), C1 and P1 choose good 1, and C2 and P2 choose good 2.

This outcome is obtained in equilibrium by, for example, λ= (1,3), a bias

that induces one consumer to switch from good 1 to good 2, and one

producer to switch from good 2 to good 1.
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In this final chapter, we compare this book’s modelling approaches to those

of standard Game Theory. Rather than talking abstractly, we make the

comparison more concrete by considering two specific “battlegrounds”. In

both, we contrast our solution concepts with the standard ones. As always,

we do not argue positively or normatively in favour of adopting the social

institutions underlying any of these solution concepts. Rather, we simply

wish to encourage readers to abandon the dogmatic use of familiar solution

concepts and to consider less conventional frameworks.

The first battleground is the matching economy. It involves a single even-

numbered population of agents who must match into exclusive pairs, which we

refer to as a pairing. Each agent is characterized by a preference relation over

potential mates. A special case is Gale and Shapley (1962)’s two-sided matching

problem, one of the most iconic models in Economic Theory. In that problem,

the agents are partitioned into two equal-sized groups, and each agent prefers

to be matched with any agent from the other group over being matched with

an agent from his own group.

The standard cooperative game-theoretical solution concept for matching

economies is “pairwise stability”, which is a pairing for which there are no

two agents in different pairs who prefer each other over their current partners.

Following Richter and Rubinstein (2024), we compare this concept with three of

the approaches discussed in this book (modified to fit the matching problem):

• The jungle equilibrium in which a power relation governs society.

• The Y-equilibrium in which society is governed by norms that specify what is

permissible and what is forbidden.

• The status and initial status equilibrium concepts in which a status ordering

upholds harmony in a society.

©2024 Michael Richter and Ariel Rubinstein, CC BY-NC-ND 4.0 https://doi.org/10.11647/OBP.0404.05
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The second battleground is a “political economy” situation. There is a

group of agents with views on a political issue. Each agent chooses a position

and has preferences only regarding the position he himself chooses (and not

the outcome of the process). There is a need that a majority of agents choose

the same position. If there is no majority position, then a crisis ensues.

Traditionally, such a situation is modelled as a non-cooperative game, and

its Nash equilibria are calculated. Extending Richter and Rubinstein (2021), we

compare this approach with two of the approaches discussed in this book:

• The convex Y-equilibrium in which society is governed by (convex) norms that

specify what is permissible and what is forbidden.

• The biased preferences equilibria where preferences are systematically biased.

In both battlegrounds, the matching problem and the political economy

setting, we will see that the new approaches lead to very different outcomes

than the traditional ones.

5.1 The Matching Economy

In the matching economy, N is an even-numbered population of n agents. The

set of alternatives is taken to be the set of agents, i.e. X =N . A pairing is a profile

(x i )i∈N that specifies, for every i , a partner x i 6= i , such that if i is paired with j ,

then j is paired with i . The feasibility set F is the set of all pairings. Note that F

is not closed under permutations (if i and j exchange partners, then feasibility

requires that x i and x j also exchange partners). A match between two agents

i and j is denoted as i↔j . We assume that agents prefer to have any partner

over being alone; in other words, every agent bottom-ranks himself. Therefore,

it will be sufficient to specify, for each agent i , a strict preference relation �i

over X\{i }, the set of all other agents.

As mentioned, the standard solution concept for this economy is pairwise

stability, which is a pairing such that there are no two agents in different

pairs who prefer each other over their respective current partners. Formally, a

pairing (x i ) is pairwise stable if there is no i and j such that j �i x i and i �j x j .
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The two-sided matching economy is a special case of the matching

economy. The set of agents N is partitioned into two equally-sized sets, N1 and

N2, and every agent prefers any agent from the other group over any agent from

his own group. We say that a pairing is mixed if every couple has a member

from each group. For two-sided matching economies, a pairwise-stable pairing

always exists and can be calculated using Gale and Shapley (1962)’s deferred

acceptance algorithm. However, in the general matching economy, a pairwise-

stable pairing often does not exist. The following is Gale and Shapley (1962)’s

canonical example of a matching economy with no pairwise-stable pairing:

Agent 1 2 3 4

1st Preference 2 3 1 1

2nd Preference 3 1 2 2

3rd Preference 4 4 4 3

Table 5.1 A matching economy with no pairwise-stable pairing.

To see that there is no pairwise-stable pairing, consider a candidate pairing.

Let i be the agent matched with 4. Agent i prefers every other agent over 4, and

there is an agent j ∈ {1,2,3}\{i } who top-ranks i . Thus, the couple i↔j blocks

the candidate pairing from being pairwise stable.

As discussed in Section 0.4, we distinguish between two types of equi-

librium concepts: the choice type (like competitive equilibrium) and the

deviation type (like Nash equilibrium). Two of the concepts which we will

apply, the Y-equilibrium and the initial status equilibrium, belong to the choice

type. In these solution concepts, some internally determined parameter will

restrict every agent’s choice set so that there is a pairing in which every agent’s

partner is his most preferred from his choice set.

The other solution concepts that we apply to the matching problem belong

to the deviation type. An equilibrium concept of this type captures immunity

against certain threats that would “rock the boat”. A prominent example is

pairwise stability where the threat is the existence of the mutual interest of two

agents in abandoning their current partner to form a new match.
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We have a different unilateral threat in mind: for harmony to be disturbed,

it is sufficient that one agent is willing and able to approach another agent. The

threat is merely the approach of an agent to someone who is not his partner,

whether or not his approach is reciprocated.

The perspective of life which we model is that a pairing can be destabilized

not by coalitions but merely by an agent A approaching an agent B (who is not

matched with A) and expressing his desire for B to abandon his current partner

and match with him instead. This destabilizes society regardless of whether or

not B reciprocates A’s affections. Why does A approach B? Actually, why not?

He might know that B also prefers him over B ’s current partner (which is the

premise of pairwise stability). Even if he knows that B does not prefer him, A

might hope that if he approaches B , then B will feel flattered and change his

opinion. Finally, A might not know B ’s preferences and simply tries his luck.

Generally, it is impossible for every agent to be paired with his top choice

because agents’ desires are not perfectly reciprocated. Therefore, achieving

stability when agents can make unilateral approaches requires restrictions on

which approaches are allowed. Given such restrictions, we say that a pairing

is unilaterally stable if there is no agent who wishes to approach another and

is able to do so. A familiar and very strict social norm forbids approaching any

matched individual. Such a norm achieves harmony in a society, but at the cost

of drastically restricting personal freedom. The restrictions described in the

following three sections involve social institutions (power, taboos, and status)

that limit an agent’s ability to act, but in a less draconian manner.

The following is a running example which will be used to illustrate the

different solution concepts:

Example: The Common-ranking Two-sided Matching Economy

A common-ranking two-sided matching economy is a two-sided match-

ing economy where every agent in N1 ranks members of N2 according to

a common ranking j1 �2 j2 �2 . . .�2 jn/2, and every agent in N2 ranks his

potential partners in N1 according to i 1 �1 i 2 �1 . . .�1 i n/2.
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In such an economy, the set of Pareto-optimal pairings is the set of all

mixed pairings (recall that, a pairing is mixed if each agent is paired with

an agent from the other side). To see why, any pairing that matches two

members of the same side also matches two members from the other

side. However, in that case, all four agents can be beneficially re-paired

with members of the other side, making a Pareto improvement. On

the other hand, in any mixed matching, improving one agent’s situation

requires moving another agent down the common preference ladder, so

no Pareto improvements can exist.

5.2 The Jungle Equilibrium

The first solution concept we apply is related to the jungle model described in

Chapter 1 with the key difference being that the power ordering is endogenous.

An equilibrium candidate is a tuple ‹B, (x i )› where (x i ) is a pairing and B is a

strict ordering on N . The statement i B j means that i is more powerful than

j . We consider three variants of the jungle equilibrium which differ in what

circumstances power prevents an agent from approaching another agent. In

particular, in a J1-equilibrium an agent is only able to approach agents who

are weaker than himself. In a J2-equilibrium, an agent needs to be stronger

than both the agent he is approaching and that agent’s current partner. In a

J3-equilibrium, an agent also needs to be stronger than his own partner.

As mentioned and unlike in Chapter 1, the power relation here is part of the

description of an equilibrium (as in Rubinstein and Yıldız (2022)). This is akin

to competitive equilibrium where prices are determined in equilibrium.

Definition: J1-Equilibrium

A J1-equilibrium is a tuple ‹B, (x i )› in which there are no two agents i

and j such that i prefers j over his current partner (that is, j �i x i ) and i

is more powerful than j (that is, i B j ).
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In a J1-equilibrium pairing, it can be that an agent prefers another to his

current partner. But, the agent is prohibited from making such an approach

because the agent to be approached is stronger than him. This contrasts with

pairwise stability where what prevents him from acting is that the agent to be

approached will reject him.

The following proposition compares the J1-equilibrium concept with that

of pairwise stability. It is found that the J1-equilibrium concept is stricter: any

J1-equilibrium outcome is pairwise stable (and therefore also Pareto-optimal).

Since pairwise-stable pairings do not always exist, neither will J1-equilibria.

Proposition 5.1: J1-equilibrium Properties

(i) Every J1-equilibrium pairing is pairwise stable.

(ii) A pairwise-stable pairing might not be a J1-equilibrium pairing.

Proof:

(i) Let ‹B, (x i )› be a J1-equilibrium. Suppose that there are two agents

i and j who strictly prefer each other to their current partners. One of

them must beB-stronger than the other, and he prefers the weaker agent

over his current partner, thus violating the J1-equilibrium condition.

(ii) In a J1-equilibrium, the strongest agent is matched with his first-best

choice. In the following matching economy, the pairing 1↔2 and 3↔4 is

pairwise stable, but there is no agent who is matched with his first best:

Agent 1 2 3 4

1st Preference 4 3 1 2

2nd Preference 2 1 4 3

3rd Preference 3 4 2 1

Table 5.2 Preferences with a pairwise-stable pairing (highlighted) that is not a
J1-equilibrium outcome.
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Example: The Common-ranking Two-sided Matching Economy

The pairing {i 1↔j1, i 2↔j2, ∙ ∙ ∙ , i n/2↔jn/2} combined with any power or-

dering � that satisfies i 1, j1 � i 2, j2 � ∙ ∙ ∙� i n/2, jn/2 is a J1-equilibrium.

There is no other J1-equilibrium pairing: Since every agent in N2 top-

ranks i 1, agent i 1 must be stronger than everyone in N2 except perhaps

his partner. This means that, in any equilibrium, i 1 has to be matched

with his first-best, namely j1. Similarly, j1 must be stronger than all

members of N1, except possibly i 1. This pattern continues down the

ranking. Among the remaining agents, i 2 and j2 are matched, and i 2

must be more powerful than {j3, . . . , jn/2} while j2 must be stronger than

{i 3, . . . , i n/2} and so on.

In the jungle model (Chapter 1), the ability of one agent to take the house of

another and, likewise, in a J1-equilibrium the ability of one agent to approach

another, depends solely on the power relationship between the two agents.

However, in the context of the matching economy, any approach involves not

only the agent who initiates the approach and the approached agent but also

their partners. The following two solution concepts take this into account. In a

J2-equilibrium, an agent can approach another in a different pair only if he is

stronger than both the desired agent and that agent’s partner.

Definition: J2-Equilibrium

A J2-equilibrium is a tuple ‹B, (x i )› in which there are no two agents i

and j such that i prefers j over his current partner (that is, j �i x i ) and

is more powerful than both j and j ’s partner (that is, i B j and i B x j ).

Like the J1-equilibrium, the J2-equilibrium does not allow for pairings in

which no agent gets his first best: in any J2-equilibrium, the strongest agent

is matched with his most-preferred partner. Obviously, every J1-equilibrium

is also a J2-equilibrium. We will now see that a J2-equilibrium always exists,

unlike a J1-equilibrium.
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Proposition 5.2: J2-equilibrium Properties

(i) A J2-equilibrium always exists.

(ii) Every J2-equilibrium pairing is Pareto-optimal.

(iii) A Pareto-optimal pairing (even if it is pairwise stable) need not be a

J2-equilibrium pairing.

Proof:

(i) Choose an arbitrary agent i 1, and make him the strongest agent.

Call his first-best partner j1, pair them together, and make j1 the

weakest agent. Continue in this manner to obtain a pairing in which

every agent i k is paired with jk , who is i k ’s favourite partner from

N −{i 1, j1, . . . , i k−1, jk−1}, and set the power relation to be i 1 B i 2 B ∙ ∙ ∙ B

j2B j1. Thus, every i k is stronger than every j l .

This procedure generates a J2-equilibrium. Any agent who might be

preferred by i k over jk must have been paired earlier, and thus, is either

stronger than i k or has a partner who is. No jl can approach any other

agent because every other couple, i k↔jk , has at least one member who

is stronger than him, namely i k .

(ii) Let ‹B, (x i )› be a J2-equilibrium. Assume that (y i ) Pareto-dominates

(x i ). Let j be the strongest agent in D ≡ {i | x i 6= y i }. By Pareto-

dominance, y j �j x j (recall that preferences are strict). Agent y j and y j ’s

original partner x y j are both in D . Therefore, j � y j ,x y j , which violates

‹B, (x i )› being a J2-equilibrium.

(iii) For the economy depicted in Table 5.2, the highlighted pairing

{1↔2,3↔4} is pairwise stable but is not a J2-equilibrium pairing since

no agent gets his first-best.
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Example: The Common-ranking Two-sided Matching Economy

Every mixed pairing (x i ) is a J2-equilibrium pairing supported by

assigning the power relations of agents in each side by the rank of their

matches (that is, for every two members i and j from the same side

assign i B j if x i is higher-ranked than x j ).

While every mixed pairing is part of a J2-equilibrium, not every power

relation is. For example, for the case of four agents, there is no J2-

equilibrium with the power relation j2 � i 1 � i 2 � j1. This is because

j2 is the most powerful, and must be matched with i 1. Thus, the

only candidate pairing is {i 1↔j2, i 2↔j1}. But this is not a J2-equilibrium

because i 1 prefers j1 over j2, and is stronger than both i 2 and j1.

Finally, in a J3-equilibrium, an agent can force a partnership with j only if he is

stronger than j , j ’s partner, and his own abandoned partner.

Definition: J3-Equilibrium

A J3-equilibrium is a tuple ‹B, (x i )› for which there are no i and j such

that j �i x i and i B j ,x i ,x j .

Obviously, every J2-equilibrium is also a J3-equilibrium. The J3-equilibrium

requires stronger conditions for an agent to be able to disturb society’s

harmony, and we will see that every power relation is part of some J3-

equilibrium (unlike the J2-equilibrium case). Nonetheless, in terms of

equilibrium pairings, the J2- and J3-equilibrium notions are equivalent.

Proposition 5.3: J3-equilibrium Properties

(i) For every power relation B, there is a J3-equilibrium ‹B, (x i )›.

(ii) The set of J3-equilibrium pairings is equal to the set of J2-equilibrium

pairings (thus, every J3-equilibrium pairing is Pareto-optimal, though

not every Pareto-optimal pairing is a J3-equilibrium pairing).
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Proof:

(i) Let � be a strict ordering. We inductively construct a pairing

(x i ) for which ‹�, (x i )› is a J3-equilibrium using a “generalized serial

dictatorship” procedure: First, the B-strongest agent picks his most-

preferred partner and they are matched. In each subsequent step, the

B-strongest remaining agent is matched with his most-preferred partner

from among those remaining. By this procedure, half of the agents “make

a choice” while the other half “are chosen”. Any agent who “makes a

choice” can only prefer agents who match before him, i.e. those who are

stronger than him or are paired with a stronger partner. Any agent who

“is chosen” is neutralized because he is matched with a stronger partner.

(ii) As mentioned, any J2-equilibrium is also a J3-equilibrium. We

now show that any J3-equilibrium pairing is a J2-equilibrium pairing

(perhaps with a different power relation). Consider a J3-equilibrium

‹B, (x i )›. In every couple, there is a stronger agent and a weaker one.

Let S be the set of n/2 stronger agents and W be the set of n/2 weaker

ones. Define a new power relationB′ by preservingB on S and on W and

pushing all members of W below all members of S. The tuple ‹B′, (x i )›

is a J2-equilibrium: If not, then there would be i and j such that j �i x i

and i B′ x j , j . It must be that i ∈ S since i is B′-stronger than a pair of

agents, j↔x j . Thus, i B x i . Since the power relation is preserved on S,

i is �-stronger than the �-stronger agent in {j ,x j } who is in S. Thus,

i �x i , j ,x j , contradicting ‹B, (x i )› being a J3-equilibrium.

5.3 Restricting Partnerships: Pairwise Y-equilibrium

We now adjust the Y-equilibrium concept (Chapter 2) to fit the matching

economy. Since every agent needs a partner, uniformly restricting the set of

permitted partners will leave some agents without a partner. Instead, the social

norm determines which pairs are permitted and which are forbidden.
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Definition: Y-Equilibrium

Let M be the set of all doubletons (sets of size 2). A para-Y-equilibrium

is a tuple ‹Y , (x i )› where Y ⊆M and (x i ) is a pairing such that, for every

agent i , x i is �i -maximal in {j | {i , j } ∈ Y }. A Y-equilibrium is a para-Y-

equilibrium such that there is no other para-Y-equilibrium ‹Z , (y i )› with

Y ⊂Z .

Any set of permissible pairs Y induces, for each agent i , a choice set of

permissible partners {j | {i , j } ∈ Y }. Thus, unlike the Y-equilibrium notion of

Chapter 2, here the Y-equilibrium notion treats agents asymmetrically in the

sense that different agents face different choice sets with the restriction that if

j is permissible for i , then i is also permissible for j . The adapted Y-equilibrium

notion requires that, for any larger permissible set, there is an i and j such that

i would choose j but j would not choose i .

The following proposition shows that the set of Y-equilibrium pairings is

the set of all Pareto-optimal pairings. This implies that, in term of outcomes,

the Y-equilibrium notion is more permissive than pairwise stability or the

J-equilibrium notions. In particular, it always exists.

Proposition 5.4: Y-equilibrium and Pareto Optimality

The set of Y-equilibrium pairings = The set of Pareto-optimal pairings.

Proof:

Given any pairing (x i ), define L((x i )) to be the set of all doubletons {i , j }

such that x i %i j and x j %j i . Notice that for every i , the doubleton {i ,x i }

is in L((x i )).

Let ‹Y , (x i )› be a Y-equilibrium and (y i ) be a pairing that Pareto-

dominates (x i ). Obviously, L((x i )) ⊇ Y . Clearly, L((y i )) ⊇ L((x i )). In

fact, the inclusion is strict since at least one agent, say j , is strictly

better off in (y i ) and therefore the pair {j , y j } is in L((y i ))− L((x i )). The
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tuple ‹L((y i )), (y i )› is a para-Y-equilibrium with a larger set of permissible

pairs, which contradicts ‹Y , (x i )› being a Y-equilibrium.

On the other hand, let (x i ) be a Pareto-optimal pairing. We now show

that the tuple ‹L((x i )), (x i )› is a Y-equilibrium. If not, then there is a para-

Y-equilibrium ‹Z , (y i )›with Z ⊃ L((x i )). All agents are weakly better off in

(y i ) than in (x i ). The set Z contains at least one pair {i , j } which is not

in L((x i )). Without loss of generality, suppose that j �i x i . In that case,

y i %i j �i x i and therefore, (y i ) Pareto-dominates (x i ).

Example: The Common-ranking Two-sided Matching Economy

Every mixed pairing is Pareto-optimal and therefore, is a Y-equilibrium

pairing. The Y-equilibrium pairing {i 1↔j1, i 2↔j2, . . .} is supported

by a maximally restricted permissible set which contains only the

equilibrium matches (and all the matches between any two agents from

the same side).

5.4 Prestige by Partner: Status Equilibrium

We now turn to the status equilibrium concept discussed in Chapter 3

(referred to as an S-equilibrium in Richter and Rubinstein (2024)). Harmony

is established by a status ordering of the agents that blocks an agent from

approaching certain other agents. In a status equilibrium, agents are paired

up, and no agent can approach any other agent who has a higher status than his

current partner. The only agents he has the courage to approach are those with

a (weakly) lower status than his own partner. An equilibrium is harmonious in

that no agent can find a different partner who is both approachable and more

desirable.
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Definition: Status Equilibrium

A status equilibrium is a tuple ‹P, (x i )› where (x i ) is a pairing and P is

a weak ordering of the agents such that, for every agent i , there is no j

such that j �i x i and x i P j .

Status equilibrium pairings have the properties that at least one agent (the

agent with the highest-ranked partner) gets a partner whom he most prefers,

and if preferences are strict, then at most one agent gets his least-preferred

partner (it can only be the agent with the lowest-ranked partner).

We now establish some relationships between the status equilibrium

concept and the J2-equilibrium, Pareto optimality, and pairwise stability.

Proposition 5.5: Status Equilibrium Properties

(i) Every status equilibrium pairing is a J2-equilibrium pairing and

therefore, is Pareto-optimal.

(ii) The notions of status equilibrium and pairwise-stability are distinct;

it is possible for either notion to exist when the other one does not.

Proof:

(i) Let ‹P, (x i )› be a status equilibrium and break ties so that P is strict.

Define a power ranking � by ranking agents according to the status of

their partners: i � j if x i Px j . The tuple ‹�, (x i )› is a J2-equilibrium: If

j �i x i for some i , j , then it must be that j Px i since ‹�, (x i )› is a status

equilibrium. But then x j � i , and i is prevented from approaching j by

the power of j ’s partner. By Proposition 5.2, the pairing is also Pareto-

optimal.

(ii) In the economy depicted in Table 5.1, there is no pairwise-stable

pairing, but the ordering 1 P 2 P 3 P 4 supports the pairings {1↔3,2↔4}

and {1↔4,2↔3} as status equilibria.



124 Chapter 5. A Comparison to Game Theory

In the economy depicted in Table 5.2, the highlighted pairing

{1↔2,3↔4} is pairwise stable, but there is no status equilibrium: The

highlighted pairing is not a status equilibrium pairing because no agent

gets his first-best. Neither are the other two pairings because in each of

them, two agents get their last choice.

Example: The Common-ranking Two-sided Matching Economy

By Proposition 5.5, only mixed pairings can be status equilibrium

pairings. In fact, any mixed pairing is a status equilibrium pairing with

any ranking P that satisfies i 1Pi 2P . . . Pi n/2 and j1P j2P . . . P jn/2 (for any

agent i , every agent that i desires more than his partner has a higher

status than i ’s partner).

5.5 Prestige by Self: Initial Status Equilibrium

We adapt the initial status equilibrium concept to the matching economy by

taking an agent’s initial status to be himself. Recall that this concept belongs to

the choice group of solution concepts (see Section 0.4). Every agent chooses

his partner, but the status ranking only allows an agent to approach agents

with the same status or lower. In equilibrium, the status ranking is such that

the individual choices form a pairing (that is, if i chooses j , then j chooses i ).

Formally, a candidate for an initial status equilibrium is a tuple ‹P, (x i )› where

i P j is interpreted as “i ’s status is at least as high as j ’s” and (x i ) is a pairing. This

adapted initial status equilibrium concept is referred to as a C-equilibrium in

Richter and Rubinstein (2024).

Definition: Initial Status Equilibrium

An initial status equilibrium is a tuple ‹P, (x i )› such that, for every agent

i , his partner x i is i ’s most-preferred partner in {j ∈N | i P j }.
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Obviously, any two matched agents in an initial status equilibrium must have

the same status. Therefore, every initial status equilibrium is also a status

equilibrium and, by Proposition 5.5, its pairing is Pareto-optimal.

Of particular interest is the relationship between the initial status equilib-

rium and the J1-equilibrium. If ‹P, (x i )› is an initial status equilibrium, then

‹�, (x i )› is a J1-equilibrium where � is any strict tie-breaking of P (that is, i � j

only if i P j ).

However, unlike the initial status equilibrium concept, a J1-equilibrium

does not require that an agent be weakly stronger than his partner. Many

pairings can be a J1-equilibrium pairing but not an initial status equilibrium

pairing. For example, consider the two-sided matching economy with

N1 = {1,3}, N2 = {2,4}, and a tragedy: 1 loves 2, 2 loves 3, 3 loves 4, and 4 loves

1. Both mixed pairings are J1-equilibrium pairings. One is the first-best for N1’s

members. It is supported by any power relation that ranks N1’s members above

N2’s members. The other is the opposite. Neither is an initial status equilibrium

pairing (shortly, we will see why).

We need an additional concept. We say that the matching economy is pair-

rankable if the set of agents N can be partitioned into doubletons I1, . . . , In/2,

such that each agent in Iq prefers his partner in the doubleton to any member

of Iq+1 ∪ ∙ ∙ ∙ ∪ In/2. In other words, the agents can be partitioned into a sequence

of doubletons where every agent’s partner is his best choice from those who are

not ahead of him.

Pair-rankability is a strong property of a matching economy which emerges

in some natural settings. Two classical families of pair-rankable matching

economies are:

(i) Agents live in a metric space and rank partners by their closeness. The

first doubleton can consist of the two closest agents, and each subsequent

doubleton consists of the two closest among those remaining.

(ii) Agents are positioned on a line, and each has single-peaked preferences

over the other agents with a peak at one of his neighbours. This implies that an

extreme agent top-ranks his only neighbour and, for any set of agents, there are
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two neighbours such that the left one top-ranks his right neighbour while the

right one top-ranks his left neighbour.

Proposition 5.6: Initial Status Equilibrium Properties

(i) A matching economy has an initial status equilibrium if and only if it

is pair-rankable.

(ii) If an initial status equilibrium pairing exists, then it is unique and

pairwise stable.

Proof:

(i) Let ‹P, (x i )› be an initial status equilibrium. An agent who is

P-maximal must be matched with someone who is also P-maximal.

Thus, both must like each other more than they like anyone else. Denote

this doubleton as I1. Among the agents outside of I1, there is an agent

who is P-maximal. Again, he and his partner are equally ranked and

therefore, both must prefer each other to anyone else in N − I1, and so

on. Thus, the existence of an initial status equilibrium requires that the

economy is pair-rankable.

In the other direction, let I1, . . . , In/2 be a partition of N into

doubletons such that each agent in Iq prefers his doubleton’s partner to

any member of Iq+1∪ ∙ ∙ ∙∪ In/2. To construct an initial status equilibrium,

match each agent with his doubleton’s partner and define a ranking P by

i P j if i belongs to a weakly lower-indexed doubleton than j .

(ii) In fact, the above pairing is the only initial status equilibrium pairing

in a pair-rankable matching economy. This is because the two agents in

I1 must be matched in any initial status equilibrium since they top-rank

each other and, for any equilibrium ranking, one of them can “afford”

the other. The same argument then applies to the agents in I2 and so on.

Obviously, this pairing is also pairwise stable (see Alcalde (1994)).
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Example: The Common-ranking Two-sided Matching Economy

The economy is uniquely pair-rankable with Iq = {i q , jq}. By Proposition

5.6, the unique initial status equilibrium is the pairing {i 1↔j1, i 2↔j2, . . .}

with the status ranking P that ranks x Py if x ∈ Ip , y ∈ Iq and p ≤q .

5.6 A Comparison of Approaches

The diagram summarizes the relationship

between the different equilibrium concepts,

pairwise stability (PS), and Pareto optimality

(Pareto). The lines in the diagram depict

weak inclusion. In particular, all equilibrium

pairings are Pareto optimal (the First Welfare

Theorem); only the Y-equilibrium satisfies the

Second Welfare Theorem; and only the J2-, J3-,

and Y-equilibrium are guaranteed to exist. The

terms, status equilibrium (S) and initial status

equilibrium (IS), are abbreviated.

IS

SJ1

J2=J3PS

Y=Pareto

Exists

Figure 5.1 Relationship
between the concepts.

5.7 The Majority Voting Economy

We now turn to compare our approach with that of Non-cooperative Game

Theory. As mentioned, our battleground is the following majority voting

economy: There is an odd number of agents (n ≥ 3), each of whom chooses

a position in X = [−1, 1]. Each agent i has continuous and strictly convex

preferences over X with a unique peak, denoted by peaki . All of the peaks are

distinct and without loss of generality, we assume that −1 < peak1 < peak2 <

∙ ∙ ∙ < peakn < 1. To simplify notation, denote the leftmost peak, the median

peak, and the rightmost peak as L, M , and R , respectively. The set F ⊆ X N

consists of all profiles for which at least τ= (n+1)/2 members choose the same

position. If a profile (x i ) has a point shared by at least τmembers, we denote it
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by O((x i )) and refer to it as the overall position (clearly, it is not possible to have

two such positions).

The situation we have in mind is one where societal harmony requires that a

majority of members declare the same position and if there is no such majority,

then a crisis bursts. An example is a committee or a jury who, according

to their procedure, must come out with a position that is supported by a

majority of members. Another example is of a political party whose leaders

must take positions on an issue. To prevent the public from becoming confused

and abandoning the party, at least a majority of them need to take the same

position.

Note that in Hotelling (1929) and its many extensions, an agent cares only

about the group’s position, while in Downs (1957), an agent also cares about

his chosen position. We go a step further and assume that an agent cares only

about his chosen position and does not care at all about the group’s majority

position.

5.8 Convex Y-equilibrium

First, we analyze the economy’s convex Y-equilibria (Chapter 2). Recall that a

convex Y-equilibrium is a configuration ‹Y , (y i )› (where Y is a convex subset of

X and (y i ) is a profile of choices from Y ) that satisfies the three conditions:

(i) Rationality: for all i , y i is a%i -maximal position in Y .

(ii) Feasibility: (y i )∈ F .

(iii) Set maximality: there is no convex set Z ⊃ Y and profile (z i ) ∈ F such that

z i is a%i -maximal alternative in Z for all i .

Recall that, in any convex Y-equilibrium, the permissible set is closed (if not,

then the closure of the permissible set with the same profile is a larger convex

para-equilibrium). Since Y is convex and closed and all preference relations

are strictly convex, every agent’s maximal position is unique.

We now show that there are exactly two convex Y-equilibria in this

economy and both have the overall position M (the median peak): a “rightist”
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equilibrium in which M and all positions to its right are permissible and a

“leftist” equilibrium in which M and all positions to its left are permissible (see

Figure 5.2).

−1 1

peak1 peak2 peak3 =M peak4 peak5

x 1 x 2 x 3 = x 4 = x 5

Figure 5.2 A leftist equilibrium

Proposition 5.7: Convex Y-equilibria in the Majority Voting Economy

In the majority voting economy, there are two convex Y-equilibria. Their

permissible sets are [−1, M ] and [M , 1]. Both have the overall position M .

Proof:

The set [−1, M ] is a convex para-equilibrium permissible set because all

of the rightist agents and the median voter vote M , thereby constituting

a majority. Likewise, [M ,1] is a convex para-equilibrium permissible set.

To show that [−1, M ] and [M , 1] are convex Y-equilibrium permissible

sets and that there are no others, it suffices to show that any convex para-

equilibrium permissible set is a subset of either [−1, M ] or [M ,1]. To see

this, note that if a convex permissible set contains points to both the left

and right of M , then no position attracts majority support: M must be in

the permissible set since it is convex and the median agent selects it, all

leftist agents (a minority) choose positions to the left of M and all rightist

agents (also a minority) choose positions to the right of M . Thus, every

convex Y-para-equilibrium’s permissible set is contained in [−1, M ] or

[M ,1].

At first glance, Proposition 5.7 appears to be a kind of “median voter

theorem” since the only convex Y-equilibrium overall position is the median.
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Thus, in terms of outcomes, the convex Y-equilibrium involves a compromise;

however, the price of this “happy ending” is that only positions to one side of

M are permitted.

5.9 Biased Preferences Equilibrium

To fit the model into Chapter 4’s definition of an economy, we modify

the specification of the agents’ preferences as we did for the give-and-take

economy. Assume that each agent i has two considerations in mind, labelled

l and r , and maximizes the utility function u i (x ) = u i
l (x ) + u i

r (x ) where u i
l is

strictly decreasing and represents an argument for leftist positions, while u i
r is

strictly increasing and represents an argument for rightist ones. The functions

u i
l and u i

r are differentiable with non-zero and finite derivatives at each point.

They are also strictly concave, which implies that their sum induces convex

preferences with a unique peak, denoted by peaki , and we assume that all

peaks are different.

A bias (λl ,λr ) transforms an agent i ’s utility function into λl u i
l (x )+λr u i

r (x ).

Consequently, a leftist bias (where λl > λr ) moves the peak of every agent to

the left, while a rightist bias (where λl <λr ) moves all of the peaks to the right.

There always exist extreme biased preferences equilibria where a majority of

agents agree on the rightmost position supported by a rightist bias, which

increases the weight of the rightist consideration strongly enough that at least

a majority of individuals become extreme rightists. Likewise, there are also

extreme leftist biased preferences equilibria.

It is possible that there are biased preferences equilibria where a majority

of individuals move in one direction, and it just so happens that a majority

of the biased peaks coincide but this would be a fluke occurrence. However,

there is never a biased preferences equilibrium with a majority at the median

position (since the peaks are distinct, a bias is necessary for agreement, but

if there is a rightist bias, then any equilibrium must have a right-of-median

overall position, and vice-versa if there is a leftist bias).
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To summarize, extreme positions are always biased preferences equi-

librium overall positions and the median never is, whereas the unique Y-

equilibrium overall position is the median.

5.10 The Majority Voting Game and Nash Equilibrium

To model the majority voting economy ‹N , X , (%i )i∈N , F › as a strategic game, let

the set of players be N , and let each player’s set of actions be the set of positions

X . Each player j has a preference relation %j
∗ on the set of all choice profiles,

defined by x = (x i )%j
∗ y = (y i ) if either:

(i) x ∈ F and y /∈ F ; or

(ii) both x , y ∈ F or both x , y /∈ F and x j %j y j .

In other words, every agent’s lexicographical first priority is harmony, and his

second priority is his own position.

We apply the standard Nash equilibrium to this game. We distinguish

between non-crisis Nash equilibria (in which a majority of players agree on a

position) and crisis Nash equilibria (in which no overall position exists). Recall

that n is odd. If n > 3, then there is a unique crisis equilibrium in which

every agent chooses his own peak. No other crisis equilibria exist since, if the

outcome of the game is a crisis, then every agent chooses his peak, because

otherwise any agent could profitably deviate to his peak, whether or not that

results in harmony. If n = 3, then a crisis equilibrium does not exist since any

agent can deviate to one of the other two positions and thus, avoid a crisis.

In this game, the notion of a non-crisis Nash equilibrium is identical to that

of the social equilibrium in Debreu (1952)’s model of generalized games (see

Tóbiás (2022) for a review of conditions guaranteeing its existence). A social

equilibrium is a profile of actions in F such that every player’s action is a best

response from among the set of actions that are available to him given the other

players’ actions. In other words, the profile after the deviation must be in F .

Formally, (x i ) ∈ F is a social equilibrium if for each i , the action x i is optimal

for i from among all the actions t i such that (t i ,x−i )∈ F .
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The difference between the Nash and Debreu formulations is purely

semantic: every player is either not interested in moving from a non-crisis

profile to a crisis profile (in the Nash formulation) or is not even allowed to

do so (in Debreu’s formulation).

All profiles in which a bare majority of exactly τ = (n + 1)/2 agents choose

the same position (whatever it is), while the rest choose their peaks, are non-

crisis Nash equilibria. These equilibria can be extremely unnatural in that the

coalition which supports them does not have anything to do with the position

being supported. In particular, there are non-crisis Nash equilibria for any

overall position, even extreme ones that are outside of [L, R], and the agents

supporting the overall position need not be those whose peaks are closest to it.

We will now see that there are no other non-crisis Nash equilibria.

Proposition 5.8: Nash Equilibrium in the Voting Game

If n ≥ 5, then the set of non-crisis Nash equilibria in the voting game

consists of all profiles for which there is a position chosen by exactly τ

agents while the rest choose their peaks.

Proof:

These are Nash equilibria: No agent at the majority position can deviate

profitably since, if he did so, then a crisis would ensue because his

former position would no longer be a majority position and neither

would his new position (all other agents are choosing their peaks which

are distinct, so any new position would have at most two agents, but

n ≥ 5). All other agents are at their first-best, they choose their peak,

and no crisis occurs. Therefore, they do not want to deviate.

To see that there are no other non-crisis Nash equilibria, consider a

Nash equilibrium in which at least τ agents choose a common position

t . An agent who does not choose t is not critical in maintaining harmony

and therefore, must be at his peak. If strictly more than τ agents choose

t , then at least one of them is not at his peak and could deviate profitably.
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Comment: In Richter and Rubinstein (2021), we conducted similar compar-

isons and reached similar conclusions regarding other conditions for “holding

the group together”:

(i) a consensus among a super majority of agents,

(ii) all positions are sufficiently close to the median position, or

(iii) all positions are sufficiently close to the average position.

5.11 Comparing our Approaches with Nash Equilibrium

The above analysis clarifies the significant differences between the convex Y-

equilibrium, the biased preferences equilibrium, and the Nash equilibrium

of the above political game. For the convex Y-equilibrium concept, M is the

only overall position. For the biased preferences equilibrium concept, typically

only the extreme positions, −1 and 1, are overall positions. In contrast, for the

Nash equilibrium concept, all positions, even those outside the range [L, R], are

overall positions. Furthermore, a convex Y-equilibrium is “monotonic” in the

sense that if agent i ’s ideal position is to the left of j ’s then his chosen position

is weakly to the left of j ’s. In contrast, there are always non-monotonic Nash

equilibria. The biased preferences equilibrium case is less clear: the existence

of a non-monotonic equilibrium depends on the underlying utility functions.

Notice that the Nash equilibria require a high degree of coordination

between the agents. In contrast, the Y-equilibrium and biased preferences

equilibrium concepts only require that agents know either the social restric-

tions or biases, but not the behaviour of others. This is like the marketplace

where individuals only need to know prices, but not other agents’ actions.

Let us emphasise: we are not saying that the standard game-theoretical

approach is “wrong”, nor do we insist that the Y-equilibrium or biased

preferences equilibrium approaches are “right”. Rather, and as already

mentioned, we are suggesting that the reader not automatically apply Nash-

equilibrium-like concepts but instead considers alternative solution concepts

in the spirit of those described in this book.
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